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Preface

This volume contains the papers presented at the 19th Asian Symposium on
Programming Languages and Systems (APLAS 2021). APLAS 2021 was co-located
with SPLASH 2021 and held during October 17–18, 2021, as a hybrid physical/virtual
meeting. The physical meeting was held in Chicago, Illinois, USA.

APLAS aims to stimulate programming language research by providing a forum
for the presentation of the latest results and the exchange of ideas in programming
languages and systems. APLAS is based in Asia but is an international forum that serves
the worldwide programming languages community.

Following the tradition from previous years, APLAS 2021 solicited contributions
in the form of regular research papers and tool papers. Among others, solicited topics
included the following: semantics, logics, and foundational theory; design of languages,
type systems, and foundational calculi; domain-specific languages; compilers,
interpreters, and abstract machines; program derivation, synthesis, and transformation;
program analysis, verification, and model-checking; logic, constraint, probabilistic,
and quantum programming; software security; concurrency and parallelism; tools and
environments for programming and implementation; and applications of SAT/SMT to
programming and implementation.

This year we employed a lightweight double-blind reviewing process with an author
response period. Each paper received at least three reviews before the author response
period, which was followed by a 10-day period of Program Committee (PC) discussion.
We received 43 submissions, out of which 17 papers (14 regular papers and 3 tool papers)
were accepted after the thorough review process by the PC. We were also honored to
include two invited talks by distinguished researchers:

– Zhendong Su (ETH Zurich) on “Solidifying and Advancing the Software Founda-
tions”

– Justin Hsu (Cornell University) on “A Separation Logic for Probabilistic Indepen-
dence”

Iwould like to thank everyonewho helpedmakeAPLAS2021 successful. First of all,
I would like to express my sincere thanks to the Program Committee who spent a lot of
time and effort on the reviewprocess. I amalso grateful for the external reviewers for their
thorough and constructive reviews. I thank the General Chair, Wei-Ngan Chin (National
University of Singapore), and Atsushi Igarashi (Kyoto University) who handled all the
details of the conference from the very beginning. Finally, I would like to sincerely thank
the PC chair of APLAS 2020, Bruno C. d. S. Oliveira (The University of Hong Kong),
for his very helpful advice and resources.

October 2021 Hakjoo Oh
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Solidifying and Advancing the Software Foundations

Zhendong Su

ETH Zurich
zhendong.su@inf.ethz.ch

Abstract. Software applications and technologies are built on top of foun-
dational systems such as compilers, databases, and theorem provers. Such
foundations form the trusted computing base, and fundamentally impact
software quality and security. Thus, it is a critical challenge to solid-
ify and advance them. This talk highlights general, effective techniques,
and extensive, impactful efforts on finding hundreds of critical issues in
widely-used compilers, database management systems, and SMT solvers.
It focuses on the high-level principles and core techniques, their significant
practical successes, and future opportunities and challenges.



A Separation Logic for Probabilistic Independence

Justin Hsu

Cornell University
email@justinh.su

Abstract. Probabilistic independence is a useful concept for describing
the result of random sampling—a basic operation in all probabilistic
languages—and for reasoning about groups of random variables. Nev-
ertheless, existing verification methods handle independence poorly, if at
all. We propose a probabilistic separation logic PSL, where separation
models probabilistic independence, based on a new, probabilistic model
of the logic of bunched implications (BI). The program logic PSL is capa-
ble of verifying information-theoretic security of cryptographic construc-
tions for several well-known tasks, including private information retrieval,
oblivious transfer, securemulti-party addition, and simple obliviousRAM,
while reasoning purely in terms of independence and uniformity. If time
permits,wewill also discuss ongoingwork for reasoning about conditional
independence.
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Pavol Vargovčík and Lukáš Holík

Termination Analysis for the π -Calculus by Reduction to Sequential
Program Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Tsubasa Shoshi, Takuma Ishikawa, Naoki Kobayashi, Ken Sakayori,
Ryosuke Sato, and Takeshi Tsukada

Proving LTL Properties of Bitvector Programs and Decompiled Binaries . . . . . . 285
Yuandong Cyrus Liu, Chengbin Pang, Daniel Dietsch, Eric Koskinen,
Ton-Chanh Le, Georgios Portokalidis, and Jun Xu

Solving Not-Substring Constraint with Flat Abstraction . . . . . . . . . . . . . . . . . . . . . 305
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Bui Phi Diep, Lukáš Holík, Denghang Hu, Wei-Lun Tsai, Zhillin Wu,
and Di-De Yen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321



Analysis and Synthesis



Scalable and Modular Robustness
Analysis of Deep Neural Networks

Yuyi Zhong1(B), Quang-Trung Ta1, Tianzuo Luo1, Fanlong Zhang2,
and Siau-Cheng Khoo1

1 School of Computing, National University of Singapore, Singapore, Singapore
{yuyizhong,taqt,tianzuoluo,khoosc}@comp.nus.edu.sg

2 School of Computer, Guangdong University of Technology, Guangzhou, China

Abstract. As neural networks are trained to be deeper and larger, the
scalability of neural network analyzer is urgently required. The main
technical insight of our method is modularly analyzing neural networks
by segmenting a network into blocks and conduct the analysis for each
block. In particular, we propose the network block summarization tech-
nique to capture the behaviors within a network block using a block
summary and leverage the summary to speed up the analysis process.
We instantiate our method in the context of a CPU-version of the state-
of-the-art analyzer DeepPoly and name our system as Bounded-Block
Poly (BBPoly). We evaluate BBPoly extensively on various experiment
settings. The experimental result indicates that our method yields com-
parable precision as DeepPoly but runs faster and requires less compu-
tational resources. Especially, BBPoly can analyze really large neural
networks like SkipNet or ResNet that contain up to one million neurons
in less than around 1 hour per input image, while DeepPoly needs to
spend even 40 hours to analyze one image.

Keywords: Abstract interpretation · Formal verification · Neural nets

1 Introduction

Deep neural networks are one of the most well-established techniques and have
been applied in a wide range of research and engineering domains such as image
classification, autonomous driving etc. However, researchers have found out that
neural nets can sometimes be brittle and show unsafe behaviors. For instance, a
well-trained network may have high accuracy in classifying the testing image
dataset. But, if the testing image is perturbed subtly without changing the
context of the image, it could fool the network into classifying the perturbed
image as something else; this perturbation is known as adversarial attack [1,
2]. To tackle the issue, robustness verification is used to guarantee that unsafe
states will not be reached within a certain perturbation size. Several verification
techniques have been proposed to verify the robustness of neural networks.

c© Springer Nature Switzerland AG 2021
H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-89051-3_1
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In general, these techniques can be categorized into incomplete methods (e.g.
abstract interpretation [3–5]) and complete methods (e.g. constraint solving [6,
7]). Complete methods reason over exact result, but also require long execution
time and heavy computational power. On the contrary, incomplete methods run
much faster but will lose precision along the way.

One of the most state-of-the-art neural network verification methods proposed
in recent years is DeepPoly [5]. It is an incomplete but efficient method that uses
abstract interpretation technique to over-approximate operations in neural net-
work. In particular, DeepPoly designs the abstract domain to contain symbolic
lower and upper constraints, together with concrete lower and upper bounds of
a neuron’s value. The symbolic constraints of a neuron are defined over neurons
in the previous layer; during analysis, they will be revised repeatedly into con-
straints defined over neurons of even earlier layers. This computation is named as
back-substitution and is aimed to obtain more precise analysis results [5].

Considering a network with n affine layers and each layer has at most N
neurons, the time complexity of this back-substitution operation is O(n2 · N3)
[8]. When the neural network has many layers (n is large), this computation is
heavy and it also demands extensive memory space. This is the main bottleneck
of the abstract-interpretation-based analysis used by DeepPoly.

Motivation. As deep neural networks are trained to be larger and deeper to
achieve higher accuracy or handle more complicated tasks, the verification tools
will inevitably need to scale up so as to analyze more advanced neural networks.

To mitigate the requirement for high computational power of DeepPoly, we
propose a network block summarization technique to enhance the scalability of
the verification tool. Our key insight is to define a method that enables trade-
off between precision requirement, time-efficiency requirement and computing-
resource limitation. Our method, specially tailored to handle very deep networks,
leads to faster analysis and requires less computational resources with reasonable
sacrifice of analysis precision. We instantiate our method in the context of a
CPU-version of DeepPoly, but it can also be implemented for the GPU version
of DeepPoly (named as GPUPoly [8]) which can lead to even more gain in speed.

Contribution. We summarize our contributions below:

– We propose block summarization technique supplemented with bounded back-
substitution heuristic to scale up the verification process to handle large net-
works like ResNet34 [9] with around one million neurons.

– We design two types of block summaries that allow us to take “shortcuts” in
the back-substitution process for the purpose of reducing the time complexity
and memory requirement during the analysis process.

– We implement our proposal into a prototype analyzer called BBPoly, which
is built on top of the CPU-version of DeepPoly, and conduct extensive exper-
iments on fully-connected, convolutional and residual networks. The experi-
mental results show that BBPoly is faster and requires less memory allocation
compared to the original DeepPoly, while achieves comparable precision.
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2 Overview

We present an overview of the whole analysis process with an illustrative exam-
ple. Our analyzer is built on top of DeepPoly system, leveraging their design of
abstract domains and abstract transformers. But we will analyze the network
in blocks and generate block summarization to speed up the analysis process.
Formal details of our proposed method will be provided in Sect. 3.

The illustrative example is a fully-connected network with ReLU activation
function as shown in Fig. 1. The network has 4 layers with 2 neurons in each
layer and the two input neurons i1, i2 can independently take any real number
between [−1, 1]. The weights of the connections between any two neurons from
two adjacent layers are displayed at their corresponding edges, the bias of each
neuron is indicated either above or below the neuron. Computation for a neuron
in a hidden layer undergoes two steps: (i) an affine transformation based on
the inputs, weights and biases related to this neuron, which generates a value
v, followed by (ii) a ReLU activation which outputs v if v > 0, or 0 if v ≤ 0.
For the output layer, only affine transformation is applied to generate the final
output of the entire network.

Input layer

i1 ∈ [−1, 1] 1

1

1

-1

i2 ∈ [−1, 1]

1

1

1

-1

0
Hidden layer 1

0

1

0

1

1

0
Hidden layer 2

0

1
Output layer

0

Fig. 1. Example fully-connected network with ReLU activation (cf. [5])

To analyze a neural network, we follow the approach taken by DeepPoly
where each hidden layer is perceived as a combination of an affine layer and
a ReLU layer. Therefore, network in Fig. 1 will be represented by the network
depicted in Fig. 2 for analysis purpose, where a neuron in a hidden layer is
expanded into two nodes: (i) one affine node for the related affine transformation
(such as x3, x4, x7, x8), and (ii) one ReLU node which is the output of ReLU
function (such as x5.x6, x9, x10).

2.1 Preliminary Description on Abstract Domain

We use the abstract domain designed from DeepPoly system [5] to verify neural
networks. For each neuron xi, its abstract value is comprised of four elements:
a symbolic upper constraint us

i , a symbolic lower constraint lsi , a concrete lower
bound li and a concrete upper bound ui. And we have lsi ≤ xi ≤ us

i , xi ∈
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x1
[−1, 1] 1

1

1

-1
x2

[−1, 1]

x3

0
max(0, x3)

x4

0
max(0, x4)

x5

x6

x7

x8

1

1

1

-1

0

0

x9

x10

max(0, x7)

max(0, x8)

x11

x12

1

0

1

1

1

0

Fig. 2. The transformed network from Fig. 1 to perform analysis (cf. [5])

[li, ui]. All the symbolic constraints associated with xi can be formulated as
bi +

∑
j wj · xj , where wj ∈ R, bi ∈ R, j < i. Here, the constraint j < i asserts

that the constraints for xi only refer to variables “before” xi, since the value of
one neuron (at a layer) only depends on the values of the neurons at preceding
layers. For the concrete bounds of xi, we have li ∈ R, ui ∈ R, li ≤ ui and the
interval [li, ui] over-approximates all the values that xi can possibly take.

2.2 Abstract Interpretation on the Example Network

We now illustrate how to apply abstract interpretation on the example network
in order to get the output range of the network, given an abstract input [−1, 1]
for both the input neurons.

The analysis starts at the input layer and processes layer by layer until output
layer. The abstract values of the inputs x1, x2 are respectively 〈ls1 = −1, us

1 =
1, l1 = −1, u1 = 1〉 and 〈ls2 = −1, us

2 = 1, l2 = −1, u2 = 1〉. Next, the affine
abstract transformer (designed by DeepPoly [5]) for x3 and x4 generates the
following symbolic constraints, where the coefficients (and the constant terms,
if any) in constraints are the weights (and bias) in the fully connected layer:

x1 + x2 ≤ x3 ≤ x1 + x2; x1 − x2 ≤ x4 ≤ x1 − x2 (1)

The concrete bounds are computed using concrete intervals of x1, x2 and
symbolic constraints in Eq. (1), thus l3 = l4 = −2 and u3 = u4 = 2 (the
process of computing concrete bound is formally described in Appendix A in
our technical report).

The activation transformer (designed by DeepPoly [5]) is then applied to get
the abstract elements for x5, x6 from x3, x4 respectively. In general, given that
xi = ReLU(xj), if uj ≤ 0, xi is always 0, therefore we have 0 ≤ xi ≤ 0, li =
0, ui = 0. If lj ≥ 0, then xi = xj and we get xj ≤ xi ≤ xj , li = lj , ui = uj . For
the case where lj < 0 and uj > 0, an over-approximation error will be introduced
and we set the abstract element as followed for xi:

xi ≥ ci · xj , xi ≤ uj(xj − lj)
uj − lj

, li = 0, ui = uj , (2)

http://arxiv.org/abs/2108.11651
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where ci = 0 if |lj | > |uj | and ci = 1 otherwise. For example, x5 = ReLU(x3)
and since l3 < 0, u3 > 0, it belongs to the last case described in Eq. (2). |l3| =
|u3| = 2 therefore c5 = 1. Finally, we get the abstract value for x5: l5 = 0, u5 =
2, ls5 = x3, u

s
5 = 0.5 · x3 + 1. Similar computation can be done for x6 to yield

l6 = 0, u6 = 2, ls6 = x4, u
s
6 = 0.5 · x4 + 1.

Next, we work on the symbolic bounds for x7, x8, beginning with:

x5 + x6 ≤ x7 ≤ x5 + x6; x5 − x6 ≤ x8 ≤ x5 − x6 (3)

From the symbolic constraints in Eq. (3), we recursively substitute the sym-
bolic constraints backward layer by layer until the constraints are expressed in
terms of the input variables. Upon reaching back to an earlier layer, constraints
defined over neurons in that layer are constructed and concrete bound values are
evaluated and recorded. Finally the most precise bound among all these layers
will be selected as the actual concrete bound for x7 and x8 respectively. This
process is called back-substitution and is the key technique proposed in Deep-
Poly to achieve tighter bounds. We follow the back-substitution procedure in
DeepPoly and construct constraints for x7, x8 defined over x3, x4:

x3 + x4 ≤ x7 ≤ 0.5 · x3 + 0.5 · x4 + 2
x3 − (0.5 · x4 + 1) ≤ x8 ≤ 0.5 · x3 + 1 − x4,

(4)

And we further back-substitute to have them defined over x1, x2:

2x1 ≤ x7 ≤ x1 + 2
0.5 · x1 + 1.5 · x2 − 1 ≤ x8 ≤ −0.5 · x1 + 1.5 · x2 + 1

(5)

Finally, we determine the best bound for x7 to be l7 = 0, u7 = 3 and that
for x8 to be l8 = −2, u8 = 2. Note that we have additionally drawn a dashed
orange box in Fig. 2 to represent a network block. Here, we propose a block
summarization method which captures the relations between the input (leftmost)
layer and output (rightmost) layer of the block. Thus Eq. (5) can function as the
block summarization for the dashed block in Fig. 2; we leverage on this block
summarization to make “jumps” during back-substitution process so as to save
both running time and memory (details in Sect. 3).

To continue with our analysis process, we obtain next:

l9 = 0, u9 = 3, ls9 = x7, us
9 = x7

l10 = 0, u10 = 2, ls10 = x8, us
10 = 0.5 · x8 + 1

l11 = 1, u11 = 6, ls11 = x9 + x10 + 1, us
11 = x9 + x10 + 1

l12 = 0, u12 = 2, ls12 = x10, us
12 = x10,

(6)

Here, we can quickly construct the constraints of x11 defined over x1, x2 by
using the block summarization derived in Eq. (5); yielding 2.5 · x1 + 1.5 · x2 ≤
x11 ≤ 0.75 · x1 + 0.75 · x2 + 4.5. By doing so, our analysis will return x11 ∈ [1, 6]
and x12 ∈ [0, 2]. Note that we lose some precision when making “jumps” through
block summarization; the interval for x11 would be [1, 5.5] if we were to stick to
layer-by-layer back-substitution as originally designed in DeepPoly.
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(a) Intuitive segmentation (b) Designed segmentation

Fig. 3. Example on segmenting network into blocks

2.3 Scaling up with Block Summarization

As illustrated in Eq. (4) and Eq. (5), we conduct back-substitution to construct
symbolic constraints defined over neurons at earlier layer in order to obtain a
tighter concrete bound. In DeepPoly, every affine layer initiates layer-by-layer
back-substitution until the input layer. Specifically, we assume a network with
n affine layers, maximum N neurons per layer and consider the kth affine layer
(where the input layer is indexed as 0). Every step of back-substitution for layer k
through a preceding affine layer requires O(N3) time complexity and every back-
substitution through a preceding ReLU layer requires O(N2), it takes O(k·N3) for
the kth affine layer to complete the back-substitution process. Overall, DeepPoly
analysis requires O(n2 · N3) time complexity. This can take a toll on DeepPoly
when handling large networks. For example, in our evaluation platform, Deep-
Poly takes around 40 hours to analyze one image on ResNet18 [9] with 18 layers.
Therefore, we propose to divide the neural networks into blocks, and compute the
summarization for each block. This summarization enables us to charge up the
back-substitution operation by speeding across blocks, as demonstrated in Eq. (5)
where constraints of neuron x7 are directly defined over input neurons.

3 Network Block Summarization

3.1 Network Analysis with Modularization

For better scalability, we propose a modularization methodology to decrease the
computational cost as well as the memory usage, where we segment the network
into blocks and analyze each block in sequence. Specifically, we propose the
following two techniques to reduce computation steps:

1. Generate summarization between the input and output neurons for each
block, and leverage block summarization to make “jumps” during back-
substitution instead of doing it layer by layer.

2. Leverage block summarization by bounding back-substitution operation to
terminate early.

As illustrated by the simplified network representation in Fig. 3, we segment a
network into two blocks. We then show (1) how to generate summarization given
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Fig. 4. ResNet18 [9] and the corresponding block segmentation

the network fragment and (2) how to leverage the summarization to perform
back-substitution. The details are as follows.

Network Segmentation. We parameterize network segmentation with a
parameter σ, which is the number of affine layers required to form a block.
For example, σ is set to 3 in Fig. 3. Since each layer in the neural network ends
with the ReLU function, an intuitive segmentation solution is to divide the net-
work so that each block always ends at a ReLU layer, as depicted in Fig. 3a.
However, doing so requires more computation during the back-substitution but
does not gain more accuracy as compared to the segmentation method in which
each block ends by an affine layer.1 Therefore, we choose the later segmentation
option, as shown in Fig. 3b.

Moreover, special care is required to segment a residual network. As illus-
trated in Fig. 4, the most important feature of residual network is the skip con-
nection that enables a layer to take “shortcut connections” with a much earlier
layer [9] (displayed by the curved line). Thus, a set of layers residing in between
a layer and its skip-connected layer forms an “intrinsic” residual block, to be
used to segment the network (e.g., blocks #2 to #9 in Fig. 4). A more dynamic
choice of block size or block number could potentially lead to better trade-off
between speed and precision; we leave it as future work.

Back-Substitution with Block Summarization. We present the analysis
procedure which implements our block summarization method (Sect. 3.2) and
bounded back-substitution heuristic in Algorithm 1. Given an input neural net-
work, it will be first segmented (line 1) using the method described in previous
subsection. For a block consisting of layers γa, . . . , γk, the start layer and the
end layer of the block will be remembered by the markers GetStartLayer and
IsEndLayer respectively. The analysis of ReLU layers (line 3) only depends on

1 An explanation of our choice to end blocks at an affine layer instead of a ReLU layer
can be found in Appendix B of our technical report.
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the preceding affine layer it connects to (line 4). The computation of ReLU layer
(line 5) follows the process described in Sect. 2.2 and Eq. (2).

To handle affine layer with back-substitution, we firstly assign γpre to be the
preceding layer of γk (line 7). Then, we initialize the constraint set of γk to be the
symbolic lower and upper constraints for neurons in γk (line 8). Constraints Υk

are defined over neurons in layer γpre and directly record the affine transforma-
tion between layer γk and γpre. Thus, we could use Υk and the concrete bounds
of neurons in γpre to compute the initial concrete bounds for neurons in layer
γk (line 9), using the constraint evaluation mechanism described in Appendix A
of our technical report. As such, we conduct back-substitution to compute the
concrete bounds for neurons in affine layer γk (lines 11–27).

Algorithm 1: Overall analysis procedure in BBPoly
Input: M is the network (eg. Figure 2); τ is the back-substitution threshold; σ
is the network segmentation parameter

Annotatation: input layer of M as γin; constraint set of affine layer γk as Υk;
the set of concrete bounds for neurons in layer γk ∈ M as Ck; the segmented
network model as M

Assumption: the analysis is conducted in ascending order of the layer index
Output: tightest concrete bounds Ck computed for all layer γk ∈ M
1: M ← SegmentNetwork(M, σ)
2: for all layer γk ∈ M do
3: if IsReluLayer(γk) then
4: γpre ← PredecessorLayer(γk)
5: Ck ← ComputeReluLayer(γpre)
6: else
7: γpre ← PredecessorLayer(γk)
8: Υk ← GetSymbolicConstraints(γk)
9: Ck ← EvaluateConcreteBounds(Υk, γpre)

10: counterk = 0
11: while γpre �= γin do
12: if IsEndLayer(γpre) then
13: sum ← ReadSummary(γpre)
14: Υk ← BacksubWithBlockSummary(Υk, sum)
15: counterk ← counterk + 1
16: γpre ← GetStartLayer(γpre)
17: else
18: sym cons ← GetSymbolicConstraints(γpre)
19: Υk ← BacksubWithSymbolicConstraints(Υk, sym cons)
20: counterk ← counterk + 1
21: γpre ← PredecessorLayer(γpre)
22: if IsEndLayer(γk) and γpre = GetStartLayer(γk) then
23: StoreSummary(γk, Υk)
24: temp ck ← EvaluateConcreteBounds(Υk, γpre)
25: Ck ← UpdateBounds(Ck, temp ck)
26: if counterk ≥ τ and ¬(IsEndLayer(γk) and LackSummary(γk)) then
27: break
28: return all Ck for all layer γk ∈ M

http://arxiv.org/abs/2108.11651
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We have two types of back-substitution and executing either one of the two
will be considered as one step of back-substitution which leads to an increment
of the counter for layer γk (lines 15, 20):

– If γpre is the end layer of a block, we first read the block summary of γpre

(lines 12–13), and then call BacksubWithBlockSummary(Υk, sum) to perform
back-substituion over a block (line 14). After execution, Υk will be updated
to be defined over the start layer of the block. Lastly, in preparation for next
iteration of execution, γpre is set to the start layer of the block (line 16).

– Otherwise, we conduct layer-by-layer back-substitution (lines 18–21) similarly
to DeepPoly. We obtain sym cons, the symbolic constraints built for γpre,
and call BacksubWithSymbolicConstraints(Υk, sym cons) (line 19). Then, Υk

will be updated to be defined over the predecessor layer of γpre. Pertaining
to block summarization construction, if γpre and γk are the start and the
end layer of the same block, Υk will be recorded as the block summary (lines
22–23).

After generating a new set of constraints (lines 14, 19), we can compute a set
of potential concrete bounds temp ck using the new constraints Υk defined over
the new γpre (line 24). Then we update Ck by the most precise bounds between
temp ck and the previous Ck (line 25) as proposed in DeepPoly, where the most
precise means the smallest upper bound and biggest lower bound.

Bounded Back-Substitution. Normally, we continue new constraint construc-
tion, constraint evaluation and concrete bound update for γk until the input layer
(line 11). The goal here is to explore the opportunity for cancellation of vari-
ables in the constraints defined over a particular layer. Such opportunity may
lead to attaining tighter bounds for abstract values of neurons at layer k. Nev-
ertheless, it is possible to terminate such back-substitution operation earlier to
save computational cost, at the risk of yielding less precise results.2 This idea
is similar in spirit to our introduction of block summarization. We term such
earlier termination as bounded back-substitution. It may appear similar to the
“limiting back-substitution” suggested in DeepPoly [5] or GPUPoly [8]. How-
ever, we note that one step in back-substitution in our approach can either be
a back-substitution over one layer or over a block summary. Therefore, even
though we bound the same number of steps of back-substitution, our method
allows us to obtain constraints defined over more preceding layers compared to
limiting back-substitution in DeepPoly or GPUPoly.

Bounded back-substitution is incorporated in Algorithm 1, by accepting an
input τ , which is a threshold for the maximum number of steps to be taken during
back-substitution. More specifically, we initialize a counter when processing layer
γk (line 10), and increment the counter accordingly during the analysis (lines
15, 20). Finally, we end the back-substitution iteration for layer γk once the
threshold is reached (line 26).
2 As a matter of fact, our empirical evaluation (detailed in Appendix C in

our technical report) shows that the degree of improvement in accuracy degrades
as we explore further back into earlier layers during back-substitution.

http://arxiv.org/abs/2108.11651
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During the construction of block summarization, we suspend this threshold
checking when γk is the end layer of a block (second test in line 26). This ensures
that the algorithm can generate its block summarization without being forced
to terminate early. In summary, suppose each block has at most � layers, under
bounded back-substitution, the layer γk will back-substitute either � layers (if
γk is the end layer of a block) or τ steps (if γk is not the end layer of a block).

3.2 Summarization Within Block

Block Summarization. The summarization captures the relationship between
the output neurons and input neurons within a block. Given a block with k
affine layers inside, we formally define it as Γ = {γin, γ1, γ

′
1, . . . , γk} (e.g. block1

in Fig. 3b) or Γ = {γ′
0, γ1, γ

′
1, . . . , γk} (like block2 in Fig. 3b), where γi refers to

an affine layer, γin refers to the input layer and γ′
i refers to the ReLU layer with

ReLU function applied on γi, for i ∈ {0, 1, 2, · · · , k}.
Suppose the last layer γk = {xk1, · · · , xkN} contains N neurons in total. The

block summarization ΦΓ = {〈φL
xk1

, φU
xk1

〉, · · · , 〈φL
xkN

, φU
xkN

〉} is defined as a set of
constraint-pairs. For j ∈ {1, 2, · · · , N}, each pair 〈φL

xkj
, φU

xkj
〉 corresponds to the

lower and upper constraints of neuron xkj defined over the neurons in the first
layer of the block (be it an affine layer γin or a ReLU layer γ′

0). As these lower
and upper constraints encode the relationship between output neurons and input
neurons with respect to the block Γ , they function as the block summarization.

Back-Substitution with Block Summarization. To explain our idea, we
present the overall back-substitution process as the matrix multiplication (cf.
[8]) depicted in Fig. 5. Matrix Mk encodes the current constraints for neurons in
layer l defined over neurons in previous layer k, where 1 ≤ k < l. The cell indexed
by the pair (xl

hm, xk
ic) in the matrix records the coefficient between neuron xl

hm

in layer l and neuron xk
ic in layer k. The same notation also applies for matrix F k

and Mk−1, where F k denotes next-step back-substitution and Mk−1 represents
a newly generated constraint for neurons in layer l defined over neurons in the
preceding layer k − 1. As we always over-approximate ReLU function to a linear
function, without loss of generality, we therefore discuss further by considering
a network as a composition of affine layers.
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Fig. 5. Back-substitution process can be represented as matrix multiplication with
constant terms (e.g. biases) being omitted, cf. [8]
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Next, we describe how to perform back-substitution with the generated block
summarization. After completing the layer-by-layer back-substitution process
within a given block (take block 2 in Fig. 3b as example), we obtain constraints
of neurons in the affine layer 6 (γ6) defined over neurons in the ReLU layer 3 (γ′

3),
which corresponds to Mk. This matrix is then multiplied with matrix F k1 which
captures the affine relationship between neurons in layer γ′

3 and γ3 (this affine
relationship is actually an over-approximation since γ′

3 = ReLU(γ3)), followed by
another multiplication with matrix F k2 constructed from block summarization
for block 1 (in Fig. 3b), denoted here by ΦΓ1 . ΦΓ1 is a set of constraints for
neurons in the affine layer 3 (γ3) defined over neurons in the input layer (γin)
and is computed already during the analysis of block 1. Hence, the resulting
matrix Mk ◦ F k1 ◦ F k2 encodes the coefficients of neurons in layer γ6 defined
over neurons in layer γin. Through this process, we achieve back-substitution of
the constraints of layer γ6 to the input layer.

Memory Usage and Time Complexity. In the original method, the mem-
ory usage of DeepPoly is high since it associates all neurons with symbolic con-
straints and maintains all symbolic constraints throughout the analysis process
for the sake of layer-by-layer back-substitution. In work of [10] and [11], they
all faced with out-of-memory problem when running DeepPoly on their eval-
uation platform. In our block summarization approach, a block captures only
the relationship between its end and start layers. Consequently, all the symbolic
constraints for intermediate layers within the block can be released early once
we complete the block summarization computation. Thus our method requires
less memory consumption when analyzing the same network, and the memory
usage can also be controlled using the network segmentation parameter σ.

For time complexity, consider a network with n affine layers and each layer
has at most N neurons, DeepPoly’s complexity is O(n2 · N3). In our method,
with bounded back-substitution (detail in Sect. 3.1), we can bound the number
of steps for back-substitution to a constant for each layer. Thus the time com-
plexity can be reduced to O(n · N3). Without bounded back-substitution, we
have constant-factor reduction in time complexity, yielding the same O(n2 ·N3).

3.3 Summarization Defined over Input Layer

Previously, Sect. 3.2 describes a back-substitution mechanism on “block-by-
block” basis. To further simplify the back-substitution process and save even
more on the execution time and memory, we also design a variation of block
summarization that is defined over the input layer. As the overall procedure of
back-substitution with summarization defined over input layer is similar to the
block summarization described in Algorithm 1, we provide the algorithm for this
new summary in Appendix G of our technical report.

Summary over Input. Just as in Sect. 3.2, the summary-over-input is still
formulated as ΦΓ . However, 〈φL

xjk
, φU

xjk
〉 corresponds to constraints of neuron

xjk which are now defined over the input neurons. To generate summary for

http://arxiv.org/abs/2108.11651
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block Γi, we firstly do layer-by-layer analysis within the block, then we back-
substitute further with the summary for block Γi−1 which is defined over input
neurons, thus we get ΦΓi

defined over the input neurons.

Back-Substitution with Summary over Input. The back-substitution pro-
cess also follows the formulation described in Sect. 3.2. The resulting matrix
Mk ◦ F k1 ◦ F k2 will directly be defined over input neurons since F k2 is the
summary of preceding block directly defined over input neurons.

Memory Requirement and Time Complexity. Once the summary gener-
ation for block Γi has completed, all symbolic constraints and summaries from
previous i−1 blocks could be released, only the input layer needs to be kept. For
time complexity, each layer back-substitutes at most l + 1 steps (if each block
has maximum l layers), the time complexity will be O(n · N3).

4 Experiment

We implemented our proposed method in a prototype analyzer called BBPoly,
which is built on top of the state-of-the-art verifier DeepPoly. We conducted
extensive experiments to evaluate the performance of both our tool and Deep-
Poly, in terms of precision, memory usage and runtime. In the following subsec-
tions, we will describe the details of our experiment.

4.1 Experiment Setup

We propose two types of block summary in our BBPoly system:

– Block summarization as described in Sect. 3.2. It can be supplemented with
bounded back-substitution heuristic in Sect. 3.1 to facilitate the analysis of
extremely large network;

– Block summary defined over input layer that is introduced in Sect. 3.3

We compare our methods with the state-of-the-art system DeepPoly [5].
DeepPoly is publicly available at the GitHub repository of the ERAN system
[12]. On the other hand, we do not compare with existing work that uses MILP
solving [13] since the latter can only handle small networks, such as MNIST/CI-
FAR10 networks with 2 or 3 hidden layers while our BBPoly can analyze large
networks of up to 34 hidden layers.

Evaluation Datasets. We chose the popular MNIST [14] and CIFAR10 [15]
image datasets that are commonly used for robustness verification. MNIST con-
tains gray-scale images with 28 × 28 pixels and CIFAR10 consists of RGB 3-
channel images of size 32 × 32. Our test images were obtained from DeepPoly
paper where they selected the first 100 images of the test set of each dataset.
The test images are also publicly available at [12].

Evaluation Platform and Networks. The evaluation machine is equipped
with a 2600 MHz 24 core GenuineIntel CPU with 64 GB of RAM. The imple-
mentation is 64-bit based, while soundness under floating-point arithmetic is
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also preserved as in DeepPoly [5]. We conducted experiments on networks of
various sizes as itemized in Table 1; these include fully-connected, convolutional
and (large sized) residual networks where the number of hidden neurons is up to
967K. All networks use ReLU activation, and we list the layer number and
number of hidden neurons in the table. Specifically, the networks whose names
suffixed by “DiffAI” were trained with adversarial training DiffAI [16]. These
benchmarks are also collected from [12].

Verified Robustness Property. We verified the robustness property against
the L∞ norm attack [17] which is paramterized by a constant ε of perturbation.
Originally, each pixel in an input image has a value pi indicating its color inten-
sity. After applying the L∞ norm attack with a certain value of ε, each pixel now
corresponds to an intensity interval [pi − ε, pi + ε], forming an adversarial region
defined by

�n
i=1[pi − ε, pi + ε]. Our job was to verify whether a given neural

network can classify all perturbed images within the given adversarial region by
the same label as of the original input image. If so, we conclude that robustness
is verified for this input image, the given perturbation ε and the tested network.
For images that fail the verification, due to the over-approximation error, we fail
to know if the robustness actually holds and deem the results as inconclusive.
We set a 3-h timeout for the analysis of each image, if the verifier fails to return
a result within 3 hours, we also deem it as inconclusive.

Table 1. Experimental networks

Neural network Dataset #Layer #Neurons Type Candidates

MNIST 9 200 MNIST 9 1,610 Fully connected 97

ffcnRELU Point 6 500 MNIST 6 3,000 Fully connected 100

convBigRELU MNIST 6 48,064 Convolutional 95

convSuperRELU MNIST 6 88,544 Convolutional 99

ffcnRELU Point 6 500 CIFAR10 6 3,000 Fully connected 56

convBigRELU CIFAR10 6 62,464 Convolutional 60

SkipNet18 DiffAI CIFAR10 18 558K Residual 41

ResNet18 DiffAI CIFAR10 18 558K Residual 46

ResNet34 DiffAI CIFAR10 34 967K Residual 39

4.2 Experiments on Fully-Connected and Convolutional Networks

We firstly present the experiment results on fully-connected and convolutional
networks for both the MNIST and CIFAR10 datasets. We set the block segmen-
tation parameter to be 3;3 this means there will be 3 affine layers contained in
a block. We conduct experiments on both block-summarization and summary-
over-input methods. And the bounded back-substitution heuristic is disabled for
3 We have conducted preliminary experiments on the effectiveness of having different

block sizes; the results are available in Appendix F of our technical report.
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this part of experiments. We set six different values of perturbation ε for differ-
ent networks according to the settings in DeepPoly (details in Appendix D of
our technical report). The verified precision is computed as follows:

Number of verified images
Number of candidate images

(7)

where candidate images are those which have been correctly classified by a
network. The numbers of candidate images for each network are presented in
Table 1. Figure 6 shows the precision comparison among different methods on
MNIST networks, and Fig. 7 shows the precision on CIFAR10 networks.4 As
expected, DeepPoly ≥ BBPoly (block summary) ≥ BBPoly (input summary)
with respect to precision and execution time. Apart from MNIST 9 200 net-
work, our methods actually achieve comparable precision with DeepPoly.

With regard to the execution time, for larger networks such as the three
convolutional networks experimented, our block-summarization method can

Fig. 6. Verified robustness precision comparison between our BBPoly system and Deep-
Poly for MNIST fully-connected and convolutional networks

4 Due to page constraint, full details of the precision and average execution time per
image for the experiments are recorded in Table 5 in our technical report.

http://arxiv.org/abs/2108.11651
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save around half of the execution time in comparison with that by Deep-
Poly. Interested readers may find the details in Table 5 in Appendix E of
our technical report. The execution time can be significantly reduced for even
larger network, such as the deep residual networks, as demonstrated in Sect. 4.3.

4.3 Experiments on Residual Networks

Network Description. We selected three residual networks that have 18 or 34
layers and contain up to almost one million neurons as displayed in Table 1. The
SkipNet18, ResNet18 and ResNet34 were all trained with DiffAI defence.

Fig. 7. Verified robustness precision comparison between our BBPoly system and Deep-
Poly for CIFAR10 fully-connected and convolutional networks.

Perturbation Size. DeepPoly is not originally designed to handle such large
networks and is inconclusive within our timeout. However, an efficient GPU
implementation of DeepPoly (called GPUPoly) [8] was proposed for much larger
networks. GPUPoly achieves the same precision as DeepPoly and it selects ε =
8/255 for our experimental residual networks. Thus we follow the same setting
as in GPUPoly. Unfortunately, GPUPoly does not run in one-CPU environment,
and thus not comparable with our experimental setting.

