)

Check for
updates

DSLs and Middleware Platforms

in a Model-Driven Development

Approach for Secure Predictive
Maintenance Systems in Smart Factories

Jobish John' 3™ Amrita Ghosal®»*(®®)  Tiziana Margaria>4(*0)
and Dirk Pesch®3(&)

1 CONFIRM, SFI Research Centre for Smart Manufacturing, Limerick, Ireland
2 Lero, SFI Research Centre for Software, Limerick, Ireland
3 School of CS and IT, University College Cork, Cork, Ireland
{j.john,d.pesch}@cs.ucc.ie
4 (SIS, University of Limerick, Limerick, Ireland
{amrita.ghosal,tiziana.margaria}@ul.ie

Abstract. In many industries, traditional automation systems (operat-
ing technology) such as PLCs are being replaced with modern, networked
ICT-based systems as part of a drive towards the Industrial Internet of
Things (IIoT). The intention behind this is to use more cost-effective,
open platforms that also integrate better with an organisation’s infor-
mation technology (IT) systems. In order to deal with heterogeneity
in these systems, middleware platforms such as EdgeX Foundry, IoTiv-
ity, FI-WARE for Internet of Things (IoT) systems are under develop-
ment that provide integration and try to overcome interoperability issues
between devices of different standards. In this paper, we consider the
EdgeX Foundry IloT middleware platform as a transformation engine
between field devices and enterprise applications. We also consider secu-
rity as a critical element in this and discuss how to prevent or miti-
gate the possibility of several security risks. Here we address secure data
access control by introducing a declarative policy layer implementable
using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Finally,
we tackle the interoperability challenge at the application layer by con-
necting EdgeX with DIME, a model-driven/low-code application devel-
opment platform that provides methods and techniques for systematic
integration based on layered Domain-Specific Languages (DSL). Here,
EdgeX services are accessed through a Native DSL, and the application
logic is designed in the DIME Language DSL, lifting middleware develop-
ment/configuration to a DSL abstraction level. Through the use of DSLs,
this approach covers the integration space domain by domain, technology
by technology, and is thus highly generalizable and reusable. We validate
our approach with an example IToT use case in smart manufacturing.

An earlier version of this work was presented at the Irish Manufacturing Council’s
International Manufacturing Conference (IMC 37) 2021, Athlone, Ireland.
© The Author(s) 2021

T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 146-161, 2021.
https://doi.org/10.1007/978-3-030-89159-6_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89159-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-89159-6_10

DSLs and Middleware Platforms in MDD for Secure PreMS 147

Keywords: Predictive maintenance - EdgeX-Foundry - Secured
access + Domain-specific languages

1 Introduction

The Industrial Internet of Things (IToT) enables the transformation of tradi-
tional manufacturing systems into highly flexible, scalable and smart intercon-
nected automation systems widely known as Industry 4.0 [1,5,23]. Decentral-
ized decision making through real-time monitoring, using a large number of
networked devices form the basis of IIoT [21]. To realize future smart facto-
ries, many field devices operating with both wired and wireless communication
technologies need to coexist and interoperate seamlessly, which is one of the
significant challenges for IIoT adopters.

Extracting meaningful insights from the large volume of data generated by
devices poses another significant challenge. It is usually done at two levels, at the
on-premise network edge (widely referred to as edge computing) and at the cloud
level (cloud computing) [3,21]. With advancements in edge computing, decisions
can be taken at the local edge, especially in delay-sensitive situations. Remote
monitoring, diagnosis and maintenance of complex equipment/ machines is one
of such applications that is widely used in smart manufacturing. Maintenance
of assets in a factory is carried out with three different approaches: i) Reactive
maintenance (e.g., repair the system once it breaks down), ii) preventive main-
tenance (e.g., regular checks), and iii) predictive maintenance (e.g., IToT smart
sensing-based solution that predicts and schedules the machine maintenance at
the right time) [7]. Predictive maintenance schemes provide the best utilization
of assets by minimizing their downtimes.

In this paper we study a predictive maintenance system (PreMS) from a
system integration point of view, encompassing heterogeneous system elements
involved in an architecturally sound solution that provides reliable interoperabil-
ity. These elements include IIoT components, middleware, specific application
logic needed to build the PreMS solution, and also security aspects. In doing this,
we leverage as far as is possible a platform approach instead of bespoke program-
ming or even bespoke code-based integration. A well-designed IToT platform
at the network edge can act as a seamless service-based transformation engine
between field devices and enterprise applications. To deal with the field device
heterogeneity in a flexible, scalable and secured fashion, industry consortia have
been developing several IoT middleware platforms such as EdgeX Foundry [10],
IoTivity [22], FI-WARE [22]. To overcome interoperability issues between field
devices of different standards we consider the EdgeX Foundry platform as our
IToT middleware of choice at the network edge.

