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Abstract. Segmentation of cardiac magnetic resonance images (cMRI) remains
a challenging task in the field of scientific research due to its significance in the
medical assessment of cardiovascular diseases. Ensuring accurate segmentation
of the heart structures, mainly the left ventricle cavity, serves to extract important
information and has a major impact on the quantitative analysis of the heart func-
tion which helps to conduct the proper diagnosis of doctors. The present paper
introduces a simple and efficient U-shaped convolutional neural network aiming
to accurately segment the LV from cMR images. We applied our architecture for
Left Ventricle (LV) segmentation on cardiac MR images (cMRI), from the Auto-
matedCardiacDiagnosisChallenge (ACDC).Obtained results are promising. This
simple model based on CNN has significantly fewer parameters rendering it less
demanding in terms of computation. Nevertheless, it has provided accurate seg-
mentation. The tested method achieved LV Dice scores of 0.958 at end-systolic
time (ES) and 0.979 at end-diastolic time (ED), which yields a mean Dice score
of 0.968 on the ACDC dataset.
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1 Introduction

Cardiovascular diseases represent the leading cause of death according to the World
Health Organization. Therefore, they have become a major healthcare issue over past
years worldwide. There are different cardiac imaging techniques for viewing the heart
structures that help in making the right diagnosis of these diseases. One of them is
Cardiovascular magnetic resonance imaging (cMRI) which represents the current gold
standard reference for assessing cardiac function [1]. Indeed, the accurate segmentation
of the left ventricle (LV) from these cardiac images is required to retrieve information
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on ventricular function, such as left ventricular end-systolic volume (LVESV), the left
ventricle end-diastolic volume (LVEDV) and the left ventricle ejection fraction (LVEF)
[2]. Consequently, major advances have been made in the field of cardiac image seg-
mentation aiming to evaluate the heart function and establish the right diagnosis and
treatment of cardiac diseases.

Before the advent of deep learning, a wealth of techniques had been developed to
segment and evaluate the heart function from cardiovascular images including level
sets, dynamic programming, active contour, graph cuts, and atlas registration [1, 3,
4]. These early approaches required significant manual intervention by the expert in
order to achieve their goals. These first techniques may show promising results on
limited datasets, but they generally tend to underperform on large variable datasets.
In contrast, deep learning based approaches have proven to be able to overcome these
limitations by automatically discovering intricate features from data for object detection
and segmentation.

Convolutional neural networks (CNN), which were first introduce by Yann LeCun
et al. in 1998 [5], are currently the most widely used techniques in the field of biomedical
image classification and segmentation. U-Net [6], which is one of the most remarkable
extensions of FCN [7] and therefore of CNN, has proven to be a gold-standard in the
field of biomedical segmentation while achieving the highest accuracy [8]. U-Net has
received much attention with the field of cardiovascular analysis in the last two years
and therefore, several U-shaped architectures have been proposed in the literature for
fully automated segmentation of the LV from cine MRI [9–14].

In this paper, we propose a fully automatic deep learning approach for left ventricle
LV segmentation in cineMRI. Our proposed method is a U-Net-based architecture using
Dense connections [15] in order to achieve fewer parameters while ensuring higher accu-
racy. This paper is organized as follows. A brief overview of related works is introduced
in the next section. Then, the proposedmethod is presented in Sect. 3. Next, experimental
results are provided in Sect. 4. And finally the conclusion and future work are drawn.

2 Related Works

U-Net [6], such asSegNet [16] andPspNet [17], is an encoder-decoder-based architecture
that uses skip connections between encoder and decoder blocks. This skip connection
consists of concatenating the high-level feature maps from the decoder and the low-level
feature maps from the corresponding encoder which have the same spatial resolution
(see Fig. 1). In the original U-Net, the encoder is down-sampled in total of 4 times,
symmetrically to the decoder which is also up-sampled 4 times. This symmetry enables
the model to restore the same size as the input image.

WenjunYan et al. [12] proposed a U-net-based method (OF-net) that integrates tem-
poral information from cine MRI into LV segmentation. They incorporated an optical
flow (OF)field to capture the cardiacmotion towards adding temporal dimension. For this
to happen, they used Res-Blocks [18] incrementing, thereby, the number of parameters
and so the execution time.

