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Abstract. In the field of robotic assembly, deep reinforcement learning
(DRL) has made a great stride in the simulated performance and holds
high promise to solve complex robotic manipulation tasks. However, a
huge number of efforts are still needed before RL algorithms could be
implemented in the real-world tasks directly due to the risky but insuffi-
cient interactions. Additionally, there is still a lack of analyzation in the
sample-efficiency, stability and generalization ability of RL algorithms.
As a result, Sim2Real, analyzing RL algorithms in simulation and then
implementing in real-world tasks, has become a promising solution. Peg-
in-hole assembly is one of the fundamental forms of the robotic assem-
bly in industrial manufacturing. In the paper, we set up a simulation
platform with physical contact models of both single and multiple peg
assembly configurations; we then provide the commonly used RL algo-
rithms with an empirical study of the sample-efficiency, stability and
generalization, ability; we further propose a new algorithm framework
of Actor-Average-Critic (AAC) for better stability and sample-efficiency
performance. Besides, we also analyze the existing reinforcement learning
with hierarchical structure (HRL) and demonstrate its better generaliza-
tion ability into new assembly tasks.
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1 Introduction

Peg-in-hole assembly is a fundamental form of industrial assembly tasks. The
existing research has achieved a certain level through the conventional controllers
e.g., PD and impedance controllers, however, such acquired performance largely
depends on contact state recognition. It is still difficult to address the multi-peg
assembly problem via conventional controllers due to the complicated contact
model [7]. Additionally, modern manufacturing requires not only quantity, but
also quality and efficiency which introduce the need for greater stability and
generalization ability against environmental uncertainties.
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Reinforcement learning (RL) holds the promise to learn assembly skills with-
out contact state recognition [8]. Particularly, deep reinforcement learning (DRL)
combined with learning representation skills, has solved a large range of complex
robotic manipulation tasks [9]. DRL techniques have been extensively explored to
learn the competitive assembly skills [5], however, the sample efficiency, stability,
and generalization ability are less discussed. The real-world peg-in-hole assembly
with small clearance requires both vision information and accurate force/torque
feedback, which guides the assembly movement and avoid failure caused by large
contact force. To our best knowledge, there are less existing work on the simula-
tion platform for peg-in-hole assembly tasks basing on force feedback. The first
motivation of this paper is to set up a peg-in-hole assembly simulator with phys-
ical contact prediction ability. With the contact force detected and read from the
force sensor in the simulation platform, the sample-efficiency, stability and gener-
alization ability of the current RL algorithms can then be analyzed.

The sample-efficiency is an essential issue for real-world applications as inter-
actions with real-world environments are at great cost. Compared with the on-
policy RL that requires new samples for every training step, off-policy RL can
reuse the past experience and reduce the sample complexity [10]. Deep Deter-
ministic Policy Gradient (DDPG) is one of the popular off-policy RL algorithms
to learn a high-dimensional deterministic policy. Therefore, many DDPG-like
algorithms have been put forward and researched to handle the peg-in-hole
assembly tasks [2,15]. Exploration is another essential topic for RL algorithms
to reduce the sample complexity and search for the optimal skills, therefore,
some approaches were proposed to guide the efficient exploration basing on
conventional controllers or human demonstration [15]. Recently, model-based
RL assisted with an estimated dynamic environment model is showing a great
promise to reduce the need for interactions [9]. Guided policy search (GPS) has
shown a competitive performance to learn manipulation skills with the estimated
local dynamic model [9].

DRL implemented basing on deep neural networks has achieved great suc-
cess to solve complex control tasks [9]. However, most of the RL algorithms are
sensitive to the selection of hyper parameters [10]. Compared with supervised
learning methods, RL training is often unstable without the fixed targets, which
is not allowed for real-world tasks. Some practical training techniques have been
studied to improve the stability e.g., mini-batch training [10], delayed target
network to address the over-estimation issues in function approximation [14]. To
address the bad actions brought by random explorations, the residual RL learns
advanced skills basing on the pre-trained policy or conventional controllers [6].
Another attractive direction is to reformulate the action space [13], meaning
that the action will be constrained by a safe and efficient scheme. Three action
spaces(PD control, inverse dynamic, and impedance control) to solve the com-
monly used robotic tasks are compared and discussed [13].

