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Abstract. Autonomous mobile robots have been extensively used in
medical services. During the Covid-19 pandemic, ultraviolet type-C irradi-
ation (UV-C) disinfection robots and spray disinfection robots have been
deployed in hospitals and other public open spaces. However, adaptively
safe navigation of disinfection robots and spray disinfection robots have
not been adequately studied. In this paper, an adaptively safe navigation
model of Covid-19 disinfection robots is proposed using a nature-inspired
method, cuckoo search algorithm (CSA). A Covid-19 disinfection robot is
adaptively navigated to decelerate in the vicinity of objects and obstacles
thus it can sufficiently spray and illuminate around objects, which assures
objects to be fully disinfected against SARS-CoV-2. In addition, the path
smoothing scheme based on theB-spline curve is integrated with adaptive-
speed navigation to generate a safer and smoother trajectory at a reason-
able distance from the obstacle. Simulation and comparative studies prove
the effectiveness of the proposed model, which can plan a reasonable and
short trajectory with obstacle avoidance, and show better performance
than other meta-heuristic optimization techniques.

Keywords: Covid-19 disinfection robot · Adaptive speed navigation ·
Path planning · Cuckoo search algorithm · Speed modulation

1 Introduction

Nowadays, mobile robots have been broadly used in many fields, such as medical
services, material transportation, household services and exploration. Ultravio-
let type-C irradiation (UV-C) disinfection robots and spray disinfection robots
have been commonly deployed in hospitals and other public areas [1,2]. Robot
path planning and navigation problems can be addressed by defining a path
with obstacle avoidance from the robot’s starting position to its target posi-
tion according to certain evaluation criteria in the environment with obstacles.
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To maximize the effect of UV-C irradiation disinfection and spray disinfection,
Covid-19 disinfection robots are expected to autonomously adjust their speed
to decelerate in the vicinity of obstacles, avoid collisions with obstacles, and
accelerate in open areas. Many well-established methods have been proposed
to resolve robot the navigation issue, such as sampling-based algorithm [3,12],
graph-based method [4], learning-based model [5,12], neural networks [6,7], fire-
work algorithm [8], ant colony optimization [9,14], particle swarm optimization
[10], genetic algorithms [11], etc.

Chintam et al. [3] proposed a sampling-based algorithm framework that
extends the rapidly exploring random tree (RRT) algorithm to plan trajecto-
ries with obstacle avoidance for mobile robots. A graph theory-based model has
been proposed in [4], which decomposes the robot workspace into maps with
multiple morphological layer sets so that the self-reconfigurable robot can be
successfully navigated to perform a complete coverage task. Moussa et al. [5]
proposed a learning-based real-time path planning model with virtual magnetic
fields. Based on the bio-inspired neural network approach, Yang and Luo [6] pro-
posed an efficient real-time robot coverage path planning model, which enables
autonomous robots to avoid obstacles in dynamic environments. Then, Luo et al.
[7] evolved the neural network approach to real-time multiple mobile intelligent
agents formation and navigation.

Based on the optimization and search capabilities of evolutionary algorithms,
researchers have recently explored many evolutionary computation approaches to
solve robot path planning and navigation problems. For instance, a hybrid fire-
works algorithm based on LIDAR-based local navigation algorithm was proposed
in [8], which is able to plan reasonable and short trajectories in unstructured envi-
ronments with obstacle avoidance. Lei et al. [9] proposed an ant colony optimiza-
tion (ACO) combined with a graph representation model to navigate the robot
under kinematics constraints. In [10], a couple of improved particle swarm opti-
mization (PSO) algorithms are proposed to resolve local optima issues in basic
PSO, which can successfully navigate the autonomous mobile robots in complex
environments. Sarkar et al. [11] proposed a domain knowledge-based genetic algo-
rithm integrated four operators based on the domain knowledge to search a tra-
jectory with obstacle avoidance from the starting point to single or multiple goals.
Some researchers integrate two or three algorithms together for the algorithm of
robot navigation. Wang et al. [12] developed a novel learning enabled path plan-
ning approach Neural RRT∗, which combines the convolutional neural network
with the sampling-based algorithm RRT∗. In [13], a two-layer algorithm based on
ACO and tabu search is proposed, which uses a hierarchical and partitioned nav-
igation method for coverage path planning. Chen et al. [14] suggested a hybrid
structure, ACO-APF, which integrates the ant colony optimization (ACO) mech-
anism with the artificial potential field (APF) algorithm for unmanned surface
vehicles path planning. Luo et al. proposed a hybrid approach that integrates the
bio-inspired neural network model and a heuristic algorithm for intelligent mobile
robot motion planning in an unknown environment.

