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Abstract. A new algorithm for computing the α-tree hierarchical repre-
sentation of a grey-scale digital image is presented here. The technique is
based on an efficient simplified version of the Homological Spanning For-
est (HSF ) for encoding homological and homotopy-based information
of binary digital images. We create one Adjacency Tree (AdjT ) for each
intensity contrast in a fully parallel manner. These trees, which define a
Contrast Adjacency Forest (CAdjF ), are in turn transversely intercon-
nected by another couple of trees: the classical α-tree, and a new one
complementing it, called here the α∗-tree. They convey the information
of the contours and the flat regions of the original color image, plus the
relations between them. Using both the α and α∗-trees, this new topolog-
ical representation prevents some classical drawbacks that appear when
working with a single tree. An implementation in OCTAVE/MATLAB
validates the correctness of our algorithm.

Keywords: Alpha-tree · Hierarchical representation · Digital image ·
Parallelism · Homological spanning forests

1 Introduction

Hierarchical image representations describe the content of an image from fine to
coarse level through a tree structure, where the nodes represent the image regions
at different levels and the edges model the hierarchical relationships among those
regions. More concretely, α-trees were first introduced to avoid relying on an order-
ing relation among image pixels (as in Max- and Min- trees). They are based on
representing quasi-constant color regions of the original image, by relying on local
dissimilarities. This hierarchical representation supports a wide family of image
operators on graphs, and its practical usage has been extensively demonstrated.

In this paper we propose a new method to find a semantically correct parti-
tion of gray-level or color nD digital images from which several structures, such
as Contrast Adjacency Forest, α-tree and α∗-tree, are directly obtained. Our
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simplification allows to reduce the computation time by extending the degree of
parallelism to every single pixel.

The paper has the following sections. Section 2 summarizes the main related
work and Sect. 3 is devoted to recall the machinery and definitions of hierarchi-
cal representations. Next, the algorithm for constructing the trees using HSF
structures is described in Sect. 4. Finally, conclusions are summarized in Sect. 5.
In addition, this section introduces the applications and future research.

2 Related Work

Although there are in the literature a wide amount of methods for computing Max
and Min trees and other hierarchical representations, results dealing with an effi-
cient construction of α-trees are certainly limited. In [3] the authors mainly focus
on the computational issues of classical α-tree’s construction algorithms, and pro-
pose various schemes for their efficient computation, using parallelism for mod-
ern multicore processor. In [9] a quasi-linear method based on a dedicated Union-
Find procedure is proposed. The paper [4] fuses these two approaches. In general,
many research papers have addressed computational efficiency of Union-Find pro-
cedures, including tuning parallel algorithms for specific computers. Another app-
roach is that of using saliency maps to achieve an efficient construction of the α-
tree by relying on Khalimsky grids [2]. Recently, some authors have dealt with
(memory) efficient α-tree computation [5]. Nevertheless, all of them use a classical
divide-and-conquer approach, by dividing the original image into strips. The issue
is that this division necessarily implies more data dependencies between the strips
in which the original image was divided (it makes harder the union-find stage).
Thus, a pure parallel approach is not possible. In this respect, none of these meth-
ods use the ideal mathematical scenario for promoting parallelism in a natural way,
that is, topology. The intrinsic nature of topological properties is essentially quali-
tative and local-to-global, having the additional advantage that its magnitudes are
robust under deformations, translations and rotations. Nevertheless, the results in
the literature in that sense are rare, and to our knowledge, no fully parallel com-
putation for α-trees and other hierarchical structures is currently available.

3 Background

Let us now introduce some basic concepts to be used in the following sections.
We will use the notations introduced in [3]. Let I be a digital image and E
its definition domain. An image segmentation is a partition P of E, that is a
mapping x → P (x) from E into P (E) such that ∀x ∈ E, x ∈ P (x) and ∀x, y ∈ E
either P (x) = P (y) or P (x)∩P (y) = ∅, with P (x) indicating a set of P containing
x ∈ E.

