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Abstract. Images of a given environment, coded by a holistic image
descriptor, produce a manifold that is articulated by the camera pose in
such environment. The correct articulation of such Descriptor Manifold
(DM) by the camera poses is the cornerstone for precise Appearance-
based Localization (AbL), which implies knowing the correspondent
descriptor for any given pose of the camera in the environment. Since
such correspondences are only given at sample pairs of the DM (the
appearance map), some kind of regression must be applied to pre-
dict descriptor values at unmapped locations. This is relevant for AbL
because this regression process can be exploited as an observation model
for the localization task. This paper analyses the influence of a num-
ber of parameters involved in the approximation of the DM from the
appearance map, including the sampling density, the method employed
to regress values at unvisited poses, and the impact of the image content
on the DM structure. We present experimental evaluations of diverse
setups and propose an image metric based on the image derivatives,
which allows us to build appearance maps in the form of grids of vari-
able density. A preliminary use case is presented as an initial step for
future research.

1 Introduction

Appearance-based localization (AbL) is the task of estimating the pose of a
camera directly from the image content, avoiding any explicit representation of
the 3D geometrical elements of the scene (typically keypoints and segments).
The key assumption supporting AbL is that all the possible images in a given
environment, considered as vectors in the image-size dimension space, configure a
manifold (the Image Manifold) that can be traversed by changing the pose of the
camera [2,4,6]. Formally, this means that the camera pose, given by x = (x, y, θ)
for planar motion, articulates the IM.

Working directly with the IM is impractical for a number of reasons, including
not only its huge dimensionality, but also because it presents a highly twisted and
non-differentiable structure, mostly due to image discontinuities and occlusion
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Fig. 1. Different approximations of a Descriptor Manifold, using sets of pose-descriptor
samples (appearance maps, circles) with diverse sampling rates (rows) and descriptor
regression methods (columns).

boundaries [17]. The common solution to alleviate these issues is to code the
image content with a compact whole-image descriptor that projects the image
points into a much lower-dimension and smother space, named the Descriptor
Manifold (DM).

In this scenario, AbL consists of, given a query image descriptor dq, esti-
mating the pose of the camera: xq = φ(dq). In practice, this equation is not
available since it implies knowing the continuous shape of the DM for a given
environment. Instead, the DM is represented through a set of samples in the form
of descriptor-pose pairs, which is called the appearance map (M). Thus, AbL
becomes the problem of numerically estimate the relation between descriptors
and poses x̂q ≈ φ̂M(dq) from the samples of the map. Selecting the adequate
samples of the appearance map is key for the precise approximation of the DM,
and consequently, for the performance of AbL.

In this paper, we analyze the level of accuracy that can be achieved when
approximating the DM with different regression techniques, which is of great
interest for tackling AbL. To that purpose, given appearance maps shaped as
planar position grids, we compare different approaches for approximating the
DM by taking into consideration the following parameters:

– Sampling density: the distance between the map samples in the grid, illus-
trated in Fig. 1 by two maps composed of closer (top row) or further (bottom
row) samples.

– The estimation method: the technique employed to predict descriptor
values at unmapped areas (corresponding to each column in Fig. 1) determines
the generalizability of the map, so that those that provide more accurate
predictions will ensure better localization performance.

– The image appearance: ideally, the map sampling should not be fixed
but dependent on the image content (e.g. areas with significant changes, like
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highly textured zones, or with occlusions, would require a denser sampling).
Besides, the estimation method should also be taken into account to reduce
the number of samples needed to obtain an optimal map that maximizes the
reconstruction accuracy.

Thus, we contribute with an experimental analysis comparing diverse estima-
tion techniques and densities for two different holistic descriptors into a virtual
indoor environment, in order to find the best setup regarding both parameters.
Additionally, we propose a simple image-based metric to adjust the density of
the map, based on the image derivatives. To illustrate this, we also present a use
case in a simple setup while further research in more complex scenarios is left
for future work.