Isensee et al. [11] used a 3D-U-Net inspired architectures for the segmentation of
the left and the right ventricles at the end-systolic and the end diastolic time. Zhang
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Fig. 1. An illustration of the original U-Net architecture towards LVC segmentation

et al. [19] also combined U-net with SE-Net model in order to reweight the channels of
the feature map by giving higher weight to the relevant information and lower weight
to the disabled one. Many approaches regarding U-Net have led to good results in LV
segmentation from cMR images.

3 Proposed Method

3.1 Dataset

The dataset we adopted in this work is that of The Automated Cardiac Diagnosis Chal-
lenge (ACDC). It contains short-axis cMR images alongwith their corresponding ground
truth images of Left Ventricle LV, LV myocardium, and Right Ventricle RV for 100
patients. TheACDCdataset results from clinical examinations acquired at the University
Hospital of Dijon France [20].

The100 patients of the ACDC dataset constitute a total number of 1902 labeled
images at both end-systole (ES) and end-diastole (ED) time. In order to enable the
evaluation of our method, we divided the labeled data into 80% and 20% which makes
1700 images for the training and 202 for the test. The giving dataset was divided into
five subgroups according to the patient’s pathology: 20 normal patients, 20 patients with
previous myocardial infarction, 20 patients with dilated cardiomyopathy, 20 patients
with hypertrophic cardiomyopathy and 20 patients with abnormal right ventricle. The
training-test split we have just proposed maintains this subdivision, which means that
the 202 test images are composed of four patients from each of these five subgroups.
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It is to mention that the standard cMRI acquisition provides 8 to 12 slices from base to
apex for each patient.

3.2 Preprocessing

The dataset given by the ACDC challenge has a wide variety of dimensions in the
short-axis plane, ranging from 154 × 224 to 428 × 512. Therefore, we resized all the
dataset to 256 × 224. In addition, the images present a wide range of pixel intensities,
which might affect the performance of the segmentation model. To address this issue,
we subtracted the mean value from each pixel and divided the result by the standard
deviation thus ensuring the data normalization. In addition, as we are interested on
segmenting the left ventricle, we applied a simple threshold on the ground truth images
to keep only the LV cavity. We finally applied CLAHE [21] Contrast Limited Adaptive
HistogramEqualization to enhance the local contrast of the images, which leads to better
computational analysis.

3.3 Architecture

In this study we aim to achieve higher accuracy while considerably reducing the number
of trainable parameters. For this to happen, we propose a U-shaped model using Dense
Blocks for LV segmentation from cMR images. Our architecture is shown in the figure
below (Fig. 2).

Fig. 2. Illustration of the proposed Dense U-Net

As with U-Net, our architecture is down-sampled then up-sampled symmetrically 4
times. In the first level, the input images are fed into two successive 3 × 3 unpadded
convolutions using Exponential Linear Unit (ELU) and followed by a 2× 2max pooling
operation with stride 2 for down-sampling.
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The next levels are composed of Dense Blocks followed by Transition layers (same
depth) that are down-sampled in the contraction path and up-sampled in the symmetric
expandingpath.EachDenseBlock consists of four consecutive convolution layers having
the same resolution, each followedbybatchnormalization (BN),Exponential LinearUnit
(ELU) and a dropout layer of 0.2. The output of each convolution in the dense block
is concatenated with the input of the following convolutions. The structure of a Dense
Block followed by a Transition-Down is illustrated in the figure below (Fig. 3).

Fig. 3. Illustration of the Dense Block and the Transition-Down

In the contracting path, the filter size of the first dense block starts with 16 and is
been duplicated after each down-sampling operation, whilst ensuring symmetry with the
expanding path.

Eventually, to obtain the final binary segmentation, the resulting feature maps from
the last 3 × 3 convolution layer of the proposed architecture, are agglomerated and
averaged by employing a 1 × 1 convolution with a sigmoid activation to predict the
probability of each output class. In our case, the number of classes is 1, indicating the
LV (left Ventricle).

3.4 Post-processing

The resulting masks are resized to their initial dimensions. And no further post-
processing is applied to the resulting segmented images.

3.5 Evaluation Metrics

Several metrics were used in order to evaluate the performance of our method, including
accuracy, sensitivity, specificity and dice coefficient. To obtain these metrics, we first
need to go through the computation of true Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN).

