®

Check for
updates

Fully Abstract and Robust Compilation
And How to Reconcile the Two, Abstractly

Carmine Abate', Matteo Busi?, and Stelios Tsampas®(®)
! MPI-SP Bochum, Bochum, Germany
carmine.abate@mpi-sp.org
2 Universita di Pisa, Pisa, Italy
matteo.busi@di.unipi.it
3 KU Leuven, Leuven, Belgium
stelios.tsampas@cs.kuleuven.be

Abstract. The most prominent formal criterion for secure compilation
is full abstraction, the preservation and reflection of contextual equiva-
lence. Recent work introduced robust compilation, defined as the preser-
vation of robust satisfaction of hyperproperties, i.e., their satisfaction
against arbitrary attackers. In this paper, we initially set out to compare
these two approaches to secure compilation. To that end, we provide an
exact description of the hyperproperties that are robustly satisfied by
programs compiled with a fully abstract compiler, and show that they
can be meaningless or trivial. We then propose a novel criterion for secure
compilation formulated in the framework of Mathematical Operational
Semantics (MOS), guaranteeing both full abstraction and the preserva-
tion of robust satisfaction of hyperproperties in a more sensible manner.

Keywords: Secure compilation - Fully abstract compilation - Robust
hyperproperty preservation - Language-based security - Mathematical
Operational Semantics

Remark. To ease reading, we highlight the elements of source languages in
blue, sans-serif, the target elements in red,bold and the common ones in
black [33].

1 Introduction

Due to the complexity of modern computing systems, engineers make substantial
use of layered design. Higher layers hide details of the lower ones and come with
abstractions that ease reasoning about the system itself [39]. A layered design
of programming languages allows to benefit from modules, interfaces or depen-
dent types of a source, high-level language to write well-structured programs,
and execute them efficiently in a target, low-level language, after compilation.
Unfortunately, an attacker may exploit the lack of abstractions at the low-level
to mount a so-called layer-below attack [39], which is otherwise impossible at the
high-level [17,18].

© Springer Nature Switzerland AG 2021

H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 83-101, 2021.
https://doi.org/10.1007/978-3-030-89051-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89051-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-89051-3_6

84 C. Abate et al.

Secure compilation [35] devises both principles and proof techniques to pre-
serve the (security-relevant) abstractions of the source and prevent layer-below
attacks. Abadi [1] hinted that secure compilers must respect equivalences, as
some security properties can be expressed in terms of indistinguishability w.r.t.
arbitrary attackers, or contextual equivalence. Fully abstract compilers preserve
and reflect (to avoid trivial translations) contextual equivalence.

Two decades of successes [1,8,9,13,14,19,34,36,43,45] made full abstraction
the gold-standard for secure compilation. However, some ad-hoc examples from
recent literature [4,37] showed that fully abstract compilers may still introduce
bugs that were not present in source programs, e.g.,

Example 1 (See also Appendix E.5 of [4]). Consider source programs to
be functions B — N (from booleans to natural numbers) and target ones to be
functions N — N. Define contextual equivalence to be equality of outputs on
equal inputs. Next, identify B with {0,1} C N, and compile a program P to
[P] : N — N that coincides with P : B — N on {0, 1} and returns a default value
— denoting a bug — otherwise,

Pl(n) {P(n) for n = 0,1

42 otherwise

[-] is fully abstract, yet a source program that “never outputs 42”, will no longer
enjoy this property. |

This simple example underlines the fact that if a security property like “never
output 42” is not captured by contextual equivalence, there is no guarantee it
will be preserved by a fully abstract compiler. Abadi [1] tellingly wrote

[. ..] we still have only a limited understanding of how to specify and prove
that a translation preserves particular security properties. [...]

Abate et al. [4] proposed to specify security in terms of hyperproperties, sets of
sets of traces of observable events [15]. In this setting, they consider a compiler
secure only if it robustly preserves a class of hyperproperties, i.e., if it preserves
their satisfaction against arbitrary attackers. For Example 1, “never output 42”
can be specified as a safety hyperproperty, where function inputs and outputs are
the observable events. The above compiler [-] is not secure according to Abate
et al. [4], as it does not robustly preserve the class of safety hyperproperties.
More generally, each particular class of hyperproperties, e.g., the one for data
integrity or the one for data confidentiality [15], determines a precise formal
secure compilation criterion.

Despite the introduction of the robust criteria, full abstraction is still widely
adopted [14,19,43,45], for at least two reasons. First, contextual equivalence
can model security properties such as noninterference [13], isolation [14], well-
bracketed control flow or local state encapsulation [43] for programs that don’t
expose events externally. Second, even though fully abstract compilers do not in
general preserve data integrity or confidentiality, they often do so in practice.

Fully Abstract and Robust Compilation 85

Fully abstract and robust compilation both embody valuable notions of secure
compilation and neither is stronger than the other nor are they orthogonal, which
makes us believe their relation deserves further investigation. Our goal is to have
criteria with well understood security guarantees for compiled programs, so that
both users and developers of compilers may decide which criterion better fits
their needs. For that, we assume an abstract trace semantics, collecting observ-
ables events and internal steps, is given for both source and target languages,
and start our quest not by asking if a given fully abstract compiler preserves all
hyperproperties, but which ones do and which ones do not preserve.

Contributions. First, we make explicit the guarantees given by full abstraction
w.r.t. arbitrary source hyperproperties. We achieve this by showing that for
every fully abstract compiler [-], there exists a translation or interpretation of
source hyperproperties into target ones, 7, such that if P robustly satisfies a
source hyperproperty H, [P] robustly satisfies 7(H) (Theorem 1). However, we
observe that a fully abstract compiler may fail to preserve the robust satisfaction
of some hyperproperty, as 7 may map interesting hyperproperties to trivial ones
(Example 2). We then provide a sufficient and necessary condition to preserve
the robust satisfaction of hyperproperties (Corollary 1), but argue that it is
unfeasible to be proven true for an arbitrary fully abstract compiler. To overcome
the above issues, we introduce a novel criterion, that we formulate in the abstract
framework of Mathematical Operational Semantics (MOS). We show that our
novel criterion implies full abstraction and the preservation of robust satisfaction
of arbitrary hyperproperties (Sect. 5). We illustrate effectiveness and realizability
of our criterion in Example 3.