Precision Comparison with DeepPoly. We only conducted robustness ver-
ification on candidate images as in Sect. 4.2. We set our baselines to be block-
summarization method with bounded back-substitution in four steps (abbrevi-
ated by “BlkSum 4bound”), and summary-over-input method (abbreviated by
“Input Sum”). The number of candidate images, verified images and the average
execution time per image for our experiment are listed in Table 2. As illustrated
in Table 2, the “Input Sum” method verifies more or at least the same number of

http://arxiv.org/abs/2108.11651
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images as compared to the “BlkSum 4bound” method but requires less execution
time, which demonstrates the competitive advantage of our summary-over-input
method.

Verified precision is computed using formula 7 with data from Table 2; the
results are displayed in Table 3 for residual networks. DeepPoly fails to verify any
image within the timeout of 3 hours in our evaluation platform (indicated by ‘-’)
whereas our methods yield reasonable verified precision within this time limit,
supporting our hypothesis that BBPoly can scale up to analyze large networks
with fair execution time and competitive precision.

Table 2. The number of verified images and average execution time per image for
CIFAR10 residual networks

Neural net ε Candidates BBPoly (BlkSum 4bound) BBPoly (Input Sum) DeepPoly

Verified Time (s) Verified Time (s) Verified Time (s)

SkipNet18 DiffAI 8/255 41 35 4027.08 36 1742.93 – –

ResNet18 DiffAI 8/255 46 29 3212.26 29 984.43 – –

ResNet34 DiffAI 8/255 39 21 2504.89 22 1296.78 – –

Table 3. Verified precision comparison computed from Table 2

Neural net ε BBPoly
(BlkSum 4bound)

BBPoly
(Input Sum)

DeepPoly

SkipNet18 DiffAI 8/255 85.3% 87.8% –

ResNet18 DiffAI 8/255 63.0% 63.0% –

ResNet34 DiffAI 8/255 53.8% 56.4% –

Memory Comparison with DeepPoly. We mention earlier that our meth-
ods utilize less memory. To empirically testify this, we compared the peak mem-
ory usage between DeepPoly and summary-over-input method with respect to
ResNet18 DiffAI, on the first input image in our dataset and ε = 8/255. We used
the following command to check the peak memory usage of our analysis process:

grep VmPeak /proc/$PID/status

According to the results, DeepPoly took up to 20.6 GB of memory while our
summary-over-input method needed much less memory. It took only 11.4 GB of
memory, which is 55% of the memory usage of DeepPoly.

Time Comparison with DeepPoly. To the best of our knowledge, there is no
public experimental result of using DeepPoly to analyze ResNets. We initially
used DeepPoly to analyze input images in our dataset with a smaller ε = 0.002 for
ResNet18 DiffAI. Since DeepPoly took around 29 hours to complete the verifica-
tion of an image, we could not afford to run DeepPoly for all 100 test images. In
contrast, our summary-over-input method took only 1319.66 s (≈22 min) for the
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same image. We also tried to analyze ResNet18 DiffAI with ε = 8/255 according
to the original perturbation setting, and DeepPoly took around 41 hours to com-
plete the verification of one image. On the other hand, our block-summarization
with bounded back-substitution in 4 steps used average 3212.26 s (≈54 min) for
one image.

5 Discussion

We now discuss the limitation of our work. There are two limitations as follows.
Firstly, although the experimental results in Sect. 4.2 demonstrate that our tool
yields comparable precision with DeepPoly for majority of the tested networks,
it still significantly less precise than DeepPoly in certain benchmarks, such as
the MNIST 9 200 network. We have explained earlier that this loss of precision
is due to our current block summarization technique which cannot capture a
precise enough relationship between neurons in the start and the end layer of
a block. In the future, we aim to generate a more tightened summarization to
reduce the over-approximation error and increase the precision of our analyzer.
Secondly, our current construction of a block is simple and straightforward. We
currently fix the block size to be a constant (e.g. 3), and have not considered the
intricate information related to the connectivity between layers when choosing
the block size. For future work, we will investigate how to utilize such information
to assign the block size dynamically. This could potentially help the analysis to
find a better trade-off between speed and precision.

Our proposed method on block summarization could potentially be applied
to other neural network verification techniques to enhance their scalability. For
instance, in constraint-based verification, the network is formulated by the con-
junction of the encoding of all neurons and all connections between neurons [18].
This heavy encoding is exact but lays a huge burden on the constraint solver. Fol-
lowing our block summary method, we could generate over-approximate encod-
ing of the network block to summarize the relationship between the start layer
and end layer of the block. This could potentially lead to a significant decrease
in the number of constraints and make such analyzer more amenable to handle
larger networks.

6 Related Work

Existing works on analyzing and verifying the robustness of neural networks can
be broadly categorized as complete or incomplete methods: given sufficient time
and computational resource, a complete verifier can always provide a definite
answer (yes or no) indicating whether a neural network model is robust or not,
while an incomplete verifier might return an unknown answer.

Typical complete methods include the works in [6,7,19,20], which encode the
verification problems into arithmetic constraints, and utilize the corresponding
sound and complete solvers to solve them. In particular, the techniques in [6,19]
are based on MILP (mixed integer liner program) solvers, while the verifiers
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in [7,20] use SMT (satisfiability modulo theory) solvers in the theory of linear
real arithmetic with ReLU constraints. Although these solvers can give precise
answers, they are also costly when handling a large set of constraints with many
variables. Hence, it is difficult for complete verifiers to scale up.

In a different approach, the works [3–5] introduce incomplete methods which
over-approximate the behavior of neural networks using techniques like abstrac-
tion interpretation, reachability analysis etc. Even though they might lose preci-
sion in certain situations, they are more scalable than those complete methods.
The abstract domain devised for abstract interpretation is the essential part
of the analysis. There has been progress in the design of abstract domains,
from interval domains in [3] to zonotope domains in [4] and finally to polyhe-
dral domains in [5]. These domains allow the verifiers to prove more expressive
specifications, such as the robustness of neural networks, and handle more com-
plex networks, like the deep convolutional networks. Especially, the polyhedral
domain in [5] can scale up the performance of the verifier DeepPoly to handle
large networks. Recently, there have been also efforts on combining both incom-
plete method (such as abstraction) and complete method (MILP encoding and
solving), such as the works [19] and [21].

All above-mentioned verification methods are actually doing qualitative veri-
fication by considering only two cases: whether the network satisfies the property,
or not. In most recent years, researchers have been looking into quantitative ver-
ification to check how often a property is satisfied by a given network under a
given input distribution. For instance, the work [10] examines if majority portion
of the input space still satisfies the property with a high probability.

7 Conclusion

We have proposed the block summarization and bounded back-substitution to
reduce the computational steps during back-substitution process, making it more
amenable for analyzer to handle larger network with limited computational
resources, such as having only CPU setup. We instantiated our idea on top
of DeepPoly and implement a system called BBPoly. Experiment shows that
BBPoly can achieve the verified precision comparable to DeepPoly but save
both running time and memory allocation. Furthermore, our system is capable
of analyzing large networks with up to one million neurons while DeepPoly can-
not conclude within a decent timeout. We believe that our proposal can assist
with efficient analysis and be applied to other methods for better scalability.
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Abstract. Verification of memory safety such as absence of null pointer
dereferences and memory leaks in system software is important in prac-
tice. O’Hearn’s group proposed a new method of memory safety analy-
sis/verification by modular abstract interpretation with separation logic
and biabduction. To realize this method, one has to construct a call
graph before the modular abstract interpretation. This paper aims to ana-
lyze/verify memory safety of system software written in C programming
language by this method, and as the first step this paper provides a func-
tion pointer eliminator tool to eliminate function pointer calls in order
to construct a call graph. The tool uses SVF for pointer analysis. First
C programs are translated into LLVM programs by Clang and then SVF
analyses the LLVM programs. The tool given in this paper finds correspon-
dence between function pointer calls in C programs and those in LLVM
programs, and transforms the C programs into C programs with the same
functionality and without any function pointer calls. The experimental
results for gzip, git, and OpenSSL using this function pointer eliminator
are presented and they show that this tool is sufficiently efficient and pre-
cise for the purpose.

1 Introduction

Large and complicated software is being increasingly used in mission critical
settings making software verification more and more important. In particular,
memory safety of software is important, since unsafe software may cause runtime
errors. It is necessary for controlling software such as airplane controllers and
car controllers. It is also necessary for communication software, since memory
unsafe program may lose robustness against attackers.

There is theoretically and practically successful work for automatic analyzer
of memory safety by O’Hearn’s group [2,4,9]. They use abstract interpretation for
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the abstract domain of separation logic formulas with lists [3]. They use footprint
analysis for precondition generation [1] and biabduction for modular analysis [2].

Their approach is modular and they first make a dependency list of functions,
based on function call relation, and then they analyze all functions from the
bottom functions, namely, functions that do not call other functions, to the top
level function such as main. However, if programs contain a function pointer call
such as (*fp)(); where fp is a function pointer variable, we cannot make a
dependency list and we cannot analyze programs in a modular way.

In this paper, we will present a tool for function pointer elimination for this
purpose. More specifically, in order to analyze/verify memory safety of system
software written in C programming language by their method, as the first step
this paper provides a tool that eliminates function pointer calls by keeping the
program semantics. Moreover one can also use our tool as a frontend for any C
program analyzers and transformers, since our tool is so general by inputting a
C program and outputting another C program without function pointer calls.

Our tool FPE (Function Pointer Eliminator) uses Clang and SVF. SVF is a
tool that enables scalable and precise interprocedural Static Value-Flow analysis
for C programs by leveraging recent advances in sparse analysis [10]. It uses
Andersen’s algorithm for pointer analysis. Our tool works as a client program in
[10]. SVF computes function names for each function pointer call in LLVM code
translated from C source code by Clang. Our tool analyzes the correspondence
between function pointer calls in C source code and those in LLVM code. With
this information, we find function names for function calls in C source code.
After that, when function names for a function pointer call (*fp)() is { F1, F2,
F3 }, then we transform this call into (fp == F1 ? F1() : fp == F2 ? F2()
: F3()). By this transformation, eventually all function pointer calls will be
eliminated while keeping the semantics from C source code.

Our main challenge is to find a value for a C expression from an LLVM expres-
sion even for complicated expressions, so that our tool can work for OpenSSL
and git. In particular, our tool can handle nested structures with arrays. More-
over, for solving struct field name renaming, we added an index number for each
field.

We evaluated our function pointer eliminator on software like gzip, git, and
OpenSSL. Our eliminator processes gzip quickly and processes git and OpenSSL
in 16 min. Results show that our eliminator is sufficiently efficient and precise for
our purpose, where precision meant the number of candidates of function names
for an indirect function call.

As related work, there are papers [5–8,11] for function pointer analysis for
C language and assembly languages such as LLVM language, for example, for
malware detection. However, we have not found any other function pointer elim-
inator tools for C programming language in the literature, even though those
function pointer analysis papers could give sufficient theory for a function elim-
inator tool. Optimizers in compilers can replace some indirect function calls by
direct function calls, but some indirect function calls sometimes may be left
unchanged. On the other hand, our tool replaces every indirect function call by
a direct function call.
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Fig. 1. The design of FPE

Section 2 explains our function pointer eliminator FPE. Section 3 discusses
our tool. Section 4 discusses experimental results. We conclude in Sect. 5.

2 The Function Pointer Eliminator FPE

2.1 Usage of FPE

This section explains the usage of the function pointer eliminator FPE.
FPE is invoked through the command

fpe <dir>

where the directory <dir> has input C files. Then the output C files, which
have the same functionality as the input C files and do not have any function
pointer calls, are created in the directory <dir>-fpe with the same file names
and subdirectory names and tree structure as the original ones. The input con-
dition is that the input C files are preprocessed and compilable. For simplicity
of implementation, FPE does not cover some complicated function pointer call
expressions. This point will be discussed in the next section. However FPE cov-
ers the entirety of gzip, git, and OpenSSL. FPE is open source and is publically
available for download at https://github.com/d-kmr/fpe.git.

2.2 Implementation of FPE

This section explains implementation of the function pointer eliminator FPE.
The whole design of FPE is illustrated in Fig. 1. The input to FPE is a list of C
files, and the output is transformed C files that have the same functionality as
the original ones but do not have any function pointer calls.

The FPE system works as follows. (1) An input C file (say input.c) is
translated into LLVM-IR by Clang. A bitcode file (input.bc), which is a binary
file of LLVM-IR, is produced by the command:

clang -c -fno-discard-value-names -emit-llvm input.c

where the option -emit-llvm is to produce LLVM-IR code, and -fno-discard-
value-names is to keep value names in the source code. A bitcode file is produced
for each input C file. The produced bitcode files are combined into a single bitcode
file by the llvm-dis command when the input is several C files.

https://github.com/d-kmr/fpe.git
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(2) The produced bitcode file is analyzed by using the SVF library [10]. It
is done in the first part of the A-module (Analyzer module), which is written
in C++ with about 800 lines, in Fig. 1. The library functions use Andersen’s
algorithm, and produce a result of pointer analysis for LLVM files. From the
result from SVF, the FP-extractor part extracts information related to function-
pointers for input C files, by finding relationships between function pointer calls
in the input C files and those in the LLVM files. Then it produces a JSON-format
file, which contains the extracted data, namely, over-approximations of values
for function pointer variables in the input C files.

(3) The T-module (Transformer module) transforms the input C files into
output C files without function pointer calls, by using the JSON file produced
by the A-module. This module is written in OCaml with 14k lines using the CIL
library to parse C files. It first parses the input C files and creates C abstract
syntax (CABS) data and also reads the JSON file, and replaces each function
pointer call in the input C files with an expression of the same semantics without
function pointers. Finally it outputs the resulting C files.

2.3 Analyzer Module (A-module)

This subsection shows how the analyzer module works with an example given in
Fig. 2. The example defines a function pointer type FP from void to int, struct
A that contains a field fp of type FP, struct B that contains a field toA of the
pointer type to struct A, and the functions one, two, and three of type from
void to int. The global function pointer f is called twice in the main function.

The first function pointer call f() at the line 10 is actually two() because
of the preceding assignment f = two. The second one at the line 12 is actually
three() because f is updated by f = three. Hence an over-approximation of
f computed by SVF is {two, three}. A two-dimensional array a of type FP is
declared and initialized at the line 13 and is called as a[1][0]() at the next
line. SVF calculates an over-approximation {two, three} for the values of a.

A struct sA of type struct A initialized at the line 15, and a pointer pA for
it is given in the next line. Then two function pointer calls pA->fp() appear
twice at the lines 17 and 19. The first call and the second one are actually one()
and two(), respectively. So SVF obtains {one, two} as an over-approximation
for the possible values of pA->fp. Another struct sB of type struct B and a
pointer pB for sB are given. The function pointer call pB->toA->fp() at the line
22 is actually two(), since pB->toA has the same value as pA by the initialization
of sB. Hence SVF returns an over-approximation for pB->toA->fp that is the
same as that for pA->fp.

The A-module outputs a JSON format text file as in Fig. 3. The output JSON
format is a list of the following three kinds of objects:

(1) ["FPVAR",{"name":<FP>,"in fun":<FN>,"to funs":<FNS>}],
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1 typedef int (*FP)();
2 struct A { int x; FP fp; };
3 struct B { struct A* toA; };

4 FP f;

5 int one(){ return 1; }
6 int two(){ return 2; }
7 int three(){ return 3; }

8 int main(){
9 f = two;

10 int n = f();

11 f = three;
12 n = f();

13 FP a[2][1] = { {two}, {three} };
14 n = a[1][0]();

15 struct A sA = { 0, one };
16 struct A* pA = &sA;
17 n = pA->fp();
18 pA->fp = two;
19 n = pA->fp();

20 struct B sB = { pA };
21 struct B* pB = &sB;
22 n = pB->toA->fp();
23 return 0;
24

Fig. 2. Example input file

(2) ["FPARR",{"ptr":<ARR>,"in fun":<FN>,"to funs":<FNS>}], and
(3) ["FPFLD",{"ptr":<SP>,"fld":<FLD>,"in fun":<FN>,"to funs":<FNS>}].

Each object corresponds to a function pointer call that appears in a source code.
The first form starting from the key "FPVAR" is used for a function pointer call

of a function pointer, like f() in the example. The pair "name":<FP> means that
the function pointer name of the current call is <FP>. The pair "in fun":<FN>
means that the current function pointer call appears in the body of the function
<FN>. The pair "to funs":<FNS> means that the possible values of <FP> are
<FNS>, where <FNS> is a list of function names.

The second form starting from the key "FPARR" is used for a function pointer
call with a function pointer array, like a[1][0]() in the example. The pair
"ptr":<ARR> means that the array name of the current call is <ARR>. The mean-
ings of the pairs "in fun":<FN> and "to funs":<FNS> of FPARR are the same
as those of "FPVAR".

The third form starting from the key "FPFLD" is used for a function pointer
call with a function pointer struct field, like pA->fp() and pB->toA->fp() in
the example. This form is handled with a similar idea to the first and second
forms and we omit it for space limitation.
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[
["FPARR", {"ptr":"a", "in_fun":"main", "to_funs":["two", "three"] }],
["FPVAR", {"name":"f", "in_fun":"main", "to_funs":["two", "three"] }],
["FPVAR", {"name":"f", "in_fun":"main", "to_funs":["two", "three"] }],
["FPFLD", {"ptr":"pA", "fld":[{"tp":"struct.A","fld_name":"fp","fld_index":1}],

"in_fun":"main", "to_funs":["one", "two"] }],
["FPFLD", {"ptr":"pA", "fld":[{"tp":"struct.A","fld_name":"fp6","fld_index":1}],

"in_fun":"main", "to_funs":["one", "two"] }],
["FPFLD", {"ptr":"pB", "fld":[{"tp":"struct.B","fld_name":"toA8","fld_index":0},

{"tp":"struct.A","fld_name":"fp9","fld_index":1}],
"in_fun":"main", "to_funs":["one", "two"] }]

]

Fig. 3. JSON output for the example file

2.4 Transformer Module (T-module)

The T-module transforms the input C files into C files without function pointer
calls by using the JSON output generated by the A-module.

– For a JSON object of the first form
["FPVAR",{"name":"f","in fun":"G","to funs":["F1","F2"]}], the cor-
responding function pointer call f(x1,x2) is replaced by f==F1 ? F1(x1,x2)
: F2(x1,x2). Note that SVF is sound so either f==F1 or f==F2 holds.

– For a JSON object of the second form
["FPARR",{"ptr":"a","in fun":"G","to funs":["F1","F2"]}], the cor-
responding function pointer call a[2](x1,x2) is replaced by a[2]==F1 ?
F1(x1,x2) : F2(x1,x2).

– For a JSON object of the third form
["FPFLD"
{"ptr":"s","fld":<FLD>,"in fun":"G","to funs":["F"]}], where <FLD>
is [{"fld name:"fp1","fld index":0}], the corresponding function pointer
call s->fp(x) is replaced by F(x).

A function pointer call may appear in an expression e[fp(x)], which is
obtained by filling a function pointer call fp(x) into the hole of an expression
e[-] with a hole -. This form is replaced by e[fp==F1 ? F1(x) : F2(x)] using
the JSON output with "to funs":["F1","F2"].

The output of the T-module, namely the output of FPE, for the example is
shown in Fig. 4. For readability, the spacings of it are slightly modified from the
output of FPE. A function pointer call at the line n is transformed into the line
n + 4 in Fig. 4.

3 Discussion

The advantages of FPE are efficiency and scalability. It works efficiently even for
practical software such as gzip, git, and OpenSSL (see the next section for more
detailed results). The current FPE supports the forms of function pointer calls
that appear in the example and the following forms of function pointer calls:
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1 typedef int (*FP)() ;
2 struct A { int x; FP fp; } ;
3 struct B { struct A* toA ; } ;
4 int one () ;
5 int two () ;
6 int three () ;
7 int main () ;
8 FP f ;
9 int one () { return 1; }

10 int two () { return 2; }
11 int three () { return 3; }
12 int main (){
13 f = two;
14 int n = f == two ? two() : three();
15 f = three;
16 n = f == two ? two() : three();
17 FP a[2][1] = {{two}, {three}};
18 n = a[1][0] == two ? two() : three();
19 struct A sA = {0, one};
20 struct A * pA = & sA;
21 n = pA-> fp == one ? one() : two();
22 pA-> fp = two;
23 n = pA-> fp == one ? one() : two();
24 struct B sB = {pA};
25 struct B * pB = & sB;
26 n = pB-> toA-> fp == one ? one() : two();
27 return 0;
28

Fig. 4. Output for the example file

d(e, . . . , e) | ∗ d(e, . . . , e) | (d)(e, . . . , e) | (∗d)(e, . . . , e)
where
a ::= fp | a[e]
d ::= a | d->f | d.f
and fp, f are names and e is an expression.
For example, FPE covers

open_istream_tbl[src](st, &oi, real, type)

that appears in OpenSSL. We believe that these forms would cover a enough
large class of (normally written) C code. On the other hand, some forms, such
as (b?f:G)() where f is a function pointer, are not supported yet. FPE also
assumes that in input C files a global struct declaration has a struct name (a
local struct declaration does not have this limitation). These restrictions are
just to simplify implementation of the FP-extractor part in the A-module. If
necessary, we can relax these restrictions in future. Since currently we are using
CIL together with Clang according to our whole project of automatic program
verification, we need to manually handle some keywords that CIL does not sup-
port by removing Noreturn and putting typedef for Float128x, Float64x,
Float32x, Float128, Float64, Float32 for the input C files.
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Target system Files Lines Time (A-mod.) Time (T-mod.) Time (Total)
SVF FP-extractor

gzip-1.10 132 26073 0.325s 0.089s 1.301s 1.715s
git-2.9.5 378 177594 744.398s 7.414s 74.951s 13m46.763s

OpenSSL-1.1.1b 940 498879 878.105s 8.945s 86.085s 16m13.134s

Target system # of FP-calls Max # of func.names Ave. # of func. names
gzip-1.10 4 7 4
git-2.9.5 105 16 2.6

OpenSSL-1.1.1b 64 64 4.3

Fig. 5. Experimental results

4 Experimental Results

This section shows some experimental results of FPE. The tests were done on a
laptop PC with 1.80 GHz Intel(R) Core(TM) i7-10510U CPU, 16 GB memory,
and Linux Mint 20. The results are given in the tables of Fig. 5.

The first table shows execution times of FPE for each target systems. The
column named “Files” shows the numbers of C source files (before preprocessing),
and the column named “Lines” shows the total numbers of lines in these files. The
column named “Time (A-mod.)” presents the execution times for SVF and FP-
extractor invoked in the A-module. The columns “Time (T-mod.)” and “Time
(total)” show the execution times for T-module and whole FPE (namely, A-
module + T-module), respectively.

The second table shows a summary of outputs from FPE. The column named
“# of FP-calls” shows the numbers of function pointer calls in the input C files.
The column named “Max # of func.names” shows the maximum number of
candidates of function names for a function pointer call. The right-most column
“Ave. # of func.names” presents the average number of candidates of function
names for a function pointer call.

These results show that FPE is sufficiently efficient. Note that it is sufficiently
precise for modular program analysis, which is originally guaranteed by SVF.

5 Conclusion

We have implemented a function pointer elimination tool FPE, and by experi-
mental results we have also shown that the tool FPE is sufficiently efficient and
precise for modular program analysis.

Appendix

A Screenshot

We give a screenshot of the command FPE.
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% fpe.sh example_aplas
Enter /home/share/fpe/example_aplas
DELETE old .bc files
START: Making .bc files
/home/share/fpe/example_aplas/input.pp.c
llvm-dis: /lib64/libtinfo.so.5: no version information available (required by l\
lvm-dis)
FINISH: making .bc files
START: linking .bc files
llvm-link: /lib64/libtinfo.so.5: no version information available (required by \
llvm-link)
Writing ’pag_initial.dot’...
Writing ’pag_final.dot’...
Writing ’callgraph_initial.dot’...
Writing ’callgraph_final.dot’...
FINISH: linking .bc files
[
["FPARR", {"ptr":"a", "in_fun":"main", "to_funs":["two", "three"] }],
["FPVAR", {"name":"f", "in_fun":"main", "to_funs":["two", "three"] }],
["FPVAR", {"name":"f", "in_fun":"main", "to_funs":["two", "three"] }],
["FPFLD", {"ptr":"pA", "fld":[{"tp":"struct.A","fld_name":"fp","fld_index":1}],\
"in_fun":"main", "to_funs":["one", "two"] }],

["FPFLD", {"ptr":"pA", "fld":[{"tp":"struct.A","fld_name":"fp6","fld_index":1}]\
, "in_fun":"main", "to_funs":["one", "two"] }],
["FPFLD", {"ptr":"pB", "fld":[{"tp":"struct.B","fld_name":"toA8","fld_index":0}\
, {"tp":"struct.A","fld_name":"fp9","fld_index":1}], "in_fun":"main", "to_funs"\
:["one", "two"] }]
]

real 0m0.002s
user 0m0.002s
sys 0m0.000s
Transformation begins
Transformation is finished

real 0m0.027s
user 0m0.015s
sys 0m0.013s

B Examples

We give some examples of how the command FPE transforms an input C file
into an output C file.

B.1 Example

The input file:

int func(void);

int main() {
int (*po)() = func;
po();
return 0;

}

int func() {
return 1;

}
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The output file:

int func (void ) ;
int main ()
{ int ( * po ) () = func;
func();
return 0;
}
int func ()
{ return 1;
}

B.2 Example

The input file:

int func(int, int);

int main() {
int (*po)(int, int), i;
po = func;
i = (*po)(10, 3);
return 0;

}

int func(int i, int j) {
return i << j;

}

The output file:

int func (int , int ) ;
int main ()
{ int ( * po ) (int , int ) , i ;
po = func;
i = func(10, 3);
return 0;
}
int func (int i , int j )
{ return i << j;
}

B.3 Example

The input file:

int one(void);
int two(void);
int three(void);

int main() {
int (*po[])() = {one , two , three};
int i = 0;

if ((i < 0) || (i > 2)) return 0;
(*po[i])();
return 0;

}

int one() {
return 1;

}
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int two() {
return 2;

}

int three() {
return 3;

}

The output file:

int one (void ) ;
int two (void ) ;
int three (void ) ;
int main ()
{ int ( * po[] ) () = {one, two, three};
int i = 0;
if ((i < 0) || (i > 2))

return 0;

else
;

po[i] == one ? one() : po[i] == two ? two() : three();
return 0;
}
int one ()
{ return 1;
}
int two ()
{ return 2;
}
int three ()
{ return 3;
}

B.4 Example

The input file:

typedef struct PString {
char *chars;
int (*length)(struct PString *self);

} PString;

int slen(char *c) {
int i;
for(i = 0; *(c + i) != 0; i++);
return i;

}

int length(struct PString *self) {
return slen(self -> chars);

}

struct PString str;

struct PString *initializeString(int n) {
char *buf = " ";
str.chars = buf;
str.length = length;

str.chars[0] = ’\0’;

return &str;
}
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int main() {
struct PString *p = initializeString(30);
char *hello = "Hello";
p -> chars = hello;
int l = p -> length(p);
return 0;

}

The output file:

typedef struct PString { char * chars ;
int ( * length ) (struct PString * self ) ;
} PString ;
struct PString { char * chars ;
int ( * length ) (struct PString * self ) ;
} ;
typedef struct PString PString ;
struct PString str ;
int slen (char * c )
{ int i ;
for (i = 0; * (c + i) != 0; i++)

;

return i;
}
int length (struct PString * self )
{ return slen(self-> chars);
}
struct PString * initializeString (int n )
{ char * buf = " ";
str. chars = buf;
str. length = length;
str. chars[0] = ’\000’;
return & str;
}
int main ()
{ struct PString * p = initializeString(30);
char * hello = "Hello";
p-> chars = hello;
int l = length(p);
return 0;
}

B.5 Example

The input file:

typedef int FUNC(int, int);

FUNC sum, subtract, mul, div;
FUNC *p[4] = {sum, subtract, mul, div};

int main(void)
{

int result;
int i = 2, j = 3, op = 2;

result = p[op](i, j);
}

int sum(int a, int b) { return a+b; }

int subtract(int a, int b) { return a-b; }

int mul(int a, int b) { return a*b; }

int div(int a, int b) { return a/b; }
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The output file:

typedef int FUNC (int , int ) ;
FUNC sum , subtract , mul , div ;
FUNC * p[4] = {sum, subtract, mul, div};
int main (void )
{ int result ;
int i = 2, j = 3, op = 2;
result = p[op] == sum ? sum(i, j) : p[op] == subtract ? subtract(i, j) : p[op] \
== mul ? mul(i, j) : div(i, j);
}
int sum (int a , int b )
{ return a + b;
}
int subtract (int a , int b )
{ return a - b;
}
int mul (int a , int b )
{ return a * b;
}
int div (int a , int b )
{ return a / b;
}

B.6 Example

The input file:

typedef int (*funcptr)(); /* generic function pointer */
typedef funcptr (*ptrfuncptr)(); /* ptr to fcn returning g.f.p. */

int main()
{

funcptr start_function();
ptrfuncptr state = start_function;

while (state != (void *)0)
state = (ptrfuncptr)(*state)();

return 0;
}

funcptr start_function()
{

static int i=0;
++i;

if(i == 5)
return (void *)0;

else
return start_function;

}

The output file:

typedef int ( * funcptr ) () ;
typedef funcptr ( * ptrfuncptr ) () ;
int main ()
{ funcptr start_function () ;
ptrfuncptr state = start_function;
while (state != (void * )0)

state = (ptrfuncptr )start_function();

return 0;
}
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funcptr start_function ()
{ static int i = 0;
++ i;
if (i == 5)

return (void * )0;

else
return start_function;

}

B.7 Example

The input file:

double callback(double x)
{

return x + 1.0;
}

double g(double x, double (*f)(double))
{

return f(x);
}

int main(void)
{

double ans = g(5.0, callback);
ans = g(5.0, sqrt);
return 0;

}

The output file:

double callback (double x )
{ return x + 1.0;
}
double g (double x , double ( * f ) (double ) )
{ return f == callback ? callback(x) : sqrt(x);
}
int main (void )
{ double ans = g(5.0, callback);
ans = g(5.0, sqrt);
return 0;
}
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Abstract. Concolic testing is a software testing technique for generating
concrete inputs of programs to increase code coverage and has been devel-
oped for years. For programming languages such as C, JAVA, x86 binary
code, and JavaScript, there are already plenty of available concolic testers.
However, the concolic testers for Python are relatively less. Since Python
is a popular programming language, we believe there is a strong need to
develop a good one.

Among the existing testers for Python, PyExZ3 is the most well-known
and advanced. However, we found some issues of PyExZ3: (1) it imple-
ments only a limited number of base types’ (e.g., integer, string) member
functions and (2) it automatically downcasts concolic objects and discards
related symbolic information as it encounters built-in types’ constructors.

Based on the concept of PyExZ3, we develop a new tool called PyCT
to alleviate these two issues. PyCT supports a more complete set of mem-
ber functions of data types including integer, string, and range. We also
propose a new method to upcast constants to concolic ones to prevent
unnecessary downcasting. Our evaluation shows that with more member
functions being supported, the coverage rate is raised to (80.20%) from
(71.55%). It continues to go up to (85.68%) as constant upcasting is also
implemented.

1 Introduction

Python language has been widely adopted to develop modern applications such
as web applications, data analytics, machine learning, and robotics due to its
high-level interactive nature and its maturing ecosystem of scientific libraries. As
a general-purpose language, it is increasingly used not only in academic settings
but also in industry. While it is an appealing choice for algorithmic development
and exploratory data analysis, a systematic approach to analyze behaviors of
Python programs is of the essence for software security. Systematic input gen-
eration that can cover all (or most critical) program behaviors is critical for
software testing and debugging. While a concrete execution can only explore a
specific path, randomly generating inputs is hard to hit honeypot and in most
c© Springer Nature Switzerland AG 2021
H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 38–46, 2021.
https://doi.org/10.1007/978-3-030-89051-3_3
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cases under-approximates program behaviors. It is desired having program prop-
erties hold under any usage scenarios.

Static analysis on formally modeling programs with symbolic and abstrac-
tion models provides a sound approach to analyze all potential behaviors of
programs, but it may raise false alarms and requires runtime analysis for val-
idation. Dynamic analysis on running and analyzing real executions helps to
witness violations, but it requires effective input generation to trigger criti-
cal executions and cover sufficient program behaviors. Symbolic execution [5]
poses an elegant solution for systematic input generation by executing programs
on symbolic inputs (instead of concrete ones). During the execution, symbolic
constraints are generated to represent program behaviors and path conditions.
Solving these constraints yields inputs to trigger program execution. The main
issue with symbolic execution is that its capability is limited by the power of
the underlying constraint solvers. If the solver cannot solve a path constraint, it
cannot find an input to cover that path and thus may lower its coverage rate.

Concolic testing combines symbolic execution and concrete testing to improve
code coverage. When encountered constraints that cannot be handled by the
solvers, a concolic tester can substitute some parts of the constraints with their
corresponding concrete values to simplify them. Still, if the solver finds a solution
of the simplified constraint, it is a valid solution of the original constraint. There
have been quite a few useful concolic testing tools, targeting different languages
and platforms, e.g., CUTE [8] and DART [3] for C, SAGE [4] for x86 binaries,
jDART [6] for Java, Jalangi [7] for JavaScript, and PyExZ3 [1] for Python scripts.

Although Python is a popular language, concolic testers supporting Python
are lacking. To the best of our knowledge, PyExZ3 is the most well-known and
advanced Python concolic tester. It uses an object-oriented approach to imple-
ment concolic testing. It substitutes each basic data type (e.g., integer and string)
with a concolic version that maintains both a concrete and a symbolic value. The
concolic objects’ member functions are also lifted to support both symbolic and
concrete values. We believe this concept would lead to a very clean implemen-
tation of concolic testing.

However, the implementation of PyExZ3 suffers from two major issues. First,
it implements only a limited number of basic types’ member functions. For exam-
ple, common functions such as “abs” and “round” of the integer type are not
supported. This is fine for a proof-of-concept implementation, but would result
in a low code coverage when used to analyze large projects.

Second and more importantly, PyExZ3 automatically downcasts concolic
objects to primitive objects, which consists of only concrete values, and dis-
cards related symbolic information when it encounters built-in types’ member
functions. For instance, assume the symbolic and concrete values of the concolic
value cx of the variable x are e and 7, respectively, where e is an expression over
variables occurred in the code. When we execute the statement “if int(x) > 5”,
it triggers the constructor int(x), which discards the symbolic value e and leave
only the concrete value 7.

Based on the concept of PyExZ3, we develop a new tool called PyCT to alle-
viate these two issues. PyCT supports a more complete set of member functions
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of data types including integer, string, and range (Sect. 3). We also propose a
new method to upcast constant values for the prevention of unnecessary down-
casting (Sect. 4). We evaluate PyCT on a well-known GitHub project1 related
to algorithm implementations, and the experiment shows that these two opti-
mizations lead to a significant improvements in terms of code coverage. With
more member functions being supported, the coverage rate is raised to (80.20%)
from (71.55%). It goes up to (85.68%) as constant upcasting is also implemented
(Note that there are different means to define code coverage, in the paper, we
consider the line coverage of programs).

2 Object-Oriented Concolic Testing Algorithm

We first recap the object oriented concolic testing algorithm and its implemen-
tation introduced in [1] for being self-contained. Here we consider two types of
objects, integer type and string type. We implement the classes concolic inte-
ger and concolic string that inherit the classes integer and string, respectively.
Taking concolic integer as an example, it has two member values, the concrete
and the symbolic values, and overrides all integer classes’ member functions.
The concrete value is with the integer type and the symbolic value is a symbolic
expression that is expressible in SMT theory of strings and linear arithmetic,
i.e., TSLIA [2]. For a member function f(x̄) of concolic integer type, it updates
the concrete value in the same way that f(x̄) of integer type does. For a symbolic
value, the basic version just update its value to a special symbol ⊥ to denote
that it does not have symbolic value. We say that a member function is not
supported if its implementation is the basic version. If this member function is
supported, we need to replace the symbol ⊥ in the basic version with a symbolic
expression that captures the semantics of f .

Such object-oriented implementation has the advantage that, any time when
the tester feeds a concolic object c to a non-supported function, c is automatically
downcast to the basic type and the tester can still run without encounter a
runtime exception. One can then step-wisely improve the amount of supported
member functions by replacing the basic version with the one capturing the
function’s semantic. For a concolic object c, we use c.val to denote its the concrete
value and c.exp to denote its symbolic expression. If c is of concolic integer type
(resp., concolic string type), then c.val is a constant integer in Z (resp., a constant
string in Σ∗) and c.exp is an integer expression (resp., a string expression). We
write c = (x, s) for c.val = x and c.exp = s.

To increase the line coverage, a concolic tester simulates the behaviors of
a program in an iterative manner and collects the constraints relating to the
program’s input variables during one execution for generating input values for
the subsequent iterations.

