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Abstract. Soft robotic arms are of great interests in recent years, but
it is challenging to perform effective control due to their strongly non-
linear characteristics. This work develops a model-free open-loop control
method for a hydraulic soft robotic arm in spatial motion. A control
policy based on reinforcement learning technique is proposed by using
Deep Deterministic Policy Gradient. The kinematic model of the soft
robotic arm is employed instead of physical prototype to train the con-
trol policy. A complete training framework is established through the
Reinforcement Learning Toolbox and Deep Learning Toolbox in Matlab
software. To make the control policy fast converge and avoid falling into
local optimum, the reward is shaped by combining the position error
and the action together. A series of simulations are implemented and
the results verify the effectiveness of the control policy. It is also shown
that the proposed control policy can achieve both of good stability and
tracking performance simultaneously.

Keywords: Motion control · Reinforcement Learning · Soft robot ·
Hydraulic

1 Introduction

In recent years, soft robots have received extensive attention from researchers
due to inherent compliance, environmental adaptability, lower inertia and safe
human-machine interaction [1]. Inspired by nature and composed of low-modulus
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materials, soft robots can deform continuously like flexible structures in biolog-
ical systems [2]. Features aforementioned make soft robots have obvious advan-
tages and promising prospect in the application of flexible grasping, surgery,
rehabilitation, and bionic locomotion [3,4].

Conventional rigid robotic arms have been extensively employed in tasks such
as grasping, assembling and handling. But the limited DOF and the possibility
of harm to humans restrict them from working in an unstructured environment
or human-machine interaction scenes [5]. Compared with the rigid robotic arms,
soft robotic arms have the advantages of lightweight, flexibility and safety, so they
could be used in an unstructured environment or human-machine interaction
scene and perform well. With the development of the soft robotic arms, an
amount of actuation methods have been applied, like hydraulic actuation [6],
shape memory alloy actuation [7], pneumatic artificial muscles actuation [8], and
cable-driven actuation [9]. In the aforementioned actuation technique, hydraulic
actuation is widely applied and has got lots of studies due to their conformability
[10]. However, modeling and controlling of the hydraulic soft robotic arms are
challenging and difficult because of the strong nonlinearity between hydraulic
pressure and elastic deformation [11].

Researchers have paid much effort on motion control of soft robotic arms
by using both model based and model-free methods [12]. The premise of using
model-based control approaches is to establish a mathematical model of the
controlled object, an accurate model or a reasonably simplified model is the
guarantee of the good control performance. Xie et al. develop the kinematic
model of the soft robotic arm by using the piecewise constant-curvature (PCC)
assumption to predict the position of its tip position [5]. Ohta et al. develop
the kinematic model of the robotic arm by using DH parameters and carry out
simulation and experimental results for closed-loop position control based on
the kinematic model [13]. Yang et al. build a direct kinematic model from the
sensor data to the deformation and an inverse kinematic model used to calculate
the actuation of SMA coils base on given planned deformation [14]. In order
to achieve more precise control performance, some studies pay attention to the
dynamic model and achieved great progress. Renda et al. develop a dynamic
model of a soft continuum robotic arm by using a rigorous geometrically exact
method [15]. Tutcu et al. combine a kinematic model with a quasi-static equilib-
rium solution for more accurate modeling of the end effector of a soft continuum
robot [16]. In addition to these, some novel methods are derived, like Chen et al.
using force balance of the ending plate to build the model [17]. Tang et al.
propose a model based online learning and adaptive control algorithm for the
wearable soft robot [18].