For the solution design and implementation, we adopt the approach proposed
in [15], which shows the use of a flexible, low-code platform for enhanced inter-
operability with characteristics well suited for our PreMS application. While [15]
shows its use in a building automation setting, this flexible, low-code platform
for enhanced interoperability serves our purposes for building an IIoT platform
here too. Our contributions are



148 J. John et al.

— an architectural approach to edge computing based integration and deploy-
ment of middleware based model driven software applications for IIoT
including EdgeX and DIME, a graphical application development method-
ology backed by formal models [6]

— arole based, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) secu-
rity policy development approach for security, privacy and compliance policies
compatible with DIME.

Our previous work [15] showed that such a combination can yield a uniform
paradigm and platform for the design of both applications and their properties.

The remainder of the paper is structured as follows. Section 2 provides an
overview of the EdgeX Foundry middleware and system integration platform.
Section 3 presents the PReMS use case application including device provisioning,
data and alert handling and reusable application development using Domain
Specific Languages (DSLs). Section 4 presents the security policy approach and
Sect. 5 concludes the paper.

2 EdgeX Foundry as IIoT Middleware Platform

KEY

=
! 3 E Required Interoperability Foundation

Replaceable Reference Services |

NORTHBOUND Infrastructure & Applications

1 X 1
1 Loosely-coupled Microservices Framework | Container Deployment | | Developer GUI | 1
: APPLICATION SERVICES :
1 Reverse = - — 1
1 Proxy Configurable Application Application Additional 4 @ z 1
1 Services Services Services N’ % 1
i g i
1 8 SUPPORTING SERVICES 2 I
! s 3 i
< Additional 2
: & Rules Engine A!e.rts.& Scheduling HEONS I :
Notifications Services 2 >
1 E |z G121
= 5 > |1
1|2 |3 — @ |1
& | & Z |1
1 « zZ < £ 1
1 2 g |2 |
2 2|5
1 AN
e} w
1 2 3 1
| = 18
1 DEVICE SERVICES P4 1
1 Secret Any combination of standard or proprietary protocols via SDK L 1
1 - - 1
! store REST MODBUS | ===== BLE marT | | Add!Device '
: Services :

Fig. 1. EdgeX Foundry - platform architecture [10]

Although there are several IToT middleware platforms available [22], we choose
to use EdgeX Foundry at our network edge since it is an open-source, hard-
ware agnostic, highly active, plug and play IIoT middleware platform aimed at
edge computing. It is also supported by several industrial organisations, many



DSLs and Middleware Platforms in MDD for Secure PreMS 149

of which are partners in our national research centre [8]. A commercial-grade
version of EdgeX and associated IToT device connectors (detailed in Sect. 3.1) is
also available [14]. EdgeX Foundry [10] consists of six different layers (four ser-
vice layers 4+ two system layers) as shown in Fig. 1, implemented using loosely
coupled microservices that are container deployable. Details about each layer
are discussed in [15]. External devices, such as sensors and actuators of different
protocols interact with the EdgeX platform using device connectors present in
the device service layer. EdgeX includes security elements for protecting data
while managing IoT entities. As an open-source platform, security features are
developed with open interfaces and pluggable, replaceable modules. The secret
store is implemented through the open source Vault [15], and communication
with microservices is secured using TLS. A secure API gateway is the sole entry
point for EdgeX REST traffic and safeguards unauthorized access to EdgeX’s
REST APIs.

Recent literature shows how to exploit EdgeX Foundry as a ready-made
middleware platform. Xu et al. [25] propose a microservice security agent that
provides secure authentication by integrating the edge computing platform with
an API gateway. Han et al. [13] designed a monitoring system using EdgeX
to deal with diverse communication protocols and insufficient cloud computing
resources. Kim et al. [17] design an EdgeX-based general-purpose, lightweight
edge gateway with low-end CPU and low-capacity memory. The gateway pro-
cesses small load data to monitor control systems for smart homes, smart farms,
and smart meters. Zhang et al. [26] describe a trusted platform to preserve data
privacy of edge computing clients via an edge secured environment that inte-
grates EdgeX and the Hyperledger Fabric blockchain network. Platform porta-
bility is enhanced by using EdgeX and extending it to incorporate the Hyper-
ledger via a collection of well-defined security authentication microservices. Xu
et al. [24] present an EdgeX-based edge computing environment that covers
implementation and deployment at the edge. Devices are connected via CoAP
and HTTP-based REST APIs on a Raspberry Pi, showing experimentally that
CoAP is more stable and faster than HTTP.

In [15] we showed how to design and develop a low-code application for
building automation that uses EdgeX’s capabilities as an integration service.
For the specific low-code support, we used a model-driven approach based on
Domain Specific Languages at two levels:

1. language DSLs as a mechanism to design and implement the application
design environment itself, i.e. the Integrated Modeling Environment DIME,
and

2. application domain DSLs at application design time. The Native DSL mech-
anism in DIME is used as a means to integrate and expose both capabilities
offered by end-devices and EdgeX middleware services to application design-
ers. Additionally Process DSLs are used as a means to foster reuse of medium
and large-grained business logic as reusable features across applications.