1 We use The Algorithms/Python project (https://github.com/TheAlgorithms/
Python), the 4th top-starred Python project on GitHub, introducing plenty of com-
mon algorithm implementations learning purposes.

https://github.com/TheAlgorithms/Python
https://github.com/TheAlgorithms/Python


PyCT: A Python Concolic Tester 41

More specifically, each variable x of the program corresponds to a concolic
object cx. Value cx.val is updated along with x and cx.exp describes the relation
between the current value of x and the initial variable values. For instance, if
cx = (2, x + 1) and cy = (3, 2z) are two integer concolic objects, then, after
executing “x := x+2y+1”, cx is updated to (9, x+4z +2) since 2+2∗3+1 = 9
and (x+1)+2(2z)+1 = x+4z +2. Besides, a concolic tester maintains a tree T
to remember the path constraints corresponding to all executed program traces.
It also maintains a queue Q of formulae whose models correspond to input values
that is guaranteed to cover some unexplored program lines. In what follows, we
use the program P given in Fig. 1 as an example to illustrate how the algorithm
works, including how T and Q are maintained. Integer variables x, y, z correspond
to integer concolic objects cx, cy, cz, respectively.

1st Iteration: The integer variable x is the input argument of function isPalin-
drome. Initially, we randomly pick an integer value for x, say 0, and create the
concolic integer cx = (0, x) as the input. Now T is an empty tree, and Q is an
empty queue. After executing line 2 and 3, we have cy = (0, 0) and cz = (0, x). In
line 4, the Boolean statement z > 0 is encountered. Since cz.exp = x and the tree
T is empty, the node n1 with label ψ1 := (x > 0) is inserted into T as a root. See
Fig. 2. Because that cz.val = 0 does not satisfy the statement, the current execu-
tion will take the false branch. We push the formula ψ1, whose model corresponds
to input values going to the true branch, into the queue Q (the result is Q1 in the
figure) Then, line 8 is executed. From the condition x == y, we create the con-
straint ψ2 := (cx.exp == cy.exp) = (0 == x). Since we are coming from the
left (false) branch of n1, we add the node n2 with label ψ2 into T as a left-child of
n1. Then we push the formula ¬ψ1 ∧ ¬ψ2, which corresponds to taking n1’s left
branch and followed by taking n2’s left branch, is pushed into Q (to obtain Q2 in
the figure). Notice that the models of both formullae in Q2 will lead to some unex-
plored program lines, as they take different branch direction then we did in the
current execution. At the end, line 9 is executed and the first iteration finished.

1 def i s P a l i n d r ome ( i n t x ) :

4 whi l e z > 0 :

6 + z 10

2 y = 0
3 z = x

5 y = l s h i f t ( y )

7 z = r s h i f t ( z )
8 i f y == x :
9 re turn True
10 e l s e :
11 re turn F a l s e
12 def l s h i f t ( x ) :
13 re turn x 10
14 def r s h i f t ( x ) :
15 re turn x / / 10

Fig. 1. Program P checks if
x is a palindrome.

ψ1 := (x > 0)

n1

ψ2 := (0 == x)

n2

ψ3 := (x//10 > 0)

n3

ψ4 := (x%10 == x)

n4

x := −1 x := 0

No solutions. x := 1

. . .

F T

FF T

F T

T

Q0 : Q1 : ψ1 Q2 : ψ1 ¬ψ1 ∧ ¬ψ2

Q3 : ¬ψ1 ∧ ¬ψ2 ψ1 ∧ ψ3 Q4 : . . .

Fig. 2. The tree of the concolic testing
process on program P .
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2nd Iteration: The halting conditions for the process are either the queue Q is
empty or all lines of P are covered after an iteration. Neither of the halting
conditions is satisfied, then the process continues (until a given timeout period
is reached). At the beginning of the 2nd iteration, the formula ψ1 is removed
from the front of Q and the new initial value cx can be set as (1, x) since x = 1
is a solution of ψ1. (Note that, in implementation, the formula is sent to an
SMT solver for a solution.) We then repeat the procedure in a similar way as we
did before. In this example, entire procedure will stop in three iterations when
all programs lines are covered. We refer the readers to our appendix for further
details.

3 Function Support and Implementation

The tool PyExZ3 only implements a very limited amount of member functions,
so it is expected that the code coverage would increase as more functions are
supported. In PyCT, we support almost all member functions of concolic inte-
ger and string whose semantic are expressible in TSLIA (SMT theory of strings
and linear arithmetic). In Table 1 we lists the member functions of integer and
string in Python that we support and do not support. Member functions are
divided into three groups in the tables, (i) complete; (ii) partial; and (iii) unsup-
ported. Functions in group (i) can be well expressed in TSLIA and implemented
in PyCT thoroughly. In group (ii), functions are basically supported, excepts cer-
tain special input arguments because of implementation difficulty. For example,
lexicographic orderings in Python and Z3’s TSLIA implementation are differ-
ent, so member functions of string type related to lexicographic order are not
completely supported. Group (iii) includes member functions we do not provide
support the update of symbolic expressions. Some functions are in this group

Table 1. Member functions of integer and string types and their PyCT implementa-
tion.

Integer

Complete abs , add , bool , ceil , eq , floor , ge , gt , le ,

lt , mul , ne , neg , pos , radd , rmul , round ,

rsub , sub , trunc , conjugate, denominator, imag, numerator, real

Partial floordiv , mod , rfloordiv , rmod , rtruediv , truediv

Unsupported and , divmod , format , hash , index , invert , lshift ,

rshift , or , pow , rand , rdivmod , rlshift , ror ,

rpow , rrshift , rxor , xor , as integer ratio, bit length, to bytes

String

Complete add , contains , eq , iter , len , mul , ne , rmul ,

count, find, index, isalpha, isdigit, islower, isupper, lower, replace, upper

Partial ge , getitem , gt , le , lt , mod , endswith, isalnum,

isnumeric, lstrip, rstrip, split, splitlines, startswith, strip

Unsupported format , hash , rmod , capitalize, casefold, center, encode, expandtabs,

format, format map, isascii, isdecimal, isidentifier, isprintable, isspace, istitle, join,

ljust, partition, rfind, rindex, rjust, rpartition, rsplit, swapcase, title, translate, zfill
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because they are not expressible in TSLIA. One major class of this type is the
bitwise operations, which usually requires the use of SMT bit-vector theory to
model them precisely and efficiently. Another class of examples are those whose
return types are not expressible in TSLIA. For example, “as integer ratio” returns
a tuple and “to bytes” returns a list. Our preliminary study over the top 5 starred
GitHub projects suggests that in totally 421,214 lines of code, the unsupported
functions (not counting the magic functions which cannot be found by simple
pattern matching) only occur 381 times (less than 0.1%).

Table 2. Member functions of range type.

Complete init , contains ,
iter , len , count,

index
Partial getitem
Unsupported bool , eq , ge ,

gt , hash , le ,
lt , ne , reversed

The Range Class. In Python,
“range()” is often used in the “for”
statement and is one of the most fre-
quently used functions. However, dif-
ferent from many other programming
languages, in Python, “range” is a
class like string and integer and there-
fore, refers to a set of member func-
tions, listed in Table 2. To increase the
coverage, some member functions of
range type are supported in PyCT.

Consider the statement “for i in range (a, b, c): S”, where S is a Python state-
ment. Expression range (a, b, c) corresponds to the sequence π : a, a + c, . . . , a +
c∗n when c ≥ 0, where n is the greatest non-negative integer s.t. a+c∗n < b. So
the statement S is covered when π is a non-empty sequence. The case of c ≤ 0
is symmetric.

To support member functions of range type, we introduce concolic range.
For the concolic object of range (a, b, c), the concrete value is the sequence π
and the symbolic expression is a quadruple (start, stop, step, current), where
start, stop, and step refer to ca.exp, cb.exp, and cc.exp, respectively, and “cur-
rent” is the element in π of the current loop, i.e., i.val. Each i.val ∈ π refers
to a branch ca.exp + cc.exp ∗ j < cb.exp, where j = (i.val − ca.val)/cc.val, i.e.,
the index of loop corresponding to i.val. The constraint ca.exp + cc.exp ∗ n <
cb.exp is then pushed into the queue as S is not covered. We use the exam-
ple given in Fig. 3 to explain why this setting can help increase coverage.

1 def r ange_example ( b ) :
2 f or e in range ( 0 , b , 4 ) :
3 i f e == 8 :
4 re turn

Fig. 3. “range” in the “for” state-
ment.

At the beginning, cb is set as (0, b). Obviously,
lines 3 and 4 are not covered, then after the 1st
iteration is completed, constraint 0 + 4 ∗ 0 < b
is pushed into the queue and b = 1 is a solution
to the constraint. Similarly, constraints 0 + 4 ∗
1 < b and 0 + 4 ∗ 2 < b are pushed into the
queue at the ends of the 2nd and 3rd iterations
and b = 5, b = 9 are solutions, respectively.

Accordingly, program P is fully covered as the input value b = 9. In this example
in range (a, b, c), a and c are set as two constants, the other cases where a, c are
variables can be derived similarly.
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Exception Handling. The execution of a program may halt when an exception
is triggered, e.g., divided-by-zero, str-to-int conversion exceptions, etc. Essen-
tially, exceptions can be viewed as branch conditions. If the current input value
triggers an exception, the tester would like to find another input without trig-
ger that exception, and vice versa, to increase code coverage. We realize it by
pre-inserting some branch statements into the source code without modifying
the semantics of the program. Consider the statement “x = y / z”. A divided-
by-zero exception is thrown as the value of z = 0. In PyCT, the statement is
automatically rewritten as “if z == 0: S; else: x = y / z”, where S is a statement
throwing a divided-by-zero exception. The other exceptional cases are handled
in a similar manner.

Function Decomposition. It happens that some Python expressions are not
immediately expressible in TSLIA. So for supporting those functions, we decom-
pose them into TSLIA expressible fragments. For instance, in Python, “abc” * 2
represents the string “abcabc”. However, in TSLIA, a multiplication of a string
and an integer is not valid. We handle the string-integer multiplication by trans-
forming them to a recursive statement. Observe that s ∗ n = s ∗ (n − 1) + s for
all string s and positive integer n. So we translate “t = s * n” into the recursive
statement S(s, n): “if (n− 1) == 0: then t = s; else: t = S(s, n− 1) + s”, and it
becomes expressible in TSLIA.

Another example is the “str.count(sub)” function that counts the number
of occurrences of sub in str. We need to handle the special case when sub is
an empty string. In such a case, “count” simply returns the length of str plus
one. Otherwise, we create a temporary string temp whose value is obtained by
replacing all occurrences of sub in str with empty strings, and then we can obtain
str.count(sub) = len(str)−len(temp)

len(sub) .
The “str.replace(old, new, max)” function replaces at most “max” occur-

rences of “old” with “new”. This is also handled by translating to recursive
statement and invoking the single entry replace function in SMT2 in the recur-
sive function body. Other functions we support using a similar approach include
“lower” and “upper”.

4 Constant Upcasting

In PyExZ3, besides non-supported member function calls, constant values
being callers may also downcast concolic objects to primitive ones, i.e., inte-
gers or strings. For instance, for constant string ‘abcd’, the function call
‘abcd’. contains (x) with input argument x causes the concolic object cx cor-
responding to x to be downcasted. This would reduce the total coverage rate
because in the subsequent program execution, we lost the symbolic information
of x, and hence cannot switch to some unexplored path when encountered branch
statements involving x. Our experiments (Sect. 5) shows that such downcast has
significant negative impact to code coverage.

A naive solution is to make Python constant/primitive strings’ member func-
tions (such as “ contains ”) also accept concolic objects as input arguments.
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To achieve this, one has to modify, for example, Python’s source codes, which
is cumbersome and needs a great effort. Besides, they also have to update the
modification frequently for maintaining the compatibility as Python’s official
version advances.

In PyCT, a more feasible and reliable solution is implemented instead. The
idea is to upcast constant values to their corresponding concolic objects. More
specifically, each constant value s is upcasted to the concolic object (s, s). So
the primitive string “abcd” is upcasted to the concolic string (“abcd”, “abcd”)
and the appearance of the function call “abcd”. contains (x) is replaced with
the concolic string member function call introduced in the last section, i.e., the
function contains in Table 1. Accordingly, cx is not downcasted and so we
can use its symbolic value afterward. By replacing each occurrence of constants
in the AST of the source code under testing with its corresponding concolic
object, then the idea, upcasting constant values to concolic objects, is instantly
realized. This constant upcasting technique is also used to conquer a similar
problem that PyExZ3 only outputs concrete values from Python’s common built-
in constructors such as int(x), str(x), and range(x, y, z) in PyCT.

5 Experiment Results

To evaluate PyCT, we compare it with PyExZ3 on the following five bench-
marks: (1) UnitTest(PyExZ3) provided by PyExZ3; (2) UnitTest(PyCT) which
we compose for testing; (3) LeetCode collected from the LeetCode platform;
(4) PythonLib, the Python core libraries, where both LeetCode and Python-
Lib involve diverse usages of string-number conversion in Python such as
parsing date-time, verifying and restoring IP addresses from strings, etc.; (5)
The Algorithms/Python2, the 4th top-starred Python project on GitHub, intro-
ducing plenty of common algorithm implementations in Python language for
learning purposes, and therefore including many integer and string type-hinting
functions. The experiments are run in a Docker container on a PC with an Intel
Core i7-10700 (2.90 GHz) processor with 8 cores and 16 threads, a 48 GB of
RAM, and a 1.8 TB, 7200 rpm hard disk drive running the Ubuntu 20.04.1 LTS
operating system. The versions of Python and the SMT solver CVC4 are 3.8.5
and 1.73, respectively.

For the evaluation of the constant upcasting technique, in the experiments,
PyCT are run in two modes, the mode without and with constant upcasting,
denoted PyCT (Sect. 3 only) and PyCT+Up (Sect. 3 and 4), respectively. For
each concolic tester, each function in the benchmarks is tested at most 15 min.
The timeout of one concolic testing iteration is set to 15 s. The timeout of an
SMT constraint solving is set to 10 s. We use the package “coverage”4 to compute
line coverage (the number of executed lines ÷ the number of lines in the source
code).
2 https://github.com/TheAlgorithms/Python.
3 https://github.com/cvc5/cvc5/tree/d1f3225e26b9d64f065048885053392b10994e71.
4 https://pypi.org/project/coverage/4.5.4/.

https://github.com/TheAlgorithms/Python
https://github.com/cvc5/cvc5/tree/d1f3225e26b9d64f065048885053392b10994e71
https://pypi.org/project/coverage/4.5.4/


46 Y.-F. Chen et al.

Table 3 shows the results. Both PyCT and PyCT+Up outperform PyExZ3
on all benchmarks in terms of coverage. The results show that constant upcast-
ing technique significantly improves PyCT’s line coverage. One can tell that
comparing with PyExZ3, on average, PyCT and PyCT+Up take more time on
testing a function. Whereas that the median times of the three testers on all
benchmarks are almost equivalent, which suggests that PyCT and PyCT+Up
spend more time on solving difficult cases to increase coverage rate.

Table 3. Results on the benchmarks.

No. of functions UnitTest
(PyExZ3)

UnitTest
(PyCT)

Leetcode PythonLib The Algorithms/
Python

TOTAL

73 23 15 9 376 496

Line coverage PyExZ3 493/536 183/219 180/290 177/312 2258/3156 3291/4513

(91.98%) (83.56%) (62.07%) (56.73%) (71.55%) (72.92%)

PyCT 499/536 210/219 242/290 183/312 2531/3156 3665/4513

(93.10%) (95.89%) (83.45%) (58.65%) (80.20%) (81.21%)

PyCT+Up 499/536 214/219 287/290 251/312 2704/3156 3955/4513

(93.10%) (97.72%) (98.97%) (80.45%) (85.68%) (87.64%)

Average time PyExZ3 26.26 39.35 85.63 201.77 16.47 24.43

PyCT 25.04 84.64 61.11 207.62 23.38 30.95

PyCT+Up 25.05 39.97 102.99 209.32 52.23 52.04

Median time PyExZ3 0.03 0.02 0.03 0.12 1.29 1.28

PyCT 0.11 0.11 0.15 0.76 2.5 1.27

PyCT+Up 0.13 0.11 1.02 13.83 2.54 1.29
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Abstract. In recent years, program synthesis research has made signifi-
cant progress in creating user-friendly tools for Programming by exam-
ple (PBE) and Programming by demonstration (PBD) environments.
However, program synthesis from logical specifications, such as reactive
synthesis, still faces large challenges in widespread adoption. In order
to bring reactive synthesis to a wider audience, more research is neces-
sary to explore different interface options. We present The SynthSyn-
thesizer, a music-based tool for designing and testing specification inter-
faces. The tool enables researchers to prototype different interfaces for
reactive synthesis and run user studies on them. The tool is accessible to
both researchers and users by running on a browser on top of a docker-
containerized synthesis toolchain. We show sample implementations with
the tool by creating dropdown interfaces, and by running a user study with
21 users.

Keywords: Reactive synthesis · Program synthesis · Computer music

1 Introduction

Over the last two decades, program synthesis has seen much progress [15] and
researchers have made significant headway into making program synthesis acces-
sible to a wider audience [13]. Specifically, research in Programming by example
(PBE) and Programming by demonstration (PBD) has led to a wide array of
user-friendly tools [8,22,23,31], including Wrangler [21], StriSynth [14], Sketch-
n-Sketch [16].

However, building user-friendly tools for program synthesis from logical spec-
ifications remains a challenge. In particular, for reactive synthesis [4], despite
development in both theory [3,33] and tooling [19], the complexity of writing
specifications has limited the adoption of reactive synthesis to a highly technical
audience. In order to bring synthesis to non-technical users, more research is
necessary to understand effective means of creating logical specifications.

In this paper, we present The SynthSynthesizer, a tool that enables researchers
to try out different interfaces and logic fragments for reactive synthesis.
c© Springer Nature Switzerland AG 2021
H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 47–61, 2021.
https://doi.org/10.1007/978-3-030-89051-3_4
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Fig. 1. Autumn Leaves Lead Sheet indicating the changes in signal topology

Researchers can define interfaces by simply implementing a single JavaScript
function, after which a non-technical audience can interact with the tool. In order
to appeal to a larger base of users, The SynthSynthesizer uses computer music as
an reactive environment that is also interactive and creative.

The SynthSynthesizer runs on a browser, making it easily to deploy user
studies. The tool is also easy to install and modify for researchers; the synthesis
toolchain is provided in docker container so that even researchers without a deep
knowledge of reactive synthesis can explore the specification interface space.

Using our tool, we explored dropdowns as a way of specifying reactive control
by implementing three different interfaces. We ran a user study on these inter-
faces by presenting them to 21 participants with a mix of music and program-
ming backgrounds. From the study, we found that users experienced a tradeoff
between ease of use and expressivity, and enjoyed the no-code nature of syn-
thesis. These experiences motivate further exploration of specification interface
design, which our tool aims to facilitate.

In summary, our contributions are as follows:

1. We present The SynthSynthesizer, a music-based tool that enables rapid pro-
totyping and user studies for studying different reactive synthesis interfaces.

2. We explored dropdowns as an interface for specifying reactive control, and
implemented the example interfaces using our tool.

3. We ran a user study with 21 users, and found a tradeoff between expressivity
and ease-of-use as well as a possible appeal of synthesis to a wider user-base.

2 Motivating Example

As an illustrative example, consider a user that would like a reactive system to
manipulate audio signals as phrases of a music piece are played. Specifically, AM
synthesis should be toggled whenever the note G4 is played, and LFO vibrato
should be toggled whenever the note E4 is played, as shown in Fig. 1.

To build such a reactive system, a user could write a program that spec-
ifies when and how the signals should change. However, writing this program
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is generally not an easy task. It not only requires the user to be a competent
programmer, but also requires them to be comfortable using specific API’s such
as Web Audio. Moreover, even if a user can write such a program, the solution
is verbose, requiring nearly 100 lines of code to satisfy two logical conditions.

In order to concisely encapsulate the time-varying nature of the signal topol-
ogy, the user might turn to reactive synthesis. In this case, the user would need
to choose a temporal logic and write a specification that determines when AM
synthesis and LFO vibrato are toggled. Such a specification, using Temporal
Stream Logic (TSL) [11], can be written as follow:

play G4 ↔ [AM � toggle AM]
play E4 ↔ [LFO � toggle LFO]

Though reactive synthesis brings the user closer to building their instrument,
this solution generally involves too much prerequisite knowledge. Users must
understand the notion of formal guarantees, time steps, and other particularities
of temporal logic, making the approach unrealistic for a broad population.

To overcome the above challenges, we need a framework where non-technical
users can easily specify temporal properties. Here, we present The SynthSynthe-
sizer as a tool for exploring the space of such frameworks, where researchers can
prototype different interfaces and run user studies.

3 Preliminaries

Temporal Stream Logic (TSL) is a logic designed around the synthesis of reac-
tive programs [11]. TSL is built upon the same temporal logic operators (i.e.
next , until U) found in logics such as Linear Temporal Logic. In addition,
TSL introduces predicate terms τP , function terms τF , and update terms to
describe reactive systems that manipulate data. In TSL, the conceptualization
of a reactive system revolves around signals s which carry data values of arbitrary
complexity; A TSL specification describes how functions should be applied to
these signals over time. Signals may be pure outputs, or cells, as a one-timestep
delayed input. These terms are defined as shown in the grammar of TSL below:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

τF := s | f(τ0
F , τ1

F , . . . , τn−1
F )

τP := p(τ0
F , τ1

F , . . . , τn−1
F )

τU := [s � τF ]

4 The SynthSynthesizer

In this section, we introduce The SynthSynthesizer, a testbed tool for running
user studies on different logical fragments and interfaces for program synthesis.
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Fig. 2. Overview of The SynthSynthesizer

The framework allows researchers to create interfaces by defining them through
HTML and implementing a single function in JavaScript to parse the interface.
The tool also allows researchers to experiment with different fragments of logics,
and explore the tradeoffs between expressivity and usability.

The overview of the process is shown in Fig. 2. First, a user submits their
specification through an interface. This gets parsed into a logic formula, which
is then synthesized into JavaScript code. The resulting code is embedded back
into the tool, controlling the audio synthesizer that the user plays with either
their mouse, QWERTY keyboard, or USB MIDI controller. The researcher is
free to use any temporal logic that can synthesize to JavaScript (such as LTL),
but we include our TSL synthesis backend for completeness and usability.

We implemented the audio components of The SynthSynthesizer using Web
Audio [28] and Web MIDI [36], both standard Web APIs maintained by the
W3C. The frontend uses framework-less JavaScript, and the backend runs on
Node.js. The server backend is responsible for synthesizing TSL specifications
to JavaScript, with Strix [26] as its synthesis backend and tsltools [10] to
convert between formats such as TLSF [20] and AIGER [18].

We designed The SynthSynthesizer so that researchers can easily access the
tool. Most notably, installation is hassle-free: we provide a docker container with
all the dependencies pre-installed. In particular, this makes the tool accessible
to researchers outside the formal methods community; researchers do not a deep
understanding of the synthesis procedure to use our tool. Additionally, since the
tool runs on a web browser, running user studies is as simple as just sharing a
link. A live demo of the tool is available at https://tslsynthesissynthesizer.com.

5 Evaluation

As an example of how The SynthSynthesizer can be used to explore interfaces
for synthesis, we implemented three separate interfaces and presented them to
users for a user study. Each interface utilizes a different fragment of TSL.

https://tslsynthesissynthesizer.com
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Fig. 3. Interface of TSLα

5.1 Interface Implementations

We explored dropdowns as an interface for specifying reactive control, as drop-
downs are a ubiquitous design element. We created two dropdown interfaces
with different frontends, and included a third written interface as a control case.
All three interfaces use TSL to synthesize user specifications, but with varying
parts of the grammar and subsequently varying levels of expressivity.

We now present each implementation separately.

TSLα. In our first implementation, we use a fragment of TSL that we call TSLα.
Let τU ∈ TU update terms, τp ∈ TP predicate terms. Then, every formula ϕ in
TSLα is built according to the following grammar:

ϕ := τu | τp ↔ τu | ϕ ∧ ϕ

The syntax of TSLα allows users to specify predicates that reconfigure the
signal flow topology of the underlying synthesizer. In particular, the TSL speci-
fication in the motivating example can be captured by TSLα.

The grammar is concise, allowing us to build a compact interface as in Fig. 3.
With this interface, users can define specifications by selecting from a set of
predefined options. TSLα specifications also synthesize quickly; 1,000 random
synthesis queries took, on average, only 1.76 s (cf. Appendix A.2).

TSLβ . Our second implementation still features a dropdown interface, but with
a more expressive grammar. Its syntax is constructed as follows:

ψ = τu | τp ↔ τu | τu → τu

ϕ = ψ | τu → ψ W ¬τu | ϕ ∧ ϕ
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Fig. 4. Partial interface of TSLβ

Expanding upon TSLα, TSLβ adds terms of τu → τu and the weak until operator
W for more complex specifications. For instance, a specification

[waveform � sine()] ↔ (play C4 ↔ [amFreq ← double amFreq])

W ¬[waveform � sine()] ∧ ¬[waveform � waveform]

states that playing C4 doubles AM frequency only when the waveform is sine.
To suit the additional complexity in TSLβ , we arranged the dropdowns as

natural language sentences for user readability. The interface is shown in Fig. 4.
This fragment of TSL also synthesizes quickly, with a mean of 10.09 s for 1,000
random specification synthesis queries (cf. Appendix A.2).

TSLμ. TSLμ subsumes TSLα and TSLβ by offering the full syntax of TSL, but
with the restriction that predicates cannot be applied to cells (cf. Appendix A.1).
We can easily implement the tool using a written interface. Here, users type
TSLμ formulas directly into a textbox, accessing the syntax TSLμ without any
restrictions. In a user study, this interface would serve as the control case. Since
the UI is a simple textbox, we omit a figure of TSLμ.

5.2 User Study

We presented the TSLα, TSLβ , and TSLμ instantiations of The SynthSynthe-
sizer to 21 users for a usability study. The participants were recruited through
online forums focused on programming and computer music, such as reddit or
discord. Users first watched a video tutorial1and answered preliminary ques-
tions on a scale of 1 (not at all experienced) - 7 (very experienced), to rate
their own experience in music (mean = 4.0, SD = 2.2), audio signal processing
(mean = 2.6, SD = 2.1), and programming (mean = 4.5, SD = 2.0). The users
then manipulated the tool to define specifications, synthesize them, and interact
with the resulting reactive system. Afterwards, users responded to a variety of
questions, such as rating each interface on its ‘Ease of Use’ and ‘Flexibility’,
or answering if they had a favorite interface and why. The full list of questions
is included in Appendix A.3. Note that we did not time users for any of their
activities, since our user study was focused on creativity and music production
instead of concrete task completion.

From the user study, we found that participants found TSLα and TSLβ

equally understandable (Q2) and intuitive (Q3), while also being expressive and
1 https://tslsynthesissynthesizer.com/tutorial.html.

https://tslsynthesissynthesizer.com/tutorial.html
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flexible (Q4). However, while users rated TSLμ to be expressive and flexible,
participants rated its usability to be lower than TSLα and TSLμ across all ques-
tions. Since we organized our study by showing TSLα, TSLβ , and TSLμ in the
same sequential order, we intentionally created a bias for users to have a more
solid understanding of TSL and temporal logic by the time they reached the
TSLμ interface. However, as users still expressed difficulty in using TSLμ, this
strengthens our claim that we need a more user-friendly interface than text-based
interfaces to expose reactive synthesis to a wider audience. From this, we do not
conclude that dropdowns are necessarily the right choice of interface - instead
we remark that this is complex design space that requires further investigation.

A total of 18 participants responded to an optional qualitative question ask-
ing which interface was their favorite. Three chose TSLα, nine chose TSLβ , and
six chose TSLμ. The preference for the more complex interfaces shows how users
are intrigued by the expressivity and possibilities of TSL. Although larger frag-
ments of TSL make interfaces harder to use, users are willing to accept a more
complex logic if the interface for the specifications is sufficiently constrained.
The balance struck by TSLβ was also reflected in the user explanations. One user
responded “TSLβ: offers the most flexibility while still being incredibly intuitive.”
and another user responded “TSLβ had the best tradeoff in intuitiveness/ease of
use and freedom/flexibility”. Two other users mentioned they preferred to avoid
writing code, responding “TSLβ! It felt like it had a lot more layers that you
could add on, without the complexity of writing your own code to make it work.”
and “TSLβ. It has lots of flexibility and no need to write code.”.

A video of users interacting with the tool is available at tslsynthesissynthe-
sizer.com/demo.html. Visualizations of the user study results are available in
Appendix A.4.

6 Related Work

The SynthSynthesizer is a tool for exploring logic and interface design for pro-
gram synthesis with temporal logics. In recent years, there has been an increased
interest in usability design of language tools [5], including program synthesis
tools [7,32]. Frameworks to bring program synthesis to broader audiences have
also been explored in the context of games [25], graphics [16], and data sci-
ence [35], but synthesis tools for non-technical users have not yet included reac-
tive synthesis specifically. The tool Flax [34,35] specifically looks at nontradi-
tional interfaces to synthesis by using visualization as a mode of specification.

Some existing tools have explored the usability design space of temporal log-
ics for more technical users. TERMITE [29,30] was designed to bring reactive
synthesis to software developers. Another critical design problem in the usability
of reactive synthesis is the task of providing explanations for reactive synthe-
sis results [1]. Additionally, the UPPAAL tool provides an application-specific
engineered interface for TCTL (timed computation tree logic) specifications;
however, UPPAAL is more focused on verification than synthesis [2].

https://tslsynthesissynthesizer.com/demo.html
https://tslsynthesissynthesizer.com/demo.html
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While interfaces for interactive music generation with reactive synthesis is a
new research problem, computer-assisted composition has a long history [6]. In
terms of usability, recent results have found that users preferred to have more
control over automated music generation rather than having a monolithic end-
to-end model [17]. Similarly, user studies on a music generation tool for video
editing [12] found participants objecting to too much automation, as it made
them feel as if they had not created music. These insights can directly contribute
to interface research of reactive synthesis, since synthesized automata may be
counter-intuitive to users.

We have built our tool around TSL [11], but our interface could be used
to explore specification interface for other temporal logic. Of particular interest
would be adding support for TSL-Modulo Theories [9,24], which would allow for
more fine-grained manipulations of music parameters.

7 Conclusions

We have introduced The SynthSynthesizer, a music-based user study tool that
allows rapid prototyping of different fragments of logic and interfaces. We hope
our tool can be used to start research into designing interfaces for different logics,
and make synthesis more accessible to a broader audience.

A Appendix

A.1 TSLµ and its Decidability

For our tool, we use the TSL fragment TSLμ that has no predicate term appli-
cation on cell values. While our tool has many internal cell values – such as
modulation frequencies or waveforms – predicate terms are only applied to fresh
user inputs (i.e. which notes they pressed, the velocity of key press, etc.). This
allows us to use the fragment TSLμ, which is decidable, unlike the full syntax of
TSL.

Here, we formalize the definition of TSLμ and prove the decidability of its
synthesis problem.

Definition 1 (TSLμ). Let function terms τF and update terms τU be defined
as in Sect. 3. Let predicate terms τP be defined as follows:

τP := p(si0 , si1 , · · · sij )

where sij refers to input signals, and p any predicate. Then, a TSLμ formula is
defined by the following syntax:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ψ
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Intuitively, this is a fragment of TSL where predicate terms are evaluated only
on input signals, and not cells. In particular, synthesizing this fragment of TSL
is decidable.

We now show that synthesis of this fragment of TSL is decidable by showing
that every TSLμ formula can be reduced to an LTL formula.

Theorem 1 (TSLμ-LTL Equivalence). Every TSLμ formula can be trans-
formed to an equivalent LTL formula in polynomial time.

Proof. In TSL synthesis, the environment player chooses the predicate terms τP

and the system player chooses the update terms τU . In TSLμ, the environment
inputs τP ’s are always fresh at each timestep, and their values do not depend on
previous outputs τU of the system player.

Now, we can use the translation procedure from TSL to LTL presented in
[11]:

ϕLTL =
( ∧

so∈O∪C

∨
τ∈T so

U/id

(
τ ∧

∧
τ ′∈T so

U/id
\{τ}

¬ τ ′))

∧ SyntacticConversion
(
ϕTSL

)

Finkbeiner et al. show the soundness of this procedure, that the realizability of
ϕLTL implies the realizability of ϕTSL. In the full syntax of TSL, this procedure
may still produce ϕLTL that returns unrealizable even though ϕTSL is realizable
since the procedure removes the semantic meanings of update terms. However,
in TSLμ, the environment inputs do not depend on the previous system outputs,
and no semantic interpretation of update terms is necessary; it follows that an
unrealizable ϕLTL always implies an unrealizable ϕTSL formula.

Table 1. Synthesis times for different grammars

Interface type Realizable Unrealizable Timeout Median (s) Average (s)

TSLα 446 554 0 1.72 1.76

TSLβ 911 1 71 51.50 10.09

Furthermore, this procedure is bounded in polynomial time with respect to
the formula size. The first part of the equation partially reconstructs the semantic
meaning of updates by ensuring that a signal is not update with multiple values
at a time. This is bounded in the size of update terms,

(
n
2

)
∈ O(n2). The second

part of the equation simply transforms predicate terms to environment inputs
and update terms to system outputs, and is in done in linear time, so the entire
procedure is bounded in polynomial time.

Finally, we state the decidability as a corollary.

Corollary 1 (Decidability of TSLμ Synthesis). The synthesis problem of
TSLμ is decidable.
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Proof. The syntheis problem of LTL is 2EXP-COMPLETE [27]. Therefore, it follows
from Theorem 1 that the synthesis problem of TSLμ is also 2EXP-COMPLETE,
and decidable.

A.2 Experimental Results

In order for users to interact with an interface, it is necessary that it synthe-
sizes in a reasonable amount of time. Therefore, we decided to measure syn-
thesis times of our TSL fragments by randomly generating 1,000 specifications
using The SynthSynthesizer’s random specification generator. The runtimes of
random specifications is particularly relevant to our tool, as the interfaces for
TSLα and TSLβ included a “generate random specification” button, allowing
users to explore the specification design space without needing to have a goal
in mind. The random specification generator chooses an option randomly from
each dropdown menu in the UI, effectively doing a random search through the
combinatorial space of all possible specifications in TSLα and TSLβ . We did not
run a experimental result on the TSLμ syntax as we did not include random
generation of specifications for TSLμ.

Synthesis was executed on a quad-core Intel Xeon processor (2.30 Ghz, 16 Gb
RAM) running Ubuntu 64bit LTS 18.04. Timeout was defined as any synthesis
request that took over 10 s. Average and median time exclude these timed out
synthesis requests. The results are shown in Table 1.

Overall, we found that TSLα specifications synthesized much faster than
TSLβ specifications, without any timeouts. This was an expected result, given
the relative simplicity of TSLα’s grammar compared to that of TSLβ . However,
we were surprised to find that only one TSLβ specification was unrealizable.
After a careful investigation, we discovered that the additional complexity in
the grammar more tightly constrained each specification. Since each specification
made weaker requirements, the grammar had less probability to create mutually
exclusive specifications.

(a) Synthesis time distribution of TSLα (b) Synthesis time distribution of TSLβ

Fig. 5. Synthesis times of 1000 random specifications



Program Synthesis for Musicians 57

We visualize the distribution of the synthesis times in Fig. 5. TSLα synthesis
times follow a quasi-Gaussian distribution, but even the longest-taking query
completes in under 2.4 s. On the other hand, the distribution of TSLβ specifica-
tions skew right; the number of specifications decreases with increasing synthesis
time. The majority of specifications synthesize quickly, with 68.5% specifications
taking less than 10 s to synthesize. From our experimental results, we see a clear
tradeoff between expressivity and synthesis times. TSLα has a limited grammar,
but on average synthesis takes less than two seconds to complete. On the other
hand, TSLβ uses a larger fragment of TSL and provides more expressivity to
the user, but at the cost of timeout; 7.1% of specifications timed out, and on
average took almost 10 times as longer to synthesize than TSLα.

A.3 User Study Questions

In this section, we present the full set of questions for the comprehensive user
study in Tables 2, 3, and 4. Note that Q5 is repeated in the table because the
question is phrased slightly different for TSLμ. The question is meant to ask
about the intuitiveness of the structure of the specification interface. For TSLα

and TSLβ , the specification interface is structured around dropdown menus. For
TSLμ, the specification interface is structured around a text box.

A.4 User Study Results Visualizations

In this section, we present visualizations of the user study results. Figure 6a shows
the user responses for each question for each separate interface. Figures 6b and
6c demonstrate the tradeoff between flexibility and ease-of-use of TSLα, TSLβ ,
and TSLμ.

Table 2. Please rate the TSL [x] interface for creating and synthesizing specifications
from 1 to 7 (7 is highest) on the following

Question number Question

Q1 Intuitiveness

Q2 Understandability

Q3 Ease of use

Q4 Flexibility and expressivity
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Table 3. On a scale from 1 to 7, how much do you agree with the following statements
about TSL [x]

Question number Question

Q5(α, β) The dropdown menus in TSL [x] are an intuitive interface

for specifying control flow

Q5(μ) The text box in TSLμ is an intuitive interface

for specifying control flow

Q6 TSL [x] can help me create music that

I previously wanted to create

Q7 TSL [x] can give me new ideas for music

that I hadn’t thought of

Q8 I can teach others how to use TSL [x]

Q9 I would use TSL [x] again to make music

Q10 I understand what specifications in TSL [x] mean

Q11 After clicking “Synthesize!”, the program did

what I expected it to

QD.α I understood sequential structure of the dropdown menus

QD.β I understood the natural language descriptions

between the dropdown menus

QS.μ I understood the syntax of TSL [x]

Table 4. Paragraph responses

Question number Question

QG.1 What are your general thoughts on TSL [x]?

QG.2 Which of the three specification interfaces

was your favorite? Why?