For multi-segments hydraulic soft robotic arms, model-based control is diffi-
cult to achieve real-time and high accuracy without additional restrictions due
to the complexity and imprecision of the mathematical model, and model-free
methods offer the possibility of good control performance. Li et al. use adap-
tive Kalman filter to achieve path tracking for a continuum robot [19]. Melingui
et al. develop two controllers based on a distal supervised learning scheme and
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an adaptive neural to control CBHA’s kinematics and dynamics [20]. With the
development of machine learning techniques, reinforcement learning has been
widely used in robotic control [21], model-free reinforcement learning has obvi-
ous advantages in soft robotic arms control tasks. Ma et al. propose a reinforce-
ment learning method based on the Deep Deterministic Policy Gradient (DDPG)
algorithm to solve position control problem [22]. Shahid et al. develop a control
policy parameterized by a neural network and learned using modern Proximal
Policy Optimization (PPO) algorithm [23]. Satheeshbabu et al. present an open
loop position control policy based on deep reinforcement learning and use Deep-
Q Learning with experience replay [24]. Although some efforts have been paid
on using reinforcement learning to control soft robotic arms, most of the current
studies focus on planar motions, or spatial motions with less control inputs in
limited environments or in small action space.

In this paper, we investigate the motion control of a double-segment hydraulic
soft robotic arm, which has six control inputs and a large state-action space. To
achieve open-loop motion control, a model-free control policy based on deep
reinforcement learning (RL) is proposed by using Deep Deterministic Policy
Gradient (DDPG) algorithm. The kinematic model [5] of the soft robotic arm is
employed instead of physical prototype to train the control policy. A complete
training framework is established through the Reinforcement Learning Toolbox
and Deep Learning Toolbox in Matlab software. To make the control policy
fast converge and avoid falling into local optimum, the reward is shaped by
combining the position and the action together. A control policy with excellent
performance was obtained via parameter optimization and reward function opti-
mization. A series of simulations are implemented to evaluate the control policy,
the effectiveness and good tracking performance of the control policy are verified
in simulations.

The remainder of this paper is structured as follows. Section 2 describes the
architecture of the system. Section 3 introduces the training framework and con-
figurations, and show the results of simulations. Section 4 presents conclusions
and future works.

2 System Description

2.1 Hydraulic Soft Robotic Arm

The studied hydraulic soft robotic arm is as shown in Fig. 1. It is totally made
of soft materials and composed of an elastic cylinder, two connectors and three
chambers with double-helical fiber reinforcement for each segment. Table 1 gives
the key parameters of the arms. Each segment of the soft robotic arms is inde-
pendent and can be quickly assembled and disassembled through the connector.
In the current design, the arms can be extended to three segments, but consid-
ering the overall length of the arms and the existing experimental conditions, a
two-segments arm is employed to carry out the work.
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Fig. 1. (a) Two-segments hydraulic soft robotic arm prototype. (b) Schematic of the
one-segment hydraulic soft robotic arm.

Table 1. Key parameters of the hydraulic soft robotic arm.

Parameters Value

Length of elastic cylinder 140 mm

External diameter of elastic cylinder 50 mm

Height of base connector 40 mm

Height of tip connector 20 mm

External length of chamber 170 mm

Internal length of chamber 140 mm

External diameter of chamber 15 mm

Internal diameter of chamber 10 mm

The distance between the center of the chamber and the elastic cylinder 14 mm

Maximum pressure of chamber 300 kpa

2.2 Markov Decision Process Modeling

Markov Decision Process (MDP) formally defines the reinforcement learning
problem, using reinforcement learning on robots requires it to be abstracted and
represented as an MDP. A MDP is based on the integration of each interac-
tive object, composed of agent and environment, and its elements include state,
action and reward. The motion control task is modeled into a continuous-state,
continuous-action MDP. Assuming the simplest form of representation, the RL-
based motion control task of the hydraulic soft robotic arm is abstracted as
follows:

State(s): State is the condition of the agent described by the environment. In
the soft robotic arm motion control task, the state consists of two parts, which
are the current state of the soft robotic arm and the action at the previous
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moment. More specifically, the current state of the soft robotic arm is error
between the soft robotic arm and the target position in the direction of each
coordinate axis.