The native and process DSLs have been previously applied also to robotic sce-
narios [19], and [18] shows how to craft REST services and cloud services in



150 J. John et al.

the DIME environment. In [15] we also adopted the ADD-Lib [12] for policy
definition. The policies designed with ADD-lib translate to efficient code that is
integrated in DIME through its Native DSL mechanism.

Altogether, this shows flexibility, ease of extension, support of high-assurance
software quality, agility, security, a service-oriented approach, and containeriza-
tion, as well as proven compatibility with EdgeX. The contributions of this paper
concern the portability of the architecture, methodology, and the reuse of many
artefacts also in the Predictive Maintenance domain.

3 Industrial Automation Use Case: Predictive
Maintenance

ﬂanguage DSLs DIME
(DIME, ADD-Lib)
& | Interface Model (GUI)
X
—— Modelling Language Layer
% PReMS Application
- |~ etntoe

o External Native DSLs

N Y| —— External Native DSLs
° EdgeX Platform L

B Supportlng SSIvices Alerts & Notifications | B anacy B
ABE
Core Services
Core Data || Command Metadata || Reg & Conf
Device Service Device Service Device Service
\ Vibration sensors IR camera HD camera J
1 1
|
N /J’O ™
! i4® ‘:
1
1 . .
i | | External service providers
i H ]
P 7 :
1
E ! wachine. il 1o+ I
i H H
P :
1
! I (Y ]
e '
\ ZEAN @

....................

Fig. 2. EdgeX along with DSLs for an IIoT use case - predictive maintenance system
(PreMS)

We illustrate the approach with a simple industrial automation use case concern-
ing predictive maintenance, shown in Fig. 2. We consider a monitoring system to
monitor machine health, whose purpose is to make decisions on machine main-
tenance, avoiding unscheduled downtime and preventing machine failure.



DSLs and Middleware Platforms in MDD for Secure PreMS 151

Vibrations
sensed by the
vibration
sensors ?

Thermal image
captured by the
IR camera ?

Abnormalities

observed Abnormalities

Within observed
adequate limits Normal

Continue machine monitoring at the set intervals

Switch the HD video camera from intermittent
capture mode to continuous mode and feed the visual
analytics software to estimate the failure time

I

Alert the maintenance handler

Fig. 3. Predictive maintenance system - an excerpt from the application logic

The monitoring system consists of wireless vibration sensors attached to the
machine in key locations, an infrared camera and a high definition video camera
that monitor the machine from a short distance and deliver image data for
visual analytics to identify machine states. The sensors are wirelessly connected
using Bluetooth technology, and the cameras are connected using Wi-Fi (infra-
red camera) and 5G (high definition camera) technologies. The edge analytics
collecting and analysing data creates maintenance alerts to machine handlers
indicating machine state and likely failure time. This allows the machine handlers
to schedule planned downtime of particular machines avoiding machine failure
and disrupting the manufacturing process. The general form of the platform
architecture shown in Fig. 2 is detailed in [18]. Here we highlight the two layers
of DSL and the specific PReMS instance of the External layers: Native DSLs
and service providers.

Figure 3 details a high-level overview of the application logic of the Predictive
Maintenance System (PreMS). The vibration sensors and the thermal imaging
(infrared) cameras associated with each machine periodically report their data
to the decision system. Under normal conditions, the HD cameras operate in
an intermittent mode so that the industrial wireless network is not flooded with
high volumes of unwanted data. Suppose any abnormalities are observed either in
the machine vibrations or in the thermal conditions detected by the IR camera.
In that case, PreMS switches the HD video camera from intermittent mode to



152 J. John et al.

continuous operating mode for further analysis and uninterrupted video frames
are fed to the visual analytics software for a detailed investigation of the scenario.
Accordingly, various alerts are sent to different maintenance handlers based on
the current machine state and its estimated failure time.

The sensors and cameras are connected to an EdgeX edge deployment that
deals with the heterogeneity in connectivity and sensing modalities as well as to
provide management capabilities to the monitoring system. We now look at the
stages involved in provisioning the preventative maintenance system (PreMS)
using the core and device layers of EdgeX, and DIME for EdgeX integration and
to design the PreMS application. We detail below the three main stages involved
from the point of view of a PreMS developer. We assume that EdgeX runs on
an on-premise edge computer.