2 Fully Abstract and Robust Compilation

Let us briefly recall the intuition of fully abstract and robust compilation, and
provide their rigorous definitions. We refer the interested reader to [3,4,35] for
more details.

2.1 Fully Abstract Compilation

Abadi [1] proposed fully abstract compilation to preserve security properties
such as confidentiality and integrity when these are expressed in terms of indis-
tinguishability w.r.t. the observations of arbitrary attackers, the latter modeled
as execution contexts. For a concrete example, if no source context Cs can dis-
tinguish a program P; that uses some confidential data k from a program P,
that does not, we can deduce that k is kept confidential by P;. Thus, a compiler
[-] from a source language to a target one, that aims to preserve confidentiality,
must ensure that also [Pi] and [P2] are equivalent w.r.t. the observations of
any target context Cr. To avoid trivial translations, one typically asks for the
reflection of the equivalence as well.

Definition 1 (Fully abstract compilation [1]). A compiler [-] is fully
abstract iff for any Py and P>,

86 C. Abate et al.

(VCs.Cs [P1] = Cs [P2]) & (VC1.Cr [[P1]] =~ Cr [[P2]])

where Cs, Cr denote source and target contexts resp., ~, ~ denote the two
contextual equivalences, i.e., equivalence relations on programs.

Notice that the security notions one can preserve and reflect with a fully abstract
compiler are those captured by the contextual equivalence relation =, that deter-
mines both the meaningfulness and the effectiveness of full abstraction. Indeed,
if ~ is too coarse-grained, some interesting security properties may be ignored.
Dually, if ~ is too fine-grained, equivalent source programs may not have coun-
terparts that are equivalent in the target. In Sect. 3, we pick ~ to be equality
of execution traces which, under mild assumptions [20,28], coincides with other
common choices of ~ (see also Sect. 6).

2.2 Robust Compilation

Abate et al. [4] suggest a family of secure compilation criteria that depend on
the security notion one is interested in preserving. The key idea in their cri-
teria is the preservation of robust satisfaction, i.e., satisfaction of (classes of)
security properties against arbitrary attackers, modeled as contexts. More con-
cretely, Abate et al. [3,4] assume that every execution of a program exposes a
trace of observable events t € Trace for a fixed set Trace and model interesting
security notions like data integrity, confidentiality or observational determinism
as sets of sets of traces, i.e., hyperproperties denoted by H € p(p(Trace)) [15].

Definition 2 (Robust satisfaction [3,4]). A program P robustly satisfies a
hyperproperty H iff VC. C [P] = H, where C [P] = H = beh(C[P]) € H and
beh(C [P]) is the set of all traces that can be observed when executing C [P].

Secure compilation criteria can then be defined as the preservation of robust sat-
isfaction of classes of hyperproperties such as safety or liveness [4], in this paper
we consider the class of all hyperproperties and robust hyperproperty preserva-
tion (RHPT from [3]). For that, consider a function 7 that takes a source-level
hyperproperty and returns its interpretation (or translation) at the target level.
Intuitively, a compiler -] is RHP™ if, for any source hyperproperty H robustly
satisfied by P, its interpretation 7(H) is robustly satisfied by [P], formally:

Definition 3 (Robust hyperproperty preservation). A compiler [-] pre-
serves the robust satisfaction of hyperproperties according to a translation
7 : p(p(Traces)) — p(p(Tracer)) iff the following RHP™ holds

RHP™ = VP VH € p(p(Trace)). (VCs. Cs[P] = H) =
(VCr. Cr|[[P]] = 7(H))

when 7 is clear from the context we simply say that -] is robust.

RHP™ can be formulated without quantification on hyperproperties [3,4].

Fully Abstract and Robust Compilation 87

Lemma 1 (Property-free RHP™). For a compiler [], RHP™ is equivalent to*
VP VCr 3Cs. behr(Cr [[P]]) = 7(behs(Cs [P]))

Notice that, while Definition 3 describes—through 7—the target guarantees
for [P] against arbitrary target contexts, Lemma 1 enables proofs by back-
translation. In fact, similarly to fully abstract compilation [35], one can prove
that a compiler is RHP™ by exhibiting a so-called back-translation map produc-
ing a source context Cs whose interaction with P exposes “the same” observables
as Cr does with [P]:

Remark 1 (RHPT by back-translation). RHPT holds if there exists a back-
translation function bk such that for any Cr and any P, bk(Cr [[P]]) = Cs
is such that behr(Cr [[P]]) = 7(behs(Cs [P])).

3 Comparing FAC and RHP”

In the previous section we defined fully abstract compilation as the preservation
and reflection of contextual equivalence, i.e., what the contexts can observe about
programs. Instead, RHP” was defined as the preservation of (robust satisfaction
of) hyperproperties of externally observable traces of events. To enable any com-
parison, we first provide an intuition on how to accommodate the mismatch in
observations between full abstraction and RHP” (see the online appendix [5] for
all the details). We assume the operational semantics of our languages exhaus-
tively specify the execution of programs in contexts, including both internal steps
and steps that expose externally observable events like inputs and outputs. Also,
we say that a trace is abstract if it collects both internal steps and externally
observable events. In a slight abuse of notation, we still denote with beh(C [P])
the set of all the possible abstract traces allowed by the semantics when execut-
ing P in C. Moreover, since hyperproperties just express predicates over events ,
we now write beh(C [P]) € H to mean that the traces of events for C [P] satisfy
the hyperproperty H. Finally, we elect to express contextual equivalence as the
equality of the (sets of) abstract traces in an arbitrary context.

Definition 4 (Equality of beh(-)). For programs Py, Py and a context C,
C [P = C[P)] < beh(C[P1]) = beh(C [Ps)])

In Sect. 6 we discuss other common choices for = such as equi-termination, and
the hypotheses under which they are equivalent to ours. We now instantiate Def-
inition 1 on the contextual equivalence from Definition 4 and make explicit the
notion of fully abstract compilation we are going to use from now on. Note
how we are only interested in the preservation of contextual equivalence, as
reflection is often subsumed by compiler correctness (e.g., in absence of internal
non-determinism) [1,35].

