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Abstract. In this paper, we present an algorithm for the detection of
line segments directly on the original, distorted images captured by cal-
ibrated wide-angle, fisheye and omnidirectional cameras. Distorted line
segments are detected as convex polygonal chains of connected straight
lines and then validated as the projection of 3D lines. This last validation
step is our main contribution, which is formulated in a generic way in
order to allow the detection of line segments from calibrated central pro-
jection vision systems and without requiring the rectification of the whole
image. We evaluate our method with real images from a publicly available
dataset and compare it with state-of-the-art alternatives, achieving com-
parable line detection performance without requiring image rectification.
Additionally, we provide an open source reference implementation.

1 Introduction

Typical computer vision techniques rely on point image features to perform, for
example, visual SLAM [19], camera motion estimation [20], place recognition [3]
or object recognition [8], among many others. However, higher level geomet-
ric primitives, such as lines, are gaining growing importance in recent years, as
they provide a set of advantages, specially in terms of reliability. These include
their higher robustness against illumination changes in the image, as well as
their natural presence in human-made environments [25]. Not only that, unlike
point features, lines can be found even in images from low-textured environ-
ments, which is known to be one of the main issues of geometric computer vision
techniques. This problem can be partially mitigated by employing fish-eye or
omnidirectional cameras, which provide wider Field-of-View (FoV), hence cov-
ering larger areas of the environment and consequently reducing the probability
of capturing low-texture areas, but it still remains an issue.

The benefits that line features provide have been exploited recently for the
development of new systems employing them either as their main source of infor-
mation or at least complementary to point features [5,6,14,15,17]. Nevertheless,
detecting and managing line features is more costly than using their point coun-
terpart, specially in wide FoV cameras where distortion is significantly larger
than in standard perspective cameras, causing that straight lines in the envi-
ronment are no longer projected as straight 2D lines on the images. To avoid
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this, the images need to be rectified [11] in a process that presents two main
issues: (i) it is computationally expensive, and (ii) the maximum effective FoV
after rectification is reduced, in practice, to about 130◦ [7] instead of the orig-
inal ∼180◦ FoV for fish-eye and up to 360◦ for omnidirectional cameras. Our
proposal provides a solution to these two problems.

In this paper, we present D-LSD (Distorted Line Segment Detector), the
first line segment detector that enables direct detection of distorted lines from
non-rectified images. We formulate the distorted line detection problem under
the mild assumption of a calibrated central projection system, resulting in a
very efficient line detector capable of handling from pinhole to omnidirectional
camera projection models. We evaluate our approach with publicly available real
images and compare the execution time and detection rates against state-of-the-
art straight line detection methods on rectified images.

2 Related Work

The most popular line segment detector is LSD [16], by Grompone von Gioi et al.
The LSD algorithm works by grouping pixels with the same gradient direction
and validating lines as rare events in the a contrario model, according to the
Helmholtz principle [10]. This method gained popularity as one of the first line
detectors capable of operating in real-time.

Alternatively, in [1], Akinlar and Topal propose to detect lines from a con-
tinuous, 1 px-wide chain of edge pixels by least squares line fitting. These high
quality edges are detected from their proposed Edge Drawing [23] algorithm.
This approach, termed EDLines, results in a very efficient line detection algo-
rithm (about one order of magnitude faster than LSD). A similar approach,
named CannyLines, is proposed in [18] by Lu et al. where lines are detected
directly on the edge map extracted by their parameter-free Canny operator.

Following a different approach, Cho et al. propose in [9] a new line segment
detector exploiting the properties of digitalized lines. In this work, anchor points
(i.e. peaks in the gradient map) are connected horizontally or vertically only,
creating what the authors call linelets. Then these linelets are grouped into
line segments according to some rules derived from the digitalization properties
and validated from a probabilistic perspective. Recently, Zhang et al. proposed
AG3line [24], which detects line segments by actively grouping anchor points.
Finally, the detected lines are validated according to the density of anchors and
the alignment of the gradient magnitudes.

