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Introduction

As Symposium and Program Chairs we would like to welcome you to the proceedings
of ISoLA 2021, the 10th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation which was planned to take place in
Rhodes (Greece) during October 17–29, 2021, and endorsed by EASST, the European
Association of Software Science and Technology.

This year’s event was very special due to the very special circumstances. It com-
prised most of the contributions that were submitted to ISoLA 2020, only a few of
which were presented last year in a remote fashion. ISoLA was planned to take place in
October 2021 in a hybrid fashion, now comprising also the contributions contained in
this volume. Only one track was postponed for yet another year, and we hoped very
much to experience the other tracks in Rhodes.

As in the previous editions, ISoLA 2021 provided a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, testing,
and maintenance of systems from the point of view of their different application
domains. Thus, since 2004 the ISoLA series of events has served the purpose of
bridging the gap between designers and developers of rigorous tools on one side and
users in engineering and in other disciplines on the other side. It fosters and exploits
synergetic relationships among scientists, engineers, software developers, decision
makers, and other critical thinkers in companies and organizations. By providing a
specific, dialogue-oriented venue for the discussion of common problems, require-
ments, algorithms, methodologies, and practices, ISoLA aims in particular at sup-
porting researchers in their quest to improve the usefulness, reliability, flexibility, and
efficiency of tools for building systems and users in their search for adequate solutions
to their problems.

The program of ISoLA 2021 consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• Engineering of Digital Twins for Cyber-Physical Systems
(Organizers: John Fitzgerald, Pieter Gorm Larsen, Tiziana Margaria, Jim
Woodcock)

• Verification and Validation of Concurrent and Distributed Systems
(Organizers: Cristina Seceleanu, Marieke Huisman)

• Modularity and (De-)composition in Verification
(Organizers: Reiner Hähnle, Eduard Kamburjan, Dilian Gurov)

• Software Verification Tools
(Organizers: Markus Schordan, Dirk Beyer, Irena Boyanova)

• X-by-Construction: Correctness meets Probability
(Organizers: Maurice H. ter Beek, Loek Cleophas, Axel Legay, Ina Schaefer,
Bruce W. Watson)

• Rigorous Engineering of Collective Adaptive Systems



(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)
• Automating Software Re-engineering

(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)
• 30 years of Statistical Model Checking!

(Organizers: Kim G. Larsen, Axel Legay)
• From Verification to Explanation

(Organizers: Holger Hermanns, Christel Baier)
• Formal methods for DIStributed COmputing in future RAILway systems (DisCo-

Rail 2020)
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)

• Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

It also included two embedded events:

� Doctoral Symposium and Poster Session (A.-L. Lamprecht)
• Industrial Day (Falk Howar, Johannes Neubauer, Andreas Rausch)

Co-located with ISoLA 2021 was:

• STRESS 2021 – 5th International School on Tool-based Rigorous Engineering of
Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

Altogether ISoLA 2021 comprised contributions from the proceedings originally
foreseen for ISoLA 2020 collected in four volumes, Part 1: Verification Principles, Part
2: Engineering Principles, Part 3: Applications, and Part 4: Tools and Trends, and the
content of these proceedings which also cover contributions of the associated events.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, and the Easy Conferences team for their continuous precious
support during the entire two-year period preceding the events, and Springer-Verlag for
being, as usual, a very reliable partner for the proceedings production. Finally, we are
grateful to Christos Therapontos for his continuous support for the Web site and the
program, and to Markus Frohme and Julia Rehder for their help with the editorial
system Equinocs.

Special thanks are due to the following organizations for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions—TU Dortmund and the University
of Limerick.

We hope that you, as an ISoLA participant, had a wonderful experience at this
edition, and that those of you reading the proceedings at a later date gain valuable new
insights that hopefully contribute to your research and its uptake.

Tiziana Margaria
Bernhard Steffen

vi Introduction

http://info.santoslab.org/event/stress2012
http://info.santoslab.org/event/stress2012
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Introduction

Welcome to STRESS 2021, the 6th International School on Tool-based Rigorous
Engineering of Software Systems held in Alila, Rhodes (Greece) on October 2021,19–
23th, in association with ISoLA 2021.

Following the tradition of its predecessors held 2006 in Dortmund, 2012 in Crete,
2014 and 2016 in Corfu, and 2018 in Limassol, also this year’s School aims at pro-
viding interactive lectures, hands-on experience, and other innovative pedagogical
material that provide young researchers with instructions in existing and emerging
formal methods and software engineering techniques that are tool-supported and
process-oriented, providing insights into how software is developed in the real world.

This year’s program focuses on graphical modeling of CI/CD workflows [3],
accompanied by lectures on collaborative development of data analytics process [4],
and on the integration of external services in DIME [1], as well as a soft-skills lecture
on WHY-based requirement analysis for a better understanding of the economical
value of IT [2].

We thank the ISoLA organizers, the local Organization Chair, Petros Stratis, and
the EasyConferences team for their continuous precious support during the week.
Special thanks are also due to our home institutions for their endorsement.
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An Introduction to Graphical Modeling
of CI/CD Workflows with Rig

Tim Tegeler(B), Sebastian Teumert, Jonas Schürmann, Alexander Bainczyk,
Daniel Busch, and Bernhard Steffen(B)

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{tim.tegeler,sebastian.teumert,jonas.schurmann,alexander.bainczyk,

daniel.busch,bernhard.steffen}@cs.tu-dortmund.de

Abstract. We present an introduction to the usage of Rig, our Cinco
product for the graphical modeling of CI/CD workflows. While CI/CD
has become a de facto standard in modern software engineering (e.g.
DevOps) and the benefits of its practice are without a doubt, developers
are still facing inconvenient solutions. We will briefly outline the basic
concept of CI/CD and discuss the challenges involved in maintaining such
workflows with current implementations before we explain and illustrate
the advantages of our model-driven approach step by step along on the
treatment of a typical web application.

Keywords: Continuous Integration and Deployment · DevOps ·
Domain-specific tools · Graphical modeling · Language-driven
engineering · Purpose-Specific Language · Software engineering

1 Introduction

The growing popularity of agile software development and the rise of cloud
infrastructure led to a rethinking of traditional software engineering: An accel-
erated rate of change requests, and the increasing complexity of system archi-
tectures demand a closer cooperation between Development and Operations.
DevOps [2,4,9] is a popular response to this challenge which aims at bridging
the gap, by involving experts from both sides and encouraging a continuous
cross-functional cooperation. The enabling, and thus central element of DevOps
is Continuous Integration and Deployment (CI/CD). CI/CD workflows [8,11,21]
describe and automate the complete assembly process of even highly distributed
applications and offer great value by improving the developer experience through
quick feedback on their changes. Since tool support is still limited, the initial
setup of CI/CD workflows is error-prone and the subsequent evolution of existing
workflows remain tedious [23,24].

In this paper, we present our model-driven approach to the challenges of
maintaining complex CI/CD workflows [23] and introduce graphical modeling
of such workflows with Rig [24] along a running example of a typical web appli-
cation. We will show that Rig uses a simplicity-driven [16] graphical Purpose-
Specific Language (PSL) [22] that alleviates the need for developers to familiarize
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-89159-6_1
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Fetch Package DeployBuild Test

Continuous Integration and Deployment

Fig. 1. Typical Jobs of a CI/CD Pipeline (cf. Listing 1.1).

themselves with the intricacies of current CI/CD implementations and the con-
crete structure of corresponding configuration files.

The paper is structured as follows. In Sect. 2 we briefly discuss CI/CD work-
flows and its basic concepts. Afterwards we introduce a typical web application
in Sect. 3 and show in this context how CI/CD workflows can be ‘programmed’
manually. Section 5 presents Rig, before we demonstrate how it enables the
graphically modeling of CI/CD workflows. In Sect. 7 we discuss prominent issues
of current CI/CD implementations and highlight how our graphical modelling
approach resolves them. We conclude in Sect. 8 by discussing related work and
giving an outlook on the future development of Rig.

2 Continuous Integration and Deployment

Continuous Integration and Deployment is one of the most important building
blocks of modern software engineering and a de facto standard in the context
of DevOps. CI/CD is highly intertwined with Version Control Systems (VCSs),
since the goal is to automatically assemble a specific version of the software –
typically the latest commit on a branch. The continuous execution of so-called
CI/CD pipelines (cf. Fig. 1), improves the development experience through auto-
mated feedback cycles, and the support of even complex assembly processes.
Unfortunately, the term pipeline is often used ambiguously in the context of
CI/CD. It is used to describe the overall concept of CI/CD, as well as concrete
CI/CD configurations of a software project. For the sake of clarity, we distinguish
between pipelines, workflows and configurations in the following way:

– Pipeline: Each execution is realized in a CI/CD pipeline (cf. Fig. 1) and
must contain at least a single job. Jobs are the smallest logical entity from
which more complex pipelines are composed. They are typically responsible
to resolve tasks like building, testing or deploying an application. Jobs of
a pipeline can depend on each other and use the outcome of previous jobs
(e.g. compiled artifacts). The dependency between jobs of a pipeline forms a
directed acyclic graph (DAG) indicating the possible orders of execution and
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determining which jobs can be parallelized. The concrete pipeline, which is
reflected by the contained jobs, depends on several constraints (e.g. branch).

– Workflow: From our point of view, a CI/CD workflow is the abstract, but
comprehensive representation of all properties included to realize Continuous
Integration and Deployment. It is the blueprint for all potential pipelines of
a software project, from which a pipeline can be derived: When a new ver-
sion of the software is pushed to the VCS, the workflow is evaluated upon
constraints, and a concrete pipeline is executed. Workflows are typically seri-
alized in configurations files, but we will show that they can be represented
ideally by graphical models.

– Configuration: Workflows are serialized as low-level instructions that are read
and interpreted by CI/CD engines. These instructions are stored as plain text
files (e.g. .gitlab-ci.yml) in the corresponding repository. We call them
configurations. Existing solutions (e.g. GitLab) make use of data serialization
languages (e.g. YAML) for the required configuration files (cf. Listing 1.1).
It is still the norm to write CI/CD configuration files manually, very often
without IDE-based assistance like autocomplete or error analysis.

The jobs of a pipeline are executed on dedicated systems, often provided
by software development platforms, like GitLab and GitHub. They integrate
VCSs with CI/CD and maintain centralized and well-defined infrastructure to
ensure predictable and reproducible builds. As mentioned above, common imple-
mentations are based on YAML (cf. Listing 1.1). While YAML is an adequate
data serialization language aiming to be “human friendly” [6], the lacking visu-
alization or validation of CI/CD configuration lets existing solutions fall short.
Re-use of job definitions is often limited, with textual duplication being a com-
monly accepted solution. Applications built for multiple target platforms (e.g.,
Windows, Linux, MacOS) often require the duplication of these jobs with only
slightly altered configurations, e.g., regarding infrastructure. Some platforms,
e.g., GitLab, have adopted “job templates” to ease re-use of jobs, but practice
shows that writing correct configurations remains an error-prone task [23,24] (cf.
Sect. 7).

3 TodoMVC

TodoMVC [20] is a collection of numerous1 implementations of the same web–
based, purely client–side task management software written in different program-
ming languages and frameworks by different developers. In order to make dif-
ferent implementations comparable, TodoMVC is based on a specification given
in a textual, natural language format that dictates behavioral as well as visual
characteristics that any TodoMVC implementation has to fulfill. For example,
each implementation must have the user interface displayed in Fig. 2 and must
allow users to create, read, update and delete tasks (e.g. do the laundry) as
well as to filter tasks based on their state (i.e. finished or unfinished). This way,
1 At the time of writing, the main repository contains 48 different implementations.
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Fig. 2. Example Implementation from TodoMVC.

all implementations should look and functionally behave identically, which has
also been verified in a previous case study [3]. As a result, developers can com-
pare different frameworks easier and make themselves comfortable with frontend
technologies such as client–side storage, routing, component–based development
and state management to find a framework that suits the given use case.

By default, the repository already contains pre–compiled and pre–built ver-
sions for each implementation, so that all a developer has to do in order to
run an implementation is to serve the static HTML, CSS and JavaScript files
from a specific directory and access them from a browser. Although it is gen-
erally considered a bad practice to have generated or compiled code stored in
VCSs, it suffices the purpose in this case: The entry hurdle to review the cor-
responding frameworks at runtime is lowered. Because of this design decision,
delivering and testing all implementations in a local environment is straight-
forward. TodoMVC provides two global executable scripts for automated user
interface testing and delivering all implementations via an integrated web server.
The individual compile and build scripts are completely decoupled from that and
are the responsibility of the corresponding implementations and even have to be
triggered manually before each commit.

To conclude, in its current state, TodoMVC is designed to be built, tested,
operated and used locally. There is no strict pipeline in place as e.g. displayed
in Fig. 1 and some jobs, such as compile, package and deploy do not even exist.
As a demonstration of the capabilities of our tool Rig, we will use a single
TodoMVC implementation as our target application (in the following referred
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to as TodoMVC) to model and generate a GitLab–based CI/CD workflow. The
workflow and the forked project can be found in the corresponding repository2.

4 Programming a CI/CD Workflow

Before we demonstrate the capabilities of our model-driven approach to Contin-
uous Integration and Deployment workflows, we present how such workflows are
“programmed” traditionally. As a short recap, CI/CD workflows describe and
automate how applications are built, tested and even deployed to production.
Typically workflows are written as plain text in YAML and not visualized nor
validated until they are executed by compatible software development platforms.

In order to feature an expressive example, we choose one of the more com-
plex TodoMVC implementations that builds upon TypeScript and React3. As a
consequence, our CI/CD workflow must not only support the fetching of depen-
dencies (e.g. React and transitive dependencies) and the compiling of TypeScript
to JavaScript, but also a dedicated packaging job to bundle a deployable artifact.

While several software development platforms exist, in this paper we will
focus on GitLab. Therefore, the displayed configuration in Listing 1.1, is compat-
ible with the CI/CD implementation of GitLab [1]. By default, GitLab expects
this configuration to be serialized in a YAML file called .gitlab-ci.yml4,
stored in the root folder of the project’s repository. The YAML specification
supports three basic types of content: Scalar data types (e.g. strings, numbers
and booleans), sequences for representing ordered lists, and mappings (i.e. hash
or dictionary) for an unordered set of key/value pairs [6]. The first level of
a .gitlab-ci.yml file is, always structured as a mapping. Except for some
reserved keywords (e.g. image, cf. line 1), a key on the first level represents a
name of the job (e.g. fetch , cf. line 3). In order to highlight the jobs of the
CI/CD workflow, we colored the background of the corresponding lines with
matching colors of Fig. 1. Please note, that the colors have no semantic meaning
and serve presentation purposes only.

Since CI/CD aims at building a wide variety of applications, all with their
own dependencies, providers commonly offer their users the ability to specify
build environments using images of container engines (e.g. Docker5). The build
environment of TodoMVC is Node.js6 (for the sake of simplicity, often just called
node). In line 1 we reference the container image of node in the version 16.7 and
thus, declare the build environment globally for all following jobs. Part of the
container image of node is the Node Package Manager (NPM), which provides
a command line interface (called npm) for interaction. During our example, we
heavily use npm for most of the jobs.

2 https://gitlab.com/scce/stress2021/todomvc.
3 https://reactjs.org.
4 https://docs.gitlab.com/ee/ci/yaml/gitlab ci yaml.html.
5 https://www.docker.com/.
6 https://nodejs.org/.

https://gitlab.com/scce/stress2021/todomvc
https://reactjs.org
https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html
https://www.docker.com/
https://nodejs.org/
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1 image: node:16 .7
2

3 fetch:
4 script:
5 - npm ci
6 artifacts:
7 paths:
8 - node_modules/
9 expire_in: 1 hour

10

11 build:
12 script:
13 - npm run build
14 artifacts:
15 paths:
16 - js
17 needs:
18 - fetch
19

20 test:
21 script:
22 - npm test
23 needs:
24 - fetch
25 - build
26

27 package:
28 script:
29 - npm run bundle
30 artifacts:
31 paths:
32 - out
33 needs:
34 - fetch
35 - build
36 - test
37

38 pages:
39 script:
40 - mv out/ public
41 artifacts:
42 paths:
43 - public
44 needs:
45 - package

Listing 1.1. Textual CI/CD Configuration of TodoMVC (cf. Fig. 1).

The main part of our configuration starts after the definition of the global
build environment. Beginning with line 2, the actual jobs are configured. A job
definition is also implemented as a mapping, but in contrast to the first level
mapping of the CI/CD configuration, all keys are predetermined where each one
serves a particular goal. The most important and also mandatory key of a job is
script (cf. line 4). A script is usually a sequence of strings, each representing
a shell command (cf. line 5). In order to define the dependencies of a job, the
needs keyword (cf. line 17) can be used to reference other jobs by their names
and form the aforementioned DAG. In the following, we will describe details of
the jobs:

– fetch : At first, the pipeline fetches all necessary dependencies to build the
application. In this example (using Node.js and NPM), this is done via the
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command npm ci. NPM uses a global package registry at npmjs.org and
stores dependencies locally in a folder called node modules. In order to pass
these along to subsequent jobs (and thus avoiding the need to fetch them in
every job), we define this folder as our artifact (cf. line 6).

– build : Building the application relies on the dependencies (stored in
node modules) being available, and thus references the fetch job as a
needed dependency with the keyword needs in line 18. This enables the pass-
ing of the artifact from the required job. This jobs then compiles TodoMVC
from TypeScript to JavaScript, by calling the build script with npm run
build. The output of this process is stored in the js/ folder, which is defined
as the artifact of this job in order to enable passing it along to the next job.

– test : Running the tests of the TodoMVC application is done via npm run
test. Since the job needs not only the assembled application, but also heavily
depends on testing frameworks, it defines both a dependency on the build

job and the fetch job to get both the built application, as well as the fetched
modules (which are not passed transitively by default).

– package : This job bundles the application for deployment via npm run

bundle. It uses the compiled outcome of build , but also depends on having
the necessary modules available from fetch , and thus again defines both
of these dependencies. Since only changes that pass the test suite should be
deployed, the job also requires the test job, ensuring that it only runs when
all tests were successful. It then recursively bundles all required dependencies
and stores all relevant files in the folder out/. The files in the folder out/, are
ready to be served locally or by a web server. They are defined as the artifact
(or output) of this job.

– pages : This job facilitates deployment of the built application. It is not
named “deploy”, as one would expect for such a job (cf. Fig. 1), but “pages”,
since jobs named in this way have special treatment when using GitLab: Static
websites can be hosted by GitLab via their own subdomain, gitlab.io, using
a feature called “GitLab Pages”7. When naming a job “pages” as done here,
users must also provide an artifact with a public/ folder, which is subse-
quently deployed and served. Therefore, it moves the output from the previ-
ous job from out/ to public/ via the mv command. GitLab will then continue
to deploy the static files. In our example, this means that the TodoMVC app
is deployed and available under https://scce.gitlab.io/stress2021/todomvc/.
This job depends only on the package job, since it does not use NPM, but
solely works on the output from the previous job.

In this example, the jobs follow a linear order ( fetch �→ build �→ test

�→ package �→ pages ). In more complex examples, jobs might also execute
in parallel. An example would be building the frontend and backend of a web
application separately, then packaging them together for deployment in a job
that depends on both.

7 https://docs.gitlab.com/ee/user/project/pages/.

https://scce.gitlab.io/stress2021/todomvc/
https://docs.gitlab.com/ee/user/project/pages/
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Fig. 3. CI/CD Modeling Environment of Rig.

5 Rig

Rig is an Integrated Modeling Environment (IME), that enables users to model
CI/CD workflows for GitLab as its target platform. It has been created using
Cinco and is therefore a Cinco product [18], which also means that it is based on
the Eclipse Rich Client Platform [17]. Rig uses and expands a model-based app-
roach introduced by Tegeler et al. in [23]. In their paper, the authors introduce
a model utilizing jobs, script arguments, build targets and parameters. Targets
are a newly introduced concept that offers freely configurable parameters used
to parameterize jobs. These parameters are used to provide the values for script
arguments, thus allowing customization of jobs for different build targets. This
mechanism significantly eases re-use of job definitions and provides a powerful
visual alternative to template-based approaches. The Rig PSL greatly expands
on this concept by introducing properties and variables as well as additional
configuration nodes. Since CI/CD workflows can be modeled as DAGs, depen-
dencies between jobs can be described by edges in Rig’s PSL, allowing the user
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to visually connect jobs in the correct order without the need to manually track
and set the correct dependencies.

This section will give an overview of the IME Rig and will briefly describe
how to use it. Through this, this section will also prepare readers to easily model
their own CI/CD workflows in Rig.

Figure 3 shows the Rig IME with a small modeled example. The canvas of the
graphical editor (see 1 in Fig. 3) contains two nodes “Job” and “Target”. These
nodes are used to express and visualize the desired CI/CD workflows. Nodes can
be rearranged and edited as the user pleases. As can be seen in Fig. 3, nodes can
also be deleted by clicking the bin symbol in the icon pad near the Job node,
or be connected to other nodes through edges by drag-and-dropping, starting at
the arrow symbol in the icon pad. Edges connect nodes with other nodes and are
automatically created in a matching type upon releasing the mouse button of
the drag-and-drop action. The most fitting edge type will be created, considering
the underlying abstract syntax of the metamodel of the graph model.

New nodes can be created using the palette of the graphical editor (marked
as 2 in Fig. 3). The palette contains all creatable nodes the graph model may
contain. Simple drag-and-dropping of the desired nodes from the palette into the
canvas area of the graphical editor will create the node in its concrete syntax
style. Every model element may also possess more information than just their
relationships between one another. This additional information may be stored as
attributes of the respective model element. Attributes may be data of different
types (text, number, enums).

To inspect and modify these attributes the “Cinco Properties” view is used
(cf. 3 in Fig. 3). This view lists all non-hidden attributes of the model element
currently select in the graphical editor of the IME (1 of Fig. 3). The proper-
ties may be edited directly in the property view, if not explicitly forbidden in
the metamodel of the underlying graph model. Beside multiple model elements
within the same graph model, it is of course possible to create multiple graph
models (here: Rig models) as well. This is simply done by adding new graph
model files to the project. A project explorer, that lists all files of the project,
can be seen marked as 4 in Fig. 3.

Rig offers full code generation [14] from the created models. Its code generator
is straight-forward and transforms the models of the graphical PSL into complete
YAML files, by traversing the graph model backwards, starting from Targets.
Simple transformation rules are executed in a fixed order: When processing a
Job, the generator emits a Job by taking in account the parameterization by
Targets. This way, each Job is emitted once for each Target. All incoming edges
that point to Properties are evaluated and the proper configuration is emitted for
each Job. Properties themselves can have incoming edges, either from Variables
or Target parameters, so these are taken into account as well. When writing
configurations manually, users must keep track of the dependencies between
jobs and ensure they have set the correct dependencies on each job, potentially
rewriting large parts of the file when re-ordering or renaming jobs. Rig can derive
the correct dependencies trivially from the given model.
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Fig. 4. Graphical CI/CD Configuration of TodoMVC (cf. Listing 1.1).

As an additional user-friendly feature, Rig also provides a “Model Validation”
view (cf. 5 in Fig. 3), which offers validation and checks to ensure that only
models with reasonable semantics are created. Rig not only uses many of the
powerful checks inherent to models of Cinco products, like checking cardinalities
of edges and other model elements, but also supports domain-specific validation.
These custom checks detect cycles in the graph model, ensure that jobs have
unique names, and prevent targets from parameterizing jobs that do not reach
the target. Additionally, Rig includes grammars which offer auto-completion
and suggestions for certain textual properties of the configurations, e.g. for the
conditions in “Except”, “Only” and “Rules” elements or for the pre-defined
variables that our target platform GitLab offers. These grammars guide users
towards writing correct expressions for these textual properties. We plan to
replace those grammars with more generic and powerful models in the future
(cf. Sect. 8).

6 Modeling a CI/CD Workflow in Rig

This section will provide a step-by-step guide to create the CI/CD pipeline
depicted in Fig. 4. For a more in-depth look into the usage of Rig, please consult
the official user manual at https://scce.gitlab.io/rig/.

https://scce.gitlab.io/rig/


An Introduction to Graphical Modeling of CI/CD Workflows with Rig 13

Table 1. Overview of Script and Artifact Path Settings.

Job Name Script Artifact Path

fetch npm ci node modules

build npm run build js

test npm test

package npm run bundle out

pages mv out/ public public

Creating a Target Node. Every CI/CD pipeline needs at least one target from
which the parameterized jobs are later instantiated by the generator. To create a
target node, first click on the corresponding button in the toolbox on the right,
then click on the canvas to place the node. Select the target node and give it
the name “GitLab Pages” in the properties panel on the bottom, as this is our
deployment target.

Job Nodes. Next, we need nodes to define the jobs of the pipeline. Create five job
nodes and give them the names “fetch”, “build”, “test”, “package” and “pages”.
The last job must necessarily be named “pages” so that GitLab will deploy the
final artifacts to GitLab Pages. Connect each job with their successor by holding
the mouse down on the arrow symbol that appears on hover and releasing it on
the following job. The last job, “pages”, must be connected to the previously
created target node, completing the basic pipeline structure. Now for each job
the command line script has to be defined that is to be executed in the pipeline.
In the properties panel, fill in the values of the Script column of Table 1 into the
script property.

Specifying the Docker Image. Jobs are executed within a Docker container, so
we have to specify what images should be used for each job. As we are only using
npm in this example, one Docker image suffices as the global build environment
for all jobs. Create an image node, select the name attribute and in the properties
panel, enter “node:16.7” in the value field. Now connect the image node to the
target node to simply apply it to all jobs.

Handling of Artifacts. Last, we define how artifacts produced by the jobs are
captured and provided to following jobs as necessary. For each capture, create
an artifact node and connect it to the job. Right-click on the artifact and choose
“(+) Path”, select the newly created entry and enter the path in the properties
panel. We want to capture the artifacts paths for the jobs like listed in the
Artifact Path column of Table 1.

At the end of the pipeline, GitLab will take the contents of the public
directory produced by the “pages” job and deploy the files to GitLab pages,
making the demo application publicly available. Additionally, we will let the
artifact of the “fetch” job expire after an hour, because it is rather large and
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not needed afterwards. To do this, right-click on the artifact node, select “(+)
Expire in” and set the value to “1 h” in the properties panel. Now, we need to
add a few more connections between jobs to correctly pass on the artifacts to
other jobs. Add the following edges between jobs:

– fetch → test
– fetch → package
– build → package

Now the pipeline is complete! Save the file and select “GraphModel” →
“Generate Code” from the application menu. The generated .gitlab-ci.yml
file should appear in the src-gen directory.

7 Discussion

Admittedly, our example of a CI/CD workflow written in YAML (cf. Listing 1.1)
is not very daunting. Investing about 50 lines of code to achieve an automated
assembly and deployment process into production sounds like a good deal, but
well-functioning CI/CD configurations can be elusive. The effort of constructing
a CI/CD workflow lies not in the resulting lines of code, it lies in understand-
ing the elemental mechanics of CI/CD in the first place and dealing with the
idiosyncrasies of its implementation. Creating (even just syntactical) correct con-
figurations, often involves trial & error programming by uploading new versions
of the configuration to the repository and waiting for the result [24]. A prominent
example of not anticipated behaviour when dealing with YAML is the “Norway
Problem” [13,19], where NO, two unescaped alphabetic characters, are parsed
as boolean (cf. Listings 1.2 and 1.3).

1 countries:
2 - GB
3 - IE
4 - FR
5 - DE
6 - NO

Listing 1.2. Sequence of Country
Codes Written in YAML.

1 {"countries": [
2 "GB",
3 "IE",
4 "FR",
5 "DE",
6 false ]}

Listing 1.3. Sequence of Country
Codes Represented as Parsed JSON.

Most of these issues are rooted in the fact that YAML is a general-purpose
configuration language that simply does not support the CI/CD domain very
well. A strict YAML parser8 would make the semantics of the configuration more
predictable, and a full-blown textual Domain-Specific Language like Nix [10]
would be able to integrate domain concepts and offer suitable abstractions. But
we believe that narrowing the scope even further into a PSL and using a graph-
ical modeling language with an accompanied IME gives even more benefits and
offers the best support for maintaining CI/CD workflows. The generator of Rig

8 https://github.com/crdoconnor/strictyaml.

https://github.com/crdoconnor/strictyaml
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properly quotes values in the YAML configuration files derived from our PSL,
freeing the user from thinking about YAML semantics.

Aside from the fact that CI/CD workflows are typically represented textual,
the discoverability of features is low [24]. From our experience, the Time To
Hello World [15] is dramatically longer when compared to other programming
or workflow languages. Beginners have to pursue extensive documentation to
even start with basic workflows [24]. While platforms, like GitLab, offer a linting
tool [12], users often can not leverage any substantial IDE-support [24]. Rig on
the other side considers modeling assistance a prime objective, by following prin-
ciples of “Correctness-by-Construction” [5] and the model validation approach
of Cinco [7,25].

Since CI/CD pipelines are typically executed on provided and managed
infrastructure, maintainers of CI/CD workflows are forced to keep up with
changes in the specification of the CI/CD configuration. The graphical PSL of
Rig uses a higher-level abstraction which can survive even more radical changes
and allows seamless integrations of new features (e.g. stageless pipelines9). The
full code generator approach lets maintainers overwrite existing CI/CD config-
urations without worrying about syntactic or semantic changes.

So called “visual editors” have been introduced as a solution to the difficulty
of handling large CI/CD workflows, for example by SemaphoreCI10, and – more
recently – by GitLab11 itself. These visual editors focus on deriving a visualiza-
tion from the pipeline configuration, but only by showing jobs and their depen-
dencies, and no other elements of the pipeline [24]. In case of SemaphoreCI, lim-
ited editing of the configuration can be done through the user interface. Neither
solution visualizes the complete workflow model. Rig on the contrary introduces
a graphical PSL as single source of truth, from which the CI/CD configuration
is automatically generated.

8 Conclusion

In this paper, we have presented Rig, a visual authoring tool for CI/CD work-
flows, which follows our model–driven approach to Continuous Integration and
Deployment. Rig enables us to visually model CI/CD workflows that, in contrast
to YAML, benefit from a strict type–system that greatly reduces the potential of
human–made errors when authoring corresponding files in an unchecked text file.
Our full code generation approach then guarantees that the generated YAML
configuration file is compatible with the target CI/CD provider, i.e. in our case
GitLab. Not only that, but by leveraging graphical models, we also create a
common basis for discussion that allows DevOps–teams to better reason about
CI/CD workflows. For example, the graph–based approach allows us to easily
comprehend how the different CI/CD jobs are interdependent and especially the
order in which they are executed in.
9 https://about.gitlab.com/blog/2021/08/24/stageless-pipelines/.

10 https://semaphoreci.com/.
11 https://about.gitlab.com/blog/2021/02/22/pipeline-editor-overview/.

https://about.gitlab.com/blog/2021/08/24/stageless-pipelines/
https://semaphoreci.com/
https://about.gitlab.com/blog/2021/02/22/pipeline-editor-overview/
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To demonstrate the capabilities of Rig, we have modeled a CI/CD workflow
targeted at GitLab for the TypeScript and React implementation of TodoMVC.
The workflow not only includes the automated building and testing of the appli-
cation within a pipeline, but it also deploys compiled artifacts to GitLab Pages, a
service that provides hosting of static files, such as HTML, CSS and JavaScript.
As a result of this, we have automated all steps we previously had to perform
manually in order to build and publish TodoMVC to the web.

We believe that apart from improving Rig’s potential to serve as a docu-
mentation and communication tool, future work should focus on lowering the
barrier for adoption of CI/CD, especially for smaller projects. To achieve that,
we are currently investigating how to make Rig available as a web application
which would enable us to integrate supported CI/CD providers seamlessly. Rig
currently only supports GitLab as the target platform, but following the gen-
erator approach of Cinco [18,26,27], different providers can be supported in
the future. We have also identified potential generalizations of Rig to make this
process easier [24] and to gradually develop a generic PSL for CI/CD model-
ing. We believe that these enhancements provide a good foundation for a better
understanding of the potential of DevOps and, in the long term, for establishing
an industry standard for CI/CD workflows.
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Abstract. We present Pyrus, a domain-specific online modeling envi-
ronment for building graphical processes for data analysis, machine learn-
ing and artificial intelligence. Pyrus aims at bridging the gap between de
facto (often Python-based) standards as established by the Jupyter plat-
form, and the tradition to model data analysis workflows in a dataflow-
driven fashion. Technically, Pyrus integrates established online IDEs like
Jupyter and allows users to graphically combine available functional com-
ponents to dataflow-oriented workflows in a collaborative fashion without
writing a single line of code. Following a controlflow/dataflow conversion
and compilation, the execution is then delegated to the underlying plat-
forms. Both the inputs to a modeled workflow and the results of its exe-
cution can be specified and viewed without leaving Pyrus which supports
a seamless cooperation between data science experts and programmers.
The paper illustrates the fundamental concepts, the employed domain-
specific language, and, in particular, the role of the integrated IDE’s
in an example-driven fashion which can be reproduced in the available
online modeling environment.

Keywords: Graphical languages · Domain-specific languages ·
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1 Introduction

In the domain of applied data science there are several challenges to overcome
in order to develop a concrete service. First, data must be collected, cleaned,
analyzed and then visualized to construct a so-called data-pipeline [37]. Each
step has to be realized by multiple mechanisms and algorithms and usually
requires extensive manual implementation. This means that the developer of a
data analysis pipeline must have broad programming skills in addition to the
domain-specific knowledge.

Of course, developers can draw on a large number of open source algorithms
and functions, but integrating these poses an additional major challenge. This
is because the composition of various functions combined from different sources
requires overarching compatibility. However, since this is usually not the case,
the individual functions must be subsequently analyzed and adapted, which
represents an enormous effort.
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In addition, there is a different mindset between domain experts of
applied data science and programmers. Programmers think in imperative and
controlflow-driven processes whereas data-pipelines are modeled conceptually
dataflow-driven.

Projects like ETI [47], its successor jETI [26] and Bio-jETI [16,18,19] have
already addressed this problem of remote service integration and composition by
creating a global service repository. For each service, an interface for integration
and usage could be stored to instrument them in the jETI tool. However, the
modeling within ETI is done with controlflow based processes which contradicts
the dataflow-driven modeling established in data analysis. The Taverna tool [33]
addresses this issue by implementing the ETI approach of a centralized service
repository in a dataflow-driven process environment. Nevertheless, it became
apparent that it would require a great deal of additional effort to manage the
central service repository and keep it synchronized with the respective services.

With the increasing use of web-based development and execution environ-
ments such as Jupyter [3], Gitpod [2] and Eclipse Che [1], it is now possible to
simplify the concept of ETI and Taverna by bypassing the central service repos-
itory. For this reason we have developed the Pyrus tool which addresses three
challenges:

– Duality: For optimal support, users should be able to work in their preferred
domain. Accordingly, data analysis modelers and programmers should each
use tailored environments. In this way, both can benefit simultaneously from
each other in parallel.

– Interoperability: Established online development environments such as
Jupyter have to be instrumented without detours in order to be able to com-
pose and execute the functions and existing libraries implemented there.

– Accessibility: Users should be able to work from anywhere and platform inde-
pendently without the need for installation or special system resources.

The web-based modeling environment Pyrus1 presented here enables direct dis-
covery and execution of the available services and functions within an online
IDE without the detour via a central repository. By integrating an online devel-
opment environment like Jupyter via API, Pyrus can automatically discover the
functions available there and make them available to a user for composition
within the process modeling environment. The created composition process of
Pyrus can then be compiled and delegated to the connected runtime environment
for execution via the same API. For modeling, Pyrus provides a graphical DSL
for dataflow-driven processes with a linear type system, following the Language-
Driven Engineering (LDE) [46] paradigm by aiming at bridging the semantic
gap [35] for the user.

Pyrus itself was built using the CINCO Language Workbench [34], which is
specialized to the development of graphical domain-specific languages (DSL) [11,
32]. By using Pyro [52], the Pyrus tool can be used as a web-based, collaborative

1 Project: https://gitlab.com/scce/ml-process, Demo: https://ls5vs023.cs.tu-
dortmund.de, (For reviewing only) Login:isola21 Password:isola21.

https://gitlab.com/scce/ml-process
https://ls5vs023.cs.tu-dortmund.de
https://ls5vs023.cs.tu-dortmund.de
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modeling environment where users can work together to create their processes.
Both CINCO2 and Pyro3 are open-source and have already been used to develop
several graphical DSLs for Eclipse and the web such as: Webstory[24], AADL
[52] and DIME [7].

By integrating an online IDE into Pyrus, it is possible to instrument the
algorithms, services and functions implemented there on an abstract level. In
this paper, we illustrate the integration by the example of a Jupyter IDE4 to
show the advantages for the domain of data analysis. This gives domain experts
from the applied data science environment the opportunity to concentrate on the
composition and concrete parameterization of the individual functions without
the hurdle of manual implementation. This clear separation between “how” and
“what” is in line with the principles of Separation-of-Concern (SoC) [50], the
One-Thing-Approach (OTA) [27] and Service-Orientation [29] by creating a user-
specific intuitive environment. In turn, programmers are able to simultaneously
tweak and change the implementation without the need for manual interface
synchronization or mutual obstruction. In addition, Pyrus provides a dataflow-
driven process language to support the user of the applied data-science domain
as intuitively as possible.

In the further course of this paper, an overview is first given of how the Pyrus
tool was conceptually developed and how the individual components within the
system are interrelated. Subsequently, the metamodel for the dataflow-driven
process DSL and the service interfaces declared with CINCO and EMF [49] are
described. Based on the abstract syntax, the semantics of the process language
is explained to show how the individual discovered functions and services are
controlled. Next, the type system is described, which is used to check the cor-
rectness of the function composition. In Sect. 6, the usage of the Pyrus tool is
demonstrated, showing the integration of Jupyter for the automatic discovery of
the services, process modeling, compilation and delegation for execution. Sect. 7
provides a short corresponding tutorial for illustration. The related approaches
are analyzed and compared in Sect. 8, followed by a conclusion and outlook for
the next steps in Sect. 9.

2 Concept

Pyrus focuses on the composition of functions implemented and provided within
external web-based IDEs. This clear separation makes it possible to decouple the
function development from the orchestration. In addition, the graphical domain-
specific modeling environment created in Pyrus supports the creation of dataflow
processes without the need for programming skills. To ensure that the designed
models are syntactically correct and executable, a linear type system is used that
directly alerts the user to where incompatibilities exist. In this way, the user can
2 https://gitlab.com/scce/cinco.
3 https://gitlab.com/scce/pyro.
4 Demo: https://ls5vs026.cs.tu-dortmund.de/. (For reviewing only) Login:isola21

Password:isola21.

https://gitlab.com/scce/cinco
https://gitlab.com/scce/pyro
https://ls5vs026.cs.tu-dortmund.de/
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Fig. 1. Conceptual overview from the metamodel to the Pyrus tool and to the connec-
tion of an external IDE.

fully concentrate on the tasks in his domain and does not have to deal with the
concrete details of the implementation.

The system architecture provides the Pyrus tool (see Fig. 1 in the middle) to
be used for process modeling. The implementation and execution of the actual
functions is performed within external web-based IDEs (see Fig. 1 on the right).
IDEs such as Jupyter, Gitpod or Eclipse Che allow users to program directly
in the browser. For this purpose, the corresponding source code is stored on an
associated server and executed in an execution environment there. For commu-
nication between Pyrus and an external IDE, the respective API is controlled.
On the one hand the available functions are discovered and analyzed with regard
to the signature and on the other hand the composed functions are called. This
describes likewise the prerequisites for the binding of an external IDE, which are
fulfilled in the case of Juypter.

Pyrus uses the discovered functions to manage a user-specific Function Inter-
face Storage (FIS). The FIS persists signatures by collecting information about
the source, parameter types, return types and documentation. Based on the
stored function interfaces in the FIS, users can graphically model dataflow-driven
processes in Pyrus. The graphical representation of a functions visualizes the
interface by corresponding input and output ports.

The graphical DSL used in Pyrus is based on a metamodel created with
CINCO and EMF (see Fig. 1 on the left), which describes both the abstract and
concrete syntax of the language. With the help of Pyro, the DSL is delivered
within a collaborative, web-based modeling environment that allows direct access
via browser.

In order to ensure within the modeling environment that the composition
of external functions can be executed, a static linear type system [38] is used.
The parameters determined within the function discovery are provided with
the corresponding nominal monotypes, which are checked within the modeled
hierarchical process using a type-inference algorithm.
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Fig. 2. Metamodel of the dataflow-driven process language of Pyrus.

The execution of a model created with Pyrus is handled by a model transfor-
mation and generation step in contrast to Remote Procedure Calls (RPC) [36]
used by the majority of the existing tools (see Sect. 8). The code thus generated
is then delegated as a complete program to the respective IDE for execution.
Finally, the results of the execution are transmitted back to Pyrus to be dis-
played to the user directly in the modeling environment.

3 Metamodel

There exist many different description forms of the Unified-Modeling-Language
(UML) [42] or the Eclipse-Modeling-Foundation (EMF) [49] to define a meta-
model for graphical languages. However, these general-purpose meta-modeling
languages are not specialized for the definition of graphical languages and accord-
ingly require additional mostly implicit assumptions.

For this reason, CINCO was used to create the metmodel of the dataflow-
driven graphical process language present in the Pyrus tool. CINCO is a Lan-
guage Workbench for creating graphical domain-specific languages based on the
meta-types: Graphmodel, Node, Container and Edge. Then, the definition of
a graphical language is done by specializing the four meta-types and declaring
composition possibilities.

Due to the focus on graph-based languages, only compositions in the form
of embedding and connection constraints has to be defined in the metamodel.
The constraints are described by cardinalities, which can express static seman-
tics already in the metamodel. In addition, CINCO allows the use of the
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object-oriented meta-types known from UML and EMF like: Type, Attributes
and Association. In addition to the structural metamodels, which represent the
abstract syntax, CINCO also offers its own meta-modeling language for defining
the concrete syntax. The so-called Meta-Styling-Language (MSL) offers different
meta-types for the declaration of shapes, appearances and decorators, which is
not described in this paper.

The dataflow-driven process language of Pyrus is based on a metamodel defin-
ing a graphmodel containing Function containers, Constant nodes and Dataflow
edges. The goal of the language is to allow a user to compose and instrument
external functions. The language is based on the following principles:

– A process composes external functions by describing data dependencies
between them.

– The dataflow between the functions of a process is acyclic, so that they can
be sorted topologically.

– A process can contain another process to form a hierarchically structure and
enable reuse.

To do this, it must first be possible to represent the functions from the FIS in a
Process. The user can then determine how the data can be transferred between
the functions to enable pipelining. Besides the functions, constants should be
defined which allow static data to flow into the process. In addition, it should be
possible for the user to reuse created processes elsewhere in encapsulated form.

3.1 Function Interface Storage

For the implementation of the dataflow-driven process language and the function
interface storage, two meta-models are created which are shown in Fig. 2. The
meta-model of the function interface storage shows in which form the determined
functions of an external IDE are represented in Pyrus. Each function is identified
by a fully qualified name (FQN), which specifies how the actual function can be
called. The FQN consist of the file path inside the external IDE as well as the
name of the function. The signature of a function is determined by the input
and output parameters. Each parameter is named and associated with a named
type.

3.2 Process

The Process metamodel describes the abstract syntax of the dataflow-process
DSL, which includes the enclosing Process graphmodel type. As a specialization
of the graphmodel meta-type, it describes the root element of a graphical DSL
in the context of CINCO. From the end user’s point of view, the Process can be
edited via canvas in which the other node types, edge types and container types
described in the metamodel can be instantiated. Which node and container types
can be created within the graphmodel is described by the solid edge representing
the embedding constraints. The cardinalities at the end of the edge indicate the
minimum and maximum number of instances of a specific type.
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3.3 Function

To represent function interfaces recorded in the IFS, the Function container
type is defined, which holds a reference to a Function Interface in the FIS. In
the context of CINCO, the so-called prime references are defined as not nul-
lable association, so that a Function can only exist in a Process as long as the
referenced Function Interface exists. As shown in the metamodel (see Fig. 2),
a Function container can contain the nodes InputPort and OutputPort. Both
node types are used to map the input and output parameters of the referenced
Function Interface. The dotted line defines that an edge can be drawn from an
OutputPort to an InputPort, which describes the dataflow. The cardinality at
the beginning of the dotted edge defines that at least one edge must be drawn
from the OutputPort. In contrast, the cardinality at the InputPort node type
limits the number of incoming edges to exactly one.

3.4 Constant

For the declaration of constant values, the metamodel defines the Constant node
type, which may be contained arbitrarily often in a Process graphmodel. Just
like the OutputPort node type, a Constant node can be connected to InputPort
nodes via outgoing edges. The lower bound of the cardinality defines that a
Constant node must have at least one outgoing edge for a valid structure.

3.5 SubProcess

The hierarchical composition of a Process graphmodel is achieved by using a
representative container. The corresponding SubProcess container type can be
instantiated any number of times in a Process and holds a reference to the under-
lying Process. Just like the Function container type, the SubProcess container
type is defined to contain at least one InputPort node and an arbitrary number of
OutputPort nodes. In this case, however, the parameters of a Function Interface
are not represented, but rather the signature of the underlying Process. To define
this signature, each Process contains a Start and an End container. The Out-
putPorts within a Start container define the data which can be passed into the
Process and are represented as InputPort nodes inside the SubProcess container
above. Analogously InputPort nodes within the End container are represented
by OutputPort nodes inside the SubProcess container. Thus processes can be
structured hierarchically, by the use of SubProcess containers as representatives
within a superordinate process model.

4 Semantics

In the context of textual programming languages the semantics can be formalized
for example by structural operational semantics (SOS) [39] along the syntax
described in a BNF. In the area of graphical domain-specific languages, however,
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Fig. 3. Schematic representation of the component’s semantics in a Process model.

these established semantic descriptions can be complicated to use. With respect
to the semantics of the dataflow-driven process language of Pyrus, the semantic is
applied along the individual components defined in the metamodel by following
the approach of Kopetzki [15]. For each component a fire-rule similar to Petri
nets [40] can be specified, under the following restrictions:

– The dataflow inside a Process model is acyclic.
– No tokens are consumed.
– A component is enabled if every InputPort node is occupied with data.
– All enabled components are executed in an arbitrary order.
– After execution the resulting data is propagated over the outgoing edges of

the OutputPort nodes, which can enable subsequent components.

Accordingly, the semantics for each component can be defined.

4.1 SubProcess Component

A SubProcess container represents the underlying Process model P as shown
in Fig. 3a. The inputs A and B and resulting outputs C and D required for the
subprocess are represented by corresponding InputPort and OutputPort nodes
within the SubProcess container. For each InputPort of the SubProcess con-
tainer there is an InputPort within the Start container of the underlying Process
model. Similarly, the OuputPort nodes of the SubProcess container represent the
OutputPort nodes of the End container. Semantically, the SubProcess container
symbolizes the delegation to the underlying process, for which a fire rule can
also be described:

– As soon as all InputPorts within the SubProcess container are occupied it is
enabled.

– All enabled SubProcess containers are executed in an arbitrary order.
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– The execution takes place by propagating the data of each InputPort node
of the SubProcess container to the corresponding InputPort nodes of the
underlying process. Then the data is written along the outgoing dataflow
edges of the Start’s InputPort nodes which enables inner components.

– As soon as the inner execution is finished, the resulting data is propagated
along the outgoing edges of the corresponding OutputPort nodes of the Sub-
Process container.

4.2 Function Component

A Function container F as shown in Fig. 3b represents an external state-less
function F whose signature is defined by the inputs A and B and output param-
eter C of the Function Interface F. Thus, the semantics of the external function
is dependent on the actual implementation outside of Pyrus, since the function
is only called during execution. The semantics of the Function container as a
component of Pyrus can only specify when the external function is executed and
what happens after execution. Thus, the semantics of a Function container can
be described as follows:

– As soon as all InputPort nodes within the Function container are occupied,
the Function is enabled.

– All Function containers that are enabled, are executed in a arbitrary order.
– An enabled Function container is executed by calling the external function.
– After the function has been executed, the data is propagated along all edges

coming from the OutputPort of the Function container.

Although the execution of a hierarchical dataflow process is concurrent and
non-deterministic, a deterministic behavior is achieved by the exclusive use of
side-effect free external functions and the acyclic structure of a process. This
means that it is irrelevant for the result of a process in which order the enabled
components are executed, since there is no interference between them.

5 Type System

To ensure that the models created in Pyrus are valid, it is necessary to check
whether the dataflow between the included functions is type-correct. For this
reason, similar to textual programming languages, each language construct is
assigned a type. It is then possible to check whether there are incompatibilities
between the constructs associated with dataflow. For this reason, a type system
[38] is realized within the modeling environment which is classified and explained
in the following.

5.1 Classification

The type system present in Pyrus belongs to the class of strongly typed systems,
since there are no possibilities of explicit or implicit type conversion. Type check-
ing is done only at modeling time and not during execution, so it is a static type
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system. As the metamodel in Sect. 3 has already made clear, type definition
takes place exclusively within the Function Interface Storage. During process
modeling, the resulting typings of the ports are derived by this definition. Thus,
Pyrus is based on an implicit static stong type system with inference.

5.2 Data Types

Pyrus is based on three different primitive data types: string, number, boolean,
each of which can be declared and initialized via Constant nodes. Additionally
there is the possibility to create an array of each primitive data type. With regard
to the strong type system of Pyrus, no operations or transformation of the prim-
itive data types are possible inside a process model. Additional type definitions
cannot be modeled and come only from a nominative Type of the Function Inter-
face Storage. The FIS manages the types of all input and return parameters of
all determined external functions. Thereby the types are distinguished only by
their name, whereby they represent nominal types.

5.3 Type Inference

Type correctness checking within Pyrus is done via type inference. Type infer-
ence is used in programming languages to avoid unnecessary additional typing
where it can already be reconstructed from existing type definitions and rules.
Pyrus realizes type inference related to the system described by Milner [9]. For
the implementation of type inference, unification [41] is used to determine the
corresponding most general type of a term with predicate logic.

With regard to the nominal types used by Pyrus, the type inference proceeds
along the dataflow edges up to a port of a Function container. The ports of a
Function container reflect the parameters of a Function Interface within the FIS
and reference the corresponding nominative type. Thus the type of a port can
be derived by the following unification algorithm:

– If the port is inside a Function container, its type can be determined by the
referenced Function Interface and the corresponding Parameter.

– If the port is inside a SubProcess container, the dataflow is followed at the
corresponding port of the inner Process model.

– The type inference is performed recursively until a Function container is
reached. Since in each process at least one SubProcess or Function container
is present, finally the appropriate port in a Function container is found and
the type for inference is determined.

However, since the dataflow can split at an OutputPort, the type system must
additionally ensure that all outgoing edges ultimately have the same type.
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Fig. 4. Synchronization mechanism of Pyrus for function discovery in an external web-
based IDE.

6 Usage

The goal of the Pyrus tool is to separate the domain of applied data analyt-
ics from the development in a loosely coupled fashion. The concept illustrated
in Sect. 2 describes the cross-tool architecture established for this purpose, in
which functions are implemented in Jupyter, graphically modeled in Pyrus and
executed by delegating generated code.

In this chapter it will be discussed which mechanisms are used by Pyrus
to discover the external functions on the one hand and to execute the created
process model on the other hand. Furthermore, the modeling environment will
be demonstrated with an example from cluster analysis on two dimensional data.

6.1 Function Discovery

In order to use the functions implemented in an external web-based IDE, they
must first be discovered. Figure 4 shows the individual components and inter-
actions involved in this process. For this it is necessary that the external IDE
offers an appropriate API to access the source code. The Synchronization com-
ponent implemented in Pyrus controls this API and discovers all existing files
and the declared functions inside. At the moment Pyrus supports Python files
to be analyzed in the discovery step. After the content of a file has been loaded,
the source code is examined with regard to function declarations present in the
global scope. Subsequently the Function Parser analyzes the documentation in
front of each function. Only if the documentation contains a Method keyword
followed by the function name and the parameter declaration starting with the
Inputs and Outputs keywords, the function is considered for the use in Pyrus
by adding it to the FIS.

This way the developer can decide in Jupyter which functions should be
published. Besides the keyword, the function documentation must also contain



Pyrus 29

Fig. 5. Pyrus editor user interface screen shot.

information about the input parameters and the return. To enable correct instru-
mentation on the modeling side, the developer of a function must name the
respective parameters and assign a nominative type. The naming of parameters
is for user comprehension and to assist during modeling. The nominative type
is used by Pyrus to realize the type inference and checking.

Listing 1.1 shows an example of the cluster Python function implemented
inside Jupyter. In order for the function to be discovered and parsed by Pyrus’
Synchronizer, a comment is added before the declaration as shown in lines 1
to 3. The function performs a cluster analysis on a given dataset data by first
specifying two column names x and y and the number of clusters to find by
clusters. The result res of the function includes the found clusters which can
be further processed or visualized by subsequent functions. To ensure that the
cluster function can be correctly combined with other functions, a nominative
type is assigned to each input and the output parameter.

1 # Method: cluster
2 # Inputs: data:Table , x:text , y:text , clusters:num
3 # Output: res:Clu_Model
4 def cluster(data ,x,y,clusters):

Listing 1.1. Example cluster analysis Python function which can be discovered by
the synchronizer due to the documentation.



30 P. Zweihoff and B. Steffen

After the discovery, all determined functions are merged with the already
existing ones from the function interface storage. Once the synchronization is
complete, the Pyrus user can use the function interfaces to create dataflow Pro-
cess models.

6.2 Modeling

As seen in Fig. 5, the Pyrus tool offers a complete environment consisting of
different widgets. At the top there is a navigation bar, which contains links to
various administration screens and shows all users currently working in parallel
in the right corner. On the right side below the navigation is the explorer which
lists all the models present in the project. The explorer offers the possibility to
manage the models as files in hierarchical folder structures.

In the center is the modeling Canvas, which displays the currently selected
model. The user can move and resize nodes and edges in the model by
drag’n’drop. The function interfaces of the IFS are displayed right below the
explorer. They are grouped hierarchically according to the files in which they
were discovered. A function can be dragged from the widget onto the Canvas to
create the corresponding Function container.

On the right side is the Palette widget, which lists all node types available
in the language, such as various Constant nodes, Port nodes, Start containers
and End containers. To create the elements, the entries of the Palette can be
dragged directly onto the canvas. Pyrus also offers the possibility to display the
elements of the Palette in their actual form.

Below the palette is the Check widget, which shows whether the currently
visible model is valid. The error messages of the type system are listed, in case
incompatible ports were connected. In addition, integrity checks are performed
to ensure that the Function Interface referenced by a Function container is still
present.

The model visible in Fig. 5 shows an example process for cluster analysis.
First, several Constant nodes were created, which define the data source as a
CSV file and a delimiter. Both constants are connected via dataflow edges to the
load_csv function, which loads a CSV file. The output port of type table is
in turn connected to the input of the cluster function. The cluster function
implements the k-means method [22] which requires the numbers of clusters to
be determined. This can be defined statically by Constant nodes, or it can be
determined with the elbow_index function as shown here. The elbow_index
function implements the heuristic elbow method [6] to determine the amount
of present clusters in a given data set. Next, two more textual Constant nodes
are created, which indicate the respective column names of the CSV on which
the cluster analysis should be performed. Finally, the determined Clu_Model is
displayed with the display_graph function.
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Fig. 6. Pyrus process model execution by transformation and code generation and
subsequent delegation to the Jupyter IDE runtime.

6.3 Execution

After a user has created a valid model in Pyrus, it can be executed directly in
the environment. The execution is done in several steps, which are demonstrated
in Fig. 6.

A created dataflow-driven Process model must first be translated into a
imperative controlflow graph because the external execution environment of
Jupyter supports only imperative programming languages. For this purpose, a
topological sorting is performed according to the semantics formulated in Sect. 4,
which orders the Function and SubProcess containers contained in a model based
on their distance from the start. Due to the concurrency of a dataflow-driven
process, the creation of the execution order is not unique, but equivalent with
respect to the result. Based on the determined order, a controlflow graph is
created.

Subsequently, the controlflow graph can simply be translated into the target
language with the help of a code generator. The code generator creates the
respective calls of the external functions in the given order and sets the variables
according to the ports and dataflow. In addition it reassembles the hierarchy of
all involved process models.

The actual execution of the code generated from the model is realized by
delegating it to the Jupyter online IDE by calling the API. Once the code
is completely transferred, it is executed by the Jupyter runtime environment.
Finally, the execution results are returned to Pyrus, to be displayed to the user
(see Fig. 7). The results can be primitive data in the form of e.g. text as well
as images, charts or tables, depending on how the external functions are imple-
mented.
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Fig. 7. Cluster analysis example result presentation in Pyrus.

7 Tutorial

In this section we describe a step-by-step guide on the use of Pyrus. We will
demonstrate the creation and execution of the data-driven process for a k-means
cluster analysis example as mentioned before in Sect. 6.2 and 6.3.

1. Login using the credentials: isola21/isola21
2. Enter organization by clicking on: isola21
3. Enter the example project by clicking on: isola21’s project. A com-

plete example model has already been created that can be executed directly.
If you only want to run the model, you can click on the model example.ml
(see Fig. 5) in the explorer on the top right and jump directly to step 9.

4. Create a new empty model. Right click on the project name in the
explorer on the top left: isola21’s Project and select new to open the cre-
ation dialog. Enter a name for the file and click on create button to open a
new empty model.

5. Add functions to the canvas. All discovered functions are located in the
Ecore widget in the bottom left. Expand the Jupyter entry and then the clus-
tering entry. Drag and drop the cluster, elbow_index and display_graph
entries to the canvas (see Fig. 8a). To load a CSV file, expand the table_util
entry and drag and drop the load_csv entry to the canvas.

6. Add data-flow between the functions. Click on the table output port
of the load_csv function and then click and hold the black circle to the right
to draw an edge to the table input port of the cluster function container
(see Fig. 8b). In the same way create connections:
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Fig. 8. User interaction example screenshots.

(a) from load_csv function’s res output port to the data input port of the
elbow_index function

(b) from clusterfunction’s res output port to the m input port of the
display_graph function

(c) from elbow_index function’s idx output port to the clusters input port
of the cluster function

7. Add constants to the canvas. To create static inputs, darg an drop the
corresponding entries from the palette widget on the top right to the canvas.
Drag and drop the TextConstant entry four times from the palette to the
canvas (see Fig. 8c). By clicking a TextConstant node on the canvas, the
properties view at the bottom shows a text field to edit the value. Set the
values and connect each TextConstant to an input port:
(a) Set value to example_data/2d.csv and connect it to the url port of

load_csv. This path refers to a file located in Jupyter.
(b) Set value to , and connect it to the delimiter port of load_csv.
(c) Set value to Satisfaction and connect it to the x port of cluster.
(d) Set value to Loyalty and connect it to the y port of cluster.

8. Check the model validity. The validation view should show a green mes-
sage: No Errors. If this is not the case, read the error messages and try to fix
the model.

9. Execute the model. Right-click an empty spot on the canvas and click on
Execute on Jupyter. The execution for the cluster analysis takes up to 15 s.
The result is displayed in a popup (see Fig. 7) which can be download to the
computer or save in the project.

Each function is located in a Jupyter workspace as part of our Jupyter Hub5.
To explore the functions use the credentials isola21/isola21. The functions used
for this example are located inside the library folder, which can be opened by
the File menu and Open.... Inside the library folder the clustering.py
file, used in the example above is located. The clustering.py file contains the
implementation and signature description of the functions used in the example:
cluster, elbow_index and display_graph.
5 https://ls5vs026.cs.tu-dortmund.de/.

https://ls5vs026.cs.tu-dortmund.de/
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8 Related Approaches

Numerous existing tools provide graphical process modeling environments for
the composition of data analytics functions. Usually the created graphical pro-
cess models are executed by interpreting each node step-by-step and calling the
respective functions. The established approaches require either that a function
has to be implemented in the tool itself or that it has to be realized as a web
service to be used.

None of the state-of-the-art tools provides a collaborative modeling environ-
ment and and is able to delegate the execution to best of bread executions envi-
ronments, like Jupyter, via compilation. In contrast, Pyrus allows data analysts
and domain experts to design data analysis models in tandem, each using their
own browser, and then to delegate the execution to the execution environment
of their choice, as illustrate in this paper for Jupyter.

Whereas the advantage of browser-based collaboration is obvious in particu-
lar these days, execution via delegation has also numerous advantages:

– it optimizes the data transfer,
– it supports data security, as the individual data may remain at the execution

environments location, and only the aggregated results are communicated via
the net, and

– using Pyrus interpreter, it is even possible to distribute the computation
to dedicated execution environments for local computation and aggregate the
results at the end. The execution environments may be different instantiations
of Jupyper, but also entirely different execution environments like Gitpod,
CodeAnywhere and Eclipse Che.

In the remainder of this section, we analyze and compare other open-source and
commercial tools, focusing on the following characteristics:

– Ext. The extension possibilities and tool support to manually implemented
functions to be used inside the modeling environment.

– Execution. The mechanism used to execute the model, which is performed
by a stepwise interpreter or prior compilation to executable code.

– Runtime. The runtime environment executing the composed functions of a
process model and how it is called: remote procedure calls, complete delega-
tion to an external runtime or inside the local tool environment

– Access. The access possibilities of a tool: direct online access or local instal-
lation.

– Collaboration. Model sharing via export or collaborative real-time editing.
– License. Open-source (OS ) or commercial (Com.).

We provide our discussion based on past publications describing the tools as well
as the qualitative analysis presented in [13]. Table 1 summarizes our comparison
regarding the characteristics of the data-analytics modeling tools. Each of the
following subsections elaborates on one of the table’s rows compared to Pyrus.



Pyrus 35

Table 1. Data-analysis modeling tool comparison.

Tool Ext. Execution
(Runtime)

Access Collaboration License

Pyrus Jupyer et al. Compilation
(delegation)

Online Real-time OS

MaramaEML None Interpreter
(remote)

Local Export OS

ETI, Bio-jETI None Interpreter
(remote)

Local Export OS

Taverna None Interpreter
(remote)

Local Export OS

Kepler Inline Interpreter
(remote)

Local None OS

SDLTool None Interpreter
(remote)

Local Export OS

Azure ML Studio, Google
Cloud ML, AWS ML

Inline Interpreter
(local)

Online None Com.

RapidMiner Studio Inline Interpreter
(local)

Local Export Com.

8.1 MaramaEML

MaramaEML [21] is a desktop based modeling environment for the enterprise
modeling language (EML) [20] which can be used to instrument data-analysis
services via BPMN [51] processes. The modeled processes have to be generated to
WS-BPEL [45] code which can be executed in a corresponding engine by instru-
menting web services. To use a function in MaramaEML, it must be manually
implemented and served over the web to be callable by the WS-BPEL engine.
Users of Marama cannot collaborate in the tool directly and have to distribute
serialized models by a version control system (VCS) [44].

8.2 ETI, Bio-jETI

ETI [47] is based on a controlflow-driven language in which the sequence of the
individual services can be modeled. The services must be specified and stored in
a central repository before they can be used in ETI. The latest version Bio-jETI
[16] is a desktop application developed for the jABC platform [27,48].

8.3 Taverna

Taverna [33] utilize a centralized service repository which results in the same
drawbacks as ETI. The modeling environment provides a dataflow-based service
composition workflow language without ports. Taverna requires a local installa-
tion and setup which complicates the direct usability.



36 P. Zweihoff and B. Steffen

8.4 Kepler

Kepler [23] is a graphical modeling tool for combining R scripts and remote ser-
vices to create scientific workflows. A workflow component can be implemented
inline by a text editor to extend the available so-called actors. Since Kepler
workflows can only be exported as archives, the collaboration is limited to file
sharing. Kepler requires a local setup based on the Ptolemy framework [10] to
create desktop applications for actor-oriented design.

8.5 SDLTool

The SDLTool [14] provides a visual language to define statistical surveys as a part
of data analytics in a holistic modeling environment. The local desktop devel-
opment environment allows users to publish designed process as web service so
that they can be used by other applications. SDLTool cannot be used collabo-
ratively by multiple users because the created model can only be exported to
a repository. In addition, the analysis functions must be manually programmed
and integrated within SDLTool.

8.6 Azure ML Studio, Google Cloud ML and AWS ML

There are many different commercial tools for creating data analysis processes
based on serverless functions [5] such as Azure ML Studio, Google Cloud ML
and AWS ML which have already been investigated by [12]. The integrated
environments can be used via browser and operate on the corresponding platform
infrastructure. Pre-defined components can be extended by Python and R scripts
implemented inside the environment.

8.7 RapidMiner Studio

RapidMiner Studio [8] is a commercial local modeling tool to compose pre-build
functions for data analytics and machine learning. Additional functions have to
be manually imported as Python and R scripts to be used in a graphical process.
RapidMiner Studio provide collaboration by exporting serialized models to a
VCS.

9 Conclusion and Outlook

We introduced Pyrus as a new tool for bridging the semantic gap between the two
worlds of imperative programming and dataflow-driven modeling in the domain
of data analysis. The key to achieving this goal is the use of domain-specific pro-
cess languages adapting to the established concepts for describing data-pipelines
for machine learning and artificial intelligence. The possibility of directly inte-
grating established online IDEs like Jupyter and delegating compiled process
models for execution allows domain experts and programmers to work together
and benefit from each other.
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The concept of Pyrus is based on the principles of the One-Thing-Approach
[27] and Continuous Model-Driven-Engineering [28] by enabling service-oriented
instrumentation [31] of external functionalities in a central tool. Tools such Bio-
jETI and Taverna showed the need to enable domain experts to independently
use existing technologies without the technical expertise of a programmer.

The use of model-driven tools is particularly suitable for enabling a user to
concentrate on the “what” and thus make design decisions independent of the
“how” level of a concrete implementation. The advantage of this approach has
already been shown in various studies by Lamprecht [17], Saay [43] and Margaria
on the so-called eXtreme model-driven design (XMDD) [30]. It turned out that
students of natural sciences without programming knowledge can get an intuitive
access to process execution frameworks by using XMDD tools.

Pyrus has taken this approach and improved it with respect to current tech-
nologies. Unlike ETI and the Semantik-Web [25], Pyrus instruments external
web-based IDEs directly, instead of a high-maintenance intermediate repository.
In this way, functions can be discovered and used without detours.

The current architecture and technical implementation opens up the possi-
bility for a variety of extensions on different levels. First, the previous validation,
which is based on the static strong type system, can be extended by model check-
ing methods. For this purpose, the external functions must be supplemented by
further annotations in order to specify various properties to be checked. These
annotations can be used to support the user during the modeling process by
checking the semantic correctness. In a further step, the existing properties can
be used to apply synthesis methods, as already done in the Bio-jETI tool. In
this way, automatically missing process parts could be added to resolve existing
type incompatibilities.

In addition to these enhancements on the usage level, we plan to increase
the amount of usable programming languages to be integrated as functions in
Pyrus. Jupyter offers a variety of languages which can be used through the
integration of so-called kernels. In order to give users the freedom to choose
which languages are used to create functionality, the function discovery and
code generation of Pyrus can be extended. Functions of different languages can
be called during the execution for example over remote-procedure-calls or with
the help of interoperability frameworks like rpy2 [4]. In this way, functions of
different programming languages can be combined in the modeling environment
for specific purposes.

In order to be able to address different domains with Pyrus, it is necessary to
integrate further web-based IDEs such as Gitpod, Eclipse Che, Codeanywhere
or AWS Cloud9. For this purpose, a standardized interface and protocol should
be established how online IDEs can communicate with each other.

We are convinced that the concept of Pyrus is promising. Due to the growing
number of available web-based IDEs, it is possible to integrate more functionali-
ties in a service-oriented way so that a user can handle complex problems on his
own. Especially the fact that programmers and Pyrus users can work together
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in parallel without an intermediary enables a very agile way of working which
has already been successfully demonstrated in several student projects.
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Abstract. We show how to extend the (application) Domain Specific
Languages supported by the DIME low-code development environment
to integrate functionalities hosted on heterogeneous technologies and
platforms. Developers can this way utilize within DIME entire platforms
like e.g. R for data analytics, and collections of services, like e.g. any
REST-based microservices. In this paper we describe the current archi-
tecture of the DIME-based Digital Thread platform we are building in
a collection of interdisciplinary collaborative projects, discuss the role
of various DSLs in the platform, and provide a step by step tutorial
for the integration of external platforms and external services in DIME.
The goal is to enable a wide range of DIME adopters to integrate their
application specific external services in the DIME open source platform,
bootstrapping a collaborative ecosystem where the low-code activity of
integrating external capabilities facilitates an increasingly no-code appli-
cation development on the basis of pre-integrated Application DSLs.

Keywords: Domain Specific Language (DSL) · Model Driven
Development (MDD) · eXtreme Model Driven Development (XMDD) ·
Service Independent Building Blocks (SIBs) · Low code development
environments · DIME

1 Introduction

We address the problem of integrating external services into the DIME inte-
grated modelling environment. As shown in [14], we are building in Limerick
a significant ecosystem of collaborations spanning various application domains,
with the collective goal of contributing application domain specific collections of
services to a DIME-centered low-code application development environment able
to use all those services in the application design, in a possibly seamless way. In
the terminology that is currently emerging in the advanced manufacturing con-
text, this end-to-end integration of all what is needed to collaboratively deliver
a complex, interoperable capability in a potentially cyberphysical cooperation is
called the “Digital Thread”.

Its definition is not yet settled, but to give an idea, according to the CEO of
iBASEt, a company offering Digital Thread products and consultancy, “the Dig-
ital Thread encompasses model data, product structure data, metadata, effectual
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data process definition data – including supporting equipment and tools” [6], and
“Product Lifecycle Management (PLM) provides “the what” (modeling, BOM
management, process planning, process simulation, and engineering change man-
agement). Enterprise Resource Planning (ERP) provides “the when, where, and
how much” (scheduling, financials, and inventory). To have a fully developed
model-based enterprise—and a fully functioning Digital Thread—manufacturers
also need “the how”. That’s what Product Lifecycle Execution (PLE) provides
through process execution, process control, quality assurance, traceability, and
deviation handling.”

In our view, the Digital Thread requires an end-to-end integration of the
data and processes that guide and deliver such complex operations, and it is our
goal to provide this integration and orchestration in a model driven and low-
code, formal methods-supported fashion. In this paper, we address specifically
the task of integrating external services provenient from various platforms and
made available in various programming languages, into the DIME integrated
modelling environment. DIME’s extension and integration with external systems
through the mechanism of native services DSLs extends the capabilities of the
core platform to meet wider communication needs (e.g., in the cloud), and also
to take advantage of existing sophisticated enterprise services (e.g. AWS).

Low-code programming both at the API and the platform level is considered
to be a game changer for the economy of application development. Gartner Inc.,
for example, predicts [5] that the size of the low-code development tools market
will increase by nearly 30% year on year from 2020 to 2021, reaching a $5.8
billion value in 2021. They state that so far, this is the fastest and probably the
simplest and most economical method of developing applications.

In this paper, we briefly recall the DIME-based architecture of the Digital
Thread platform in Sect. 2, including the central role of Low-code and DSLs in
it. Section 3 presents the integration methodology in DIME with a quick tutorial,
followed in Sect. 4 details the step by step integration of the R platform and of
RESTful services. Finally, Sect. 5 contains our summary and a brief discussion
of the perspectives.

2 The Digital Thread Platform in DIME

DIME [3] is a graphical Integrated Modelling Environments for low-code/no-code
application development, used to develop research [9,16] as well as industrial
applications. It is a general purpose MDD platform-level tool, suitable for agile
development due to its rapid prototyping for web application development. It fol-
lows the One Thing Approach based on XMDD [18], in a lineage of development
environments that traces back to the METAFrame’95 [25,26]. DIME supports
both control flow and data flow modelling in its process diagrams. Control flow
models admit a single start node but may have multiple end nodes, and nodes
(called SIBs) representing single functionalities or sub-models are graphs, i.e.
formal models. The SIBs are connected via directed edges depending on the
business logic, with distinct edge types for dataflow and control-flow.
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Software systems in general, and especially web apps in internet-centered
ecosystems and digital threads in an Industry 4.0 context, are not isolated in
nature: they demand interaction with various external systems, libraries and
services. Frequent needs are (but not limited to)

– acquire sensors data from external systems,
– feed data to external dashboards for analytics and publishing,
– utilize the compute power of cloud systems,
– reuse sophisticated enterprise services.

We will use DSLs to virtualize the technological heterogeneity of the services,
delivering a simple, coherent and efficient extension to this low-code modelling
platform. The extension by integration adds to the tools the capability to com-
municate with sophisticated enterprise ecosystems, without sacrificing the flex-
ible yet intuitive modelling style for the no-code users, who just use the DSLs
that are available.

2.1 The Current Architecture

The current architecture of the Digital Thread platform is depicted in Fig. 1
(from [14]).

DIME’s own Language DSL (in orange), designed in Cinco [21], encom-
passes for the moment in our application settings primarily the Data, Process
and GUI models. This is the layer defining the expressive power of the DIME
modelling language. Data, Process and GUI models are used to design the appli-
cations, thus the Digital Thread platform makes use of these facilities “as is”.
We do not extend nor modify this layer.

The concrete applications designed and implemented in DIME (in blue) use
the modelling and orchestration language of the Language DSL, and as vocab-
ulary a number of service collections provided in directly in the core DIME
platform (the Common DSLs, e.g. concerning the supported GUI elements and
their functionalities), but also a growing collection of Process DSLs that may be
application specific or still generic.

All these are part of the Application DSL layer, that includes also quite
a number of Native DSLs external to DIME (in green). These DSLs collect
the atomic SIBs that expose to the application design layer the encapsulated
code provenient from a rich and growing collection of external service providers.
For example, in [8] and [7] we have integrated a number of EdgeX Foundry
services [1] that support a variety of IoT devices and relative communication
protocols. The same has happened for AWS and other services in [4].

The DSLs may concern specific application domains, but the parameter that
determines the specific kind of integration is the technology on which they run.
To give and example, one can use data analytics in R to analyze cancer-related
data, census data, proactive maintenance data in the manufacturing domain, or
risk and insurance related data in financial analytics. As long as they use the
same R functions, the integration in DIME is exactly the same and needs to be
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Fig. 1. Architecture Overview of DIME and Custom DSLs

done just once. The same applies for example to Julia and Matlab: we will address
the integration of a DSL for each of them in the context of a biomechanical
simulation collaborative project, but the corresponding DSLs will be reusable
“as-is” for any other application that requires the same functionality.

In that sense, it is realistic to talk of the Digital Thread platform under
construction as a large, heterogeneous, collaborative ecosystem where reusal is
promoted well beyond the walled garden of a specific application domain. This
is still a novelty to many, who are used to think in terms of their discipline and
specialty, and see this possibility of direct reuse as an unexpected benefit, given
that they are used to re-code rather than reuse.

In this respect, our value proposition sits clearly at the upper, application
development layer, where we see the interoperability challenge truly reside.

We also see ourselves as systematic users of such pre-existing platforms, who
are for us indeed welcome providers of Native DSLs. In this context, a number
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of integrations in DIME relevant to the advanced manufacturing domain have
already been addressed.

2.2 Low Code and DSLs

Low code development platforms enable their users to design and develop appli-
cations with minimal coding knowledge [27], with the support of drag-and-drop
visual interfaces that operate on representations of code as encapsulated code
wrappers. The main aim [24] of these platforms is to produce flexible, cost effec-
tive and rapid applications in a model driven way. Ideally, they are adaptive to
enhancements and less complex is terms of maintenance. Model-driven develop-
ment (MDD) is an approach to develop such systems using models and model
refinement from the conceptual modelling phase to the automated model-to-code
transformation of these models to executable code [19]. The main challenges with
traditional software development approaches are the complexity in development
at large scale, the maintenance over time, and the adaptation to dynamic require-
ments and upgrades [27]. Doing this on source code is costly, and it systemati-
cally excludes the application domain experts. who are the main knowledge and
responsibility carriers. At the same time, the cost of quality documentation and
training of new human resources for code-based development are other concerns
in companies and organizations that depend on code.

Domain Specific Languages (DSLs) conveniently encapsulate most complexi-
ties of the underlying application domain. Encapsulation of code and abstraction
to semantically faithful representations in models empowers domain experts to
take advantage of these platforms. They can develop products in an efficient
manner and also meet the growing demands of application development without
having deep expertise in software development. Based on a study [2] from 451
researches, the maintenance effort with low code platforms proved to be 50–90%
more efficient as compared to changes with classical coding languages.

3 Integration in DIME: A Quick Tutorial

The extension mechanisms of DIME concern two distinct levels: adding Services
and adding Platforms.

– Service integration follows the Native library philosophy of DIME and
can be carried out by following the steps described in Sect. 3.2 and Sect. 3.3.
We illustrate this step by step on the basis of a REST integration, which is
applicable also to the general microservice architectures.

– In Platform integration there is the additional challenge of the preparation
of the platform in such a way that it addresses the needs of the underlying
application. We will show this in the case of the R platform in Sect. 3.1.

In either case, the goal is to create adequate wrappers around the code one wishes
to call or execute, an adequate call mechanism, and an appropriate signature
representation of each of these SIBs within the DIME SIB Native library.
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When the new SIB is utilised in an application, it is expected to communicate
with the respective external service, technology, platform or infrastructure for
the purposes of connection creation, system call, or movement of data. It is thus
important that the runtime infrastructure is compatible, optimised and scalable
in order to handle the required collection of data sets, instructions and generated
results, e.g., strings, tables and graphs.

We describe now the three key steps of the DIME extension mechanism
for the integration of external services or platforms, concerning the runtime
infrastructure, the SIB declaration and the SIB implementation.

3.1 Runtime Infrastructure

Normally, the individual services are already optimised and deployed in some
cloud service with a public or private access. The preparation of the platform
is however still a challenge. Being DIME a web based application, the network
latency can be reduced if the platform or technological infrastructure is deployed
on the same network. The following steps are required to prepare a runtime
docker container for the infrastructure.

1. Prepare and deploy a docker container for the desired technology or platform.
2. Get the network and connectivity details of the deployed container to be fed

into DIME extended SIBs at runtime (or compile time, if the endpoint is
constant).

3. Make sure to close all the connections after the successful communication
with the client SIB in order to avoid dangling open connections.

Once this is done, we can define the new DSL in DIME via the SIB declaration
mechanism. As an External native DSL is a collection of SIBs, we describe now
how to add a SIB.

3.2 SIB Declaration

To develop a new (atomic) SIB in DIME, the SIB declaration is the first step:
the declaration defines the SIB signature, with the data and control flow depen-
dencies of the new SIB. The SIB declaration process is the same in both the
Service and the Platform integration. To define a new atomic SIB,

1. Firstly, in the DIME-models section of the project explorer, we add a new
empty file with extension “.sib”

2. This new file contains the signature of the new SIB. It starts with the keyword
“sib”, followed by the new SIB name, a colon and the path to the attached
Java function. This is the function be invoked when the SIB will be used in
the process modelling.

3. The subsequent lines contain the input parameters accompanied with the
variable names and data types
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Fig. 2. Sample SIB declaration signatures

4. Finally, considering the set of possible execution outcomes, a list of outgoing
control branches is defined, one for each execution outcome. Each control
branch starts with the symbol “—>”, followed by the branch name and the
output variable name and data type.

A sample SIB declaration signature is shown in Fig. 2.
When the DSL contains many SIBs, this declaration has to be done individ-

ually for each SIB.

3.3 SIB Implementation

Following the OTA philosophy, the two key considerations for SIB implementa-
tion are autonomy and modularity. The implementation of any SIB declared in
Sect. 3.2 follows the following steps.

1. A Java file must be created (if not already available) under the “native-
library” section of the “dependency” section in the project explorer, on the
same path defined in the SIB declaration process.

2. In this file, write the implementation of all the Java functions against the
respective signature declaration in the “.sib” file, i.e.,. matching the function
name, return types and input data types.

3. Dependency management is an essential part of any project in order to inter-
act correctly with any external service or platform. The services and platforms
of interest normally expose some interface for interactions and system calls,
frequently in form of APIs or drivers. The dependency management must be
done both in the . POM file and in the header of the Java file of the project,
to respectively download and import the drivers.

4. Finally, the Java implementation of the SIB could vary on the basis of the
business logic of the application. This logic usually has three sections:

– Connection Establishment: Normally, the first interaction with any
external entity is the connection establishment. This happens by call-
ing a constructor with the appropriate parameters, e.g., server name, IP,
credentials.

– Function Call: Once the connection is established, the subsequent logic
may carry out with a sequence of system calls to send some parameters,
data, code and instructions to the external entity, for it to act upon.
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– Result Parsing: After the completion of the function/system calls, the
result is returned in a raw format and must be parsed for the underlying
platform to understand and use it appropriately according to control and
data flow.

While this seems at first sight a lot, it is a simple and quite general mecha-
nism. In the case of service integration, the runtime platform phase may not be
needed, simplifying the task.

In the following section we exemplify the described procedure step by step
for a platform and a service integration.

4 Case Studies: The R Platform and REST Services

We selected as examples the integration of the R platform and REST services,
as they are good illustrations of the two main cases of native DSL integration.

4.1 R Integration as Platform Integration

R is a specialised language for statistical computing, optimised for data process-
ing and analytics. We show now, how to integrate the R platform with DIME
as a Native DSL and utilize its capabilities as drag-able SIBs.

Runtime Infrastructure: R is a different platform from Java, thus it requires a
separate, independent execution infrastructure. First of all, a separate container
must be deployed on docker to run a R infrastructure stack. Once the container is
up and running, then we need to collect the connection details (container name,
IP, and credentials) for the DIME app to be able to properly communicate. For
this we use the docker command build, run and network inspect.

1. To build a new R infrastructure, open CLI, create a new directory and run
the command:
docker build -t rserve Rserve/ --no-cache

2. Once the image is built, deploy the image on the docker container using the
command:
docker run --name EnvR -p 6311:6311 --rm rserve:latest

3. Once the docker is deployed, then type the following command to get the IP
and other network details of the image:
docker network inspect bridge .

SIB Declaration: The SIB signatures for R (the function plot R histogram
in this case) as shown in Fig. 3, consists of SIB keyword followed by its name and
its I/O parameters. This signatures also contains the path of the Java function
to be invoked whenever this SIB will be used in an application.
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Fig. 3. Sample SIB declaration signatures

1. Create a new DSL file under “dime-models” with the extension .sib, where
multiple SIBs can be defined within the same domain.

2. Copy the same signatures from Fig. 3 to create your new SIB file.
3. Refresh your SIB explorer. The newly developed SIB must be visible in the

SIB explorer as a draggable item.

SIB Implementation: For the SIB implementation we will do the following:

1. Create a Java file under the “native-library” section of “dependency” and
write the Java function with the same name and parameters order as men-
tioned in the SIB signatures.

2. For the dependency management, copy the “REngine.Rserve” reference under
the dependency tag in the POM file and import the Rserve libraries (RCon-
nection, RFileInputStream, RFileOutputStream and RserveException) in
your Java file.

3. To establish a connection with the R infrastructure, copy the R container
IP and port number in the RConnection constructor. Once the connection
is established, it will return a R pointer, and at this point the R platform is
ready to accept any command from this Java based DIME SIBs.

4. Move the dataset / CSV as BufferedInputStream from the DIME application
to the R container using the established connection pointer, e.g., R pointer.

5. Once the data is moved to the R server, the R commands can be sent from
the DIME application to the R server as a suite of subsequent instructions
to be executed on the R server on the already transported dataset. e.g. read
data file, generate histogram with given parameters and name of output file
handler. The R commands must be passed in double quotes as a parameter,
inside the parseAndEval function referenced by the connection pointer. e.g.
R pointer.parseAndEval (“read.csv(‘a.csv’)”)

6. After the successful execution of subsequent R instructions, the generated
result (in this case a histogram) is transported back as BufferedOutput-
Stream, parsed into the DIME readable image and passed as a resulting data
flow of the SIB using the getDomainFileController handler.
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Fig. 4. SIBs explorer with the new Native SIBs

Following the same approach, the SIB declaration and SIB implementation
process can be replicated to extend the R-DSL with any R capability.

4.2 RESTful Extension as Service Integration

RESTful services provide a great flexibility for communication with external
systems through exposed APIs. The increasingly popular microservice architec-
tures [23] are typically exposed as REST services. They play an important role
at the enterprise level. The microservice paradigm helps design software services
as suites of independently deployable components with the purpose of modu-
larity, reusability and autonomy [23]. Different versions of these services may
coexist in a system as a set of loosely coupled collaborative components and
must be independently replaceable without impacting the operations of hetero-
geneous systems. We see now in detail how to integrate REST services along the
template introduced.

Runtime Infrastructure: Services are normally provided by third parties and
are already deployed on private or public servers. So they do not require any
infrastructural preparation, unless we are developing and deploying our own
REST services. We consider here a pre-built PHP based REST service that is
already deployed on a public server and accessible via its URL.

SIB Declaration: The SIB declaration is shown in Fig. 4. We proceed as fol-
lows:

1. Create a new DSL file under “dime-models”, with the extension .sib. Here,
multiple SIBs can be defined within the same domain.

2. To create a new SIB, write the keyword sib followed by the SIB name, :
(colon) and the path to the corresponding Java function.
In subsequent lines, write the names of the input variables with their data
types (in our case it is the URL of an external server), the input variable
name and data type, and the output variable name where to retrieve the
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Fig. 5. SIBs explorer with the new Native SIBs

server response.
Finally, define the list of outgoing control branches based on the distinct
outcomes, starting with symbol --->. In our case the three branches are
“success”, “noresult” and “failure”.

3. Refresh your SIB explorer. The newly developed SIB must now be visible in
the SIB explorer as a draggable item, as shown in Fig. 5.

SIB Implementation: For the SIB implementation we will do the following

1. Create a Java file under the “native-library” section of “dependency” and
write a Java function with the same name and parameters order as mentioned
in the SIB signatures.

2. For the dependency management, copy the “org.json” reference under the
dependency tag in the POM file and import the HttpURLConnection and
JSONObject libraries in your Java file.

3. To establish a connection with the REST service, copy the public URL and
input parameters of the REST service and invoke the HttpURLConnection
constructor followed by the getResponseCode() function.

4. On the successful response status, i.e. code 200, the service returns a JSON
object that is further parsed into a Java readable string using the already
imported JSONObject library functions, i.e. getString(JSON response).

Figure 6 shows the visual representation of the newly developed SIB as it
appears when it is used in a process model. The required four inputs are being
fed to this block using data flow (dotted) arrows. On success, the result will be
conveyed as a string (or list of strings) to the successive SIB.

5 Conclusion and Discussion

In our Digital Thread efforts we are currently targeting primarily the applica-
tion domain of advanced manufacturing including manufacturing analytics, and
the data analytics field. In this context, data, processing and communications
are expected to concern a large variety of devices, data sources, data storage
technologies, communication protocols, analytics or AI technologies and tools,
visualization tools, and more. This is where the ability to swiftly integrate exter-
nal native DSLs plays a key role.

We presented therefore a generic extension mechanism for the integration of
external services and platforms to DIME, an offline low-code IME, illustrating
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Fig. 6. The REST Read SIB in use: Visual representation in a model

in detail the technique on the basis of the R platform for data analytics and a
REST service.

We used DIME’s native library mechanism, with signature declaration, linked
Java backend code, and where the code is merged with the logic layer at compile
time. In previous work [4] we already showed how to address also the integration
in Pyrus, an online no-code graphical data analytics tool based on Pyro [28]
and linked with Jupyter Hub for functions discovery and code execution also
discussed in detail in [29].

The Pyrus integration is simpler as it is tightly connected with Jupyter Hub.
For example, to display new python functions as components in Pyrus, custom
signatures are added to the python files defined in Jupyter Hub, and the data
flow pipeline of the service is modelled in the Pyrus frontend.

In comparison with prior integration techniques, e.g. in jABC [11,15],
ETI [13], jETI [12] and jABC/DyWA [22], this is a much simpler mechanism,
and it follows much more tightly the One Thing Approach philosophy of inte-
gration [17].

As shown in Fig. 1, the span of External native DSLs we are currently building
is quite impressive. It will cover proactive maintenance and building automation
applications in the collaborations in Confirm, devoted to Smart Manufacturing,
an open source biomechanical prosthetic socket design and optimization plat-
form based on Gibbon [20] in Lero, analytics for the Digital Humanities [10], and
various healthcare applications in the context of the Limerick Cancer Research
Centre. In this sense we are hopeful to indeed bootstrap the effect of reuse of
many DLSs and also processes across several application domains. This way, we
also wish to showcase the power of model driven low code application develop-
ment on real life examples from research and industrial applications.
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Abstract. In this paper, we illustrate the impact of simple Why questions as a
means to reveal global aspects that may easily be forgotten during traditional
requirement analysis. For illustration we use the introduction of the General Data
Protection Regulations (GDPR), a prime example to observe that adequate solu-
tions may require to think out of the box, beyond just stepwise trying to fulfill
individual requirements. Our Why analysis revealed the traditional, scattered data
handling as the essential bottleneck, which we believe can be overcome by a
cloud-based knowledge management across departments and applications.

Keywords: Why analysis · Alignment ·Wicked world · VUCA ·
Knowledge/Data management · GDPR · IT infrastructure · Requirement
analysis · DevOps

1 Introduction

AGartner report from 2020 (p. 3) found that today’s “business environment (is) marked
by significant change, competition, uncertainty—and opportunity” [1]. This underlines
that we live in a wicked world challenged by the VUCA characteristics in which learn-
ings from the past do not ensure correct predictions for the future [2–4]. VUCA stands
for vulnerability, uncertainty, complexity and ambiguity [5]. Organizations face constant
changes and developments of their industries due to e.g., new trends, regulations and
technologies and are forced to adapt to ensure their survival in the long-term. These
constant changes increase the vulnerability and unpredictability of an industry’s fur-
ther developments leading to great uncertainty and thus challenges for an organization’s
management. Each strategic decision needs to be carefully designed and analyzed as
potential scenario for the future which requires interdisciplinary collaboration and align-
ment. The interdisciplinary collaboration and its imposed stakeholder diversity enhance
the complexity and ambiguity of decisions which are often interpreted differently due to
stakeholder-specific expertise, interests and opinions [6].

The more factors and aspects are considered the less it becomes obvious what to
emphasize andwhat the right/logical thing to do is. The challenge is to consider sufficient
aspects/facts/trendswhile simultaneously preventing to run into the ‘cannot see the forest
for the trees’ dilemma. To support the strategy development and guide the brainstorming
sessions business experts have defined many frameworks, methods and schemata like
canvases. In particular, canvases are useful as they allow one to successively focus on
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specific issues without losing the global overview during the planning phase (see the
Business Model and Platform Alignment Canvases [7, 8]).

On the other hand, the planning-based approach often leads organizations to prema-
turely decide on implementation steps which is contra-productive in the VUCA world.
Here change-driven approaches are advantageous which are based on continuous cre-
ativity, collaboration and validation to enable interdisciplinary innovation and learning
in an evolutionary fashion in the sense of ‘survival of the fittest/most adapted to today’s
environment’ [9, 10]. Change-driven approaches continuously modify their initial plan
based on new learnings – orVUCAdevelopments - over time according to a global vision
- awhy (dowe do this)?. They then define the global goal -what (do wewant to achieve)?
The combination of vision and goal constitute the pillars to define a milestone-based
roadmap.

Change-driven approaches are characterized by only committing towhat is necessary
at each point in time to provide sufficient leeway to adapt measures andmilestones based
on new learnings. This enables an open-minded and solution-driven continuous as-is and
should-be comparison approach that reacts to identified deviations in an agile fashion.

In order to demonstrate the difference between the plan and change-driven
approaches of either committing to plans or to visions this paper analyzes how organi-
zations typically reacted to the introduction of the General Data Protection Regulation
(GDPR) in May of 2018. It turns out that organizations try to avoid invasive changes
and accept obviously unsatisfactory solutions despite the fact that GDPR already led to
individual fines of up to e746 million in 2021 [11]. We will argue that this is mainly
due to the organizations being caught in their traditional IT infrastructure and mindset
which is inadequate to live up to typical GDPR requests like erasing all personal data of
a certain person. This leads us to the main research question addressed in this paper:

Can implementing the GDPR regulations be considered
an IT problem, and if so, what has to be done?

We will illustrate the power of (continuously) asking Why in a change-driven app-
roach. In fact, many important Why’s only arise during implementation and may lead to
significant reconsiderations.

The next section therefore reviews the state of the art of many organizations, while
Sect. 3 concerns the GDPR regulations, typical implementation (Sect. 3.1), a Why-
based analysis of the corresponding design decision (Sect. 3.2), and a solution proposal.
Subsequently, Sect. 4 provides a generalized discussion of the issues, and Sect. 5 our
conclusion.

2 State of the Art

In this Section we introduce the constant external changes imposed on organizations.
Then we dive into the state of the art of organization’s internal knowledge management
practices.
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2.1 Today’s Challenges of Organizations

“Across many industries, a rising tide of volatility, uncertainty, and business complex-
ity is roiling markets and changing the nature of competition” [12, p. 7]. To survive,
organizations need to rethink their strategies, business models and dynamic capabilities
referring to their agility with regard to how fast and how well they can adapt to change
[13]. Despite these pressures most organizations tend to address this change traditionally
in the sense of “Why shall we change? We have always done it (successfully) this way”.
External pressures like Industry 4.0 either get ignored or addressed in an incremental
almost “alibi” fashion via digitizing processes and documents or adding cloud services.
These steps are considered Industry 4.0 measures and allow organizations to preserve
what they currently excel at. Unfortunately, this approachmisses to leverage the Industry
4.0 potential [14].

It also ignores the threat around the corner that established organizations and even
market leaders are just one competitor’s revolutionizing innovation away from signif-
icantly be threatened and potentially even forced out of the market [15]. Christensen
calls this calm before the storm the innovator’s dilemma [16, 17]. It underlines that once
today’s established organizations were the innovators, but as soon as they became suc-
cessful, they lost their innovation potential and became “traditional” organizations. This
approach is successful as long as no competitor outperforms the others. However, with
every innovation it can be too late for established organizations bound by their legacy,
as it can take them years to catch up.

One often ignored factor is that disruptive innovations with revolutionizing potential
start targeting only very dedicated niche segments outperforming current offers at one
particular functionality and/or service but underperform at most others have the potential
to catch upwith and even leave the established competition behind [18]. These disruptive
innovations often are mistakenly overlooked as e.g., Kodak’s ignorance of the digital
camera opportunity [19], and so are the disruptive innovation-“makers”. These orga-
nizations are often unknown potential industry entrants and thus not taken seriously.
However, Porter made an important observation when he stated that each industry is
driven by five forces: direct competition, customers, suppliers, substitutes and potential
entrants [20]. New potentials and technological trends like Industry 4.0 and digitiza-
tion open e.g., manufacturing industries to novel IT and software innovations. One has
to understand the strategic potential of software and software-driven business models
like digital platforms. They e.g., deprive established organizations of the direct con-
tact with their customers and are therefore a major unstoppable threat. Great examples
are Amazon for retail and Booking.com for hotels. Especially, IT and software create
opportunities which significantly reduce the entry barriers for substitute providers and
potential market entrants. And this is not all – they cannot just enter but overtake the
market.

2.2 Today’s Internal Knowledge Management Challenges

Already in the early 2000s estimated the IDC an annual loss of about $31.5 billion due
to ineffective knowledge management for the US Fortune 500 organizations alone [21].
This indicates the competitive advantage of teams being able to access the relevant expert
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knowledge [6, 22]. The unsatisfactory state-of-the-art of knowledge management (KM)
is due to four categories of knowledge management barriers: organizational, technology,
individual and semantic [6].

Organizational barriers cover e.g., the missing integration of KM strategies into an
organization’s overall vision and strategy, competitive culture and missing adoption of
KM systems. Technology barriers comprise the lack of a global and connected IT infras-
tructure, limited access to knowledge sources, mismatches between needs and solution
and missing user-friendly tool-support. The individual barriers address employee’s lack
of trust, hesitance to share knowledge and lack of time and resources to do so. The
final semantic barriers are unique in that they even act as barriers to ‘shared understand-
ing’ even if no other barriers are in place and people would like to and know how to
share knowledge. They refer to all the reasons why even perfect communication and
knowledge exchange still leads to misunderstandings due to the stakeholders’ different
backgrounds, expertise, experiences, languages, and education.

In this paper we focus especially on the technology barriers and their impact on
an organization’s knowledge and data management as well as on collaborative work.
Today, technology plays a major support role when using, sharing, saving and retrieving
data to support an organization’s internal processes and tasks and has the potential
to increase quality while reducing required resources and time. Achieving this on a
global, aligned, personalized, effective and efficient level is one of organizations’ great
challenges [23–25].

The following overview depicts today’s state-of-the-art tool-landscape in many organi-
zations. The list covers findings from Hessenkämper & Steffen in 2014, Steffen (2016)
and Steffen et al. (2016) [6, 26, 27]:

• Localized and organization if not employee-wide distributed data storage,
• Incompatible tools with separate data handling (e.g., ERP, CRM and CMS systems),
• Missing integration and process support,
• Excessive use of inadequate communication media like E-mails, chats and calls and
• Incoherent document and data handling via tools like, e.g., PowerPoint, Word and
Excel.

This situation hinders if not excludes an adequate alignment of
• Interdisciplinary work and communication
• Gathered data and knowledge, and
• Organizational processes across tools and platforms

In the data-driven world of today, this increasingly impairs the usability of the overall
technical infrastructure and essentially affects the entire business of an organization:
the missing alignment has to be compensated by the employees which slows down
productivity.

Thus, the potential for the improvement of knowledge management, internal process
support and business modeling is high. For now, everyone just tries to make the best of it
and gets the projects/products finished on time. This short-term pressures and focus are
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quite successful in the here and now, but in the long-term organizations need to make a
major leap to compete with potential entrants which are not held back by these legacy
structures.

3 Case Study GDPR

In this Section we will discuss today’s approach towards solving external changes along
the example of theGeneral Data ProtectionRegulation (GDPR) introduction. The typical
corresponding state-of-the-art sketched in Sect. 3.1 will be challenged byWhy questions
in Sect. 3.2 which is followed by a proposal for a more fundamental solution in Sect. 3.3.

3.1 Typical GDPR Solutions in Practice

GDPR aims to protect a person’s personal data which covers all information addressing
an identified or identifiable real and living person directly via their name, date of birth
and address, or indirectly via e.g., telephone number, social security number and IP
address or cookies [28]. Although the introduction, deadline and implications of the
GDPR guidelines were clear for years many organizations just engaged in a final sprint
in April andMay of 2018 to meet the deadline. The remaining short time frame typically
led to rather non-invasive bureaucratic add-on solution approaches.

According to GDPR, it is the organization’s task to protect all personal data of
employees, customers, suppliers and collaboration partners. Organizations are obliged
to define a data protection officer who is responsible for ensuring that the organization
obeys to the rules, educates the management and employees and defines internal data
protection guidelines, processes and responsibilities.

Here, organizations must ensure that personal data processing is [28]:
• lawful, fair and transparent in relation to the data subject
• only collected for specified, explicit and legitimate purposes
• minimized to the adequate, relevant and limited time and purpose
• accurate and, where necessary, kept up to date and erased without delay
• limited to the necessary purposes for which the personal data are processed
• appropriately securing the personal data ensuring integrity and confidentiality.

Given the description of today’s state-ot-the-art of IT landscapes in Sect. 2.2., it becomes
obvious why the GDPR integration is a major challenge for most organizations:

1) How can organizations identify where personal data got used and saved? Given
the legacy of the last centuries organizations built a siloed IT landscape in which
many employees work on and safe documents locally. So, the data owners are not
centralized but rather decentralized as every employee potentially saves documents
containing personal data.

2) How to ensure that only people/employees with access rights have access to the
personal data? This is difficult to achieve as normally complete documents like
PowerPoint presentations and complex Excel tables get distributed via E-mail or
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central storage spaces. In the past no one had to personalize these views and ensure
that personal data gets protected. Thus, personal data is highly distributed and exists
in all versions of the corresponding documentation.

3) How to ensure that personal data can be deleted on demand? As data is saved locally
all employeeswho potentially processed the personal data in questions need to search
all their (corresponding) documents for the personal data and delete it following the
detailed instructions of the data protection officer.

Given the isolated and incompatible tool landscape and the distributed data handling
on notebooks and phones organizations do not have much choice but to delegate the
GDPR handling to the employees. They are the ones having access to and storing the
data (locally) and thus must be the ones deleting it.

To delegate and inform the employees/data owners about the GDPR challenge the
management/data protection officer tend to design PowerPoint presentations instructing
the employees about their personal GDPR responsibilities. These presentations are dis-
tributed per E-mail to all employees (and hopefully read and not perceived as spam).
From here onwards the employees must obey to the general guidelines and find and
delete all personal data when requested.

This is how the solution will look like in practice:
1) The organization receives a request from e.g., a customer’s employee to delete all

of his/her personal data.
2) This request gets forwarded to the data protection officer.
3) The data protection officer must check which IT systems and employees might have

had access to this particular personal data and have stored them in their ‘shadow IT’.
4) Then the data protection officer contacts the IT administrators and relevant employ-

ees e.g., via E-mail with the request to delete this specific personal information in all
documents (e.g., including all versions of a specific document). This requires that
all triggered employees must search the globally and locally shared documents and
E-mails for this personal information and delete it manually.

Unfortunately, this process cannot ensure that all relevant personal data is found and
deleted. Thus, organizations typically plead for their best effort and deal with missing
deletion when they are detected. Looking at recent fines, it is more than questionable
whether current best effort will be considered sufficient in the future. However, whatever
will happen in the future, the result of this traditional approach is:

Almost any device and any document of any employee

has to be searched for personal data.

This is unrealistic and has no chance for completeness: some to be erased personal data
will inevitably remain undetected. The next section therefore questions this state-of-the-
art in a Why fashion.
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3.2 Why-Based Quality Analysis

In this sectionwe question the result of Sect. 3.1“Almost any device and any document of
any employee has to be searched for personal data” by repeatedly askingWhy questions.

Root-Why: Itmust be possible to identify and erase all personal data of individual persons
everywhere on request.

We will concentrate here on the problem of identifying all locations where such infor-
mation is stored. Our solution proposal (Sect. 4) also deals with the adequate erasing of
information.

The importance of this Why can be confirmed by just one more Why question:

Why: GDPR demands to satisfy such requests.

Thus, we can consider the Root-Why as given. But does this really justify that “Almost
any device and any document of any employee has to be searched for personal data”?

In the traditional setting this is again confirmed via a chain of Why questions:

Why: The personal data cannot be found otherwise.

Why: Data are transferred as PDFs, text files, PowerPoint presentations and Excel
documents via broadcast E-mails to the team members and/or other targeted
groups. These are often processed locally for the simplified use/ editing.

Why: The different used systems have their own local data management
(Outlook, Excel, Atlassian, ERP, etc.) and the involved users need to be
able to access this data.

Why: Due to today’s traditional localized IT infrastructure setup
(cf. Sect. 2.2).

A better solution must therefore break this chain of argumentation. But how can this
be achieved? Investigating the explaining Why chain one characteristic appears to be
common to all levels: locality! In the next subsection we will sketch how a centralized
solution may overcome all the mentioned problems in an elegant and efficient way.

3.3 Why-Based Solution Proposal

In this section we sketch how a centralized solution naturally solving all the aforemen-
tioned problems can look like. In fact, we argue that this solution has major positive
side-effects also on other, apparently unrelated issues which will then also get better
addressed and dealt with.

As revealed by the Why analysis in Sect. 3.2, centralization addressing today’s issue
of locality is the key towards overcoming the discussed problems. But what does this
mean precisely? In essence it means that every source of data has a single source of truth,
i.e., a single location where it is stored, and that all locally kept data automatically adjust
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to this single source1. Illustrative examples for this principle are cloud-based solutions
like Dropbox, Google Docs, and similar solutions to collaborative work [29–31].

In addition, the treatment of GDPR requires an adequately modularized and relation-
based data management in a fashion that connections between data are explicitly mod-
elled in ontological relations see Fig. 1. E.g., a person’s record (i.e., information that
just concerns this very person) is related to all relevant other data sources, e.g., via an
address relation to the contact information or a health relation to the health records, etc.
With such a data organization, erasing the data corresponding to a person just means to
erase the relational connections to the record.

Fig. 1. Relational modeling of personal data

The benefit of this relational data organization seems marginal in the mentioned
examples, as one could alternatively simply put all this information into the correspond-
ing person record. This is, however, no longer true for data sources that concern many
persons like membership lists, protocols and project repositories.

Please note that the described centralization approach provides many more benefits.
Being able to dis-associate a person from some (data) resources is vital, e.g., when a
person leaves an organization. Based on our observations many organizations would
give a lot for a data management that is guaranteed to be consistent, let alone for a
knowledge management which allows one to seamlessly address all data (of course in
a secure, role-based fashion) in an aggregated form as illustrated in Fig. 2. This vision
is quite straightforwardly realized on an adequately centralized data organization. And
there are many more benefits, in particular concerning the inter-departmental exchange.

Admittedly, achieving such a data organization and management requires major
reconstruction, is very expensive, and may take quite some time. Think of the impact
such a change (digital transformation, cf. Fig. 3) would have on prominent ERP, SCM,
HR, and supply chain solutions which essentially all base on a local data management
(typically, every application requests the control over the data!).

Thus, a movement towards centralization imposes a major threat to many of today’s
IT solution providers which will fight for keeping as many data as possible, as it is the
data that makes organizations dependent on these providers. The adaptation to the cen-
tralization approach, despite its numerous advantages, will therefore hardly be realized

1 This does, of course, not exclude replications of data for technical purposes like e.g., backups.
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Fig. 2. Central data storage with personalized view and processing

Fig. 3. Digital transformation from decentralized solutions to a global solution

in the near future for larger organizations. On the other hand, it is a great opportu-
nity for smaller organizations which, this way, will gain quite a significant competitive
advantage.

4 Why-Based Alignment

In this Section we reflect on the paper’s observations from a more general perspective.
To evaluate the decisions made in a top-down fashion from the requirements to the
implementation we questioned them in a ‘bottom-up’ fashion (cf. Fig. 4). Looking at the
proposed solution for an implementation we have asked ourselves, now in a bottom-up
fashion,whether andwhy this proposal is (in)adequate, andwhether there are alternatives
and at which price. We have observed that the state-of-the-art IT-infrastructure of a
typical organization is in the way to obtain natural and efficient solutions to the GDPR
problem which can be solved much more elegantly and efficiently when changing from
the today very localized data management to a centralized data or even better knowledge
management.
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Naturally, projects take part somewhere in the middle of an organization’s hierarchy.
E.g., a middle manager gets the task to implement an application for broadcasting (large)
PowerPoint presentations to specific user groups. Now he has two options:

She could directly start applying traditional How-reasoning in order to e.g., imple-
ment an application that selects and then fetches the requested PowerPoint presentations
from the file system, compresses them into a zip-folder, and then sends this folder to the
addressees. Alternatively, the manager could also question the “what” by asking, e.g.,

“Why shall I implement this application?”.

And on the response

“We need to inform our employees about strategically important
developments and regulations, e.g., concerning GDPR.”

she could continue with

“Why should all employees store these documents locally on their notebooks?”

and perhaps mention that this causes consistency problems (do all the employees
really read the up-to-date version?), privacy problems (there is no control of document
distribution), and lost control (did the employees look at the document at all?).

Just asking two simple Why questions reveals that an application based on a central
document repository that provides read access to the involved employees and, ideally, a
confirmation feature via a simply click at the end of the presented documents would be
a much better solution.

More generally, asking Why is a good way of alignment: it helps to identify the
relevant context, to get the affected stakeholders aboard, and to develop solutions that
are accepted because they were commonly designed and fit the addressed need.

Fig. 4. Bottom-up analysis of top-down decision-making

This down and up reminds of the V-Model in software engineering, where the top-
down requirement phase from desired concepts to implementation is complemented
by a bottom-up integration and validation phase that provides the envisioned running
systems. In fact, our Why approach has structurally a lot in common with the V-Model-
based, plan-driven thinking, even though it does not aim at the realization of systems,
but at a better (more global) understanding of the corresponding decision process and its
frame conditions. Like for good system design, achieving a better global understanding
typically requires feedback cycles, a fact, that led to numerous refinements of the origi-
nally hierarchical V-Model-based approaches. The One-Thing Approach (OTA) can be
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regarded as such a refinement: It is conceptually hierarchical, but allows to re-enter the
process at any time, however at dedicated task-specific positions only, and in a way that
avoids cyclic dependency propagation in order to guarantee global consistency [32].
Handling feedback cycles in the OTA fashion is also a good means for a goal oriented,
consistent Why handling.