! 7(behs(Cs [P])) is a shorthand for 7({behs(Cs [P])}).

88 C. Abate et al.

Definition 5 (FAC). For a compiler [-], FAC is the following predicate

FAC = VP1P2.(VC5. beh5<CS [Pl]) = beh5<C5 [PQ])) =
(VCr. beht(Cr [[P1]]) = behr(Cr [[P2]]))

Abate et al. [4], Patrignani and Garg [37] have previously investigated the
relation between FAC as in Definition 5 and RHP”. In particular, Abate et al.
[4] showed that FAC does not imply any of the robust criteria, with an example
similar to the one we sketched in Sect.1. In this section, we provide further
evidence of this fact: a fully abstract compiler that does not preserve the robust
satisfaction of a security-relevant hyperproperty, namely noninterference. More
details on the example can be found in the online appendix [5].

Example 2. Let Source and Target to be two WHILE-like languages [31] with
a mutable state. A state s € S = (Var — N) assigns every variable v € Var a
natural number. We assume Var to be partitioned into a “high” (private) and
a “low” (public) part. We write v € Varg (v € Vary, resp.) to denote that the
variable v is private (public, resp.). Partial programs are defined in the same way
in both Source and Target, whereas whole programs, or terms, are obtained by
filling the hole(s) of a context with a partial program (Fig.1). The only context
in Source is [, called the identity context and such that for any P, [P] = P.
Instead, contexts in Target additionally include [-] that is able to observe the
internal event H (intuitively, a form of information leakage that is not observed
by source contexts) and report it by emitting !.

(P) == skip | v := (expr) | (P); (P) | while (expr) (P)
(Cs) == [] (Cr) =[] []

Fig. 1. (P) defines the syntax of both Source and Target partial programs, where
(expr) denotes the usual arithmetic expressions over N. (Cs) and (Cr) define instead
the contexts of Source and Target, respectively.

The semantics of Source and Target are partially given in Fig. 2. Rule asnL
is for assignments that do not involve high variables. asnH is for assignments
of high variables, and — upon a change in their value — the internal trace H is
emitted. The Target counterparts, asnlL and asnH, work similarly. Finally, the
most interesting rule is bang2, where we see how context [-| reports a ! upon
encountering an H.

v e Varg eN Vargy =0 5 v € Varg s(v) # le]s

asnL snH
S, V.=€e— SlveIels]» v

s, V:i=e€ LN S[ve[e]s]s V.

H ’o
bang?2 5P 5P

s,[p]—>s,p

Fig. 2. Selected rules of Source and Target.

Fully Abstract and Robust Compilation 89

For example, consider a high variable v € Varg and the Source program
£ v := 42, When P is plugged in the identity context [], the resulting
behavior is behs([P]) = {s-H-s'-v | s € SAS = sy_a2}. Intuitively, the
traces in behs([P]) express that the execution starts in a state s, then a high
variable is updated (H) leading to state s’ and then the program terminates
(V). For the same v € Varg, target program P 2 v := 42 in [- |, we have
that behr([P]) = {s-1-s' v | s € SAS = sj_a2}. Notice the additional
! w.r.t. the source, due to the fact that the context observed a change in a high
variable. Informally, we say that a program satisfies noninterference if, executing
it in two low-equivalent initial states, it transitions to two low-equivalent states.
More rigorously, noninterference can be defined for both Source and Target as

the following hyperproperty NI € p(p(Trace)),
NI = {71’ S p(Tmce) ’ Vti,to € . t(l) =r Ifg =11 =1 tg}

where t? stands for the first observable of the trace ¢; and =;, denotes the fact
that two states are low-equivalent (i.e., they coincide on all z € Varg). Also,
we lift the notation to traces and write t; =, t2 to denote that t; and o are
pointwise low-equivalent. More precisely, =, ignores all occurrences of H (as it
is internal) and compares traces observable-by-observable, relating v' and ! to
themselves and comparing states with the above notion of low-equivalence.
The identity compiler preserves trace equality (see the online appendix [5]
for the proof), but does not preserve the robust satisfaction of noninterference
as the Target context [-| can detect changes in high variables and report a !. B

On the one hand, RHP™ provides an explicit description of the target hyper-
property 7(H) that is guaranteed to be robustly satisfied after compilation under
the hypothesis that H is robustly satisfied in the source. However, RHP” does
not imply the preservation of contextual equivalence (or trace equality) because
hyperproperties cannot specify which traces are allowed for every single context.
On the other hand, it is possible that FAC does not preserve (the robust satisfac-
tion of) hyperproperties, because contextual equivalence may not capture some
hyperproperty such as noninterference, as shown in Example 2. So, what kind of
hyperproperties a FAC compiler is guaranteed to preserve? If P robustly satis-
fies H (possibly not captured by ~), what is the hyperproperty that is robustly
satisfied by [P] for [-] being FAC?

We answer this question by defining a map 7 : p(p(Traces)) — p(p(Tracer))
so that FAC implies RHP™. The map 7 enjoys an optimality condition making it
the best possible description of the target guarantee for programs compiled by a
FAC compiler.

Theorem 1. If [-] is FAC, then there exists a map 7 such that [] is RHPT.
Moreover, T is the smallest (pointwise) with this property.

To avoid any misunderstanding, we stress the fact that, akin to [32, Theorem
1], neither the existence, nor the optimality of 7 can be used to argue that a FAC
compiler [-] is reasonably robust. The robustness of [-] depends on the image

90 C. Abate et al.

of 7 on the hyperproperties of interest: it should not be trivial, e.g., 7(Nls) = T
like in Example 2 nor distort the intuitive meaning of the hyperproperty itself,
e.g., T(Nls) = “never output 42”. In a setting in which observables are coarse
enough to be common to source and target traces, i.e., Traces = Tracer, it is
possible to establish whether 7(H) has “the same meaning” as H:

Corollary 1. If [-] is FAC, then for every hyperproperty H, [-] preserves the
robust satisfaction of H iff 7(H) C H, where T is the map from Theorem 1.

