)

Check for
updates

Field Robot Environment Sensing Technology
Based on TensorRT

Bo Dai®, Chao Li®) , Tao Lin, Yong Wang, Dichen Gong, Xiao Ji,
and Bosong Zhu

Chengdu University of Technology, Chengdu 610059, China

Abstract. The inference speed of complex deep learning networks on embedded
platforms of mobile robots is low, and it is difficult to meet actual application
requirements, especially in complex environments such as the wild. This exper-
iment out motion blur processing on the data set to improve the robustness, by
using NVIDIA inference accelerator TensorRT to optimize the operation, the com-
putational efficiency of the model is improved, and the inference acceleration of
the deep learning model on the mobile quadruped robot platform is realized. The
experimental results show that, on the test data set, the method achieves 91.67%
mAP of 640 x 640 model on the embedded platform Nvidia Jetson Xavier NX.
The reasoning speed is about 2.5 times faster than before, reaching 35 FPS, which
provides support for the real-time application of mobile robot environment sensing
ability in the field.

Keywords: Embedded platform - Motion blur - YOLOVS5s - TensorRT -
Environmental sensing

1 Introduction

With the rapid development of mobile robots, robots can be seen everywhere in all walks
of life, but as the application area becomes more and more extensive, the problems they
face will follow. Among them, mobile robots have an increasing demand for environ-
mental sensing capabilities, especially in complex environments in the wild, robots have
very high requirements for the real-time and accuracy of environmental perception. In
addition, compared with traditional machine learning methods, deep learning has strong
learning capabilities and can make better use of data sets for feature extraction, so as
to effectively carry out target tracking, target orientation perception, obstacle avoidance
and control judgment.

Target detection based on deep learning involves two steps [1]: In the first step,
Train large amounts of tag data on the processor, the neural network learns millions of
weights or parameters so that it can map the sample data to the correct response. In the
second step, the newly collected data is predicted by the trained model. For automatic
driving, mobile robot and other applications, inference and sensing need to be completed
in real time, so it is very important to control the high throughput and response time in
computing. However, the processor performance of general mobile robots is not very

© Springer Nature Switzerland AG 2021
X.-J. Liu et al. (Eds.): ICIRA 2021, LNAI 13013, pp. 370-377, 2021.
https://doi.org/10.1007/978-3-030-89095-7_36


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89095-7_36&domain=pdf
http://orcid.org/0000-0002-6216-0654
http://orcid.org/0000-0003-2079-076X
https://doi.org/10.1007/978-3-030-89095-7_36

Field Robot Environment Sensing Technology Based on TensorRT 371

high, and even many of them are not equipped with GPU. The reasoning speed of
complex deep learning network on mobile robot platform is low, and it is difficult to
meet the practical application requirements, especially in the application background of
complex environment such as field.

2 Target Detection System

Target detection is to determine the position of the target in the input image and iden-
tify the category of the target in the input image. Target detection has always been the
most challenging problem for mobile robots to perceive the environment in a complex
environment due to the different appearance and posture of various objects, the interfer-
ence of processor computing force and illumination, occlusion and other factors in the
imaging process.

Atpresent, target detection algorithms based on deep learning are mainly divided into
two categories: first-stage target detection algorithms and second-stage target detection
algorithms. Two-stage target detection algorithms include FAST R-CNN, Faster R-CNN,
and R-FCN, etc. The first-stage target detection algorithms include: SSD, YOLOv3,
YOLOV4, YOLOVS, etc. The first-stage target detection algorithm can directly predict the
probability of the object category and the coordinates of its position without generating
candidate regions, so as to complete target detection directly.The problem that the two-
stage algorithm can not meet the real-time detection is solved [2—4].

YOLOVvS, launched by Ultralytics in 2020, has the advantages of small size, fast speed
and high precision, and is implemented in an ecologically mature PyTorch, with easy
deployment and implementation. YOLOVS includes YOLOvSs, YOLOv5m, YOLOvVS5I1
and YOLOvV5x models. YOLOVS5s image reasoning speed is up to 0.007 s, that is, it can
process 140 frames per second, which meets the requirement of real-time detection of
video images. Meanwhile, it has a smaller structure. The weight data file of YOLOS5s
version is 1/9 of that of YOLOA4, and the size is 27 MB. It’s network model structure still
follows the overall layout of YOLOv4, which is mainly divided into four parts, namely
Input, Backbone, Neck and Prediction [5].

