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Abstract. In robotic radiosurgery, tracking and modeling of breath-
ing motion is crucial for accurate treatment planning while dealing with
tumor inside the thoracic or abdominal cavity, because patient respira-
tion can induce considerable external and internal motion in the thoracic
and abdominal regions. Currently, methods for characterizing respiration
motion mainly focused on sparse point markers placed on the surface of
chest. However, limited number of markers failed to encode the compre-
hensive features of respiratory motion. Besides, the markers can make
partial occlusion during the operation. In this work, a novel method
for respiratory motion characterization based on RGB-D camera and
B-spline elastic registration is proposed. Images taken from depth cam-
era are used for modeling of abdomen surface during respiration, while
B-spline elastic registration technique is applied to restrain the measur-
ing area into an anatomically consistent region during the treatment. In
addition, an elastic dynamic motion simulator is designed to test our
proposed method. Finally, the feasibility of the method and the device
is verified by error analysis and shape comparison.

Keywords: Respiratory motion · B-spline elastic registration ·
RGB-D camera · Surface modeling

1 Introduction

Radiotherapy is widely used in cancer treatment, because of its constantly
improved precision. However, in the process of radiotherapy, there are still
remaining uncertain factors resulting in unexpected treatment errors. In the
chest and abdomen radiotherapy, the anatomical movement and deformation
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caused by respiratory movement will largely affect the normal implementation
of radiotherapy plan [10]. Because of respiration, tumors in abdominal and chest
can move nearly 35 mm [3]. Thus, the accurate tacking of treatment target is
essential for correctly adjusting the radiation beam in accordance with the target
motion to ensure high-precision radiotherapy.

Several traditional methods, such as breath holding, respiratory gating [9,11]
and forced shallow breathing with abdominal compression [6], were used to
deal with respiratory motion. However, these techniques have some limitations
and defects, such as long intervention time, short operative treatment time,
and patients’ discomfort. Therefore, the real-time tumor tracking methods have
raised increased interests, one of those is mainly based on modeling the relation-
ship between internal target and skin surface displacement. Normally, devices
are applied to measure the respiratory motion of the skin surface in real-time,
which connects a physical device to a patient like marker placed on the patient’s
surface or an apparatus worn by the patient. For example, the CyberKnife treat-
ment system used three laser sources to record the motion of skin surface in its
respiratory tracking system; Ernst et al. [4] proposed a method wherein a shirt
with multiple printed markers tracks the respiratory motion using the Kinect
v2 device. Alnowami et al. proposed a probability density estimation method,
and employed the Codamotion infrared marker-based tracking system to acquire
the chest wall motion [1,2]. Wijenayake et al. used stereo cameras to calculate
the three-dimensional coordinates of markers, and proposed a motion estimation
method based on coded visual markers to predict respiratory motion [12]. How-
ever, due to insufficient information of respiratory signals by a limited number of
IR markers, there is inevitable accumulation error of targeting in the abdominal
region. Moreover, the placement of marker points will block part of the treatment
area.

In this paper, a breathing motion modeling system based on commercial
RGB-D camera is proposed, which is adapted to trace and record a patient’s
breathing pattern in a marker-less way. To test the proposed workflow, a res-
piratory motion simulator is designed. By controlling the patient-specific input
signals, the device can simulate the human abdominal breathing motion via
motor driven elastic surface deformation so that the anthropomorphic breath-
ing motion can be obtained from the device. First, a certain number of markers
are employed to enhance the precision of depth information collection for the
RGB-D camera, but these markers are only needed in the process of modeling.
After the model is established, it can track any area of the abdomen without
markers. Next, the data is analyzed to obtain the images that represent the peak
and trough periods of respiration. Finally, the overall motion in the abdomen
is modeled by a free-form deformation (FFD) based on B-splines [5,7,8]. The
motion of the abdomen during the non-respiratory peak and trough is described
by interpolation method.
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2 Design of Abdominal Breathing Simulator