Let us define π(x � y) a path of length N between any two elements x, y ∈ E,
composed by a chain of pairwise adjacent elements 〈x = x0, x1, ..., xN−1 = y〉.
We will consider here 4-adjacency between pixels, meaning that two pixels are
adjacent if they share an edge. Let d(x, y) be a predefined dissimilarity measure
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between attributes of x and y. This measure can be defined, for instance, as the
dissimilarity among pixel intensities, that is, contrast for grey level images.

Given these definitions, we could say that the hierarchical α-tree represen-
tation is based on depicting an image through its α-connected components [13]
(α-CCs), also α-zones. For a given pixel x, its α-zone is made up of all pix-
els reachable from x through a path in which within its intermediary steps,
d(xi, xi+1) is less or equal to a given α. Let us denote the α-zone of a given pixel
x as α − Z(x). Let us observe that α-zones define a partition or segmentation,
i.e.

⋃
x∈E α − Z(x) = E. It is possible to construct a tree of α-zones, that is

the α-tree, by ordering them by inclusion relation. A zone covering the complete
image is represented by the root of the tree.

4 Generation of the CAdjF , α and α∗-trees

We present an extension of our previous works (see [7,8]) to generate the struc-
ture that allows an efficient construction of α-trees, and other hierarchical struc-
tures that will be later introduced. The main notion presented in these previous
works was the concept of Homological Spanning Forest (HSF). This concept is
built by modeling the initial image as a special Abstract Cell Complex (ACC
for short, see [6]). For the rest of the paper, let I be a 2D digital image having
m × n pixels and q ordered levels of intensities.

Roughly speaking, an HSF of I is the set of two trees, denoted by HST0,1

and HST1,2, living at interpixel level within the self-dual cartesian square grid of
I and appropriately connecting all the interpixel elements without redundancy.
These interpixel elements (also called cells) are the own pixels (having dimension
0), the edges between pixels (excepting those of the border of I) of dimension 1
and the corners between pixels of dimension 2 (excepting those of the border of
I). In particular, if we denote by ˜HSF 0,1 a spanning tree of all the image pixels,
HSF0,1 is a subdivision of ˜HSF 0,1 in the sense that it has as nodes all the m ·n
pixels of I (0-cells) and (m · n − 1) 1-cells connecting them. The HSF1,2 is a
tree whose nodes are all the (m − 1) · (n − 1) 2-cells of I and the rest of 1-cells
(concretely, (m− 1) · (n− 1) too) that are not included in HSF0,1. Exhaustively
applying operations of cell-pairing (coupling a 0-cell with 1-cell or a 1-cell with
2-cell) within these trees, we detect cells (called critical) that remain unpaired in
some HSF-trees. Although the critical cells obviously depend on an specific cell
pairing, they can be used as combinatorial representatives of integer homology
classes.

An example of this (non-unique) HSF representation is shown in Fig. 1.
There is one critical 0-cell for each connected component (represented by purple
triangles) and one critical 1-cell for each monochrome hole (represented by yellow
arrows). However, HSF can be simplified to just one HST for binary images.
In fact, this tree remains to be ˜HSF 0,1, and, then only 0-cells (which are image
pixels with two possible colors) are contemplated for tree building. This tree can
be divided into rooted sub-trees, with their root (called attractor) being detected
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when an edge “touches” two different colors. Such structure is shown in Fig. 2.
This simplified representation implies a more efficient topological computation
[10,11] and, from now on, it will be the underlying topological encoding for all
the digital image structures used in this paper.

(a) A 3-color synthetic im-
age.

(b) Complete HSF of this image.