DRL holds the promise to learn the skills with better robustness and gen-
eralization. Random initial positions, peg-hole clearance, and sizes of pegs are
often considered as the environmental variables to demonstrate the robustness
and generalization ability of DRL methods [2,15]. The adaptability of learned
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Fig. 1. Structure of peg-in-hole assembly. (a) Single (b) Dual (c) Triple (d) F/T sensor.

assembly skills to the new tasks with different shapes of pegs have been dis-
cussed [2]. To improve the task generalization and environment adaptation abil-
ity, a deep model fusion framework is proposed to fuse the previously learned
knowledge from different assembly environments. Currently, the complex control
tasks are sometimes structured hierarchically, hierarchical reinforcement learn-
ing (HRL) aims to learn a hierarchical policy with some basic skills, which can
be easily transferred to new tasks [4]. However, up to now, the generalization for
peg-in-hole assembly has not been discussed sufficiently.

The motivation of this paper is to promote the research for solving peg-in-
hole assembly tasks by DRL and provide a guidance to develop the practical RL
algorithm. The contributions are concluded as:

1. We set up a force-based simulation platform on Webots to train and test the
RL agents for peg-in-hole assembly tasks in different task configurations.

2. We propose a data-efficient actor-average-critic (AAC) RL framework with
both better training stability and higher sample-efficiency. We then verify
the performance of the proposed algorithm framework and compare it with
the methods from existing literature in different peg-in-hole assembly situa-
tions (with different clearance, friction, and the number of pegs), through our
simulation platform.

3. We evaluate the transfer performance of the assembly skills learned on unseen
assembly tasks with different numbers of pegs. We demonstrate that the
assembly skills learned by HRL could be transferred to different assembly
situations (with different number of pegs) easier than the existing methods.

2 Peg-in-Hole Assembly Platform

The peg-in-hole assembly tasks (including single, dual and triple peg situations)
are set up in Webots simulator [1], as shown in Fig. 1(a)–(c).

2.1 Hardware

Robot: There is a variety of manipulators to choose from in Webots e.g., UR,
PUMA, ABB IRB, etc. The robots can also be built given the Unified Robot
Description Format (URDF). In this paper, ABB IRB 4600, a 6-DOF manip-
ulator is selected to implement the peg-in-hole assembly tasks. All the motors
of the robot in Webots are implemented with an underlying PID controller, the
robot is controlled by giving the velocity and target angle of each motor.
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Fig. 2. F/T sensor signals (a) Different peg-hole clearance. (b) Different friction.

F/T Sensor: There is no available multi-axis force sensor in Webots, however,
a motor can output force feedback to indicate the required force to hold its
position. We built a chain of joints at a single point of the robot end-effector
and apply motor behaviour, as shown in Fig. 1(d), which includes three rotational
motors and three linear motors.

This chain of joints will serve as a 6-axis F/T sensor to detect the contact
forces. However, due to the properties of the simulation engine, this error could
be integrated to a noticeable level, which we consider as a uncontrollable random
noise. To test the performance of the F/T sensor, a PD controller is applied to
control the single peg-in-hole assembly in different situations. The force signals
from F/T sensor are plotted as shown in Fig. 2.

Components: Three different numbers of cylindrical peg-hole components (sin-
gle, dual, and triple) are set up. We assume that each peg-hole pair has the same
configuration for dual and triple peg-in-hole assembly tasks. We added chamfers
to the hole entrance so that we can focus on the insertion process instead of wor-
rying about an extra search stage to align the peg. Additionally, the Coulomb
friction coefficients and the clearance of peg-hole pairs can be changed to sim-
ulate different peg-in-hole assembly tasks. The parameters and their adjustable
range are listed in Table 1.

Table 1. Adjustable parameters and properties

Name Adjustable region

Number of peg-hole pairs 1,2,3

Coulomb friction coefficients 0 - inf

Hole size 30 mm

Peg-hole clearance 0.5 mm–1.5 mm

Hole position noise range [−1, 1]mm

2.2 Software

The Webots platform is compatible with the system including Windows, Linux,
and Mac OS. The connection between the simulator and the RL algorithms
is implemented by the Python API, which reads the sensor feedback from the
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simulator as RL input, and outputs the control commands to the robot. Dif-
ferent assembly tasks can be set up via the Webots-Python interface given the
parameters in Table 1.