2.1 Structure Design

The abdominal breathing simulator, consisting of a driving device, an acrylic
box, four sponges and a piece of latex film with markers on its surface, is devel-
oped for the simulation of abdominal motion caused by respiration (Fig. 1a).
The driving device is an independently controlled vertical platform build in CIRS
Dynamic Thorax Simulator (Fig. 1b), which can be programmed by CIRS motion
control software to move up and down. However, the device can only move rigidly
and simulating the breathing motion of a certain point on the abdominal surface.
In order to characterize the breathing motion of the entire abdomen surface, an
elastic covering is added, which is supported by an acrylic box with size close to
the adult abdomen. The height of the acrylic box will be lower than the lowest
height of the driving platform (Fig. 1c). So that fix four sponges with a thickness
of 1mm between the driving platform and the latex film can be fixed, where the
number of sponges can be added or subtracted according to the shape of human
abdomen.

Fig. 1. (a) Abdominal breathing simulator; (b) Driver device; (c) Dimensions of acrylic
box.

2.2 Motion Control

For the dynamic breathing simulation, after importing the patient-specific
breathing curve into the CIRS motion control software, the driving device can
control the vertical platform motion accurately enough to ensure the real dis-
placement is closely the same with the programmed. When carrying extra load
i.e. the tension induced by the deformation of the elastic film, the control accu-
racy is barely affected according to the former verification experiments. Also,
the platform can exert force on the sponge and latex film above, causing the
deformation of the sponge and latex film, which visually mimic the morphologi-
cal states of human abdomen. The overall motion amplitude and period can be
easily adjusted by the control software. Although only the convex only shape
with single peak can be created, the phantom design was successful because it
catches the main motion feature of the abdomen surface under breathing motion.
As shown in the Figure, Fig. 2a and Fig. 2b respectively simulate the abdominal
state of a real person during inspiration and expiration.
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Fig. 2. (a) Simulate the abdominal state during inspiratory process; (b) Simulate the
abdominal state during expiratory process.

3 Design of Tracking Method

3.1 Image Preprocessing

In this paper, a statistical model is constructed based on the motion data
of markers representing abdominal motion under respiratory motion. First,
the depth image and the corresponding RGB image of the abdomen area are
obtained. Then K-nearest neighbor method is applied to fill the gap in the depth
image, and then S-G (Savitzky-Golay) filter is used to denoise the depth image.
All marks are localized via processing the RGB image. Global binary thresh-
old algorithm (Otsu’s method) followed by contour detection and ellipse fitting
is applied to identify the center coordinates of each marker accurately in each
frame. Corresponding depth value in the depth image are also recorded. The
markers are used to track the motion associated with a specific location on the
body and monitor the depth change as it moves across the frame.

3.2 Tracking Method

The motion data of markers are averaged and smoothed, to obtain a curve that
can represent the abdominal motion frequency under respiratory motion. Then,
the number of frames corresponding to the curve in the rising phase and the
falling phase of each cycle are counted and averaged. Accordingly, two categories
of RGB images belonging to the peak or valley phase are sorted out and unified
into two gray level images by frame-wise and channel-wise averaging, during
which the abnormal breathing cycle are excluded as outliers. Thus, two feature
images that represents the whole abdominal motion during human inhalation
and exhalation is acquired.

After obtaining the required gray image, the deformable registration method
based on B-spline is applied to make a respiratory motion model. Because, the
abdominal motion is nonrigid in general, elastic image registration is necessary



Unmarked External Breathing Motion Tracking 75

for modeling the dense motion vector fields. The optimal transformation facil-
itates mapping any point in the dynamic image sequence at one time into its
corresponding point in the reference image accurately.

The basic idea of FFD is to deform an object by manipulating an underlying
mesh of control points. The resulting deformation controls the shape of the 3-D
object and produces a smooth and continuous transformation. Based on the B-
spline FFD model, the coordinates of each pixel in the image after moving are
calculated, and decompose the movement of the pixels in the image into X and
Y directions, then locate the X and Y coordinates respectively.