In the original model of YOLOVSs, GloU loss was used as the bounding box loss.
Compared with the original IoU, the optimization of GIoU loss was to increase the
penalty of erronet selection. After the training process, the detection effect of boxes with
different proportions was better, and the principle was shown as follows [6]:

ol — |BN B¢ 0
oY= |BU B¢!|
|C —BUB¥|
LGIOU =1-IloU+ ———F—— (2)

IC]

However, GloU still has the problem of unstable target box regression, and the
GloU regression strategy for the non-overlapping target detection box may degenerate
into the regression strategy of loU. The main problem is that when the overlap area is
0, GIoU tends to overlap the fastest way between the detection box and the target box,
and then GIloU punishment mechanism gradually becomes ineffective. In order to solve



372 B. Dai et al.

this problem, the loss function should consider the overlapping area, distance from the
center point and aspect ratio of the predicted box and the real box, and use a CloU that
is more consistent with the regression mechanism, as shown in the formula:

(b, b¥')
Lcioy =1 —1oU + a2 +av 3)
4 ws! w\?2
V= ) (arctanﬁ — arctanz> @)
v
()

a=——
(1 —=IoU)+v

In the (3) loss function, the center point of the detection box and the target box is
denoted by b and b, and the Euclide distance is p. c is the slant distance of the smallest
rectangle covering the detection box and the target box that is directly optimized and
the speed is faster. In the (4) w8 and h8' are the width and height of the real box, w and
h are the width and height of the prediction box. a is the parameter used to balance the
proportions [7].

3 TensorRT

TensorRT is a high-performance inference optimizer from NVIDIA that provides low
latency and high throughput deployment reasoning for deep learning applications. Ten-
sorRT can be used for inferred acceleration in large data centers, embedded platforms
or autonomous driving platforms.

TensorRT optimization methods mainly have the following ways, the most important
is the first two.

1) Layer Fusion or Tensor Fusion: When deploying model inference, TensorRT auto-
matically parses the network computation diagram and looks for the optimized
subgraph. The combined calculation diagram has fewer layers and takes up fewer
CUDA(Compute Unified Device Architecture) cores, so the overall model structure
(Fig. 1 on the right side)is smaller, faster, and more efficient, thus reducing reasoning
delays [8].

2) Weight &Activation Precision Calibration: Data precision can be appropriately
reduced during deployment reasoning, and lower data precision can reduce memory
footprint and latency, as well as smaller model size.

3) Kernel auto-tuning.

4) Dynamic Tensor Memory.

5) Multi-stream Execution.

4 Data Preprocessing and Training

The experiment uses the data set of field environment images collected by lab members
to train and test. It contains 9,800 samples and expands on the original data set, using



Field Robot Environment Sensing Technology Based on TensorRT 373

Un-Optimized Network TensorRT Optimized Network

Fig. 1. Interlayer and tensor fusion (Tensorrt reduces the number of layers by combining layers
horizontally or vertically (the combined structure is called CBR, meaning Convolution, Bias, and
Relu layers are fused to form a single layer) Horizontal merges combine the convolution, bias,
and activation layers into a single CBR structure that occupies only one CUDA core.)

both flip and rotation methods. The datasets used for training, validation, and testing
included 70%, 10%, and 20% samples, respectively. The Labelimg tool is used to mark
and detect the objects in the picture, including 19 categories such as people, horses,
cattle, sheep, deer, etc.

As the application object is deployed on the mobile robot in the field, the mobile
robot is in a complex environment with external interference and unstable movement,
plus the vibration of its own movement, the ZED camera deployed by the mobile robot
adopts a binocular rolling curtain camera, so collected photos can be blurry.