There are merely a few studies on UV-C disinfection robot navigation. On-
site disinfection robot evaluation has been performed to measure doses of UV-C
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radiation. Although genetic algorithms (GA) and an adjustable artificial poten-
tial field (APF) as path planners were able to maximize the delivered UV-C dose.
They can only traverse at a constant speed without considering the vicinity of
objects [1]. Conroy et al. [2] proposed a waypoint-based Dijkstra path planner for
ultraviolet light irradiation Covid-19 disinfection robot using traveling salesman
problem (TSP). However, this navigation method fails to effectively cover entire
field with a variety of paces. Overall, the above methods consider no robot speed
in path planning. In real-world applications, intelligent mobile robots assume to
move at variable speeds based on environmental information. The Covid-19 dis-
infection robot traverses at low speed in the vicinity of obstacles to adequately
spray and illuminate around objects, while for efficiency, it should move at high
speed in open areas.

An adaptive speed navigation approach of an autonomous Covid-19 disinfec-
tion robot in adaptive environment scenarios are developed in cooperation with
a cuckoo search algorithm (CSA) in this paper. The smooth and safe trajectory
is planned with more reasonable distance away from the obstacles by the pro-
posed segmented cubic B-spline curve-based smoothing paradigm. This paper
is organized as follows. Adaptive speed navigation based on cuckoo search algo-
rithms is proposed in Sect. 2. In Sect. 3, a smoothing scheme based on segmented
cubic B-spline curve is considered to generate safe and smooth trajectories away
from obstacles. An adaptive speed approach is applied to decrease the odometry
error and safely navigate the robots in the turning. Afterward, the simulation
and comparative studies of cuckoo search algorithm path planning of the Covid-
19 disinfection robot in various environments are described in Sect. 4. Finally,
important properties of the proposed model are concluded and future work is
directed in Sect. 5.

2 Developed Path Planning Algorithm for Disinfection

An improved cuckoo search method is integrated with a local search approach
to perform disinfection robot navigation. Utilized the grid representation of the
map, the weight of the adjacency matrix between each grid is updated according
to environmental information to generate the shortest path.

2.1 Environment Modeling

To achieve a high degree of robustness and autonomy in mobile Covid-19 disin-
fection robot navigation, environment modeling or map construction enables
autonomous robots to generate trajectories with obstacle avoidance. In this
paper, we consider 2D navigation in an environment with various obstacles.
The grid map is composed of equal sized grid cells. The path planning becomes
more accurate as the number of grids in the map increases; nevertheless, as the
number of grids increases, the path planning takes more computational efforts.
Thus, the grid of the map required for optimal path planning is defined by actual
requirements. The environment is modeled as a matrix where element 0 repre-
sents open areas and element 1 represents obstacles. Each obstacle or dangerous
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region is represented as one or more grids, which is expanded based on the grid
map as illustrated in Fig. 1. The trajectory is defined as the initial point S, target
point T and n waypoints between them.

P = [S, wp1, wp2, . . . , wpn, T ] (1)

Each point is defined by its coordinates (x, y) of the grid, and the center of
the grid pixel is regarded as the specific point. The sum of the Euclidean distance
between two adjacent points on the trajectory is the length of the path:

L(P) =
n∑

i=0

√(
xwpi+1 − xwpi

)2 +
(
ywpi+1 − ywpi

)2 (2)

where xwp0 denotes the initial point, and xwpn+1 depicts the goal.

Obstacle

Expanded obstacle 

0 1 1 0 0
0 1 1 1 0
1 1 1 1 1
1 1 1 1 0 
0 1 1 0 0

)(
Fig. 1. Grid-based map comprising of grids, each with free or occupied states

2.2 Cuckoo Search Algorithm

The Cuckoo Search algorithm (CSA) is a meta-heuristic swarm-based search
algorithm inspired by the breeding behavior of the cuckoos in combination with
the Lévy flight phenomenon in some birds and fruit flies [16]. The common
cuckoo is an obligate brood parasite; it does not build its own nest, but lays its
eggs in the nest of other species, leaving the host bird to take care of its eggs.
For simplicity in describing the breeding behavior of cuckoo species, it could be
conceptualized as some rules (please refer to [16]).

The Lévy flight pattern can be observed when some animals move and forage
normally, accompanied by short-term movements in random directions. The Lévy
flight process is essentially a model of random walk that has a power-law step
length distribution with a heavy tail [16]. Let N be the population size, which
represents the number of search agents in the workspace. Let D be the dimension
of the variable, which denotes the number of desired waypoints to be generated
in the workspace. A Lévy flight is achieved in Eq. (3) to create a new solution
Qi(τ + 1).