2 Methodology

This section introduces a set of elements that will be employed in the subse-
quent experimental analysis: the appearance map, the employed state-of-the-art
holistic descriptors, the considered metrics and, finally, the estimation methods.

2.1 Appearance Map

We define the appearance map M = {(xi,di) | i = 0...M} as the set of pairs
composed of an image global descriptor di ∈ R

d and the camera pose xi ∈ SE(2)
from where the image was captured. Note that these pairs represent the samples
of the DM, which are employed to perform interpolation.

2.2 Global Descriptor

In this work, we have chosen two of the most employed state-of-the-art Deep
Learning-based global descriptors to codify the information in the images.

VGGNet [15] is one of the most renowned Convolutional Neural Networks
in the literature, whose first convolutional layers hold rich feature maps that
have been employed in diverse Computer Vision tasks such as image synthesis
[18]. Regarding its perceptiveness, we have employed as holistic descriptor the
4096-sized FC 6 layer from the VGG-16 network.

Also, the NetVLAD image descriptor [1] is a 4096-sized descriptor designed
for Visual Localization with high performance against radiometric changes, com-
monly employed in Place Recognition works [13,16].

2.3 Metrics

In the presented experiments, given the dimensionality of the applied descriptors,
we determine the cosine similarity (CS) to obtain a normalized measure of the
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resemblance between a certain estimated descriptor (d̂q) and the actual observed
one (dgt):

CS(d̂q,dgt) =
d̂T
qdgt

||d̂q|| · ||dgt||
. (1)

On the other hand, we propose the mean derivative module of the image I
as a measurement of the image discontinuity content (i.e. the amount of texture,
occlusion borders, etc.) for the adaptive sampling of the map:

G =
1

HW

H∑ W∑
||∇I||2, (2)

with H,W being the height and width of the image, respectively.

2.4 Evaluated Estimation Approaches

These are the three compared methods that are built from M for the purpose
of estimating descriptor values at unvisited poses. They produce a numerical
approximation of the structure of the DM by modelling φ̂−1

M :

– Nearest Neighbor (NN). The NN or piecewise constant interpolation (left
column in Fig. 1) is the counterpart of traditional Place Recognition [3,9],
which solves AbL by assigning the pose of the nearest descriptor to the query
one. NN models the observational descriptor function without considering
interpolation between the samples of M, assigning to a query location the
descriptor of the nearest element of the map (in the pose space).

– Bilinear interpolation. Motivated by the linear interpolation of the appear-
ance proposed in [10], we propose a bilinear interpolation method for the
descriptor value prediction at unvisited places. We address such interpolation
(middle column in Fig. 1) by forming a cell with Q map samples and com-
puting independent bilinear interpolations for each component of the holistic
descriptor.

– Gaussian Process estimation. Similarly to the authors of [5,7,14], we
employ non-parametric Gaussian Process regression [12] to predict descriptor
values based on the pose similarity measured by the kernel proposed in [6].
Specifically, we employ a single GP that considers the entire DM, or equiva-
lently, the whole appearance map, as training data for the regression process.
However, in order to achieve computational tractability, we implemented the
Subset of Datapoints approximation [8,12], selecting the Q nearest pairs in
pose to the query as training samples for the GP regression.

3 Experiments

Here we present three different experiments: the first measures the accuracy of
the DM approximation for the three above-described methods within appear-
ance maps of different density, while the two remaining investigate the associa-
tion between the image content and the DM approximation, using for that our
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Fig. 2. (a) An example image from the UnrealCV ArchinteriorsVol2Scene1 dataset
and (b) the occupancy map of the environment.

proposed image-based metric. Note that, pursuing a clearer insight for the exper-
iments, we will suppress the rotational component of the camera pose, gathering
images at position grids with the camera pointing to the same direction.

3.1 Approximation Accuracy of the Descriptor Manifold

This first experiment aims to study the accuracy achieved when approximating
a DM with appearance maps of different densities and the different estimation
approaches introduced in Sect. 2.4.