3 RL Algorithms Analysis

3.1 Problem Statement

RL can solve all phases integrally based on the force feedback similar as “feeling”
of human beings, which formulates the assembly process as the Markov Decision
Process(MDPs). At each time step t, according to the observed state st, the
robot select the “optimal” action at based on the policy π(at|st). The robot will
receive the reward signals rt from environment to evaluate the state-action pair,
and then the environment transit to the next state st+1 = p(st+1|at, st). The
policy is updated through maximizing the expected cumulative reward, as:

Eat∼π,st+1∼p(·)

[
T−1∑
t=0

γtrt+1(st,at)

]
(1)

where γ denotes the discount factor. The action value function Qπ(s,a) =
EΩ[Gt|st = s,at = a] is defined to estimate the expected cumulative reward
given the trajectory Ω, Gt =

∑T−1
i=t γi−tri+1(si,ai) denotes the cumulative

reward of one episode from t = 0 to T . The objective can be rewritten as:

J (π) = E(s,a)∼Pπ
[Qπ(s,a)] (2)

where Pπ denotes the state-action marginals of the trajectory distribution
induced by a policy π.

As shown in Fig. 1, the state for all the peg-in-hole assembly tasks often
consists of the pose(position and orientation) of pegs and the force(force and
moment) read from the F/T sensor, therefore, the state denotes as:

st = [P x
t , P y

t , P z
t︸ ︷︷ ︸

position(mm)

, Ox
t , Oy

t , Oz
t︸ ︷︷ ︸

orientation

(◦), F x
t , F y

t , F z
t︸ ︷︷ ︸

force(N)

, T x
t , T y

t , T z
t︸ ︷︷ ︸

torque(Nm)

] (3)

where the subscripts x, y and z denote the axes of the robot base coordinate.
The basic action space at is denoted as follows:

at = [ΔP x
t ,ΔP y

t ,ΔP z
t ,ΔOx

t ,ΔOy
t ,ΔOz

t ] ∈ R
6 (4)

which are utilized to control the pose of the pegs along the corresponding axis
in the robot base coordinate.

A reward function is defined to decrease the assembly steps and avoid the
unsafe contact force, as

rt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.1, done = False and safe = True

1 − N

Nmax
, done = True and safe = True

−1 +
Dt

De
, safe = False

(5)
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where Nmax denotes the maximum number of steps in one episode; N ∈
[0, Nmax) denotes the final number of steps. To encourage fewer number of
assembly steps, the robot will receive −0.1 every step. Additionally, the penalty
is designed according to the force signals, the assembly will be interrupted with
reward −1 once the value of forces exceeding the setting boundary. De denotes
the desired insertion depth, Dt denotes the final insertion depth when the assem-
bly is not completed due to the forces exceeds the safe boundary.

3.2 Sample-Efficiency

In practice, two directions has achieved success in improving the sample-
efficiency.

Residual RL for Control: The robotic assembly tasks can be divided into two
parts. The first part is robot-related, which can be solved through the typical
controller. And the another part is environment-related, involving the dynamics
that can be addressed by RL algorithms [6]. In residual RL, the reward function
is often formulated as two parts:

rt = f(sr,t) + g(se,t) (6)

where sr,t is the robot-related state and f(sr,t) is the reward to encourage the
robot to approach the target position. g(se,t) is the environment-related state
in terms of different friction and contact model due to different geometries of
assembly components.

Accordingly, the control command also consists of two parts:

ut = πC(sr,t) + πθ(se,t) (7)

where πC(sr,t) is the hand-designed conventional controller without consid-
ering the dynamics of environments. πθ(se,t) is the residual DRL policy to
compensate the dynamics of environment and supplement the flexibility of
the conventional controller. For peg-in-hole assembly tasks, any RL algo-
rithms (DDPG, TD3, SAC) can be implemented to learn the residual RL policy.

Action Space Reformulation: Action space reformulation can be considered
as introducing the prior of policy structure. For different hardware and tasks
requirements. PD controller given the parameters Kp and Kd, is often applied
to feed the control errors without any assumption about the system, as:

ut = Kp ◦ et + Kd ◦ ėt

et = qd − qt, ėt = q̇d − q̇t

(8)

where ◦ denotes the Hadamard product; ut denotes the control torques in joint-
space, therefore, the new action space includes the desired joint angle qd and
the desired joint velocity q̇d.