The rigorous definition of 7 and the proof of Theorem 1 and Corollary 1 can
be found in the online appendix [5]. Here, we only mention that the definition
of 7 requires information on the compiler itself, thus it can be unfeasible to
compute and assess the meaningfulness of 7(H). Corollary 1 partially mitigates
this problem by allowing to approximate 7(H) rather than computing it, e.g., by
showing an intermediate K such that 7(H) C K C H. We leave as future
work any approximation techniques for 7 that would make substantial use of
Corollary 1.

To overcome the issues highlighted above, we extend the categorical approach
to secure compilation of Tsampas et al. [48] and propose an abstract criterion
that implies both FAC and RHP” for a 7 defined via co-induction and therefore
independent of the compiler. In Sect. 4 we shall summarize the underlying theory
before introducing our criterion in Sect. 5.

4 Secure Compilation, Categorically

The basis of our approach and that of Tsampas et al. [48] is the framework of
Mathematical Operational Semantics (MOS) [50]. Here, we briefly explain how
MOS gives a mathematical description of programming languages as well as
(secure) compilers and show how our earlier Example 2 fits such a framework.
We refer the interested reader to the seminal paper of Turi and Plotkin [50]
and the excellent introductory material of Klin [24] for more details. Further
examples and applications can be found in the literature [48,49,51].

4.1 Distributive Laws and Operational Semantics

The main idea of MOS is that the semantics of programming languages, or
systems in general, can be formally described through distributive laws (i.e.,
natural transformations of varying complexity) of a syntaz functor X over a
behavior functor B in a suitable category (in our case the category Set of sets
and total functions [24]). The functor X : Set — Set represents the algebraic
signature of the language and thus acts as an abstract description of its syntax.
Instead, the functor B : Set — Set describes the behavior of the language in
terms of its observable events (e.g., the behavior of a non-deterministic labeled
transition system can be modeled by the functor BX = p(X)A, where A is a
set of trace labels [52]);

Fully Abstract and Robust Compilation 91

Recall now the languages Source and Target of Example 2. The syntax
functor for Source for a set of terms X builds terms ¥ X according to (the sum
of all) the constructors of the language:

YTXE2TY(NxE)W(X x X)u(E x X),

where E is the set of arithmetic expressions. The behavior functor for Source is
a map that for an arbitrary set X, updates a store s € S, and either terminates
(V') or returns another term in X, possibly recording that some high-variable
has been modified (H):

B X £ (S x (Maybe H) x (X & v))°.

In Target, the syntax functor is > X = ¥ X WX, where the extra occurrence of
X corresponds to the target context [-|, and B X = (S x (Maybe (HW!)) x (X &
v'))%. We explicitly notice that syntactic “holes” are represented by the identity
functor Id X = X and, to make this connection clearer, the syntax functor for
Source can be equivalently written as ¥ = T (N x E) & (Id x Id) & (E x Id).

Next, we can define the operational semantics, a distributive law of X over
B, in the format of a GSOS law ([24, Section 6.3]). A GSOS law of X over B is
a natural transformation p : X(Id x B) = BX™*, where X* is the free monad
over X. For instance, the rules of sequential composition in Source (see seql and
seq?2 in the online appendix [5, Fig.4]) correspond to the following component
of the GSOS law p : ¥(Id x B) = BX":

(s',0,p" 5 q) if f(s)=(s,0,p")

(p,f) ; (q7g)’_’)‘s'{(s/757q) if f(s) =(s,0,v")

Here, p,q € X with X a generic set of terms, i.e., p and q can be programs,
contexts or programs within a context, and f,g € BX. The image of p is an
element of BX*X = (S x (Maybe H) x (X*X W v')))?, depending on whether p
transitions to a term p’ (thus involving seq2), or terminates with v (seql).

Lastly, we informally recall that when the formal semantics of a language is
given through a GSOS law p : X(Id x B) = BX*, for X, B : Set — Set, the
set of programs is (isomorphic to) the initial algebra A = X*(, while the final
coalgebra Z = B> T2 describes the set of all possible behaviors.

Remark 2. A distributive law p induces a map f: A — Z that assigns to every
closed term or program its behaviors as specified by the law p itself.

For Source and Target from Example 2 f and { are just another, equivalent
representation of behs(-) and behr(+), e.g., for v private variable,

f([v:=42D = As. <S[1H42], <H, \/>>
f((V:42—D = As. <8[x<_42], <!, \/>>

In other words, map f : A — Z is the abstract counterpart of map beh(-) that
assigns to every program the set of all its possible execution traces.

2 " is the free monad over X and B* is the co-free comonad over B [22, Ch. 5].

92 C. Abate et al.

4.2 Maps of Distributive Laws as Fully Abstract Compilers

Watanabe [51] first introduced maps of distributive laws (MoDL) as well-behaved
translations between two GSOS languages. Tsampas et al. [48] showed how
MoDL can also be used as a formal, abstract criterion for secure compilation.
Let us recall the definition of MoDL for two GSOS laws in the same category.

Definition 6 (MoDL). A map of distributive law between p : X(Id x B) =
BX" and p : 3(IdxB) = BX* is a pair of natural transformations s : ¥ = 3*
and b : B = B such that the following diagram commutes,

¥ (Id x B) —~— Bx*

s*oZ(idxb)l lboBs*

(Id x B) —— B®*

where s* : Y = ¥ extends s : ¥ = 3" to a morphism of free monads, i.e.,
to terms of arbitrary depth via structural induction.

The diagram in Definition 6 expresses a form of compatibility of the source
and the target semantics. Considering any source term, executing it w.r.t. the
source semantics p and then translating the behavior (together with the resulting
source term) is equivalent to first compiling the source term (and translating the
behavior of its subterms) and then executing it w.r.t. the target semantics p.

We recall that the set of source (resp. target) programsis A = ¥ () (A = *()
resp.), and that [] = sy © A — A is the compiler induced by s. On the
behaviors side, the natural transformation b : B = B induces a translation
of behaviors d := by : Z — Z where Z £ B>T. The compiler [-] = sj pre-
serves (and also reflects when all the components of b are injective) bisimilarity
(see [48], Section4.3). Whenever bisimilarity coincides with trace equality (see
Definition 4), for example under the assumption of determinacy?®, the following
holds ([48]).