QG.3 Would you like to share anything else?
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(a) User Study Average Ratings with error bars

(b) TSL Interfaces Average Rating for
Ease of Use with error bars

(c) TSL Interfaces Average Rating for
Flexibility with error bars

Fig. 6. User study average ratings
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Abstract. Package managers are often used in recent software develop-
ment to obtain directly-dependent packages recursively. Typically, pack-
age managers make requests to the package registry more than once when
computing indirect dependencies. Moreover, much amount of computa-
tions are duplicated by clients of package managers. This duplication
can be avoided by computing indirect dependencies in advance on the
server-side of package-management systems. Therefore, we propose two
algorithms functioning in parallel on the server-side: one to compute
the indirect dependencies when copying all packages in existing package
managers to the server and one to add packages to the server. Based on
these parallelized algorithms, we implement a server fpms-server and
a client fpms for npm packages. By our experiments, our client obtains
dependencies of some package more than two times faster than clients in
existing npm and yarn systems.

Keywords: Package manager · Parallelization · Server-side
computation

1 Introduction

Package-management systems (or package managers) are often used in recent
software development. For example, npm is used for Node.js, cargo is used for
Rust, and RubyGems is used for Ruby. Package-management systems consist
of clients and servers. A server (or package registry) has a set of packages and
information on each package that includes a set of directly-dependent packages.
Servers usually just send back packages and their information when receiving
requests from clients.

When getting packages from a package registry, package manager clients
resolve package dependencies recursively by accessing the registry one or more
times. The deeper the package dependencies are, the more package registry
accesses are needed. Also, more than one client may perform the same com-
putation regarding package dependencies. We should not ignore the time for
computing dependencies, since computing indirect dependencies takes as around
one-fourth or half time as downloading packages, as shown in Table 1.
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Table 1. Time for computing and downloading package indirect dependencies in npm

Package name Computing indirect dependencies [s] Download [s]

react 1.6 3.4

gatsby 11.0 39.0

When computing package dependencies, we have to consider circularity
of package dependencies, which frequently appears in programming language
package-management systems such as npm. Figure 1 shows an example of cir-
cularity in dependencies on npm package d, where package versions are written
after @. There is a circularity among packages {es5 − ext, ex6 − iterator} and
another circularity among packages {d, es5 − ext, es6 − symbol}.

d@1.0.1

type@1.2.0 es5− ext@0.10.53

next− tick@1.0.0 es6− iterator@2.0.3 es6− symbol@3.1.0

...

Fig. 1. An example of circularity in dependencies on npm

In this paper, we propose algorithms for computing package dependencies
on the server-side that can cope with circularities, which will allow computation
sharing among clients and reduce the number of accesses to the package registry
by clients. Many package-management systems enable packages to specify a ver-
sion range for each directly-dependent package. Our proposed algorithms support
the description of version ranges. There are also various package-management
systems with functionalities beyond describing version ranges. We describe the
functionalities our approach supports in Sect. 2.

For simplicity, we focus on package managers for programming languages,
many of which do not permit publishers to specify any conditions between pack-
ages being installed and installed packages. This allows package dependencies to
be computed on the server-side.

We implement a prototype system based on the algorithms and find that a
considerable amount of time is required to compute package dependencies for all
packages in npm. For improved efficiency, we parallelize the algorithms.

Based on the parallelized algorithms, we implement a client and server
called fpms and fpms-server, respectively, for npm packages. The server sends
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back package dependencies in one transaction for a request from clients. Using
fpms-server, Internet transactions are reduced by our experiments.

The rest of the paper is organized as follows. Section 2 describes package
managers and the functionalities supported by our approach. Section 3 shows
our sequential algorithms, and Sect. 4 shows the parallelized algorithms. Section 5
describes system implementation based on the parallelized algorithms. Section 6
shows the experimental results for all npm packages using the system. Section 7
discusses the applicability of our approach to other package managers and our
implementation from various viewpoints, and Sect. 8 concludes the paper.

2 Package Managers

Package managers are tools for (among other tasks) installing, uninstalling, and
updating packages. Many package managers have package registries on their
servers to hold package data, with package publishers publishing packages to
their registries. Package manager users can then obtain published packages from
said registries. Many package managers also use some form of files as packages
(e.g., a URL of a git repository) and a directory or a compressed file in the file
system on clients. Some package managers use an additional registry to allow
users to store private packages.

The various kinds of package managers can be classified roughly as for either
operating systems or programming languages [8]. Section 2.1 goes into greater
detail regarding this classification. We describe package dependencies in package
managers in general in Sect. 2.2.

2.1 Package Managers for Programming Languages and Operating
Systems

Package managers for operating systems include apt (used in Ubuntu), nix (used
in Nix OS), and Pacman (used in Arch Linux). These operating system package
managers manage packages globally from a location, enabling users to manage
software in their OS more easily than doing it by themselves.

Package managers for programming languages include npm (used for
Node.js), cargo (used for Rust), and RubyGems (used for Ruby). In many cases,
programming language package managers are used to develop programs for indi-
vidual projects. Programming language package managers also support global
locations for installing software developed in the programming language.

2.2 Package Dependencies

When developing a new package p, developers specify a set S of packages that
are used directly by p. S may be empty. We say that p depends directly on
another package p′ when p′ ∈ S. We consider the transitive closure of the direct-
dependency relation to be an “indirect dependency.” When the client of the
package manager installs p, the client also installs all the packages on which p
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depends indirectly. We write D(p) for the set of all packages on which p depends
indirectly, solving for dependencies of p when computing D(p).

Package managers associate packages with names and occasionally versions.
We write pv for the package whose name is p and whose version is v. Many
package managers allow developers to specify direct dependency for a developing
package, requiring either a fixed version or a range of version conditions for
each package in the set by writing a set of pairs (package names and version
conditions). For example, in npm, when the version condition for p is ^ 1.0.0, a
version of p that satisfies the condition is more than or equal to 1.0.0 and less
than 2.0.0.

Package developers can use URLs (for git repositories, zip archives of a pack-
age, etc.) instead of packages for S, depending on the package manager in use.
Some packages managers also allow developers to specify conflict packages (when
p does not exist locally and a locally existing p′ conflicts with p, preventing instal-
lation), optional dependencies (allowing package managers to attempt specified
package installations that do not cause errors if the installation fails), and peer
dependencies (where the package manager notifies users of the dependencies and
does not install package specified by the dependencies).

When solving for dependencies of p, there may be packages qx and qy with
the same name q and different versions x and y in D(p), but dealing with such
instances depends on the package manager in question.

Packages in npm average 7.34 dependencies with a standard deviation of
22.52 [4], probably because npm package developers often use trivial packages [1],
with a high standard deviation. In npm, there are about 1.5 million package
names and about 15 million packages.

Npm clients do not save the package data locally, so they may generally
access the package registry more than once when solving package dependencies.
In contrast, some package managers, such as apt, get and save all package data
locally before solving package dependencies.

Many programming language package managers generate a file possessing
dependencies among the packages (e.g., npm generates package-lock.json and
cargo generates Cargo.lock), for installing packages with keeping versions of
installed packages unchanged, for example. When such files exist, the package
manager gets packages written in the file without solving package dependencies.

3 Algorithms

The algorithms we present in this section use a direct graph, which we call a
package-dependency graph. Each node in this graph is a package that has edges to
directly-dependent packages. As for indirect dependencies, one of the algorithms
maintains a mapping that maps each package to a set of packages indirectly
dependent on the package.

This section details two cases for computing indirect dependencies on the
server-side and an algorithm corresponding to each case. One is for computing
indirect dependencies for many packages at once, which is used for adding all
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packages existing in some other package-management system to the server. The
other is for updating indirect dependencies, which is used when a developer adds
new packages to the server.

For the first case, we compute the set of indirectly-dependent packages for
each package in two phases: initializing the package-dependency graph (shown
in Sect. 3.1) and computing the set of indirectly-dependent packages for each
package using the package-dependency graph (show in Sect. 3.2).

For the second case, we give an algorithm for adding packages to the registry
(shown in Sect. 3.3).

As packages may have circular dependencies, we employ an idea used in iter-
ative algorithms for data-flow analysis for imperative languages with looping
constructs [2] for computing indirectly-dependent packages. We leave a compar-
ison between our algorithms and iterative algorithms in the data-flow analysis
as a future study.

3.1 Initializing Package-Dependency Graph

We initialize a package-dependency graph before computing a set of indirectly-
dependent packages for every package (see in Algorithm 1).

Algorithm 1. An algorithm for initializing a package-dependency graph
function deps(pack, package map)

result ← ∅
for (name, condition) ∈ pack.depspec do

targets ← package map[name]
filtered ← ()
for target ∈ targets do

if t.version satisfies condition then
filtered ← filtered ∪ t

result ← result ∪ {latest(filtered)}
return result

function initialize graph(package map)
for packs set ∈ package map do

for pack ∈ packs set do
dset ← deps(pack, package map)
save dset(pack, dset)

As preparation for initializing the graph by function initialize graph, we
get all package data from the registry of the package-management system and
save the data persistently somewhere, such as a database, by using the function
save pack, which is also used in Algorithm 3.

Each package p has a property p.depspec, a set of pairs of names and condi-
tions on version ranges, as its specification of direct dependencies. The obtained
package data is then stored as an associative array package map, with each entry
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possessing a package name n as its key and a set of packages having n as the
value, before package map is passed to the initialize graph function as its
argument in Algorithm1.

For each value of packs set in package map, we compute a set of directly-
dependent packages for each package pack in packs set by using the function
deps.

deps takes as its arguments a package p and an associative array a, comput-
ing a set of directly-dependent packages for each package. Here, we let P (n, c)
be the set of all packages of name n satisfying the version condition c. Following
the specification of npm, we have to determine the latest package in P (n, c) for
each pair of n and c in p.depspec, which is the specification of dependency in p.
deps does this by using the function latest, which takes as its argument a set
of packages and returns the package that is the latest in the set.

The result of deps is assigned to deps and is also saved persistently some-
where, such as a database, by the function save dset.

When initializing the server, we call the initialize graph function and then
call the compute indep function in Algorithm2.

3.2 Computing the Set of Indirectly-Dependent Packages for Every
Package

Algorithm 2 computes the set of indirectly-dependent packages for every package.
In the function compute indep, the variable all packs is the set of all pack-

ages, obtained by the function get all packs, which obtains package data
saved by the function save pack (see in Sect. 3.1).

The variable all deps is initialized as an empty associative array that has
packages as keys and sets of packages as values, which is used for updating the
indirect dependencies in each iteration.

Before entering the while loop in the function compute indep, we assign
false to complete, which is used as the condition for the while loop, and
assign an empty set to updpre, which holds the indirect dependencies com-
puted in the previous iteration, except for the first iteration. We then call
update deps(all packs, all deps, updpre) to update the indirect dependencies.
The return value of update deps is a set of packages assigned to upd and is used
as a flag to indicate whether the indirectly-dependent packages of each package
are updated. When a package p is an element in upd, it means that all deps[p]
was updated.

In the loop of update deps, iset is initially set as all deps[p], which is the
set of packages on which the package p indirectly depends that were obtained in
the previous iteration. In the first iteration, all deps[p] is an empty set for every
p. The variable iset is then augmented by the set dset of packages that p directly
depends on, which is obtained by get dset(p) at its first iteration, represented
by updpre = ∅. Note that get dset(p) returns a set of packages that was saved
by save dset, which is called in Algorithms 1 and 3. From the second iteration,
iset is augmented by all deps[d], which is the set of packages that the package d
indirectly depends on, as computed in the previous iteration. This augmentation
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Algorithm 2. An algorithm for computing the set of indirectly-dependent pack-
ages for every package

function update deps(packs, all deps, updpre)
upd ← ∅
for p ∈ packs do

iset ← all d[p]
size ← iset.size
dset ← get dset(p)
if updpre = ∅ then

iset ← iset ∪ dset
else

for d ∈ dset do
if d ∈ updpre then

iset ← iset ∪ all deps[d]

if iset.size > size then
all deps[p] ← iset
upd ← upd ∪ {p}

return upd

function compute indep()
all packs ← get all packs()
all deps ← emptyMap()
for p ∈ all packs do

all deps[p] ← ∅
updpre ← ∅
complete ← false
while !complete do

complete ← true
upd ← update deps(all packs, all deps, updpre)
if upd! = ∅ then

complete ← false
updpre ← upd

save all deps(all deps)

is done only when all deps[d] has been updated in the previous iteration, which
is represented by the condition d ∈ updpre. Thanks to this optimization, our
experiments have found Algorithm 2 is at least twice as fast as it was prior to
optimization.

In Algorithm 2, all deps[p] monotonically increases with respect to the order-
ing of the set inclusion. In addition, the value of iset increases for each iteration;
therefore, we only need to check if the size of iset is larger than the size of the ini-
tial value of iset in the current iteration, when determining whether all deps and
the flags upd should be updated. We omit the formal argument about properties
of Algorithm 2.
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3.3 Adding Packages to the Server

Algorithm 3 indicates how packages are added to the server, which has packages
with indirect dependencies already computed.

Algorithm 3. An algorithm for adding packages to the server
function add packages(packs)

for pack ∈ packs do
save pack(pack)
dset ← ∅
for (name, condition) ∈ pack.depspec do

filtered ← ∅
for p ∈ get packages(name) do

if p.version satisfies condition then
filtered ← filtered ∪ {p}

dset ← dset ∪ {latest(filtered)}
save dset(pack, dset)
for p ∈ packs depends on(pack.name) do

for (name, cond) ∈ p.depspec do
if name = pack.name then

condition ← cond
break

if pack.version satisfies condition then
p dset ← get dset(p)
for d ∈ p dset do

if d.name = pack.name then
pack old ← d
break

if pack.version > pack old.version then
p dset ← (p dset \ {pack old}) ∪ {pack}
save dset(p, p dset)

compute indep()

The function add packages takes a set of packages packs as its argument,
which are added to the server. For each pack in packs, pack is initially saved by
save pack as in the preparation for calling initialize graph in Sect. 3.1.

In the first for loop of the outermost for loop, we compute the set of directly-
dependent packages dset of pack similarly to the deps function in Algorithm1.
The get packages function takes a name name and returns the set of pack-
ages with that name before saving it in the function save pack. The result of
collecting directly-dependent packages is saved by the function save dset.

To compute the set of indirectly-dependent packages for all packages includ-
ing pack, we reuse compute indep in Algorithm 2.

In the second for loop of the outermost for loop, we check whether an
update is required for directly-dependent packages of packages that depend
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on a package with the name pack.name. Those packages are obtained by the
pack depends on function. The detailed explanation of the second for loop is
left for readers.

Finally, we compute the set of indirectly-dependent packages using the com-
pute indep function in Algorithm2.

4 Parallelization

We implemented a prototype system based on the algorithms in the previous sec-
tions, finding that initialization took around 30 min for about 15 million packages
in npm.

To improve efficiency, we have parallelized Algorithms 1, 2, and 3, illustrating
how to parallelize these algorithms in this section. After parallelization, initial-
ization completed in around 15 min.

4.1 Initializing Package-Dependency Graph

In the deps function of Algorithm1, the newest directly-dependent packages of
each package are computed independently. Therefore, we divide package map
into several groups and run the initialize graph function for each group in
parallel.

Algorithm 4 shows a parallel algorithm for initializing a package-dependency
graph.

Algorithm 4. A parallel algorithm for initializing a package-dependency graph
function initialize graph in parallel(package map)

thread num ← get thread num()
pack groups ← group(package map, thread num)
threads ← ∅
for map ← pack groups do

thread ← make thread(λ().(

initialize graph(map)

))
thread.run()
threads ← threads ∪ {thread}

waitall(threads)

We begin by dividing the mapping package map by the number of threads.
The get thread num function then returns the number of threads, and the
group function takes package map and a number thread num, which is the
number of threads, and divides package map by thread num.

For each map, we create threads that each call the initialize graph func-
tion in Algorithm1. We let threads be all the threads created and wait for all
threads to finish using the waitall function.
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4.2 Computing the Set of Indirectly-Dependent Packages for Every
Package in Parallel

Algorithm 5 shows a parallel algorithm for computing the set of indirectly-
dependent packages for every package.

Algorithm 5. A parallel algorithm for computing the set of indirectly-
dependent packages for every package

function compute indep in parallel()
all packs ← get all packs()
all deps ← emptyMap()
for p ∈ all packs do

all deps[p] ← ∅
thread num ← get thread num()
pack groups ← group(all packs, thread num)
updpre ← ∅
complete ← false
while !complete do

updarr ← ∅
threads ← ∅
for (packs, i) ∈ enumerate(pack groups) do

thread ← make thread(λ().(
updarr[i]

← update deps(packs, all deps, updpre)
)
thread.run()
threads ← threads ∪ {thread}

waitall(threads)
updpre ← unionall(updarr)
if updpre = ∅ then

complete ← true

save all deps(all deps)

In the compute indep in parallel function, we start by dividing the pack-
ages into groups pack groups by the number of threads.

For each group in pack groups, we create a thread that calls the
update deps function in Algorithm2. The enumerate function enumerates
groups in pack groups with their indices.

To collect packages whose indirect dependencies are updated, we use an array
updarr of length thread num, each element of which holds the set of updated
packages computed by the function update deps. After waiting for all threads
computing each indirect dependencies, we assign the union of all sets in updarr
to updpre, which was computed by the unionall function.

In each iteration of the while loop, the indirect dependencies held in all deps
depend on the order of the computation done in the threads. However, the final



72 N. Kasai and I. Sasano

result of the indirect-dependencies held in all deps was the same as the one
computed in Algorithm 2. We omit the formal argument about this fact.

4.3 Adding Packages to the Server

To parallelize Algorithm 3, we call the compute indep in parallel function
in Algorithm 5 instead of the compute indep function.

Algorithm 3 updates the package-dependency graph before calling com-
pute indep. The package-dependency graph can be updated just by adding
directly-dependent packages of each new package, which does not take much
time. Therefore, we do not parallelize Algorithm 3 except when replacing com-
pute indep with the compute indep in parallel function.

5 Implementation

We implemented a server fpms-server (fast package manager server) in Scala,
making the source code public at https://github.com/sh4869/fpms-server. We
also made the server public temporarily at http://202.18.65.18/.

The fpms-server provides a web API that we named indep. The indep API
takes package name name and optionally a version condition condition, which
we write as indep(name, condition). The syntax and semantics of condition are
the same as those used in npm. The server then returns the set of indirectly-
dependent packages of the latest package whose name is name and whose version
satisfies condition. When a condition is not given, the server returns the set of
indirectly-dependent packages of the latest package of name name.

If we wanted to obtain the indirectly-dependent packages of the package
react whose version is 17.0.2, then we would just need to access http://202.
18.65.18/calculated/react?range=17.0.2.

When the server fpms-server receives a request, the request path
(given as the argument of GET method) is matched against the pattern:
GET/calculated/name(?range=condition)?. As a result, the package name
given in the request is assigned to the pattern variable name, allowing the version
condition to be assigned to the pattern variable condition. Our implementation
supports version conditions following the grammar given in https://github.com/
npm/node-semver#range-grammar. For example, when the GET method is

GET /calculated/react?range=17.0.2,

name becomes react, condition becomes 17.0.2, and the response is obtained
in JSON format. The response is shown Fig. 2 using the Firefox browser.

We used two databases in the server (PostgreSQL and Redis) to save package
data as well as the direct and indirect dependencies, respectively, for all packages.

We saved package data as the package table on PostgreSQL, showing its
definition in Table 2. We used a JSON type [9] for the column deps. PostgreSQL
provided the json extract path function [10] that received a column name and

https://github.com/sh4869/fpms-server
http://202.18.65.18/
http://202.18.65.18/calculated/react?range=17.0.2
http://202.18.65.18/calculated/react?range=17.0.2
https://github.com/npm/node-semver#range-grammar
https://github.com/npm/node-semver#range-grammar
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Fig. 2. Part of the result of calling indep(react, 17.0.2)

Table 2. The definition of the package table

Column name Column type Description

id Integer Identifier of package

name String Package name

version String Package version

deps JSON Specification of dependencies

key name as its arguments to return the value mapped from the key in the column
as JSON data, and that is used in function pack depends on in Algorithm 3.

The direct-dependencies and the set of indirectly-dependent packages for
every package were saved into Redis.

We implemented functions save dset, get dset, and save all deps in
Algorithms 1, 2, and 3, to save data to and get data from Redis. We also imple-
mented the save pack and get all packs functions in Algorithm2 and 3, so
that they would save data and get data from PostgreSQL.

In implementing Algorithm 2, we represented a package using an identifier to
reduce memory usage.

When sending back the set of indirectly-dependent packages for an API
call indep(name, condition), the server obtained packages of name from Post-
greSQL, found the identifier of the latest version of P (name, condition), got
the identifiers of indirectly-dependent packages, and then obtained the package
data from PostgreSQL using the identifiers. Direct and indirect dependencies for
every package were saved into Redis as the set of identifiers.

To use our system with npm packages, it was necessary to download all
package data from the npm package registry prior to starting the server for the
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first time. After downloading all package data, we allocated an identifier to every
package before saving package data to the package table in PostgreSQL.

For stable server operation, we separated the server and computation parts on
the fpms-server. The server received requests and returned the set of indirectly-
dependent packages stored in Redis, which was computed by the computation
part in advance. Users can access fpms-server even when the computation part
updates indirectly-dependent packages due to the addition of new packages. As
presented in Algorithm 5, save all deps is called when an update computation
is completed, allowing Redis to always hold complete indirect dependencies.

We implemented a system client named fpms and published to npm at
https://www.npmjs.com/package/fpms-client. The client fpms was implemented
as a command that could take one or more package names as its argu-
ments. When downloading packages, fpms invoked yarn (an alternative of
npm). Before invoking yarn, fpms created the file yarn.lock [12], where
the dependency of some packages was described by using data fetched from
fpms-server. The yarn command downloaded packages according to the
description in yarn.lock. We show an example of the file yarn.lock for
the package log4js at https://raw.githubusercontent.com/sh4869/fpms-server/
master/docs/yarn lock example.txt. We also made the source code of the client
fpms public at https://github.com/sh4869/fpms.

6 Experiments

To show the effectiveness of our approach, we measured the response and exe-
cution times in our system’s server, then compared them with those in yarn.
We experimented in a machine with an AMD Ryzen 9 3950X CPU with a 16-
Core Processor, 32 threads at 3.5 GHz, 128 GB of memory, and an Ubuntu 20.04
64-bit OS. The experiments used all 32 available threads.

6.1 Comparison Between fpms and yarn

We measured the time to execute each client command for downloading pack-
ages with solving dependencies and the number of requests to the server while
solving dependencies via fpms and yarn. The results of this experimentation
are available in Tables 3 and 4. When solving dependencies for a package p,
the yarn client accesses the server at most as many times as the number of
indirectly-dependent packages of the package p. By contrast, the fpms client
always accesses the server just once for solving dependencies for a package, since
dependency was computed on the server in advance.

In this experiment, each client installed eight packages to the corresponding
server. Following the default behavior of npm, each client obtained the latest
version for each package name and requested each package three times. The
clients accessed the servers through the Internet in the same environment. The
average times are shown in Table 3.

https://www.npmjs.com/package/fpms-client
https://raw.githubusercontent.com/sh4869/fpms-server/master/docs/yarn_lock_example.txt
https://raw.githubusercontent.com/sh4869/fpms-server/master/docs/yarn_lock_example.txt
https://github.com/sh4869/fpms


Server-Side Computation of Package Dependencies 75

The fpms client ran faster than the yarn client when installing packages
except for underscore and react. When installing the gatsby package (which
contained multiple indirectly-dependent packages), fpms ran much faster than
yarn. When installing the react, underscore, tslib, and typescript packages,
yarn solved dependencies using a small number of requests to the registry. The
fpms client was slightly slower than yarn, since the fpms client invokes yarn
command as a child process while yarn client does not create any child process.
The difference is around a little less than 0.1 s, which corresponds to the time
spent on invoking yarn as a child process by our experiments. We believe this
is solved by implementing the function of downloading packages by ourselves,
instead of using yarn.

Table 3. Comparison of times to
install packages using fpms and yarn

commands

Package name fpms [s] yarn [s]

underscore 0.73 0.65

tslib 0.39 0.33

typescript 1.00 0.98

react 0.44 0.40

log4js 0.60 1.28

express 1.00 1.50

typeorm 2.40 2.70

gulp 3.10 3.70

firebase-tools 6.40 10.00

gatsby 23.41 32.45

Table 4. Comparison of the number of
server requests used by commands fpms
and yarn while solving dependencies

Package name fpms yarn

underscore 1 1

tslib 1 1

typescript 1 1

react 1 4

log4js 1 11

express 1 52

typeorm 1 72

gulp 1 297

firebase-tools 1 633

gatsby 1 1435

6.2 Initialization

Prior to server initialization, we downloaded all packages information (about 15
million packages) from the npm package registry, which took a few hours.

The time spent initializing the server is shown in Table 5. During initializa-
tion, most of the time was spent initializing the package table in PostgreSQL.
It bears mention that initialization is not necessary even if the server machine is
restarted, since the package data, direct dependencies, and indirect dependencies
are saved on PostgreSQL and Redis.

6.3 Adding Packages

When adding packages to the server, each package developer sent an HTTP
POST request to the server. The URL for the request was http://202.18.65.18/
add and the request body was in a JSON format, which was posted on https://
github.com/sh4869/fpms-server#post-add.

http://202.18.65.18/add
http://202.18.65.18/add
https://github.com/sh4869/fpms-server#post-add
https://github.com/sh4869/fpms-server#post-add
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Table 5. Server initialization times

Initializing
database [s]

Creating the
package-dependency
graph [s]

Computing the sets of
indirectly-dependent
packages [s]

Saving data to
Redis [s]

1020 70 300 180

Although the server accepted requests for adding packages at all times, the
server could only start adding packages after previous additions were finished.
The server started adding packages if any requests remained, with all remaining
requests being processed together. The server also started adding packages when
one minute had passed after the previous addition to allow multiple requests to
be processed at once. Table 6 shows the time required to add new package ver-
sions to the server. We also show the number of packages with updated directly-
dependent packages and the number of packages that each of added packages
directly-depends on in Table 7. When adding a package, the number of packages
with their directly-dependent packages updated by adding the package had a
significant negative effect on the execution time, yet the number of packages
that the added package directly depends on did not matter as much. Table 6
shows that the number of packages to be added does not have an appreciable
effect on the time for adding packages, and that adding multiple packages at
once was much more efficient than adding packages individually.

Table 6. Execution time for
adding packages

Package to be added Execution
time [s]

gatsby 480

react 420

firebase-tools 420

debug 780

underscore 747

underscore, gatsby 750

Table 7. The number of packages with their
directly-dependent packages updated when adding
a package (a) and the number of packages that the
added package directly depends on (b)

Package name (a) (b)

gatsby 41 153

react 1 2

firebase-tools 11 57

debug 172506 2

underscore 138223 0

7 Discussions

Here we discuss the applicability of our approach to other package managers
with unique functionalities, examine the Nix package manager (which allows the
sharing of build binaries), and discuss our implementation from various view-
points.
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7.1 Applicability to Other Package Managers

Our algorithm can be used with package managers that support version ranges
in the dependency condition descriptions. For example, Ruby Gems supports
only version ranges in the dependency condition descriptions, so we expect our
approach can be applied to Ruby Gems. We also expect our approach can be
applied to many package managers for programming languages, such as Ruby
Gems and Pip, save those that support features other than the description of
version ranges.

7.2 Complex Specification of Dependencies and Local Environments

Some package managers, especially OS package managers, can impose more com-
plex conditions than ours on packages to be installed. For example, apt can spec-
ify conflict packages and can use disjunction in dependency conditions. When a
package to be installed has conflict packages, package managers have to check
whether the conflict packages are installed globally. Opium [11] was developed
to cope with these situations using the SAT solver. Disjunctions in the descrip-
tion of version conditions have been argued about in terms of the semantics of
concurrency in functional languages [3].

To support the complex dependencies described above in our system, we may
have to compute indirect dependencies for all possible disjunction selections in
the conditions. In this case, clients will have to get a set of indirect dependencies
and select one by checking the installed packages.

7.3 Multiple Package Registries

Some package-management systems allow clients to get packages from multiple
package registries. In such systems, developers can specify any package on some
of the registries as a directly-dependent package of the package being developed.

In our algorithm, direct and indirect dependencies are saved in the server. As
package registries are not connected to each other generally, when we extend our
approach to support multiple registries, we may support communication between
package registries for computing indirectly-dependent packages among multiple
registries.

7.4 Nix Package Manager

The Nix package manager is mainly used with the Nix OS [5]. It allows build
packages to be shared with other machines that have Nix installed as binary
caches, which are mainly used for distributing binaries provided by software
developers because of security reasons. By contrast, indirect dependencies are
shared in our system.
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7.5 Dependencies in Build Systems

Build systems, such as make and bazel, compute dependencies of build tasks.
Bazel [6] is a build system that shares obtained results among cloud users. In
cloud builds, build systems compute build task dependencies, then check whether
there are shared results for cloud dependencies. Our approach may be applied
to build systems with build tasks that are performed in the cloud, preventing
identical build tasks from being performed on many local machines.

Build systems are classified in the study [7] according to the way they solve
the dependencies for understanding the build system features. Similar to that
study, we may classify package managers to clarify what kind of package man-
agers our approach can be applied to.

7.6 Security

In our system, we establish a third-party server between the client and the
package registry. The client may provide an option for checking that indirect
dependencies have not been tampered with on the server. In the option, the
client checks that each installed package is required by the user or any of the
installed packages. It is faster than computing indirectly-dependent packages
from scratch in the client. Note that direct dependencies are assumed to be
correct, since our client obtains package data, including direct dependencies,
from the npm package registry.

8 Conclusions and Future Work

We proposed computing package dependencies on the server-side of package-
management systems. Based on this idea, we proposed two parallel algorithms
for computing indirect dependencies on the server and for adding packages to
the server.

Based on our algorithms, we implemented a server fpms-server and a client
fpms for 15 million npm packages. The server provided a web API for users
to get indirectly-dependent packages of a package by sending a package name
and a version condition. It took roughly 15 min to initialize package dependen-
cies on the server and another 12 min to update package dependencies on the
server. Such an update can be performed without interrupting the service. We
experimented installing some packages with their indirectly-dependent packages
by using two clients: fpms and yarn. Our results indicated that the fpms client
worked faster than yarn in cases where there were many indirectly-dependent
packages.

Npm supports some features that specify special dependencies, such as
optional and peer dependencies, which will be a future study.
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Abstract. The most prominent formal criterion for secure compilation
is full abstraction, the preservation and reflection of contextual equiva-
lence. Recent work introduced robust compilation, defined as the preser-
vation of robust satisfaction of hyperproperties, i.e., their satisfaction
against arbitrary attackers. In this paper, we initially set out to compare
these two approaches to secure compilation. To that end, we provide an
exact description of the hyperproperties that are robustly satisfied by
programs compiled with a fully abstract compiler, and show that they
can be meaningless or trivial. We then propose a novel criterion for secure
compilation formulated in the framework of Mathematical Operational
Semantics (MOS), guaranteeing both full abstraction and the preserva-
tion of robust satisfaction of hyperproperties in a more sensible manner.

Keywords: Secure compilation · Fully abstract compilation · Robust
hyperproperty preservation · Language-based security · Mathematical
Operational Semantics

Remark. To ease reading, we highlight the elements of source languages in
blue, sans-serif, the target elements in red,bold and the common ones in
black [33].

1 Introduction

Due to the complexity of modern computing systems, engineers make substantial
use of layered design. Higher layers hide details of the lower ones and come with
abstractions that ease reasoning about the system itself [39]. A layered design
of programming languages allows to benefit from modules, interfaces or depen-
dent types of a source, high-level language to write well-structured programs,
and execute them efficiently in a target, low-level language, after compilation.
Unfortunately, an attacker may exploit the lack of abstractions at the low-level
to mount a so-called layer-below attack [39], which is otherwise impossible at the
high-level [17,18].
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Secure compilation [35] devises both principles and proof techniques to pre-
serve the (security-relevant) abstractions of the source and prevent layer-below
attacks. Abadi [1] hinted that secure compilers must respect equivalences, as
some security properties can be expressed in terms of indistinguishability w.r.t.
arbitrary attackers, or contextual equivalence. Fully abstract compilers preserve
and reflect (to avoid trivial translations) contextual equivalence.

Two decades of successes [1,8,9,13,14,19,34,36,43,45] made full abstraction
the gold-standard for secure compilation. However, some ad-hoc examples from
recent literature [4,37] showed that fully abstract compilers may still introduce
bugs that were not present in source programs, e.g.,

Example 1 (See also Appendix E.5 of [4]). Consider source programs to
be functions B → N (from booleans to natural numbers) and target ones to be
functions N → N. Define contextual equivalence to be equality of outputs on
equal inputs. Next, identify B with {0, 1} ⊆ N, and compile a program P to
�P� : N → N that coincides with P : B → N on {0, 1} and returns a default value
– denoting a bug – otherwise,

�P�(n) =

{
P(n) for n = 0, 1
42 otherwise

�·� is fully abstract, yet a source program that “never outputs 42”, will no longer
enjoy this property. �

This simple example underlines the fact that if a security property like “never
output 42” is not captured by contextual equivalence, there is no guarantee it
will be preserved by a fully abstract compiler. Abadi [1] tellingly wrote

[. . . ] we still have only a limited understanding of how to specify and prove
that a translation preserves particular security properties. [. . . ]

Abate et al. [4] proposed to specify security in terms of hyperproperties, sets of
sets of traces of observable events [15]. In this setting, they consider a compiler
secure only if it robustly preserves a class of hyperproperties, i.e., if it preserves
their satisfaction against arbitrary attackers. For Example 1, “never output 42”
can be specified as a safety hyperproperty, where function inputs and outputs are
the observable events. The above compiler �·� is not secure according to Abate
et al. [4], as it does not robustly preserve the class of safety hyperproperties.
More generally, each particular class of hyperproperties, e.g., the one for data
integrity or the one for data confidentiality [15], determines a precise formal
secure compilation criterion.

Despite the introduction of the robust criteria, full abstraction is still widely
adopted [14,19,43,45], for at least two reasons. First, contextual equivalence
can model security properties such as noninterference [13], isolation [14], well-
bracketed control flow or local state encapsulation [43] for programs that don’t
expose events externally. Second, even though fully abstract compilers do not in
general preserve data integrity or confidentiality, they often do so in practice.
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Fully abstract and robust compilation both embody valuable notions of secure
compilation and neither is stronger than the other nor are they orthogonal, which
makes us believe their relation deserves further investigation. Our goal is to have
criteria with well understood security guarantees for compiled programs, so that
both users and developers of compilers may decide which criterion better fits
their needs. For that, we assume an abstract trace semantics, collecting observ-
ables events and internal steps, is given for both source and target languages,
and start our quest not by asking if a given fully abstract compiler preserves all
hyperproperties, but which ones do and which ones do not preserve.

Contributions. First, we make explicit the guarantees given by full abstraction
w.r.t. arbitrary source hyperproperties. We achieve this by showing that for
every fully abstract compiler �·�, there exists a translation or interpretation of
source hyperproperties into target ones, τ̃ , such that if P robustly satisfies a
source hyperproperty H, �P� robustly satisfies τ̃(H) (Theorem 1). However, we
observe that a fully abstract compiler may fail to preserve the robust satisfaction
of some hyperproperty, as τ̃ may map interesting hyperproperties to trivial ones
(Example 2). We then provide a sufficient and necessary condition to preserve
the robust satisfaction of hyperproperties (Corollary 1), but argue that it is
unfeasible to be proven true for an arbitrary fully abstract compiler. To overcome
the above issues, we introduce a novel criterion, that we formulate in the abstract
framework of Mathematical Operational Semantics (MOS). We show that our
novel criterion implies full abstraction and the preservation of robust satisfaction
of arbitrary hyperproperties (Sect. 5). We illustrate effectiveness and realizability
of our criterion in Example 3.

2 Fully Abstract and Robust Compilation

Let us briefly recall the intuition of fully abstract and robust compilation, and
provide their rigorous definitions. We refer the interested reader to [3,4,35] for
more details.

2.1 Fully Abstract Compilation

Abadi [1] proposed fully abstract compilation to preserve security properties
such as confidentiality and integrity when these are expressed in terms of indis-
tinguishability w.r.t. the observations of arbitrary attackers, the latter modeled
as execution contexts. For a concrete example, if no source context CS can dis-
tinguish a program P1 that uses some confidential data k from a program P2

that does not, we can deduce that k is kept confidential by P1. Thus, a compiler
�·� from a source language to a target one, that aims to preserve confidentiality,
must ensure that also �P1� and �P2� are equivalent w.r.t. the observations of
any target context CT. To avoid trivial translations, one typically asks for the
reflection of the equivalence as well.

Definition 1 (Fully abstract compilation [1]). A compiler �·� is fully
abstract iff for any P1 and P2,
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(∀CS.CS [P1] ≈ CS [P2])⇔(∀CT.CT [�P1�] ≈ CT [�P2�])

where CS, CT denote source and target contexts resp., ≈, ≈ denote the two
contextual equivalences, i.e., equivalence relations on programs.

Notice that the security notions one can preserve and reflect with a fully abstract
compiler are those captured by the contextual equivalence relation ≈, that deter-
mines both the meaningfulness and the effectiveness of full abstraction. Indeed,
if ≈ is too coarse-grained, some interesting security properties may be ignored.
Dually, if ≈ is too fine-grained, equivalent source programs may not have coun-
terparts that are equivalent in the target. In Sect. 3, we pick ≈ to be equality
of execution traces which, under mild assumptions [20,28], coincides with other
common choices of ≈ (see also Sect. 6).