Qi(τ + 1) = Qi(τ) + α ⊕ Lévy(μ) (3)

where Qi(τ) represents the position of the i-th nest at the τ -th iteration, and
Qi(τ + 1) is the new nest generated by Lévy flight. The ⊕ denotes dot product.
α is a parameter defined in Eq. (4):
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α = α0 ×
(
Qi(τ) − Qbest

)
(4)

where Qbest denotes the global best solution. α0 is the scale factor, generally
taking α0 = 0.01. Lévy denotes the process of the Lévy flight, which could be
defined as

Lévy(μ) =
η

|v| 1
µ

(5)

where η and v follow the normal distribution.

η ∼ N
(
0, σ2

η

)
, v ∼ N

(
0, σ2

v

)
, σv = 1

ση =

(
Γ (1 + μ) × sin

(
π×μ
2

)

Γ
(
1+μ
2

)
× μ × 2

µ−1
2

) 1
µ

(6)

where μ = 1.5, Γ denotes the Gamma function. In summary, we can combine
the above equations to obtain the final expression of Lévy flight exploitation
random walk as follows:

Qi(τ + 1) = Qi(τ) + α0
η

|v| 1
µ

(
Qi(τ) − Qbest

)
(7)

In the exploration process, there should be a certain rate of random gener-
ation of new solutions, which ensures that the system will not fall into a local
optimal state and provide fine diversity and exploratory properties in the entire
search space. The probability pa is introduced to abandon the worst nests and
construct the new ones at new positions in light of Eq. (8).

Qi(τ + 1) =
{

Qi(τ) + r
(
Qj(τ) − Qk(τ)

)
, p < pa

Qi(τ), p ≥ pa
(8)

where r and p are random variables uniformly distributed over [0,1]; pa is a
parameter that tunes the exploration and the exploitation of CSA (0 ≤ pa ≤ 1);
τ is current iteration number; Qj(τ) and Qk(τ) are the two randomly selected
nest locations in the τ -th iteration.

2.3 Cuckoo Search Algorithm for Robot Path Planning

A trajectory to avoid obstacles while seeking the shortest distance to reduce
energy consumption and improve efficiency should be formed. In this paper, we
take advantage of the fast convergence characteristics of the CSA, combined
with the local search process to rapidly search the shortest trajectory in the
simplified grid map. Among them, the first step to find the optimal trajectory is
to eliminate the infeasible trajectory with obstacle collision. In order to improve
the performance of finding the best trajectory through the CSA algorithm, we
first gradually construct a trajectory based on the random points generated by
the algorithm (all in free space, outside the obstacle).
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Dijkstra’s algorithm is utilized to find the shortest trajectory in the graph.
The trajectory is established from the starting point S, and the next path point is
selected from the points randomly generated by N . For selected points, the same
process will be performed until the final goal is reached. When the connecting
line passes through obstacles, we set it as an infeasible solution. By setting the
distance between impassable nodes to infinite, the feasible solution is obtained,
thereby generating the shortest trajectory. The advantage of the local search
process used is that it can filter out the infeasibility between nodes, and the
optimized path points obtained by the CSA algorithm can quickly generate the
final trajectory. Through the algorithm of CSA, we obtain the waypoints in the
map. Set the number D as the number of the generated waypoints, which is
also the number of dimensions in the CSA algorithm. However, at the same
time, it will consume more running time. Take advantage of local search based
on Dijkstra’s algorithm, our improved CSA algorithm can obtain a collision-
free path accurately and efficiently. The algorithm of the CSA is identified in
Algorithm 1.

Algorithm 1: Pseudo-code of Cuckoo Search Algorithm (CSA)
Parameter Initialization
Initialize the size of population N , the probability of replacing pa, maximum
iteration time Tmax

Population Initialization
Provide N initial solutions in the workspace
Initialize the solution generated by Dijkstra Algorithm in the workspace
Evaluate the fitness value for all initial nodes
for τ = 1 : Tmax do

for i = 1 : N do
Generate new solution Qi(τ + 1) via Lévy flight based on Eq. (7);
Evaluate its fitness value f(P i(t + 1));
if f(Qi(τ + 1)) < f(Qi(τ)) then

Replace Qi(τ) by the new solution Qi(τ + 1);
end

end
Replace the worst nodes with a probability pa with new ones in light of Eq.
(8);
Maintain the best solutions;
Rank the solutions and find the current best;

end
Return the best solution and optimal fitness value;

3 Path Smoother with Adaptive Speed Robot Navigation

3.1 Segmented Cubic B-spline Path Smoother

The smoothing scheme is utilized to smooth the trajectory in the vicinity of the
turning point near the obstacles [17]. Unlike the traditional B-spline curve, the
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segmented B-spline curve merely smooths the trajectory at each corner sepa-
rately. At the same time, the smoothed trajectory achieves continuous curvature
to ensure that the disinfection robot reaches a precise trajectory and a smooth
steering command for the robots. Therefore, a segmented cubic B-spline curve
is proposed to smooth the path.