Corollary 2. In absence of internal non-determinism, MoDL implies FAC.

Similarly to FAC, the definition of MoDL does not ensure that [-] = s is
robust. Indeed, the obvious embedding compiler from Example 2 is a MoDL (let
s =i and b = (S x (Maybe 41) x (1@ v))%). Intuitively, MoDL adequately
captures the fact that compilation preserves the behavior of terms, but fails to
capture the observations target contexts can make on compiled terms.

5 Reconciling Fully Abstract and Robust Compilation

To account for the shortcoming of MoDL, we introduce a new, complementary
definition that allows reasoning explicitly on the semantic power of contexts in

3 It is possible to eliminate the hypothesis of determinacy when B is an endofunctor
over categories richer that Set, e.g., Rel the category of sets and relations.

Fully Abstract and Robust Compilation 93

some target language relative to contexts in a source language. This definition
acts (in conjunction with MoDL) as an abstract criterion of robust compilers.

For the new definition, we elect to qualify some constructors in X' as contexts
constructors so that ¥ £ ¢ & where € defines the constructors for contexts
and P for all the rest. We also assume that the GSOS law p : X(Id x B) =
X*B respects this “logical partition” of X in that p = [B i1 o p1, pa] where
p1:€(Id x B) = B€* and py : P(Id x B) = BX™*.

Definition 7 (MMoDL). A many layers map of distributive laws (MMoDL)
between p : X(Id x B) = BL™ and p : 3(Id x B) = BX" is given by natural
transformations b : B = B and t : ¢ = ¢* making the following commute:

C*(Xm,p

C¥(1d x B)), ¢(1d x B)T* —1 ¢*(1d x B)=* 1 Berx*

l@*():ﬂ'l,p) lb

¢(ld x B)x* — 1P L pqq x ByT* — 2 Beryr — B, Beryt

The top-left object, ¥ (Id x B), represents a target context which is filled with
some source term, whose subterms exhibit some source behavior. In both paths,
the plugged source terms are initially evaluated w.r.t. the source semantics. On
the upper path, we first back-translate [16] the target context using ¢, then we run
the resulting program w.r.t. the source semantics (p;), and finally we translate
the resulting behavior back to the target via b. Instead, in the lower path we
first translate the resulting behavior through ¢(Id x b), then we let the target
context observe (p;), and finally we back-translate the behavior via Bt*.

To relate MMoDL with RHP™, we formulate the latter in the framework of
MOS. Recall (see Remark 1) that RHP™ holds if there exists a back-translation
map bk that for every target context Cp and program P, produces a source
context bk(Cr,P) = C; such that behr(Cr [[P]]) = 7(behs(Cs [P])).

Remark 3 ((Abstract) RHPT). For 7 : Z — Z, a compiler [-] is RHPT iff there
exists bk such that

Tofoplugobk =foplugoid x [],

where f : A — Z associates to every program its behaviors as specified by p
(see Remark 2) and plug is the operation of plugging a term into a context.

We are now ready to state our second contribution, namely that the pairing of
a MoDL (s,b) and a MMoDL (¢,b) gives an (abstract) RHP™ compiler.

Theorem 2 (MMoDL imply RHP7). Let s : ¥ = ¥, b: B = B and
t: ¢ = C such that (s,b) and (t,b) are (respectively) a MoDL and a MMoDL
from p: X (Id x B) = BX" to p: 3(Id x B) = BX". The compiler [-] = s is
(abstract) RHPT for 7 = b coinductively induced by b.

Proof (Sketch). The back-translation bk := t; x id satisfies the equation
in Remark 3 (details in the online appendix [5]). O

94 C. Abate et al.

Before fixing the compiler from Example 2 to make it satisfy both MoDL
(Definition 6) and MMoDL (Definition 7), let us see why the back-translation
mapping both target contexts to the identity source context [-] is not a MMoDL.
Let v € Varg be a private variable, on the upper path of Definition 7 we have

rvi=a2] T NG (e M) s [H s v H s v
Note how the identity context fails to report !. On the lower path, we have

instead
C*(Zm1,p) C(Idxb) r1

vi=42] 2 (] Nsu(spyag)y H) ——— [V, H oV EBE 0

Here, it is evident that the context | - | “picks up” H and reports !, unlike [-].

Example 3 (Example 2, revisited). We now show how to fix the compiler
from Example 2 by making it RHP™ for a suitable 7. For that, we first need to
slightly modify the language Target. The idea is that variable assignments in
Target should now be sandbozed, so that the interactions with the context [- |
do not expose sensitive information. Formally, we extend the algebraic signature
of Target with a constructor for sandboxing assignments, i.e., ¥ W (E x Id), so
that Target terms are generated by grammar

<P> u=skiplv:= <expr> [(P); (P)|while <expr> (P)||v:= <expr> |

where the semantics of | - | is described in Fig.3. We can now define the new
(i.e., fixed) compiler [-] and the appropriate map 7, so that [-] is RHP”. Both
[[] and 7 are determined by the natural transformations s, ¢, and b, such that
(s,b) is a MoDL and (¢,b) is a MMoDL. The natural transformation s : ¥ =
(2 (E x 1d))*, and therefore the inductively defined compiler [-] £ sj, wraps
assignments in the sandbox | - |, i.e., [v:=¢] = | v := e | and acts as the
identity on other terms. The natural transformation ¢ : ¢ = ¢* maps every
Target context to the identity context [-]. Finally, the translation of behaviors
b : B = B erases the occurrences of H, implying that the compiled terms are
not expected to report changes in high variables.

H / H / /
s,p—— 8,V s, p—>s,p
sb2

sbl S —
s, pl—=s,v s, p]—s,p

Fig. 3. Rules extending the semantics of Target.