Unlike our proposal, all these methods operate only in rectified images and
cannot find straight lines in distorted images. In this work, we rely on the efficient
Edge Drawing [23] algorithm for continuous edge segmentation and exploit the
fact that distorted lines are locally straight to fit 2D line segments, similar to
the EDLines [1] approach. Then, connected 2D line segments forming a smooth
convex curve are grouped and validated as being the projection of a 3D line,
according to the calibrated intrinsic parameters of the camera.
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3 Background

The mapping of a 3D point x ∈ IR3 to image coordinates u ∈ Ω ⊂ IR2 is
characterized by the projection function π : IR3 → Ω. In this work, we consider
central projection cameras in which all light-rays pass through a single point
in space: the projection (or optical) center of the camera. This includes both
dioptric and catadioptric cameras.

In general, lines are projected as conic sections in any radially distorted
image. Svoboda and Pajdla [22] showed that lines are imaged as conic sections
in catadioptric systems. Accordingly, Barreto [4] showed that this is also true
for perspective cameras with radially symmetric distortion following the division
model [13]. Here, we only assume that lines are imaged as smooth convex curves,
i.e. its curvature is either always non-negative or always non-positive, up to a
smoothness threshold θ ∈ IR+ (see Fig. 1). Note that this is a typical assumption
used, for example, to find circles [2] or ellipses [21].

Fig. 1. Curves are approximated in a piecewise linear fashion, i.e. as polygonal chains.
The polygonal chain starting at segment A breaks both the convexity and smoothness
assumptions at B. Therefore, a new polygonal chain candidate starts at B.

Finally, under the central projection assumption, the two endpoints x1,x2 ∈
IR3 defining a three-dimensional line, along with the center of projection, define
a plane with normal vector n ∈ IR3 (see Fig. 2). This fact, along with the inverse
of the projection function π−1 : Ω → IR3 will be used to generate a model of the
observed curve. Note that the depth of a 3D point is lost during the projection
process, thus π−1 can only recover its direction.

4 Algorithm Description

D-LSD operates in 4 main steps as follows. First, a set of continuous edges
are extracted from the intensity image. Subsequently, smooth convex curves are
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Fig. 2. In a central projection system, a 3D line and the center of projection form a
plane. This plane intersects the unit sphere in the dotted circle. The line segment is
thus an arc on the unit sphere.

extracted as polygonal chains from connected edges. A model of a 3D line is
then extracted by means of a least squares minimization from the pixels on the
curve and, finally, such curve is validated as a distorted line according to its
reprojection error in the image.

4.1 Edge Detection

We rely on the Edge Drawing (ED) algorithm by Topal and Akinlar [23] for
edge detection, since it is a very efficient method to extract connected, 1 px-wide
chains of edge pixels. In summary, this algorithm works through these steps:

1. The image gradient magnitude and direction is computed at each pixel from
a smoothed version of the input image.

2. Pixels with local maximum gradient are selected. These pixels, known as
anchors, correspond to edge elements with a very high probability.

3. Finally, anchors are connected using the neighbor’s gradient magnitude and
direction, following gradient maximum values.

4.2 Polygonal Chain Extraction

Smooth convex curves are then extracted from continuous edge segments in two
steps. First, straight lines are extracted from the edge segments, similar to the
line segment extraction method EDLines [1]. Essentially, we fit a straight line to
the segments under a least squares approach and then pixels are added one by
one from the connected edge segment until the error exceeds a given threshold.
When no more pixels can be added for that threshold, a new line is initialized
and the process is repeated with the remaining pixels.

Finally, once straight lines have been extracted, they are grouped into polyg-
onal chains according to the smoothness and convexity assumptions. Starting
from a line segment, consecutive line segments are added to the group as long as
the angle between them is below a certain threshold and the whole group shares
the same turn direction (refer to Fig. 1). This builds a candidate curve.
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4.3 Model Generation

Given a set of pixels from a candidate curve, in this step we want to extract a
model of its corresponding 3D line in a least squares sense.

As stated in Section 3, the points from a 3D line, along with the camera’s
center of projection, all lie in a plane. Therefore, in this step, we are interested
in estimating the the parameters of such plane.