It often turns out that high hurdles at the implementation level can often be overcome
by stepping back and altering the frame conditions. TheGDPRexamplewith its proposed
change from local to global knowledgemanagement is an extreme case: both themeasure
(re-structuring of the data management) and the impact are extremely high. Popular
other examples can be observed in DevOps scenarios. In fact, the advantages gained by
DevOps canbe regarded as being the result of aWhy-based analysis:Having anoperations
expert aboard allows one to adjust the early design in a way such that the step towards
operations has no unnecessary hurdles [33]. Or, more concretely, the operations expert
can ask the Why question whenever she observes a pattern that may cause problems in
the later lifecycle. In fact, the GDPR example of a data elimination request also requires
a treatment which strongly profits from a tight cooperation between development and
operations.

In this light, the Why approach is nothing but a means to globalize the decision
space in order to find better solutions. This globalization can be extremely powerful, in
particular in cases, where the envisioned solutions are part of a bigger picture. Today’s
practice focusses far too much on local optima rather than considering what needs to
be achieved globally. Asking Why is a good practice in these cases to overcome the
so-called ‘silo mentality’ of individual cases by connecting and aligning them globally.

5 Conclusion

In this paper we sketched the current economic situation which is under pressure due to
the increasing IT influence. Organizations need to change, to either achieve a leading
edge or to prohibit that other organizations overtake their market leadership. We have
also argued that established organizations have problems to take this challenge up, and
that they typically hardly touch the opportunities offered by today’s IT systems. Even
radical contextual changes like, e.g., the ones imposed by the GDPR regulations, do not
seem enough to act as a wake-up call. Rather, they are answered with traditional means
that, in the long-term, are economically disastrous, imposing a lot of manual work and,
as in the GDPR case, may lead to high penalties.

We have discussed the reasons for this status quo which seems, in particular, to be
the result of a too local and short-term thinking: Even the necessity of global searches
for personal data across an entire organization for satisfying certain GDRP regulations
do not seem to suffice to question the status quo.

We have illustrated how simple Why questions may lead to simple answers. In case
of GDPR, the local and distributed data management can be regarded as a root problem
prohibiting efficient solutions: a centralized knowledge/data management with an ade-
quately modeled data space, e.g., relational, in terms of ontologies, would essentially
trivialize the system-wide search for all personal data.
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Admittedly, this insight alone is not a solution, and applying it to large organizations
is a major challenge. Thus, we envision that insights like this will be taken up first by
smaller organizations which may then grow due to their competitive advantage.

That solutions to presumably very difficult problems may become commodity is, in
fact, not too rare. A prominent example is enterprise-wide communication: Being able to
offer a global communication system to an organization was still a vision in the eighties
but is now almost for free due to the Internet. Today, clouds ease the centralization of
knowledge. We are therefore convinced that the described changes will happen, and that
early adopters will be the winners of this development.

Progress is often achieved because somebody asked a Why question. In our eyes this
happens far too seldom. At least whenever something seems unreasonable one should
automatically ask “Why can this be?”. This (critical) reflection is the way to progress
and innovation. Unfortunately, the many regulations we are confronted with are rarely
well explained, a fact that makes us lazy, and surely, we cannot question everything. We
should, however, question the seemingly unreasonable in our area of expertise.
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Abstract. The industrial track at ISoLA 2021 provided a platform for
presenting industrial perspectives on digitalization and for discussing
trends and challenges in the ongoing digital transformation from the
perspective of where and how formal methods can contribute to address-
ing the related technical and societal challenges. The track continued two
special tracks at ISoLA conferences focused on the application of learning
techniques in software engineering and software products [4], and indus-
trial applications of formal methods in the context of Industry 4.0 [3,7].
Topics of interest included but were not limited to Industry 4.0, indus-
trial applications of formal methods and testing, as well as applications
of machine learning in industrial contexts.

1 Introduction

In 2011, The Wall Street Journal published Marc Andreessen’s essay “Why Soft-
ware Is Eating the World” in which the author predicted the imminent digital
transformation of the world’s economies and societies [2]. In the nearly ten years
that have passed since publication, the scope and impact of that transformation
has only become bigger. Without any doubt, the infrastructure of the twenty-
first century is defined by software: software is the basis for almost every aspect
of our daily live and work: communication, banking, trade, production, trans-
portation - to name only a few. This has led to a situation in which for many
industrial and manufacturing companies with no particular background in soft-
ware, software crept into processes and products - first slowly then with an ever
increasing pace and scope, culminating in the mantra that “every company needs
to become a software company”. From a technological perspective, the current
situation is defined by a number of transformative technological innovations:

Ubiquitous Compute and Connectivity. IoT Devices and 5G technology
will make it possible to put computing power and sensory equipment every-
where and connect decentralized computing power in huge distributed, hetero-
geneous architectures, spanning IoT devices, edge-resources, and cloud plat-
forms. The main novel capabilities of such cyber-physical systems are (a) the

c© Springer Nature Switzerland AG 2021
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distributed observation, analysis, and processing of data, and (b) decentral-
ized control of the physical world.

Data Becomes a Primary Resource. The systems described above will be
used as a basis for establishing digital twins of physical devices (machines
in production, harvesting equipment, supply-chains, etc.). Digital twins will
act as proxies (observing and controlling physical machines) and enable the
digitalization and automation of most processes and new services and features
that are based on data, e.g., predictive maintenance, an autonomous harvest,
or a fully synchronized supply-chain.

Machine Learning as the Basis of Applications. Applications like the
aforementioned ones require the analysis of data, the discovery of patterns,
and autonomous reactions to observed situations. Such features are typically
realized with the help of machine learning technology, i.e., data is used to train
a system instead of programming the system. The scope and complexity of
learned applications is projected to increase dramatically over the next couple
of years (cf., e.g., German AI strategy [13,14]).

Virtualization. Digital twins will not only act as proxies for physical devices
(think shadows in the used analogy) but will become valuable assets in their
own right. Processes and methods can be developed in virtual reality based on
virtual twins (more precisely based on models obtained through the systems
that enable digital twins): Calibration of processes, configuration of assembly
lines, optimization of harvesting strategy can be computed in simulations,
minimizing resources and ramp-up times, and maximizing yield in the phys-
ical world.

These trends will have an impact on virtually every enterprise. Potential cost-
reductions and new services and products are expected to disrupt entire indus-
tries. This expectation has produced mantras like “Uber yourself before you
get Kodaked”, alluding to Uber’s transformation of the taxi business and to
Kodak’s going out of business after not pursuing digital photography as one of
the early companies in that market. The challenge faced by companies is to not
miss key technological opportunities while being forced to take decisions and
make investments without a full understanding of the exact impact. Addition-
ally, the discussed technological innovations are associated with new challenges
and specific risks, some examples of which are:

Safety and Security. Big heterogeneous, distributed, and networked systems
have many attack vectors: A plethora of libraries, frameworks, and basic
systems lead to a vast space of possible configurations and combinations of
software stacks on individual devices. Moreover, being connected to the Inter-
net makes these systems easy to attack. Systems that control machines in the
vicinity of humans are safety-critical—the new quality of safety-related risks
in these systems originates in their openness and in the new relation of safety
and security.

(Data) Eco-Systems. The full potential for value-creation of data-centric
applications oftentimes cannot be realized in classical value-chains but
requires eco-systems [9]. The most obvious example of such a new business



Formal Methods for a Digital Industry Industrial Day at ISoLA 2021 73

model may be so-called app stores that open platforms of a vendor (clas-
sically mobile phones) to app vendors, adding value for customers through
third party apps. These new business models require a degree of openness
and collaboration that is not easily organized between companies that are
otherwise competitors. Moreover, it is often unclear a priori which business
models will be profitable in the end. For the “pure” software companies and
VC culture of Silicon Valley it is easy to simply try and adapt. For a man-
ufacturing company with long-lived physical products and processes such an
agility can probably not be achieved as easily.

Machine Learning as an Engineering Discipline. In traditional software
development, a set of practices known as DevOps have made it possible to ship
software to production in minutes and to keep it running reliably. But there
is a fundamental difference between machine learning and traditional soft-
ware development: Machine learning is not just coding, it is coding plus data.
Data engineering does provide important tools and concepts that are indis-
pensable for succeeding in applying machine learning in production. Practices
from DevOps and data engineering need to be integrated into an engineering
discipline for ML-based software.

Quality Assurance for Machine Learning. Quality assurance of distributed
applications that rely on Machine Learning as a design principle is an open
challenge—scientifically and engineering-wise. A classical safety argumenta-
tion (or case) starts with a high-quality requirements specification, which
should ideally be correct and complete. This specification is later used as
main input for testing and verification. For the development of an AI-based
system, a huge data collection is used to partially replace a formal require-
ments specification. This data collection is incomplete, biased, and may even
contain a small percentage of incorrect data samples. In a sense, AI-based sys-
tems are “machine-programmed” using training data selected by engineers.
Safety assurance then has to be based on guarantees on the quality of training
data and on rigorous testing of relevant application scenarios. Such methods
are being researched today but are still far from being standardized or avail-
able in certification processes.

These challenges have a tremendous impact on the engineering of software sys-
tems. The security-related essential requirement of frequent system updates, e.g.,
does affect architectural decisions and development processes, requiring iterative
improvements during the whole software life cycle, including during operation.
At the same time, the amount of data that can be obtained during operation at a
massive scale by far exceeds what can be processed or stored cost-efficiently, mak-
ing a purely agile development approach or blunt re-training of learned models
(which are frequently hailed as silver bullets today) infeasible. System architec-
tures as well as business models must be carefully planned and evaluated before
making major investments.

Complexity and uncertainty lead to a situation in which companies wait for
others to make the first move or start following hyped trends and buzz words
(agile, data-lakes, or social intranet, to name only a few) instead of making



74 F. Howar et al.

informed decisions. What is required, is a software engineering discipline that
allows companies to move deliberately towards their digital transformation in
the face of uncertainty about future eco-systems, business models, software- and
system-architectures, and applications. The aforementioned mantra to “Uber
yourself before you get Kodaked” is not to be taken literally in this respect: it
ironically uses Uber, a company without a sustainable business model that is
alleged to exploit employees and is banned in many European countries, as a
symbol of a successful transformation of an industry. Instead, the case of Uber
can rather be seen as an indication of the need for a holistic approach to software
engineering and digital transformation: an approach that does not simply aim at
disruption but also includes a societal perspective, aims for sustainable business
models, and supports sound financial and technical planning.

Formal methods can be one crucial enabler for building and scaling the soft-
ware infrastructure sketched above: constructive techniques will enable systems
that are correct by construction, formal verification can deliver guarantees on
existing systems. Domain-specific languages may enable the seamless applica-
tion of formal methods at multiple levels of abstraction. Eventually, formaliza-
tion can hopefully enable (automated) alignment and integration of systems and
automation of processes and quality control. Formal methods are, however, far
from being able to do that today and will have to be made into enablers through
the development of tools, by finding beneficial applications, and by leveraging
domain knowledge. The industrial track aims at bringing together practitioners
and researchers to name challenges, to look for potential contributions, to outline
approaches, to name useful tools and methods, and to sketch solutions.

2 Contributions

The track featured seven contributions with accompanying papers. Contributions
focused on software-enabled knowledge management and business engineering,
use cases of simulation in the context of developing autonomous systems, mod-
eling languages for industrial automation, and machine learning techniques for
the assisting the assessment of data quality.

2.1 Software-Enabled Business Engineering

The paper “Agile Business Engineering: From Transformation Towards Contin-
uous Innovation” by Barbara Steffen, Falk Howar, Tim Tegeler, and Bernhard
Steffen [11] presents the results of a qualitative study of analogies and differ-
ences in business engineering and software engineering, starting from the obser-
vation that a high degree of automation through purpose-specific tools and other
“DevOps” techniques usually has a positive impact on outcomes in innovative
software projects. The authors investigate whether a meaningful analogy can be
drawn to challenges in business engineering during a digital transformation.
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The paper “Towards Living Canvases” by Barbara Steffen, Stephen Ryan,
Frederik Möller, Alex Rotgang, and Tiziana Margaria [12] (in this volume)
presents a proposal for improving the quality of information that is gathered
in the early stages of projects (e.g., elicitation of requirements from stakehold-
ers) by providing tools that semantically integrate information pertaining to
different aspects of a system or business. The authors report on a small initial
study in which multiple canvases (usually used in pen-and-paper mode) were
implemented and successfully integrated.

2.2 Simulation-Based Testing of Software for Autonomous Systems

The paper “Use Cases for Simulation in the Development of Automated Driving
Systems” by Hardi Hungar [5] (in this volume) explores potential benefits, limi-
tations, and open challenges in the application of simulation (i.e., an inherently
incomplete and inaccurate technique) during the development and validation of
autonomous systems.

The contribution “Simulation-based Elicitation of Accuracy Requirements
for the Environmental Perception of Autonomous Vehicles” by Robin Philipp,
Hedan Qian, Lukas Hartjen, Fabian Schuldt, and Falk Howar [10] (in this
volume) presents one concrete use case for simulation in the development of
autonomous vehicles: the elicitation of formal accuracy requirements for the
integration of different components (perception and planning) of an autonomous
driving function.

2.3 Domain-Specific Languages for the Industry 4.0

The paper “DSLs and middleware platforms in a model driven development app-
roach for secure predictive maintenance systems in smart factories” by Jobish
John, Amrita Ghosal, Tiziana Margaria, and Dirk Pesch [6] (in this volume)
presents a result from a case study in industrial automation in which a language
workbench has been used to design a tailored domain-specific language for mod-
eling secure predictive maintenance systems in the context of smart factories.

The contribution “From Requirements to Executable Rules: An Ensemble of
Domain-Specific languages for Programming Cyber-Physical Systems in Ware-
house Logistics” by Malte Mauritz and Moritz Roidl [8] (in this volume) presents
a similar application of domain-specific languages to the one above: domain
modeling and domain specific languages are used to specify and automate the
behavior of a cyber-physical warehouse system that collaborates with human
operators.

2.4 Applications of Machine Learning in Software Engineering

Finally, the contribution “Mining Data Quality Rules for Data Migrations: A
Case Study on Material Master Data” by Marcel Altendeitering [1] (in this
volume) reports on an industrial application of machine learning techniques for
learning rules that can be used to assess the quality of data in the context of
data migration.
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Abstract. We discuss how to overcome the often fatal impact of violat-
ing integral quality constraints: seemingly successful (software) develop-
ment projects turn into failures because of a mismatch with the business
context. We investigate the similarities and differences between the today
popular DevOps scenarios for aligning development and operations and
the more general alignment problem concerning software and business
engineering based on 33 structured expert interviews. It appears that
both scenarios are driven by creativity in a continuous collaboration pro-
cess relying on continuous goal validation. On the other hand, differences
appear when considering Thorngate’s trade-off between accuracy, gener-
ality and simplicity: the different level of accuracy is the main hurdle for
transferring the automation-driven DevOps technology. The paper closes
with the hypothesis that this hurdle may be overcome by increasing the
accuracy within the business context using domain-specific languages, a
hypothesis supported by the interviews that now needs further confir-
mation via case studies.

Keywords: Agile business engineering · Software engineering ·
Integral quality constraint · DevOps · Domain-specific languages

1 Introduction

Today, organizations are under continuous pressure of their industry’s evolution
to survive the natural selection in a world of everchanging customer preferences,
new technologies and competitors’ developments and offers [21]. This selection
is won by the organizations most responsive to or even driving the change. The
Red Queen effect underlines the challenge: “[. . . ] it takes all the running you
can do, to keep in the same place” (p.2 [10]) [4]. Thus, organizations have to
continuously track the external developments to initiate the according iteration
and transformation measures internally.

Daepp et al. found that independent from the industry an organization’s half-
life is only roughly a decade based on a sample of 25.000 publicly traded organi-
zations in North America [12]. In Christensen’s opinion the worst enemy of indus-
try leaders are the disruptive innovations/technologies they do not take seriously
c© Springer Nature Switzerland AG 2021
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enough due to an initial underperformance of their offers, but that still have the
power to drive them obsolete [11]. This trend amplified with the fourth revolu-
tion including Industry 4.0 and digitalization shortens the innovation and change
cycles dramatically with the effect that traditionally successful big bang1 trans-
formations are increasingly replaced by continuous change/transformation [1].

There are two strategies to tackle this continuous request for change. First,
organizations can develop dynamic capabilities to ensure the organization’s sur-
vival in the long run [26,33]: The more dynamic an organization is, the better
it can adopt new technologies and thus adapt to new trends. Second, organiza-
tions may decide to go beyond this ‘reactive’ approach and to attack by driving
the industry’s change via designing radical innovations continuously challenging
their own offers or via applying the blue ocean strategy of creating entirely new
markets/customer segments [25].

Thus, the holy grail of surviving is becoming an ambidextrous organization
and to simultaneously exploit current technologies and offers via further incre-
mental innovations while, at the same time, exploring new paths via radical
innovations and disruptive technologies [33]. In fact, Ries postulates that any
(established) organization should have an entrepreneurship department in order
to ensure that exploration receives the needed attention [34].

Invasive changes and innovations require cross-departmental collaboration to
ensure the solution’s fit. Due to different backgrounds, experiences, and set per-
formance targets these collaborations face diverging agendas and semantic gaps
complicating the smooth and aligned understanding and collaboration [8,28].

A great example of the status-quo and business engineering’s shortcomings
is Bosch’s lawnmower Indigo Connect for roughly e 1200. Bosch is known for its
high quality products. Thus, it was not surprising that the lawnmower’s adver-
tisement stated easy, live and remote controllability via smartphone. However,
Keese summarized his experience as spending 3,5 days on his knees to install
the boundary wires in his garden and a fight with an app that was never up to
date [23].

How can it happen that the product’s marketing promises diverge so much
from the customer experience? Concerning the app performance, the answer is
easy: Engineering developed, tested and pitched a lawnmower with two (iden-
tical) chips, one for driving autonomously and one for tracing and sending the
position. The marketing campaign was based on this experience and promised
an ‘active and live control via app’. Controlling, on the other hand, considered
the two chips as too expensive which led to the final product only having one
chip. Together with the decision for a reduced data line (again a cost factor) this
caused a totally unacceptable app performance, in particular, for a high-end
product of a market leader [23].

The problem was the silo structure of today’s market leaders with completely
different competencies, objectives and metrics [19,36]. This silo structure sup-
ports local (department-centric) optimizations that are all too often in conflict
with organization’s global interest [23].

1 https://airbrake.io/blog/sdlc/big-bang-model (last access 15th June 2021).

https://airbrake.io/blog/sdlc/big-bang-model
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Mismatches like this are even greater in the business engineering (BE) and
software engineering (SE) context where the integral quality constraints (that
the product must adhere to the existing (IT) infrastructure, process and prod-
ucts) are much less tangible [38]. It is therefore a major challenge to motivate all
involved stakeholders to support the changes/solutions, and to align and adapt
the different objectives, requirements, and preferences [36]. This requires contin-
uous communication and cooperation between the different stakeholders in order
to establish a common understanding and vision by doing to reach the status of
a scalable agile organization [19,27].

As stated in a Fraunhofer report (2021) [2], organizations need to understand
software as enabler of business engineering and not just as internal business
process support or add-on functionality of hardware devices.

The research presented in this paper is motivated by two observations:

– The integration problems due to misalignment between the information sys-
tems (IS) development methods and the business development context that
may cause failure of seemingly successful SE projects [13].

– The success story of DevOps for aligning SE development (Dev) methods and
outputs with the requirements of operations (Ops) [3,5]

These observations lead to two research questions:

1. What are the essential similarities and differences between the BE/SE and
the Dev/Ops scenarios?

2. Is it possible to transfer some of the DevOps techniques to the BE/SE sce-
nario?

The paper’s structure is as follows: After the introduction, Sect. 2 outlines
the foundations, parallels and differences of BE and SE. Section 3 details the
methodology. Section 4 summarizes the interview study results. In Sect. 5 we
derive the implications and answer the research questions before reflecting on
the results in Sect. 6. This paper finalizes in Sect. 7 with a conclusion, limitations
and outlook.

2 State of the Art

We briefly compare concepts, terminology, and methods of the BE and SE dis-
ciplines by summarizing the state of the art in both fields as found in the liter-
ature. We then make some initial observations on parallels, key differences, and
potentials for alignment in Sect. 2.3. The observations provide a basic conceptual
framework for the empirical study.

2.1 Business Engineering

In this paper we use Österle’s definition of Business Engineering from 1995 [41].
It focuses on adapting and transforming the business in accordance to internal
and external developments and is divided into optimization and development
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driven changes. These transformations are ideally implemented in a structured
top-down fashion focusing on three specifications: strategy, organization and
IT system [40,42]: From the business strategy encompassing the organization’s
strategy and the derived goals to the organization’s business processes and finally
to the definition of the corresponding IT system support and implementation.
This rather engineering (also referred to as plan-driven) process is suggested to
handle the transformation’s complexity and interdisciplinary collaboration and
alignment to ensure that all relevant aspects are considered in the right order.

However, since the continuous introduction of technology innovations busi-
nesses face the pressure to constantly observe and react to the industry’s dynam-
ics leading to rather invasive and radical innovations and adaptations of current
internal processes and/or business models [1,6]. In these challenging settings of
high uncertainty regarding the project’s business execution and business devel-
opment method this plan-driven approach does not suffice. Thus, organizations
need to embrace change-driven project execution.

Many organizations already try to leverage agile methods like design think-
ing, scrum, SAFe etc. to reduce the uncertainty and adapt implementation mea-
sures and processes based on new learnings [9,27]. This focus on collaboration
and regular meetings addresses and reduces the semantic gap (e.g. misunder-
standings due to different backgrounds and experiences) and supports alignment
and buy-in along the process. In practice this leads to better and holistic outputs
but is a very time-consuming process to derive at acceptable compromises.

Nevertheless, Dahlberg & Lagstedt observed that even successful (Informa-
tion Systems (IS)) projects that benefited from the necessary competencies and
a well-defined plan may never be successfully integrated and used in the busi-
ness environment [13]. From the business perspective the reason for this failure
boils down to a violation of the integral quality constraint [38]: great and well
functioning products and/or solutions do not fit the needs of the actual business
development context in which they shall be integrated. Unfortunately, this mis-
match often just becomes visible after the product is finalized and ready to be
integrated.

The risk for failure increases with the scope of change and the underlying
uncertainty: In engineering it is still comparatively simple to detail the machine
specifications and to ensure its fit into the production line. It becomes more
complicated with increasing degrees of freedom.

Software projects are known for their high degrees of freedom (see Sect. 2.2)
as are invasive business changes: Both often depend on many parameters that are
typically hardly constrained by something like physical laws. E.g. new business
models and internal processes typically depend on cross-departmental collabo-
ration and alignment and therefore on individuals with their specific character
and their willingness to cooperate [35]. In such complex scenarios it is virtually
impossible to sufficiently predict the solution’s and the business context integra-
tion’s requirements upfront. Rather a flexible approach is required that allows to
react to arising challenges. To summarize, today’s businesses face major uncer-
tainties and thus need to embrace an internal continuous improvement approach.
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This requires ongoing learning by doing in interdisciplinary teams via developing
creative ideas and innovations which are continuously tested and validated.

2.2 Agile Software Engineering

In the 1990 s, Agile Software Engineering (ASE) arose as a response to two
decades of failing waterfall-oriented software development projects, which had
aimed at controlling risks via detailed contract specifications [7,30]. The obser-
vation that software projects are very hard to specify upfront because customers
are typically unable to express their wishes in sufficient detail for experts to
decide on adequate implementations was central to the paradigm shift. This
problem, also known as the semantic gap, led to the Agile Software Engi-
neering manifesto [17] that postulated the following four key insights:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

The manifesto considers software system development2 as a mutual learning
process in which customers and developers converge towards a mutual under-
standing. Key to convergence is the incremental development style in which
partial products serve as unambiguous means for common design decisions.

DevOps [3,5] complements ASE in this line by (semi-) automatically support-
ing partial product construction, management, and validation. More concretely,
experts of operations are involved to bridge the gap between the logical design
(e.g. the program) and the product running on some complex physical infras-
tructure. This comprises:

1. Construction: Version-controlled development supporting roll back and
merge.

2. Management: Continuous version-based documentation in ‘one shared
repository’ style where essential dependencies and design decisions are main-
tained in a combined fashion.

3. Cooperation: Dedicated domain-specific languages (DSLs) supporting the
Dev/Ops cooperation.

4. Validation: Automated test environments enabling continuous validation via
so-called CI/CD (Continuous Integration/Continuous Deployment) Pipelines.

The combination of ASE and DevOps supports an incremental, collabora-
tive development style which continuously maintains running partial products
(extremely high-fidelity prototypes) that successively converge towards (success-
ful) products which oftentimes differ quite drastically from the initially conceived
product.

2 Here meant to comprise SE and IS.
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The early integration of the operations team does not only lead to better
infrastructure for scaling up operations and performance but it allows all stake-
holders to experience and test the intended product during its development in
its foreseen environment [18].

2.3 Parallels, Differences, and Potentials

As detailed in the previous two sections, BE and SE have a similar problem
domain. Both disciplines face the challenges of (a) continuously dealing with
change which requires (b) creative solutions that, to be successful, can only be
found in (c) interdisciplinary collaboration. Moreover, in particular, due to the
semantic gaps there is a strong need to continuously (d) validate the state of the
creative collaboration process to detect misconceptions early. Figure 1 sketches
the aspects of the problem domain and their interplay.

The labels on the outer sides of the triangle name requirements for solutions
pertaining to the involved aspects: methods must enable global optimization
through agile iteration, based on educated decisions. Key enabling techniques
for the success of this approach concern the continuous validation of the reached
achievements according to the strategic goals.

The main conceptual difference between BE and SE can elegantly be charac-
terized by the well-known trade-off between accuracy, generality, and simplicity
(see Fig. 2 [37]): by its nature, BE has to drastically simplify its complex highly
heterogeneous scenarios, and, due to the high level of inherent uncertainty to
aim for generality rather than accuracy. SE, in contrast, addresses software, i.e.,
descriptions precise enough to run on a computer. Programming languages are
in other words generic, in order to allow programmers to potentially solve all
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computable problems. Thus, SE only leaves room for trading between generality
and simplicity.

The trade-off between simplicity and generality can be observed between
general purpose programming languages and so-called domain-specific languages
(DSLs, [16,22]) which are arguably one of the key enablers of DevOps [14].

Key characteristics of DSLs: Whereas programming languages are tradi-
tionally universal and consequently intricate, there is an increasing trend towards
using (graphical) DSLs that aim at allowing application experts to cooperate in a
no/low code style on specific problems. DSLs can be regarded as an ideal means
to trade generality against simplicity in application-specific contexts. Together
with corresponding Integrated Development Environments (IDEs, [24,29,31])
that typically provide sophisticated development support DSLs have the poten-
tial to become adequate alternatives to classical tool support whenever these are
conceived to be too restrictive.

In the context of DevOps, this is witnessed by the success of DSLs that
provide a dedicated support in particular for configuring IT infrastructure and
to develop required CI/CD pipelines in an infrastructure as code style.

In the realm of business engineering, graphical DSLs that are designed on
the basis of BE-oriented graphical notations (BPMN, CMMN, ER Diagrams,
Organigrams, Canvases (BMC), etc.) may turn out to be good candidates for
aligning the BE and ASE/Ops (Dev/Ops) cooperation and to transfer supporting
technology for achieving (more) automation.

Our corresponding experience of combining the Business Model Canvas [32]
with graphically modelled ontologies as sketched in Fig. 3 was very promising.
It allowed us to (semi) automatically derive data structures for organizational
structures without writing a single line of code.
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Fig. 3. Graphical DSL-based Enablement of Canvases

3 Method

In this section we define the paper’s design method and interview study details.
The design method is based on Hevner’s three cycle view (see Fig. 4, [20]) which
consists of the relevance, design and rigor cycles. In our case this led to a 10-step
procedure as also sketched in Fig. 4:

– Step 1 (Relevance): The study of this paper was triggered by the observation
of Dahlberg and Lagstedt (2021) [13] that the results of successful develop-
ment projects may nevertheless lead to failure due to problems during the
integration into the business context.

– Step 2 (Design): Based on this motivation and the corresponding research
questions we designed this paper’s method.

– Step 3 & 4 (Rigor): We reviewed the literature to define and compare BE
and SE.

– Step 5 (Design): To further detail the parallels and differences between BE
and SE we designed a structured interview guideline with closed and open
questions.

– Step 6 (Relevance): To ensure the applicability of the structured interview
guideline a pilot with four interviewees (two with IT and two with a business
background) were conducted.

– Step 7 (Design): Based on the feedback gathered and issues identified via the
pilot interviews we iterated the interview guideline accordingly.
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Fig. 4. Research Method Based on Hevner’s Three Cycle View [20]

– Step 8 (Relevance): Then we gathered the business and IT expert feedback
via 33 highly structured interviews.

– Step 9 & 10 (Design): Once all interviews were conducted, we analyzed and
evaluated the responses to derive at the paper’s final results and findings.

To ensure that the research questions can be answered based on actual expe-
riences and assessments of the status quo and preferred outlooks we decided to
conduct expert interviews. We interviewed a total of 33 interviewees:

– 7 business experts: four senior consultants, two entrepreneurs, and one assis-
tant to the board.

– 9 mixed business & IT experts: four members of the board, one founder,
three professors (who also led or worked in organizations), and one team
leader with dedicated responsibility for digitalization. This group is especially
important as they can compare the differences between BE and SE and their
corresponding mind-set and tool-support firsthand.

– 10 IT experts: four with dedicated DevOps experience and six with dedicated
DSL experience four of which working as team leaders.

– 7 IT students: all are almost finished with their masters, have experience with
DSL application and participated in interdisciplinary IT projects.

Due to SARS-CoV-2 we executed the highly structured interviews via tele-
phone and online (e.g. via Zoom). Each interview took roughly 45 to 60 minutes
depending on the interviewees’ level of detail. The interviews comprised a total
of 57 questions and four additional questions regarding the general background.
The 57 questions consisted of 25 quantitative (20x Likert-scale based response
options from 1–5 and 5x multiple choice questions) and 32 qualitative (open
questions) response options. The questions covered the interviewees’ experi-
ences and opinions on the following topics: confrontation with changes on the
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job, transformation vs. continuous improvement focus, agility of the work envi-
ronment, regression potentials, validation methods and processes, (interdisci-
plinary) collaboration and knowledge management. Open questions were e.g.,
’How do you analyze and manage risks?’, ‘Which tools do you use to support
transformation/change?’, What is the biggest challenge to enable agility’ and
’How do you measure and analyze success?’. Examples of closed questions are
shown in Fig. 5. We chose this mix to simultaneously allow for a direct and
easy comparison/assessment of responses while leaving sufficient room for differ-
ences and examples to benefit from the advantage of expert interviews e.g. the
openness towards new essential input [15]. Our highly structured interview app-
roach ensured comparability between the results because neither interviewees nor
respondents could deviate from the pre-defined procedure. All interviews follow
the same structure reducing potential information/discussion biases independent
of the interviewer. In our case three authors conducted interviews to reduce the
interviewer bias: we matched the expertise and background of the respondents
with the most similar interviewer to reduce potential semantic barriers and to
increase the responses’ objectivity [8,15,39].

4 Interview Results

In this section we sketch the results of the interview study. First, we will elaborate
on the qualitative responses. Here, the main differences observed concern the
understanding and status of the role of tools in BE and SE. Then we will briefly
sketch and discuss the eight most relevant outcomes of the quantitative questions
(Q1 to Q8) for our conclusion (see Fig. 5).

Via category-coding the named IT tools (used in the interviewees’ work
contexts) according to their purpose (communication/knowledge, operation,
management, success metrics, requirements/validation, modelling, configuration
management, and test/quality assurance), we observed that IT professionals
frequently named tools (e.g. GitLab, GitHub, and CI/CD pipelines) automat-
ing tasks like operations, tests, and configuration management. In comparison,
business experts, with two exceptions that also named tools to measure success
metrics (e.g. Power BI and OKR Software), only mentioned tool support for
communication/knowledge (e.g. MS Teams, Slack, Zoom, MS Office, Wikis, and
SharePoint), information systems (e.g. SAP) and requirements/validation (e.g.
survey tools and (software) prototypes).

More concretely, technical support for requirements elicitation (including pro-
totypes) is present in both groups, indicating that both groups value early val-
idation and use prototypes for improving the shared understanding. Business
experts named significantly more tools for communication as IT professionals,
but most answers qualified rather as conceptual frameworks than as tools in the
sense of SE.
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Fig. 5. The Results of the Exemplary Questions (Q1 to Q8)

For the group of professionals that qualify as both, the results were mixed,
in some cases closer to the group of IT professionals (e.g. with regard to config-
uration management) and in some cases closer to the group of business experts
(e.g. communication/knowledge). The higher the respective organization’s IT
core competency the more tools are used for (automated) support.

Interestingly business experts mentioned mostly decision and alignment sup-
port in the form of processes, methods and frameworks which currently do not
benefit from direct tool support e.g. discussions in meetings, calls and workshops
for SWOT, canvas and stakeholder analysis. Here one can see that today busi-
ness experts handle the business transformation’s complexity via meetings and
shared documentation.
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When asked whether they would prefer additional tools supporting their
daily tasks they do not see the need and applicability. One respondent made it
clear when he stated that “our daily tasks are too complex and different from
project to project to benefit from tool-support. The cost-benefit ratio would not
support the development of suitable tools”. (We translated this statement from
the original language to English.)

It seems that business experts trust people’s understanding and complexity
matching more than tools. The drawback of this approach is that it builds on
intuitive semantics which unfortunately are open to individual and subjective
interpretation and thus semantic gaps and diverging understanding. This impairs
the overall transparency of the projects and excludes the possibility of automated
support, very much in contrast to the accuracy-driven DevOps scenario.

The observed differences are a consequence of more fundamental differences
between the BE/SE and the Dev/Ops scenarios: The different degrees of com-
plexity and accuracy whose consequences are also visible in the responses (see
Fig. 5) to

– the perceived transparency of the
motivation for change to all stakeholders (2),

– the satisfaction with the interdisciplinary work (6) and
– the perception of risk in the context of change (5).

The replies to Q2 show the differences between experts who are in charge of
their work and projects and those who are dependent on their boss’ decisions.
The less dependent on others the higher was the transparency rated. ‘Business &
IT experts’ value the benefits and satisfaction of interdisciplinary work particu-
larly high. One could argue that the more often one encounters interdisciplinary
work the more one values and gets used to it. Interestingly Q5 shows that all four
groups perceive risk as issue when dealing with change. However, not particularly
high. The higher frequency of measuring the impact of decisions concerning both
the SE and the Ops perspectives as seen in replies to Q4 indicates the impact
of DevOps supporting higher degree of automation. As a consequence integral
quality is continuously guaranteed in the DevOps scenario which prohibits bad
surprises as reported in [13] where the results of a successful IS project never
became operational because of a mismatch with the BE development contexts.

Put together with the other responses to the open questions the following
picture arises:

– Automation support for configuration management, testing, operation, and
continuous delivery (aka the DevOps support) is ubiquitous in SE but virtu-
ally absent in BE.

– Software engineers and business engineers have a different concept of what a
tool is and likely also a different understanding of the degree of automation
that can be achieved and the associated benefits.
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– The agile mindset has already permeated all groups to some degree (as indi-
cated by mentions of tools for requirements and early validation).

– Modeling tools (especially for business processes) have some success in BE.

These different perceptions of tools and their potential towards automation
is essential for the proper understanding of the following answers to our two
research questions.

5 Implications

In the following we will answer the paper’s two research questions:

Research Question 1: What are the essential similarities and differences
between the BE/SE and the Dev/Ops scenario?

There was a strong overall agreement in response to the qualitative and
quantitative questions that both BE/SE and Dev/Ops face the challenge to con-
tinuously deal with and manage change. Here, interdisciplinary collaboration is
particularly relevant to develop creative solutions like invasive and/or radical
innovations. Moreover, as already mentioned in Sect. 2.3 and now confirmed by
the interviews there is a strong need to continuously validate the progress of the
creative (collaboration) process and the decisions’ impact to detect misconcep-
tions and misalignments early and allow for early and effective countermeasures.

On the other hand, the interviewees’ responses revealed clear differences
between the two scenarios when it comes to the required systematic support
of the continuous and creative collaboration process. Particularly striking is the
difference when it comes to the role of tools and validation:

1. Whereas in BE/SE there are hardly tools that support more than standard
administrative tasks, DevOps is supported by a wealth of tools that (semi)
automate most of the CI/CD pipelines comprising documentation, versioning
and roll back.

2. Whereas in BE/SE processes typically follow some assumed best practices
but are typically not tool supported or automated in any way, DevOps aims
at automating the entire build process.

3. Whereas in BE/SE the gap between the SE/IS development methods and
BE development context is considered too large to be bridged via standards
and tools, DevOps explicitly addresses this gap with corresponding common
DSLs in order to support automation.

4. Whereas the tool landscape of BE/SE is typically neither aligned itself (see
Q7) nor towards the company goals (see Q8), DevOps is characterized by
aligned tool chains.

Research Question 2: Is it possible to transfer some of the DevOps techniques
to the BE/SE scenario?

The answers to the qualitative questions revealed that SE experts, in par-
ticular those with some experience with (graphical) DSLs, were quite optimistic
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concerning the transferability of the methods. The main reason mentioned was
that DSL-based frameworks are much more flexible than ‘classical’ tools and
may therefore proof to be able to bridge the larger gap. In fact, DSLs are also
explicitly mentioned as the essential reason for DevOps to overcome the semantic
gap between SE and Ops [14].

In fact, one of the nine ‘business & IT’ experts was a team leader of a larger
software house where agility principles and tools known from software devel-
opment and DevOps start to also enter the business level. In this company,
organizing even customer presentations and company events like an agile soft-
ware development project showed automation potential, easier goal adaptation,
better prototyping and therefore, in particular, better cross stakeholder com-
munication. These benefits even reached the board level and entered an explicit
company-wide agile manifesto.

Certainly, this success story very much depends on the fact that it takes
place within a software company, and that the application of software (develop-
ment) tools is considered standard there. The feedback of the interviewees with
experience in applying DSLs in customer projects suggests, however, that, using
adequate DSLs, this success can be leveraged in a larger scope.

Our answer to the second research question can therefore be formulated as a
hypothesis that cannot be confirmed by interviews but requires further system-
atic case studies and pilot projects:

Hypothesis for future research:
DSLs can be regarded as an enabler for tool-based automation in BE.

6 Reflections

Stepping back, it appears that compared with SE in particular DevOps the
technological state of the BE scenario has certainly reasons in

– its much higher complexity in particular
concerning the interdisciplinary scope

– its much higher level of variety and uncertainty

which both lead to the mindset that standardization, tools, and automation
imply unacceptable restrictions that strongly impair the potential of BE. This
explains the poor BE tool landscape and the appreciated value of informal best
practice patterns (e.g. continuous improvement cycles and canvases). In par-
ticular the observed lack of automation hinders agility, as e.g., prototyping (in
the sense of minimum viable products) or validations, e.g., via simulations, are
extremely expensive and therefore hardly performed (at least in comparison to
SE where, e.g., daily automated builds are kind of standard).

Our Hypothesis for Future Research indicates a way that may allow to
overcome this situation: DSLs for interdisciplinary communication may provide
a level of precision that allows for automation via dedicated generators for pro-
viding stakeholder-specific views, executable prototypes, or KPI analyzes. This



Agile Business Engineering 91

may, in particular, also help to control the risk. Figure 5 is interesting in this
respect: The ‘business & IT expert’ group which also considered a BE-oriented
notion of risk sees fewer problems than the business expert group.

Please note that, in particular, the numbers of the other two groups are
misleading in this respect as they were thinking, e.g., of security risks introduced
by e.g. third party components (which the ‘business & IT expert’ group was also
aware of), a phenomenon that was not considered by the interviewed business
experts.

Reducing the (perceived) risk of a change is of vital importance for an agile
organization and increasing the transparency of the impact of changes is a good
way to guarantee the acceptance by all stakeholders. Thus, every means sup-
porting validation is crucial.

7 Conclusion, Limitations, and Outlook

This paper contributes to the co-development potentials of BE and SE. It ana-
lyzed the similarities and differences between the BE/SE and DevOps contexts
to derive an assessment on the applicability of the DevOps approaches, tools
and mind-sets to BE/SE. We have identified that both contexts face continuous
change which requires interdisciplinary collaboration as creativeness and inno-
vation mostly originates from the intersection of several disciplines and espe-
cially requires them for their successful implementation. Moreover, as uncer-
tainty increases with the number of stakeholders and the depth of change, fre-
quent validation is crucial to enable educated decision-making and to achieve
organization-wide acceptance.

To further detail our understanding we conducted an interview study with
33 experts. We chose to address four categories of interviewees: IT students with
interdisciplinary experiences, IT experts, business experts and ‘business & IT
experts’ with long experience in both fields of expertise enabling them to provide
a rather objective view of the BE and SE contexts and their corresponding
mind-sets.

Based on the highly structured interviews including quantitative and qual-
itative questions we have identified that these groups show major differences
regarding current and wished for tool support.

The BE context faces more global challenges and greater interdisciplinarity
than SE and in particular DevOps. This asks for rather manageable (as simple as
possible) and generally/globally applicable solutions at the expense of accuracy.
Today, these challenges are addressed via frequent meetings and presentations
rather than concrete tool support.

SE and in particular DevOps on the other hand excel at accuracy to allow for
(semi) automation and continuous tool support in addition to frequent meetings
and awareness of diverging priorities. Here, DSLs allow for accurate and simple
tools and solutions which fit in particular domain-specific contexts.

Based on these findings we derived at the following hypothesis for future
research: DSLs can be regarded as an enabler for tool-based automation in
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BE and, similar to DevOps, align cross community communication. Thus, the
DSL-based approach would allow e.g. for tools/DSLs specifically designed for the
cross-departmental cooperation required in a given project to achieve integral
quality and alignment.

Due to the current exploration phase we focused on rather qualitative feed-
back on our questions at the expense of the generalizability of our findings.
We propose to address this limitation via additional quantitative analyses to
increase the reliability of our results. Further, in order to better meet the com-
plexity of the BE context additional areas of expertise (e.g. finance and opera-
tions) should be addressed to account for their custom requirements and derive
a more realistic picture of the overall complexity.
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Abstract. We discuss how to better support practitioners in understanding, plan-
ning and executing their projects through visual guidance via e.g., canvases and
diagram-based frameworks implemented as IT tools. Today, too many important
aspects are overlooked during project development: opportunities tomitigate risks,
innovation potentials and stakeholder alignment.Weanalyzewhether amore holis-
tic and integrated approach connecting different perspectives actually leads to new
insights, relevant for a project’s success. Based on our bespoke integrative analysis
support, the case study indeed disclosed otherwise unaddressed important risks,
that might lead to the project’s failure if no mitigation strategies and new actions
are introduced. This analysis stage is success critical, but often just gets done in a
rudimentary fashion failing to reveal the most critical success factors, key actions
and challenges. With missing benefits, it is obvious that it is often considered a
waste of resources and left out altogether. To change this situation and standardize
the analysis process in a customized way, we argue that adequate, advanced IT
tool support is needed to better guide practitioners and integrate and aggregate the
knowledge of the organization, teams and experts into a global organization-wide
knowledge management infrastructure.

Keywords: Living canvas · Tool-enabled · Canvas tool · Project support · Global
analysis · Knowledge management

1 Introduction

Since the BusinessModel Canvas (BMC) byOsterwalder was published in 2010 the can-
vas’ role in brainstorming workshops received increasing attention [1]. In time, various
authors proposed canvases (also called visual inquiry tools) for a wide array of appli-
cation domains and applied them to business and research contexts [2, 3]. Each canvas
supports a specific target segment/problem scope with a mapped-out overview of the
most relevant aspects to consider and define. Canvases aim at supporting their users in
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all kinds of decision-making e.g., from industry analysis (PESTEL [4]), status-quo anal-
ysis (e.g., SWOT [5]), competitor analysis (Porter’s five forces [6, 7]), to BusinessModel
design (BMC [1]). The unique selling proposition of using canvases is clear: the problem
gets structured and tangible at one glance. This eases interdisciplinary communication,
collaboration and alignment.

However, today’s adoption of frameworks/canvases and their findings’ integration
into the e.g., project’s implementation face three major shortcomings. First, the canvases
guide the brainstorming sessions, but do not check, validate and integrate the findings
into the organization’s processes and tool landscape as they are generally just printed-out
paper versions used with sticky notes or online versions on generic white-boards (e.g.,
miro [8]). In rare cases also rudimentary canvas-specific tools exist (e.g., Strategyzer
[9]). Second, canvases are primarily used in single brainstorming sessions and do not
get updated and challenged throughout the further design and implementation of the
projects. Thus, the findings and insights are not “living” and thus cannot guide the
project from definition to the final implementation [10]. Third, single framework/canvas
analysis are not sufficient to get an overall understanding of the project, its opportunities,
challenges and risks. Therefore, several suitable frameworks/canvases must be selected
and connected to understand a project and its environment fully.

This paper aims to demonstrate the benefits of analyzing projects using several
frameworks/canvases to integrate different perspectives and derive at a (more) global
understanding of the project and its challenges. To do so, we defined a workshop study
that consists of nine steps, including two self-developed canvases, a risk analysis com-
plemented by externally proposed risks, and the interpretation of the findings from one
project team’s results to the overall project. We chose risk as add-on perspective as it
is an often overlooked, but success critical factor. Further, we argue that this global,
interconnected and living view can be best supported by an IT tool bringing the analysis,
process and changes alive via e.g., DSL-driven canvas support.

Thus, this paper aims to answer the following research questions:

1. What are the benefits of analyzing and guiding projects from multiple perspectives?
2. What are the key features a canvas tool needs to cover in order to be “alive” and

support the challenges of traditional industries?

The paper is structured as follows: Sect. 2 defines canvases, today’s tool support
and the risk standards. In Sect. 3, we briefly depict the paper’s method. The case study
introduction, workshop outline and workshop results are introduced in Sect. 4. Section 5
addresses the learnings and derives at requirements and implications for corresponding
tool support. The paper finalizes in Sect. 6 with the conclusion.

2 State of the Art

In this section, we briefly introduce the benefits of canvases and today’s application of
canvases in practice and state the importance of analyzing risks and the hurdles along
the way.
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2.1 Today’s Use and Application of Canvases

Canvases are collaborative ‘frameworks’ to design new solutions, foster innovation,
and, in general, enable their users to work jointly even across disciplines [11–13]. Given
the plethora of benefits, it is no surprise that canvases penetrate various application
domains ranging from research processes [14] to developing novel services [15]. For
example, Schoormann et al. (2021) propose a canvas for systematic literature reviews and
expressively point to the benefit of shared ideation in structuring and communicating
methodological rigor to reviewers [15]. Similarly, Elikan and Pigneur (2019, p. 571)
point to the aspect of “(…) shared visualization of a problem (…)” [16]. One of the most
well-known and acclaimed examples of a canvas is the BMCbyOsterwalder and Pigneur
[17, 18]. It is a two-dimensional canvas that enables its users to fill out nine fundamental
building blocks which combined define a sound business model. Subsequently, one can
identify a primary benefit: deconstructing a complex entity logically into understandable
pieces, fostering lucid problem-solving. Additionally, a canvas is not restricted to be
designed in isolation but instead spurs the potential for hierarchical problem-solving and
establishing more-or-less fine or abstracted levels of analysis [12]. Chandra Kruse and
Nickerson (2018) refer to the BMC as a ‘mnemonic’, acting as a memory aid reminding
its user which building blocks should, mandatorily, be addressed in the business model
design [19]. Canvases, generally, can differ greatly from one another. For example,
Thoring et al. (2019) propose a morphology ranging from three up to fifteen building
blocks [20]. Additionally, their purpose, i.e., what they are used for, is not bound to a
specific purpose or domain.

Even though canvases have become popular,most users still need support in selecting
the right canvases and understanding their correct application. This task becomes even
more complex when identifying and selecting multiple canvases which together allow
for a global understanding given their interlinkages and dependencies. Canvases aim to
offer a standardized approach which needs to be applied in a customized fashion to the
specific environment and requirements of the addressed problem scope. Most canvas
designers offer printable templates, short descriptions, examples, videos and/or books
to allow for an easy and fast adoption. E.g., the BMC can be downloaded free of charge.
Nevertheless, a masterclass like Testing Business Ideas by Osterwalder himself costs
about $1700+VAT per person [21]. That shows that the successful transfer to a specific
context requires more than a generic approach.

Traditionally, the BMC and canvases, in general, were bound to physical workshops,
in which the users fill them out e.g., using post-its on canvas-posters [20]. For example,
Elikan and Pigneur (2019) provide photographs of how they applied the Brand Identity
Canvas with sticky notes [16]. Given that SARS-CoV-2 has forced the physical meeting
to ‘go digital’, more and more workshops shifted to using online boards (e.g., miro [8]).
Also, the BMC is a notable exception as it is integrated into an application provided by
Strategyzer, yet, its design area revolves exclusively around business model components
[9]. In addition, the canvanizer includes about 40 different canvas templates and allows
for the development of private canvas templates [22]. However, a significant pitfall of
these online boards and dedicated applications is the lack of transferability of results
from one canvas to another. In addition, also the integration of the findings and plans
into the actual processes and IT landscape of an organization is missing. For example,



98 B. Steffen et al.

depicting a hierarchical order of canvases with integrated data management and data
outflow to the ongoing processes is still an area left untapped in research. Steffen und
Boßelmann (2018) outline an interdisciplinary approach intertwining different layers
of abstraction using a hierarchy of modifiable canvases to align organizational business
model design with other business areas and transcend typical ‘silo-thinking’ [23].

2.2 The Risk Standard as an Add-on Perspective

Risk has been studied in various corporate settings and functions e.g., decision-making
in a managerial capacity [24]. The following definition of risk assessment was derived
from the ISO 31000 standard: how likely is an event to occur and what effect/impact does
it have if/when it occurs [25]. In addition, the theory of decision-making defines risk
as the “reflection of variation in the distribution of possible outcomes, their likelihoods,
and their subjective values” [24]. Today, analyzing and evaluating risk in organizations
is somewhat tricky as no precise measures and processes exist. Here, organizations lack
a single, easily understood and generally applicable risk definition, identification and
evaluation process [26].

The first step in a more guided direction is the ISO 31000 standard [25]. It became
the cornerstone of risk management within the corporate world. Its outlined standards
support organizations in emphasizing and (better) understanding the fundamentals of
risks by proposing and guiding the following steps: the identification, analysis, evalua-
tion, treatment, communication and monitoring of risks. However, even this framework
does not lead to objective measures of risks and factual outcomes.

That explains why the process is often considered time-consuming, costly and redun-
dant as it does not lead to tangible and concrete outcomes. Thus, organizations tend to
overlook or underrate risks incurring major consequences. This negligence ranges from
missing to involve important expert opinions/feedback from layers of the organization
to risk severity misinterpretations due to incorrect calculations. Hampton (2014, p.18),
e.g., stated that “people can be too close to risk or just too busy to recognize impend-
ing critical problems” [27]. Alleviating such simple errors would prevent neglecting the
risk perspective in the organization’s overall strategic plans and instead allow for risk
mitigations and radical reductions of risk-induced consequences. We argue that the risk
perspective should be integrated into existing frameworks/canvases as add-on perspec-
tive to analyze and evaluate risks in a standardized and integrated fashion. In addition,
a “living” approach could even integrate the ISO 31000 framework and thus the risk
perspective into the project’s analysis and planning phases to the final implementation
in a continuous, agile and iterative fashion reacting to new insights.

3 Method

In this paper, we followed Hevner’s three-cycle view [28]. It comprises the relevance,
design and rigor cycles (see Fig. 1). The relevance cycle addresses the “real world”
and triggers research questions and validates/falsifies e.g., hypotheses and artifacts. The
paper’s method and research are designed in the design cycle. The results must be
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Fig. 1. The paper design is based on Hevner’s three cycle view [28]

grounded in the existing knowledge base. Here, the rigor cycle ensures that literature
and relevant experiences get analyzed and educate the paper’s theory and conclusions.

In this paper the initial relevance cycle was triggered by our observations in past
experiences that projects get addressed too one-sided. In practice relevant aspects stay
unaddressed and thus often even mitigatable risks lead to (major) consequences which
could have been avoided.Wedesigned the paper and the case study based on observations
of and conversations with experts as well as literature in the rigor cycle. The use case,
the Silicon Economy project and particularly its AI-ETA service, was analyzed based
on our workshop study design in the second relevance cycle. The study was intended to
evaluate and test the multi-step analysis workshop design for its benefits.

The paper aims at analyzing the benefits of a multi-step analysis approach address-
ing a project from several perspectives. Thus, we designed a workshop study consisting
of two canvases and the add-on perspective risk which are applied and detailed in nine
sequential steps. In addition, based on the learnings and identified benefits and chal-
lenges we seek to identify functions and features a canvas tool support needs to cover
to affordably guide and ease the multiple-step analysis in practice. As this tool does not
exist yet we designed a “handmade” proof of concept (PoC), a pre-designed miro-board.
It provides step to step guidance in the envisioned function of the canvas tool to test its
benefits and derive feature and requirement requests.

We analyzed the case study and tested our multiple-step analysis in two workshops.
We chose the workshop as a researchmethodology due to its benefits of studying cases in
an authentic manner resulting in high reliability and validity output [29]. The workshop
participants were the case study’s – the AI-ETA service – product owner and three of
the authors as each of us covered a different field of expertise which were necessary for
the guidance, observation and interpretation of the workshops’ multi-step approach. In
addition, the workshop is the only format which allows to guide, support and observe
the participants’ understanding and progress.
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4 The Use Case: The AI-ETA Service

In this section, we briefly introduce the paper’s use case. The use case is one service
(AI-ETA) of the overall Silicon Economy project. Both the service (Sect. 4.1) and the
project (Sect. 4.2) are briefly described. Section 4.3 outlines the workshop concept and
its nine steps before we summarize the workshop’s results in Sect. 4.4.

4.1 Introducing the Silicon Economy Project

Among the world’s ten most valuable organizations, seven are based on business models
exclusively driven by data. Not one of them is from Europe. In the logistics industry in
particular (see Amazon and Alibaba), decisions based on data are crowned with success
[30]. Based on statements of experts and our own project experience one reasons why
Europe’s logistics industry lies behind is its small investments in digitalization. The
successful data-driven organizations are based on a standardized data structure, high
quantities, and great quality of data. In contrast to the American and Asian markets,
the European market is characterized by many competitors, which currently prevents
access to the quantity of data needed to build a data-driven business model realizing
value [31–33].

To overcome these obstacles, the Silicon Economy project aims at establishing a
platform, in cooperation with the logistics industry (leaders), to achieve:

• Standardization of data structures and APIs,
• Compatibility among different services/components in the logistics ecosystem,
• Easy access and modification of components and services,
• Tools and/or open-source components integrating e.g., public data sources and
• Services, e.g., the case study (AI-ETA), demonstrating the opportunities of adopting
individual and combinations of the components as tools.

To address this challenge and achieve industry transformation, the German
government-funded Silicon Economy project supports today’s logistics organizations in
developing their own digital platforms by offering logistics-specific open-source com-
ponents. In addition, the project’s approach of offering selectable and combinable com-
ponents fits the modular design of digital platforms. Thus, it enables customized digital
platforms compatible with the industry-standard [34].

That envisioned open-source-based platform requires a community and its man-
agement in addition to the developed components and case studies. On the one hand, it
guarantees further development even after the completion of the project, and on the other
hand, it also promotes the cooperation of different stakeholders. Since a multiplicity of
different stakeholders/organizations comes together, also an orchestration is absolutely
necessary to consolidate and neutrally evaluate the respective requirements and needs
for its transfer into services [35].

To summarize, the project addresses threemajor challenges: First, the integration and
use of public data sources, second, the standardization of data structures, and third the
complementation of organization-specific data by the addition of public data sources.
Overall, it is envisioned to create and offer a toolbox of individual components for
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logistics organizations to select, adapt to their needs and integrate in a problem-solving
and value-creating way.

4.2 The AI-ETA Service

This section introduces the AI-based ETA (Artificial Intelligence based Estimated Time
of Arrival) service, consisting ofmany Silicon Economy components. Based on the com-
ponent canvas (see Fig. 2), we explain the necessity of this service and its contribution to
the above-mentioned main goals of the Silicon Economy. The AI-ETA service aims at
solving the currently inaccurate calculations of the ETA for different modes of transport.
These inaccuracies have various causes like spontaneous events e.g., overtaking by rail,
congestion on the road, vague estimates on the waterway. The results are inadequate
resource planning at transshipment points and insufficient coordination between trans-
port modes, preventing a significant improvement of the interconnection between the
modes of transport. In addition, a shift from road to rail is necessary due to the climate
targets of, e.g., a 65% CO2 reduction until 2030 and even a 100% reduction until 2045.
Road transport emits many times more greenhouse gases than the other two transport
modes [36].

The service aims at offering a fully automatic ETA of transport modes consisting
of several modules and integrating many information sources. The users do not need to
have access to the data sources themselves but can access the ones of interest. Based on
connections to cloud platforms in the sense of a Silicon Economy the user can access and
integrate the full service and/or individual modules. The natural transport mode-specific
characteristics (e.g., the inland navigation dependence on the water level) are the basis
for the service’s developed algorithms achieving a fully automated ETA forecast and
cross-modal networking. The main innovation lies in using and integrating public data
sources, e.g., OpenStreetMap ormCloud, and in cross-modal considerations. In addition,
a rule-based decision engine calculates the optimized route based on time, greenhouse
gas emissions, or costs as preferred.

The Silicon Economy, in general, summarizes and implements existing standards
component by component (e.g., geocoding), identifies processes and makes public data
sources available (e.g., a weather service), and ensures the reusability of individual
components by detailed documentation [37].

4.3 Workshop Execution

To analyze this paper’s research question and identify the results of our approach, we
designed a workshop to deliver the intervention and gather initial qualitative feedback.
The current main goal is to identify whether our analysis steps help the workshop par-
ticipants to refine their understanding of the AI-ETA service and of the overall Silicon
Economy project. For example, can they derive new to-dos and propose best practices
and/or improvement potentials for this service and new services? Based on these find-
ings, we derive requirements for the ideal canvas support and translate them into specific
requirements and solution proposals for an add-on IT tool support.

The workshop was carried out with one of two product owners of Silicon Economy’s
AI-ETA service. It addressed nine progressive steps, detailing our understanding of the
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AI-ETA service and the Silicon Economy project as a whole. The workshop consisted
of two meetings lasting an hour each. Both sessions took place via Zoom calls and were
supported by the collaborative working platform miro. Here, the stepwise guidance led
through tasks like filling out canvases, lists, and a matrix. The first meeting covered the
definition of the AI-ETA service based on the component canvas and identification of the
most important and risky entries (see Table 1, steps 1–2). The second meeting addressed
steps 3–9 of the following workshop outline:

Table 1. Workshop outline - the nine steps
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4.4 Workshop Results

This section outlines the results of the nine workshop steps. In the following, we briefly
address each of the nine steps, including the service’s risk analysis, present the insights
gained from step to step, and discuss the evaluation of the identified risks.

In Step 1, the product owner defined the AI-ETA service based on the component
canvas and filled out all 11 building blocks. Step 2 focused on the entries most important
for success and most risky, leading to the identification of seven entries as most critical
for success (sticky notes in turquoise), seven as the riskiest (sticky notes in red), and
two which are both essential for success and risky (sticky notes in violet). In addition,
this step focusing on importance/risk led to the complementation of the initial AI-ETA
service description by six newly added entries. The participant added three entries due to
their importance for the service’s success and three further refining its riskiness. Figure 2
shows the filled-out component canvas as it looked after Step 2.

Fig. 2. Filled out Component Canvas after step 2

In Step 3, the product owner identified the service’s top risks based on the prior
identification of the risky entries. Eight pre-defined risks proposed by the workshop
organizers were added to the pool of identified risks. In Step 4, the participant analyzed
these eight new proposed risks. The participant identified one of these risks as already
considered, two as not so relevant, and confirmed the relevance of the other five. This
classification accounts for an 87,5% acceptance rate and a 62,5% relevance rate.
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The fifth step asked to prioritize the top ten risks of the AI-ETA service, summarized
in Table 2. Here, five risks came from the initial list of risks and five from our proposed
risks pool in Step 4. Thus, 50% of the most critical risks for the service’s success were
identified only in Step 4.

Table 2. Identified top 10 risks of the AI-ETA service

Priority Top Risks Severity index Identified in 

1 Quantity and quality of (open) data is missing 25 Step 2 

2 Receiving sufficient access to data 25 Step 2 

3 Access to necessary core competences/expertise 16 Step 4 

4 Innovation is not scalable 15 Step 4 

5 Make public data sources usable  establish a 
solid and structured database 15 Step 1 

6 Accepting the idea of sharing  sharing econ-
omy (only useful if data is shared) 12 Step 3 

7 Services/components are not reliable (prototype 
stage). It is rather ready to test than to use. 10 Step 4 

8 User is not interacting with the services/the pro-
totype (Where is our advantage?) 10 Step 4 

9
Open source device needs to constantly be up-
dated/ adapted to the corresponding structures 

  customization 
8 Step 3 

10 Focusing solely on one/very few customers 
(aim: many should be involved) 6 Step 4 

Step 6 asked the participant to rate each risk according to the ISO 31000 standard
[25]. To quantify the risks correctly, it is crucial to evaluate the significance of each risk
based on the likelihood of the risk to occur (y-axes) and the risk’ envisioned impact
on the service (x-axes). Combining both classifications into one matrix system was
essential to correctly quantify these risks and weigh them for the AI-ETA service. The
used matrix is depicted in Fig. 3: four risks were envisioned to have an extreme impact,
one a significant impact, while the remaining five risks scored twice moderate impact
and three times minor impact. Regarding the risks’ likelihood of occurrence, four risks
are almost certain to occur, three are likely, two are possible and one is unlikely.

In Step 7, the participant identified that seven of the top ten identified risks are also
relevant for the Silicon Economy project because other services will also face similar
challenges. These are all top risks except for risks 3, 5, and 9 in Table 2. The next step,
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Step 8, showed the participant the Silicon Economy description based on the Platform
Alignment Canvas [38] for the first time. He was asked to complement it based on
his understanding as a product owner in the Silicon Economy context and the insights
gathered from steps 1–7. He complemented the Silicon Economy description with six
new entries (e.g., UVP: demonstrate the value of sharing, provider: service providers
for “productification” and requirements: sufficient time and resources/feedback of 5–10
different stakeholders, etc.) shown in orange in Fig. 4.

Negligible (1) Minor (2) Moderate (3) Major (4) Extreme (5) 

Almost  
Certain (5) 

- 5 1         10 1        15 - 20 2         25

Likely (4) - 4 1       8 1        12 1      16 -     20

Possible (3) - 3 1       6 -    9 - 12 1         15

Unlikely (2) - 2 -  4 -    6 -  8 1        10

Rare/ 
Remote (1) 

- 1 -  2 -    3 -  4 -      5

Fig. 3. Risk evaluation Matrix including the top risks and their severity index (likelihood of the
risk to occur (y-axes) and envisioned the impact of the risk (x-axes))

Step 9 asked the participant to provide overall feedback about the workshop, his
learnings, and the next steps. He said that the workshop was organized straightforwardly
and helpfully. Due to the Silicon Economy’s and thus also each service’s strict time
constraints, the teams normally just dive into the service/component development and
get started. In contrast, this workshop provided space to step back and reflect to identify
the most relevant levers. The development of the AI-ETA service is already near its end,
but nevertheless, the workshop supported the identification of new risks and success
factors. In the participant’s opinion, the workshop and its several analysis steps would
be beneficial at the beginning and the end of the service/component development. In the
beginning, it would help to deepen the team’s understanding, increase transparency and
alignment, and better prioritize the next steps. In the end, it would steer the reflection
about the service development and its success. In general, it would be preferable to use
the analysis method from the beginning as it allows for regular should-be comparisons,
steering the modification along with the service’s progress, if necessary.

Regarding the next to-dos concerning the AI-ETA service, he underlined the need
to talk to (more) customers to ensure the service’s usefulness, consider the scalability of
the service, and how and what new services can re-use parts of existing services.
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Fig. 4. Platform Alignment Canvas describing the Silicon Economy Project [38]

5 Lessons Learned and Implications

The conducted case study demonstrates that each of the nine workshop steps was useful:
all added new insights or led to new findings on the local level, which could later be
applied and adopted globally, as shown in Step 7. The participant perceived theworkshop
outline as supportive and solely focusing on essential topics. The steps were relevant in
the global context of the Silicon Economy and especially for the success of the AI-ETA
service.

It is important to state that these analyses are especially beneficial in the planning,
execution and reflection phases. At the beginning, the analyses can support the product
teams to better understand the challenges faced by the envisioned users and thus the
problem at hand to design and develop the most suitable services/components. This
approach animates the teams to seek user feedback and thus to ensure value for the
users already in a first minimum viable product, i.e., it provides answers to questions
like “What are the most relevant functionalities that must be finished in the six months
period in order for the service to be useful and a success?”. This clarity helps the team to
prioritize and modify the implementation plan in an agile manner when needed. Further,
the canvas and the approach allow the team to regularly check whether the set milestones
were reached or can be reached, to monitor and reflect on the current progress, and at
the end to reflect on the success of the overall project. This way, the teams can derive
learnings that they can transfer to their next project/service development.

Especially the risk perspectivewas new to the product owner, showing that the Silicon
Economy project currently does not emphasize the risk perspective as a success metric.
In fact, several of the identified risks actually apply to the Silicon Economy project as a
whole because many services deal with similar hurdles like, e.g., access to public data
sources, sufficient validation via user feedback, service readiness, etc.
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The workshop combined local analysis on the service level via a canvas and the com-
plemented risk perspective. These learnings were further applied to the overall project
level of the Silicon Economy, which is the global level of the entire platform. This
transferability demonstrates the need to connect the different hierarchy levels, as the
coherence of a top-down and a bottom-up development has strong implications for the
overall project and its success.

In addition to the connectivity of the different layers, also the development phase
would benefit from a continuous support, from goal setting to the final delivery of the
service/components. Here, the planning and execution could be guided and comple-
mented via add-on analyses of risks, opportunities etc. at the fitting moment along the
implementation stages. Ideally, the developer teams would have their ‘service-view’ on
the service’s overall progress and a shared and up to date knowledge of the Silicon
Economy project e.g., in the form of customized access to the relevant knowledge and
developments. And those responsible for the Silicon Economy project should get access
to the services’ executive summary, their progress, and the as-is vs. to-be comparisons.

Further, the interdependent analyses and building blocks of e.g. the canvases should
be connected and always make the users aware of changes and ask for corresponding
updates. Also, suggestions of how to fill the analyses out correctlywould be great, e.g. the
analyses of the overall project could guide the definition and execution of each service
to ensure that they are aligned and deliver the envisioned contribution.

5.1 Canvas Enhanced by Tool-Support

To answer the paper’s research question, this section considers the requirements that
need to be satisfied by visual tools to provide a “living” canvas support. Here, we focus
especially on the three identified shortcomings of the current canvas use:

1. the missing guidance and control of the canvas’ correct use,
2. the missing canvas /frameworks selection support, and
3. missing interconnectivity among building blocks, canvases and integration into the

organization’s running systems.

Addressing the guidance and control shortcoming, today canvases are still mostly
used on paper, unguided whiteboard or in very locally supported dedicated apps. Thus,
users face unsupported and unstructured graphs/constructs on a “piece of paper”. Guid-
ing questions on the canvas and examples in the documentation or tutorials help adopters
to understand the canvases purpose and allow for a rough description of the problem
scope to be analyzed by the team. However, the tricky part is to customize the standard-
ized framework depicted as canvas in the correct manner. Taking the example of the
widespread BMC, to properly use the BMC a project team must already have a good
understanding of the organization, the product’s goals, the customers already served,
and the customers envisioned to be served in the future. Here, they must correctly dis-
tinguish between Business-to-Business, Business-to-Customer segments, and need to
know a lot about the organization: key partners, key activities and resources, in order to
properly understand and identify the organization’s unfair advantages and unique selling
propositions. Only if all this is known can they build upon them, rather than creating
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something in a siloed fashion, based on incomplete or incorrect assumptions rather than
knowledge.

Here, we suggest that canvases connect via an ontology and are based on corre-
sponding databases of what is known and what is happening in the organization and
in its ecosystem. This further systematically ensures the re-use of knowledge and ter-
minology within the canvas, and orientation on what the organization already excels
at and does, rather than risking that each team works within their own limited hori-
zon. This coherency of knowledge and terminology would allow for organization-wide
transparency, orchestration, and analyses based on agreed-upon classifications.

We address the selection support shortcoming in the context of the solution to the
guidance and control shortcoming. Based on the new level of transparency, a prob-
lem/challenge classification via a corresponding configuration allows to suggest which
canvases are to be used to define and analyze the specific problem/challenge at hand
in the best fitting way. Given that canvases are produced as an answer to needs that
are general and relevant enough to justify dedicated tools, the match between problems
and challenges of sufficient relevance and the canvas or canvas alternatives suitable to
address them is known.

Here, we suggest that a configurator-like support pre-selects the suitable canvases
and, depending on the level of integration with the relevant knowledge bases, it might
already pre-fill themwith already existing information/knowledge about the organization
and insights generated by other in-house teams. This is achievable, for example, on
the basis of rule-based support and integrations. Organizations would benefit from this
support in the project execution, but also in general from the improved transparency and
the internal learning effects resulting from the increasing amount of knowledge that is
aggregated and brought into the right context.

Addressing the interconnectivity shortcoming, adequate tool support can also intro-
duce or improve the connectivity among building blocks, canvases, and the integration
into the organization’s overall processes. Making these interlinkages transparent allows
a better-informed decision making. Further, it allows to achieve a currently unrealistic
learning curve because for the first-time actions and decisions can be better matched
with their effects. This new track and tracing of processes, decisions and outputs would
introduce a completely different way of working andmake amore precise accountability
feasible. This capability could increase the alignment, the output quality and create a path
to success. Further, it allows to analyze the progress along the way: for example, in such
a context unreached and unreachable milestones are already sufficient to push the teams
to modify their plans and implementation strategy in an aligned and better-informed
manner.

In addition to these three directions for improvements we further suggest that addi-
tional perspectives that are today often neglected (e.g., risk, sustainability, finance, HR,
etc.) and relative frameworks should be analyzed and integrated to allow for 360-degree
evaluations. As we have shown in the case study, adding the risk perspective led to
new insights, massively impacting the further trajectory of the product’s final develop-
ment. Unfortunately, these aspects stay often unaddressed due to time constraints, lack
of specific expertise, and limited guidance when planning and implementing projects
and products in a holistic fashion. Thus, many opportunities for global rather than local
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optima are systematically missed which hinders the best prioritization based on the goals
and resources at hand.

5.2 Required IT-Basis and Fundamental Aspects for a Technical Specification

For the new generation and new quality of canvases to become a reality, several tech-
nical aspects need to be considered and implemented in the IT-enabled canvases (also
canvas-tool). These canvas tools should help the users to simplify (as much as possible)
a complex situation, organize its key elements through building blocks, and then make
use of guidance and support to ease first time adopters, but also to enforce alignment
and a systematic approach when many groups use these canvas-tools within an orga-
nization or a collaborative ecosystem. In the context of the case study, the goal is to
support the correct and competent adoption and use of the Component Canvas, a guided
methodology to iteratively analyze, evaluate, complement and complete the specific per-
spective, a systematic way to enrich the overall analysis by adding perspectives (here
the risk perspective) in a coherent, integrated and competent way (here, we followed the
ISO 31000 standard process), and finally reflect at a higher, global level on the effects
and insights that the specific tool-supported analysis has highlighted, in this case the
Platform Alignment Canvas for the entire Silicon Economy project. More specifically,
such an IT-tool or integrated tool landscape would need to provide the following nine
requirements:

1. A good demarcation between the different building blocks within a canvas: this can
happen through good explanations, guiding questions and examples.
While most paper-based canvases print such questions in each building block, IT-
supported canvases could customize this information for the industry segment, for
the type of organization (e.g., SME, NGO and research project) and in other dimen-
sions, greatly easing the accessibility to first time users. Given the reluctance many
have, for example developers and product owners in IT projects, to adopt the so-
called “business school tools”, this IT-supported customization ability could be a
big contributor to adoption by more IT-versed staff in a specific project situation.

In terms of the technology, we have prior experience with such guidance and
wizard implementation: in a large scale project concerning new business models
in the personalized medicine [39], we realized a BMC tool embedding a wizard-
based guidance [40], and validated it with the industry partners in the diagnostic and
therapeutic industries. The first task of the wizard was to explain and characterize
each BMC field in the specific context of that project, i.e., of the specific sector in
pharmaceutics of these partners.

2. Easy customization of the canvases through optional/additional building blocks.
While standard diagrams and canvases have the advantage of standardization, it is
often the case that they oversimplify in their quest for generality, and that the specific
use case would greatly benefit form the ability to add one to two building blocks that
cover additional aspects essential to that use case. In an adequately IT tool-supported
canvas, this would be easily possible. For example, using the BusinessModel Devel-
oper (BMD) tool or Global Organization aLignment and Decision (GOLD) tool [23,
40], it is possible to create custom canvases based on building blocks of a certain



110 B. Steffen et al.

type, and in particular it is possible to modify standard canvases (re)produced in the
IT-tool to customize them to a specific and new canvas. The BMD and GOLD tools
use the metamodeling and generation power of the CINCO framework [41] to define
the syntax (look and feel) and the semantics of a (canvas), to define and generate
fully functioning editors that are canvas tools.

3. Display of answers from previous (important) building blocks to make sure that each
element has at least one relation to another element.
This requires the canvas tool to have the ability to establish well-defined relation-
ships between elements in different building blocks. In turn, this means that we treat
building blocks like a semantic type, elements appearing in a building block assume
that type, and the canvas tool (functioning as an intelligent editor) is then able to
ensure that the same element is not appearing in different building blocks of differ-
ent types (i.e., the diagram is well-typed), that the diagram is syntactically correct
and complete (e.g., there are no empty building blocks). Additionally, relations or
dependencies can be or must be established between elements of different building
blocks. For example, Channels in the BMC must relate to one or more Customer
Segments, and conversely each Customer Segment must have at least one Channel.
Various analyses of plausibility can be implemented on an IT-supported canvas e.g.,
a BMC tool to make sure it is internally consistent in this sense, and none of them is
currently available for any of the existing tools on the market. We have had previous
experience here in the past [42–44]. The most valuable insight from these tools was
the syntactic guidance provided to the users: while a wizard provides advice and
helps filling up the canvas by sequentializing the fields in a logical order, this fea-
ture of the tool systematically prevented conceptual mistakes while the users were
feeling free to edit at their pleasure. Here, the formal concepts of (semantic) type,
type-based consistency, the use of formally defined relations of type compatibility,
inclusion, and some basic logic reasoning find application.

4. Ability to link elements, to simultaneously update/change other matching fields when
changes are made.
This requirement builds upon the previous one, i.e., on the ability to establish and
analyze relationships among elements in the canvas tool. The underlying technical
capabilities rely on formal concepts of, e.g., equivalence, equality, compatibility, and
on some simple inference in order to compute global consequences of local changes
in a sort of chain propagation.

5. Combination of different canvases or methods.
As we have seen, already this simple use case uses the Component Canvas and
the Platform Alignment Canvas. In general, more than one canvas/framework is
used and needed to cover different aspects, like PESTEL, SWOT or BMC. The
current limitation of the tools is that they mostly support just one canvas/framework,
so that using different diagrams means juggling with different tools that do not
communicate. As already shown in GOLD, it is important to host and support the
relevant diagrams and methods in one single environment, supporting a correct and
controlled sharing of items, information and base knowledge. In this sense, it is
useful to consider as a reference some of the capabilities of DIME [44], which is an
advanced Integrated Modeling Environment for Web applications also realized as a
CINCO-product. DIME shares one data model across many process models that all
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refer to it, thus implementing the “write things once” rule is essential to guarantee
coherence in complex IT systems. It also provides a GUI definition language for the
Web application look and feel, interaction and navigation: this capability would be
useful if one wishes to provide the tools as web applications, running in a browser,
rather than as tools to be installed locally. Keeping in mind that canvases typically
address non-IT experts, this can be a significant advantage for the simplicity of
the uptake. DIME also includes a user access and security diagram that eases the
management of role-based and in future also attribute-based access rights, which is
a way to ensure a proper access control mechanism.

6. Support in identifying the right tools and order, by asking questions and analyzing
the current situation.
This can be useful also for orientation within the canvas, in case there are several
possibilities, and different situations are better addressed by resorting to a different
sequence of fields. For example, different team members may be responsible for
different fields of, e.g., a BMC, so that it is not obvious where to start and who
to involve next. A Wizard based approach to guidance, by video and interactive,
stepwise support to filling out the canvas was already successful years ago in a
large scale project concerning new business models in the personalized medicine
[43], therefore we could build on that previous experience, that asked questions and
helped analyze the current situation from different points of view.

7. Support of prior knowledge/Corporate Dictionary [45, 46].
Here, various kinds of ontologies and taxonomies can help, both at the level of upper
ontologies, defining the general concepts in a domain of interest, but also at the level
of middle and lower ontologies, that become increasingly specialized and could
even be organization specific. A proper tool support would need to be able to use
linked external ontologies in some standard formats, and seamlessly maintain and
extend the set of ontologies at the lower levels, for example by adding the concepts
and items that appear in the canvas as well as the relations that emerge from the
canvases and the analyses. A knowledge management/corporate dictionary level that
is organized and maintained in this way would be an essential precondition for the
global alignment and reuse of terminology, but also of information and knowledge,
both in larger organizations like the global logistics organizations, and in ecosystems
like the Silicon Economy.

8. In terms of procedures to improve the corporate culture and processes, the tool
should also be used as a vehicle to introduce the use of a canvas, if not yet known,
to all the teams and the new hires.
For the generalized adoptability and ease of use, in particular the tool-internal embed-
ded checks and guarantees are important: they can prevent erroneous use through
syntax and semantic-aware editors and customizable wizards. From a technical point
of view, wizards could be implemented by means ofWeb applications in DIME. The
success of the BMC wizards in [42, 43] showed that the approach is congenial to
adopters, as it provided immediate and often contextualized feedback that was easy
to interpret, achieving a learning effect.

9. In terms of corporate decision making and corporate culture, the subsequent elabo-
ration of an action plan, to a) introduce the canvas through the tools in a systematic
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way in the corporate processes for business and product development, and b) the pro-
vision of adequate training, reward, and incentives for the individuals and teams that
provide the best outcomes for the organization and the team through the use of the
corporate knowledge internal alignment and of the tool-supported or tool-induced
analyses.
This is a typical example of a digital transformation goal at the organization level.

In this constellation, we see the need of an interdisciplinary collaboration in order
to respond to these requirements. From advanced software engineering and computer
science come the technical components, like the intelligent Integrated Modelling Envi-
ronments underlying the tools, and the embedded techniques. Here we see a role for
analysis algorithms, e.g., for static analysis, dependency management, but also property
checking, consistency monitoring, automatic generation of ontology-compliant entries
and checkers. The business knowledge and the knowledge of the specific canvas tools
is the general domain-specific expertise required from the “diagram experts”. They are
essential in the cooperation with the software experts in order to produce tools that are
indeed correct in the canvas-specific knowledge and optimal in the contents of the guid-
ance and support. User interaction and incremental improvement of the representational
and informational aspects of the enriched canvas representation should be ideally led by
user interaction and interaction design experts. This also applies to understanding the
user feedback and user observation of how to prioritize and steer the successive improve-
ment of the web applications, how to best design the integration between the different
canvases, and how to organize the tutoring for different groups of adopters. The domain
specific expertise in the various sectors would then ideally come from champions in the
individual organizations, organization units, and teams, who are the knowledge carriers
of the specific corporate culture and practice, in order to provide a transformation that
is as conservative as possible and avoids to disrupt where it is not necessary.

6 Conclusion, Limitations and Outlook

This paper demonstrates the need for a different level of guidance for practitioners,
deepening their understanding, supporting analyses and preparing for the challenges
of the projects at hand. Today’s approaches focus on single local aspects which the
practitioners themselves need to select, connect and try to derivewith educated decisions.
As time equalsmoney, andunguided brainstorming sessions donot lead tomajor benefits,
practitioners tend to head-start into the execution of their projects without a prior careful
360-degree planning. This direct best effort approach ends too often in failed projects,
cost explosions and results not fitting the prior envisioned goals.

To test whether a deeper and more holistic analysis, including several frameworks
and canvases, leads to new insights and has the potential to guide projects and product
development we have conducted a workshop study with a specific use case, the AI-ETA
service of the Silicon Economy project. We focused on step by step refinements and the
discovery and analysis of dependencies and interconnectivity of the different approaches,
here the Component Canvas, Risk Analysis and the Project Alignment Canvas, and the
resulting insights. This study accounts as a PoC for our guidance approach for e.g.,
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project and product teams. The study followed a bespoke process that we prepared and
worked with in miro. The workshop demonstrated that the holistic approach, combining
the product description via a canvas, a risk analysis along the ISO 31000 standard, a
corresponding risk evaluation and transfer from local insights to the global level, led to
new insights that are currently unaddressed.

This study and our general observations in the contexts of other projects and prod-
uct developments with industry partners demonstrated three major shortcomings of the
current approaches. We then discussed how to address them in the context of advanced
IT-supported canvas tools and derived several tool-support potentials and their corre-
sponding technical and organizational requirements in the form of requirement speci-
fications. Thus, our contribution focuses on merging the business and IT competencies
to better guide and inform practitioners in their strategic and tactical tasks. The busi-
ness support in the form of e.g., canvases and frameworks helped many practitioners for
years. Nevertheless, the typically applied brainstorming session structure is too ad-hoc,
and not sufficient to foster a culture of educated decision making, progress reports, as-is
and to-be comparisons, with the integration of findings and learnings in the ongoing pro-
cesses of an organization. Thus, the organizations’ knowledge management potentials
are currently not utilized. To adopt instead an agile and solution-drivenmentality, today’s
business guidelines (available in form of many frameworks, like, e.g., SWOT, Porter’s
five forces and BMC, and checklists) need to be transferred into dedicated canvas tools,
supported with the required interfaces to the organizations’ existing tool landscapes and
with tool-based guidance to learning and customized mastery of use.

The current research has two main limitations. First, its missing quantitative valida-
tion, e.g., more use cases, use cases from different industries etc., proving its general
applicability. Instead we focused on a qualitative study to deepen our understanding
and defer detailed requirements to be implemented into a first prototype. Second, we
focused solely on the add-on perspective risk. Additional perspectives would have blown
the workshop study out of proportion. Nevertheless, we are eager to analyze the benefits
of add-on perspectives like, e.g., sustainability and finance.

Thus, we propose the following outlook. First, as a single detailed case study is
not sufficient to derive a comprehensive list of specific requirements for a valuable
tool support, we aim at additional case studies in the Silicon Economy context. Guided
by the current experience and feedback, we will likely work next with the perishable
goods import team and then extend the study to other industries for generalization, e.g.,
consulting, manufacturing, healthcare, start-up support etc. Second, the most relevant
requirements need to be implemented in a first user friendly canvas tool. Here, a mini-
mum viable product would be sufficient to test and validate the approach with users for
educated iterations. That reference process and support will then form the basis for fur-
ther developments regarding a broader applicability in other industries as well as broader
support including the adoption and integration of additional frameworks, canvases and
add-on perspectives like sustainability.
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Abstract. Developing an automated driving system (ADS) is difficult, because
a large, heterogeneous set of traffic situations has to be handled by the system.
At present, data collection does not provide the means to capture them suffi-
ciently comprehensive. And real-world testing is not feasible in the required
amount. So virtual techniques, namely simulation, will play an important role
in the development of an ADS, in particular in its verification and validation.

Because such a system is highly safety critical, the development will have
to follow at least the process recommendations of the ISO 26262 (or similar
directives). This permits to identify activitieswhich can be supported by simulation
within the overall development context.

This paper describes three suchuse cases for simulation in detail. Eachuse case
is presented with its objective, the scope and level of the modeling, and tooling.
Further, it is discussed what it takes or would take to realize the use case-what
appears to be available and what might be lacking.

The paper thus contributes to an overview of the role virtual testing and explo-
ration techniques might play in the development of ADS. It provides guidelines
for practitioners who are faced with the task of selecting the methods to support a
complex development process. And it hints at shortcomings of present-day tools,
or necessary prerequisites to use those which are available.

Keywords: Simulation · Driving automation · Verification and validation ·
Safety critical system development

1 Introduction

1.1 Developing an Automated Driving System

The development of an automated driving system (ADS) is a very challenging task
whenever the system is intended to operate on today’s roads, and not in a very restricted,
well controlled environment such as an industrial warehouse.

An example for the difficulties arising in traffic, taken from [1], is sketched in Fig. 1.
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Fig. 1. Conflicting lane changes on a highway (Color figure online)

The scenario has started (not shown in the figure) in a stable situation where E (red,
ego vehicle, automated) follows L (green, leading vehicle) at a constant velocity. T
(yellow) on the middle lane is going at the same velocity, with a distance which would
permit E to change safely to the middle lane. The vehicle C (blue, conflict vehicle) on
the left lane is much faster, but in the beginning was far behind T.

The left part of the figure (Scene 1) shows the beginning of the critical part. L has
decelerated, which might provoke E to overtake L, to keep its desired velocity. Since C
was occluded by T, the automation might judge overtaking to be a safe maneuver. But
once E starts its lane change (Scene 2), C completes its overtaking of T and changes to
the middle lane, too.

This example illustrates one of the difficulties of situation assessment for automated
vehicle control (and human control as well). And there are technical challenges, for
instance reliable detection of road markings and other traffic participants even in the
absence of occlusion, to name just one example.

So the ADS will be a complex technical system including a sophisticated control
software and many components dealing with physical tasks. Since such a system shall
not endanger human life, there are regulations for their development, and those require
the safety to be proven convincingly. The most prominent standards to be adhered to are
the ISO 26262 [1] and its extension ISO PAS 21448 [2].

These standards include mandatory requirements on the structure of the process, on
artefacts to be produced, methods to be used, and verifications and validations to be
performed. Figure 1 shows a simplified view of the well-known, standard conformant V
process.

Fig. 2. Use cases for simulation in the life cycle of an ADS
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Verification and validation provide themain factual evidence for the safety case. They
are laborious activities, and in particular physical tests of subsystems in the laboratory
or vehicles on the road are very expensive. It is hoped that using virtual techniques, i.e.
simulation, will help to reduce this effort and render the construction of a safety case
feasible.

The scenario from Fig. 1 might be the focus of a test in the validation phase. In that
phase, the end result of the development is checked whether it meets the initial, user level
requirements. A simulation of the scenario would reveal whether the control function
correctly refrains from changing to the middle lane when it cannot be sure whether it
will stay free long enough.

This might be one set of tests within a deep validation simulation campaign. Figure 2
indicates two further usages of simulation, scenario mining and incident analysis.
These three types of potential usage of simulation will be presented in this paper. The
project SET Level (Simulation based Engineering and testing of automated vehicles,
[4]) considers these among other usages of simulation.

1.2 Simulation and Its Usage

Simulation has two advantages over real world tests: One need not be concerned about
accidents, and one can perform a vast number of simulations for the cost of one real-
world driving experiment. The downside is, of course, that simulation results are not
really reliable, they have limited validity. For profitable use in the development, and in
particular in safety arguments, simulation thus will have to be used with care, taking
into account uncertainties of the virtual representation.

A use case for simulation is described by

0. Name: A name identifying the use case
1. Process phase: The phase in the (simplified) process from Fig. 2 where simulation

is used in the described form
2. Objective: The objective of the use case is part of the output of the process phase

where it is applied
3. Implementation: This describes the tools and formats which are to be employed in

realizing the use case
4. Modeling scope and detail: Simulation may be performed on a broad range of levels

of abstraction. The level is mainly defined by what is modeled to which degree of
realism.

5. Validity requirements: A crucial question to be answered when intending to use
simulation results is the validity of the outcome of the simulation.

6. Realizability: This item discusses tooling, whether tools are already available or
what is missing.

1.3 Scope of the Paper

In this paper, we present three potential use cases for simulation. These range from very
early in the system life cycle to the very last stage. These are just examples of how
simulation might be used profitably (or might be desired to be profitably useful for).
Future extension of this text will add more examples.
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2 Simulation: Concepts and Tools

This section explains a few concepts from the field of simulation and its application, and
it introduces some terminology used later in the description and discussion of the use
cases.

Automated driving system (ADS): We are concerned with the use of simulation to
explore properties of automated driving systems or components thereof.

Highly automated driving function (HAD-F): This function is the control compo-
nent of an ADS. It interprets the traffic situation and takes decisions on the actions
of the ADS.

Simulation: A simulation consists of the computation of a representation of some
sequence of events. In our case, these will be traffic events. And either a complete
ADS or components thereof will be part of the simulated objects.

Micro and nano simulation: Amicro simulation [3] aims to reproduce the characteris-
tics of the flow of traffic (throughput, congestions etc.). It uses rather abstract behavioral
models of individual traffic participants, and it lets these models act in a virtual traffic
network. The SUMO system [6] is one prominent example of such a system. For the
analysis of the functionality of an ADS,more detail is needed. This is done in nano simu-
lations, where effects like sensor performance come into play. There are several research
and commercial nano simulation tools. Both micro and nano denote rather large classes
of abstraction levels of simulation. Here, mostly nano simulation is considered.

System under test (SUT): In each use case of simulation, there will be a system which
is the object of study, the SUT. In most cases, the simulation shall test this object.

Simulation tool: A simulation tool is a software system which performs the simula-
tion. It uses models of elements of traffic (traffic participants, technical components of
vehicles, etc.) to compute the effects of these elements on the sequence.

Simulation run: A single run of the simulation tool.

Scenario: A scenario (according to [6] is a description of sequences of events in traffic.
“Sequence of events” is not limited to discrete sequences, but could also be some con-
tinuous development. Depending on the level of abstraction and the focus of attention,
a scenario may include external conditions like weather or road conditions.

There are different forms of scenarios.

(Traffic) situation: Asituation is a snapshot of a scenario. The result of a simulation run
may be seen as a sequence of situations, namely the sequence of states of the simulated
traffic elements at the points in time where those were computed by the tool.

Closed concrete scenario (CCS): Such a scenario fixes one sequence of events. It pro-
vides for some span of time the states of all traffic participants and other objects (e.g.
traffic lights, weather). It may describe a sequence in real life in continuous time, or
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the result of a simulation run in discrete time. It is “fully defined” regarding a level of
abstraction. Details not in the focus need not be included to make the scenario “fully
defined”. E.g., a traffic agent might be fully defined by just providing its trajectory for
some application of simulation.

Open concrete scenario (OCS): In an open concrete scenario, the SUT is not restricted
by the scenario description. The scenario is closed by providing the SUT (for instance,
an automated vehicle, or a model of the highly automated driving function HAD-F). An
OCS may be viewed as a function from SUTs to FCSs.

Logical scenario (LS): A logical scenario defines a set of scenarios in a parametrized
form. I.e., certain values or conditions are parameters of the LS. Instantiating the LS by
providing values for those parameters yields a concrete scenario. Thus, an LS defines a
scenario space. It might be a set of fully defined concrete scenarios (FCLS), or a set of
open ones (OLS). An OLS is used to define a task for simulation, where the simulation
control may choose which concrete instances of the OLS will actually be simulated.

Evaluation function: One or more evaluation functions may be used to assess sim-
ulation runs or sets of simulation runs (sets may result from running a subset of the
instances of an LS). In its simplest form, an evaluation function is a real valued function
like time-to-collision.

3 Use Cases of Simulation

Here, we introduce and discuss the three use cases of simulation in the life cycle of an
ADS indicated in Fig. 1. As said above, these are just three examples of where simulation
might be used profitably.

3.1 Critical Scenario Mining

One important development activity is the collection of all systemhazards.Often, hazards
are classified as being external or internal. External ones origin from the environment
of the system, internal ones from system faults or inadequacies. Though many hazards
cannot be fully assigned to one of these categories, this distinction is helpful as a first
hint in guiding the detection process. For an ADS, many hazards arise from the traffic
situations encountered, and how they come to pass. These are mainly external hazards,
and the search for them is addressed in this use case.

Use case summary

0. Name: Critical scenario mining
1. Process phase: Hazard and risk analysis
2. Objective: Detect scenario spaces potentially challenging the safety functionality of

the ADS
3. Implementation: Combination of a microscopic traffic flow simulation and a

detailed simulation, the latter detecting criticalities
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4. Modeling scope and detail: synthetic road network, high level of traffic participant
modeling

5. Validity requirements: low
6. Realizability: adaptation of available tools

Use case details

Process phase: The input to the phase include a description of the ADS and its ODD.
This gives a handle to synthesize scenarios covering essential parts of the ODD, and
to construct a rough model of the ADS behavior. These are important inputs to the
simulation activities.

Objective: The objective is to generate sub-scenarios which may turn out critical for the
system to be developed. These scenario (spaces) add to the hazard log which maintained
during the development. They shall help to identify useful safety functionalities to be
implemented. And they form a basis to construct test catalogues for later phases.

Implementation: This use case can be implemented in several forms. We describe one
in some detail. In this instance, mining is performed by the combination of a micro and
a nano simulation.

The first is a traffic flow simulation like the SUMO system. The flow simulation
takes a road network and specifications of traffic densities, sources and sinks and such.
It uses abstract models of traffic agents, whose behavior might be essentially determined
by destination, desired velocity, lane and gap control. In that way, a broad spectrum of
rather realistic scenarios (FCS) on a high level of abstraction can be generated.

This level of abstraction is too high, too high to permit a proper identification of
relevant critical situations. For that, a nano simulation system like openPASS is combined
with the micro simulation. It takes over the simulation in a limited part of the road
network, e.g. a crossing. Each traffic participant entering the focus area is controlled by
it until the participant leaves the area. Upon entering the area, a detailed agent model is
initialized and then run. If a preliminary model of the ADS is available, it may be used
for some selected participant.

An evaluation function is used to identify interesting runs. For instance those runs
where an evaluation function indicating criticality exceeds a particular threshold. The
output would then consist of a large set of FCS which might pose a safety challenge for
an ADS.

Depending on further elaborations of the basic realization sketched above, one may
generate output in a different, perhaps more useful format. For instance, one might
generate an FCLS including variations of one particular concrete scenario.

Modeling scope and detail
The micro simulation models a large traffic network with little detail. Roads are mod-
eled with approximated dimensions, their lane structure, and traffic regulations. Traf-
fic participants are controlled by agents which produce stereotypical, largely regulation
conformant behavior. Detailed physical modeling of e.g. braking curves is not necessary.

The nano simulation acts on a more concrete level of abstraction. This may still be
rather high, if, for example, the focus of attention is the conformance to (basic) traffic
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regulations of the controllingHAD-F. In this case, detailedmodeling of braking or sensor
imperfection is not necessary. But one may also model common sources of hazards like
occlusion to study other aspects of the automation.

Validity requirements
The requirements on validity in this use case are rather low. False positives, i.e. scenar-
ios wrongly identified as critical, may induce unnecessary work in later phases but do
not affect the validity of safety arguments. False negatives are more detrimental. Both
micro and nano simulation may contribute to incompleteness of the output. The micro
simulation may fail to produce relevant initial situations for the nano part, and the nano
simulation may assess some scenarios erroneously. There does not seem to be much
hope to make the method complete- One might even argue that there cannot be any
complete automatic method in this early development phase. So the scenario mining
by simulation will merely complement other approaches. And for providing additional
information on potential hazards, the validity requirements are not too high.

Realizability: This use case can be realized with available tools. There are already
some combinations of micro and nano simulation which do not need much additional
machinery to be put to use.

3.2 Deep Validation

The safety case for an ADS will have to include an account of all verification and
validation activities which have been performed during its development. Verification is
performed to assure that one step of the development (e.g., hazard and risk analysis)
has achieved its goals and its results are correct. Due to the multitude and intricateness
of requirements on an ADS and the complexity of its implementation, verification will
likely not provide enough confidence in the safety of the development result. Validation
assesses whether the outcome meets the intentions, in our case whether the ADS is safe
enough. It would be very helpful if some procedure could reliably measure how safe the
result will behave. This is what deep validation tries to achieve.

As already indicated above, a logical scenario capturing the variants of the events
sketched in Fig. 1 might be one of the LS examined in such an activity.

Use case summary

0. Name: Deep validation
1. Process phase: Validation
2. Objective: Asses the risk of the ADS when operating in its ODD
3. Implementation: Exploration of a comprehensive scenario catalogue with elaborate

evaluation functions
4. Modeling scope and detail: full ADS with in various degrees up to highly realistic
5. Validity requirements: very high
6. Realizability: only partly realizable



124 H. Hungar

Use case details

Process phase: Deep validation is intended for the final development phase of the ADS
before the release.

Objective: The objective of deep validation is to provide a reliable estimate of the risk
attributable to the ADS in its intended operation. Reliability means that the estimate
comes with confidences and a convincing argumentation that these confidences can be
relied on. The estimate and its reliability argumentationwould then enter a safety case for
the ADS. It would complement argumentations which show that the physical implemen-
tation of the ADS functionality meets its specifications, in particular, that the simulation
models can be constructed to reproduce the specified behavior. If a realization of deep
validationmeets the objective, it might contribute substantially to fill the methodological
gap in safety assessment procedures which motivated the work on the ISO/PAS 21448.
Though this standard defines useful activities and goals, it cannot provide practitioners
with a guideline to implement them.

Implementation: This use case needs a lot of ingredients for its realization.

1. A scenario catalogue covering theODD. Thiswould consist primarily of open logical
scenarios (OLS) as the formal basis for exploring the ODD via simulation. These
scenarios would also have to be equipped with occurrence distributions. These are
similar in nature to continuous probability distributions, i.e. they define how frequent
a subset of the OCS (the concrete test cases making up the space defined by the OLS)
occurs. As with continuous probabilities, where any fixed outcome has probability
zero, also any OCS has zero occurrence frequency. But a (small) range of OCSs
(resulting from a range of parameter values) will have some occurrence frequency,
measured in e.g. occurrences per driving hour.

2. An evaluation function estimating accident severity: If some test of the ADS in an
OCS instantiating a logical scenario from the catalogue results in an accident, the
severity of the accident in terms of likelihood of fatalities and injuries need to be
assessed, For that, one needs a function providing good estimations.

3. A faithful modeling of the ADS: The ADS will have to be modeled rather well to
produce reliable virtual representations of the real behavior.

4. An exploration procedure detecting all potentially harmful OCS of a given logical
scenario: An OLS from the scenario catalogue defines a set of concrete test cases. In
most cases, the set of these instances will be far too large to be simulated, even if we
assume the parameter space to be discretized. Thus, to find all potential accidents in
an OLS, some nontrivial exploration procedure will be necessary. One approach to
construct such a procedure is sketched in [8]. This entails several more ingredients
needed for the implementation of this use case.

Given ingredients such as described above, this use case can be implemented as
follows. The risk to be computed is, essentially, the sum of the accident severity times
accident probability over all scenarios of the catalogue. Each logical scenario is explored
to find and assess accidents. Given the frequency information for the OLS, the risk can be
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computed in terms of expected fatalities, resp., injuries per driving hour. Summing over
(disjunctive) scenarios gives the overall risk. Inaccuracies in defining the occurrence
frequencies, assessing the outcome, and the simulation as a whole would have to be
quantified to add the required reliability information.

Modeling scope and detail: Basis for the implementation of this use case are highly
exact models of the physical reality-otherwise no reliable estimation of accident proba-
bility and severity cannot be computed. But a practical realization of the use case would
employ also less detailed simulations to narrow the search space for the exploration
by ruling out the vast majority of scenarios which are easily seem to be not critical.
Iterating this over several layers of concretization will certainly be helpful to reduce the
computation effort.

Validity requirements: The requirements for validity of a simulation are certainly very
high. To be able to assess the severity of accidents in real traffic the simulation must
be very precise. And typical challenges for automation like sensor inadequacies and
malfunctions also call for very good virtual representations. If simulation results are not
very reliable, the risk estimation figure will likely not be useful in a safety case, as its
confidence interval will be too large.

Realizability: It is very challenging to realize this use cases. All four ingredients listed
above will very often be missing for ADS where the ODD includes traffic on public
roads. While it is conceivable to capture even complex urban traffic in a catalogue of
logical scenarios, faithful frequency information will be hard to come by. A function
assessing accident severity for road traffic seems even harder to get. Precise and faithful
models of ADS components, a prerequisite for valid simulation results, are yet to be
developed. And the same applies to exploration procedures providing the guarantees for
accident detection.

So, this use case will likely be realized only for restricted applications of ADS,
characterized by: a clearly definable ODD with well understood interaction patterns,
few types of accidents, and automation components which can faithfully be modelled.
Then, a deep validation by simulation might add strong evidence for the safety of the
development result, and complement a thorough though per se not fully convincing
verification performed before.

3.3 Incident Analysis

The development of an ADS reaches the most important milestone when the ADS is
released, when it may be put in operation. The product life cycle does not end, though.
After it has been released, the ADS is to be monitored how well it performs in practice.
This is the monitoring phase. And any severe incident should be analyzed, to find out
whether the designhas someessential flaw, somethingwhichmust or shouldbe improved.
In analyzing incidents, simulation may be used profitably.
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Use case summary

0. Name: Incident analysis
1. Process phase: Monitoring
2. Objective: Discover the cause of road incidents involving the ADS
3. Implementation: replay incidents in simulation
4. Modeling scope and detail: full ADS
5. Validity requirements: high
6. Realizability: adaptations of available tools, some additional functionality needed

Use case details

Process Phase: Monitoring a safety critical system is a mandatory activity. It consists
of observing the ADS in operation, recording (in some specified way) critical situations,
and analyzing them.

Objective: The objective is, simply, to understand whether some observed unwanted
situation is attributable to the automation. This entails a thorough assessment and eval-
uation of the situation and to understand its causes. In the end, this will be used to see
whether the automation should be or must be improved in some way.

Implementation: The input to the simulation comes from the recording functionality
installed in the automated vehicle, plus external information (weather, other devices
observing the traffic, etc.). From that, a representation of the critical situation and the
events leading to it is constructed. This is a fully concrete scenario (FCS), though it may
not define all relevant behavior. It is complemented by additional information about
internals of the automation like the list of detected objects during the scenario, or even
raw sensor data.

Depending on the completeness of the available information and the detailed goals
of the analysis, there are different instantiations of this use case.

If the recorded scenario is incomplete and the goal is to reconstruct plausible trajec-
tories of all relevant participants, the FCS can be turned into a formwhere parameterized
agents control the participants during unobserved points in time. Then, agent parameters
are sought which plausibly complete the observations.

Given a complete (or a completed) FCS of the events, an important goal is to fill
in information about the internal operation of the ADS. This is done by running the
scenario with detailed models of the automation components. From that, malfunctions
of the ADS can be deduced. These might be wrong results of sensor fusion, or a wrong
situation assessment by the HAD-F.

Other lines of analysis, also simulation based, may address more complex questions.
These might concern the likelihood of the observed critical situation, whether it is likely
to recur, or whether it was a rare event. Another goal might be an assessment of the
adequacy of the driving strategy. I.e., answering the question whether the situation could
havebeen avoided if theADShadactedmore cautiously or proactively. For such analyses,
it might help to consider variants of the observed FCS. The FCS would be turned into a
logical or open logical scenario, and the scenario space would then be explored.
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Modeling scope and detail: The most basic simulation consisting of a replay of a com-
plete scenario requires to model the ADS or part of it in its inner workings. The focus of
attention (sensor malfunction, situation assessment,…) will define which parts to model
to which degree of precision.

The completion of missing trajectories will require usually only simple behavior
models.

The estimation the frequency of situationsmight require somewhat realistic behavior
models, incorporating frequency replication capabilities. For the involved ADS, a high
level of modeling might be sufficient, provided that effects relevant to the scenario (e.g.,
occlusion) are taken care of. More or less the same is true for assessment of driving
strategies: The strategy itself must be included in the form of a realistic model of the
HAD-F, the rest may be abstracted out as long as the relevant effect are retained.

Validity Requirements: The validity requirements aremoderate for these use cases.Most
of the analyses detailed above will focus on the externally visible behavior, with the
exception of inner workings of the ADS when analyzing internal error sources.

Realizability: The different instantiations of incident analysis rely mostly on core func-
tionalities of (nano) simulation tools. These have to be extended by specific functional-
ity. Some have already been implemented, like some trajectory completion procedures.
Some cases seem challenging, like matching detailed data of sensor readings adequately
in simulation, but overall useful solutions do not seem to be too difficult to come by.

4 Summary

The previous section includes a (short) description and discussion of three use cases
for simulation in the development lifecycle of an ADS. Though there are many more,
already these three examples show that simulation may play a very important role in the
development of automated vehicles. That is, if the techniques and tools meet the some-
times rather high requirements. Validity of the simulation results is one main challenge.
The virtual runs should match the events on the roads. And a necessary condition for that
are, very often, models of physical components which correctly replicate the function
of intricate devices influenced by a multitude of effects.

These and further topics are considered in many research and industrial activities.
The ideas presented in this paper were inspired by the author’s participation in three
projects of the PEGASUS family. Besides the PEGASUS project [8] itself, which ended
in 2019, these are SET Level [4], concerned with simulation tools and their applications,
and VVM (Verification and Validation Methods, [9]), focusing on the proof of safety.
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Abstract. Novel methods for safety validation of autonomous vehicles
are needed in order to enable a successful release of self-driving cars to
the public. Decomposition of safety validation is one promising strategy
for replacing blunt test mileage conducted by real world drives and can
be applied in multiple dimensions: shifting to a scenario-based testing
process, assuring safety of individual subsystems as well as combining
different validation methods. In this paper, we facilitate such a decom-
posed safety validation strategy by simulation-based elicitation of accu-
racy requirements for the environmental perception for a given planning
function in a defined urban scenario. Our contribution is threefold: a
methodology based on exploring perceptual inaccuracy spaces and iden-
tifying safety envelopes, perceptual error models to construct such inac-
curacy spaces, and an exemplary application that utilizes the proposed
methodology in a simulation-based test process. In a case study, we elicit
quantitative perception requirements for a prototypical planning func-
tion, which has been deployed for real test drives in the city of Ham-
burg, Germany. We consider requirements regarding tracking and the
position of an oncoming vehicle in a concrete scenario. Finally, we con-
clude our methodology to be useful for a first elicitation of quantifiable
and measurable requirements.

Keywords: Autonomous vehicles · Safety validation · Functional
decomposition · Environmental perception · Error modeling

1 Introduction

Development of autonomous vehicles has hit a slump in the past two years. This
slump (or trough of disillusionment in terms of the Gartner hype cycle) is caused
by the so-called approval trap for autonomous vehicles: While the industry has
mostly mastered the methods for designing and building autonomous vehicles,
reliable mechanisms for ensuring the safety of such systems are still missing. It
is generally accepted that the brute-force approach of driving enough mileage
for documenting the relatively higher safety of autonomous vehicles (compared
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to human drivers) is not feasible as it would require an estimated six billion
kilometers for every new vehicle or even change in a vehicle’s software [19, p. 458].
Since, as of today, no alternative strategies for the safety approval of autonomous
vehicles exist, predictions for the availability of level 5 (fully autonomous) [1]
vehicles have changed from early 2020s to mid 2030s.