3.1 Provisioning Devices in EdgeX: The Integration Layer

The device service layer of EdgeX (Fig.1) aids the sensor/camera provision-
ing process through protocol-specific device connectors (e.g. BLE, MQTT, etc.)
in the device service layer. It also supports the development of custom device
services using an available SDK. The device service layer converts the data gener-
ated from various types of devices with different protocols into a common EdgeX
data structure and sends the data to other microservices through REST calls.
As shown in Fig. 2, our PreMS use case consists of three device services; one for
each of the device protocol types (Vibration sensor-BLE interface, IR camera -
WiFi interface, HD camera - 5G interface). A device service is only aware of
the generic communication protocol, and the specific details about a particular
device are uploaded to EdgeX through device profiles. The device specific details
include the sensor data types, the sensing and actuation commands supported
by the device (REST API calls) in addition to the generic information such as
the manufacturer, model number, etc. The detailed process of registering an
external device to EdgeX through its device profile for a building automation
use case is detailed in [15]. In our case the procedure is the same: the PreMS
Native DSL is an external Native DSL (see Fig.2) for the devices encompasses
a DSL per each IoT device type, and also here, the ability to use device profiles
enables a very easy commissioning of multiple device instances of the same kind,
e.g. the HD cameras for Machine A and Machine B in Fig. 2 as two instances of
the HD camera device type.

As shown in Fig.2, the Native DSLs expose to DIME collections of basic
services across one or more application domains. They comprise “atomic” ser-
vices which are implemented in code or as calls to external services, APIs and
platforms. Once the devices are provisioned and connected to EdgeX, monitor-
ing data can flow to EdgeX. Each device sends its data to the core-data service
through its associated device services in the form of events/readings. The sensed
data are stored in the database and made available on the common message bus
(optional). The other microservices (e.g., Rules Engine) can operate on the data
and derive local decisions based on various policies.



DSLs and Middleware Platforms in MDD for Secure PreMS 153

3.2 Data and Processes: The Application Layer

The PreMS application data model in DIME refers to the EdgeX entities, to
the various device profiles, and includes the other entities relevant to the PreMS
application, like users, locations of the machines and policies for later decision
making. For every elementary or complex object in the data model, a set of
services are automatically created in DIME (get and set services), so that the
definition of an object and its attributes, as well as of an enumeration type,
automatically produces a DSL for its management coherent with its structure
and types without need of manual coding. This is particularly useful when we
consider industrial users who are mostly not software developers.

At the application level, as shown in Fig.2, DIME comprises of its own
basic DSL, the Common SIBs library, with generic capabilities to handle files,
decisions, comparisons, iterations, and more. It also provides a rich DSL for GUI
element design. DIME addresses primarily Web applications, so GUI models
using the design and functional elements provided in the GUI DSL are the way
to define the look and feel of web pages, as well as their navigation structure.

Typically, applications have a hierarchical architecture, because processes can
include other processes, therefore there are entire Process DSLs arising bottom-
up from the design and sharing of processes for reuse in other processes. The
process symbol is that of a graph because the processes (or workflows) are mod-
elled as hierarchical graphs that define both control flow and data flow of the
application. The Native DSLs on the contrary comprise of “atomic” services,
hence the atom symbol on the icons. For example, the UploadDevProfile, Cre-
ateDev and StartDev services shown in Fig.4 are atomic services belonging to
the EdgeX native DSL in DIME, and the entire process in Fig. 4 implements the
SetupDevice process, which is a process.

Figures4 and 5 show how control flow and data flow are represented: the
workflow logic is the control flow, denoted by solid arrows (e.g. from Start to
UploadDevProfile in Fig.4), and the data flow is denoted by dotted arrows, that
connect directly the data elements (e.g., the output devTypeID produced by
UploadDevProfile that is passed as input to CreateDev in Fig. 4), or refer in input
or output to the Data context, as shown in Fig.5 on the left, especially when
complex data types are involved. Complex data types are typically created at
once, but read or modified field by field in the process workflow. This is shown
for the device_type record: its field DeviceTypelD is used (i.e., read) by three
services but its List_of-Services field is used only by the SendCommand service.

3.3 Reuse Through DSLs

In the platform approach inherent to DIME and EdgeX, reuse of small and large
components across applications in a domain and also across domains is an essen-
tial goal of the platforms, and a key benefit for the users. Referring again to the
architecture in Fig. 2, the internal functionality offered by EdgeX is represented
in DIME as a native palette to the application designers. The same applies to the
EdgeX Core layer services, to the CP_ABE security service Native DSL for our



154 J. John et al.

start

¥

deviceProfileType :Te

UploadDevProfile CreateDev StartDev

deviceProfileType :Text %) deviceTypelD :Text _-3p) devicelD Text

success

success t success success

—

23 deviceTypelD :Text "2 (3 devicelD Text o=+ listOfServices :Text

[*leshedushedeshodachadacheochodachaiesh ) listOfServices Text

Fig. 4. EdgeXBAu processes: the SetupDevice process in DIME registers the device
type and physical device to EdgeX

Attribute Based Encryption capabilities, as well as for other collections of ser-
vices in the Common SIBs library, that include generic capabilities e.g. to handle
files, decisions, comparisons, iterations, and more. In this sense, the “layers” in
DIME differ from the layers in EdgeX.