Fig. 1. A 3-color synthetic image and its HSF. Circles: 0-cells; triangles: 1-cells; solid
squares: 2-cells. (0−1)-tree: blue and red segments linking 0 and 1-cells; and (1−2)-tree:
blue and green segments linking 1 and 2-cells. Critical 0-cells (representative elements
of CCs): purple triangles. Critical 1-cells (representative elements of monochrome 1-
holes): yellow arrows. (Color figure online)

The method presented here is based on building the adjacency trees (AdjT )
of a set of q + 2 contrast images of dimension (2m + 1) × (2n + 1) Ic,{c =
−1, 0, 1, . . . , q}, where c runs over the dissimilarity values among pixels (whose
minimum and maximum values are 0 and q respectively) plus an additional trivial
contrast image I−1. For this purpose, we use the previous simplified HSF frame-
work for B/W images. The AdjT offers a hierarchically and topologically con-
sistent representation, modeling the nesting structure of spatial regions, where
each node represents a connected component (CC) or region, and two nodes are
adjacent if one of them is surrounded by the other (see [12]).

We design and implement here a parallel algorithm for computing those
AdjTs starting from a HSF representation of contrast binary images, so that
they contain image information in terms of hierarchical representations (like the
α-tree and others). We consider here pixel intensity as dissimilarity measure, so
that each Ic is a binary image containing: background (BG) pixels as flat zones
and foreground (FG) pixels as boundaries.

The computed set of AdjT , which conforms an adjacency forest, is called
Contrast Adjacency Forest (CAdjF ). The CAdjF includes another useful repre-
sentation, called α∗-tree, which is defined through an opposite concept to that of
the α-zone. Whereas this last is made up of all pixels reachable from a pixel, in
the sense that there exists a path whose adjacent pixels do not exceed a certain
contrast c, an α∗-contour is composed of these pixel frontiers that impedes some
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(a) Simplified HSF (b) Jump distance matrix

Fig. 2. Simplified HSF and Jump distance matrix for the image in Fig. 1. The distance
of each pixel is referred to its CC attractor (zero highlighted in bold).

path between two pixels, in the sense that this path cuts through two adjacent
pixels that exceeds c. Two interesting cases become manifest for Ic images:

a) An α∗-contour can surround a BG region of an Ic, denoting a monochrome
hole in its corresponding α-zone of I.

b) A set of α∗-contours can belong to a BG region. In this case, the longer this
set is, the “weaker” its corresponding α-zone is. In other words, it is more
probable that the zone contains adjacent pixels with a high dissimilarity. This
issue is efficiently computed using the proposed algorithms, allowing a fast
identification of “bad” α-zones for forthcoming applications (see Sect. 5).

We observe that the corresponding pixels of Ic of the α-zones plus those of
the α∗-contours define a partition or segmentation of Ic. Then, ordering α-zones
and α∗-contours (more exactly their corresponding pixels) by inclusion relation,
it is possible to construct the α-tree, and the α∗-tree.

Apart from these trees, our construction allows to compute at the same time
(without any additional timing complexity) additional information of regions and
contours, like areas and perimeters (see [10]), which might be used for further
processing (see Sect. 5). In addition, and what is more important, CAdjF is
generated in a very efficient manner following our previous implementations
discussed in [10,11]. Two important achievements are thus retained:

1) The parallel algorithm is achieved here through the proper conversion of color
images into a set of binary contrast images Ic, and;

2) No processing step is done in a sequential manner. This allows to maintain
the theoretical time complexity of the whole process near the logarithm of
the width plus height of the image.

Generation of B/W contrast images Ic from the original color image I is done
(for each intensity contrast c) as follows (see an example in Fig. 3). Every cell of
I (of any dimension) is transformed into a 0-cell of Ic, using the rules:

– Every 0-cell of I is transformed into a BG pixel in Ic, meaning that the
“interior” of a pixel is a flat zone.



Building Hierarchical Tree Representations Using Homological-Based Tools 125

– 1-cells of I represent its contours; thus, if the two neighboring 0-cells of I
have an intensity dissimilarity bigger or equal than c, their corresponding Ic
pixels would be set to FG; BG otherwise.

– Finally, for each corresponding Ic pixel of a 2-cell of I, only if its four 4-
adjacent Ic pixels were BG, it will be set to BG; FG otherwise. The BG of
Ic corresponds to 2-cells of Ic having their 4-adjacent 0-cells identical, which
means that the color area of I is flat.