A B-spline curve can be represented by fundamental functions Ni,k(u), con-
trol points Pi and degree (k − 1), the equation is defined as

C(u) =
n+1∑

i=1

Ni,k(u)Pi (9)

where Pi = [Pix,Piy] are the (n + 1) control points and a knot vector u. Ni,k(u)
are the fundamental functions defined recursively:

Ni,k(u) =
(u − xi)

xi+k−1 − xi
Ni,k−1(u) +

(xi+k − u)
xi+k − xi+1

Ni+1,k−1(u) (10)

Ni,k(u) =
{

1, ui ≤ u ≤ ui+1

0, otherwise ;u ∈ [0, 1] (11)

where with the limitation condition of the 0/0 = 0 for k = 1. The illustration of
the G2 B-spline curve is shown in Fig. 2.

P3 

P5

φ

P4

Wi

P1 P2 ε α
Wi-1

Wi+1

d1 d2

d1

d2

φ

Fig. 2. Illustration of the G2 B-spline curve

To adapt to the parameterization difference, in the curve smoothing process,
we use geometric continuity to evaluate the trajectory smoothness. G2 continu-
ity is a curve smoothing criteria based on the disinfection robot’s kinematic. It
can make an identical curvature vector and tangent unit at the intersection of
two consecutive segments, avoiding the discontinuity of normal acceleration and
result in a safe trajectory. Higher levels of continuity require more calculation
resources, and the cubic B-spline curve we utilized in this paper is due to the
lowest degree of G2 continuity. To make our smoothing method not affect the
overall path trajectory, we insert a B-spline curve into the existing straight tra-
jectory and realize the continuity of G2. In the smoothing process, the control
points Pi of of B-spline curve relative to the path point Wi is defined as
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P1 = Wi − (1 + c)d2ui−1

P2 = Wi − d2ui−1

P3 = Wi

P4 = Wi + d2ui

P5 = Wi + (1 + c)d2ui

(12)

where c is smoothing length ratio c = d1/d2, ui−1 is the unit vector of line
Wi−1Wi and vi is the unit vector of line WiWi+1. The sum of d1 and d2
is the smoothing length. φ = α/2 is half of the corner angle. If knot vector
[0, 0, 0, 0, 0.5, 1, 1, 1, 1] is defined, the smoothing error distance ε and the maxi-
mum curvature Kmax of smooth trajectory may be obtained analytically as

ε =
d2 sin(ϕ)

2
(13)

Kmax =
4 sin(ϕ)

3d2 cos2(ϕ)
(14)

From (13) and (14), the smoothing error distance ε is defined by the existing
maximum curvature Kmax provided by the disinfection robots:

ε =
d2 sin(ϕ)

2
(15)

3.2 Adaptive Speed Navigation

Adaptive speed navigation is designed to drive the disinfection robot at variable
speeds to adapt to the surrounding environments. When the robot is approach-
ing obstacles, especially when making a turn, it is better for the robot to slow
down for precise navigation to avoid an accumulation of odometry errors due to
instrument errors. In our model, the disinfection robot moves at a faster speed
in an open area and slowly moves near an obstacle. Once the obstacle area (such

Spray

Spray against
COVID-19

Fig. 3. Illustration of adaptive speed robot navigation
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as the red border of the obstacle) is sensed by on-board LIDAR, the disinfec-
tion robot will decrement its speed near the obstacle (see Fig. 3). In the global
path planning, when the robot enters the turning path generated by the path
smoother, it starts to decelerate. The deceleration point adjusted during the turn
is P1 in Fig. 2, and it continues to return to the original speed at P5.

4 Simulation and Comparative Studies

In order to validate our developed real-time adaptive speed-based CSA model, we
compare our CSA method with other typical algorithms, multiple maps are used
to carry out the simulation and comparative studies of the Covid-19 disinfection
robot navigation.