This evaluation has been carried out using images from the UnrealCV Arch-
interiorsVol2Scene1 dataset [11] (refer to Fig. 2(a)), where we could gather real-
istic virtual indoor images at any desired location of the map shown in Fig. 2(b).
We have built appearance maps with different densities in this dataset, being
the most dense a regular grid with a distance of 0.2 m between samples, from
which sparser maps have been built by sub-sampling.

For the training and testing of the DM interpolation, we have also gathered
a large subset of images placed at random positions within the environment. A
subset of 20% of these samples has been used for GP parameter optimization
(unused for the other approaches), and the remaining have been left for mea-
suring the error at those places. Concretely, regarding the bilinear interpolation
and the GP regression, we have used the four nearest map samples to the query
one (in a square-shaped manner) as known, or training, data for the prediction.
Finally, for the GP-based method, as its output is a Gaussian distribution over
the descriptor space and not just a descriptor, we have considered the mean
of such distribution as the predicted value. We have used the cosine similarity
(CS) metric to measure the difference between the real descriptor at a test pose
and the estimation provided by each of the three approximation methods: NN,
bilinear interpolation and GP-based regression.

Figure 3 shows the experimental results of the mean descriptor estimation
accuracy achieved for the VGG (a) and the NetVLAD (b) descriptors by each
method in the ArchinteriorsVol2Scene1 dataset, and for maps of different den-
sities. The results have been computed with respect to the distance between the
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Fig. 3. Descriptor approximation accuracy for different descriptors, employing three
different estimation methods in maps with different densities.

grid map samples. In the figure, the line represents the mean value of the CS
for each distance and the shaded area represents its variance. As can be seen,
the VGG descriptor achieves higher similarity scores and proves to be smoother
than NetVLAD, due to the point-of-view invariance of the later. On the other
hand, as expected, the comparison between the methods reveals that interpo-
lating between map samples improves the accuracy of the prediction over pure
NN, with the bilinear and the GP-based methods achieving similar performance.
Indeed, interpolation allows to hold the same approximation accuracy than pure
NN for much sparser maps, proving themselves as the most suitable methods
for creating smaller maps. Despite the GP employs a more complex regression
process, it achieves similar performance than the bilinear method due to the
simple conditions of this test. In turn, the advantage of using a GP is that its
output can be directly introduced within probabilistic filters, as, unlike the bilin-
ear method, it provides a distribution over the descriptor space and not only an
estimated value.

3.2 Proof of Concept: The Image Gradient and the Descriptor
Variation

This section analyzes how the appearance of the scene affects to the error of
the DM approximation. For this, we have built a virtual scene (depicted in
Fig. 4d) that contains a ∼12.5 m wall displaying a grayscale scale. Then, we
have placed a camera at a 8 × 5 m position grid with increments of 0.25 m, and
a large set of random positions in between for optimization and testing. Three
different images containing variations of the grayscale scale have been used: a
striped version, containing edges (Fig. 4a), a continuous gradient covering the
full range (Fig. 4b), and a similar gradient but only covering a portion of the
grayscale range (Fig. 4c). For this experiment, we have selected the VGG FC 6
descriptor and the GP-based regression method due to the proper performance
demonstrated in the previous experiment.
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(a) Striped (b) Gradient (c) Cropped gradient

(d) Perspective simulation of a camera placed on a position grid (red dots), pointing
to a wall containing a grayscale image, in this case the striped version (4a).

Fig. 4. The virtual environment for the proof of concept of the image gradient. (Color
figure online)

Figure 5 compares, for each of the three variants of the gradient image, the
mean cosine similarity achieved by the estimates within maps of variable density.
The results demonstrate that the presence of edges, i.e. strong image derivatives,
as in the striped image, lead to higher error on the descriptor approximation,
suggesting that the DM may effectively hold discontinuities or have a twisted
shape that the estimation method is unable to approximate for sparse maps. In
turn, descriptors from images with an uniform gradient (a smoothly distributed
gradient across the image) are more accurately approximated. Reinforcing this,
the cropped gradient (an image with even smaller derivatives) seems to allow
an even more precise descriptor approximation. This experiment proves that the
image derivatives have impact on the descriptor variation, although it does not
seem to be particularly large, considering the range of similarity values. In con-
clusion, the appearance of the image influences the DM shape and, consequently,
the approximation accuracy.