Decomposition of safety validation into many sub-tasks with compositional
sub-goals (akin to safety cases but for a vehicles intended functionality) is one
promising strategy for replacing blunt mileage by combining validation tasks
that together document the safety of an autonomous vehicle. Decomposition
can be applied in several dimensions:
Scenarios. Autonomous driving can be decomposed into a sequence of different
driving scenarios, varying widely in complexity. Driving on a straight, empty,
well-marked section of a motorway in the middle of the day is relatively easy
and has a low risk of endangering passengers or other traffic participants. Detec-
tion of lanes and following these is sufficient for driving safely. System failure
can be mitigated by slowing down and moving over to the shoulder. Making an
unprotected left turn across a crowded inner-city intersection at night in the pres-
ence of pedestrians and cyclists, on the other hand, is quite complex and has a
comparatively high risk of endangering passengers and other traffic participants.
It seems only natural that more effort is spent on validating the safety of an
autonomous system in complex high-risk situations. Two notable efforts in this
direction are the recent SOTIF (safety of the intended functionality) norm [13]
that focuses on scenario-based safety validation for autonomous vehicles and the
UN’s draft specification for an automated lane keeping system [35], which lays
out concrete scenarios in which the system has to drive safely.
Validation Methods. Another dimension of decomposition are the methods used
for validation: instead of driving on the road, a hierarchy of validation approaches
(ranging from simulation, to hardware-in-the-loop, to vehicle-in-the-loop, to aug-
mented reality, to road tests) can be combined to reduce the number of actual
miles on the road.
System Architecture. The software and system architecture of autonomous driv-
ing systems lends itself to an assume/guarantee-style decomposition of safety
validation. Systems consist of three major components: Sense, Plan, and Act (cf.
Section 2.1). The three components are based on different methods and principles
and typically share lean, well-defined interfaces: Sense relies on trained compo-
nents (e.g., deep neural networks for semantic segmentation and object track-
ing) and communicates a model of the environment to the Plan component. The
Plan component works on this discrete representation of the environment and
uses (non-deterministic) algorithms for generating an optimal future trajectory.
The Act component is responsible for following this trajectory based on prin-
ciples and techniques from the field of control theory. Assume/guarantee-style
reasoning uses pairs of assumptions and guarantees on components for proving
a property P on a system S of sequentially composed components C1, . . . , Cn by
proving guarantee Gi for component Ci under assumption Ai. Now, if addition-
ally every guarantee Gi implies assumption Ai+1 and Gn implies P , the sequence
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of proofs on the components establishes that the system S satisfies the property
P under the assumption A1.

Being based on different principles, different methods are required for veri-
fying correctness and validating the safety of the Sense, Plan, and Act compo-
nents. While (as of today) we cannot apply the above pattern in a rigid formal
approach, we can still use the pattern in manually constructed and validated
sequences of arguments. Validation methods for Act components already exist:
Vehicles already ship with steer-by-wire and brake-by-wire functionality. Safety
of these functions is ensured through functional safety approaches (fail opera-
tional modes, FMEA1, FTA2). Correctness and performance of the Plan com-
ponent can be validated through scenario-based testing (cf. SOTIF norm [13]).
Validating the correctness of Sense components is a particular challenge since
severity of perception errors is often not diagnosable without considering sit-
uational context and error compensation capabilities of the subsequent Plan
component, which makes it difficult to specify general safety requirements. Cor-
rectness of trained models that are frequently included in Sense components is
a topic of active research (cf. works on robustness, adversarial attacks, etc.).

Effective decomposition strategies of the validation task in all three of these
dimensions (scenarios, simulation/reality, architecture) has to be the topic of
future research and standardization efforts. A decomposed system architecture
also yields the potential of independent development and updating processes for
different components.

In this paper, we address one concrete challenge in this landscape: Identify-
ing required accuracy guarantees for sense components (resp. required accuracy
assumptions for plan components). As of today, it is not known if such properties
can be established for autonomous vehicles or what their scope would be. The
research question we address here, is whether there is a space of acceptable per-
ceptual inaccuracy and whether it can be used for decomposing safety validation
based on assume/guarantee-style arguments along the software architecture of
the autonomous system in one driving scenario. We define a set of quality criteria
(mostly systematic errors and allowed inaccuracy3) in the output of the Sense
component for the scenario of an unprotected left turn in the presence of oncom-
ing traffic and evaluate if guarantees on these aspects are useful as assumptions
for the validation of the Plan component. Algorithmically, we use a sequence of
closed-loop simulations of a given Plan component (developed as a prototype
at Volkswagen Group and successfully deployed in the city of Hamburg, Ger-
many in 20194) in an urban scenario while iteratively degrading accuracy of the
Sense component by injecting errors corresponding to defined quality criteria.
By evaluating the performance of the driving task, we identify safe regions for
quality aspects that can serve as assumptions on required quality of the Sense

1 Failure Mode Effect Analysis.
2 Fault Tree Analysis.
3 In this work we follow the definition of accuracy given by ISO 5725-1 [12].
4 Volkswagen AG, 04.2019 www.volkswagenag.com/en/news/stories/2019/04/laser-

radar-ultrasound-autonomous-driving-in-hamburg.html.

https://www.volkswagenag.com/en/news/stories/2019/04/laser-radar-ultrasound-autonomous-driving-in-hamburg.html
https://www.volkswagenag.com/en/news/stories/2019/04/laser-radar-ultrasound-autonomous-driving-in-hamburg.html


132 R. Philipp et al.

E
n v

ir
on

m
en

t
Sc

an
ni
ng

F e
at
ur
e

E
xt
ra
ct
io
n

Sc
en

e
M
o d

el
in
g

Si
tu
at
io
na

l
U
nd

er
st
an

di
ng

B
eh

a v
io
ra
l

D
ec
is
io
n

A
ct
io
n

Sense Plan Act

Accessible
Information Raw Scan Features Scene

Situation
Model

Trajec-
tory

Vehicle
Motion

Fig. 1. Functional decomposition of autonomous vehicles [23]

component. Putting it blandly, we take a system metric (no collisions) and quan-
tify its sensitivity towards errors at the interface between Sense and Plan. Our
contribution is threefold:

1. We define concrete dimensions of inaccuracy regarding perceived traffic par-
ticipants and enable their analysis by introducing exemplary error models.

2. We use simulation-based testing with error injection for the elicitation of
accuracy requirements on the Sense component by testing a given Plan com-
ponent in an autonomous driving software stack.

3. We show that such requirements and safe levels of inaccuracy can be identified
for an urban driving scenario for the two types of investigated inaccuracies.

Outline. The remainder of the paper is structured as follows. Section 2 reiterates
the decomposition of system architecture and decomposition into scenarios by
discussing an exemplary urban scenario and its particular challenges. Section 3
presents our setup for simulation-based testing with injection of perceptual
errors at a high level. Section 4 describes perceptual hazards and corresponding
error models. These error models are utilized in Sect. 5 for eliciting quantitative
requirements in the considered urban driving scenario. Finally, Sect. 6 discusses
related work before Sect. 7 presents our conclusions and discusses future work.

2 Preliminaries

We will briefly detail the functional architecture that is commonly used in
autonomous driving software stacks and the urban driving scenario addressed in
this work.

2.1 Functional Decomposition

In order to investigate the interface between environmental perception and plan-
ning, we refer to the functional decomposition of autonomous vehicles proposed
in past work [23]. The autonomous vehicle is decomposed into Sense, Plan and
Act and then further refined into Environment Scanning, Feature Extraction,
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Fig. 2. Unprotected left turn scenario Fig. 3. Object attributes

Scene Modeling, Situational Understanding, Behavioral Decision and Action (see
Fig. 1). Plan takes a conceptualization of the environment as input.

Since we are interested in requirements towards the Sense component based
on the subsequent Plan component, we investigate what information is delivered
to the Plan component by the Sense component. When composing a system and
analyzing this interface towards requirements, there are in general two ways on
how the system assembly can be approached: either for a given Sense component,
deduce how robust the subsequent Plan component needs to be or for a given Plan
component define how accurate the output from the Sense component needs to be.
The focus of this contribution is the latter one. This can also be seen as a combi-
nation of assumptions and corresponding promises between these two components
which is a common approach in the verification domain called assume-guarantee
reasoning and also utilized in the field of contract-based system design [10,26].

The Sense component is decomposed into Environment Scanning, Feature
Extraction and Scene Modeling. Environment Scanning is implemented as a
combination of sensors and data processing and therefore consists of hardware-
software systems. Environmental conditions or physical effects can cause distur-
bances while capturing the reality (e.g. glare of the sun) and influence the gener-
ated model of the environment (cf. environmental uncertainty [6]). An additional
challenge is the association of extracted features when fusing data by multiple
sensors in the Feature Extraction and Scene Modeling components.

The Plan component is decomposed to Situational Understanding and
Behavioral Decision and can be regarded as an optimization problem with the
goal of finding the trajectory with the least costs. This can be formulated as a
mathematical problem and be approached with software. Especially in the air-
craft domain, verification of Plan components as part of aircraft collision avoid-
ance systems has been researched [14,16,32]. Recently, efforts have been made
towards formal models for Plan components of autonomous vehicles [2,18,28].

2.2 Unprotected Left Turn Scenario

We investigate an exemplary scenario which is illustrated in Fig. 2. The simu-
lated scenario comprises an unprotected left turn maneuver of the ego vehicle
with one oncoming passenger car at a real intersection between Jungiusstraße
and Gorch-Fock-Wall in the city of Hamburg, Germany. With the oncoming
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Fig. 4. Conceptual test design for the interface between Sense and Plan: Output of
the Sense component is synthetically generated based on a concrete scenario and sub-
sequently flawed to investigate the reaction of the Plan component

vehicle maintaining a velocity of 50 km h−1, the ego vehicle arrives right at the
time when it needs to decide whether to turn in front of the oncoming vehicle or
wait for it to pass. Making that decision requires a proper understanding of the
scene and thereby an accurate perception. That encompasses an early and accu-
rate detection of the oncoming vehicle. Position and velocity are both essential
attributes for predicting the future trajectory and estimating the time of arrival.
The object’s width in combination with its position are crucial for estimating
how far the ego vehicle can already pull into the intersection. The object con-
ceptualization as part of the interface between Sense and Plan components of
our system under test is specified in Fig. 3.

3 Simulation-Based Testing with Error Injection

The architecture of the used test setup is shown in Fig. 4: Components in the top
row drive the exploration of variants of a scenario (varying errors and recording
outcomes). Components in the lower row constitute the test harness (simulation
framework and augmented Sense component) and the system under test (the
Plan component).

Our intention is to investigate the response of the Plan component to errors
in the perceived scene. Since the Plan component comprises multiple software
modules and the input coming from the Sense component is generated and
manipulated synthetically, we analyze the Plan component in a closed-loop sim-
ulation framework. The scene that is given to the Plan component is generated
by simulating the Sense component and augmenting its output with errors. This
comprises generating the scene based on a concrete scenario specification includ-
ing traffic participant behavior and infrastructure elements as well as transform-
ing the ideal scene into a flawed scene by injecting errors. To give an example,
we could perturb the velocity of a distant oncoming vehicle to be perceived as
being 40 km h−1 while the vehicle actually drives at a speed of 50 km h−1.
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We quantify the behavior of the ego vehicle based on the ideal scene, the
flawed scene the ego vehicle was aware of regarding its environment, and the
states of the ego vehicle over time: By defining pass and fail criteria, the evalu-
ation component can be used to assess whether a test case has passed or failed.
Possible pass and fail criteria check for real collisions or unsafe distances. Due to
the fact that we investigate iteratively worsening hazards, the results of the exe-
cuted test cases will be taken into consideration by the error injection component
for driving the variation of the scenario. When e.g. an inaccurate measurement
regarding the oncoming vehicle’s velocity with a deviation of Δv = 10 km h−1

does not result in a failed test case, a greater inaccuracy is examined in the next
simulation. The evaluation component logs the entire history of all simulations.
This enables the use of an exit condition, e.g. when a threshold has been found
or a defined parameter range has been explored in sufficient detail.

To utilize the proposed test setup and model iteratively worsening errors,
a strategy for exploring of perceptual inaccuracy spaces is needed, especially
when combining multiple types of inaccuracies. For this work we consider a
multidimensional space of inaccuracies regarding a perceived object where each
dimension describes a specific inaccuracy and therefore error (e.g. position, veloc-
ity, etc.) and use different approaches for sampling this space (grid-based and
exploration around the origin) in different experiments.

4 Modeling Perceptual Inaccuracy and Errors

We identify multiple types of hazards and perceptual errors as a basis for error
injection.

4.1 Perceptual Hazards

True Positive Inaccuracy. Surrounding traffic participants are often concep-
tualized as bounding box objects with attributes. These attributes can either be
metric5 variables (e.g. position, velocity) or categorical6 variables (e.g. classifica-
tion, light status). While the magnitude of an error regarding metric attributes
can be calculated by looking at the difference between the true value and the
measured value, measurements of categorical attributes can only either be true or
false. Especially for the classification of other traffic participants, some misclas-
sifications objectively seem worse, there is no way to assess the objective mag-
nitude of the error without transforming the classification attribute to either an
interval or ratio scale. That can e.g. be done by establishing similarity measures
between two given classifications.

Field of View Delimiting. The field of view of an autonomous vehicle is made
up out of the detection areas of the different sensors utilized. Traffic participants
that are not within the range of the field of view can therefore not be perceived.

5 Metric refers to a variable defined on either an interval or ratio scale.
6 Categorical refers to a variable defined on either a nominal or ordinal scale.
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Moreover, environmental conditions like sun glare, rainfall or occlusions by other
traffic participants can temporarily limit the field of view. The field of view that
is required by an autonomous vehicle moving in an operational design domain
(ODD) is conditioned by the occurring infrastructure and surrounding traffic
participant behavior. While highly automated driving on the highway especially
necessitates perceiving objects in the far distance longitudinally, urban scenarios
require a more uniform surround view due to cross traffic. Hence, eliciting the
required field of view in a concrete ODD is not a trivial task. By systematically
delimiting an ideal field of view, safety-critical areas can potentially be deduced.
Delimiting the field of view can e.g. be implemented by defining a maximum
range, specific opening angles or by individually defining sensor detection areas
that are subsequently aggregated.

Object Track Instability. When perceiving traffic participants it is not only
important to capture them accurately in a scene, but to also track them over the
course of scenes. Ideally, as long as a traffic participant is in immediate range
of the autonomous vehicle, the corresponding object track should not cease to
exist. Although that can happen due to faults like extensive computation time for
the association or occlusion by other traffic participants. Dealing with unstable
object tracks is usually addressed by the Situational Understanding within the
Plan component.

Object Track Decay/Multiple Track. Ideally, one traffic participant is con-
ceptualized with one consistent track. However, when dealing with larger traffic
participants such as busses, it can happen that their bounding box decays into
multiple smaller ones. While these bounding boxes might still occupy around
the same space as the previous larger one, this hazard results in more separate
objects for the Situational Understanding to deal with. One traffic participant
that is conceptualized by more than one object track is defined as Multiple Track
by Brahmi et al. [3].

Multiple Object. In contrast to the hazard Multiple Track, it can also happen
that multiple traffic participants are captured as one object track, e.g. when
being close to each other. Such multiple object tracks are likely to decay into
object tracks when they start moving resulting in the fact that these multiple
object tracks are of special relevance to the Situational Understanding compo-
nent. This hazard is defined as Multiple Object by Brahmi et al. [3].

4.2 Error Models

True Positive Inaccuracy: Systematic Object Position Shift. The posi-
tion accuracy of the oncoming object in the investigated scenario is essential for
the Plan component. The perceived longitudinal position is crucial for estimat-
ing the time until the oncoming vehicle arrives at the potential conflict zone. The
perceived lateral position can directly influence how far the ego vehicle already
pulls into the junction.
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Fig. 5. Error model True Positive Inaccuracy: Object Position

The object’s position is a metric attribute defined in a Cartesian coordi-
nate system consisting of two components. While an object’s position is usually
captured in an ego-centric coordinate system, it may also be of interest to not
directly manipulate the ego-relative position components, but to define position
shifts based on an object-centric coordinate system. The object-centric coordi-
nate system resembles the ego-centric coordinate system rotated by the object’s
relative heading Ψ to the ego. In that way it is possible to separate an object’s
position shift distinctly into a longitudinal and lateral shift. Both coordinate
systems and exemplary shifts in these are visualized in Fig. 5.

Our proposed error model for the object position covers both systematic
errors μ and random errors σ and offers the possibility to define the deviation
either in the ego-relative or object-relative coordinate system. Thus, the per-
ceived position shift of the object [Δx,Δy]T can comprise a shift specified in
the ego-coordinate system [Δxego,Δyego]T and a shift specified in the object-
coordinate system [Δxobj ,Δyobj ]T . It is defined as follows:

[
Δx
Δy

]
=

[
Δxego

Δyego

]
+

[
cos(Ψ) −sin(Ψ)
sin(Ψ) cos(Ψ)

] [
Δxobj

Δyobj

]
(1)

[
Δxego

Δyego

]
=

[
Δxego,μ + Δxego,σ

Δyego,μ + Δyego,σ

]
,

[
Δxobj

Δyobj

]
=

[
Δxobj,μ + Δxobj,σ

Δyobj,μ + Δyobj,σ

]
. (2)

Object Track Instability: Lifetime and Downtime. When dealing with
object tracking in general, it is of interest how stable the object tracks gener-
ated by the perception have to be. Regarding a single object in one scene there
either is an object track and thus the object is perceived or there is no object
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Fig. 6. Error model Object Track Instability: Lifetime and Downtime

track and the object is therefore not perceived. Cumulating these over time and
associating object tracks of two consecutive timestamps with one another allows
the subsequent planning to consider past behavior of a perceived object. The two
main aspects of object tracks we are therefore interested in is loss of an object
track as well as the time gap until there is a new track for the same object.

The proposed error model (cf. Figure 6) varies both the lifetime of object
tracks and the downtime between two consecutive object tracks for the same
object. Additionally, a new object track also comes with a new ID. Therefore,
it is not trivial for the system under test to associate the new object track with
the old one and by that deduct the past behavior of the traffic participant.
Both the lifetime and the downtime consist of a systematic component μ and
a random component σ. While the systematic component is defined by a con-
stant time, the random component is generated by a folded random distribution.
Consequently, since the folded random distribution always produces a positive
value, the systematic component also equals the minimum lifetime (or minimum
downtime respectively). The subsequent equations for object track lifetimes tl
and downtimes td are therefore defined as follows:

tl = tl,μ + tl,σ, td = td,μ + td,σ. (3)

5 Evaluation

We have used the proposed test setup for analyzing accuracy requirements in two
series of experiments based on the unprotected left turn scenario. This section
presents results from these experiments before discussing generalizablity and
threats to validity.



Simulation-Based Elicitation of Accuracy Requirements 139

Fig. 7. Test cases and resulting safety envelopes regarding position inaccuracy

5.1 True Positive Inaccuracy: Systematic Object Position Shift

For an initial application of the proposed error model, we investigate the effect of
a systematic object shift based on the object coordinate system. This means that
the two parameters Δxobj,μ and Δyobj,μ are being utilized during the test process.
We specify an initial step size of 1 m for both parameters and the range to be
[−10 m, 10 m] × [−10 m, 10 m]. Collisions of the ego vehicle with the ground truth
object bounding box are considered for evaluating whether a test case is declared
as either passed or failed. Also, one test case is repeated several times to cope
with potentially occurring non-deterministic effects caused by the prototypical
system under test or the experimental simulation framework. When only one of
the test case repetitions is declared as failed, the whole test case is declared as
failed. The results of the test process comprising a perceived systematic object
position shift are visualized in Fig. 7.

There is a higher tolerance for an inaccurate longitudinal position while
smaller errors regarding the lateral position component already propagate up to a
failure earlier. This effect seems plausible since the lateral position of the oncom-
ing vehicle is relevant to how far the ego vehicle can enter the intersection while
it waits for the oncoming vehicle to pass (see Fig. 2). Even longitudinal position
errors of higher severity do not necessarily result in a failure. The higher toler-
ance for longitudinal position errors can be explained by the cautious behavior
of the ego vehicle. This behavior is observable by the time needed to accelerate
again and finish the left turn maneuver after braking for the inaccurately per-
ceived oncoming vehicle. Moreover, there is also a higher tolerance for a positive
longitudinal shift than for a negative one. This does also seem plausible due
to negative longitudinal shifts tricking the ego vehicle into overestimating the
time gap between itself and the oncoming vehicle. These negative longitudinal
shifts can therefore be the reason for the ego vehicle to decide for a quick left
turn before the apparent arrival of the oncoming vehicle. Based on the resulting
circular safety envelope, we state the following observation:

Requirement 1. The tested Plan component requires a Sense component that
reports an oncoming vehicle’s position with less than 1m inaccuracy in the sim-
ulated scenario of an unprotected left turn in an urban setting.
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Fig. 8. Test cases regarding fragmentary object tracks utilizing tl,µ and td,µ

5.2 Object Track Instability: Lifetime and Downtime

The proposed error model can be utilized to investigate two aspects for a defined
scenario. Firstly, whether the system under test (SUT) is sensitive to changing
object IDs caused by insufficient tracking consistency. Secondly, when exactly a
loss of track and the subsequent misdetection leads to a failure.

A first test process focuses on the former, considering a systematic lifetime
of object tracks with no downtime in between (tl,μ ∈ [1 s,10 s] with a step size of
1 s, td = 0 s). Each concrete test case is repeated several times.

However, none of the executed test case repetitions fail. This shows that even
a frequently changing object ID (tl,μ = 1 s) of the oncoming vehicle is not leading
to a collision. Therefore, we consider a varying lifetime as well as a downtime
between consecutive tracks in a subsequent test process.

For a first analysis of the SUTs response regarding a fragmentary object
track, a test process with parameters td,μ ∈ [0 s,10 s] (step size 0.1 s) and tl,μ ∈
[1 s,10 s] (step size 1 s) under the condition td,μ < tl,μ is conducted. This results
in 550 concrete test cases (cf. Figure 8). While there is still no obvious influence
coming from frequently changing object IDs, collisions occur first for downtimes
of 1 s when track lifetimes are set to 1 s, 2 s and 3 s.

Not detecting the oncoming vehicle for 1 s means that the SUT is not per-
ceiving it for nearly 14 m of its covered distance. Longer downtimes become
acceptable with increased lifetimes. This seems plausible, since the object track
lifetime tl,μ serves as an indirect trigger for the track loss. Losing track of the
oncoming vehicle is less critical, when it is either at a farther distance or has
already crossed the intersection. This emphasizes, that timing of such errors in
conjunction with the concrete scenario plays an important role regarding accept-
able track instability. Based on the results, we state the following observation
regarding object track instability in the investigated scenario:

Requirement 2. The tested Plan component requires a Sense component to
never miss an oncoming vehicle for more than 0.9 s during the simulated unpro-
tected left turn maneuver in an urban setting.
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5.3 Discussion

Let us briefly discuss the obtained results, the generalizability of the approach
and threats to vality of the presented test setup and results.

Obtained Assumptions/Guarantees. We conjecture that the investigated
scenario is adequate for identifying meaningful requirements regarding inaccu-
racy of the lateral position since an unprotected left turn scenario can comprise
a relatively small lateral distance between the ego-vehicle and the oncoming
vehicle (even when executed perfectly safely). For the elicitation of meaningful
requirements regarding the acceptable longitudinal position shift, another sce-
nario might have been more suitable, e.g. following a fast leading vehicle while
keeping a safe distance. As emphasized earlier, timing is an important factor
regarding loss of an object track. The decisive concrete test cases for accepted
time gaps between two object tracks comprised the situation that the SUT was
not able to detect the oncoming vehicle right before it entered the crossing area.
While this can already be seen as critical, it cannot be ruled out that there
exists a shorter downtime in the scenario linked to another situation that would
subsequently lead to a stricter requirement. For the automatic identification of
critical situations including such errors, reward functions [20] or optimization [5]
could be considered as strategies for further exploring the inaccuracy space.

Generalizability. Our initial application shows that the proposed technique
can be utilized for identifying requirements on a Sense component for a con-
crete Plan component in a concrete driving scenario. By applying the technique
to multiple scenarios and by investigating more perceptual hazards, it would
certainly be possible to specify initial quantifiable and measurable quality cri-
teria for a Sense component which are needed for safety validation—either per
scenario or aggregated, e.g., for road types or for an urban setting vs. the motor-
way. A key question to address will then be the right level of aggregation, trad-
ing many, bespoke requirements in individual scenarios for fewer, more stringent
requirements covering a range of different scenarios.

In a next step, the identified acceptable errors need to be analyzed together
and not isolated from one another to identify potential dependencies. Together
with more classes of perceptual errors and hazards, the space to explore grows
quickly and it will not be possible to explore it exhaustively. Scalability will
hinge on adding other techniques than simulation-based testing: e.g., a theory
of combining the effects of errors or a feedback loop with software verification
that can actually discharge guarantees and use assumptions in formal proofs. An
exemplary verification of requirements for a flight-critical system is conducted
by Brat et al. [4].

Validity. The obtained results pertain to one concrete Sense component and
one concrete Plan component and as such can only be understood as a first step.
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Concept Validity. As discussed above, many more steps will be required
in order to arrive at an actual assume/guarantee-style safety argument for
autonomous vehicles. The presented approach seems to suitable for providing
sensible initial accuracy requirements.

Internal Validity. Safety validation relying on black-box methods has its lim-
itations due to the fact that there can never be a proof of correctness and
only statements about the performance based on expert-knowledge and statistics
will be available. What this work has shown, however, is that sensible assump-
tions/guarantees seem to exist for which safe behavior can be achieved consis-
tently in the presence of perceptual inaccuracies.

External Validity. While we did only analyze one concrete scenario, this sce-
nario (as stated above) allows for relatively small distances between vehicles. To
us this indicates that even in scenarios that require precision, requirements can
be reliably identified with a quantifiable amount of inaccuracy.

6 Related Work

We first discuss the assessment of Sense components in the context of safe Plan
components, then mention decomposed and structured testing approaches for
cyber-physical systems, and lastly touch on the topic of requirement mining.

Sense Assessment for Safe Planning. Stellet et al. [31] point out existing
safety validations approaches for automated driving systems which also include a
decomposition strategy of combining statistically validated sensing and formally
safe planning. They discuss the need to validate sensing towards situations being
erroneously considered unsafe and erroneously considered safe, while also stress-
ing that not every perception error must lead to a failure of the overall system.
Stahl et al. [29,30] propose an online verification concept for a Plan compo-
nent. Their concept requires that all objects in the scene have to be detected
and perceived properly (without any further specification) in order to assure
a safe trajectory. Klamann et al. [17] further emphasize the difficulty of defin-
ing pass-/fail criteria on component level. Schönemann et al. [27] propose a fault
tree-based definition of general safety requirements for cooperative valet parking
following the sense-plan-act paradigm. Among other safety requirements, they
derive an allowed object position inaccuracy of 7.5 cm. Requirements for object
position accuracy are also investigated and quantified in our work, using sim-
ulation tests instead of a mathematical derivation. Recently, efforts have been
made towards novel metrics for Sense components that also consider situation-
dependent error severity regarding the subsequent planning [22,36]. While an
accurate perception is a prerequisite for safe planning and a safe overall system,
general quality criteria which can be assessed to validate a Sense component
are yet to be defined. In this work, we are not only defining but also quan-
tifying exemplary requirements regarding acceptable inaccuracies of the Sense
component for a given Plan component.

Decomposed and Structured Testing. The increasing complexity of cyber-
physical systems as well as enormous parameter spaces for possible test inputs
emphasize the need for novel testing methods. Systematic analysis of input stim-
uli and compositional falsification are recent approaches to meet the challenge
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of increasing complexity. Fremont et al. [9] perform structured testing to iden-
tify scenarios that lead to a failure of a neural network-based aircraft taxiing
system by Boeing and subsequently retrain the system to achieve a better per-
formance. Dreossi et al. [7] conduct a compositional falsification of a machine
learning-based perception component and an advanced emergency brake system
to identify potentially relevant misdetections. Tuncali et al. [33,34] present a
framework for test case generation which they utilize to test both a machine
learning-based perception component and a collision avoidance controller. They
further emphasize the need to not only evaluate Sense components isolated but
to consider closed-loop behavior of the whole system. While testing strategies
of the listed contributions share similarities with our test design, we specifically
focus on the performance of a Plan component under the influence of synthet-
ically generated perception errors. The contribution that is the closest in spirit
to our research is given by Piazzoni et al. [24,25]. While also utilizing simulation
and handcrafted perception error models, they propose two test cases incor-
porating different Sense errors, i.e. non-detections, tracking loss and position
inaccuracies of perceived objects. However, test case results are not aggregated
to elicit acceptable errors. All the error types mentioned above are considered
in this work and corresponding requirements are subsequently elicited.

Requirement Mining. As a last direction of research we want to men-
tion requirement mining by falsification utilizing temporal logic. Both Hoxha
et al. [11] and Jin et al. [15] explore properties of a given automatic transmission
model that is expressed by a set of ordinary differential equations and subse-
quently elicit requirements regarding input signals. The requirement elicitation
approach proposed in our work relies on structured testing rather than math-
ematical optimization, since the implementation of the Plan component under
test is not known and therefore analyzed in a black-box manner.

7 Conclusion and Future Work

We have presented an approach for the elicitation of requirements based on
closed-loop testing of a given Plan component. This comprises the concept of
subsequently executing test cases while degrading the perception performance
based on consecutive evaluation. For that, we also introduce a non-exhaustive set
of perceptual hazards. Our results show that it is possible to elicit measurable
and quantifiable initial requirements for the Sense component in one investigated
scenario. These quality criteria are a first step towards assume/guarantee-style
decomposition of system validation at the interface between Sense and Plan.

Future work should address modeling of further perceptual errors, also in
a combined manner and including random errors. Moreover, various different
scenarios should be utilized and investigated to further specify the assumption
of Plan on Sense. A systematic way is required to identify categories of relevant
traffic participants and areas which need to be perceived in urban traffic and
thus should be considered by quality criteria for the Sense component. Further
examination of suitable quality criteria for the interface between Sense and Plan
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components is needed to promote contract-based design. Closely related to that,
correct-by-construction approaches [8,21] in the context of autonomous vehicles
should also be further researched. Having an understanding of the behavior of
Sense and Plan components in different scenarios and handling of faults and
errors will be essential for finally establishing a safety argument.
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Abstract. In many industries, traditional automation systems (operat-
ing technology) such as PLCs are being replaced with modern, networked
ICT-based systems as part of a drive towards the Industrial Internet of
Things (IIoT). The intention behind this is to use more cost-effective,
open platforms that also integrate better with an organisation’s infor-
mation technology (IT) systems. In order to deal with heterogeneity
in these systems, middleware platforms such as EdgeX Foundry, IoTiv-
ity, FI-WARE for Internet of Things (IoT) systems are under develop-
ment that provide integration and try to overcome interoperability issues
between devices of different standards. In this paper, we consider the
EdgeX Foundry IIoT middleware platform as a transformation engine
between field devices and enterprise applications. We also consider secu-
rity as a critical element in this and discuss how to prevent or miti-
gate the possibility of several security risks. Here we address secure data
access control by introducing a declarative policy layer implementable
using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Finally,
we tackle the interoperability challenge at the application layer by con-
necting EdgeX with DIME, a model-driven/low-code application devel-
opment platform that provides methods and techniques for systematic
integration based on layered Domain-Specific Languages (DSL). Here,
EdgeX services are accessed through a Native DSL, and the application
logic is designed in the DIME Language DSL, lifting middleware develop-
ment/configuration to a DSL abstraction level. Through the use of DSLs,
this approach covers the integration space domain by domain, technology
by technology, and is thus highly generalizable and reusable. We validate
our approach with an example IIoT use case in smart manufacturing.
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1 Introduction

The Industrial Internet of Things (IIoT) enables the transformation of tradi-
tional manufacturing systems into highly flexible, scalable and smart intercon-
nected automation systems widely known as Industry 4.0 [1,5,23]. Decentral-
ized decision making through real-time monitoring, using a large number of
networked devices form the basis of IIoT [21]. To realize future smart facto-
ries, many field devices operating with both wired and wireless communication
technologies need to coexist and interoperate seamlessly, which is one of the
significant challenges for IIoT adopters.

Extracting meaningful insights from the large volume of data generated by
devices poses another significant challenge. It is usually done at two levels, at the
on-premise network edge (widely referred to as edge computing) and at the cloud
level (cloud computing) [3,21]. With advancements in edge computing, decisions
can be taken at the local edge, especially in delay-sensitive situations. Remote
monitoring, diagnosis and maintenance of complex equipment/ machines is one
of such applications that is widely used in smart manufacturing. Maintenance
of assets in a factory is carried out with three different approaches: i) Reactive
maintenance (e.g., repair the system once it breaks down), ii) preventive main-
tenance (e.g., regular checks), and iii) predictive maintenance (e.g., IIoT smart
sensing-based solution that predicts and schedules the machine maintenance at
the right time) [7]. Predictive maintenance schemes provide the best utilization
of assets by minimizing their downtimes.

In this paper we study a predictive maintenance system (PreMS) from a
system integration point of view, encompassing heterogeneous system elements
involved in an architecturally sound solution that provides reliable interoperabil-
ity. These elements include IIoT components, middleware, specific application
logic needed to build the PreMS solution, and also security aspects. In doing this,
we leverage as far as is possible a platform approach instead of bespoke program-
ming or even bespoke code-based integration. A well-designed IIoT platform
at the network edge can act as a seamless service-based transformation engine
between field devices and enterprise applications. To deal with the field device
heterogeneity in a flexible, scalable and secured fashion, industry consortia have
been developing several IoT middleware platforms such as EdgeX Foundry [10],
IoTivity [22], FI-WARE [22]. To overcome interoperability issues between field
devices of different standards we consider the EdgeX Foundry platform as our
IIoT middleware of choice at the network edge.

For the solution design and implementation, we adopt the approach proposed
in [15], which shows the use of a flexible, low-code platform for enhanced inter-
operability with characteristics well suited for our PreMS application. While [15]
shows its use in a building automation setting, this flexible, low-code platform
for enhanced interoperability serves our purposes for building an IIoT platform
here too. Our contributions are
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– an architectural approach to edge computing based integration and deploy-
ment of middleware based model driven software applications for IIoT
including EdgeX and DIME, a graphical application development method-
ology backed by formal models [6]

– a role based, Ciphertext-Policy Attribute-Based Encryption (CP-ABE) secu-
rity policy development approach for security, privacy and compliance policies
compatible with DIME.

Our previous work [15] showed that such a combination can yield a uniform
paradigm and platform for the design of both applications and their properties.

The remainder of the paper is structured as follows. Section 2 provides an
overview of the EdgeX Foundry middleware and system integration platform.
Section 3 presents the PReMS use case application including device provisioning,
data and alert handling and reusable application development using Domain
Specific Languages (DSLs). Section 4 presents the security policy approach and
Sect. 5 concludes the paper.

2 EdgeX Foundry as IIoT Middleware Platform

Fig. 1. EdgeX Foundry - platform architecture [10]

Although there are several IIoT middleware platforms available [22], we choose
to use EdgeX Foundry at our network edge since it is an open-source, hard-
ware agnostic, highly active, plug and play IIoT middleware platform aimed at
edge computing. It is also supported by several industrial organisations, many
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of which are partners in our national research centre [8]. A commercial-grade
version of EdgeX and associated IIoT device connectors (detailed in Sect. 3.1) is
also available [14]. EdgeX Foundry [10] consists of six different layers (four ser-
vice layers + two system layers) as shown in Fig. 1, implemented using loosely
coupled microservices that are container deployable. Details about each layer
are discussed in [15]. External devices, such as sensors and actuators of different
protocols interact with the EdgeX platform using device connectors present in
the device service layer. EdgeX includes security elements for protecting data
while managing IoT entities. As an open-source platform, security features are
developed with open interfaces and pluggable, replaceable modules. The secret
store is implemented through the open source Vault [15], and communication
with microservices is secured using TLS. A secure API gateway is the sole entry
point for EdgeX REST traffic and safeguards unauthorized access to EdgeX’s
REST APIs.

Recent literature shows how to exploit EdgeX Foundry as a ready-made
middleware platform. Xu et al. [25] propose a microservice security agent that
provides secure authentication by integrating the edge computing platform with
an API gateway. Han et al. [13] designed a monitoring system using EdgeX
to deal with diverse communication protocols and insufficient cloud computing
resources. Kim et al. [17] design an EdgeX-based general-purpose, lightweight
edge gateway with low-end CPU and low-capacity memory. The gateway pro-
cesses small load data to monitor control systems for smart homes, smart farms,
and smart meters. Zhang et al. [26] describe a trusted platform to preserve data
privacy of edge computing clients via an edge secured environment that inte-
grates EdgeX and the Hyperledger Fabric blockchain network. Platform porta-
bility is enhanced by using EdgeX and extending it to incorporate the Hyper-
ledger via a collection of well-defined security authentication microservices. Xu
et al. [24] present an EdgeX-based edge computing environment that covers
implementation and deployment at the edge. Devices are connected via CoAP
and HTTP-based REST APIs on a Raspberry Pi, showing experimentally that
CoAP is more stable and faster than HTTP.

In [15] we showed how to design and develop a low-code application for
building automation that uses EdgeX’s capabilities as an integration service.
For the specific low-code support, we used a model-driven approach based on
Domain Specific Languages at two levels:

1. language DSLs as a mechanism to design and implement the application
design environment itself, i.e. the Integrated Modeling Environment DIME,
and

2. application domain DSLs at application design time. The Native DSL mech-
anism in DIME is used as a means to integrate and expose both capabilities
offered by end-devices and EdgeX middleware services to application design-
ers. Additionally Process DSLs are used as a means to foster reuse of medium
and large-grained business logic as reusable features across applications.

The native and process DSLs have been previously applied also to robotic sce-
narios [19], and [18] shows how to craft REST services and cloud services in



150 J. John et al.

the DIME environment. In [15] we also adopted the ADD-Lib [12] for policy
definition. The policies designed with ADD-lib translate to efficient code that is
integrated in DIME through its Native DSL mechanism.

Altogether, this shows flexibility, ease of extension, support of high-assurance
software quality, agility, security, a service-oriented approach, and containeriza-
tion, as well as proven compatibility with EdgeX. The contributions of this paper
concern the portability of the architecture, methodology, and the reuse of many
artefacts also in the Predictive Maintenance domain.

3 Industrial Automation Use Case: Predictive
Maintenance

Fig. 2. EdgeX along with DSLs for an IIoT use case - predictive maintenance system
(PreMS)

We illustrate the approach with a simple industrial automation use case concern-
ing predictive maintenance, shown in Fig. 2. We consider a monitoring system to
monitor machine health, whose purpose is to make decisions on machine main-
tenance, avoiding unscheduled downtime and preventing machine failure.
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Fig. 3. Predictive maintenance system - an excerpt from the application logic

The monitoring system consists of wireless vibration sensors attached to the
machine in key locations, an infrared camera and a high definition video camera
that monitor the machine from a short distance and deliver image data for
visual analytics to identify machine states. The sensors are wirelessly connected
using Bluetooth technology, and the cameras are connected using Wi-Fi (infra-
red camera) and 5G (high definition camera) technologies. The edge analytics
collecting and analysing data creates maintenance alerts to machine handlers
indicating machine state and likely failure time. This allows the machine handlers
to schedule planned downtime of particular machines avoiding machine failure
and disrupting the manufacturing process. The general form of the platform
architecture shown in Fig. 2 is detailed in [18]. Here we highlight the two layers
of DSL and the specific PReMS instance of the External layers: Native DSLs
and service providers.

Figure 3 details a high-level overview of the application logic of the Predictive
Maintenance System (PreMS). The vibration sensors and the thermal imaging
(infrared) cameras associated with each machine periodically report their data
to the decision system. Under normal conditions, the HD cameras operate in
an intermittent mode so that the industrial wireless network is not flooded with
high volumes of unwanted data. Suppose any abnormalities are observed either in
the machine vibrations or in the thermal conditions detected by the IR camera.
In that case, PreMS switches the HD video camera from intermittent mode to
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continuous operating mode for further analysis and uninterrupted video frames
are fed to the visual analytics software for a detailed investigation of the scenario.
Accordingly, various alerts are sent to different maintenance handlers based on
the current machine state and its estimated failure time.

The sensors and cameras are connected to an EdgeX edge deployment that
deals with the heterogeneity in connectivity and sensing modalities as well as to
provide management capabilities to the monitoring system. We now look at the
stages involved in provisioning the preventative maintenance system (PreMS)
using the core and device layers of EdgeX, and DIME for EdgeX integration and
to design the PreMS application. We detail below the three main stages involved
from the point of view of a PreMS developer. We assume that EdgeX runs on
an on-premise edge computer.

3.1 Provisioning Devices in EdgeX: The Integration Layer

The device service layer of EdgeX (Fig. 1) aids the sensor/camera provision-
ing process through protocol-specific device connectors (e.g. BLE, MQTT, etc.)
in the device service layer. It also supports the development of custom device
services using an available SDK. The device service layer converts the data gener-
ated from various types of devices with different protocols into a common EdgeX
data structure and sends the data to other microservices through REST calls.
As shown in Fig. 2, our PreMS use case consists of three device services; one for
each of the device protocol types (Vibration sensor-BLE interface, IR camera -
WiFi interface, HD camera - 5G interface). A device service is only aware of
the generic communication protocol, and the specific details about a particular
device are uploaded to EdgeX through device profiles. The device specific details
include the sensor data types, the sensing and actuation commands supported
by the device (REST API calls) in addition to the generic information such as
the manufacturer, model number, etc. The detailed process of registering an
external device to EdgeX through its device profile for a building automation
use case is detailed in [15]. In our case the procedure is the same: the PreMS
Native DSL is an external Native DSL (see Fig. 2) for the devices encompasses
a DSL per each IoT device type, and also here, the ability to use device profiles
enables a very easy commissioning of multiple device instances of the same kind,
e.g. the HD cameras for Machine A and Machine B in Fig. 2 as two instances of
the HD camera device type.

As shown in Fig. 2, the Native DSLs expose to DIME collections of basic
services across one or more application domains. They comprise “atomic” ser-
vices which are implemented in code or as calls to external services, APIs and
platforms. Once the devices are provisioned and connected to EdgeX, monitor-
ing data can flow to EdgeX. Each device sends its data to the core-data service
through its associated device services in the form of events/readings. The sensed
data are stored in the database and made available on the common message bus
(optional). The other microservices (e.g., Rules Engine) can operate on the data
and derive local decisions based on various policies.
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3.2 Data and Processes: The Application Layer

The PreMS application data model in DIME refers to the EdgeX entities, to
the various device profiles, and includes the other entities relevant to the PreMS
application, like users, locations of the machines and policies for later decision
making. For every elementary or complex object in the data model, a set of
services are automatically created in DIME (get and set services), so that the
definition of an object and its attributes, as well as of an enumeration type,
automatically produces a DSL for its management coherent with its structure
and types without need of manual coding. This is particularly useful when we
consider industrial users who are mostly not software developers.

At the application level, as shown in Fig. 2, DIME comprises of its own
basic DSL, the Common SIBs library, with generic capabilities to handle files,
decisions, comparisons, iterations, and more. It also provides a rich DSL for GUI
element design. DIME addresses primarily Web applications, so GUI models
using the design and functional elements provided in the GUI DSL are the way
to define the look and feel of web pages, as well as their navigation structure.

Typically, applications have a hierarchical architecture, because processes can
include other processes, therefore there are entire Process DSLs arising bottom-
up from the design and sharing of processes for reuse in other processes. The
process symbol is that of a graph because the processes (or workflows) are mod-
elled as hierarchical graphs that define both control flow and data flow of the
application. The Native DSLs on the contrary comprise of “atomic” services,
hence the atom symbol on the icons. For example, the UploadDevProfile, Cre-
ateDev and StartDev services shown in Fig. 4 are atomic services belonging to
the EdgeX native DSL in DIME, and the entire process in Fig. 4 implements the
SetupDevice process, which is a process.

Figures 4 and 5 show how control flow and data flow are represented: the
workflow logic is the control flow, denoted by solid arrows (e.g. from Start to
UploadDevProfile in Fig. 4), and the data flow is denoted by dotted arrows, that
connect directly the data elements (e.g., the output devTypeID produced by
UploadDevProfile that is passed as input to CreateDev in Fig. 4), or refer in input
or output to the Data context, as shown in Fig. 5 on the left, especially when
complex data types are involved. Complex data types are typically created at
once, but read or modified field by field in the process workflow. This is shown
for the device type record: its field DeviceTypeID is used (i.e., read) by three
services but its List of Services field is used only by the SendCommand service.

3.3 Reuse Through DSLs

In the platform approach inherent to DIME and EdgeX, reuse of small and large
components across applications in a domain and also across domains is an essen-
tial goal of the platforms, and a key benefit for the users. Referring again to the
architecture in Fig. 2, the internal functionality offered by EdgeX is represented
in DIME as a native palette to the application designers. The same applies to the
EdgeX Core layer services, to the CP ABE security service Native DSL for our
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Fig. 4. EdgeXBAu processes: the SetupDevice process in DIME registers the device
type and physical device to EdgeX

Attribute Based Encryption capabilities, as well as for other collections of ser-
vices in the Common SIBs library, that include generic capabilities e.g. to handle
files, decisions, comparisons, iterations, and more. In this sense, the “layers” in
DIME differ from the layers in EdgeX.

From an EdgeX point of view, the granularity of services it provides in the
four layers in Fig. 1 matters, and there is a clear hierarchy among the different
service libraries at different levels. This is a service provider point of view, which
refers to granularity and position in the internal service provision architecture.

For DIME, however, the point of view is that of the user, i.e. the consumer
of services – whatever is external to the application layer is an external service,
i.e. a “black box” seen as a unit of functionality ready to be used as a ready-
made atomic entity. The important concept here is the unit – seen from DIME,
any service provening from EdgeX is atomic, independently of their EdgeX-
internal structure and complexity. This is a very powerful abstraction – not only
EdgeX, but any external source of functionalities is treated the same way as is
for example the UR3 robot command language in [19] or the Kinect and ROS
related libraries in [11]. This virtualization and hiding mechanism is essential for
a platform, in order to master heterogeneity and interoperability, so that DIME
allows to mix and match services provening from different application domains,
and service providers.

The important concepts are the native DSLs for the basic functionalities and
the process-level DSLs for the hierarchical construction of applications within
DIME. All the Common SIBs and the GUI DSL come with DIME, so they
are written once but available to any application. DIME’s EdgeX DSLs are
also shareable across all the DIME applications that use EdgeX. The degree of
generality and genericity in the specific domain is key to the degree of reusability.
For example, our PreMS application “inherits” from the BAu application of [15]
the collection of DIME Processes produced during the BAu application design
that are specific to EdgeX, but not to BAu. Concretely, Figs. 4 and 5 show two
such processes:

– Figure 4 shows the SetupDevice process in DIME, which registers the device
type and physical device to EdgeX, originally called process BAuSetupDevice
in [15], and
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Fig. 5. EdgeX processes: simplified EdgeXOperations service

– Figure 5 shows the simplified EdgeXOperations service, which operates any
specific application’s system (originally the process BAuOperations in [15],
or at any time allows users to decide to reconfigure, restart or stop the appli-
cation and terminate.

Many other processes are application specific, thus do not carry over from a
preexisting case study to the PreMS, and we have to design our own. Similarly,
many native DSLs of the BAu application concern specific IoT devices (like PIR
sensors, CO2 sensors etc.) not relevant to the PreMS application, so we have
to design our own native DSL for the specific device types we use – vibration
sensor, IR camera and HD video camera.

An MDD approach as supported by DIME through the models followed by
code generation of the resulting application makes this reuse much easier and
more intuitive than if we had to understand and reuse manually produced code.

3.4 Handling Alerts and Machine Failures

Here we detail the various stages involved in handling the alerts or machine
failure scenarios. Once the PreMS detects any abnormal working conditions for
any machine, alerts/notifications are sent to maintenance handlers for proper
maintenance. Figure 6 shows the high-level internal architecture of the alerts
and notification microservice provided by EdgeX as part of its Alerts & Notifi-
cation library of the Supporting Services level (see Figs. 1 and 2). The Notifica-
tion Handler receives the request to send out alerts or notifications from other
microservices or applications (on-box/ off-box) through APIs of different appli-
cation protocols (REST, AMQP, MQTT - shown on the left side of Fig. 6). In the
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Fig. 6. High-level architecture of alerts & notifications microservice within EdgeX [9]

considered use case scenario, the alerts/notifications may be initiated either by
the device service/ rules engine (when the vibration sensor readings fall outside
the expected values), or by the thermal image inspection software (when any
of the machine or its parts gets overheated), or by the visual analytics soft-
ware. The Notifications Handler persists the received notification and hands it
over to the Distribution Coordinator. The Distribution Coordinator queries the
Subscription database to get the intended recipient details of the particular noti-
fication, including the communication channel information such as SMS, email,
or API destination endpoint (REST, AMQP, MQTT). Accordingly, the Distri-
bution Coordinator passes the alert/notification to the corresponding channel
sender (shown on the right side of Fig. 6), which sends out the alert/notification
to the subscribed recipients.

For us, at the application level in DIME, this is just yet another atomic
service provening from EdgeX.

4 Secure Access Policy for PreMS

In the PreMS application, we use the EdgeX secret store security feature for stor-
ing sensitive data, while secure access of data is performed using the Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) [4]. For user authentication, we
use the EdgeX API gateway security element. For the industrial automation
application, we define a secure access policy mechanism as follows: we consider
four attributes involved in our use case scenario, namely Maintenance Handler
(MH), Mechanical (ME) department, Video Analysis (VA) department and Deci-
sion Management System (DMS), whose main functionalities are described as
follows: (i) the MH of ME department is responsible for monitoring the health
of the machine and have access to the data collected by the vibration sensor; (ii)
the MH of VA department analyses the images captured by the infrared camera
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and the high definition video camera, and notifies the DMS Maintenance Han-
dler if any deviation from normal behaviour is noticed; and (iii) the MH of the
DMS takes the final call for the need of generating an alarm if any emergency
situation occurs and notifying the same to the PreMS for further actions.

Table 1 shows the different types of devices used, the type of data they gener-
ate and the access policies. The access policies define which entities have access
to specific data generated by the devices. As mentioned previously, we intend
to allow fine-grained secure access control based on attributes, and for this we
leverage public-key encryption, i.e., CP-ABE. In CP-ABE, the ciphertexts are
identified with access policies and the private keys with attributes. Therefore, a
message encrypted using CP-ABE produces a ciphertext which can be decrypted
using a private key by a user who owns a set of attributes and satisfies the access
policy. One of the key features of CP-ABE is that it enables the definition of
top-level policies and is particularly suitable in settings, where it is necessary to
limit the access of a particular information only to a subset of users within the
same broadcast domain [2].

The CP-ABE scheme consists of the following four algorithms:

– Setup(). The algorithm takes no input other than the implicit security
parameters and returns the public key pkc and master key mkc.

– Keygen(mkc, Attrc). The key generation algorithm takes mkc and the user
attribute list Attrc as inputs and returns a private key pvc.

– Abepkc,w(m). The encryption algorithm takes pkc, an access policy w over
the pool of attributes, and sensor reading m as inputs. It returns a ciphertext
that can only be decrypted by a user that possesses a set of attributes Attrc
such that Attrc satisfies w.

– Abdpvc
(c). The decryption algorithm takes pkc, pvc and the ciphertext c as

inputs. It outputs the plaintext m if and only if the user Attrc satisfies w.

Table 1. Device type and access policy

Device type Data type Access policy

Wireless Vibration Sensor [Integer/Float] MH ∧ (ME ∨ DMS)

Infrared Camera [H.264/ numeric array] MH ∧ (VA ∨ DMS)

High Definition Video Camera Float [H.264/ numeric array] MH ∧ (VA ∨ DMS)

In order to implement this, we profit again from the work done in [15]: as the
four algorithms are domain and application independent, we reuse the Native
DSL for CP-ABE they produced, as well as the process in Fig. 5. What changes
are the specific access policies for the PreMS from Table 1, which we will again
define using the low code model driven development tool ADD-Lib [12] and the
surrounding PreMS application logic.
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5 Conclusions

We have shown how EdgeX simplifies integrating and managing a wealth of IoT
devices and protocols that are central to applications in cyber physical manufac-
turing systems like predictive maintenance. The platform character of EdgeX and
of modern low-code application design environments (LCADEs) is central to their
ability to enable high reuse of existing resources, like microservices, components,
and algorithms (e.g. CP-ABE), embedded through a Native DSL mechanism in
DIME, our chosen LCADE. The DSL concept is central to the integration, the vir-
tualization and the reuse. For example, the extension of existing middleware ser-
vice platforms like EdgeX to include advanced security mechanisms like CP-ABE
is made easy as CP-ABE is in DIME a native DSL plus a collection of domain and
application independent processes. The DSLs also support application extension
and evolution with minimum programming effort.

Because DIME adopts a generative approach to code, every time the models
are modified or extended, the code is efficiently re-generated and redeployed, in
a DevOps fashion. The consequence is that every version of the deployed code
is “clean”: it contains only what is needed (minimal), it contains no patches (it
is most recent), and it is unspoiled by human intervention, which is known to
inadvertently introduce bugs when fixing detected issues.

In terms of lessons learned, an integrated modeling environment like DIME
is indeed superior to its predecessors, that addressed only the Native DSLs for
integration and the processes. For example, in [16] the jABC tool, also a low-
code and generative platform, while it supported a SIB palette for the commands
available to steer a Lego robot, serving the same purpose as the Native DSLs, the
data model was not supported in an integrated way, nor there was a possibility
to define GUIs. We see the ability to work on all these design facets within
the same environment as a clear asset. It eases adoption and better supports a
multidisciplinary collaboration with experts of other domains.

From the point of view of modelling styles, in the CPS and engineering
domain the prevalent approach is based on simulations or on hybrid models,
e.g. for various kinds of digital twins that serve as virtual replicas of CPS. In
the track dedicated to the engineering of Digital Twins for Cyber-Physical Sys-
tems in ISoLA 2020 [?], for example, providing a recent panorama of modelling
approaches and applications in areas close to our own research, the considered
models are predominantly quantitative, answering questions about uncertainty,
precision and tolerance. Even when the applied model-based and formal tech-
niques support some form of reasoning, this happens mostly in a statistical and
AI or AI-like fashion. We concentrate here instead on a fully MDD approach to
application design, which is still new to the CPS domain. Its relation with the
Digital Twin concept is addressed in detail in [19], and the role of formal mod-
els for the low code, MDD application design as used here vs. a corresponding
digital twin generated via active automata learning is discussed in [20].

The specific support of evolution is very attractive for our specific setting: our
long term objective is to produce a collaborative design ecosystem and an open
virtual testbed for intra-but also interorganizational advanced manufacturing,
where we expect solutions to grow and evolve over time. We could envisage
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the EdgeX Distribution Coordinator shown in Fig. 6 to interface in the future
with an advanced specialized alarm and notification escalation solution, like the
Enterprise Alert product (Derdack, n.d.), and this extension should happen with
minimum coding, minimum disruption to the underlying PreMS application,
minimum effort, including testing, and minimum risk. We therefore value the
simplicity, reuse, openness, and abstraction that these platforms jointly provide.
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Abstract. The fourth industrial revolution is driven by Software-
enabled automation. To fully realize the potential of this digital transfor-
mation in a way that is beneficial to society, automation needs to become
programmable by domain experts—the vision being a Software-assisted
increase in productivity instead of replacing workers with Software.
While domain experts, e.g., workers in production, typically have exten-
sive experience with processes and workflows involving cyber-physical
systems, e.g., production machines, they have little to no knowledge of
programming and formal logic. In this paper, we present a framework
for expressing executable rules in the context of a cyber-physical sys-
tem at the conceptual level, akin to human reasoning, in almost nat-
ural sentences (e.g., if a person is within 1m of the machine then the
light will turn red). These requirements are automatically transformed
by our framework into formal logic and can be executed and evaluated
by a rule engine without additional input by domain experts. The frame-
work is designed in a modular way that enables domain engineering, i.e.,
the development of new languages for individual application domains,
with minimal effort. Only domain-specific entities and predicates (e.g.,
is within) need to be defined and implemented for a new domain. We
demonstrate our framework in a logistics scenario on a shop floor that
requires human-machine collaboration.

Keywords: Domain-specific languages · Logistics · Language
programming · Language model transformation · Runtime monitoring

1 Introduction

Digitization by software automation is growing significantly in many organi-
zations. In many companies with no particular background in Software (e.g.,
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in the industrial and manufacturing sector), Software crept into processes and
products—first slowly but then with an ever-increasing pace and scope, culmi-
nating in the mantra that “every company needs to become a software company”.
This mantra comes with an inherently increasing demand for skilled software-
engineers. Universities and colleges are unable to satisfy this demand adequately.

In many instances, Software is merely a means of automation, and we have
to put the power of controlling automation into the hands of domain experts and
the general public to bring digital transformation to its full potential in a way
that is beneficial to society. Moreover, rules in automated systems need to be
understandable at the conceptual level of human reasoning to be amenable, e.g.,
to ethical and legal considerations. Putting it bluntly, we need frameworks that
enable “programming the real world”, e.g., specifying the behavior of objects on
a shop floor using observable events, conditions, and actions.

Classical systems engineering approaches fall short as in these approaches
requirements on system behavior are decomposed to subsystems and refined to
the level of signals, making the originally expressed intention hard to reconstruct
(cf. [1,2] for examples). New or changed requirements need to be decomposed
and translated from scratch, requiring expensive manual effort, involving domain
experts and system developers.

We propose an alternative approach that uses domain-specific languages to
bridge the gap between the conceptual level of human reasoning about the
world and concrete signals and conditions in complex logistical systems enabling
domain experts to write requirements like “if a person carrying a box is within
1m of the designated storage location then the light will turn green”. Such require-
ments have a well-defined meaning in a system through domain-specific abstrac-
tions, computing the value of predicates like “within 1m of” in a concrete cyber-
physical system. System-wide relations and emergent behavior within cyber-
physical systems can be evaluated in the form of natural predicates at runtime
by preserving the meaning of requirements in domain-specific abstractions.

In this paper, we report on the results of an exploratory design effort, in
which we have developed the generic architecture, languages, and abstractions
of a framework that enables domain experts to program the behavior of cyber-
physical systems (CPS) in the logistics domain. We present the development of
a framework with domain-specific languages that allow to express executable
rules about moving things in the real world at an abstract level, akin to human
reasoning, e.g., the light should turn green if a person carrying a box is within
1m of the designated storage location.

The resulting framework relies on three individual connected languages: (1)
a language for the definition of requirements, (2) a language defining domain-
specific objects, functions, and predicates as well as their interpretations in terms
of concrete system signals and data, and (3) an extended first-order logic using
arbitrary predicates for monitoring and controlling CPS at runtime.

We demonstrate our approach in a case study from the logistics domain: a
scenario on a shop floor that requires human-machine collaboration.
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Outline. The paper is organized as follows: Sect. 2 introduces logistics as our
problem domain and related work. Section 3 presents our case study with our
logistics research lab. Section 4 outlines our framework for the independent spec-
ification of domain and requirements. Section 5 describe the monitoring of the
requirements at runtime and reports on results from our case study. Section 6
discusses the development of our framework and the results from our case study.
Section 7 concludes the paper.

2 Related Work

Logistics is the science of moving things in the real world in a reasonable and effi-
cient manner. Logistics applications permeate throughout the human inhabited
world and exist in a plethora of different shapes and forms. Logistics systems
scale from simple packaging stations to planetary-wide interdependent supply-
chain networks. Although there are almost as many types of logistics systems as
there are industries, they all share the same basic primitives of movement.

In order to sustain the pace of digital transformation, these logistics systems
need to become programmable by domain experts. Moreover, rules in automated
systems need to be understandable at the abstract level of human reasoning in
order to be amenable to ethical and legal considerations.

Logistics automation is an engineering discipline with a disposition towards
algorithms that use numeric methods for optimizing highly context-specific
parameters. As such, it is a very different style of reasoning compared to what
the shop floor workers are doing. Typical programming languages of field-level
automated systems (i.e. Programmable Logic Controllers (PLCs)) are not usable
by domain experts as they are rooted in control engineering. High-level require-
ments have to be related to the domain of these systems for execution in the real
world and monitoring and controlling CPS at runtime. Entities, i.e., objects and
predicates, which are used in high-level requirements have to be defined over the
available signals and system data.

For this reason, No Code or Low Code platforms, e.g. DIME [3], Mendix1,
Creatio2, Pega3, among others, have become more and more popular in indus-
try [4]. These platforms aim to facilitate the programming of mobile, Internet of
Things (IoT), and are applications by non-technical employees based on domain-
specific languages (DSL) [5] and models [6]. However, most solutions predom-
inately target business process automation and user applications but are not
suited for the programming of technical systems, e.g., robots.

In Academia, various languages and tools have been developed to address
the definition of requirement and the automated processing. ASSERT [7] pro-
vides the constrained natural language SADL for formalizing domain ontologies
and the requirements language SRL to express requirements as conditions over
controlled system variables. FRET [8,9] provides the language FRETISH for
1 https://www.mendix.com/.
2 https://www.creatio.com.
3 https://www.pega.com/.

https://www.mendix.com/
https://www.creatio.com
https://www.pega.com/
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specifying the requirements and transforming them into temporal logic formulas.
However, these tools still utilize mathematical conditions over system variables
in their requirements.

Academia has developed several controlled natural languages, e.g. Process-
able English (PENG) [10], Controlled English to Logic Translation (CELT) [11],
Computer Processable Language (CPL) [12], which are close to natural lan-
guages but allow for knowledge representation and reasoning about the textual
content. A good overview and classification of controlled languages are given in
[13]. Attempto Controlled English (ACE) [14,15] provides a large subset of the
English language to specify requirements which can be transformed unambigu-
ously into a first-order logic [10]. However, ACE aims at knowledge representa-
tion and reasoning and does not provide a mechanism for the interpretation of
text entities on system data for runtime monitoring and evaluation.

Other solutions for the requirements engineering in natural language aim
at transforming natural language into machine-processable formats using fuzzy
matching domain-based parsing techniques [16] or natural language processing
(NLP) [17]. The problem with these tools is that their interpretation of the
requirements within a real-world domain is undefined.

As the authors of [18], we see the importance for integrating multiple mod-
els wit specialized focus. We explicitly see the importance for the definition of
domain entities and predicates over data of the CPS independent of the specifi-
cation of requirements. We, therefore, have developed a framework which allows
the specification of domain entities and predicates based on system data and
their usage in requirements and first-order logic for the runtime monitoring and
control.

The following Sect. 3 describe our use case. An overview of our framework
with the engineering of the domain and the specification of monitorable require-
ments is given in Sect. 4.

3 Case Study: Warehouse Logistics

Our case study for the application of our framework has been implemented in
a special purpose logistics research lab. This lab is designed as a highly flexible
testbed environment for CPS and features a central experimentation area that
is free of permanently installed equipment at ground-level. This central area is
22 m long and 15 m wide. It is surrounded by 40 infrared cameras that are part
of a Motion Capturing System (MoCap). Additionally, eight laser projectors are
installed on the ceiling that can project colored vector graphics on the floor. The
graphic shapes can be changed with a very high frame rate and low latency.

Figure 1 shows the framework of the lab. Physical objects are tracked by
the MoCap system via uniquely identifiable collections of retro-reflective mark-
ers. The generated data streams are sent to the simulation environment. The
simulation environment mirrors the perceived objects into a virtual representa-
tion of the physical space. The simulation controls the laser projection system
and displays virtual objects via a mapping to vector graphics directly in the
experimentation area.
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Fig. 1. Framework of the research lab

For the purpose of the application example, Message Queuing Telemetry
Transport (MQTT) has been used as interface to allow the rule engine to gener-
ate virtual objects for laser projection to the floor. The incoming data stream of
object positions could be either received by a subscription to the MoCap topic
on the MQTT server or from the simulation environment. The latter option was
used while developing the monitoring framework, as it allowed for faster testing
of newly written code.

Our concrete scenario is the manual transports of assembly pieces between
workstations, as it can be found in warehouses and plants. Assembly pieces are
manually carried in a container between the workstations. The scenario consists
of a worker carrying a container KLT 2 for small assembly parts between two
workstations AS 1 and AS 3 (cf. Figure 5). Positions of container and work-
stations are continuously tracked by a Motion Capturing System (MoCap) (cf.
position tracking in Fig. 2). The tracking data is sent to a broker using the MQTT
protocol [19] from where it is distributed to our rule engine.

The numerical data streams containing the objects’ positions are transformed
for the rule engine into abstract interpretations constituting logical constants,
properties, and predicates (cf. position abstraction in Fig. 2). The abstract inter-
pretations are used by the rule engine to reason about the relative positioning
of container KLT 2 and workstations AS 1 and AS 3.

Based on the evaluation of formulas by the rule engine, actions within these
formulas are executed to visualize relative positions of container KLT 2 and
workstations AS 1 and AS 3. The rule engine emits the active actions within
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Fig. 2. Data flow at runtime

these formulas. These abstract actions are transformed into concrete visualiza-
tion objects for the laser projectors of the testbed (cf. visualization abstraction
in Fig. 2).

The following Sect. 4 gives an overview about our framework and presents
the specification of domain and requirements in our case study.

4 Separation of Domain and Requirements

The behavior of logistics systems can become very complex, as these systems con-
sist of many components with reactive behavior. The specification of emerging
behavior in requirements solely based on internal signals and data can be diffi-
cult, if not impossible. Our vision is to bridge the gap between natural require-
ments and monitors or rules on the actual system through code generation and
execution.

We want to enable domain experts to specify requirements for logistics sys-
tems akin to human reasoning, while directly monitoring and verifying these
requirements at runtime. Domain experts do not need any knowledge about
programming, language engineering, and formal methods. Otherwise, domain
experts would be more concerned with technical or formal details, e.g., the syn-
tax of first-order logic, than specifying the expected system behavior as require-
ments.

We hold domain experts away from the technical details of the domain and
the logistics system by separating the requirements specification in into two main
tasks - domain engineering and requirements specification:

1. The domain engineering defines the objects, properties, and predicates within
the application domain and interprets these for the data of the CPS, and
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2. the requirements specification define the requirements about the CPS using
these domain objects, properties, and predicates.

MReq

MDom

MLogTransformation

Rule Engine
Instrumentation

Rule Engine

framework provided

manual user input

framework generated

conforms-to

imports

generates

Fig. 3. Overview over the language framework

The separation in domain engineering and requirements specification (cf.
Figure 4) is also represented by the models M in framework. Our framework
incorporates three different domain-specific languages for specifying require-
ments akin to the reasoning of domain experts and executing these requirements
at runtime to monitor and control these systems (cf. Figure 3):

1. Domain MDom describes the domain and its specific terminology which are
used in the requirements MReq, the first-order logic MLog, and the rule
engine.

2. Requirements MReq enables specifying requirements akin to human reason-
ing.

3. Extended first-order logic MLog provides the unambiguous syntax and seman-
tics for monitoring and executing requirements at runtime.

Specification

Specification

BP

XText

Modeling
MReq

MReq

Transformation
MReq → MLog

MLog Rule Engine
M

Logic

BP

XText

Modeling
MDom

MDom

Monitor
Instrumentation

generates

uses

Transfer
〈http〉

Object Positions

Actions

Verdict√( | )

Famework

Real World

BP

Domain Expert

BP

Domain Engineer

Fig. 4. Development workflow

As shown in Fig. 4, each task - domain engineering and requirements
specification- requires a different skill sets. We, therefore, distinguish the roles
domain engineer and domain expert :
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– The domain engineer possesses sufficient knowledge about the application
domain as well as programming and language engineering with domain-
specific languages for comprehensively representing the application domain.
From this domain specification, the rule engine is instrumented to interpret
the entities and predicates in requirements for data from the monitored CPS.

– The domain expert has deep knowledge about the investigated CPS to exhaus-
tively specify requirements about the system and its behavior akin to their
natural reasoning. The natural requirements are automatically transformed
into first-order logic for evaluation by the rule engine at runtime.

The domain engineering for warehouse logistics is described in Sect. 4.1, while
the specification of requirements and their monitoring for the manual transport
of goods in our logistics research lab are presented in Sect. 4.2.

4.1 Engineering the Warehouse Logistics Domain

The development in our use case commences with the definition of the domain
MDom for Warehouse Logistics. The domain MDom is the central component
in our solution and ensures that requirements MReq and formulas MLog reason
about the identical application domain.

As shown in Fig. 3, respective interpretations within the domain MDom are
imported into requirements MReq and formulas MLog. The data interpretation
of objects and predicates are used by the rule engine at runtime to evaluate
domain objects and predicates for the current state of the CPS and process a
verdict for requirements MReq and in formulas MLog at runtime e (cf. our case
study in Sect. 5).

Domain MDom defines the domain’s objects and predicates as they are used
in our case study within our logistics research lab and associates these entities to
the data in our logistics research lab. The domain MDom defines the item con-
tainer KLT 2, workstations AS 1 and AS 3, and predicates about the geometric
relationship between objects, i.e., besides. An excerpt of the domain is shown in
Listing 1.1.

Listing 1.1. Defintion of domain MDom

1 def KLT_2 : Object {

2 Requirement: KLT_2

3 Logic: KLT_2

4 Data: positionObjects[name==KLT_2]

5 }

7 def AS_1 : Object {

8 Requirement: AS_1

9 Logic: AS_1

10 Data: positionObjects[name==AS_1]

11 }

13 def beside : Predicate {
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14 Requirement: beside dist:Float of

15 Logic: beside(Con1:Constant ,Con2:Constant ,dist:Float)

16 Data: ABS(positionObjects[name==Con2]->positon -

positionObjects[name==Con1]) < dist

17 }

The objects KTL 2 and AS 1 both have the type Object and are identically
expressed in the requirements MReq and first-order logic MLog (cf. keywords
Requirement and Logic in Listing 1.1). The predicate beside is defined in MReq

by the word within and an arbitrary distance dist (cf. keyword Requirement in
Listing 1.1). The objects which are compared by the predicate beside are deter-
mined by the sentence in which the predicate is used. For the first-order logic
MLog, the predicate is defined with three parameters; the first two parameters
take constants Con1 and Con2 as inputs while the third parameter takes a float
value dist for the distance (cf. keyword Logic in Listing 1.1).

At runtime, predicate beside is interpreted and evaluated for the incoming
streams of position data from the MoCap System. The data from the MoCap sys-
tem is provided to the rule engine via the MQTT broker as JSON data [20,21]. The
interpretation of the system data is defined by the data function (cf. keyword Data
in Listing 1.1); predicate beside will be evaluated as satisfied if the absolute amount
of the distance between the position of object Con1 and the position of constant
Con2 is below the given distance dist. Objects Con1 and Con2 are filtered in the
list of objects positionObjects in the MQTT data based on their names and their
common attribute position is assessed for the position values. These data inter-
pretations are used in the abstraction of the numerical position data to abstract
representations in first-order logic (cf. position abstraction in Fig. 2).

For our demonstration, we defined five additional predicates for evaluating
the relative position of container and workstations. All six predicates are shown
in Table 1.

In addition to the six predicates about the relative position of container and
workstations, actions draw rectangle and draw circle are defined in the domain
MDom (cf. Table 1). Action draw circle will result in a circle as laser visualization
while action draw rectangle yields to the projection of a rectangle by the laser
projectors. Both actions have parameters for position, color, size, duration,
and animation of the projected rectangle resp. circle. Positions of the laser
visualizations can be defined either as fixed positions in world coordinates or
the visualizations can be attached to the positions of objects. Attachments to
objects provide the advantages that the visualizations will change their positions
according to the movement of these objects.

The following Sect. 4.2 describes how the requirements MReq are defined for
our logistics case study using the definitions in domain MDom.

4.2 Specification of Requirements

Requirements MReq are specified by domain experts using an almost natural
but domain-specific language. Requirements MReq have the basic clause
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Table 1. Overview of predicates in the domain MDom.

Predicate Requirements First-Order Logic

inside [Obj] is inside [Box] inside(Obj,Box)

rest on [Obj] is on [Box] reston(Obj,Box)

rest under [Obj] is under [Box] restunder(Obj,Box)

above [Obj] is above [Box] above(Obj,Box)

below [Obj] is below [Box] below(Obj,Box)

beside [Obj] is within Xm of
[Box]

besides(Obj,Box,X)

draw circle draw circle with position x in color y . . .
circle (position, color, . . . )

draw rectangle draw rectangle with position x in color y . . .
rectangle (position, color, . . . )

if 〈conditions〉 then 〈actions〉
where 〈conditions〉 and 〈actions〉 can be conjunctions of multiple conditions
resp. actions, e.g., if a package is available in one of the loading areas, then an
idling robot has to move to the leading area and pick up the package. Require-
ments MReq import the specific interpretations of domain-specific entities, i.e.,
item container KLT 2, workstations AS 1 and AS 3, and predicates about the
geometric relationship between objects, from domain MDom (cf. Section 4.1).

Listing 1.2. Initial definition of requirements.

1 Req Req1: If KTL_2 is within 4m of AS_1 and KTL_2 resides

within 4m to AS_3 then show a rectangle with scale 6.0

at position {1.0 ,0.0 ,0.0} with magenta color.

2 Req Req2: If KTL_2 is within 3m of AS_1 then print a

rectangle over AS_1 in yellow color with scale 2.0.

3 Req Req3: If KTL_2 is within 3m of AS_3 then print a

rectangle over AS_1 in yellow color with scale 2.0.

In our demonstration, we defined three requirements about the position of
the container KTL 2 in relation to the workstations AS 1 and AS 3 in the
requirements MReq using the definition of the domain MDom. The requirements
are shown in Listing 1.2. Requirement Req1 will result in the drawing of a
magenta rectangle with 6 m edges at the global position {1.0, 0.0, 0.0} if the
container KLT 2 is within 4 m of both workstations AS 1 and AS 3. The second
requirement Req2 will result in a yellow rectangle drawn around the workstation
AS 1 with edge of 2 m if the distance between container KLT 2 and workstation
AS 1 is less than 3 m. Requirement Req3 is identical to requirement Req2 with
workstation AS 1 replaced by workstation AS 3.

The following Sect. 5 describe how the requirements MReq are transformed
into first-order formulas MLog and monitor in our shop floor scenario in our
logistics research lab.
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5 Runtime Monitoring and System Control

Requirements MReq are automatically transformed by our framework into for-
mulas MLog in first-order logic for monitoring and controlling the CPS at run-
time. Our framework uses classic first-order logic extended by operators for
equality == and the implication | > between conditions and actions.

Similar to the requirements MReq, the specific interpretations of entities in
domain MDom, i.e., item container KLT 2, workstations AS 1 and AS 3, and
predicates about the geometric relationship between objects, are imported into
the formulas MLog. The semantics of formulas MLog are given by the interpre-
tation of these domain-specific entities for the data of CPS.

As shown in Listing 1.3, three formulas MLog are generated in first-order logic
from the three requirements in Listing 1.2. The requirement Req1 in Listing 1.2
is transformed to formula Req1 in Listing 1.3.

Listing 1.3. Formulas MLog for the running example

1 Req1: beside(KLT_2 ,AS_1 ,4) AND beside (KLT_2 ,AS_3 ,4) |>

rectangle (Req1_1 , {-1.0,0.0,0.0},1, magenta ,4,6,6,none)

;

2 Req2: beside(KLT_2 ,AS_1 ,3) |> rectangle (AS_1 , 1,yellow

,4,2,2,none);

3 Req3: beside(KLT_2 ,AS_3 ,3) |> rectangle (AS_3 ,1,yellow

,4,2,2,none);

The container KTL 2 and workstations AS 1 and AS 3 are equally used
in requirements MReq as well as formulas MLog. Therefore, representations of
these objects in requirements MReq are directly transformed into corresponding
representations in formulas MLog using the definitions in domain MDom. The
predicate within in MReq maps to the predicate beside in formulas MLog. The
container KTL 2, workstation AS 1 resp. AS 3, and constraint 4m are assigned
to the parameters Con1, Con1, and dist respectively. The preceding verbs is and
resides for the predicate within in requirements MReq are syntactic sugar and
are not considered for the transformation of predicate within into the formulas
MLog.

The action in the action part of requirements Req1 in Listing 1.2 is trans-
formed in the predicate rectangle in MLog with its parameters derived from the
additional constraints in the action part, e.g., at position {−1.0,0.0,0.0} and
in magenta color. Requirements Req2 and Req3 are transformed into formu-
las similar to the transformation of requirement Req1. The semantics of these
three formulas in Listing 1.3 is consistent with the semantics of their original
requirements in Listing 1.2.

Results from runtime evaluation of the three formulas in Listing 1.3 for the
manual transport of container KLT 2 between the two workstations AS 1 and
AS 3 are shown in Fig. 5. The rule engine for this demonstration has been instru-
mented for evaluating the three formulas in Listing 1.3 at runtime using the
definition of the domain in Listing 1.1.
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(a) Visualization for container KLT 2
at workstation AS 3.

(b) Visualization for container KTL 2
at workstation AS 1.

Fig. 5. Demonstration of logistics scenario.

In Fig. 5a, the container KLT 2 is at the workstation AS 3. The formulas
Req1 and Req3 are satisfied in this situation while requirement Req2 fails due
to the large distance to workstation AS 1. As result, a large magenta rectangle
and a small yellow rectangle around workstation AS 3 are drawn according to
the satisfied formulas Req1 and Req3 (cf. Listing 1.2).

After carrying the container KLT 2 over to the workstation AS 1, the yel-
low rectangle around workstation AS 3 disappears while a new yellow rectangle
appears around workstation AS 1. This behavior is consistent with formulas
Req2 and Req3 (cf. Listing 1.2) because the predicate beside in formula Req3 is
now invalid while it is now true for formula Req2. Formula Req1 is satisfied in
both situations. Therefore, the large magenta rectangle is drawn throughout the
complete transition of container KLT 2 from workstation AS 3 to workstation
AS 1.

Our lessons from the development and application of our framework are pre-
sented in the following section.

6 Discussion

The work presented in this paper is highly explorative. We have aimed for a first
technical prove-of-concept.

While the current implementation of our framework is a prototype, we can
draw some initial conclusions from its development, the conducted application.

Remark 1: Separation of languages seems to support the distribution and reuse
in system development.

Our case study has provided first indications that the separation of domain
engineering and requirements specification has a positive impact in the devel-
opment of logistical CPS. Requirements MReq and domain MDom seem to be
reusable in another context independent of each other. Requirements can be
used for CPS in other domains by just redefining the objects and predicates in
requirements for the new domain. The development of new systems, may reuse
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an existing domain MDom in its new requirements MReq of the new system.
There is no need to adapt the objects and predicates in the domain MDom to
the new system.

Requirements and domain seem to be easily developed independent of each
other, providing organizations with the opportunity to efficiently employ domain
engineers within the development of these systems. As critical resource due to
their technical knowledge, domain engineers may concentrate on the definition of
domain MDom while domain expert with limited technical knowledge can define
the relevant requirements akin to their natural reasoning. This approach enables
organization to introduce more non-technical domain experts to the development
of these technical systems.

Remark 2: Designing a domain-specific language for natural requirements, akin
to human reasoning, is expensive.

The specification of requirements has to feel as natural as possible for domain
experts—akin to their usual reasoning of these logistical systems—in order for
domain experts to adapt languages and tools into their work. Otherwise, domain
expert are more occupied with the expression of requirements in a specific lan-
guage grammar than comprehensively representing the systems in their require-
ments.

English and other natural language provide various clauses that allow for
different sentence structures with identical semantic meaning in requirements.
Replicating this grammatical flexibility in domain-specific languages is difficult
and expensive. The majority of clauses from the natural base language have
to be defined in the requirements language to suggest grammatical flexibility.
Furthermore, all these clauses have to be mapped to expressions in the first-
order logic for the evaluation at runtime. However, clauses often contain similar
sentence structure which can cause problems for parser generators, i.e., ANTLR
[22]. Clauses with similar sentence structure hinder the parser to associate corre-
sponding parts of requirements deterministically to a single clause for building an
abstract syntax tree. As a result, the grammar of the requirements language has
to be carefully specified for these parser generators to work correctly. There exist
some controlled natural languages, e.g., Attempto Controlled English (ACE)
[14,15], Processable English (PENG) [10], and Computer Processable Language
(CPL) [12] among others, which provide the grammatical flexibility of English,
but these languages miss the mapping of objects and predicates to real system
data.

Remark 3: Temporal Constraints are an essential part of today’s technical
requirements in logistics.

Within our case study, we have recognized that many technical requirements
in logistics are time-dependent, but our requirements and logic are currently not
able to express such temporal expressions. We neglected temporal constraint
in our framework because we focused on the architectural combination of the
three models, i.e., requirements, domain, and logic, to enable the specification
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of monitorable requirements at runtime. It is essential that we address temporal
expression in our requirements and extend the logic by temporal operators as
they are used in, e.g., metric first-order temporal logic [23], in future work.

Remark 4: System data has to be provided in sufficient quantity and quality.

An important part for monitoring requirements at runtime is the data provided
by the CPS. This system data defines the scope of domain and requirements,
which can be evaluated by the rule engine at runtime. The CPS has to pro-
vide data in the appropriate form, quantity, and quality to sufficiently represent
the real application domain in domain MDom. Objects and predicates without
any processable data function in domain MDom could be potentially used in
requirements MReq to form syntactic correct requirements, but these require-
ments cannot be interpreted by the rule engine at runtime. There exist two
possibilities for evaluating an object or predicate for the data from the CPS, if
(1) the provided data contains a corresponding data item or (2) the object and
predicate can be calculated from the available data items. For example, the rule
engine will evaluate the velocity of a robot, only if the provided data from the
robot does include a data item about the robot’s velocity or the remaining data
items allow to calculate the velocity.

7 Conclusion

We have presented a framework for the development of domain-specific languages
that express executable rules about CPS in logistics at the conceptual level, akin
to the reasoning of domain experts. The framework defines three individual lan-
guages: (1) the domain language allows to specify the application domain with
its entities, and predicates over these entities, (2) the requirements language pro-
vides the grammatical flexibility to define requirements akin to human reasoning,
(3) the first-order logic provides clear syntax and semantics for monitoring and
controlling CPS at runtime. We have demonstrated our framework in a logis-
tics scenario with human-machine collaboration. The case study shows that the
control and monitoring of CPS in logistics is viable and beneficial under the
separation of requirements and domain specification. The separate definition of
domain entities, i.e., objects, their proprieties, and predicates, over the system
data is essential for specifying requirements akin to human reasoning. However,
the development of our framework has also shown that the design of an almost
natural language for the requirements specification is very costly and difficult.

One point to consider for the future is the consideration of existing and
proven controlled natural languages, e.g. ACE or PENG, for the specification of
requirements. Additional future improvements for our framework to consider: (1)
temporal expressions in our requirements language and formal logic, (2) different
languages than standard English, and (3) the integration of our framework in a
requirements engineering workflow. We also envisage a potential of our work in
other domain than logistics and want to harden the expressive power within our
framework through application in more diverse domains.
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schema. In: Proceedings of the 25th International Conference on World Wide Web,
ser. WWW 2016. Republic and Canton of Geneva, CHE: International World
Wide Web Conferences Steering Committee, pp. 263–273 (2016). https://doi.org/
10.1145/2872427.2883029

21. Internet Engineering Task Force (IETF): The javascript object notation (json) data
interchange format (2014). https://tools.ietf.org/html/rfc7159

22. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf (2013)
23. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-

Time Syst. 2(4), 255–299 (1990)

https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/978-3-319-91908-9_17
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://tools.ietf.org/html/rfc7159


Mining Data Quality Rules for Data
Migrations: A Case Study on Material

Master Data

Marcel Altendeitering(B)

Fraunhofer ISST, Emil-Figge-Straße 91, 44227 Dortmund, Germany
marcel.altendeitering@isst.fraunhofer.de

Abstract. Master data sets are an important asset for organizations
and their quality must be high to ensure organizational success. At the
same time, data migrations are complex projects and they often result in
impaired data sets of lower quality. In particular, data quality issues that
involve multiple attributes are difficult to identify and can only be resolved
with manual data quality checks. In this paper, we are investigating a real-
world migration of material master data. Our goal is to ensure data quality
by mining the target data set for data quality rules. In a data migration,
incoming data sets must comply with these rules to be migrated. For gen-
erating data quality rules, we used a SVM for rules at a schema level and
Association Rule Learning for rules at the instance level. We found that
both methods produce valuable rules and are suitable for ensuring qual-
ity in data migrations. As an ensemble, the two methods are adequate to
manage common real-world data characteristics such as sparsity or mixed
values.

Keywords: Master data · Data quality · SVM · Association rule
learning · Data migration

1 Introduction

Data migrations are understood as the process of permanently moving data from
a source system to a target system in the right quality [17]. For instance, whenever
a new software is introduced or the corporate structure changes (e.g. due to M&A)
the need for a data migration arises. Despite the fact that companies are regularly
confronted with data migrations their success rates are low. They are often under-
estimated in size and complexity and companies lack the necessary specialist skills.
As a result, the quality of the target data set is impaired by introducing low quality
data, which can jeopardize organizational success [16,17].

As data, and in particular master data, is a valuable asset for organizations,
it is vital to ensure high quality data. For this, numerous methods and tools
are available that can support practitioners in detecting errors in a single col-
umn [5]. These are often embedded in database management systems (DBMS)
and automatically detect errors like missing values, duplicate entries or invalid
categorical data. Detecting errors that involve multiple columns (e.g. functional
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dependencies) is much more difficult and rarely included in established auto-
mated data quality tools [10]. A common approach for identifying multi-column
data errors is the ‘consulting approach‘, in which internal or external domain
experts clean data sets using data quality rules and metrics [23]. Therefore, the
domain experts manually analyze dependencies between values and attributes
in the data set and create rules. The downside of this approach is that the need
for experts makes the process time-consuming and expensive [9]. Moreover, the
experts can miss rules, which are hidden in the data set but not made explicit
using quality rules. A solely consulting based approach is therefore not suit-
able for large scale data migrations, in which many entries are changed at once.
There is a need for an automated detection of multi-column data errors that can
support data migrations and reduce the amount of data quality work.

In this paper, we propose an extended data migration process that uses data
quality rule mining for automated quality checks in data migrations. With data
quality rule mining we are uncovering relationships between attributes in rela-
tional data sets and are evaluating incoming data against the derived rules. This
way, we are able to reduce the amount of data quality work and prevent complex
data errors that would normally require expert support. In contrast to other solu-
tions, our work focuses on multi-column errors and uses a combined approach to
identify rules at the schema and the instance level. This way we are able to handle
diverse data sets and can support the generality of our solution. We conducted and
evaluated our study in a real-world migration of a material master data.

The remainder of this paper is structured as follows. In Sect. 2, we describe
the experimental setting we investigated in our study. In Sect. 3, we propose the
extended data migration process and show how we automatically derive data
quality rules to support data migrations. Afterwards, we present the findings of
our study in Sect. 4. Finally, in Sect. 5, we will discuss related work and draw a
conclusion in Sect. 6.

2 Case Description

2.1 Setting

For our case study, we investigated the data migration process at a large German
pharmaceutical company, which we call PharmCo in this study. PharmCo has sev-
eral affiliated companies and production sites around the globe. The diversified
and international nature of the company led to a complex IT and data infrastruc-
ture. In order to harmonize the data infrastructure, data migrations are required
in regular intervals, causing a substantial financial and organizational effort.

In particular, we investigated the migration of material master data from
external sources (e.g. a remote production site) to a central SAP system. The
data sets in this system are of high importance for the company and inherit
a great value for business operations. For example, incorrect tax information
about a material could cause fines and interrupt the supply and delivery chains.
Thus, it is important that the overall quality of this database is high and must
not be deteriorated during data migrations.
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2.2 Current Data Migration Process

Currently, data quality is maintained by an established data migration tool,
which automatically enforces data models and secures data quality. However, the
data migration system is not capable of detecting complex data quality issues
involving multiple attributes, which causes the introduction of new errors to the
data set during each migration. The correction of these errors costs PharmCo
up to 10,000 Euros per data migration. Specifically, the current data migration
process consists of three steps that are conducted in sequence (see Fig. 1).

– Step 1 : Once the data migration starts the external data sets are imported
into the data migration tool. The tool performs schema matching and error
detection to harmonize the data sets and find simple data errors.

– Step 2 : All data that passes the checks in the data migration tool is introduced
to the target data set.

– Step 3 : After the migration is completed there often remain errors in the tar-
get data set that were not detected by the data migration tool. Therefore, an
experienced employee checks all entries manually to find and resolve poten-
tial issues. As this process is very expensive the expert focuses on error prone
attributes, that had errors in previous migrations.

To address the limitations of the current approach PharmCo is looking for
an automated solution that improves the error detection accuracy of the data
migration tool and supports domain experts in resolving errors. During a work-
shop with two members of the data migration team we were able to derive the
general requirements for such a solution. Most importantly, both participants
from PharmCo mentioned that errors in a data migration mostly occur on the
instance and the schema level. They therefore formulated the requirement that:

“The tool needs to generate rules for both, the instance and the schema
level, so we can evaluate incoming data against these rules”

They provided two examples, one for each category respectively. An instance
rule is for example one, which specifies that when there is a certain value for
the field ‘Base Unit‘ there must also be certain values in the fields ‘Material
Group‘ and ‘Volume‘. A rule on the schema level should for example specify
that once the attribute ‘Gross weight‘ is filled with any value the attribute ‘Net
weight‘ also needs to be filled. They also specified that these are simple examples
and potential rules can include several attributes, which makes the detection and
formulation difficult. Another important aspect is the execution time of the tool.
One participant mentioned:

“Data migrations are time-critical projects. It is therefore important for
the algorithms to run in a limited amount of time and be highly scalable.”

Moreover, PharmCo stated that the quality rules the tool derives must be
‘actionable‘. This means the output should be easy to interpret semantically and
enable an integration with existing tools using standardized interfaces.
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Fig. 1. Current approach for ensuring data quality in data migrations.

2.3 Data Set Description

For our study, PharmCo provided us with access to two real-world material
data sets: trading goods and spare parts. The trading goods data set contains
information about finished products that are ready to be sold on the market.
Among others, this data set provides a description of the good, tax information,
relations to other goods. The spare parts data set contains information about
materials that are part of trading goods. This data set includes for instance the
dimensions of the good, safety restrictions and weights.

There are several reasons why we selected to use material data sets and in
particular these two kinds. (1) The material data sets do not contain any personal
information and are not regulated by data privacy laws. It was therefore easier to
gain access to these data sets as compared to supplier or customer data. (2) The
data on trading goods and spare parts do not contain information about specific
pharmaceuticals or ingredients, which could reveal company secrets. (3) The
data definitions and data schemes vary between different parts of the company,
which can lead to a large number of errors in data migrations. (4) The master
data sets are important for business operations and can help to raise awareness
about data quality.

Since we are working with real-world data sets, we are not able to present
the actual data we used to protect intellectual property. However, we are able to
describe the schema of the data in more detail. The trading goods data set has
173 attributes (46 constant, 84 categorical, 23 free text, 18 numerical, 2 date)
and 15,904 entries. The spare parts data set also features 173 attributes (111
constant, 37 categorical, 7 free text, 12 numerical, 6 date) and has 92,869 entries.
Overall, the trading goods data set has a sparsity of 10.5% and a size of 14.8 MB.
The spare parts data set has a sparsity of 61.3%, which results in a size of 64.4
MB. The selected data sets originate from a real-world database and feature
some typical challenges like high dimensionality, type mix, special characters
and sparsity. It was therefore necessary to pre-process the data for analysis.
Suitable methods for mining data quality rules must be able to incorporate
these characteristics.
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2.4 Data Pre-processing

The data sets we obtained were already pre-processed with simple data transfor-
mations and quality enforcements (e.g. type enforcement). Such tasks are usually
conducted by the Master Data Management (MDM) system and offered us the
possibility to focus on more complex errors.

However, the data sets needed further pre-processing to enable the analysis
and ensure efficiency. We started by removing all columns with constant or no
values as suggested by [15]. Constant values do not provide any value to the
machine learning algorithms and improve the performance of our analysis by
limiting the dimensionality of the data sets. As a result, we reduced the trading
goods data set to 127 attributes and the spare parts data set to 62 attributes.
We furthermore removed certain special characters like commas and semicolons
from the free text values, which were hindering the import of the csv source files.

3 Proposed Solution

3.1 Extended Data Migration Process

With our study we want to support the currently manual process for ensuring
data quality in data migrations with machine learning (ML) techniques. There-
fore, we extended the manual process with a new capability that automatically
derives data quality rules from a target data set and applies these to the data
sets to be migrated. Following Chiang and Miller, data quality rules “define rela-
tionships among a restricted set of attribute values that are expected to be true
under a given context” (p. 1166) [8]. Usually, these rules are developed manually
by domain and business experts. However, obtaining a complete set of data qual-
ity rules is difficult as the process is time-consuming and costly. Additionally,
there might be rules present in the data set that the experts are not aware of [8].

The proposed ‘Data Quality Rule Mining’ component tries to automatically
identify such rules and apply them in a data migration. This way we want to
reduce the amount of manual data quality checks by providing a hint on potential
errors, which leads to reduced cost and better data quality. By extending the
current data migration process with the proposed component, we get a new
process consisting of four steps (see Fig. 2):

– Step 1 : Using data mining and profiling techniques we derive suitable rules
from a target data set on a schema and an instance level. Hereby, we assume
that the given data set is correct. Optionally, a human-in-the-loop manually
evaluates the derived rules to improve the accuracy of the result.

– Step 2 : The derived data migration rules are implemented as executable rules
in a data migration tool.

– Step 3 : During a data migration the migration tool automatically checks if
incoming data satisfies the rules. In case a check fails the issue is resolved
manually or automatically by the tool.

– Step 4 : Data that passes all checks is migrated to the target data set without
further checks.
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Fig. 2. The role of mining data quality rules in the data migration process.

3.2 Data Quality Rule Mining

Initial Selection. Since there is a large body of research available on min-
ing and profiling relational data sets, we decided to return to the literature for
selecting suitable methods for data quality rule generation. Several survey and
overview papers in the domains of data mining and data profiling discuss poten-
tial approaches [1,2,8,10,12,19]. Following the requirement of PharmCo we can
distinguish these methods between the schema and instance levels [19] and the
dimensionality of a potential rule [2]. In terms of dimensionality, Abedjan et
al. separate data profiling tasks in single-column, multi-column and dependency
tasks [2]. In our case, we are only interested in multi-column and dependencies.

In each of these methodological categories there are numerous algorithms
available. However, finding and selecting an algorithm that works on real-world
data sets and satisfies our requirements remains difficult. The accuracy and
usefulness of many methods is unclear when they are applied to a real-world
data set. Most of them have either only been tested on synthetic data or on
synthetically injected errors [1]. Another difficulty of real-world data sets is that
they often contain multiple errors at the same time [19]. We therefore need to
consider an ensemble of algorithms to derive suitable data quality rules, while
maintaining a short execution time.

The literature review we conducted yielded in the selection of three methods
for further investigation. Table 1 places these methods in their methodological
categories and shows corresponding literature.

In a first step, we implemented algorithms for each of the four methods and
used a small test data set to determine their usefulness for generating data qual-
ity rules. An analysis of the results showed promising results for the SVM and
Association Rule Learning methods. The Functional Dependencies method suf-
fered from large time and space requirements, which caused the algorithm to
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Table 1. Initial selection of methods for detecting data errors.

Schema-Level Instance-Level

Dependencies Functional Dependencies
[11,13,18]

Association Rule
Learning [3,6]

Multiple Attributes Support Vector Machine
(SVM) [7]

–

Single Attribute – –

abort. In a comparative study on established algorithms for discovering func-
tional dependencies Papenbrock et al. found that it is not possible to derive
dependencies from a large high-dimensional data set in a limited amount of time
[18]. Based on these results we decided to disregard the Functional Dependencies
approach and further investigate SVM and Association Rule Learning.

Support Vector Machine (SVM). The general idea of the SVM approach is
to utilize the aspect that the material data sets at PharmCo are sparse. Given a
tuple of a data set that contains some null and some concrete values we want to
label if a value is expected for a certain attribute or not and determine a data
quality rule on the schema level. Since a SVM works on numeric attributes, we
transformed the given data set to a binary matrix consisting of 0 and 1 values.
In this case, a 0 indicates that an attribute contains no value and a 1 indicates
that some concrete instance is present. This way, we transferred the data set to a
binary classification problem, which are well-suited for SVMs [21]. As SVMs are
supervised learning models, a target attribute must be provided. This attribute
can either be known as error prone or one of high-importance.

For the SVM analysis we start with a target data set and transform it to a
binary matrix. We separate the data to a set of binary samples and a set of binary
classes using the target attribute. With these two sets we train a linear SVM
and obtain a trained binary classifier. During a migration incoming data is tested
against this model. Therefore, we transform an entry of an incoming data set on-
the-fly to a binary tuple. This tuple contains all attributes except for the target
attribute. As classification result we will retrieve a 0 or 1, which indicates whether
this field should be filled or not (see Fig. 3). In case a value is given but the model
predicted a 0 or vice versa there is likely an error in the incoming tuple.

The main advantage of this approach is the fast training and classification
time. On the contrary, this approach only works for sparse data sets and might
therefore not always be useful. Furthermore, the SVM does not explicitly for-
mulate the derived data quality rules, which makes it more difficult to interpret
the results.

Association Rule Learning. Our goal with association rule learning is to
discover relationships between multiple attributes on an instance level. This
means that, in contrast to the SVM approach, we want to identify what values
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Fig. 3. Functional overview of the SVM method.

often appear together (i.e. frequent itemsets) and build data quality rules using
these itemsets. Association rules are well suited for detecting multi-column data
errors but are uncommon in professional data quality and migration tools, as
these are focused on single column data errors [1,10]. Generally, association rules
have the following format:

{AttributeA|V alueA,AttributeB|V alueB → AttributeC|V alueC} (1)

The most well-known algorithm for association rule learning is the Apriori
algorithm by Agrawal et al. [3]. Although there are faster solutions available
for discovering association rules (e.g. FP-Growth [6]) we decided to use the
Apriori algorithm as it is well-established and there are several implementations
in different programming languages available.

The Apriori algorithm is an unsupervised ML method that can handle dif-
ferent value types, but not null-values. We therefore filled the missing values in
the data set with a fixed ‘NA’ value. The Apriori algorithm furthermore requires
a support level, which determines how often a value pair needs to appear to be
considered frequent and a confidence level, which defines how often a rule needs
to be true. With these inputs the Apriori algorithm produces a set of association
rules. During the data migration we can verify incoming data against the derived
set of association rules. If a rule with a high confidence level is not met, we can
reason that there is an error in the data set (see Fig. 4).

An advantage of association rule learning is that it is a multivariate method
and is not limited to one kind of type. It also produces rules that are easy
to understand and interpret for humans. A downside is the complexity of the
algorithm and that it suffers from long execution times on data sets with many
different or free-text values. Thus, it is vital to pre-process and filter the data
from unnecessary attributes to limit the execution times.
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Fig. 4. Functional overview of the Association Rule Learning method.

4 Findings

For evaluating the soundness and suitability of our approach for data migrations
we applied the methods to material data sets used in previous data migrations at
PharmCo. We decided to use data sets from previous migrations as this offered
us the possibility to compare our findings with the ground truth, in which all
data quality issues were manually resolved. Specifically, we used a training set
and a test set for the trading goods and spare parts data sets respectively. The
training sets were old copies of the central SAP system and served as basis for
training our ML models. The test sets were old copies from a material database
of an external subsidiary of PharmCo. This data set simulated the incoming data
during a migration. Moreover, we qualitatively evaluated our approach with data
migration experts at PharmCo, who helped us to investigate the advantages and
disadvantages of the proposed algorithms.

4.1 Support Vector Machine (SVM)

The SVM approach requires a certain target attribute to train a classifier. In dis-
cussions with the data migration team at PharmCo we selected three attributes
(A: ‘Product hierarchy’, B: ‘Transportation group’, C: ‘Purch Group’) for the
trading goods data set and five attributes (A: ‘Product Hierarchy’, B: ‘Gross
Weight’, C: ‘Material Type’, D: ‘Lot Size’, E: ‘Valuation class’) for the spare parts
data set as target attributes. We decided to train models for these attributes
as according to PharmCo they have a tendency for missing values and needed
manual review in previous migrations. We trained eight SVM models (S1 to S8)
using the training sets. For each of these models we used the test sets to obtain
a classification result and evaluated this against the ground truth to derive the
fraction of false positive and false negative classifications. Following the definition
of Abedjan et al., we set precision P as the fraction of cells that are correctly
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marked as errors and recall R as the fraction of actual errors discovered [1].
Table 2 summarizes our results.

Table 2. Evaluation of the SVM approach.

Data Set Trading Goods Spare Parts

SVM Model S1 S2 S3 S4 S5 S6 S7 S8

Attribute A B C A B C D E

P 0.99 1 0.99 0.99 0.98 0.96 0.99 0.98

R 0.94 0.93 0.96 0.96 0.94 0.9 0.97 0.93

The results show that the SVM approach is highly accurate in correctly
detecting potential errors in an incoming data set. Using this approach we can
significantly reduce the amount of manual data quality checks that would nor-
mally be required during a migration. The SVM approach is particularly useful
for sparse attributes that have a tendency for missing values. However, our expe-
riences are based on the two data sets provided by PharmCo. Further evaluations
with other data sets should be part of future work to support the generality of
the SVM approach for data migrations.

4.2 Association Rule Learning

For association rule learning we conducted several runs of the Apriori algorithm
using the training sets with different parameter settings (see Table 3). Other
than the attributes removed during the pre-processing step (see Sect. 2.4) we
did not remove any attribute and conducted the analysis on the remaining 127
and 62 attributes for the trading goods and spare parts data sets respectively. For
comparison and evaluation of the different settings we measured the number of
rules produced, the execution time and the precision of the rules. We followed the
approach of Chiang and Miller for calculating the precision value [8]. They define
the precision P of association rule learning to be the fraction of the number of
relevant rules over the total number of returned rules. To determine the amount
of relevant rules we manually evaluated the derived rules with domain and data
migration experts at PharmCo. In this process, we disregarded runs with no rules
or with too many rules for manual review. We found the optimal configuration for
the trading goods data set at support >= 90% and confidence = 100%, which
produced an output of 43 rules. For the spare parts data set we received an
optimum of 14 rules with settings at support >= 50% and confidence >= 80%.

During the manual review of the derived rules we found that some of the
correct and relevant rules have a trivial meaning. For instance, we derived the
following rule on dimensionality using the trading goods data set with 100%
confidence and 100% support. It specifies that whenever two dimensions have a
length of 0.0 the third must also be 0.0.
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Table 3. Evaluation of association rule learning.

Data Set Trading Goods Spare Parts

Settings % (sup. / conf.) 50/70 60/80 80/90 90/100 50/70 50/80 70/90 80/90

# of rules 2399 817 110 43 88 14 0 N/A

Exec. time (Sec.) 102 70 38 16 76 51 48 N/A

P N/A N/A 0.85 0.98 0.92 1 N/A N/A

{Height|0.0, Length|0.0 → V olume|0.0} (2)

An example for a more complex rule we derived from the spare parts data
set with a support level of 51.4% specifies that whenever a good is measured in
kg and its trading is not restricted then its base unit is ‘EA each‘. This rule is
true in 96.5% of the cases.

{Weight|KGM kg, Cat|Y001 Ambient no restrict → BaseUnit|EA each} (3)

Further to the manual review we evaluated the 43 and 14 rules we derived
from the training sets against the test sets from a previous migration to find
potential errors. This test showed that there are no violating tupels in the test
sets. Nevertheless, this is still a useful result, as we have a validated proof that
the data within the test sets is correct and do not need an additional manual
review. This way we can reduce the amount of manual data quality work.

Overall, the results show that association rule learning is a suitable approach
for detecting data errors in data migrations. However, it can be difficult to
determine the optimal settings for support and confidence as the results need a
manual review. Hereby, a user-friendly explanation of the algorithms and results
can help to improve the usability of this approach [4].

4.3 Evaluation

After the case study we conducted a retrospective workshop with data migra-
tion experts at PharmCo. The workshop included the author of this paper and
four experts from PharmCo. It lasted 90 min and provided valuable insights
as the experts could draw on their personal experiences with data migrations.
The workshop was structured by the two proposed methods and each one was
discussed thoroughly regarding its usefulness and potential downsides.

Overall, we learned that our approach is well received and the prototypical
application is still in use. However, a seamless integration into the existing system
landscape at PharmCo is necessary for future use. Currently, the data migration
team manually implements the rules derived from association rule learning into
the existing data migration tool as executable rules. The SVM approach is used
for certain attributes that the domain experts consider important. Therefore,
the incoming data is tested against the binary classifier using a Python script,
that was manually integrated into the data migration tool. PharmCo is planning
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to extend the current prototype and integrate it with the data migration tool
as well as existing databases. This way, a fully integrated and automated tool
for data quality rule learning emerges, which helps to simplify cumbersome data
migration processes.

5 Related Work

The detection and cleaning of relational data sets (e.g., [1,19]) and the data qual-
ity challenges in data migrations (e.g., [16,20]) have both been widely discussed
in the scientific literature. Yet, there is only a limited amount of prototypes
available that combine both research directions and address data quality issues
in data migrations.

For instance, with regard to quality rule learning Shrivastava et al. [22] pre-
sented a tool called DQLearn. The tool assists users in the development of data
quality rules by providing a method for formalizing a data quality problem in a
structured way. This way data quality rules become more explainable and easy
to automate. In [4] the authors highlight the need for explainability and cus-
tomization in automated data quality tools. They argue that the user needs to
easily understand and interpret the results provided.

Drumm et al. proposed QuickMig, a system for semi-automatic creation and
enforcement of schema mappings [9]. Their approach aims to reduce the complex-
ity of data structures, which helps to lower the data migration efforts. Kaitoua
et al. introduced a system called Muses [14]. Muses focuses on supporting data
migrations between distributed polystores. Through efficient data reorganiza-
tions their system can improve the performance of data migrations by up to
30%. A data dependency graph is used for improving data migrations by Zou
et al. [24]. The data dependency graph defines relationships between data com-
ponents. Using pre-defined compliance criteria an algorithm checks whether a
specific instance is migratable or not. This way data consistency and data quality
are improved.

Unlike these systems, our approach features several distinct characteristics to
support data migrations. (1) We are combining rule detection on a schema and
an instance level to identify potential issues on both levels. Other solutions, like
QuickMig, are focusing on the schema level [9]. (2) Our approach automatically
discovers data quality rules in a limited amount of time. Solutions that utilize
data profiling techniques (e.g. [1]) are of limited scalability and therefore not
suitable for data migrations. (3) The methods we employ have been tested on
real-world data sets. They are flexible to handle common data characteristics,
such as sparsity or mixed values.

6 Conclusion

Although data migrations are part of a company’s daily business, they are still
considered error-prone, expensive and their success rates are low. In our study,
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we describe the lessons learned from impaired data sets due to data migra-
tions and propose an extended data migration process that ensures data quality.
Specifically, we combined a binary SVM classifier and association rule learning
to mine data quality rules from a given data set. Incoming data must comply
with these rules to be migrated without manual review. These automated checks
lead to a reduced amount of manual data quality work and reduced cost. We
evaluated both methods against a real-world data set. Our findings showed that
both methods produce valuable results and are suitable for an application to
data migrations.

With the proposed solution we are addressing the current limitations of
data migrations at PharmCo. We created an automated solution that meets
the requirements specified by the data migration and domain experts. Most
importantly, our tool is capable of deriving data quality rules on the schema and
instance level and can therefore prevent different kinds of data errors. Further-
more, the algorithms we used are scalable and have a limited execution time,
which makes them suitable for time-critical data migration projects.

Despite the promising results, our study has several limitations. Most impor-
tantly, our findings are based on two material data sets. We are therefore plan-
ning to evaluate our solution in further data migration scenarios with different
data sets and in different companies. This would also support the generality of
our findings and help to formalize lessons learned that are generally applicable.
It would also be useful to test our approach in a live data migration and investi-
gate the impact our solution has on the performance and the overall migration
process. Furthermore, our solution only works with structured data sets. In light
of current trends, there is a need to investigate data quality rule generation for
migrations of unstructured data sets.
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Methods, Verification and Validation. A total of 14 papers were pre-
sented in the track, with responses to the question: what are the trends
in current more recent programming languages, and what can be expected
of future languages?. The track covers such topics as general-purpose
programming languages, domain-specific languages, formal methods and
modeling languages, textual versus graphical languages, and application
programming versus embedded programming.
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1 Introduction

High-level main-stream programming languages (high-level wrt. to assembler
languages and machine code) have evolved dramatically since the emergence of
the Fortran language well over half a century ago, with hundreds of languages
being developed since then. In the last couple of decades we have seen several lan-
guages appearing, most of which are oriented towards application programming,
and a few of which are oriented towards systems and embedded close-to-the-
metal programming. More experimental programming languages focusing e.g.
on program correctness, supporting proof systems have appeared as well.