From an EdgeX point of view, the granularity of services it provides in the
four layers in Fig.1 matters, and there is a clear hierarchy among the different
service libraries at different levels. This is a service provider point of view, which
refers to granularity and position in the internal service provision architecture.

For DIME, however, the point of view is that of the user, i.e. the consumer
of services — whatever is external to the application layer is an external service,
i.e. a “black box” seen as a unit of functionality ready to be used as a ready-
made atomic entity. The important concept here is the unit — seen from DIME,
any service provening from EdgeX is atomic, independently of their EdgeX-
internal structure and complexity. This is a very powerful abstraction — not only
EdgeX, but any external source of functionalities is treated the same way as is
for example the UR3 robot command language in [19] or the Kinect and ROS
related libraries in [11]. This virtualization and hiding mechanism is essential for
a platform, in order to master heterogeneity and interoperability, so that DIME
allows to mix and match services provening from different application domains,
and service providers.

The important concepts are the native DSLs for the basic functionalities and
the process-level DSLs for the hierarchical construction of applications within
DIME. All the Common SIBs and the GUI DSL come with DIME, so they
are written once but available to any application. DIME’s EdgeX DSLs are
also shareable across all the DIME applications that use EdgeX. The degree of
generality and genericity in the specific domain is key to the degree of reusability.
For example, our PreMS application “inherits” from the BAu application of [15]
the collection of DIME Processes produced during the BAu application design
that are specific to EdgeX, but not to BAu. Concretely, Figs. 4 and 5 show two
such processes:

— Figure 4 shows the SetupDevice process in DIME, which registers the device
type and physical device to EdgeX, originally called process BAuSetupDevice
in [15], and



DSLs and Middleware Platforms in MDD for Secure PreMS 155

start

‘ ABEncrypt

DATA Toopedee -1 PolcyList fTex)
3 success
policylist :PolicyList : -0 dataReading Text © phciText
] SetUp_CP_ABE ¥

. L. w{Text)

user_attributes :User_Attributes &

b 78 v
GetData I

device_type :Device_Type ¥

DeviceTypelD :Text o B

success
+++(3 aBE_cypher :Text

= '

success

List_of_Services :[TEXT] -

Manufacturer :Text
Model :Text

success R Ry
| = 3

| H "+32§) aBE_cypher Text

SendCommand /») dovicelD Toxt

exception

|—

devicelD Text emorCode Text

command Text

success

pv_c Text

Fig. 5. EdgeX processes: simplified EdgeXOperations service

— Figure5 shows the simplified EdgeXOperations service, which operates any
specific application’s system (originally the process BAuOperations in [15],
or at any time allows users to decide to reconfigure, restart or stop the appli-
cation and terminate.

Many other processes are application specific, thus do not carry over from a
preexisting case study to the PreMS, and we have to design our own. Similarly,
many native DSLs of the BAu application concern specific IoT devices (like PIR
sensors, CO2 sensors etc.) not relevant to the PreMS application, so we have
to design our own native DSL for the specific device types we use — vibration
sensor, IR camera and HD video camera.

An MDD approach as supported by DIME through the models followed by
code generation of the resulting application makes this reuse much easier and
more intuitive than if we had to understand and reuse manually produced code.

3.4 Handling Alerts and Machine Failures

Here we detail the various stages involved in handling the alerts or machine
failure scenarios. Once the PreMS detects any abnormal working conditions for
any machine, alerts/notifications are sent to maintenance handlers for proper
maintenance. Figure6 shows the high-level internal architecture of the alerts
and notification microservice provided by EdgeX as part of its Alerts & Notifi-
cation library of the Supporting Services level (see Figs. 1 and 2). The Notifica-
tion Handler receives the request to send out alerts or notifications from other
microservices or applications (on-box/ off-box) through APIs of different appli-
cation protocols (REST, AMQP, MQTT - shown on the left side of Fig. 6). In the



156 J. John et al.

Alerts and Notifications Microservice

Other Micro SMS
Distribution

Coordinator *

On-box RESTful Mail

Off-box Notifications
Applications Handler

AMQP N—_—
AMQP Bus listener, Message store
— Subscription
e [ subsron_|

Listener
D Future capability

Message
Scheduler

REST

Callback N~ User
Client

mMQrT
Sender

1 Subscription RESTful interface }7

Fig. 6. High-level architecture of alerts & notifications microservice within EdgeX [9]

considered use case scenario, the alerts/notifications may be initiated either by
the device service/ rules engine (when the vibration sensor readings fall outside
the expected values), or by the thermal image inspection software (when any
of the machine or its parts gets overheated), or by the visual analytics soft-
ware. The Notifications Handler persists the received notification and hands it
over to the Distribution Coordinator. The Distribution Coordinator queries the
Subscription database to get the intended recipient details of the particular noti-
fication, including the communication channel information such as SMS, email,
or API destination endpoint (REST, AMQP, MQTT). Accordingly, the Distri-
bution Coordinator passes the alert/notification to the corresponding channel
sender (shown on the right side of Fig. 6), which sends out the alert/notification
to the subscribed recipients.