Action(s): Action is the collection of actions which the agent could take, called
action space. Agents based on DDPG can output continuous actions. Considering
that it is difficult to establish an accuracy dynamic model from the pressure of
chambers to the position of the tip of the soft robotic arm, the forward kinematic
model from the length of chambers to the position of the tip of the soft robotic
arm is used to train the agent in the simulation. Therefor, actions that the
soft robotic arm could take is the increment of each chamber length, the upper
limit and the lower limit of each increment are +1 mm and –1 mm respectively.
According to the maximum pressure of the chambers, the upper bound of the
length of the chambers is 200 mm. This setting can make the soft robotic arm
reach the target position smoothly and quickly.

Reward(s): The reward is a quantitative indicator used to judge each action of
the agent and guide the robot to complete tasks. In our task, in order to make
the robotic arm move to the target position quickly and stably, the Euclidean
distance between arm’s tip position and target position and the action at the
previous moment are used as the basis for formulating rewards. Actions that
move the manipulator away from the target and are not conducive to the stability
of the robot will be subject to greater penalties. On the contrary, actions that
bring the robot closer to the target and approach stability will be rewarded. This
can speed up the training process of the policy and contribute to the steady-state
performance of the soft robotic arm. The reward structure is shown as follows:

r =
{−0.001errd − 0.05

∑ |ai| − 0.0003(|errx| + |erry| + |errz|), errd > ε
500 − 0.05

∑ |ai|, errd ≤ ε
(1)

where the ε = 5mm is the target threshold, the errd is the Euclidean distance
between arm’s tip position and target position, the errx, erry and errz is the
distance between arm’s tip position and target position between the tip position
of the arm and the target position on each coordinate axis. When the agent
reaches the target within ε, the training episode is done. The reward is to penalize
actions that are not conducive to completing the task and make the soft robotic
arm reach the target position in the shortest path.

2.3 Deep Deterministic Policy Gradient Framework

DDPG is a model-free reinforcement learning method that can be extended to
continuous action control [25]. We use an actor-critic framework on DDPG to
make the policy stable. Convolutional neural network is used to approximate
the optimal policy function μ and Q function, namely the policy network and
the Q network, and the deep learning method is used to train the above neural
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network. DDPG needs to learn Q network while learning policy network. The
implementation and training method of the Q function refers to the DQN [26].
The value iteration update of the Q function follows the Bellman equation and
is defined as:

Qμ
t (st, at) = Qμ

t (st, at) + α(rt + γmax
a

Qμ(st+1, a) − Qμ
t (st, at)) (2)

where the st is the state at time step t, at is the action at time t, st+1 is the
state after taking action at, rt is the reward value about at, α is the learning
rate, and γ is the discount rate.

In the continuous action spaces training process, exploration is important to
find potential better policies, so we add random noise for the action to transit
the action from a deterministic process to a random process, and then sample
the action from this random process and send it to the environment for execu-
tion. The above policy is called the behavior policy, which is represented by β.
Ornstein-Uhlenbeck process is used to generate random noise as shown is Eq. 3.

∂n = Φ(η − n) + σW (3)

where the η is the mean, the Φ is the decay rate, the σ is the variance, the
W is the Wiener process. The process of training policy network is to find the
optimal solution of policy network parameters, and the stochastic gradient ascent
method is used to train the network. The Eq. 4 is used to judge the performance
of a policy, and the optimal policy is defined by Eq. 5. The whole algorithm
framework is as shown in Algorithm 1.

J
β

(μ) =
∫

S

ρβ (s) Qμ (s, a) ds

= Es∼ρβ [Qμ (s, a)]
(4)

where the s is the state, the ρβ is the distribution function of the state.