In addition, we see developments in the area of Domain-Specific Lan-
guages (DSLs), including visual as well as textual languages, easy to learn
for experts in dedicated fields. Combined with approaches like generative and
meta-programming this may lead to very different styles of system development.
Related to these developments, we can also observe developments in modeling
languages meant to support abstraction, verification, and productivity.
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This paper provides an introduction to the track: “Programming - What is
Next?”, organized by the authors as part of ISoLA 2021: the 9th International
Symposium On Leveraging Applications of Formal Methods, Verification and
Validation. 14 papers were presented in the track, with responses to the question:
what are the trends in current more recent programming languages, and what can
be expected of future languages?.

The papers presented cover various topics. There is a core of papers focus-
ing on different ways of programming applications, and in particular embedded
systems, using general purpose programming languages. Here classical program-
ming languages such as C and C++ have been dominating for decades. However,
these are low-level and unsafe, and better abstractions are needed. This includes
formal specification and proof support. Related to this topic is the question how
modeling and programming interacts, and it is emphasized that modeling and
programming ought to be tightly integrated. Several papers discuss program-
ming language concepts and constructs. New concepts are proposed, such as
time as a core concept, an alternative to object-orientation, advanced type sys-
tems, and a suggestion to focus on non-linear dynamic systems. The alternative
to general-purpose programming languages is domain-specific languages. Sev-
eral papers advocate for their use, both textual and graphical. General-purpose
as well as domain-specific languages are typically used/developed in IDEs. A
browser-based approach is advocated in one paper.

The track can be seen as a followup of the tracks named “A Unified View of
Modeling and Programming”, organized at ISoLA 2016 [2] and 2018 [3]. These
tracks focused on the similarities and differences between programming lan-
guages and modeling languages. Whereas those tracks considered programming
and modeling of equal interest, the “Programming - What is Next?” track is
more focused on the programming activity.

2 Contributions

The papers presented in the track are introduced below. They are divided into
subsections according to the track sessions, covering approaches to program
development, programming language concepts, and domain-specific languages.

2.1 Program Development

Lethbridge [8] (Low-code is often high-code, so we must design low-code platforms
to enable proper software engineering), argues that software written on low code
platforms often accumulates large volumes of complex code, which can be worse
to maintain than in traditional languages, because the low-code platforms tend
not to properly support good engineering practices such as version control, sep-
aration of concerns, automated testing and literate programming. Based on his
experience with low code platforms he claims that such technical debt can only
be avoided by providing low-code platforms with just as deep a capability to
support modern software engineering practices as traditional languages. As a
side result sees a sign that traditional programming will maintain its value also
in the (long) future.
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Lee and Lohstroh [7] (Time for all programs, not just real-time programs),
argue that the utility of time as a semantic property of software is not limited
to the domain of real-time systems. This paper outlines four concurrent design
patterns: alignment, precedence, simultaneity, and consistency, all of which are
relevant to general-purpose software applications. It is shown that a semantics
of logical time provides a natural framework for reasoning about concurrency,
makes some difficult problems easy, and offers a quantified interpretation of the
CAP theorem, enabling quantified evaluation of the trade-off between consis-
tency and availability.

Havelund and Bocchino [6] (Integrated modeling and development of
component-based embedded software in Scala), explore the use of Scala for mod-
eling and programming of embedded systems represented as connected com-
ponents. Four internal Scala DSLs are presented, inspired by an actual C++
framework, for programming space missions. The DSLs support programming
of software components, hierarchical state machines, temporal logic monitors,
and rule-based test generators. The effort required to develop these DSLs has
been small compared to the similar C++ effort. It is argued that although Scala
today is not suitable for this domain, several current efforts aim to develop
Scala-like embedded languages, including the works [5,11] reported on in this
volume.

Robby and Hatcliff [11] (Slang: The Sireum programming language), present
the programming language Slang, syntactically is a subset of the Scala program-
ming language, for programming high assurance safety/security-critical systems.
The language supports specification and proof of properties, and omits features
that make formal verification difficult. A subset, Slang Embedded, can be com-
piled to e.g. C. Slang can be used for prototyping on a JVM, and later re-deployed
to an embedded platform for actual use. Slang is used as programming language
in HAMR, see [5] in this volume, a High Assurance Model-based Rapid engineer-
ing framework for embedded systems. Developers here specify component-based
system architectures using the AADL architecture description language.

Hatcliff, Belt, Robby, and Carpenter [5] (HAMR: An AADL multi-platform
code generation toolset), present HAMR, a tool-kit for High-Assurance Model-
based Rapid engineering for embedded cyber-physical systems. Architectures
are modeled using AADL. HAMR is based on an abstract execution model that
can be instantiated by back-end translations for different platforms. Elements
of models can be programmed in the Slang programming language, translatable
to C, also reported on in this volume [11]. The framework supports automated
formal verification of models and code written in Slang. Since the infrastructure
code and code generators are written in Slang, HAMR provides the convenience
of a single verification framework to establish the correctness of code generation.

2.2 Program Language Concepts

Mosses [10] (Fundamental constructs in programming languages), presents a
framework for defining the semantics of programming constructs at a high level
of abstraction. A programming language construct is defined by translating it
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to fundamental constructs, referred to as funcons, in a compositional manner.
The use of funcons is meant as a precise and complete alternative to informal
explanations of languages found in reference manuals. Furthermore, specifying
languages by translation to funcons appears to be significantly less effort than
with other frameworks. Funcons abstract from details related to implementa-
tion efficiency, and are defined using a modular variant of structural operational
semantics. A library of funcons has been developed, available online, along with
tools for generating funcon interpreters from them.

Harel and Marron [4] (Introducing dynamical systems and chaos early in
computer science and software engineering education can help advance theory
and practice of software development and computing), argue that the concept
of nonlinear dynamic systems, their theory, and the mathematical and com-
puterized tools for dealing with them, should be taught early in the education
of computer scientists. These systems are found in diverse fields, such as fluid
dynamics, biological population analysis, and economic and financial operations.
Such systems are complex and embody the notion of chaotic behavior. Focus on
dynamic systems can lead to enrichment of e.g. programming languages, tools
and methodologies in computer science.

Wadler [15] (GATE: Gradual effect types), highlights the value of advanced
type systems, including effect types, and discusses how they can become main-
stream. Traditional type systems are concerned with the types of data. Effect
types are concerned with the effects that a program may invoke, such as input,
output, raising an exception, reading or assigning to state, receiving or sending
a message, and executing concurrently. It is argued that in order to make such
advanced type systems main stream, a gradual approach is needed (the “gate” to
types), where types can be gradually added, and which allow untyped languages
to interoperate with strongly typed languages. The paper provides a survey of
some of the work on these different advanced type systems.

Selić and Pierantonio [12] (Fixing classification: a viewpoint-based approach),
argue that the classification scheme realized in traditional object-oriented com-
puter languages is insufficient for modern software development, which is becom-
ing increasingly more integrated with the highly dynamic physical world. The
limitations of the traditional binary classification approach makes it difficult to
model dynamic reclassification of objects, classification of objects from different
perspectives, and representing in-between cases, where an entity may be catego-
rized as belonging in more than one class. The paper outlines a new approach to
classification based on viewpoints, overcoming these limitations. The proposed
approach replaces the static multiple-inheritance hierarchy approach with mul-
tiple dynamic class hierarchies, including overlapping class membership.

2.3 Domain-Specific Languages

Stevens [13] (The future of programming and modelling: a Vision), argues that,
despite impressive achievements, software development now suffers from a capac-
ity crisis which cannot be alleviated by programming as currently conceived.
Rather, it is necessary to democratise the development of software: stakeholders
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who are not software specialists must, somehow, be empowered to take more
of the decisions about how the software they use shall behave. She proposes to
describe this behaviour via a collection of models, each expressed in a (domain-
specific) language appropriate to its intended users. Bi-directional transforma-
tions are then meant to serve for the corresponding global semantics. The paper
also discussed required advances to guarantee the required progress.

Balasubramanian, Coglio, Dubey, and Karsai [1] (Towards model-based
intent-driven adaptive software), argue that a model-based workflow for adaptive
software may reduce the burden caused by system evolution like requirement
changes and platform updates. In their vision, a modeling paradigm centered
around the concepts of objectives, intents, and constraints, may uniformly com-
prise required functionalities as well as all managerial aspects. These concepts
define, respectively, (1) what the system must do in terms of domain-specific
abstractions, (2) the concretization choices made to refine a model into imple-
mentation, and (3) the system requirements not already expressed in terms of
domain-specific abstractions.

Margaria, Chaudhary, Guevara, Ryan, and Schieweck [9] (The interoperability
challenge: building a model-driven digital thread platform for CPS), argue that
the traditional approach to achieve interoperability is inadequate and requires
a model-driven platform approach supporting low-code application development
on the basis of dedicated domain-specific languages. The paper illustrates the
impact of such a platform by examples about robotics, Internet of Things, data
analytics, and Web applications. In particular, it is shown how REST services
can generically be extended, external data bases can be integrated, and new data
analytics capabilities can be provided.

Voelter [14] (Programming vs. that thing subject matter experts do), argues
that allowing subject matter experts to directly contribute their domain knowl-
edge and expertise to software through DSLs and automation does not neces-
sarily require them to become programmers. In his opinion, the requirement
to provide precise information to unambiguously instruct a computer can be
achieved more easily, of course requiring the basics of computational thinking.
Völter believes that it is possible and economically important to provide accord-
ingly ‘CAD programs for knowledge workers’.

Zweihoff, Tegeler, Schürmann, Bainczyk, and Steffen [16] (Aligned, Purpose-
driven cooperation: the future way of system development), argue that the future
of software and systems development is collaborative, and will be supported
globally in a cloud-based fashion. This way individual contributors do not need
to worry about the infrastructural aspects which are all taken care of globally
in the Web. This eases also the use of so-called purpose-specific languages that
aim at directly involving application experts in the development process. The
presentation of the vision is supported by details about the realization which, in
particular, explain a simplicity-oriented way of language integration which can
happen in a deep and shallow fashion.
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3 Conclusion

The contributions of this track clearly indicate the expanse of what can be con-
sidered programming. It is therefore not surprising that the visions of where
the evolution of programming will lead to, or should aim at, are very diverse.
This diversity, however, does not imply that the visions are contradictory. Hope-
fully on the contrary. The embedded systems perspective, e.g., is envisaged to
even deal with phenomena like chaos, application programming to successively
comprise more computational paradigms and constructs to enable experts to
elegantly solve dedicated tasks, and the future of user-level programming seems
dominated by increasing ease and collaboration. Tools play a major role in all
scenarios, which seem to have in common that programming and modelling will
increasingly converge.
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Abstract. The concept of low-code (and no-code) platforms has been around
for decades, even before the term was used. The idea is that applications on
these platforms can be built by people with less technical expertise than a profes-
sional programmer, yet can leverage powerful technology such as, for example, for
databases, financial analysis, web development and machine learning. However,
in practice, software written on such platforms often accumulates large volumes
of complex code, which can be worse to maintain than in traditional languages
because the low-code platforms tend not to properly support good engineering
practices such as version control, separation of concerns, automated testing and
literate programming. In this paper we discuss experiences with several low-code
platforms and provide suggestions for directions forward towards an era where the
benefits of low-code can be obtained without accumulation of technical debt. Our
recommendations focus on ensuring low-code platforms enable scaling, under-
standability, documentability, testability, vendor-independence, and the overall
user experience for developers those end-users who do some development.

Keywords: Low-code platforms ·Modeling · Technical debt · End-user
programming · Umple · Spreadsheets

1 Introduction

Low-code and no-code platforms are diverse in nature, but have some common fea-
tures intended to allow people to build complex software mostly by configuring power-
ful underlying engines. Some applications built using low-code platforms have proved
game-changing, or even life-saving, for example applications built rapidly to handle the
Covid-19 pandemic [1].

Unfortunately, in practice it is common for people to write far more code and far
more complex code than the low-code platform designers likely expected. The code
can become exceptionally hard to understand and maintain, yet frequently needs to be
modified, since low-code platforms are particularly prone to change for commercial
reasons. What starts out as a good idea, building a powerful application with little code,
turns into a mountain of technical debt. An example of this that many people can relate
to is Excel, where individual formulas can sometimes span many lines, yet cannot even
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be indented. A spreadsheet may be packed with many such formulas, and some of those
may refer to macros or code in third-party plugins. None of this can easily be browsed,
tested, documented, or reused.

It would seem reasonable to presume that low-code approaches are a key to the future
of programming. But in this paper, wemake the case that the designers of such platforms
must always assume users will in fact write large amounts of code in their platforms,
so they need to design the platforms to be high-code-ready – in other words ready for
proper software engineering to be applied.

In the next section we will discuss low-code platforms and some of the challenges
they present in practice. Then we illustrate some of the issues through case studies based
on our experience. Finally, we will propose a set of principles that low-code platform
developers should embrace.

2 No-Code and Low-Code as a Long-Standing and Growing Trend

No-code platforms provide a spectrum of core functionality for various classes of appli-
cations that can be tailored, typically through graphical or form-based user interfaces, to
provide business-specific end-user experiences. Through the graphical interfaces, users
select, arrange, configure and connect elements from built-in libraries of elements as
well as from third-party plugins.

Examples of no code platforms include Shopify [2], which is at the core of a wide
array of e-commerce web sites. WordPress [3], similarly, is at the core of a vast array of
web sites. Spreadsheets, such as Microsoft Excel and similar products also fall into this
category. Even software developers working with traditional programming languages
use no-code platforms: Jenkins for example is one of several open-source platforms
that can be configured for a wide range of automation tasks: It is most typically used
for continuous integration (building and testing versions of software), but can do much
more. A competing commercial no-code system is Circle-CI.

Low-code platforms share similarities with no-code platforms but with low-code
there is expectation that a certain amount of code will be written, where code in this
context implies small custom conditional expressions or algorithms. The idea is that
such code operates on highly abstract and powerful features present in the system core,
as well as on an ecosystem of plugins. Tools such as Appian, Oracle Application Express
and Wavemaker are widely used to allow businesses to create information-systems on
top of databases. The Eclipse platform used by developers, with its plugin capability can
be seen as a low-code platform, as can some other IDEs.

Today many low-code and no-code platforms are cloud-native, meaning that the
software runs as web applications. However, we include programmable downloadable
apps in the low-code umbrella.

For simplicity, in the following we will refer to both no-code and low-code platforms
as low-code even though there are some differences with regard to capabilities, scale
and applicability. The difference between low-code and no-code is often merely in how
it is used, and may be a matter of perception: For example, Excel clearly transitions
from no-code to low-code when macros are used, but one might also say that the use of
conditions in formulas means that Excel should not be considered no-code.
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The low-code concept is far from new. Apple’s original Hypercard was designed as
a low code platform, and many interesting applications were built in it (e.g. [4]). The
World Wide Web itself started as a low-code way to create static hypertext information
systems, also pre-dating the invention of the low-code terminology. It is instructive to
note how the Web has clearly become a high-code platform both on the front end and
back end.

To further illustrate the long history, we can note that spreadsheets have been with
us for over 40 years. The 1980’s also saw the marketing of so-called fourth-generation
languages (4GLs) [5, 6, 7]. These included languages such as Natural and Sperry’s
Mapper, which sold themselves as having many of the same benefits we attribute today
to low-code platforms. Mapper, for example envisioned enabling business executives to
generate their own analytic reports from mainframe databases.

The rise ofmodel-driven engineering (MDE) andUML in the 1990’s allows us to con-
sider the low-code concept from another perspective: If one can describe an application’s
data in a class model and its behavior in state machine diagrams one can theoretically
avoid a lot of textual coding. Reducing coding and enabling systems to be described in
part by non-programmers has thus been part of the vision of many proponents of MDE.

Even many scripting languages can be seen as being motivated by the low-code
vision. From the 1970’s to today, every competent Unix/Linux programmer has written
short scripts to automate operating system tasks and make their workflow easier; Apple
Macintosh end-users similarly also have been able to use AppleScript and Automator.

Fast-forwarding to today,we see the confluence of low-codewith ascendent technolo-
gies such as machine learning. Whereas it used to take a lot of coding to build machine
learning into an application, tools like Google Auto-ML [8] provide a low-code expe-
rience. Low-code for quantum computing seems an inevitable next step – perhaps an
essential step given the seeming complexity of describing quantum algorithms directly.

The benefits of low-code are clear: It allows for rapid deployment of powerful com-
puterized functionality, tailorable by well-educated end-users, and certainly without the
need for a developer to have deep knowledge of the underlying platform or of computer
science. For basic use they merely require an understanding of a ‘model’ embodied by
the platform (e.g. the tables in a database, or the layout of a spreadsheet), and some sense
of how to extend and configure the system using mostly-declarative constructs.

However, in actual practice froma software engineering perspective, low-code appli-
cations deployed in industry turn out to be not really that different from traditional
ones programmed in traditional ‘high-code’ languages like C++ or Java. The following
subsections outline some of the reality.

2.1 Large Volumes and Complexity Make Low-Code a False Promise

The code volume found in deployed applications on low-code platforms is all-too often
not ‘low’. We have encountered app-control ‘scripts’ of thousands of lines, spreadsheets
with many thousands of complex formulas, and programs in supposedly low-code busi-
ness applications containing hundreds of thousands of lines. Clearly, code can accumu-
late to volumes that are just as high as in traditional languages. Such applications might
be written entirely in the platform’s built-in native domain-specific language (DSL), or
else rely on programmed plugins or wrappers written in some other language.
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Low-code applications can hence accumulate high complexity, bugs and other forms
technical debt just as badly or even worse than traditional applications. However, the
languages created for low-code platforms commonly lack features that would assist in
their understanding and maintenance, such as the ability to organize them into files and
modules, or even to add detailed comments attached to individual code elements.

2.2 Low Code Applications Often Lack Features Needed for Maintainability
and Understandability

Low code applications are also often lacking documentation, both in terms of what
developers write, and what documentation can feasibly be embedded with the code even
if an attempt is made.

In traditional applications it was once thought that documentation should be found
in external design documents, but over the last couple of decades that has been replaced
by an ethos of literate programming (e.g. well-written names for data and functions,
with carefully laid-out code), coupled with extensive code comments, in-repository files
aligned with the code (e.g. Readme.md files) and auto-generated documentation enabled
in part using code annotations (e.g. Javadoc). Opportunities to do this sort of documen-
tation tend to be lacking in low-code platforms as some of the case studies below will
testify.

Low-code applications are alsooften challengedwith regard to separationof concerns
and reusability. Although plugins are a dominant feature, the ability to make one’s own
code, written in a low-code language, modular or to re-use such code (without making
a plugin) in multiple applications is often absent.

2.3 Turnover, Deprecation and Vendor-Dependence Further Challenge
Low-Code

Whereas the code in many traditional platforms can be modified for years, with older
code still runnable, there is a tendency (although not universal) for low-code applications
to be vulnerable to rapid obsolescence.

The platforms on which low-code applications are built tend to be rapidly developed
with new major versions requiring the low-code applications to be modified (i.e. main-
tained) to keep running. This is in part because most such platforms are commercial,
and companies want to produce ‘improved’ or ‘all-new’ offerings. Historically, many
low-code commercial platforms have just ceased to be developed. Many 4GLs of the
1980’s are examples.

Extensive modification or replacement of low-code applications is hence needed at
levels more frequent than would be the case for traditionally-programmed applications.

This would not be so much of a problem if the code were really ‘low’ in volume, and
therewas documentation and little technical debt. But the reality is that these assumptions
tend to be false, resulting in premature death of large applications. Even open-source
low-code platforms are subject to this problem, especially when the plugins on which
low-code often depends are not maintained by other open-source developers. We have
noted that this is the case with tools such as Jenkins.
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3 Short Case Studies

In the following subsections we briefly give some case studies highlighting challenges
with low-code platforms. Each of these summarizes the author’s own experiences
working in research, the public sector, the private sector, and the volunteer sector.

3.1 Excel and Other Spreadsheets

Spreadsheets like Excel are clearly low-code platforms and often no-code. At a base
level, they are usable by almost any educated person; they have a layered-2D (table with
sheets) model, an easily understandable instant-calculation semantics and a rich library
of functions with a variety of plugins also available. Modern spreadsheets have migrated
to the cloud, like other low-code platforms.

But spreadsheets can grow fantastically in complexity [9, 10]. Excess complexity can
arise through five different types of scaling: the number of formulas, complex arrange-
ment and interconnections of those formulas, massively complex formulas (many lines
of text with no way to lay it out and comment it), macros (in Visual Basic for the case
of Excel) and plugins.

Spreadsheets tend to be very fragile (proneness to bugs if modified incorrectly),
and difficult to understand, with subtle differences in formulas not easy to notice, even
if the spreadsheet makes some attempt to warn users. There is difficulty separating
concerns: separate sheets or files can be used for this, but traditional languages are much
more flexible in this regard, allowing almost-limitless flexibility in arranging files. It is
almost impossible in spreadsheets to do proper detailed documentation (e.g. of complex
formulae, patterns of cells, and so on); this is only possible in macros which have a
traditional programming-language structure. Reuse of formulas in different spreadsheets
is also not generally practical, so they tend to be cloned with the consequent problem of
bug propagation.

Division of work among multiple developers is extremely challenging in a spread-
sheet. Developers of code in languages like C++, Java and Python now are used to using
configuration management and version control tools like Git, collaborating on code and
using pull requests with code reviews and automated testing to reach agreement on what
should become the next version. Although cloud-based spreadsheets do indeed allow
multiple people to edit the code at once, and have ‘change tracking’ capability, this is
far from the power available in traditional code.

Talented software developers can still create poor-quality spreadsheets, partly
because Excel has core limitations regarding what is possible as described above, and
partly because spreadsheets (as all software) tend to grow organically and inexorably,
surprising even their own developers.

As an example of over-exuberance with low-code, the author witnessed a situation
where a company put out a CFP for development of an application that might be expected
to take over a person-year to develop. A talented Excel expert instead proposed that
the requested requirements could all be satisfied in a few days of Excel spreadsheet
development. The expert offered a company a completed product, developed in Excel
from scratch within two days without even participating in the competitive bidding
process. The application did more than the customer expected, so was welcomed almost
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as a miracle. But it was ‘too clever’; it was only readily maintainable by its single
developer. It had to be replaced within two years by a more traditionally-developed
system.

3.2 WordPress

Vast numbers of websites rely on WordPress. Some are professionally maintained but
verymany are in the hands of people with zero training in software development, perhaps
people maintaining a site for a local sports club.

Yet as new ideas for specialized information presentation, or uses of plugins are
added, and as additional volunteers work on the site (often serially, as new people are
elected each year), such sites often descend into the worst kind of software mess. The
author has witnessed computer professionals stepping in to help such end users, and,
finding the ‘low code’ incomprehensible, they have ‘hacked’ at it, making it worse.

Regular updates to WordPress or its numerous plugins, forces further hacking: The
ugliness of the technical debt becomes ever more visible. The solution is often to ‘start
again’. But starting again on a different low-code platform just perpetuates the situation,
since the new version will descend into the same sort of mess.

3.3 Jenkins

Jenkins, as a self-hosted automation and CI technology can be used with relatively little
or no code, although technical expertise is needed for installation and maintenance.
The real lesson, however, is the challenge of the plugins. These plugins mostly add
additional configuration fields to various GUI panels in the classic no-code fashion.
Many plugins have been created, yet many have ceased being maintained by their open-
source developers. Many are marked as ‘for adoption’ yet are not adopted. They thus
represent technical debt for peoplewho incorporated them in their automationworkflows.

3.4 Modeling Languages with Code Generation

As a final case study, we would like to mention the notion of modeling technologies
often related to UML that allow code generation and integration of code using ‘action
languages’. An example is Papyrus. The reality is that although such technologies can
save a lot of coding, our experience is that they can only reduce code volume by about
half.

The action-language code then has to be managed in some way, and tends to be
subject to the same weaknesses as we noted for Excel and WordPress. In some tools
the action language code is embedded in XML files that also are used to convey the
model (class model, state model, etc.), so can only be edited in the modeling tool. When
this action code becomes extensive it suffers from low understandability, low testability,
difficulty with collaborative development and so on.

The author’s team have been working to overcome these limitations through the
development of Umple [11, 12, 13]. Umple is a compiler, developed in itself, that trans-
lates a textual representation of models to both final systems and diagrams; it also allows
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editing of the diagrams in order to update the textual representation. Umple can be used
in many environments including in the UmpleOnline website [14], where users can also
experiment with a library of examples.

Our experience is that to build large systems with model-driven development, one
has to deploy all the best software engineering practices that have been developed over
the last half century for use with traditional code. Umplemodels are thus organized in the
same sorts of files as used for traditional programming languages; they can be operated
on using collaboration, version-control, and documentation-generation tools. Umple
allows seamless blending of model representations with code in multiple traditional
programming languages, and the instantly-generated documentation can consist of UML
diagrams and Javadoc-style pages. Most Umple users do indeed use it in a low-code
manner, but a few very large applications have been created without the limitations
imposed by other low-code platforms.

4 Directions Forward

It seems likely that low-code platforms will continue to proliferate and will be the
dominantwaymany types of software are developed in coming decades. But as discussed
above, the amount and complexity of code in such systems will often not in fact be ‘low’,
and may be exceedingly high.

The following are a few principles that, if adopted, we believe would help software to
achieve the ‘best of both worlds.’ In other words, to allow applications to be developed
with modest amounts of code on top of powerful platforms, while at the same time
enabling the scaling of such code as needed, by enabling good software engineering
practices.

4.1 Enable Low Code, but Plan for Lots of Code

Firstly, as a community, we should drop the pretense that low-code applications will
remain low-code. There is nothing wrong with enabling powerful capability from very
little code, but we need to understand that people will write high-code applications on
low-code platforms.

4.2 Enable Documentability in Low-Code Platforms

Low-code platforms need to be designed to be documentable and written in a literate
fashion. It should be possible to see live diagrams of the code as it is edited, or to edit the
diagrams themselves tomodify the underlying code. This is somethingwe have achieved
with Umple.

For example, in spreadsheet, it should possible to see formulas rendered as easy-
to-understand textual entities with proper indentation and syntax highlighting. It should
also be possible to write comments within the formulas.

Although spreadsheets have ‘auditing’ tools to do things like showing which cells
depend on which others, much greater effort needs to go in to helping make complex
code in spreadsheets and other low-code platforms understandable.
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4.3 Improve Separation-of-Concerns, Re-use, and Collaboration Capabilities

Traditional languages have a variety of ways of separating concerns, such as using
functions, multiple files organized in a hierarchy, mixins, traits and aspects. One can
reuse one’s own code in multiple contexts. In Umple we have arranged for all these
features to be available in the action code added to models.

Itwould benice if thereweremore effectiveways of reusing formulas in spreadsheets.
Macros go part way, but force the developer to delve into a totally different programing
paradigm.

Separation of concerns and reuse go hand-in-hand with collaboration: As the volume
of ‘low code’ gets high, multiple developers need to divide up development, and follow
all the best practices of agile development.

4.4 Enable Automated Testing in Low-Code Platforms

One of the great revolutions in software over the last 20 years has been the now ubiqui-
tous practice of automated testing (both unit testing and system testing). This prevents
regression as all tests must pass when changes are made. Test-driven development takes
that one step further, requiring tests to be deliveredwith each change. Pull-request testing
allows testing of proposed changes against the current released version to ensure there
is compatibility.

Automated testing has some distance to develop in the low-code context, yet it is
desperately needed. There has been a small amount of research in this direction regarding
Excel [15], but it is not part of the core platform yet needs to be. Testing in the context
of model-driven development is also in its infancy [16].

4.5 Foster Multi-vendor Open Standards for Low-Code Languages

Although there are many traditional programming languages, and some form the basis
for low-code platforms, there is still a lack of open-standard ways of creating code for
related classes of low-code platforms. For example, Visual Basic macros and plugins
written for Excel won’t work in other spreadsheets; plugins for Jenkins won’t work in
Circle CI and code written for one of the database low-code platforms is not portable to
others. This needs to change.

The solution we have chosen for Umple is to allow one or more of several traditional
programming languages (Java, C++, Php, Ruby) to be used for the action code (i.e. the
low-code). There will be some API calls this code needs to make to Umple-generated
code, but using Umple’s separation of concerns mechanism, these can be isolated, thus
rendering most of the action code fully portable.

4.6 Emphasize Developer Experience at All Scales

There is a lot of emphasis on user experience (UX) in software engineering today.
Developer experience [17] is a key subtopic. Low-code tools would benefit from strong
focus on this, particularly when the code becomes large and complex. Most low-code
tools seem to only pay attention to the experience of developers that create small amounts
of code.
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5 Some Other Perspectives

Low-code platformswith a very lowbarrier to entry are alsowidely called end-user devel-
opment (EUD) platforms. There is considerable discussion in the literature of various
aspects of these platforms that relate to the points we make in this paper.

Sahay et al. [18] provide a taxonomy of both terminology and features of such
platforms. Central to their analysis are interoperability, extensibility, learning curve and
scalability.

Paternò [19] points out that EUD platforms not only need to avoid intimidating
beginners, but also need a to be able to scale to allow experts to use the tools more
expansively, as we have indicated is indeed the reality. He also emphasizes the need for
tools to support collaborative and social development.

Repenning and Ioannidou [20] emphasize ensuring that tools allow people to have a
sense of flow (get neither bored nor anxious), and make syntactic errors hard or impos-
sible. Similar to what we are suggesting, they highlight that such tools should sup-
port incremental development, testing and multiple views. They also suggest creating
scaffolding examples that users can adapt, and building community-supported tools.

6 Conclusions

We should stop worrying about the end of the need for programmers as we know them.
History shows that no matter whether a platform asserts it is low-code or even no-code,
businesses will find requirements that expand the scale and sophistication of programs
developed using the platform. Hence there will be a steady need for skilled developers.

History shows that codewritten in low-code platforms often becomes complex, and is
hard to understand, document and reuse. This results in increasing technical debt and the
need for replacement of systems, exacerbated by rapid obsolescence of the underlying
low-code platforms.

As a result of this, we need to ensure low-code platforms have just as deep a capability
to support modern software engineering practices as traditional languages. In particular
they need to enable literate coding, self-documentation, separation of concerns, collabo-
ration, and automated testing. Vendors of similar applications should find ways to work
together to allow exchange of code among such applications. Finally, the user interfaces
of all low-code and modeling tools should be subjected to focused work to improve their
developer experience.

What is next in programming? New high-code languages with sophisticated textual
syntax will continue to arrive on the scene, as has been happening for decades. However,
in our view these will be applied more and more in tight synchrony with low-code
technology such as editing of model diagrams, and blending domain specific languages
(DSLs) with the high-code languages. This will enable greater abstraction and return
on programmer investment. However, to ensure that the return on investment occurs,
companies will need to recognize the need to apply key software engineering techniques
such as test-driven development.
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Abstract. We argue that the utility of time as a semantic property of
software is not limited to the domain of real-time systems. This paper out-
lines four concurrent design patterns: alignment, precedence, simultane-
ity, and consistency, all of which are relevant to general-purpose software
applications. We show that a semantics of logical time provides a natural
framework for reasoning about concurrency, makes some difficult problems
easy, and offers a quantified interpretation of the CAP theorem, enabling
quantified evaluation of the tradeoff between consistency and availability.

Keywords: Time · Concurrency · Distributed systems · Design
patterns

1 Motivation

The purpose of this paper is to address the question of the ISoLA 2021 track,
“Programming: What is Next?” In short, we will argue for making time a first-
class part of programs, not just for real-time programs, but for all programs.

Today, nearly all software runs on multicore machines and interacts with
other software over networks. Programs, therefore, consist of concurrently exe-
cuting components that are required to react in a timely manner to stimuli from
the network. Unfortunately, building distributed programs with predictable,
understandable, and resilient behavior is notoriously difficult. The ideal, some-
times represented by the acronym ACID (atomicity, consistency, isolation, and
durability) proves too expensive and restrictive. A great deal of innovation over
the last two decades has clarified the richness of possible models for distributed
software [5], but the price is that every programmer writing software that inter-
acts over networks has to become an expert in the surprisingly subtle ACID
concepts, plus availability and resilience.

Fortunately, threads, semaphores, and locks, once the only widely available
mechanisms available to programmers for dealing with concurrency, have been
relegated to the basement, where highly trained experts use them to build
concurrency-aware data structures and programming frameworks that enable
programmers to reason about concurrency at a much higher level. For exam-
ple, event loops with mutually atomic callback functions are the mainstay
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of JavaScript and Node.js, and underlie much of today’s client and server-
side web software. Another paradigm for managing concurrency is the actor
model [15], which is based on asynchronous message passing. Popular frame-
works like Akka [1] and Ray [29] are based on actors. Publish-and-subscribe
systems [13] also relay messages between concurrent processes, but rather than
messages being sent directly, the dissemination of messages is organized around
“topics” that can be published and/or subscribed to. This style of communication
is prevalent in IoT and robotics middleware MQTT [16] and ROS [32].

Concurrency, as a concept, is entangled with the concept of time. It is odd,
therefore, that few of these frameworks make any mention of time. When they
do, the primary mechanism that they provide to influence timing or the order
in which events occur is priority. A programmer can, for example, assert that
one type of message or one computation has higher priority than others. By
tweaking these priorities, programmers can improve responsiveness of programs,
but priorities cannot reliably be used to ensure correctness properties. For exam-
ple, priorities alone cannot guarantee that some action A always occurs before
some other action B, particularly when the program is able to make use of a
multiplicity of hardware resources such as cores and servers.

We begin by outlining four design patterns in distributed systems that we
call alignment, precedence, simultaneity, and consistency. All of these
patterns have many possible implementations that do not require any temporal
semantics at all, but in each case, we will give a solution that uses temporal
semantics. Our solutions will use a rather new programming framework called
Lingua Franca (LF) [25] that supports concurrent and distributed program-
ming using time-stamped messages. We will then analyze these examples and
hopefully convince the reader that their many subtleties are easier to reason
about with temporal semantics than without it.

2 Alignment

The first pattern considers concurrent tasks that are invoked periodically and
the invocations are expected to be aligned in a predictable way. By “align-
ment” we mean a form of synchronization that ensures that even though the
task invocations are concurrent, any observer will see their occurrences locked
together in some specified way. The simplest example, perhaps, is that if an
observer sees that one task has been invoked N times, then that observer also
sees that another task has been invoked N times. In a slightly more elaborate
example, if one task is invoked with period T and another with period 2T , then
an observer will always see that the first task has been invoked 2N times if the
second has been invoked N times. These periods need not be literally “real time”
in the sense of time as measured by a wall clock. Practical examples include
detecting failures by monitoring “heartbeat” messages or using timeouts when
invoking remote services. Alignment may also require deterministic ordering of
the tasks in the cycles at which both are invoked; this may be important, for
example, if the tasks share state. Such predictable and repeatable alignments
make programs less ambiguous and easier to test.
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1 var x = 0;
2 function increment() {
3 x = x + 1;
4 }
5 function decrement() {
6 x = x - 2;
7 }
8 function observe() {
9 console.log(x);

10 }
11 setInterval(increment, 100);
12 setInterval(decrement, 200);
13 setInterval(observe, 400);

Listing 1. JavaScript example illustrating weak temporal semantics.

Consider a simple JavaScript example from Jerad and Lee [19] that uses
callback functions, shown in Listing 1. This uses the built-in JavaScript function
setInterval(F, T ), which schedules a callback function F to be invoked after T
milliseconds and then periodically every T milliseconds. The actual time of the
function invocations cannot be exactly every T milliseconds, since that would
require a perfect timekeeper, which does not exist, and it would require that the
JavaScript engine be idle at the requisite time. This imprecision is unavoidable,
but it is no excuse for giving up on the alignment of these callbacks.

This program defines a variable x that is shared state. The program sets up
periodic callbacks to increment x by one every 100 msec, decrement x by two
every 200 msec, and observe the value of x every 400 msec. The programmer
may expect that the observed value of x is always zero (or, at least, near zero),
but this is not what occurs. Running this program in Node.js (version v12.8.1),
we inexplicably see numbers starting with 2 and then decreasing monotonically
without bound. The decrement function gets invoked significantly more fre-
quently than half the rate of invocations of increment.

A simple, deterministic association between these callback functions is not
hard to implement, as Jerad and Lee did, by providing their own variant of the
setInterval and setTimeout functions that maintains an event queue and uses
a single event loop that calls the built-in setTimeout function to advance time
by the next expected increment [19]. But such logic is difficult to get right and
quite separate from any application logic. And there are many subtleties. For
example, for the intuitive idea of alignment of the scheduled callbacks to make
sense for a program like that in the listing, we need a less intuitive idea that time
does not elapse between the calls to setInterval. This requires a logical notion
of time distinct from the physical notion. Time needs to become a semantic
property of the program.

A comparable program in Lingua Franca is shown in Listing 2. This pro-
gram deterministically prints “x = 0” repeatedly. Since the LF programs in sub-
sequent patterns will become more intricate, we will use this example to explain
some features of the language for readers who are unfamiliar with LF.
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1 target C;
2 main reactor {
3 state x:int(0);
4 timer t1(100 msec, 100 msec);
5 timer t2(200 msec, 200 msec);
6 timer t4(400 msec, 400 msec);
7 reaction(t1) {=
8 self->x += 1;
9 =}

10 reaction(t2) {=
11 self->x -= 2;
12 =}
13 reaction(t4) {=
14 printf("x = %d\n", self->x);
15 =}
16 }

Listing 2. Lingua Franca program comparable to Listing 1.

The first line specifies the target language, which in this case is C, but we
could have chosen C++, Python, or TypeScript. The LF code generator takes
this program as input and generates a standalone C program that realizes its
semantics. In subsequent examples, we will omit the target line; all examples in
this paper use the C target. There is only one reactor in this program (below we
will see that reactors are concurrent objects that send messages to each other).
This reactor has one state variable, x, defined on Line 3, that is accessible in all
its reactions via a (code generated) struct called self. There are three timers,
each with an offset and a period. There are then three reactions to the timers.
The first two increment and decrement the state, respectively, and the last one
prints the state.

The delimiters {= ... =} surround code written in the specified target lan-
guage, and the mechanism for accessing inputs and state variables and for setting
outputs is different in each target language (in C, via local variables associated
with ports, the self struct, and the SET macro). That code is invoked in reaction
to the specified triggers, which in this case are the timers. If a list of triggers
is given, then any one of them can cause the reaction to be invoked. In LF,
invocations of reactions belonging to the same reactor are mutually exclusive
(because they share state), but reactions in distinct reactors may be invoked in
parallel, modulo dependencies between them, as we will see. Moreover, if more
than one reaction of a reactor is triggered at any logical time, then the reactions
will be invoked in the order they are declared. Consequently, the reaction to t4
is always invoked after the reactions to t1 and t2, and hence its report of the
state variable value always reflects what those reactions have done to the state
at any logical time.

In Lingua Franca, the time referenced by the timers is a logical time.1
This can be aligned with physical time on a best-effort basis, or the program
can be run as fast as possible with no reference to physical time. Either way,

1 Lingua Franca actually uses a richer model of time called “superdense time,” but
this is irrelevant to the present discussion, so we simplify to just refer to timestamps.
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Al ignment ( )

x : X()

(400 msec, 400 msec)

3

2

1

i n 2

in1

s2 : Source(period:time, value:int)

(200 msec, 200 msec)

out

s1 : Source(period:time, value:int)

(100 msec, 100 msec)

out

Fig. 1. Diagram of the Lingua Franca example in Listing 3.

the runtime engine maintains alignment of the timers. Moreover, logical time
does not elapse during the execution of a reaction. Hence, reactions are logically
instantaneous.

Neither the JavaScript program of Listing 1 nor the LF program of Listing 2
has network interactions. In Listing 3, a version of the LF program is given that
is federated.2 The LF code generator generates a standalone C program for
each top-level reactor and synthesizes the coordination between them to preserve
the semantics. The result is a set of three programs (plus a fourth coordinator
program) interacting over the network that exhibits exactly the same behavior
as the unfederated version, even when the timers driving the updates to the state
variable are realized on remote machines.

As LF programs get more complex, the diagram synthesized by the LF
Eclipse-based integrated development environment (IDE) becomes useful for
more quickly understanding the program.3 The diagram for the program in
Listing 3 is shown in Fig. 1. For a detailed explanation of this program and
the diagram, see Sidebar 1.

In a federated execution, even one where communication between federates
is over the open internet, the runtime infrastructure enforces the ordering con-
straints between reaction invocations defined by the program, and hence this
program deterministically reports x = 0 repeatedly. This is in stark contrast to
the inexplicable behavior of the JavaScript program.

3 Precedence

Because the alignment pattern considered above makes explicit mention of time
with periodic tasks, the reader may misconstrue our argument to apply only to

2 The federated infrastructure of Lingua Franca is currently rather preliminary,
being built by Soroush Bateni and the two of us, but it is sufficiently developed for
the examples described in this paper.

3 The diagram synthesis infrastructure was created by Alexander Schulz-Rosengarten of
the University of Kiel using the graphical layout tools from the KIELER Lightweight
Diagrams framework [33] (see https://rtsys.informatik.uni-kiel.de/kieler).

https://rtsys.informatik.uni-kiel.de/kieler
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1 federated reactor Alignment {
2 s1 = new Source();
3 s2 = new Source(period = 200 msec, value = -2);
4 x = new X();
5 s1.out -> x.in1;
6 s2.out -> x.in2;
7 }
8 reactor Source(
9 period:time(100 msec),

10 value:int(1)
11 ) {
12 output out:int;
13 timer t(period, period);
14 reaction(t) -> out {=
15 SET(out, self->value);
16 =}
17 }
18 reactor X {
19 input in1:int;
20 input in2:int;
21 state x:int(0);
22 timer observe(400 msec, 400 msec);
23 reaction(in1) {=
24 self->x += in1->value;
25 =}
26 reaction(in2) {=
27 self->x += in2->value;
28 =}
29 reaction(observe) {=
30 printf("x = %d\n", self->x);
31 =}
32 }

Listing 3. Distributed version of the program in Listing 2.

real-time systems. But here, time is being used to specify expected alignment,
not real-time behavior. To further disavow the real-time interpretation, let’s
consider an example that has less to do with physical time. Specifically, we will
consider a situation where one program invokes a service provided by a remote
program, but this service may possibly be mediated by a third program (such as,
for example, a third-party authenticator, a computation offloaded onto GPUs,
an online image classification service, etc.). The challenge is that the results
of the mediator must be available to the service provider before it can provide
the service, and the results of the mediator need to be aligned with the service
request. Hence, the mediator takes precedence over the service provider.

Figure 2 and Listing 4 provide a Lingua Franca program illustrating this
precedence pattern. To keep the program to one page, the example is oversim-
plified, but the program is sufficient to illustrate this pattern. In this example, a
Source reactor, when it chooses to request the service, sends a request message
to the service provider and an authentication string to the Mediator. The request
message is a random integer, but in more interesting applications, it could be a
substantial payload like an image, and hence it may be desirable for the transport
of the request to the Provider to proceed in parallel with the authentication of
the Mediator. The Mediator checks the authentication string, and if it matches,
forwards an authorization to the Provider. When the Provider receives logically
simultaneous authorization and a service request, it provides the service.
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In Listing 4, the Source reactor randomly sends either a valid authentication
string (“good one”) or an invalid one (“bad one”) to the Mediator, and simulta-
neously sends a random number representing a service request to the Provider.
The Mediator checks the authentication string, and if it valid, sends a boolean
true to the Provider. The Provider provides the service only if receives a
boolean true from the Mediator that is aligned with the service request.

The main point of this example is that the Provider has to match the service
request with the results of the Mediator. There are many ways to do this without
resorting to the timestamped semantics of Lingua Franca, but we hope that
the reader will appreciate simplicity that this solution provides. The application
logic does not get polluted with the coordination logic. In Lingua Franca, the
program semantics ensures that, at each logical time, if a reaction of the Mediator
is triggered, then that reaction will complete and its results will propagate to
the Provider before any reaction of the Provider that depends on the Mediator
is invoked. Hence, the infrastructure rather than the application logic handles
the precedence relationship. The program is explained in detail in Sidebar 2.

One interesting observation is that in Lingua Franca, the absence of a
message conveys information. The job of the infrastructure is to ensure that
every reactor sees inputs in timestamp order and that inputs with identical
timestamps are simultaneously available. Hence, if the infrastructure is working

Sidebar 1: Lingua Franca Alignment Program Explained

This sidebar provides a detailed explanation of the program in Listing 3 and its
diagram in Fig. 1. Lingua Franca keywords are shown in bold. Lines 1 through
7 define the main application program, which in this case contains three reactor
instances that are interconnected. The federated keyword signals to the code
generator that each of the three reactor instances should be instantiated in a
separate program, which can be run on a distinct host, and that the code generator
should generate the code needed for these separate programs to communicate. Had
we used the main keyword instead of federated, only one program would be
generated, and the concurrency of the application would be realized using threads
rather than separate processes.

Lines 8 through 17 define a reactor class named Source. This class is instan-
tiated twice, on Lines 2 and 3. These two instances are shown on the left in the
diagram of Fig. 1 with connections to an instance of the class X, shown on the
right. The connections are established on Lines 5 and 6. These are connections
between distinct federates.

The Source reactor class has two parameters with default values defined on Lines
9 and 10. The default parameters are overridden by the second instance defined on
Line 3. The parameters define the offset and period of the timer named t defined
on Line 13 and the value sent in the output message on Line 15.

In the diagram of Fig. 1, reactions are shown as dark gray chevrons and timers
with a clock symbol. The precedence relations between the three reactions of X are
shown with arrows and numbers.
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PrecedenceAuthorizer()

p : Provider()

request

o k

If request is OK, provide service.

m : Mediator()
auth o k

Authorize the request.

s : Source()

auth

request

Make a request.

Fig. 2. Diagram of the Lingua Franca example illustrating the precedence pattern.

1 federated reactor PrecedenceAuthorizer {
2 s = new Source();
3 m = new Mediator();
4 p = new Provider();
5 s.auth -> m.auth;
6 s.request -> p.request;
7 m.ok -> p.ok;
8 }
9 reactor Source {

10 output auth:string;
11 output request:int;
12 timer t(0, 100 msec);
13 reaction(t) -> auth, request {=
14 static char* keys[] = {"good one", "bad one"};
15 int r = rand() % 2;
16 SET(auth, keys[r]);
17 SET(request, rand());
18 =}
19 }
20 reactor Mediator {
21 input auth:string;
22 output ok:bool;
23 reaction(auth) -> ok {=
24 static char* correct_key = "good one";
25 if (strcmp(correct_key , auth->value)) {
26 printf("AUTHORIZED\n");
27 SET(ok, true);
28 } else {
29 printf("DENIED\n");
30 }
31 =}
32 }
33 reactor Provider {
34 input ok:bool;
35 input request:int;
36 reaction(ok, request) {=
37 if (ok->is_present && request->is_present
38 && ok->value == true
39 ) {
40 printf("PROVIDE SERVICE\n");
41 } else if (request->is_present) {
42 printf("DENY SERVICE\n");
43 }
44 =}
45 }

Listing 4. Source of the Lingua Franca example illustrating the precedence pattern.

correctly, then absence of a message at a logical time means that no such message
is forthcoming. For example, if the Source reactor fails to send an authorization
string to the Mediator, then the Provider will not receive an OK message. That
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message will be unambiguously absent at the logical time of the service request
that it receives.

There are many applications that have similar structure. For example, the
Mediator may be a bank, which authenticates the Source and testifies to the
service Provider that funds are available without revealing any details about
the requestor (identify, bank balance, etc.). The Mediator could be a vision
subsystem that checks whether a service can be safely provided, as illustrated by
the aircraft door controller example in Lohstroh, et al. [26], where the difficulties
of realizing this pattern using actors are discussed. Menard, et al. [28] give an
automotive application that has this pattern and illustrate the difficulties of
correctly realizing the pattern using Adaptive AUTOSAR.

4 Simultaneity

A classic challenge program in concurrent programming is called the “cigarette
smoker’s problem” was introduced by Suhas Patil in 1971 [31] and is discussed

Sidebar 2: Lingua Franca Precedence Program Explained

This sidebar explains the program listed in Listing 4 and depicted in Fig. 2. Lines 2
through 4 create one instance of each reactor class. Lines 5 through 7 connect their
ports. On Lines 14 to 17, the Source periodically produces requests and a randomly
chosen correct or incorrect authentication key. In a real application, the Source
might wrap a web server, for example, and produce requests and authentication
keys when remote users request a service.a

On Lines 24 through 30, the Mediator checks that the provided authentication
key matches the correct key, and, if so, issues an OK message. Since the execution
of a reaction is logically instantaneous, that output has the same logical timestamp
as the input. Consequently, when that OK message arrives at the Provider, it will
be logically simultaneous with the request sent directly from the Source.

On Lines 37 through 43, the Provider checks that it has simultaneous inputs
and that they match and, if so, provides the service. Otherwise, it denies the
service.

a In Lingua Franca, an asynchronous interaction with the environment,
such as a web server, is realized not with a timer, but rather with a physical
action, which can be scheduled from outside the Lingua Franca program.
Upon being scheduled, the physical action will be assigned a logical timestamp
based on the current physical time at the machine where it is scheduled. The
resulting timestamped event gets injected into the LF program where it can
trigger reactions.
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in Downey’s Little Book of Semaphores [11].4 Patil’s original formulation goes
like this:

Three smokers are sitting at a table. One of them has tobacco, another has
cigarette papers, and the third one has matches—each one has a different
ingredient required to make and smoke a cigarette but he may not give
any ingredient to another. On the table in front of them, two of the same
three ingredients will be placed, and the smoker who has the necessary
third ingredient should pick up the ingredients from the table, make the
cigarette and smoke it. Since a new pair of ingredients will not be placed
on the table until this action is completed, the other smokers who cannot
make and smoke a cigarette with the ingredients on the table must not
interfere with the fellow who can.

A naive solution realizes each smoker as follows (in pseudo code, shown for the
smoker that holds tobacco):

1 while(true) {
2 acquire_paper();
3 acquire_matches();
4 smoke();
5 release();
6 }

The two “acquire” functions block until the specified resource is available and
then acquire exclusive access to that resource. This realization, however, very
likely deadlocks because after this smoker acquires paper, another smoker may
acquire the matches (or the supplier process supplies tobacco instead of matches).
At that point, no further progress is possible and all smokers freeze.

Patil imposed some constraints, that “the process which supplies the ingre-
dients cannot be changed,” and that “no conditional statements can be used.”
Patil argued that under these constraints, the problem cannot be solved using
Dijkstra’s semaphores [10].

In 1975, Parnas showed that Patil had imposed some additional unstated
constraints on the use of semaphores and gave a solution that uses vector
semaphores, but still avoids conditional statements [30]. Downey argued that
the constraint to avoid conditional statements is rather artificial, but with the
less artificial constraint that the supplier not be modified (it could, after all, rep-
resent an operating system), then the problem is interesting and the solutions
can get quite convoluted [11]. Searching the web for solutions to this problem
yields a few other attempts to solve it, including one that argues that the problem
demonstrates the requirement for tests that enrich semaphores such as POSIX
operations such as sem_try_wait() or pthread_mutex_trylock().5

4 The name of this problem illustrates how cultural norms have changed. In 1971, there
was little cultural stigma around smoking cigarettes, and it was relatively common
for smokers to roll their own.

5 See for example OpenCSF: https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/
html/CigSmokers.html, although, unfortunately, the solution given there still
exhibits the possibility of a form of deadlock, where one thread repeatedly, unfairly
acquires a semaphore in a busy wait.

https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/CigSmokers.html
https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/CigSmokers.html
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Fig. 3. Diagram of the Lingua Franca example illustrating the simultaneity
pattern.

A more commonly accepted solution, one implemented for example in the
Savina actor benchmark suite [17], defines a centralized coordinator that first
determines what the supplier has supplied, then decides which smoker should be
given permission to take the supplies and dispatches a message to that smoker.

Addressing this problem in Lingua Franca leads to radically different solu-
tions that are not based on semaphores and locks at all. Hence, this does not
really provide a solution to the problem Patil posed, but rather changes the
problem into one that becomes trivially easy. A diagram is shown in Fig. 3 and
the key portions of the code in Listing 5. Here, a Smoker class has a param-
eter named “has” (Line 35) that specifies which of the resources each smoker
has. The instances of this class on Lines 3 and 5 give values to this parame-
ter. The reaction starting on Line 46 is hopefully self-explanatory, showing how
each smoker can independently decide whether to smoke without creating the
possibility of deadlock. The key observation is that the reaction can test for
the simultaneous presence of two distinct inputs, something that is not possible
with basic semaphores. In fact, even programming errors will not manifest as a
deadlock here. For example, if we erroneously instantiate two smokers with the
same “has” parameter value, instead of deadlock, we will see two smokers smok-
ing simultaneously. This program uses some features of the Lingua Franca
language that we have not yet explained. Those are explained in Sidebar 3.

Our Lingua Franca program, of course, is not a solution to Patil’s original
problem, which was about how to use semaphores. It changes the problem, and
semaphores are no longer needed. Instead, it uses the concurrency mechanisms of
Lingua Franca, where concurrent processes exchange time-stamped messages.
With this solution, the problem becomes much less interesting. Unless your goal
is to give programmers brain-teasing puzzles, this is a good thing!
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1 main reactor {
2 a = new Agent();
3 s1 = new Smoker(has = 0); // Has tobacco.
4 s2 = new Smoker(has = 1); // Has paper.
5 s3 = new Smoker(has = 2); // Has matches.
6 (a.tobacco)+ -> s1.tobacco, s2.tobacco, s3.tobacco;
7 (a.paper)+ -> s1.paper, s2.paper, s3.paper;
8 (a.matches)+ -> s1.matches, s2.matches, s3.matches;
9 s1.done, s2.done, s3.done -> a.trigger;

10 }
11 reactor Agent {
12 input\cite{ch15Benveniste:91:Synchronous} trigger:bool;
13 output tobacco:bool;
14 output paper:bool;
15 output matches:bool;
16 reaction(startup, trigger) -> tobacco, paper, matches {=
17 int choice = rand() % 3;
18 if (choice == 0) {
19 SET(tobacco, true);
20 SET(paper, true);
21 printf("Agent putting tobacco and paper on the table.\n");
22 } else if (choice == 1) {
23 SET(tobacco, true);
24 SET(paper, true);
25 printf("Agent putting tobacco and matches on the table.\n");
26 } else {
27 SET(tobacco, true);
28 SET(paper, true);
29 printf("Agent putting paper and matches on the table.\n");
30 }
31 =}
32 }
33 reactor Smoker(
34 smoke_time:time(1 sec),
35 has:int(0) // 0 for tobacco, 1 for paper, 2 for matches
36 ) {
37 input tobacco:bool;
38 input paper:bool;
39 input matches:bool;
40 output done:bool;
41 logical action smoke;
42 reaction(smoke) -> done {=
43 printf("Smoker is done smoking.\n");
44 SET(done, true);
45 =}
46 reaction(tobacco, paper, matches) -> smoke {=
47 if (self->has == 0 && paper->is_present && matches->is_present) {
48 printf("Smoker with tobacco starts smoking.\n");
49 schedule(smoke, self->smoke_time);
50 } else if (self->has == 1
51 && tobacco->is_present && matches->is_present) {
52 printf("Smoker with paper starts smoking.\n");
53 schedule(smoke, self->smoke_time);
54 } else if (self->has == 2
55 && tobacco->is_present && paper->is_present) {
56 printf("Smoker with matches starts smoking.\n");
57 schedule(smoke, self->smoke_time);
58 }
59 =}
60 }

Listing 5. Lingua Franca program illustrating the simultaneity pattern.
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5 Consistency

In the year 2000, Eric Brewer (of Berkeley and Google) gave a keynote talk [4]
at the Symposium on Principles of Distributed Computing (PODC) in which he
introduced the “CAP Theorem,” which states that you can have only two of the
following three properties in a distributed system:

– Consistency: Distributed components agree on the value of shared state.
– Availability: Ability to respond to user requests.
– tolerance to network Partitions: The ability to keep operating when com-

munication fails.

This keynote is credited by many in the distributed computing community with
opening up the field, enabling innovative approaches that offer differing tradeoffs
between these properties. In 2012, Brewer wrote a retrospective [5] in which he
observes that the “P” property is not really one you can trade off against the
others. He clarified the design problem as one of how to trade off consistency
against availability when network partitions occur. Moreover, he pointed out
that network partitions are not a binary property; all networks have latency,
and a complete communication failure is just the limiting case when the latency
goes to infinity.

The tradeoff between consistency and availability arises in any distributed
system where components are expected to agree on some aspect of the state
of the system. Although this statement seems simple, it’s actually quite subtle.
When should they agree? What do we mean by agreement? These questions
come into crisp focus when using a temporal semantics. We will argue that the
tradeoffs are easier to reason about in this context.

Consider the reactor defined in Listing 6, Lines 19 to 36, which is inspired
by Lamport’s distributed database example [23]. This reactor is, perhaps, the
smallest possible database. It contains one integer state variable named “record”
and provides inputs that can add a value to that record. It also provides an input

Sidebar 3: Lingua Franca Simultaneity Program Explained

This sidebar explains some features of Lingua Franca that are used in Listing 5.
Specifically, Lines 6 through 9 show a compact notation for certain connection
patterns. The notation “( portname )+” means to use the specified port as many
times as necessary to satisfy the right hand side of the connection. In this exam-
ple, each such line establishes three connections. On the final line, 9, the right
side of the connection references a multiport, a port that can accept a multi-
plicity of connections, defined on Line 12. The LF code generator checks that
such connections are balanced. Messages that arrive on a multiport are handled
in deterministic order, and each channel can be unambiguously absent while other
channels have messages. The diagram in Fig. 3 can help the reader to understand
these connections.
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1 federated reactor Consistency {
2 a = new Platform(update_amount = 100);
3 b = new Platform(update_amount = -20);
4 b.publish -> a.update;
5 a.publish -> b.update;
6 }
7 reactor Platform(
8 update_amount:int(0)
9 ) {

10 input update:int;
11 output publish:int;
12 c = new Client(update_amount = update_amount);
13 r = new Replica();
14 c.query -> r.query;
15 (c.update)+ -> r.local_update , publish;
16 r.current -> c.reply;
17 update -> r.remote_update;
18 }
19 reactor Replica {
20 input local_update:int;
21 input remote_update:int;
22 input query:bool;
23 output current:int;
24 state record:int(0);
25 reaction(local_update , remote_update) {=
26 if (local_update ->is_present) {
27 self->record += local_update ->value;
28 }
29 if (remote_update ->is_present) {
30 self->record += remote_update ->value;
31 }
32 =}
33 reaction(query) -> current {=
34 SET(current, self->record);
35 =}
36 }
37 reactor Client(
38 update_amount:int(0)
39 ) {
40 timer query_trigger(0, 150 msec);
41 timer update_trigger(0, 100 msec);
42 input reply:int;
43 output query:bool;
44 output update:int;
45 reaction(query_trigger) -> query {=
46 SET(query, true);
47 =}
48 reaction(update_trigger) -> update {=
49 SET(update, self->update_amount);
50 =}
51 reaction(reply) {=
52 printf("Balance is: %d.\n", reply->value);
53 =}
54 }

Listing 6. Lingua Franca program illustrating the consistency pattern.

to ask for the current value of the record. Because inputs are timestamped, and
because reactions are invoked in order when inputs are simultaneously present,
the response to a query input will always reflect update inputs with timestamps
equal to or less than that of the query input.
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Fig. 4. Diagram of the Lingua Franca example illustrating the consistency pattern.

Listing 6 shows an LF program that creates two instances of the Platform
reactor (Lines 2 and 3), each of which contains one instance of the Replica
reactor. The program ensures that the replicas remain strongly consistent. That
is, given queries with the same timestamp, both replicas will always report the
same value. This program also has a Client reactor that simulates users of the
replicas by periodically generating updates and queries. In a real application,
these updates and queries could be generated in response to network inputs, for
example via a web server, rather than periodically, driven by timers.

The program is a bit more hierarchical than previous examples, where two
instances of Platform are created, each with a Client and a Replica. Each Plat-
form runs in a separate program (because the top-level reactor is federated) and
can be run on different machines. Thus, the Lingua Franca semantics ensures
strong consistency across the replicas even when they are distributed.

Each Replica has three inputs, local_update, remote_update, and query. At
any given logical time, if either local_update or remote_update (or both) are
present, then the first reaction (Line 25) will be invoked and update the reactor’s
state using those inputs. If a query input is present, then the second reaction
(Line 33) will be invoked. In Lingua Franca semantics, if the query input is
simultaneous with either local_update or remote_update, the first reaction is
assured of being invoked before the second, and hence the response to the query
will always reflect all updates, local or remote, with timestamps equal to or less
than that of the query.

Here, the Replica reactors have a property that makes it easy to deal with
simultaneous updates, which is that the update to the state is associative and
commutative. Hence, one Client can add 100 to the state at the same (logical)
time that the other Client subtracts 20 from the state, and both Clients will see a
net change in the state of 80. Not all applications will have this associativity and
commutativity, in which case the application logic needs to include mechanisms
for resolving conflicts. For example, Clients could be assigned fixed priorities.
Because of logical time, such conflicts are easy to detect and handle.
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Figure 4 shows the diagram for this program. Note that a read of the record
is handled locally on each platform. However, this read will have latency that
depends on network latencies. To understand this, let’s assume a Newtonian
model of physical time, denoted by a real number T . Assume also, for the
moment, that each platform begins processing events with timestamp t precisely
when t = T (we will relax this assumption later).

Suppose that Platform b publishes an update with timestamp tb at physical
time Tb = tb (this requires that computation times be negligible). Platform a will
see this at physical time Tb + L, where L is the network latency. If Platform a
has a local query with the same timestamp ta = tb, then the Replica a.r cannot
respond the query before physical time Tb+L. This means that it takes Platform
a at least time L to respond to a query and to be ready for the next query.

The dependency on network latency implies that achieving perfect consis-
tency, which this program does, comes at a quantifiable cost in availability.
After receiving a query, the system cannot accept another query until time L
has elapsed.

We can now relax some of these assumptions and draw a more general conclu-
sion. Suppose that there is an offset Oa and Ob for a platform to begin processing
events. That is, platform a will begin processing events with timestamp ta at
physical time T = ta + Oa, and similarly for b. Suppose that a issues a query
with timestamp ta at physical time Ta = ta + Oa, and b issues an update with
the same timestamp tb = ta at physical time Tb = tb + Ob. Platform a will see
the update at Tb+L = tb+Ob+L = ta+Ob+L. It cannot respond to the local
query before physical time reaches

T = max(ta + Ob + L, ta + Oa) = ta +max(Ob + L,Oa).

Since platform a starts processing events with timestamp ta at ta+Oa, then the
time it takes to complete processing all events with timestamp ta, which may
include updates originating remotely, is

Δa = (ta +max(Ob + L,Oa))− (ta + Oa) = max(L + Ob − Oa, 0).

Correspondingly, the time it takes b to complete processing events at a timestamp
is

Δb = max(L + Oa − Ob, 0).

Let us call these times the unavailability. We can adjust Oa or Ob to reduce
the unavailability on one platform only at the expense of increasing it on the
other! The fairest design is one where Oa = Ob, in which case the unavailability
on both platforms is L, the network latency.

The best we can do, therefore, when maintaining perfect consistency, is limit
queries to no more than one for each time period equal to L. This is a reduction in
availability as a function of network latency, and therefore gives a quantitative
interpretation to the CAP theorem. If the network fails altogether, L goes to
infinity, and there is no availability.
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We can now explore what happens if we relax consistency. In a timestamped
language like Lingua Franca, this is easy to do in a controlled way by manip-
ulating timestamps. Lingua Franca includes an after keyword that can be
associated connections. We can, for example, replace Lines 4 and 5 in Listing 6
with

b.publish -> a.update after 10 msec;
a.publish -> b.update after 10 msec;

This means that the timestamp at the receiving end will be 10 msec larger than
at the sending end. With this change, Δa and Δb both reduce by up to 10 msec,
possibly making both of them zero, which will maximize availability.

There is a price in consistency, however. This means that on each platform,
the results of a query reflect only remote updates that are timestamped at least
10 msec in the past. We can call this quantity the inconsistency Cab and Cba,
and we now have

Δa = max(L + Ob − Oa − Cba, 0)
Δb = max(L + Oa − Ob − Cab, 0).

With perfect clock synchronization, the optimal values are Cab = Cba = L,
which reduces the unavailability to zero at the cost of an inconsistency of L,
the network latency. Any tradeoff in between perfect consistency and perfect
availability can be chosen, with the caveat that L is likely not a constant and
diverges to infinity upon network partitioning.

6 Related Work

In many ways, the ideas presented here are quite old, appearing in various forms
in the work of Lamport, Chandy, and Lynch, for example, in the 1970s and
1980s. These ideas are worth a resurrection because of widespread prevalence of
distributed computing today and because of the availability of much better pro-
gramming frameworks and languages. LF and its runtime implementations lever-
age these classic results and wrap them in a programming model that abstracts
away many of the complex details that are typically involved in realizing con-
current and distributed software.

Lingua Franca is certainly not the first framework to give us concurrent
components that exchange timestamped messages. Hardware description lan-
guages like VHDL and Verilog have always had this feature, as have simulation
frameworks for discrete-event systems [7,36]. There is a long history of work
on building parallel and distributed implementations of such frameworks [8,18],
including the High Level Architecture (HLA) [21]. Some of these (like HLA) use
centralized controllers that coordinate the advancement of time, while some, like
Chandy and Misra [8] use decentralized control.

Lingua Franca is also not the first framework to offer deterministic con-
currency. The synchronous languages [3], such as Lustre, SIGNAL, and Esterel
share key semantic features with Lingua Franca, albeit not its timestamping.
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In 1984, Lamport proposed a decentralized control strategy that links physi-
cal time with logical timestamps and leverages clock synchronizing to create an
efficient decentralized coordination mechanism [23]. This technique was elevated
to a programming framework with explicit timestamps in PTIDES [37] and then
independently reinvented in Google Spanner [9]. These two latter efforts demon-
strate that a timestamped framework is not just for simulation, but rather can be
used efficiently at scale in large distributed systems. Moreover, they underscore
the value of clock synchronization [12].

Timestamps have also appeared in a variety of forms, most famously in Lam-
port clocks [22] and vector clocks [24]. The relationship between these techniques
and other uses of timestamps is subtle and fascinating.

This history of programming languages is punctuated with languages that
include some notion of time, such as Modula [34,35], PEARL [27], Ada [6],
Occam [14], Real-Time Euclid [20], and Erlang [2]. The notions of time intro-
duced in these languages were more focused on exposing the mechanisms of a
real-time operating system (RTOS) than on controlling concurrency. LF differs
from these in many ways, not the least of which is that it is not a full-fledged
programming language, but rather it is a polyglot coordination language. “Poly-
glot” means that program logic is written in a preexisting target language (C,
C++, Python, JavaScript, etc.), and the coordination language simply orches-
trates the execution of code in that language. In a federated Lingua Franca
program, it is even possible to combine multiple languages in one application,
although, as of this writing, that feature is not fully developed.

7 Conclusions

In light of the enormous increase in the prevalence of concurrent and distributed
software, we need to continue to explore mechanisms beyond semaphores, locks,
and threads. If these mechanisms include a notion of time with strong seman-
tic properties, reasoning about concurrent programs becomes easier. Simple
tasks, like aligning repeated computations, become simple again. Ensuring that
precedences are respected become the responsibility of the infrastructure rather
than of the application logic. Programming puzzles, like preventing deadlock
in resource management problems, become trivial exercises. And exploring the
tradeoff between availability and consistency becomes a quantifiable and sys-
tematic engineering task rather than ad hoc trial and error. Hence, taking time
seriously is part of the answer to the question of what is next in programming.
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Abstract. Developing embedded software requires good frameworks,
models, and programming languages. The languages typically used for
embedded programming (e.g., C and C++) tend to be decoupled from
the models and tend to favor efficiency and low-level expressivity over
safety, high-level expressivity, and ease of use. In this work, we explore
the use of Scala for integrated modeling and development of embed-
ded systems represented as sets of interconnected components. Although
Scala today is not suitable for this domain, several current efforts aim to
develop Scala-like embedded languages, so it is conceivable that in the
future, such a language will exist. We present four internal Scala DSLs,
each of which supports an aspect of embedded software development,
inspired by an actual C++ framework for programming space missions.
The DSLs support programming of software components, hierarchical
state machines, temporal logic monitors, and rule-based test generators.
The effort required to develop these DSLs has been small compared to
the similar C++ effort.

1 Introduction

Embedded software development. Developing software for embedded systems (for
example, robotic vehicles) poses at least three specific challenges. First, with-
out appropriate frameworks, embedded systems programming is difficult. All
embedded systems have certain similar behaviors, such as commanding, teleme-
try, and inter-task communication. It is both tedious and wasteful to encode
these behaviors by hand in a general-purpose language for each new application.
Domain-specific frameworks such as F Prime (F’) [4] and cFS [5] can alleviate
this problem. The framework can provide the behavior that is common to many
applications, and the developers can focus on the behavior that is specific to
their application.

Second, even with a good framework, there is a semantic gap between the
domains of design and implementation. For example, developers may express a
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design in terms of components and their connections, whereas the implementa-
tion may be in terms of C++ classes and functions. To bridge this gap, one can
express the design in a modeling language and automatically generate code in a
general-purpose language for further elaboration by the developers. F Prime uses
a domain-specific modeling language named FPP (F Prime Prime, or F”) for this
purpose [10]. It is also possible to use a general-purpose modeling language such
as SysML [36] or AADL [8]. This approach works, but it causes the model to
be disconnected from the implementation, because the two are expressed in dif-
ferent languages, and the model does not generate a complete implementation.
In particular, some hand-modification of generated code is usually required, and
this makes it hard to update the model.

Third, embedded systems usually have tight timing and resource require-
ments compared to general applications. Therefore embedded developers are
restricted in the programming languages they can use. The language must be
compiled to efficient machine code, must provide low-level access to machine
details, and must provide deterministic timing and scheduling. The traditional
players in this space are C, C++, and Ada. More recent entries include D and
Rust.

C, while groundbreaking in its day, has not advanced much since the 1980s;
by the standards of modern languages, it is woefully primitive. C++ and Ada are
better: they provide abstractions such as user-defined class types, and they are
advancing with the times. However, these languages are incremental, sometimes
awkward evolutions of decades-old designs. Further, C++, like C, has many
devious behaviors that can trick even experienced and careful programmers into
writing incorrect code. D improves upon C++ in many respects (e.g., cleaned-up
syntax, improved type safety), but its design is strongly influenced by C++.

By contrast, Scala [30] is more recently designed from first principles. It
has a clean syntax and semantics and is generally easier for programmers to
understand and use than traditional embedded languages. Further, Scala’s strong
static type system rules out many basic errors that can lurk in even well-tested
C and C++ programs. Rust is interesting because it adopts modern language
design principles while being both efficient and safe. However, it relies on static
analysis called “borrow checking” that is notoriously difficult to understand and
use.

Overall, while both C++ and Scala can be used for both low- and high-level
programming, C++ is more expressive for low-level programming (for example,
it provides explicit control over the placement of objects in memory, whereas
Scala does not), while Scala is more expressive for high-level programming (for
example, Scala has ML-like functions and closures; in C++ functions and clo-
sures are separate concepts, and closures are syntactically awkward). Rust is
somewhere in the middle.

Our work. We are exploring the use of Scala for modeling and developing
embedded systems. Scala is a natural choice for modeling because it is has good
high-level expressivity and good support for internal domain-specific languages
(DSLs). Scala as it exists today is not suitable for embedded programming: it
runs on the Java Virtual Machine, it is garbage collected, and it cannot express
low-level machine interaction. However, several efforts are developing Scala-like
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embedded languages; we describe some of them below. Although it will take fur-
ther research and implementation effort, we believe that it is possible to develop
such a language. Arguably Swift [35] is already such a language, although its
current focus is on iOS app development.

In this work, we imagine that Scala can be used for embedded software, and
we explore what we could do if this were true. In particular, we imagine that
we can use the same language (Scala) for both modeling and development. To
do this, we leverage Scala’s strong support for internal DSLs. Internal means
that the domain-specific language is expressed using only features provided by
the host language. By contrast, an external DSL has a separate implementation
from the host language, with a standalone tool or tools for parsing, analysis, and
code generation. Internal DSLs have the advantage that the programmer works
with only one language and can use all the tools, such as integrated develop-
ment environments (IDEs), available for that language. The DSLs are directly
executable without the use of external tools.

We have implemented four internal DSLs in Scala 2.13.0. Two of them are
inspired by the F′ (F Prime) C++ framework [4], developed at NASA’s Jet
Propulsion Laboratory (JPL) for programming flight systems as collections of
interacting components. F′ has e.g. been used for programming the Mars Heli-
copter [22]. The four DSLs support programming respectively: components and
their port connections; behavior as Hierarchical State Machines (HSMs) in the
individual components; runtime monitors; and rule-based test generators. The
HSM DSL was previously introduced in [15,16], and the monitor DSL was intro-
duced in [13,14]. This work integrates these with the component DSL and the
testing DSL in a combined framework.

Threats to validity. The main threat to validity is the considerable gap
between Scala and efficient flight software. There are, however, two interest-
ing different attempts in progress to address this problem. Scala Native [31] is
a version of Scala, which supports writing low-level programs that compile to
machine code. Sireum Kekinian [33] supports programming in the Slang pro-
gramming language, a subset of Scala 2.13 but with a different memory model.
Slang runs on the JVM, natively via Graal, and can be translated to C. It is
furthermore supported with contract and proof languages designed for formal
verification and analyses. A secondary threat to validity is the unruly nature of
internal DSLs. Although internal DSLs are easy to develop and very expressive,
they do have drawbacks. Whereas external DSLs have a hard boundary, offer-
ing a limited number of options, internal DSLs have a soft boundary, and allow
perhaps too many options. Furthermore, whereas external DSLs can be easily
analyzed, internal DSLs are harder to analyze and visualize, requiring analysis
of the entire host language.1 Finally, internal DSLs do generally not have as
succinct syntax as external DSLs.

1 This comment concerns shallow DSLs as the ones we present in this paper, where
the host language constructs are part of the DSL. This is in contrast to deep internal
DSLs, where a data type is defined, the objects of which are programs in the DSL,
and which are analyzable.
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Paper outline. Sections 2, 3, 4 and 5 present the four DSLs for creating
respectively components and their connections, hierarchical state machines, run-
time monitors, and rule-based test generators. Section 6 outlines related work.
Section 7 concludes the paper.

2 Components

The first Scala DSL we shall illustrate allows one to model an embedded software
system as a collection of interacting components. The DSL specifically reflects
the F′ framework [4] developed at JPL. F′ is a component-based flight software
framework. Components can be active or passive. Each active component runs
an internal thread. A component communicates with other components through
ports. Communication over ports can be asynchronous (via a message placed
on a queue) or synchronous (via a direct function call). A component-based
system is constructed by defining the components, and subsequently defining a
topology: linking them together, connecting each output port of a component
with an input port of another component.

Fig. 1. The F′ Imaging, Camera, and Ground components.

We shall illustrate this DSL (and the other three DSLs) with a single exam-
ple, shown in Fig. 1. The example is an elaboration of the example previously
presented in [15], and concerns an imaging application on board a spacecraft,
consisting of three components, Imaging, Camera, and Ground. The Imaging compo-
nent is given commands from the ground to orchestrate the taking of an image
by opening the shutter, controlled by the Camera component, for a certain dura-
tion. The Imaging and Camera components send event reports to the ground.
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Each event report reports an event that occurred on board, such as taking an
image. The Imaging component is programmed as a hierarchical state machine
(see Sect. 3), and the Ground component contains a temporal logic monitor (see
Sect. 4).

Importing DSLs. To start with, we import the four DSLs into our Scala
program where we will build this system, see Fig. 2.

import f p r ime .
import hsm .
import daut .
import r u l e s .

Fig. 2. Importing the four DSLs.

Defining Message Types. Then we define the types of messages that are
sent between components. First commands, which are case classes/objects sub-
classing the pre-defined Command trait (a trait is an interface to one or more
concrete classes), see Fig. 3. A command either causes an image to be taken, or
shuts down the imaging system.

t r a i t Command { . . . }
case c l a s s TakeImage ( d : I n t ) extends Command
case ob ject ShutDown extends Command

Fig. 3. Commands.

In this simple system, all ground commands go to the Imaging component,
and they all directly extend a single trait Command. In a more realistic system,
commands to several components would be routed through a command dispatch
component, and there might be separate command traits for separate compo-
nents or subsystems.

We then define messages going between the Imaging and the Camera com-
ponent, see Fig. 4. The Imaging component can instruct the Camera component
to power on or off, to open or close the shutter, and to save the image. The
Camera component can report back that it has followed the various instructions
and is ready for a new instruction. For simplicity, we have made the camera’s
power interface part of the Camera component. In a more realistic system, there
could be a separate power component. Also, in a realistic system the ground
may command the camera directly.
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t r a i t CameraContro l
case ob ject PowerOn extends CameraContro l
case ob ject PowerOff extends CameraContro l
case ob ject Open extends CameraContro l
case ob ject C lo s e extends CameraContro l
case ob ject SaveData extends CameraContro l

t r a i t CameraStatus
case ob ject Ready extends CameraStatus

Fig. 4. Messages going between Imaging and Camera.

t r a i t Event extends Obse r va t i on
case c l a s s EvrTakeImage ( d : I n t ) extends Event
case ob ject EvrPowerOn extends Event
case ob ject EvrPowerOff extends Event
case ob ject EvrOpen extends Event
case ob ject Ev rC lo s e extends Event
case ob ject EvrImageSaved extends Event
case ob ject Evr ImageAborted extends Event

Fig. 5. Event reports to ground.

Finally we declare the kind of observation messages sent to the ground to
report what is happening on board the spacecraft, see Fig. 5. These event reports
(Evr) report on the take-image commands sent from the Ground component to
the Imaging component, the instructions being sent from the Imaging component
to the Camera component, and whether the image is being saved or aborted in
the Camera component.

The Imaging Component. The Imaging component is shown in Fig. 6. It is
defined as a class sub-classing the Component class, and defines two input ports,
one for receiving commands from the ground, and one for receiving messages
from the camera, and two output ports, one for sending messages to the camera
and one for sending observation events to the ground.
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c l a s s Imaging extends Component {
va l i cmd = new CommandInput
va l i cam = new I npu t [ CameraStatus ]
va l o cam = new Output [ CameraContro l ]
va l o obs = new ObsOutput

ob ject Machine extends HSM[ Any ] { . . . }

ob ject MissedEvent s { . . . }

ove r r i d e def when : P a r t i a l F u n c t i o n [ Any , Un i t ] = {
case i n pu t ⇒

i f ( ! Machine ( i n pu t ) ) Mis sedEvent s . add ( i n pu t )
}

}

Fig. 6. The Imaging component.

A component can, as we have seen, have multiple input ports. They are all
connected to the same single message input queue. That is, when a message
arrives at an input port, it is stored in this message queue. Our component
contains a state machine Machine, and an auxiliary data structure MissedEvents,
both to be described in Sect. 3.

A component must define the partial function when, which the Component

class calls to process a message received on the queue. In this case, it applies
the state machine, and if the state machine is not interested in the message
(Machine(input) returns false), the event is stored in MissedEvents, to be processed
later. Because when is a partial function, one can test whether it is defined for a
certain message msg with the Boolean expression when.isDefinedAt(msg), a feature
used to process messages.

The argument type is Any because the type of messages going into the mes-
sage queue is the union of the messages coming into the input ports. We could
statically constrain the type to be the union of the input types. However, writ-
ing out the union (say as a collection of Scala case classes) by hand would be
inconvenient, since we have already provided this type information on the ports.
This issue points to a limitation of using an internal DSL in this case. With an
external DSL, we could use the types of the messages to infer and generate the
case classes. More work is needed to find the sweet spot between internal and
external DSLs meant to augment programmer productivity, in contrast to DSLs
targeting non-programmers.

The Camera Component. The Camera component is a stub, and is not fully
shown in Fig. 7. It receives messages from the Imaging component, sends messages
back to the Imaging component, and otherwise just sends observation messages
to the Ground component, and does not perform any real functions beyond that.



240 K. Havelund and R. Bocchino

c l a s s Camera extends Component {
va l i img = new I npu t [ CameraContro l ]
va l o img = new Output [ CameraStatus ]
va l o obs = new ObsOutput
. . .

}

Fig. 7. The Camera component.

The Ground Component. The Ground component issues commands to the
Imaging component, and takes as input observations from the Imaging and Camera

components, see Fig. 8. In addition it takes inputs in the form of integers
( i int ) supplied by the ground, where an integer d indicates that a command
TakeImage(d) is to be sent to the Imaging component (take an image with the
shutter being opened for d milliseconds).

The Ground component contains a monitor SaveOrAbort, formulated as a
temporal logic property, and explained in Sect. 4. Each observation o of type
Observation is submitted to the monitor with the call SaveOrAbort.verify(o).

c l a s s Ground extends Component {
va l i i n t = new I npu t [ I n t ]
va l i o b s = new ObsInput
va l o cmd = new CommandOutput

ob ject SaveOrAbort extends Monitor [ Obs e r va t i on ] { . . . }

ove r r i d e def when : P a r t i a l F u n c t i o n [ Any , Un i t ] = {
case d : I n t ⇒ o cmd . i n voke ( TakeImage ( d ) )
case o : Obse r va t i on ⇒ SaveOrAbort . v e r i f y ( o )

}
}

Fig. 8. The Ground component.
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ob ject Main {
def main ( a r g s : Ar ray [ S t r i n g ] ) : Un i t = {

va l imag ing = new Imaging
va l camera = new Camera
va l ground = new Ground

imag ing . o cam . connect ( camera . i img )
imag ing . o obs . connect ( ground . i o b s )
camera . o img . connect ( imag ing . i cam )
camera . o obs . connect ( ground . i o b s )
ground . o cmd . connect ( imag ing . i cmd )

ground . i i n t . i n voke (1000)
ground . i i n t . i n voke (2000)
ground . i i n t . i n voke (3000)

}
}

Fig. 9. The main program.

Connecting the Components. The main program makes instances of the
components and connects them, see Fig. 9. As an example, the statement
imaging.o cam.connect(camera.i img) connects the output port o cam of the imaging

component with the input port i img of the camera component. The main program
then asks the ground component to take three images with exposure durations
of respectively 1000, 2000, and 3000 ms.

3 Hierarchical State Machines

In this section we present the Scala DSL for writing the Hierarchical State
Machine (HSM) that controls the Imaging component. An HSM supports pro-
gramming with states, superstates, entry and exit actions of states, and transi-
tions between states. The concept corresponds to Harel’s state charts [12]. The
DSL and this particular HSM has previously been described in [15].
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Fig. 10. The Imaging HSM visualized.

The Imaging HSM (referred to as Machine in the Imaging component) is shown
graphically in Fig. 10. It can be automatically generated from the textual state
machine in the corresponding Scala DSL, part of which is shown in Fig. 11,
using PlantUML [25] and ScalaMeta [32]. The HSM can receive a TakeImage(d)

command from ground, where d denotes the exposure duration. It responds
to this request by sending a message to the camera to power on, and waiting
until the camera is ready. It then asks the camera to open the shutter for the
specified exposure duration, using a timer service which generates a timeout
event after a specified period. Following this, it optionally takes a so-called dark
exposure with the shutter closed (but only if the ambient temperature is above
a specified threshold). A dark exposure allows determination of the noise from
camera electronics, so that this can be subtracted from the acquired image.
Finally, it saves the image data, and powers off the camera.
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ob ject Machine extends HSM[ Any ] {
var du r a t i o n : I n t = 0
va l DARK THRESHOLD = . . .
def getTemp ( ) : I n t = . . .

i n i t i a l ( o f f )
. . .
ob ject on extends s t a t e ( ) {

when {
case ShutDown ⇒ o f f exec {

o obs . l ogEven t ( Evr ImageAborted )
o cam . i n voke ( PowerOff )

}
}

}

ob ject power ing extends s t a t e ( on , t rue ) {
when { case Ready ⇒ e xpo s i ng }

}

ob ject e xpo s i ng extends s t a t e ( on )

ob ject e x p o s i n g l i g h t extends s t a t e ( expos ing , t rue ) {
e n t r y { o cam . i n voke (Open ) ; s e tT imer ( d u r a t i o n ) }
e x i t {o cam . i n voke ( C l o s e ) }
when {

case Rece iveTimeout ⇒ {
i f ( getTemp ( ) ≥ DARK THRESHOLD) e xpo s i n g d a r k
e l s e s a v i n g

}
}

}
. . .
}

Fig. 11. The Imaging HSM.

Following standard HSM notation, see Fig. 10, the filled-out black circles
indicate the initial substate that is entered whenever a parent state is entered.
Thus, for instance, a transition to the on state ends with the HSM being in the
powering state. Associated with each state are also two optional code fragments,
called the entry and exit actions. The entry action is executed whenever the HSM
enters the state, whereas the exit action is executed whenever the HSM leaves
the state. Finally, the labeled arrows between states show the transitions that
are caused in response to events received by the HSM. A label has the form:

〈event〉 if 〈condition〉/〈action〉
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which denotes that the transition is triggered when the HSM receives the spec-
ified 〈event〉 and the (optional) 〈condition〉 is true. In response, the HSM tran-
sitions to the target state, and executes the specified (optional) 〈action〉. As an
example, suppose the HSM is in state exposing light , and it receives the event
ShutDown (for which a transition is defined from the parent on state). This would
cause the HSM to perform the following actions (in order):

1. the exit actions for the states exposing light , exposing (no action), and on (no
action), in that order.

2. the action associated with the transition.
3. the entry action for the state off .

The entry action for the off state is MissedEvents.submit(). This re-submits an
event that has been stored in the MissedEvents queue, which the HSM was not
able to process in the past when in some state not prepared to process that event.
Such “currently unwanted” events are stored for later re-submission. This is an
artificial example, showing how one can deal with the fact, that an F′ component
only has one input queue to which all input ports of the component connect.
The MissedEvents data structure is defined in Fig. 12, where the submit function
simply re-submits the next missed event to the component’s input queue.

4 Monitors

In this section we briefly present the Daut (Data automata) DSL [7,13] for
programming data parameterized temporal runtime monitors. The DSL sup-
ports writing event monitors that have either a temporal logic flavor, or a state
machine flavor. We specifically program the Ground component to monitor obser-
vation events coming down from the Imaging and Camera components. The Ground

component, Fig. 8, contains an instantiation of the SaveOrAbort monitor, the full
definition of which is shown in Fig. 13.

The property states that whenever (always) an EvrTakeImage command is
observed, then it is an error to observe another EvrTakeImage before either an
EvrImageSaved or EvrImageAborted is observed. This reflects the property that tak-
ing an image should end with the image being saved or aborted before another
image is processed.

The DSL for writing monitors is very expressive and convenient. An earlier
version (TraceContract [1]) was used throughout NASA’s Lunar LADEE mission
[2] for checking command sequences against flight rules expressed as monitors,
before being sent to the spacecraft.



Integrated Modeling and Development 245

ob ject MissedEvent s {
p r i v a t e var mis sedEven t s : L i s t [ Any ] = N i l

def add ( even t : Any ) : Un i t = {
mis sedEven t s ++= L i s t ( even t )

}

def submit ( ) : Un i t = {
mis sedEven t s match {

case N i l ⇒
case even t : : r e s t ⇒

mis sedEven t s = r e s t
s e l f T r i g g e r ( even t )

}
}

}

Fig. 12. Data structure for storing missed events.

ob ject SaveOrAbort extends Monitor [ Obs e r va t i on ] {
a lways {

case EvrTakeImage ( ) ⇒ hot {
case EvrTakeImage ( ) ⇒ e r r o r ( ” not saved or abo r t ed ” )
case EvrImageSaved | Evr ImageAborted ⇒ ok

}
}

}
}

Fig. 13. The SaveOrAbort monitor.

5 Rule-Based Tests

In developing applications with the F′ flight software framework [4], we have
found that it is useful to define tests in terms of rules. A rule R consists of a
pre-condition and an action. The pre-condition is a Boolean function on the state
of the system, expressing whether R is enabled in that state, in which case it can
fire by executing the action. The action commands the system to do something
and checks for the expected behavior. Armed with a set of rules, we can write
scenarios that use the rules to generate tests, e.g. by randomly selecting enabled
rules and firing them. By writing rules and scenarios, one can quickly construct
tests that exercise much more behavior than would be practical by manually
writing each test. In this section we present such a rule DSL.
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Testing the Imaging Component. We show how to use the rule DSL to
test the Imaging state machine, Figs. 10 and 11, explained in Sect. 3. We use
the standard approach to unit testing F′ components. We construct a system
consisting of two components:

1. The Imaging component that we want to test.
2. The Test component. This component simulates the rest of the system. It

contains a rule-based object that sends input to the Imaging component and
checks the resulting output.

Note that although the approach here is used for testing one component, it can
be used for testing a collection of components as well.

The Test Component. The Test component, see Fig. 14, has an input port for
each output port of the Imaging component: i obs for observations, and i cam for
messages the Imaging component normally sends to the Camera component. In
addition, the Test component has an i tck input port. This is used to drive the
Test component from the main program: one move at a time in this particular
case, to control the speed of rule firing. Correspondingly, the Test component has
an output port for each input port of the Imaging component: o cmd for commands
normally coming from ground, and o cam for messages normally coming from the
Camera component.

The when method in the Test component directs incoming “tick” messages (of
type Unit) from the main program to the rule engine (TestRules), causing it to fire
a single randomly chosen enabled rule. Observation events, on the other hand,
are forwarded to the monitor (SaveOrAbort). All other messages are ignored. The
SaveOrAbort monitor, Fig. 13, is the same that we previously used in the Ground

component in Sect. 4, this time monitoring observation events emitted from the
Imaging component only. It monitors that every EvrTakeImage is terminated by a
EvrImageSaved or EvrImageAborted before the next EvrTakeImage is observed.

The rule-based tester, TestRules, is defined in Fig. 15. It contains three rules,
each sending a message to one of the input ports of the Imaging component,
taking an image, shutting down the imaging component, or a ready signal (sym-
bolizing that the camera component is ready), with an upper limit on how many
messages of each kind can be sent. The execution strategy chosen is ‘Pick’, which
means: whenever the fire () method is called, pick one enabled rule randomly
and execute it. The Test component is driven by the main program with tick
messages: one tick - one rule fired. This way the main program has control over
how fast the rule program executes its rules.



Integrated Modeling and Development 247

c l a s s Test extends Component {
va l i t c k = new I npu t [ Un i t ]
va l i o b s = new ObsInput
va l i cam = new I npu t [ CameraContro l ]
va l o cmd = new CommandOutput
va l o cam = new Output [ CameraStatus ]

ob ject SaveOrAbort extends Monitor [ Obs e r va t i on ] { . . . }

ob ject Tes tRu l e s extends Ru le s { . . . }

ove r r i d e def when : P a r t i a l F u n c t i o n [ Any , Un i t ] = {
case : Un i t ⇒ Tes tRu l e s . f i r e ( )
case o : Obse r va t i on ⇒ SaveOrAbort . v e r i f y ( o )
case ⇒

}
}

Fig. 14. The test component.

The rules DSL offers a sub-DSL for writing rule execution strategy algorithms,
of type Alg, using the functions shown in Fig. 16. Random executes repeatedly a
randomly chosen enabled rule, forever, or until no rule applies. A bounded version
is provided as well. All executes the rules in sequence. An error is recorded if
the pre-condition of a rule fails. Enabled executes enabled rules in sequence. If
a pre-condition of a rule is not satisfied, the rule is just skipped. Until executes
the rules in sequence, until a rule is reached where the pre-condition is false.
First executes the first rule, from left, where the pre-condition evaluates to true.
Pick executes a randomly chosen enabled rule once. Seq executes the sequence of
algorithms. If executes one of two algorithms depending on a condition. While

executes an algorithm as long as some condition is satisfied. Bounded executes
the algorithm a bounded number of times.

The Main Test Program. The MainTest program in Fig. 17 instantiates the
Imaging and the Test components, connects their ports, and then repeatedly 1000
times, with 100 ms in between, sends a tick message to the Test component,
causing a rule to be fired for each tick (the repeat function is provided by the
rule DSL).
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ob ject Tes tRu l e s extends Ru le s {
va l MAX IMAGES : I n t = 1000
va l MAX SHUTDOWNS: I n t = 1000
va l MAX READY: I n t = 1000

var imageCount : I n t = 0
var shutdownCount : I n t = 0
var readyCount : I n t = 0

r u l e ( ”TakeImage” ) ( imageCount < MAX IMAGES) → {
o cmd . i n voke ( ( TakeImage ( imageCount ) ) )
imageCount += 1

}

r u l e ( ”ShutDown” ) ( shutdownCount < MAX SHUTDOWNS) → {
o cmd . i n voke ( ShutDown )
shutdownCount += 1

}

r u l e ( ”Ready” ) ( readyCount < MAX READY) → {
o cam . i n voke ( Ready )
readyCount += 1

}

s t r a t e g y ( P ick ( ) )
}

Fig. 15. The TestRules component.

Detecting a Problem in the Imaging Component. Executing the above
unit test does not reveal any violations of the SaveOrAbort monitor. However,
setting the debugging flag to true yields output, part of which is shown in Fig. 18,
illustrating two firings of the rule Ready. It demonstrates a problem with the
handling of missed events: events which arrive in the Imaging component, but
which it is not able to handle in the state it is currently in. These are put in
the MissedEvents queue (the contents of which is shown as: stored: [ ... ] ).
When the imaging HSM gets back to the off state, it looks for the next event
in the missed-queue. If such a one exists it takes it out and re-submits it to
itself. The event, however, may not match what is expected even in the off state
neither, which is only TakeImage events, and hence it is put back in the missed-
queue. The result is that the missed-queue grows and grows with Ready and
ShutDown events. This can be seen above in that the queue grows from [Ready]
to [Ready,Ready].
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def Random( r u l e s : Rule ) : Alg
def Random(max : I n t , r u l e s : Rule ) : Alg
def A l l ( r u l e s : Rule ) : Alg
def Enabled ( r u l e s : Rule ) : Alg
def Un t i l ( r u l e s : Rule ) : Alg
def F i r s t ( r u l e s : Rule ) : Alg
def Pick ( r u l e s : Rule ) : Alg
def Seq ( a l g s : Alg ) : Alg
def I f ( cond : ⇒ Boolean , th : Alg , e l : Alg ) : Alg
def While ( cond : ⇒ Boolean , a l g : Alg ) : Alg
def Bounded (max : I n t , a l g : Alg ) : Alg

Fig. 16. Functions returning different test strategies.

ob ject MainTest {
def main ( a r g s : Ar ray [ S t r i n g ] ) : Un i t = {

va l imag ing = new Imaging
va l t e s t = new Test

t e s t . o cmd . connect ( imag ing . i cmd )
t e s t . o cam . connect ( imag ing . i cam )
imag ing . o cam . connect ( t e s t . i cam )
imag ing . o obs . connect ( t e s t . i o b s )

r e p e a t (1000) {
Thread . s l e e p (100)
p r i n t l n ( ”=” 80)
t e s t . i t c k . i n voke ( ( ) )

}
}

}

Fig. 17. The MainTest program.

From a functional correctness point of view, the program works since the
ShutDown and Ready events probably should be ignored in the off state anyway.
The problem, however, is that the queue of missed events keeps growing. This
problem fundamentally is related to our failed attempt to deal with the fact
that a component only has one input queue. It requires the programmer to pay
careful attention to how to deal with messages arriving that are not expected
in the state the component is currently in. The problem is in particular visible
in components programmed as state machines. The F′ C++ team is currently
considering how to deal with this problem. Note that this kind of problem also
exists in the single input queue actor model [19], but not in the CSP [20] and
CCS [24] channel-based models with multiple input queues (channels) that can
be selected from.
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...

===============================================================

[fpr] ? Test : () // Test receives a tick

[rul] executing rule Ready // Rule Ready executes

[fpr] ! Test -[Ready]-> Imaging // Test sends Ready to Imaging

[fpr] ? Imaging : Ready // Imaging receives Ready

Ready stored: [Ready] // Ready unexpected and stored

===============================================================

[fpr] ? Test : () // Test receives a tick

[rul] executing rule Ready // Rule Ready executes

[fpr] ! Test -[Ready]-> Imaging // Test sends Ready to Imaging

[fpr] ? Imaging : Ready // Imaging receives Ready

Ready stored: [Ready,Ready] // Ready unexpected and stored

===============================================================

...

Fig. 18. Debug output from running rule-based test.

6 Related Work

Among existing programming languages, there are a few potential alternatives
to C and C++ in the embedded domain. Spark Ada [34] and Real-Time Java
[27] have existed for some time. More recent languages include Rust [28], Swift
[35], Go [11], and D [6]. Spark Ada is interesting due to the support for for-
mal verification. Other languages are emerging supported by formal verification.
We have previously mentioned the Scala Native effort [31], and the Slang [33]
programming language, based on Scala’s syntax, but with a different semantics
suited for embedded programming, and supported by formal verification. The
PVS theorem prover [26] has been augmented with a translator from PVS to C
[9], permitting writing very high-level and verifiable (executable) specifications
in PVS using PVS’s highly expressive type system, and obtain C’s execution
speed. With respect to the modeling aspect, the BIP framework [3] supports
component-based modeling with components containing C code, and specifically
state machines. Interaction between components can be controlled with tem-
poral constraints. The Quantum Framework [29] supports programming with
hierarchical state machines in C and C++, and is used at JPL as target of a
translation from statecharts drawn with MagicDraw [21]. Finally, an ongoing
effort to design and implement a programming language explicitly supporting
hierarchical state machines and monitors is described in [23]. That effort has
been directly inspired by the work presented in this paper.

7 Conclusion

We developed four internal DSLs in Scala for modeling and developing embed-
ded systems. The DSLs are inspired by the component-based C++ framework
F′ developed at JPL for programming robotic vehicles. The work is part of a
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broader effort to explore alternatives to C and C++ for programming embed-
ded systems. As part of this effort, we developed three non-trivial multi-threaded
applications in both Rust [28] and Scala: an AI plan execution engine for the
Deep Space 1 (DS-1) spacecraft, described and verified in [17]; a file transfer pro-
tocol, described and verified in [18]; and the F′ component framework, described
in [4]. Rust’s type checker includes the borrow checker, which verifies that mem-
ory operations are safe. This borrow checker is challenging to deal with. We
are currently exploring features required for programming embedded systems in
Scala as an alternative.
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Abstract. This paper presents design goals, development approaches,
and applications for Slang – a subset of the Scala programming language
designed for engineering high assurance safety/security-critical systems.
Rationale is given for specializing Scala for Slang so as to retain Scala’s
synergistic blend of imperative, functional, and object-oriented features
while omitting and tailoring features that make formal verification and
other analyses difficult. Strategies for enhancing the usability of Slang are
discussed including integration with the broader Scala/JVM ecosystem,
compilers, and development environments. A number of accompanying
Slang tools are described including Slang scripting, meta-programming
support, and translators to Javascript and native code that enable sup-
port for a wide range of deployment platforms. To support deployment
on constrained embedded platforms, the Slang Embedded subset and an
accompanying C translator generate efficient implementations that avoid
garbage-collection and other aspects that hinder deployment and safe-
ty/security assurances. We conclude with a discussion of how our experi-
ences with Slang may provide suggestions for the future of programming
and programming language design for engineering critical systems.

1 Introduction

Fueled by accelerating hardware capabilities and algorithmic improvements, for-
mal methods have made significant advances in recent decades and have increas-
ingly gained adoption in industry. For example, there are now powerful SMT2
solvers (e.g., [6,26]) that can scale to realistic problems in large-scale industrial
use (e.g., [3]). Groundbreaking and technically challenging work to formally
prove correctness of complex hardware and software such as microprocessors
(e.g., [35]), OS kernels (e.g., [22]), and compilers (e.g., [25]), among others, have
demonstrated the effectiveness of interactive theorem proving.

In our research, we have applied formal method techniques such as software
model checking (e.g., [13,16,30]), data/information flow analyses (e.g., [2,32–
34]), symbolic execution (e.g., [7,17]), interactive and automated theorem prov-
ing (e.g., [8,37]), and abstract interpretation (e.g., [19,37]), as well as formal
specification languages (e.g., [2,14,31]), on extremally diverse kinds of systems
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such as real-time component-based embedded systems, concurrent Java, sequen-
tial SPARK/Ada, and mobile Android applications. Many of these recent tools
were implemented in earlier generations of our Sireum platform, which is an
outgrowth effort of the Bogor [30] model checking framework (which itself is an
outgrowth of the Bandera software model checker project [13]). Sireum embraces
the Bandera philosophy that usability in formal method tools is a crucial fac-
tor for gaining adoption and reducing application efforts. Moreover, it follows
the Bogor philosophy of providing general basic building blocks and frameworks
that can be customized for specific domains in order to better capitalize on the
specific domain-inherent properties for reducing analysis costs.

In our teaching, in recent years, we were tasked to teach manual and auto-
matic program verification for undergraduate sophomores, under the guise of
an introductory course on logical foundations of programming that we inherited
from David A. Schmidt – a highly-respected researcher and educator in pro-
gramming languages and formal methods [4]. One might imagine that teaching
manual/automatic formal verification to sophomores is a tall order, but Schmidt
figured out how to package it effectively. As a teaching aid, he developed a semi-
automatic program verifier (which includes its own arithmetic semi-decision pro-
cedure) for a “baby” Python language with contract and proof languages that
produces an HTML-based verification report.

While it achieved its goals, we desired to have a more modern and automatic
tool (while still supporting semi-manual proving as an option) that leverages
SMT2 solvers and equipped with a seamless IDE integration that: (a) checks
sequent proofs and verifies programs in the background as students type, and
(b) asynchronously highlight issues directly in the IDE. This gave rise to the
development of the Sireum Logika program verifier and proof checker [39], whose
input language is a “baby” Scala script (with contract and proof languages
expressed inside a custom Scala string interpolator). Since its initial deployment
in the beginning of 2016, Logika has been used to teach around two hundred
students each year at K-State. In addition, in the past couple of years, our
colleagues at Aarhus University have adopted Logika for teaching logic courses.

Motivated and encouraged by these research and teaching experiences (and
inspired by all the great work by others), we desired to consolidate all our efforts.
Hence, in the beginning of 2017, we initiated the development of the next gener-
ation Sireum platform equipped with its own programming language with sup-
porting specification and proof languages. These inter-connected languages and
formal method tools aim to achieve higher levels of safety and security assur-
ances by selectively designing the language features to significantly reduce formal
analysis costs, as well as the cost to apply the analyses by making them more
usable (i.e., usable enough for teaching undergraduate sophomores).

In this paper, we present the Slang programming language – one result of the
multi-year effort described above. Section 2 presents our design guidelines/de-
cisions, which motivated the language features described in Sect. 3. Section 4
discusses Slang’s implementation, and Sect. 5 describes how Slang have been
applied to several domains as parts of our broader validation efforts. Section 6
relates Slang to other work, and Sect. 7 concludes with some future work.
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2 Design

This section describes some of our design guidelines and decisions for Slang.

Usable safety/security first: We aim to provide a language that is amenable
to formal verification and analysis. While one route is to emphasize powerful
specification logics and verification using manually-oriented proof assistants to
handle language complexity (e.g., [10]), we instead choose to carefully engineer
the language features and semantics to ease verification. Our (agile) approach
is to start “small” and “grow” the language as desired while ensuring that new
features do not introduce disproportionate analysis complexity. While we pri-
oritize “verifiability” and “analyzability”, we are also mindful of performance
and memory footprint. We recognize that language usability is very important,
since the ability to achieve safety/security is not worth much if the language is
very hard to wield, detrimental to productivity, and impedes explanation of best
principles of system engineering, coding, and logic-based program reasoning.

Gradual effort/reward assurance workflow: While we design the language
for high assurance, we do not always require high assurance. Developers should
be able to program in the language without being burdened about ensuring,
e.g., functional correctness. In these situations, automatic formal methods may
be used “behind the scenes”: (a) to help developers understand the behavior of a
program (rather than for verification), and (b) to support other quality assurance
techniques (e.g., simulation and testing). As higher assurance levels are required,
developers can incrementally employ various formal method techniques/tools.

Rich, high-level language features: As computing technology advances sig-
nificantly, modern programming languages increasingly include a rich collection
of high-level language features to increase productivity. Object-oriented pro-
gramming language features (e.g., classes and interfaces, dynamic dispatch, etc.)
are useful for organizing large codebases while providing extensibility. Imperative
programming language features are convenient and familiar to most developers.
Functional programming language features provide simpler programming men-
tal models (e.g., side-effect free computations, etc.) and highly abstract features
(e.g., pattern matching, etc.). We would like to adopt a mix of these features.

Multi-platform support, from small to large: We want the language to
support development of a variety of systems, from small embedded systems
(e.g., running inside a micro-controller with 192 kb memory) to large appli-
cations running on powerful workstations or servers. In addition, we want at
least one platform that supports very easy deployment, prototyping, debugging,
and simulation (e.g., JVM). This is beneficial for classroom teaching as well as
for introducing new researchers to the language and associated formal method
tools. Moreover, industrial development can often benefit from: (a) capabilities
to rapidly prototype systems on an easy-to-use platform, and (b) facilities that
help re-deploy prototyped systems to hardened product platforms.

Integration with existing/legacy systems, libraries, and other lan-
guages: While we want our language to be used as often as possible, we need it
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to be able to integrate with existing systems and libraries and to provide interop-
erability with other languages. This allows gradual language adoption or a mixed
system development involving different languages, as well as being able to reap
benefits from existing efforts. In safety-critical systems, there will inevitably be
low-level system code and device drivers that cannot be coded efficiently in a
language that emphasizes verifiability and clean abstractions. So there needs to
be some way to cleanly interface with such code.

Small-scale development/maintenance: As academics with limited
resources and a high turn-over of team members (i.e., students), one pragmatic
criterion is that the language infrastructure and tooling should be able to be
developed by a very small team (in fact, by a single person so far). This necessi-
tates us to leverage thriving ecosystems instead of building a new one from the
ground up.

Based on the above, we decided to realize Slang by leveraging the Scala
programming language. Scala offers a good mix of object-oriented, imperative,
and functional programming language features. It is built on top of the pop-
ular, multi-platform Java Virtual Machine (JVM) ecosystem, which brought
about rich tooling support such as dependency management and compilation to
native using GraalVM. Scala tooling also offers other compilation targets such
as Javascript using Scala.js (and native code using Scala Native).

Despite its many strengths, Scala is a complex language, and thus difficult
to highly assure for safety/security. However, its flexible language features (e.g.,
powerful type inference, macros, etc.), open-source/development, and pluggable
compiler pipeline architecture allow one to effectively customize the language.
This is actually the primary reason why we settled on Scala as no other language
tooling offered a similar customization level. Other weaknesses are Scala’s slow
compilation speed and IDE support issues (not as polished as Java’s). All things
considered, we deemed Scala’s benefits far outweigh its downsides.

Hence, we specialized Scala for Slang. We adopted Scala’s syntax (i.e., Slang’s
syntax is a proper subset of Scala’s), narrowed down its language features sig-
nificantly (but still included many powerful features), and tailored its semantics
via program transformations implemented in a compiler plugin and Scala macros
(thus, enabling Scala/JVM tools to be used for Slang).

3 Features

In this section, we illustrate how Slang design goals are achieved using selected
language features. Due to space constraints, we cannot illustrate all of the lan-
guage features in detail. The Slang website [40] provides a repository of examples
and an extensive language reference manual.

Reasoning about object references and heap-allocated data is one of the great
challenges of program verification. Many research efforts have tackled this chal-
lenge by leaving the language largely unconstrained but then adopting separa-
tion logics (e.g., [10]) or advanced type systems (e.g., [12]) to support reasoning.
Other efforts such as SPARK/Ada constrain the language to avoid introducing
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aliasing and other problems, which allows the specifications and logic to be sim-
pler. We take the latter approach and constrain the language while attempting
to preserve many features of Scala’s type system and its synergistic fusion of
imperative, functional, and object-oriented programming language features.