Accuracy = (TN + TP)/(TN + TP + FN + FP) (1)

Sensitivity = TP/(TP + FN ) (2)

Specificity = TN/(TN + FP) (3)

Dice coefficient = 2TP/(2TP + FP + FN ) (4)
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4 Experiments and Results

The model was trained using binary cross-entropy as loss function and Adam [22]
optimizer with its default parameters, starting with its default learning rate which is set
to 0.001. We adopted the “reduce learning rate on the plateau” strategy with the aim of
automatically reducing the learning rate. The learning rate was reduced by a constant
factor of 0.1 when the loss metric has reached a plateau on the validation set, which
varied the learning rate from 0.001 to 1e − 6 over 32 epochs. For model evaluation, we
have split the training data into validation and train and tracked binary cross entropy loss
and Dice coefficient over the iterations (see Fig. 4). The percentage of the data that was
held over validation is 10%.

Fig. 4. Visualization of the proposed model history with training and validation

Table 1 presents the evaluation results of the two models (U-Net and the proposed
U-shaped densely connected Convolutions) on the previously described test data (202
test images). Both Models were trained using the same preprocessing, the same post-
processing and the same hyper parameters including loss function, batch size, learning
rate and number of epochs. The U-Net architecture used in this comparison is detailed
in the first figure (see Fig. 1).

Table 1. Comparison of LV segmentation performance in terms of Accuracy, Sensitivity,
Specificity and Dice coefficient at the end-systolic (ES) and the end-diastolic (ED) time

Method Accuracy Sensitivity Specificity Dice Parameters

ES ED ES ED ES ED ES ED

U-Net 0.98 0.98 0.73 0.81 0.97 0.98 0.79 0.81 31M

Proposed method 0.99 0.99 0.97 0.98 0.99 0.99 0.95 0.97 3M

The large margin of difference between the proposed networks and U-Net could be
explained by the use of dense blocks in the lower levels ofU-Netwhich enables extracting
abundant local features via densely connected convolutional layers. This has played a
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crucial role in improving the quality of the segmentation especially when dealing with
basal and apical slices (see Fig. 5), in cMRI images, that are found to perform poorly
with U-Net and other existing methods in the literature. Basal and apical slices have
always been challenging in the literature when it comes to left ventricular segmentation.
It is worth mentioning that this improvement is achieved despite a reduced number of
trainable parameters that is divided by 10 when compared with with U-Net.

As it may be observed, the number of trainable parameters has decreased from 31
million parameters with U-Net to only 3 million parameters with the proposed method.
Our model is less computationally intensive and therefore helps to gain in terms of time.

Image GT U-Net Proposed Net GT vs U-Net GT vs Proposed Net

Fig. 5. Qualitative segmentation results of U-Net and the proposed model on the ACDC dataset.
The experimental results show that the proposed Dense-U-shaped-Net yields better segmentation
masks than the original U-Net especially when dealing with basal and apical slices. The ground
truth (GT) is delined in green color with both comparisons.

Even thoughwe established our test on 20%of theACDC training data,we conducted
a comparison with existing state-of-the-art methods set for the left ventricle (LV). Table
2 shows that our approach outperforms other existing methods.
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Table 2. Comparison of LV segmentation performance of the proposed method with the state of
the art in terms of Dice coefficient at the end-systolic (ES) and the end-diastolic (ED) time

Method Dice

ES ED

Isensee et al. [11] 0.93 0.96

Simantiris et al. [14] 0.92 0.96

Proposed Method 0.95 0.97

5 Conclusion

In this paper, a simple efficient method for segmenting LV cMR images is proposed.
Experimental results on the ACDC dataset show that our U-shaped method with densely
connected Convolutions has proven its ability to enhance the performance of cardiac
MRI segmentation compared to other existing methods. The use of dense blocks enables
the model extracting abundant features, which led to achieve impressive performance.
This improvement is provided with reduced number of trainable parameters compared
with other existing approaches that make it less time consuming. The obtained results
demonstrated the effectiveness of our proposed method in performing precise LV seg-
mentation, which may help establishing an early diagnosis of heart diseases. Further
studies could include combining dilated convolutions and dense connections to learn
features at different scales.
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