The contact model of peg-in-hole assembly tasks for impedance controller is
often formulated in the task-space, as:

Md(ẍt − ẍe) + Bd(ẋt − ẋe) + Kd(xt − xe) = F (9)
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where Md, Bd and Kd denotes the desired inertia, damping and stiffness matrix
in task-space, respectively. For position-control robot, the control command is
position offset in task-space. For torque-control robot, the control command
u is actuated torque on joints to compensate the dynamics from robot and
feedforward external force.

Consequently, instead of controlling the {qt, q̇t,xt, ẋt, τ} directly, the
reformulated action space often consist of the desired reference value
{qd, q̇d,xd, ẋd,Fd} and the corresponding parameters {Kp,Kd}.

3.3 Stability

The RL stability can be achieved through reducing the over estimation and
providing the stable target value [3,14].

Over Estimation: Over estimation in function approximation is a main factor
that introduces instability, which has been addressed in all actor-critic algo-
rithms (e.g., TD3, SAC) [3] to reduce the variance and improve the final perfor-
mance. For actor-critic architecture, TD3 and DDPG have the same objective
via minimizing the loss:

1/2 (rt+1 + γQ(st+1, μ(st+1)|ω) − Q(st,at|ω))2 (10)

where Q(·|ω) is the action value function estimated by a neural network given
the state-action pair. at+1 ∼ μ(st+1|θ) : S → A denotes the deterministic
policy estimated by a neural network. The past experience (st,at, rt+1, st+1)
is sampled from replay buffer M. TD3 implements two independent network
(Q1, Q2) to estimate the action value function, the target value in (10) is cor-
rected as rt+1 +γ mini=1,2 Qi(st+1, μ(st+1|θ)|ωi). Afterwards, the deterministic
policy is updated based on the gradient of action value function with respect to
the parameters of μ.

Averaged-Critic: The target network is commonly used trick to provide a stable
objective and speed the convergence [10]. The parameters θ̄ target network is slow-
updating from the estimated network parameters θ through the scheme θ̄ ← ζθθ+
(1 − ζθ)θ̄. Another approach to reduce the variance of target approximation error
is to replace the target network with the average over the previous learned action
value estimation. In this paper, we extend this idea to the continuous control RL
algorithms to improve the stability and final performance. The target value in (10)
is replaced by the average over the past K estimated Q as:

rt+1 + γ
1
K

K∑
i=0

Qi(st+1, μ(st+1|θ̄)|ωi) (11)

where Qi(st+1, μ(st+1|θ̄)|ωi) represents the past ith estimated action-value.

3.4 Generalization Improvement

Two important directions are often adopted to improve the generalization of
RL algorithms. Dynamic randomized: To improve the robustness to environ-
mental noise, randomized dynamic was utilized to train the RL algorithms [12],



400 Y. Deng et al.

the dynamics parameters β are sampled from ρβ for each episode as st+1 =
p(st+1|at, st, β). The dynamics parameters are as a part of the input to estimate
the action value function, which can reduce the variance of the policy gradient via
compensating the environmental dynamics.

HRL: Recently, HRL is researched to solve the complex manipulation tasks
through learning sub-policies. These learned sub-policies may represents the
basic skills to solve the complex tasks, therefore, some HRL work has achieved
better performance through transferring the sub-policies [4,11]. Compared to the
objective (2), the hierarchical policy is derived with a discrete variable o ∈ O as
πh(at|st) =

∑
o∈O πO(o|st)πo(at|st), πo(at|st) denotes the lower-level policy to

generate the action, πO(o|st) denotes the upper-level policy to select the lower-
level policy given the state. The hierarchical policy πh(at|st) can be learned
given the objective (2) based on the policy gradient theorem and additional
constraints.

4 Experiment

We implement the proposed actor-average-critic (AAC) with different average
length (K = 2, 3, 5, 10), the DDPG [10], TD3 [3] and a HRL algorithm (adIn-
foHRL) [11] on three different assembly tasks with different clearance and friction
setting. For the equal comparison, the hyper-parameters of AAC are selected as
TD3, and the hyper-parameters of other algorithms are selected as the origi-
nal papers, all the algorithms are implemented with action space reformulation
in (8).