Distinct mutable and immutable objects: Slang distinguishes between
mutable and immutable object structures statically. That is, object type muta-
bility is declared as part of type declarations. Immutability is strict in Slang, i.e.,
immutable objects cannot refer to mutable ones, and violations of this rule are
detected by type checking. Mutable objects, however, can refer to immutable ones.
The main benefit of using immutable structures is that they simplify reasoning
because aliasing becomes a non-issue. On the other hand, mutable objects are often
more convenient to transform via destructive updates for many developers.

Sole access path: One of the main difficulties in program reasoning is analyzing
mutable object structure in the presence of aliasing. Slang reduces this reasoning
complexity by adhering to the following runtime invariant property:

At any given program point, a mutable object is observationally reachable
only by (at most) one access path.

One (intended) consequence is that cyclic object structures are disallowed.1 In
general, immutable structures can form directed acyclic graphs while strictly
mutable ones can only (at most) form trees.

Adherence to the invariant is facilitated by restricting aliasing on mutable
objects. The typical language features that introduce aliasing are assignment
(including pattern matching variable binding, for-each loop, etc.) and parameter
passing. In Slang, assigning a mutable object to a variable (possibly) creates
a deep mutable structure copy before updating the variable (if the object has
previously been assigned to a variable).

This design choice trades off code performance and better memory utilization
for ease of reasoning. In many cases, the decrease in performance/utilization is
not detrimental to the coded application. When needed, the code can be re-
written and optimized (justified by empirical data such as profiling and memory
analyses – not simply due to the pursuit of premature optimizations). Using
an ownership type system is an alternate approach to tame aliasing [12] (e.g.,
Rust). However, there is increased specification effort in using ownership types,
and in languages that adopt them as the default case, developers must take on
the increased specification burden even when the associated payoffs are small.

We prefer a gradual effort/reward approach in which developers can initially
code without such burdens as the default, and only put in additional effort when
the situation warrants. This enables developers to focus on code correctness (e.g.,
established using Slang’s contract checking), and then code optimizations can be
introduced when needed (and the contract checking framework can be used to

1 This does not preclude graph algorithms from being written in Slang; in fact, the
Slang runtime library provides a graph library (used in [33]), including cycle detec-
tion (graphs are realized using indexed node pools with pairs of indices as edges).
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prove that the optimized code still satisfies its contract or equivalent to the less
optimized version). The implicit copying of mutable structures does sometimes
introduce unanticipated behaviors for developers new to Slang due to loss of
anticipated data structure sharing. However, tools can be developed to highlight
code regions where copying occurs. More approaches can be added to Slang in the
future to further facilitate performance improvement/memory usage reduction,
but they should not always be required if additional specifications are needed.

This leaves us with aliasing via parameter passing, which Slang allows with
restrictions. Specifically, a method invocation sufficiently maintains the sole
access path invariant when the mutable object structures being passed (and
accessed “global”, instance, or closure-captured variables) are disjoint/separate,
and this can be established by ensuring that no two abstract access paths
to mutable objects involved in the method invocation are a prefix of one to
another. By abstract, we meant an access path p of the form: (1) variable ref-
erence x, (2) field access p.x, or (3) sequence indexing p(�), where the index
value is abstracted away as �. For example, consider a method invocation
p0.m (p1,...,pn) where each pi∈{0,...,n} is an abstract access path to a mutable
structure, and where m accesses enclosing variables of mutable type represented
as abstract paths pn+1, . . . , pn+m (which can be inferred [32]). The method invo-
cation maintains the sole access path invariant if: ¬∃ i, j ∈ {0, . . . , n + m}. i �=
j ∧ prefix (pi, pj). A more precise condition can be used if one is willing to prove
all index values of same abstract path prefixes are all distinct at the invocation
program point.

One useful Slang programming pattern to reduce implicit copying involves
exploiting Slang’s restricted aliasing by parameter passing. Instead of returning
mutable objects as method results, which may trigger copying when returned
objects are assigned to variables, mutable objects can be passed down the call
chain to store computed results via destructive updates. This approach, which
we nicknamed as the Slang “hand-me-down” maneuver, works very well even for
programming small embedded systems (i.e., to avoid dynamic memory allocation
efficiently), but at the cost of what one might consider as “inelegant” code.

In short, Slang’s approach to aliasing focuses the reasoning/verification con-
cerns to statically-defined classes of objects (i.e., mutable) at a single well-defined
and easily-identifiable program construct (i.e., method invocation), which is also
the main location of concern in compositional program verification and formal
analyses. Hence, addressing aliasing can go hand-in-hand with other composi-
tional assurance approaches such as for ensuring absence of runtime errors (e.g.,
buffer overflows), functional correctness, and secure information flow.

Type system: Slang does not have a notion of a “top” type like Object in
Java or Any in Scala for more meaningful sub-typing relationships in program
reasoning. Moreover, Slang does away with the problematic null value in favor of
optional types.2 There is no implicit type coercion in Slang as such coercion may

2 Memory footprint optimizations in the Scala compiler plugin for Slang include flat-
tening None into null and Some to its contained value internally for object fields,
but optional values are used for field accesses.
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be unintended and non-trivially affect program reasoning. Object identity is non-
observable (one can always add a distinguishing field value when needed), and
object equality tests are structural equivalences by default (i.e., equality tests
can be customized). Generics are supported, though currently unconstrained.
In the future, type constraints over generics such as “sub-type of T” might be
added, but as mentioned previously, we wanted to start “small”.

Slang (immutable) built-in types are: B (boolean), Z (arbitrary-precision inte-
ger), C (character), String, R (arbitrary-precision decimal number), F32 (32-bit
floating-point number), F64 (64-bit floating-point number), and ST (a template
engine implemented using a custom Scala string interpolator).

Developers can introduce two kinds of custom integer types: (1) range integer
types, and (2) bit-vector integer types. Range integer types can optionally spec-
ify min/max values (i.e., they can be arbitrary-precision). Operations on range
integers are checked that they stay within the specified min/max values. Range
integer types do not provide bit-wise operations, which are offered by bit-vector
integers. However, operations on bit-vector integers are not range checked, and
they are backed and operated (in the generated code) using either 8-bit, 16-bit,
32-bit, and 64-bit values, using the smallest that fits. The reason why Slang dis-
tinguishes range and bit-vector integer types is because automated analyses on
the latter are often significantly more expensive. That is, developers should use
range integer types over bit-vector if bit-wise operations are not needed. Below
are some examples of range and bit-vector integer type declarations.
@range(min = 0) class N // natural number (arbitrary - precision)

@range(min = 1, max = 10) class OneToTen // 1 .. 10 range int

@bits(signed = T, width = 8) class S8 // 8-bit signed bit -vector int

@bits(min = 0, max = 3) class U2 // 0 .. 3 unsigned bit -vector int

The Slang compiler plugin automatically generates supporting operations on
such types (e.g., addition, subtraction, etc.) as the (Scala value) class methods.

Slang built-in sequence (array) types are immutable IS[I, T] and muta-
ble MS[I, T], which are parameterized by index type I and element type T .
The index type I has to be either Z, a range integer type, or a bit-vector inte-
ger type. A sequence’s size is fixed after creation, and accesses on sequences
are checked against the sequence index range. Append, prepend, and remove
operations on IS and MS are provided, and they always create a new sequence.
Tuple types (T1, ..., TN) are supported and their mutability is determined
based on the contained element types. For (higher-order) closures, function types
(T1, ..., TN) => U are also supported and classified based on their “purity”
(discussed below). (When using (higher-order) closures in mixed paradigm lan-
guages like Slang, high assurance applications should use pure closures at present,
if at all, as contract languages/analyses on “impure” closures are still subjects
of our ongoing research.)

Slang interfaces (traits) and classes are distinguished by their mutability (and
“sealing”) as illustrated by the following example.
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@sig trait I { ... } // immutable interface
@datatype trait ID { ... } // immutable sealed interface
@datatype class D(...) { ... } // immutable final class
@msig trait M { ... } // mutable interface
@record trait MR { ... } // mutable sealed interface
@record class R(...) { ... } // mutable final class

Traits can only define/declare methods (with/without implementations), but
fields are disallowed. Traits can extend other traits, and classes can implement
traits. Implementations of sealed traits have to be defined in the same file.

To keep it simple, classes are always final, hence, there is no class inheri-
tance in Slang, only trait implementations. Inherited methods can be overriden.
Method definitions that are inherited by a trait or a class T with the same name
(and similar signatures) originating from different traits have to be overriden in
T , so developers are explicitly made aware of a potential reasoning issue.

Classes can only have one constructor, and constructor parameters are fields.
Fields can have read access (val, which is also the default) or read/write access
(var), and both can refer to mutable and immutable objects. A @datatype
class, however, can only have vals as fields, while a @record class can also have
vars. All fields and methods have to be explicitly typed, which simplifies type
inference and eases parallel type checking (after type outlining). All traits and
classes regardless of mutability can have methods with side-effects (impure).

Slang object O { ... } definitions are singletons like in Scala, except that
they cannot implement traits and cannot be assigned to a variable or passed
around. Therefore, they simply serve to group “global” fields and methods, and
consequently, they are allowed to refer to mutable structure or define vars.

Method purity: Slang classifies methods based on the kinds of side-effects that
they might make: (a) impure, (b) @pure, (c) @memoize, and (d) @strictpure.
Impure methods are allowed to (destructively) update objects without restric-
tions. Methods (and functions) annotated with @pure cannot update existing
objects but they can create and update the newly created objects as part of their
computation. They can also define local vals and vars, use loops, and recurse.
They cannot access any enclosing val which holds a mutable object or any
enclosing var during their execution. @memoize is @pure with (non-observable)
automatic caching. Hence, @memoize (and @pure) are observationally pure [28].
@strictpure methods have further restrictions; they cannot update any object,
and they cannot define local vars (only vals) or use loops, but can recurse.

Pure methods simplify reasoning and are useful for specification purposes.
We distinguished @strictpure methods since they can be directly translated
to logical representations, and therefore they do not require explicit functional
behavior contract specifications for compositional verification purposes. Thus,
they can be treated directly as specifications (after checking for runtime errors).

Control structures: Slang supports Scala’s if-conditional and while-loop, as
well as for-loop and for-yield-comprehension, including forms with multiple itera-
tors and conditions. Slang fully embraces Scala’s pattern matching constructs with
only minor constraints (related to loss of information due to erasure). Exceptions
and exception handling are not supported as they complicate reasoning.
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To simplify formal analyses (and improve readability), Slang restricts other
Scala syntactic forms. For example, a code block that evaluates to a value
expressed by e – {. . . ; e}, is not part of Slang’s expression language. Slang cat-
egorizes a special syntactic form ae that is only allowed as an assignment’s
right-hand side or as a function closure definition body (liberally) defined as:

ae ::= e | {...;ae} | if (e) ae else ae | return e | e match { case+ }
where each case pattern matching body evaluates to a value (return is disal-
lowed in closure definitions). Note that an if-conditional without a code block
(similar to Java’s ternary ?: operator) is part of Slang’s expression language.

Extensions: As described above, many Scala features are excluded, partly
because we wanted to simplify reasoning and partly because we wanted to start
“small” in the language design. One additional noteworthy exclusion is concur-
rency features. This is in part due to the fact that in our current industrial
research projects, we support concurrency using automatically generated real-
time tasking structures derived from AADL [21] architecture models using our
HAMR framework [18] described in Sect. 5. In the AADL computational model,
component implementations (e.g., as written in Slang or C) are strictly sequen-
tial, implementing functions that transform values on component input ports to
values on component output ports. Task scheduling, communication, and resolv-
ing contention on component ports is handled by the underlying run-time mid-
dleware. This organization of computation and tasks enables contract-based rea-
soning at the architectural level. Alternatively, there is a promising concurrency
approach currently being incubated in Project Loom [38] – Java Fibers, which
are lightweight and efficient threads powered by continuations implemented in
the JVM, which seems worth waiting for. Regardless, Slang provides extension
methods (akin to Bogor extensions [30]) to extend its capabilities by leverag-
ing existing libraries as well as providing interoperability with other languages.
Below is an example extension that provides a (pure) parallel map operation,
which is heavily used in the Slang compilation toolchain described in Sect. 4.
@ext object ISZOpsUtil {

@pure def parMap[V, U](s: IS[Z, V], f: V => U @pure): IS[Z, U] = $
}

For JVM, Scala.js Javascript, and GraalVM native compilation targets,
the Slang compiler plugin rewrites $ as method invocation ISZOpsUtil Ext.
parMap(s, f), whose implementation is written in Scala using its parallel collec-
tion library for the JVM and native targets, and using a sequential map operation
for the Javascript target. The @ext annotation can optionally accept a string of the
target object name that provides the method implementation as an alternative of
using the extension object identifier with the Ext suffix convention. In general, the
implementation can be written in any language of the hosting platform, and from
this implementation one can call any library available on the platform.

One issue with extensions is that for Slang analysis/verification to be sound,
an extension implementation has to adhere to Slang’s sole access path invariant
and obey any stated contract for the extension. However, conformance to these
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requirements cannot generally be established from within Slang or by using Slang
tools. Thus, other assurance approaches have to be used, or conformance has to
be considered as an undischarged assumption.

Language subsets: We recognize that not all Slang features are desirable for a
certain application domain. For example, when targeting high assurance embed-
ded systems, closures and recursive types are undesirable due to the dynamic
memory management requirement for realizing such features. Thus, it is often
handy to be able to create subsets of Slang for particular domains. These sub-
sets can be enforced by a static analysis over fully resolved Slang abstract syntax
trees. We have created a subset of Slang called Slang Embedded that is targeted
for translation to efficient embedded C (see Sect. 4).

Specification and proof language support: As Slang is also an input lan-
guage for the next generation Logika tool that we are currently developing, as
well as for other formal analyses that we plan to develop, one of its design goals
is to facilitate (possibly expanding) families of specification and proof languages.

As previously mentioned, we would like Slang’s syntax to be a proper sub-
set of Scala’s syntax, because this allows existing Scala tooling (e.g., IDEs) to
work without much modification, thus lowering our tool development overhead.
Drawing from an earlier work [29] that uses Java method invocations to repre-
sent contract forms, we also found that we could nicely simulate grammars using
Scala’s method invocation and special syntax features (internal DSLs). Below is
an example behavioral contract of a method that swaps two sequence elements.
def swap[I, T](s: MS[I, T], i: I, j: I): Unit = {

Contract(
Reads(), // read accesses (by default , parameters are included)
Requires(s.isInBound(i), s.isInBound(j)), // pre - conditions
Modifies(s), // frame - conditions
Ensures( // post - conditions

s(i) == In(s)(j), s(j) == In(s)(i), s.size == In(s).size ,
All(s.indices )(k => (k != i & k != j) ->: (s(k) == In(s)(k)))))

val t = s(i); s(i) = s(j); s(j) = t
}

Contract, Reads, Requires, Modifies, Ensures, All, and In are Scala meth-
ods:
object Contract {

def apply(arg0: Reads , arg1: Requires , arg2: Modifies , arg3: Ensures ): Unit =

macro Macro.lUnit4

}

object All {

def apply[I, T](seq: IS[I, T])(p: T => Boolean ): B = { /* ... elided */ }

}

def Reads(accesses: Any *): Contract.Reads = ??? // throws NotImplementedError

def Requires(claims: B*): Contract.Requires = ???

def Modifies(accesses: Any*): Contract.Modifies = ???

def Ensures(claims: B*): Contract.Ensures = ???

def In[T](v: T): T = ??? // retrieve v’s pre -state; usable only inside Ensures

Contract is realized using a Scala macro that effectively erases any invocation
to it, thus it does not affect code runtime behaviors.3 All other methods are
3 A runtime contract checker (similar to [36]) can be developed in the future for testing

purposes (or for contract enforcement with various mitigation options).
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simply stubs with types that enforce grammar rules. Below is another example
illustrating one of Slang theorem forms that proves a well-known syllogism using
Slang’s proof language, which also exploits Scala’s syntactic flexibility:
@pure def s[U](human: U => B@pure , mortal: U => B@pure , Socrates: U): Unit = {

Contract(Requires(All{(x: U) => human(x) ->: mortal(x)}, human(Socrates)),
Ensures (mortal(Socrates )))

Deduce(1 #> All{(x: U) => human(x) ->: mortal(x)} by Premise ,
2 #> human(Socrates) by Premise ,
3 #> (human(Socrates) ->: mortal(Socrates )) by AllElim[U](1),
4 #> mortal(Socrates) by ImplyElim(3, 2))

}

Deduce, like Contract, is erased in compilation. It serves to enumerate
proof steps. Each step: (a) requires an explicit claim (for proof readability and
auditability); (b) is uniquely numbered/identified in that particular proof con-
text; and (c) has to be justified by using some proof tactics implemented as
Logika plugins (e.g., Premise) or applying lemmas/theorems (e.g., AllElim,
ImplyElim). (Details of these mechanisms will be provided in forthcoming doc-
umentation for the Logika next generation tool.)

Contract, Deduce, and other specification and proof language constructs
described above are specially recognized by the Slang parser (described in
the next section) and they are treated as first-class Slang constructs in Slang
abstract syntax tree representations and downstream Slang compiler phases and
toolchains. Hence, Slang has to be updated to support additional specification
and proof constructs as more formal method tools for Slang are introduced or
enhanced.

One disadvantage of this approach is that the specification and proof lan-
guages that can be introduced in Slang are limited by Scala’s expressive power.
However, we have found existing Scala tool support works well. For example,
IntelliJ’s Scala support for code folding, refactoring (e.g., variable renaming),
hyperlinking, type checking, etc., works for Slang’s specification and proof lan-
guages. This enables modern software engineering tool capabilities to be applied
to the specification and proof engineering process.

4 Implementation

Slang compilation was first implemented using the Scala compiler extended with
a custom compiler plugin and supporting macros. This provided compilation to
JVM, Javascript, and native executables almost for free. With this approach,
we prototyped Slang features rapidly (including IntelliJ integration using a cus-
tom plugin described later in this section). Because the Slang runtime library is
written in Slang itself (aside from built-in types), this pipeline also continuously
tested and validated Slang language features. After the prototype relatively sta-
bilized (which took around half a year), we began a more ambitious validation by
implementing the Slang front-end mostly using Slang itself and followed this by
implementing, in Slang, a C back-end appropriate for embedded systems. This
section describes the resulting compiler pipeline and Slang IntelliJ integration,
as well as a supporting command-line build tool we recently developed.
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The implementation guideline that we follow in our platform engineering
effort is to think “BIG”. That is, we want to take advantage of the availability
of powerful machines with multi/many-cores and high memory capacity to gain
reduction in the most precious resource of it all, i.e., time.

Front-end: Since Slang is based on Scala’s rich and featureful syntax, building
the parser itself was an early challenge. We ended up using the Scala parser from
the open-source Scalameta library to produce parse trees, which are translated
to Slang-based abstract syntax trees (ASTs). This is the only front-end part that
is not written in Slang.4 Another issue is how to (speedily) distinguish Slang vs.
Scala programs during parsing. We resolved this by adopting the convention that
Slang files should have #Sireum in its first line (in a comment).

Given this approach, the details of the front-end can be summarized as follows
(assuming program well-formed-ness for presentation simplicity). The front-end
accepts an input list of source paths which are mined for .scala files with
#Sireum in its first line; found files are then read into memory. Each file’s con-
tent is then (optionally parMap) parsed to produce Slang ASTs that are then
processed to create file symbol tables. The file symbol tables are reduced into
an overall symbol table, and programs are then type outlined. Type outlining
processes type, field, method signatures (which, as we previously mentioned,
have to be explicitly typed), and contracts, without processing field initializa-
tions and method bodies. This produces a transformed symbol table, ASTs, and
a type hierarchy. Finally, each trait, class, and object AST is (parMap) type
checked/inferred and reduced to produce yet another transformed symbol table
and set of ASTs (type hierarchy is unaffected). All Slang symbol table, AST, and
type hierarchy objects are implemented as immutable structures to enable safe
(parallel) transformations. However, error, warning, and informational message
reporting is done using a mutable Reporter that accumulates (immutable) mes-
sages as it is passed through the compilation routines using the “hand-me-down”
maneuver (recall that @pure can create and mutate new objects).

Embedded C Back-end: We now summarize issues specific to the Slang
Embedded subset of Slang and its translation to C. Since we target high assurance
embedded systems, we decided that the generated C code should not dynam-
ically allocate memory (a common restriction in safety-critical systems). This
avoids runtime garbage collection, which helps ensure predictable behaviors.5

Therefore, when using the Slang Embedded subset, all memory allocations must
be either globally-allocated statically or stack-allocated. One consequence is that
all sequences have to be bounded (the bounds are user-configurable). In addi-
tion, language features that require dynamic allocation such as recursive types
(e.g., linked-lists, etc.) and closures are prohibited. Recursion is allowed, but it
is best if tail recursion is used (otherwise, call chain depths should be estimat-
ed/bounded). In summary, the features available in the Slang Embedded subset
4 Aside from extensions in the Slang runtime library for file access (and spawning

processes, OS detection, etc.), which are available on JVM and native targets.
5 We initially planned to offer C compilation with garbage collection, but GraalVM or

Scala Native can be used instead. We may reconsider such approach in the future.
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align with what one would typically use when programming embedded software.
Best practices include using statically-allocated bounded object pools if needed.

We want the generated C code to be compilable by the popular gcc and
clang compilers. We also would like to leverage the great work on the CompCert
verified C compiler [25], which provides strong guarantees that produced binary
code faithfully reflect the semantics of its sources (this enables a possible certified
translation from Slang to CompCert C sometime in the future). Thus, we ensure
that the generated C code conforms to the C99 definition, which is supported
by all three compilers above. We treat any warning from the C compilers as a
bug in the Slang-to-C translation. In addition, we want the generated C code
structure to match the structure of the corresponding Slang code to help enable
traceability and to ease debugging/maintenance of the translator. Moreover, we
want the generated C code to maintain Slang-level debugging stack information.
For example, whenever there is an assertion error, one should get a similar stack
trace to what is provided by the JVM, including Slang source filename and line
number information. Finally, we would like to be able to edit, test, debug, and
integrate the generated C code, so the translator should generate supporting files
for use in an IDE. We decided to support CLion – IntelliJ’s sister commercial
product that accepts CMake configurations as project definitions.

To facilitate the above, the generated C code makes heavy use of C macros to
ensure that generated code is similar in structure and appearance to the source.
The macros also help maintain Slang-level source information (which can be
optionally turned off). For example, the following two Slang methods:
def foo(): Unit = { println("foo") }; def bar(): Unit = { foo() }

are translated as follows (edited for brevity; macro expansions in comments):
typedef struct StackFrame *StackFrame;
struct StackFrame { StackFrame caller; /* ... */; int line; };

Unit foo(STACK_FRAME_ONLY) { // ...( StackFrame caller)
DeclNewStackFrame(caller , /* ... */, // struct StackFrame sf [1] = ...

"foo", 0); // .name = "foo", .line = 0 } };
#ifndef SIREUM_NO_PRINT
sfUpdateLoc (1); // sf ->line = 1;
{ String_cprint(string("foo"), T);

cprintln(T);
cflush(T); }

#endif
}

Unit bar(STACK_FRAME_ONLY) { // ...( StackFrame caller)
DeclNewStackFrame(caller , /* ... */, // struct StackFrame sf [1] = ...;

"bar", 0); // .name = "bar", .line = 0 } };
sfUpdateLoc (1); // sf ->line = 1;
{ foo(SF_LAST ); } // foo(sf);

}

As illustrated above, each function stack-allocates StackFrame to store source
information, which also maintains a pointer to the caller’s stack frame. Source
location information is updated for each corresponding Slang statement using
sfUpdateLoc. Thus, at any given C program point, the Slang call stack informa-
tion is available for, e.g., printing to console (or when debugging in CLion). The
StackFrame stack allocation strategy is the same that is used to stack allocate
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Slang objects. Each Slang statement may be translated into several C statements
as can be observed for the translation of println in foo. The C statements are
grouped inside curly braces for structuring purposes, but more importantly, the
grouping serves as a hint to the C compiler that the memory associated with
stack-allocated objects inside the curlies can be safely reused after the state-
ment has finished executing, thus reducing memory footprint. Console printing
is guarded by a macro, allowing it to be disabled. This is handy when running
the code in a small micro controller without a console; that is, the program can
have console logging code for debugging purposes, but this functionality can be
turned off when deployed to a system without a console.

There are some translation design choices related to namespaces, generics,
type hierarchy, and dynamic dispatch. For namespaces, with the exception of
Slang built-in types, we use underscore-encoded fully qualified names as C iden-
tifiers. This may yield long identifiers, but the approach is predictable and sys-
tematic. The translation specializes generics to the specific type instantiations
used in the source program. For example, different code blocks will be generated
for Option[Z] and Option[IS[Z, Z]]. This potentially generates a lot of code,
incurring memory overhead. We reduce the problem by only translating meth-
ods reachable from a given set of entry points. The type hierarchy is realized by
translating each trait as a C union of its direct subtypes and each class as a C
struct; the unions and structs store an enumeration representing the object
runtime type. Dynamic dispatch is handled by generating bridge code for each
unique virtual invocation method target that switches on the runtime type stored
in the translated union/struct and calls the corresponding implementation.

Given a set of program entry points, the C back-end first computes a whole-
program Slang method call-graph. The type specializer uses the call-graph infor-
mation to instantiate generic types and methods and specialize them. Finally,
ST template-based translation processes each type, global field, and method and
groups the output code based on the fully qualified name of types and objects
to which the fields and methods belong. The results are then written to the disk.

The translation executes quickly, so we did not parallelize it. Moreover, unlike
the front-end which we developed in a more “functional programming style”
where new objects are created as part of the staged transformations, we pur-
posely programmed the C template-based translation in a “more imperative
style” that destructively updates template collections to add instantiated tem-
plates. We used Slang imperative features to see if there are inherent performance
bottlenecks and/or memory consumption issues associated with these imperative
features, and we did not experience any.

In our experience using Slang to code both the front-end and the C back-end,
we found that mutating objects is convenient but best done locally with shallow
mutable structures (which may hold deep immutable structures) to ease reason-
ing and code maintenance. We believe these are Slang general best practices:

“Immutable globally and deeply. Mutable locally and shallowly.”
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IntelliJ integration and build tool: We strongly believe that IDE support is
a crucial productivity enhancing tool that a language should be equipped with.
IntelliJ is one of the best Scala IDEs available today. One nice feature is that
IntelliJ’s Scala type checking is both seamless and perceivably fast when running
on modern hardware. IntelliJ’s front-end runs in the background as one edits
the code and asynchronously highlights issues as they are found. This speeds up
development cycles considerably, thus mitigating Scala’s slow compilation speed.

IntelliJ’s Scala front-end is different than Scala standard compiler’s. One
issue is that it does not accept Scala compiler plugins and Scala macro sup-
port is limited. This means that it does not process Slang program transfor-
mations implemented in the Scala compiler plugin for Slang. For example, the
@range/@bits classes do not have supporting operations from the perspective of
IntelliJ’s front-end as the operations are generated by the Slang compiler plugin.

Fortunately, Scala compiler plugins and macros are widely used in the Scala
community, thus, IntelliJ offers injection extension points so compiler plugin
developers can provide custom code transformations. Hence, we provide an Intel-
liJ plugin that implements the injection extension points to introduce Slang
program transformations to IntelliJ’s front-end. We also limit Slang macros to
forms that works well with IntelliJ (i.e., Scala “blackbox” macros). While it
took some effort to integrate with IntelliJ, the gained productivity level is far
more than enough to make up for it. IntelliJ’s injection extension points are very
stable so far, meaning that our Slang IntelliJ injection plugin has required little
maintenance over time in spite of IntelliJ upgrades.

Another integration issue is configuring IntelliJ for Slang projects. In the
past, we have used popular Scala build tools (e.g., sbt and Mill), whose config-
urations can be imported by/exported to IntelliJ. However, they require some
Scala finesse to use effectively. Thus, we developed a build tool for Slang, called
Proyek (also written in Slang), whose module configurations are compositional
and expressed via Slang @datatype class instances in Slang scripts (discussed in
Sect. 5). Proyek can export its configuration to IntelliJ’s, and it configures Intel-
liJ specifically for development using Slang. This enables IntelliJ’s built-in build
system to be used for compilation, testing, and debugging inside IntelliJ instead
of running a separate third-party build tool for these tasks. In addition, Proyek
provides command-line tasks for cross-compiling (module-incremental/parallel,
including Scala and Java sources), testing, assembling, and publishing.

The above integration works well for using IntelliJ as an IDE for develop-
ment using Slang. However, the approach by itself does not integrate Slang tools
such as the Slang front-end (that checks for, e.g., Slang restrictions of Scala) and
formal verification and analysis tools such as Logika. Thus, we recently devel-
oped another IntelliJ plugin as a client to a Sireum server that offers Slang tools
as micro-services running locally (or, in the future, remotely). These integra-
tions turn IntelliJ as an Integrated Verification Environment (IVE) for Slang
– Sireum IVE (in the spirit of [11]), where formal method tools are parts of
developers’ toolbox for quality assurance that complement, for example, testing.
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5 Applications

The previous section described how Slang was validated in part by using Slang
to develop the Slang tooling itself. This section summarizes other significant
applications that serve as further validation.

Sireum HAMR [18]: provides a multi-platform High Assurance Model-
based Rapid engineering framework for embedded systems. Developers specify
component-based system architectures using the SAE standard AADL architec-
ture description language. From an architecture specification, HAMR generates
real-time tasking and communication infrastructure code. Developers complete
the system by implementing the “business logic” for the components.

HAMR works by first generating a Slang-based intermediate representation
of the AADL model (AIR) from the Eclipse-based AADL OSATE IDE which
is then used as input for auto-generating the tasking and communication mid-
dleware in Slang Embedded. If developers use Slang Embedded to implement
component business logic, the completed system can be run on the JVM for
prototyping, simulation, and testing. The Slang Embedded system code can be
translated to C (using the Slang Embedded C translator), which in turn can be
compiled to a native application for macOS, Linux, or Windows. Additionally,
a build can be created to run on the seL4 [22] verified micro-kernel to provide
guaranteed spatial separation of tasks, which is useful for safety/security-critical
systems. HAMR supports an alternate C-based workflow in which developers
implement component business logic directly in C, while Slang is used by HAMR
“behind the scenes” to generate the C tasking and communication middleware.

In summary, HAMR provides validation of Slang in a number of dimensions;
it is used: (a) in meta-programming to describe the structure of models and
templates for generating code, (b) to implement the AADL run-time libraries
for tasking and communication, (c) to code component application logic for
deployment on the JVM, and (d) as translation source for C or native-based
applications deployed on multiple platforms.

Web applications: Rich web applications have surged in popularity in recent
years; even some desktop applications (e.g., Visual Studio Code) are now
developed using web technologies. Using the Scala.js translator from Scala to
Javascript, one can code aspects of web applications in Slang. We have found this
convenient for building several Sireum tools. It is particularly effective for report-
ing and visualizing the results of Sireum analyses, because reports, highly inter-
active analysis visualizations, and even the analysis algorithms themselves can
be presented/executed using existing web frameworks, and only a web browser
is needed for viewing/executing. This has proved useful in our industrial inter-
actions – engineers can view rich results of example analyses without having to
install the full Sireum toolchain. For example, we used the strategy to provide
AADL information flow analysis in the Sireum Awas tool [33]. Awas enables users
to view and navigate the overall AADL system hierarchically, and to launch and
interact with Awas information flow analyses that dynamically highlight how
information flows throughout the system. While the Awas web application is
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mostly implemented in Scala (as part of the previous generation of Sireum), its
core graph representation and algorithms are from the Slang runtime library,
which are translated to Javascript via Scala.js.

Meta-programming: Slang has been used to implement several meta-
programming tools that use Slang traits/classes as a data schema language.
In one tool, Slang-based schemas are processed to generate Slang code to
de/serialize the trait and class instances from/to JSON or MessagePack. In
addition to AIR, this is used on fully resolved Slang AST, for example, as
part of the Slang front-end regression suite that checks the property AST =
deserialize(serialize(AST )) on the entire Slang front-end codebase itself. In a
second tool, code is generated to perform pre/post-order visits/rewrites of the
trait and class instances. This is used to implement the C back-end generic type
specializer that transforms Slang AST objects into their specialized versions
before translating them to C.

Scripting: Slang scripts leverage the Scala scripting facility, and they provide
a lightweight way to utilize Slang code and associated formal methods tools.
Scripts are ideal for teaching, e.g., program reasoning, as mentioned in Sect. 1.

In addition to the conventional lightweight coding functionality provided by
common scripting languages, Slang scripts can be used to capture contract spec-
ification and proof artifacts exclusively, even without executable code present
in the script. This provides a convenient high-level specification/proof script-
ing language instead of having to interact directly with underlying SMT2 tools
and theorem provers. For example, when verifying AADL interface contracts
between two components in the HAMR framework above, verification condi-
tions are expressed in a Slang script (which takes advantage of Slang high-level
types and language features). The script can then be discharged by using Logika.

Scripting is also convenient when embedding domain specific languages
(DSLs) in Slang. For example, we defined an embedded DSL for bitcodec, which
takes a bit-precise “wire” message format specification in a script and generates
Slang Embedded message encoder and decoder, for use in implementing com-
munication between HAMR components when processing raw data bitstreams.

We also provide a Slang script variant, called Slash, that can be directly
called from both POSIX sh-compatible and Windows cmd environments, which
we heavily use as a means for universally shell scripting complex tasks. Proyek
configurations are Slash scripts, which can optionally print module dependencies
in GraphViz’s dot for visualization purposes. We also use Slash scripts to ease
Sireum installation and continuous integration testing on multiple platforms.

6 Related Work

Slang’s design is inspired by our earlier work on SPARK in which we developed a
symbolic execution-based framework for contract checking [2,7,20], information
flow analyses [1,32], and a mechanized semantics in Coq [37]. In this work,
we observed first-hand how language feature simplication significantly reduces
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formal analysis costs. We used the SPARK 2014 semantics concepts in [37] as the
basis for Slang’s approach to structure copying/updates, but also significantly
extended the scope to address the modern features offered by Scala for small to
large application development, with/without runtime garbage collection.

Slang differs from other work that adds custom contract specification nota-
tions to an existing language (e.g., JML [23], Spec# [5], Frama-C [15], Stain-
less/Leon [9], VST [10]), in that Slang specializes/subsets the programming lan-
guage (Scala) primarily to ease formal analyses. Thus, we have (so far) avoided
becoming “bogged down” in complexities in both specification notations and
verification algorithms due to having to treat complex language features that
impede verification.

In contrast to other work on contract verification that develops an entirely
new language specifically for verification purposes (e.g., Dafny [24], Lean [27]),
Slang leverages an existing multi-paradigm language with rich tooling support
and integration of both Scala and Java ecosystems (e.g., compilers, IDEs). This
additional support and ecosystems have enabled us to use Slang to implement
significant infrastructure (including Slang and many aspects of the Sireum tools
that are bootstrapped and implemented in Slang) and industrial-strength tools
such as the HAMR model-driven development framework [18]. This type of large-
scale software development and tool engineering would be very difficult to achieve
in a programming language that did not integrate with a larger development
ecosystem.

7 Conclusion

In this paper, we presented the goals, development approach, and example appli-
cations of the Sireum programming language – Slang. With respect to the goals
of this ISOLA Track “Programming: What is Next?”, we believe our work with
Slang explores several important issues related to the future of programming
and programming language design described below.

– Increasing numbers of systems need high-assurance for safety and security.
What are possible approaches that enable highly automated verification tech-
niques for modern languages with rich features sets? For Slang, we argue that
a language can be subsetted for particular domains (eliminating complex fea-
tures unnecessary for that domain). Base languages that provide powerful
syntactic frameworks, customizable compilers, and extensible tooling make it
easier to develop usable development environments for such subsets. Scala is
one of the few languages to provide these multiple customization dimensions.
Thus, while language subsetting for safety-criticality and formal verification
is not a new idea, we believe our work is providing additional insights into
enabling technologies and specialized subset development approaches.

– Despite tremendous advances in formal methods, there is still a need for
increased usability and better integration of specification and verification in
developer workflows. Although Slang contracts and verification is not the
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central subject of this paper, Slang illustrates what we believe are realistic
and effective approaches for developer-friendly formal methods integration.

– Regarding development for embedded systems, we believe the approach we are
taking with Slang (executable on the JVM for prototyping with rich Scala/-
Java ecosystems, yet compilable to efficient embedded C code) is relatively
unique and exposes possible directions for increasing flexibility and usability
of embedded system languages that also utilize modern language features and
type systems to avoid code vulnerability and flaws.

Slang is still in active development, though its focus has now shifted to specifica-
tion and proof languages to support formal analyses. The Slang website [40] hosts
a growing collection of language reference, example, and pedagogical resources.
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Abstract. This paper describes the High-Assurance Model-based Rapid
engineering for embedded systems (HAMR) tool-kit that generates high-
assurance software from standards-based system architecture models
for embedded cyber-physical systems. HAMR’s computational model is
based on standardized run-time services and communication models that
together provide an abstract platform-independent realization which can
be instantiated by back-end translations for different platforms. HAMR
currently targets multiple platforms, including rapid prototyping targets
such as Java Virtual Machines, Linux, as well as the formally verified seL4
space partitioned micro-kernel.

HAMR bridges the gap between architecture models and the system
implementation by generating high assurance infrastructure components
that satisfy the requirements specified in the model and preserving rigor-
ous execution semantics. Based on the architecture model, including the
components, their interfaces, run-time performance properties, and inter-
component connections, the HAMR-generated code creates Application
Programming Interfaces that provide developer-centric ease-of-use, as well
as support automated verification.

HAMR currently interprets architecture models captured in the Archi-
tecture Analysis and Design Language (AADL). AADL is a rigorous stan-
dardized modeling language that has proven useful in the development of
high assurance embedded systems. We describe using HAMR for build-
ing applications from safety and security-critical domains such as medical
devices and avionics mission-systems.

1 Introduction

Advances in model-based engineering (MBE) have improved the development of
Cyber-Physical Systems (CPS). A 2009 NASA study documented that nearly
80% of CPS’s capability is implemented using software [15], and the trend is
increasing. As system and software complexity increases, software integration
risk has become a key limiting factor in the development of complex CPSs. A
study by the SAVI initiative determined that while 70% of errors are introduced
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at the design phase, most are not found and fixed until integration and test [2].
The study identified that fixing those errors late in the process costs orders of
magnitude more than if they had been fixed earlier. This directly impacts system
capability due to requirements being cut to keep on schedule or other systems not
being built to address budget overruns. In their 2009 study, NASA recommended
that the best way to address this is to focus on the system architecture at the
design phase, both for new systems as well as system upgrades.

The SAE-standard Architecture, Analysis, and Design Language (AADL) [8]
is an system architecture modeling and analysis approach that has obtained a
fair amount of traction in the research and aerospace communities. For exam-
ple, on the System Architecture Virtual Integration (SAVI) effort [3], aircraft
manufacturers together with subcontractors used AADL to define a precise sys-
tem architecture using an “integrate then build” design approach. Working with
AADL models, important interactions are specified, interfaces are designed, and
integration is verified before components are implemented in code. Once the inte-
gration strategy and mechanism are established, subcontractors provide imple-
mentations that comply with the architecture requirements. Prime contractors
then integrate these components into a system. The integration effort, particu-
larly schedule and risk uncertainty, is reduced due to the previous model-based
planning and verification. Due in part to the NASA and SAVI studies, since 2012
the US Army has been investing in developing, maturing, and testing MBE and
other engineering capabilities for the system development of the Future Vertical
Lift (FVL), a top Army priority to modernize the vertical lift fleet.

One of the challenges inherent with modeling and analysis is maintaining
consistency between the model-as-analyzed and the system-as-implemented. Any
deviation can lead to inaccuracies in the predictions provided by the models,
which can impact system performance against requirements. An example of this
is if an implementation decision violates system partitioning requirements.

Another challenge is that many modeling approaches are design-time doc-
umentation exercises that are rapidly outdated as the system is implemented,
deployed, and maintained throughout the life-cycle. If the models are merely
documentation and not maintained and understood by developers, any system
updates (e.g., bug fixes, new features) might violate the system-level concepts
and requirements.

Yet another challenge is that some generic modeling approaches permit dif-
ferent interpretations of information contained in the models. One example of
this is when modelers capture significant model information in comments. This
makes it difficult to make system-level decisions based on the integration of
components provided by different vendors.

To address these issues, we have developed a tightly integrated modeling and
programming paradigm, called HAMR, to shift development to earlier in the
design cycle, and thereby eliminate issues earlier, when they are less expensive to
address. To accomplish this, HAMR encodes the system-level execution semantics,
as specified in standardized models with clear and unambiguous specifications,
into infrastructure code suitable for the given target platform. These execution
semantics include component interfaces, threading semantics, inter-component
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communication semantics, standard system phases, scheduling, and application
behavioral and non-functional performance properties.

Benefits of this approach include:

Extensible code-generation architecture capable of easily targeting
new platforms: Complex industrial systems often include multiple platforms
(e.g., in system-of-system architectures), and long-lived systems often need to
be migrated to new architectures to support technology refresh.

Support for incremental development, from rapid prototyping to full
deployment: Organizations can perform rapid prototyping and integration in
spirals, moving in successive spirals (with different code generation back-ends)
from simpler functional mockups of component behaviors and interface interac-
tions to more realistic implementations on test bench boards, to final deploy-
ments on platform hardware.

Standard Development Environments. HAMR runs on widely-used plat-
forms, leveraging development environments that are already familiar to stu-
dents, graduate researchers, and entry-level industrial engineers. This helps
reduce workforce training costs.

Direct support for formally-proven partitioning architectures: Industry
teams are increasingly using micro-kernels, separation kernels, and virtualization
architectures to isolate critical system components. Strong isolation provides a
foundation for building safe and secure systems. It also enables incorporation of
legacy components into a system (e.g., running legacy code on virtual machines
within a partition of a micro-kernel). HAMR includes a back-end to directly tar-
get the seL4 micro-kernel whose implementation, including spatial partitioning,
is formally proven correct using theorem-proving technology.

This paper describes HAMR, with specific contributions including:

– HAMR provides code generation for the SAE AS5506 Standard AADL. The
code generated by HAMR conforms to the AADL standard’s Run-Time Ser-
vices, and further refines it towards a more precise semantics for safety-critical
embedded systems.

– HAMR leverages Slang, a safety/security-critical subset of Scala. We define a
Slang-based reference implementation of the above AADL Run-Time Services.

– Using the Slang AADL RTS, we define a Slang/Scala-based AADL code-
generation, component development approach, and JVM run-time execution
environment that can be used for JVM-based AADL system deployments or
system simulations before further refinement to an embedded (e.g., C-based)
deployment.

– We define a multi-platform translation architecture code AADL code genera-
tion by using the Slang AADL RTS reference implementation as an abstrac-
tion layer through which multiple back-ends can be supported.

– We implement C-based back-ends for the translation architecture targeting
Linux OS and for the seL4 micro-kernel [13].

– We validate the translation framework using industrial-scale examples from
multiple CPS domains including medical devices and military mission control
systems.
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The HAMR framework is being used by multiple industry partners in projects
funded by the US Army, US Air Force Research Lab, US Defense Advanced
Research Projects Agency (DARPA), and the US Department of Homeland
Security (DHS). The HAMR implementation and examples described in this
paper are available under an open-source license1.

2 AADL

SAE International standard AS5506C [10] defines the AADL core language for
expressing the structure of embedded, real-time systems via definitions of com-
ponents, their interfaces, and their communication. In contrast to the general-
purpose modeling diagrams in UML, AADL provides a precise, tool-independent,
and standardized modeling vocabulary of common embedded software and hard-
ware elements. Software components include data, subprogram, subprogram
group, thread, thread group, and process. Hardware components include pro-
cessor, virtual processor, memory, bus, virtual bus, and device. Devices are used
to model sensors, actuators, or custom hardware. An AADL system component
represents an assembly of interacting application software and execution plat-
form components. Each component category has a different, well-defined stan-
dard interpretation when processed by AADL model analyses. Each category
also has a distinct set of standardized properties associated with it that can be
used to configure the specific component’s semantics.

A feature specifies how a component interfaces with other components in the
system. ports are features that can be classified as an event port (e.g., to model
interrupt signals or other notification-oriented messages without payloads), a data
port (e.g. modeling shared memory between components or distributed memory
services where an update to a distributed memory cell is automatically propagated
to other components that declare access to the cell), or an event data port (e.g., to
model asynchronous messages with payloads, such as in publish-subscribe frame-
works). Inputs to event and event data ports are buffered. The buffer sizes and
overflow policies can be configured per port using standardizes AADL properties.
Inputs to data ports are not buffered; newly arriving data overwrites the previous
value.

Fig. 1. Temperature control example (excerpts) – AADL graphical view

1 Source code and supporting documentation available at https://github.com/
santoslab/isola21-hamr-case-studies.

https://github.com/santoslab/isola21-hamr-case-studies
https://github.com/santoslab/isola21-hamr-case-studies
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Figure 1 presents a portion of the AADL standard graphical view for a sim-
ple temperature controller that maintains a temperature according to a set point
structure containing high and low bounds for the target temperature. The peri-
odic tempSensor thread measures the current temperature and transmits the
reading on its currentTemp data port (represented by a solid triangle icon). It
also sends a notification on its tempChanged event port (represented by an arrow
head) if it detects the temperature has changed since the last reading. When the
sporadic (event-driven) tempControl thread receives a tempChanged event, it
will read the value on its currentTemp data port and compare it the most recent
set points. If the current temperature exceeds the high set point, it will send
FanCmd.On fan thread via its fanCmd event data port (represented by a filled
triangle within an arrow head) to cool the temperature. Similar logic will result
in FanCmd.Off being sent if the current temperature is below the low set point.
In either case, fan acknowledges whether it was able to fulfill the command by
sending FanAck.Ok or FanAck.Error on its fanAck event data port.

AADL provides a textual view to accompany the graphical view. AADL edi-
tors such as the Eclipse-based Open Source AADL Tool Environment (OSATE)
synchronize the two. The listing below illustrates the component type declaration
for the TempControl thread for the example above. The textual view illustrates
that data and event data ports can have types for the data transmitted on the
ports. In addition, properties such as Dispatch Protocol and Period configure
the tasking semantics of the thread.
� �

thread TempControl
features
currentTemp: in data port TempSensor::Temperature.i;
tempChanged: in event port;
fanAck: in event data port CoolingFan::FanAck;
setPoint: in event data port SetPoint.i;
fanCmd: out event data port CoolingFan::FanCmd;

properties
Dispatch_Protocol => Sporadic;
Period => .5 sec; -- the min sep between incoming msgs

end TempControl;

thread implementation TempControl.i
end TempControl.i;

� �

The bottom of the listing declares an implementation named
TempControl.i of the TempControl component type. Typically, when using
HAMR, AADL thread component implementations such as TempControl.i have
no information in their bodies, which corresponds to the fact that there is no fur-
ther architecture model information for the component (the thread is a leaf node
in the architecture model, and further details about the thread’s implementation
will be found in the source code, not the model). Using information in the asso-
ciated thread type, HAMR code generation will generate platform-independent
infrastructure, thread code skeletons, and port APIs specific for the thread, and
a developer codes the thread’s application logic in the target programming lan-
guage. The generated thread-specific APIs serve two purposes: (1) the APIs limit
the kinds of communications that the thread can make, thus help ensuring compli-
ance with respect to the architecture, and (2) the APIs hide the implementation
details of how the communications are realized by the underlying platform.
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The listing below illustrates how architectural hierarchy is realized as an
integration of subcomponents. The body of TempControlProcess type has no
declared features because the component does not interact with its context in
this simplified example. However, the body of the implementation has subcom-
ponents (named component instances), and the subcomponents are “integrated”
by declaring connections between subcomponent ports.
� �

process TempControlProcess
-- no features; no interaction with context

end TempControlProcess;

process implementation TempControlProcess.i
subcomponents
tempSensor : thread TempSensor::TempSensor.i;
fan : thread CoolingFan::Fan.i;
tempControl: thread TempControl.i;
operatorInterface: thread OperatorInterface.i;

connections
c1:port tempSensor.currentTemp -> tempControl.currentTemp;
c2:port tempSensor.tempChanged -> tempControl.tempChanged;
c3:port tempControl.fanCmd -> fan.fanCmd;
c4:port fan.fanAck -> tempControl.fanAck;
end TempControlProcess.i;

� �

AADL editors check for type compatibility between connected ports. HAMR
supports data types declared using AADL’s standardized Data Model Annex
[1]. For example, the data type declarations associated with the temperature
data structure are illustrated below.
� �

data Temperature
properties
Data_Model::Data_Representation => Struct;

end Temperature;

data implementation Temperature.i
subcomponents
degrees: data Base_Types::Float_32;
unit: data TempUnit;

data TempUnit
properties
Data_Model::Data_Representation => Enum;
Data_Model::Enumerators=>("Fahrenheit" ,"Celsius" ,"Kelvin");
end TempUnit;

� �

A standard property indicates that the Temperature type is defined as a
struct and the struct fields and associated types are listed in the data imple-
mentation. The degrees field has a type drawn from AADL’s standardized base
type library. The unit field has an application-defined enumerated type.

AADL omits concepts associated with requirements capture and user inter-
actions such as UML use cases, sequence diagrams, as well as class-oriented
software units that are more appropriate when modeling general purpose object-
oriented software. AADL is closer in spirit to SysML, although AADL elements
are more precisely defined to enable analyzeability and tool interoperability. In
industry applications of AADL, SysML may be used earlier in the development
process to initially capture interactions between and the system and environ-
ment as well as rough architecture. AADL is then used to more precisely specify
architecture and to support architecture analysis. Though having a workflow



280 J. Hatcliff et al.

with multiple modeling languages is not ideal, the SysML + AADL approach
utilizes the capabilities currently available to industry engineers that want to
use AADL. In the broader vision of “programming: what’s next?”, AADL seems
to be tracking the right course by more deeply integrating programming and
modeling, but there is even more opportunity to integrate, in a single model-
ing framework, early design concepts that have both stronger semantics and
traceability to eventually developed code-level artifacts.

AADL provides many standard properties, and allows definition of new prop-
erties. Examples of standard properties include thread properties (e.g., dis-
patch protocols such as periodic, aperiodic, sporadic, etc., and various properties
regarding scheduling), communication properties (e.g., queuing policies on par-
ticular ports, communication latencies between components, rates on periodic
communication, etc.), memory properties (e.g., sizes of queues and shared mem-
ory, latencies on memory access, etc.). User-specified property sets enable one
to define labels for implementation choices available on underlying platforms
(e.g., choice of middleware realization of communication channels, configuration
of middleware policies, etc.).

The Eclipse-based OSATE tool provides an environment for editing AADL
and has a plug-in mechanism that supports different AADL analysis tools. Con-
trols for HAMR code generation are implemented as an OSATE plug-in.

3 Architecture

Since it is a code-generation framework, HAMR focuses on AADL software com-
ponents – especially thread components and port-based communication between
threads. The HAMR code-generation backend includes libraries for threading
and communication infrastructure that help realize the semantics of AADL on
the target platform.

Fig. 2. HAMR code generation concepts
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Figure 2 illustrates the main concepts of HAMR code generation. For each
thread component, HAMR generates code that provides an execution context for
a real-time task. This includes: (a) infrastructure code for linking application code
to the platform’s underlying scheduling framework, for implementing the storage
associated with ports, and for realizing the buffering and notification semantics
associatedwith event and event data ports, and (b) developer-facing code including
thread code skeletons in which the developer will write application code, and port
APIs that the application code uses to send and receive messages over ports. For
each port connection, HAMR generates infrastructure code for the communication
pathway between the source and target ports. On platforms such as seL4, path-
ways may utilize memory blocks shared between the components (seL4’s capabil-
ity mechanism can ensure that only the source/destination components can access
the shared memory and that the information flow is one-way). On other platforms,
middleware or underlying OS primitives are used. E.g., for Linux, HAMR uses Sys-
tem V interprocess communication primitives.

Fig. 3. Code generation factored through AADL RTS

Semantic consistency across platforms – that is, identical behavior of HAMR-
generated code regardless of the target platform – is a fundamental HAMR goal.
Semantic consistency is supported by carrying out the code-generation in stages.
In particular, code is generated first for a platform-independent reference imple-
mentation of the AADL run-time services (RTS) (run-time libraries providing key
aspects of threading and communication behavior) as illustrated in Fig. 3. These
services are currently described informally in the AADL standard via textual
descriptions of APIs for thread dispatching and port communication. HAMR spec-
ifies the APIs and platform-independent aspects of the AADL RTS functionality
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in Slang – a subset of Scala designed for high-assurance embedded system develop-
ment. The HAMR-provided realization of these services is a “reference implemen-
tation” in the sense that (a) the highly-readable Slang APIs and service implemen-
tations can be directly traced to descriptions in the AADL standard and (b) the
subsequent implementations on different platforms are derived from these Slang
artifacts. For example, Slang can be compiled to Java Virtual Machine (JVM)
bytecode and to efficient embedded C without incurring runtime garbage collec-
tion Slang’s extension facility enables Slang programs to interface with full Scala
and Java when compiling to the JVM and C when compiling to C.

Figure 3 illustrates that the HAMR translation architecture utilizes Slang to
code platform-independent aspects of the AADL run-time and then uses Slang
extensions in Scala and C to implement platform-dependent aspects. For exam-
ple, for the JVM platform, a Slang AADL RTS Reference Implementation is used
for most of infrastructure implementation with a few customizations (denoted
by the circled “+”) written in Scala. For the C-based (xNix) platforms, some
of the Slang Reference Implementation is inherited but customizations define
memory layouts to be used in C (still written in Slang to support eventual ver-
ification). Then the Slang-based infrastructure is compiled to C. This provides
a sizable code base that is shared across Linux and seL4 with some further C
customization for each platform.

The Slang-to-C compilation also enables developers to code component appli-
cation logic in Slang when targeting the JVM or C-based platforms (including
Linux and seL4 described in this paper) or C alone for C-based platforms. While
this architecture does not currently include formal proofs of conformance of the
generated code to Slang reference implementation and associated semantics, it
is architected to prepare for such assurance in future work.

4 HAMR Backends

In this section, we describe three HAMR backend targets: (1) JVM, (2) Linux
(native), and (3) seL4. The JVM target is provided to quickly implement compo-
nent and system functionality on a widely-available platform that can be easily
utilized without having to set up a RTOS target. This is effective for teach-
ing AADL model-based development principles, and the HAMR JVM platform
architecture is set up to eventually support distributed and cloud-based appli-
cations via industry-standard publish-subscribe frameworks like JMS, DDS, and
MQTT. In two ongoing US DoD funded projects, a contract-based verification
framework is being developed that supports integrated AADL and Slang-level
contracts with automated SMT-based verification support. In a recently com-
pleted industrial project milestone, the JVM platform was used by industry
engineers to quickly mock-up and test component functionality and simulate the
overall system behavior, including being able to test specific component sched-
ule orderings. If Slang is used to implement component behaviors, such imple-
mentations can also be compiled to C along with the Slang-based AADL RTS
middleware that HAMR generates specific for the system. The overall system
can then be run natively on Linux (as well as on macOS and Windows/Cygwin,
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with some environment setups). By leveraging Slang extension language facil-
ity, developers can opt to implement component behaviors partly/fully in C, for
example, to leverage existing libraries, to access hardware, or to integrate legacy
components. The seL4 verified micro-kernel backend supports on embedded sys-
tem boards such as ODROID-C2/XU4. HAMR also generates deployments for
seL4 on the QEMU simulation framework, which can be used for testing before
deploying to actual hardware. As part of the DARPA CASE project, we provide
a Vagrant file to automatically provision a VirtualBox Linux Virtual Machine
(VM) with HAMR and its dependencies configured, including OSATE, compiler
toolchains, and seL4; it is available at [18]. We continually update the Vagrant
definition as we refine HAMR, as well as integrating new or enhanced seL4 fea-
tures. HAMR has early support for additional targets such as FreeRTos, Minix3,
and STM32, but these are less mature than the above.

Below we introduce the key concepts of code architecture using Slang, and
then subsequent sections (relying on code examples in the appendix) illustrate
the C-based coding.

4.1 Slang on JVM Platform

An AADL thread with sporadic dispatch mode is dispatched upon the arrival
of messages on its input event or event data ports. To tailor the application
code structure of a sporadic thread Compute Entry Point to the event-driven
character, HAMR generates a message handler method skeleton for each input
event and event data port. To program the application logic of the component,
the developer completes the implementation of these method handlers.
For example, for the sporadic TempControl thread, HAMR generates the follow-
ing Slang skeletons for entry points (excerpts).

� �

1 @msig trait TempControl_i {
2 // reference to APIs to support port communication
3 def api : TempControl_i_Bridge.Api
4
5 // == Skeleton for Initialize Entry Point ==
6 def initialise(): Unit = {}
7
8 // == Skeletons for Compute Entry Point ==
9 // handler for the ‘tempChanged ‘ input event port

10 def handletempChanged(): Unit = {
11 // auto -generated default implementation simply logs
12 // messages
13 api.logInfo("received tempChanged")
14 api.logInfo("default tempChanged implementation")
15 }
16
17 // handler for the ‘fanAck ‘ input event data port
18 def handlefanAck(value:TempControl.FanAck.Type):Unit={
19 api.logInfo(s"received ${value}")
20 api.logInfo("default fanAck implementation")
21 }
22
23 // handler for the ‘setPoint ‘ input event data port is
24 // similar to above and omitted.
25
26 // == Skeleton for Finalize Entry Point ==
27 def finalise(): Unit = {}
28 }

� �
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To complete the Initialise Entry Point, the developer codes any initialization
of component local variables that persist between activations of the thread, e.g.,
the variable caching the most recent set point structure is initialized. The initial
values for all output data ports must also be set (not applicable in this case,
because the component has no output data ports), and optionally, messages
may be sent on output event and event data ports. The Finalise Entry Point is
also coded to perform any clean up steps (omitted).

� �

1 var setPoint: SetPoint_i = Defs.initialSetPoint
2
3 override def initialise(): Unit = {
4 // The Initialize Entry Point must initialize all
5 // component local state and all output data ports.
6
7 // initialize component local state
8 setPoint = Defs.initialSetPoint
9

10 // initialize output data ports
11 // (no output data ports to initialize)
12 }

� �

The primary application logic of the TempControl is coded by filling in the
auto-generated skeletons for the message handler methods. The completed han-
dler for tempChange port is given below. The code illustrates the use of auto-
generated api methods to send and receive information on ports. These provide
a uniform abstraction of the AADL communication semantics and allows HAMR
to generate different implementations when deploying on different platforms.

� �

1 override def handletempChanged(): Unit = {
2 // get current temp from currentTemp data port
3 // using auto -generated APIs for AADL RTS
4 val temp = api.getcurrentTemp().get
5 // convert current temp to Fahrenheit
6 val tempInF = Util.toFahrenheit(temp)
7 // convert stored setpoint values to Fahrenheit
8 val setPointLowInF = Util.toFahrenheit(setPoint.low)
9 val setPointHighInF = Util.toFahrenheit(setPoint.high)

10
11 val cmdOpt: Option[FanCmd.Type] =
12 if (tempInF.degrees > setPointHighInF.degrees)
13 Some(FanCmd.On)
14 else if (tempInF.degrees < setPointLowInF.degrees)
15 Some(FanCmd.Off)
16 // if current temp is between low and high set point
17 // don’t produce a command (None)
18 else None[FanCmd.Type]()
19
20 cmdOpt match {
21 // if a command was produced , send it
22 // using auto -generated API for AADL RTS
23 case Some(cmd) =>
24 api.sendfanCmd(cmd)
25 case _ =>
26 // temperature OK
27 }
28 }

� �

TempSensor is a periodic thread, and so instead of generating event handlers
for the Compute Entry Point, HAMR generates a single TimeTriggered method.



HAMR: An AADL Multi-platform Code Generation Toolset 285

� �

1 object TempSensor_i_p_tempSensor {
2
3 def initialise(api:TempSensor_i_Initialization_Api):Unit={
4 // initialize outgoing data port
5 val temp = TempSensorNative.currentTempGet()
6 api.setcurrentTemp(temp)
7 }
8
9 def timeTriggered(api:TempSensor_i_Operational_Api):Unit={

10 val temp = TempSensorNative.currentTempGet()
11 api.setcurrentTemp(temp)
12 api.sendtempChanged()
13 }
14 }
15 // extension interface to step outside the Slang
16 // language subset
17 @ext object TempSensorNative {
18 def currentTempGet(): Temperature_i = $
19 }

� �

This example illustrates the use of the Slang extension mechanism that is
used to interface to code outside of the Slang language subset. On the JVM
platform, this typically involves interfacing to classes in full Scala or Java, e.g.,
to implement GUIs, simulation of sensors and actuators, or JNI interfaces to
access GPIO facilities on a development board. In this example, a Slang exten-
sion interface is declared to pull a temperature value from the sensor. Multiple
implementations of an extension interface may be set up to switch between, e.g.,
a simulated sensor and interfacing to an actual hardware sensor. The listing
below illustrates a simple Scala-implemented sensor simulation that generates
randomized values directed by the current state of extension simulation for the
Fan hardware.

� �

1 object TempSensorNative_Ext {
2 var lastTemperature
3 = Temperature_i(68f, TempUnit.Fahrenheit)
4 var rand = new java.util.Random
5
6 def currentTempGet(): Temperature_i = {
7 lastTemperature = if (rand.nextBoolean()) {
8 val delta =
9 F32((rand.nextGaussian() * 3).abs.min(2).toFloat

10 * (if (FanNative_Ext.isOn) -1 else 1))
11 lastTemperature(degrees
12 = lastTemperature.degrees + delta)
13 } else lastTemperature
14 return lastTemperature
15 }
16 }

� �

Corresponding to the gray areas of Fig. 2, HAMR generates code for each
component infrastructure that links the developer-code application logic above
to the threading/scheduling mechanisms of the underlying platform. The listing
illustrates the pattern of an auto-generated Compute Entry Point for a sporadic
thread, which processes messages on incoming event/event-data ports (using
the AADL RTS (Art) dispatchStatus and receiveInput) and then calls cor-
responding developer-written message handlers. After handlers complete, the
AADL RTS sendOutput is called to propagate data on output ports to connected
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consumers. During an execution, the compute method of each thread is called
by an executive that follows a selected scheduling strategy.

This code illustrates some fundamental properties of the AADL computa-
tional model – namely, its input/work/output structure of task activations. First,
similar to other real-time models designed for analyzeability (e.g., [5]), a task’s
interactions with its context are cleanly factored into inputs and outputs. At
each task activation, inputs are “frozen” for the duration of the task’s activity
(which runs to complete within a WCET bound). The AADL RTS receiveInput
freezes input by moving values from the communication infrastructure into the
user thread’s space (dequeuing event and event data port entries as necessary).
During the task work, user code can read the frozen values using the getXXX APIs
and can prepare outputs using setXXX. After the task’s work is completed (e.g.,
event handler completes), the prepared outputs are released to the infrastucture
using the sendOutput RTS.2

� �

1 def compute(): Unit = {
2 // get ids of ports that have pending messages.
3 val EventTriggered(portIds)
4 = Art.dispatchStatus(TempControl_i_BridgeId)
5 // "freeze" data ports -- move data port values
6 // from infrastructure to application space
7 Art.receiveInput(portIds , dataInPortIds)
8 // --- invoking application code (event handlers) ---
9 // for each arrived event , call corresponding handler

10 for (portId <- portIds) {
11 // if an event arrived on the ‘fanAck ‘ port
12 if (portId == fanAck_Id){
13 // get payload , call fanAck handler
14 // with the message payload as parameter
15 val Some(BuildingControl.FanAck_Payload(value))
16 = Art.getValue(fanAck_Id)
17 component.handlefanAck(value)
18 } else if(portId == setPoint_Id){
19 val Some(BuildingControl.SetPoint_Payload(value))
20 = Art.getValue(setPoint_Id)
21 component.handlesetPoint(value)
22 } else if(portId == tempChanged_Id) {
23 // ‘tempChanged ‘ port is event (not event data)
24 // so there is no payload to pass to handler
25 component.handletempChanged()
26 }
27 }
28 // after all handlers run , propagate to consumers
29 // the values that they wrote to output ports
30 Art.sendOutput(eventOutPortIds , dataOutPortIds)
31 }

� �

The overall system is run by launching a HAMR-generated JVM applica-
tion of the system. Once launched, the application infrastructure initializes the
AADL RTS middleware (e.g., allocate objects representing communication chan-
nels) calls the initialize entry point of each component. Then the executive
infrastructure is called which repeatly invokes compute methods according to

2 The compute code shown above deviates from the AADL standard description
slightly in that the for loop processes one queued message on each incoming event
port. An alternate implementation aligned with the standard is available that only
processes a single event and then releases its output and yields.
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the scheduling strategy. During a shut down phase, each component’s finalise
entry point is called.

HAMR auto-generates unit test harnesses for each component with helper
methods for loading values into input ports, invoking the various entry points,
and checking values on output ports. Also included is a run-time monitoring
framework where, e.g., all send/receive actions on ports are logged on a Redis
server which can be filtered in a variety of ways using a HAMR-generated
framework that utilizes Akka and ReactiveX stream processing and filtering.
This framework is used to generate multiple visualizations of the system execu-
tion (including dynamic generation of message sequence charts reflecting inter-
component communication.

4.2 Linux

HAMR supports Linux natively by translating the Slang-based AADL RTS
implementations to C. Slang has a memory model that enables memory to be
statically allocated when translated to C, and it supports highly-controlled data
type representations and other constructs that enable effective embedded code
to be generated. The high-level infrastructure APIs, coordinating procedures of
the Slang-based AADL RTS reference implementation, and Slang-based platform
customizations for Linux constitute the infrastructure code that is translated to
C. Using the Slang extension mechanism, only around 100 SLOC of C code are
linked into the infrastructure to provide the lowest level aspects of the inter-
component communication using Unix System V shared memory interprocess
communication. Everything else is written in Slang, which lays the groundwork
for future formal verification of the infrastructure code and makes it easy to
establish traceability to the Slang-based AADL RTS reference model.

In the current organization of the generated infrastructure code, each thread
component runs as a separate Linux process due to industrial project empha-
sis on separation. In the upcoming phases of projects, we will be investigating
alternate approaches that allow multiple AADL threads to be grouped in the
same AADL and Linux process. For implementing component application logic,
two different workflows are supported: (1) a thread’s behavior can be coded in
Slang as in the previous section and compiled to C, or (2) C-level entry point
APIs can be generated and coded/debugged in a C development environment.

4.3 seL4 Verified Microkernel

One of the goals of DARPA CASE program is help DoD industry teams harden
systems to make them more resilient to cyber-attacks. The seL4 micro-kernel
(formally verified using automated theorem-proving techniques) is a central part
of the CASE approach. seL4 provides a capability mechanism that can be used to
precisely configure which memory addresses, function interactions, and platform
resources each thread can access. Similar to the concept of separation kernels
long used to provide foundations for security [14], the precise formally-proven
partitioning and information flow control that seL4 provides make it easier to
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include components of mixed criticality, to “sandbox” untrusted components,
and to update portions of the system while ensuring that other parts can never
be impacted by the changes. Building on the seL4 foundation, HAMR on CASE
supports model-driven development for refactoring systems to achieve greater
cyber-resiliency including automated wrapping of legacy components in virtual
machines (VM) and automated insertion of high-assurance components such as
message filters, network guards, and security health monitors.

In CASE, AADL is used to model system architecture which is automatically
analyzed for cyber-resiliency properties and to capture architecture transforma-
tions that insert high-assurance components and VMs. HAMR translates an
AADL architecture to produce configurations of the seL4 micro-kernel (espe-
cially the capability protection specifications), Specifically, HAMR translates
AADL system architectures to seL4 architecture description language, called
CAmkES [11], along with some C glue code to interface HAMR C AADL RTS
with CAmkES. CAmkES is designed to make it easier to configure seL4 capa-
bilities to align with component structures, and is rather agnostic to the par-
ticular computational model. The CAmkES framework has its own mechanism
to generate low-level C kernel code as well as the seL4 “capDL” (Capability
Distribution Language) file. These artifacts together with the kernel itself and
CAmkES component code are used create a binary image which can be loaded
onto an appropriate processor.

Leveraging the CAmkES code generation, HAMR generates CAmkES decla-
rations to align with AADL, which, via the CAmkES code generation, configures
seL4 so that AADL intercomponent information flow pathways are enforced by
the microkernel. HAMR also generates additional code that adapts CAmkES
threading and communication APIs to align with the AADL RTS and computa-
tional model. This includes generating infrastructure code that uses, e.g., seL4
protected shared memory to realize event buffering and dispatch logic of AADL
RTS as implemented in the HAMR reference implementation. This is crucial for
enabling AADL-level analysis and verification to be sound with respect to gener-
ated seL4 deployments. Leveraging the HAMR translation factored through the
Slang reference model, the developer-facing C communication APIs and thread
skeletons are identical to those generated for Linux (as described in the pre-
vious section). We are working with Data61 engineers to implement dedicated
CAmkES connectors that realize the AADL semantics – thus, eliminating the
need for a layer of adapter code used in the current code generation process.

HAMR also generates virtual machine configurations for CAmkES compo-
nents that are used to host Linux VMs, e.g., for sandboxing legacy or less trusted
code. This ensures that communication across VM boundaries also aligns with
AADL communication semantics.

5 Applications

We have applied HAMR to several examples on multiple industrial research
projects sponsored by US Department of Homeland Security (DHS), US Air
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Force Research Labs, US Army, and US Defense Advanced Research Project
Agency (DARPA). Below are two examples chosen for their scale, complexity,
their coverage of different platforms, and the use of different programming lan-
guage for code application logic.

5.1 PCA Pump – JVM Platform

The DHS-sponsored ISOSCELES project provides an open-source reference
architecture for building medical devices [6]. The project supports device man-
ufacturers and regulatory science by providing freely available resources that
incorporate best-practices in MBE as well as architectures designed for safety
and security. To validate the ISOSCELES reference architecture, the project uti-
lized example medical device development artifacts from the Open PCA Pump
Project (see [9] for an overview of the project and [19] for the project web-site
that provides the open-source artifacts). PCA pumps are bedside devices used
to infuse opioids into the IV line of a patient. Though the use of PCA pumps
is wide-spread, they suffer from safety and security problems. In collaboration
with engineers from the US Food and Drug Administration, the Open PCA
Pump project developed a collection of realistic open-source development arti-
facts including an AADL model-based-development implementation of a pump.

The Open PCA Pump AADL model is one of the most complex publicly
available AADL models. Just considering thread components and their interac-
tions (excluding other component types not related to code generation), there
are 12 thread components, 186 thread component ports, and 101 connections
between thread ports. We used HAMR to develop a Slang-based JVM imple-
mentation of the pump software along with Slang, Scala, and Java-based simula-
tions of several hardware elements of the pump, including the pump mechanism,
fluid flow rate sensors, and operator interface. The resulting system has 14223
non-comment/space source lines of Slang/Scala code (NCSLOC) in the auto-
generated infrastructure code and 1220 NCSLOC for the application logic.

5.2 UAV System – seL4 Platform

This example from the DARPA CASE program demonstrates HAMR’s abil-
ity to support mission systems on a complex high-assurance partitioning plat-
form. The CASE example is intended to demonstrate how CASE technology
can harden legacy mission control software for unmanned air vehicles against
cyber-attacks. AFRL’s open-source UxAS framework, written in C++ using a
publish/subscribe communication infrastructure, was used as the existing system
to be hardened. A ground station communicates with a surveillance UAV. Before
the UAV is launched, map information including operating regions and no-flys
zones are loaded into the system. During the course of the mission, the UAV
comes into contact with multiple ground stations who receive status information
from the UAV and may send updated mission objectives. Mission objectives are
processed by a flight planner module to produce collections of waypoints that
are fed to the flight computer.
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In the first step of the cyber-resilience hardening, the UxAS was broken into
pieces to isolate different portions of the system to protect against intrusions
and contain the effects of possible Trojan attacks. In this process, the commu-
nication stack on board the UAV was migrated into a Linux virtual machine in
an seL4 partition. Similarly, the mission planner subsystem (which takes mis-
sion commands and map information and computes sets of waypoints for the
flight controller) was also migrated to a Linux VM. Both of these are modeled
as AADL processes (representing the spatially isolated functionality) bound to
an AADL virtual process (representing a virtual machine). AADL properties
on these components provide further configuration information. Next, various
cyber-resiliency components auto-generated from high-level CASE formal speci-
fications were inserted to filter messages coming from the untrusted legacy com-
ponents and to monitor (and recover from) sequences of events from the legacy
components that suggest that they have been compromised. These components,
written in C or CakeML, each run on “bare metal” within their own seL4 parti-
tions. The UxAS Waypoint Manager (which takes a collection of waypoints and
feeds individual waypoints to the flight controller as the flight progresses) was
considered to be trusted. Its existing C++ implementation was migrated to a
bare metal seL4 partition with some hand-written C adapters at the boundaries
to align the code with HAMR-generated C port APIs.

During the early phases of this effort, HAMR was first used by the industry
team to build a JVM-based prototype of the system where component behav-
iors were first mocked up in Slang. Once interface design, data types, and other
integration issues were solved, HAMR was used to generate a Linux prototype
of the system which was refined to include more of the C-based implementa-
tions of the system components. Next HAMR was used to generate a fully func-
tional seL4-based deployment (including VMs) for the QEMU simulation envi-
ronment. Finally, HAMR was used to generate a deployment for seL4 running
on an ODroid embedded platform. Thus, even though the initial CASE program
goals did not seek to leverage the “multi-platform” nature of HAMR, the ability
to quickly build Slang/Scala/Java JVM-based prototypes ended up being quite
valuable. Industrial engineers are interested in continuing this approach in future
phases of the program. Due to restrictions and proprietary information, we are
unable to give precise metrics on the models and code base. The application
code size is significantly greater than the other examples.

6 Related Work

The most closely related works to this paper are other AADL code generation
frameworks.

Ocarina: Ocarina, led by Hugues [12], is the oldest AADL code generation
project. Written in Ada and supported by a plug-in to OSATE, Ocarina pro-
vides backends for Ada and C code generation primarily using PolyORB-HI
[16]. PolyORB-HI is a lightweight middleware designed for high-integrity sys-
tems. Ocarina generates real-time tasking and communication infrastructure for
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C-based RT-POSIX threading, the Xenomai framework that provides real-time
support on top of Linux, and the open source RTOS RTEMS. The PolyORB-HI
Ada implementation is used with the GNAT compiler to support full Ada on
native platforms (e.g., Linux, Windows) and the Ravenscar Ada subset pro-
file to guarantee schedulability and safety properties. It also has a backend
for POK, a partitioned operating system compliant with the ARINC653 stan-
dard, along with configuration file generation for ARINC653-compliant DeOS
and VxWorks653 real-time operating systems (RTOS).

Ocarina has been used in several European defense industry projects over the
last 12–15 years. Whereas the industry focus for Ocarina has primarily been for
RTOSs, We have focused HAMR’s on the seL4 microkernel for cyber-resiliency
and information assurance. While Ocarina and HAMR both support multiple
backends, Ocarina emphasizes targeting the common structure of the C and
Ada PolyORB-HI implementations, while HAMR emphasizes factoring backends
through language-independent standardized run-time services. AADL RTS is
currently supported, but the system is modular so others can be supported.

Ocarina currently has a focus in integrating code generation for RTOS with
integrated schedulability analysis. HAMR currently has an industrial research
focus to move from the JVM-based framework for prototyping, visualization,
and coding in a clean modern language subset (Slang) that can be compiled to
C and from there to industry platform deployments. HAMR’s current industrial
research projects (e.g., DARPA CASE) are prioritizing the use of the machine
verified seL4 micro-kernel. HAMR is being used in conjunction with Adventium
Labs FASTAR AADL temporal analysis and schedule-generation tools.

RAMSES: The code generation approach of Refinement of AADL Models for
Synthesis of Embedded Systems (RAMSES) [4] emphasizes successive automated
AADL model refinement. The refinement steps are driven by developer-specified
features for the target system, by capabilities and resources of the target plat-
form, and by model-level analyses that assess system properties against require-
ments and platform capabilities. Such analyses include schedulability, timing
properties, and resource analysis. By gradually exposing more implementation
details in the model, those details can be considered in the analysis. The incre-
mental transformations also form the basis of a correctness methodology in which
the correctness of each transformation is considered. Once model transformations
yield a sufficiently detailed implementation model, RAMSES generates C com-
ponent infrastructure that when combined with developer-written component
application C code can be deployed on Linux (with POSIX-compliant threading),
nxtOSEK (open-source platform for LEGO Mindstorms), and POK. RAMSES
has been used to develop systems for the avionics, railway, and robotics domains.

The differences in emphasis between HAMR’s target application areas and
RAMSES roughly correspond to the HAMR/Ocarina differences above. In addi-
tion, HAMR supports multiple languages and distinct platforms. RAMSES
emphasizes model transformations as a basis for correctness arguments whereas
Ocarina and HAMR emphasize factoring through abstract architecture lay-
ers. Like Ocarina, RAMSES focuses more on RTOS applications compared to
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HAMR’s current focus on micro-kernel-based information assurance and multi-
platform support. Compared to HAMR, one challenge of the RAMSES approach
is that the refinement steps produce multiple versions of AADL models. Multi-
ple versions require additional work to maintain traceability and correspondence
between the model-level contracts and information flow requirements and the
source-code level contracts.

Trusted Build: HAMR can be seen as a successor to the Trusted Build (TB)
concept prototype [7] developed in the DARPA High Assurance Cyber Military
Systems (HACMS) Program by Collins Aerospace, University of Minnesota, and
Data61. Like HAMR, TB generated component skeletons for seL4 from AADL
using the Data61 CAmkES seL4 component modeling language. TB was the
first AADL-to-seL4 translation framework. It was used in DARPA HACMS to
construct several systems of roughly the same complexity as the UAV system
described in Sect. 5.2.

HAMR provides significant functionality beyond TB. HAMR’s port-based
inter-component communication strategy now provides true one-way communi-
cation from the sender to the receiver on an AADL connection. With TB it was
possible to have some back-flow of control and data information, which is unde-
sirable from an information assurance perspective. The TB CAmkES patterns
also had unnecessary complexity that require more complex information assur-
ance arguments. In addition, the TB port-based communication structure intro-
duced an extra thread for each connection, dramatically increasing the number
of CAmkES components and associated support threads of the generated sys-
tem, which vastly increases overhead. For example, if one considers deploying
the small PCA Pump (Sect. 5.1) to seL4, the TB approach would generate 101
additional CAmkES components and threads compared to HAMR.

The TB generated structures also did not support standard AADL semantics
for ports, so standard model-analysis results did not apply to the implementa-
tion. HAMR confirms to the standard, and handles additional AADL features
including dispatching strategies (e.g., port urgency, explicit indication of ports
that trigger dispatch) and port value freezing. HAMR also supports automated
VM building, which reduces both manual labor and the potential for defects.
HAMR also adds enhanced support for QEMU-based emulation and dramati-
cally reduces the effort needed to create a working development environment by
using a Vagrant set up framework.

7 Conclusion

HAMR is a new open-source multi-platform framework for model-driven devel-
opment of cyber-physical systems using AADL. The framework has been vetted
on a number of government/industry projects in both the medical device and
mission control domains. HAMR complements existing AADL code generation
tools like Ocarina and RAMSES by supporting additional industry-relevant plat-
forms, and by providing an architecture designed for extensibility. The HAMR
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theme of supporting industry workflows through a progression of rapid proto-
typing to deployments on successively realistic platforms is also a new emphasis.
HAMR significantly improves on the previous Trusted Build work and compared
to other AADL code generation frameworks it provides a distinct area of empha-
sis: code generation for micro-kernels. Not only does this expand the opportunity
to support rigorous CPS development, the experience with additional platforms
and code generation architecture are providing inputs to the AADL standards
committee for a re-design of the AADL run-time services and code generation
annex in the upcoming major version of AADL (the organizations of the authors
of this paper have a record of strong and extended participation in the AADL
standards committee).

The HAMR approach is not intrinsically tied to AADL. Instead, it is linked
to the paradigm of real-time tasking in communication in AADL – a paradigm
based to real-time tasking models presented in classic textbooks on analyzeable
real-time systems [5] and on communication approaches used in avionics buses
like ARINC653. Thus, it is possible to replace the AADL front-end with other
modeling frameworks that can be aligned with or instantiated to the computa-
tional paradigm of AADL. Our current Army SBIR Phase II research project
is prototyping a SysML front-end for HAMR, based on the idea of defining a
AADL-aligned profile for SysML. This can ease adoption of HAMR for compa-
nies that have significant investments in SysML tooling and find it challenging
to integrate a different modeling language (AADL) and associated editors.

On a more foundational front, we are leveraging the layered design of HAMR
to support the generation of evidence that generated code conforms to the AADL
architecture. Aligning with the information assurance emphasis of some of our
industrial and defense-related research projects, we are first tackling providing
evidence of preservation of model-level information flow and spacial separation,
e.g., as visualized in the Awas AADL information flow visualization tool [17].
We are also investigating framework for establishing stronger behavioral corre-
spondence between lower-level generated code and the HAMR reference imple-
mentation abstraction layer in Slang.

Regarding the track theme Programming: What’s Next?, HAMR empha-
sizes an approach where a modeling language (AADL) and a programming lan-
guage (Slang, C, etc.) work hand-in-glove to provide the system implementation.
The programming language is not used to code all of the system. Instead the
model provides a high-level specification of inter-component communication and
threading structure. Generative techniques are then used to generate a large
amount of code. This is similar to other framework approaches like Spring that
include high-level specifications of (a) building blocks (abstractions) from which
code is derived for common services (b) integration of functionality specified
with conventional source code.

What is different for HAMR is the is use of this type of framework for real-
time and embedded systems, and in particular the use of building blocks that can
be given a formal semantics. As a consequence, reasoning about the correctness
of the system is done by reasoning about application source code together with
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the semantics of the integration abstractions. Given that the code generation
is correct with respect to the semantics of the abstractions, the developer nor
the verification tools need to be concerned with the details of the infrastructure
code. Rather the can rely on the semantic properties of the abstractions.

Slang is not essential for the approach. One can also take this approach with
C, for example. However, the use of Slang eases the verification of the application
code. Moreover, since the infrastructure code and code generators are written
in Slang, HAMR provides the convenience of a single verification framework to
establishes the correctness of code generation for abstractions (done once) and
the application code (done for each system).

From a bottom-up perspective, HAMR provides a significant contribution
by layering application-oriented abstractions on top of the formally verified seL4
micro-kernel – thus providing the foundation for eventually scaling up the for-
mally correctness proofs from the kernel to applications/systems programmed
on top of the kernel.

In general, we believe that use of model/code frameworks based on formally-
verified domain-specific abstractions with integrated semantics is important
direction for engineering critical systems.

Acknowledgement. The authors wish to thank other DARPA CASE team members
from Collins Aerospace, Adventium Labs, and Data61 for their work on applications
of HAMR and their inputs on HAMR design.
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Abstract. When a new programming language appears, the syntax and
intended behaviour of its programs need to be specified. The behaviour
of each language construct can be concisely specified by translating it
to fundamental constructs (funcons), compositionally. In contrast to the
informal explanations commonly found in reference manuals, such for-
mal specifications of translations to funcons can be precise and complete.
They are also easy to write and read, and to update when the language
evolves.

The PLanCompS project has developed a large collection of funcons.
Each funcon is defined independently, using a modular variant of struc-
tural operational semantics. The definitions are available online, along
with tools for generating funcon interpreters from them.

This paper introduces and motivates funcons. It illustrates translation
of language constructs to funcons, and funcon definition. It also relates
funcons to the notation used in some previous language specification
frameworks, including monadic semantics and action semantics.

Keywords: Funcons · Programming constructs · Formal specification

1 Introduction

Many constructs found in (high-level) programming languages combine several
behavioural features. For example, call-by-value parameter passing in an imper-
ative language involves order of evaluation, allocating storage and initialising
its contents, local name binding, and lexical scoping. Such language constructs
generally provide conciseness and clarity in programs, and may support efficient
implementation techniques (e.g., stack-based storage); but their full behaviour
can be quite difficult to understand, and tedious to specify directly.

Moreover, constructs in different languages may look the same but have very
different behaviour (e.g., the notorious ‘x=y’), or look different but have exactly
the same behaviour (e.g., ‘while...do...’ and ‘while(...){...}’). Relatively
minor differences between similar language constructs in different languages
include order of evaluation in expressions, and the effect of arithmetic overflow.
The evolution of programming languages has resulted in a huge diversity of lan-
guage constructs and their variants. Some of the constructs are quite simple, but
no programming lingua franca has emerged.
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The PLanCompS project1 has developed a large collection of fundamental
constructs (‘funcons’) from which the behaviour of many high-level program-
ming language constructs can be composed [26]. The behaviour of a complete
programming language can be concisely specified by translating all its constructs,
compositionally, to funcons. In contrast to the informal explanations commonly
found in language reference manuals, formal specifications of translations to
funcons can be precise and complete. They are also easy to write and read, and
to update when the language evolves. This could make them especially useful
during design and development of domain-specific languages.

Funcons are significantly simpler than typical language constructs, in general:

– Each funcon affects only a single behavioural feature, such as flow of control
or data, name binding, storing, or interacting.

– Variants of funcon behaviour (e.g., evaluating their arguments in a different
order) can be expressed by composite funcon terms.

– The funcons abstract from details related to implementation efficiency.

Funcon behaviour is defined using a modular variant [19,23] of small-step
structural operational semantics [27], based on value-computation transition sys-
tems [7]. Any program behaviour that can be modelled by a labelled transition
system can, in principle, also be specified by composing appropriately-defined
funcons. Thus specification by translation to funcons does not, per se, restrict
the features of specified languages. When the translation of a particular language
construct is excessively complicated, however, its design may be questionable.

The definition of a funcon determines its name, its signature, and its
behaviour. Each funcon name should have a unique definition, so that it always
refers to the same signature and behaviour, regardless of where the reference
occurs. To support reuse, funcon definitions need to be fixed and permanent :
changing or removing funcons would undermine the validity of translations that
use them. In particular, adding a new funcon to a collection must never require
changes to the definitions already in it.

Version control is superfluous for funcons; translations of language constructs
to funcons, in contrast, may need to change when the specified language evolves.
For example, the illustrative language Imp includes a plain old while-loop with
a Boolean-valued condition: ‘while(BExp)Block ’. The following rule translates
it to the funcon while-true, which has exactly the required behaviour:

Rule execute� ‘while’ ‘(’ BExp ‘)’ Block � =
while-true(eval-bool� BExp �, execute� Block �)

The behaviour of the funcon while-true is fixed. But suppose the Imp language
evolves, and a Block can now execute a statement ‘break;’, which is supposed
to terminate just the closest enclosing while-loop. We can extend the translation
with the following rule:

Rule execute� ‘break’ ‘;’ � = abrupt(broken)

1 https://plancomps.github.io.

https://plancomps.github.io
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The translation of ‘while(true){break;}’ is while-true(true, abrupt(broken)).
The funcon abrupt(V ) terminates execution abruptly, signalling its argu-
ment value V as the reason for termination. However, the behaviour of
while-true(true,X) is to terminate abruptly whenever X does – so this trans-
lation would lead to abrupt termination of all enclosing while-loops!

We cannot change the definition of while-true, so we are forced to change the
translation rule. The following updated translation rule reflects the extension of
the behaviour of while-loops with the intended handling of abrupt termination
due to break-statements, and that they propagate abrupt termination for any
other reason:

Rule execute� ‘while’ ‘(’ BExp ‘)’ Block � =
handle-abrupt(

while-true(eval-bool� BExp �, execute� Block �),
if-true-else(is-equal(given, broken), null-value, abrupt(given)))

Computing null-value represents normal termination; given refers to the reason
for the abrupt termination.

The specialised funcon handle-break can be used to specify the same behaviour
more concisely:

Rule execute� ‘while’ ‘(’ BExp ‘)’ Block � =
handle-break(while-true(eval-bool� BExp �, execute� Block �))

Wrapping execute� Block � in handle-continue would also support abrupt termi-
nation of the current iteration due to executing a continue-statement.

Overview. The reader is assumed to be interested in programming languages,
and familiar with their main concepts. The research on which this paper is
based has been published elsewhere [4,7,8,19,21–23]. The main aims here are
to motivate the general idea of funcons, and illustrate how they can be used to
specify the behaviour of programming language constructs.

– Section 2 explains some general features of funcons.
– Section 3 considers how to manage large collections of funcons.
– Section 4 analyses various facets of funcon behaviour.
– Section 5 illustrates specification of translation of language constructs to fun-

cons, and explains how to validate such translations.
– Section 6 illustrates how to define funcons independently.
– Section 7 relates funcons to the auxiliary operations defined in denotational

semantics, to monads, and to the combinators used in action semantics.
– Section 8 concludes with plans for future development of funcons,
– Appendices A–G give an informal summary of the currently defined funcons.2

The rest of this paper is structured as responses to questions that readers
might ask about funcons. The author welcomes further questions, as well as
comments on the given responses.
2 At the time of writing, the collection has not yet been released, and could change.
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2 The Nature of Funcons

Let us start by explaining some general features of funcons.

– What aspects of behaviour do funcons represent?

Funcons abstract from details related to implementation efficiency, such as stor-
age allocation algorithms and communication protocols. They express implemen-
tation independent behaviour that arises when programs are executed. They also
express linguistic features on which that behaviour depends, such as scopes of
bindings.

– Can funcons be implemented efficiently?

Funcons need to be executable, to support validation of language translations.
Their current implementation uses Haskell interpreters generated directly from
their definitions [5]. The efficiency of evaluating funcon terms is adequate for
running unit tests and typical test programs, but not applications. However, it
should be possible to implement certain sets of funcons more efficiently, e.g.,
using virtual machines that support just the required features, or by optimised
compilation of funcon terms to other languages.

– How complicated are funcons?

One might expect that funcons should be as simple as possible. In fact the aim
is for funcons to be not too complicated, but not too simple – just right! In the
physical sciences, molecules are characterised and understood primarily in terms
of chemical bonds between their constituent atoms, and atoms are formed from
protons, neutrons, and electrons; protons and neutrons are themselves composed
from sub-atomic particles, such as quarks. To explain a molecule in terms of
sub-atomic particles might be possible, but unhelpful. Language constructs are
somewhat analogous to molecules, and funcons to atoms.

Introducing a funcon that corresponds directly to a complicated language
construct would make the funcon analysis of that language construct trivial, but
a direct definition of the funcon behaviour would necessarily be complicated.
At the other extreme, taking pure function abstraction and application as the
only funcons would make analysis and specification of language constructs as
complicated as in (pre-monadic) denotational semantics.

Funcons aim to be unbiased towards any family of languages. Adding an
intermediate layer of not-so-fundamental constructs that are closely related to
some particular language constructs is thus undesirable. However, it is sometimes
appropriate to define funcons that abbreviate particular compositions of other
funcons. Section 1 mentioned handle-break, which handles abrupt termination
caused only by abrupt(broken) in X; it abbreviates handle-abrupt(X,Y ) where Y
involves an explicit test whether a given signal is the value broken. Similarly, the
funcon allocate-initialised-variable(T, V ) abbreviates the sequential composition
of allocate-variable(T ) and initialise-variable( , V ).
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– Can funcons have alternative behaviours?

No, never. The behaviour of common language constructs, such as assignment
expressions, often varies significantly between different languages. For example,
the order of evaluation of the two sides of an assignment expression is left to
right in some languages, right to left in others, or may even be implementation-
dependent; and the result may be the target variable or the assigned value. The
funcon for assignment needs to have a behaviour from which all those variations
can be obtained by composition with other funcons.

– Are funcons independent?

Funcons are often independent, but not always. For instance, the definition of the
funcon while-true specifies the reduction of while-true(B,X) to a term involving
the funcons if-true-else and sequential:

Funcon while-true(B : ⇒ booleans,X : ⇒ null-type) : ⇒ null-type

� if-true-else(B, sequential(X,while-true(B,X)), null-value)

Duplication of B before starting to evaluate it is essential, in case it needs to
be re-evaluated after the execution of X. We could introduce an auxiliary term
constructor for that, but it is simpler to make use of if-true-else and sequential.

– Do features of funcons interact?

No. Feature interactions in software development tend to arise when requirement
specifications are incomplete. An example of feature interaction in [2] involves a
flood prevention system that turns off the water supply, and a sprinkler system
that depends on that water; the requirements regarding flood prevention had
better include checking the safety of turning the water off. . .

The complete requirement for each funcon is to provide just the behaviour
specified in its definition, propagating all unmentioned effects of evaluating its
arguments. The values of the arguments are required to be consistent with the
types in the funcon signature, but no further requirements arise when combining
funcons.

– Can funcons be used as a programming language?

Composing funcons is similar to the original idea of Unix: plugging simple com-
mands together to produce complex behaviour.3 Not-so-fundamental constructs
could be defined as abbreviations for frequently-needed funcon compositions;
a coating of ‘syntactic sugar’ would be needed to avoid an unwelcome plethora
of parentheses in larger funcon compositions.

The main drawback of programming directly with funcons would be the com-
paratively low efficiency of their current implementation, which uses interpreters
written in Haskell, generated directly from funcon definitions.
3 Nowadays, a Unix command often has a multitude of obscure options, documented

in a manual ‘page’ that fills many screens.
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– Can funcons be higher-order?

Funcons can represent higher-order functions as values, but funcons are not
themselves higher-order: they do not take (non-constant) funcons as arguments.
However, it is easy to define funcons for common idioms of higher-order pro-
gramming (maps, filters, folds, etc.).

– Do funcons have algebraic properties?

Yes: many binary funcons are associative, with left and right units; some are
also commutative. These properties hold for a notion of bisimulation for the
value-computation transition systems [7] that provide the foundations for fun-
con definitions. This bisimulation is preserved when new funcons are added.
Funcon terms are written as applicative expressions, and associativity allows
binary funcons to be extended to longer sequences of arguments.

– Can I use my favourite proof assistant to prove properties of funcons?

Some years ago, the modular variant [19] of structural operational semantics
used to define funcons was implemented in the Coq proof assistant, and modular
proofs of some properties were carried out [14]. In a related line of work [33],
a different method for modular proofs in Coq was developed.

Modular proofs depend only on the definitions of the funcons involved, and
remain sound when funcon definitions are combined. In principle, they could be
released together with the funcons.

3 Collections of Funcons

The current collection of funcons is called Funcons-beta. It includes several
hundred funcons. Management of such a collection is non-trivial.

– How can we classify funcons?

Most high-level programming languages distinguish syntactically between com-
mands (a.k.a. statements), declarations, and expressions. Commands may assign
to variables; declarations bind names; and expressions compute values. However,
such syntactic distinctions are not universal: for instance, expressions some-
times subsume commands, and sequences of commands may include declarations.
Grammars for programming language syntax (abstract as well as concrete) often
introduce many further syntactic distinctions. A universal set of syntactic sorts
that encompasses all programming languages is not available.

For funcons, we have a single syntactic sort of terms, with values as a subsort.
A funcon term is similar to an expression in an (impure) functional program-
ming language: it computes values of a specific (possibly generic) type. A funcon
term corresponding to a command computes a fixed null value, and a term cor-
responding to a declaration computes a value environment, mapping names to
values.
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We may also classify funcons according to their effects. The behaviour of
many funcons involves auxiliary entities, representing various kinds of effects.
For instance, funcons for name binding use an auxiliary environment entity to
represent the current bindings; funcons for imperative variables use an auxiliary
store entity to represent the currently assigned values of variables.

– How do we refer to a particular funcon in a collection?

A collection of funcons is like an open package: the names of all the funcons are
visible externally (except those marked as auxiliary). Neither the classification
of funcons nor the paths to their definitions affects references to funcon names.

The name of each funcon should clearly suggest its behaviour, to support
casual reading of funcon terms and the potential use of funcons as a controlled
vocabulary for informal discussion and comparison of programming languages.
Type names are plural words (e.g., lists).4 When a funcon corresponds directly
to a familiar concept, a single well-chosen word can be adequate, but otherwise
several words (joined by hyphens) may be needed. Moreover, different datatypes
may have closely related operations, yet the names for the corresponding funcons
have to be distinct, due to the absence of overloading: the name of the datatype
can be added as a prefix of the name, e.g., integer-add.5

Suggestive names can be quite long, and abbreviations may be needed in
some situations (e.g., classrooms, examinations, presentations). Abbreviations
can be defined as explicit aliases for funcons; for instance, alloc-init is defined as
an alias for allocate-initialised-variable.

– Do funcons evolve?

After a collection of funcons has been released, the behaviour of all the funcons
in it needs to be fixed and permanent, since changes could affect or break their
uses in language translations (which do not need to be public or registered). All
uses of a particular funcon name thus refer to the same behaviour.

However, the collection itself can evolve: by extension with new funcons.
This must not require changes to the definitions of the previous funcons. New
funcons need to be carefully checked and tested before they are added, since
their definitions cannot be revoked.

Names of funcons always refer implicitly to the current version of a collection.
Evolving collections of funcons have no need for version numbers, since once a
funcon has been defined, adding definitions for new funcons (or an alias for an
already defined funcon) cannot invalidate existing references to names.

– Will the Funcons-beta collection of funcons ever be finalised?

Funcons-beta is a release candidate. After further polishing, review, and use
in language specifications, the collection of funcons and their documentation are
to be released for general use. However, it will always be possible to add new
funcons to the collection, so as to support new concepts or provide alternative
ways of expressing existing concepts.
4 Singular forms of type names are used as value constructors.
5 Currently, Funcons-beta does not support namespaces in collections of funcons.
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4 Facets of Funcons

When funcon terms are evaluated, their behaviour may have many facets: apart
from computing values, funcon behaviour can involve name bindings, imperative
variables, abrupt termination, interaction, etc. Facets that are not needed for a
particular term can be ignored.

In this section, we introduce the main facets of the Funcons-beta collection.
Appendices A–G provide an informal summary of the funcons; their definitions
are available online [26].

– How are funcon terms evaluated?

Evaluation of a funcon term may terminate normally, abruptly, or never. The
evaluation takes a sequence of argument terms; on normal termination, it com-
putes a sequence of values (where a sequence of length 1 is identified with its
only element). The funcon signature specifies how many arguments it takes, the
type of values to be computed by each argument, and the types of values that the
funcon computes. Individual arguments may be required to be pre-computed val-
ues; the funcon definition specifies how its behaviour combines the computations
of any remaining arguments.

– Does each funcon take a fixed number of arguments?

Not necessarily: a funcon signature can specify that an argument at some position
is optional, or that it can be a sequence. Sequence arguments are often used to
extend associative binary funcons to longer argument sequences. They are also
used for funcons that correspond directly to conventional notation for (finite)
lists and sets, e.g., list(V1, . . . , Vn) for [V1, . . . , Vn].

– How do funcons represent data?

Data that programs process when executed is represented by funcon terms clas-
sified as values. Some funcons are value constructors: they are inert, and have no
computational behaviour themselves. Values are themselves classified as primi-
tive values, composite values, or (procedural) abstractions.

Conceptually, primitive values are atomic, and not regarded as constructed
from other values. Booleans, unbounded integers, IEEE floats, Unicode charac-
ters, and a null value are all classified as primitive. Some of them have constant
constructors; the rest are computed by built-in funcons.

Composite values are constructed from finite sequences of argument values.
Value constructors are injective: different argument value sequences give different
composite values. The types of composite values include parametrised algebraic
data types, with a generic representation. Various algebraic datatypes are pre-
defined, and new ones can be introduced. Composite values include also built-in
parametrised types of sets, maps, multi-sets, and graphs.

Abstractions are values formed by the value constructor abstraction(X) with
an unevaluated argument X. Values are called ground when they are constructed
entirely from primitive and composite values, without any abstraction values.

Appendix A summarises the funcons for types of data, and some funcons for
data operations.
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– What kind of behaviour do funcons for data operations have?

Data operations in programs are generally represented by funcons whose only
behaviour is to compute values from pre-evaluated arguments. The arguments
are evaluated in any order, possibly with interleaving (the order of argument
evaluation is irrelevant when the evaluations have no effects). Partial data oper-
ations (e.g., integer division, or selecting the head of a list) compute the empty
sequence when their arguments are not in their domain of definition.

Value types are themselves values, so funcons can take types as arguments and
give them as results. Apart from supporting dependent types, this generality is
needed to represent ordinary type constructors as funcons (e.g., lists(T ), where T
is the type of the list elements).

– How do funcons express normal flow of control?

A funcon intended purely for specifying normal control flow generally specifies
the potential order of evaluation of its arguments, but does not otherwise con-
tribute to behaviour. Such funcons include sequential or interleaved command
execution and expression evaluation, deterministic and non-deterministic choice
between computations, and command iteration.

Appendix B summarises the funcons for representing control flow.

– How do funcons express flow of data?

A computation may involve multiple uses of the same data (e.g., so as to assign
it to a variable as well as provide it as a result). It may also involve repeating
the same computation with different data. The computations of funcons for
specifying such data flow involve an auxiliary entity given-value(V ) that can be
set to a computed value V ; the funcon given gets the current value.

Appendix C summarises the funcons for representing data flow.

– How do funcons specify scopes of bindings?

An occurrence of a name in a program either binds the name, or references
whatever is currently bound to the name. Binding occurrences are usually found
in declarations, parameter specifications, and patterns; references to names are
ubiquitous. Sequences of declarations have the effect of successively extending (or
perhaps overriding) the current bindings with the bindings due to the individual
declarations.

Funcons use conventional environments ρ (mapping names to values) to rep-
resent both the current bindings and bindings computed by declarations. The
auxiliary entity environment(ρ) represents the current bindings; the current bind-
ing for an individual name I is inspected using the funcon bound-value(I). An
environment representing computed bindings is an ordinary composite value,
and can be inspected using data operations.

Some languages include various constructs for composing declarations, and
these are represented directly by funcons that compute environments. However,
the funcons corresponding to recursive declarations represent circularity by cre-
ating cut-points called links, which involves a separate auxiliary entity.

Appendix D summarises the funcons for representing name binding.
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– Do funcons have static scopes for bindings?

The difference between static and dynamic scopes concerns procedural abstrac-
tion. A value that represents an abstraction is constructed from an unevaluated
argument X by the funcon abstraction(X). The abstraction value can be sub-
sequently enacted, which evaluates the argument X – potentially in a different
context from that where the abstraction value was constructed.

Constructed abstraction values thus naturally have dynamic scopes for bind-
ings. To obtain static scopes, the funcon closure(X) computes a closure value: an
abstraction whose argument evaluation starts by ignoring the current bindings
and (locally) re-declaring the abstraction-time bindings.

– How do funcons distinguish between constant and mutable variables?

In programming languages, imperative variables usually have names. It may be
tempting to regard variable names as bound directly to values: bindings then
need to be mutable, assignment to a variable name updates its binding, and
constants correspond to single-assignment variables. However, such a simplistic
analysis does not easily extend to features such as aliasing and call by reference.

A more satisfactory conceptual basis for imperative variables is to regard
them as independent storage locations.6 The declaration of a named variable
involves allocation of storage (optionally with an initial value) together with
binding the name of the variable to the storage location. Assignment to a named
variable then affects what value is stored at the location, but leaves the bindings
unchanged. Aliasing can now be understood simply as the simultaneous binding
of different names to the same location.

The funcons for imperative variables involve an auxiliary mutable entity
store(σ), mapping locations to their currently assigned values. The store sup-
ports allocation (and recycling) of locations for values of any type, and their
initialisation, assignment, and inspection. It is completely independent of the
auxiliary entity environment(ρ) used to represent the current name bindings.

In mathematical logic, a ‘variable’ corresponds to a name, and ‘assignment’
to binding. Imperative variables in programming languages are often called ‘L-
values’, with ‘R-values’ being those that can be assigned to variables.7 With
funcons, all values can be assigned to variables – and variables are themselves
values.

– Can funcons represent structured variables with mixtures of constant and
mutable fields?

A simple variable consists of a location together with the type of values that it
can store; assignment checks that the value to be assigned to the variable is in its
type.8 Simple variables may store primitive values (e.g., numbers) or composite
6 Funcons have not yet been developed for ‘relaxed’ memory models or data mar-

shalling.
7 ‘L’ and ‘R’ refer to the left and right sides of typical assignment commands [32].
8 Funcons for using un-typed locations as variables would be slightly simpler.
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values (e.g., tuples), but assignment to a simple variable is always monolithic:
the current value is replaced entirely by the new value.

Structured variables are composite values where some components are simple
variables. These include hybrids having both mutable and immutable compo-
nents. Assignment to a selected component variable corresponds to an in-place
update; assignment of a composite value to an entire structured variable updates
all the component simple variables with the matching values, and checks that
the immutable components are the same.

Appendix E summarises the funcons for representing imperative variables.

– How about abrupt termination?

Various language constructs may cause abrupt termination when executed:
throwing or raising an exception, returning the value of a function, breaking
out of a loop, etc. Enclosing constructs can detect particular kinds of abrupt
termination, and handle them appropriately. For example, a language construct
may inspect an exception value, and conditionally handle it; a function appli-
cation handles an abruptly returned value by giving it as the result; and a loop
handles a break by terminating normally.

Funcons express abrupt termination and handlers uniformly. Evaluation of
a funcon term may terminate normally, abruptly, or never. Abrupt termination
leads to a stuck term, emitting an auxiliary entity abrupted(V ) as a signal with a
value V . The closest enclosing funcon that notices the emission of such a signal
can inspect its value, and determine whether to handle it or not.

Appendix F summarises the funcons for abrupt termination.

– Is it possible to define delimited control operators as funcons?

Somewhat surprisingly, yes: see [26,30]. Control operators include continuation
handling functions, such as ‘call-cc’.

– Can non-terminating funcon evaluation have observable behaviour?

Yes: through interactive input and output.
Program behaviour may depend on, and affect, data stored in files. Concep-

tually, files can be regarded as (complicated) structured variables: input from a
file inspects the value stored at the current position, and advances the position;
output to a file appends a value to it. Changes to a file system during program
execution correspond to updating values stored in locations; they may subse-
quently be overwritten, so their final values can only be observed on program
termination.

Interactive input and output, in contrast, cannot be regarded as effects on
mutable storage. Acceptance of input data from a stream during program exe-
cution is irrevocable, as is output of data to a stream. Interaction may also
involve inter-dependence between input and output. And a program that never
terminates can have infinitely long streams of input and output.
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Thus funcons for expressing interaction involve kinds of entities that dif-
fer fundamentally from those we previously introduced. The auxiliary entity
standard-in(V ∗) represents the (finite) sequence of values input at each step of
a computation, where the empty sequence ( ) represents that no values are
input. The value null-value indicates the end of the input. The auxiliary entity
standard-out(V ∗) represents the (finite) sequence of values output at a particular
step, where the empty sequence ( ) represents the lack of output. Computa-
tions concatenate the input sequences of each step, and similarly for output –
potentially resulting in infinite sequences for non-terminating computations.

Appendix G summarises the funcons for representing interaction. To support
multiple streams, further entities and funcons would need to be added.

– Do funcons currently support specification of any other language features?

Tentative funcons for multithreading have been developed. They have not yet
been rigorously unit-tested, nor used much in language definitions. These funcons
are not included in Funcons-beta, but in an unstable collection that extends
Funcons-beta [26].

The multithreading funcons involve multiple mutable auxiliary entities, rep-
resenting the collection of threads, the set of active threads, the thread being
executed, the values computed by terminated threads, and (abstract) schedul-
ing information. Funcons that combine effects on multiple auxiliary entities are
undesirable, and their definitions are somewhat verbose. It is currently unclear
whether simpler funcons for multithreading can be developed.

Multithreading also involves synchronisation. The funcons for synchronis-
ing involve only the store entity. To inhibit preemption during synchronisation,
multiple assignments need to be executed atomically, in a single transition.

Funcons for distributed processes have not yet been developed. They are
expected to be based on asynchronous execution and message passing (cf. [17]).

Funcons for specifying meta-programming constructs have been defined [3];
they also enable a straightforward specification of call-by-need parameters.