For us, at the application level in DIME, this is just yet another atomic
service provening from EdgeX.

4 Secure Access Policy for PreMS

In the PreMS application, we use the EdgeX secret store security feature for stor-
ing sensitive data, while secure access of data is performed using the Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) [4]. For user authentication, we
use the EdgeX API gateway security element. For the industrial automation
application, we define a secure access policy mechanism as follows: we consider
four attributes involved in our use case scenario, namely Maintenance Handler
(MH), Mechanical (ME) department, Video Analysis (VA) department and Deci-
sion Management System (DMS), whose main functionalities are described as
follows: (i) the MH of ME department is responsible for monitoring the health
of the machine and have access to the data collected by the vibration sensor; (ii)
the MH of VA department analyses the images captured by the infrared camera



DSLs and Middleware Platforms in MDD for Secure PreMS 157

and the high definition video camera, and notifies the DMS Maintenance Han-
dler if any deviation from normal behaviour is noticed; and (iii) the MH of the
DMS takes the final call for the need of generating an alarm if any emergency
situation occurs and notifying the same to the PreMS for further actions.

Table 1 shows the different types of devices used, the type of data they gener-
ate and the access policies. The access policies define which entities have access
to specific data generated by the devices. As mentioned previously, we intend
to allow fine-grained secure access control based on attributes, and for this we
leverage public-key encryption, i.e., CP-ABE. In CP-ABE, the ciphertexts are
identified with access policies and the private keys with attributes. Therefore, a
message encrypted using CP-ABE produces a ciphertext which can be decrypted
using a private key by a user who owns a set of attributes and satisfies the access
policy. One of the key features of CP-ABE is that it enables the definition of
top-level policies and is particularly suitable in settings, where it is necessary to
limit the access of a particular information only to a subset of users within the
same broadcast domain [2].

The CP-ABE scheme consists of the following four algorithms:

— SETUP(). The algorithm takes no input other than the implicit security
parameters and returns the public key pk. and master key mk,.

— KEYGEN(mk,., Attr.). The key generation algorithm takes mk. and the user
attribute list Attr. as inputs and returns a private key puv,.

— ABEpk, w(m). The encryption algorithm takes pk., an access policy w over
the pool of attributes, and sensor reading m as inputs. It returns a ciphertext
that can only be decrypted by a user that possesses a set of attributes Attr,
such that Attr. satisfies w.

— ABDy,, (¢). The decryption algorithm takes pk., pv. and the ciphertext c as
inputs. It outputs the plaintext m if and only if the user Attr. satisfies w.

Table 1. Device type and access policy

Device type Data type Access policy

Wireless Vibration Sensor [Integer/Float] MH A (ME Vv DMS)
Infrared Camera [H.264/ numeric array] MH A (VA vV DMS)
High Definition Video Camera | Float [H.264/ numeric array] | MH A (VA vV DMS)

In order to implement this, we profit again from the work done in [15]: as the
four algorithms are domain and application independent, we reuse the Native
DSL for CP-ABE they produced, as well as the process in Fig. 5. What changes
are the specific access policies for the PreMS from Table 1, which we will again
define using the low code model driven development tool ADD-Lib [12] and the
surrounding PreMS application logic.



158 J. John et al.

5 Conclusions

We have shown how EdgeX simplifies integrating and managing a wealth of IoT
devices and protocols that are central to applications in cyber physical manufac-
turing systems like predictive maintenance. The platform character of EdgeX and
of modern low-code application design environments (LCADES) is central to their
ability to enable high reuse of existing resources, like microservices, components,
and algorithms (e.g. CP-ABE), embedded through a Native DSL mechanism in
DIME, our chosen LCADE. The DSL concept is central to the integration, the vir-
tualization and the reuse. For example, the extension of existing middleware ser-
vice platforms like EdgeX to include advanced security mechanisms like CP-ABE
is made easy as CP-ABE is in DIME a native DSL plus a collection of domain and
application independent processes. The DSLs also support application extension
and evolution with minimum programming effort.

Because DIME adopts a generative approach to code, every time the models
are modified or extended, the code is efficiently re-generated and redeployed, in
a DevOps fashion. The consequence is that every version of the deployed code
is “clean”: it contains only what is needed (minimal), it contains no patches (it
is most recent), and it is unspoiled by human intervention, which is known to
inadvertently introduce bugs when fixing detected issues.