2.2 Robust Compilation

Abate et al. [4] suggest a family of secure compilation criteria that depend on
the security notion one is interested in preserving. The key idea in their cri-
teria is the preservation of robust satisfaction, i.e., satisfaction of (classes of)
security properties against arbitrary attackers, modeled as contexts. More con-
cretely, Abate et al. [3,4] assume that every execution of a program exposes a
trace of observable events t ∈ Trace for a fixed set Trace and model interesting
security notions like data integrity, confidentiality or observational determinism
as sets of sets of traces, i.e., hyperproperties denoted by H ∈ ℘(℘(Trace)) [15].

Definition 2 (Robust satisfaction [3,4]). A program P robustly satisfies a
hyperproperty H iff ∀C. C [P ] |= H, where C [P ] |= H � beh(C [P ]) ∈ H and
beh(C [P ]) is the set of all traces that can be observed when executing C [P ].

Secure compilation criteria can then be defined as the preservation of robust sat-
isfaction of classes of hyperproperties such as safety or liveness [4], in this paper
we consider the class of all hyperproperties and robust hyperproperty preserva-
tion ( RHPτ from [3]). For that, consider a function τ that takes a source-level
hyperproperty and returns its interpretation (or translation) at the target level.
Intuitively, a compiler �·� is RHPτ if, for any source hyperproperty H robustly
satisfied by P, its interpretation τ(H) is robustly satisfied by �P�, formally:

Definition 3 (Robust hyperproperty preservation). A compiler �·� pre-
serves the robust satisfaction of hyperproperties according to a translation
τ : ℘(℘(TraceS)) → ℘(℘(TraceT)) iff the following RHPτ holds

RHPτ ≡ ∀P ∀H ∈ ℘(℘(Trace)). (∀CS. CS [P] |= H) ⇒
(∀CT. CT [�P�] |= τ(H))

when τ is clear from the context we simply say that �·� is robust.

RHPτ can be formulated without quantification on hyperproperties [3,4].
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Lemma 1 (Property-free RHPτ). For a compiler �·�, RHPτ is equivalent to1

∀P ∀CT ∃CS. behT(CT [�P�]) = τ(behS(CS [P]))

Notice that, while Definition 3 describes—through τ—the target guarantees
for �P� against arbitrary target contexts, Lemma 1 enables proofs by back-
translation. In fact, similarly to fully abstract compilation [35], one can prove
that a compiler is RHPτ by exhibiting a so-called back-translation map produc-
ing a source context CS whose interaction with P exposes “the same” observables
as CT does with �P�:

Remark 1 (RHPτ by back-translation). RHPτ holds if there exists a back-
translation function bk such that for any CT and any P, bk(CT [�P�]) = CS

is such that behT(CT [�P�]) = τ(behS(CS [P])).

3 Comparing FAC and RHPτ

In the previous section we defined fully abstract compilation as the preservation
and reflection of contextual equivalence, i.e., what the contexts can observe about
programs. Instead, RHPτ was defined as the preservation of (robust satisfaction
of) hyperproperties of externally observable traces of events. To enable any com-
parison, we first provide an intuition on how to accommodate the mismatch in
observations between full abstraction and RHPτ (see the online appendix [5] for
all the details). We assume the operational semantics of our languages exhaus-
tively specify the execution of programs in contexts, including both internal steps
and steps that expose externally observable events like inputs and outputs. Also,
we say that a trace is abstract if it collects both internal steps and externally
observable events. In a slight abuse of notation, we still denote with beh(C [P ])
the set of all the possible abstract traces allowed by the semantics when execut-
ing P in C. Moreover, since hyperproperties just express predicates over events ,
we now write beh(C [P ]) ∈ H to mean that the traces of events for C [P ] satisfy
the hyperproperty H. Finally, we elect to express contextual equivalence as the
equality of the (sets of) abstract traces in an arbitrary context.

Definition 4 (Equality of beh(·)). For programs P1, P2 and a context C,

C [P1] ≈ C [P2] ⇐⇒ beh(C [P1]) = beh(C [P2])

In Sect. 6 we discuss other common choices for ≈ such as equi-termination, and
the hypotheses under which they are equivalent to ours. We now instantiate Def-
inition 1 on the contextual equivalence from Definition 4 and make explicit the
notion of fully abstract compilation we are going to use from now on. Note
how we are only interested in the preservation of contextual equivalence, as
reflection is often subsumed by compiler correctness (e.g., in absence of internal
non-determinism) [1,35].

1 τ(behS(CS [P])) is a shorthand for τ({behS(CS [P])}).
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Definition 5 (FAC). For a compiler �·�, FAC is the following predicate

FAC ≡ ∀P1P2.(∀CS. behS(CS [P1]) = behS(CS [P2])) ⇒
(∀CT. behT(CT [�P1�]) = behT(CT [�P2�]))

Abate et al. [4], Patrignani and Garg [37] have previously investigated the
relation between FAC as in Definition 5 and RHPτ . In particular, Abate et al.
[4] showed that FAC does not imply any of the robust criteria, with an example
similar to the one we sketched in Sect. 1. In this section, we provide further
evidence of this fact: a fully abstract compiler that does not preserve the robust
satisfaction of a security-relevant hyperproperty, namely noninterference. More
details on the example can be found in the online appendix [5].

Example 2. Let Source and Target to be two WHILE-like languages [31] with
a mutable state. A state s ∈ S � (Var → N) assigns every variable v ∈ Var a
natural number. We assume Var to be partitioned into a “high” (private) and
a “low” (public) part. We write v ∈ VarH (v ∈ VarL, resp.) to denote that the
variable v is private (public, resp.). Partial programs are defined in the same way
in both Source and Target, whereas whole programs, or terms, are obtained by
filling the hole(s) of a context with a partial program (Fig. 1). The only context
in Source is [·], called the identity context and such that for any P, [P] = P.
Instead, contexts in Target additionally include �· that is able to observe the
internal event H (intuitively, a form of information leakage that is not observed
by source contexts) and report it by emitting !.

〈P〉 ::= skip | v := 〈expr〉 | 〈P 〉; 〈P 〉 | while 〈expr〉 〈P 〉
CS ::= [ ] CT ::= [ ]

Fig. 1. 〈P 〉 defines the syntax of both Source and Target partial programs, where
〈expr〉 denotes the usual arithmetic expressions over N. 〈CS〉 and 〈CT〉 define instead
the contexts of Source and Target, respectively.

The semantics of Source and Target are partially given in Fig. 2. Rule asnL
is for assignments that do not involve high variables. asnH is for assignments
of high variables, and – upon a change in their value – the internal trace H is
emitted. The Target counterparts, asnL and asnH, work similarly. Finally, the
most interesting rule is bang2, where we see how context �· reports a ! upon
encountering an H.

asnL
v ∈ VarL e ∩ VarH = ∅

s, v := e s[v [e]s],�
asnH

v ∈ VarH s(v) �= [e]s

s, v := e s[v [e]s],�

bang2
s,p s′,p′

s, p
!

s′,p′

Fig. 2. Selected rules of Source and Target.



Fully Abstract and Robust Compilation 89

For example, consider a high variable v ∈ VarH and the Source program
P � v := 42. When P is plugged in the identity context [·], the resulting
behavior is behS([P]) =

{
s · H · s′ · �

∣∣ s ∈ S ∧ s′ = s[v←42]

}
. Intuitively, the

traces in behS([P]) express that the execution starts in a state s, then a high
variable is updated (H) leading to state s′ and then the program terminates
(�). For the same v ∈ VarH , target program P � v := 42 in � · , we have
that behT(�P) =

{
s · ! · s′ · �

∣∣ s ∈ S ∧ s′ = s[v←42]

}
. Notice the additional

! w.r.t. the source, due to the fact that the context observed a change in a high
variable. Informally, we say that a program satisfies noninterference if, executing
it in two low-equivalent initial states, it transitions to two low-equivalent states.
More rigorously, noninterference can be defined for both Source and Target as
the following hyperproperty NI ∈ ℘(℘(Trace)),

NI =
{
π ∈ ℘(Trace)

∣∣ ∀t1, t2 ∈ π. t01 =L t02 ⇒ t1 =L t2
}

where t0i stands for the first observable of the trace ti and =L denotes the fact
that two states are low-equivalent (i.e., they coincide on all x ∈ VarL). Also,
we lift the notation to traces and write t1 =L t2 to denote that t1 and t2 are
pointwise low-equivalent. More precisely, =L ignores all occurrences of H (as it
is internal) and compares traces observable-by-observable, relating � and ! to
themselves and comparing states with the above notion of low-equivalence.

The identity compiler preserves trace equality (see the online appendix [5]
for the proof), but does not preserve the robust satisfaction of noninterference
as the Target context �· can detect changes in high variables and report a !. �

On the one hand, RHPτ provides an explicit description of the target hyper-
property τ(H) that is guaranteed to be robustly satisfied after compilation under
the hypothesis that H is robustly satisfied in the source. However, RHPτ does
not imply the preservation of contextual equivalence (or trace equality) because
hyperproperties cannot specify which traces are allowed for every single context.
On the other hand, it is possible that FAC does not preserve (the robust satisfac-
tion of) hyperproperties, because contextual equivalence may not capture some
hyperproperty such as noninterference, as shown in Example 2. So, what kind of
hyperproperties a FAC compiler is guaranteed to preserve? If P robustly satis-
fies H (possibly not captured by ≈), what is the hyperproperty that is robustly
satisfied by �P� for �·� being FAC?

We answer this question by defining a map τ̃ : ℘(℘(TraceS)) → ℘(℘(TraceT))
so that FAC implies RHPτ̃ . The map τ̃ enjoys an optimality condition making it
the best possible description of the target guarantee for programs compiled by a
FAC compiler.

Theorem 1. If �·� is FAC, then there exists a map τ̃ such that �·� is RHPτ̃ .
Moreover, τ̃ is the smallest (pointwise) with this property.

To avoid any misunderstanding, we stress the fact that, akin to [32, Theorem
1], neither the existence, nor the optimality of τ̃ can be used to argue that a FAC
compiler �·� is reasonably robust. The robustness of �·� depends on the image
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of τ̃ on the hyperproperties of interest: it should not be trivial, e.g., τ̃(NIS) = �
like in Example 2 nor distort the intuitive meaning of the hyperproperty itself,
e.g., τ̃(NIS) = “never output 42”. In a setting in which observables are coarse
enough to be common to source and target traces, i.e., TraceS = TraceT, it is
possible to establish whether τ̃(H) has “the same meaning” as H:

Corollary 1. If �·� is FAC, then for every hyperproperty H, �·� preserves the
robust satisfaction of H iff τ̃(H) ⊆ H, where τ̃ is the map from Theorem 1.

The rigorous definition of τ̃ and the proof of Theorem 1 and Corollary 1 can
be found in the online appendix [5]. Here, we only mention that the definition
of τ̃ requires information on the compiler itself, thus it can be unfeasible to
compute and assess the meaningfulness of τ̃(H). Corollary 1 partially mitigates
this problem by allowing to approximate τ̃(H) rather than computing it, e.g., by
showing an intermediate K such that τ̃(H) ⊆ K ⊆ H. We leave as future
work any approximation techniques for τ̃ that would make substantial use of
Corollary 1.

To overcome the issues highlighted above, we extend the categorical approach
to secure compilation of Tsampas et al. [48] and propose an abstract criterion
that implies both FAC and RHPτ for a τ defined via co-induction and therefore
independent of the compiler. In Sect. 4 we shall summarize the underlying theory
before introducing our criterion in Sect. 5.

4 Secure Compilation, Categorically

The basis of our approach and that of Tsampas et al. [48] is the framework of
Mathematical Operational Semantics (MOS) [50]. Here, we briefly explain how
MOS gives a mathematical description of programming languages as well as
(secure) compilers and show how our earlier Example 2 fits such a framework.
We refer the interested reader to the seminal paper of Turi and Plotkin [50]
and the excellent introductory material of Klin [24] for more details. Further
examples and applications can be found in the literature [48,49,51].

4.1 Distributive Laws and Operational Semantics

The main idea of MOS is that the semantics of programming languages, or
systems in general, can be formally described through distributive laws (i.e.,
natural transformations of varying complexity) of a syntax functor Σ over a
behavior functor B in a suitable category (in our case the category Set of sets
and total functions [24]). The functor Σ : Set → Set represents the algebraic
signature of the language and thus acts as an abstract description of its syntax.
Instead, the functor B : Set → Set describes the behavior of the language in
terms of its observable events (e.g., the behavior of a non-deterministic labeled
transition system can be modeled by the functor BX = ℘(X)Δ, where Δ is a
set of trace labels [52]);



Fully Abstract and Robust Compilation 91

Recall now the languages Source and Target of Example 2. The syntax
functor for Source for a set of terms X builds terms Σ X according to (the sum
of all) the constructors of the language:

Σ X � � � (N × E) � (X × X) � (E × X),

where E is the set of arithmetic expressions. The behavior functor for Source is
a map that for an arbitrary set X, updates a store s ∈ S, and either terminates
(�) or returns another term in X, possibly recording that some high-variable
has been modified (H):

B X � (S × (Maybe H) × (X � �))S .

In Target, the syntax functor is Σ X = Σ X �X, where the extra occurrence of
X corresponds to the target context �·, and B X � (S×(Maybe (H�!))×(X �
�))S . We explicitly notice that syntactic “holes” are represented by the identity
functor Id X = X and, to make this connection clearer, the syntax functor for
Source can be equivalently written as Σ � � � (N × E) � (Id × Id) � (E × Id).

Next, we can define the operational semantics, a distributive law of Σ over
B, in the format of a GSOS law ([24, Section 6.3]). A GSOS law of Σ over B is
a natural transformation ρ : Σ(Id × B) =⇒ BΣ∗, where Σ∗ is the free monad
over Σ. For instance, the rules of sequential composition in Source (see seq1 and
seq2 in the online appendix [5, Fig. 4]) correspond to the following component
of the GSOS law ρ : Σ(Id × B) =⇒ BΣ∗:

(p, f) ; (q, g) �→ λ s.

{
(s′, δ, p′ ; q) if f(s) = (s′, δ, p′)
(s′, δ, q) if f(s) = (s′, δ,�)

Here, p, q ∈ X with X a generic set of terms, i.e., p and q can be programs,
contexts or programs within a context, and f, g ∈ BX. The image of ρ is an
element of BΣ∗X = (S × (Maybe H) × (Σ∗X � �)))S , depending on whether p
transitions to a term p′ (thus involving seq2), or terminates with � (seq1).

Lastly, we informally recall that when the formal semantics of a language is
given through a GSOS law ρ : Σ(Id × B) =⇒ BΣ∗, for Σ,B : Set → Set, the
set of programs is (isomorphic to) the initial algebra A = Σ∗∅, while the final
coalgebra Z = B∞�2 describes the set of all possible behaviors.

Remark 2. A distributive law ρ induces a map f : A → Z that assigns to every
closed term or program its behaviors as specified by the law ρ itself.

For Source and Target from Example 2 f and f are just another, equivalent
representation of behS(·) and behT(·), e.g., for v private variable,

f([v:=42]) = λs. 〈s[x←42], 〈H,�〉〉
f(�v:=42) = λs. 〈s[x←42], 〈!,�〉〉

In other words, map f : A → Z is the abstract counterpart of map beh(·) that
assigns to every program the set of all its possible execution traces.
2 Σ∗ is the free monad over Σ and B∞ is the co-free comonad over B [22, Ch. 5].
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4.2 Maps of Distributive Laws as Fully Abstract Compilers

Watanabe [51] first introduced maps of distributive laws (MoDL) as well-behaved
translations between two GSOS languages. Tsampas et al. [48] showed how
MoDL can also be used as a formal, abstract criterion for secure compilation.
Let us recall the definition of MoDL for two GSOS laws in the same category.

Definition 6 (MoDL). A map of distributive law between ρ : Σ(Id × B) =⇒
BΣ∗ and ρ : Σ(Id×B) =⇒ BΣ∗ is a pair of natural transformations s : Σ =⇒ Σ∗

and b : B =⇒ B such that the following diagram commutes,

Σ(Id × B) BΣ∗

Σ(Id × B) BΣ∗

ρ

s∗◦Σ(id×b) b◦Bs∗

ρ

where s∗ : Σ∗ =⇒ Σ∗ extends s : Σ =⇒ Σ∗ to a morphism of free monads, i.e.,
to terms of arbitrary depth via structural induction.

The diagram in Definition 6 expresses a form of compatibility of the source
and the target semantics. Considering any source term, executing it w.r.t. the
source semantics ρ and then translating the behavior (together with the resulting
source term) is equivalent to first compiling the source term (and translating the
behavior of its subterms) and then executing it w.r.t. the target semantics ρ.

We recall that the set of source (resp. target) programs is A � Σ∗∅ (A � Σ∗∅
resp.), and that �·� � s∗

∅ : A → A is the compiler induced by s. On the
behaviors side, the natural transformation b : B =⇒ B induces a translation
of behaviors d := b∞

	 : Z → Z where Z � B∞�. The compiler �·� = s∗
∅ pre-

serves (and also reflects when all the components of b are injective) bisimilarity
(see [48], Section 4.3). Whenever bisimilarity coincides with trace equality (see
Definition 4), for example under the assumption of determinacy3, the following
holds ([48]).

Corollary 2. In absence of internal non-determinism, MoDL implies FAC.

Similarly to FAC, the definition of MoDL does not ensure that �·� = s∗
∅ is

robust. Indeed, the obvious embedding compiler from Example 2 is a MoDL (let
s = i1 and b = (S × (Maybe i1) × (1 � �))S). Intuitively, MoDL adequately
captures the fact that compilation preserves the behavior of terms, but fails to
capture the observations target contexts can make on compiled terms.

5 Reconciling Fully Abstract and Robust Compilation

To account for the shortcoming of MoDL, we introduce a new, complementary
definition that allows reasoning explicitly on the semantic power of contexts in
3 It is possible to eliminate the hypothesis of determinacy when B is an endofunctor

over categories richer that Set, e.g., Rel the category of sets and relations.
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some target language relative to contexts in a source language. This definition
acts (in conjunction with MoDL) as an abstract criterion of robust compilers.

For the new definition, we elect to qualify some constructors in Σ as contexts
constructors so that Σ � C � P where C defines the constructors for contexts
and P for all the rest. We also assume that the GSOS law ρ : Σ(Id × B) =⇒
Σ∗B respects this “logical partition” of Σ in that ρ = [B i1 ◦ ρ1, ρ2] where
ρ1 : C(Id × B) =⇒ BC∗ and ρ2 : P(Id × B) =⇒ BΣ∗.

Definition 7 (MMoDL). A many layers map of distributive laws (MMoDL)
between ρ : Σ(Id × B) =⇒ BΣ∗ and ρ : Σ(Id × B) =⇒ BΣ∗ is given by natural
transformations b : B =⇒ B and t : C =⇒ C∗ making the following commute:

CΣ(Id × B) C(Id × B)Σ∗ C∗(Id × B)Σ∗ BC∗Σ∗

C(Id × B)Σ∗ C(Id × B)Σ∗ BC∗Σ∗ BC∗Σ∗

C∗(Σπ1,ρ)

C∗(Σπ1,ρ)

t ρ1

b

C(Id×b) ρ1 Bt∗

The top-left object, CΣ(Id × B), represents a target context which is filled with
some source term, whose subterms exhibit some source behavior. In both paths,
the plugged source terms are initially evaluated w.r.t. the source semantics. On
the upper path, we first back-translate [16] the target context using t, then we run
the resulting program w.r.t. the source semantics (ρ1), and finally we translate
the resulting behavior back to the target via b. Instead, in the lower path we
first translate the resulting behavior through C(Id × b), then we let the target
context observe (ρ1), and finally we back-translate the behavior via Bt∗.

To relate MMoDL with RHPτ , we formulate the latter in the framework of
MOS. Recall (see Remark 1) that RHPτ holds if there exists a back-translation
map bk that for every target context CT and program P, produces a source
context bk(CT,P) = Cs such that behT(CT [�P�]) = τ(behS(Cs [P])).

Remark 3 ((Abstract) RHPτ ). For τ : Z → Z, a compiler �·� is RHPτ iff there
exists bk such that

τ ◦ f ◦ plug ◦ bk = f ◦ plug ◦ id × �·�,
where f : A → Z associates to every program its behaviors as specified by ρ
(see Remark 2) and plug is the operation of plugging a term into a context.

We are now ready to state our second contribution, namely that the pairing of
a MoDL (s, b) and a MMoDL (t, b) gives an (abstract) RHPτ compiler.

Theorem 2 (MMoDL imply RHPτ). Let s : Σ =⇒ Σ∗, b : B =⇒ B and
t : C =⇒ C such that (s, b) and (t, b) are (respectively) a MoDL and a MMoDL
from ρ : Σ(Id × B) =⇒ BΣ∗ to ρ : Σ(Id × B) =⇒ BΣ∗. The compiler �·� = s∗

∅ is
(abstract) RHPτ for τ = b∞

	 coinductively induced by b.

Proof (Sketch). The back-translation bk := t∗∅ × id satisfies the equation
in Remark 3 (details in the online appendix [5]). ��
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Before fixing the compiler from Example 2 to make it satisfy both MoDL
(Definition 6) and MMoDL (Definition 7), let us see why the back-translation
mapping both target contexts to the identity source context [·] is not a MMoDL.
Let v ∈ VarH be a private variable, on the upper path of Definition 7 we have

v:=42� 
��, λs.〈s[v←42], H〉 [, �], . . . H �, . . . H �, . . . HC∗(Σπ1,ρ) t ρ1 b

Note how the identity context fails to report !. On the lower path, we have
instead
�v:=42� ���, λs.〈s[v←42], H〉 ���, . . . H �, . . . ! �, . . . !

C∗(Σπ1,ρ) C(Id×b) ρ1 Bt∗

Here, it is evident that the context � ·  “picks up” H and reports !, unlike [·].
Example 3 (Example 2, revisited). We now show how to fix the compiler
from Example 2 by making it RHPτ for a suitable τ . For that, we first need to
slightly modify the language Target. The idea is that variable assignments in
Target should now be sandboxed, so that the interactions with the context � · 
do not expose sensitive information. Formally, we extend the algebraic signature
of Target with a constructor for sandboxing assignments, i.e., Σ � (E × Id), so
that Target terms are generated by grammar

<P> ::= skip|v := <expr> |〈P〉; 〈P〉|while <expr> 〈P〉|�v := <expr> �

where the semantics of � · � is described in Fig. 3. We can now define the new
(i.e., fixed) compiler �·� and the appropriate map τ , so that �·� is RHPτ . Both
�·� and τ are determined by the natural transformations s, t, and b, such that
(s, b) is a MoDL and (t, b) is a MMoDL. The natural transformation s : Σ =⇒
(Σ � (E × Id))∗, and therefore the inductively defined compiler �·� � s∗

∅, wraps
assignments in the sandbox � · �, i.e., �v := e� = � v := e � and acts as the
identity on other terms. The natural transformation t : C =⇒ C∗ maps every
Target context to the identity context [·]. Finally, the translation of behaviors
b : B =⇒ B erases the occurrences of H, implying that the compiled terms are
not expected to report changes in high variables.

sb1
s,p s′,�
s, p s′,�

sb2
s,p s′,p′

s, p s′,p′

Fig. 3. Rules extending the semantics of Target.

Recall that the diagram from Definition 7 failed to commute for Example 2,
because (s, b) being a MoDL imposed b to not erase any occurrences of H. The
same diagram for the new Target language and natural transformations s, b,
and t now commutes. More specifically, in the upper path we have
�v:=42� ���, λs.〈s[v←42], H〉 [, �], . . . H �, . . . H �, . . .

C∗(Σπ1,ρ) t ρ1 b

while in the lower path we get
�v:=42� ���, λs.〈s[v←42], H〉 ���, . . . �, . . . �, . . .

C∗(Σπ1,ρ) C(Id×b) ρ1 Bt∗
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We point the reader interested to the online appendix [5] for more details in
showing that the above (s, b) is a MoDL and that (t, b) is a MMoDL.

Hereafter, we discuss one of the benefits of the abstract definitions presented
so far, namely that we can easily compute τ , and immediately establish if pro-
grams that robustly satisfy NIS (noninterference in Source) are compiled to pro-
grams that robustly satisfy NIT. In order to do so, we need to connect Z and
Z to traces and hyperproperties of Source and Target. Elements of Z are func-
tions that assign to every s ∈ S a new state s′ and maybe an extra symbol like
! or H, and a continuation, i.e., another function of the same type. Traces are
instead sequences of stores possibly exhibiting the extra symbols H and !. It is
easy to show (see the online appendix [5]) that every trace corresponds to an
element of Z – the function that returns the head of the trace and continues as
the tail of the same trace – and that every function in Z corresponds to a set of
traces – one trace for every fixed s ∈ S. Thus, we can prove that τ maps (the
set of functions in Z corresponding to) NIS to a subset of (the set of functions
corresponding to) NIT, i.e., the compiler �·� preserves robust satisfaction. �

6 Related Work

In this section, we discuss related work regarding origins and applications of full
abstraction, trace based criteria, MoDL and relevant proof techniques.

Full abstraction was introduced to relate the operational and the denotational
semantics of programming languages [40]. A denotational semantics of a language
is said to be fully abstract w.r.t. an operational one for the same language iff
the same denotation is given to contextually equivalent terms, i.e., those terms
that result the same when evaluated according to the operational semantics.
Common choices to establish when the result of the evaluation is the same, and
hence to define contextual equivalence, are equi-convergence and equi-divergence
(e.g., in [13,14,23,28,38]). Notice that there is no loss of generality with these
choices, if (and only if!) contexts are powerful enough [28], e.g., when all inputs
can be thought as part of the context, and the context itself may select one final
value as the result of the execution or diverge.

Fully abstract translations as in Definition 1 have been adopted for comparing
expressiveness of languages (see, e.g., the works by Mitchell [28] and Patrignani
et al. [38]), but Gorla and Nestmann [21] showed that they may lead to false
positive results. The interested reader can find out more in the online appendix
[5], where we also sketch how to use RHPτ for expressiveness comparisons.

Full Abstraction and Secure Compilation. Abadi [1] originally proposed to use
full abstraction to preserve security properties in translations from a source lan-
guage L1 to a target one L2. A fully abstract translation or compiler preserves
and reflects equivalences, and can therefore be a way to preserve security proper-
ties when these are expressed as equivalences. Remarkable examples from the lit-
erature are given by Bowman and Ahmed [13], Busi et al. [14] and Skorstengaard
et al. [43]. In the first two works the authors model contexts so that contextual
equivalence captures (forms of) noninterference and preserve it through a fully
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abstract translation. Skorstengaard et al. [43] consider a source language with
well-bracketed control flow (WBCF) and local state encapsulation (LSE), then
model target contexts so that these two properties are captured by contextual
equivalence and, they exhibit a fully abstract translation so that both WBCF
and LSE are guaranteed also in the target. We stress the fact that, all security
properties that are not captured by contextual equivalence are not necessarily
preserved by a fully abstract compiler, thus allowing for counterexamples sim-
ilar to Example 1. Finally, it is worth noting that fully abstract compilation
does not prevent source programs to be insecure, nor suggests how to fix them,
quoting Abadi [1]:

An expression of the source language L1 may be written in a silly, incompe-
tent, or even malicious way. For example, the expression may be a program
that broadcasts some sensitive information—so this expression is insecure
on its own, even before any translation to L2. Thus, full abstraction is
clearly not sufficient for security [. . . ]

Beyond Full Abstraction. Several definitions of “well-behaved translations” exist,
depending both on the scenario and on the properties one aims to preserve
during the translation. For example, if the goal is to preserve functional cor-
rectness, then it is natural to require the compiled program to simulate the
source one [29]. This can be expressed both as a relation between the opera-
tional semantics of the source and the target (see for example [27,42,51]), or
extrinsically as a relation between the execution traces of programs before and
after compilation [3,12,46]. Trace based criteria for compiler correctness The
CompCert [12,26] and CakeML [46] projects are milestones in the formal veri-
fication of compilers. Preservation of functional correctness can be expressed in
both cases in terms of execution traces [3]. For the CompCert compiler, executing
�P� w.r.t. the target semantics yields the same observable events as executing P
w.r.t. the source semantics, as long as P does not encounter an undefined behav-
ior. Similarly, CakeML ensures that executing �P� w.r.t. the target semantics
yields the same observable events as executing P w.r.t. the source semantics, as
long as there is enough space in target memory. In both cases, correctness is
proven by exhibiting a simulation between �P� and P.

Trace Based Criteria for Secure Compilation. Similarly to what happens for
functional correctness, relations between the execution traces of a program and
of its compiled version, can be used to express preservation of noninterference
through compilation [10,11,30]. The simulation-based techniques introduced in
CompCert sometimes suffice also to show the preservation of noninterference,
e.g., when the source and the target semantics are equipped with a notion of
leakage [10, Sections 5.2–5.4]. However, in more general cases a stronger, cube-
shaped simulation is needed (see [10, Section 5.5], and [11,30]). Stewart et al.
[44] propose a variant of CompCert that also gives some guarantees w.r.t. source
contexts, and their compilation in the target. Still, this does not guarantee secu-
rity against arbitrary target contexts, that can be strictly stronger than source
ones. Abate et al. [3,4] propose a family of criteria with the goal of preserving
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satisfaction of (classes of) security properties against arbitrary contexts. Also,
they show that their criteria can be formulated in at least two equivalent ways.
The first one explicitly describes the target guarantees ensured for compiled pro-
grams, for example which safety properties are guaranteed for programs written
in unsafe languages and compiled according to the criterion proposed by Abate
et al. [2] (see their Appendix A). The second way is instead more amenable to
proofs, e.g., by enabling proofs by back-translation Abate et al. [2, Fig. 4].

Maps of Distributive Laws (MoDL). Mathematical Operational Semantics
(MOS) and distributive laws ensure well-behavedness of the operational seman-
tics of a language while also providing a formal description for it. Such semantics
have been given for languages with algebraic effects [6] and for stochastic cal-
culi [25]. In their biggest generality distributive laws are defined between monads
and comonads [24], but it is often convenient to consider the slightly less general
GSOS laws that correspond bijectively to GSOS rules [7,24,41].

Proof Techniques for fully abstract compilation include both cross-language
logical relations between source and compiled programs [13,35,43] and back-
translation of target contexts into source ones [14,16,35]. The latter technique
sometimes exploits information from execution traces [16], and can be adapted
also to some of the robust criteria of Abate et al. [4]. Ongoing work is aiming
to formalize the back-translation technique needed to prove some of the robust
preservation of safety (hyper)properties in the Coq proof assistant [2,47]. The
best results in mechanization of secure compilation criteria have been achieved
for the criteria that can be proven via simulations, especially when extending the
CompCert proof scripts, e.g., [10]. The complexity of many proofs is relatively
contained as they show a forward simulation—the source program simulates the
one in the target—and “flip” it into a backward one—the compiled program
simulates the source one—with a general argument. We are not aware of mech-
anized proofs for MoDL, but we believe it would be convenient to first express
maps between GSOS laws as relations between GSOS rules (see also Sect. 7).

7 Conclusions and Future Work

The scope of this work has been to clarify the guarantees provided by criteria for
secure compilation, make them explicit and immediately accessible to users and
developers of (provably) secure compilers. We investigated the relation between
fully abstract and robust compilation, provided an explicit description of the
hyperproperties robustly preserved by a fully abstract compiler, and noticed
that these are not always meaningful, nor of practical utility. We have therefore
introduced a novel criterion that ensures both fully abstract and robust com-
pilation, and such that the meaningfulness of the hyperproperty guaranteed to
hold after compilation can be easily established. The proposed example shows
that our criterion is achievable.

Future work will focus on proof techniques for MoDL and MMoDL that are
amenable to formalization in a proof assistant. For that we can either build on
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existing formalizations of polynomial functors as containers, or exploit the cor-
respondence between GSOS laws and GSOS rules, and characterize MoDL and
MMoDL as relations between source and target rules. Another interesting line of
work consists in devising over (under) approximation for the map τ̃ from The-
orem 1, and use our Corollary 1 to establish whether existing fully abstract
compilers preserve (violate) a given hyperproperty.
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Abstract. The Go programming language is an increasingly popular
language but some of its features lack a formal investigation. This arti-
cle explains Go’s resolution mechanism for overloaded methods and its
support for structural subtyping by means of translation from Feather-
weight Go to a simple target language. The translation employs a form
of dictionary passing known from type classes in Haskell and preserves
the dynamic behavior of Featherweight Go programs.

1 Introduction

The Go programming language [22], introduced by Google in 2009, is syntac-
tically close to C and incorporates features that are well-established in other
programming languages. For example, a garbage collector as found in Java [6],
built-in support for concurrency and channels in the style of Concurrent ML [17],
higher-order and anonymous functions known from functional languages such as
Haskell [12]. Go also supports method overloading for structures where related
methods can be grouped together using interfaces. Unlike Java, where subtyping
is nominal, Go supports structural subtyping among interfaces.

Earlier work by Griesmer and co-authors [7] introduces Featherweight Go
(FG), a minimal core calculus that includes the essential features of Go. Their
work specifies static typing rules and a run-time method lookup semantics for
FG. However, the actual Go implementation appears to employ a different
dynamic semantics. Quoting Griesmer and co-workers:

Go is designed to enable efficient implementation. Structures are laid out
in memory as a sequence of fields, while an interface is a pair of a pointer
to an underlying structure and a pointer to a dictionary of methods.

To our knowledge, nobody has so far formalized such a dictionary-passing trans-
lation for FG and established its semantic equivalence with the FG run-time
method lookup dynamic semantics. Hence, we make the following contributions:

– Section 5 specifies the translation of source FG programs to an untyped
lambda calculus with pattern matching. We employ a dictionary-passing
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translation scheme à la type classes [8] to statically resolve overloaded FG
method calls. The translation is guided by the typing of the FG program.

– Section 6 establishes the semantic correctness of the dictionary-passing trans-
lation. The proof for this result is far from trivial. We require step-indexed
logical relations [1] as there can be cyclic dependencies between interfaces
and method declarations.

Section 3 specifies Featherweight Go (FG) and Sect. 4 specifies our target
language. Section 7 covers related works and concludes. The upcoming section
gives an overview.

2 Overview

We introduce Featherweight Go [7] (FG) by an example and then present the
ideas of our dictionary-passing translation for FG.

2.1 FG by Example

FG is a syntactic subset of the full Go language, supporting structures, methods
and interfaces. The upper part in Fig. 1, lines 1–22, shows an example slightly
adopted from [7]. The original example covers equality in FG. We extend the
example and include an ordering relation (less or equal than) as well.

FG programs consist of a sequence of declarations defining structures, meth-
ods, interfaces and a main function. Method bodies in FG only consist of a return
statement. For clarity, we sometimes identify subexpressions via variable bind-
ings introduced with var. In such a declaration, the name of a variable precedes
its type, the notation var _ (line 21) indicates that we do not care about the
variable name given to the main expression. The example uses primitive types
int and bool and several operations on values of these types (==, &&, . . . ). These
are not part of FG.

Structures in FG are similar to structures known from C/C++. A syntactic
difference is the FG convention that field names precede the types. In FG, struc-
tures and methods are always declared separately, whereas C++ groups methods
together in a class declaration. Methods in FG can be overloaded on the receiver.
The receiver is the value on which the method operates on.

Interfaces in FG consist of a set of method declarations that share the same
receiver. For example, interface Eq introduces method eq and interface Ord intro-
duces methods eq and lt (line 3 and 4). The (leading) receiver argument is left
implicit and method names in interfaces must always be distinct. Interfaces are
types and can be used in type declarations for structures and methods. For
example, structure Pair defines two fields left and right, each of type Eq. Dec-
larations of structures must be non-recursive whereas an interface may appear
in the method declaration of the interface itself. For example, see interface Eq.

FG uses the keyword func to introduce methods and functions. Methods
can be distinguished from ordinary functions as the receiver argument always
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precedes the method name. In FG, the only function is the main function, all
other declarations introduced by func are methods.
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Fig. 1. Equality and ordering in FG and its translation
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Consider the method implementation of eq for receiver this of type Int
starting at line 6. This definition takes care of equality among Int values by
making use of primitive equality == among int. We would expect argument that
to be of type Int. However, to be able to use an Int value everywhere an Eq value
is expected (to be discussed shortly), the signature of eq for Int must match
exactly the signature declared by interface Eq. Hence, that has declared type
Eq, and we resort to a type assertion, written that.(Int), to convert it to Int.
Type assertions involve a run-time check that may fail. The same observation
applies to the implementation of Eq for receiver Pair (line 9).

FG supports structural subtyping among structures and interfaces. A struc-
ture is a subtype of an interface if the structure implements the methods as
declared by the interface. For example, Int and Pair both implement inter-
face Eq. This implies the structural subtype relations (1) Int <: Eq and (2)
Pair <: Eq. Relation (1) ensures that the construction of the pair at line 20
type checks: variables i and j have type Int but can also be viewed as type Eq
thanks to structural subtyping. Relation (2) resolves the method call p.eq(p)
at line 21 as the Pair variable p also has the type Eq. The method definition
starting at line 9 will be chosen.

An interface I is a structural subtype of another interface J if I contains all
of J ’s method declarations. For example, the set of methods of interface Ord is
a superset of the method set of Eq. This implies (3) Ord <: Eq, which is used
in the method implementation of lt for receiver type Int. See line 14 where
(3) yields that variable that with declared type Ord also has type Eq. Thus, the
method call this.eq(that) is resolved via the method definition from line 6.

