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Abstract. Guaranteed-cost formation problem for linear multi-agent
systems with switching topologies is investigated. The guaranteed cost
formation problem is transformed into a guaranteed cost control problem
of an reduced-order switched systems equivalently by a linear transfor-
mation. Then, a necessary and sufficient condition for guaranteed cost
formation is proposed. Moreover, based on an average dwell time scheme,
a sufficient condition for the guaranteed cost formation of linear multi-
agent system with switching topologies are presented in terms of linear
matrix inequality techniques, and an upper bound of the guaranteed cost
function is given. Finally, a numerical example is given to demonstrate
the effectiveness of the theoretical results.
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1 Introduction

During the past decades, coordinations of multi-agent systems have received
more attention due to its wide applications in military and civilian areas. In the
multi-agent systems, formation control has already been a hotspot of research,
many researchers focused on formation control problems, such as leader-follower
[1], virtual structure [2], behavior-based [3], and consensus-based strategy [4],
which have been well developed and applied.

However, in many practical cases, the communication topologies of multi-
agent systems may be switching due to that the communication channel may
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fail or new channels may be created during movement. Time-varying formation
control problems for multi-agent systems with switching topologies are investi-
gate in [5] by using the common Lyapunov functional approach and algebraic
Riccati equation technique. As we know, the dynamic structures of agents and
the communication topology of multi-agent systems are key factors for forma-
tion. However, switching signals of communication topological are also one of the
important factors of formation feasible for multi-agent systems with switching
topologies. Average dwell time and dynamic dwell time scheme were presented to
investigate the formation problem of linear multi-agent systems with switching
communication topologies in [6,7].

Moreover, in practical applications, each agent of multi-agent systems may
have limited energy supply to perform certain tasks, such as sensing, communi-
cation, and movement as well as be required to achieve some formation perfor-
mance. Therefore, it is very important to realize a balance between formation
performance and energy consumption, which can usually be modeled as optimal
or suboptimal formation problems. To the best of our knowledge, there are few
papers addressing guaranteed cost formation problems for multi-agent systems
with switching topologies. Guaranteed cost formation control under fixed topol-
ogy for multi-agent systems were investigated in [8,9]. Energy-constraint out-
put formation problems for high-order linear multi-agent systems with switch-
ing topologies and the random communication silence were investigated in [10].
Guaranteed-cost consensus for multi-agent systems with switching topologies
were investigated, where the topology was described by an undirected graph
and the dwell time of each topology was assumed to be the same in [11–13].

Motivated by this, guaranteed cost formation control problem of high-order
continuous-time linear multi-agent systems with switching communication topol-
ogy is investigated in this paper. Compared with the literature mentioned above,
the main contribution of the current paper is that: i) the guaranteed cost for-
mation problem with switching topologies under directed graphs is considered;
ii) the average dwell time scheme is introduced into guaranteed cost formation
problem with switching topologies.

The rest of the paper is organized as follows. Section 2 shows the problem
description based on graph theory. A linear transformation approach is presented
in Sects. 3, sufficient condition for guaranteed-cost formation for linear multi-
agent systems under switching topologies is proposed, and the upper bound of
guaranteed cost are presented. Numerical results are presented in Sect. 5.

Notations: R
n and R

n×m are the n-dimension real column vector and the
set of n × m dimensional real matrices, respectively. Let 0 be zero number, zero
vectors, or zero matrices in appropriate dimension, respectively. Let 1N denote
an N -dimensional column vector with 1N = [1, 1, · · · , 1]T . Let PT and P−1

denote the transpose and the inverse matrix of P , respectively. PT = P > 0
stands for matrix P is symmetric and positive definite. The notation ∗ denotes
the symmetric terms of a symmetric matrix. IN represents the identity matrix of
order N, ⊗ is applied to denote the Kronecker product of matrices. λ(·) denotes
the eigenvalue of a matrix.
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2 Problem Description

Consider a linear multi-agent system (LMAS) consisting of N agents, where each
agent takes the following dynamics:

ẋi(t) = Axi(t) + Bui(t), i ∈ {1, · · · , N}, (1)

with

A =
[

0 In

0 0

]
∈ R

2n×2n, B =
[

0
In

]
∈ R

2n×m,

where (A,B) is stabilizable. xi(t) ∈ R
2n is the state variable of agent i, and

xi(t) = [sT
i (t), vT

i (t)]T , si(t) ∈ R
n and vi(t) ∈ R

n are the position state and the
velocity state of agent i respectively, ui(t) ∈ R

m is formation control protocol
of agent i, which depends on agents xi and xj . Agent j is called a neighbor of
agent i if there exists a communication channel from j to i, and I = {1, · · · , N}
is the index set of agents.