In terms of lessons learned, an integrated modeling environment like DIME
is indeed superior to its predecessors, that addressed only the Native DSLs for
integration and the processes. For example, in [16] the jABC tool, also a low-
code and generative platform, while it supported a SIB palette for the commands
available to steer a Lego robot, serving the same purpose as the Native DSLs, the
data model was not supported in an integrated way, nor there was a possibility
to define GUIs. We see the ability to work on all these design facets within
the same environment as a clear asset. It eases adoption and better supports a
multidisciplinary collaboration with experts of other domains.

From the point of view of modelling styles, in the CPS and engineering
domain the prevalent approach is based on simulations or on hybrid models,
e.g. for various kinds of digital twins that serve as virtual replicas of CPS. In
the track dedicated to the engineering of Digital Twins for Cyber-Physical Sys-
tems in ISoLA 2020 [?], for example, providing a recent panorama of modelling
approaches and applications in areas close to our own research, the considered
models are predominantly quantitative, answering questions about uncertainty,
precision and tolerance. Even when the applied model-based and formal tech-
niques support some form of reasoning, this happens mostly in a statistical and
AT or Al-like fashion. We concentrate here instead on a fully MDD approach to
application design, which is still new to the CPS domain. Its relation with the
Digital Twin concept is addressed in detail in [19], and the role of formal mod-
els for the low code, MDD application design as used here vs. a corresponding
digital twin generated via active automata learning is discussed in [20].

The specific support of evolution is very attractive for our specific setting: our
long term objective is to produce a collaborative design ecosystem and an open
virtual testbed for intra-but also interorganizational advanced manufacturing,
where we expect solutions to grow and evolve over time. We could envisage



DSLs and Middleware Platforms in MDD for Secure PreMS 159

the EdgeX Distribution Coordinator shown in Fig.6 to interface in the future
with an advanced specialized alarm and notification escalation solution, like the
Enterprise Alert product (Derdack, n.d.), and this extension should happen with
minimum coding, minimum disruption to the underlying PreMS application,
minimum effort, including testing, and minimum risk. We therefore value the
simplicity, reuse, openness, and abstraction that these platforms jointly provide.

Acknowledgment. This project received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie Smart 4.0
Co-Fund, grant agreement No. 847577; and a research grant from Science Foundation
Ireland (SFI) under Grant Number 16/RC/3918 (CONFIRM Centre)

References

1. Aceto, G., Persico, V., Pescapé, A.: A survey on information and communication
technologies for industry 4.0: state-of-the-art, taxonomies, perspectives, and chal-
lenges. IEEE Commun. Surv. Tutor. 21(4), 3467-3501 (2019). https://doi.org/10.
1109/COMST.2019.2938259

2. Ambrosin, M., Busold, C., Conti, M., Sadeghi, A.-R., Schunter, M.: Updaticator:
updating billions of devices by an efficient, scalable and secure software update
distribution over untrusted cache-enabled networks. In: Kutylowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 76-93. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11203-9_5

3. Antonini, M., Vecchio, M., Antonelli, F.: Fog computing architectures: a reference
for practitioners. IEEE Internet Things Mag. 2(3), 19-25 (2019). https://doi.org/
10.1109/I0'TM.0001.1900029

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of IEEE S&P, pp. 321-334 (2007)

5. Bonavolonta, F., Tedesco, A., Moriello, R.S.L., Tufano, A.: Enabling wireless tech-
nologies for industry 4.0: state of the art. In: 2017 IEEE International Workshop
on Measurement and Networking (M N), pp. 1-5 (2017). https://doi.org/10.1109/
ITWMN.2017.8078381

6. Boflelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
809-832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_60

7. Christou, I.T., Kefalakis, N., Zalonis, A., Soldatos, J., Brochler, R.: End-to-end
industrial IoT platform for actionable predictive maintenance. IFAC-PapersOnLine
53(3), 173-178 (2020)

8. Confirm: Confirm smart manufacturing - Science Foundation Ireland Research cen-
tre. https://confirm.ie/

9. EdgeX Foundry: “EdgeX Alerts and Notifications”. https://docs.edgexfoundry.
org/2.0/microservices/support/notifications/Ch- AlertsNotifications/

10. EdgeX Foundry: “Why EdgeX”. https://www.edgexfoundry.org/why_edgex/why-
edgex/

11. Farulla, G.A., Indaco, M., Legay, A., Margaria, T.: Model driven design of secure
properties for vision-based applications: A case study. In: T.Margaria, M.G.Solo,
A. (eds.) The 2016 International Conference on Security and Management (SAM
2016). Special Track “End-to-end Security and Cybersecurity: from the Hardware
to Application”, pp. 159-167. CREA Press (2016)


https://doi.org/10.1109/COMST.2019.2938259
https://doi.org/10.1109/COMST.2019.2938259
https://doi.org/10.1007/978-3-319-11203-9_5
https://doi.org/10.1109/IOTM.0001.1900029
https://doi.org/10.1109/IOTM.0001.1900029
https://doi.org/10.1109/IWMN.2017.8078381
https://doi.org/10.1109/IWMN.2017.8078381
https://doi.org/10.1007/978-3-319-47169-3_60
https://confirm.ie/
https://docs.edgexfoundry.org/2.0/microservices/support/notifications/Ch-AlertsNotifications/
https://docs.edgexfoundry.org/2.0/microservices/support/notifications/Ch-AlertsNotifications/
https://www.edgexfoundry.org/why_edgex/why-edgex/
https://www.edgexfoundry.org/why_edgex/why-edgex/

160

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. John et al.