4.1 Performance: Sample-Efficiency and Stability

As shown in Figs. 3–5, all the algorithms are trained for 105 steps with five seeds
and cumulative reward is tested every 103 steps. Darker lines represents average
reward over five seeds. Shaded region shows the standard deviation of average
reward. The assembly task becomes more complex from single to triple, DDPG
and TD3 cannot perform the assembly tasks effectively, obviously, the proposed
AAC with different average length can achieve both the better sample efficiency
and stability performance in most of the above assembly tasks.

4.2 Performance: Generalization

To demonstrate the generalization ability, we implement the HRL with different
options (O = 2, 4, 6) in dual and triple peg-in-hole assembly tasks. As shown in
Fig. 6(a) and 7(a), the HRL with four options can achieve largely better sample
efficiency and stability performance than TD3 and DDPG. To demonstrate there
kinds of transfer performance, the learned assembly policy is loaded, then tested
or re-trained again in a new assembly tasks (Figs. 3–5).
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Fig. 3. Single peg-in-hole assembly. (a) Friction-0.5-clearance-1 mm. (b) Friction-0.5-
clearance-0.5 mm. (c) Friction-1-clearance-1 mm.

Fig. 4. Dual peg-in-hole assembly. (a) Friction-0.5-clearance-1 mm. (b) Friction-0.5-
clearance-0.5 mm. (c) Friction-1-clearance-1 mm.

Fig. 5. Triple peg-in-hole assembly. (a) Friction-0.5-clearance-1 mm. (b) Friction-0.5-
clearance-0.5 mm. (c) Friction-1-clearance-1 mm.

Fig. 6. Dual peg-in-hole assembly. (a) Friction-0.5-clearance-1 mm. (b) Friction-0.5-
clearance-0.5 mm. (c) Friction-1-clearance-1 mm.

Fig. 7. Triple peg-in-hole assembly. (a) Friction-0.5-clearance-1 mm. (b) Friction-0.5-
clearance-0.5 mm. (c) Friction-1-clearance-1 mm.



402 Y. Deng et al.

Fig. 8. Different assembly tasks transfer performance. (a) Single-to-dual. (b) Dual-to-
triple. (c) Single-to-triple.

Different Clearance: The learned assembly policies in tasks (friction-0.5-
clearance-1 mm) are loaded and then tested in new tasks (friction-0.5-clearance-
0.5 mm) with smaller clearance for 5×104 steps. Additionally, the learned assem-
bly policies are also re-trained in new tasks for 5×104 steps. As shown in Fig. 6(b)
and 7(b), HRL with four options has achieved better sample-efficiency and sta-
bility performance in new assembly tasks.

Different Friction: Likewise, the learned assembly policies in tasks (friction-
0.5-clearance-1mm) are loaded and tested in new tasks (friction-1-clearance-
1mm) with big friction for 5 × 104 steps. Additionally, the learned assembly
policies are also re-trained in new tasks for 5 × 104 steps. As shown in Fig. 6(c)
and 7(c), HRL with four options also has achieved better sample-efficiency and
stability performance in new tasks, especially in single and dual peg-in-hole
assembly tasks.

Different Number of Pegs: The assembly tasks with different number of pegs
have different contact model. The learned assembly policy in single peg-in-hole
assembly task (friction-0.5-clearance-1 mm) is loaded, then tested and re-trained
in dual (see Fig. 8(a)) and triple (see Fig. 8(b)) peg-in-hole assembly tasks with
same the clearance and friction settings. Secondly, the learned assembly policy
in dual peg-in-hole assembly task (friction-0.5-clearance-1 mm) is loaded, then
tested and re-trained in triple peg-in-hole assembly task (friction-0.5-clearance-
1 mm) (see Fig. 8(c)). Obviously, the assembly skills learned by HRL have better
generalization ability than TD3 and DDPG, which can accelerate the assembly
policy learning in new tasks.

5 Conclusion and Discussion

The sample-efficiency, stability, and generalization of RL techniques on peg-in-
hole assembly tasks are analyzed and concluded, we propose the AAC framework
to improve the sample-efficiency and stability performance, the effectiveness of
AAC is demonstrated in three kinds of assembly tasks with 3 different settings,
respectively. We compare the generalization of our method and two commonly
used RL algorithms in different assembly tasks with three different friction and
clearance settings. Consequently, the assembly skills learned by HRL can achieve
better generalization performance than commonly used TD3 and DDPG. This
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lead us to believe that our algorithm have high potential to transfer a policy
learned in simulation to real-world efficiently, which will be our future work.
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