2.2 Dictionary-Passing Translation

We translate FG programs by applying a form of dictionary-passing translation
known from type classes [8]. As our target language we consider an untyped
functional language with pattern matching where we use Haskell style syntax
for expressions and patterns. Each FG interface translates to a pair consisting
of a structure value and a dictionary. The dictionary holds the set of methods
available as specified by the interface whereas the structure implements these
methods. We refer to such pairs as interface-values. The translation is type-
directed as we need type information to resolve method calls and construct the
appropriate dictionaries and interface values.

Lines 23–49 show the result of applying our dictionary-passing1 translation
scheme to the FG program (lines 1–22). We use a tagged representation to encode
FG structures in the target language. Hence, for each structure S, we assume
a data constructor KS , where we use pattern matching to represent field access
(lines 23–26). For example, structure Pair implies the data constructor KPair.
For convenience, we assume tuples and make use of don’t care patterns _ .

A method call on an interface type translates to a lookup of the method in the
dictionary of the corresponding interface-value. Like structures, interface-values

1 Technically, we are passing around interface-values wrapping dictionaries of methods.
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are tagged in the target language. For example, line 39 introduces the helper
function eqEq to perform method lookup for method eq of interface Eq. The
constructor for an Eq interface-value is KEq. Hence, we pattern match on KEq and
extract the underlying structure value and method definition. A method call such
as this.left.eq(. . .) in the source program (line 10) with receiver this.left
of type Eq then translates to eqEq (left this) . . . (line 41).

A method call on a structure translates to the method definition for this
receiver type. For example, we write eqInt to refer to the translation of the
method definition of eq for receiver type Int. A method call such as this.eq(. . .)
in the source program (line 14) with receiver this of type Int then translates to
eqInt this . . . (line 43).

The construction of interface-values is based on structural subtype relations.
Recall the three structural subtype relations we have seen earlier: (1) Int <: Eq
and (2) Pair <: Eq and (3) Ord <: Eq. Relation (1) implies the interface-value
constructor toEqInt (line 29), which builds an Eq interface-value via the given
structure value y and a dictionary consisting only of the method eqInt. Relation
(2) implies a similar interface-value constructor toEqPair (line 30). Relation (3)
gives raise to the interface-value constructor toEqOrd (line 31), which transforms
some Ord into an Eq interface-value. We assume that in case a dictionary consists
of several methods, methods are kept in fixed order.

Type assertions imply interface-value destructors. For example, the source
expression that.(Int) (line 7) performs a run-time check, asserting that that
has type Int. In terms of the dictionary-passing translation, function fromEqInt
(line 34) performs this check. Via the pattern KEq (KInt y,) _) , we assert that the
underlying target structure must result from Int. If the interface-value contains
a value not tagged with KInt, the pattern matching fails at run-time, just as
the type assertion in FG. Interface-value destructors fromEqPair and fromOrdInt
(lines 35, 36) result from similar uses of type assertions.

To summarize, each use of structural subtyping implies a interface-value con-
structor being inserted in the target program. For example, typing the source
expression p.eq(p) in line 21 relies on structural subtyping Pair <: Eq because
argument p has type Pair but method eq requires a parameter of type Eq. Thus,
the translation of this expression is eqPair p (toEqPair p) in line 49.

Similarly, type assertions imply interface-value destructors. For example, the
source expression that.(Pair).left in line 10 use a type assertion on that,
which has type Eq. Thus, it translates to the target expression left (fromEqPair
that) in line 41.

We continue by introducing FG and our target language followed by the full
details of the dictionary-passing translation.

3 Featherweight Go

Featherweight Go (FG) [7] is a tiny fragment of Go containing only structures,
methods and interfaces. Figure 2 gives the syntax of FG. With the exception of
variable bindings in function bodies, the primitive type int with operations ==
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Field name f
Method name m
Variable name x, y
Structure type name tS, uS

Interface type name tI , uI

Type name t, u ::= tS | tI

Method signature M ::= (xi ti) t
Method specification R, S ::= mM

Expression d, e ::=
Variable x |
Method call e.m(e) |
Structure literal tS{e} |
Select e.f |
Type assertion e.(t)

Type literal L ::=
Structure struct {f t} |
Interface interface {S}

Declaration D ::=
Type type t L |
Method func (x tS) mM {return e}

Program P ::= D func main(){ = e}

D FG t <: u Subtyping

methods-struct
methods(D, tS) = {mM | func (x tS) mM {return e} ∈ D}

methods-iface
type tI interface {S} ∈ D

methods(D, tI) = {S}
sub-struct-refl

D FG tS <: tS

sub-iface
methods(D, t) ⊇ methods(D, uI)

D FG t <: uI

D FG d e Reductions

Value v ::= tS{v}
Evaluation context E ::= [] | tS{v, E , e} | E .f | E .(t) | E .m(e) | v.m(v, E , e)
Substitution (FG values) Φv ::= xi vi

fg-context
D FG d e

D FG E [d] E [e]

fg-field
type tS struct {f t} ∈ D

D FG tS{v}.fi vi

fg-call
v = tS{v} func (x tS) m(x t) t {return e} ∈ D

D FG v.m(v) − x v, xi vi e

fg-assert
v = tS{v} D FG tS <: t

D FG v.(t) v

Fig. 2. Featherweight Go (FG)

and <, and the primitive type bool with operations && and ||, we can represent
the example from Fig. 2 in FG. Compared to the original presentation of FG [7]
we use symbol L instead of T (for type literals), and omit the package keyword at
the start of a FG program. Overbar notation ξ

n
denotes the sequence ξ1 . . . ξn for

some syntactic construct ξ, where in some places commas separate the sequence
items. If irrelevant, we omit the n and simply write ξ. Using the index variable
i under an overbar marks the parts that vary from sequence item to sequence
item; for example, ξ′ ξi

n
abbreviates ξ′ ξ1 . . . ξ′ ξn and ξj

q
abbreviates ξj1 . . . ξjq.
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FG is a statically typed language. For brevity, we omit a detailed description
of the FG typing rules as they will show up in the type-directed translation. The
following conditions must be satisfied.

FG1: Structures must be non-recursive.
FG2: For each struct, field names must be distinct.
FG3: For each interface, method names must be distinct.
FG4: Each method declaration is uniquely identified by the receiver type and

method name.

FG supports structural subtyping, written D �FG t <: u. A struct tS is
a subtype of an interface tI if tS implements all the methods specified by the
interface tI . An interface tI is a subtype of another interface uI if the methods
specified by tI are a superset of the methods specified by uI . The structural
subtyping relations are specified in the middle part of Fig. 2.

Next, we consider the dynamic semantics of FG. The bottom part of Fig. 2
specifies the reduction of FG programs by making use of structural operational
semantics rules of the form D �FG d −→ e to reduce expression d to expression
e under the sequence D of declarations.

Rule fg-context makes use of evaluation contexts with holes to apply a
reduction inside an expression. Rule fg-field deals with field access. Condition
FG2 guarantees that field name lookup is unambiguous. Rule fg-call reduces
method calls. Condition FG4 guarantees that method lookup is unambiguous.
The method call is reduced to the method body e where we map the receiver
argument to a concrete value v and method arguments xi to concrete values
vi. This is achieved by applying the substitution 〈x �→ v, xi �→ vi〉 on e, written
〈x �→ v, xi �→ vi〉e.

Rule fg-assert covers type assertions. We need to check that the type tS
of value v is consistent with the type t asserted in the program text. If t is an
interface, then tS must implement all the methods as specified by this interface.
If t is a struct type, then t must be equal to tS . Both checks can be carried out
by checking that tS and t are in a structural subtype relation.

We write D �FG e −→∗ v to denote that under the declarations D, expression
e reduces to the value v in a finite number of steps. We write D �FG e −→k v to
denote that under the declarations D, expression e reduces to the value v within
at most k steps. This means we might need fewer than k steps but k are clearly
sufficient to reduce the expression to some value. If there is no such v for any
number of steps, we say that e is irreducible w.r.t. D, written irred(D, e).
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4 Target Language

Expression E ::=
Variable X | Y |
Constructor K |
Application E E |
Abstraction λX.E |
Pattern case case E of [Cls]

Pattern clause Cls ::= Pat E

Pattern Pat ::= K X

Program Prog ::= let Yi = λXi.Ei

in E

TL values V ::= X | K V
TL evaluation context R ::= [] | K V RE | case R of [Pat E] | R E | V R
Substitution (TL values) ΦV ::= X V

Substitution (TL methods) Φm ::= Y λX.E

Φm TL E E TL expression reductions

tl-context
Φm TL E E

Φm TL R[E] R[E ]

tl-lambda
Φm TL (λX.E) V X V E

tl-case
K Xi

n
E ∈ [Pat E]

Φm TL case K Vi
n
of [Pat E] Xi Vi

n
E

tl-method
Φm TL Y E Φm(Y ) E

TL Prog Prog TL reductions

tl-prog
Yi λXi.Ei TL E E

TL let Yi = λXi.Ei in E let Yi = λXi.Ei in E

Fig. 3. Target Language (TL)

Figure 3 specifies the syntax and dynamic semantics of our target language (TL).
We use capital letters for constructs of the target language. Target expressions
E include variables X,Y , data constructors K, function application, lambda
abstraction and case expressions to pattern match against constructors. In a
case expression with only one pattern clause, we often omit the brackets and
just write case E of Pat → E. A program consists of a sequence of function
definitions and a (main) expression. The function definitions are the result of
translating FG method definitions.

We assume data constructors for tuples up to some fixed but arbitrary size.
The syntax (E

n
) constructs an n-tuple when used as an expression, and decon-

structs it when used in a pattern context. At some places, we use nested patterns
as an abbreviation for nested case expressions. The notation λPat .E stands for
λX.case X of [Pat → E], where X is fresh.

Representing the example from Fig. 2 in the target language requires some
more straightforward extensions: integers with operations == and <, booleans
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with operations && and ||, let-bindings inside expressions, and top-level bindings.
The target language can encode the last two features via lambda-abstractions
and top-level let-bindings.

The structural operational semantics employs two types of substitutions.
Substitution ΦV records the bindings resulting from pattern matching and func-
tion applications. Substitution Φm records the bindings for translated method
definitions (i.e. for top-level let-bindings). Target values consist of constructors
and variables. A variable may be a value if it refers to a yet to be evaluated
method binding.

Reduction of programs is mapped to reduction of expressions under a method
substitution. See rule tl-prog. The remaining reduction rules are standard.

We write Φm �TL E −→∗ V to denote that under substitution Φm, expression
E reduces to the value V in a finite number of steps. We write Φm �TL E −→k V
to denote that under substitution Φm, expression E reduces to V within at most k
steps. This means we might need fewer than k steps but k are clearly sufficient. If
there is no such V for any number of steps, we say that E is irreducible w.r.t. Φm,
written irred(Φm, E).

5 Dictionary-Passing Translation

We formalize the dictionary-passing translation of FG to TL. The translation
rules are split over two figures. Figure 4 covers methods, programs and some
expressions. Figure 5 covers structural subtyping and type assertions. The trans-
lation rules are guided by type checking the FG program. The gray shaded parts
highlight target terms that are generated. If these parts are ignored, the transla-
tion rules are effectively equivalent to the FG type checking rules [7]. We assume
that conditions FG1-4 hold as well.

We use the following conventions. We assume that each FG variable x trans-
lates to the TL variable X. For each structure tS we introduce a TL constructor
KtS . For each interface tI we introduce a TL constructor KtI . In the trans-
lation, a source value of an interface type tI translates to an interface-value
tagged by KtI . The interface-value contains the underlying structure value and
a dictionary consisting of the set of methods as specified by the interface. For
each method declaration func (x tS) mM {return e} we introduce a TL variable
Xm,tS , thereby relying on FG4 which guarantees that m and tS uniquely identify
this declaration. We write Δ to denote typing environments where we record the
types of FG variables. The notation [n] is a short-hand for the set {1, . . . , n}.

5.1 Translating Programs, Methods and Expressions

The translation of programs and methods boils down to the translation of expres-
sions involved. Rule td-method translates a specific method declaration, rule
td-prog collects all method declarations and also translates the main expres-
sion. See Fig. 4.
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Convention for mapping source to target terms

x X tS KtS tI KtI func (x tS) mM {return e} Xm,tS

FG Environment Δ ::= {} | {x : t} | Δ ∪ Δ

D meth func (x tS) m(x t) t E Translating method declarations

td-method
distinct(x, xn) D, {x : tS, xi : ti

n} exp e : t E

D meth func (x tS) m(x t
n) t {return e} λX.λ(X

n
).E

prog P Prog Translating programs

td-prog
D, { exp e : t E

D meth Di Ei Di = func (xi tSi) miMi {return ei}
(for all i ∈ [n],where D

n
are the func declarations in D)

prog D func main(){ = e} let Xmi,tSi
= Ei

n
in E

D, Δ exp e : t E Translating expressions

td-var
(x : t) ∈ Δ

D, Δ exp x : t X

td-struct
type tS struct {f t

n} ∈ D D, Δ exp ei : ti Ei (for all i ∈ [n])

D, Δ exp tS{en} : tS KtS (E
n
)

td-access
D, Δ exp e : tS E type tS struct {f t

n} ∈ D

D, Δ exp e.fi : ti case E of KtS (Xn) Xi

td-call-struct
m(x t

n) t ∈ methods(D, tS)
D, Δ exp e : tS E D, Δ exp ei : ti Ei (for all i ∈ [n])

D, Δ exp e.m(en) : t Xm,tS E (E
n
)

td-call-iface
D, Δ exp e : tI E type tI interface {S} ∈ D

Sj = m(x t
n) t D, Δ exp ei : ti Ei (for all i ∈ [n]) X, X

q fresh

D, Δ exp e.m(en) : t case E of KtI (X, X
q) Xj X (En)

Fig. 4. Translation of methods, programs and expressions
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D, Δ exp e : t E Translating structural subtyping and type assertions

td-sub
D, Δ exp e : t E2 D iCons t <: u E1

D, Δ exp e : u E1 E2

td-assert
D, Δ exp e : tI E2 D iDestr tI u E1

D, Δ exp e.(u) : u E1 E2

D iCons t <: uI E Interface-value construction

td-cons-struct-iface
type tI interface {S} ∈ D methods(D, tS) ⊇ S S = mM

n

D iCons tS <: tI λX.KtI (X, Xmi,tS

n
)

td-cons-iface-iface
type tI interface {R

n} ∈ D

type uI interface {S
q} ∈ D Si = Rπ(i) (for all i ∈ [q])

D iCons tI <: uI λX.caseX of KtI (X, X
n) KuI (X, Xπ(1), . . . , Xπ(q))

D iDestr tI u E Interface-value destruction

td-destr-iface-struct
type tI interface {R

n} ∈ D D FG tS <: tI

D iDestr tI tS λX.caseX of KtI (KtS Y, X
n) KtS Y

td-destr-iface-iface
X, Y, Y , X

n fresh type tI interface {R
n} ∈ D

for all type tSj struct {f u} ∈ D with D iCons tSj <: uI Ej :

Clsj = KtSj Y (Ej (KtSj Y ))

D iDestr tI uI λX.case X of KtI (Y, X
n
) case Y of [Cls]

Fig. 5. Translation of structural subtyping and type assertions

The translation rules for expressions are of the form 〈D,Δ〉 �exp e : t � E
where D refers to the sequence of FG declarations, Δ refers to type binding of
local variables, e is the to be translated FG expression, t its type and E the
resulting target term. Departing from FG’s original typing rules [7], the trans-
lation rules are non-syntax directed due the structural subtyping rule td-sub

defined in Fig. 5. We could integrate this rule via the other rules but this would
make all the rules harder to read. Hence, we prefer to have a separate rule td-sub.
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We now discuss the translations rules for the expression forms in Fig. 4. (The
remaining expression forms are covered in Fig. 5, to be explained in the next
section.) Rule td-var translates variables and follows our convention that x
translates to X. Rule td-struct translates a structure creation. The translated
field elements Ei are collected in a tuple and tagged via the constructor KtS .
Rule td-access uses pattern matching to capture field access in the translation.

Method calls are dealt with by rules td-call-struct and td-call-iface. Rule
td-call-struct covers the case that the receiver e is of the structure type tS . The
first precondition guarantees that an implementation for this specific method call
exists. (See Fig. 2 for the auxiliary methods.) Hence, we can assume that we have
available a corresponding definition for Xm,tS in our translation. The method
call then translates to applying Xm,tS first on the translated receiver E, followed
by the translated arguments collected in a tuple (E

n
).

Rule td-call-iface assumes that receiver e is of interface type tI , so e trans-
lates to interface-value E. Hence, we pattern match on E to access the under-
lying value and the desired method in the dictionary. We assume that the order
of methods in the dictionary corresponds to the order of method declarations
in the interface. The preconditions guarantee that tI provides a method m as
demanded by the method call, where j denotes the index of m in interface tI .

5.2 Translating Structural Subtyping and Type Assertions

Rule td-sub deals with structural subtyping and yields an interface-value con-
structor derived via rules td-cons-struct-iface and td-cons-iface-iface in
Fig. 5. These rules correspond to the structural subtyping rules in Fig. 2 but
additionally yield an interface-value constructor.

The preconditions in rule td-cons-struct-iface check that structure tS
implements the interface tI . This guarantees the existence of method definitions
Xmi,tS . Hence, we can construct the desired interface-value.

The preconditions in rule td-cons-iface-iface check that tI ’s methods are a
superset of uI ’s methods. This is done via the total function π : {1, . . . , q} →
{1, . . . , n} that matches each (wanted) method in uI against a (given) method in
tI . We use pattern matching over the tI ’s interface-value to extract the wanted
methods. Recall that dictionaries maintain the order of method as specified by
the interface.

Type assertions e.(u) are dealt with in rule td-assert and translate to an
interface-value destructor. In the static semantics of FG there are two cases to
consider. Both cases assume that the expression e is of some interface type tI .
The first case asserts the type of a structure and the second case asserts the type
of an interface. Asserting that a structure is of the type of another structure is
not allowed in FG, because such a type assertion would never succeed.

Rule td-destr-iface-struct deals with the case that we assert the type of a
structure tS . If tS does not implement the interface tI , the assertion can never be
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successful. Hence, we find the precondition D �FG tS <: tI . We pattern match
over the interface-value that represents tI to check the underlying value matches
tS and extract the value. It is possible that some other value has been used
to implement the interface-value that represents tI . In such a case, the pattern
match fails and we experience run-time failure.

Rule td-destr-iface-iface deals with the case that we assert the type of
an interface uI on a value of type tI . The outer case expression extracts the
value Y underlying interface-value tI (this case never fails). We then check if
we can construct an interface-value for uI via Y . This is done via an inner case
expression. For each structure tSj implementing uI , we have a pattern clause Clsj

that matches against the constructor KtSj
of the structure and then constructs

an interface-value for uI . There are two reasons for run-time failure here. First,
Y (used to implement tI) might not implement uI ; that is, none of the pattern
clauses Clsj match. Second, [Cls] might be empty because no receiver at all
implements uI . This case is rather unlikely and could be caught statically.

6 Properties

We wish to show that the dictionary-passing translation preserves the dynamic
behavior of FG programs. To establish this property we make use of (binary)
logical relations [16,20]. Logical relations express that related terms behave the
same. We say that source and target terms are equivalent if they are related
under the logical relation. The goal is to show that FG expressions and target
expressions resulting from the dictionary-passing translation are equivalent.

For example, in FG the run-time value associated with an interface type
is a structure that implements the interface whereas in our translation each
interface translates to an interface-value. To establish that a structure tS{v}
and an interface-value KtI (V, V ) are equivalent w.r.t. some interface tI we need
to require that

– (Struct-I-Val-1) tS{v} and V are equivalent w.r.t. tS , and
– (Struct-I-Val-2) method definitions for receiver type tS are equivalent to V .

Because signatures in method specifications of an interface may refer to
the interface itself, there may be cyclic dependencies that then result in well-
foundness issues of the definition of logical relations. To solve this issue we include
a step index [1]. We explain this technical point via the example in Fig. 1. We
will write e ≈ E ∈ �t�k to denote that FG expression e and TL expression E are
in a logical relation w.r.t. the FG type t, where k is the step index. Similarly,
func (x tS) R {return e} ≈ V ∈ �R�k expresses that a FG method declaration
and a TL value V are in a logical relation w.r.t. the FG method specification R.
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e ≈ E ∈ t
D,Φm

k FG expressions versus TL expressions

red-rel-exp
∀k1 < k, k2 < k, v, V.(k − k1 − k2 > 0 ∧ D FG e k1 v ∧ Φm TL E k2 V )

=⇒ v ≈ V ∈ t
D,Φm

k−k1−k2

e ≈ E ∈ t
D,Φm

k

v ≈ V ∈ t
D,Φm

k FG values versus TL values

red-rel-struct
type tS struct {f t

n} ∈ D ∀i ∈ [n].vi ≈ Vi ∈ ti
D,Φm

k

tS{vn} ≈ KtS (V n) ∈ tS
D,Φm

k

red-rel-iface
V = KuS V ∀k1 < k.v ≈ V ∈ uS

D,Φm
k1

methods(D, tI) = {mM
n}

∀k2 < k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Vi ∈ miMi
D,Φm

k2

v ≈ KtI (V, V
n
) ∈ tI

D,Φm
k

func (x tS) mM {return e} ≈ V ∈ mM
D,Φm

k FG methods versus TL methods

red-rel-method
∀k ≤ k, v , V , vi

n, Vi
n
.(v ≈ V ∈ tS

D,Φm
k ∧ (∀i ∈ [n].vi ≈ Vi ∈ ti

D,Φm
k ))

= x v , xi vi
n e ≈ (V V ) (V n) ∈ t

D,Φm
k

func (x tS) m(x t
n) t {return e} ≈ V ∈ m(x t

n) t
D,Φm

k

D, Φm, Δ k
red−rel Φv ≈ ΦV FG versus TL value bindings

red-rel-vb
∀(x : t) ∈ Δ.Φv(x) ≈ ΦV(X) ∈ t

D,Φm
k

D, Φm, Δ k
red−rel Φv ≈ ΦV

k
red−rel D ≈ Φm FG declarations versus TL method bindings

red-rel-decls
∀ func (x tS) mM {return e} ∈ D :

func (x tS) mM {return e} ≈ Xm,tS ∈ mM
D,Φm

k
k
red−rel D ≈ Φm

Fig. 6. Relating FG to TL reduction

Consider the FG expression Int{1} from example in Fig. 1. When viewed at
type Eq, our translation yields the interface-value KEq (KInt 1, eqInt). We need
to establish Int{1} ≈ KEq (KInt 1, eqInt) ∈ �Eq�k1 .



116 M. Sulzmann and S. Wehr

(1) Int{1} ≈ KEq (KInt 1, eqInt) ∈ �Eq�k1

if (2) Int{1} ≈ KInt 1 ∈ �Int�k2 and
(3) func (x Int) eq(y Eq) bool {return e} ≈ eqInt ∈ �eq(y Eq) bool�k3

where k2 < k1, k3 < k1

if (4) ∀v1 ≈ V1 ∈ �Int�k4 , v2 ≈ V2 ∈ �Eq�k4 .
〈x �→ v1, y �→ v2〉e ≈ eqInt V1 V2 ∈ �bool�k4where k4 ≤ k3

Following (Struct-I-Val-1) and (Struct-I-Val-2), (1) holds if we can establish
(2) and (3). (2) is easy to establish. (3) holds if we can establish (4). (4) states
that for equivalent inputs the respective method definitions are equivalent as
well. Without the step index, establishing . ≈ . ∈ �Eq� would reduce to estab-
lishing . ≈ . ∈ �Eq�. We are in a cycle. With the step index, . ≈ . ∈ �Eq�k1

reduces to . ≈ . ∈ �Eq�k4 where k4 < k1. The step index represents the number
of reduction steps we can take and will be reduced for each reduction step. Thus,
we can give a well-founded definition of our logical relations.

Figure 6 gives the step-indexed logical relations to relate FG and TL terms.
Rule red-rel-exp relates FG and TL expressions. The expressions are in a rela-
tion assuming that the resulting values are in a relation where we impose a step
limit on the number of reduction steps that can be taken. We additionally find
parameters D and Φm as FG and TL expressions refer to method definitions.

Rule red-rel-struct is straightforward. Rule red-rel-iface has been moti-
vated above. We make use of the following helper function to lookup up the
method definition for a specific pair of method name and receiver type.

func (x tS) mM {return e} ∈ D

methodLookup(D, (m, tS)) = func (x tS) mM {return e}

Rule red-rel-method covers method definitions. Rule red-rel-vb ensures
that the substitutions from free variables to values are related. Rule
red-rel-decls ensures that our labeling for the translation of method defini-
tions is consistent.

A fundamental property of step-indexed logical relations is that if two expres-
sions are in a relation for k steps then they are also in a relation for any smaller
number of steps.

Lemma 1 (Monotonicity). Let e ≈ E ∈ �t�
〈D,Φm〉
k and k′ ≤ k. Then, we find

that e ≈ E ∈ �t�
〈D,Φm〉
k′ .

Proof. By induction over the derivation e ≈ E ∈ �t�
〈D,Φm〉
k .

Case red-rel-exp:

∀k1 < k, k2 < k, v, V.(k − k1 − k2 > 0 ∧ D �FG e −→k1 v ∧ Φm �TL E −→k2 V )

=⇒ v ≈ V ∈ �t�
〈D,Φm〉
k−k1−k2

e ≈ E ∈ �t�
〈D,Φm〉
k
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If either e or E is irreducible, e ≈ E ∈ �t�
〈D,Φm〉
k′ holds immediately because

the universally quantified statement in the premise holds vacuously.
Otherwise, we find D �FG e −→k1 v and Φm �TL E −→k2 V for some k1

and k2. If k′ − k1 − k2 ≤ 0, e ≈ E ∈ �t�
〈D,Φm〉
k′ holds again immediately.

Otherwise, by induction applied on the premise of rule red-rel-exp we find
that v ≈ V ∈ �t�

〈D,Φm〉
k′−k1−k2

and we are done for this case.
Case red-rel-struct:

type tS struct {f t
n} ∈ D ∀i ∈ [n].vi ≈ Vi ∈ �ti�

〈D,Φm〉
k

tS{vn} ≈ KtS (V
n
) ∈ �tS�

〈D,Φm〉
k

Follows immediately by induction.
Case red-rel-iface:

V = KuS
V ′

(1) ∀k1 < k.v ≈ V ∈ �uS�
〈D,Φm〉
k1

methods(D, tI) = {mM
n}

(2) ∀k2 < k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Vi ∈ �miMi�
〈D,Φm〉
k2

v ≈ KtI (V, V
n
) ∈ �tI�

〈D,Φm〉
k

Consider the first premise (1). If there exists k1 < k′ then v ≈ V ∈ �uS�
〈D,Φm〉
k1

.
Otherwise, this premise holds vacuously. The same argument for k2 < k′ applies
to the second premise (2). Hence, v ≈ KtI (V, Vi

n
) ∈ �tI�

〈D,Φm〉
k′ . �

A similar monotonicity result applies to method definitions and declarations.
Monotonicity is an essential property to obtain the following results.

Interface-value constructors and destructors preserve equivalent expressions
via logical relations as stated by the following results.

Lemma 2 (Structural Subtyping versus Interface-Value Construc-

tors). Let D �iCons t <: u � E1 and �k
red−rel D ≈ Φm and e ≈ E2 ∈ �t�

〈D,Φm〉
k .

Then, we find that e ≈ E1 E2 ∈ �u�
〈D,Φm〉
k .

Lemma 3 (Type Assertions versus Interface-Value Destructors). Let
D �iDestr t ↘ u � E1 and �k

red−rel D ≈ Φm and e ≈ E2 ∈ �t�
〈D,Φm〉
k . Then, we

find that e.(u) ≈ E1 E2 ∈ �u�
〈D,Φm〉
k .

Based on the above we can show that target expressions resulting from FG
expressions and target methods resulting from FG methods are equivalent.

Lemma 4 (Expression Equivalence). Let 〈D,Δ〉 �exp e : t � E and Φv,
ΦV, Φm such that 〈D,Φm,Δ〉 �k

red−rel Φv ≈ ΦV and �k
red−rel D ≈ Φm for some k.

Then, we find that Φv(e) ≈ ΦV(E) ∈ �t�
〈D,Φm〉
k .
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Lemma 5 (Method Equivalence). Let D �meth func (x tS) m(x t
n) t

{return e} � λX.λ(X
n
).E. Then, we find that �k

red−rel D ≈ Φm where
Φm(Xm,tS ) = λX.λ(X

n
).E for any k.

The lengthy proofs of the above results are given in the online version of this
paper.2

From Lemmas 4 and 5 we can derive our main result that the dictionary-
passing translation preserves the dynamic behavior of FG programs.

Theorem 1 (Program Equivalence). Let �prog D func main(){ = e} �
let Xmi,tSi

= Ei
n
in E where we assume that e has type t. Then, we find that

e ≈ E ∈ �t�
〈D,Φm〉
k for any k where Φm = 〈Xmi,tSi

�→ Ei
n〉.

Proof. Follows from Lemmas 4 and 5. �
Our main result also implies that our translation is coherent. Recall that the

translation rules are non-syntax directed because of rule td-sub. Hence, we could
for example insert an (albeit trivial) interface-value constructor resulting from
D �iCons tI <: tI � E. Hence, there might be different target terms for the
same source term. Our main result guarantees that all targets obtained preserve
the meaning of the original program.

7 Related Work and Conclusion

The dictionary-passing translation is well-studied in the context of Haskell type
classes [24]. A type class constraint translates to an extra function parameter,
constraint resolution provides a dictionary with the methods of the type class
for this parameter. In our translation from Featherweight Go [7], dictionaries are
not supplied as separate parameters because FG does not support parametric
polymorphism. Instead, a dictionary is always passed as part of an interface-
value, which combines the dictionary with the concrete value implementing the
interface. Thus, interface-values can be viewed as representations of existential
types [10,13,23]. How to adapt our dictionary-passing translation scheme to
FG extended with parametric polymorphism (generics) is something we plan to
consider in future work.

In the context of type classes it is common to show that resulting target pro-
grams are well-typed. For example, see the work by Hall and coworkers [8]. Typed
target terms in this setting require System F and richer variants depending on
the kind of type class extensions that are considered [19]. Our target terms are
untyped and we pattern match over constructors to check for “run-time types”.
For example, see rule td-destr-iface-struct in Fig. 5. There are various ways
to support dynamic typing in a typed setting. For example, we could employ
GADTs as described by Peyton Jones and coworkers [9]. A simply-typed first
order functional language with GADTs appears then to be sufficient as a typed

2 https://arxiv.org/abs/2106.14586.

https://arxiv.org/abs/2106.14586
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target language for Featherweight Go. This will require certain adjustments to
our dictionary-passing translation. We plan to study the details in future work.

Another important property in the type class context is coherence. Bottu and
coworkers [3] make use of logical relations to state equivalence among distinct
target terms resulting from the same source type class program. Thanks to our
main result Theorem 1, we get coherence for free. We believe it is worthwhile
to establish a property similar to Theorem 1 for type classes. We could employ
a simple denotational semantics for source type class programs such as [14,21]
which is then related to target programs obtained via the dictionary-passing
translation. This is something that has not been studied so far and another
topic for future work.

Method dictionaries bear some resemblance to virtual method tables (vta-
bles) used to implement virtual method dispatch in object-oriented languages [5].
The main difference between vtables and dictionaries is that there is a fixed con-
nection between an object and its vtable (via the class of the object), whereas the
connection between a value and a dictionary may change at runtime, depending
on the type the value is used at. Dictionaries allow access to a method at a fixed
offset, whereas vtables in the presence of multiple inheritance require a more
sophisticated lookup algorithm [2].

Subtyping for interfaces in Go is based purely on width subtyping, there
is no support for depth subtyping [15]: a subtype might provide more methods
than the super-interface, but method signatures must match invariantly. Method
dispatch in Go is performed only on the receiver of the method call. Multi-
dispatch [4,18] refers to the ability to dispatch on multiple arguments, but this
approach turns out to be difficult in combination with structural subtyping [11].

To summarize the results of the paper at hand: we defined a dictionary-
passing translation from Featherweight Go to a untyped lambda calculus with
pattern matching. The compiler for the full Go language [22] employs a simi-
lar dictionary-passing approach. We proved that the translation preserves the
dynamic semantics of Featherweight Go, using step-indexed logical relations.

Acknowledgments. We thank the APLAS’21 reviewers for their helpful and con-
structive feedback.
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Abstract. We present a complete optimization procedure for hybrid
quantum-classical circuits with classical parity logic. While common opti-
mization techniques for quantum algorithms focus on rewriting solely the
pure quantum segments, there is interest in applying a global optimiza-
tion process for applications such as quantum error correction and quan-
tum assertions. This work, based on the pure-quantum circuit optimiza-
tion procedure by Duncan et al., uses an extension of the formal graphical
ZX-calculus called ZX as an intermediary representation of the hybrid
circuits to allow for granular optimizations below the quantum-gate level.
We define a translation from hybrid circuits into diagrams that admit the
graph-theoretical focused-gFlow property, needed for the final extraction
back into a circuit. We then derive a number of gFlow-preserving opti-
mization rules for ZX diagrams that reduce the size of the graph, and
devise a strategy to find optimization opportunities by rewriting the dia-
gram guided by a Gauss elimination process. Then, after extracting the
circuit, we present a general procedure for detecting segments of circuit-
like ZX diagrams which can be implemented with classical gates in the
extracted circuit. We have implemented our optimization procedure as
an extension to the open-source python library PyZX.

Keywords: ZX-calculus · Optimization · Gflow · Hybrid circuits ·
PyZX

1 Introduction

The description of quantum algorithms commonly involves quantum operations
interacting with classical data in its inputs, outputs, or intermediary steps via
measurements or state preparations. Some applications such as quantum error
correction [2,9] and quantum assertions [18,24] explicitly introduce classical
measurements and logic between quantum computations. In general, quantum
programming languages usually allow for measurements and classically con-
trolled quantum operators mixed-in with unitary gates [7,11,15,22]. Further-
more, Jozsa [14] conjectured that any polynomial-time quantum algorithm can
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be simulated by polylogarithmic-depth quantum computation interleaved with
polynomial-depth classical computation. As such, there is interest in contem-
plating this kind of structures in circuits.

A popular alternative representation of quantum circuit is based on the ZX-
calculus [5,6], a formal diagrammatic language which presents a more granular
representation of quantum circuits and has been successfully used in applications
such as MBQC [10], quantum error correction [4], and quantum foundations.
Carette et al. [3] introduced an extension of the calculus called ZX which allows
for the representation of operations interacting with the classical environment
by adding a discarding ground generator to the diagrams.

It is natural to look at the problem of optimizing algorithm implementations
by taking in consideration the environment in addition to the pure quantum
fragments. However, most common optimization strategies focus solely on the
latter without contemplating the hybrid quantum-classical structure [1,12]. One
of this pure optimizations introduced by Duncan et al. [8] uses the ZX-calculus to
apply granular rewriting rules that ignore the boundaries of each quantum gate.
We will refer to it as the Clifford optimization algorithm. Their rewriting steps
preserve a diagram property called gFlow admittance that is required for the
final extraction of the ZX diagrams into circuits. The ZX optimization method
was latter used by Kissinger and van de Wetering [17] in their method to reduce
the number of T-gates in quantum circuits.

In this work we define the natural extension of the pure Clifford optimization
algorithm by Duncan et al. to hybrid quantum-classical circuits using the ZX
calculus.

Our circuit optimization procedure forgets the difference between quantum
and classical wires during the simplification process, representing connections as
a single type of edge. This allows it to optimize the complete hybrid system as an
homogeneous diagram, and results in similar representations for operations that
can be done either quantumly or classically. Generally, in a physical quantum
computer, the classical operations are simpler to implement than their quantum
counterparts, and quantum simulators can exploit the knowledge of which wires
carry classical data to simplify their operation. As such, it is beneficial to extract
classical gates in the resulting circuit where possible.

The contribution of this paper are as follows.

– We specify a translation of hybrid circuits into ZX diagrams in a special
graph like form that admits a gFlow, restricting the classical segments of the
input to parity circuits.

– We introduce a number of gFlow-preserving rewriting rules that interact with
the discarding generator to reduce the size of the diagrams, and devise a
strategy to find optimization opportunities using the biadjacency matrix of
the graph cut between spiders connected to ground generators and the other
nodes in the diagram.

– We define a procedure to extract ZX diagrams with a gFlow back into hybrid
quantum-classical circuits, including ancilla initialization and termination.
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– We define the problem of ZX -classicalization as labelling segments of the
diagrams which can be implemented classically and present an heuristic solu-
tion. Our method can be applied on the extracted circuits to maximize the
number of classically implemented operations.

The paper is organized in the following manner. In Sect. 2 we define the
quantum circuits, present a syntactic description of the ZX calculus and its
equation, and give an intuition behind the representation of hybrid quantum-
classical circuits. Section 3 then introduces the graph-like family of ZX dia-
grams and defines the focused gFlow property over the graphs. We then define
the translation of quantum circuits into graph-like diagrams in Sect. 4. In Sect. 5
we introduce the optimization rules and our strategy for finding rule matches
which we use to describe the complete optimization algorithm. Then in Sect. 6
we define the extraction algorithm and finally we present our classicalization
procedure in Sect. 7. In Sect. 8 we discuss the results of testing our procedure on
randomly generated circuits.