For any pixel (x, y), the coordinate position (relative to the pixel grid) after
cubic B-splines elastic deformation can be expressed as

T (x, y) =
3∑

l=0

3∑

m=0

Bl(u)Bm(v)φi+l,j+m, (1)

where i = �x/nx� − 1, j = �y/ny� − 1, u = x/nx − �x/nx� , v = y/ny − �y/ny�,
and Bl represents the lth basis function of the B-spline

⎧
⎪⎪⎨

⎪⎪⎩

B0(u) = (1 − u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u + 1)/6
B3(u) = u3/6

(2)

The control points act as parameters of the B-spline FFD and the degree of
nonrigid deformation which can be modeled depends essentially on the resolution
of the mesh of control points. The Φ is used to represent the grid composed of
nx × ny control points φi,j(0 ≤ j < nx, 0 ≤ j < ny), and the spacing between
each control point is δ.

According to Eq. (1), the optimal solution is obtained φ. The main idea is
to search for the minimum space transformation position of similarity measure
Essd, which is denoted as

Essd =
1
N

∑
(I1(T (x, y)) − I2(x, y))2, (3)

where N is the total number of pixels in the image registration area, I1 and I2
represent the gray function of the reference image and the image to be registered
in the two-dimensional space. When these two images match the best, the metric
value Essd reaches minimum.

3.3 Model Optimization

Because the respiratory motion is not strictly periodic, there will be some abnor-
malities. In order to increase the robustness of the model to deal with the
abnormal case, an adaptive link in the model is added. Through the analysis
of historical waveform data, the abnormal situation is divided into two cases:
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low peak and high valley, for which two models are established. The discrimina-
tion of anomalies is out of an empirical criterion. In the case of RGB-D camera
tracking anatomic points in real-time, by analyzing the depth information of
the initial position of anatomic points, the model can get the index of frames
corresponding to the two abnormal situations, and then switch the correspond-
ing model. This method has strengths compared with previous models, which
is model parameters trained adaptively by inputting the corresponding images
in all abnormal cases. In addition, for improving the tracking accuracy of the
model, a self-calibration link in the model is added. The calibration system is
modeled as follows:

Ft+1 = (Zt − Ft) + ft+1, (4)

where Ft+1 and ft+1 denote the position frames corresponding to the peaks or
valleys output by the model and the uncorrected model at time t+1, respectively.
And Zt represents the position frames corresponding to the peaks or valleys
output by the initial position of the anatomical point collected by the camera
at time t.

4 Experiments and Results

4.1 Data Acquisition

Fig. 3. RGB-D camera is placed nearly 73 cm above the breathing simulation. (Color
figure online)

The technology is mainly based on real-time data acquisition by the depth cam-
era (PERCOPIO FM851-GI-E1). The system is designed to track specific pixels
from the depth image and record the depth values over time. During the labora-
tory level experiments, the abdominal breathing simulator is used as the object
of data acquisition, 11 yellow non-reflective markers are randomly attached on
the surface of the abdomen, and the RGB-D camera is placed nearly 73 cm above
the abdomen, as shown in Fig. 3. The number of markers can be greater than or
less than 11. Increasing in marker numbers improves amount of acquired abdom-
inal motion information but aggravates the computational burden at the same
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Fig. 4. Experimental results of RGB-D camera accuracy evaluation.

time. The optimum number of markers can balance the modal accuracy and the
amount of calculation. Then, the image is acquired and processed according to
the method in Sect. 3.1 to acquire the motion data of 11 markers. The data is
only used for model building and testing. After the model is built, no markers
are needed in the tracking phase.

4.2 Camera Error Test

The motion accuracy of the driving platform in Fig. 2 is ±0.1mm, so the plat-
form can be used to evaluate the stability and measurement accuracy of the
depth camera. Input signal to CRIS control platform is a sinusoidal curve with
amplitude as ±4mm, period as 4 s. At the same time, the motion distance of
the platform is measured by using a depth camera. The experimental results are
shown in Fig. 4, in which the measurement error of the camera is about 1 mm.
In the nearly four minutes of the measurement, the data curve measured by the
camera does not appear abnormal fluctuations, indicating that the camera has
a good stability.