Let Ni(t) denote the set of the neighbors of the agent i at time t, and N (t) =
{Ni(t), i ∈ I} is a communication configuration of the system (1) at time t.
N (t) can be expressed by a dynamic digraph G = (V, E(t), W (t)). Vertex set
V = {1, 2, · · · , N} represents the group of agents. Time-varying edge set E(t) ⊆
V × V denotes the communication topology N (t), i.e., (j, i) ∈ E(t) ⇔ j ∈ Ni(t),
and W (t) = [wij ] ∈ R

N×N is a weighted adjacency matrix.
A formation, which described by a vector H = [hT

1 , hT
2 , · · · , hT

N ]T ∈ R
2nN ,

is a geometric pattern, it satisfies some predefined geometric constraints which
is required to achieve and maintain for the LMAS (1). H represents the desired
formation. In the current paper, the formation vector hi = [hT

is, h
T
iv]T is used

to express the relative position his and the relative velocity hiv of agent i
respectively. It is generally known that the velocity state vi(t) are synchronous
when multi-agent system (1) achieves the formation H, therefore, there is
H = [hT

1 , hT
2 , . . . , hT

N ]T with hi = [hT
si, 0]T ∈ R

2n,i = 1, · · · , N .
For a desired formation H, a formation protocol is considered as follows:

ui(t) = K
∑

j∈Ni(t)

wij(t)[(xj(t) − hj) − (xi(t) − hi)], t ≥ 0, (2)

where wij(t) represents the coupling strength with respect to a communication
channel from j to i at time t.

Definition 1. Denote H = [hT
1 , hT

2 , · · · , hT
N ]T ∈ R

2nN be a specified formation.
Linear multi-agent system(LMAS) (1) is said to achieve formation H, if there
exist vector-valued functions ξ(t) ∈ R

2n and a control protocol (2), such that
limt→∞ ‖xi(t) − hi‖ = ξ(t), i ∈ I, and the vector-valued function ξ(t) is called a
formation center function.

Assume the communication topology of system (1) is time-varying. Without
loss of generality, assume the communication topology of system (1) switches in
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a topology set, i.e.N (t) ∈ {N k, k ∈ M}, N k = {Nk
i , i = 1, · · · , N}, where

M = {1, · · · ,M} is an index set. Thus, the communication topology N (t)
is piecewise time-invariant as the system evolves. Define a switching signal
σ : [0,+∞) → M, which is a piecewise constant and right-continuous function
of time, to describe the switching rules among the communication topologies
{N k, k ∈ M}, i.e.,N (t) = N k ⇔ σ(t) = k. The switching signal specifies the
index of the actived topology {N k, k ∈ M} at time t.

Assume that the switching is finite in any finite time interval, and there are no
jumps in the state at the switching instants. Corresponding to the switching sig-
nal σ(t), we have the switching sequence {(t0, k0), (t1, k1), · · · , (tr, kr), · · · , | kr ∈
M, r = 0, 1, · · · }, which means that the communication topology of system (1)
is N kr when t ∈ [tr, tr+1).

Consider the following linear quadratic cost function

JC =
N∑

i=1

∫ ∞

0

{
N∑

j=1

wij(t)[(xj(t) − hj)

− (xi(t) − hi)]T Q[(xj(t) − hj) − (xi(t) − hi)] + uT
i (t)Rui(t)}dt, (3)

where Q and R are given symmetric positive matrices.

Definition 2. LMAS (1) is said to achieve guaranteed cost formation H via pro-
tocol (2) under the communication topologies {N k, k ∈ M} with the switching
signal σ(t), if for any initial condition sequence x(0), there is limt→∞ ‖(xi(t) −
hi) − (xj(t) − hj)‖ = 0, i, j ∈ I, and there exists a J∗

C > 0, such that JC ≤ J∗
C ,

J∗
C is said to be a guaranteed cost.