Recall that the diagram from Definition 7 failed to commute for Example 2,
because (s,b) being a MoDL imposed b to not erase any occurrences of H. The
same diagram for the new Target language and natural transformations s, b,
and t now commutes. More specifically, in the upper path we have

[vi=42] Ly [V A8 (8o M) — [H = v H s
while in the lower path we get

fvima2] “ IO 1 s (s iz, H)

C*(Emy,p

C(Idxb) - *
ADD) B

Fully Abstract and Robust Compilation 95

We point the reader interested to the online appendix [5] for more details in
showing that the above (s,b) is a MoDL and that (¢,b) is a MMoDL.
Hereafter, we discuss one of the benefits of the abstract definitions presented
so far, namely that we can easily compute 7, and immediately establish if pro-
grams that robustly satisfy Nls (noninterference in Source) are compiled to pro-
grams that robustly satisfy NIp. In order to do so, we need to connect Z and
7 to traces and hyperproperties of Source and Target. Elements of Z are func-
tions that assign to every s € S a new state s’ and maybe an extra symbol like
! or H, and a continuation, i.e., another function of the same type. Traces are
instead sequences of stores possibly exhibiting the extra symbols H and !. It is
easy to show (see the online appendix [5]) that every trace corresponds to an
element of Z — the function that returns the head of the trace and continues as
the tail of the same trace — and that every function in Z corresponds to a set of
traces — one trace for every fixed s € S. Thus, we can prove that 7 maps (the
set of functions in Z corresponding to) Nls to a subset of (the set of functions
corresponding to) NIt i.e., the compiler [-] preserves robust satisfaction. W

6 Related Work

In this section, we discuss related work regarding origins and applications of full
abstraction, trace based criteria, MoDL and relevant proof techniques.

Full abstraction was introduced to relate the operational and the denotational
semantics of programming languages [40]. A denotational semantics of a language
is said to be fully abstract w.r.t. an operational one for the same language iff
the same denotation is given to contextually equivalent terms, i.e., those terms
that result the same when evaluated according to the operational semantics.
Common choices to establish when the result of the evaluation is the same, and
hence to define contextual equivalence, are equi-convergence and equi-divergence
(e.g., in [13,14,23,28,38]). Notice that there is no loss of generality with these
choices, if (and only if!) contexts are powerful enough [28], e.g., when all inputs
can be thought as part of the context, and the context itself may select one final
value as the result of the execution or diverge.

Fully abstract translations as in Definition 1 have been adopted for comparing
expressiveness of languages (see, e.g., the works by Mitchell [28] and Patrignani
et al. [38]), but Gorla and Nestmann [21] showed that they may lead to false
positive results. The interested reader can find out more in the online appendix
[5], where we also sketch how to use RHP” for expressiveness comparisons.

Full Abstraction and Secure Compilation. Abadi [1] originally proposed to use
full abstraction to preserve security properties in translations from a source lan-
guage L to a target one Lo. A fully abstract translation or compiler preserves
and reflects equivalences, and can therefore be a way to preserve security proper-
ties when these are expressed as equivalences. Remarkable examples from the lit-
erature are given by Bowman and Ahmed [13], Busi et al. [14] and Skorstengaard
et al. [43]. In the first two works the authors model contexts so that contextual
equivalence captures (forms of) noninterference and preserve it through a fully

96 C. Abate et al.

abstract translation. Skorstengaard et al. [43] consider a source language with
well-bracketed control flow (WBCF) and local state encapsulation (LSE), then
model target contexts so that these two properties are captured by contextual
equivalence and, they exhibit a fully abstract translation so that both WBCF
and LSE are guaranteed also in the target. We stress the fact that, all security
properties that are not captured by contextual equivalence are not necessarily
preserved by a fully abstract compiler, thus allowing for counterexamples sim-
ilar to Example 1. Finally, it is worth noting that fully abstract compilation
does not prevent source programs to be insecure, nor suggests how to fix them,
quoting Abadi [1]:

An expression of the source language L1 may be written in a silly, incompe-
tent, or even malicious way. For example, the expression may be a program
that broadcasts some sensitive information—so this expression is insecure
on its own, even before any translation to Ls. Thus, full abstraction is
clearly not sufficient for security [...]

Beyond Full Abstraction. Several definitions of “well-behaved translations” exist,
depending both on the scenario and on the properties one aims to preserve
during the translation. For example, if the goal is to preserve functional cor-
rectness, then it is natural to require the compiled program to simulate the
source one [29]. This can be expressed both as a relation between the opera-
tional semantics of the source and the target (see for example [27,42,51]), or
extrinsically as a relation between the execution traces of programs before and
after compilation [3,12,46]. Trace based criteria for compiler correctness The
CompCert [12,26] and CakeML [46] projects are milestones in the formal veri-
fication of compilers. Preservation of functional correctness can be expressed in
both cases in terms of execution traces [3]. For the CompCert compiler, executing
[P] w.r.t. the target semantics yields the same observable events as executing P
w.r.t. the source semantics, as long as P does not encounter an undefined behav-
ior. Similarly, CakeML ensures that executing [P] w.r.t. the target semantics
yields the same observable events as executing P w.r.t. the source semantics, as
long as there is enough space in target memory. In both cases, correctness is
proven by exhibiting a simulation between [P] and P.

Trace Based Criteria for Secure Compilation. Similarly to what happens for
functional correctness, relations between the execution traces of a program and
of its compiled version, can be used to express preservation of noninterference
through compilation [10,11,30]. The simulation-based techniques introduced in
CompCert sometimes suffice also to show the preservation of noninterference,
e.g., when the source and the target semantics are equipped with a notion of
leakage [10, Sections 5.2-5.4]. However, in more general cases a stronger, cube-
shaped simulation is needed (see [10, Section5.5], and [11,30]). Stewart et al.
[44] propose a variant of CompCert that also gives some guarantees w.r.t. source
contexts, and their compilation in the target. Still, this does not guarantee secu-
rity against arbitrary target contexts, that can be strictly stronger than source
ones. Abate et al. [3,4] propose a family of criteria with the goal of preserving

Fully Abstract and Robust Compilation 97

satisfaction of (classes of) security properties against arbitrary contexts. Also,
they show that their criteria can be formulated in at least two equivalent ways.
The first one explicitly describes the target guarantees ensured for compiled pro-
grams, for example which safety properties are guaranteed for programs written
in unsafe languages and compiled according to the criterion proposed by Abate
et al. [2] (see their Appendix A). The second way is instead more amenable to
proofs, e.g., by enabling proofs by back-translation Abate et al. [2, Fig. 4].