A plane is described by the unit normal vector n ∈ IR3 and its distance to
the origin D ∈ IR. This way, the point-to-plane distance can be simplified to

dn (x) = x · n + D (1)

Setting the center of projection coincident to the origin makes D = 0, and
then the least squares solution to the plane parameters, in terms of the point-
to-plane distance, is given by:

n∗ = arg min
n

∑

u∈C

∥∥π−1(u) · n∥∥2

subject to ‖n‖ = 1
(2)

where π−1 is the inverse projection function, for all pixels u ∈ Ω in the segmented
curve C.

Note that (2) is a quadratic system with a quadratic constraint and, thus, it
can be expressed compactly in matrix form as:

n∗ = arg min
n

n�Mn

subject to n�I3×3n = 1
(3)

where M is the symmetric matrix

M =
∑

u∈C
π−1(u)

(
π−1(u)

)� (4)

We solve this constrained optimization problem in closed form using the
method of Lagrange multipliers as follows. Considering the Lagrangian:

L(n) = n�Mn + λ(n�In) (5)

the necessary conditions for optimality are then:

∂L(n)
∂n

= 2n�(M + λI) = 0� (6)

Disregarding the trivial solution, the 3 × 3 matrix M + λI must be singular
in order to satisfy (6). Thus, we solve for the values of λ ∈ IR that make

det
(
M + λI

)
= 0 (7)

This is a polynomial expression in λ of degree 3, for which a closed form
solution exists. This is the characteristic polynomial, and the roots correspond
to the eigenvalues of M. Finally, the solution to the original problem can be
extracted from the kernel of M + λI.

Up to 3 solutions satisfy equation (6), so we choose as the optimal solution
the one with the lowest cost, given by n�Mn.
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4.4 Geometric Validation

Finally, once we have a model of the 3D line, we geometrically verify if it corre-
sponds to the observed curve as follows. Given a pixel u of the curve C, we get
the direction vector of the corresponding light-ray and project it to the plane
model of the line estimated as explained above. The projected vector on the
plane is finally re-projected to the image using the projection function π. Thus,
we say that a curve is the projection of a 3D line, within a certain threshold ρ,
if, for all segmented pixels of the curve, their re-projection fall within a ρ-radius
circle around the source pixels, measured in image coordinates:

∥∥u − π
(
x − (x · n)n

)∥∥ ≤ ρ, ∀u ∈ C (8)

where x = π−1(u) and n is the normal vector of the fitted plane. It is worth
noticing that, for computational efficiency reasons, only the endpoints of the 2D
line segments forming the polygonal chain are verified.

5 Experimental Evaluation

We have evaluated D-LSD with real images from the TUM mono dataset [12],
comparing it with the fastest state-of-the-art line segment detectors: LSD [16],
EDLines [1] and AG3line [24]. For a fair comparison, we have used the original
authors’ C++ implementations1. All the experiments were conducted on an Intel
Core i7-7700HQ CPU with 16 GB of RAM and on a Linux-based OS.

The TUM monocular dataset is tailored for the evaluation of visual odometry
and SLAM systems. In this evaluation, we focus on the specific wide whitePaper
calibration sequence, which contains 800 images showing two sheets of white
paper on top of a dark table. This sequence is particularly interesting since long
and high contrast line segments are observed along the whole sequence from dif-
ferent points of view. A wide-angle camera was used to record this sequence, hav-
ing 148◦ × 122◦ non-rectified field of view. The camera parameters, as provided
with the dataset, are calibrated using the pinhole projection with the FoV [11]
distortion model. Finally, the camera has a global shutter CMOS sensor with
1280 px × 1024 px resolution, recording frames at a fixed rate of 10 fps.

In order to test the other methods, we first rectify the raw images using the
tools provided with the dataset2 in crop mode, which keeps as much pixels from
the original image as possible but without adding any black borders (see Fig. 3).
We set the output image resolution to match the original 1280 px × 1024 px for
a fair comparison between the methods using rectified images and D-LSD. The
other evaluated methods are then applied to the rectified images keeping their
default parameters. In turn, for D-LSD, we have set the smoothness threshold
to θ = π

16 and the reprojection error for line validation to ρ = 4 px. Additionally,
small (less than 25 px) single straight line polygonal chains are omitted.
1 The reference implementation of D-LSD as well as the others’ used for evaluation
are publicly available at: https://github.com/dzunigan/line detection.