Definition 3. LMAS (1) with respect to the formation H is said to be guaran-
teed cost feasible via formation protocol (2) under the communication topologies
{N k, k ∈ M} with the switching signal σ(t), if there exist control gain matrix
K such that multi-agent system (1) achieves guaranteed cost formation H.

Let x = [xT
1 . . . xT

N ]T ∈ R
2nN , and the dynamics of the LMAS (1) with

formation protocol (2) can be described by a compact form as follows:

ẋ(t) = (IN ⊗ A)x(t) − ((Lσ(t) ⊗ BKσ(t))(x(t) − H), (4)

where outer-coupling matrix Lσ(t) = [lij ]σ(t) ∈ R
N×N is Laplacian matrix

induced by the communication topology N (t) = {N
σ(t)
i , i ∈ I}, and its entries

are defined by

l
σ(t)
ij =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈Ni

w
σ(t)
ik , j = i

−w
σ(t)
ij , j �= i, j ∈ Ni

0, j /∈ Ni

Note that for a given protocol (2), switching signals of communication topo-
logical are one of the important factors for formation control problem of LMAS
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(1) with switching topologies. Based on this, this paper mainly studies the influ-
ence of the change of communication topology on guaranteed cost formation
control for continuous-time linear multi-agent systems. Based on the actual sit-
uation of the communication topology, the following case is analyzed:

Assumption 1. Communication topology N (t) switches among set {N k, k ∈
M}, and there exist a spanning tree for each communication topology in set
{N k, k ∈ M− = {1, 2, · · · , r}}, 1 ≤ r < M meanwhile there does not exist a
spanning tree for each communication topology in set {N k, k ∈ M+}, as well as
M = M− ∪ M+.

3 Problem Transformation

In this section, guaranteed cost formation control problem for LMAS (1) with
switching topologies are converted into guaranteed cost control problem of a
corresponding auxiliary switched systems.

Transform system (4) by the following linear transformation [7]:

x̄(t) = S(x(t) − H), (5)

where

S =
[

S̃0

1T
N

]
⊗ I2n, S̃0 =

⎡
⎢⎢⎢⎣

1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 −1

⎤
⎥⎥⎥⎦ .

The inverse matrix of S can be worked out as follows:

S−1 =
1
N

⎡
⎢⎢⎢⎢⎢⎣

N − 1 N − 2 . . . 1 1
−1 N − 2 . . . 1 1
...

...
. . .

...
...

−1 −2 . . . 1 1
−1 −2 . . . −(N − 1) 1

⎤
⎥⎥⎥⎥⎥⎦

⊗ I2n =
[
Ŝ0 N−11N

] ⊗ I2n.

By the linear transformation (5), system (4) is transformed into the following
system:

˙̄x(t) = S[(IN ⊗ A) − Lσ(t) ⊗ BK]S−1x̄(t) + S(IN ⊗ A)H. (6)

Let x̄ = [yT zT ]T , where y = [x̄T
1 . . . x̄T

N−1]
T , unfold system (6) by x̄ =

[yT zT ]T :

˙̄x =
[

ẏ(t)
ż(t)

]

= (
[

S̃0

1T
N

]
⊗ I2n)[(IN ⊗ A) − (Lσ(t) ⊗ BK)]([Ŝ0 N−11N ] ⊗ I2n)

[
y(t)
z(t)

]

+
[

(S̃0 ⊗ A)H
(1T

N ⊗ A)H

]
=

[
A11 0
A21 A

] [
y(t)
z(t)

]
+

[
(S̃0 ⊗ A)H
(1T

N ⊗ A)H

]
.
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where

A11 = IN−1 ⊗ A − (S̃0Lσ(t)Ŝ0) ⊗ BK,

A21 = −(1T
NLσ(t)Ŝ0) ⊗ BK.

System (6) is equivalent to the following system:
{

ẏ(t) = [IN−1 ⊗ A − (S̃0Lσ(t)Ŝ0) ⊗ BK]y(t) + (S̃0 ⊗ A)H,

ż(t) = Az(t) − (1T
NLσ(t)Ŝ0) ⊗ BKy(t) + (1T

N ⊗ A)H.