Fig. 3. Left: a fragment (9 pixels) of a color image. Numbers represent color intensities
of the original image pixels (0-cells), crosses are 1-cells and solid squares 2-cells. Right:
The corresponding B/W Ic (c = 0) of this color image, including the HSF, depicted as
lines.

According to the proposed framework, the parallel process for constructing
the CAdjF is divided into two main phases (Fig. 4).

1) Generation of contrast images. From the original image I, a set Ic of contrast
images are generated, according to the previous convention. For example, for
grey level images, a set of 255+2 Ic images can be generated fully in parallel,
as there are no dependencies among these generations. If there were enough
PEs, the timing order would be O(1).

2) HSFc computation. For any previous Ic-images, their corresponding HSFcs
are computed in parallel. The results are a set of jump matrices Jc. At the
same time, additional information for FG CCs (e.g. contour perimeters) and
BG CCs (e.g. areas of flat zones) are also calculated. Each element of these
matrices contains a jump distance to the corresponding CC attractor. We
refer the reader to [10] for a detailed matrix-based description of this second
phase.

3) Once the HSFs of contrast images are built, their AdjTs are computed by sim-
ply following the pointers representing jump distances. In [10] a full example
is described for a B/W image. In the present method, AdjTs are extracted
in the same manner, once the representative attractor lists of each Jc are
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completed. Besides, the set Jc comprises the information of α-tree as well as
the α∗-tree. The pseudocode for this phase is described in Algorithm 1.

Fig. 4. Phases involved in the parallel CAdjF generation. Complexity orders are shown
below each stage.

To sum up, having enough PEs, the time order would be O(log(n)) +
O(smax), being smax defined in [10]. A summary of the previous phases and
the generation of the set Ic follows. Figure 5, Left shows a 8×13 synthetic image
where each region is labelled with a letter and a number that represents its grey
level. For completeness, we define a first contour image I−1, which defines four
contours for each pixel (trivial case, Fig. 5, Right). The only Ic BG pixels come
from I 0-cells. Jump distance matrix J−1 simply consists of the corresponding
distances (for FG pixels) to the unique FG attractor (most right upper red dot),
and a null distance for the inner BG pixels. Note that there is also a set of BG
pixels in the image borders, in order to get a correct AdjT representation. Thus,
I−1 AdjT is composed of exclusively one FG node and as many BG nodes as
pixels I has.

Next Ic images are shown in Fig. 6(a) for c = 0, and (B) for c = 1. In Fig. 6(a),
there is a CC for each region of I, and a FG CC for each monochrome hole of I.
In Fig. 6(b), those I regions that share a border and have a grey difference of 1
are fused. In general, the higher the considered contrast, the lower the number of

(a) Synthetic 8× 13 image I (b) Ic HSF with a contour for
each pixel (c = −1).

Fig. 5. Synthetic 8 × 13 image I (which has been surrounded by one pixel width
additional borders) and its HSF. Green empty circles of Ic are BG pixels; red solid
dots of Ic are BG pixels; Edges follows the same color convention. (Color figure online)
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contour perimeter that persist and the number of BG zones that remain. Thus,
subfigures 6c and 6d show the Ic images for c = 2, and c = 3. Finally, for the
highest existent contrast value in I (in this case c = 4), the Ic image results in
a different trivial case: only one BG CC and only one FG CC (image border is
considered to be out of I, and subfigure 6e shows I4).

Once the complete set of Jc has been obtained, it is straightforward to obtain
the α and α∗-trees, as the same linear addresses are used for all the Jc. We
proceed in parallel for each attractor and each Jc by simply looking at the same
element in the previous Jc−1 The corresponding elements point to the same or to
a different attractor. In the first case, no branch appears at the tree (e.g. region
C2 for α = 0, 1, 2 in Fig. 7a); in the second one, a link must be drawn (e.g. region
fusion of E4F3E5 for α = 0 to 1 in Fig. 7a). Similar examples for the α∗-trees
are depicted in Fig. 7b; in this case, there are contours that persist for different
α values. Finally, all of them collapse into the tree root (trivial c = −1).