5 Translation of Language Constructs to Funcons

In this section, we illustrate how a simple programming language construct can
be specified by translation to funcons. Specifying such a translation for all con-
structs of a language defines the behaviour of programs, based on the behaviour
of the funcons used in the translation. The PLanCompS project has developed
some examples [26] and made them available for browsing on a website. We con-
clude this section with an overview of the examples, and indicate how they have
been developed and tested.

– How is call-by-value translated to funcons?

The following fragments of a language specification illustrate how call-by-value
parameter passing in an imperative programming language can be specified by
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translation to funcons. The fragments originate from a published specification [8]
of the Simple language; for brevity, however, we here restrict Simple function
applications and declarations to a single parameter.

The translation specification in Fig. 1 declares exp as a phrase sort, with the
meta-variable Exp (possibly with subscripts and/or primes) ranging over phrases
of that sort. The BNF-like production shows two language constructs of sort exp:
an identifier of sort id (lexical tokens, here assumed to be specified elsewhere with
meta-variable Id) and a function application written ‘Exp1(Exp2)’.

Syntax Exp : exp ::= · · · | id | exp ‘(’ exp ‘)’ | · · ·

Semantics rval : exp : ⇒ values

Rule rval Id = assigned-value(bound-value(id Id ))

Rule rval Exp1 ‘(’ Exp2 ‘)’ = apply(rval Exp1 , rval Exp2 )

Fig. 1. Translation of identifiers and function applications in Simple to funcons

The translation function rval�Exp� maps phrases Exp of sort exp to funcon
terms that compute elements of type values. Translation is compositional: the
funcon term for a phrase combines the translations of its sub-phrases. The trans-
lation function id�Id� maps lexical tokens Id of sort id to funcon values of type
identifiers (its specification is omitted here).

In this illustrative language, the only values to which identifiers can be bound
are simple imperative variables. When identifiers can be bound directly to other
values (e.g., numbers) we would use current-value instead of assigned-value.

For call-by-value parameters in an imperative language, the argument value
can be passed to the called function, which then has to allocate a variable to
store the value. For call-by-reference, the argument would have to evaluate to
a variable; for call-by-name, the evaluation of the argument would be deferred,
which can be expressed by constructing a thunk abstraction value from it. When
the mode of parameter-passing in function applications depends on the function,
argument evaluation needs to be incorporated in the value that represents the
function.

The translation specification for function declarations in Fig. 2 assumes a
translation function exec�Block� for phrases Block of sort block. A block is a
statement, which normally computes a null value; but here, as in many languages,
a block can return an expression value by executing a return statement, which
terminates the execution of the block abruptly.

The use of closure ensures static (lexical) bindings for references to names in
the function body. For dynamic bindings, we would replace closure by abstraction.
The construction of a function value from the closure is needed so that apply can
be used to give the argument value to the body of the abstraction.
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Syntax Decl : decl ::= · · · | ‘function’ id ‘(’ id ‘)’ block

Semantics declare : decl : ⇒ environments

Rule declare ‘function’ Id1 ‘(’ Id2 ‘)’ Block =

bind-value(id Id1 ,

allocate-initialised-variable(functions(values, values),

function(closure(

scope(

bind-value(id Id2 ,

allocate-initialised-variable(values, given)),

handle-return(exec Block ))))))

Fig. 2. Translation of function declarations in Simple to funcons

The scope funcon adds the bindings computed by its first argument to the
current bindings for the evaluation of its second argument. In this simplified illus-
tration, functions have only one formal parameter, which is bound to a freshly
allocated variable containing the given argument value; for multiple parameters,
the given value would be a tuple of the same length, matched by a pattern tuple.

The handle-return funcon concisely handles abrupt termination of the function
body arising from evaluation of the return funcon. It has no effect on normal
termination, nor on abrupt termination for other reasons.

In languages where function identifiers can be bound directly to function
closures, the first allocate-initialised-variable in the translation rule could be elim-
inated. However, the possibility of recursive function calls would then need to
be expressed directly, using the recursive funcon.

The call-by-value example illustrates how directly the behaviour of a language
construct can be specified by translation to funcons.

– Which other language constructs have been translated to funcons?

The PLanCompS project has developed the following language specifications
based on Funcons-beta, and made them available for browsing online [26].

– Imp: a very small imperative language, often used in text books on semantics.
Its translation to funcons illustrates basic features of the framework.

– Simple: a somewhat larger imperative language than Imp. Its translation to
funcons [8] illustrates most features of the framework. It is comparable to the
specification of Simple in K [28], except that multithreading is omitted.

– MiniJava: a very simple subset of Java, used in [1]. Its specification illus-
trates translation to funcons for classes and objects.

– SL: the SimpleLanguage used for demonstration of GraalVM [10]. Its
translation to funcons illustrates how dynamic bindings can be specified.
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– OCaml Light: a core sublanguage of OCaml. Its specification illustrates
how translations to funcons scale up to a medium-sized language.

Further examples of language specifications involve funcons from an unstable
collection that extends Funcons-beta [26]:

– Imp++: extends Imp with multithreading and various other features.
– Simple-Threads: adds the previously-omitted multithreading constructs.
– LangDev-2019: demonstrates extensibility of language specifications.

A funcon-based specification of C� is currently being developed.

– How can we check translations of language constructs to funcons?

Consider our translation of function declarations with call-by-value parameters.
Potential mistakes include spelling errors in names (primarily funcons, but also
syntax sorts, translation functions, and meta-variables) and misplaced paren-
theses. The syntax of the language construct in the translation rule might not
be consistent with the specified grammar. A less obvious mistake is when the
arguments of a funcon could compute values that are not in the types required
by the funcon signature. We might also have used a funcon that does not have
the intended behaviour (e.g., using abstraction instead of closure).

Clearly, tool support for checking is essential. A workbench for specifying
translations of languages to funcons has been developed [21]. Tools for evaluating
funcon terms [5] allow us to check whether they have the expected behaviour.

The workbench checks references to names, term formation, and the syntax in
translation rules. It checks that funcons have the right number of arguments, but
not yet that the arguments compute values of the required types; we currently
rely on testing to check for that.

The workbench also supports parsing complete programs and translating
them to funcon terms, using parsers and translators generated from the specified
grammar and translation rules. It is based on the Spoofax language workbench
[12], and implemented using the declarative domain-specific meta-languages
Sdf3, NaBL2, and Stratego. See [21] for further details. The tools for evalu-
ating funcon terms [5] are implemented in Haskell, and can be called directly
from the workbench.

6 Defining and Implementing Funcons

In this section, we illustrate how to define the behaviour of a funcon, once and
for all, using a highly modular variant [19,23] of structural operational seman-
tics [27]. Modularity of funcon definitions is crucial for extensibility of funcon
collections.
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Funcon scope( : environments, : ⇒ T ) : ⇒ T

Rule
environment(map-override(ρ1, ρ0)) X −→ X

environment(ρ0) scope(ρ1 : environments, X) −→ scope(ρ1, X )

Rule scope( : environments, V : T ) V

Fig. 3. Definition of the funcon for expressing scopes of local declrations

– How are funcons defined?

The funcon signature in Fig. 3 specifies that scope takes two arguments. The first
argument is required to be pre-evaluated to a value of type environments; the
second argument should be unevaluated, as indicated by ‘⇒ T ’. Values computed
by scope(ρ1,X) are to have the same type (T ) as the values computed by X.

The rules define how evaluation of scope(ρ1,X) can proceed when the current
bindings are represented by ρ0. The premise of the first rule holds if X can make
a transition to X ′ when ρ1 overrides the current bindings ρ0. Whether X ′ is a
computed value or an intermediate term is irrelevant. When the premise holds,
the conclusion is that scope(ρ1,X) can make a transition to scope(ρ1,X

′).
If X can terminate abruptly, or continue making transitions forever, then

scope(ρ1,X) can do the same. The last rule allows evaluation of scope(ρ1,X) to
terminate normally, computing the same value V as X. Transitions written with
‘�’ correspond to term rewriting [7], and do not involve auxiliary entities.

– How can funcon definitions remain fixed when new funcons are added?

The use of the auxiliary entity environment(ρ0) in the definition of scope restricts
transitions to states that include it, but states might still include other auxiliary
entities, such as store(σ) or given-value(V ). If a transition X −→ X ′ updates σ
to σ′, so does scope(ρ1,X) −→ scope(ρ1,X

′); the transitions in the premise and
conclusion use the same given value; and if X −→ X ′ emits a signal on abrupt
termination, so does the corresponding transition for scope(ρ1,X).

Auxiliary entities are classified according to how they are propagated :

Contextual: A contextual entity remains fixed for successive steps in the com-
putation of a term, but can be different for the computations of sub-terms.

Mutable: Sequential changes to a mutable entity are propagated between the
computation of a term and the computations of its sub-terms.

Input: An input entity is a sequence of values consumed by evaluating a term,
concatenating the sequences consumed by the computations of its sub-terms.

Output: An output entity is a sequence of values produced by evaluating a term,
concatenating the sequences produced by the computations of its sub-terms.

Control: A control entity is a value that can optionally be signalled by a step.
The corresponding step of an enclosing term may inspect the value, and signal
the same value, signal a different value, or not signal.
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The notation used for specifying auxiliary entities determines their classification.
For instance, entities written before ‘�’ are classified as contextual.

– Can static semantics for funcons be defined in the same way as dynamic
semantics?

The modular structural operational semantics rules for funcon term evaluation
are in the small-step style, where each rule has at most one transition premise. A
static semantics for funcons would naturally use big-step rules, with a premise for
each sub-term. It is currently unclear whether the same classification of entities
can be used for static and dynamic semantics; the static semantics of abstrac-
tions generally requires making latent effects explicit, in contrast to dynamic
semantics.

– How have funcons been implemented?

The initial implementation of funcons was in Prolog. Funcon definitions were
translated to Prolog clauses defining transitions,9 based on the original imple-
mentation of MSOS in Prolog.10 Funcons have also been implemented in
Maude.11 The Prolog implementation of MSOS was subsequently enhanced
to support the rewriting relation used in value-computation transition systems
[7]. The Funcon Tools package [5] supports parsing funcon definitions and
generating funcon interpreters in Haskell, as described in [4].

– Could funcons be used for language specification in other frameworks?

The K-framework [28] has a high degree of modularity. For an experiment with
using the K-framework to define funcons, see [24]. The distinction between pre-
evaluated and unevaluated arguments in funcon signatures is represented by
strictness annotations in K. However, rules in K are unconditional, so funcons
such as scope cannot be defined straightforwardly. The specification of the struc-
ture of states is monolithic, and may need updating when adding new funcons.

Redex [13] is a popular domain-specific metalanguage for operational seman-
tics, embedded in the Racket programming language. It is based on reduction
rules and evaluation contexts. The reduction rules are highly modular, and gram-
mars for language constructs and evaluation contexts can be specified incremen-
tally. However, evaluation context grammars associated with control operators
appear to be inherently global. It should be possible to define a particular col-
lection of funcons in Redex, but adding a new funcon could require updating
the evaluation contexts for existing funcons.

7 Related Work

Many funcons are closely related to notation used in several previously developed
language specification frameworks: denotational semantics, monads, abstract
semantic algebras, and action semantics.
9 https://pdmosses.github.io/prolog-msos-tool.

10 https://pdmosses.github.io/msos-in-prolog.
11 https://github.com/fcbr/mmt.

https://pdmosses.github.io/prolog-msos-tool
https://pdmosses.github.io/msos-in-prolog
https://github.com/fcbr/mmt
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Denotational Semantics. The funcons for flowing, binding, and storing are
directly based on Christopher Strachey’s original conceptual analysis of impera-
tive programming languages. Strachey initiated the development of denotational
semantics at the IFIP Working Conference on Formal Language Description
Languages in 1964 [31]. At the time, he was working on the design and imple-
mentation of the high-level CPL programming language, and aiming to specify
its semantics formally. In the paper, he focuses on representing imperative fea-
tures of programming languages as pure mathematical functions, avoiding the
introduction of abstract machines. For assignment commands, he distinguishes
between L-values and R-values of expressions, with locations in stores σ being
a special case of L-values. He defines the operation C to get the current content
of a location, and U to update the content. For flow of control, he uses compo-
sition of functions from stores to stores, and the fixed-point operation Y . In his
widely-circulated 1967 lecture notes [32], he also introduces environments that
map names to values, and represents procedures as closures.

Strachey’s original operation C on stores is renamed Contents in [29], and U
is renamed Assign. Many subsequent denotational specifications define a large
number of such auxiliary operations (e.g., [16] defines about 80). However, the
definitions are ad hoc, and they are based on the domains defined for the specified
language. Even the way lambda-expressions are written, and the notation used
for modifying environments and stores, vary between denotational specifications.

The VDM metalanguage for denotational semantics, developed from 1974
[11], introduced fixed notation for operations expressing basic mathematical and
computational concepts. The notation for data flow, control flow, storing, and
exception handling looks rather like a programming language, but it is intepreted
as pure mathematical functions (the interpretation depends on whether excep-
tions are used).

Monads. The types of the mathematical functions used in denotational seman-
tics can be quite complicated. In 1989, Eugenio Moggi suggested that each fea-
ture should be seen as a monad, where the elements represent computations
of values in arbitrary domains [15]; moreover, the required domains could be
defined modularly, by applying a series of monad constructors. Monads have a
binary operation for composing a computation with a function that takes its
computed value,12 corresponding to the funcon give(X,Y ), and a unary opera-
tion for giving a value as the result of a computation (not needed with funcons).
Each monad constructor adds further structure to the domain of computations,
together with associated operations. For example, the monad constructor for
stores in a domain S makes computations of values in T take an argument in
S and return both a value in T and a store in S. The associated operations
are lookup(l), to return the value at location l in the argument store and the
unchanged store, and update(l, v), to return a null value and a store where the
value at l is v. The funcons assigned(Var) and assign(Var , V ) correspond to (a
typed variant of) the operations defined by the store monad constructor. Other

12 See [20] for discussion of earlier uses of similar operations in denotational semantics.
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funcons closely correspond to the operations associated with monad construc-
tors for a wide range of notions of computation. Monad constructors also need to
lift definitions of operations to the resulting domains, which is non-trivial. The
notation for monad constructors and operations varies (also between functional
programming languages and proof assistants that support monads).

Abstract Semantic Algebras and Action Semantics. In a series of papers in the
1980s, the present author proposed various sets of combinators, together with
algebraic laws that they were supposed to obey, giving so-called abstract semantic
algebras. The elements of abstract semantic algebras were intended to have a
clear operational interpretation; they were referred to as ‘actions’ from 1985.

The action notation used in the action semantics framework [17,18] was
developed in collaboration with David Watt [25]. It was defined [17, App. C]
using a novel (but non-modular) variant of structural operational semantics, and
use of action semantics was supported by tools implemented in the Asf+Sdf

Meta-Environment [6,9].
Action notation involves actions, data, and yielders. The performance of an

action represents information processing behaviour. Yielders used in actions may
access, but not change, the current information. The evaluation of a yielder
always results in a data entity. Many funcons correspond closely to the combi-
nators of action notation. The crucial difference is that action notation could
not be extended with new features, due to the non-modularity of its operational
definition. The development of modular structural operational semantics [19]
was directly motivated by the aim of making the definition of action notation
extensible, and avoiding reduction of the many facets of action behaviour to pure
functions in monads [34].

8 Conclusion

The PLanCompS project has defined the behaviour of a substantial collection
of funcons, and illustrated translation of functional and imperative language
constructs to funcons [8,26]. It has also developed their theoretical foundations
[7]. Specifying languages by translation to funcons appears to be significantly
less effort than with other frameworks. Funcon definitions and translations have
been validated by testing, using generated interpreters; web pages and PDFs are
generated from the same source files, with hyperlinks from names to definitions
to support browsing and navigation.

Much remains to be done. Current and future work includes: completion and
release of the initial collection of funcons and further tool support; demonstration
of scaling up to translation of a major language such as C�; improvement of the
definitions of funcons for multithreading; defining the static semantics of funcons;
defining funcons for expressing static semantics of language constructs; proving
algebraic laws for funcons; and investigating whether funcons can be used also
for specifying the semantics of declarative and domain-specific programming
languages. PLanCompS welcomes new participants who would like to contribute
to the development of funcons!
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A Data

A.1 Datatypes

Primitive values. Conceptually, primitive values are atomic, and not formed
from other values. For large (or infinite) types of primitive values, however, it is
infeasible to declare a separate constant for each value. So in practice, funcons
used to construct primitive values usually take other values as arguments.

– booleans are the values true, false; funcons corresponding to the usual Boolean
operations are defined.

– integers is the built-in type of unbounded integers, with funcons for the usual
mathematical operations. Funcons corresponding to associative binary oper-
ations are extended to arbitrary numbers of arguments. Subtypes include
naturals and bounded(M,N); compositions with casts to such subtypes cor-
respond to partial operations representing computer arithmetic.

– floats is the built-in type of IEEE floating point numbers, with funcons for
the required operations.

– characters is the built-in type of all Unicode characters. Its subtypes include
ascii-characters and iso-latin-1-characters. Its funcons incude the UTF-8, UTF-
16, and UTF-32 encodings of characters as byte sequences.

– null-type has the single value null-value, alias null.

Composite values. Conceptually, composite values are constructed from
finite sequences of argument values. The types of composite values include
parametrised algebraic data types, with a generic representation. Various alge-
braic datatypes are defined, and new ones can be introduced. Composite values
include also built-in parametrised types of sets, maps, multi-sets, and graphs.

Algebraic datatypes

– datatype-values are generic representations for all algebraic datatype values.
– tuples(T1, · · · , Tn) are grouped sequences of values of the specified types.
– lists(T ) are grouped sequences of values of type T , with the usual operations;

strings are lists of characters.
– vectors(T ) are grouped sequences of values of type T , accessed by index.
– trees(T ) are finite, with values of type T at nodes and leaves.
– references(T ) are values that refer to values of type T .
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– pointers(T ) are references to values of type T or pointer-null.
– records(T ) are unordered aggregate values, indexed by identifiers.
– variants(T ) are pairs of identifiers and values of type T .
– classes are collections of features, allowing multiple superclasses, used to clas-

sify objects.
– objects are classified collections of features.
– bit-vectors(N) has instantiations for bits and bytes.

Built-in datatypes

– sets(GT ) are finite sets of ground values of type GT .
– maps(GT , T ?) are finite maps from type GT to type T ?.
– multisets(GT ) are finite multisets of ground values of type GT .
– directed-graphs(GT ) have values of type GT as vertices.

See [26] for funcons that operate on the above types of values.

A.2 Abstractions

Generic Abstractions. These non-ground values are used for constructing
thunks, functions, and patterns. An abstraction body of computation type
T ⇒ T ′ may refer to a given value of type T , and compute values of type T ′.

– abstractions(CT ) are procedural abstractions of computation type CT .
– abstraction(X) constructs an abstraction with dynamic bindings.
– closure(X) computes an abstraction with static bindings.
– enact(A) evaluates the body of the abstraction A.

Thunks. The abstraction body of a thunk does not reference a given value.

– thunks(T ) are constructed from abstractions with bodies of type ( )⇒ T ′.
– thunk(A) constructs a thunk from the abstraction A.
– force(V ) enacts the abstraction of the thunk V .

Functions. The abstraction body of a function may reference a given value.

– functions(T, T ′) are constructed from abstractions with bodies of type T ⇒T ′.
– function(abstraction(X)) constructs a function with dynamic bindings.
– function(closure(X)) computes a function with static bindings.
– apply(F, V ) gives the value V to the body of the abstraction of function F .
– supply(F, V ) determines the argument value of a function application, but

returns a thunk that defers evaluating the body of the function.
– compose(F2, F1) returns the function that first applies F1 then F2.
– curry(F ) takes a function F that takes a pair of arguments, and returns the

corresponding ‘curried’ function.
– uncurry(F ) takes a curried function F and returns a function that takes a

pair of arguments.
– partial-apply(F, V ) takes a function F that takes a pair of arguments, and

determines the first argument, returning a function of the second argument.
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Patterns. The abstractions of patterns match a given value.

– patterns are constructed from abstractions with bodies of computation type
values ⇒ environments.

– pattern(A) constructs patterns from abstractions A.
– match(X, pattern(A)) enacts the abstraction A, giving it the value of X.

B Flow of Control

– left-to-right(· · · ) evaluates its arguments sequentially, and concatenates the
computed value sequences. Composing it with a funcon having pre-computed
arguments prevents interleaving; e.g., integer-add(left-to-right(X,Y )) always
executes X before Y .
right-to-left(· · · ) is analogous.
interleave(· · · ) evaluates its arguments in any order, possibly with interleav-
ing, and concatenates the computed value sequences.

– sequential(X, · · · ) executes the command X, then any remaining arguments,
evaluating to the same value(s) as the last argument.

– effect(· · · ) interleaves the evaluations of its arguments, discarding their com-
puted values, and gives null-value.

– choice(Y, · · · ) selects one of its arguments, then evaluates it.
– if-true-else(B,X, Y ) evaluates B to a Boolean value, then evaluates either X

or Y (which have to compute values of the same type).
– while-true(B,X) evaluates B to a Boolean value, then either executes X

(which has to correspond to a command) and iterates, or terminates.

C Flow of Data

– given evaluates to the current value of the auxiliary entity given-value.
– give(X,Y ) evaluates X. It then executes Y with the value of X as the value

of the auxiliary entity given-value.
– left-to-right-map(F, V ∗) evaluates F for each value in the sequence V ∗ in the

same order, computing the sequence of resulting values.
interleave-map(F, V ∗) allows interleaving of the evaluations.

– left-to-right-repeat(F,M,N) evaluates F for each integer from M up to N
sequentially, computing the sequence of resulting values.
interleave-repeat(F,M,N) allows interleaving of the evaluations.

– left-to-right-filter(P, V ∗) evaluates P for each value in V ∗, computing the
sequence of argument values for which the value of P is true.
interleave-filter(P, V ∗) allows interleaving of the evaluations.

– fold-left(F,A, V ∗) reduces a sequence V ∗ to a single value by folding it from
the left, using A as the initial accumulator value.
fold-right(F,A, V ∗) is analogous.

For any list L, the funcon term list-elements(L) evaluates to the sequence V ∗

of elements in L, and list(V ∗) reconstructs L. Composition with these funcons
allows the above funcons on sequences to be used with lists; similarly for vectors,
sets, multisets, and the datatype of maps.
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D Name Binding

– bind-value(I,X) computes the singleton environment mapping I to the value
computed by X.

– unbind(I) computes an environment that hides the binding of I.
– bound-value(I) computes the value to which I is currently bound (possibly

recursively, via a link), if any, and otherwise fails.
– scope(D,X) first evaluates D to compute an environment ρ. It then extends

the auxiliary environment entity with ρ for the execution of X.
– closed(X) prevents references to non-local bindings while evaluating X.
– accumulate(D1,D2) first evaluates D1, to compute an environment ρ1. It then

extends the auxiliary environment entity by ρ1 for the evaluation of D2, to
compute an environment ρ2. The result is ρ1 extended by ρ2.

– collateral(D1, · · · ) evaluates its arguments to compute environments. It
returns their union as result, failing if their domains are not pairwise dis-
joint.

– bind-recursively(I,X) makes bind-value(I,X) recursive. It first computes a sin-
gleton environment ρ mapping I to a fresh link L. It then extends the auxiliary
environment entity by ρ for the execution of X, to compute a value V . Finally,
it sets L to refer to V , and gives ρ as the computed result.

– recursive(SI ,D) makes D recursive on the identifiers in the set SI . It first
computes an environment ρ mapping all I in SI to fresh links. It then extends
the auxiliary environment entity by ρ for the execution of D, to compute an
environment ρ′. Finally, it sets the link for each I to refer to the value of I
in ρ′, and gives ρ′ as the computed result.

E Imperative Variables

– variables is the type of all simple variables.
– allocate-variable(T ) constructs a simple variable for storing values of type T

in a location not in the current store.
– recycle-variables(Var , · · · ) removes locations allocated to variables from the

current store.
– initialise-variable(Var , V ) assigns V as the initial value of Var .
– allocate-initialised-variable(T, V ) is a composition of allocate-variable(T ) and

initialise-variable( , V ).
– assign(Var , V ) stores V at the location of Var when the type contains V .
– assigned(Var) gives the value last assigned to Var .
– current-value(V ) gives the same result as assigned(V ) when V is a simple

variable, otherwise V .
– un-assign(Var) makes Var uninitialised.
– structural-assign(V1, V2) assigns to all the simple variables in V1 the corre-

sponding values in V2, provided that the structure and all non-variable values
in V1 match the structure and corresponding values of V2.

– structural-assigned(V ) computes V with all simple variables replaced by their
assigned values. When V is a simple variable or a value with no component
variables, structural-assigned(V ) gives the same result as current-value(V ).
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F Abrupt Termination

– abrupt(V ) terminates abruptly for reason V .
– handle-abrupt(X,Y ) first executes X. If X terminates normally, Y is ignored.

If X terminates abruptly for any reason, Y is executed, with the reason as
the given value.

– finally(X,Y ) first executes X. On normal or abrupt termination of X, it
executes Y . If Y terminates normally, its computed value is ignored, and
the funcon terminates in the same way as X; otherwise it terminates in the
same way as Y .

– fail abruptly terminates for reason failed.
– else(X1,X2, · · · ) executes the arguments in turn until either some Xi does

not fail, or all arguments Xi have been executed. The last argument executed
determines the result.
else-choice(X1,X2, · · · ) is similar, but executes the arguments sequentially in
any order.

– check-true(X) terminates normally if the value computed by X is true, and
fails if it is false.

– checked(X) fails when X computes the empty sequence of values ( ), repre-
senting that a value has not been computed. It otherwise computes the same
as X.

– throw(V ) abruptly terminates for reason thrown(V ).
handle-thrown(X,Y ) handles abrupt termination of X for reason thrown(V )
with Y .
handle-recursively(X,Y ) is similar to handle-thrown(X,Y ), except that another
copy of the handler attempts to handle any values thrown by Y .

– return(V ) abruptly terminates for reason returned(V ).
handle-return(X) evaluates X. If X either terminates abruptly for reason
returned(V ), or terminates normally with value V , it terminates normally
giving V .

– break abruptly terminates for reason broken.
handle-break(X) terminates normally when X terminates abruptly for reason
broken.

– continue abruptly terminates for reason continued.
handle-continue(X) terminates normally when X terminates abruptly for rea-
son continued.

Further funcons are provided for expressing delimited continuations [26,30].

G Communication

– read inputs a single non-null value from the standard-in entity, and gives it as
the result.

– print(V ∗) outputs the sequence of values V ∗ to the standard-out entity.
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Abstract. Dynamical systems, i.e., systems that progress along time
according to fixed rules, exhibit many special phenomena like the emer-
gence of interesting patterns, bifurcation of behavior, the appearance of
chaos despite determinism and boundedness, and sensitive dependence
on initial conditions. Such phenomena are encountered in diverse fields,
such as fluid dynamics, biological population analysis and economic and
financial operations. The study of dynamical systems, their properties,
and the mathematical and computerized tools for dealing with them, are
often designated as part of advanced curricula in physics or mathemat-
ics. Consequently, many computer science students, perhaps the majority
thereof, graduate without ever being exposed to such concepts. We argue
that with the pervasiveness of dynamical systems and manifestation of
their properties in the real world, these concepts should be introduced
early on; in undergraduate studies in computer science and related fields,
and perhaps even in high school. Available introductory courses demon-
strate that only a minimal foundation of knowledge in mathematics is
needed for the basic understanding of the key ideas. Such an introduction
would deepen one’s understanding of the world and highlight important
capabilities and limitations of mathematical and software tools for anal-
ysis, simulation, testing and verification of complex systems. In turn,
this can lead to enhancement and enrichment of languages, tools and
methodologies for dealing with dynamical systems, and of research in
computer science and software engineering in general.

1 Motivation

The concept of emergent entities and emergent properties is central to the study
of complex systems. Examples include a traffic jam, a spinning tornado, a swarm
of bees, the organization and behavior of an ant colony, and the partition of the
unfathomable number of organisms in nature into millions of distinct species.
Depictions of an ant eater befriending an ant colony in Hofstadter’s seminal book
Gödel, Escher, Bach [14] are particularly illuminating of the distinction between
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the emergent entity, i.e., the friendly colony, and its constituent components,
namely the poor ants who may be served as food to maintain this friendship
with the anteater.

In our own research on biological evolution and of biological modeling [4,5],
we have encountered extensive interest by scientists in the emergence of new
patterns and order either from seemingly disordered behavior or, more often,
from well specified and seemingly constrained local behavior [15,22,28]. This, in
turn, led us more deeply into the realm of dynamical systems and chaos, in which
concepts like emergence, bifurcation, sensitivity to initial conditions, fractals,
and never-exactly-repeated behavior (which are explained briefly in Sect. 2) are
dealt with thoroughly using analytical and computational tools [8,11].

This, combined with our interest in computer science (CS) education and in
making deep CS concepts accessible to the general public (see, e.g., [13]), made
us realize that ideas and notions associated with dynamical systems, chaos and
emergence are often absent from the curricula of basic CS and software and sys-
tem engineering (SE).Abrief check of curricula in leading universities confirms this
observation. And while dynamical systems and chaos (DS&C) are usually intro-
duced as part of the disciplines of physics ormathematics, they are often considered
to be advanced optional material and are offered as part of an elective or on the
graduate level.

In this paper, we argue that concepts in, or properties of, DS&C are relevant
to CS and software and system engineering students and professionals, and indeed
to people from other areas who are interested in science and the observation of
nature, and in engineering and philosophy. Thus, we claim, these concepts should
be introduced early on, in undergraduate studies and perhaps even in high school.
The scope of such an introduction can range froma single overview lecture, through
a unit in a broader course, to an entire introductory course.

Some courses, books, lectures and papers already address the aim of making
dynamical systems accessible to individuals with only basic mathematical back-
ground. For example, Devaney’s introductory book [6] is targeted at undergradu-
ate students who have had only a one year calculus course, and does not require
knowledge of differential equations. Feldman’s book [8] and his highly accessible
series of videos from the Santa Fe Institute and the College of the Atlantic under
the Complexity Explorer series [7] can also serve as excellent starting points for
students and teachers new to this domain; they do not even require calculus and
the relevant aspects of derivatives and partial differential equations are taught as
an integral part of the DS&C course. Further support for the claim that these seem-
ingly advanced concepts can be understood by students with a more limited math-
ematical background is provided by the research on teaching dynamical system to
high school students [10]. An invaluable, and even less technical introduction to
the history and the beauty of the field is offered in Gleick’s book [11].

The goals of such introductory information include: (i) broadening one’s per-
spective of the world in action, in line with the maxim attributed to Albert Ein-
stein “look deep into nature, and then you will understand everything better”;
(ii) laying a foundation for individuals who will later actually work with common
dynamical systems in academia and industry; (iii) alerting professionals to the
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existence of dynamical-system and chaotic traits and unpredictable behavior in
systems that might not be considered as such at first; (iv) highlighting require-
ments and gaps in techniques for development, analysis, simulation, testing and
verification of complex dynamical systems, thus offering leads into research on
programming languages and abstractions, algorithms, and theory; and, (v) mak-
ing available to students and scientists the theory and tools developed for dynam-
ical systems that have been shown to be of value when working on problems that
are considered to be at the core of computer science.

2 The Subject Matter: Key Phenomena in Dynamical
Systems and Chaos

A dynamical system is defined as a mathematical system that progresses in time
according to fixed rules. These rules can operate in discrete time via iterative
recurrence relations, of the form xn+1 = f(xn), where xn and xn+1 are the states
of the system at time n and n + 1, respectively, or continuously, expressed as
differential equations like ∂x

∂t = f(x, y, z), ∂y
∂t = f(x, y, z), and ∂z

∂t = f(x, y, z),
where 〈x, y, z〉 represents the state of the system (in this case, in a three dimen-
sional space) and the derivatives are rates of change with respect to time of
each component of the state. In both the discrete and continuous cases, the next
state, or the next change in state, are a function of only the current state. All
seemingly external events and conditions are incorporated as internal parame-
ters of the model, and the only role of the passage of time has to do with the
step size in calculating the next system state. The absolute wall-clock time, or
the time that has elapsed since the beginning of a simulation or an observation,
are not essential parts of the model.

In dynamical systems, the functions depicting changes in state are often
nonlinear, that is, the changes in output are not directly proportional to the
changes in input. This non-linearity makes the mathematical analysis more dif-
ficult, which may be one of the reasons for why the topic is not taught earlier
on. However, as in the quote attributed to Stanislaw Ulam [1]: “Using a term
like nonlinear science is like referring to the bulk of zoology as the study of
non-elephant animals.”, the pervasiveness of nonlinear systems mandates that
scientists, students and engineers should be more familiar with them.

Specifically, the main phenomena we deem relevant to this paper’s proposal
are:

1. Emergence: General definitions of emergent entities and properties often
relate to properties of a system, or a set of entities, that are not expressed
by any one of the components of the system or elements of the set (see,
e.g., [4] and references therein). In dynamical systems, one often observes
unexpected patterns, arrangements, and self organization. Salt crystals, ocean
waves, convection rolls in a slowly-heating liquid, flocks of flying birds, and
living cells are examples of such emergent entities. More specifically, consider
an autonomous vehicle (AV) out on the field, at some large distance from
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a designated tree. The AV is programmed to always proceed in a direction
that is close to being perpendicular to its line of sight to that tree, and to
control the direction angle so as to keep the distance more or less constant.
While these instructions are local, external observers would readily see that
the vehicle’s trajectory/orbit/phase-space forms a circle; also, local observers,
like additional AV instrumentation with memory, or a human who is present
in the AV, can also notice the circular nature of the trajectory.

2. Bifurcation: Some dynamical systems exhibit great qualitative differences in
observed behavior when certain parameters are subjected to minute changes.
For example, consider the famous logistic map function xn+1 = xn ·r ·(1−xn)
(see, e.g., [6], and Fig. 1). It can be viewed as a population x, where 0 < x < 1
(representing, say, the portion of the area of a Petri dish covered by bacteria)
grows by a factor of r every time unit, and is restrained by a factor of 1−x. The
trajectory is computed by starting at some arbitrary initial value 0 < x0 < 1,
and iteratively computing the map. For all values of r, with r < 3, each of the
trajectories formed by the iterative operation of the map converges to a single
value (with different fixed points for different values of r); for 3 < r <∼3.44,
each of the different maps eventually oscillates between two values; for
∼3.45 < r <∼3.54 the maps long-term behavior is an oscillation with a period
of 4, etc.; and, for r = 4 and other values, the function behavior is chaotic,
visiting in an unpredictable order the entire [0, 1] range.

Fig. 1. The logistic map xn+1 = xn · r · (1 − xn). The graph shows, for each value of r,
the values that the map converges to after many iterations. For r = 2.6, this is a single
value ∼0.61; for r = 3.2, the map oscillates between two values, ∼0.8 and ∼0.51; for
r = 3.5 the oscillation period is 4: ∼0.50, ∼0.87, ∼0.38, ∼0.83; and for r = 4, the map
yields chaotic coverage of the entire range between 0 and 1. See the body of the text
in the bifurcation paragraph for more details. Image source: Wikipedia; under fair-use
licensing.
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The transitions between these behaviors are sudden and occur in very nar-
row ranges of values of r. Similar sudden changes in behavior occur in other
dynamical systems like the changes in patterns and periods in the behavior
patterns of a dripping faucet in response to the incoming water flow, or the
number of convection rolls in a heated container as a function of the rate of
change in temperature.

3. Sensitivity to initial conditions: This phenomenon, highlighted by the
discoveries of Lorenz (see Fig. 3), and which is often termed “the butterfly
effect”, means that certain functions, even very simple ones, can produce very
different system trajectories when starting at arbitrarily close, yet distinct,
states. These distinct states commonly reflect not a particular choice, or an
uninvited deviation from some desired reality, but merely a measurement
error due to instrument limitations, or constraints imposed by the finite rep-
resentations of numbers in computing. The term butterfly effect alludes to
the difficulty in predicting the long term path of a storm, when the formulas
in the model are sensitive to minute details, such as, figuratively speaking,
whether a far-away butterfly, which might have been included in the model,
did or did not flap its wings at a certain point in time.

4. Unpredictable chaotic behavior: In the study of dynamical nonlinear
systems, behavior is considered to manifest chaos, or be chaotic, when it is
unpredictable, but not because it depends on randomness or pseudo random-
ness; the system’s state changes, and its infinite trajectory through all its
possible states, are governed by deterministic mathematical rules. However,
these rules are such that (i) they never yield the same exact state twice,
despite being bounded within a closed region of Rn, and (ii) they are sen-
sitive to initial conditions. The non-repetition of states within a bounded
region causes the behavior to be non-periodic and to require ever-growing
precision in the representation of real numbers (in order to distinguish near
states). The non-periodicity, the sensitivity of the rules to initial conditions
and the inevitable finite precision of any computing facility, then contribute
to making it virtually impossible to predict the state that the system will
be in beyond some near-term horizon. This apparent contradiction between
determinism in intended system behavior, which is the very essence of pro-
gramming, algorithms and computation, and the appearance of long-term
behavior as a seemingly disordered random mess may be settled when con-
sidering a highly tangled thin wire or fishing line, as in Fig. 2. Clearly there
is no one analytic formula that can tell us where in space each molecule or
each segment of the fishing line resides, based on its distance from one of the
ends of the line. Still, if an ant were to walk the length of this line, starting
at one of its ends, the ant’s near-term general direction would be reasonably
well defined for any location on the line. It is also intuitive to think that
if the fishing line can be infinitesimally thin, one can always insert (indeed,
thread) an additional length of it into the tangle without disrupting or cut-
ting through existing line segments. For a more formal example, we return to
the logistic map mentioned earlier, and consider r = 4, where the behavior
is chaotic. Given a fully specified initial value of x, if one wishes to compute
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the map value after n iterations, one must first compute all preceding n − 1
iterations to unbounded precision. One may then ask whether or not such a
process can be considered to be a prediction.

Additional phenomena manifested by DS&C include the following: the for-
mation of fractal structures, i.e., self-similar recursive structures and behaviors;
the existence of strange attractors, i.e., the convergence of behavior towards a
chaotic, sometimes fractal pattern (such as the three dimensional figure-eight
continuous trajectory of Lorenz equations system shown in Fig. 3, or the fractal
boomerang shape formed by the Hènon Map shown in Fig. 4, that is formed
over time by points being drawn one at a time, in different locations); and, the
existence of universal mathematical parameters, like Feigenbaum’s constant(s),
which appear in highly disparate systems, ranging from the logistic map and
other quadratic maps, through a dripping faucet, to the formation of convection
rolls. See, e.g., [9] for more details.

Fig. 2. A single filament fishing line. The “path” of the thread illustrates unpredictable,
yet deterministic and bounded behavior, in which any particular 〈x, y, z〉 coordinate in
space is visited at most once; the path is very sensitive to the precision of measurement
and calculation; any misstep by someone following the path of the thread could cause a
transition to a different segment of the thread resulting in a very different trajectory. For
an infinitely thin thread, new paths can always be found without physically intersecting,
i.e., sharing an absolute coordinate, with an already traversed location. Image source:
Wikipedia; under fair-use licensing.
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3 Linking DS&C Tenets to General Education and to CS
and SE

In this section we offer several perspectives on how DS&C is tied to classical
computer science and software development, and why learning DS&C early may
be beneficial to scientists and engineers.

3.1 DS&C Phenomena are Real and Pervasive

Most generally, the phenomena discussed in the previous section are real, both
in nature and in their abstract mathematical manifestations, and there is a
general consensus about them being aesthetic in some sense. Hence there may
not be a need for further justification for including them at some level in general
education and in scientific and engineering curricula, and for having CS and SE
be part of the disciplines offering languages, tools, methodologies and theoretical
foundations for dealing with these phenomena.

Fig. 3. Lorenz equations and trajectory. For any location of “the tip of the pen” draw-
ing this graph in a three dimensional space, its speed along each of the axes, and thus
its direction, is given by the respective partial derivative equations on the left. The
result is the graph on the right. The equations are simple, and involve only elemen-
tary arithmetic operations over the current coordinates and some constants. Regardless
of the starting point, the orbit is persistently attracted towards this well recognized,
emergent, three dimensional “figure eight” shape. Still, given any current position of
the traveling pen, it is impossible to predict far into the future in which lobe of the
figure eight the pen will be at any particular time. Images sources: [7], under fair use
licensing

3.2 CS and SE Already Deal with DS&C

At the other extreme of the links between DS&C and CS and SE is the fact that
many sub-fields of CS and SE, as well as computer applications in other areas,
already deal directly with dynamical systems. These include fluid/airflow dynam-
ics, weather prediction, we transportation, robotics, manufacturing automation,
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economics and finance, storage/warehousing planning, disease control, livestock
and agriculture management, and a variety of modeling and analysis applica-
tions in the study of biology, chemistry and physics. Therefore, it is only natural
to expect CS and SE to be prepared to step in, attempting to address any tech-
nological, methodological or theoretical gaps or needs that may arise in such
projects.

3.3 DS&C Issues May Emerge in any System

In between the two extremes listed in the preceding two subsections, we now list
considerations related to DS&C concepts that affect requirements in the design
of any system, whether perceived as a dynamic one or not. The bibliographic
references given for each item serve to illustrate the issues via examples of in-
depth treatment of well-scoped problems with relevant algorithms. Formulating
succinct methodological principles that engineers and scientists should bear in
mind, is yet to be done.

Pattern emergence. The emergence of unexpected patterns in images and
other sensor input may cause incorrect classification or identification. This

Fig. 4. Hènon Map. Starting at any point 〈x, y〉 in the two-dimensional plane, and com-
puting the trajectory according to the equations at the top, and using the coefficients
a = 1.4, b = 0.3, consecutive system states, i.e., coordinates of newly drawn points,
may not be close to each other; after many steps, a boomerang-like shape emerges; the
shape is fractal: when enlarging a sub-frame of the trajectory containing multiple lines
(not shown here), one sees that each line is actually comprised of multiple thinner lines
whose distances from each other are in proportions that are similar to the proportions
of line distances in the original frame. Images sources: [9], under fair use licensing.
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emphasizes the importance of redundancy in sensors of environment states and
in the processing and analysis of their inputs (see, e.g., [2]) for causes of mistakes
in image classification). Furthermore, such emergence of unexpected behavioral
patterns may render a system more vulnerable to attacks that take advantage of
the induced predictability, or cause excessive wear and tear in the system or in
its environment (see, e.g., [18] for how repetition of a desired robot’s path may
form ruts in a field’s soil).

Limitations in model-based prediction. Often, systems plan their behavior
using on model-based algorithmic predictions. The development of such models
and algorithms must accommodate the possibility of bifurcations in the behav-
ior of the system and/or their environment throughout the allowable range of
parameters (see, e.g., [12]). Furthermore, when an autonomous system explores
new environments and new operational parameters, where it is not assured of the
absence of bifurcations, it must be prepared for situations in which a very small
change in parameters can cause dramatic and unexpected changes in behavior
patterns.

Sensitivity to initial conditions. In computational/algorithmic models that
affect operational decisions, the design must incorporate the level of sensitivity
to initial conditions and to the finite precision in representing the current state,
and set its prediction horizon accordingly. And, still, confident as the system
may be in its predictions within the safe horizon, it must include mechanisms for
appropriately reacting to unpredicted events and conditions, and, when possible,
adapt its prediction process accordingly (see, e.g., [16,17]).

Chaotic behavior in classical algorithms. Chaotic behavior is observed in
a variety of algorithmic contexts that do not originate in dynamical systems.
One example is the so called “randomness” of digits in the number Pi (π) (more
precisely, π is assumed to be normal, a property which refers to the observed uni-
form distribution of the appearance of digits and combinations thereof). Another
example is the chaotic behavior of algorithms carrying out fast gradient descent
in linear systems [24], where there is a non-monotone decrease in the norm of
the residual vector.

3.4 CS and SE Research Can Help Close Gaps in Dealing with
DS&C

There is a certain amount of published work on design principles for developing
dynamical systems. For example [27] focuses on agent based models, [25] focuses
on coding of society models, and [23] proposes principles for environmental and
climate models. However, it appears that this sub-field is not as mature as soft-
ware and system engineering for, say, traditional information processing systems,
or control systems. Developing models of or controllers for dynamical systems
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can benefit from a variety of language idioms, and tools and methodologies, that
are not readily available in existing languages and platforms for dealing with
the various aspects of dynamical systems, such as the Modelica language (and
tools implementing it), MATLAB and Simulink, NetLogo, AnyLogic, or Berkeley
Madonna. To illustrate the need for language idioms and abstractions, we now
list examples of challenges in monitoring a real or modeled dynamical traffic sys-
tem. We focus on the detection, reaction to, and simulation of emergent entities
(both expected and unexpected); languages for describing complex emergent
behavior; dynamic incorporation of emergent entities as active programmable
agents in a system, and more. Note that a human observer can readily handle
the challenges in the examples below, yet programmed solutions require sophis-
ticated procedural code:

– Detecting the existence of a traffic jam, and measuring its properties, such
as its length. Note that the traffic jam entity exists despite its constituents
being transient and dynamic, as vehicles leave its “head” and others join its
“tail”.

– Detecting a group of vehicles, like a truck convoy or a group of motorcyclists,
and determining its relationship to other road users; for example, can others
pass it safely?

– Detecting an unusual pattern in overall flow, as when a slow vehicle in a
middle lane causes other vehicles to have to pass it on the right and left, with
the difficulties and risks of changing lanes and merging.

– Detecting patterns in space and time; for example, whether the presence of
certain kinds of vehicles, or of a certain kind of driver behavior is now more
frequent/common than in the past.

While some such functions are carried out today using standard programming
features, language idioms and development tools that address these directly could
be of great value. And, not only can this be an important direction for computer
scientists, we believe that studying DS&C can help attract undergraduate stu-
dents to pursue graduate studies and research in this domain, further advancing
the field.

3.5 Techniques Developed for DS&C Can Help Tackle Classical CS
and SE Challenges

Approaches from dynamical system theory have been shown to be applicable in
a variety of areas that are traditionally considered to be part of the computer
science discipline. Example of such areas and one problem within each area are
listed below. See the references for more details and examples.

– Dynamical search [19]. Consider the search for a minimum of a continuous
function f in an interval where f is known to have only one such minimum;
the search algorithm samples f(x) at certain points within the current search
interval en, and then narrows down the search interval en+1 = ψ(en) where
ψ uses some algorithm-specific rules and the most recently found values of f .
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This iterative computation of the intervals can be viewed as a dynamical sys-
tem, and its behavior and convergence can then be analyzed using dynamical
systems theory.

– Algorithms for NP-hard problems [21]. Consider the problem of par-
titioning a graph into equal size sets while minimizing the weights of cut
edges; this problem arises in a range of settings, including gene networks,
protein sequences, Internet routing algorithms and many more. To balance
the cuts, the problem is often stated as minimizing the ratio between the
inter-connection strength and the size of individual clusters. In this form,
the problem is apparently intractable (NP-complete). An algorithm that uses
dynamical system properties was developed for this task. It propagates waves
in a graph in a completely decentralized setting, and has been shown to be
orders of magnitude faster than existing approaches.

– Machine Learning with Dynamical Systems [3,20,26]. There is a grow-
ing body of work for introducing continuous dynamical system behavior and
analysis into the theory of machine learning (ML) and neural nets. Elements
of ML, like the propagation of information and computation within a neural
net, the iterative training process that modifies the structure of a neural net
based on prior results, and/or the behavior of the data itself in space (e.g.,
the processed image) are treated as continuous dynamical processes described
using ordinary and partial differential equations.

4 Conclusion

Familiarity with the concepts and phenomena associated with nonlinear dynam-
ical systems and chaos can enrich and enhance the work of scientists, engineers
and educators in many fields. In particular, in the context of computer science
and software & system engineering we expect that such broader and deeper
awareness can trigger additional learning followed by valuable development and
enhancement of languages, tools and methodologies. Based on already existing
introductory material that does not require advanced knowledge of mathematics,
we also believe that the first steps of such a shift in computer science education
are in fact possible.
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Abstract. Two recent exciting trends in programming languages are
gradual types and algebraic effect handlers. Several steps are required to
bring algebraic effect handlers to wider use, one of the most important
being the development of a suitable gradual type system.

1 Introduction

To type or not to type?
In the industrial world, dynamic languages are flavour of the month, with

JavaScript, Python, and R on the rise. Meanwhile, in the academic world, exotic
type systems are on the rise: dependent types in Agda, Coq, and Idris; session
types in Links, Scribble, and Singularity OS; effect types in Eff, Frank, Koka,
and Links. Even some interest among developers, with ownership types in Rust.

Bridging these is the rise in interest in gradually typed languages, which enable
typed and untyped languages to interoperate. I had thought of these as assist-
ing those poor schmucks that use dynamically-typed languages to migrate toward
statically-typed languageswith bettermaintenance properties.WhereasFacebook
was once famous for “move fast and break things” now it is known for Hack and
Flow, languages that supplement PHP and JavaScript, respectively, with types.

But now I realise that I am one of the poor schmucks. All of the legacy
code out there, even in Haskell or OCaml, is in languages that don’t support
dependent types, session types, or effect types. If I want myself and others to use
these in future, a way must be found for code with exotic types to interact with
code without such types. Gradual types aren’t just about typed vs untyped, they
are also about more-precisely typed vs less-precisely typed. All our legacy code
is less-precisely typed than some type system of interest. (The “poor schmuck”
terminology is swiped from Wadler (2015).)

Traditionally, types describe data but not the huge range of effects that a
program may invoke—such as input, output, raising an exception, reading or
assigning to state, receiving or sending a message, executing concurrently, or the
use of non-determinism or probability. One family of languages—the functional
languages—address this problem by minimising the use of effects, but all such
languages still support some form of effects. A line of research, going back to the
type and effect system of Gifford and Lucassen in the late 1980s, aims to assign
types to effects as well as values. A few languages, such as Java, permit type
signatures that reflect a limited range of effects, such as raising exceptions.
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 335–345, 2021.
https://doi.org/10.1007/978-3-030-89159-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89159-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-89159-6_21


336 P. Wadler

Perhaps the most widespread combination of types and effects is the use of
monad types to reflect effects, as in Haskell, and sometimes adopted in other
languages such as F#, Rust, and Scala. One drawback to the monad approach
is that there is no general way to combine two monads into a single monad sup-
porting the effects of both. In the early 2000s, Plotkin and Power introduced a
refinement of the monad approach known as algebraic effects, which does sup-
port combination of effects. This approach has attracted a great deal of interest
and further development, including the introduction by Plotkin and Praetner
of effect handlers. Several research languages, such as Eff, Frank, Koka, and
Links, support the use of algebraic effects. A few languages, including Multicore
O’Caml and WASM support specific algebraic effects, and we may see general
algebraic effects make their way into mainstream languages in the future.

Several research questions must be answered before algebraic effects see
widespread adoption.

How gradually type effects? That is, how to integrate legacy code that lacks
typed effects with new code that supports typed effects? To date there is only
a tiny amount of work in the area, and important aspects of effects, including
algebraic effects and effect handlers, have yet to be addressed.

How to encapsulate effects? Typically, one effect (say, access to a database) may
be built in terms of another effect (say, access to a file system). One would like
to write types that mention only to the high-level effects while omitting the low-
level effects in terms of which they are implemented. But most systems suffer
from what has been dubbed type pollution, where invoking any effect requires
also mentioning those in terms of which it is implemented. Proper support for
encapsulation of effects is still poorly understood.

How to scope effects? Traditionally, variables in programming languages use
static scope (a name matches the nearest declaration lexically) while exception
handlers use dynamic scope (a name matches the nearest handler on the exe-
cution stack). By analogy with exception handlers, effect handlers use dynamic
scope; but there is recent research suggesting this leads to problems, and that
static scope may be more appropriate. But the current definitions of static scope
are still complex. Can static binding of effect handlers be made as simple as static
binding of variables?

How to subtype effects? A function that performs a smaller set of effects (say,
only a read effect) may be returned where a function that performs a larger set of
effects (say, both read and write effects) is expected. Various approaches to the
issue exist, including both subtyping and row typing of effects. Promising new
approaches to both subtyping (the work of Dolan) and row typing (the work of
Morris and McKinna) have recently emerged, and await application to algebraic
effects.
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How to migrate effects to the mainstream? There is a large body of research
on algebraic effects, and a number of implementations in research languages.
However, work to date is often complex, and further attention is required to
where idea can be simplified. Integration with the mainstream is easier to explore
in the context of gradual types, which support running legacy code and new code
in tandem. While the title of this paper derives from the key question of gradual
types, the dyslexic acronym GATE refers to the combined effect of all of them:
we need to open a gate through which effect types can enter the mainstream of
programming languages.

2 Background

This section reviews some of the most interesting work in each of the related
areas.

2.1 Gradual Types

Contracts. The enabling innovation for gradual types is the contract, introduced
by Findler and Felleisen (2002). Contract monitor the flow of data between less-
well-typed and more-well-typed regions of code, and checks that data entering
the more-well-typed region satisfies the constraints imposed by the types. Many
researchers built on this technique, including the dependent dynamic typing of
Ou et al. (2004), the interlanguage migration of Tobin Hochstadt and Felleisen
(2006), the hybrid typechecking of Flanagan (2006), and Siek and Taha (2006)
who coined the name gradual typing.

Blame. Wadler and Findler (2009) captured a common core of these ideas in
the blame calculus. It uses casts to mediate between more-precisely-typed and
less-precisely-typed code, where more-precisely-typed code depends on invari-
ants that less-precisely-typed code may violate. Casts perform runtime tests to
enforce the invariants, raising blame if they are violated. Each cast has a blame
label; if the cast fails, the label indicates which side of which cast is at fault.

Blame is valuable to both theory and practice. For theory, blame enables one
to state and prove blame safety, which guarantees that if a cast fails blame lies
with the less-precisely-typed side. In practice, blame aids debugging; casts typi-
cally correspond to boundaries between modules, and the blame label indicates
which of the two modules fails the relevant invariants. Wadler (2015) describes
these issues at greater length.

As explained later, many systems for gradual typing fail to deal with blame.
Which raises the question: why bother with blame safety? Surely it is obvious
that type errors must lie with less-precisely-typed rather than more-precisely-
typed code? It is important for the same reason as type safety: mathematical
rigour helps us to avoid errors and corner cases in our designs.

Previous proofs of blame safety required sophisticated arguments based on
program equivalence, as in Tobin Hochstadt and Felleisen (2006) and Matthews
and Findler (2007). Blame calculus supports a simple proof, resembling the tra-
ditional progress and preservation formulation of Wright and Felleisen (1994).
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Practice. Forms of gradual type systems in widespread use for industry include
Dynamics in C#, Bierman et al. (2010), Microsoft’s TypeScript, Bierman et
al. (2014), Google’s Dart, Ernst et al. (2017), Facebook’s Hack, Verlaguet (2013),
and Facebook’s Flow, Chaudhuri et al. (2017), and from academia include Racket
(formerly PLT Scheme), Tobin-Hochstadt and Felleisen (2006; 2008) and Retic-
ulated Python Vitousek et al. (2017).

Gradual Guarantee. Siek et al. (2015b) introduced the Gradual Guarantee, which
comes in two parts: the static guarantee asserts that typing is preserved as
types become less precise, while the dynamic guarantee asserts that values are
preserved as types become less precise. Increasing precision may make code fail
to type check or yield blame more often, but will never make a program return
a different answer. The Gradual Guarantee has become a valuable yardstick: a
paper introducing a new gradual system will usually indicate whether or not it
satisfies the static and dynamic guarantees.

Abstract Gradual Typing. Garcia et al. (2016) introduced Abstracting Gradual
Typing (AGT), which connects gradual typing to the approach to abstract inter-
pretation pioneered by Cousot and Cousot (1977). They propose a systematic
method to gradualise any base language. A concretisation function takes a grad-
ual type to a set of base types. One gradual type is more precise than another if
the concretisation of the first is a subset of the concretisation of the second. The
inverse function is abstraction, and concretion and abstraction form a Galois
connection. This fundamental technique has proved productive, inspiring much
further work, such as Bader et al. (2018) and Toro et al. (2018). AGT also
includes a methodology for implementing gradual types based on runtime evi-
dence, inspired by the threesomes of Siek and Wadler (2010). While the Galois
connection is easy to understand and has proved influential, implementations
based on evidence are more convoluted and might benefit from further improve-
ment. In particular, it is not yet clear how evidence can support blame.

New Perspective. Another exciting development is the new perspective of
Castagna et al. (2019), which shows how the transitive notion of precision of
types can replace the non-transitive notion of compatibility used in most devel-
opments. They apply this perspective to union and intersection types, but it
may well have other applications. Again, it is not yet clear how to support
blame under this perspective.

Unifying Theories. Recently, several unifying theories of gradual types have
begun to arise. Independently, two groups of researchers at Northeastern, Green-
man and Felleisen (2018) and Chung et al. (2018) each give a single source lan-
guage and then assign to it a number of different operational semantics, provid-
ing a framework to compare different approaches to gradual typing. In contrast,
the gradual type theory of New et al. (2019) develops different theories of grad-
ual types axiomatically, putting the properties one expects satisfied first, and
deriving operational implementations from these.



GATE: Gradual Effect Types 339

Polymorphism and Parametricity. Parametric polymorphism, introduced by
Milner (1978), is one of the most important features of functional languages. As
observed by Reynolds (1983), parametric polymorphism imposes strong seman-
tic conditions on terms, an idea popularised under the name “Theorems for
free” by Wadler (1989). Remarkably, gradual typing can enforce these proper-
ties on untyped code that is cast to a polymorphic type, as discussed by Guha
et al. (2007), Ahmed et al. (2011; 2017). There has been considerable discussion
of whether semantic parametricity is compatible with the gradual guarantee,
with Toro et al. (2019) arguing they are incompatible, while New et al. (2020)
suggests they may be reconciled.

Dependent Types. Dependent types, as found in Agda, Coq, and Idris, attract
much interest in the functional programming community, both for more precise
types in programming and for validation. More widespread adoption of depen-
dent types could be aided by gradual typing, for instance, to support migra-
tion from ordinary functional languages to dependently-typed ones. Eremondi
et al. (2019) observe an important point, that since dependent types depend
upon values, gradual typing may benefit from supporting not only less precise
types but also less precise values. They apply AGT to design a new language
with both, but don’t support blame. Meanwhile, Zalewski et al. (2020) support
blame, but not imprecise values. There remains much to do in this area.

Space-efficient Gradual Typing. Constant-space implementation of tail recursion
is an important aspect of many functional languages. Naive implementations of
gradual typing violate this property, and restoring it has been the subject of
a line of work that includes Herman et al. (2007), Siek and Wadler (2010),
Garcia (2013), and Siek et al. (2015a). The last provides a solution that is easy
to understand, easy to implement, and accounts for blame. How to extend that
solution beyond simple types, for instance, to polymorphism and dependent
types, remains an open question.

2.2 Computational Effects

Effect Types. The seminal notion of tracking computational effects in the type
system is due to Gifford and Lucassen (1986), and has been extended by many
others, including Talpin and Juvelot (1994). Each effect type system is designed
specifically to track particular effect, but they all have a similar design, and
Marino and Millstein (2009) suggest a system that generalises many other such
systems.

Monads. Moggi (1989; 1991) introduced monads as a semantic framework that
describes many forms of effect. Wadler (1990; 1992) adopted monads for use in
structuring functional programs, notably in Haskell. Various ad hoc methods of
combining monads have been studied, starting with King and Wadler (1992) and
Liang et al. (1995).
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Wadler (1998), later jointly with Thiemann (2003), drew a connection between
monads and effect types by indexing monads over a semi-lattice of possible effects.
Combination ofmonads is also discussed byFilinski (1999).A closely relatedway of
indexing monads over effects is graded monads, introduced by Katsumata (2014); a
related notion of indexing was introduced by Orchared et al. (2014). Another form
of indexing is parameterised monads, first described by Wadler (1994) and named
and brought to wider attention by Atkey (2006; 2009). A generalisation of both
forms of indexing is described by Orchard et al. (2020).

Algebraic Effects. A drawback of the monad formulation is that it does not
support combining two arbitrary monads. This is rectified by algebraic effects
as introduced by Plotkin and Power (2001a; 2001b; 2002; 2003). Logical rea-
soning over algebraic effects is discussed by Plotkin and Pretnar (2008), while
optimisations based on algebraic effects are discussed by Kammar and Plotkin
(2012).

Handlers. Next, Plotkin and Pretnar (2009) introduced handlers, which support
custom definitions of algebraic effects. This was a key step forward and many
researchers began to explore ramifications of this design, including the program-
ming language Eff by Bauer and Pretnar (2015), Koka by Leijen (2017), and
Frank by Convent, Lindley, McBride, and McLaughlin (2018; 2017), as well
as the addition of row-based effect types to Links by Hillerström and Lindley
(2016).

Effects without types. Almost exclusively, the focus of effects has been on static
type systems. However, one can consider effects added to a dynamically-typed
language such as Lisp or Javascript. One of the few explorations of this part of
the design space is the programming language Shonky by McBride (2016).

Expressive power. Transformations between monads and delimited continuations
is consider by Fillinski (1994), while transformations between both of those and
effect handlers are considered by Forster et al. (2017). Compilation of effect
handler to continuation passing style and considered by Hillerström et al. (2017).

Lexical binding. It used to be that many programming languages used dynamic
binding for variables, where a name refers to the closest binding with the same
name on the call stack. But since the advent of Scheme, most programming
languages used lexical binding for variables, where a name refers to the binding
that is lexically closest. Traditionally, exception handlers use dynamic binding,
but Zhang et al. (2016) argue lexical binding, as specified by tunnelling, is more
appropriate. By analogy, effect handlers again use dynamic binding, so Zhang
and Myers (2019) adapt tunnelling to effect handlers. Similarly, Biernacki et
al. (2020) also argue in favour of lexical rather than dynamic binding for effect
handlers.
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Gradual Typing and Effects. A gradual effect system has been proposed by
Banados Schwerter et al. (2014; 2016), based on the generic effects of Marino
and Millstein (2009). One particular effect type of importance is session types,
with gradual session types considered by Igarashi et al. (2017).

2.3 Subtyping

To be useful in practice, a system of effect types must support some form of
subtyping, or at least subeffecting. In particular, it must be possible to pass a
function that performs fewer effects where a function that may perform more
effects is expected. Pretty much all the effect type systems described above
support some form of subtyping or subeffecting.

Unfortunately, combining subtyping with type inference tends to be problem-
atic. Theoretically, there is no issue, as sound and complete inference systems for
subtyping have been known since Mitchell (1984). But pragmatically, the types
inferred by such systems may involve constraints that are unwieldy to write and
read.

Recently, a new approach to subtypes that does not require constraints has
been proposed by Dolan and Mycroft (2017), with further details in Dolan’s
dissertation (2017). The system appears to hit a “sweet spot” in that types
and easy to write and read. A preliminary attempt to apply Dolan’s system to
algebraic effects has been made by Courant (2018).

Complementary advantages to subtyping are achieved by the row types of
Wand (1989; 1991), where again the types are relatively easy to write and read.
A recent generalisation of row typing due to Morris and McKinna (2019) seems
particularly flexible and may be worth investigating.
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Toro, M., Labrada, E., Tanter, É.: Gradual parametricity, revisited. Proc. ACM Pro-
gram. Lang. (PACMPL) 3(POPL) (2019)

Verlaguet, J.: Facebook: analysing PHP statically. In: Workshop on Commercial Uses
of Functional Programming (CUFP) (2013)

Vitousek, M.M., Swords, C., Siek, J.G.: Big types in little runtime: open-world sound-
ness and collaborative blame for gradual type systems. In: Principles of Programming
Languages (POPL), pp. 762–774. ACM (2017)

Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer
Architecture (FPCA) (1989)

Wadler, P.: Comprehending monads. In: LISP and Functional Programming, pp. 61–78.
ACM (1990)

https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/3-540-45931-6_24


GATE: Gradual Effect Types 345

Wadler, P.: The essence of functional programming. In: Principles of Programming
Languages (POPL), pp. 1–14. ACM (1992)

Wadler, P.: Monads and composable continuations. LISP Symb. Comput. 7(1), 39–56
(1994)

Wadler, P.: The marriage of effects and monads. In: International Conference on Func-
tional Programming (ICFP), pp. 63–74. ACM (1998)

Wadler, P.: A complement to blame. In: Summit on Advances in Programming Lan-
guages (SNAPL), vol. 32. LIPIcs, pp. 309–320. Schloss Dagstuhl (2015)

Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 1

Wadler, P., Thiemann, P.: The marriage of effects and monads. Trans. Comput. Logic
(TOCL) 4(1), 1–32 (2003)

Wand, M.: Type inference for record concatenation and multiple inheritance. In: Sym-
posium on Logic in Computer Science (LICS), pp. 92–97. IEEE (1989)

Wand, M.: Type inference for record concatenation and multiple inheritance. Inf. Com-
put. 93(1), 1–15 (1991)

Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

Zalewski, J., Mckinna, J., Garrett Morris, J., Wadler, P.: λdb: blame tracking at higher
fidelity. In: Workshop on Gradual Typing (2020)

Zhang, Y., Myers, A.C.: Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang. (PACMPL) 3(POPL), 5 (2019)

Zhang, Y., Salvaneschi, G., Beightol, Q., Liskov, B., Myers, A.C.: Accepting blame for
safe tunneled exceptions. In: Programming Language Design and Implementation
(PLDI), pp. 281–295. ACM (2016)

https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1


Fixing Classification: A Viewpoint-Based
Approach
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Abstract. The concept of classification as realized in most traditional object-
oriented computer languages has certain limitations thatmay inhibit its application
tomodelingmore complex phenomena. This is likely to prove problematic asmod-
ern software becomes increasingly more integrated with the highly dynamic phys-
ical world. In this paper, we first provide a detailed description of these limitations,
followed by an outline of a novel approach to classification designed to overcome
them. The proposed approach replaces the static multiple-inheritance hierarchy
approach found in many object-oriented languages with multiple dynamic class
hierarchies each based on different classification criteria. Furthermore, to better
deal with ambiguous classification schemes, it supports potentially overlapping
class membership within any given scheme. Also included is a brief overview of
how this approach could be realized in the design of advanced computer languages.

Keywords: Classification · Viewpoints · Computer languages

1 Introduction

As we build increasingly more sophisticated engineering systems, we seem to be
approaching a level of complexity that may even be comparable to the complexity
encountered in natural systems. It may be the case that classical engineering approaches,
which are fundamentally based on the traditional divide-and-conquer strategy, may not
be able to cope with this degree of complexity. The “crisp” modular nature of this
approach, whereby individual functions tend to be isolated and encapsulated within
dedicated modular units, is rarely reflected in natural systems. Although there certainly
is modularity in nature, its module boundaries tend to be much more diffused, with a
much greater degree of interlacing of functions.

For example, inmedical science, the human body is deemed to have 11 distinct “body
organ systems”, representing groups of organs that jointly perform complex functions
needed for survival and reproduction.1 However, practically every organ in these systems

1 https://www.verywellhealth.com/organ-system-1298691.
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performs multiple functions, not all of which are necessarily associated with the body
organ system to which they nominally belong. Thus, the liver, which secretes bile used
in digestion, is classified as part of the digestive system, but it also filters blood which is
considered to be the responsibility of the cardiovascular system. Similarly, bones, which
are nominally part of the skeletal system, produce red and white blood cells, which is
also part of the functionality of the cardiovascular system.

Clearly, the boundaries between these various organ “systems” are approximations
at best. In fact, given such intermixing of functionalities, it is fair to ask whether these
“systems” actually exist as concrete entities. A more accurate view, perhaps, is that the
human body is simply one highly integrated complex system. The postulated separation
into distinct systems is a simplified model of this complex reality, an artifact devised by
humans to help our minds deal with what might otherwise be overwhelming complexity.

The mechanism behind this divide-and-conquer approach is abstraction. It is behind
much of the success of modern engineering, including software engineering in particular
since software is unique in its ability to implement abstract concepts. Highly effective
programming paradigms such as Dijkstra’s structured programming [4] and various
component-based approaches [2] are some notable examples. Although abstraction in
software usually comes at the cost of efficiency, this is more than compensated by gains
in terms of conceptual simplicity (i.e., understandability and maintainability) and design
reliability. But, as we gradually progress into attempting to construct what are popularly
referred to as “smart” software-intensive systems,2 the usually trustworthy divide-and-
conquermethodmay have reached its limits. In fact, it may even prove counterproductive
in these circumstances, adding to complexity by forcing a highly diverse and potentially
confusing network that connects multiple different but inter-related functional modules.
After all, as the human body exemplifies, nature has demonstrated that truly complex
systems require a more sophisticated and more intricate approach to system design. It
seems worthwhile, therefore, to study it and, possibly, use it as a guide to how to deal
with the of extreme complexity that we are striving for these days.

With this in mind, we examine here the possibility of a more sophisticated approach
to the problem of classification, one that is inspired by natural phenomena such as bio-
logical systems. The specific objective is to overcome some of the major limitations
of the way that classification is defined in most modern object-oriented programming
languages. Namely, that approach to classification is yet another example of an approx-
imate representation of an inherently more complex natural phenomenon. The “body
organ subsystems” example clearly demonstrates that reality can be far more complex
than this particular classification scheme provides. Numerous other examples are easily
found: from the peculiar nature of a duck-billed platypus (an egg-layingmammal3) to the
confusing classification of the tomato plant (fruit or vegetable?4). The binary nature of

2 https://smartanythingeverywhere.eu/.
3 The first European scientists to examine the body of a platypus in 1799 declared it to be a fake,
consisting of sewn-together parts of multiple different animals (https://en.wikipedia.org/wiki/
Platypus).

4 https://en.wikipedia.org/wiki/Tomato#Fruit_versus_vegetable.
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classification in encountered in these traditional programming languages, where mem-
bership in a class is based solely on the binary presence or absence of specific struc-
tural and behavioral features, simply cannot reflect the true nature of such complex
phenomena.

Furthermore, because of the way it is defined, the traditional approach makes it
difficult to directly model the rather common natural phenomenon of dynamic reclassi-
fication, whereby an entity progresses through different existential modes, each of which
is characterized by different characteristics. In the process, it may acquire new charac-
teristics as well as shed or diminish existing ones. For example, a frog progresses from a
tadpole with gills and a tail to a mature frog with legs, lungs, and no tail. Complicating
classification further is the existence of transient intermediate forms in between those
crisply-delineated phases, with dynamically changing combinations of features from
both the initial and the final forms.

The section that follows provides a more detailed analysis of the limitations of tradi-
tional classification approaches andwhy they need to be overcome. Section 3 provides an
outline of a different “viewpoint-based” model of classification. The possible realization
of this model in computer programming or modeling languages is described briefly in
Sect. 4. Although the traditional model of classification in programming languages has
mostly remained unchallenged, some prior works have raised at least some of the issues
discussed here and some have even proposed partial solutions. Those that are known to
the authors of this paper are described in Sect. 5. The final section briefly summarizes
the essential takeaways of this paper and also includes a short discussion of possible
future research directions associated with this approach.

2 The Limitations of Traditional Models of Classification

The focus of this work is on enabling three principal modeling capabilities that are cur-
rently inhibited by current approaches to classification in object-oriented programming
languages:

1. The ability to dynamically reclassify objects (and their capabilities) as they progress
through their lifecycle,

2. The ability to classify objects from different perspectives, based on different
categories of concerns,

3. The ability to accurately represent “in-between” cases, where an entity may be
validly but ambiguously categorized as belonging in more than one class within a
given classification scheme.

The reasonswhy these features are desirable andwhy they are not handled adequately
by current programming languages are discussed individually below.

2.1 Dynamic Reclassification

One common property of most current models of classification found in popular pro-
gramming languages such as Java, C#, or C++, is that an object can only be an instance
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of exactly one class throughout its lifetime. Unfortunately, since a class is defined by the
set of structural and behavioral features that its members possess, this does not support
modeling of important categories of mutable objects whose set of features changes over
time.

Mutable entities occur naturally in many different contexts. One obvious example
can be found in biological systems, such as the aforementioned frog example. Given that
more and more of today’s “smart” software interacts closely with the highly dynamic
physical world, there is a clear need to be able to accurately model such phenomena in
software. For instance, a “digital twin”5 that represents some mutable physical object or
process falls directly into this category. However, mutable entities can also occur in the
virtual world of software. For example, a subsystem that is in the process of initializing
or recovering from failures is likely to exhibit very different behavior and even different
attributes in these circumstances when compared to its steady-state operational modes.

Traditional methods of dealing with this are either through multiple inheritance or
via the State design pattern [6]. But, the problems ofmultiple inheritance arewell known.
The most notable is that it can lead to the well-known “diamond inheritance” problem,6

whereby a given feature may be inherited from two or more different ancestors that
ultimately share the same superclass. In addition, multiple inheritance may also lead
to inheriting some redundant or even undesirable features from some of the ancestor
classes. For example, in some system, the AmphibiousVehicle class may inherit from
both anAquaticVehicle class and a SurfaceVehicle class. However, if the AquaticVehicle
superclass includes a HomePort attribute, it would also appear in all instances of the
merged AmphibiousVehicle class, where it may not be meaningful.

The State design pattern, on the other hand, requires defining an auxiliary branch of
the class hierarchy for capturing the different operational modes of the original class.
This also obscures the crucial fact that the various states captured by the pattern are an
inherent property of the base class. It also requires the definition of an auxiliary variable
for dynamically instantiating the appropriate instances of the operational classes as
needed. In other words, the State pattern is merely a “manual” workaround in lieu of a
missing first-class concept in the implementation language.

In summary, both approaches indirect and problematic solutions, for what should
evidently be a first-class modeling capability.

2.2 Multiple Concurrent Classification Schemes

A second core limitation of strict and immutable inheritance is that it favors a single
dominant classification scheme to the detriment of others. As a rule, modern object-
oriented languages require that, at any given time, an object can only be an instance
of a single class. This holds even with multiple inheritance since, in that case, a single
class is still needed to merge the different ancestor branches, as in the case with the
forementioned AmphibiousVehicle, which inherits from both its AcquaticVehicle and
its SurfaceVehicle ancestors.

5 https://en.wikipedia.org/wiki/Digital_twin.
6 https://en.wikipedia.org/wiki/Multiple_inheritance.

https://en.wikipedia.org/wiki/Digital_twin
https://en.wikipedia.org/wiki/Multiple_inheritance
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But, even without dynamic reclassification, there is still a practical need to view a
given object from different perspectives, depending on what is of principal interest at a
given point in time. For example, as illustrated by the somewhat simplistic example in
Fig. 1, we may choose to classify persons in a variety of different ways, such as based
on their employment status, age, gender, etc. In general, each such classification scheme
focuses only on a subset of available features, based on which ones are relevant to that
scheme. In fact, in accord with the well-known principle of separation of concerns,7

it may even be desirable to “hide” or abstract out features that do not belong to the
classification that is currently of concern. (For example, the jobFunction attribute
shown in Fig. 1 only makes sense in the context of a Person who is employed, and,
therefore, its presence would only create “noise” in other viewpoints.)

While it may be that in some applications, one classification scheme may be deemed
as more important than others, it seems inappropriate to always force a “dominant” one
to which all other schemes must conform.

Fig. 1. A simple example of multiple different classification schemes for a given concept

In essence, classification is one more case of the divide-and-conquer approach. It
works by dividing up a potentially large number of entities into smaller subsets. This
reduces the dimensionality of the problem thereby making it more amenable to human
reasoning. The resulting subsets comprise entities that are similar according to some
chosen classification scheme (i.e., set of concerns), such as entities that share a common
subset of possible features. The scheme used in this process and the concerns that it
encompasses represent what is often called a viewpoint.8 Since it is generally possible
to define different partitioning schemes for practically a given population of entities,
the possibility of a viewpoint-based classification approach naturally asserts itself. An
outline of such an approach is provided in Sect. 3.

7 This principle is, of course, yet another example of the divide-and-conquer strategy.
8 For the purposes of this work, we use the definition of viewpoint as provided in the IEEE
42010 standard [7]. It defines a “view” as a description of a system “from the perspective
of specific system concerns”, and a “viewpoint” as the “conventions for the construction and
interpretation…of views”.
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2.3 Transient and Overlapping Forms

This is a requirement that is needed to accurately represent cases where there is some
ambiguity about how to classify some instances. Overlapping classifications occur when
two ormore classeswithin the same classification scheme do not havemutually exclusive
membership constraints, allowing an instance to be a valid member of both classes.
However, the strictly “binary” approach to classification supported in current object-
oriented languages does not allow this. Designers are forced to choose exactly one class,
thereby hiding this important characteristic.

Transient forms can occur when a feature of an object can either appear or disappear
gradually. However, since traditional classification is based strictly on the presence of
features it is inherently discrete, whichmeans that it does not provide explicit support for
cases of continuous feature dynamics. For instance, in its lifecycle, a frog will progress
through a stage during which it is transitioning from a tadpole to a fully formed adult
frog. In the course of that transformation, some of its features will gradually diminish
(e.g., gills) and eventually disappear, while others (e.g., lungs) will appear and gradually
increase until they reach full extent. Such transient phenomena are certainly common in
the natural world and elsewhere and, consequently, it should be possible to model them
accurately.

3 A Viewpoint-Based Model of Classification

The core of the argument posited in the preceding section is that classification is a
subjective artifact that is “imposed” on a collection of entities for practical reasons
(i.e., in support of human comprehension – but, as with all abstractions, at the cost
of loss of accuracy). It is not an immanent property of the entities themselves. Because
classification is based on selected viewpoints, it is possible in principle to definemultiple
different classifications strategies for the same set of entities, as illustrated by the Person
example in Fig. 1.

However, the relationship between an object and its applied classifications is inverted
in current popular programming languages. That is, instead of the class(es) of an object
being a consequence of the set of its existing attributes and their values, the opposite
holds: the attributes of an object are determined by its class, and new instances are
created on the basis of a class specification. In other words, it is the abstraction that
defines the object, rather than the other way around. Unfortunately, a class can only
represent either (a) just one of many possible viewpoints or, (b) a forced and uncurated
merge of multiple different viewpoints. Neither of these is satisfactory, because it cannot
always provide an accurate representation of the modeled entity.9 Classes that represent
a single viewpoint suffer from the constraining “dominant viewpoint” problem noted
above. The merged viewpoints approach, on the other hand, indiscriminately combines
features from different possibly temporally exclusive viewpoints or modes.

The UML-based metamodel depicted in Fig. 2 captures our proposed viewpoint-
based approach to classification. It is designed to overcome the limitations of traditional
approaches described in the preceding section.

9 Box and Draper in their work on empirical model building, state boldly that “essentially, all
models are wrong, (but some are useful)” [1].
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Fig. 2. The Objective World and the Conceptual Reasoning Framework

The dashed box on the left-hand side of the diagram represents elements of an “objec-
tive”world, that is, an environment in which entities exist independently of any particular
classification schemes that might be applied to them. The conceptRealWorldEntity
represents an instance of some physical or conceptual entity or process. Each entity has a
unique and permanent identity, which is constant and persists across its entire lifecycle.
For instance, a tadpole has an identity that is preserved even as it is progressing into a
fully-fledged frog. An entity possesses a number of Characteristics10 that jointly fully
define its structure and behavior. Characteristics can be dynamic: they can change their
value, appear, or disappear over time. The value of a characteristic (Characteris-
ticValue) can be a complex element rather than something as simple as a data type.
For instance, it could be the full lifecycle behavior of an animal.

The dashed box on the right-hand side of the diagram captures the essential concepts
involved in classification. In other words, it represents the “subjective” world, that is,
an artificial creation used to support one or more classification strategies that we can
choose to apply (conceptually) to elements of the objective world. Thus, real-world
entities are modeled by the abstraction, ClassifiableEntity. This is a conceptual
stand-in for a set of corresponding real-world entities.11 Each characteristic of a real-
world entity ismodeled by one ormore Features, which are conceptual representations of
corresponding real-world characteristics. Note that both ClassfiableEntity and
its Features are independent of any particular classification imposed on them. Hence,
there are no composition associations to any of the other elements of the conceptual
framework. Ideally, they represent a fully time-collapsed model of the corresponding

10 We intentionally chose a different name than “feature” for this real-world element to better
distinguish it from its conceptual representation, which is called Feature in this framework.

11 The concept of ClassifiableEntity can be viewed as a type in the traditional software
interpretation of that term.
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elements in the objective world. These could even be pure conceptual entities, with no
concrete physical manifestation.

The remaining elements in the conceptual framework capture the core components
of viewpoint-based classification. They specify the different ways in which classifiable
entities can be categorized. The root concept here is ClassificationViewpoint,
which is intended to group those real-world entities modeled by classifiable entities into
one or more Classes defined by the viewpoint. As in traditional classification, each class
is characterized by the subset of Features that all of its members share. However, for a
feature to qualify for a given class, it also has to satisfy any associated FeatureCon-
straints. These constraints define the possible values of the associated features for
the feature to be included in a class definition. For example, in an age-based classification
of people, such as shown in Fig. 1, a given individual will be included as a member of
the “Child” class as long as the value of its “age” feature is less than 18. Otherwise, it
will be included in the “Adult” class.

When an object is created, it will possess a default set of features. These may be
defined in one or more classes in different viewpoints. These “creation stage” classes
are identified by their isCreation meta-attribute.

To support transient forms, classification viewpoints can be defined as “overlapping”
(as specified via theisOverlappingmeta-attribute). Thismeans that it is possible for
membership in the classes of a viewpoint to overlap. This can be achieved by means of
overlapping feature constraints expressed using fuzzy logic, which allows for ambiguous
set membership, or other similar means.

4 Computer Language Considerations

The viewpoint classification metamodel shown in Fig. 2 is generic, intended to be appli-
cable to any domain. In this section, the focus switches to its interpretation in software.
In particular, we examine computer language mechanisms that are needed to support it.

In this case, the Conceptual Reasoning Framework is actually realized in software,
whichmeans that the conceptual and objective worlds are unified. Therefore, the Real-
WorldEntity and the ClassifiableEntity concepts represent the same thing
and are conflated into the concept of a run-time object. Similarly, the Characteristic and
Feature concepts are also merged.

The first practical issue is to define how an object is created, given that it can be an
instance of different classes based on different frameworks. In particular, which features
and feature values will be assigned to a newborn object upon creation? The most direct
and possibly most straightforward strategy is for the object to select the viewpoints
that apply to it at creation time. As a result, all classes in the selected viewpoints with
a positive value for its isCreation attribute will be scanned for their applicable
features. If these features are structural attributes, they will be added to the object, along
with their preset initial values. If they are behavioral features, they will be executed.

From this point on, there are several possibilities in the lifecycle of the created object.
One option is for objects (i.e., the programmer) to choose (e.g., in response to inputs)
which viewpoints they want to apply and when. In that case, the scenario is similar to the
creation scenario. This may add new features to the object in case they were not already
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present. Objects can also “unapply” an applied viewpoint, which may either remove (or,
more pragmatically, disable) features unless they are still present in one of the other
applied viewpoints.

An alternative strategy would be for viewpoints to be applied or unapplied automat-
ically, depending on changes in values of structural features or by the explicit software-
controlled addition or removal of features. Which viewpoints are applied or unapplied
in those situations is determined by evaluating the feature constraints of the affected
features. If a feature constraint is no longer satisfied, the associated viewpoint will be
unapplied with appropriate changes in the feature set. Conversely, if the change in value
results in a feature constraint switching from unsatisfied to satisfied, the corresponding
viewpoint in which it exists will be applied. Needless to say, this alternative may some-
times come with significant overhead since it involves evaluating all feature constraints
associated with a changed feature every time its value changes. It may also lead to incon-
sistencies if the dynamically defined configuration of features does not correspond to
any defined viewpoint.12

Additional utilities are likely to be needed, such as a primitive operation that checks
whether a given set of viewpoints is applicable at the time when it is invoked. For
example, in a traditional textual programming language form, it might look as follows:

if obj.applicable(ViewpointA, ViewpointB) then  
{… instructions that can access any features that  
are accessible in either ViewpointA or Viewpoint B …}

Although the mechanisms involved in this may not be simple, a clever implementa-
tion could significantly simplify matters. For instance, when an object is instantiated it
could contain the merge of all the features belonging to all of its viewpoints (similar to
multiple inheritance). But, only those features that are applicable at a given time (i.e.,
depending on applicable viewpoints and their feature constraints) would be enabled.
The remaining ones would be disabled and, consequently, inaccessible, until they are
enabled by a viewpoint change.

5 Prior Work

Problems with current forms of classification and inheritance were identified early. For
example, in 1991, Michael Jackson published a critique that described some (but not
all) of the limitations described in Sect. 3 [8]. In particular, he pointed out the con-
sequences of the “dominant viewpoint” issue. In addition, he discusses the need for
dynamic reclassification.

The latter capability is supported in some object-oriented languages. This was avail-
able in one of the first object-oriented languages, Smalltalk-80, which had a dedicated
“become” method. This allowed an existing object to switch from being a member of

12 This may not necessarily be an error, but it does imply that the classification schemes are
incomplete, which may not have been the intent.
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one class to a different one. However, this capability was not incorporated in any sub-
sequent object-oriented languages that are in common use today (e.g., Java, C++, C#,
Objective-C), most likely because it created difficulties for static type checking.13

Later, a dynamic reclassification capability was included in the experimental Fickle
language [5]. But, this was primarily an experimental research language and was never
picked up by a broader user base. An alternative to dynamic reclassification was later
sought via the concept of typestates [3], which is, to an extent, a language-based
realization of the State design pattern, with some additional useful features.

However, none of these prior efforts provided the ability to support simultaneous
different classifications of an object, such as the viewpoint approach described here.
Exceptionally, the Unified Modeling Language standard [9] includes the concept of
a generalization set, which “provides a way to group Generalizations into orthogonal
dimensions”. This is, in effect, a mechanism intended to support viewpoint-based classi-
fication. Unfortunately, the standard also states that the mechanisms by which this type
of capability is implemented are considered out of scope of the standard. This capability
has not been picked up by any mainstream language, and is even explicitly excluded
from the associated OMG standard that provides a formal semantics definition of UML
[10].

6 Summary and Future Research Prospects

The core issue addressed in this paper is that current models of classification in common
object-oriented programming languages are inadequate for the complex challenges that
are facing modern software. The principal problem lies in the fact that they are insuf-
ficiently flexible to help us capture the complex and dynamic nature of the world that
we are trying to manage with software, as is the case, for example, with digital twin
models. In particular, they make it very difficult to model dynamic phenomena whose
classification changes over time, as well as the ability to classify phenomena in multiple
different but equally useful ways.

Classification is an abstraction conceived to help us approximate a complex reality
with a simpler and more comprehensible representation. Like all abstractions, any given
classification scheme is imperfect, suitable for some purposes but not necessarily for
others that we might be of interest to us. In the proposed approach, the essential idea is
to allow reasoning about the classification of objects to be chosen dynamically, based
on (a) the state of an object and (b) what concerns us about the object at that point.

This paper is a call for new ways in how we model and use classification in soft-
ware. The ideas described are quite preliminary, but they represent one possible and
feasible solution. But, much more research is needed to understand its full ramifications
and future possibilities. One obvious line of study is to determine the extent to which
static verification can be used in these potentially dynamic circumstances. Prior work
on static type checking of typesets suggests that it may be possible to an extent [3].
Another interesting area is the ability to explore classification viewpoint hierarchies,

13 Smalltalk-80 was a dynamically typed language, so static type checking was impractical in any
case.
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whereby viewpoints can inherit from more abstract viewpoints, including the notion of
a “powerset” viewpoint.
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Abstract. What is the future of programming, and what does it have to
do with modelling? In this paper we will first argue that, despite impres-
sive achievements, software development now suffers from a capacity cri-
sis which cannot be alleviated by programming as currently conceived.
Rather, it is necessary to democratise the development of software: stake-
holders who are not software specialists must, somehow, be empowered to
take more of the decisions about how the software they use shall behave.
We will suggest that a potential way to achieve this is that software
should be delivered in the form of a collection of models, each expressed
in a (domain-specific) language appropriate to its intended users, and all
connected by bidirectional transformations. We emphasise the pragmatic
need to accommodate a heterogeneous collection of formalisms so that
solutions can incorporate pre-existing transformations, with automatic
“fixing up” of their results as necessary. We discuss the advances that are
needed to make this a reality, and some early progress in this direction.

Keywords: Programming · Modelling · Bidirectional transformation ·
Consistency maintenance

1 The Software Capacity Crisis

In the early days of the telephone, subscribers called one another, not by enter-
ing a number into their handset, but by lifting their receiver and talking to a
telephone operator, who plugged the caller’s wire into the callee’s socket. Soon,
it became clear that the number of telephone operators could not scale to match
the growth in subscriber numbers. People began to point out, rhetorically, that
in the not-too-distant future everyone in the demographic from which telephone
operators were drawn would have to be employed in that way. For example,
around 1886 the Chief Engineer of the British Post Office estimated that by
the year 2000 every woman in Britain would have to be a telephone operator
(reported in [48], p52). Fortunately for the author, such dreadful predictions
did not come to pass. Instead, the automated telephone exchange was invented,
enabling subscribers to control their own connections. In a certain sense, every
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one of us is now a telephone operator: but we do not find the occupation too
irksome.

Software development today is in a state analogous to that of telephony at
the end of the 19th century. We struggle to find enough people – there are already
hundreds of thousands of unfilled ICT positions in the European Union [11]. Look-
ing further ahead, we expect the demand for software to continue to increase; one
estimate [12] is that 1.6 million ICT professional jobs will need to be filled in the
European Union between 2018 and 2030. Big data and the rise of AI make new
frontiers of potential software visible, while they also intensify concern about the
properties of the software, including correctness and privacy. Businesses desire
to update their software ever faster. Despite their resulting popularity, agile and
DevOps techniques such as continuous integration/continuous delivery (CI/CD)
are far from a panacaea [31]. For example, even in a survey of businesses using agile
development [47], just 4% of respondents – 71% of which were planning DevOps
adoption within the next year – agreed that agile practices were enabling greater
adaptability to market conditions! Capacity and hiring regularly appear at the
top of lists of software companies’ concerns (e.g. [46]).

What makes the software situation even worse than the telephony one is the
sheer difficulty of modern software development. It pushes the limits of
human cognition: in order to make productive use of the technology we have
today, people typically have to devote their full-time efforts to learning, retain-
ing, practising and updating their software-related skills. Universities are asked
to turn out increasing numbers of students with an extraordinarily wide and
fast-changing skill-set; the difficulty of doing so underlies apparent paradoxes
such as that, in the UK, despite the unfilled positions, the unemployment rate
for computer science graduates is above that of other STEM subjects [39]. While
the fundamentals of our discipline do not change, the devil is in the detail – and
there is a lot of detail, as anyone can attest who has had to develop (say) a
web application with mainstream tools, after a few years of not doing so. Con-
sequently not every person is able to succeed in modern software development,
so even if, as a society, we were willing to devote the efforts of even more of us
to software development, this would not solve the problem.

Impressive advances in software development have, however, been made since
the “thirty year crisis” [40] of approximately 1960–1990. We now have better lan-
guages, tools, and frameworks; we have consensus on the importance of testing
being integrated into development; we are beginning to understand how to com-
bine the safety of a high-ceremony process with the responsiveness to change
that agile methods can bring.

Each of these advances can be seen as (partially successful) attempts to
employ separation of concerns in Dijkstra’s terminology [8] to help manage
information overload, which is the main root cause of the difficulty of software
development, because the amount of information in even a medium-sized soft-
ware project vastly exceeds what humans can easily hold in mind. For example,
high level programming languages allow the programmer to remove focus from
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low level implementation details; the practice of unit testing enables someone
investigating a bug to ignore certain parts of the code base with confidence; in a
sprint, the developer focuses attention on a subset of the requirements and how
to realise them.

Ideally decisions taken for the sake of one concern have no effect on any
other; then different people may work with different concerns, independently.
But usually this is not so (as indeed Dijkstra explained). Separating concerns is
worthwhile because of the way it helps focus, but dependencies between them
still have to be managed, usually manually and informally, relying on developers’
knowledge. Unfortunately, we have (so far) not made advances, in this task of
reintegrating concerns, that are comparable to those that we have made in
managing each individual concern. Thus it turns out that the improvements in
software engineering to date do not actually make it easier to develop software:
they just enable the same software developers – tight-knit teams of people with
a rare blend of up-to-the-minute technical, interpersonal and business skills – to
achieve more, faster, than used to be possible.

In summary, the practice of software development has advanced enormously
since the earliest days, so that we are now able to build large, complex software
systems reliably. We have banished the original software crisis. However, cur-
rent approaches to software development push the limits of human cognition.
Acquiring and retaining the skills necessary to be effective in modern software
development takes so much time and effort, even from the most talented people,
that it is not possible to find enough skilled people to build all the software we
would like built, given the way that software development is currently organised.
Hence we have a software capacity crisis.

2 Modelling and Its Limitations

As we have seen, from the invention of the subroutine on, encapsulation, and,
more generally, separation of concerns [8], have been understood to be important
for managing the information overload that is characteristic of software devel-
opment. This idea, together with the idea that, in particular, the concerns of
different stakeholders should be separated, drove the rise of object orientation
and the development of modelling.

In the 1990s many different modelling languages flourished, each typically
promoted by a single guru and supported by a single tool. Eliding some polit-
ical history: the Unified Modeling Language, UML [17], was developed in the
late 1990s, with the aim of solving this Babel and permitting networking
effects that would energise the tools market, permit easier transfer of people
between projects, and generally increase the efficiency of software development
by enabling decisions to be taken and recorded at higher levels of abstraction.
The Object Management Group (OMG), many of whose members are tool devel-
opment companies, standardised UML. (I wrote the first student textbook on
it [49].) UML garnered a remarkable degree of buy-in and effectively wiped out
most of the earlier modelling languages. It has since suffered a backlash, because
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1. the need to get buy-in from all the key influencers (and to standardise using
OMG’s consensus-based process, which is itself designed to maximise buy-in)
led to UML being huge and imprecise;

2. diagrams are slow to develop compared to code. It took the community a
remarkably long time to appreciate the sense in which concrete syntax is
superficial. We can have several concrete syntaxes for ‘the same’ language,
e.g. graphical and textual presentations of the same information. For example,
the metamodelling language Ecore has a textual syntax, Emfatic, in addition
to the original diagrammatic syntax [14].1

Unsurprisingly, we have seen a succession of papers about how little UML is
used (e.g. [35]), although in fact, developers’ use of diagrams to help focus their
design thinking is ubiquitous [26].

One way to analyse the problem is to say that UML has a cost-benefit ratio
problem: point 1 above causes the benefit to be too low, and point 2 means that
the cost is too high.

2.1 Increasing the Benefit that Derives from Modelling

Attempts to increase the benefit that is derived from the effort of developing
models have led to model-driven development (MDD) and the related con-
cepts of language engineering [23] and low-code platforms (estimated mar-
ket size 27.23 billion US dollars by 2022 [29]). These can be seen as reactions to
the backlash against UML: they make more use of tools, and hence, perforce, of
languages as formal artefacts, in an attempt to increase the benefit derived from
models and hence improve the cost-benefit ratio. A progenitor of this family
of approaches was OMG’s model-driven architecture [16]. This emphasised
forward generation of platform-specific models from platform-independent mod-
els, and of code from platform-specific models: its underlying assumption was
that important decisions about functionality could all be made at a high level
of abstraction, so that human involvement in modifying code – programming –
would be all but abolished. Modern, more flexible, successors of this approach
include XMDD based on the “One Thing Approach” [27,28]. With an insistence
on replacing, rather than integrating, the old-fashioned approach of humans
editing code, they provide an conceptually efficient methodology for greenfield
development, in which all modelling can take place under the same aegis and
there can be a single point of control for generating code once the models are
ready. If testing of the code reveals that early decisions, embodied in highly
abstract models, must be revised, then the necessary changes are recorded in
the models and the automatic process of synthesising code is re-run. When this
is a practical way to proceed, it is undoubtedly the right thing to do: it avoids
repeating information in more than one place, and recording it in inefficient
ways, and uses automation to best advantage. Successful examples include the
development of single-page web applications using DIME [4].
1 Indeed, this is why, in this paper, we do not make a hard distinction between “model”

(often assumed graphical) and “code” (always assumed textual).
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A key difference between OMG’s original MDA conception and these later
approaches – with wider implications which we shall shortly come to – is that
while MDA envisaged models would be expressed in general purpose languages
like UML, later approaches make use of multiple domain-specific (modelling)
languages (DS(M)Ls), each made just expressive enough for the concern it
targets and endowed with syntax suitable for its users. (Traditionally a program
in a DSL is expressed in text, while a model in a DSML is expressed diagrammat-
ically; but we have already observed that this distinction is superficial, and in the
context of DS(M)Ls the deliberately limited expressivity makes it easier, than
with general purpose languages, to provide both textual and graphical syntax
for the same language, and hence makes it even more difficult and unproduc-
tive to draw a distinction between program and model. We shall not do so, and
shall use the shorter term DSL from now on without intending to limit its scope
to textual languages.) DSLs can benefit their users by providing uncluttered,
straightforward means to access all and only the information required for a par-
ticular task; they can be provided with tooling which is efficiently usable; and
they are amenable to programmatic manipulation for synthesis, model-checking,
etc.

There is, of course, no such thing as a free lunch. The DSLs themselves and
their tooling have to be developed and maintained and, even with the best of
language engineering support, this carries a cost. The DSL’s users have to learn
them, and great care is needed to ensure that the initial effort of doing so really
is repaid by greater efficiency coming from the suitability of the language for the
task. Different users have different backgrounds and skills, hence they may need
widely different languages and tools. A poorly designed DSL can give the worst
of all worlds. Nevertheless, these problems and their solutions are becoming
well-studied and mainstream (see e.g. [15]).

Overall, DSLs are an important step forwards towards better separation of
concerns. However, concerns must still be related, so that eventually software
can be produced that is correctly modelled by all the models in the various
DSLs. In an ideal world, any decision is recorded in only one model, so that
all the human-modified models are orthogonal, with no dependencies between
them. Then models that combine information from several of them, including
ultimately the delivered software system itself, can be generated, unidirection-
ally, from them. Most DSL engineering still works on this premise, whether the
generation is done by transformations as usual in MDD, by global constraint
solving, or by another kind of search. From now on we focus on model transfor-
mations as the mechanism by which models are related. The term refers to any
program, however expressed, that has models among its inputs and/or outputs.

2.2 Bidirectionality

From the beginning, potential users of transformations recognised that the world
would not generally be ideal in the sense just referred to: the interesting Object
Management Group document [50], produced in the run-up to its call for pro-
posals for model transformation languages, records that the ability to resolve
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bidirectional dependencies between models was important to potential users of
such languages. Bidirectional dependencies, in which a change to either of two
models may necessitate a change in the other, arise because information cannot,
in fact, usually be partitioned between models. There is generally an overlap
between the information that must be included in one model, and that which
must be included in another, in order to allow the users of each to do their work.
Thus it is not generally enough to accept arbitrary current states of all the mod-
els expressed in their DSLs, and synthesise code from them. It can, and does,
happen that models get “out of sync”: they record inconsistent information, and
one or both must be modified before development can proceed. If only one of the
models is user-facing, the other being generated from it, then of course there is
no problem: we simply regenerate the generated model. However, if both models
are under the control of human developers then these modifications have to be
effected in a way which is acceptable to the humans. They may, for example, have
to sit down together, identify the root causes of the inconsistencies between their
models, and agree how to fix them. This can be an expensive, time-consuming
and error-prone process, because it inherently requires the humans to under-
stand information from outside their own model – precisely what DSL use was
intended to avoid.

We use the term bidirectional transformation (abbreviated bx) for an
automatic means of checking and restoring consistency2 between two (or more)
models, allowing for the possibility that a change in either might necessitate a
change in the other. In an earlier paper [43] I listed the following three criteria
as “the essence of bidirectionality”:

1. There is separation of concerns into explicit parts such that
2. more than one part is “live”, that is, liable to have decisions deliberately

encoded in it in the future; and
3. the parts are not orthogonal. That is, a change in one part may necessitate a

change in another.

Following the earlier observation about the superficiality of syntax, we call the
parts “models”, regardless of whether they are diagrams or text (including code),
or recorded otherwise. (“Everything’s a model”.) Where bidirectional situations
arise – and they do arise in any large cooperative software development – care
must be taken to manage the relationship between the models. They sometimes
need to be allowed to evolve separately – we say, to become “inconsistent” – for
a while, especially when the owner of one model is making changes that may
not prove to be durable [33]. At some points, though, it will be necessary to
bring the models into consistency with one another. This can be done entirely
manually, e.g. following discussion between the owners of the models. Restoring
consistency automatically is the job of a bidirectional transformation.

2 The now well-established use of the term “consistency” occasionally causes confusion.
Consistency can be any desired relation between the models: models are consistent if
the development they are part of is considered to be in a good state. The relationship
between this and logical consistency is discussed in [43].
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It is important to understand that, even though there may be many ways
to restore consistency between two models, this does not imply that the bidi-
rectional transformation must be non-deterministic, or must involve user inter-
action. It may do so, if desired: but the choice between different consistency
restorations can be programmed in the bidirectional transformation. Indeed,
this is the main job of the programmer of the transformation.

It has proved difficult to develop good languages and other technology to
support bidirectional transformations, partly because the requirements for such
a language cannot all be met simultaneously3. The various attempts have led
to a fragile tools problem, in which solution approaches, each balancing the
forces in different ways and making different compromises, are incompatible
with one another and have idiosyncratic (and often incompletely documented)
behaviour. Among other problems, we so far lack a principled way to allow
inter-operation of bidirectional transformations. That is, it is difficult or
impossible to manage a development that incorporates bidirectional transforma-
tions that have been developed in different ways at different times by different
people and expressed in different languages.

Thus these model-based approaches have not (yet) solved the capacity prob-
lem. Whilst powerful walled-garden tools such as JetBrains MPS4 can achieve
amazing results in skilled hands, this leads to lock-in at personal and organisa-
tional level; it prevents the combination of advantages from different approaches,
and makes network effects unavailable (although for commercial platform ven-
dors, such lock-in gives a short-term advantage). And, despite the bullish pro-
jection of its market size, low-code platforms are reasonably seen as a “fad”, the
latest in a long sequence of candidate silver bullets, because “anybody coding
really needs to understand what’s going on behind it all” [36]: that is, today, the
dependencies between concerns still have to be handled manually, which places
a heavy burden on the developer.

3 A Vision for the Future

In summary, in order to address the software capacity crisis we need principled
advances on several fronts.

1. Of course, we do need to continue to increase the productivity of today’s
best software specialists, that is, the speed at which teams of the most tal-
ented people – who can, for example, embrace techniques such as mechanised
proof and functional programming with sophisticated type systems – pro-
duce dependable software. This is the aim of the vast majority of software
engineering and programming language research today, but it is not the only
important avenue to pursue.

3 For example, it is extremely convenient if all one’s bx have the property known as
strong undoability, while not requiring auxiliary data beyond the models themselves,
but insisting on this limits expressiveness too much.

4 https://www.jetbrains.com/mps/.

https://www.jetbrains.com/mps/
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2. We need to reorganise software development, so that the effort of the most
skilled software specialists can be applied where it is most needed (e.g. writing
the bidirectional transformations that support the integration of concerns)
allowing technically easier tasks (e.g. updating a model of a single concern)
to be done by developers with less experience. Taking this to the extreme:

3. We need to distribute more of the decision-making about software’s behaviour
to people who are not software specialists, but are stakeholders in the soft-
ware, perhaps experts in some completely different domain.

Let us go into a little more detail about how such a reorganisation of software
development might look.

In future, rather than delivering a software system with fixed behaviour, and
standing ready to change it whenever the required behaviour changes, software
specialists should deliver something more like a cloud of potential software
systems:

– a collection of distinct model spaces, within which each stakeholder can
safely and easily change their decisions about how the software should behave,
using whatever tooling they find appropriate;

– within each model space, a starting model, which incorporates the specialists’
current understanding of what the stakeholders want;

– a mechanism, involving a collection of bidirectional transformations, for bring-
ing together the separate collections of decisions made by different stake-
holders and melding them into well-behaving software that meets all of its
requirements.

Here is a very simple example. Suppose that a system involves: a form-based
user interface, controlled by a UI designer; a database, controlled by a database
designer; and a report production engine, the format of the report being con-
trolled by an accountant. Let us suppose that data that needs to appear in the
report must be collected from the users and stored in the database: that is,
the consistency condition between the three models, that must be maintained,
includes this constraint. (It may, or may not, also say a lot more, such as that
data should not be collected from the user unless it is needed in the report.) If
the accountant modifies the report format to include some extra data, then the
three models will be considered inconsistent. It might be that the bx, delivered
with the model spaces, are capable of automatically restoring consistency, by
adding a field to the UI in a default, programmed way, and by adding another
column to the database schema (and creating any necessary migration scripts
etc.). Of course, not every change that a stakeholder wishes to make to their
model will break consistency with other stakeholders’ models. For example, fol-
lowing the change just discussed, the UI designer might decide on a better way
to collect the new data than the default one chosen by the bx, but this would be
entirely within the UI designer’s concern and would not affect consistency with
the other models. We would still like to have a mechanism for checking that
consistency holds.
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More generally, the vision is that whenever it turns out that – because their
requirements were misunderstood, or because they have changed – a stake-
holder’s needs are not served by the current software system, they can change
their own model within the provided model space. They can then use the bx to
update the whole software system accordingly, including automatically making
any necessary modifications to other stakeholders’ models. Only when something
is needed that is outwith the delivered cloud of software systems do software
specialists need to get involved again. Of course this will sometimes happen:
a stakeholder may need something that is not expressible within the provided
model space, or the provided bx may be unable to synthesise well-behaving soft-
ware from all the current needs of the stakeholders. The more expressive the
model spaces, and the more powerful the bx, the less often this will happen. As
usual we may expect to see a trade-off between effort invested up front and effort
likely to be required later; but we may hope there is potential to eliminate a lot
of routine maintenance work and a vast amount of stakeholder frustration, by
making easy changes easy. The reader who doubts whether this is possible
at all should observe that we already have a degenerate case of it: we expect
to have settings screens which enable us to modify the behaviour of software in
certain small ways which have no effect on other stakeholders. What is proposed
here is that we harness the power of bx to broaden the scope of changes that can
be automatically effected: an open question is to what extent this can be done.
Another, equally important, is “how do we get there from here?”.

Summarising the argument so far: we have understood the importance of
separation of concerns since Dijkstra gave us the phrase. We separate out a
concern by capturing all, and only, the information relevant to that concern in
one artefact – today we call this artefact a model. The language of this model
functions as a high-level, abstract language for expressing the part of the solution
relevant to the concern. This helps the developer by allowing them to focus
attention on the most relevant information, and by giving them the ability to
express their decisions concisely.

However, attempts to use such an approach to democratise the task of telling
a computer what to do have had very limited success, despite attempts going
back at least to the development of COBOL. Fundamentally this is because of
inadequate separation of concerns, which in turn results from a lack of support
for putting concerns back together again. It looked as though someone
could write a COBOL program without understanding full details of what the
computer would do as a result, but this was an illusion. If (as still generally
happens today) the developer is permitted to write only a comparatively small
model, but still has to understand how their model fits into the rest of the
development, what will be generated from it, etc., we may have saved them
typing, but we have not really relieved them of information overload; we have
simply handed them yet another power tool with which to manage it. To get
more benefit, it needs to be possible for a developer to understand in detail just
the model of this one concern. By taking that seriously as an aim, we can get:



366 P. Stevens

– benefits for software specialists, who are free to not spend brain space on
knowing a lot of detail about how their model fits with the rest of the system;
but even more

– the possibility of opening up the use of the model to people who are not
software specialists.

One might think that it is natural to concentrate on the first of these benefits,
taking software specialists as intended users, and only later expanding focus to
include non-software-specialists. However, aiming at the second possibility has a
crucial advantage for the technology developer. If the people using a model are
software specialists anyway, and especially if they already know a low-abstraction
way to solve the problem, then it may not be possible to overcome the startup
cost of learning to work with high-abstraction modelling languages and separate
bx. In the early stages at least, we are vulnerable to “I can code this directly,
faster”. Non-software-specialists are not vulnerable to this: they genuinely need
the abstractions, because the rest of their cognitive attention is on things other
than software. They therefore automatically get more benefit than software spe-
cialists do from using the new approach. This is the sense in which focusing on
the harder aim is sensible: it may actually make us more likely to succeed.