The fuzzy image restoration model is shown in the formula:

g, y) = h(x,y) X f(x,y) +n(x,y) (6)

Wherein (6), g(x, y) is the observation image, f (x, y) is the target image, h(x, y) is
the degradation function, and n(x, y) is the noise function. The target is to restore f (x, y)
according to the observation image g(x,y) and some prior or estimated information
[9]. It’s very difficult, and adding images to remove motion blur on mobile embedded
platform will increase computing power consumption and affect real-time performance.
Therefore, data enhancement was carried out on the collected samples, and 30% of the
images were used for motion blur to enhance their ability to identify fuzzy targets. In
addition, the motion and vibration of the mobile robot generally exist in the Z direction
(the y-axis direction of the image), while the movement of the object in the environment
is in the Y-direction (the x-axis direction of the image). Therefore, we create a fuzzy
kernel for 30% of the data in the data set by using the fspecial function of Matlab, which
convolves with the image to approximate the linear motion of the camera, the Len length



374 B. Dai et al.

is 9 pixels, and the theta values 90 and O are the horizontal and vertical motion angles.
Figure 2, for the Raw data and motion blurred data.

e, . o e

Fig. 2. Raw data and motion blurred data

Based on the PyTorch deep learning network framework, parallel GPU is used for
training in this paper. Firstly, the classification model based on YOLOVSs is trained
on the workstation. The batch size of each training is 32, and the Stochastic Gradient
descent optimization algorithm with a momentum of 0.9 is adopted. The initial learning
rate is 0.001 and the weight attenuation coefficient is 0.0005. The cross entropy loss
function is used to calculate the loss. The Pt model trained by PyTorch is converted into
the ONNX model and then imported into TRT, which is optimized by TensorRT. NX
uses the trained classification model and TensorRT to reason and accelerate the detection
of categories in the picture.

S Optimization Test and Analysis Based on Jetson NX

5.1 Experiment Platform

The field mobile robot platform adopts YoboGO full open source quadruped bionic robot
dog development platform. YoboGO is a lightweight quadruped robot with high dynamic
performance, equipped with advanced gait planning, leg and foot control and environ-
ment awareness technology. In this project, the NVIDIA Jetson Xavier NX development
Board is mounted on the robot dog. It is connected with the UP Board controller of the
robot dog through the network cable. In terms of vision, Zed camera is used to con-
nect with NX. At the same time, ultrasonic radar and BD/GPS positioning module are
deployed on the body to improve environmental sensing.

The NVIDIA Jetson Xavier NX features 384 CUDA Cores, 48 Tensor Cores, 6
ARM CPUs and 2 NVIDIA Deep Learning Accelerator engines. Accelerated computing
power of up to 21 TOPS is available in the 15W 6 core to run modern neural networks
in parallel and process data from multiple high-resolution sensors. Camera adopts ZED
stereo camera, adopts shutter shutter, and supports CUDA. Figure 3, for the mobile robot.

The development environments shown in Table 1:

5.2 Accelerated Testing

Motion blur is added to the data set, which can handle the recognition of blurred images
collected by the mobile robot in the process of movement. The detection and recognition



Field Robot Environment Sensing Technology Based on TensorRT 375

Fig. 3. Mobile robot(1.Yobogo quadruped robot 2. Ultrasonic radar 3. Zed camera 4. Jetson NX
5.BD /GPS positioning module)

Table 1. Development environment.

Hardware parameters CPU: 6-core NVIDIA Carmel ARM®vS.2 64-bit CPU
6MB L2 + 4MB L3

RAM: 8G

GPU: NVIDIA Volta™ GPU with 48 Tensor Cores
GPU Memory: 8G

CUDA Core: 384-core

Development environment Operating System: Jetpack 4.4.1 (‘ubuntu 18.04)
CUDA Version: 10.2.89

cuDNN Version: 8.0.0.180

TensorRT Version: 7.1.3.0

Programming Language: Python 3.8

Neural Network Framework: PyTorch 1.8.0

rate of motion blur images tested on NX is only about 10% lower than that of normal
pictures. Figure 4, normal and motion blur images target detection results.

Fig. 4. Normal and motion blur images target detection results

The implementation of YOLOvSs in NX is carried out by PyTorch. In the mode
of 15 W 6 core with maximum power, the GPU runs the program with full load and
identifies various targets in the video stream without any object tracking. The FPS



376 B. Dai et al.

of different model image sizes with TensorRT versus without TensorRT is as Fig. 5,
Use different model image size comparison, whether to use TensorRT to accelerate the
comparison. When the model image size is 640 x 640, the speed of inferring a picture
before acceleration is 70 ms, and the speed of inferring a picture after acceleration by
TensorRT is 27 ms, which is 2.5 times higher.