3.3 Use Case: Image Derivative-Based Indicator for Appearance
Maps

This experiment builds upon the previous proof of concept, proposing the mean
derivative module metric G in (2) as an indicator of the amount of changes
in the image. Knowing this allows us to build an appearance map as a grid with
variable density, being sparser in areas with small changes and denser otherwise.
Again, we have employed the VGG descriptor and the GP regression method
within the virtual scene from Sect. 3.1 depicting the striped image (Fig. 4a).



116 A. Jaenal et al.

Fig. 5. Comparison between the descriptor approximation for the virtual scene of
Fig. 4d depicting the three images of Fig. 4, compared with respect to the density
of the map.

Specifically, the experiment followed this procedure: i) first, we have started
from the most dense grid, with samples 0.25 m apart (see Fig. 6a), and grouped
them in cells (samples forming a square shape); ii) then, we have computed the
mean G of the cell vertices to estimate which of them could be approximated
with a more sparse sampling; iii) if the mean G value of four adjacent cells falls
below an experimentally chosen threshold, they are merged becoming a 0.5 m-
sized cell. This process is iteratively repeated, merging adjacent cells until one
of them surpasses the experimental threshold.

The first row of Fig. 6 depicts the spatial distribution of the cosine similarity
for maps with different fixed densities: 0.25 m (Fig. 6a), 0.5 m (Fig. 6b), and 1 m
(Fig. 6c). The number of samples and the mean similarity value for each map
are shown on top. The second row (6d and 6e) presents the spatial distribution
of the cosine similarity for two maps obtained after the described merging pro-
cess, using different G thresholds to achieve maps with different accuracies. The
resulting maps achieve comparable precision to the regular grids while reduc-
ing the number of samples to ∼80% of the original, suppressing map samples
which do no provide valuable information for the descriptor approximation. The
samples are distributed with higher density at those regions further away from
the virtual wall, since their FoV captures more stripes, hence having higher G.
Evidently, the presented results stem from a proof of concept, so it is worth
noting that the metric G should be employed in combination with other indi-
cators capable of estimating other parameters that affect the appearance of the
image in more complex environment, as the depth of the scene or the lighting
conditions. In any case, we believe that these results provide insight about the
structure of the DM, and will lead to further research on map building for AbL.
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Fig. 6. Spatial distribution of the descriptor approximation accuracy for maps with
fixed and variable densities. The wall is situated on the x-axis and the camera is
pointing towards it.

4 Conclusion

This paper has analyzed how a Descriptor Manifold can be approximated by
an appearance map (in the form of pose-descriptor pairs) that is optimal for
Appearance-based Localization. Concretely, we have investigated three param-
eters for such maps: their sampling density, the method employed for interpo-
lating between samples, and the image content. Thus, we have first performed
an experimental evaluation for three common estimation methods: NN, bilineal
interpolation and GP-based regression, in maps with different density. For that,
we have measured the accuracy of a set of estimated descriptors at unmapped
camera poses, revealing that the bilineal and the GP-based methods perform sim-
ilarly but with the GP also providing a distribution over the descriptor space,
which is particularly suitable for probabilistic localization filters. Regarding the
image content, we first performed a proof of concept to validate the idea that the
DM shape (and hence the interpolation accuracy) depends on the image content,
with smooth areas when the images do not change significantly and twisted ones
otherwise. Based on this, we have proposed an image-based metric grounded on
its derivative as an indicator of the image variation. Then, we have applied it in
a use case to build an appearance map as a grid with variable density that sig-
nificantly reduces the number of samples needed to keep the same accuracy level
than a regular grid. These results will be used in further research for mapping
applications in order to design optimal maps to accurately perform AbL.
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