Table 1. Comparison of trajectory length and number of turns

Methods Minimum length Increase of length (%) Number of turns Difference of turns (%)

Proposed CSA model 27.6709 ——— 5 ———

SA-PSO [10] 28.7831 3.86 9 44.44

NLI-PSO [10] 30.3623 8.86 10 50.00

Basic PSO [10] 32.0153 13.57 13 61.53

4.1 Comparison of Our Adaptive Speed Algorithm with PSO Model

The developed cuckoo search algorithm associated with adaptive speed path
smoother is used to compare with PSO algorithm, nonlinear inertia weight PSO
(NLI-PSO) and simulated annealing PSO (SA-PSO) approaches, respectively. As
we are aware, Nie et al. [10] suggested a hybrid PSO method to solve the issue of
robot motion planning. However, their model has not yet considered the tuning
curve and speed modulation in need of intelligent robot navigation systems. In
this section, a comparative study is conducted to validate the effectiveness of
the developed algorithm. The minimum trajectory length and number of turns
of our model and others are compared as follows. The test scenario is based on
Fig. 6 of [10], which is shown in Fig. 4 in this paper. The size of the workspace
with a grid map is 20×20. The trajectory length generated by the proposed CSA
model is 27.6709. The computed trajectory lengths for the trajectories in [10]
and the produced values were 32.0153, 30.3623 and 28.7831 by PSO, nonlinear
inertia weight PSO and simulated annealing PSO algorithms, respectively. The
developed CSA algorithm found 13.57% less than PSO, 8.86% less than NLI-PSO
and 3.86% less than SA-PSO, respectively. The number of turns of the developed
CSA algorithm is 61.53% better than basic PSO, 50.00% less than NLI-PSO and
44.44% less than SA-PSO, respectively (Table 1). Then the segmented cubic B-
spline path smoother is used to the proposed CSA model. The different smooth
trajectory obtained based on the constraints of the robot is illustrated in Fig. 5.
The adaptive speed navigation is performed to slow down the robot in the dark
red area as shown in Fig. 5.
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Fig. 4. Illustration of a variety of methods of navigation. (a) Basic PSO model [10];
(b) Nonlinear inertia weight PSO model (NLI-PSO) [10]; (c) Simulated annealing PSO
model (SA-PSO) [10]; (d) The proposed CSA model.
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Fig. 5. Simulation results of the adaptive speed navigation with different robot tuning
curvature constraint based on segmented cubic B-spline path smoother. The light green
represents the high speed areas whereas dark red represents the slow down areas. (Color
figure online)

4.2 Comparison of the Proposed Adaptive Speed Model
with Various Algorithms

We then apply the proposed model to room-like test scenarios. The shorter
trajectory is generated by our CSA model in comparison with other commonly
used path planning algorithms, Probabilistic Road Map (PRM), Rapidly explor-
ing Random Tree* (RRT*) and Q-learning approaches as shown in Fig. 6(a).
The path distance generated by our CSA model is 4.04% less than the PRM
model, 5.97% less than the RRT* and 8.42% less than the Q-learning method,
respectively. The number of turns of developed CSA approach is 15.38% better
than the PRM, 76.08% less than RRT* and 8.33% less than Q-learning method,
respectively. In Table 2, we observe that our model outperforms others in terms
of path length and number of turns. We have the significant feature of adaptive
speed navigation. In the vicinity of obstacles, the disinfection robots operate at
a slow speed to adapt environment with the placement of obstacles, while the
robot operates at high speed in free space as shown in Fig. 6(b).
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Fig. 6. (a) Comparison of disinfection robot navigation with various models. (b) Result
of the adaptive speed navigation based on segmented cubic B-spline path smoother.

Table 2. Comparison of trajectory length and number of turns

Methods Minimum length Increase of length Number of turns Difference of turns

Proposed CSA model 37.8997 ——— 11 ———

PRM 39.4963 4.04% 13 15.38%

RRT* 40.3049 5.97% 46 76.08%

Q-learning 41.3848 8.42% 12 8.33%

5 Conclusion

In this paper, we have developed an efficient adaptive speed CSA algorithm.
The proposed method combines a cuckoo search algorithm with a local search
method based on a 2D grid-based map. For the process of approaching obstacles
and turning, the smoothing scheme in light of segmented cubic B-spline curve
integrated with the method of adaptive speed navigation, so that the Covid-
19 disinfection robot can plan a safer and smoother trajectory at a reasonable
distance from objects and obstacles while safely and adaptively navigating the
autonomous Covid-19 disinfection robot. Simulation and comparative studies
have proved the efficiency and robustness of the developed CSA method.
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