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Abstract. The training is very important for the application of electromyography
(EMG) prosthesis. Because the traditional training with physical prostheses is
inefficient and boring, the virtual training system, which has natural advantages
in terms of intuitiveness and interactivity, is more widely used. In this study, a
virtual training system for intelligent upper limb prosthesis with bidirectional
neural channels has been developed. The training system features motion and
sensation neural interaction, which is realized by an EMG control module and
sense feedbackmodule based on vibration stimulation. AHuman-machine closed-
loop interaction training based on the virtual system is studied. The experiments
are carried out, and the effectiveness of the virtual system in shortening the training
time and improving the operation ability of prosthesis has been verified.
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1 Introduction

Advanced myoelectric prosthesis can provide multi-DOF intuitive control and it is
expected to integrate sense feedback [1], while complex training is essential for effective
operation [2]. In traditional training, patients need to wear physical prosthesis, which
is costly and boring. Virtual reality uses computer to simulate 3-D virtual world and
human senses to make users feel immersive [3]. In recent years, it is widely used in the
simulation of medical and military training. The application of virtual reality in pros-
thetic training can not only overcome the limitations of environment and equipment but
also greatly increase the enthusiasm and initiative of patients.

The most famous virtual training system is Virtual Integration Environment [4]
(VIE), which is developed byAPLLaboratory of JohnsHopkinsUniversity in the second
phase of DARPA Revolutionizing Prosthetics program, as shown in Fig. 1. VIE uses the
modular prosthesis and Delta3D as the simulation engine to rebuild the function of the
modular prosthesis in the virtual environment. But limited by the performance of ren-
dering engine and graphics processor at that time, VIE needs three desktop computers to
form a parallel architecture to ensure the real-time performance of the system. Compared
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with VIE, Virtual Reality Environment [5] (VRE) of Brown University in the United
States, adopts human bone skin technology (Fig. 2), and has configurable parameters on
the interface. With the development of computer hardware, head mounted display is also
used in virtual training system. Chau B [6] uses HTC vive head mounted display to add
interactive scenes in daily life in virtual training, and the amputation end positioning is
more accurate. Ortiz Catalan [7] and others applies augmented reality (AR) technology
to the training platform, and connect the virtual hand to the end of the patient’s stump.

Fig. 1. A precision grip in VIE
[4].

Fig. 2. VRE from front [5].

At present, most virtual rehabilitation systems, including VIE, focus on the forward
control channel, but few systems can provide haptic feedback to amputee to form a
closed-loop control. The ability of two-way information interaction and control is one
of the core characteristics of intelligent prosthetic [8], and the perception ability is also
a research hotspot in the field of intelligent prosthetic. Compared with visual feedback,
the prosthetic practice with haptic feedback can make the control effect more accurate
and natural, as well as enhance the immersion of virtual training system and improve the
user experience. Additionally, most of the virtual training systems only have a virtual
prosthetic hand or wrist, which cannot completely meet the needs of patients with upper
arm amputation.

The virtual training system established in this paper includes not only multi-DOF
prosthetic hand with the finger driven independently, but also a 7-DOF anthropomorphic
prosthetic arm, and we consider the cooperative operation of arm and hand. We design
a two way neural interaction module of motion and sensation, which is composed of a
multi-mode neural control submodule based on EMG and a sense feedback submodule
to form a control loop and realize the interconnection between the prosthesis and the
human nervous system. As a closed-loop interactive training platform, the system has
significant effectiveness and superiority for the design debugging, control algorithm
verification and optimization in the development process of prosthesis.

2 Overall Description of the Virtual Training System

The training systemconsists of 3 functionunits: virtual reality software subsystem, neural
control subsystem and sense feedback subsystem. Virtual reality software subsystem
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provides reasonable human-computer interaction interface and realistic virtual reality
environment. It integrates EMG control method and sense feedback strategy, including
automatic demonstration mode and control training mode. Neural control subsystem
is mainly responsible for the acquisition and decoding of human EMG signal. After
filtering and amplification, the data acquisition equipment performs A/D conversion and
inputs it to the system. The sense feedback subsystem feeds back torque and joint angle
in the process of virtual operation to the user through vibration stimulation. The overall
architecture of the system is described in Fig. 3.
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Fig. 3. Framework of the intelligent upper limb prosthesis training system with bidirectional
neural channel.

3 Design of the Virtual Training System

3.1 Upper Limb Prosthetic Model

In order to make patients have a better immersion [9], our virtual training system uses
the data of the actual prosthesis 3D model to build a virtual scene. The virtual prosthesis
is composed of HIT-V [10] hand and 7-DOF arm as shown in Fig. 4. HIT-V has five
fingers and 11 active joints. Except thumb, the other four fingers are modular prosthetic
finger with two knuckles. Thumb has a pronation/abduction joint in addition. The size
of HIT-V is slightly smaller than that of normal male hands. The prosthetic arm consists
of wrist, elbow and shoulder. The wrist joint and shoulder joint have 3-DOF of pitch,
lateral swing and rotation, and the elbow joint has 1-DOF of bending.