Let Ā = IN−1 ⊗ A, B̄σ(t) = −(S̃0Lσ(t)Ŝ0) ⊗ B, K̄ = IN−1 ⊗ K.
According to the structure of A and H, it derived that (S̃0⊗A)H = 0. Hence,

the above equation can be expressed by
{

ẏ(t) = (Ā + B̄σ(t)K̄)y(t),
ż(t) = Az(t) − (1T

NLσ(t) ⊗ BKy(t). (7)

Obviously, there is no relationship between y(t) and z(t) in the first equation
in system (7). Therefore, the following Lemma is obtained which transforms the
formation problem with switching topologies into a asymptotic stability problem
of reduced-order switched systems equivalently.

Lemma 1. LMAS (1) achieves formation H via protocol (2) under the commu-
nication topologies {N k, k ∈ M} with the switching signal σ(t) for any bounded
initial states x(0) if and only if switched systems

ẏ(t) = (Ā + B̄σ(t)K̄)y(t) (8)

is asymptotically stable.

Cost function JC in (3) can be rewritten as follows:

JC =
∫ ∞

0

yT (t){2Lσ(t) ⊗ Q + [LT
σ(t)Lσ(t) ⊗ (KT RK)}y(t)dt. (9)

According Lemma 1 and Definition 2, the following theorem can be obtained:

Theorem 1. LMAS (1) achieves guaranteed cost formation H via protocol (2)
under the communication topologies {N k, k ∈ M} with the switching signal
σ(t) for any bounded initial states x(0), if and only if switched systems (8) is
asymptotically stable and there exists a J∗

C > 0, such that JC ≤ J∗
C .

4 Main Results

In this section, guaranteed-cost formation criteria is presented based on the
average dwell time method. The communication topologies N (t) of LMAS
(1) satisfies Assumption 2. Communication topology N (t) switches among set
{N k, k ∈ M}, and there exist a spanning tree for each communication topology
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in set {N k, k ∈ M−}, meanwhile there does not exist a spanning tree for each
communication topology in set {N k, k ∈ M+}, as well as there is M = M−∪M+.

It follows that matrices (Ā + B̄kK̄), k ∈ M− are Hurwitz, matrices (Ā +
B̄kK̄), k ∈ M+ are not Hurwitz. There exist normal number θ1, . . . , θr, θr+1, · · · ,
θM , such that (Ā + B̄kK̄) + θkI, k ∈ M− and (Ā + B̄kK̄) − θkI, k ∈ M+

are Hurwitz matrices. Hence, there exist positive definite symmetric matrices
Tk, k ∈ M satisfy

{
(Ā + B̄kK̄ + θkI)T Mk + Mk(Ā + B̄kK̄ + θkI) < 0, k ∈ M−,
(Ā + B̄kK̄ − θkI)T Mk + Mk(Ā + B̄kK̄ − θkI) < 0, k ∈ M+.

(10)

Homogeneously, denote α1 = mink∈M λ(Mk), α2 = maxk∈M λ(Mk), μ = α2α
−1
1 .

Let T−(t) (T+(t)) signify the total activation time of the LMAS (1) under
topologies N k, k ∈ M−(N k, k ∈ M+). Denote θ− = mink∈M− θk and θ+ =
maxk∈M+ θk then for any given θ ∈ (0, θ−), choose θ∗ ∈ (θ, θ−), proposing the
switching condition:

inf
t≥0

T−(t)
T+(t)

≥ θ+ + θ∗

θ− − θ∗ . (11)

Next, we try to characterize the switching signals within the communication
topologies such that the LMAS (1) achieves formation via the protocol (2). We
focus on the switched linear system (8) and introduce the following definition
and Lemma.

Definition 4. [14] For any t > t0 ≥ 0, let Nσ(t0, t) denote the number of
switchings of the signal σ(t) over the time interval (t0, t). If Nσ(t0, t) ≤ N0+(t−
t0)τ−1

a holds for τa > 0 and N0 ≥ 0, then τa is called the average dwell time, and
N0 is the chatter bound of the switching signal σ(t). Denote Save[τa, N0] be the
set of all switching signals σ(t) with the average dwell time τa and the chatter
bound N0.