Algorithm 1. [Generation of α and α∗-trees]
Input: Number of FG,BG attractors NFG(c), NBG(c). A set of global jump distance
matrixes {Jc}
Output: α and α∗-trees

1: for c = −1, 0, 1, 2, . . . , (q − 1) do
2: add ordered attr list(Jc, attr listc, FG)
3: add ordered attr list(Jc, attr listc, BG) //Extracting the attractor lists from

Jc. These lists are ordered by its linear addresses. Each entry in every attr list
contains: linear address, color, perimeter/area.

4: end for//Obtaining the α∗-tree by adding a new field to every attr list
5: for c = q − 1, q − 2, . . . , 0 do
6: for k = 1, 2, . . . , NFG(c) do
7: lin address = attr listc(k).linear address
8: prev lin address = Jc−1(lin address)
9: attr listc(k).α∗ pointer = binary search( prev lin address, attr listc−1)

10: end for
11: end for//Obtaining the α-tree by adding a new field to every attr list
12: for c = −1, 0, 1, 2, . . . , (q − 2) do
13: for k = NFG(c) + 1, . . . , NFG(c) + NBG(c) do
14: lin address = attr listc(k).linear address
15: next lin address = Jc+1(lin address)
16: attr listc(k).α pointer = binary search( next lin address, attr listc−1)
17: end for
18: end for
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(a) c = 0 (b) c = 1

(c) c = 2 (d) c = 3 (e) c = 4.

Fig. 6. HSFs for the previous synthetic image; Since no contrast is bigger than 4 in
(e), the HSF only contains one BG CC and one FG CC.

(a) α-tree (b) α∗-tree

Fig. 7. Representation of the α-tree and α∗-tree

Fig. 8. (1) An image presenting chaining effect. (2) Perimeters for I0, I1, I2. (3) Perime-
ters for I3. (4) A chessboard image that does not present chaining effect.

5 Conclusions, Applications and Future Research

The Contrast Adjacency Forest is a hierarchical representation of a color digital
image based on the intensity contrasts of its regions. The building of this Forest
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is done in a fully parallel manner with a theoretical computing time near the
logarithm of the width plus the height of an image. This representation contains
in turn another pair of trees (α and α∗-tree), which are suitable for additional
applications, while maintaining such an efficient computation timing. Moreover,
they prevent some classical drawbacks that appears when working only with the
α-tree. One of the mayor drawbacks of α-tree is the so-called chaining effect (see
[4] for a deep discussion). This occurs when there are a set of adjacent regions
with incremental intensities. Thus, the first level of this tree would join a big
area that actually contains very different intensities. A classical example is given
in Fig. 8 (1), where all its pixels would belong promptly to the first α-zone.
However, this problem can be detected by looking at the perimeters returned by
the α∗-tree. Figure 8 (2) and (3) show that other region contours must survive
in Ic for several levels of c. Conversely, for an image with a smaller intensity
range (like the chessboard-like of Fig. 8 (4)), α∗-tree perimeters will disappear in
the next Ic. Therefore, inspecting the progression of perimeters with respect to
c would cut off artifacts of this chaining effect (in a negligible computing time),
and without the need of computing the ω − tree (see [1]).

Implementation of the presented method is quite straightforward by using the
algorithm presented in [10] (or its most enhanced version in [11]). Although an
optimized code for the current proposal has not yet been written, the theoretical
timing estimation for building the CAdjF appears to be almost the same as that
of [11] (if sufficient processing elements were available), due to the few changes
with respect to the previous work that are required.

With respect to applications, our hierarchical representation contains a richer
topological information than a unique tree. Thus, further processing can produce
additional results. A proposal to be considered in the short term is the introduc-
tion of stronger conditions for the Ic pixels to be considered as FG, that is, for
the activation of the region contours. Additionally, more elaborated topological
filters can be defined by extending our hierarchical representation.
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