2 Hybrid Quantum-Classical Circuits and the Grounded
ZX-Calculus

In pure quantum operations, a single qubit quantum state is represented as a
unitary vector in the Hilbert space C

2. We use Dirac notation to talk about such
vectors and denote an arbitrary state as |φ〉. States can be described as a linear
combination of vectors in a basis such as the computational basis {|0〉 , |1〉} or
the diagonal basis {|+〉 , |−〉}, where |±〉 = 1√

2
(|0〉±|1〉). A third, less commonly

used basis called Y is formed by the vectors |�〉 = 1√
2
(|0〉 + i |1〉) and |�〉 =

1√
2
(|0〉 − i |1〉). Qubit spaces can be composed using a tensor product, and we

denote |φψ〉 = |φ〉 ⊗ |ψ〉.
Hybrid quantum-classical systems include classical data, which can be rep-

resented in a qubit space as orthonormal basis vectors (e.g. by representing a
logical 0 as the state |0〉 and a logical 1 as |1〉), but additionally include a trace
or measurement operation, which probabilistically projects a qubit into a vector
in an orthogonal basis. The resulting probabilistic distribution of pure states is
called a mixed state, and is better represented by a density matrix, a positive
semi-definite Hermitian operator of trace one in the (C2×2)⊗n Hilbert space, for
an n-qubit system. Given a probabilistic distribution of pure states {(pi, |φi〉)},
their density matrix is constructed as

∑
i pi |φi〉〈φi|, where 〈φ| = |φ〉†.

Quantum circuit diagrams consist of horizontal lines carrying each the infor-
mation of one qubit, read from right to left, with some attached gates applying
unitary transformations over the qubit states. We use the universal set of opera-
tions {CNOT,Xα,Zα,H} for pure-quantum diagrams. When α is limited to mul-
tiples of π

4 this roughly corresponds to the approximately universal Clifford+T
group. Some rotation gates have specific names, such as Z = Zπ, X = Xπ,
S = Zπ

2
, HSH = Xπ

2
, and T = Zπ

4
. We additionally include ancilla initializa-

tion and termination, and swaps. The representation of each mentioned gate is
reproduced here.
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⊕ H Zα Xα |0 |0

Hybrid circuits represent bit-carrying classical wires using doubled lines
and extend the set of gates with some classical operations such as
{NOT,XOR,AND}, classical fan-out, bit swaps, measurement, qubit prepara-
tion, and classically controlled versions of the Xπ and Zπ gates. We depict them
respectively as follows.

| ⊕ Z

Circuits are inductively constructed from these generators, wire identities,
and parallel and serial composition, ensuring that only wires of the same type
connect with each other.

In this work we restrict the input to circuits with classical parity logic, choos-
ing not to include AND gates due to the complexity of their representation as
ZX diagrams, which might result in the introduction of additional non-Clifford
gates during the extraction procedure (refer to Sect. 9 for further discussion).

The ZX-calculus is a formal graphical language which provides a fine-grained
representation of quantum operations. We present a brief introduction to its
definition, including the ZX extension to represent classical operations. Refer
to [23] for a complete description of both calculi.

ZX diagrams representing pure-quantum linear maps are composed by wires,
spiders, and Hadamard boxes. We read the diagrams from right to left and
represent inputs and outputs as open-ended wires. The Hadamard box
swaps the computational and diagonal basis, mapping |0〉 to |+〉, |1〉 to |−〉 and
vice versa. The spiders are arbitrary-degree nodes labelled with a real phase
α ∈ [0, 2π) that come in either green or red color, named Z- and X-spiders
respectively. When α is a multiple π or π

2 , we call them Pauli or Clifford -spiders
respectively. We refer to the set of spiders connected to outputs and inputs of
the diagram as O and I respectively, and call their members output- and input-
spiders.

A degree-2 green (resp. red) spider corresponds to applying a Zα (Xα) oper-
ation over a qubit. Phaseless spiders represents nodes with phase 0 and can
be interpreted as copying the computational basis vectors in the case of green
spiders, or the diagonal basis vectors for red spiders.

α |00 + β |11 + γ |01 + θ |10 α |000 + β |111

Spiders of the same color can be fused together, adding their phases. It is
important to note that the relative position of the nodes in ZX diagrams do not
alter their interpretation, as only the topology matters.

The ZX-calculus comes equipped with a complete set of formal rewrite
rules [13]. We reproduce it here ignoring scalars.
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β
... ...

α ......
=... ... ...α+β

(f)

−α=

π

π α ... ...

π
(π)

...α =...

(c)

... = ...

(h)
(i1)
=

=
(i2)

(b)
=

...α α ...

The ZX calculus [3] is an extension to the ZX-calculus which is able to
easily describe interactions with the environment. The diagrams have a standard
interpretation as completely positive linear maps between quantum mixed states.
In addition to the ZX generators and rewrite rules, the calculus introduces a
ground generator ( ) which represent the tracing operation, or the discarding of
information. When connected to a degree-3 green spider, this can correspond to
a measurement operation over the computational basis or a qubit initialization
from a bit.

∼ ∼ |

We refer to the spiders attached to generators as -spiders. Notice that we
use the same kind of wire for both classical and quantum data, since as previously
discussed we can encode the latter as the former. We will later introduce a
method to differentiate between the two types of wire by using the -spiders in
Sect. 7.

ZX extends the set of rewriting rules with the following additions.

(k)
=

(l)
= α

(m)
=

(n)
=

Intuitively, the generator discards any operation applied over a single
qubit. Multiple discards can be combined into one vio the following rule, derived
from rules (m), (n), and (k).

(gg)
=

For simplicity in our diagrams, we replace solely as notation the Hadamard
boxes with “Hadamard wires” drawn in blue, as follows.

=

We introduce two additional derived equations. One to erase duplicated
Hadamard wires, as proven by Duncan et al. [8], and another to discard them,
from a combination of rules (m) and (l).

... ...

(fh)
= ... ... ...

(ml)
= ...
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We utilise !-box notation [20] to represent infinite families of diagrams with
segments that can be repeated 0 or more times. In the following sections it will
be useful to use this notation for depicting more complex diagrams. Here we
present an example of its usage.

αi ∈ { , α0 ,
α0

α1
, . . . }

3 Graph-Like Diagrams and Focused gFlow

A ZX diagram is said to be in graph-like form [8] when it contains only Z-spiders
connected by Hadamard wires, there are no parallel edges nor self-loops, and no
spider is connected to more than one input or output. We define the graph-like
form for ZX diagrams and include a weaker version allowing a node to connect
to an input, a ground, and any number of outputs simultaneously. When defining a
translation from quantum circuits into ZX diagrams it will be simpler to initially
generate weakly graph-like diagrams and transform the final result into the strict
version afterwards.

Definition 1. A ZX diagram is graph-like (respectively weakly graph-like)
when:

1. All spiders are Z-spiders.
2. Z-spiders are only connected via Hadamard edges.
3. There are no parallel Hadamard edges or self-loops.
4. There is no pair of connected -spiders.
5. Every input, output, or is connected to a Z-spider.
6. Every Z-spider connected to a has phase 0.
7. Every Z-spider is connected to at most one input, one output, or one (at

most one input and at most one ).

Proposition 1. Every ZX diagram is equivalent to a weakly graph-like ZX
diagram. Indeed, Duncan et al. [8] proved that any pure-ZX diagram is equivalent
to a graph-like one. The proof can be extended to weakly graph-like ZX diagrams
simply by applying rule (l) to eliminate Hadamards connected to generators,
rule (gg) to eliminate duplicated connected to the same spider, and rule (n)
to disconnect wires between -spiders.

Lemma 1. There exists an algorithm to transform an arbitrary ZX diagram
into an equivalent strictly graph-like diagram.

Proof. By adding identity spiders to the inputs and outputs. Cf. long version on
arXiv.

Once a diagram is in a weakly graph-like form, all its spiders as well as all
its internal connections are of the same kind. We can refer to its underlying
structure as a simple undirected graph, marking the nodes connected to inputs
and outputs. In addition, generators or the -spiders connected to them can
be seen as outputs discarding information into the environment. This is known
as the underlying open graph of a diagram.
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Definition 2. An open graph is a triple (G,S, T ) where G = (V,E) is an undi-
rected graph, and S ⊆ V is a set of sources and T ⊆ V is a set of sinks. For a
weakly graph-like ZX diagram D, the underlying open graph G(D) is the open
graph whose vertices are spiders D, whose edges correspond to Hadamard edges,
whose set S is the subset of spiders connected to the inputs of D, and whose set
T is the subset of spiders connected to the outputs of D or to ground generators.

The underlying open graph of a ZX diagram produced from our translation
of quantum circuits verify a graph-theoretic invariant called focused gFlow [19].
This structure—originally conceived for graph states in measurement based
quantum computation—gives a notion of flow of information and time on the
diagram. It will be required to guide the extraction strategy in Sect. 6.

Definition 3. Given an open graph G, a focused gFlow (g,≺) on G consists of
a function g : T → 2S and a partial order ≺ on the vertices V of G such that
for all u ∈ T , OddG(g(u)) ∩ T = {u} and ∀v ∈ g(u), u ≺ v where 2S is the
powerset of S and OddG(A) := {v ∈ V (G) | |N(v) ∩ A| ≡ 1 mod 2} is the odd
neighbourhood of A.

4 Translation of Hybrid Quantum-Classical Circuits

We describe our translation from hybrid quantum-classical circuits into strictly
graph-like ZX diagrams by steps. First, we translate each individual gate
directly into a weakly graph-like diagram and connect them with regular wires.
We define this translation T (·) by inductively translating the gates as described
in Table 1 immediately followed by the application of the spider fusion rule (f)
and rules (gg) and (fh) to remove all regular wires, duplicated generators,
and parallel Hadamard wires, ensuring that the final combined diagram is in a
weakly graph-like form. An example of this translation is shown in Fig. 1.

Notice that the translation maps both classical and quantum wires to regular
ZX diagram edges. We keep track of which inputs and outputs of the diagram
were connected to classical wires and introduce generators for the operations
that interact with the environment. In Sect. 6 we present a method to detect the
sections of the final circuit that can be implemented as classical operations by
looking at the classical inputs/outputs and the generators, independently of
which wires where originally classical.

Lemma 2. The ZX diagram resulting from the translation T (·) is weakly
graph-like.

Proof. By induction on the circuit construction. Cf. long version on arXiv.

After the translation, we can apply Lemma1 to obtain a strictly graph-like
diagram. This step essentially separates the generators from the inputs and
outputs, allowing the optimization procedure to move them around and let them
interact with other parts of the diagram.
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Table 1. Translation from hybrid quantum-classical circuits into ZX diagrams.

⊕ H Zα α

|0 | 0

ππ |

⊕ Z

C··
· C’··
·

··
· T (C)··
·

T (C )··
·

··
·

C··
·

C’ ··
·

··
·

··
· T (C)··
·

T (C ) ··
·

··
·

··
·

|0

|0

H

⊕

⊕ Z

⊕

H

c

c

c

c

Fig. 1. Example translation of the superdense coding circuit into a ZX diagram with
labelled inputs and outputs, and subsequent application of the spider-fusion rule.

Lemma 3. If C is a hybrid quantum-classical circuit and D is the graph-like
ZX diagram obtained from the translation T (C) and Lemma 1, then G(D)
admits a focused gFlow.

Proof. By induction on C. Cf. long version on arXiv.

5 Grounded ZX Optimization

Our simplification strategy for ZX diagrams is based on eliminating nodes
from the diagram by systematically applying a number of rewriting rules while
preserving the existence of a focused gFlow. In this section we introduce the
new rules, define a strategy to maximize their effectiveness, and finally use it
together with the pure-ZX optimization to define our algorithm.

5.1 Basic Simplification Rules

Duncan et al. [8] presented the following gFlow-preserving local complementa-
tion and pivoting rules for the ZX calculus in their optimization procedure.
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These rules effectively reduce the size of the diagram by at least one node on
each application by eliminating internal proper-Clifford spiders and Pauli spider
pairs respectively.

±π
2

α1 αn

...... ... (LC)
=

...
α1∓ π

2

...
αn∓ π

2

α2

...
αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

...

aπ bπ

∗ ∗αi

βj

γk

(p)
= αi + bπ

βj + (a + b + 1)π

γk + aπ

These rules can be applied directly in ZX diagrams when the target spiders
are not connected to a generator. For the cases where some of the target
spiders are -spiders, we introduce the following altered rules. Their derivation
can be found in the long version on arXiv.

α1 αn

...
... ...

α2

...
αn−1

...

∗
(LC )
=

α1 + π
2 αn + π

2

...
... ...

α2 + π
2

...
αn−1 + π

2

...

∗ ∗αi

βj

γk
(p )
= αi

βj + π

γk

jπ

∗ ∗αi

βj

γk

(pp )
= αi + jπ

βj + (j + 1)π

γk

Notice that both rules (LC ) and (p ) do not decrease the number of
spiders in the diagram. As such, we will focus on rule (pp ) for our optimization.

If (pp ) is applied with a non- spider connected to a boundary, the rule
produces a -spider connected to an input or output thus needing to add an
identity operation as described in Lemma 1 to preserve the graph-like property.
Since in this case we add additional nodes to the graph, we will only apply rule
(pp ) on a boundary spider if it can be followed by another node-removing rule.

Additionally, we will use rules (ml) and (k) directly to remove nodes in the
diagram when there are -spiders with degree 1 or 0 in the graph, respectively.

Lemma 4. If the non- spider in the lhs of the discarding rule (ml) is not
connected to an output or input, then applying the rule over a graph-like diagram
D preserves the existence of a focused gFlow.

Proof. If the non- spider in the lhs is not connected to an input or output
of the diagram, then applying the rule does not break the graph-like property
of D. The preservation of the gFlow follows from -spiders being sinks of the
underlying open graph.
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Lemma 5. Rules (LC ), (p ), and (pp ) preserve the existence of a focused
gFlow.

Proof. Notice that rules (LC ), (p ), and (pp ) are compositions of gFlow-
preserving rules.

5.2 Ground-Cut Simplification

The previously introduced rewriting rules require a simplification strategy to
apply them. A simple solution is to try to find a match for each rule and apply
them iteratively until no more matches are available. We describe a strategy
that can find additional rule matches by operating on the biadjacency matrix
between the -spiders and the non- spiders.

Definition 4. The ground-cut of a graph-like ZX diagram D is the cut result-
ing from splitting the and non- spiders in G(D).

Since the diagram is graph-like, there are no internal wires in the partition.
Given a ZX diagram D, we denote MD the biadjacency matrix of its ground-
cut, where rows correspond to -spiders and columns correspond to non-
spiders. We can apply all elementary row operations on the matrix by rewriting
the diagram. The addition operation between the rows corresponding to the
-spider u and the -spider v can be implemented via the following rule.

αi γk

βj

u v
(+)
= αi γk

βj

u v

Using the elementary row operations we can apply Gaussian elimination on
the ground-cut biadjacency matrix of a graph-like ZX diagram, generating in
the process an equivalent diagram whose ground-cut biadjacency matrix is in
reduced echelon form.

Any row in the ground-cut biadjacency matrix left without non-zero elements
after applying Gaussian elimination corresponds to an isolated -spiders in the
diagram that can be eliminated by rule (k). If the reduced row echelon form of
the biadjacency matrix contains a row with exactly one non-zero elements, then
that element corresponds to an isolated -spider and non- spider pair in the
diagram and therefore we can apply rule (ml) to remove the non- spider.

5.3 The Algorithm

Based on the previous strategy, we define a terminating procedure which turns
any graph-like ZX diagram into an equivalent simplified diagram that cannot
be further reduced.

Definition 5. A graph-like ZX diagram is in simplified-form if it does not
contain any of the following, up to single-qubit unitaries on the inputs and
outputs.
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π π

∗

π

∗

∗

π

Fig. 2. Example of a diagram optimization applying a ground-cut simplification, a
discard rule, and a Pauli elimination.

– Interior proper Clifford spiders.
– Adjacent pairs of interior Pauli spiders.
– Interior Pauli spiders adjacent to boundary spiders.
– Interior Pauli spiders adjacent to -spiders.
– Degree-1 -spiders not connected to input or output spiders.
– Connected components not containing inputs nor outputs.

We define an optimization algorithm that produces diagrams in simplified-
form by piggybacking on the pure optimization procedure. This optimization
applies the local complementations (LC) and pivoting (p) rules until there are
no interior proper Clifford spiders or adjacent pairs of non- interior Pauli spi-
ders. After the initial pure simplification, we continue our optimization as follows.

1. Repeat until no rule matches, removing wires between -spiders and parallel
Hadamard connections after each step:
(a) Run Gaussian elimination on the ground-cut of the diagram as described

in Sect. 5.2.
(b) Remove the grounds corresponding to null rows with rule (k).
(c) If any row of the biadjacency matrix has a single non-zero element, cor-

responding to a -spider connected to a spider v, then:
i. If v is not a boundary spider, apply rule (ml).
ii. If v is a boundary spider and v is adjacent to a Pauli spider, apply

rule (ml) immediately followed by the procedure from Lemma 1 to
make the diagram graph-like again. Then delete the Pauli neighbour
using rule (pp ), to ensure that the step removes at least one node.

(d) Apply Pauli spider elimination rule (pp ) until there are no Pauli spiders
connected to ground spiders.

2. Remove any connected component of the graph without inputs or outputs.

Notice that each cycle the loop reduces the number of nodes in the graph, so
this is a terminating procedure. Additionally, since each applied rule preserves
the existence of a gFlow the final diagram admits a gFlow. An example run of
the algorithm is shown in Fig. 2.

6 Circuit Extraction

Here we describe a general circuit extraction procedure for graph-like ZX
diagrams admitting a focused gFlow into hybrid quantum-classical circuits, by
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modifying the procedure for pure diagrams from the Clifford optimization. We
present the pseudocode in Algorithm 1.

The algorithm progresses through the diagram from right-to-left, maintaining
a set of spiders F, called the frontier, which represents the unextracted spiders
connected to the extracted segment. Each frontier spider is assigned an out-
put qubit line Q(v). This set is initially populated by the nodes connected to
outputs of the diagram. The strategy is to proceed backwards by steps, adding
unextracted spiders into the frontier and deleting some of them to extract oper-
ations on the output circuit, in back-to-front order.

To find candidate spiders to add to the frontier we apply Gaussian elimination
on the biadjacency matrix of the frontier and non-frontier spiders, similarly to
the optimization method described in Sect. 5.2. The gFlow property of the graph
ensures that we can always progress by extracting a node. It suffices to look at
the set of non-frontier vertices maximal in the order and notice that, after the
Gauss elimination, either we can choose a -spider from the set, or a non-
spider that has a single connection to the frontier. A careful implementation
of the biadjacency matrix row and column ordering can reduce the number of

-spider extractions when no non- candidates are available. We require the
following proposition to apply the row additions on the graph (Duncan et al. [8],
Proposition 7.1).

Proposition 2. For any ZX diagram D, the following equation holds:

D
... ...

...
...

M

= D
... ...

...
...

M

where M describes the biadjacency matrix of the relevant vertices, and M ′ is the
matrix produced by adding row 2 to row 1 in M . Furthermore, if the diagram on
the LHS has a focused gFlow, then so does the RHS.

In our pseudocode, the call to CleanFrontier ensures that F only contains
phaseless spiders without internal wires. Notice that it preserves the gFlow since
it only modifies edges between sink nodes, and removes spiders with no other
connections. After the while loop terminates, all outputs of the circuit will have
been extracted. If there are inputs left unextracted, and since the diagram had
a gFlow, we can discard them directly via measurement operations.

Finally, we add any necessary swap operations to map the inputs to the
correct lines, and insert qubit initializations and measurements at inputs and
outputs marked as classical. In Sect. 7 we detail a method to better detect the
internal parts of the circuit that can be implemented classically.

In any case, each step of the while loop in Algorithm1 line 5, preserves the
gFlow of the diagram, and we can show that it terminates in at most |V | steps:
Indeed, if there are no non-frontier spiders, then a call to CleanFrontier will
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Algorithm 1. Circuit extraction
1: function Extraction
2: F : Set〈Node〉 ← O, Q : Map〈Node, int〉 ← ∅
3: for all v ∈ F do Q(v) ← Output connected to v

4: CleanFrontier(F,Q)
5: while F �= ∅ do
6: Run Gauss elimination on the frontier biadjacency matrix M (Proposition 2)
7: if a row of M has a single non-zero element then
8: Let u and v be the corresponding non-frontier and frontier node
9: Q(u) ← Q(v)

10: Remove v from the diagram and add u to F
11: else
12: v ← Arbitrary -spider in the neighbourhood of F
13: Q(v) ← New qubit line id
14: Extract a classical bit termination on Q(v) and add u to F

15: CleanFrontier(F,Q)

16: for all Unextracted v ∈ I do
17: Q(v) ← Input connected to v
18: Extract a measurement gate and a classical bit termination on Q(v)
19: Assign the corresponding input to Q(v)

20: function CleanFrontier(F,Q)
21: for all v ∈ F do
22: if v is a -spider then Remove the , extract a measurement on Q(v)

23: if v has a phase α �= 0 then Set α = 0, extract a Zα gate on Q(v)

24: for all u ∈ F, v ∼ u do Remove the wire, extract a CZ gate on Q(v), Q(u)

25: if v is not connected to any other node then
26: Remove v
27: if v ∈ I then assign the input to qubit Q
28: else extract a |+〉 qubit initialization on Q(v)

remove all nodes from the frontier. Moreover, each step of the while loop in line 5
moves one non-frontier spider to F.

7 Circuit Classicalization

The extraction procedure described in Sect. 6 produces correct circuits that are
almost completely composed by quantum gates and wires, without any classical
operation. In this section we describe the general problem of detecting parts of
the circuits that can be realized as classical operations, and introduce an efficient
heuristic solution based on a local-search. Notice, however, that while we aim
to recognize all classically realizable operations in the circuit the characteristics
of each quantum computer may dictate the final choice between quantum and
classical operators by taking into account the costs of exchanging data between
both realms.
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Given a ZX diagram, we decorate its wires using the set of labels L =
{Q,X,Y,Z,⊥}. The label Z means that this particular wire can be replaced
by a classical wire (possibly precomposed with a standard basis measurement
and postcomposed by a qubit initialisation in the standard basis depending on
whether the connected wires are also classical or not), and similarly for X and Y
by adapting the basis of measurement/initialisation to the diagonal or Y basis.
Q means that the wire is a quantum wire, and finally ⊥ means that the wire can
be removed by precomposing with a and postcomposing with a maximally
mixed state. The set of labels form a partial order, Q ≥ X,Y,Z ≥ ⊥.

A labelling L of a diagram D is a map from its edges into a pair of labels. The
two labels, drawn at each end of the wire, indicate the origin of the constraint.
Intuitively, Z A means that the wire is produced in such a way that guarantees
that the qubit carries classical information encoded in the computational basis,
whereas A Z means that the wire can be replaced by a classical wire because
some process will force this qubit to be in that basis—for instance, it is going to
be measured in the standard basis and thus one can already measure this qubit in
the standard basis and use a classical wire—. We define a partial order between
labellings of a diagram as the natural lift from the partial order of the labels.

Each label corresponds to a density matrix subspace of C2×2, representing
all possible mixed states allowed by that particular kind of wire.

Q = C
2×2 Z = {α |0〉〈0| + β |0〉〈0| | α, β ∈ R≥0, α + β = 1}

⊥ = { 1
2 |0〉〈0| + 1

2 |1〉〈1|} X = {α |+〉〈+| + β |−〉〈−| | α, β ∈ R≥0, α + β = 1}
Y = {α |�〉〈�| + β |�〉〈�| | α, β ∈ R≥0, α + β = 1}

Notice that the greatest common ancestor A�B corresponds to the intersection
of the sets.

A1

An

B1

An

...
C1

Cm

D1

Dm

...
E F

D

Intuitively, a labelling is valid if we can
cut any wire in the diagram and, after forc-
ing a valid state in the inputs and outputs,
we get a valid state in the cut terminals.
That is, we rearrange the diagram to trans-
form all outputs into inputs and connect
the cut terminals as outputs, as shown on
the right. Then, applying an arbitrary input ρ ∈ (

⊗n
i Ai) ⊗ (

⊗m
j Dj) to the

diagrams produces a result in E ⊗ F .
Notice that if A is a valid label for a wire then any B ≥ A is also valid, and

in particular Q is always a valid label. We can then omit unnecessary labels in
the diagrams, marking them implicitly as Q.

Given a ZX diagram D with marked classical inputs and outputs, we define
the classicalization problem as finding a minimal valid labeling where the inputs
and outputs are labelled as Q or Z accordingly.

7.1 Local-Search Algorithm

We present a local-search labelling procedure for ZX diagrams with explicit
Hadamard gates—replacing the Hadamard wires—and only green spiders, that
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produces locally minimal labellings by propagating the labels over individual
spiders. A diagram resulting from the circuit extraction in Sect. 6 can be trans-
formed to have only green spiders by applying the color-change rule (h). This
restriction is purely for simplicity in our definition, as the equivalent functions
can be defined easily for red spiders.

We introduce a number of operations over the labels. First, a binary function
representing the result of combining two wires via a phaseless green spider,
� : L × L → L.

Z � A = Z X � A = A Y � Y = X Q � Y = Q ⊥ � Y = ⊥
A � Z = Z A � X = A Y � Q = Q Q � Q = Q ⊥ � Q = Z

Y � ⊥ = ⊥ Q � ⊥ = Z ⊥ � ⊥ = ⊥
Notice that (L, �) is a commutative monoid with X as neutral element. We also
define a “Z rotation” operation for α ∈ [0, 2π), rotα : L → L.

rotα(Z) = Z rotα(Q) = Q rotα(⊥) = ⊥

rotα(X) =

⎧
⎪⎨

⎪⎩

X if α ∈ {0, π}
Y if α ∈ {1

2π, 3
4π}

Q otherwise
rotα(Y) =

⎧
⎪⎨

⎪⎩

Y if α ∈ {0, π}
X if α ∈ {1

2π, 3
4π}

Q otherwise

This corresponds to the identity if α ∈ {0, π}, and in general rotα(A) � b ≥
rotα(A � B).

Finally, we define a function H representing the application of the Hadamard
operation over a label, H : L → L.

H(Q) = Q H(X) = Z H(Z) = X H(Y) = Y H(⊥) = ⊥
Our classical detection procedure starts by labelling any classical input or

output with a Z label, and any with a ⊥ label, and the rest of the diagram
wires with Q.

It then proceeds by propagating the labels using the following rules:

A C DB (ch)→ A C H(D) DB H(A)

α
AiBi

i

(cz)→ α
AiBi rotα( j=iAj)

i

For any labels A,B,C,D,E, F ∈ L.
We apply these rules until there are no more labels to change. Since each

time we replace labels with lesser ones in the order, the procedure terminates.
Finally, we can interpret wires with a classical label in any direction as classically
realisable. We show an example of a labeled diagram in Fig. 3.

Lemma 6. The local-search labelling algorithm produces a valid labeling accord-
ing to the standard interpretation of the ZX calculus.

Proof. By proving that both rules (ch) and (cz) produce valid labellings, cf.
long version on arXiv.
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X| ⊕
∼

πc c

q q

Z X X Z X ZX

X

Z

Z Z

∼
|

Fig. 3. Example of a local-search classicalization. Q labels are omitted.

8 Implementation

We have implemented each of the algorithms presented in this work as an exten-
sion to the open source Python library PyZX [16] by modifying its implemen-
tation of ZX diagrams to admit ZX primitives. A repository with the code
is available at http://github.com/aborgna/pyzx/tree/zxgnd. We additionally
implemented a näıve ZX extension of the pure Clifford optimization for com-
parison purposes, which doesn’t use any of our rewriting rules. When applied
to pure quantum circuits, our algorithm does not perform additional optimiza-
tions after the Clifford procedure and therefore achieves the same benchmark
results recorded by Duncan et al. on the circuit set described by Amy et al. [1].

We tested the procedure over two classes of randomly generated circuits, and
measured the size of the resulting diagram as the number of spiders left after the
optimization. This metric correlates with the size of the final circuit, although
the algorithmic noise caused by the arbitrary choices in the extraction procedure
may result in some cases in bigger extracted circuit after a reduction step.

The first test generates Clifford+T circuits with measurements by applying
randomly chosen gates from the set {CNOT, S, HSH, T, Meas} over a fixed
number of qubits, where Meas are measurement gates on a qubit immediately
followed by a qubit initialization. We fix the probability of choosing a CNOT,
S, or HSH gate to 0.2 each and vary the probabilities for T and Meas in the
remaining 0.4. These circuits present a general worst case, where there is no
additional classical structure to exploit during the hybrid circuit optimization.

The second type of generated operations are classical parity-logic circuits.
These consist on a number of classical inputs, fixed at 10, where we apply ran-
domly chosen operations from the set {NOT, XOR, Fanout} with probabilities
0.3, 0.3, and 0.4 respectively.

In Fig. 4 we compare the results of our optimization using the Clifford opti-
mization as baseline. Figure 4a shows the reduction of diagram size when running
the algorithm on randomly generated Clifford+T circuits with measurement. We
vary the probability of generating a measurement gate between 0 and 0.2 while
correspondingly changing the probability of generating a T-gate between 0.4
and 0.2, and show the results for different combinations of qubit and gate quan-
tities. We remark that the optimization produces noticeably smaller diagrams
once enough generators start interacting with each other. There is a critical
threshold of measurement gate probability, specially visible in the cases with 8
qubits and 1024 gates, where with high probability the outputs of the diagram
become disconnected from the inputs due to the interactions. This results in

http://github.com/aborgna/pyzx/tree/zxgnd


Hybrid Quantum-Classical Circuit Simplification with the ZX-Calculus 137

(a) Diagram size reduction on Clifford+T
circuits with measurements.

(b) Diagram size reduction on parity-logic
circuits.

Fig. 4. Benchmark results on randomly generated diagrams.

our algorithm optimizing the circuits to produce a constant result while discard-
ing their input.

Figure 4b shows the comparison of diagram size between our procedure and
the Clifford optimization when run over classical parity circuits. The optimiza-
tion produces consistently smaller diagrams, generally achieving the theoretical
minimal number of generators, equal to the number of inputs. We further
remark that in all of the tested cases the classicalization procedure was able
to detect that all the extracted operations on the optimized parity-logic circuit
were classically realisable.

The runtime of our algorithm implementation is polynomial in the size of
the circuit. As with the Clifford optimization, the cost of our optimization
and extraction processes is dominated by the Gauss elimination steps. For
the ground-node rewriting rules, our unoptimized implementation is roughly
O(n2 ∗ k2) in the worst case with k being the number of measurement gates
and n the number of gates, but in practice it behaves cubically on the number
of gates due to the sparseness of the diagrams. The implementation was not
developed with a focus on the runtime cost, and some possible optimizations
may reduce this bound.

9 Discussion and Future Work

We introduced an optimization procedure for optimizing hybrid classical circuits
inspired by previous work on pure circuit optimization using the ZX calculus.
The process is composed by a translation step, the optimization of the diagrams,
an extraction back into circuits and finally a detection of classically-realisable
operations. Our translation operation produces diagrams which admit a focused
gFlow, a property that we maintain during the optimization and require during
the extraction. For our optimization step we defined a series of rewrite strategies
to reduce the size of the diagrams, and introduced a strategy to find additional
optimization opportunities by applying Gaussian elimination on the biadjacency
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matrix of the ground-cut of the diagram. Our extraction procedure initially gen-
erates circuits without classical operations. Hence, we introduced a classicaliza-
tion heuristic for arbitrary circuits that is able to replace quantum operations
by their classical equivalent, where possible.

Kissinger and van de Wetering [17] defined a procedure based on the Clifford
optimization to reduce the T-gate count in quantum circuits by defining new
structures in the graphs called phase gadgets and operating over their phases.
Their work can be easily extended to ZX , where the generators act as an
absorbing element for the gadgets phases. However, rules such as (+) prove to
be strictly more powerful than applying the pure phase gadget rules over -
gadgets. In general, the phase-gadget optimization affects an independent section
of the structure of the diagram compared to ours, and can be applied with it.

During our definition of the optimization process we decided to restrict the
input circuits to parity classical logic, excluding AND and OR gates. This does
not raise from an inherent limitation of the system but from a practical stand-
point. The ZX calculus is able to represent AND operations in what equates to
the Clifford+T decomposition of the Toffoli gate, introducing multiple T-gates
and CNOT gates to the circuit [21]. The multiple spiders would be dispersed
around the diagram during the optimization step, potentially breaking the pat-
tern formed by the AND gate and replacing it with multiple quantum operations.
This can produce the unexpected result of introducing expensive quantum oper-
ations in an originally pure classical circuit. A possible next step for this work
would be to use an alternative diagrammatic representation better adapted to
represent arbitrary boolean circuit such as the ZH calculus.
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Abstract. This paper develops a systematic method for extending a
polymorphic type system of ML with dynamic typing, and implements
the extension in SML#. The core of the extension consists of an adap-
tation of the type-directed compilation method for non-parametric poly-
morphism to type tag abstraction and type tag generation. To sup-
port existentially bound type variables in dynamic value elimination
and user-level manipulation of dynamic values, the conventional type-
directed compilation framework is extended with existential types and a
mechanism to reify dynamic values to user-level datatypes. The result-
ing language achieves orthogonal integration of dynamic typing in ML:
it supports all the standard features, including polymorphic type infer-
ence, user-defined datatypes and pattern matching, in programming with
dynamic typing. The implementation readily provides various practical
features, including polymorphic first-class pretty-printer, polymorphic
deserialization, type-safe interface to database systems, and type-safe
meta-programming.

1 Introduction

Dynamic typing in statically typed languages [2] is a mechanism to inject a
value of static type τ to a special atomic type, called dynamic or dyn for a
shorter, by pairing the value with a type tag of τ , and to inspect the type tag
at run-time by typecase statement. Its usefulness has been well recognized.
Using dynamic typing, one can write various type-dependent programs such
as pretty-printing, type-safe evaluation, and reflection. As observed by many
authors, dynamic typing is also an indispensable to communicate with external
environments such as database systems [3]. Considering these benefits, we can say
that dynamic typing is a basic feature that should be included in any statically
typed language. Here, we focus on the problem of extending a polymorphic type
system with dynamic typing and implementing it in a practical compiler.

This problem was already considered in the original proposal of dynamic
typing [2], and further explored in [1]. In their studies, main focuses are on how
to extend typecase patterns with type constructors (type functions) in explicitly
typed second-order systems. In [11], the authors proposed a method to extend
ML with dynamic typing and implemented it in the CAML compiler. Their

c© Springer Nature Switzerland AG 2021
H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 140–159, 2021.
https://doi.org/10.1007/978-3-030-89051-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89051-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-89051-3_9


A Compilation Method for Dynamic Typing in ML 141

extension is however rather restricted one: only values of closed types can be
injected to type dyn. Due to this restriction, dynamic typing does not mix well
with ML’s implicit polymorphism. Another direction toward integrating dynamic
typing in polymorphic languages is to investigate various encoding methods in
powerful type systems such as those of Haskell. While some recent researches
such as [17] showed successful result, it is difficult to see what is necessary to
add dynamic typing to a polymorphic type system and to implement it in a
practical compiler. As we shall demonstrate in Subsect. 6.3, dynamic typing,
when properly integrated in ML, can represent type-safe meta programming
without using any powerful typing mechanisms such as GADT, type classes,
higher-rank polymorphism, and even without polymorphic recursion. While we
do not have any formal result of relative expressive power of dynamic typing, this
property suggests that dynamic typing is an independent primitive mechanism
that should be investigated.

The aim of this paper is to develop a systematic method for orthogonally
extending a polymorphic type system of ML with dynamic typing, and for imple-
menting the extension in a full-scale native code compiler.

1.1 Analysis of Dynamic Typing

To clarify the technical issue in integrating dynamic typing in a polymorphic
type system of ML, we briefly review dynamic typing. Its basis, as presented in
[2], is to introduce primitive type dyn, and two language constructs:

T � e : τ

T � dynamic(e) : dyn
,

T � e : dyn

T � (e as τ) : τ
.

dynamic(e) injects a value of type τ into dyn, whose run-time object is intuitively
understood as a pair (V, tyRep(τ)) consisting of a run-time value V of type τ , and
a type representation (or type tag) tyRep(τ) of τ . (e as τ) checks whether or not
the stored type tag tyRep(τ ′) matches with static type τ , and if it matches then
it returns the stored value V of type τ , otherwise it raises RuntimeTypeError
exception. Because introduction of exception handling does not create any new
technical problem, we use it implicitly.

For the purpose of our analysis, let us suppose that these two constructs are
magically realized in ML. Since these two typing rules are parameterized with τ
without any constraints, there should be no problem in integrating these rules in
a polymorphic type system of ML. This simple observation indicates that if these
constructs are (somehow magically) given, then dynamic typing are uniformly
integrated in ML. We enumerate some of the features that should be readily
available from this (at this moment hypothetical) integration.