Lemma 2. [15] (Schur Complement)
For given symmetric matrix P ∈ R

(m+n)×(m+n):

P = PT =
[

P11 P12

∗ P22

]

where P11 ∈ R
m×m, P22 ∈ R

n×n. Then the following three conditions are equiv-
alent:

(1) P < 0;
(2) P11 < 0, P22 − PT

12P
−1
11 P12 < 0;

(3) P22 < 0, P11 − P12P
−1
11 PT

12 < 0.

Theorem 2. Suppose Assumption 1 hold, LMAS (1) with respect to the for-
mation H is guaranteed cost feasible via protocol (2) under the communication
topologies {N k, k ∈ M = M− ∪M+}, if the following two conditions hold simul-
taneously:
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i) There is a finite constant τ∗
a = lnμ

2(θ∗−θ) , such that the switching signal σ(t)
satisfies switching condition (11) as well as σ(t) ∈ Save[τa, N0].

ii) There exist 2n(N − 1)-dimensions matrices Xk = XT
k > 0 and matrix Wk

such that

Φk =

⎡
⎣φ11 I Lk ⊗ K

∗ − 1
2 (Lk ⊗ Q)−1 0

∗ ∗ −R−1

⎤
⎦ < 0, (12)

where
φ11k = ĀXk + B̄kWk + (ĀXk + B̄kWk)T .

In this case, the control gain matrix in formation protocol (2) satisfies Kk =
WkX−1

k , and guaranteed cost J∗
Ck = yT

0 X−1
k y0, J∗

C = maxk∈M J∗
Ck.

5 Simulation Example

In this section, a numerical example is given to illustrate the effectiveness of
the obtained theoretical results. As Theorem 2 is a special case of Theorem 3,
we only present a example that satisfies Assumption 2. Consider a multi-agent
systems with 4 agents and the dynamics of each agent is described by LMAS (1)
with

A =
[

0 1
0 0

]
, B =

[
0
1

]
, (13)

where xi(t) = [xi1(t) xi2(t)]T , xi1(t) and xi2(t) denote position and velocity of
agent i respectively. The initial state is chosen randomly:

x(0) = [0 50 150 40 300 30 450 20]T .

Fig. 1. Three communication topologies of LMAS (1)

Figure 1 shows the communication topologies N 1, N 2, N 3, which satisfies
Assumption 2, without loss of generality, let the communication topology weight
is 1. One can figure out τ∗

a = 0.4808 and T −(t)
T+(t) = 3. We choose a switching signal

σ(t) which satisfies Theorem 3 is shown in Figure Fig. 2. In the guaranteed
cost function (3) we choose Q = 0.02I2 and Q = 0.04I2. The target formation
H = [50 100 150 200]T ⊗ [1 0]T .
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Fig. 2. A switching signal σ(t)

Fig. 3. Position and velocity state trajectories of LMAS (1) under topologies N 1, N 2,
N 3 with switching signal σ(t)

Fig. 4. Trajectory of the guaranteed cost function J∗
C and J∗

C
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In Fig. 3, the state(position and velocity) trajectories of LMAS (1) are shown,
One can see from Fig. 3 that the position trajectories of all agents converge with
a fixed difference and the position trajectories of all agents converge to the ones.
Figure 4 depicts the trajectory of the cost function JC and J∗

C . The cost function
JC converges to a finite value less than J∗

C . The simulation results illustrate that
LMAS (1) achieves guaranteed-cost formation with protocol (2) under topologies
N 1, N 2, N 3 with switching signal σ(t).

6 Conclusion

The guaranteed cost formation control for multi-agent systems with switching
topologies under directed graphs was investigated in this paper. By a linear
transformation, the guaranteed cost formation problem for multi-agent systems
were equivalently converted into guaranteed cost control problem of a reduced-
order auxiliary switched systems. A sufficient condition for the guaranteed cost
formation control was given based on two types of switching topologies, and
an upper bound of the guaranteed cost function was determined. Finally, the
effectiveness of the proposed theory has been illustrated by a 4 agents systems
experiments. Further research will be conducted to design the formation protocol
and optimize guaranteed cost function for formation problem of multi-agent
systems with switching topologies and time-delays.
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