μ = arg max
μ

J(μ) (5)

3 Training and Simulations

3.1 Training Setup

A high-performance computer consists of a 10900X CPU and an RTX2080Ti
GPU is used to train the control policy and validate the effectiveness of policy
in simulations. The policy training framework is deployed in Matlab by using
Reinforcement Learning Toolbox and Deep Learning Toolbox, and trained by
using a critic network and an actor network. The critic network has two hidden
layers with 400 neurons and the learning rate is 1e−3. The actor network has
four hidden layers with 400 neurons and the learning rate is 1e−4. The outputs of
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Algorithm 1. DDPG framework
Input: max training episodes M, max steps of each episode T, discount factor γ, target
smooth factor τ , replay buffer R
Output: control policy μ
Randomly initialize critic network Q(s, a|θQ) and actor μ(s|θμ)
Initialize target network Q′ and μ′ with weights Q′ ← Q, μ′ ← μ
Initialize Replay Buffer: R

1: for episode = 1, M do
2: Initialize a random process N
3: Receive initial observation state s1
4: for t = 1, T do
5: Select action at = μ(st|θμ)+N based on current policy and exploration noise
6: Excute action at and observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in replay buffer R
8: Sample a random minibatch of N transition (si, ai, ri, si+1) from R

9: Set yi = ri + γQ′(si+1, μ
′(si+1|θμ′

)|θQ′
)

10: Update critic network by minimizing the loss: L = 1
N

∑
i (yi − Q(si, ai|θQ))2

11: Update the actor network using the sampled policy gradient:

∇θμJ ≈ 1

N

∑

i

∇aQ(s, a|θQ)|s=si,a=μ(si)∇θμμ(s|θμ)|si

12: Update the target networks:

θQ′ ← τθQ + (1 − τ)θQ′

θμ′ ← τθμ + (1 − τ)θμ′

13: end for
14: end for

the actor network are bounded between −1 and +1 with a tanhLayer followed a
ScalingLayer. Other training parameters are set as follows, the maximum number
of training episodes is set as 100000, the maximum number of steps per episode
is set as 200, the discount factor is set as 0.99, the minibatch size is set as 256,
the target smooth factor is set as 0.001, and the experience reply buffer is set
as 1e8. A simulation model is built based on the kinematic model of the soft
robotic arm [5] and connected with the agent in Simulink.

3.2 Position Control Results

The position control simulations and trajectory tracking simulations are imple-
mented to validate the effectiveness and dynamic performance of the presented
control policy. As for position control, we select a series of points in the workspace
of the soft robotic arm as target points to test the steady-state performance of
the control policy. The results are as shown in Fig. 2, the simulation step size is
set to 0.01 s. The control policy transfers the soft robotic arm from the initial
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state to the target state with few steps, and the steady-state error is controlled
within 3 mm. Simulation results revealed the effectiveness and stability of the
control policy.

Fig. 2. (a) Position control with the target point (162, 72, 307). (b) Position control
with the target point (–91, 147, 311).

3.3 Trajectory Tracking Results

The dynamic response of the control policy is the key factor that determines
the dynamic performance of the system. As shown in Fig. 3, We select some
trajectories according to the workspace of the soft robotic arm to verify the
dynamic performance of the control policy. The soft robotic arm begins moving
along the target trajectory from 50 s, the policy control soft robotic arm to
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quickly follow with the target trajectory, and the dynamic error is controlled
within 5 mm during the whole movement. Simulation results proved the rapid
dynamic response of the control policy, and the soft robotic arm based on this
control policy has good tracking performance.

Fig. 3. (a) Trajectory tracking control with the target trajectory from the point (30,
80, 339) to the point (100, 170, 310). (b) Trajectory tracking control with the target
trajectory from the point (90, 30, 340) to the point (170, 100, 300).

4 Conclusion and Future Work

Focusing on the motion control of hydraulic soft robotic arm, this paper imple-
ments the kinematic model of the soft robotic arm in simulations and develops a
model-free control policy based on deep reinforcement learning. The Reinforce-
ment Learning Toolbox and Deep Learning Toolbox are used to deploy the policy
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training framework, and the Deep Deterministic Policy Gradient (DDPG) algo-
rithm is used to train the policy. The simulations experiments show the effec-
tiveness, robustness and good dynamic performance in motion control of the
proposed control policy. After experimental verification, this article is a good
attempt of applying reinforcement learning to the motion control of a hydraulic
soft robotic arm with highly nonlinear characteristics.

In future work, further improvement and optimization of the proposed control
policy will be studied, and the policy will be deployed into the physical prototype
control system.
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