Fig. 4. HIT-V hand compared with a normal male hand [11].
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The virtual prosthesis used in our system is the shell of 3D upper-limb prosthetic
model, that is, only the prosthetic shell and the necessary rotating shaft are retained.
So that the system has better execution efficiency and virtual visual effect. Through
SolidWorks 3D modeling, read by Open Inventor, the virtual prosthesis display window
is shown in Fig. 5.

Fig. 5. Virtual prosthetic demonstration window.

3.2 Software Subsystem

As shown in Fig. 6, the system interface includes virtual scene demonstration window,
control interface and menu bar. In the virtual scene demonstration window, users can
zoom in or out to focus on particular joints as well as change the perspective. The control
interface is the main operation platform of the software, in which there are various
indicators and results display options. The menu bar contains operation commands,
such as files, views, etc.

Fig. 6. Human-computer interaction interface.

Automatic Presentation Mode. Automatic presentation mode has been designed to
help users get familiar with the system. This mode is used to demonstrate the position
and rotation range of the joint, various virtual objects and the correct grasping operations.
In this mode, users learn the control information mainly through observation.



318 Y. Hu et al.

“Auto Demo” and “Stop Demo” buttons are used to control the demo process. When
“Auto Demo” is selected, the system state will be initialized, that is, the virtual pros-
thesis will be restored to its initial posture, the angle slider and other controls in the
control interface are initialized, as well as the signal acquisition channel, signal duration
and other edit box controls are set to zero. Then, the virtual prosthesis demonstrates 6
operations which is already set up in the system.

Control Training Mode. Control training mode is used to realize the function of myo-
electric prosthetic training, including multi-mode neural control and sense feedback.
In the process of collecting EMG, firstly, the function named “SignalInput” is called
to input the information of the data acquisition card. Then, the “Channel” edit boxes
display the value of EMG in real time, and the waveform of flexion signal and extensor
signal are drawn with iPlot, as shown in Fig. 7. The classification results of EMG in
the classifier are displayed in the “Classification Results” edit box, the corresponding
control indicator is activated. The “Signal Duration” edit box displays the time of EMG.
The movement speed of virtual prosthesis can be adjusted by the speed slider in the
interactive interface.

Fig. 7. Virtual EMG oscilloscope.

When virtual prosthesis collides with the virtual object, the torque sensor displays
the contact torque value of the fingertip. The rectangular indicator light is activated.
The serial port of communication is opened. The torque information is mapped into the
control information of the feedback component. The lower computer drives the micro
vibration motor and feeds back the contact information to the user.

3.3 Neural Control Subsystem

The training system in this paper uses surface electromyography (SEMG) as the input
control signal, and adopts the control method based on finite state machine proposed
in reference [12]. After the SEMG of a pair of flexion/extensor muscles of the radial
wrist are collected, the action intention is obtained after classification and decoding, and
6 typical grasp modes with the frequency of more than 80% [13] in daily life can be
controlled.

Two DJ-03 electrodes are attached to the muscle abdomen of flexor carpi radialis
and extensor longus with appropriate pressure. By controlling the states of the forearm
muscles, EMG can be categorized into 4 classes: rest, extension, flexion, and clench.
Figure 8 shows the hand movement and its EMG. The flexion signal waveform is rep-
resented by dotted line, and the extensor signal waveform is represented by solid line.
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By setting the long-term action threshold, the above four signals are divided into short
extension, short flexion, short clench, long extension, long flexion, long clench and rest.
Then the control state and operation of prosthesis are selected according to the seven
signals. The coding control process is shown in the Fig. 9.

Fig. 8. Four kinds of EMG corresponding to hand movements.
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Fig. 9. Coding control flow chart.

3.4 Sense Feedback Subsystem

Calculation of Virtual Force. Contact force is important to force control in prosthetic
grasping. In this paper, the spring-damping model is used as the contact force model
of virtual environment. Compared with the commonly used pure stiffness model, this
method reflects the contact force between finger and object more comprehensively, and
is suitable for more characteristic objects.

When solving the virtual contact force, it is necessary to determine the deformation of
the virtual object after contact. When the knuckle of the virtual prosthetic hand contacts
with the surface of the virtual object, the surface of the virtual object will be deformed.
When the balance is reached, the position of the knuckle of the virtual prosthetic hand
relative to the surface of the virtual object is offset, which is recorded as the collision
depth �x.
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The mechanical properties of virtual objects can be obtained by the following:

f = K�x + B�ẋ (1)

Where f is virtual contact force,� x is deformation variable,K is the stiffness coefficient,
and B is the damping coefficient.

Figure 10 is a schematic diagram of the contact force, which is used to calculate the
contact force between the knuckle and the virtual object. Point A represents the initial
position of the knuckle contact point, and its coordinate is (x1, y1, z1). Point B represents
the position of the knuckle contact point after moving, and its coordinate is (x2, y2, z2).