801

704

M Original model + TensorRT
60 - O Original model
504
17}
& 404
=
304
204
104 \ |_|
0- T T T 1
320 480 640 800

Model Image Size

Fig. 5. Inference speed on NX

This paper uses the Pasca criterion to evaluate the model. When the intersection ratio
between the ROI of the target object and the ground truth is greater than 0.3, the ROI
will be marked as a positive sample by the standard. FP and FN represent false positives
(false detected targets) and false positives (undetected targets), respectively. The two
evaluation indexes of precision rate and recall rate can be respectively as follows:

Precision rate:

TP
accurate = ——— 7
TP + FP

Accuracy ratio refers to the ratio of the correct objects detected to all detected objects.

Recall rate:
TP
Recall = —— ®)
TP + FN

The recall rate is the ratio of correctly detected targets to the total number of labeled
targets.

As shown in Fig. 6, the accelerated and non-accelerated images of different image
size models correspond to the mAP and recall comparisons, the mAP and recall rate
accuracy varies by less than 1% with TensorRT acceleration.



Field Robot Environment Sensing Technology Based on TensorRT 377

esses Beforeacceleration g~ 00000

~~~~~ Before acceleration 94 @ After acceleration

e After acceleration

mMAF
©
o

320 480 640 800 320 480 640 800
Model Image Size Model Image Size

Fig. 6. Precision rated and recall rate

6 Conclusion

This paper takes the mobile robot equipped with NVIDIA Jetson NX as the research
object. By building a Pytorch neural network framework on it to run YOLOvVS5s to perform
target detection, it is found that its real-time performance is not ideal. Therefore, it is
proposed to use TensorRT for reasoning optimization acceleration. First, the darknet
trained model is converted into an ONNX model, and then converted into a TensorRT
model, and then TensorRT is used for target detection. This method can increase the FPS
by 2.5 times at 640 x 640 model without loss of accuracy. It has successfully proved that
this method can make edge computing performance more excellent under the NVIDIA
GPU and TensorRT acceleration, and can improve the reasoning speed while ensuring
the accuracy. It can improve the environmental perception ability of mobile robots in
complex environments in the wild, and provides a solution for subsequent real-time
target tracking and target orientation calculation.

References

1. Du, X., Cai, Y., Wang, S., et al.: Overview of deep learning. In: 2016 31st Youth Academic
Annual Conference of Chinese Association of Automation (YAC), pp. 159-164. IEEE, (2016)

2. Ruan, J.: Design and implementation of target detection algorithm based on YOLO. Beijing
University of Posts and Telecommunications, Beijing (2019). (In Chinese)

3. Tan, J.: Research on an improved YOLOV3 target recognition algorithm. Huazhong University
of Science and Technology, Wuhan (2018). (In Chinese)

4. Yan, H.: Research on Static Image Target Detection Based on Deep Learning. North China
Electric Power University, Beijing (2019). (In Chinese)

5. Liu, Y., et al.: Research on the use of YOLOVS object detection algorithm in mask wearing
recognition. World Sci. Res. J. 6(11), 276-284 (2020)

6. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized inter-
section over union: A metric and a loss for bounding box regression. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 658-666 (2019)

7. Zheng,Z.,Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning
for bounding box regression. In: The AAAI Conference on Artifificial Intelligence (2020)

8. NVIDIA. NVIDIA Deep learning SDK[DB/OL]. Accessed 27 Nov 2019, https://docs.nvidia.
com/deeplearning/sdk/index.html

9. Jian, Z., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE
Trans. Image Process. 23(8), 3336-3351 (2014)


https://docs.nvidia.com/deeplearning/sdk/index.html

	Field Robot Environment Sensing Technology Based on TensorRT
	1 Introduction
	2 Target Detection System
	3 TensorRT
	4 Data Preprocessing and Training
	5 Optimization Test and Analysis Based on Jetson NX
	5.1 Experiment Platform
	5.2 Accelerated Testing

	6 Conclusion
	References