4 Bidirectional Transformations

We have argued that it is desirable that different stakeholders should be able
to work on different models, with the relationships between them maintained
automatically, and we pointed out that this has long been recognised. However,
even something as generic as UML-Java round-tripping has not been taken up
as widely as one might expect, because in practice the accidental complexity [22]
imposed by today’s tools is too high; so maintaining consistency between models
and code is perceived as an important barrier to the use of modelling [20,32,35],
despite the long-standing availability of tools that target exactly this problem.
If, rather than using general purpose modelling and programming languages like
UML and Java, we want to use custom-designed DSLs, better adapted to the
people using them, then we must also custom-design the means of maintaining
the desired consistency relationships between the models. That is, we must have
good ways to develop dependable bx. In this section we briefly consider the state
of the art.

Consistency checking and restoration can be done by programs written in
conventional – unidirectional – languages, and in practice, today’s bidirectional
situations are often handled that way. In the simplest formulation, we can write
three distinct, but related, programs that each operate on two models m and n
whose consistency is supposed to be maintained: one consistency-checker, which
returns true iff m and n are consistent, and two consistency-restorers, one that
returns an m′ which is a version of m modified to be consistent with n, and dually
one that returns a version n′ of n, modified to be consistent with m. However,
since the functionality for the consistency checking, and for the restoration in
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either direction, must then be written largely separately, it is tedious and error-
prone. For example, the structure of the models tends to get encoded in all
three programs, all of which must be updated if the structure changes. A bx
language is a language in which one artefact can represent all of these tasks.
A good example of what can be achieved today with bx languages is BiYacc
[51]: this domain-specific language allows a single bx program to represent both
a parser and a printer for the same grammar. Moreover, since BiYacc is based
on a body of bx theory, it offers “reflective” printing with guaranteed round-trip
properties, allowing it, for example, to avoid losing comments in program text
which is parsed, optimised, and printed again.

The design space of general purpose, unidirectional programming languages
has been extensively explored; although advances continue, much is understood
about the options for structuring, typing and supporting such languages. Despite
important advances in recent years, bx languages are nothing like so well under-
stood. A handful of languages have been developed [3,7,19,37,38] and a few have
had some success in applications [18,25]. However, they are very different from
each other, difficult to learn and practically impossible to combine. Classification
has been attempted [9] but is not yet mature. The Object Management Group
developed a standard for a bidirectional language, QVT-R [34], but the standard
has so many problems [5,41,42], including not only “accidental” problems but
also “essential” problems with the structure of the language, that with hindsight
this standardisation effort was premature.

The active Bx community, especially through its annual workshop and its col-
laborative events, brings together diverse constituencies – chiefly software engi-
neering, programming languages, databases and graph transformations – and
is making great progress in understanding the commonalities and differences
between approaches to bx (e.g. [21]). It has also built up a useful catalogue of
examples and benchmarks [1,6]. Nevertheless, the area is still desperately imma-
ture compared with that of unidirectional programming. We need experimenta-
tion with different languages to continue, but even more, we need investigation
into the foundations of such languages, to improve our understanding of the
design space of bx languages.

One axis on which approaches differ is which bx task should be uppermost in
the bx programmer’s mind. Let us explain in the special case of an asymmetric
bx, where one of the models being reconciled is a view which is a strict abstrac-
tion of the other, its source. (The term lens is often used for such asymmetric
bx, following seminal early work [13].) A programmer following a bidirectional-
ization approach [30] thinks principally of the get direction, from source to view,
and in practice the same is true of the programmer in lens languages such as
Boomerang [3]. There is a field explicitly called put-back based programming
[19] in which the put direction, which takes an updated view and a source and
updates the source, is primary. (One advantage of this approach is that the get
function is then determined by the put behaviour, given mild well-behavedness
assumptions.) Relation-based languages such as QVT-R, like constraint-based
approaches [24], put the consistency relation itself first in the programmer’s
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mind. Because this approach does not privilege one restoration direction, it is
suitable for writing symmetric bx, where each model contains information that
is not present in the other. These are ubiquitous in MDD: for example, source
code typically omits the use-case information from a UML model, but includes
detailed code which the UML model does not. In MDD understanding what it
means for models to be consistent is both easier and more important than under-
standing how consistency can be restored after it has been lost. It is more likely
to be specified correctly, and less susceptible to being generated automatically.

In summary, there is currently, for good reasons, a wide and growing range of
bx languages and the field is still in its infancy. Unfortunately, it is not straight-
forward to compose transformations written in today’s bx languages and this
situation is not likely to improve any time soon. So, in order to “get there from
here”, we need to tackle this problem. As so often in software engineering, we
may proceed by adding an extra level of indirection5. But first let us consider
the broader implications of having more than two models in play.

5 Specifying Networks of Models: Megamodelling

As we have seen, there is a bewildering variety of approaches to the problem
of maintaining consistency even between just two models. Until recently, most
work on bidirectional transformations was focused on this binary case. This
is unfortunate for our vision, since any non-trivial software system has more
than two concerns! Elsewhere in MDD, however, more complex configurations
of models were getting more attention. The term megamodel was coined by Jean
Bézivin [2] in recognition of the fact that the collection of models and their
relationships can itself be seen as a model (but that the term metamodel is
already in use for something quite different!)

Concretely, consider Fig. 1 as a small but not trivial example of how models
work together to separate concerns in software development. The diagram rep-
resents: a model M (say, a diagram showing the structure of the software to be
built, together with a use-case diagram giving an overview of its requirements);
a metamodel MM to which the model should conform; some Code; some Tests;
and a Safety model. The model M and the Code are supposed to be related by
a standard round-tripping relationship. For example, we might expect that
the same classnames will appear in the structure diagram as in the code, while
the detailed code has no equivalent in the model, and the use-case diagram has
no equivalent in the code. There are several different possible relationships that
might be desired between the Code and the Tests, for example a coverage cri-
terion might or might not be included; the diagram represents that a Safety
model, recording among other things whether the system is considered safety-
critical, may have an influence on what relationship is desired.

In principle, the requirements for a way of restoring consistency between sep-
arated concerns do not imply presenting the concerns in the form of a megamodel

5 See https://en.wikipedia.org/wiki/Fundamental theorem of software engineering.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
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MMM

Code Tests

Safety

m conforms to mm

roundtripconforms(m,code)

safeconforms(code,tests,safety)

Fig. 1. A small megamodel: models connected by desired relationships (from [45]).
Notation: lower-case model is instance of upper-case Model.

like this: we could in principle specify and restore a single, five-place consistency
relation expressing precisely which collections of models m ∈ M, code ∈ Code
etc. are to be considered consistent. This is impractical, however, for many rea-
sons. An important reason is that such a five-place consistency relation would
be entirely bespoke, and would be prohibitively costly to specify. Since it most
likely incorporates, conceptually, standard notions such as conformance between
a model and its metamodel, and roundtrip consistency between a model and
some source code, we would like to be able to reuse those bx, perhaps even buy-
ing them off the shelf. We expect, therefore, that some edges in a megamodel will
represent such off-the-shelf standard bx, while others may represent bx written
for a specific software system. Remember that, given the lack of a single best bx
technology, these bx may well be written in different languages and executed by
different bx engines. We should not assume any homogeneity or compatibility
between their formalisms.

Particularly when considering what future, better bx languages should be
like, one early question among many is: does it suffice to have languages in
which to express consistency, and its restoration, between just two models – we
say, languages to express binary bx – or do we need multiary transformations
(multx for short), to express and restore consistency relations between more than
two models? Fig. 1 illustrates a ternary bx between Code, Safety and Tests,
although the other edges in this megamodel are all binary. This question is
addressed in detail in [44]: here it suffices to say that in many situations it is
reasonable to proceed by putting together binary bx in a network of models.
Then each edge in the network represents a binary bx: a restorable consistency
relation between two models.

Even if, as in Fig. 1, edges are not restricted to being binary, it is useful to
express the consistency of a whole collection of models forming a megamodel
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by means of the edges in a network. The entire network is considered consistent
when every edge in it is consistent. To restore consistency in the network, we
apply the consistency restoration capabilities of each edge, in some sequence,
until, hopefully, the entire network is consistent. For example, we might apply
the roundtripconforms bx on the M-Code edge to update the Code with respect
to some changes in the model M, and then we might apply the safeconforms bx
to update the tests.

This approach has the advantage that it gives us a way to talk about the
overall consistency of the network, and even about how we restore consistency
in the network, even though the network is heterogeneous in both the expression
of consistency and the consistency restoration mechanisms.

Unfortunately, it is easy to see that we cannot hope for an arbitrary collection
of bx (even if they all happen all to be in the same language) to comprise a
complete solution to the problem of maintaining consistency in the network.
As explored in [44], several problems can arise. Most significant among them is
that when a model m ∈ M is connected by bx to several other models in the
network, restoring consistency in the whole network requires that an m′ ∈ M
be found which is consistent with all its neighbours. Even if each individual bx
can restore consistency with one of m’s neighbours, such an m′ may not exist.
Even if it does, reaching m′ from m may not be possible using any sequence of
applications of the consistency restoration procedures of the individual bx. And
even if there is a simultaneous solution and it is achievable, we may not have
confluence: that is, the eventual result achieved may depend on the order (and,
in general, direction) in which bx are applied.

6 Restoring Consistency in Megamodels

The problem of how to reason about the restoration of consistency in a network
of models can seem overwhelming. Even if we start with a collection of bidi-
rectional transformations that are, in principle, adequate, how on Earth do we
manage the process, avoiding confusion caused by the problems just discussed,
viz., that solutions may not exist or may not be unique? There may be no prac-
tical alternative to doing some “fixing up” in order to make bx incident on the
same model “play nicely together”, e.g. preventing the second bx applied from
undoing some necessary change made by the first; but requiring even a triv-
ial amount of manual work to be done after applying the bx negates some of
the value of using the bx. It is especially damaging to our vision of consistency
restoration being done without reference to software specialists.

An example (from [45], referring again to Fig. 1) illustrates. Consider the bx
incident on the Code (a particular instance will be referred to as code following
our standard convention), and think about the problem of using these bx to
change code so as to bring it into consistency with its neighbours. (For the sake
of giving a simple example, we suppose that in this situation only code must be
altered – we say, its neighbours are for the present authoritative, that is, must not
be altered by the automated consistency restoration process.) For concreteness,
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– Suppose the roundtripconforms edge requires that every class in m’s class
diagram should have a corresponding (in some sense we need not go into)
Java class in code. When the bx’s consistency restoration is invoked in the
direction of code, then if there is a class in m with no corresponding class in
code, one will be generated. No comments will ever be inserted in the Java.

– Suppose the safeconforms edge requires (among other things) that every
Java class in code corresponds to a test class in tests, unless the Java class
is marked with a special comment (// Not Yet To Be Tested or similar).
When this bx is invoked in the direction of code, any Java class that has
neither that special comment nor a corresponding test class will be deleted.
If there is a test class that lacks a corresponding Java class, then a Java class
will be generated.

First, observe that the order in which these bx are applied matters (we say
that they are not non-interfering [44]). One reason why this is so is that each of
the two bx will generate a missing Java class if necessary. Consider the case that
the “same” class exists in m and in tests, but there is currently no corresponding
class in code. Then the first bx to be applied will generate Java code for the
missing class, after which the second one will find the Java code already present
and not need to generate it. However, it may be that one of the bx is better at
generating useful Java code than the other. We would like human intelligence,
not an automatic framework that proceeds in ignorance of the specific setting,
to be making the choice of order of application of the bx, so that the better code
generator is used.

More interestingly, consider a case where a class is present in m, but not
in either code or tests. Here neither order of application of the available bx,
without adjustment, will succeed in restoring both the consistency relations. For
if roundtripconforms is applied first, it will create a Java class – but because
it does not insert the special comment, application of safeconforms will then
delete it again, breaking consistency according to roundtripconforms. On the
other hand, if safeconforms is applied first, and then roundtripconforms, the
result will be that a Java class is present in code, without the special comment,
but is not present in tests, so the safeconforms consistency relation does not
hold. However, some intelligent “fixing up” can easily solve this problem. What
we want to do is:

1. apply the roundtripconforms consistency restoration first, possibly creating
new classes in code, then

2. add the special comment to any such new classes, before
3. invoking the safeconforms consistency restoration.

In this way, a fully consistent state may be reached even though this would not
be possible with any combination of the bx unaided. Of course, a human could
carry out this procedure, manually invoking the bx and doing the “fixing up” as
necessary. But in order to realise our vision of most software maintenance taking
place without the involvement of software specialists, we need to automate the
whole process.
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Alongside tackling these semantic issues and ensuring that consistency can be
restored in a sensible way, we also note that, in practice, model transformations
can be computationally expensive and it will be important not to do unnecessary
work. We will want to avoid applying model transformations in situations where
we “should know” that they are not required.

It turns out we can make progress on all of these problems via the observation
that the problem of restoring consistency in a network of models is closely related
to the problem of software build, where both correctness (ensuring that software
is built correctly from its sources, according to the build rules, incorporating the
latest changes to every source) and optimality (ensuring that no unnecessary
compilation etc. is done) have been the subject of extensive study. Work by
Erdweg et al. on the pluto build system framework [10] is especially helpful:
it gives us the means to handle the problem of wanting human intelligence to
control the application of the bx and any necessary “fixing up”, as follows.

For each model that might need to be modified in the process of restoring
consistency overall, there is a builder which owns the responsibility of doing
that modification. That is, this builder controls the invocation of any bx that
will modify this model, and does any necessary “fixing up”. The builder is a
program: it might be a very simple one, which simply invokes one or more bx
in a fixed order, or it might be arbitrarily intelligent. The effect is to allow the
inter-operation of heterogeneous technologies; eliding some details, the builder’s
key post-condition is simply that, on successful completion, this model should,
somehow, have been brought into consistency with its (relevant) neighbours. The
builder provides the extra level of indirection advertised earlier.

Space forbids telling the full story of how the builders cooperate to restore
consistency in the megamodel as a whole. To cut a long story short, it turns out
that the pluto framework [10] can, with care, be adapted to our needs: provided
that we write builders obeying some natural constraints, pluto can manage the
invocation of the right builders in the right order, so that (if the build completes
without error) consistency is restored in the relevant part of the whole network,
without any unnecessary work having been done.

Key ingredients of the adaptation are:

– the decision to adopt a “pull” rather than a “push” model: rather than rolling
changes in one model out through the network, a build request produces a
version of a specified model, which has been brought into consistency with
its dependencies (transitively, but without modifying any model on which the
specified model does not depend);

– the use of an orientation model to capture project-level decisions about which
models may be automatically modified (and which are authoritative, i.e. may
not be modified right now) and in which direction bx should be applied (hence,
which model takes priority, right now, in the case of conflicts).

For more details, see [45].
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7 Further Work Needed to Realise This Vision

Programming. This vision has not, by any means, eliminated the need for pro-
gramming. What it has done is to concentrate it. Someone has to program the
bx, and the builders. There is something to be said for having the builders all
in Java, or another general purpose language, but, as mentioned in Sect. 4, it
is advantageous to write the individual bx in a specialist bx language. We have
already remarked that the development of bx languages is in its infancy, and “bx
programmer” is not yet a career. Perhaps it will be in future.

Modelling. Achieving separation of concerns which is effective enough to make
it genuinely practical for non-software specialists to change the behaviour of
software by using only their own model, without needing to understand the rest
of the system into which their model fits, requires excellent support for both
developers and users of DSLs. It remains to be seen how far the idea can be
pushed, but it is a field which is already active [15].

Explainability, verification, validation. More challenging may be the need to
achieve overall dependability of the framework into which the DSLs fit. When
the consistency restoration process produces results that surprise someone, how
can they tell whether there is a bug that should be reported? And, if the con-
sistency restoration process fails – e.g. because different stakeholders have made
decisions for which no simultaneous solution exists – what then? We will need
explainability beyond anything achieved so far.

The correctness and optimality of any framework realising the vision sug-
gested here is both crucial and subtle. Megamodelbuild [45], building on pluto
[10], is supported by hand-written proofs, but, especially in order to explore
more flexible variants, mechanisation is desirable. This is work in progress.

Enabling gradual adoption. Something which is both a challenge and an oppor-
tunity is the flexible range of possible ambition inherent in this approach. At
the least ambitious end, we could have a set-up in which all we can do is check
consistency: every builder checks consistency of its model with relevant neigh-
bours and fails if any inconsistency is found. This might already be very useful,
even if the actual restoration of consistency has to be done manually following
meetings between stakeholders (and presumably, in this case, involving software
specialists). For example, it would permit any stakeholder to make any change
that does not break consistency. Over time, the builders, and the bx that they
apply, could be replaced by more sophisticated versions that can more often suc-
ceed in restoring consistency automatically. We could even envisage a learning
framework, in which the consistency restoration processes become automatically
more powerful over time, as they incorporate knowledge of what humans do to
restore consistency so that the next time a similar change is required it can
be made automatically. There is intriguing crossover with artificial intelligence
(principally good old-fashioned AI rather than machine learning, though that
too might have its place).
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8 Conclusions

In this paper I have argued that we need a radical change in how software is
conceived, developed and delivered. Without it, we have little hope of solving the
software development capacity crisis. I have suggested that a reorganisation of
software decision-making that empowers stakeholders to take more of the deci-
sions pertaining to their own concern has potential. To make this a reality we will
still need all the old programming language skills, but they will be directed to
where they are most needed: programming the consistency checking and restora-
tion processes. If achieved, this vision might deliver more flexible software for us
all; but many challenges need to be met to make it a reality.
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Abstract. Model-based software engineering plays an increasing role in
system development. The abstractions offered by models provide a basis
for tasks such as analysis, synthesis, and automated reasoning. However,
like traditional software engineering, model-based engineering must also
deal with challenges that arise during system evolution, including require-
ment changes and platform updates. This paper describes our vision for
a model-based workflow for adaptive software that reduces the burden
caused by evolution. Our vision includes a modeling paradigm centered
around the concepts of objectives, intents, and constraints, which define,
respectively, (1) what the system must do in terms of domain-specific
abstractions, (2) the concretization choices made to refine a model into
implementation, and (3) the system requirements not expressed in terms
of domain-specific abstractions. We also discuss a vision of integrated pro-
gram synthesis via refinement in a theorem prover.

1 Introduction: Trends in Software Development

Software has become an essential part of all technological systems today [25],
from the simplest household items to societal-scale systems. The proliferation
of software-based solutions to complex problems introduced dramatic changes
in the software development process as well. One change is that software is
created more through composition and configuration [23]: developers build com-
plex applications upon large and complex frameworks and from sophisticated
libraries, or systems from existing (software) systems by making them inter-
operate. Another change is the need for continuous evolution and development:
software systems are continuously being updated, due to market pressures,
including new requirements, as well as due to the discovery of latent security
flaws [28]. New releases of less complex ‘apps’ come out almost weekly, while
even more complex software systems (for desktops) are updated monthly.

Such a radical change in the software development paradigm necessitates
agile processes that quickly lead from changes in requirements to updated soft-
ware. Arguably, today this is done mainly by sheer manpower, and there is very
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little automation involved. We argue that the next step in model-based software
engineering (MBSE) should focus on this problem. In this paper we present a
vision for a next-generation approach to MBSE that aims at addressing this
issue. The approach is based on tightly coupled models of salient aspects of soft-
ware and its development, as well as the use of program synthesis methods for
software evolution and adaptation.

2 Background: MBSE Today

Model-based software engineering (MBSE) is predicated on the assumption that
models capture salient properties of software, on a higher level of abstraction
than conventional code, and that this makes developers more productive, espe-
cially if models are directly compiled into code. In conventional MBSE, the main
products of the software developer are: (1) the Application Model, i.e., a rep-
resentation of the (typically) object-oriented design of an application; and (2)
the software artifact, i.e. compilable and executable code [29]. If automatic code
generation is used at all, the models are translated into code, but code is often
produced (or modified) by significant manual effort. In observed industrial prac-
tice, models are often used for communication [15]: documentation, explaining
the design, demonstrating (expected) behavior, etc., and, sometimes, for code
generation, with a few notable exceptions, like Simulink/Stateflow [10], where
the models are the code. Another example is DIME [4] where models are con-
sidered as the code, and, respectively, the single source of truth.

There are two major variants for the use of modeling languages in MBSE
today: one is based on the general-purpose Unified Modeling Language (UML)
standardized by the Object Management Group, and the other one is exemplified
by Model-Integrated Computing (MIC) [33] (Fig. 1), which is based on narrow-
scope Domain-Specific (Modeling) Languages (object-oriented design and thus
UML being one of the potential domains). UML is the de facto standard for
industrial MBSE and there are several tools available. While UML is well-defined
(and it even includes an executable, object-oriented programming language), it
suffers from the problem that it does not provide for domain-specific constructs:
all conceptual constructs must be expressed in terms of UML, which, in this case,
increasingly looks like a higher-level programming language. Note that UML
support ‘profiles’ through user defined stereotyping [11], but they do not imply
a concrete, diagrammatic or textual surface syntax. In MIC, domain-specific
modeling languages (DSML) are used to express application domain concepts
that are used to construct the software. Note that this approach subsumes UML-
based MBSE. MIC developers define DSMLs, implement code generation and
analysis tools for those languages, and then use domain-specific models to express
the software to be built. The cost of building DSMLs for a domain (or a software
product line) is amortized over all the software variants that could be built with
such tooling. Our claim is that for large-scale development of complex software
product lines, with high configurability requirements, this approach can make
developers very productive and the code produced high-quality.
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Fig. 1. Model-integrated computing.

In conventional MBSE there are additional models not always expressed in
an explicit form: the model of the application domain (i.e., the abstract concepts
of the ‘world’ in which the software operates), and the model of the ‘target’ (i.e.,
the implementation platform that could be the instruction set of a real or a vir-
tual machine or a set of services provided by a software platform, framework, or
operating system). The former may be directly “implemented” in the model of
the application, and the latter is hidden in the “generation” step, which is imple-
mented by a specialized code generator or by the manual effort of the developer.
In this conventional scheme, when requirements change, the designer/developer
is expected to translate those requirement changes into changes in the applica-
tion model and/or in the code artifacts. If the code is changed, it is an extra
effort to change the models. As a requirement change may impact many parts of
the model and the code base, the size of the change in requirements can trigger
an avalanche of changes in the models and the code. If automatic generation is
used, the designer often has to figure out how the models should be updated
so that the generated code will address the new requirement(s). If automatic
generation is not used then the problem is even worse: both the model and the
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code base have to be updated, and then the correspondence between the two
has to be restored. Clearly this is neither practical nor scalable.

3 MIDAS: A Vision for Modeling

The technical approach of our vision is summarized in Fig. 2 below. The lower
part of the figure highlights where MBSE is today, while the overall diagram
shows the concept for our proposed extension. We plan to realize the overall
approach in a toolchain called MIDAS (Model-based Intent-Driven Adaptive
Software): an integrated development environment (IDE) that integrates the
models and supporting tools. For pragmatic reasons, MIDAS will leverage several
research products—existing tools that are used in practice—and build upon
this foundation. In the proposed new scheme we introduce a ‘Model Design
Language’ (MDL): a higher-level design language that supersedes the existing
MBSE approach in several ways, as listed below.

The goal of MDL is to represent as much knowledge as practically feasible
about the software system, including its requirements, its environment, its target
platform, as well as the process for synthesizing it (or its parts). This happens
through a set of models, expressed either formally (in a precisely specified model-
ing language) or informally, in natural language. A key feature of this language is
that such models are inter-linked, and such links (i.e., dependencies) are tracked
and maintained by tools. Listed below are the various models in MDL.

Objectives, Intentions, and Constraints (OIC). These models represent, at
a high level of abstraction, ‘what’ the system is expected to do (objectives), ‘how’
it is expected to do it (intentions), and under what ‘restrictions’ (constraints).
These models may be relatively less formal with respect to the other models of
the system, but they are to be linked to the other models, to provide traceability
and an opportunity for analysis. Our goal is to express conventional system
requirements as OICs.

Objective Model (OM). Objectives express what the system is expected to do.
A software system always operates in a domain, exhibits an expected behavior,
and interacts with various actors in an environment—hence the ‘Objective Mod-
els’ (OMs) shall be able to express these as high-level assertions. Note that OMs
must be linked to Domain Models (DMs), discussed below. A system is antici-
pated to have several objectives, which may be related to each other. Hence, we
envision a graph structure for objectives that makes the relationships explicit.

Intention Model (IM). Intentions represent decisions made by the devel-
oper based on input from the customer, about how the system should behave.
An intention can be a refinement of one or more objectives into more concrete
behaviors—a step towards a detailed specification; Sect. 4 below describes our
formal approach to concretization through program synthesis. By ‘concretiza-
tion’ we mean specific design and implementation choices that take the developer
closer to an actual implementation.
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Fig. 2. High-level technical approach.

Again, ‘Intention Models’ (IMs) are linked to DMs. IMs can also be related
to OMs—representing which objective(s) they are derived from. An IM is much
more specific than an OM; it may, for instance, include high-level models of
system behaviors, as finite state machines, etc. Intentions can also be organized
into a graph structure, but the relationships (represented by graph edges) will
likely have much more precisely defined semantics.

Constraint Model (CM). Constraints express restrictions on the system to be
built that the implementation has to satisfy. ‘Constraint Models’ (CMs) can be
informal (e.g. expected hardware capabilities) or formal (e.g. timing constraints);
they are linked to OMs, IMs, and DMs. The constraints must be verifiable: either
at design-time, or at run-time, the implementation has to satisfy all constraints.
Similarly to objectives and intentions, constraints form a graph where the nodes
are the actual constraints. The edges link the nodes to some system properties
(if the constraint is formal) or to some intention (if the constraint is informal).

The representation of objectives, intentions, and constraints is a challenge.
We envision that initially they are expressed informally, but possibly even then
in some structured form (e.g., [8]), and later refined into a more formal represen-
tation. The key concept here is that these models are not standalone documents
but are tightly linked to the other models.

Domain Model (DM). The DM makes the modeling of the software applica-
tion domain concepts explicit. Such models describe the conceptual structure of
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the ‘world’ the software artifact is operating in. Domain models are represented
in hierarchically organized concepts that are linked to each other via various
relationships, and have attributes capturing salient properties. Specific domains
often have domain-specific constraints (e.g. physical systems obey the laws of
physics); if relevant, such constraints will be expressed in the DMs as well. Note
that such constraints are different from the Constraint Models (CMs) described
above. These models capture the designer’s understanding of the domain, with-
out any relationship to implementation. The DM is built by developers who
understand the domain well.

As indicated above, OIC models are linked to DMs, as DMs provide the con-
text in which OIC models are interpreted. The linkage provides for traceability:
if an objective changes, a tool can immediately detect what intentions need to
be revised, what constraints need to be checked, and how these are related to the
domain concepts. In reverse, updates to the DM will enable tracking what OIC
models are potentially affected. It is expected that building the OIC and domain
models will take a significant effort (compared to straightforward coding). How-
ever, we argue that such modeling is worth the effort, as it helps and guides in
understanding what the domain of the system is, what the system is expected
to do, and under what restrictions. These models also have the added benefit of
helping identify which pieces of the formal synthesis (described in Sect. 4) may
need modification when requirements change. We plan to allow both formal-
ity and informality in the OIC models, to support accessibility for conventional
developers. However, the developers will be required to organize the OIC models
and link them to DMs: this is a critical, but easy-to-address requirement in our
approach.

Application Model (AM). Application model (AM). The AM represents the
actual implementation in the form of models, but it may also contain literal,
concrete implementation artifacts, like code fragments that are directly included
in the final engineering product artifacts.

We do not consider application modeling and application programming as
two isolated activities, rather as two ends of a spectrum: models are high(er)-
level programs that we should be able to mix with implementation code from the
other end of the spectrum. We envision a programming style where implementa-
tion code can refer to model elements while models can contain implementation
code1. To follow this principle, the AMs will allow the use and embedding of
implementation code into the model, as opposed to allowing only models. We
understand this carries a risk, as the (formal, potentially verifiable) models are
intermixed with (potentially flawed) implementation code. While it is an impor-
tant goal to move towards a completely formal development paradigm, the mixed
approach is a pragmatic compromise that seems acceptable to current developers.

The AM extends the traditional application model by (a) relating AM ele-
ments to DM elements, and (b) linking AM elements to explicitly expressed
1 This approach has been promoted by embedded and embeddable domain-specific

languages [34], as practiced in the MPS toolsuite [35].
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intentions and constraints. Note that not all DM elements are expected to have
a corresponding AM, and vice versa, but all AM elements should be related to
an intention. The AM is built by the application designers and developers.

The AM also has links to elements of the Target Model (TM), discussed
below. The software developer may decide to explicitly link AM elements (models
or code artifacts) to TM elements. Arguably, representing these dependencies
is critical as changing the implementation platform (i.e. the ‘targets’) has far
reaching consequences. As a minimum, the developer should be warned about
the invalidation of some models or code. In a more advanced setting, such a
change may trigger a re-synthesis of the target artifacts (as discussed below).

We do consider tests as integral part of the AM. Unit tests and integration
tests are expected to be developed together with the system, and they will be
linked to OIC models like everything else. We envision that such ‘test models’
will be used to verify that the system satisfies (formally modeled) requirements.

Target Model (TM). The TM makes the modeling of the ‘target’ or ‘imple-
mentation’ domain explicit. We envision that the ‘target domain’ is going to be a
software ‘platform’ for which compilable source code (or other software artifacts,
like Makefiles) should be generated. While the DMs represent the concepts of
the problem domain, the TMs represent the concepts of the solution domain. As
such, TMs are somewhat similarly organized to DMs: concepts, attributes, rela-
tionships, but they carry additional information, necessary for the automated
synthesis. Hence, TM will include models that are associated with parametrized
code (or data) templates that will be spelled out during the generation pro-
cess. The TM is built by developers who understand the target domain (and
its intricacies) well, but also have some experience with writing code templates
and generation. Note that the TM may also include code templates for unit and
system level tests.

Synthesis Model (SM). The SM is for the explicit representation of how
AM elements are mapped into code and data artifacts (that are compliant with
the TM elements). We envision that the SM will be built by skilled developers
who are ‘synthesis engineers’, familiar with the synthesis technology. Our goal
is to make the synthesis technology accessible to average developers, who may
already be familiar with language tools like ANTLR [24], or template engines
like Jinja2 [27].

We envision that some SMs are prefabricated and re-used across many appli-
cations (e.g. a synthesis tool that generates code from a finite state machine
model). Note that the SM may involve generation of many different artifacts:
production code, data, test code, etc. The SM is also used to generate changes to
the running system: we envision that the requirement changes can be addressed
by changing the configuration or properties of the deployed, active system. This
will be facilitated by the ‘Run-time Adaptation Script’ shown on the right, which
assumes a suitable adaptive software platform.

Formally, the SM defines the mapping from the AM to the TM. In other
words, given an AM, SM specifies how it should be translated into ‘artifacts’
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(code, configuration files, etc.) that are compliant with the abstract TM. The SM
relies on the APT program synthesis technology, described in the next section.

Note that Fig. 2 should be viewed in the context of an incremental and iter-
ative development process. In practice, objectives and constraints are stated
often before a high-quality domain model is available, although a domain model
is clearly necessary [3] as it provides the context in which to express objectives
and constraints.

In summary, our approach relies on highly interlinked models of the objec-
tives, intentions, constraints, domain, application, target platform, and synthesis
process. The product of the development process is synthesized and/or instanti-
ated executable code, plus other artifacts necessary for the further compilation
and/or deployment of the system. We envision that the synthesis system and
target models can be engineered to target a variety of languages.

4 Program Synthesis

As mentioned above, the synthesis model relies on automated program synthesis.
The APT (Automated Program Transformations) toolkit [6,7,18], extended with
new features, will provide this capability. We describe APT as it exists today,
how it can address adaptation in MIDAS, and our planned extensions.

APT realizes the classic ideas of program transformation and stepwise pro-
gram refinement in the state-of-the-art, industrial-strength theorem prover ACL2
[17]. Program development by transformation and stepwise refinement by now is
a proven approach, but it has some limitations, which our envisioned work aims
to bring a major step forward.

In our view, while completely automated synthesis of all the code for a sys-
tem is not practical, the interactive, tool-assisted program transformation and
stepwise refinement of critical software components is very feasible. Completely
automated synthesis is possible if the ‘automation’ has all the skills of a human
developer, but that implies that the human developer can explicate and for-
mulate all the skills s/he has, which is doubtful. Fully exhaustive search of the
solution space of algorithms and data structures is computationally infeasible,
too. Hence, the pragmatic solution is to provide assistance to developers to enact
the refinement and synthesis process, where the developer remains in ultimate
control. For this to be feasible, we envision (and have partially implemented
[14,31]) a library of generic program transformations.

In stepwise refinement [9,36], a program is derived from a specification via
a sequence of intermediate specifications. Several refinement notions and for-
malisms and tools exist, e.g. [1,2,5,13,16,21,22,32]. A derivation is a sequence

s0 � s1 � · · · � sn
C�→ p, (1)

where the specification s0 captures requirements, s1, . . . , sn are intermediate
specifications, p is the program that implements the specification, and � rep-
resents a formal refinement relation; the last step typically involves a code
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generator C that translates the suitably refined executable specification sn into
a standard programming language like Java or C.

Each derivation step represents a concretization decision, e.g. the choice of
a data structure or algorithm, or the application of a particular optimization.
As different decisions may be taken at each stage, a derivation is one path in
a tree whose branching nodes are specifications, whose branches are derivation
steps, and whose leaf nodes are implementations, as shown in Fig. 3. All the
leaves p, p′, p′′, etc. are implementations of the root specification s0; they all
satisfy the requirements captured by s0, but they may use different algorithms,
data structures, library functions, etc. In practice, the tree may be a graph, as
different paths may lead to identical nodes, e.g. if two or more “orthogonal”
transformations are applied in different orders.

Fig. 3. A derivation tree.

In refinement-based program synthesis, derivation steps are carried out via
automated transformations [6,7,18,19,30]. That is, given si, instead of writing
down si+1 and proving si � si+1 (‘posit and prove’), an automated transforma-
tion T is applied to si to generate both si+1 and a formal proof of the refinement
assertion si � si+1 (‘correct by construction’).

Applying a transformation T may require proving suitable applicability con-
ditions, from which a proof of the top-level refinement assertion si � si+1 is
automatically constructed by T . Proving applicability conditions is generally
simpler than proving the top-level refinement assertion: transformations help
reduce complex proof tasks to simpler proof tasks in a principled way.

In general a transformation T takes user-supplied parameters π that indicate
where to apply the transformation and that provide, if needed, information to
prove the applicability conditions. An example for a parameter could be a domain
constraint that states the arguments of a specification to be transformed will be
part of a domain (e.g. natural numbers), hence domain theories are applicable.

Using automated transformations for the derivation (1), for each i ∈ {1, ..., n}
we have Ti(πi)(si−1) = 〈si, prf i〉, where prf i is a proof of si−1 � si. Thus the
derivation can be represented as the sequence
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[s0; T1(π1); . . . ; Tn(πn)]. (2)

APT automatically produces (1) from (2): in particular, the program p is pro-
duced, along with an end-to-end proof. In the sequel, we generally use the term
‘derivation’ to refer to (2) rather than (1).

In regard to adaptability, consider the derivation path leading to the imple-
mentation p in Fig. 3. The implementation p is the “sum” of all the concretization
decisions made along the path, starting from the root specification s0. Besides
the essential properties required by s0, p satisfies other non-essential proper-
ties. The separation between essential and non-essential properties is not readily
delineated in p itself, but can be discerned in the derivation path. The particular
derivation path chosen is presumably adequate to, and informed by, the target
platform and other constraints/requirements not explicitly captured by the spec-
ification s0, such as performance requirements. A change in the platform or in
these non-explicit requirements may necessitate a different set of concretization
decisions, i.e. a different path in the tree, leading to a different implementation,
say p′. So, in this framework, adaptation amounts to re-derivation. But the re-
derivation need not be done from scratch: rather, it can be often constructed as
a “delta” from the existing one, rendering the task easier.

When certain requirements change, the root specification s0 changes, say, to
a new specification ŝ0. In this case, concretization decisions that start with the
new specification lead to a new derivation tree with intermediate specifications
ŝ1, ŝ1

′, ŝ2 etc., and with leaf implementations p̂, p̂′, etc.: picture a version of Fig. 3
where each node · becomes ·̂. If the new specification ŝ0 does not differ much from
the old specification s0, the two trees will likely not differ much from each other:
this means that an existing derivation from the old specification s0 can be often
adapted to a new derivation from the new specification ŝ0—again, adaptation
amounts to re-derivation, which is generally easier than building a derivation
from scratch. This is depicted in Fig. 4, which shows the general case in which
s0 changes to ŝ0, but also applies to the case in which ŝ0 = s0. These two cases
are not fundamentally different, as platform requirements can be incorporated
into specifications [5].

While program development via stepwise refinement, with or without auto-
mated transformations, has been successfully used in many domains, a significant
amount of expertise is currently needed. Thus, we plan to extend APT as follows
for MIDAS.

The Syntheto Front-End Language. Currently, the requirements and inter-
mediate specifications s0, s1, s′

1, ŝ0, etc. are written in the ACL2 language, which
may be unfamiliar to many developers. Therefore, we are developing a front-end
specification language, called Syntheto, that is more familiar to developers. Syn-
theto uses a Java-like syntax, and has built-in strong typing. Syntheto syntax
is translated to ACL2 syntax, and the Syntheto types are translated to ACL2
predicates. We are also developing a reverse translation from ACL2 to Syntheto,
used for the code generated by the APT transformations.
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Fig. 4. Adaptation at the derivation level.

Higher-Level, More Automated Transformations. When constructing a
derivation [s0; T1(π1); . . . ; Tn(πn)], the developer must pick the individual trans-
formations T1, T2, etc. to apply and their order, as well as (where needed) their
parameters π1, π2, etc. We plan to reduce this effort by increasing automation
at two levels. (i) At the level of an individual transformation T , the choice of
the parameters π could be partially or completely automated, sparing the user
from supplying most or all of the information. Some initial experiments that
we have carried out in this direction have been encouraging and give us con-
fidence that we can significantly increase automation at this level. (ii) Besides
automating the choice of π in a single transformation T (π), more automation
can be also achieved in the construction of the sequence of transformations
T1(π1); . . . ; Tn(πn), or at least sub-sequences of it. Our idea is to build a deriva-
tion finder that attempts to construct such a sequence, based on an examination
of the specification.

Scaling to Complex Systems. A key question is whether the set of avail-
able transformations is or will be “complete”, i.e. sufficient to build all foresee-
able systems. It has been our experience that the more derivations are built,
the fewer new APT transformations are needed. Furthermore, to address future
cases in which new transformations (or extensions to existing transformations)
are needed, we will investigate approaches to enable developers to not only use
transformations, but also implement transformations. APT transformations are
currently implemented in ACL2 as the programming language (not just as the
language being transformed), and therefore require knowledge of ACL2. How-
ever, if we view APT transformations as a kind of application, then we should be
able to use MIDAS, and APT itself under the hood, to synthesize new transfor-
mations. This could evolve into a domain-specific sub-tool of MIDAS for devel-
oping new transformations.
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5 Comparison

We argue that current standards, notably UML, does not directly support the
approach as envisioned. While UML includes a number of languages, it lacks
the language categories of MDL. Also, some aspects (e.g. the Synthesis Model)
are completely missing. Furthermore, we consider the linkage among models as
first class concepts in the language, essential to the adaptation of the software
to be produced. Arguably, such links are not necessarily expressed in concrete
(diagrammatic or textual) syntax, but rather tool supported, hence their pre-
sentation is indirect.

The syntax and precise semantics of MDL is to be defined, but this clearly
must be driven by the needs of adaptive software development. We argue that
diagrammatic and textual expression formalisms should be both allowed—but
probably not interchangeably. We argue that both diagrams and text are render-
ings of some underlying data structure (e.g. an abstract syntax tree for program
text or an attributed typed graph for models), and ultimately what matters (i.e.
edited, stored, managed) is this data structure. Whether the actual editing hap-
pens via a (syntax-driven) text editor or a diagram editors, is of less importance.
What is important is how rapidly the constructs can be created and modified
in a form that is easy to understand. One promising direction here is to use
a textual representation for editing and an automatically generated diagram
corresponding to the text [12].

The envisioned Application Model represents the final ‘product’: the imple-
mentation, but it may also include: (1) concrete models from which code can
be immediately generated (e.g. state machine diagrams), (2) high-level specifi-
cations for behaviors from which code can be synthesized (using the synthesis
approach described above), as well as (3) hand-written code. We recognize that
not all code will be generated or synthesized from models, but rather hand-
crafted by skilled developers. Such code must be allowed and included in the
development tools, and connected to the models (as all other artifacts in the
IDE).

The main goal of MDL and its underlying tooling by the MIDAS IDE is to
support evolution and adaptation. We envision that all, integrated models will
be stored in a version-controlled, append-only graph database, in the style of
[20]. The version control is over the state of the (very large) graph representing
a particular state of the development process, with all, cross-linked artifacts
stored as graphs included. Adaptation happens by making changes in various
models (e.g., objectives, constraints, etc.). The support tool should determine
which linked or derived models are (or should be) affected, and, in some cases,
possibly automatically perform the adaptation. Naturally, this requires a high-
performance graph database, however recent developments (e.g., [26]) indicate
the feasibility of the approach.

A key problem with MBSE in general is that developers often consider model
construction an extra burden over producing the working code. We argue that
this needs to change by providing better tools to developers that can seam-
lessly integrate code-based and model-driven development. Using an integrated
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database for all artifacts: models, code, requirements, etc., as postulated in
MIDAS could be a step in this direction.

6 Conclusion

We presented our vision for an advanced model-based software engineering
framework that is responsive to requirement changes and the resulting evolu-
tion. Our vision includes a higher-level ‘model-design language’ with models for
objectives, intents, and constraints. We also rely on explicit ‘application design’,
‘target platform’, and ‘synthesis’ models which are highly interlinked to provide
traceability when parts of the system evolve and requirements change.

We also envision formal program synthesis via stepwise refinement as an
integral part of this vision. The central idea is that when requirements change,
the root specification is updated, and that many of the existing derivations can
be re-used. In other words, an existing derivation (which concretizes a specifi-
cation into an implementation) can be adapted to a new derivation using the
updated specification (i.e., the updated requirements) resulting in synthesized
code that conforms to the updated requirements. Ideally, changes made to the
various models would generate a list of changes potentially needed in the formal
specification and/or refinement steps.

We believe this combination of modeling and program synthesis provides an
exciting and novel opportunity for model-based software engineering and evolu-
tion. We argue that software development will move from the current approach
that is highly (source) code-oriented and that relies on version control of code
modules towards a more artifact-oriented paradigm that is supported, possibly,
by a version controlled graph database. By ‘artifact’ we mean all “documents”:
specifications, models, program synthesis transformation rules and their appli-
cations, source code, tests and test results, etc. that constitutes the body of the
software system. These artifacts will be stored in a form that allows overall ver-
sion control and, most importantly, linking across the artifacts. Developers will
interact with these artifacts via a collaborative environment, where changes are
tracked and propagated, assumptions verified, and synthesis steps re-enacted,
as needed. Obviously, significant improvements in the development tools are
needed, and possibly the entire interaction paradigm has to be re-designed. How-
ever, the increasing complexity and the need for the continuous and sustained
evolution of our software systems will necessitate these changes.
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generally of the Cyberphysical Systems realm, the quest towards a plat-
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1 Introduction

The manufacturing industry in the context of Industry 4.0 demands automated
and optimized production lines and is moving towards connected and smarter
supply chains processes [25,60]. Cyber Physical Systems (CPSs) are core building
blocks of future factories [41] and researchers believe that, with the emergence
of systematic industrial integrations of ICTs and external information systems,
CPSs will contribute towards “smart anything everywhere” in particular also
smart cities and smart factories [18]. This medium-to-large scale industrial inte-
gration implies interoperation of interconnected, heterogeneous virtual and phys-
ical entities and devices towards a shared goal [5]. Interoperation includes real
time data from machines, production lines, IoT devices, networks, programmable
logic controllers and external systems into a smarter, connected manufacturing
systems [9].

In this context, the integration and interoperability among all these entities is
a key challenge for the success of Industry 4.0. Due to architectural convergence,
the holistic integration challenge can be organized in three levels [51]:

1. Physical Integration, handling the connectivity and communication among
devices.

2. Application Integration, dealing with the coordination and cooperation
among different software applications and data stores.

3. Business Integration, covering the collaboration between different func-
tions, processes and stakeholders.

In this context, considering the “reprogrammable factory” vision brought
forward within the CPS Hub of the Confirm research centre [32] and the high-
level depiction in Fig. 1, we find a broad correspondence between the three layers
above and the three layers implicit in the picture. The Digital Twin is there a
“sosia” of any individual component, software or process, and the Digital Thread
is a fitting analogy for the role played by any integration and interoperability
layer delivering that ability to communicate and cooperate. Ideally, the digital
thread should not be provided through a myriad of scripting quick fixes, nor
through a vast patchwork of bespoke technologies, that may be adequate serve
individual point-to-point interfacing needs, but become a nightmare to under-
stand, test, validate, manage, and evolve.

In Fig. 1, the Digital Thread is the collection of blue lines (solid or dotted),
that manage the communication and interoperation between the Business layer
(at the top), the integration and communication middleware and their platforms
(like e.g., EdgeX foundry) as well as the Digital Twins, both at the Application
layer (in the middle), and the myriad devices, machines, sensors, dashboards,
and more at the Physical layer, which may also include software for SDNs,
SCADA, analytics, AI and ML, and more.

If properly provided and managed, these many heterogeneous vertical and
horizontal integrations can enable CPSs to leverage the many advances in indus-
trial systems, big data, AI/ML and cloud computing systems. This way, the
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Fig. 1. Confirm HUB CPS – the Reprogrammable factory vision (source: Confirm
HUB2)

seamless integration needs advocated by leading technology providers, vendors,
and end-users [17] can be fulfilled.

The IEEE defines interoperability as “the ability of two or more systems or
components to exchange information and to use the information that has been
exchanged” [14]. The author highlighted this need and introduced best prac-
tices to develop smarter applications rather than fragmented applications [61].
Literature shows that five categories of interoperability can have quite different
arrangements [49]:

1. Device interoperability
2. Network interoperability
3. Syntactical interoperability
4. Semantic interoperability
5. Platform interoperability

The effort of building interoperable systems is an outstanding challenge in the
adoption of new technology. The integration layer is too frequently neglected and
left for developers to solve as a side issue. This means that a number of experts
are required over and over again to reprogram these complex systems in accor-
dance with evolving needs and standards. This is a time-consuming and expen-
sive task [45], and such systems are hard to produce and difficult to maintain.
The author [23] also concluded that manual integrations between APIs reduces
the agility, and that inaccuracies in the integration may also lead to financial
losses and unexpected delays in production. CPSs are typically embedded into a
more complex system via interfaces, so modularity (plug and play) and autonomy
are important enablers to adapt the upgrades and reconfigurations effectively, in
accordance with rapidly changing customer needs [24]. Trustworthy interoper-
ability both at the vertical and horizontal level is critical for setting up Industry
4.0 operations [17].
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Model-driven development (MDD) is an approach to develop complex sys-
tems using models and model refinement from the conceptual modelling phase
to the automated model-to-code transformation of these models to executable
code [38]. The main aim [52] of MDD is to produce flexible, cost effective and
rapid applications, that are adaptive to enhancements and less complex is terms
of maintenance. Achieving this on the basis of direct source code editing is
costly, and it systematically excludes the application domain experts, who are
the main holders of domain knowledge and carriers of responsibility. At the same
time, the cost of quality documentation and training of new human resources
for code-based development are other urgent concerns today in companies and
organizations that depend on code.

For an adequate, scalable and possibly general and evolvable solution to the
interoperability challenge, we propose instead to use adequate, modern software
platforms based on model driven development concepts, paying attention to
choose those that best support a) high assurance software and systems, b) a fast
turnaround time through agility and a DevOps approach, and c) an inclusive
understanding of the stakeholders, where few are professional coders. Therefore
we adopt a low-code application development paradigm, combined with code
generation and service orientation.

The paper is organized as follows: Sect. 2 introduces the digital thread con-
cept and its relation with interoperability. Section 3 discusses the low-code envi-
ronment platform we use to develop the digital thread platform itself. Section 4
describes the current status of the platform: latest integrations, ideas and
enhancements that benefits the bootstrapping of components in the smart manu-
facturing domain. Section 5 addresses the specific questions posed by the Special
track organizers. Finally, Sect. 6 concludes and sketches the planned future work.

2 Digital Thread in the Middle – Interoperability

Digital Twin and Digital Thread are two transformational technological elements
in digitalization of the Industry 4.0 [47]. The Digital Twin covers individual
aspects of physical assets, i.e., their virtual representation, their environments
and the data integrations required for their seamless operations. Digital Twins
and AI models are the two kinds of models that the manufacturing Industry has
meanwhile accepted as useful. However, they are not the only ones. A Digital
Thread connects the data and processes for smarter products, smarter produc-
tion, and smarter integrated ecosystems. In the modern era, the Digital Thread
provides a robust reference architecture to drive innovation, efficiency and trace-
ability of any data, process and communication along the entire system (or sys-
tem of systems’) lifecycle. This is a new, much more structured and organized
way to look at integration and interoperability. It is unfamiliar to the manufac-
turing world, and it is also still unfamiliar to many in some software engineering
communities.
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For this new paradigm to enter mainstream, systems and their models need to
be connected through an integrated platform for automatic data and process
transformation, analysis, generation and deployment that should be able to take
systematic advantage of the formalized knowledge about the many immaterial
and material entities involved. Referring to Fig. 1 again, data and operations
from and to any of the heterogeneous elements (component, subsystem) in the
picture, should be mediated (i.e., adapted, connected, transformed) through the
Digital Thread platform, which becomes both the nervous and circulatory system
of the overall system:

– The nerves, as whatever is sensed needs to be sent to the decision systems
and the commands then relayed to the actuators.

– The circulatory system, as plenty of data is moved in order to “nourish” the
information-hungry services that store, aggregate, understand, visualize what
happens in the system, increasingly in real time or near-real time.

The choice of which concrete IT system to adopt for this central role is not
an easy one, and it is not a choice that can be amended or reversed easily
later on. The properties of the Digital Thread will depend very intimately on
the characteristics and features of the IT platform on which it bases: whatever
the IT platform does not support will be difficult to overlay a posteriori, and
whatever is easy in that platform will likely be adopted and become mainstream
for the community of users.

Bearing in mind all the desired characteristics, we chose DIME [8] as the IT
platform of choice underlying the Digital Thread solution.

3 The Underlying Low-Code Development Environment

DIME is an Eclipse based graphical modeling environment developed with the
Cinco SCCE Meta Tooling Suite [42] It is a low-code application development
environment that follows the philosophy of OTA (One Thing Approach) [34]
and the eXtreme Model Driven Development paradigm [36,37] to support the
design, development, and deployment of (originally web) applications in an
agile way. DIME empowers application domain experts that are not proficient
coders/programmers to fully participate in the entire design, development and
evolution process because it supports easy modelling, done by means of drag and
drop of pre-existing components. For separation of concerns, DIME supports sev-
eral model types that express distinct perspectives on the same comprehensive
model. This “write once” rule is the essence of the coherence by construction
principle central to the One Thing Approach. The DIME model types encom-
pass:

– A Data model, which covers the persistence layer (both types and relations)
of the application in a form similar to a UML class diagram.

– A collection of Process models, that define the business logic on the basis of
internal and external libraries of basic functionalities provided by means of the
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Native DSL mechanism. Each DSL exposes a collection of SIBs (for Service
Independent Building blocks), that are reusable, instantiable and executable
modeling components with either an associated code implementation or an
associated hierarchical process model.

– A collection of GUI models, defining the elements (look and feel, actions
and navigation) of the pages of the web application, and

– Security and Access control models, mainly handling the security and
access permission aspects of the application.

This is different, for example, from the standard UML models [50]: UML and
related tools support a variety of different model types (static, like UML class
diagrams and DIME’s Data model, and dynamic like UML’s activity diagrams
and DIME’s process models) serving different purposes, but those models/model
types are not connected among each other. Therefore, it is very easy in UML
to breach consistency of the overall model collection, because changes do not
propagate from one model to the other.

We value DIME’s characteristics of open source, flexibility, ease of extension,
support of high-assurance software quality, agility, service-oriented approach,
and containerization. For the specific low-code support, its model-driven app-
roach is based on DSLs at two levels:

1. Language DSLs, as a mechanism to design and implement the application
design environment itself, i.e., the Integrated Modeling Environment (IME),
and

2. Application domain DSLs, at application design time. We want to use
Native DSLs as the means to integrate and expose collections of capabilities
offered by end devices and other sources of functionalities to the application
designers, and Process DSLs as the means to foster reuse of medium and
large grained business logic across applications.

As different models cover different aspects of the target application, to ensure
the intended behavior each model of the application is validated at compile time
both at DSL and platform level for syntactic and semantic errors. After vali-
dation, these models act as input for subsequent model-to-code transformation
phases. The key design principles of DIME are simplicity [39], agility [35] and
quality assurance [59], hence, DIME is a promising “game changer” low code
development environment (LCDE) for the realization of sophisticated web appli-
cations in tremendously shorter development cycles.

4 Digital Thread Platform: The Current Status

We target the application domain of advanced manufacturing including man-
ufacturing analytics. Accordingly, we intend to support the conception, design
and implementation of a set of applications, like for example robotics navigation
and control, proactive maintenance, MES monitoring, but also analytics dash-
boards that analyse or summarise in real time or near-real time data provenient
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Fig. 2. Architecture Overview of DIME and Custom DSLs

from various systems and subsystems of a complex, possibly distributed produc-
tion plant. In this context, data, processing and communications are expected
to concern a large variety of devices, data sources, data storage technologies,
communication protocols, analytics or AI technologies and tools, visualization
tools, and more. This is where the integration of external native DSLs plays a
key role. The current architecture of the Digital Thread platform is depicted in
Fig. 2.

We see that DIME’s Language DSL, used to design the applications, encom-
passes for the moment in the advanced manufacturing setting primarily the Data,
Process and GUI models.

We also see that already a significant variety of external platforms (like
EdgeX for IoT), technologies (like REST services, or R for analytics) and tools
(like the UR family of robots) have been integrated. All these are part of the
Application DSL layer mentioned in Sect. 3, including quite a number of
Native DSLs external to DIME.
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The central property of simplicity here is that, once integrated, the Native
DSLs all look “alike” within DIME: the collection of individual functionalities
has an own, but uniform representation, and their use within DIME is uniform as
well. This means that once a DIME user has learned how to work with the three
model types and with the basic functionalities, this user can produce high quality
applications that span a variety of technologies and application domains without
need to be able to master any of their underlying technologies, programming lan-
guages, or communication protocols, as these are part of the encapsulation of this
heterogeneity within the DSLs, and its virtualization by means of the uniform
representation and handling. Note that this approach is not completely unusual:
with more or less success, generations of platforms have pursued this goal. Some
platforms are domain specific and special purpose, like for example EdgeX [1]
for the provision of an extensible, uniform service-oriented middleware for (any
of the) supported IoT devices and their management. EdgeX defines itself as
“the preferred Edge IoT plug and play ecosystem-enabled open software plat-
form” [1], a “highly flexible and scalable open-source framework that facilitates
interoperability between devices at the IoT edge”. Its data model is YAML pro-
files, its exposed services are implemented as REST microservices, it supports
the C and Go programming languages for users to write their own orchestrations
(instead of DIME’s process models). It does not support GUI models as this user
interfaces are not an aspect in their focus. Other platforms have a broader scope.
For example, GAIA-X [3] aspires to become “a federated data infrastructure for
Europe”. Among the platforms that have meanwhile over a decade of history,
FI-WARE [2] describes itself as “the Open-Source Platform for Our Smart Dig-
ital Future” and offers a wide collection of services and service components that
can be reused by application developers.

They all require programming ability, none of them offers a low-code app-
roach, they all provide collections of reusable components, and do not envisage
support for the orchestration on top. Their view is the bottom-up approach of
component provision, that an expert will then somehow orchestrate.

In this respect, our value proposition sits clearly at the upper, application
development layer, where we see the interoperability challenge truly reside.

We also see ourselves as systematic users of such pre-existing platforms, who
are for us indeed welcome providers of Native DSLs. In this context, a number
of integrations in DIME relevant to the advanced manufacturing domain have
already been addressed.

Seen from an Application domain point of view, for example, the following
have already been integrated:

– A IoT through (some parts of) EdgeX [19,20]
– Robotics through the UR command language [32]
– Persistency layer through various data storage alternatives, from CSV files,

to relational (PostgreSQL) and no-SQL (MongoDB) databases (own work)
– Cloud services [10]
– Data analytics with R libraries (own work)

and own work is ongoing on
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Table 1. SIBs information for REST services integration.

SIB name Input(s) Output(s) Explanation

Rest read str str Url
Input var
Input val

Output var

Output val
(single var)

This SIB accepts inputs required to
initiate the communication with an
external REST service and receives a
single variable as result

Rest read str list Url
Input var
Input val
Output var

Output val

(array/list)

This SIB accepts inputs required to

initiate the communication with an

external REST service, receives as result

an array or a list and feeds it to the

subsequent SIB for iterative processing of

the elements

– some forms of AI and Machine Learning (classifiers, Grammatical Evolution
[15], and more)

– Robotics through ROS, additional to [12,21,32]
– Distributed Ledger Technologies through blockchain
– Visualization tools with, e.g., Quickchart

Seen from a Technology portfolio point of view,

– REST services [10]
– R, seen as a programming language (own work)

are already supported, and the next months will see own work on

– Matlab and Julia, as programming languages/tools for simulations
– MQTT and other native IoT protocols, as in some cases it is impractical to

have to use EdgeX.

In the following, we will provide some details on a few selected examples of
these integrations.

4.1 REST Services

A case study [10] details a generic extension mechanism, where two LCDE plat-
forms based on formal models were extended following the analogy of microser-
vices. This extended the capabilities of DIME by integrating cloud and web
services thorough REST. RESTful APIs are a standardized way how applica-
tions can communicate, firstly described by Roy in his PhD Thesis [13], have
become one of the most used APIs schemas. DIME uses REST to share informa-
tion between the front and the back end. While the commands are encoded via
the widely supported HTTP standard, data can be exchanged in many formats.
The most common data format is the Java Script Object Notation (JSON), but
also Extended Markdown Language (XML) and others can be used.

In this context, this new DIME DSL allows to act as client for those APIs,
i.e., to send request to external applications and to decode JSON responses into
the data domain of DIME. Table 1 shows a list of sample SIBs with relevant IOs
and explanation.



402 T. Margaria et al.

Fig. 3. DIME Process for the UR robot position control

4.2 Robotics with the UR Language

UR3 is a well-known lightweight collaborative robotic arm designed to work on
assembly lines and production environments in the smart manufacturing context.
The robotic arm is not only easy to install but has a simple command language to
program all the tasks required, with a tethered tablet. The paper [32] showed how
to build a remote controller through a DIME Web application that manages the
remote communication with UR cobots and the commands through a UR-Family
native DSL. Figure 3 shows the hierarchical process model in DIME for the outer
working of the controller: the robot is initialized (started and ready to respond),
it is sent to an initial position to test the correct functioning of the command
channel, then the program with the real task is uploaded (this is itself a DIME
a process) and the communication is then closed upon execution completion.
Table 2 shows a list of sample SIBs with relevant IOs and explanation.

4.3 Data Management via Files and External Databases

DIME supports basic files handling operations, sufficient for text and Comma
Separated Value (CSV) files. However, handling large datasets requires coor-
dination with dedicated structured or non-structured databases. Recent work
integrates MongoDB Atlas and Elephant SQL, two fully managed NOSQL cloud
databases, and the PostgreSQL database service. The integrations use the MDD
approach to provide functionalities to import and export data from/to these
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Table 2. SIBs information for robotic arm integration.

SIB name Input(s) Output(s) Explanation

InitiateRobot No input result
(boolean)

The SIB does not need any
input. It reads the robotic
configurations from a
pre-defined location, initiates a
connection with the robotic arm
and returns a boolean status
code according to the execution
outcome

MoveRobotToTestPosition No input result
(boolean)

The SIB reads predefined
coordinates from the application
code, sends them to the robotic
arm over a network connection.
After the mechanical
movement, it returns the
according boolean status code

MoveCoordinatesRobot x
y
z
ax
ay
az

result
(boolean)

The SIB accepts a set of
coordinates (3D position, 3
angles) as input, sends them to
the robotic arm requesting it to
move to this position, then
returns a boolean status code

StopRobot No input result
(boolean)

The SIB sends to the robotic
arm the stop command, with
instructions to shut down and
stop the communication, and
returns a boolean status code

storage alternatives - an essential capability for the data interoperability and
data migration in the Digital Thread platform. Table 3 shows a list of sample
SIBs from the MongoDB integration with the relevant IOs and explanations.

4.4 Analytics with R

DIME is built upon J2EE and supports all its functionalities and capabilities.
However, specialized languages and platforms like MATLAB for simulations and
R for data analytics are optimized for those tasks and need to be supported in a
proper Digital Thread platform. We recently extended DIME with the R environ-
ment by encapsulation through a Native DSL shown in Table 4. Figure 4 shows
the runtime architecture: the application and the R environment are deployed
in two different docker containers. The Rserve library is the entry point of the
R environment, it handles all the external communication using TCP/IP. DIME
uses this mechanism to provide the R data analytics capabilities.

The impact of having a platform mindset is that the functionality needs to be
implemented only once and is reusable across multiple domains by very different
domain experts, as illustrated in Fig. 5 and Fig. 6. The same plot R histogram
SIB is used in fact in Fig. 5 (left) with a manufacturing domain dataset to draw
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Table 3. SIBs information for external databases (MongoDB) integration

SIB name Input(s) Output(s) Explanation

ConnectMongoDB ConnectionString result
(boolean)

The SIB accepts as input a
ConnectionString containing the
address and credentials of the server.
The boolean result tells whether or
not the connection is successful

ReadfromDB projectName
databaseName
attributeID

result The SIB accepts the relevant project,
database and attribute names and
returns the result of the query as a
single or multiple tuples

Fig. 4. Runtime infrastructure of DIME and R - environment

the histogram of manufacturing fitting failures per installation year (left), and
in Fig. 6 on the Irish census data of 1901: in this history/humanities domain the
same SIB is used to visualize the breakdown of the 1901 population by age.

5 Programming: What’s Next?

Considering the questions posed to the authors in this Special Track, we answer
them briefly from the point of view of the technologies described in this paper,
considering also our experience in projects and education.

1. What are the trends in classical programming language development?, both
wrt. applications programming and systems/embedded programming?
While the state of the art in these domains is still dominated by traditional,
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Table 4. SIBs information for the R – Environment integration.

SIB name Input(s) Output(s) Explanation

execute R instructios instruction result The SIB accepts a single R – language
instruction as input and returns the
execution result (if there is any) from
the R – environment

execute R file file name result The SIB accepts a filename as input,
executes the batch of R instructions
contained in that file in the R
environment and returns the execution
result

plot R histogram file name
col name
title
x label
y label
color

image The SIB accepts the dataset,
parameters and formatting details as
input, generates a histogram in the R
environment and returns the resulting
image

plot R wordcloud file name
col nam
min frequency
max words

image The SIB accepts the dataset,
parameters and specification details as
input, generates a word cloud in the R
environment and returns the resulting
image

hand-coded software, the low-code development wave is reaching industry
adoption and a certain degree of maturity. So far it is more prominent in the
general application programming and not yet in the CPS/embedded systems
domain, but that is in our opinion a matter of diffusing across communities.
We are surely working to reach the embedded systems, CPS and Industry 4.0
industrial adopters for our methods.

2. What are the trends in more experimental programming language develop-
ment, where focus is on research rather than adoption? This includes topics
such as e.g. program verification, meta-programming and program synthesis.
In this context, we see the evolution of meta-programming from the classic and
traditional UML-driven community and mentality, that we see still prevail in
recent surveys [46], towards the more radical approach promoted by Steffen
et al. via Language Driven Engineering [54] and purpose driven collaboration
using purpose specific languages (PSLs) [64]. This is a powerful, yet still niche,
area of research and adoption. In this line of thought, also [6] advocates intent-
based approaches and platforms as a way of channelling complexity by focus-
ing on what matters. As adopters of the LDE and DSLs paradigms through the
use of the Cinco-products DIME and Pyro/Pyrus [62,63], we see the advan-
tages and the power of these new paradigms and tools. The need to understand
the platforms, the various levels of “meta” and their interplay, which needs
to be respected and embraced, require more understanding of the interna of
these paradigms, their implementations, and also the limitations imposed by
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Fig. 5. Histogram plotting in R: SIB instance in the Manufacturing domain (manufac-
turing fitting failures per year)

Fig. 6. Histogram plotting in R: SIB instance in the humanities domain (1901 census
population breakdown by age)

the languages and platforms they at the end based upon (like Eclipse, E-core,
and more). This is also underlined by Lethbridge [26], who provides also recom-
mendations for the next generation of Low-code platforms. Core advantages of
model-driven and low-code taken together are in the rapidity of evolution, and
the precision of the generated artefacts. Taking out the human factor from a
number of steps in the software implementation process may eliminate some
genial solutions, but it also eliminates a wealth of errors, misunderstandings,
and subjective local decisions that may be incoherent with other local deci-
sions elsewhere. This enforced “uniformity by generation” has the advantage
of enforcing a standard across the generated code base, and a generation stan-
dard is less unpredictable and easier to maintain and evolve.
In terms of program synthesis, we have a long experience in synthesis of work-
flows [33], of mashups and web services [29,31], of applications in robotics and
bioinformatics [22,30] and of benchmark programs with well defined seman-
tic profiles [55]. The potential for application to low-code and in particular
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no-code development environments that support a formal methods-
underpinned semantics is certainly enticing. The fact is, so far the popular
platforms of that kind do not have a formal semantics, and in this sense the
Cinco-DIME-Pyro family of platforms is indeed quite unique.

3. What role will domain-specific languages play and what is the right balance
between textual and graphical languages?
Concerning DSLs, we are keen adopters of them both at the language design
level (as in DIME) and at the application domain level, with the External
native DSLs. In our experience, they are useful to address the knowledge,
the terminology and the concerns of both programmers and non-programmer
stakeholders in a collaborative application development team. They are a key
element of the bridge building [28] so necessary to get the right things right.
Currently, most domain specific languages are at the coding level and do not
leverage a model driven approach at the platform level. On the DSL side, the
internal DSLs built in Scala of [16] address specific aspects in the design of
embedded systems. They are an attractive step towards the preparation of
abstractions that can connect well with the modelling level. The construction
of meta-models behind these DSLs is challenging, since they must capture
all the domain knowledge, i.e. provide both semantic and syntactic rules. For
example, Ktrain [27] is a popular coding level DSL: a python wrapper that
encapsulates Tensor Flow functionalities and facilitates developers to aug-
ment machine learning tasks with fewer lines of python code.
We see the graphical presentation of, specifically, coordination languages as
an advantage for those tasks that privilege evidence and intuition. In this
sense, “seeing” a workflow and a dataflow in a native representation as in
DIME and Pyrus exposes some errors in a more self-evident way than if this
representation had to be first derived from the linear syntax of customary
code. Extracting again the Control Flow Graph and the Dataflow Graph,
e.g., is common practice to then analyze dependencies or do the meanwhile
well established program analysis and verification. We see an advantage to
use them as the explicit, mathematically correct, representation facing the
designers rather than to extract them from the traditional program code
where they are only implicitly present.

4. What is the connection between modeling and programming?
In the light of the above, the connection is tight between, e.g., the program
models used in DIME and the code they represent. We are here concentrat-
ing on the software that enables the operation, in particular the interopera-
tion and control, of applications and systems, and therefore we do not delve
into the kind of cyberphysical systems modelling that concerns the physics,
mechanics, and general simulation models.
In terms of our own experience, being able to cover a variety of models in a sin-
gle IME is a great advantage. The METAFrame [56] and jABC platforms [57]
supported only process models, and even in DyWA [43] the integration
between data model and process models happened through import/export
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across two tools. In comparison, the current integration of language DSLs in
DIME provides a level of comfort, ease of development and built-in checks
that makes DIME a success in our teaching of agile development to under-
graduates and postgraduates.

5. Will system development continue to be dominated by programming or will
there be radical changes in certain application areas/generally? E.g. driven
by breakthroughs in AI and machine learning techniques and applications.
Next to the traditional hand-coded programming and the full AI/ML based
approach, we see a significant and growing role for the XMDD style of mod-
elling [36,37], that we see as an intermediate paradigm, more controllable,
analyzable and explainable than those based on AI/ML. In our opinion it
covers the sweet spot between these two schools of thought and practice.
Several other approaches seem to inhabit this middle too: CaaSSET [40] is a
Context-as-a-Service based framework to ease the development of context ser-
vices. The transformation into executable services is semi-automatic. Agent-
based modelling paradigm [53] is another popular approach to increase the
development productivity in simulation environments.
In terms of AI support, for example, Xatkit [11], still in early stages of devel-
opment, increases the reusability of chat bots by evolving NLP/NLU engine
for text analytics. At the language level they support several versions of bots,
but the generation of chatbots from existing data sources at the framework
level is in future plans.
In terms of trends that have an influence on the programming and mod-
elling philosophy, service orientation and more recently microservices play a
significant role. This architectural style that tries to focus on building single-
function modules with well-defined interfaces and operations can be seen in
part as an evolution of web services [7], in a trend towards the production of
fine-grained systems [44] that seems to conceptually align with the growing
attention to limiting scope in order to tame complexity. There are graphical
approaches [48], but mostly they use standard programming languages. Ded-
icated programming languages like Jolie [4] offer native abstractions for the
creation and composition of services, but add to the layers of infrastructure
needed to develop and then execute microservices. Here, we see our abstrac-
tion as one level higher, so that we integrate microservices as simply just one
additional flavour of decentralized execution [10], building on previous expe-
rience with Webservices and WSDL.

6. Is teaching classical programming as third discipline sensible/required?
We would advocate that an XMDD approach based on DSLs as we have pre-
sented is easier to understand, largely (programming) language and applica-
tion domain independent. In our approach, the largest part of these technical,
infrastructural and knowledge layers are dealt with by IT and programming
professionals who integrate the domains and this way encapsulate them. What
users do see, in terms of Native DSLs and the coordination layer, has a domain
specific meaning but a language and domain independent general syntax and



The Interoperability Challenge 409

semantics. Accordingly, we would consider it a better choice of abstraction
level to bring to the masses of professionals as third discipline than the tra-
ditional programming in one paradigm/language, which is necessarily a very
specialized choice.
There are also other frameworks in the making: for example, Aurera [58] is a
low-code platform for automating business processes in manufacturing. It is
standalone desktop system that addresses the challenges of frequent changes
to IT solutions. It is however still in early stages of development and does not
support communication with external systems.

7. Can we imagine something like programming for everybody?
Yes, we can! And the XMDD paradigm for Low-code and no-code application
development is in our experience a strong candidate toward that aim.

6 Conclusion and Outlook

We addressed the principles, the architecture and the individual aspects of grow-
ing Digital Thread platform we are building, which conforms to the best practices
of coordination languages. Through the adoption of the Low-Code Development
Environment DIME it supports a level of reuse, refactoring and analysis at the
coordination layer that goes beyond what is achieved today with the current
practice of glue code. We illustrated the current status, and described various
extension through generic REST services, to robotics through the UR family of
robots, to the integration of various external databases (for data integration)
and to the provision of data analytics capabilities in R.

We are currently working in various collaborative contexts to enrich the set
of supported DSLs, as shown in Fig. 2. The choice of what to address next
depends on the needs arising in various contexts, and it is limited by the time
and staff available. The snowball effect of the impact has however already kicked
in: in more than one case, a new application, sometimes in a completely different
domain and collaboration, has already been able to avail of existing native DSLs,
or even processes, developed in a totally different context.

Over time, we expect reuse to be increasingly the case, reducing the new
integration and new development effort to a progressively smaller portion of
the models and code needed for at least the most standard applications. We
also expect this kind of paradigm to attract the attention of those sectors and
industries that require a tighter cooperation between stakeholders with different
expertise and knowledge, where there is a lack of skilled developers, and where
the need for a faster turn around time can make code generation attractive as a
form of automation.
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Abstract. Allowing subject matter experts to directly contribute their
domain knowledge and expertise to software through DSLs and automa-
tion is a promising way to increase overall software development efficiency
and the quality of the product. However, there are doubts of whether this
will force subject matter experts to become programmers. In this paper
I answer this question with “no”. But at the same time, subject matter
experts have to learn how to communicate clearly and unambiguously
to a computer, and this requires some aspects of what is traditionally
called programming. The main part of this paper discusses what these
aspects are and why learning these does not make people programmers.

Keywords: Domain specific language · End-user programming ·
Language engineering

1 The Role of Subject Matter Experts

Subject matter experts, or SMEs, own the knowledge and expertise that is the
backbone of software and the foundation of digitalization. But too often this
rich expertise is not captured in a structured way and gets lost when translat-
ing it for software engineers (SEs) when they implement it. With the rate of
change increasing, time-to-market shortening and product variability blooming,
this indirect approach of putting knowledge into software is increasingly unten-
able: it causes delays, quality problems and frustration for everyone involved. A
better approach is to empower subject matter experts to capture, understand,
and reason about data, structures, rules, behaviors and other forms of knowl-
edge and expertise in a precise and unambiguous form by providing them with
tailored software languages (DSLs) and tools that allow them to directly edit,
validate, simulate and test that knowledge. The models created this way are
then executed either by interpretation or automatic transformed into program
code. The software engineers focus their activities on building these languages,
tools and transformations, plus robust execution platforms for the generated
code. Figure 1 shows the overall process.
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2 Can SMEs Use DSLs?

This paper is not about justifying the approach from a technical or economical
perspective. I refer the reader to the Subject Matter First manifesto1 Instead
I want to focus on whether the SMEs are able to change from their typically
imprecise, non-formal approach of specifying requirements using Word, Excel,
User Stories or IBM Doors to this DSL-based approach.

Based on my experience over the years [10] my answer to this question is a
clear yes, at least for the majority of subject matter experts I have worked with.
But a key question is: to what extent do the subject matter experts who use
DSLs have to become programmers? Do they have the skills to be programmers
(hint: most do not), and do they want to become programmers (hint: most do
not). But we still expect them to use “languages” and IDE-like tools. So:

Which parts of programming do they have to learn? How is SME’ing
different from programming, and where does it overlap?

I answer this question in Sect. 5. To set the stage we briefly discuss the domains
in which the approach works (Sect. 3) and how languages and applications are
typically architected in such scenarios (Sect. 4). We conclude the paper with a
wrap up in Sect. 7.

Fig. 1. The process from the SME’s brain into software, based on tools and platforms
developed by software engineers.

1 http://subjectmatterfirst.org.

http://subjectmatterfirst.org
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3 (Where) Does This Work?

Building the necessary language and IDE tooling and downstream automation
requires investment, and this investment must pay off for the approach to make
economical sense. Which is why this approach only works in domains that have
the following characteristics. First, the subject matter has to have a minimum
size and complicatedness. A consequence of this is often that there are people
in the company who consider themselves experts in that subject matter. It is
they who everybody asks about details in the domain. The second criterion is
that this subject matter as a whole will remain relevant over time and that the
business intends to continue developing software in that domain for a reasonably
long time. Finally, even though the subject matter as a whole r relevant for a
long time, a degree of evolution or variety within the domain is usually needed
for the approach to make sense. I have seen this approach used in the following
domains, among others:

In insurances, DSLs are used by insurance product definition staff to develop
a variety of continuously evolving insurance products [4,7]. With increased dif-
ferentiation and tailoring of products, these become more and more complicated
while at the same time increasing in variety and number. The company itself is
in the insurance business for the long run.

In healthcare, DSLs are used by medical doctors and other healthcare pro-
fessionals to develop treatment and diagnostics algorithms that run as part of
digital therapeutics apps [11]. My customer, Voluntis, intends to grow over years
and develop a large number of these algorithms and apps. The subject matter
is large and complicated because it captures medical expertise.

In public adminstration, government agencies are certainly in it for the long
run, while legislation for public benefits and tax calculation changes and evolves
regularly. The agencies are full of experts who use DSLs [1] to disambiguate
and formalize the law and its interpretations by courts. Similarly, the service
providers who develop software for tax advisors have the same challenges and
use DSLs as well [5,6].

In payroll, the regulations that govern the deducations from an employee’s gross
salary and the additional taxes and fees they have to pay are just as complicated,
long-lasting and ever changing as tax law (and of course directly related). Service
provides who develop payroll software therefore also employ whole departments
full of experts and benefit from the use of DSLs [12].

For an overview over this approach and a couple of easily readable case studies,
see my InfoQ article [10].

4 Typical DSL Architecture

Many of the DSL I have built follow the general approach that is outlined in
Fig. 2. The models created by the SMEs end up as the core of the system, usually
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Fig. 2. Typical high-level systems architecture, where the models expressed with DSLs
are transformed into code that forms the core of a larger application.

expressed with functional semantics, either via generation or via interpretation.
That core implements a (manually defined) API that is used by a driver com-
ponent to invoke the DSL-derived code. The driver interacts with users and
other systems – potentially via additional architectural building blocks – and is
often also responsible for managing and persisting state. Indeed, many of our
DSLs are “funclarative” [8], where small, simple calculations are expressed with a
functional-style language (so users do not have to care about effects at this level),
and when things get more complicated, the DSL provides declarative first-class
concepts to express those concisely without lots of low-level functional code.

In order to avoid reinventing the wheel with regards to the core functional
expressions, the DSLs often embed (and then extend) a reusable language
KernelF. I usually start by building a few of the domain-specific abstractions
“around” KernelF. Then I iterate, building more abstractions, constraining away
parts from KernelF that are not needed or replacing parts of KernelF with sim-
pler abstractions. More details on KernelF and its use for DSLs can be found
in [13].

If the DSL cannot be scoped to handling only the functional parts and thus
has to manage state, I usually rely on variations of state machines. Generally it
is a good idea to rely on established programming paradigms and DSL-ify them
instead of trying to invent new fundamental paradigms.

5 Difference Between Programming and SME’ing

In this section we look at the work share between SMEs and SEs. We focus
on what the SMEs do, because this paper is about the degree to which their
activities resemble programming. We discuss the responsibilities of SEs mostly
to contrast their work to that of the SMEs.
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Fig. 3. Comparing programming (what software engineers do) from whatever not-yet-
named activity subject matter experts should do to directly contribute to software.
Darker shade means “is more relevant”.

5.1 Skills and Responsibilities

Figure 3 shows the differences in responsibilities of SEs and SMEs. The darker
the shade, the more responsibility the respective community has for that concern.
We start our discussion with the two black and white cases, those where there
is no overlap.

Region 1, SME only. Region 1 is completely the responsibility of SMEs. They
have to understand every particular example, case, situation, and exception of
the subject matter they want the software system to handle. This is their natural
responsibility, this is why they exist. SEs on the other hand should not have to
care at all. Achieving this separation – and then optimizing the tasks of both
communities – is the reason for using DSLs and tools in the first place. Related
to this, the SMEs are also in charge of determining what consistutes correct
behavior in the subject matter, they write the tests. SMEs take full responsibility
for what goes into test cases as well as for their completeness.

Region 2, SE only. Let us move on to region 2, which is completely the
responsibility of SEs. Setting up and operating automated CI pipelines that build
and package the software and run tests is nothing the SME should be concerned
with, except for being notified if tests fail (after they have run correctly in their
local environment, otherwise they should never reach the CI server).

The same is true for taking care of performance, scalability, safety, security,
robustness and availability, all the operational (aka non-functional) concerns of
the final software system. Keeping the subject matter segregated from these
technical aspects of software is a key benefit of the approach, and it is clear that
this should be handled in platforms, frameworks and code generators – all fully
the domain of SEs.

Finally, the development of the DSLs and tools that will then be used by
the SMEs for capturing, analysing and experimenting with subject matter is
the responsibility of SEs. It might not be the domain of all of the software
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engineers, but maybe only of a certain specialization called language engineers
who specialize in developing languages, IDEs, interpreters and generators. Also,
a few of the most experienced subject matter experts – I sometimes refer to them
as gurus – have to help survey, understand, analyse and abstract the domain so
that the language engineers can build the languages. But the regular SME, the
dozens or hundreds that many of our customers employ, are not involved with
this task.

Note that in order to be able to build the languages, the SEs have to under-
stand the domain at the meta level. Together with the gurus, they have to
understand how to describe the structures, rules, behaviors and other forms of
knowledge in the domain. But they do not have to know all the instances which
are subsequently expressed by the SMEs using the DSL. This distinction is cru-
cial and is often perceived as a contradiction with the goal of the approach of
separating the work of the SMEs and SEs.

Region 3, Testing. Let us now look at region 3, one that apparently has full
shared responsibility. However, in this case the illustration is a bit misleading.
Indeed, both communities have to understand the purpose of testing, what a
test case is, and appreciate the notion of coverage, i.e., understanding when they
have enough tests to be (reasonably) sure that there are no more (reasonably
few) bugs in the logic. But of course the SMEs care about this only for the
subject matter expressed with the DSL, whereas the SEs care about it only
in the platform, frameworks, language implementation and generators. So they
both have to understand testing, but there are no artifacts for which they have
shared responsibility.

Region 4, shared skills. This is the most interesting part: all the items in this
region are native to programming and software engineering. So SEs care. But
they are also relevant, to different degrees, to SMEs when they use DSLs. Let
us explore them in detail.

Of course the SMEs have to understand the conceptual abstractions of the
domain, because otherwise they cannot use the language. Understanding abstrac-
tions is not easy in general, but because in a DSL these abstractions are closely
aligned with the subject matter, the SMEs – in my experience – are able to
understand them. Maybe not every little detail (which is why the box is dark
grey and not black) but sufficiently well to use the language. The SEs have to
understand these abstractions as well, especially the language engieneers. Those
who build the execution platform can usually deal with a black-box view of the
generated code.

A note: the fact that there is shared understanding about the core abstrac-
tions of the subject matter in the domain for which the SMEs and the SEs
co-create software is a major reason why DSLs are so useful here. The language
definition, and its conceptual cousins, the core abstractions, are an unambigu-
ous and clearly-scoped foundation for productive collaboration between the two
communities. So when I write “xyz is the responsibility of SME/SE”, it does
not mean that there is not a joint overall responsibility of both communities



420 M. Voelter

together to deliver useful (in terms of subject matter) and robust (in terms of
operational concerns) software.

Back to region 4. No real-world subject-matter focused DSL I have ever seen
can make do without understanding the notion of values, and some notion of func-
tions (entities that produce new values from inputs). It does not matter whether
we are talking specifically about (textual) functions, (Excel-style) decision tables
or (graphical) dataflow diagrams. The good thing is that essentially everybody
has come across these at school or at university, even though using functions to
assemble larger functionality from pieces and the explicit use of types is new to
many. In practice, teaching the use of functions, at least in limited complexity
situations, is feasible.

Similarly, the understanding of dot expressions to mean the member X of
entity Y or do Z with entity Y is very hard to avoid, because working with
parts of things or performing activities on things is ubiquitous. For many SMEs,
this is harder to get used to. We’ve experimented with literally writing <member>
of <object> instead of <object>.<member> but this results in less useful IDE
support: with the latter syntax, one can easily scope the code completion menu
to members of object because users write the object first. In contrast, with the
former syntax, the code completion for the member has to show all members of
all objects in the system because the context object is not yet specified.

In essentially every domain SMEs have to express decisions and calculations.
So another set of constructs that is hard to avoid is arithmetic, logical and
comparison operators (together with types like number), as well as notion of a
conditional, such as if ...then or switch{case, case, case} and the asso-
ciated Boolean type – independent of their concrete syntax (text, symbolic or
graphical). Once again, most SMEs have come across these operators at school
or university, so using them is not a big challenge.

The reason why these two lines are grey for SMEs and not totally black is
because the complexity of the expressions built with these language concepts
should (and usually can) be kept lower for SMEs. For example, for complicated
decisions, we can support graphical decision tables of various forms which are
much easier to grasp than nested if statements or the some form of switch-like
statements.

Several of the DSLs I have built require an understanding of parametrization.
For example, in function-like constructs, the values passed into the function are
mapped (by position or by name) to parameters in the function signature that
are then used in the body of the function. Most SMEs have no problems with
this – again, school experience – but some do. Often parametrization is the
threshold where the need for education and training starts (beyond building the
shared understanding about the core concepts of a domain). A related concept
is instantiation, where, usually, each instance has separate values for its state
and can evolve independently. This is not taught in school, and it is not taught
outside of computer science at university, so training is needed. On the other
hand, many DSLs can do without instantiation which is why this box is a lighter
shade of gray.
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Fig. 4. SMEs make different trade-offs than software engineers regarding the languages
and tools they want to work with.

We are getting to more advanced concepts that are increasingly harder to
grasp for many SMEs, but they are also not necessary in all DSLs (though
unavoidable in some). The notion of specialization or subtyping is key here.
While everybody understands subtyping intuitively (“an eagle isa bird isa ani-
mal isa living thing isa object”), many SMEs struggle with the consequences.
Especially the mental assembly of everything that is in a subtype by (mentally)
going through all its supertypes is hard: “we are not seeing the big picture” is
what I often hear. Practice helps, but so can tools that optionally show all the
inherited members inline in the subtype’s definition.

For complex subject matter – tax calculation comes to mind – the models
created with the DSLs become large, and complexity often rises along with
size. Notions like delineating module boundaries, explicitly defined interfaces,
reduction of unnecessary dependencies, and more generally, cohesion, coupling
and reuse become an issue. Most SMEs struggle here. But on the other hand,
95% of the work of an SME can proceed without caring about these big picture
concerns, except during initial design or downstream review phases, where SE
or guru involvement can help to sort things out. Considering it is only 5% of the
total work, such involvement is usually feasible.

The final ingredient in region 4 is discovering and then defining new abstrac-
tions. This is often not the strong suit of SMEs. Those that are good at it are
usually the gurus who help with language definition, or they have been assimi-
lated wholly by the software development team. But luckily it is quite rare that
SMEs are required to define new abstractions, because those that are relevant
in the domain should be available first-class in the DSL – or retrofitted for the
next version once the need becomes obvious.

5.2 Different Emphasis

In my experience, (most) SMEs prioritize the features of languages and IDEs
different from (most) developers. In this section we’ll look at some of the more
prominenet differences, Fig. 4 summarizes them.

Notation. Developers prefer textual notations, both for their conciseness, but
also for reasons of homogeneity with regards to storing, editing, diffing and
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merging code. SMEs, in contrast, tend to emphasize readability and fit of the
notation with established representations in the domain (e.g., tables in the tax
law documents) over these efficiency concerns. Therefore, if you can build DSLs
that are more diverse in notation – and not just colored text with curly braces
and indentation – SME buy-in is usually easier to obtain.

Selecting vs. Creating. Developers love the creative freedom of coming up
with an algorithm and crafting their own suitable abstractions from small, flexi-
ble building blocks. SMEs – because of their often limited experience with build-
ing their own abstractions – prefer picking from options and selecting alternatives.
In my experience SMEs usually accept that they have to read a bit more doc-
umentation that (hopefully!) explains what the different options or alternatives
mean. Consequently DSLs often contain many first-class concepts for the various
needs of the domain, even if this requires the users to first understand what each
of them means. The approach is usually also benefitial for domain-related seman-
tic analysis (more first class concepts makes it easier to analyze programs) and
it is easier to have a nice notation (because you can associate specific notations
with these first-class concepts). In contrast, programming languages emphasize
orthogonality and composability of their (fewer) first-class concepts.

Guidance. A related topic is guidance. Developers are happy with opening an
empty editor and starting to write code. Code completion guides them a little
bit. SMEs prefer more guidance, almost to the point where skeleton programs
are pre-created after selection from a menu. DSLs that feel like a mix between
a form-based application and program code seem to be particularly appreciated
by many SMEs.

Tool Support. Taking this further, SEs prefer a toolbox approach, where the
tool offers lots and lots of actions and it is the developer’s job to use each action at
the right time, in the right way. SMEs are more use-case oriented. They want tool
support for their typical workflows and process steps, and specific tool support
for each. To give an extreme example: I have built DSLs that included wizard-like
functionality in the IDE, where using the wizard required more input gestures
than just code-completion supported typing. Still the wizard was preferred by
the SMEs.

Thinking about problems. It is almost a defining feature of SEs that they
think about a problem (and its solution) as a complete algorithm that can cover
all possible execution paths. Sure, tests then validate specific scenarios, but devel-
opers think in algorithms. SMEs often think in terms of examples first, and
sometimes exclusively. For example, it is easier for them to deal with a (hope-
fully complete) set of sequence diagrams rather than with a state machine that
captures the superset of the sequence diagrams. In terms of DSL design this
means that more emphasis on case distinction in which distinct scenarios are
specified separately (even if this incurs a degree of code duplication) is often a
good idea.

Validation. Most developers are good at writing tests, writing them against
APIs for a relatively small-size unit, and then running these tests automatically
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continuously. SMEs often think of validation more in terms of “playing with
the system”. They prefer “simulation GUIs” over writing repeatable tests as (a
different kind of) program. So build those simulators first, and then allow the
simulator to record “play sessions” and persist them as generated test cases for
later automatic reexecution.

Recipe vs. Execution. A program is a recipe which, when combined with input
data, behaves in a particular way. The specific behavior depends on the input
data. So whenever SEs write code, they continuously imagine (and sometimes
try out or trace with the debugger) how the program behaves for (all possi-
ble combinations of) input data. Many SMEs are not very good at doing this.
One reason why Excel is so popular is because it does not make this distinction
between the program and its execution: the program always runs (or, alterna-
tively, a spreadsheet never runs, it just “is”). So anything from the universe of
live programming is helpful for DSLs.

Despite these differences, there are lots of commonalities as well. Both commu-
nities want good tools (read: IDE support), relevant analyses with understand-
able and precise error messages, refactorings and other ways to make non-local
changes to potentially large programs, low turnaround time plus various ways of
illustrating, tracing and debugging the execution of programs. However, while
software engineers are often willing to compromise on these features if the expres-
sivity of the language is convincing, SMEs usually will not.

6 Where and How Can SMEs Learn

So where and how can SMEs learn the skills from the SME column of Fig. 3?

In school and at university. In my opinion, everybody should learn these
basics in school and at university. While programming in the strict sense should
be limited to computer science or software engineering curricula, this “SME’ing”
should be mandatory for everybody, just like reading, writing or math. Of course
such courses should not just teach Java or Python. They should emphasize the
specific skills of “thinking like a programmer” with a range of dedicated and
diverse languages and tools.

Programming Basics Course. A few years ago, based on the need to educate
and trains a group of SMEs, I created a course called Programming Basics [9] that
teaches these concepts relevant to SMEs step by step. It starts with simple values
as cells of spreadsheets and then covers expressions, testing, types, functions,
structured values, collections, decisions and calculations as well as instantiation.
The course uses different varieties and notations for many of these concepts in
order to try and emphasize the concepts. The course is built on the Jetbrains
MPS language workbench2 and KernelF, and allows extension and customization
on language level towards particular DSLs. We are working on a way to get this
into the browser for easier access.
2 http://jetbrains.com/mps.

http://jetbrains.com/mps
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Hedy Language. Felienne Hermans has built Hedy [3], a gradual programming
language. The goal is to teach “normal people” the basics of programming with
a language that grows in capability step by step, with the need for each next
capability motivated by user-understandable limitation in the previous step. Ulti-
mately, when Hedy is fully developed, it is similar to Python. Hedy is free and
works in the browser.

Computational Thinking. In the 2000s, a community of software engineers
came up with the term computational thinking [2] as the “mental skills and
practices for designing computations that get computers to do jobs for people,
and explaining and interpreting the world as a complex of information processes.”
So the idea is similar to what I am advocating, although the relationship to DSLs
and subject matter is missing. Computational thinking has been critizised as
being just another name for computer science; but my discussions in this paper
should make clear that there’s a big difference between computer science and
that thing SMEs should do.

7 Wrap Up

It is almost not worth saying because it is so obvious: almost all domains, dis-
ciplines, professions and sciences are becoming increasingly computational. And
market forces require companies – especially those in the traditional industrial
countries – to become more efficient. I am confident that providing “CAD pro-
grams for knowledge workers”, i.e., DSL, tools and automation, is an important
building block for future economic success.

With the comparison of programming and “that thing SMEs should do” in
this paper I hope to make clear that everybody does not have to become a
programmer. But: everybody has to be empowered to communicate the subject
matter of their domain precisely to a computer (using DSLs or other suitable
tools). And therefore, everybody has to learn to think like a programmer at least
a little bit, enough to be able to understand and work with the things in the SME
column of Fig. 3. And we software engineers have to adopt this subject-matter
centric mindset and develop languages and tools that are built in line with the
SME preferences in Fig. 4.

Acknowledgements. Thanks to Yulia Komarov and Federico Tomassetti for provid-
ing feedback on an earlier version of this paper, as well as the anonymous reviewers of
the ISOLA 2021 conference.
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Abstract. Collaborative system development requires a three-dimen-
sional alignment: in space, in time, and in mindset : Traditionally, differ-
ent developers typically have their own, local development environments,
each of which may change over time due to updates and other version
changes. The third dimension concerns so-called semantic gaps, which
we proposed to address via Language-Driven Engineering using Purpose-
Specific Language. In this paper we argue that web-based, collaborative
development environments that support Language-Driven Engineering
are capable of solving the three-dimensional alignment problem. Our
illustration via a corresponding prototypical solution aims at illustrating
that this vision has the power to radically improve the effectiveness of
collaborative development and that it is realistic even in near future.

Keywords: Cloud IDE · Cloud Development · Programming ·
Domain-Specific Languages · Language-Driven Engineering

1 Introduction

The world of software development has changed dramatically in the last decades
(Fig. 1). Today, e.g., the top five web frameworks, React.js, jQuery, Express,
Angular, and Vue.js [57], have in average almost 800 contributors to their open-
source repositories who develop their software on individual infrastructure, some-
times even using different Runtime Environments (REs). The required techno-
logical alignment concerning e.g., the used frameworks and their versions, lies in
the hands of the individual developers. They have to make sure that their con-
tributions fit some global, often rarely specified and frequently changing criteria,
a complex and time-consuming task. Approaches like MIDAS aim at supporting
users with this task by providing toolchains and dedicated specification languages
that capture corresponding requirement changes and system evolutions [4]. An
alternative approach is followed by general-purpose Cloud IDEs like Gitpod and
Eclipse Che [15,21] which globally provide managed development environments
in order to allow users to fully concentrate on their development tasks.

Another trend is to reduce the semantic gap between stakeholders of dif-
ferent expertise by directly involving them in the development process using
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 426–449, 2021.
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Fig. 1. The expanding universe of software system development.

domain/purpose-specific languages [29,58], without forcing them to become pro-
grammers [64] and as required in [60], to finally democratise software develop-
ment. What is missing is a comprehensive development environment that aligns
the IT infrastructure in space and time, and that provides different languages to
adequately support the expertise of the different stakeholders.

In this paper, we sketch an IDE for collaborative system development (not
only of web applications!1) that support a three-dimensional alignment: in space,
in time, and in mindset (cf. Sect. 2). Key is to provide the entire required infras-
tructure in the cloud, and to support even non-technical stakeholders via ded-
icated, Purpose-Specific Language (PSLs). We distinguish between PSLs and
the commonly established notion of Domain-Specific Language (DSLs) which
characterizes a certain class of languages as being domain-specific. In contrast,
essentially every language has a purpose (why should it otherwise exist), making
all languages a PSLs for some purpose, e.g., Java and C are PSLs for general
purpose programming, class diagrams for data modeling, SQL for database inter-
action, BNFs for syntax definition.

The intent behind the introduction of the notion of PSLs is to advocate a
purpose-first approach: Starting with a certain purpose we want to select/design
dedicated PSLs for that very purpose, i.e., maximum language support allowing
in particular non-technical stakeholders to specify their intended solutions in
their established mindset (cf. Sect. 2.3). Technically, such PSLs typically arise
as the result of enhancing (typically graphical) description and documentation

1 Only the IDEs are in the Web/cloud, the class of to be developed software systems
is not constraint.
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languages used in some application domains to a level that allows one to generate
artefacts for the intended solution/product. Our favourite example for such a
graphical description language are Piping and Instrumentations Diagrams that
are commonly used for specifying certain mechanical systems into a PSL from
which corresponding data models, hardware diagrams, and even configuration
code could be automatically generated (cf. Sect. 2.3).

Please note that the purpose-first approach naturally leads to a large number
of PSLs, much larger than even the 7000 languages mentioned in [11] which must
properly be provided to the various stakeholders in a fashion that guarantees
a globally consistent system development. Technical key to approaching this
challenge are (cf. Sect. 4):

– Language-Driven Engineering (LDE) as a means to easily provide and adapt
the PSLs required to support the involved domain experts [58], and

– a cluster based, centralized infrastructure whose development and runtime
environment that can be generated from specifications and made available
via the Web in order to allow for an economic provision of an adequately
personalized infrastructure to all stakeholders and

We will illustrate this approach to collaborative, purpose-driven software devel-
opment along our prototypical implementation on the basis of Cinco, our lan-
guage workbench for graphical modeling Cinco.

In the following three sections we describe the essential dimensions of collaborative
system development that require an overarching alignment: space (Sect. 2.1), time
(Sect. 2.2) and mindset (Sect. 2.3). Then we will describe the currently present
Cloud IDE architecture and functionality in Sect. 3 based on the established open-
source Tools Gitpod [21] and Eclipse Che [53]. Based on this, we will describe our
vision of a cloud-based language workbench in Sect. 4. In Sect. 4 we describe our
vision to extend the concept of a Cloud IDE to meet the given challenges. We will
then discuss in Sect. 5 which steps are necessary to realize the Cinco language
workbenches in the cloud to finally reach a realization of LDE. Finally, the results
of the individual discussions are summarized in Sect. 6.

2 Challenges

As indicated by Fig. 1, the universe of software development is expanding: the sys-
tems themselves, their range of application, and the required/addressed infras-
tructure grow to an extent that they can hardly be controlled without computer
assistance. Even in software development methodologies, which aim at increasing
the productivity of developers (e.g. Model Based Software Engineering (MBSE)),
the complexity of mastering change grows to an extent that computer support is
needed [4]. Experts are able to survive in this highly complex landscape, but it
remains very demanding to stay in synchrony with the evolving infrastructural
requirements of a larger (open source) project. What is missing is a dedicated
‘cross-dimensional’ approach to achieve an overarching alignment. In this section,
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we will sketch the three dimensions we aim to align with our cloud-based, in our
eyes trendsetting approach to purpose-driven cooperation.

2.1 Space

In Physics, space can be defined as “the unlimited three-dimensional expanse
in which all material objects are located”2. In our context space includes every-
thing that is necessary to develop a software project at a certain point in time (cf.
Sect. 2.2). This includes the increasing language diversity (e.g. General-Purpose
Languages and Domain-Specific Languages), the recent progression from soft-
ware to system development (i.e. DevOps), and the growing need for tools and
assistance (e.g. build-management, documentation).

In the early days, programs were typically written in a single General-Purpose
Language (GPL) by a single person, using the same machine for development
and execution. Since then, the way how software is developed has changed dra-
matically. Software is rarely developed in a single language anymore. In order to
efficiently create more versatile applications, DSLs for individual components of
a system were created (e.g. SQL). Every DSL is tailored to the respective task.
It seems common to use multi languages in open-source projects nowadays [43].
Especially distributed systems, like full-stack web applications [63], are polyglot
projects that combine a variety of GPLs and DSLs (e.g. JavaScript, Python,
HTML), each of which requiring its own Software Development Kits (SDKs) and
REs. The popularity of microservice architecture contributes to this trend, where
every microservice can have its own different stack of technologies. In order to
use multiple programming languages frameworks and runtime environments effi-
ciently, modular Integrated Development Environments (IDEs) like Eclipse [26]
were created in 2001. Through the integration of IDE extensions, different tools
for development can be combined, but each developer has to manage his local
setup still manually and independently.

The language diversity is not the only dimension that increases the complex-
ity. Licensing models like Software as a Service, expand the scope of software
projects from development to operating. Software is not just delivered as instal-
lable packages anymore, but provided as a service to the end user. This shifts
more responsibility of managing the RE and infrastructure from the end user to
the software developers and system administrators. The advent of DevOps [3,13]
in the last decade is a response to the ongoing progression from software to sys-
tem development. The focus shifts towards Infrastructure as Code (IaC) [28] and
container virtualization [50] to ease the provisions of REs.

In order to face the challenge of this horizontal and vertically expansion, soft-
ware projects rely more often on jigs and tools. Dependency and build systems
such as Maven [30] were created in 2002 which allowed developers to easily inte-
grate and reuse libraries located in a central repository, instead of managing
dependencies manually. Building on that, complex Continuous Integration/De-
ployment (CI/CD) [54] workflows are maintained to completely automate remote

2 https://www.collinsdictionary.com/dictionary/english/space.

https://www.collinsdictionary.com/dictionary/english/space
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test execution and deployment into production. Even in smaller software projects,
CI/CD starts to become a standard, but writing correct configurations remains a
tedious and error-prone task [61,62].

While the mono repository approach encourages to version all those artifacts
in a singe repository (cf. Sect. 2.2), the fundamental problem with the distributed
and at the same time heterogeneous development of software remains: The lack
of alignment between the three dimension of space.

2.2 Time

According to the Merriam-Webster dictionary, time is “a nonspatial continuum
that is measured in terms of events which succeed one another from past through
present to future”3. This describes an important dimension for software devel-
opment processes that generally extend over long periods of time, accumulat-
ing a huge amount of changes. New features are implemented, existing features
are modified or removed, and the implementation code can be refactored or
migrated to different languages and frameworks. As long as only one developer
works on the project at one location, this is not much of a problem. But as dis-
cussed before, this is not the reality anymore. Projects are developed by teams
with many developers in a distributed fashion, producing concurrent streams of
changes to the development artifact. Managing and integrating these changes
over time is a major challenge for development teams.

Distributed Version Control Systems (DVCSs) like Git [10] have become
a very popular tool to manage the source code in a distributed development
process. They embrace the distributed nature of the development process by
explicitly supporting branches, on which different development efforts can be
carried out concurrently. This also makes it possible for developers to work
offline and later merge their changes with others. But while these systems are
therefore very powerful and flexible, they fail to provide the alignment one would
expect of them. Everyone who worked on a big project using a DVCS knows
that the merging of concurrent development efforts is far from easy. To the
contrary, systems like Git are known for the cryptic and complicated merge
conflicts they produce in big merges, making them very hard to use and hindering
collaboration. The growing size (i.e. space) of repositories amplifies this problem
(cf. Sect. 2.1). And while realtime collaboration is the norm for many end-user
applications, decentralized version control systems do not provide this facility,
although remote pair programming could greatly strengthen the alignment of
concurrent development efforts.

But implementation source code is not the only thing that changes with
time. Nowadays, it is commonplace that software projects depend on a large
number of open source libraries [20]. New dependencies can be added at any
time, and existing dependencies have to be updated regularly to close security
vulnerabilities and receive the latest bug fixes and improvements. And when a
library is updated, the transitive dependencies brought in by that library might

3 https://www.merriam-webster.com/dictionary/time.
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change as well. The challenge lies in providing every developer with the same
set of library versions that matches the source code implementation. Many pro-
gramming languages bring their own package manager that writes (i.e. locks) all
exact library versions into a lockfile4 that is committed with the source code.
This works reasonably well, but these package managers can only provide depen-
dencies written in the same programming language, making them unsuitable to
track system libraries or dependencies in polyglot projects. More powerful pack-
age managers like Nix [14] are able to build the complete system environment of
a project regardless of programming languages used in a reproducible way. But
they are complicated to set up and often hard to integrate into existing build
processes, in part because every programming language brings their own, non-
standardized package management philosophy. Moreover, they generally depend
on certain operating systems and thus are not platform-independent.

Finally, the context of a software development project also includes IDEs,
SDKs, and REs. These tools are used to develop, build and execute the software,
and just like the source code and the library dependencies, they are ever-changing
over time. Because these tools are so essential in the development process, local
development environments commonly break whenever the requirements for these
tools change, forcing each team member to fix their own development setup.
This is also the time when the only answer you get from your teammates will
be “works on my machine”.

Finding configuration mismatches that cause development environments to
break is a cumbersome and thankless task. As discussed in Sect. 2.1, IaC
approaches can help remedy this problem, but they usually neither capture the
complete context, nor are they platform-independent. The recently more widely
adopted architectural pattern of microservices exacerbates these problems. The
whole system consists of many loosely coupled services with each service poten-
tially written in a different programming language that has certain requirements
regarding development, build and deployment tools. The fact that individual ser-
vices are often migrated from one programming language to another amplifies
the amount of changes that have to be managed.

But not only does using Cloud IDEs provide remedy in terms of configuration
issues, but it also counteracts the possible lack of available hardware resources
of development machines. By shifting development environments, and thereby
also resource intense tasks such as compile, build and test processes to the cloud,
problems caused by a lack of resources should belong to the past. As a result of
this, we expect to see an increase in a developer’s productivity.

2.3 Mindset

The Cambridge Dictionary defines mindset as “a person’s way of thinking and
their opinions”5. In our case this comprises, in particular, thought patterns and
best practices that have been established in the various application fields over

4 Please note that lockfiles are not to be confused with log files.
5 https://dictionary.cambridge.org/dictionary/english/mindset.
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the years and that are reflected in the corresponding domain languages. The
importance of mindset becomes apparent in interdisciplinary work where it is
the main cause of so-called semantic gaps and false agreement: We often observed
quite radical discrepancies between different stakeholders in the interpretation
of one and the same diagram which often was even inconsistent in itself. E.g.,
in a larger industrial project we observed that class diagrams where ‘naturally’
interpreted as a kind of flow chart by the engineers which lateron cause major
inconsistency between developed artefacts. But not only nodes and edges leave
room for interpretation, also words like ‘prototype’ have quite a different mean-
ing in, e.g., business and engineering: While business focusses on organizational
aspects and therefore considers organization sketches as prototpyes, engineers are
use to build concrete artefacts and therefore consider prototpyes to be tangible
artefacts.

While developers are still the overwhelming majority of contributor roles,
the diversity of contributors (i.e. manager, engineering, education) joining open-
source projects is increasing over the last five years [20]. In order to address the
growing problem of semantic gap low-code environments have been proposed
that aim at enabling non-programmers to directly contribute to software/sys-
tem development [7,44]. These environments ease the adoption of a typically
very simple developer mindset, but they do not support the original mindset of
the involved stakeholders. In contrast, the goal of Language-Driven Engineering
(LDE) [58] is to enhance the languages used in the various domains typically
for description and documentation purposes only to a level that allows one to
generate significants parts of the intended concrete artefact. E.g., we turned
Piping and Instrumentations Diagrams that are commonly used for specifying
certain mechanical systems into a PSL from which corresponding data models
and hardware diagrams could be automatically generated [68,69].

Language-Driven Engineering (LDE) supports this approach by easing the
provision of new, Purpose-Specific Language in a services-oriented fashion at
three levels:

– IDE enhancement via languages for modeling functionality that is then
provided by the tools via plug-ins. Such plug-ins provide quality assurance in
terms of model checking and testing, various code generators, and platform-
specific CI/CD pipelines.

– IDE support, so that stakeholders can model in a PSL the user-level func-
tionality, that is then included in a service-oriented fashion. Examples of such
PSLs are dedicated (graphical) query languages, but also languages stemming
from graphical languages traditionally used in application domains, like net-
work layouts, workflow graphs, or piping and instrumentation diagrams.

– Tailored interaction facilities for specific users, like simple configuration
languages (cf. CI/CD pipelines, canvases for business modeling, and spread-
sheets or dataflow graphs for data analytics).

In practice, the following distinction between shallow and deep language inte-
gration is important:
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– Shallow language integration provides separate special purpose IDEs that
produce artifacts for the component library of the development IDE. In this
case, the artifacts generated/produced with the special purpose IDE are inte-
grated as a service into the development PSL. Typical examples of such arti-
facts are complex queries, decision procedures, or special visualization and
routing algorithms.