The surface of virtual object

2 2 2( , , )B x y z1 1 1( , , )A x y z

x
Fig. 10. Contact force diagram.

The distance between point A and point B is the shape variable, expressed by �x. xt
is the actual position and xe is the initial contact position. So �x = xt − xe.

According to Hooke’s law, the contact force F is as following:

F = K�x + B�ẋ (2)

Sense Feedback. The function of two-way information interaction and control is one
of the core characteristics of intelligent prosthesis, and perception is the hotspot in the
field of prosthesis now. The survey shows that the prosthesis with sense feedback can
effectively improve the performance of prosthesis. To serve the actual prosthesis, the
virtual training system should also have sense feedback system.

We use the vibration tactile feedback, which is relatively simple and easy to imple-
ment. The average value of contact force is selected as the feedback information. Accord-
ing to the experimental data of physical prosthesis, the fingertip force of HIT-V ranges
from 0 N to 6.5 N [10]. After testing, the duty cycle is 10% when the vibration can be
felt, and the duty cycle exceeds 70% when the vibration intensity is not obvious. So we
choose 10%– 70% as the output space of duty cycle and map the contact force received
from the training system to this space.

4 Experiments

4.1 Human-Machine Closed-Loop Interactive Experiment

Human-machine closed-loop interactive (HMCLI) experiment is carried out by using the
virtual training system. In this paper, we set up two training methods: traditional training
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andHMCLI training. By comparing the coding success rate and operation coding time of
different trainingmethods when reaching the same index, we can verify the effectiveness
of the system in the process of training patients to use EMG prosthesis.

Subjects. Six healthy male subjects, aged between 24 and 30, were recruited in this
study. All subjects had no experience in EMG control and had not used the system
before. They all signed the informed consent. The six subjects were divided into two
groups for traditional training and HMCLI training.

The Process of the Experiments. Traditional method is to use the physical prosthesis
for training. The subjects judge whether the coding is correct by observing. In HMCLI
training, the subjects can not only adjust according to waveform, classification results
and duration of the two channel EMG displayed on the interactive interface, but also feel
the contact information through vibration feedback to compare the difference between
the actual result and the expected result.

After learning the EMG control coding method, 6 grasp commands appear randomly
for 5 times, and the subjects need to complete each command within 10 s. The success
rate of coding will be tested every 15 min. They have some time to rest each round.
Each subject trains for 90 min. The succeed operation time and the coding time will be
recorded. The process of training is as shown in Fig. 11.

(a) (b)

Fig. 11. The training process of subjects. (a) HMCLI experiment. (b) Traditional experiment.

The success rate of coding and succeed operation time are used as evaluation indexes,
and the success rate of coding P is defined as following:

P = n

N
× 100% (3)

Where N is the number of detection, n is the number of correct operation. The
succeed operation time is defined as: starting from the subject clear grasp command to
the correct grasp of the virtual prosthesis.

Results and Discussion. Figure 12 shows the average success rate of coding of the two
groups. It can be seen from the figure that the rate of HMCLI training is significantly
higher than that of the traditional training in the same time. After training, the average
rate of success of traditional training is 73.3%, while the rate of interactive training is
92.2%, which basically meets the training requirements.
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Figure 13 shows the average coding time of the two groups. According to the figure,
the time of HMCLI training is significantly less than that of traditional training, with
the most significant difference at the initial stage. After 90 min training, the average
coding time of traditional training and HMCLI training are 5.5 s and 4.8 s respectively.
It indicates that within same time, the subjects used HMCLI training are more proficient
in the control of prosthesis.

Fig. 12. Average success rate of coding. Fig. 13. Average coding time.

The results also show that the coding success rate is negatively correlated with the
complexity of gesture code. For example, in the traditional training, the success rate of
cylinder grasp which can be chosen by default is the highest, up to 96.21%. However, the
rate of lateral pinch is low. Therefore, optimizing coding algorithm is also an effective
way to improve the training effect. It takes a lot of time to evaluate a new algorithm.
By using HMCLI training, the time of this link can be significantly shortened. So the
algorithmdevelopers can better focus on the design and implementation of the algorithm,
so as to speed up the research process of physical prosthetic control.

5 Conclusion

To solve the problems of low efficiency in the training of using EMG prosthesis, we use
virtual reality technology to establish an intelligent upper limb prosthesis training system
with motor-sensory bidirectional neural channel. Firstly, we analyze the kinematics of
the arm hand system to control themotion of the upper limb prosthesis. Then 3 functional
units are designed to realize the training function of the system. Virtual reality software
subsystem includes automatic demonstrationmode and control trainingmode.Theneural
control subsystem collects EMG signals to obtain human operation intention to control
the virtual prosthesis. The sense feedback subsystem feeds back torque to the user
through vibration stimulation. In addition, we establish a HMCLI platform based on the
system, and conduct a comparative experiment of training effect. This paper analyzes the
function of the system and proves the effectiveness of the system in shortening training
time and improving the operation ability of amputees.
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