Maps of Distributive Laws (MoDL). Mathematical Operational Semantics
(MOS) and distributive laws ensure well-behavedness of the operational seman-
tics of a language while also providing a formal description for it. Such semantics
have been given for languages with algebraic effects [6] and for stochastic cal-
culi [25]. In their biggest generality distributive laws are defined between monads
and comonads [24], but it is often convenient to consider the slightly less general
GSOS laws that correspond bijectively to GSOS rules [7,24,41].

Proof Techniques for fully abstract compilation include both cross-language
logical relations between source and compiled programs [13,35,43] and back-
translation of target contexts into source ones [14,16,35]. The latter technique
sometimes exploits information from execution traces [16], and can be adapted
also to some of the robust criteria of Abate et al. [4]. Ongoing work is aiming
to formalize the back-translation technique needed to prove some of the robust
preservation of safety (hyper)properties in the Coq proof assistant [2,47]. The
best results in mechanization of secure compilation criteria have been achieved
for the criteria that can be proven via simulations, especially when extending the
CompCert proof scripts, e.g., [10]. The complexity of many proofs is relatively
contained as they show a forward simulation—the source program simulates the
one in the target—and “flip” it into a backward one—the compiled program
simulates the source one—with a general argument. We are not aware of mech-
anized proofs for MoDL, but we believe it would be convenient to first express
maps between GSOS laws as relations between GSOS rules (see also Sect. 7).

7 Conclusions and Future Work

The scope of this work has been to clarify the guarantees provided by criteria for
secure compilation, make them explicit and immediately accessible to users and
developers of (provably) secure compilers. We investigated the relation between
fully abstract and robust compilation, provided an explicit description of the
hyperproperties robustly preserved by a fully abstract compiler, and noticed
that these are not always meaningful, nor of practical utility. We have therefore
introduced a novel criterion that ensures both fully abstract and robust com-
pilation, and such that the meaningfulness of the hyperproperty guaranteed to
hold after compilation can be easily established. The proposed example shows
that our criterion is achievable.

Future work will focus on proof techniques for MoDL and MMoDL that are
amenable to formalization in a proof assistant. For that we can either build on

98 C. Abate et al.

existing formalizations of polynomial functors as containers, or exploit the cor-
respondence between GSOS laws and GSOS rules, and characterize MoDL and
MMoDL as relations between source and target rules. Another interesting line of
work consists in devising over (under) approximation for the map 7 from The-
orem 1, and use our Corollary 1 to establish whether existing fully abstract
compilers preserve (violate) a given hyperproperty.

Acknowledgements. We are grateful to Pierpaolo Degano, Letterio Galletta, Catalin
Hritcu, Marco Patrignani, Frank Piessens, and Jeremy Thibault for their feedback on
early versions of this paper. We would also like to thank the anonymous reviewers for
their insightful comments and suggestions that helped to improve our presentation.

Carmine Abate is supported by the European Research Council https://erc.europa.
eu/ under ERC Starting Grant SECOMP (715753). Matteo Busi is partially supported
by the research grant on Formal Methods and Techniques for Secure Compilation from
the Department of Computer Science of the University of Pisa.

References

1. Abadi, M.: Protection in programming-language translations. In: Secure Internet
Programming, Security Issues for Mobile and Distributed Objects, pp. 19-34 (1999)

2. Abate, C., et al.: When good components go bad: formally secure compilation
despite dynamic compromise. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1351-1368 (2018)

3. Abate, C., et al.: Trace-relating compiler correctness and secure compilation. In:
ESOP 2020. LNCS, vol. 12075, pp. 1-28. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-44914-8_1

4. Abate, C., Blanco, R., Garg, D., Hritcu, C., Patrignani, M., Thibault, J.: Journey
beyond full abstraction: exploring robust property preservation for secure compila-
tion. In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pp.
256-25615. IEEE (2019)

5. Abate, C., Busi, M., Tsampas, S.: Fully abstract and robust compilation and how
to reconcile the two, abstractly (2021)

6. Abou-Saleh, F., Pattinson, D.: Towards effects in mathematical operational seman-
tics. Electr. Notes Theor. Comput. Sci. 276, 81-104 (2011)

7. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, pp. 197-292. Elsevier (2001)

8. Ahmed, A., Blume, M.: Typed closure conversion preserves observational equiva-
lence. In: Hook, J., Thiemann, P. (eds.) Proceeding of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2008, Victoria, BC,
Canada, 2028 September 2008, pp. 157-168. ACM (2008)

9. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding
of the 16th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2011, Tokyo, Japan, 19-21 September 2011, pp. 431-444. ACM (2011).
https://doi.org/10.1145/2034773.2034830

10. Barthe, G., et al.: Formal verification of a constant-time preserving C compiler.
Proc. ACM Program. Lang. 4(Popl), 1-30 (2019)

https://erc.europa.eu/
https://erc.europa.eu/
https://doi.org/10.1007/978-3-030-44914-8_1
https://doi.org/10.1007/978-3-030-44914-8_1
https://doi.org/10.1145/2034773.2034830

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fully Abstract and Robust Compilation 99

Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel counter-
measures: the case of cryptographic “constant-time”. In: 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pp. 328-343. IEEE (2018)

Besson, F., Blazy, S., Wilke, P.: A verified compcert front-end for a memory model
supporting pointer arithmetic and uninitialised data. J. Autom. Reason. 62(4),
433-480 (2019)

Bowman, W.J., Ahmed, A.: Noninterference for free. ACM SIGPLAN Not. 50(9),
101-113 (2015)

Busi, M., et al.: Provably secure isolation for interruptible enclaved execution on
small microprocessors. In: 33rd IEEE Computer Security Foundations Symposium
(CSF 2020) (2020)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157—
1210 (2010)

Devriese, D., Patrignani, M., Piessens, F.: Fully-abstract compilation by approx-
imate back-translation. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 164-177 (2016)
D’Silva, V., Payer, M., Song, D.X.: The correctness-security gap in compiler opti-
mization. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW
2015, San Jose, CA, USA, 21-22 May 2015, pp. 73-87 (2015)

Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, pp. 475-488 (2014)

El-Korashy, A., Tsampas, S., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
CapablePtrs: securely compiling partial programs using the pointers-as-capabilities
principle. CoRR abs/2005.05944 (2020)

Engelfriet, J.: Determinacy - (observation equivalence = trace equivalence). Theor.
Comput. Sci. 36(1), 21-25 (1985)

Gorla, D., Nestmann, U.: Full abstraction for expressiveness: history, myths and
facts. Math. Struct. Comput. Sci. 26(4), 639654 (2016)

Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016). ISBN 9781316823187

Jacobs, K., Timany, A., Devriese, D.: Fully abstract from static to gradual. Proc.
ACM Program. Lang. 5(Popl), 1-30 (2021)

Klin, B.: Bialgebras for structural operational semantics: an introduction. Theoret.
Comput. Sci. 412(38), 5043-5069 (2011)

Klin, B., Sassone, V.: Structural operational semantics for stochastic process cal-
culi. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 428-442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_30

Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, South Carolina, USA, 11-13 January 2006, pp.
42-54. ACM (2006)

Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer sci-
ence applications. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D. (eds.) Cat-
egory Theory and Computer Programming. LNCS, vol. 240, pp. 299-312. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-17162-2_130

Mitchell, J.C.: On abstraction and the expressive power of programming languages.
Sci. Comput. Program. 21(2), 141-163 (1993)

https://doi.org/10.1007/978-3-540-78499-9_30
https://doi.org/10.1007/3-540-17162-2_130

100

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

C. Abate et al.

Morris, F.L.: Advice on structuring compilers and proving them correct. In: Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 144-152 (1973)

Murray, T., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), pp. 417-431. IEEE (2016)
Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Under-
graduate Topics in Computer Science. Springer. London (2007). https://doi.org/
10.1007/978-1-84628-692-6. ISBN 978-1-84628-691-9

Parrow, J.: General conditions for full abstraction. Math. Struct. Comput. Sci.
26(4), 655-657 (2016)

Patrignani, M.: Why should anyone use colours? Or, syntax highlighting beyond
code snippets. CoRR abs/2001.11334 (2020)

Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst.
37(2), 6:1-6:50 (2015)

Patrignani, M., Ahmed, A., Clarke, D.: Formal approaches to secure compilation:
a survey of fully abstract compilation and related work. ACM Comput. Surv.
(CSUR) 51(6), 1-36 (2019)

Patrignani, M., Clarke, D.: Fully abstract trace semantics for protected module
architectures. Comput. Lang. Syst. Struct. 42, 22—45 (2015)

Patrignani, M., Garg, D.: Secure compilation and hyperproperty preservation. In:
2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 392-404.
IEEE (2017)

Patrignani, M., Martin, E.M., Devriese, D.: On the semantic expressiveness of
recursive types. Proc. ACM Program. Lang. 5(Popl), 1-29 (2021)

Piessens, F.: Security across abstraction layers: old and new examples. In: 2020
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pp. 271-279. IEEE (2020)

Plotkin, G.D.: LCF considered as a programming language. Theoret. Comput. Sci.
5(3), 223-255 (1977)

Plotkin, G.D.: A structural approach to operational semantics. Aarhus university
(1981)

Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. (TOPLAS) 19(6), 916-941 (1997)

Skorstengaard, L., Devriese, D., Birkedal, L.: StkTokens: enforcing well-bracketed
control flow and stack encapsulation using linear capabilities. Proc. ACM Program.
Lang. 3(Popl), 19:1-19:28 (2019)

Stewart, G., Beringer, L., Cuellar, S., Appel, A.-W.: Compositional compcert. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 275287 (2015)

Strydonck, T.V., Piessens, F., Devriese, D.: Linear capabilities for fully abstract
compilation of separation-logic-verified code. Proc. ACM Program. Lang. 3(ICFP),
84:1-84:29 (2019)

Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: The verified
cakeML compiler backend. J. Func. Program. 29 (2019)

Thibault, J., Hritcu, C.: Nanopass back-translation of multiple traces for secure
compilation proofs. In: 5th Workshop on Principles of Secure Compilation, PriSC
2021, Virtual Event, 17 January 2021 (2021). http://perso.eleves.ens-rennes.fr/
people/Jeremy. Thibault/prisc2021.pdf

https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
http://perso.eleves.ens-rennes.fr/people/Jeremy.Thibault/prisc2021.pdf
http://perso.eleves.ens-rennes.fr/people/Jeremy.Thibault/prisc2021.pdf

48.

49.

50.

51.

52.

Fully Abstract and Robust Compilation 101

Tsampas, S., Nuyts, A., Devriese, D., Piessens, F.: A categorical approach to secure
compilation. In: Petrisan, D., Rot, J. (eds.) CMCS 2020. LNCS, vol. 12094, pp.
155-179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57201-3-9
Turi, D.: Categorical modelling of structural operational rules: case studies. In: Cat-
egory Theory and Computer Science, 7th International Conference, CTCS 1997,
Santa Margherita Ligure, Italy, 46 September 1997, Proceedings, pp. 127-146
(1997)

Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp.
280-291. IEEE (1997)

Watanabe, H.: Well-behaved translations between structural operational seman-
tics. Electr. Notes Theoret. Comput. Sci. 65(1), 337-357 (2002)

Winskel, G., Nielsen, M.: Models for concurrency. DAIMI Rep. Ser. 22(463) (1993)

https://doi.org/10.1007/978-3-030-57201-3_9

	Fully Abstract and Robust Compilation
	1 Introduction
	2 Fully Abstract and Robust Compilation
	2.1 Fully Abstract Compilation
	2.2 Robust Compilation

	3 Comparing blackFAC and blackRHP
	4 Secure Compilation, Categorically
	4.1 Distributive Laws and Operational Semantics
	4.2 Maps of Distributive Laws as Fully Abstract Compilers

	5 Reconciling Fully Abstract and Robust Compilation
	6 Related Work
	7 Conclusions and Future Work
	References