Gossen, F., Margaria, T., Murtovi, A., Naujokat, S., Steffen, B.: DSLs for decision
services: a tutorial introduction to language-driven engineering. In: ISoLA 2018,
Proceedings, Part I, pp. 546-564 (2018). https://doi.org/10.1007/978-3-030-03418-
4.33

Han, K., Duan, Y., Jin, R., Ma, Z., Rong, H., Cai, X.: Open framework of gateway
monitoring system for internet of things in edge computing. In: 2020 IEEE 39th
International Performance Computing and Communications Conference (IPCCC),
pp. 1-5. IEEE (2020)

IoTech: ”IoTech The Edge Software Company”. https://www.iotechsys.com/
John, J., Ghosal, A., Margaria, T., Pesch, D.: DSLs for model driven development
of secure interoperable automation systems. In: Forum on Specification & Design
Languages (Accepted for Publication) (2021), (in print)

Jorges, S., Kubczak, C., Pageau, F., Margaria, T.: Model driven design of reliable
robot control programs using the jABC. In: Proceedings of 4th IEEE International
Workshop on Engineering of Autonomic and Autonomous Systems (EASe 2007),
pp. 137-148 (2007)

Kim, J., Kim, C., Son, B., Ryu, J., Kim, S.: A study on Time-series DBMS applica-
tion for EdgeX-based lightweight edge gateway. In: 2020 International Conference
on Information and Communication Technology Convergence (ICTC), pp. 1795—
1798. IEEE (2020)

Margaria, T., Chaudhary, H.A.A., Guevara, 1., Ryan, S., Schieweck, A.: The inter-
operability challenge: building a model-driven digital thread platform for CPS.
In: Proceedings ISoLLA 2021, International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, Rhodes, October 2021. Lecture
Notes in Computer Science, vol. 13036. Springer (2021)

Margaria, T., Schieweck, A.: The digital thread in Industry 4.0. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 3—24. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4_1

Margaria, T., Schieweck, A.: The digital thread in Industry 4.0. In: Olderog, Ernst-
Riiudiger, S.B., Yi, W. (eds.) Model Checking, Synthesis and Learning. Lecture
Notes in Computer Science, vol. 13030. Springer (2021)

Mili¢, S.D., Babi¢, B.M.: Toward the future-upgrading existing remote monitoring
concepts to IIoT concepts. IEEE Internet Things J. 7(12), 11693-11700 (2020).
https://doi.org/10.1109/J10T.2020.2999196

Paniagua, C., Delsing, J.: Industrial frameworks for Internet of Things: a survey.
IEEE Syst. J. 15(1), 1149-1159 (2021)

Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial communi-
cation: automation networks in the era of the Internet of Things and Industry 4.0.
IEEE Ind. Electron. Mag. 11(1), 17-27 (2017). https://doi.org/10.1109/MIE.2017.
2649104

Xu, R., Jin, W., Kim, D.H.: Knowledge-based edge computing framework based
on CoAP and HTTP for enabling heterogeneous connectivity. Pers. Ubiq. Comput.
1-16 (2020)

Xu, R., Jin, W., Kim, D.: Microservice security agent based on API gateway in
edge computing. Sensors 19(22), 4905 (2019)

Zhang, J., et al.: A blockchain-based trusted edge platform in edge computing
environment. Sensors 21(6), 2126 (2021)


https://doi.org/10.1007/978-3-030-03418-4_33
https://doi.org/10.1007/978-3-030-03418-4_33
https://www.iotechsys.com/
https://doi.org/10.1007/978-3-030-34968-4_1
https://doi.org/10.1109/JIOT.2020.2999196
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/MIE.2017.2649104

DSLs and Middleware Platforms in MDD for Secure PreMS 161

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	DSLs and Middleware Platforms in a Model-Driven Development Approach for Secure Predictive Maintenance Systems in Smart Factories
	1 Introduction
	2 EdgeX Foundry as IIoT Middleware Platform
	3 Industrial Automation Use Case: Predictive Maintenance
	3.1 Provisioning Devices in EdgeX: The Integration Layer
	3.2 Data and Processes: The Application Layer
	3.3 Reuse Through DSLs
	3.4 Handling Alerts and Machine Failures

	4 Secure Access Policy for PreMS
	5 Conclusions
	References