4.3 Abdominal Breathing Simulator Test

To verify the usefulness of the abdominal breathing simulator. First, the simu-
lated abdominal surface is visualized to observe the shape. As shown in Fig. 5,
the device simulates three states of the human body: inhalation, the transition
from inspiration exhalation, breathing to inspiration, and exhalation. It can be
intuitively observed from the figure that the changes in the volume and area of
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the abdomen simulated in the three states are mimic to that of human. Sec-
ondly, the depth values of 11 pixels in a period are extracted from the simulated
abdominal surface. Figure 6 shows that the change of the depth values of the
extracted points shows high correlation with patient breathing motion pattern.
Finally, the data of the human abdominal surface in two states of inspiration and
respiration are extracted. In Fig. 7, compared with the inspiratory and expira-
tory states simulated by the abdominal breathing simulator, the morphological
changes of the two states are very close. Thus, the usefulness and feasibility of
the abdominal breathing simulation device proposed in this paper are illustrated.
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Fig. 5. The device simulates three states of the human body: (a) inhalation, (b) tran-
sition between inhalation and exhalation, (c) exhalation.
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Fig. 6. The depth values of 11 pixels in a period of time.

4.4 Model Method Validation

To make the quantitative comparison, 11 markers randomly distributed on the
surface of the abdomen are selected. The center coordinates of each point mark
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Fig. 7. Comparison of the shape of abdominal breathing simulator and human in the
state of inspiration and expiration.

Fig. 8. Center positioning result of marker.
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Fig. 9. Histogram of mean absolute error (MAE) of three interpolation methods.

are accurately determined in each frame (Fig. 8), and the relative displacement
data of 11 markers on the abdominal surface during a period of breathing motion
are obtained. The tracking error of the model is also evaluated based on the data
measured by the image segmentation method. Equation 5 is used to calculate the
motion error.

MAE =
1
N

n∑

i=1

∣∣∣∣
√

x2
i + y2

i −
√

X2
i + Y 2

i

∣∣∣∣ (5)
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Fig. 10. Trajectory of all markers. The purple dotted line represents the predicted
marker trajectory, and the green dotted line represents the real marker trajectory.
(Color figure online)

The (Xi, Yi) represents the coordinates of the markers in ith frame, and
(xi, yi) denotes the marker coordinates predicted by the model in ith frame.

Linear interpolation, cubic spline interpolation, and cubic polynomial inter-
polation are separately used in the model. The motion errors calculated by the
three interpolation methods are shown in Fig. 9. As can be seen from Fig. 9,
except that the average absolute error of marker 7 and marker 9 is more than
one pixel, the error of other mark points is less than one pixel. For marked points
4∼10, the error of the cubic polynomial interpolation method is lower than the
other two interpolation methods. For the marked points 0∼3, the error of linear
interpolation is lower and the results improved. In general, the cubic polynomial
interpolation outperforms the others with the manually fine-tuned parameters.

Finally, in order to see the tracking effect more intuitively, this paper visu-
alizes all the marked tracking curves. As shown in Fig. 10, The purple dotted
line represents the predicted marker trajectory, and the green dotted line repre-
sents the real marker trajectory. The purple dotted line tracks the motion trend
that complies well with the green dotted line, which shows the feasibility and
accuracy of the proposed model.

5 Conclusion

In this study, a non-contact, non-invasive, and real-time breathing motion mea-
surement technology is introduced. During the real-time tracking, the model does
not require any markers or other devices on the human abdominal surface. Com-
pared with the previous methods of tracking the abdominal target area using
limited markers, our method of state-to-state image registration can achieve
better results. In addition, through the accurate tracking verification of multiple
marked points on the abdomen, this paper realizes the tracking from multiple
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points to surface, which can predict the position of any point on the abdominal
surface. In future, in order to improve the tracking accuracy, we will further
optimize the model by increasing the adaptability of the model. At the same
time, we will optimize the representation method of abdominal surface state,
and strive to provide more abundant and accurate information for respiratory
tracking of radiosurgery robots.
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