– In deep language integration special purpose IDEs are integrated as a
service into the global development IDE. The data, process and GUI PSL
integration into Dime [5], our major development IDE for Web applications,
are typical examples of deep integration.

Whereas shallow integration is meant to (easily) provide the users of a devel-
opment IDE with additional external services,6 deep integration increase the
conceptual complexity of the development IDE.

Independently of the form of integration, the goal of the PSLs is to sup-
port the various stakeholders in a mindset aware/supporting fashion. We call
IDEs that are tailored to special purposes and mindsets as mindset-supporting
Integrated Development Environments (mIDEs) [58].

As shallow integration is conceptually rather straightforward, we will tech-
nologically concentrate on deep language integration in the rest of the paper,
and on the provisioning of collaborative mIDEs in the cloud.

3 State of the Art

A promising approach to address at least the challenges of space and time is
the use of so-called Cloud IDEs [19,70]. As recent examples show, Cloud IDEs
are establishing themselves as a way to centrally manage complex development
setups and make them generally accessible: Gitpod, a container-based develop-
ment platform with over 400,000 users [21], raised 13 million Euro in 2021 [16].
GitHub, the market leader in source code hosting, made their own Cloud IDE
called Codespaces publicly available as a limited beta in 2020 [49] and announced
in 2021 that its very own engineering team has moved to Codespaces [67].

In contrast to traditional local development, Cloud IDEs offer an online
project workspace accessible via the browser that is always up to date and ready
for use. This completely decouples the development and execution of software
from the developer’s system by eliminating dependency on local infrastructure,
performance, or resources [2].

The use of Cloud IDEs, which began in 2016 with Eclipse Che [15], now opens
up the possibility of centralized management and provision of the development
setup. This means that developers are no longer dependent on their own systems
or local resources and can always work with the latest setup without having to
migrate manually.

6 Please note that (in fact manually) extending the service library for a generic,
process-oriented basic language can be considered the main contribution of lead-
ing low code environments like Mendix and Bubble [7,44].



434 P. Zweihoff et al.

Fig. 2. Cloud IDE system architecture.

In this section, the concept of Cloud IDEs is analyzed and differentiated from
classic local development. We describe the system architecture of a Cloud IDE
(see Fig. 2) and give an overview of the individual components used to emulate
the features of a desktop IDE. First, we explain the central cluster-based infras-
tructure that provides and scales an IDE as a distributed system in Sect. 3.1.
Since a Cloud IDE can be used by a large number of users, a so-called Master
Application (see Sect. 3.2) is used to manage and control the infrastructure.
In contrast to local development, all tools, dependencies and source code of a
project within a workspace (see Sect. 3.3) are aligned and delivered by the Cloud
IDE.

3.1 Infrastructure

The infrastructure of a Cloud IDE orchestrates all workspaces and the master
application in separate virtual containers build from predefined images. Gitpod
currently provides six different example workspace images [21] which can be
instantiated by a user to start a project. Each container has its own isolated
resources and serves the required features of involved SDKs and REs in forms
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of so called plugins. The orchestrator manages all containers by dynamically
allocating available resources for new workspaces for a user to work on a project.

In order to be able to edit the source code and other project resources, the
corresponding files must be available within the infrastructure. Cloud IDEs use a
central storage for this purpose, which is subdivided on the basis of the existing
workspaces, so that each user can only access his files in isolation.

A workspace is represented by a container running on the infrastructure
which can be accessed via corresponding URL. A network controller is used for
traffic routing and scaling, by forwarding user requests to workspace containers.

3.2 Master Application

The master application controls the cluster behind a Cloud IDE. Since the
entire load of development and execution lies on the infrastructure, the available
resources must be continuously monitored. For this purpose, monitoring compo-
nents [1] are used to observe the currently used workspaces including editors and
REs. Based on the monitoring, the load balancer [52] can ensure that resources
are allocated as needed and unused resources are released. In this way, the Cloud
IDE infrastructure offers efficient use of the available computing capacity.

Besides the cluster, all user workspaces are managed by the master applica-
tion, too. The user access and authentication mechanism provides SSO capabili-
ties for established project management tools such as Github [12] and Gitlab [25].

3.3 Workspace

The workspace of a Cloud IDE symbolizes a combination of the source code of a
project and a developer setup which are served by a user-specific container. To
align all developers of a project, the development setup provides a composition of
existing IDE components, which refer to specific SDKs, editors and REs. Thanks
to this specification all dependencies and IDE plugins necessary for the develop-
ment of the source can be loaded automatically to reduce the initial preparation
time and eliminate manual setup. These steps can also be automated, reducing
the initial preparation time of a workspace.

Listing 1.1 shows an example workspace specification for the Gitpod Cloud
IDE used to develop the pet clinic project7. Lines 9 to 14 include several Java
extensions and the Spring Boot extension, needed to develop a web application.
The lines 1 to 3 specify how to load the dependencies for the project to prepare
the runtime environment of the project. Lines 5 to 7 define an exposed port of
the target application to be served and accessed inside the Cloud IDE.

4 Aligned, Purpose-Driven Cooperation

The challenges described in Sect. 2 not only concern the classical software develop-
ment with GPLs but also the Model Driven Software Development (MDSD) [65]
7 https://github.com/gitpod-io/spring-petclinic.

https://github.com/gitpod-io/spring-petclinic
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1 tasks:
2 - init: ./mvnw package -DskipTests
3 command: java -jar target /*.jar
4 ports:
5 - port: 8080
6 onOpen: open -preview
7 vscode:
8 extensions:
9 - redhat.java

10 - vscjava.vscode -java -debug
11 - vscjava.vscode -java -test
12 - pivotal.vscode -spring -boot

Listing 1.1. Gitpod workspace specification file for the pet clinic example Spring Boot
application.

and Extreme Model Driven Design (XMDD) [40]. Contrary to the classical devel-
opment the concept of XMDD is based on the employment of as specific as possible
and thus many DSL [18], which are embedded in likewise specialized environment.
Accordingly, it is even more important for the domain-specific tool that the dis-
tributed use is supported by a cross-system alignment.

At this point it is obvious that the increasing setup complexity, faster coop-
eration and mindset support in system development requires new approaches
for IDEs. Although the existing Cloud IDEs already made a step in the right
direction by aligning the developer setup, neither the possibility to collaborate
in real-time nor to use PSL exists. Current Cloud IDEs provide classical software
development scenarios on the two levels of development and execution which is
insufficient as described by Boßelmann et al. [6].

Our vision is based on the idea to extend the concept and architecture
of Cloud IDEs for model-driven software development, extreme-model-driven
design and ultimately LDE. As described in [58], the successful use of XMDD
requires that new and refined PSLs are continuously created and made avail-
able. To achieve this goal, a Cloud IDE must be able to dynamically create new
environments via bootstrapping [48] to directly deliver developed PSLs. This
step opens new doors by making existing domain-specific tools like Cinco [47],
Pyro [71] and DIME [5] easier to use than ever before. At the same time, a vari-
ety of new opportunities arise, such as the realization of LDE [58] in the cloud
by the use of the one-thing-approach (OTA) [38]. Due to the fact that every PSL
available in the Cloud IDE is at the same time a web-based service, LDE can be
realized uniformly and comprehensively through service-oriented composition
and integration [41]. As a result, mindset-supporting integrated development
environments (mIDEs) [58] for intuitive and cooperative system development
can be realized on the same central tool. The realization of a Cloud mIDE will
accordingly bring the following advantages regarding LDE:

– Modularization: Each developed or refined PSL exists as an independent
module which can be integrated within the Cloud mIDE as a service. A PSL
module combines not only the respective language including editor, generator
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and execution environment but also a setup description (like Listing 1.1)
which extends the plugin concept of Cloud IDEs. This way, a complete PSL
with all dependencies can be integrated in an encapsulated manner. Due to
the uniform structure of all created PSLs, users can independently use new
specific combinations of PSLs in their workspace.

– Publication: In contrast to Cloud IDEs, the number of available languages
is not limited but highly dynamic in LDE. Each PSL created within the
Cloud mIDE is a service by construction and is available to all users of the
environment immediately after creation. Thus, the distribution of new PSL
modules is possible without any additional steps within the environment.

– Maintenance: Every change or refinement of a PSL takes place within the
Cloud mIDE at a central location. Since each PSL is integrated as a service, it
is accordingly not necessary for each user to make adjustments independently.

In the remainder of this section we illustrate the key design decisions of our
Cloud mIDE beginning with the PSL Module that encapsulates the language edi-
tor, setup, and features of a PSL as a whole in Sect. 4.1. Subsequently, Sect. 4.2
shows the reflexive reuse and continuous refinement of a PSL inside the environ-
ment. Finally, it is described how different users can use specialized workspaces
as a combination of selected PSLs in Sect. 4.3.

4.1 PSL Module

The PSL module (see Fig. 3) describes a self-contained component for using a
PSL within the Cloud mIDE. Each language within a Cloud IDE requires an
associated Language Server and an Editor Extension. Regarding different pro-
gramming languages, language servers [8] are used to enrich the editor with
language specific features such as keyword coloring, validation, content assist
and reference jumping. Thanks to the Language Server Protocol (LSP) [22], the
various language servers can be controlled by the editor via a uniform proto-
col. This loose coupling between language-specific support makes it possible to
dynamically integrate new languages.

The Editor Extension is needed to associate an editor to a specific file type.
As soon as a file of the corresponding type is opened, the language server is
addressed via the standardized LSP. A language server provides all language
specific features like syntax highlighting, syntax validation, auto-comprehension
and jump to definition. For this purpose, the language server accesses the file
currently opened by the user via the Storage API.

Unlike General-Purpose Languages, PSLs are complemented by generators
and transformers that allow translation to other PSLs or executable code [66].
The PSL module thus extends the LSP so that users can trigger the generation or
transformation via corresponding web services. The code generated during the
generation process can be stored within the workspace via the corresponding
storage API.
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Fig. 3. PSL Module Concept to realize the PSL as a service.

In addition to the language server, a PSL module also contains the Setup
Specification, which composes all dependent SDKs and REs for serving the PSL
module. This way, a PSL module can be prepared by the environment automat-
ically behind the scenes to be used by the users immediately. The combination
of the unified language servers with the respective specification allows the envi-
ronment to spawn instances of the PSL modules as needed.

4.2 Bootstrapping

A central component of the MDSD, XMDD and LDE approaches is the pos-
sibility to develop new PSL. In the context of the Cloud mIDE, this means
the development and subsequent publishing of new PSL modules directly in the
environment. For easy and intuitive development of PSLs, established language
workbenches such as Xtext [17] and MPS [9] also use language definition PSLs.
These PSLs can be used, for example, to describe the concrete and abstract
syntax of a language and then automatically generate the necessary components
such as parser and linker.

In order for the Cloud IDE to also offer the possibility of developing PSLs
with PSLs, a reflexive structure must be provided. Figure 4 shows the concept for
a workspace within the Cloud mIDE. Each workspace is served by a correspond-
ing runtime, which provides the necessary features and in particular the language
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Fig. 4. Cloud mIDE bootstrapping concept, utilizing a PSL to create PSLs.

servers of the used PSL modules. In this way, a language server generates a new
PSL module based on a language definition inside the workspace.

Afterwards, the generated PSL module can be included in the PSL registry
and build by the corresponding setup specification. The newly added PSL as well
as all previous ones can be reused accordingly in another workspace. The result-
ing reflexive structure allows to continuously develop, refine and use PSLs [51,58]
inside the environment by all users.

4.3 Composition

According to the LDE approach [58], a PSL should always support a user on
the appropriate level of abstraction. As a result, PSLs are often structured hier-
archically by vertical refinement. In local development, however, this approach
requires a user to manually prepare all transitively dependent PSLs. The Cloud
mIDE can circumvent this problem by describing all required PSL modules inside
the setup specification. Thanks to the uniform structure of all PSL modules, the
corresponding workspace including all dependent PSLs can be provided auto-
matically according to the mindset of a user.

Figure 5 shows an example for three different users, each with their own
workspaces and level of abstraction. The underlying PSL Registry comprises
three PSL modules which depend on each other by refining A by B and B by
C. Depending on which level of abstraction a user chooses, the appropriate PSL
module and all dependent ones can be instantiated inside a user’s workspace.
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Fig. 5. PSL Module composition across different user and abstraction levels.

In this way all features of a selected PSL C can be used even if it depends on
more abstract functionalities of PSL B and PSL A. Transformation sequences [24]
can also be realized through this structure, by using the result of a PSL transfor-
mation as the input of a more abstract one.

5 Sketch: Aligned CINCO Environment

The Cinco Meta Tooling Suite [47] is an Eclipse Modeling Framework (EMF)
based language workbench [59] for the specification and subsequent generation of
graphical graph-based PSLs (gPSLs). In contrast to tools such as WebGME [42]
and MetaEdit+ [56], Cinco focuses on ease of use by applying domain-specific
concepts at the meta level. For this reason, Cinco is based on three core con-
cepts: domain-specificity, full-code generation and service-orientation (DFS) [46].

This means that Cinco can generate a complete, directly executable mIDE
based on three specialized specification languages. The specification takes place
for the abstract and concrete syntax separately with the help of the Meta Graph
Language (MGL) and the Meta Style Language (MSL). For the composition of
several languages to a so-called Cinco Product the Cinco Product Definition
(CPD) is offered. The corresponding generation process aggregates all informa-
tion from the individual specification formats and creates a new environment.
The integration of additional features or whole PSLs takes place service-oriented
so that the users of Cinco can concentrate on the design of the PSL.

In this section, we describe the currently ongoing realization of the Aligned
Cinco Environment (ACE) evolving the concepts of Cinco to a Cloud mIDE.
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Fig. 6. The Cinco Module which composes the specifications languages for the MGL,
MSL and CPD of Cinco.

The aim of the ACE is the creation and delivery of gPSLs in a web-based dis-
tributed environment. For this purpose, first a specific PSL module is designed
which includes the specification languages and the product generator of Cinco.
Afterwards, the approaches of the already existing Pyro [71] project are included
which has already created several Cinco products for the web [23,35]. Based
on Pyro, a corresponding gPSL module is designed which supports the use of
gPSLs of Cinco in a real-time collaboration environment. Finally, it is shown
how the service-oriented integration of gPSLs can be used in the context of the
ACE to continuously refine gPSLs.

5.1 CINCO Module

The realization of the ACE is intended to map the features and concepts of the
Cinco Meta Tooling Suite [47] by allowing gPSLs to be developed in a simple
manner. For this purpose, Cinco provides three related PSLs describing the
abstract and concrete syntax of graphical languages and the composition to a
product. Based on the PSL module illustrated in Sect. 4.1, the Cinco Mod-
ule can be created as a coherent composition of three PSLs. Figure 6 shows the
schematic structure of the Cinco Module, which includes the MGL, MSL, and
CPD specification languages. Similar to the PSL modules, each specification
language has its own editor extension and a corresponding language server that
provides the corresponding features. However, the languages can be used consis-
tently in parallel thanks to the service-oriented API integration. In contrast to a
direct file access, the API of a language server benefits from existing parsers and
linkers so that a call can be described on the given metamodel instead of raw
text. This connection enables for example cross-validation, reference jumping
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Fig. 7. The generated Product Module to use graphical graph-based PSLs in the ACE.

and generation [34] by establishing communication channels between the lan-
guage servers. The generation process utilizes the APIs of all language servers,
collects the entire gPSL specification and creates the Product Module.

5.2 Product Module

The product is generated by Pyro including the previously specified gPSL.
Figure 7 visualizes the corresponding product module for the ACE. In contrast
to textual PSLs, graphical languages require a canvas for modeling nodes and
edges. To avoid the unnecessary and repetitive transfer of shapes, colors and
styling, the canvas is generated as a specific editor plugin. Even though the edi-
tor must be adapted for each gPSL in this way, this can be done centrally within
the ACE.

Another difference to textual languages is the communication between the
editor and the server. Textual language server transfer text fragments as
described in the LSP, which are used for a merge process. This technique is
based on the same mechanisms as VCS and thus hinders fast collaboration in
real-time between multiple users.

Graphical languages on the other hand offer the advantage that each element
and action can be uniquely identified. For this reason, the language server gen-
erated by Pyro utilizes conflict-free replicated data types (CRDTs) [55] in form
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Fig. 8. Example for the service-oriented composition of ACE modules and external
services.

of commands which can be used to unambiguously transmit a user’s interactions
with the canvas. This approach allows users to work in parallel on the same
graphical model without interruptions and the need for merge operations.

Each command received is first validated within the server to ensure that it
does not violate the previously specified syntax and any additional validators
that may be present. According to the principles of Cinco [47], gPSLs should
support the user as much as possible, which includes priority validation. Each
valid command is then applied, distributed to all other users and finally persisted
to a file via storage API.

Similar to the PSL modules described in Sect. 4.1, generators and trans-
formers can be included that can be called via the editor. The generator has
additionally still another connection to the Storage API to persist the generated
files.

5.3 Service-Orientation

A key concept of the Cinco Meta Tooling Suite and LDE is the service-oriented
integration of functionalities to reduce the complexity of a tool. This concept cor-
responds to the established micro-services, which provide functionalities via the
web. In the area of scientific workflows, tools such as ETI [36], Bio-jETI [32] and
Taverna [27] have already shown that the composition and instrumentation of
reusable services facilitates the creation of complex applications as described by
Lamprecht [31]. The achieved interoperability of service-oriented, model-driven
environments can be used to align heterogeneous systems for e.g. internet-of-
things (IoT) scenarios as described in [37].

In the context of the ACE, the set of reusable services can now be signif-
icantly increased by making each module a service by design. For this reason,
each Language Server of a product module provides a unified API to grant other
language servers and web services a convenient access to a model and corre-
sponding editor functionalities. As a result, model transformations [34] between
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different languages can be realized by a simple request to a language server. In
this way, everything within the ACE is automatically a fully-fledged and easy to
integrate service.

Figure 8 illustrates a service composition by example, starting with the gPSL
B. By controlling the unified API of the product modules, a model of gPSL
B can be transformed into a model of gPSL A in a service-oriented manner.
Thanks to the aligned architecture of the ACE, the product module of gPSL A
is instantiated automatically and requires no manual setup.

The left side of Fig. 8 shows the instrumentation of additional services. Since
each workspace within the ACE has an API, any application and programming
language developed there, including the corresponding execution environment,
can be reused. Besides the internal service connection, external environments
and classical web services can also be used in a similar fashion.

As shown in Fig. 8, the service landscape can be extended and scaled both
horizontally and vertically. Accordingly, each PSL inside the ACE can reuse and
refine previously created PSLs, taking the service-oriented approach to the next
level.

6 Conclusion and Perspectives

In this paper, we have sketched ACE, an IDE for collaborative system devel-
opment that supports a three-dimensional alignment: in space, in time, and in
mindset. Key is to provide the entire required infrastructure in the cloud, and to
involve even non-technical stakeholders via dedicated PSLs. We address typical
issues of low-code platforms, like the lacking support of good software engi-
neering practices [33], by considering bootstrapping, simplicity and maintain-
ability top-level priorities: Realised by our modularization strategy, even larger
projects can be handled without perishing in an enormous amount of complex
code. The complete development and runtime environment can be generated
from self-documenting specifications [47]. Technically our approach uses central-
ized infrastructure, based on cluster technology and container virtualization, to
support scalability and the rapid replacement of deprecated components, and
LDE as a means to easily provide and adapt the PSLs required to support the
involved domain experts [58].

ACE overcomes the problem that each developer of a cooperative project typ-
ically has to maintain her own, local development environment which changes
over time due to updates and other version changes. Moreover, the easy inte-
gration of new Purpose-Specific Languages is an ideal means to reduce semantic
gaps: Stakeholders with different expertise can contribute in the language sup-
porting their mindset. This has a positive impact on the overall user experience,
a quality that it is especially recommended for low-code platforms [33].

While our vision supports the separation of concerns very well for hierar-
chically organized PSLs, bidirectional dependencies between different models
are not foreseen. Rather, cyclic dependencies have to be broken by introduc-
ing competence hierarchies following the one-thing-approach (OTA) [38]. In our
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experience, this structural restriction pays of due to its gained simplicity [39,45].
In contrast, the transformational approach presented in [60] aims at explicitly
dealing with bidirectional dependencies which introduces conceptual challenges
that do not fit our simplicity-oriented design style.

Basis for the ease of language definition and integration are PSL modules
which provide languages as services with the help of a language server. PSL
modules can be made available via a central repository forming a reflexive struc-
ture supporting languages that extend languages. Overall this results in Cloud
mIDEs which are tailored to special purposes and mindsets of different stake-
holders.

Our initial experience with ACE indicates a simplicity and uniformity which
allows advanced users to even develop and refine Purpose-Specific Languages and
then generate their own Cloud mIDEs independently. We are therefore convinced
that our approach to an aligned, purpose-driven cooperation has the potential
to open software system development to a much wider audience.
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tive online modeling environments. In: Hähnle, R., van der Aalst, W. (eds.) FASE
2019. LNCS, vol. 11424, pp. 101–115. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16722-6 6

https://doi.org/10.1145/1869542.1869623
https://github.blog/2021-08-11-githubs-engineering-team-moved-codespaces/
https://doi.org/10.1007/978-3-319-47169-3_58
https://doi.org/10.1007/978-3-319-47169-3_58
https://doi.org/10.1007/978-3-030-16722-6_6
https://doi.org/10.1007/978-3-030-16722-6_6


Software Verification Tools



sVerify: Verifying Smart Contracts Through
Lazy Annotation and Learning

Bo Gao1(B), Ling Shi2, Jiaying Li2, Jialiang Chang3, Jun Sun2, and Zijiang Yang3

1 Singapore University of Technology and Design, Singapore, Singapore
2 Singapore Management University, Singapore, Singapore

3 Western Michigan University, Kalamazoo, USA

Abstract. Smart contracts have recently attracted much attention from industry
as they aim to assure anonymous distributed secure transactions. It also becomes
clear that they are not immune to code vulnerabilities. As smart contracts can-
not be patched once deployed, it is crucial to verify their correctness before
deployment. Existing approaches mainly focus on testing and bounded verifi-
cation which do not guarantee the correctness of smart contracts. In this work,
we develop a formal verifier called sVerify for Solidity smart contracts based on a
combination of lazy annotation and automatic loop invariant learning techniques.
The latter is essential as explicit or implicit loops (due to fallback function calls)
are common in smart contracts. Patterns and features which are specific to smart
contracts are used to facilitate invariant learning. sVerify has been evaluated with
4670 Solidity smart contracts, and the evaluation result shows that sVerify is effec-
tive and reasonably efficient for verifying smart contracts.

Keywords: Verification · Smart contracts · Loop invariant learning

1 Introduction

Blockchain is a fast-growing research area in recent years. It is first conceptualized in
Bitcoin blockchain [23] by Satoshi Nakamoto based on multiple techniques like crypto-
graphic chain of blocks by Stuart Haber andW. Scott Stornetta [12], distributed systems
by Lamport [16], etc. The emergence of Bitcoin makes financial transactions among
strangers possible without the help of a third-party authority. Later on, Buterin stepped
forward to develop the platform Ethereum [29], which allows self-enforcing programs,
called smart contracts, to run by themselves. Smart contracts have since attracted much
attention in many domains, such as financial institutes and supply chains.

A smart contract is a computerized transaction protocol that executes the terms of a
contract to satisfy user requirements, such as voting and trading. It can be regarded as
a computer program, which is typically written in a Turing-complete language called
Solidity in Ethereum. The immutability of blockchain makes smart contracts unpatch-
able once they are deployed on the blockchain. Furthermore, the Javascript-like syntax
of Solidity and its many unique language features (e.g., storage variables and fallback
functions) often confuse users, even if they are experienced with traditional program-
ming languages. As a result, there are many attacks due to code vulnerabilities that
caused huge economic losses. For instance, the DAO attack [1] resulted in a loss roughly
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2021, LNCS 13036, pp. 453–469, 2021.
https://doi.org/10.1007/978-3-030-89159-6_28
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equivalent to 60million USD at the time. The attacker found a loophole in the splitDAO
function so that he could repeatedly withdraw Ether through an implicit loop in the fall-
back function in a single transaction.

To react on the increasing amount of attacks on smart contracts, multiple approaches
and tools have been developed to analyze the correctness in recent years. For instance,
Luu et al. [20] developed a symbolic engine for Solidity smart contracts called Oyente,
which systematically analyzes individual functions in a smart contract to identify vul-
nerabilities. Nikolic et al. [24] developed a symbolic analyzer called MAIAN, which
performs inter-procedural symbolic analysis to check suicidal, prodigal, and greedy
contracts based on the bytecode of Ethereum smart contracts. These works, however,
focus on testing smart contracts rather than verifying them. For instance, these sym-
bolic execution engines set a bound on the loop iterations or the number of function
calls and aim to cover those bounded program paths with generated test cases. There
are also several attempts on verifying smart contracts, such as Securify [27], Zeus [15],
solc-verify [13] and VerX [25]. The first three approaches translate Solidity programs
into existing intermediate languages (i.e., Datalog, LLVM and Boogie) and reuse exist-
ing verification facilities. Such approaches are based on abstract interpretation, which
is known to have problems like fixed abstract domains and false alarms due to coarse
over-approximation. In particular, Securify does not support numerical properties like
overflow; Zeus suffers from high numbers of false alarms and solc-verify lacks full
coverage. VerX applies delayed predicate abstraction (which is based upon symbolic
execution and abstraction) to verify real-world smart contracts. However, VerX only
supports external-callback-free contracts [25] and a bound on the loop iteration within
a function is required.

In this work, we develop a formal verification engine called sVerify which is
designed for Solidity programs. sVerify is built upon lazy annotation [21] and state-
of-the-art loop invariant generation techniques [17,31]. Given a smart contract with
assertions, sVerify automatically constructs a labeled control-flow graph (CFG) of each
function. Each node in the CFG is annotated lazily with an invariant (which is initially
true) in a property-guided (i.e. assertion-guided) way. The invariants are monotoni-
cally strengthened through sound inference rules. More importantly, invariants associ-
ated with nodes contained in explicit or implicit loops are learned automatically with a
combination of concrete testing, machine learning and symbolic execution techniques,
based on features specific to smart contracts. The invariants are strengthened until the
assertions are verified or falsified.

sVerify has been applied to verify against the common code vulnerabilities includ-
ing overflow and re-entrancy which are two important types of vulnerabilities, on two
sets of 835 and 3897 smart contracts respectively. It successfully verifies or falsifies
804 contracts on the first test set in the comparison experiment with Zeus. The result
shows that sVerify suffers fewer false alarms than Zeus. In the second test subject set,
3859 contracts are successfully evaluated by sVerify against solc-verify and VeriSol. The
manual examined results on 68 contracts with more than 100 transactions regarding to
overflow show that sVerify gets fewer false alarms than solc-verify and more finished
contracts than VeriSol. To further evaluate sVerify on verifying complex smart contracts
against contract-specific assertions, we systematically apply sVerify to 7 different kinds
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Fig. 1. Example Contracts and corresponding labeled CFGs. (Color figure online)

of contracts that have the most balances with manually specified assertions. Three con-
tracts have been verified successfully, and the falsified assertions reveal 2 vulnerabilities
in these contracts.

To summarize, this paper makes the following contributions:

– We propose a method to verify the correctness of smart contracts through lazy anno-
tation and invariant learning.

– We develop an end-to-end verification engine sVerify for Solidity contracts.
– We evaluate the effectiveness of sVerifywith real-world smart contracts against over-

flow and re-entrancy vulnerabilities, and find sVerify can verify these contracts with
fewer false alarms.

2 Overview Through Motivating Examples

In this section, we give an overview on how sVerify works by two example contracts
(one is buggy and the other is correct, as shown in Fig. 1).

Figure 1a is a simplified version of the DAO contract. The function withdraw
allows the investor msg.sender to claim back his investment and sets the investor’s
balance to 0. However, the msg.sender here is a contract account, which may be
controlled by an attacker. The fallback function in this malicious contract is crafted
to call back the withdraw function again. Note that the fallback function is invoked
automatically when some Ether is transferred into the contract (triggered by line 6)
according to the mechanism of Ethereum Virtual Machine (EVM). This action allows
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the attacker to claim more Ether than he deserves. The assertion at line 9 which requires
the balance of the contract being decreased by amt exactly after line 8 will be violated
in such cases. This vulnerability is also referred to as re-entrancy [20]. To prevent such
vulnerabilities, one of the improvement shown in Fig. 1d introduces a variable lock to
ensure the transfer at line 9 can be executed only once. In addition, it should be noted
that the variable lock can only be modified by the function withdraw. The statement
at line 7 requires lock to be false, and only if this condition is satisfied, lock is
updated to be true and amt is sent to the investor msg.sender. If there is a callback
action again, it will be reverted by the condition at line 7, such transactions always fail.
As a result, the assertion at line 10 always holds.

To verify the toyDAO A contract, sVerify first constructs the CFG of the
withdraw function as shown in Fig. 1b. In this CFG, nodes root and stop represent the
entry and exit of the function respectively. The label on the arrow is the corresponding
command in the form of line number. There are two implicit edges drawn with dashed
lines in Fig. 1b. These two edges link node n4 to node root and node stop to node
n4, which capture an inter-contract function call to the function withdraw. Node n5

before the assertion statement at line 9 is an assertion node, which is labeled with the
corresponding assertion this.balance = oldq − amt (highlighted in red).

Based on the constructed CFG, sVerify infers the invariant for each node and checks
whether the invariant at node n5 implies the assertion afterwards. Figure 1c shows the
invariants of node n1–n3 with root node being true. Taking node n2 as an example, its
invariant is strengthened based on the invariant associated with node n1 and statement
at l5. That is, the new invariant is the conjunction of the original invariant (which is
true) at n2 and oldq = this.balance ∧ amt = balances[msg.sender] (which is the
constraint that must be satisfied at n2 since n2 can only be reached from n1). To infer
the invariant at node n4 which is the head node of the loop starting with an implicit
edge labeled with call withdraw and ended with an edge labeled with return, sVer-
ify invokes the loop invariant generator to learn an invariant. It first generates random
valuations of all relevant variables (including amt, oldq, and this.balance), then
categorizes the valuations. After that it calls the learner to generate a candidate invariant
which is validated by the validator thereafter. If the candidate invariant is not valid, a
counterexample in the form of variable valuations is generated and used to learn a new
candidate invariant. In this example, during the invariant learning process, an error sam-
ple (amt=1, oldq=257, this.balance=256) is generated. With this sample,
the msg.sender will receive 1 wei (the smallest denomination of Ether) at line 6,
and possibly will call back to this function again to get another 1 wei. While the sec-
ond call satisfies the assertion at line 9 (amt=1, oldq=256, balance=255), the
first call which completes subsequently violates the assertion (amt=1, oldq=257,
balance=255). Thus, the verification terminates and the contract is falsified.

For the fixed contracttoyDAO B in Fig. 1d, the corresponding labeled CFG is shown
in Fig. 1e where node n5 is the head node of the loop. Similarly, sVerify infers the
invariant for each node and invokes the loop invariant generator to generate the invari-
ant for node n5. The loop invariant generator generates a valid candidate invariant
locked = true ∧ this.balance = oldq − amt at node n5 after a few iterations.
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Afterwards, the contract is verified since the invariant at n5 implies the assertion
this.balance = oldq − amt at that node successfully.

3 Our Approach

In this section, we present our approach step-by-step in detail.

3.1 Formalization of Smart Contracts

Unlike traditional programs in which the main() function is the single entry, smart
contracts can be accessed from any public function once they are deployed. Thus, it is
important that each function is verified separately. Without loss of generality, we define
the following commands which capture a core set of sequences of EVM instructions.
Readers can refer to Ethereum yellow paper [29] and KSolidity [19] etc. for further
details.

Definition 1 (Command). A command in smart contracts is defined as follows.

Com ::= sstore(p, v) | sload(p) | x := expr | if b | assert b | call f | return
expr ::= x | v | op(expr, expr)
op ::= add | mul | sub | div | mod
b ::= true | false | iszero(expr) | cmp(expr, expr) | not b | b and b | b or b
cmp ::= lt | gt | eq

sstore(p, v) writes a position p with value v (i.e., a 256-bit bitvector) to storage,
while sload(p) reads a value of p from storage. x := expr assigns the valuation of
expression expr to variable x. The expression expr can be a variable, a value, or an
arithmetic operation on two expressions such as addition add, multiplication mul, and
so on. Branching command if b evaluates a boolean expression b which can be boolean
constants true or false. The expression also includes comparison operators like iszero
and cmp (lt, gt, eq) together with boolean operators (not, and, or). Assertion assert b
asserts the boolean expression b shall be true. Commands call f and return represent
a call to function f and a return to the caller respectively.

Definition 2 (Function). A smart contract function F is a tuple (N, root, E, I,A),
where N is a set of nodes (representing control locations); root ∈ N is the entry node;
E ⊆ N × Com × N is a set of edges labeled with a command defined in Definition 1;
I : N− > Pred is a function that labels each node N with an invariant predicate; and
A : N− > Pred is a function which labels each node N with an assertion predicate.

The above defines a function of a smart contract to be a labeled control-flow graph
(CFG) to simplify the discussion. In practice, given a function of a smart contract C,
we first compile the source code into EVM bytecode [29] and subsequently disassemble
the bytecode into EVM instructions. The CFG is then constructed through simulating
the stack with the instructions, i.e., to figure out the targets of all jump instructions.
To capture control flow due to the inter-contract function calls, two implicit edges are
generated by linking the call node to the root node and linking the stop node to the call
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Fig. 2. Execution rules, where (n
c→e n′) ∈ E

node. Through these, a complete CFG is constructed. Readers are referred to [3,6] for
further details.

Initially, the invariant function I is defined such that I(n) = true for every n ∈ N .
Furthermore, the assertion function A is defined such that A(n) = b if n is a program
location with a command assert b; otherwise A(n) = true. For instance, as shown in
the CFG of function withdraw in Fig. 1e, the invariant I(n5) of node n5 is true, and
the assertion A(n5) is this.balance = oldq − amt.

Definition 3 (Symbolic Semantics). Let (N, root, E, I,A) be a function of a smart
contract, its (symbolic) semantics is defined as a labeled transition system (S, init,→s,
I,A), where S is a set of symbolic states, and each state s is a triple (n, Γ, V ) where
n ∈ N , Γ is a call stack,1 and V is a symbolic valuation function which maps program
variables to expressions of symbolic variables, init ∈ S is the initial state, →s⊆ S ×
Com × S is the transition relation of the semantics while E is the transition relation at
the code level. →s conforms to the semantic rules defined in Fig. 2.2

In Fig. 2, rule Sstore captures how the value of the position in storage is updated.
After the execution of the command, n is moved to the next node n′ and position p in
storage V ′ is updated by the value of v. Rule Assign updates the value of variable x in
V ′ based on the evaluation of expression expr in the valuation V (denoted by function
eval). The rules of If-T and If-F capture the branch situation, n is moved to either
node n′ or n′′ after executing this command. Rule Call captures the execution of any
possible inter-contract function call. After the execution, n is moved to the root node of
the called function n′, function f and the valuation of the local variables VΓ are added
to the function call stack Γ�〈(f, VΓ )〉, and valuation V ′ is to extract the valuation
of global variables in V that are only modified in current function by extract. Rule
Return pops the top element of the stack and moves to the node of the caller with
the updated valuation which restores the local variable valuation at the calling node.
Symbol ⊕ overrides the variable valuation in V with those in VΓ .

1 We omit the details on the content of the stack for brevity.
2 Due to the page limit, only a core set of rules are presented here.
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A path p of a function in a smart contract is a sequence of alternating
nodes/commands in the form of 〈n0, c0, n1, c1, . . . , cn, nn+1〉, where n0 = root

and ni
ci→e ni+1 for all 0 ≤ i ≤ n. A (symbolic) trace is a path in the sym-

bolic semantics, and each trace corresponds to a path in the contract by definition.
Thus, a trace tr is a sequence of alternating states/commands in the form of tr =
〈s0, c0, s1, c1, . . . , cn, sn+1〉, where s0 = init and si

ci→s si+1 for all 0 ≤ i ≤ n. We
write last(tr) to denote the last state of the trace sn+1. The set of symbolic traces of a
function F , written as Trace(F ), is the set of traces of its symbolic semantics, where
each trace is a sequence whose head is the initial state and the alternating state/command
conforms to the transition relation.

Definition 4 (Node Invariant). Given a smart contract function F = (N, root, E,
I,A), a predicate φ is an invariant at node n (denoted as I(n) = φ) if and only
if last(tr) |= φ for all tr ∈ Trace(F ) s.t. π(last(tr)) = n.

where s |= φ means φ is satisfied by the variable valuation s. Intuitively, the above def-
inition states φ is an invariant at node n if and only if φ is satisfied by all traces leading
to node n, i.e., when the trace reaches n, its variable valuation satisfies φ. Function last
returns the last element of the trace, and function π returns the node of the tuple.

Definition 5 (Contract Correctness). Given a contract C with each function Fi =
(Ni, rooti, Ei, Ii,Ai), Fi is correct if ∀nj ∈ Ni, Ii(nj) ⇒ Ai(nj). Contract C is
correct if all the functions Fi in C are correct.

Based on the constructed CFG and its semantics, the verification of a smart contract
can be achieved by checking whether the invariant of any node can imply the associated
assertion. If yes, the program is verified to be correct. sVerify infers the node invariants
with the method of strongest postcondition. Before presenting how the inference works,
we first define how the strongest postcondition is computed.

Definition 6 (Strongest Postcondition). Given a command c ∈ Com and a precondi-
tion φ, the strongest postcondition sp(c, φ) is defined as:

sp(sstore(p, v), φ) = ∃y, φ[y/storage[p]] ∧ storage[p] = v
sp(x := expr, φ) = ∃y, x = expr[y/x] ∧ φ[y/x]
sp(c, φ) = φ ∧ b if c = if b or assert b
sp(c, φ) = φ if c = sload(x)
sp(call f, φ) = ∀x ∈ LV, ∀y ∈ GV ′, φ  φ(x)  φ(y)

In the above definition, the fresh variable y represents the previous values of storage[p]
and x in the strongest postconditions for command sstore and assignment. For the
branching and assertion commands, the strongest postcondition is the conjunction of φ
and b. As command sload only reads the storage, its strongest postcondition keeps the
same. We remark that the strongest postcondition for command call f is φ except that
all constraints related to local variables LV and global variables GV ′ are eliminated.
Symbol  represents variable elimination of all variables in φ. GV ′ is global variables
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Algorithm 1: Node Invariant Inference Algorithm inferI(F, n)
1 Ψ ← false;
2 for (mi, ci, n) ∈ E do
3 Ψ ← Ψ ∨ sp(ci, I(mi)) ;
4 end
5 if Ψ �= false then I(n) ← I(n) ∧ Ψ ;

which can be modified by other functions besides the current function. This rule can
be potentially improved with a contract-level invariant inference method. In sVerify,
we conduct basic static analysis which allows us to identify the global variables that
are modified by each function in the contract. With that information, we strengthen the
above rule as follows: all constraints on global variables except those which are only
modified by the current function, are eliminated. This is sound as all callback actions to
the current function are captured in the CFG.

Algorithm 1 shows details on updating the invariant of a node n based on the
strongest postcondition. Let Ψ be a predicate which is initially false. We compute
sp(ci, I(mi)) for each transition (mi, ci, n) to node n by command ci. Their disjunc-
tion is a constraint which must be satisfied by the invariant at node n. Intuitively, this
is because n can only be reached via one of its parents. Lastly, at line 5, we set the
invariant at node n to be the conjunction of I(n) and Ψ so that it is monotonically
strengthened over time. The condition at line 5 ensures that a node without a parent like
the root node is not updated.

Proposition 1. The invariant inferred by Algorithm 1 is indeed an invariant. ��

3.2 Loop Invariant Generation

While Algorithm 1 can be applied to infer invariants systematically, it may not be effec-
tive for loops. That is, given a loop of the form 〈n0, c0, n1, c1, n2 . . . , nk, ck, n0〉, the
invariant of node n0 is recursively inferred based on itself and thus may never termi-
nate. Therefore, we distinguish head nodes of certain loops (i.e., a node representing the
start of a loop statement or an external function call, it can be identified from the CFG)
and apply a different approach to infer invariants for such nodes. The overall idea is
an iterative “guess and check” approach for synthesizing loop invariants. This iterative
approach consists of three phases, data labeling, learning (or guessing), and validation.
The details are shown in Algorithm 2 where F is the CFG of the function and n is the
head node of a loop.

In Algorithm 2, Var is the set of loop-related variables. The valuation set of vari-
ables in Var at node n (denoted as DS) is initiated by random sampling at line 1 and
the size of the initial DS is decided empirically, e.g., 20. Note that an effective sam-
pling method would allow us to learn the invariant efficiently, as shown in [17]. On the
other hand, since the learned invariant is always validated by the validator, the learning
is guaranteed to converge if there exists an invariant of the supported form. In general, a
reasonably large set of random samples is often helpful in learning candidate invariants.
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Algorithm 2: genLI(F, n)
1 DS = init(Var); DS′ ← ∅; LDS ← ∅;
2 for ds ∈ DS do
3 DS′ ← DS′ ∪ concExLP (ds, n);
4 end
5 LDS ← label(DS′, F, N) ;
6 while not timeout do
7 (flag, ds) ← checkErr(LDS);
8 if !flag then
9 return (“falsified”, ds);

10 end
11 φ ← learnINV (LDS);
12 CE ← validate(φ, F, n);
13 if CE = ∅ then
14 return (“succeed”, φ);
15 else
16 for ds ∈ CE do
17 DS′ ← DS′ ∪

concExLP (ds, n);
18 end
19 LDS ← label(DS′, F, N) ;
20 end
21 end
22 (CE, φ′) ← heurAndV al(φ, F, n);
23 if CE = ∅ then return (“succeed”, φ′) ;
24 else return (“timeout”, null) ;

Algorithm 3: Overall Algorithm
1 {F1, F2, . . . , Fm} ← CFG build(C);
2 for F ∈ {F1, F2, . . . , Fm} do
3 I′ ← ∅; I ← {true | n ∈ N};
4 while I′ �= I do
5 I′ ← I;
6 for n ∈ N do
7 if n is loop head then
8 (msg, v) ← genLI(F, n);
9 if msg = “succeed” then
10 I(n) ← v;
11 else if msg = “falsified” then
12 return (”falsified”, v);
13 else
14 return (”timeout”, null);
15 else
16 I(n) ← inferI(F, n) ;
17 end
18 end
19 end
20 for n ∈ N do
21 if I(n) �⇒ A(n) then
22 return (“falsified”, ce)
23 end
24 end
25 end
26 return “verified” ;

LDS is labeled DS′, which is updated at line 5 by label function. The data samples are
collected through lines 2–4 by concretely executing the loop part with the valuations
from DS. During the execution, node n may be visited iteratively and all the variable
valuations upon reaching n are added to DS′ as well. Labeling for valuations in DS′

is based on three categories, i.e., ‘+’ for positive, ‘−’ for negative, and ‘e’ for error.
A valuation s which starts from an initial valuation s0 and becomes s after zero or
more iterations is labeled based on whether s0 satisfies I(n) and whether eventually an
assertion is violated. Specifically,

– ‘+’: if s0 satisfies I(n), and no assertion is violated during the execution.
– ‘−’: if s0 violates I(n) and an assertion is violated during the execution.
– ‘e’: if s0 satisfies I(n), and an assertion is violated during the execution.

Intuitively, the valuations labeled with ‘+’ must satisfy the (unknown) loop invari-
ant; the one labeled with ‘−’ must not satisfy the loop invariant; and a valuation labeled
with ‘e’ is a concrete counterexample which falsifies the assertion. Take the contract
in Fig. 1d as an example, assume 2 valuations (2, 0, 20, 18), (5, 1, 30, 25) for variables
(amt, lock, oldq and this.balance) are randomly sampled at line 1. After exe-
cuting function concExLP with these valuations at line 3, 1 more valuation is added to
DS′: (2, 0, 20, 16), which violates the assertion. Afterwards, valuation {(5, 1, 30, 25)}
is labeled with ‘+’; and {(2, 0, 20, 18), (2, 0, 20, 16)} are labeled with ‘−’.

After labeling the initial dataset, we try to strengthen a valid invariant from lines
6–21. Lines 7–10 check whether there is any ‘e’ valuation and return “falsified”
together with the valuation as a counterexample. ‘e’ valuation is a concrete valuation
in LDS which violates any assertions. A candidate invariant is expected from function
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learnINV at line 11. The primary idea is to guess a candidate invariant in the form
of a classifier which separates the valuations labeled with ‘+’ from those labeled with
‘−’. Specifically, we adopt the LINEARARBITRARY algorithm proposed in [31], which
is built upon SVM and decision tree classification, to infer candidate invariants in the
form of arbitrary combination of conjunction or disjunction of linear inequalities. Line
12 invokes the function validate to check whether the candidate invariant φ is indeed
an invariant (i.e., it is inductive through every path in the loop). That is, we tentatively
label the node nwith the candidate and apply Algorithm 1 to propagate it through nodes
starting from n and ending with a parent of n. The invariant is inductive if and only if,
for all m such that (m, c, n) ∈ E, sp(I(m), c) ⇒ φ, which means φ is a valid invariant
and returned at line 14. Otherwise, a counterexample in the form of variable valuation
is generated and added to CE, which is further subsumed into LDS for the next round
invariant generation.

We remark that the loop invariants learned through this way are property-guided.
Although the learning algorithm adopted from [31] is guaranteed to terminate given
a finite set LDS, the overall learning process may timeout due to too many guess-
and-check iterations. We adopt a simple heuristics of conjuncting the assertion with
the current candidate as a candidate invariant for validation at line 22. This is justi-
fied intuitively as the learned invariant should be strong enough to imply the asser-
tion. For example, in contract toyDAO B shown in Fig. 1d, a candidate invariant
lock = true is generated by Algorithm 2. However, timeout occurs when sVer-
ify validates it. Applying the heuristics, the candidate invariant is strengthened to be
lock = true ∧ this.balance = oldq − amt, which is subsequently validated. Other-
wise, timeout is returned at line 24.

3.3 Overall Verification Algorithm

With the above discussion, we are ready to present the overall algorithm which is shown
in Algorithm 3. Given a smart contract C with m functions, we first construct the CFG
for each function at line 1. For each node n in each function F , we initiate the node’s
invariant with true and update them at lines 4–19. If node n is a loop head node, Algo-
rithm 2 is invoked and an invariant is returned when it is “succeed” at line 10. Other-
wise, the algorithm will return “falsified” or “timeout” at lines 12 and 14. Whenever
the invariants stabilize (i.e., reaches a fixed point), we check whether, for each node,
its invariant implies its assertion at lines 20–24. If the implication fails at any node, the
counterexample (ce) from the SMT solver that violates the node assertion is returned to
the user. If all assertions are implied by their corresponding invariants, the contract is
successfully verified.

Theorem 1. The contract is safe if Algorithm 3 returns “verified”.

Proof. The claim follows the fact that all inferred invariants are indeed invariants. There
are two ways of inferring invariants, either by Algorithm 1 or 2. In the former case, the
inferred invariant is indeed an invariant according to Proposition 1. In the latter case,
the correctness of the inferred invariant generated by genLI is ensured by function
validate in Algorithm 2 which checks whether the learned invariant is inductive. Given
that all inferred invariants are sound, Algorithm 3 is sound as it returns “verified” when
all assertions are implied by the invariants (by Definition 5). ��
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In practice, Algorithm 3 is made always terminating with a timeout on the genLI
method. The complexity of the algorithm is hard to analyze due to the many com-
ponents. We thus evaluate it empirically in the next section.

4 Implementation and Evaluations

We have implemented our approach in sVerify with C++. Given a Solidity smart con-
tract, sVerify first compiles it into EVM bytecode and subsequently disassembles the
bytecode into instructions for constructing the CFG. Then, LIBSVM [5] and C5.0 [26]
are adopted for invariant learning, and Z3 SMT solver is used for invariant validation.
We conduct two sets of experiments to evaluate sVerify on real-world smart contracts.
In particular, we attempt to address the following two questions.

1. How effective is sVerify in verifying common code vulnerabilities?
2. How effective is sVerify in verifying contract-specific assertions?

All experiments are conducted on a machine with an Intel Core i7-7700HQ CPU with
8 cores clocked at 2.8 GHz, and 23.4 GB of RAM, running the system of 64-bit Ubuntu
18.04LTS. The dependancies of sVerify include Z3 (version 4.8.0) and the boost library
(version 1.68.0). As of now, it is developed for Solidity before version 0.5.19 and
Ethereum Virtual Machine (EVM) before version 1.8.21.

4.1 Verification Against Common Code Vulnerabilities

In this set of experiments, we evaluate the performance of sVerify on verifying against
common code vulnerabilities including overflow and re-entrancy. These two kinds of
vulnerabilities are particularly interesting and relevant.

First, most of the vulnerabilities (90.2% (476/528)) reported in the CVE list [9]
between 2018 and 2020 are overflow problems. The DAO attack [1], one of the most
famous attacks which caused huge monetary loss, has evidenced the importance of re-
entrancy. Furthermore, re-entrancy is a vulnerability which is associated with implicit
loops due to fallback function calls and thus would put our loop invariant generation
approach under test. Assertions for capturing overflow vulnerabilities are systematically
generated and assertions for capturing re-entrancy vulnerabilities are manually specified
regarding the balance after each call transaction like the example in Sect. 2.

For baseline comparison, we focus on three state-of-the-art verification tools Zeus,
solc-verify and VeriSol. Zeus [15] is a framework for automatic verification of smart
contracts based on abstract interpretation techniques. solc-verify [13] and VeriSol [28]
are tools that allow specification and modular verification of Solidity contracts which
are built upon the Boogie verifier.

Setup. To compare with Zeus, we adopt the test subjects reportedly analyzed by Zeus
in [15] and systematically run sVerify on them. We did not compare with the other two
tools because (1) solc-verify lacks the support of complex data types and memory mod-
els before version 0.5.0 and thus fails to verify most of the test subjects; (2) VeriSol
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Table 1. Comparison results between Zeus and sVerify

Zeus sVerify

Category Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN

Overflow 234 592 9 33 5 255 549 31 4 0

Re-entrancy 803 28 4 2 20 754 50 31 0 0

Fig. 3. Functions incorrectly analyzed by tools

requires manual-specified assertions for specific properties and thus we leave the com-
parison to the second experiment. Note that the code of Zeus is not open source and thus
it is not possible to apply it to other smart contracts. Among 1524 contracts reportedly
analyzed by Zeus, 898 of them are still available online. As nested loops are yet to be
supported mainly due to the required engineering effort as well as lack of motivation -
there are relatively small amount of nested loop contracts on the blockchain. Thus, the
remaining 835 contracts are taken as the test subjects.

We further evaluate sVerify on 3897 contracts against open-source tools, solc-verify
with version of v0.4.25-boogie to include the support of arithmetic mod-overflow and
VeriSol3 of 0.1.5-alpha. Note that only 68 contracts that have more than 100 transactions
are demonstrated in the paper, which are also the same subjects discussed by solc-
verify [13]. The option of flag “arithmetic” for solc-verify is “mod-overflow”. Similar
flag with the option of “useModularArithmetic” is also set for VeriSol. Timeout for
verifying each contract is 3600 s for all tools. Furthermore, a 10 s timeout is set for each
z3 solver request.

Results. The experiment results on Zeus’s 835 test subjects are summarized in Table 1.4

Each result is either “Safe” or “Unsafe” (i.e., there is a potential issue). “Unk.” means
unknown, due to either exception or timeout. “FP” and “FN” stand for false positives
and false negatives. A false positive occurs when tools return “Unsafe” but the contract

3 Necessary assertions regarding overflow and reentrancy are inserted manually.
4 Details and benchmarks can be found at https://doi.org/10.5281/zenodo.5168441.

https://doi.org/10.5281/zenodo.5168441
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Table 2. Comparison results on Overflow with solc-verify and VeriSol.

solc-verify VeriSol sVerify

Category Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN Safe Unsafe Unk. FP FN

Overflow 34 34 0 30 0 18 12 38 1 0 41 25 2 9 0

is actually “Safe” after we manually examined the alarmed code, while a false negative
occurs when tools return “Safe” but the contract is actually “Unsafe”.

We have multiple observations based on the results. First, compared with Zeus,
sVerify’s verification results are more reliable since there are fewer false positives and
false negative. In particular, for overflow, Zeus generates 33 false positives and 5 false
negatives, whereas sVerify has 4 false positives and 0 false negative; for re-entrancy,
sVerify has 0 false positive and 0 false negative.

Since Zeus is not open source, there is no way to know why some contracts are
not correctly analyzed. We show some examples in Fig. 3 in the following which may
offer clues. Zeus generates a false alarm of overflow for function split in Fig. 3
which sends tokens to two accounts. We speculate the false alarm is due to line 3,
since examining this line alone would suggest that overflow is possible due to the arith-
metic operation. In comparison, sVerify keeps track of relationship between fee and
msg.value due to line 2 and correctly concludes there is no overflow. Zeus misses
the overflow in function processwhere the statement msg.value*taxPerc/100
may exceed the maximum value at line 6. For re-entrancy, one example Zeus misses is
the one in function testNumberRequest where attackers may input some address
to exploit the re-entrancy vulnerability at line 9. The reason of four false positives by
sVerify is because sVerify verifies each function in isolation. Namely, symbolic values
are assigned to global variables so that they may have arbitrary values. In reality, these
variables may be constrained in certain ways. For instance, startTime in function
transferFrom is only set in constructor and the overflow at line 11 is impossible.
Finally, we notice that sVerify missed reporting one re-entrancy vulnerability as sVerify
terminates the analysis once an issue is identified, e.g., an overflow issue is identified
before a re-entrancy issue is encountered.

Table 2 demonstrates the results of 68 contracts by three tools. It can be observed
that solc-verify has more false positives compared to VeriSol and sVerify. There are
multiple reasons why false alarms are generated by solc-verify. For instance, miss-
ing range assumptions for array lengths causes false alarms for loop counters [13],
which contributes the most false alarms. On the contrary, sVerify identifies more true
vulnerabilities. One example is the function multisend shown in Fig. 3. solc-verify
reports i+=1 might overflow, which is regarded as a false alarm (FP). However, sVer-
ify reports the index of variable values at line 15 might cause overflow if i is
larger than the length of array values, which is a true issue that is missed by solc-
verify. VeriSol can also find such problems if only an assertion shown at line 14 is
inserted. Only 30 contracts are successfully analyzed by VeriSol. 9 false alarms are
generated by sVerify. Besides the missing constraints on time like the case in func-
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Table 3. Real-world Contracts Analysis.

Contract #loc #pubfns #lpfns sVerify solc-verify

MultisigWallet 304 14 7 Unsafe Unk.

Imt 65 4 1 Safe FP

WithdrawDAO 15 2 0 FP FP

LifCrowdsale 800 37 1 Safe Unk.

WETH 50 6 0 FP FP

KyberReserve 298 19 2 Safe Unk.

TokenStore 240 20 3 Unsafe Unk.

tion transferFrom, other run-time variables also matter like the amount of Ether in
amt=msg.value*2000, which is safe as the total Ether is limited.
Efficiency sVerify successfully analyzed 804 (out of 835) contracts and 3859 (out of
3897) contracts for two sets of benchmarks, and each contract takes an average of 38.5 s
and 14.8 s respectively. On the contrary, Zeus finishes 97% of the contracts within 60s,
there is no further detailed data provided. solc-verify finishes all the contracts with an
average time of 1.24 s and VeriSol finishes 30 (out of 68) contracts with 2.28 s. Longer
time is needed to learn invariants for loops in the verification process, which is an
essential step to acquire an accurate result, but also leads to more timeouts.

4.2 Verifying Contract-Specific Assertions

While verification against common vulnerabilities is important, it is far from sufficient
for the functional correctness. In this section, we identify several high-profile smart
contracts, manually specify assertions relevant to their functional correctness and apply
sVerify to verifying those assertions. The assertions are mainly targeted at functions with
loops as those are non-trivial to verify. Since most of the loops operate on arrays, we
define several patterns specific to them, e.g., assert(ret==ARRAY MAX) to check
whether the returned value ret by the program is the maximum. The test subjects con-
sist of 7 representative contracts from accounts ranking top 1000 in terms of balance,
including the wallet contracts which receive and transfer Ether for users, like multiSig,
Imt and WithdrawDAO, the token contracts which work for token issuance and crowd-
sale, like LifCrowdsale and WETH, the decentralized exchange contracts which work
for crypto asset transaction, like KyberReserve and TokenStore. Many contracts are built
upon these contracts. Table 3 shows the results of sVerify and solc-verify, where columns
#loc, #pubfns, and #lpfns stand for lines of code, number of public functions, and
number of loop functions. The results by VeriSol are ignored because of version prob-
lem.

sVerify successfully analyzes all the contracts whereas solc-verify finishes three.
Two out of four alarms reported by sVerify are real vulnerabilities. In function
getTxIds shown in Fig. 4, the statement at line 2 overflows if the assigned value
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Fig. 4. Alarmed functions by sVerify

of variable to is smaller than from (which may spawn new arrays and cost up all the
gas). The other one is in function withdraw, the assertion statement at line 7 is vio-
lated if the fallback function in msg.sender calls back to function withdraw again.
Although this, in practical runtime, the smart contract decreases the token amount of
the msg.sender at line 4, which ensures the msg.sender cannot claim more Ether
than he deserves. The other two false alarms are due to limitations on analyzing func-
tions in isolation, as explained for the constraints of time and Ether balance in Sect. 4.1.
Two false alarms are all eliminated after inserting require statements for restrict-
ing the arithmetic overflow. In comparison, solc-verify reports 3 alarms which are all
false alarms. This test shows that sVerify can be helpful to verify some contract-specific
assertions.

5 Related Work

In the last five years, several approaches have been proposed to test or verify smart con-
tracts through various techniques. For instance, the fuzzing tools reported in [2,14,30]
try to selectively generate test inputs with both static and dynamic techniques to find
critical vulnerabilities. Inevitably, they are prone to false negatives which are of great
concern for verification of smart contracts. Other works adopt symbolic techniques
to analyze smart contracts [8,20,22,24]. To avoid the path explosion problem, these
approaches usually bound the search space by, for instance, setting a limit on the num-
ber of blocks or function calls.

Unlike these approaches, Securify [27] is based on abstract interpretation and
dependency graph to produce vulnerability patterns through inference rule-based gen-
eration and analyze the correctness accordingly. However, Securify does not support
numerical properties like overflow. VerX [25] introduces delayed predicate abstraction
approach based upon symbolic execution to verify smart contracts during transaction
execution. However, VerX only supports external-call-free contracts whose behavior is
equivalent to the behavior of the contracts without callbacks. Some other approaches
like the work in [4] and Zeus [15] translated smart contracts into intermediate represen-
tations like F* programs and LLVM bitcode respectively, then leverage existing tools
for F* and Seahorn to reason about contract correctness. solc-verify [13] and verisol [28]
translate smart contracts into the Boogie intermediate language, and leverages the ver-
ification toolchain for Boogie programs for analysis. The translation is on the source
code level, which allows the users to write annotations directly in the contract. How-
ever, since Boogie was not designed for smart contracts, some features are not supported
for the translation.
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In this work, we propose a verification approach based on lazy annotation
and automatic loop invariant generation. A number of loop invariant generation
approaches have been proposed, including those based on abstraction interpretation [11],
counterexample-guided abstraction refinement [7] or interpolation [18], logical infer-
ence [10] and learning [17,31]. The former three depend on constraint solving and thus
suffer from scalability. We adopt the learning-based invariant generation approach in
this work.

6 Conclusion

We leverage the techniques of lazy annotation and state-of-the-art loop invariant gener-
ation method to implement the formal verifier sVerify. With the help of invariant infer-
ence, sVerify can be helpful to verify or falsify smart contracts. We evaluated sVerify on
4670 real-world smart contracts and the results show that sVerify is effective and rea-
sonably efficient. We will extend our work to contract-level verification in the future.
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30. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In: ESEC/FSE,
pp. 1398–1409 (2020)

31. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI, pp. 707–721.
ACM (2018)

https://github.com/kframework/solidity-semantics
https://doi.org/10.1007/978-3-642-14295-6_10
http://www.rulequest.com/see5-unix.html
https://doi.org/10.1007/978-3-030-41600-3_7


Rigorous Engineering of Collective
Adaptive Systems



Verifying Temporal Properties of Stigmergic
Collective Systems Using CADP

Luca Di Stefano(B) and Frédéric Lang

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble
Alpes), LIG, 38000 Grenoble, France
luca.di-stefano@inria.fr
http://convecs.inria.fr

Abstract. We introduce an automated workflow to verify a variety of tempo-
ral properties on systems of agents that interact through virtual stigmergies. By
mechanically reducing the property and the system under verification to an MCL
query and a sequential LNT program (both MCL and LNT being languages avail-
able in the CADP formal verification toolbox), we may reuse efficient model-
checking procedures that can give us a verdict on whether the property is satis-
fied by the system. Among other things, this procedure allows us to verify that a
system satisfies a given predicate infinitely often during its execution, which is an
improvement over previous verification approaches. We demonstrate the capabil-
ities of this workflow by verifying a selection of example systems. Additionally,
we present preliminary results showing that this workflow may also generate par-
allel LNT programs and exploit compositional verification techniques, which is
likely to improve the analysis performance.

Keywords: Collective adaptive systems · Virtual stigmergy · Temporal logics ·
Model checking

1 Introduction

Collective adaptive systems (CAS) are composed of several agents, with limited capa-
bilities and knowledge, that interact together to reach a common goal [41]. When study-
ing the evolution of these systems, one can often witness global phenomena that arise
from the seemingly chaotic interaction of agents, such as the emergence of a coher-
ent pattern of movement in a flock of birds or the spread of a popular opinion on
a social network. While collective systems have traditionally been analyzed by look-
ing at their aggregate features (for instance, by using general equilibrium theory to
describe an economy), there is a growing interest in understanding what kind of local
behaviour and which communication mechanisms may give rise to such global effects.
These individual-based approaches are increasingly being used in hard and soft sci-
ences alike, with applications ranging from economics [32], to epidemiology [27], to
social sciences [18]. Additionally, replicating those mechanisms in man-made systems
is likely to make them more adaptive, autonomous, and robust with respect to individual
failures [3,34].
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Fig. 1. Our verification workflow.

Stigmergies are one example of such a mechanism. A stigmergy is a mode of com-
munication where agents interact by means of traces in a shared environment. Stigmer-
gic systems feature agents that can coordinate and reach common goals just by leav-
ing and interpreting these traces, even though no direct communication ever happens
between them. While stigmergies were originally introduced to model the construc-
tion of termite nests [19], they have found widespread adoption as a conceptual tool to
describe several collective systems, from colonies of foraging ants [33] to the Wikipedia
collaborative encyclopedia [5]. Thus, they may be useful to scholars across many differ-
ent disciplines which aim at understanding self-organization and spontaneous coordi-
nation [22]. However, the asynchronous nature of stigmergic interaction, coupled with
the potentially nondeterministic behaviour and interleaving of agents, results in systems
with a large state space. Thus, automated procedures are needed to formally guarantee
the correctness of such systems.

In this paper, we introduce ATLAS (A Temporal Logic for Agents with State), a
small formalism to express a variety of temporal properties about stateful agents. Then,
we put forward an automated workflow to verify properties expressed in this formalism
against stigmergic systems specified in the LAbS language [6]. This language allows
to describe systems where the stigmergic medium is a distributed data structure [35],
and where interaction among agents may be constrained by predicates on their exposed
features. Our workflow reduces the system’s specification to what we call an emulation
program in the LNT process language [16], and translates the desired property into a
query in the MCL property language [31]. Both LNT and MCL are languages avail-
able in the CADP formal verification toolbox1 [15]. Our workflow can then use CADP
tools to model-check the query against the program to obtain a verdict about whether
the original specification satisfies the given property (Fig. 1). This workflow brings sev-
eral improvements over previous LAbS verification approaches [11]. For instance, the
present work introduces the capability of verifying that a system satisfies a given prop-
erty infinitely often during its evolution. We demonstrate the effectiveness of this app-
roach by verifying a selection of illustrative stigmergic systems.

As an additional contribution, we describe an alternative approach based on the
generation of parallel LNT programs, i.e., where components of the system are imple-
mented as separate processes. We then provide preliminary experimental results,2

1 http://cadp.inria.fr.
2 Artifacts related to the experiments presented in this work are available as a repository (https://

gitlab.inria.fr/ldistefa/labs2lnt-artifacts).

http://cadp.inria.fr
https://gitlab.inria.fr/ldistefa/labs2lnt-artifacts
https://gitlab.inria.fr/ldistefa/labs2lnt-artifacts
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showing that these programs can be efficiently verified by means of compositional tech-
niques [28].

This paper is structured as follows. Section 2 introduces the necessary background
information. Section 3 describes recent improvements to our emulation programs, as
well as the ATLAS property language and its reduction to MCL queries. In Sect. 4,
we demonstrate our approach by performing verification tasks on a collection of illus-
trative systems. Section 5 discusses how this workflow can be naturally extended to
take advantages of compositional verification techniques, and presents some prelimi-
nary experimental results in that direction. Lastly, Sect. 6 discusses related work and
Sect. 7 contains our conclusions, together with directions for future work.

2 Background

2.1 The CADP Toolbox

CADP [15] is a software toolbox for the analysis of asynchronous concurrent systems,
described in languages whose semantics is expressed in terms of an LTS (labelled tran-
sition system). It contains a wide range of tools for simulation, test generation, verifi-
cation (model checking and equivalence checking), performance evaluation, etc.

LNT is one of the input languages available in CADP to formally describe asyn-
chronous concurrent systems [16]. A system is modeled as a process, generally com-
posed of several, possibly concurrent processes, which may perform communication
actions on gates and exchange information by multiway (value-passing) rendezvous, in
the style of the Theoretical CSP [23] and LOTOS [24] process algebras. The syntax of
LNT is inspired from both imperative languages (assignments, sequential composition,
loops) and functional languages (pattern matching, recursion), with many static checks,
such as binding, typing, and dataflow analysis ensuring the proper definition of vari-
ables and function results. A compiler for LNT generates the LTS corresponding to a
main process, either as an explicit enumeration of its states and transitions (BCG graph)
or in the form of an API (initial state and successor function) for on-the-fly verification.

MCL [31] is an action-based temporal logic based on the alternation-free fragment of
the modal μ-calculus [26], extended with regular action formulas and value-passing con-
structs. It subsumes both branching-time and linear-time formalisms (e.g., CTL [4] and
LTL [36]), allowing to express a quite wide range of temporal properties. The MCL lan-
guage is built upon action formulas α, path formulas β, and state formulas ϕ. Basically,
an action formula is a pattern that is intended to match some of the system’s actions. So
doing, MCL allows data-values present in the matched system’s actions to be captured
and stored in data variables, in order to be used in subsequent action or state formulas.
For instance, if the system has an action of the form “G !1 !2”, then it is matched by the
action formula “G ?x : int !2” and the value of x takes the value 1. A path formula is
basically a regular expression built on action formulas, which enables arbitrarily long
sequences of actions to be specified. State formulas are built from: Boolean operators;
predicates on data variables; the possibility modality 〈β〉ϕ denoting the states with an
outgoing path matching β and leading to a state satisfying ϕ; the necessity modality
[β]ϕ denoting the states all outgoing paths of which satisfying β lead to states satisfy-
ing ϕ; and two parameterized fixed point operators: the minimal fixed point operator
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μX(x1 : T1 = e1, . . . , xn : Tn = en).ϕ (to specify finite sequences recursively), and
the maximal parameterized fixed point operator νX(x1 : T1 = e1, . . . , xn : Tn = en).ϕ
(to specify infinite sequences), where X is called a propositional variable and ϕ usually
contains occurrences of X with actual values for the parameters x1, . . . , xn of types
T1, . . . , Tn; the expressions e1, . . . , en denote the parameter’s initial values. MCL also
allows action and state formulas to be embedded in parameterized macro definitions, to
enable code reuse. Many additional high-level constructs inspired from programming
languages (such as loops and conditionals) also exist, mostly introduced as syntactic
sugar. A complete description can be found online in the MCL manual page.3 The Eval-
uator model checker available in CADP can be used to evaluate temporal properties
expressed in MCL, either on a BCG graph or on-the-fly through the API representing
an LTS. A complete description ofEvaluator’s features can be found in its online manual
page.4

2.2 LAbS and SLiVER

In our experimental evaluation, we will consider emulation programs generated from
LAbS specifications. The LAbS language [6] allows to describe systems of agents that
communicate indirectly via virtual stigmergies. A virtual stigmergy [35] is a distributed
key-value store that allows an agent to asynchronously diffuse its own (local) knowl-
edge to neighboring agents. An agent can manipulate a stigmergy simply by assigning
values to specific local variables (which we call stigmergic variables). Whenever this
happens, the agent also computes a timestamp to record the moment when the assign-
ment took place. Then, the agent asynchronously advertises the new value by sending
messages to its neighbors containing the name of the variable, the new value, and the
computed timestamp. Receivers will accept newer values for a variable (i.e., those with
a higher timestamp than their local value) and advertise them as well, while they will
reject older ones and react by advertising their own, newer, value. Agents will also send
similar messages whenever they access the values of these variables (e.g., during eval-
uation of an expression). While the concept of neighborhood is commonly associated
with spatial closeness, LAbS allows the user to define it in terms of predicates over
the exposed features of agents. Furthermore, the user may equip different stigmergic
variables with different definitions of neighborhood.

To illustrate LAbS, let us discuss a simplified version of the Boids algorithm for
flocking agents [39]. An excerpt of the LAbS specification is shown in Listing 1. In
this model, N “birds” are scattered on a 2D grid of size G. Every bird has a position
(x, y) ∈ [0, G − 1] × [0, G − 1] and a direction of movement (dx, dy), for which we
assume four possible values, i.e., those in the set {±1} × {±1}. Lastly, the behaviour
of each bird simply makes it move by repeatedly updating its position according to its
direction: specifically, its new position is the sum (modulo G) of its current position
and direction. The modulo operation, informally, means that the grid wraps around:
for instance, an agent in position (0, 0) can reach (G − 1, G − 1) in a single step. It
is worth noticing that the behaviour does not feature any communication constructs.

3 http://cadp.inria.fr/man/mcl.html.
4 http://cadp.inria.fr/man/evaluator.html.

http://cadp.inria.fr/man/mcl.html
http://cadp.inria.fr/man/evaluator.html
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Listing 1. A simple model of flocking behaviour in LAbS.
stigmergy Dir {

link=
√

(x1−x2)2 + (y1−y2)2 ≤ δ
dx, dy: {-1, 1}, {-1, 1}

}

agent Bird {
interface= x:[0..G], y:[0..G]
stigmergies= Dir
Behaviour=

x, y←(x+dx)modG, (y+dy)modG;
Behaviour

}

Rather, we declare (dx, dy) as stigmergic variables, so that agents will advertise their
direction every time they use it to update their position. We use a check on the Euclidean
distance as the link predicate: two agents a1 (the sender) and a2 (the potential receiver)
may only exchange a message if their distance is not greater than a given value δ.
Intuitively, given a big enough δ and enough time, all birds should eventually have the
same values for dx, dy, and thus they should move in the same direction.

The features described above lead to compact specifications of systems which may
nonetheless display very large state spaces. Thus, formal verification becomes essen-
tial to prove that the specified systems do behave correctly and do not reach unwanted
states. A possible way to verify a LAbS system S is by crafting and analyzing a sequen-
tial emulation program [10], i.e., a program P that can reproduce all possible executions
of S, without introducing spurious executions. P is sequential in the sense that the con-
current execution of the agents in S is reproduced by means of a nondeterministic,
but non-concurrent scheduler, similarly to the way sequentialization is used to verify a
piece of concurrent software by reducing it to an equivalent sequential program [37].
The SLiVER tool5 aims at verifying LAbS systems by generating emulation programs
in several languages, including LNT [11]. In fact, we will rely on a slightly modified
version of SLiVER as part of our workflow.

3 Model Checking Sequential LNT Emulation Programs

As stated earlier, the automated workflow of Fig. 1 translates a LAbS system and an
ATLAS property into an LNT program and an MCL query, respectively. Then, it uses
CADP’s Evaluator to determine whether the program satisfies the query. This gives us
a verdict on whether the system satisfies the property. In this section, we describe our
workflow in more detail: we first outline several improvements in the generation of LNT
programs (Sect. 3.1), and then introduce ATLAS (Sect. 3.2) and describe how we can
encode ATLAS properties into MCL queries (Sect. 3.3).

3.1 Improving LNT Emulation Programs for LAbS

The SLiVER tool already demonstrated the feasibility of building and analyzing LNT
emulation programs for LAbS specifications, by means of a provably correct structural

5 https://github.com/labs-lang/sliver.

https://github.com/labs-lang/sliver
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encoding procedure [10]. In a previous version of SLiVER [11], the emulation program
contained a monitor that encoded the property under verification; then, one simply used
Evaluator to check the behaviour of the monitor and obtain a verdict on the satisfaction
of the property. The emulation program also contained “diagnostic” transitions that
were used to extract a counterexample in case of a property violation. However, these
transitions did not follow a rigorous scheme: for instance, transitions resulting from
assignments were different from those caused by stigmergic messages. In contrast, the
current LNT code generator does not introduce a monitor, and its diagnostic transitions
have been systematically revised to allow for MCL-based property verification (see
Sect. 3.3). Namely, we let the emulation program signal every change of state (i.e., any
change to one of the program’s variables) by means of a visible transition, labelled
as assign !<id> !<varName> !<value>, where <id> is the agent’s unique
identifier, <varName> the name of the changed variable, and <value> its new value.
MCL queries are generally more efficient than the previous approach, and allow to
verify multiple properties on the same program. Furthermore, this change allows us to
progressively increase the fragment of supported properties without altering the LAbS-
to-LNT code generator.

Additionally, we introduce a more efficient encoding of virtual stigmergies, result-
ing in emulation programs with a smaller state space that are thus easier to verify. While
the original encoding explicitly modelled timestamps as natural numbers, we observed
that the semantics of stigmergic interaction only ever needs to compare the timestamps
of two agents. Thus, the new encoding just records these comparisons by associating
to each stigmergic variable var a matrix Mvar of symbolic values GREATER, SAME,
LESS. The intuition is that Mvar(i, j) is GREATER (resp. LESS) iff the value of var
stored by the i-th agent is newer (resp. older) than that of the j-th agent, and it is SAME
iff the two values have the same timestamp. To enforce this rule, we must maintain
the matrix in two ways. First, whenever agent i assigns a new value to var, we set
Mvar(i, j) to GREATER for all agents j �= i. Respectively, we set Mvar(j, i) to LESS.
Furthermore, whenever an agent j successfully receives a value for var from another
agent i, we update both Mvar(i, j) and Mvar(j, i) to SAME.

3.2 A Basic Property Language for Systems of Stateful Agents

We are interested in verifying temporal properties on an emulation program that rep-
resents a system of stateful agents. Naturally, we could encode any such property by
manually writing an MCL query. However, doing so requires a good knowledge of both
MCL and the structure of our emulation programs, and thus would be unsuitable for
most users without a strong background in model checking. Furthermore, since agents
are stateful, users may want to express state-based properties about them. Even though
action- and state-based logics are essentially interchangeable [9], these users may feel
at odds with the action-based MCL. What we propose, instead, is that the user should
define properties in a higher-level language that trades off some of the expressiveness
of MCL in exchange for more compact and intuitive properties, and encode such prop-
erties into MCL by means of a mechanizable procedure. We call this language ATLAS
(A Temporal Logic for Agents with State).
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Fig. 2. Syntax of ATLAS, a temporal property language for collective adaptive systems.

The syntax of ATLAS is presented in Fig. 2, where ◦ is a generic binary arithmetic
operator (+, −, . . . ), �� is a generic comparison (=, >, . . . ), and |e| is the absolute
value of e. Furthermore, we assume that the agents in the system are partitioned into
user-defined types, ranged over by T. A value expression is an arithmetic expression that
may contain constants (κ) or refer to of agents’ local variables: given a quantified agent
variable x, x.var evaluates to the value that x currently gives to its local variable var.
A predicate can either compare two expressions (e �� e), or check whether two agent
variables refer to the same agent (x = x). Predicates can be negated, or can contain
a conjunction of other predicates (¬p, p ∧ p). Other compound predicates (x �= x,
p ∨ p, . . . ) can be derived from these ones in the usual way. A quantified predicate is
a predicate preceded by zero or more universal or existential (typed) quantifiers. We
will only consider sentences, i.e., predicates where all agent variables are in the scope
of some quantifier. Every sentence has a definite truth value in every state of a system:
that is, a state either satisfies a sentence or not. Finally, a temporal property specifies
when a quantified predicate should hold during the execution of a system. Property
alwaysψ states that ψ should be satisfied in every state of the system: fairlyψ says
that every fair execution of the system should contain at least one state satisfying ψ;
lastly, fairly∞ ψ says that every fair execution should satisfy ψ infinitely many times.
The precise definition of a fair execution will be given below.

Informal semantics of quantified predicates. We think of a state of a given system as
a function σ : A → V ∪ {id , type} → Z that maps every agent a ∈ A to a valuation
function that, in turn, maps each local variable var ∈ V to its current value, which
we assume to be an integer. This valuation function also defines two special variables,
id and type. The value of id is unique to each agent, while the value of type will be
the same for agents of the same type. Both values are constant across all states of the
system.

To check whether a state σ satisfies a quantified predicate, we repeatedly apply
quantifier elimination until we obtain a propositional predicate. Thus, ∀x ∈ T • p
reduces to

∧
a∈A a ∈ T ⇒ p[a/x] and ∃x ∈ T • p reduces to

∨
a∈A a ∈ T ∧ p[a/x],

where predicate a ∈ T holds iff the type of agent a is T (and can be implemented as
a check on σ(a)(type)), and p[a/x] is the predicate p where all occurrences of agent
variable x are replaced by the actual agent a. Then, we replace all expressions of a.var,
and all predicates of the form a = b (where a and b are agents), by σ(a)(var) and
σ(a)(id) = σ(b)(id). The truth value of the resulting Boolean formula tells whether
the original predicate holds in σ.
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Informal semantics of temporal properties. We can give an informal explanation of our
temporal modalities by means of CTL operators [4]. A predicate alwaysψ holds iff all
reachable states in the system satisfy ψ. Thus, it corresponds to the CTL property AGψ.
The fairly modality represents a form of fair reachability [38]. An execution is unfair if
it ends in an infinite cycle, such that there is at least one state along the cycle from which
one could break out of the loop by performing some transition. The fairness assumption
here is that such a transition is enabled infinitely often, and thus it should be fired at least
once during the evolution of the system. Therefore, fairlyψ holds if every path such that
ψ does not hold leads to a state from which we may reach a state that satisfies ψ. We
can slightly abuse CTL’s notation and express such a property as AG¬ψEFψ, where
AG¬ψ represents those paths on which ψ is never satisfied. Lastly, fairly∞ ψ holds if
every fair execution of the system contains infinitely many states where ψ holds, and
may be represented in CTL as AGEFψ. This modality was not supported by previous
verification workflows for LAbS specifications.

3.3 Encoding State-Based Properties as MCL Queries

We now focus on the problem of mechanically translating a temporal property espressed
in the (state-based) ATLAS formalism into the (action-based) MCL language. Regard-
less of the temporal modality used in the formula, we will always have to reduce ψ to
a propositional predicate and encode the result as a parameterized macro. For instance,
consider the quantified predicate ∀x ∈ T • x.var > 0, and assume that our system
of interest contains 3 agents of type T (which we will denote by a1,2,3). Then, we can
reduce such predicate to the conjunction a1.var > 0∧a2.var > 0∧a3.var > 0, which
we encode as the following macro:

macro Predicate(a1_var, a2_var, a3_var) =
(a1_var > 0) and (a2_var > 0) and (a3_var > 0)

end_macro

To mechanically perform this translation we only need ψ and some information
about agent types featured in ψ, which can be provided by SLiVER. In general, a
formula may have to consider n agents and m variables, resulting in a macro with
nm parameters. For simplicity, from now on we assume that the identifiers of these n
agents are 1, 2, . . . , n, and that the variables relevant to ψ are named v1, . . . ,vm. We
will denote by xij the value that the i-th agent gives to variable vj , and we will write
x11, . . . , xnm to range over all nm such values.

Encoding always . An MCL query that encodes alwaysψ should evaluate ψ (actually,
the Predicatemacro encoding it) on every reachable state of the emulation program,
and report a property violation iff it finds a state where this evaluation yields false. To
do so, it should first capture the initial values for all mn variables that are relevant to ψ,
and then use a parameterized fixed point formula to check that ψ is indeed an invariant
of the system, while capturing those assignments that may affect its satisfaction by
means of parameters. The structure of such a query is shown on Listing 2. Informally,
the initial “box” operator captures the initial values of v1, . . . ,vm for all agents, while
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Listing 2. Checking invariance of Predicate in MCL.

[{assign !1 !"v1" ?x11:Int} . ... . {assign !n !"vm" ?xnm:Int}]
nu Inv (x11:Int=x11, ..., xnm:Int=xnm) . (
Predicate(x11, . . . , xnm) and
[not {assign ...} or {assign to other variables}] Inv(x11, . . . , xnm) and
[{assign !1 !"v1" ?v:Int}] Inv(v, x12, . . . , xnm) and ... and
[{assign !n !"vm" ?v:Int}] Inv(x11, x12, . . . , v) )

Listing 3. An MCL macro to check that a state satisfying Predicate is fairly reach-
able from the current state.

macro Reach (v11, . . . , vnm) =
mu R (x11:Int=v11, ..., xnm:Int=vnm) . (
Predicate(x11, . . . , xnm) or
<not {assign ...} or {assign to other variables}>R(x11, . . . , xnm) or
<{assign !1 !"v1" ?v:Int}>R(v, . . . , xnm) or ... or
<{assign !n !"vm" ?v:Int}>R(x11, . . . , v) )

end_macro

also specifying that the subsequent formula should hold for all paths. Then, we pass
these values to a parameterized maximal fixed point formula Inv, which is satisfied in
a given state iff the current parameters satisfy ψ, and additionally:

1. Every assignment that does not affect ψ leads to a state that satisfies Inv (without
changing its parameters);

2. If an assignment changes the value of the ij-th relevant variable, the resulting state
still satisfies Inv (after using the new value as its ij-th parameter).

Encoding fairly∞ and fairly . To encode “infinitely-often” properties (fairly∞ ψ) in
MCL, we similarly start by encoding ψ as a macro Predicate. Then, we need to write
another macro Reach that says “A state satisfying Predicate is reachable from this
state”, by means of a minimal fixed point formula (Listing 3). Lastly, we check that
Reach is an invariant of the system by using the same query shown in Listing 2, but
with Reach instead of Predicate.

Checking fair reachability of ψ (fairlyψ) is just a variation on the “infinitely-often”
case. Informally, we want to stop exploring an execution of our system as soon as we
find a state where ψ holds. To do so, we check Predicate within the body of the
Inv formula, so that its satisfaction is sufficient to satisfy the whole formula.

4 Verification of Sequential Emulation Programs

In this section, we evaluate our suggested verification workflow (Fig. 1) by perform-
ing a selection of verification tasks on a selection of LAbS specifications. For each
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specification, we generated a corresponding LNT emulation program and verified one
or more temporal properties against it.

Description of the benchmark and properties. Here, we briefly describe our systems of
interest and the temporal property (or properties) that we have verified on them.

formation describes a system of line-forming agents. N = 3 robots are ran-
domly placed on a segment of length L = 10. They can asynchronously inform other
agents about their position, but their communication range is limited to δ = 2. Prop-
erty safety asks that the position of all robots is always in the interval [0, L − 1].
(safety � always ∀x ∈ Robot • x.pos ≥ 0 ∧ x.pos < L). Property distance
states that, eventually, the distance between any two robots should not be smaller than δ.
(distance � fairly∞ ∀x ∈ Robot•∀y ∈ Robot•x �= y =⇒ |a.pos − b.pos| ≥ δ).

flock is the simple flocking model described in Sect. 2.2. In our experiments we
used N = 3 birds, a 5 × 5 arena, and a communication radius δ = 5.

Property consensus states that the system reaches a state where every bird moves
in the same direction infinitely often. (consensus � fairly∞ ∀x ∈ Bird • ∀y ∈
Bird • x.dir = y.dir ).

leader is a bully algorithm for leader election [17]. N agents must elect one of
them as their leader, or coordinator. Each agent starts by advertising itself as the leader,
by sending asynchronous messages containing its own identifier id . However, an agent
will stop doing so if they receive a message with an id lower than their own. Property
consensus0 states that all agents eventually agree to choose the one with identifier 0
as their leader. (consensus0 � fairly∞ ∀x ∈ Agent • x.leader = 0).

twophase is a two-phase commit system [20]. A coordinator asks N workers if
they agree to commit a transaction or not. If all of them agree, the coordinator commits
the transaction; otherwise, it performs a rollback operation. We represent those oper-
ations by equipping the coordinator with two local variables commit, rollback,
initially set to 0, and later assigning a value of 1 to either of them. After either oper-
ation has been performed, the coordinator resets both variables to 0 and the system
starts over. In our specification, workers always agree to perform the commit: thus,
we expect the system to perform infinitely many commits. This expectation is encoded
by the infcommits property (infcommits � fairly∞ ∃x ∈ Coordinator •
x.commit = 1).

Experimental setup and results. Each verification task consists of two steps. First, we
generate an LTS in BCG format from the given program. Then, we check that this LTS
satisfies the requested property. This procedure is generally faster than asking Eval-
uator to model-check the LNT program on the fly, and also allows us to quantify the
complexity of a program by looking at the size of its LTS. All the experiments were per-
formed with CADP version 2021-e on the Grid’5000 testbed,6 specifically on the Dahu
cluster in Grenoble. Each node in this cluster is equipped with two Intel Xeon Gold
6130 CPUs. We set a timeout of 3 h and a memory limit of 16 GiB for all experiments.

6 https://www.grid5000.fr.

https://www.grid5000.fr
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Table 1. Experimental results for sequential emulation programs.

System States Transitions Property Time (s) Memory (kiB)

formation-rr 8786313 160984587 safety 1931 1723492

distance 2147 2062872

flock-rr 58032296 121581762 consensus 3772 14122756

flock 60121704 223508430 consensus 4375 14108608

leader5 41752 1630955 consensus0 11 43456

leader6 421964 27873756 consensus0 240 224392

leader7 4438576 497568001 consensus0 3963 3240356

twophase2 19246 1124680 infcommits 17 54584

twophase3 291329 22689137 infcommits 849 145904

Table 1 shows the results of our experimental evaluation. Columns from left to right
contain, respectively, the name of the system under verification; the number of states
and transitions of its corresponding LTS; the name of the property we are checking; and
the resources (time and memory) that were used to check the property. Specifically, the
Time column reports the total amount of time spent on generating and model-checking
the LTS, while the Memory column reports the maximum amount of memory that was
used during the whole task. In the first column, an -rr suffix denotes that we have
assumed round-robin scheduling of agents, i.e., we only verified those executions where
agents performed their action in circular order. In systems without the suffix, we have
instead assumed free interleaving of agents. We have verified increasingly larger ver-
sions of leader and twophase. For leader systems, the numerical suffix denotes
the number of agents; For twophase systems, it denotes the number of workers.

Every task resulted in a positive verdict. For formation and flock, this is con-
sistent with previous verification results [10]. For leader and twophase, the posi-
tive verdict is consistent with the existing literature on the two algorithms [17,20].

In the leader and twophase systems, we can observe that adding one agent
makes the LTS grow by roughly one order of magnitude. This is likely the effect of two
factors, namely the free interleaving of agents and the asynchronous nature of stigmer-
gic messages. We can similarly appreciate the effect of using free interleaving instead
of round-robin scheduling by comparing the flock and flock-rr experiments. The
number of states is not particularly affected, but the transitions nearly double: respec-
tively, they increase by roughly 3.6% and 83.8%. Informally, free interleaving mainly
allows for alternative ways of moving between one state and the next. This has an obvi-
ous impact on the overall verification time, which increases by roughly 15%.

5 Compositional Verification of Parallel Emulation Programs

Compositional verification is a family of divide and conquer approaches, which exploit
the parallel structure of a concurrent model to palliate state space explosion. In this
work, we consider compositional (property-dependent) state space reduction (available
in CADP [14,28]) which, given a property of interest, identifies both a maximal set
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Fig. 3. Structure of a 3-agent parallel emulation program.

of actions that can be hidden and a reduction with respect to an equivalence relation,
in a way that guarantees to preserve the truth-value of the property. In general, the
equivalence relation is based on bisimulations (strong, divbranching,7 or sharp bisim-
ulation [28]), which are congruences with respect to parallel composition. It is hence
possible to apply action hiding and bisimulation reduction incrementally, first to indi-
vidual agents and then to intermediate compositions. Choosing an appropriate compo-
sition order is a key of success of the approach.

To exploit the potential of compositional verification in our context, we consider in
this section the feasibility of creating parallel emulation programs from LAbS specifi-
cations, and verify them compositionally. Figure 3 shows a simplified network diagram
of a 3-agent parallel emulation program. Each agent is implemented as its own process
agent i, which can send stigmergic messages to the others via gates put i and req i. This
means that a system with n agents would require 2n gates. Information about times-
tamps is stored in a separate process, which essentially maintains the Mvar matrices
introduced in Sect. 4. Each agent can signal that they have updated a stigmergic vari-
able by means of a refresh gate, or can ask how their timestamp for a value compares to
that of another agent via a request gate. Lastly, a scheduler process ensures that agents
perform their actions either in round-robin or nondeterministic fashion, without produc-
ing interleavings that are forbidden by the semantics of LAbS. Notice that a program
with such an architecture can be mechanically generated from a LAbS specification by
simply altering the “program template” used by the SLiVER code generator.

A potential issue that arises when using a compositional approach is that, when a
process P can receive values of type T over a gate G (expressed in LNT as G(?x),
with x a variable of type T ), the associated LTS as generated by CADP will have to
consider every possible value of type T . If P is part of a larger system, it may be the
case that only a small subset of those values are ever sent to P by other processes, and
an LTS that only considered such subset would be sufficient.

To generate such an LTS from our emulation program, we had to constrain the
values accepted over the communication gates depicted in Fig. 3, by decorating LNT
reception statements with where clauses. Thus, a statement G(?x) becomes G(?x)
where f(x) (with f(x) a predicate over x). In this preliminary experiment we
added such where clauses manually, but this step may be mechanized, for instance,
by computing the clauses via an interval analysis.

7 We use divbranching as shorthand for divergence-preserving branching.
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Table 2. Compositional verification of flock-rr.

Process States Transitions Time (s) Memory (kiB)

M 13 234 3 34360

Scheduler 6 12 2 34212

Agent1 25637 1989572 537 3102904

Agent2 25637 1989572 537 3102908

Agent3 25637 1989572 538 3100408

Main 28800 74906 73 70828

Main |= consensus – – 2 43428

Total time, max memory 1692 3102908

5.1 Experimental Evaluation

As a preliminary evaluation of this approach, we considered the flock-rr system
from Sect. 4, and reduced it to a parallel emulation program whose architecture matches
that of Fig. 3. Then, we asked CADP to generate the individual LTSs of each process,
reduce them with respect to divbranching bisimulation, and finally compose them. We
used the same experimental setup described in Sect. 4. Finally, we asked to evaluate the
consensus property on the resulting LTS.

Details about this experiment are shown in Table 2. For each row except the last
two, the first three columns contain the name of a process in the emulation program
and the size of its corresponding LTS (in terms of its states and transitions). Then,
the Time column contains the total time spent by CADP to generate and reduce the
LTS with respect to divbranching bisimulation. The Memory column, instead, contains
the maximum amount of memory required by these two operations. Notice that Main
is the process encoding the whole system. The last rows, instead, show the resources
used by CADP to evaluate whether the LTS of Main satisfies consensus, and an
overall account of the resources (total time and maximum amount of physical memory
used) needed for the whole experiment. CADP provided a positive verdict after 1692 s
(roughly half an hour), by spending roughly 3 GiB of memory. Most of the time was
spent in the generation and reduction of the LTSs for the three agents. These numbers
appear to improve over the sequential approach, which by comparison requires 3772 s
and around 14 GiB of memory (Table 1).

6 Related Work

Several other works investigate the use of on-the-fly model checking to verify multi-
agent systems [2,30]. Recently, formal verification of open systems (where countably
many agents may join or leave during its evolution) has been addressed in [25], which
also uses properties that are quantified over the agents. So far, SLiVER does not support
open systems, and the problem appears to be decidable only for a specific class of
systems. It would be interesting to investigate whether LAbS systems belong to such a
class.



486 L. Di Stefano and F. Lang

Verifying higher-level languages by means of mechanized translations to process
algebras or similar kinds of formal models has been explored by several other works,
allowing to verify diverse classes of systems, including web choreographies [13], agents
with attribute-based communication [8], information systems with trace-dependent
attributes [40], or component-based ensembles [21]. Compositional verification has also
been shown to be effective in dealing with component-based [1] and asynchronous con-
current systems [14]. An alternative approach relies on encodings into some general-
purpose programming language, such as C: the resulting emulation programs can then
be verified by any off-the-shelf analysis tool supporting said language [7]. SLiVER’s
modular architecture allows to support both approaches, exemplified respectively by
LNT and C, and to add new modules implementing additional translations [10].

Our encoding of temporal properties bears some resemblance to the specification
pattern system of [12]. Similarly to us, the authors of these patterns contend that higher-
level logical formalisms are needed to facilitate the adoption of formal verification.
While their approach focuses on capturing temporal relationships between states or
actions (which are left unspecified), we focused on specifying state properties by means
of quantified predicate and then implemented some of these patterns on top of a data-
aware, action-based logic. Extending our approach to other patterns may be a worth-
while effort.

7 Conclusions

We have introduced an automated workflow for the verification of a variety of temporal
properties on stigmergic systems, which are encoded as sequential emulation programs
in the LNT language. This workflow reuses an expressive property language and state-
of-the-art procedures for on-the-fly model checking. We have demonstrated our app-
roach by carrying out a selection of verification tasks. Then, we have presented some
preliminary results about the feasibility of using parallel emulation programs, com-
bined with compositional verification techniques. This direction of research appears to
be promising for large systems and should be investigated as part of our future work.
Another possible approach would consist in generating the LTS of a sequential emula-
tion program in a distributed fashion, using other tools provided by CADP.8

We should stress that our proposed property language and verification workflow
can be applied to other types of concurrent systems, as long as they can be reduced to
emulation programs. This aspect should also be analysed in further depth, by finding
other formalisms and case studies. Lastly, our property language could be improved
in multiple ways, e.g., by supporting predicates about shared memory; introducing the
capability to count [29] the agents that satisfy some predicate; or extending the range
of temporal properties supported by our procedure.

Acknowledgments. The authors wish to thank Radu Mateescu for his precious insights into
MCL. Experiments presented in this paper were carried out using the Grid’5000 testbed, sup-
ported by a scientific interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations.

8 E.g., the Distributor tool: see https://cadp.inria.fr/man/distributor.html.
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Abstract. Artificial Intelligence (AI) is dominating the prominent emerging tech-
nologies, especially the ones used in autonomous vehicles. Among those emerging
technologies, Machine Learning, Digital Twins, Internet of Things and Self-Healing
are expected to reach their plateau of productivity in less than 10 years.

The Shift2Rail RAILS project1 has its roots in the new wave of research and
applications that goes under the name of Industry 4.0. This term refers to the appli-
cation of machine learning and cognitive computing to leverage an effective data
exchange and processing in manufacturing technologies, services and transportation
[1], laying the foundation of what is commonly known as the fourth industrial revo-
lution. Several industries are impacted and, although until now the ones that have
benefitted the most are logistics [2] and manufacturing [3], transport systems rep-resent
one of the fields in which machine learning and other techniques is expected to have a
very important impact in the near future.

RAILS takes up the challenge in the rail sector supporting the definition of new
research directions: the ultimate goal of RAILS is to investigate the potential of AI in
the rail sector in continuity with ongoing research in railways, in particular within the
Shift2Rail innovation pro-gram, and to contribute to the definition of roadmaps for
future research in next generation signalling systems, operational intelligence, smart-
maintenance and network management.

To reach its goal RAILS aims at: a) determining the gaps between AI potential,
possible future scenarios and applications with the status-quo in the rail sector, in order
to recognize the required innovation shifts, b) developing methodological and
experimental proof-of-concepts through feasibility studies for the adoption of AI and
related techniques in safety and rail automation, predictive maintenance and defect
detection, traffic planning and management, c) de-signing transition pathways toward
the rail system scenario: identification of the new research directions to improve reli-
ability, maintainability, safety, and performance through the adoption of AI.

In pursuing these objectives, RAILS wants to take a critical approach to the
opportunities offered by AI in the rail sector, addressing the need for explainable,
reliable and trustworthy AI technologies, to support the development of the new
“Railway 4.0”.

1 https://rails-project.eu/.
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Hence, the main ambition of RAILS is to understand and identify which approa-
ches within the broad area of AI can have a meaningful impact on railway systems,
with possible migration and technology transfer from other transport sectors and other
relevant industries, like avionics, robotics and automotive, where the application of AI
has proven to be feasible and advantageous. Some preliminary results described in [4]
show that the integration of AI solutions and techniques to railways is still in its infancy
despite of the work done in maintenance and traffic planning and management, as well
as in investigating safety and security issues but also reveal that there is a great
potential for principles driving research and real world applications in other sectors to
be transferable to railways.

With respect to safety related aspects, emerging threats (e.g. the so-called adver-
sarial attacks) and certification issues could be addressed when adopting AI in
autonomous and cooperative driving (e.g. virtual coupling), based on the concepts of
explainable AI (XAI) and trustworthy AI.

With respect to cyber-physical threat detection, innovative approaches could be
developed based on AI models like Artificial Neural Networks (ANN) and Bayesian
Networks together with multi-sensor data fusion and artificial vision. Resilience and
optimization techniques based on genetic algorithms and self-healing could be
addressed to face failures and service disruptions, as well as to increase efficiency and
line capacity. Transport management problems, such as timetabling and real-time traffic
rescheduling, are notoriously difficult, and commonly referred as to NP-hard problems.
Recently, machine learning has been applied to solve NP-hard scheduling problems,
giving a promising direction as an alternative to heuristics.

Acknowledgements and Disclaimer. RAILS has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 881782. The
information and views set out in this document are those of the author(s) and do not necessarily
reflect the official opinion of Shift2Rail Joint Undertaking. The JU does not guarantee the
accuracy of the data included in this article. Neither the JU nor any person acting on the JU’s
behalf may be held responsible for the use which may be made of the information contained
therein.
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In this paper, we report and reflect upon successful technology transfer from
Swansea University to Siemens Mobility over the years 2007–2021. This transfer
concerns formal software verification technology for programming interlocking
computers from Technology Readiness Level TRL 1–7.

Interlockings are safety-critical systems which form an essential part of rail
control systems. They are often realised as programmable logic controllers pro-
grammed in the language ladder logic. In the context of rail signalling systems,
they provide a safety layer between a (human or automatic) controller and the
physical track which guarantees safety rules such as: before a signal can show
proceed, all train detection devices in the route indicate the line is clear. Rail
authorities such as the UK Rail Safety and Standards Board as well as rail com-
panies such as Siemens Mobility have defined such safety rules (we work with
about 300 rules) that shall guarantee safe rail operation. This poses the question
of how one can verify that a given program written in ladder logic fulfils a safety
property.

Theoretical Foundations (TRL 1&2). Software model checking verification
of interlockings is well established within the railway domain. Already 25 years
ago, Groote et al. [3] used it to verify the interlocking of Hoorn Kersenbooger
station. In this approach, ladder logic programs are represented in temporal
propositional logic. Generic safety properties are formulated in temporal first
order logic; for concrete track layouts these generic properties can equivalently
be expressed in the same temporal propositional logic as used for representing
the programs. This allows interlocking verification to be formulate as software
model checking for temporal propositional logic [2, 5].

Academic Experiments (TRL 3&4). Software model checking for ladder logic
programs requires the automation of two steps. First, one needs to transform
a program into a logical formula Ψ via the Tseitin transformation. Then, one
needs to instantiate a generic safety property with track plan information and
derive a formula φ in temporal propositional logic. One can then verify that φ
is a consequence of Ψ using a standard SAT solver.

Our experiences [4, 6], using a mix of programming languages (Haskell, Java,
Prolog) and experimenting with two ladder logic programs and c. 5 safety prop-
erties, suggest the following: the verification concept works and scales up to
c© Springer Nature Switzerland AG 2021
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real world programs; applying program slicing is worthwhile in order to reduce
verification times; rather than looking purely for hold/does not hold decisions,
bounded model checking is useful for debugging; visualisation of counter exam-
ples turns out to be a challenge; and verification via k-induction fails.

Technology Transfer (TRL 5–7). Further development required deeper col-
laboration between academic and industrial partners, in order to interpret ver-
ification failures and to expand the number of examples treated concerning the
encoding of safety properties [1, 7]. The software architecture needed revision to
cater for tool interoperability, usability and error treatment. The resulting tool
is able to find mistakes in ladder logic programs that cannot be found with tra-
ditional testing methods. Also, it has a turn-around time in the order of hours,
as compared to turn-around times in the order of a week for testing.

Reflections. A number of themes permeate the described technology trans-
fer, including faithful modelling, scalability, accessibility, and interoperability.
Depending on the TRL, these themes recurred with a different focus. For
instance, when considering the theoretical foundations, faithful modelling con-
cerned the definitions of the logic and the transformations. When it came to the
academic experiments, it meant correctness of slicing, and true representation
of selected properties and track layouts. Finally, in technology transfer, we had
to reflect how “complete” the set of safety properties was.

Future Development (Towards TRL 8&9). Until now, we have only analysed
artefacts from completed projects. However, we have concrete plans for a trial
under real software production conditions. For this, we need to revisit the theo-
retical foundations. For example, rather than a one-step next operator, the logic
needs to provide k-step next operators (for k > 1), to cater for fleeting outputs
of ladder logic programs: outputs which are “unstable” for a limited number
of cycles. This will allow to “relativise” safety properties up to fleeting. Also,
experiments with model checking algorithms are needed to mitigate the effect of
false positives: the reporting of an error where there is none.
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Abstract. Hybrid ERTMS/ETCS Level 3 is a recent proposal for a
train control system specification that serves to increase the capacity of
the railway network by allowing multiple trains with an integrity mon-
itoring system and a GSM-R connection to the trackside on a single
section. The development of the principles of ETCS Hybrid Level 3 has
been supported with formal modelling, analysis and simulation, using
the mCRL2 toolset.

Keywords: ERTMS/ETCS · Hybrid level 3 · Formal analysis ·
Simulation · mCRL2

The main innovation of ERTMS/ETCS Level 3 is that it implements full radio-
based train separation. It introduces the notion of virtual block, which facili-
tates partitioning tracks into sections without the need for installing expensive
train detection hardware. Since these sections can be arbitrarily small, a capac-
ity increase of the network is realised. The original proposal of Level 3 does
away entirely with train detection hardware, but this has several drawbacks.
For instance, all trains need to be equipped with a train integrity monitoring
system. Also, it is hard to recover from a failing radio connection between train
and trackside. To mitigate these drawbacks, the EEIG ERTMS Users Group is
developing a hybrid version of Level 3 (HL3), which allows partitioning sections
protected by train detection hardware into smaller virtual blocks.

The HL3 principles describe how a trackside system should determine the
occupancy statuses of the virtual blocks on the basis of position reports from
trains and the train detection system. Besides the statuses FREE and OCCU-
PIED, according to the HL3 principles a virtual block may assume two more
statuses UNKNOWN and AMBIGUOUS, through which the trackside man-
ages potential hazardous situations. Various waiting and propogation timers are
defined that should prevent that situations are qualified as hazardous too quickly.

The research was partly sponsored by ProRail. The vision put forward in this extended
abstract reflects the personal views of the authors and is not part of the strategy of
ProRail.
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There has been quite some attention from the formal methods research com-
munity for the HL3 principles, since version 1A of the principles [4] served as a
case study promoted by the ABZ conference (see [3] and references therein). We
also contributed to these efforts [1], presenting a formal analysis of version 1A
of the principles in the mCRL2 toolset [2]. We developed an mCRL2 model that
specifies a trackside system responsible for computing the statuses of the virtual
blocks. Furthermore, we specified the behaviour of trains and a train detection
system to the extent that it was relevant for the status computations of the track-
side system. Our formal verification focussed on whether the trackside system
prevents collisions of trains, and also considered to what extent the computa-
tion of the statuses of the virtual blocks was terminating and deterministic. Our
analyses, then, resulted in suggestions for improvement of the principles that
were taken into account in subsequent versions.

Recently, we have updated our mCRL2 model to reflect version 1D of the
principles [5]. In the update, we addressed the role of the various timers, which
were left out from detailed consideration in the earlier analysis. This brought
to light some further issues with the formulation of the principles. Our analyses
revealed new potentially dangerous scenarios involving the behaviour of timers
and led to further improvements of the formulation of the principles. We have
included a sophisticated train model, allowing trains to split multiple times.

ProRail is going to use the mCRL2 model for the simulation of scenarios
using the simulator of mCRL2 and is currently building a graphical tool that
visualises simulations. To support that activity, we have added a mechanism to
our model that facilitates a straightforward configuration with a track layout
and train specification.
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Abstract. The EULYNX initiative of the European railway infrastruc-
ture managers aims to standardise the interfaces between the interlocking
and field elements. To support these standardisation efforts, the goal of
the FormaSig project, an initiative of the Dutch and German railway
infrastructure managers and two Dutch universities, is to deliver a for-
mal framework in which the EULYNX interface standard can be formally
analysed and conformance to the standard of an interface implementa-
tion can be efficiently established.

Keywords: Railway interface standardisation · Formal analysis ·
Model-based testing · mCRL2 · SysML.

European infrastructure managers have joined forces in the EULYNX1 organ-
isation with the aim to arrive at standardised interfaces between interlockings
and trackside equipment (signals, points, level crossings). Standardisation efforts
will significantly reduce the cost of ownership of signalling systems. Indeed, if the
interfaces and architecture of a signalling system are standardised, then different
components can be procured from different suppliers, thereby enabling competi-
tion and preventing vendor lock-in situations. Furthermore, approval processes
can be harmonised and simplified, and will thus become more efficient.

To be effective, the quality of the standard is crucial. Not only should it be
clear and unambiguous, but, to stay in control of procurement, railway infras-
tructure managers should also be able to verify efficiently and effectively whether
a delivered product conforms to the standard. In 2019, infrastructure managers
DB Netz AG and ProRail together with Eindhoven University of Technology and
the University of Twente started the four-year research project Formal Meth-
ods in Railway Signalling Infrastructure Standardisation Processes (FormaSig)

The FormaSig project is fully funded by DB Netz AG and ProRail. The vision put
forward in this extended abstract reflects the personal views of the authors and is not
part of the strategy of DB Netz AG or ProRail.
1 https://www.eulynx.eu.
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to investigate how the use of formal models can support the EULYNX standard-
isation process as well as the approval processes for delivered components.

The EULYNX standard specifies the interfaces through semi-formal SysML2

models. The approach of FormaSig is to derive, from these SysML models, a for-
mal model in the process specification language mCRL2 [4]. The mCRL2 toolset3

[3] then offers model-checking facilities to formally analyse the correctness of the
interface model with respect to high-level requirements formulated in an exten-
sion of the modal µ-calculus. Moreover, since the semantics of an mCRL2 model
is a labelled transition system, it also facilitates automated testing of compliance
of implementations to the standard in accordance with formal testing theory [5].

In a first case study, presented in [2], we have manually derived an mCRL2
model from the SysML models specifying the EULYNX Point interface. A formal
analysis of the model using the mCRL2 toolset revealed a deadlock caused by
event buffers overflowing. We also performed some preliminary model-based test-
ing experiments using JTorX to automatically generate tests from the mCRL2
model, running those tests on a simulator of the EULYNX interface. The case
study showed the feasibility of our approach.

We are currently working on improving the framework, and, in particular, on
automating the translation of EULYNX SysML models to mCRL2. As a stepping
stone towards an automated translation, we have now defined an executable
formal semantics of EULYNX SysML directly in mCRL2 [1]. From there, it is
fairly straightforward to automatically generate mCRL2 models from EULYNX
SysML models.
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