2 https://github.com/tum-vision/mono dataset code.

https://github.com/dzunigan/line_detection
https://github.com/tum-vision/mono_dataset_code
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Fig. 3. Original (3a) and rectified (3b) images from the wide whitePaper sequence of
the TUM monocular dataset [12].

We have measured the D-LSD performance with the recall value, computed
as the ratio of the number of line segments found in the distorted image by
D-LSD w.r.t. the number of segments in the image, as given by any of the state-
of-the-art methods on the rectified image. Thus, a maximum value of 100 %
would tell us that all the line segments detected in the rectified image have
been recovered with D-LSD. A correspondence between rectified and distorted
lines is set if at least 90 % of the rectified line falls within 4 px of a distorted
line detected by D-LSD. We omit small line segments from the evaluation since
their detection is highly affected by the internal parameters of each algorithm.
However, the length in pixels of the same line segment is different in rectified and
non-rectified images. Thus, we set the minimum line length threshold in terms of
the angle between the light-rays of the endpoints of a line, which does not depend
on the actual projection function. In this way, we can discard the same small
segments for all the evaluated methods. The length threshold is represented as
a percentage of the vertical FoV.

The recall rates for the whole wide whitePaper sequence and for different
values of the minimum line length threshold are shown in Fig. 4. The results
of the experiment show that most of the long lines (about 21◦ and above) are
detected by D-LSD, while it struggles to detected smaller lines. This is, in part,
because of some internal thresholds of D-LSD that are expressed in pixels and
thus are not equivalent when using rectified images. The total number of line
segments detected by each algorithm along with the average execution time are
reported in Table 1. Only line segments with length above 25 % minimum length
threshold (i.e. 61◦ and above) are taken into account. It is important to highlight
that one of the advantages of using D-LSD is that it can detect a larger number of
the long lines than the rest of the methods, since it uses the original non-rectified
images with wider FoV. Not only that, our proposal is the fastest detector, even
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without taking into account the previous rectification step needed by the others
(first column in Table 1).
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Fig. 4. D-LSD recall ratio compared to state-of-the-art line segment detectors on rec-
tified images from the wide whitePaper sequence.

Table 1. Total number of line segments detected in the wide whitePaper sequence at
25% length threshold and average execution time (with standard deviation) measured
in milliseconds.

Rectification [12] LSD [16] AG3line [24] EDLines [1] D-LSD

Total lines – 6654 5868 6273 7186

Exec. time 7.32 (1.64) 38.8 (2.84) 20.2 (2.70) 12.9 (3.85) 12.4 (3.92)

6 Conclusions

In this work, we have presented a new line segment detector for calibrated images
that works directly on the original, non-rectified image. An open source C++
implementation of our algorithm is available at https://github.com/dzunigan/
line detection.

Our approach, coined D-LSD, relies on the efficient Edge Drawing [23] algo-
rithm for edge detection. Edge pixels are then grouped into polygonal chains,
representing smooth convex curves. Finally, the segmented curves are validated
as the projection of a 3D line by fitting a plane that includes the projection center
and the light-rays passing through the curve pixels. This plane fitting problem is
formulated as a quadratically constrained quadratic optimization problem, which
is solved in closed form using the method of Lagrange multipliers. Our method

https://github.com/dzunigan/line_detection
https://github.com/dzunigan/line_detection
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is general enough to handle any central projection system: from wide-angle to
omnidirectional cameras.

We have evaluated the proposed detector with images captured by a wide-
angle camera available in the TUM monocular dataset [12], comparing its
detection capabilities against state-of-the-art line segment detectors on rectified
images. In the experiments, D-LSD shows comparable performance for non-short
segments while being the fastest approach and without requiring any previous
image rectification. We believe D-LSD could be of much interest for demanding
real time applications that rely on line features for further image analysis.

Acknowledgements. This research was funded by the Government of Spain and the
European Regional Development’s funds (FEDER) under the projects ARPEGGIO
(PID2020-117057) and WISER (DPI2017-84827-R).
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