– Polymorphism. Since τ ranges over all the monotypes of ML including type
variables ’a, they are uniformly integrated in ML polymorphic type inference.
For example, the ML type inference algorithm should infer principal typings
for the following functions

val mkDyn = (fn x => dynamic(x)) : ’a -> dyn

val cast = (fn dyn => (dyn as ’a)) : dyn -> ’a
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Using them, one would be able to write polymorphic functions as seen below:
fun packFold (l:’a list, f:’a * ’a -> ’a) = myDyn (l, f)

fun doFold z dyn = (fn (l, f) => foldr f z l)

(cast dyn : ’a list * (’a * ’a -> ’a))

val (d1, d2) = (packFold ([1,2], op +), packFold (["a","b"], op ^))

val (r1, r2) = (doFold 0 d1, doFold "" d2)

– Pattern matching. Since ML pattern matching is orthogonal to its polymor-
phic type discipline, it mixes well with the two dynamic constructs. The
following code pattern demonstrates this mixture:

fun f dyn = case (dyn as ’a T) of P1:’a T => e1 | ... | Pn => en

A simple example is shown below.
fun hd dyn z =

case (dyn as ’a list) of nil:’a list => z | h::_ => h

val (x,y) = (hd (dynamic [1,2]) 0, hd (dynamic ["a","b"]) "")

This mixture subsumes typecase constructs. To see this, consider the follow-
ing type definitions and a typecase-like construct (generalized to patterns):

type cPoint = real * real

type pPoint = {r:real, theta:real}

val x = dynamiccase e of

(d:cPoint -> real, p:cPoint) => d p

| {distance:pPoint -> real, point:pPoint} => distance point

If the (hypothetical) integration of dynamic typing is achieved then the above
dynamiccase construct could simply be regarded as a short-hand of the fol-
lowing term:

(case (e as (cPoint -> int) * cPoint) of

(d, p) => d p)

handle RuntimeTypeError =>

(case (e as {distance:pPoint -> int, point:pPoint}) of

{distance, point}) => distance point)

– User-defined algebraic datatypes. Since (e as τ) and pattern matching does not
assume any special condition on the pattern Pi, ML’s user-defined generative
datatype are available in programming with dynamic typing without any
additional machinery, as shown in the following (hypothetical) example:

datatype cPoint = C of real * real

fun cDist (x:cPoint) : real = ...

datatype pPoint = P of {r:real, theta:real}

fun pDist (x:pPoint) : real = ...

fun dist d = dynamiccase d of C c => cDist c | P p => pDist p

In [17], this form of uniform mixture of user-defined datatypes with dynamic
typing is called the open world of types and is recognized as an important
research goal. However, we should note that, in the ML type system, the set of
all possible generative user-defined datatypes is a member of its well-defined
semantic objects, and therefore there is no “openness”; the open world of
types would already be achieved if the uniform mixture is realized.
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1.2 Our Strategy and Contribution

The above simple analysis confirms that if the two primitives dynamic(e) and
(e as τ) are uniformly integrated into the polymorphic type system of ML, most
of the features of dynamic typing are automatically obtained. The important
point is the availability of the two constructs for any type τ . Perhaps due to the
difficulty of implementing the two constructs for all possible types, this obvious
approach had not been taken in existing works.

One first goals is to achieve this uniform integration of dynamic primitives in
a polymorphic type system of ML. The necessary type-theoretical mechanisms
are the following.

– Type reification. Based on the intuitive understanding of dyn as a pair (V, τ)
consisting of a value V and its type τ , in [2], the evaluation rule is defined as

E |= e ⇓ V

E |= dynamic(e : τ) ⇓ (V, τ)

where τ is annotated by the type inference process. This involves cross-phase
computation; τ is available at compile time but V is constructed at run-time.
To realize the intended intuitive semantics, the compiler need to generate
code that creates a type tag value tyRep(τ) at run-time.

– Type tag abstraction and application. Since τ may contain type variable ’a,
we need to abstract the necessary run-time type tag information. The need
of passing some type information has been well recognized in the history of
dynamic typing [2,11]. The necessary mechanism is however not type-passing
but passing the type tag of the type variables appearing in τ of dynamic(e : τ)
and (e as τ). This should happen only when these constructs appear inside
of a polymorphic function. Therefore, a proper tag-passing does not change
the semantics of the language and also does not introduce any overhead for
programs that do not use dynamic typing.
This form of extra type attribute passing has been invented for various fea-
tures that require non-parametric behavior, including record polymorphism
[14], [7], tag-free garbage collection [23]. Among them we adopt the record
compilation framework [14], which is perhaps the first proposal in this general
approach and provides a rigorous minimal core for type tag passing.

We have developed a detailed and provably sound type-theoretical framework
to represent these mechanism and have established a type-directed compilation
method for the polymorphic construct dynamic(e) and (e as τ).

Our second goal is to extend the above dynamic typing mechanism in ML
with existential types and type reification.

– Existential types are useful in dyn elimination. Suppose we have a dynamic
object consisting of a state τ and a method τ → int. This would naturally be
regarded as a “package” (in the sense of data algebra [12]) of type ∃t.t× (t →
int). Therefore, we should be able to write a function of the form

fun applyMethod dyn =

dynamiccase dyn of {’a} (s:’a, f:’a -> int) => f s
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The newly introduced notation {’a} indicates that the type variable ’a is
existentially bound in the scope of the rule, with the restriction that it must
not escape from the scope. The ML type system assumes that any type vari-
ables are implicitly universally-bound, and therefore an explicit introduction
of a different kind of type variables is inevitable. As we shall show in our
development, however, the existential quantification mechanism can be sim-
ulated through ML polymorphism. Therefore, the required addition does not
complicate the underlying ML typing mechanism. However, there is a subtle
interaction between existential witness and type tag passing, which requires
a new development in type-directed compilation.

– Type reification provides the programmer to analyze and manipulate dynamic
values. This mechanism is necessary in interaction with external environment.
The simplest example is pretty-printing or serialization. Writing a systematic
serializer that works for all the possible ML types including arbitrary record
types and user-defined datatypes, we must provide a mechanism for user
program to analyze the internal structure of type dyn.

We carry out all the above type-theoretical development, and have implemented
them in the SML# compiler [21].

1.3 Related Works

To place our contributions among a number of related works, the remainder of
this section compares these results with related works.

After the proposal of dynamic typeing [2], there have been a number of
researches on extensions and implementation. The work of [1] recognized the
difficulty of allowing dynamic introduction for an expression that has free type
variables such as fn x => dynamic(x) in ML. The work of [11] extended ML
with dynamic(e) by restricting e to an expression that has a closed type. Due to
this restriction, dynamic(e) and (e as τ) are not polymorphic so that expressions
such as fn (x:’a) => fn d => (d as ’a -> int) x or fn x => dynamic(x)
are prohibited. In contrast, our framework allows all the definable monotypes
in both of the constructs. As we have reviewed above, this feature is the key
to orthogonal extension of dynamic typing with ML’s various useful features.
Dynamic typing has also been implemented in Clean [18] and OCaml [10], but
they do not seem to achieve the uniform integration comparable to ours.

In the context of powerful type systems such as those of Haskell, there are a
number of works on encoding dynamic typing primitives using various advanced
features such as type classes [4,7], GADTs [16,24], and higher-kind type con-
structors (type functions) [19]. Encoding inevitably introduces overhead, and it
is difficult to see what is necessary to extend a polymorphic type system and
implementing it in a practical optimizing compiler that does not contain various
advanced typing mechanisms. Our work can be used to analyze the necessary and
sufficient type-theoretical machinery for realizing dynamic typing in an ML-style
polymorphic language, and to study the relationship between dynamic typing
and other typing mechanisms.
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In order to achieve a type-safe and flexible programming with JSON, our pre-
vious work [15] has introduced dynamic typing restricted to ground monotypes.
The current work is a systematic extension to polymorphic type system.

Our development follows the type-directed compilation of record polymor-
phism [14]. As we have mentioned, there have been a number of related proposals
[6–8,23]. All of them share a similar structure in passing some type attributes.
A novel contribution toward this paradigm of type attribute passing is the
integration of existential type variables, which require a new type-theoretical
development.

In a more general perspective, investigation of extending statically typed lan-
guage with dynamic typing is related to researches on the relationship between
static and dynamic typing, including type dyn and explicit type coercion oper-
ation by [9], and recent investigation of gradual typing initiated by [20]. It is
an interesting future research direction to investigate the relationship between
compilation method of those gradually typed languages and ours.

Paper Organization. Section 2 defines the source language. Section 3 defines the
target calculus and proves type soundness. It then gives a type-directed compila-
tion algorithm. Section 4 extends the framework with pattern matching. Section 5
extends the framework with existential types. Section 6 shows some examples to
demonstrate the usefulness of dynamic typing. Section 7 concludes the paper
with suggestions for further investigation.

The severe page limitation prevents us to present the framework and imple-
mentation method fully; we intend to publish a full version elsewhere.

2 The Source Calculus

This section defines the source calculus as an implicitly typed polymorphic cal-
culus of ML with data constructors, and the two constructs for dynamic typing.
Let x and t range over a given countably infinite set of variables and type vari-
ables, respectively. Let cb range over a given set of typed constants of atomic
type b. To model user-defined datatypes, we let T and C respectively denote the
predefined set of (first-order) type constructors and data constructors. We write
C e for a datatype term.

Following the tradition of ML [5], we let τ and σ range over the set of mono-
types and polytypes, respectively. In order to identify those type variables whose
type tag information is required at run-time, we introduce a simple kind system
consisting of two atomic kinds, U for the set of all monotypes, and R for the set
of all the monotypes whose type tag information is available.

The set of terms, monotypes, polytypes, and kinds are given below:

e ::= x | cb |λx.e | e e |C e | case e of C x => e | let x = e in e |
dynamic(e) | (e as τ)

τ ::= t | b | τ → τ | τ T | dyn σ::= τ | ∀t : k.σ k::= U |R



146 A. Ohori and K. Ueno

In this definition, C x => e indicates a finite sequence of C x => e. In the
sequel, we use the notation X for other syntactic category X as well.

To perform type-directed compilation for this calculus, we need to identify
all the type variables used in a given typing derivation. For this purpose, we
introduce a kind assignment K, which is a mapping from a finite subset of
type variables to kinds. For a given kind assignment K, we write K{t : k} to
denote K ∪ {t : k} provided that t �∈ dom(K). Similar convention is used for
other finite maps. Any static object containing types must be kinded by some
kind assignment K. We say that X is well-formed under K, written K � X, if
FTV (X) ⊆ dom(K), where FTV (X) denotes the set of free type variables of X.

A monotype τ has a kind k under K, written K � τ : k, if this is derived by
the following simple kinding system:

K � τ

K � τ : U

K(t) = R for all t ∈ FTV (τ)

K � τ : R

To define the set of typing rules for this calculus, we assume that each C is
associated to a closed polytype σC , and write � C : τ1 → τ2 to indicate that
τ1 → τ2 is an instance of the polytype σC . A type assignment T is a finite
mapping from variables to polytypes. The set of typing rules is given in Fig. 1.

x : σ}
K, {x : σ x : σ

K, cb : b
K, {x : τ1 e : τ2

K, λx.e : τ1 τ2

K, e1 : τ1 τ2 K, e1 : τ1
K, e1 e2 : τ2

C : τ1 τ2 K, e : τ1
K, C e : τ2

K, e : τ Ci : τi τ K, {x : τi ei : τ

K, case e of Ci xi => ei : τ

K, M : ∀t : k.σ τ : k

K, M : σ[τ /t]
K{t : k}, e : σ

K, e : ∀t : k.σ

K, e : τ τ : R

, dynamic(e) : dyn

K, e : dyn τ : R

, (e as τ ) : τ

Fig. 1. The type system of the source calculus

A kinded substitution is a pair (K, S) of kind assignment K and a type
substitution S. A kinded substitution (K, S) respects K′ if K � S(t) : k for all
t : k ∈ K′.

Proposition 1. If K, T � e : σ and (K′, S) respects K, then K′, S(T ) � S(e) :
S(σ).

The proof is similar to the corresponding proofs in [14].
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3 The Target Calculus and Compilation

The semantics for this calculus is given by the composition of type-directed
compilation to the target calculus and the type-sound operational semantics of
the target calculus.

3.1 The Target Calculus and Type Soundness

The main role of the target calculus is to represent typed derivation of run-time
type tags and type tag passing. For this purpose, we introduce type tags, ranged
over by L, as the set of terms given by the following syntax:

L ::= t | BaseTyb | FunTy(L,L) | DataTy(T,L) | DynTy

This looks like a simple (user-level) datatype definition for representing type
tag. The major technical novelty of the target calculus is to introduce type tag
terms as a typing derivation, which are used in term typing derivation. For this
purpose, we introduce a semantic object type tag type of the form tyRep(τ). We
say that a type tag L has tyRep(τ) under K, and write K � L : tyRep(τ), if it
is derived by the following simple type tag derivation system:

K{t : R} � t : tyRep(t) K � BaseTyb : tyRep(b) K � DynTy : tyRep(dyn)

K � L : tyRep(τ)
K � DataTy(T, L) : tyRep(τ T )

K � L1 : tyRep(τ1) K � L2 : tyRep(τ2)
K � FunTy(L1, L2) : tyRep(τ1 → τ2)

This is a formulation of the intuitive understanding of tyRep(τ) to be a
singleton type denoting the type tag of τ . This type tag derivation allows us to
connect tag passing and tag abstraction required for a term of type of the form
∀t : R.σ.

We continue to use τ and σ for the set of monotypes and polytypes. The set
of terms (ranged over by M) of the target calculus is given below:

M ::= x | cb | λx.M | M M | C M | case M of C x => M | let x = M in M |
λt.M | M L | dynamic(M : L) | (M as L)

The set of typing rules is given in Fig. 2.
For this calculus, we also have the following basic property:

Proposition 2. If K, T � M : σ, (K′, S) respects K, then K′, S(T ) � S(M) :
S(σ).
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x : σ}
K, {x : σ x : σ

K, cb : b
K, {x : τ1 M : τ2

K, λx.M : τ1 τ2

K, M1 : τ1 τ2 K, M1 : τ1
K, M1 M2 : τ2

C : τ1 τ2 K, M : τ1
K, C M : τ2

K, M : τ Ci : τi τ K, {x : τi Mi : τ

K, case M of Ci xi => Mi : τ

K{t : U}, M : σ

K, M : ∀t : U.σ

K{t : R}, M : σ

K, λt.M : ∀t : R.σ

K, M : ∀t : U.σ τ : U
K, M : σ[τ/t]

K, M : ∀t : R.σ L : tyRep(τ )
K, M L : σ[τ/t]

K, M1 : σ K, {x : σ M2 : τ

K, let x = M1 in M2 : τ

K, M : τ L : tyRep(τ )
, dynamic(M : L) : dyn

K, M : dyn L : tyRep(τ )
, (M as L) : τ

Fig. 2. The type system of the target calculus

To define an effective (tag-passing) operational semantics, we define the set
of closed type tags (ranged over by J), the set of run-time values (ranged over
by V ), and run-time environments (ranged over by E).

J ::= BaseTy
b | FunTy(J, J) | DataTy(T, J) | DynTy

V ::= cb | C V | Cls(E, x, M) | TCls(E, t, M) | Dyn(V, J) |RuntimeTypeError |Wrong

E ::= {x : V , t : J}

RuntimeTypeError represents the exception raised when the type tag check
of (M as L) fails; it has any type. Wrong represents failure due to type incon-
sistency, which has no type.

A big-step operational semantics is given by specifying rules of the forms
E |= L ⇓ J and E |= M ⇓ V indicating the fact that L evaluates to J under E
and M evaluates to V under E, respectively. The set of evaluation rules is given
in Fig. 3. This set of rules should be taken with the following implicit rules: if
evaluation does not satisfy the specified condition represented by value patterns
then the term will yield Wrong , and if evaluation of any component yields Wrong
(RuntimeTypeError) then the entire term will yield Wrong (RuntimeTypeError).

A pair (S,E) of a substitution S and run-time environment E is a model of
K if (∅, S) respects K and for each t ∈ dom(K) such that K(t) = R, ∅ � E(t) :
tyRep(S(t)). Also we say that (S,E) is a model of (K, T ) if it is a model of K
and for each x ∈ dom(T ), |= E(x) : S(T (x)).

To show the type soundness of the target calculus, we define value typing as
a binary relation |= V : σ as follows.
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E{t : J} |= t ⇓ J E |= BaseTyb ⇓ BaseTyb E |= DynTy ⇓ DynTy

E |= L1 ⇓ J1 E |= L2 ⇓ J2

E |= FunTy(L1, L2) ⇓ FunTy(J1, J2)
E |= L ⇓ J

E |= DataTy(T, L) ⇓ DataTy(T, J)

E{x : V } |= x ⇓ V E |= cb ⇓ cb

E |= λx.M ⇓ Cls(E, x,M) E |= λt.M ⇓ TCls(E, t, M)

E |= M1 ⇓ Cls(E0, x, M0) E |= M2 ⇓ V E0{x : V } |= M0 ⇓ V

E |= M1 M2 ⇓ V

E |= M ⇓ TCls(E0, t, M0) E |= L ⇓ J E0{t : J} |= M0 ⇓ V

E |= M L ⇓ V

E |= M ⇓ V

E |= C M ⇓ C V

E |= M ⇓ Ci V E{xi : V } |= Mi ⇓ V

E |= case M of Ci xi => Mi ⇓ V

E |= M1 ⇓ V E{x : V } |= M2 ⇓ V

E |= let x = M1 in M2 ⇓ V

E |= M ⇓ V E |= L ⇓ J

E |= dynamic(M : L) ⇓ Dyn(V, J)

E |= M ⇓ Dyn(V, J) E |= L ⇓ J

E = (M as L) V

E |= M ⇓ Dyn(V, J1) E |= L ⇓ J2 J1 = J2

E = (M as L) RuntimeTypeError

Fig. 3. An operational semantics of the target calculus

– |= cb : b for any cb.
– |= C V : τ if |= V : τ1 and � C : τ1 → τ for some τ1.
– |= Cls(E, x,M) : τ1 → τ2 if there exists some S, K, T , τ ′

1 and τ ′
2 such

that (S,E) is a model of (K, T ), K, T {x : τ ′
1} � M : τ ′

2, τ1 = S(τ ′
1), and

τ2 = S(τ ′
2).

– |= V : ∀t : U.σ if |= V : σ[τ/t] for all τ such that ∅ � τ .
– |= TCls(E, t,M) : ∀t : R.σ if there exists some S, K, T , and σ′ such that

(S,E) is a model of (K, T ), K{t : R}, T � M : σ, and S(σ′) = σ.
– |= Dyn(V, J) : dyn if |= V : τ and ∅ � J : tyRep(τ) for some ground monotype

τ .

The following soundness theorem is shown.

Theorem 1. If K, T � M : σ, (S,E) is a model of (K, T ), and E |= M ⇓ V ,
then |= V : S(σ).

3.2 Type-Directed Compilation

We define a compilation algorithm as a translation of typing derivations of the
source calculus to those of the target calculus, following the idea of record
compilation, which inserts an extra lambda abstraction and lambda applica-
tion only when needed using kind information of type variables. We write
K, T � e ⇒ M : σ to indicate that the algorithm translates the derivation
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K, cb ⇒ cb : b K, x ⇒ x : σ
K, x : τ1 e ⇒ M : τ2

K, λx.e ⇒ λx.M : τ1 τ2

K, e1 ⇒ M1 : τ1 τ2 K, e1 ⇒ M2 : τ1
K, e1 e2 ⇒ M1 M2 : τ2

K, e ⇒ M : τ

K, C e ⇒ C M : τ

K, e ⇒ M : τ Ci : τi τ K, {x : τi ei ⇒ Mi : τ

K, case e of Ci xi => ei ⇒ case M of Ci xi => Mi : τ

K, e ⇒ M : ∀t : R.σ L : tyRep(τ )
K, e ⇒ M L : σ[τ/t]

K, e ⇒ M : ∀t : U.σ

K, e ⇒ M : σ[τ/t]

K{t : R}, e ⇒ M : σ

K, e ⇒ λt.M : ∀t : R.σ

K{t : U}, e ⇒ M : σ

K, e ⇒ M : ∀t : U.σ

K, e1 ⇒ M1 : σ K,

{

{x : σ e2 ⇒ M2 : τ

K, let x = e1 in e2 ⇒ let x = M1 in M2 : τ

K, e ⇒ M : τ L : tyRep(τ )
K, dynamic(e) ⇒ dynamic(M : L) : dyn

K, e ⇒ M : dyn L : tyRep(τ )
, (e as τ ) (M as L) : τ

Fig. 4. The compilation algorithm

K, T � e : σ in the source calculus to the derivation K, T � M : σ in the target
calculus. Figure 4 shows this compilation relation.

For this algorithm, the following typing preservation theorem is shown.

Theorem 2. If K, T � e : σ is a derivation in the source calculus and K, T �
e ⇒ M : σ then K, T � M : σ is a derivation in the target calculus.

4 Pattern Matching

This section extends the type theoretical framework with pattern matching. To
present the extension, it is sufficient to consider the following patterns (ranged
over by P ) and language extensions in the source and target calculus:

P ::= x |C P | (P, P ) | (P : τ)
e ::= · · · | case e of P => e | dynamiccase e of P => e

M ::= · · · | case M of P : τ => M

(P1, P2) is a pair pattern, which is useful in analyzing various properties; for this,
we implicitly assume that the source and target calculi are extended with pairs.
case expressions in the source and target calculus are standard. The construct
dynamiccase e of Pi => ei is a generalization of “typecase” construct with
arbitrary patterns. In this construct, Pi may be of different types.
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We write K � P : (τ, T ) if P has a type τ and yields a variable assignment
T under a kind assignment K. We omit this standard definition.

The type system of the extended source calculus is obtained by adding the
following two rules:

K, T � e : τ ′ K � Pi : (τ ′, Ti) K, T Ti � ei : τ

K, T � case e of Pi => ei : τ

K, T � e : dyn K � Pi : (τi, Ti) K, T Ti � ei : τ

K, T � dynamiccase e of Pi => ei : τ

Similarly, the typed extended target calculus is obtained by adding the following rule:

K, T � M : τ ′ K � Pi : (τ ′, Ti) K, T Ti � Mi : τ

K, T � case M of Pi : τ ′ => Mi : τ
The compilation of case expressions is a simple inductive compilation of sub-

terms. The dynamiccase expression is treated as a syntactic shorthand of the
combination of case expressions and (e as τ) expressions. Here, we follow a tech-
nique shown in [15] for translating case dispatch on partial dynamic types and
give the following translation. Suppose

K, T � dynamiccase e of Pi => ei : τ

is the given typing. Let K, T � Pi : (τi, Ti) be the derivation of Pi in the typing.
We partition the rules Pi => ei into the equivalence classes Rj : Pij : τi => eij
induced by the syntactic equality of τi such that

⋃
1≤j≤n Rj = Pi => ei and in

each partition Rj the order of Pij preserves the original occurrence ordering of
Pi. Let K � Pij : (τj , Tij ). The dynamiccase construct is then compiled to C1

inductively defined as follows:

Cj = (case (e as τj) of Rj) handle RuntimeTypeError => Cj+1

Cn = raise RuntimeTypeError

This implementation of dynamiccase is naive and inefficient due to the
sequential case-statement evaluation with runtime exception. We believe it possi-
ble to compile-out the entire pattern matching without using runtime exception
using pattern matching compilation methods.

5 Introduction of Existential Type Variables

One feature that cannot be represented in ML type discipline is locally-bound
type variables in pattern matching. This feature is useful in writing polymorphic
function with _dynamiccase statement, such as the following:

fun dlen dyn = dynamiccase dyn of

{’a} (L:’a list, len:’a list -> int) => len L

where {’a} is a type variable declaration local to the rule. Supporting this feature
requires existential types. This section develops an ML-style existential type and
extends the type-directed compilation with it.
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Existential types in the style of [12] can be defined in an ML-style implicit
calculus as follows:

K, T � e : τ [τ ′/α]

K, T � pack τ ′,e to ∃α.τ : ∃α.τ

K, T � e1 : ∃α.τ1 K, T {x : τ1} � e2 : τ2 α �∈ FTV (T ∪ τ2)

K, T � open e1 as α, x in e2 : τ2

Note that the condition on α is equivalent to the generalization of type vari-
ables α of τ1 → τ2, which represents the duality of existential and universal types
in an ML-style type discipline. Because the universal quantification mechanism
is built-in ML, we can use this property to simulate existential types as follows:

K, T � e1 : ∃α.τ1 K, T � λx.e2 : ∀α.τ1 → τ2 α �∈ FTV (τ2)

K, T � open e1 as α, x in e2 : τ2

This construct can be introduced in ML with minimal extension by combining
it with the case expression as follows:

K, T � e1 : ∃α.τ1 K, T � λx.e2 : ∀α.τ1 → τ2 α �∈ FTV (τ2)

K, T � case e1 of {α} (x : τ1 => e2) : τ2

Because Standard ML has various built-in mechanisms for type abstraction,
the need of general first-class existential types may not be so high. At this
moment, we also do not know its impact on the type inference mechanism.
Therefore, instead of allowing this form freely in source programs, we restrict
the introduction of existential types to (e as τ) by adding

K, T � e : dyn
K, T � (e as ∃α.τ) : ∃α.τ

and restrict the above new case construct with existential type variables to the
result of the following syntactic elaboration for the dynamiccase construct

dynamiccase e1 of {α} (x:τ => e2) =⇒ case (e1 as ∃α.τ) of {α} (x:τ => e2).

Based on this general strategy, we extend the type-theoretical framework devel-
oped so far with existential dynamic elimination.

5.1 The Source Calculus with Pattern Matching and Existential
Types

In this subsection, we add existential types on top of the source calculus with
pattern matching. Existential types are monotypes, but their occurrences are
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restricted to (e as ∃α.τ). For this purpose, we introduce another layer of mono-
type π. The following gives new constructs of the source calculus:

e ::= · · · | case e of {α} (Pi => ei) | (e as ∃α.τ)

τ ::= α | · · · π ::= τ | ∃α.τ σ ::= π | ∀t : k.σ

Existential type variables are only used in existential quantification, which
is eliminated by replacing them with universal quantification. To represent this
nature in the kinded context, we treat existential type variables (α) distinct from
ordinary type variables (t).

The well-formedness of existential types is given below:

K{t : R} � τ [t/α] : R

K � ∃α.τ : R

There are two points to be noted this well-formedness existential type deriva-
tion. By our convention on K{t : R}, the type variable t does not occur in any
context kinded by K. Furthermore, existential type variables must be replaced
with ordinary type variables with R kind and therefore existential types have
always R kind. These properties become important in extending our type-
directed compilation algorithm.

The typing rules for the new constructs are given below:

K, T � e : ∃α.τ ′ K{t : R} � Pi[t/α] : (τ ′[t/α], Ti) K{t : R}, T Ti � ei[t/α] : τ

K, T � case e of {α} (Pi => ei) : τ

K, T � e : dyn K � ∃α.τ : R

K, T � (e as ∃α.τ) : ∃α.τ

The rule of case comes with the constraints α �∈ FTV (τ).
The target calculus and compilation can also be extended with existential

types, whose technical details are omitted due to space limitation.

6 Implementation and Applications

This section presents implementation and applications. For this purpose we have
to refer our development of type reification and representation, summarized
below:

– The compiler reifies tyRep(τ) as the user-level datatype reifiedTy.
– The compiler reifies the compiler-generated dynamic value Dyn(V, J) to a

user-level datatype reifiedTerm that represents both the value V and its
type tag L.
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The implementation is carried out by extending the SML# compiler, which
is already equipped with a type directed compilation phase for record polymor-
phism and others. The major part of the extension includes refinement of the
type directed compilation with existential types, type-tag reification, and con-
struction of reifiedTy and reifiedTerm.

(e as τ) and dynamiccase are written as _dynamic e as τ and
_dynamiccase. Type dyn is refined to partial dynamic type τ dyn developed
in [15]. τ dyn denotes dynamic values whose actual type is a subtype of τ . Type
dyn is represented as void dyn, where void is a primitive type of SML# denot-
ing the root supertype. Since the manipulation of partial dynamic types in [15] is
restricted to ground monotypes, this refinement does not require any additional
mechanism in the type-directed compilation presented in this paper.

The implementation provides the following functions in Dynamic structure.

val dynamic : [’a#reify. ’a -> void dyn]

val view : [’a#reify. ’a dyn -> ’a]

val dynamicToTerm : void dyn -> reifiedTerm

val termToDynamic : reifiedTerm -> void dyn

where [’a#reify.· · · ] means ∀’a : R. · · · . In addition to those dynamic
primitives, the implementation introduces a user-level primitive construct
_reifyTy(τ) for user programs to access type tag of any type annotation τ
in user programs. The rest of this section demonstrates dynamic typing through
examples.

6.1 Pretty Printing/Serialization and Deserialization

The implementation provides

val pp : [’a#reify. ’a -> unit]

as a first-class polymorphic function which pretty-prints any value, as seen in
the following example interactive session:

# datatype foo = N | C of int * foo;

datatype foo = N | C of int * foo

# fun f (n, A) = (pp A; if n = 0 then A else f (n - 1, C (n, A)));

val f = fn : int * foo -> foo

# f (2, N);

N

C (2, N)

C (1, C (2, N))

val it = C (1, C (2, N)) : foo

where # is the input prompt printed by the SML# interactive system.
Deserialization can also be implemented by the composition of parsing to

reifiedTerm, the primitive function termToDynamic, and _dynamic exp as τ
construct. The implementation provides the following JSON serializer/
deserializer:
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val fromJson : string -> void dyn

val toJson : ’a dyn -> string

By combing fromJson with _dynamic exp as ’a dyn construct, one can
write the following function which deserializes JSON string to various JSON-
compatible type according to a given sample ML term (when the given JSON
data represents a value of that type, otherwise yields RuntimeTypeError excep-
tion).

# fun (’a#reify) importJson {json:string, sample:’a} =

view (_dynamic (fromJson json) as ’a dyn)

val importJson = fn : [’a#reify. {json: string, sample: ’a} -> ’a]

# importJson {json="[{\"x\":1,\"y\":2,\"speed\":1.1},

{\"x\":3,\"y\":4,\"color\":\"red\"}]",

sample = [{x=0,y=0}]} ;

val it = [{x = 1, y = 2}, {x = 3, y = 4}] : {x: int, y: int} list

In the importJson function, sample is used to obtain the type information of the
desired result value. We find this programming idiom quite useful in accessing
external JSON data; one can obtain an ML value of any JSON compatible type
from a JSON string by simply specifying a relevant portion of JSON data as a
sample ML value.

6.2 Database Programming

A practical application of dynamic typing is communicating with relational
databases. Because the modern database is implemented as a network server
that receives an SQL query as a string and returns its serialized result, commu-
nication with a database can be programmed similarly as a couple of serialization
and deserialization functions using reified types and terms.

A relation (or table) can be represented as a list of records in ML. We asso-
ciate the name of a table with its contents by a one-field record. For example, the
following is the type of sourceTable table consisting of fileId and fileName
columns:

{sourceTable : {fileId : int, fileName: string} list}

The ’a table type, where ’a must be a table type, is defined as follows:

datatype ’a table = TABLE of {keys : string list}

The keys field is the list of column names that constitute the primary key of the
table. For bulk initialization of a database, we have implemented the following
two functions:

val createTables : [’a#reify. conn -> ’a table -> unit]
val insert : [’a#reify. conn -> ’a -> unit]
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where createTable creates a new table indicated by ’a table, and insert
inserts an ML value of list of records to the table specified by ’a. These functions
obtains tyRep(’a) as a term of reifiedTy using reifyTy(’a) and compare it
with the system catalog of the connected database to check that the command,
and hence ’a, respects the database schema. They then convert the argument
to a term of type reifiedTerm, applies a non-standard serializer to the term
to obtain the SQL command string, and execute it on the database server. For
example, the skeleton of the insert function is the following:

fun ’a#reify insert conn (rel:’a) =

let val serverTy = getServerTy conn

val tableTy = _reifyTy(’a)

val _ = checkTable (serverTy, tableTy)

val relTerm = dynamicToTerm (dynamic rel)

val query = mkInertQuery relTerm

val _ = execQuery (conn, query)

in () end

getServerTy accesses the database system table, obtains the scheme informa-
tion in JSON format, and converts it to reifiedTy. checkTable checks that
serverTy contains the tableTy field. mkInsertQuery is a insert-command-
specific serializer, which converts, for example,

[{fileId = 1, fileName = "a"}, {fileId = 2, fileName = "b"}]

to the following string:

INSERT INTO "sourceTable" ("fileId", "fileName")

VALUES (1, ’a.sml’), (2, ’b.sml’)

6.3 Meta-programming

Dynamic typing allows us to program a type-safe meta-programming similarly
to one using GADTs. We demonstrate this feature by writing a simple evaluator.

We define the type of terms of type ’a as follows:

datatype ’a term = T of void dyn

For constructors of object-level terms, we introduce the following tag types:

datatype ’a value = VAL of ’a

datatype (’a,’b) lam = LAM of ’a term -> ’b term

datatype (’a,’b) app = APP of (’a -> ’b) term * ’a term

datatype (’a,’b) pair = PAIR of ’a term * ’b term

All of the above data constructors are hidden from users; instead, the following
functions are provided to construct object-level terms:

fun ’a#reify Val (x : ’a) : ’a term =

T (dynamic (VAL x))

fun (’a#reify,’b#reify) Lam (x:’a term -> ’b term) : (’a -> ’b) term =

T (dynamic (LAM x))
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fun (’a#reify,’b#reify) App (x:(’a -> ’b) term, y:’a term) :’b term =

T (dynamic (APP (x, y)))

fun (’a#reify,’b#reify) Pair (x:’a term, y:’b term) :(’a * ’b) term =

T (dynamic (PAIR (x, y)))

The eval function, which evaluates an object-level term of type ’a term
to a meta-level value of type ’a, is implemented by using the _dynamiccase
expression with existential type variables as follows:

fun evalD x =

let fun ’a#reify eval (T x : ’a term) = _dynamic evalD x as ’a

in _dynamiccase x of

{’a} VAL (x:’a) => dynamic x

| {’a,’b} LAM (f : ’a term -> ’b term) =>

dynamic (fn x => eval (f (Val x)))

| {’a,’b} APP (f : (’a -> ’b) term, x : ’a term) =>

dynamic ((eval f) (eval x))

| {’a,’b} PAIR (x : ’a term, y : ’b term) =>

dynamic (eval x, eval y)

end

fun ’a#reify eval (T x : ’a term) = _dynamic evalD x as ’a

The following shows a simple interactive session.

# val t = App (App (Lam (fn (x:real term) =>

Lam (fn (y:int term) => Pair (x, y))),

Val 1.0), Val 1);

val t = T _ : (real * int) term

# eval t;

val it = (1.0, 1) : real * int

From this simple toy example, we see that dynamic typing can represent a
form of type-safe meta-programming similarly to those using GADT and others.
We should note that above program is written in a standard polymorphic type
system of ML extended with dynamic typing, and it does not use any elaborate
typing mechanism such as GADT or higher-rank polymorphism; it does not
even use polymorphic recursion. This fact suggests that dynamic typing is an
independent and fundamental primitive mechanism.

7 Conclusions

We have presented an implementation method of dynamic typing in ML and
have implemented the method in SML#, a full-scale native code compiler of
an extension of Standard ML. The method achieves an orthogonal extension of
ML polymorphism with dynamic typing. Because dynamic(e : τ) and (e as τ)
are fully polymorphic in any monotype τ including free type variables, dynamic
typing freely mixes with all the ML features including polymorphic type inference
and pattern matching with user-defined datatypes. We have also extended the
type-directed compilation method with existential types to support existentially-
bound type variable guards in dynamiccase construct. With this extension, our
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method supports most of the standard features of dynamic typing discussed in
literature. We have also demonstrated the usefulness of our method through
examples.

In the type-theoretical development of our method, we have observed that
the essential ingredients to realize dynamic typing are the type-directed compi-
lation and existential types. Variant of these mechanism can be found in type
systems that support non-parametric programming such as GADT, gradual typ-
ing, and generic programming. An interesting future investigation is to analyze
the relationship between dynamic typing and those other non-parametric typing
mechanisms. Comparison of our target calculus and the second-order calculus
presented by [22] could shed some light on this research direction.
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Abstract. Datalog has become a popular implementation language for
solving large-scale, real world problems, including bug finders, network
analysis tools, and disassemblers. These applications express complex
behaviour with hundreds of relations and rules that often require a non-
deterministic choice for tuples in relations to express worklist algorithms.

This work is an experience report that describes the implementation
of a choice construct in the Datalog engine Soufflé. With the choice con-
struct we can express worklist algorithms such as spanning trees in a
few lines of code. We highlight the differences between rule-based choice
as described in prior work, and relation-based choice introduced by this
work. We show that a choice construct enables certain worklist algo-
rithms to be computed up to 10k× faster than having no choice con-
struct.

Keywords: Static analysis · Datalog · Non-deterministic

1 Introduction

Datalog and other logic specification languages [4,22,25,28] have become popu-
lar in recent years for implementing bug finders, static program analysis frame-
works [3,25], network analysis tools [24,39], security analysis tools [31] and busi-
ness applications [4]. For these applications, logic programming is used as a
domain specific language to allow programmers to express complex program
behavior succinctly, while enabling rapid-prototyping for scientific and indus-
trial applications in a declarative fashion. For example, logic programming has
gained traction in the area of program analysis due to its flexibility in building
custom program analyzers [25], points-to analyses for Java programs [7], and
security analysis for smart contracts [12,13].

Although modern Datalog implementations such as Soufflé [34] have con-
structs (e.g., functors) that make Datalog Turing-equivalent, certain classes of
algorithms are hard to implement. For example, worklist algorithms [33] that are
commonly found in compilers and productivity tools [2], are challenging since
they require a non-deterministic choice from a set. Without the notion of choice,
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programmers must manually introduce an (arbitrary) ordering on a set and select
the elements inductively to simulate this choice. The ordering and the inductive
selection in Datalog requires dozens of rules and can be highly inefficient.

In database literature [8,14–16,27], there have been Datalog extensions for
non-deterministic choice. In the work of Krishnamurthy, Naqvi, Greco and
Zaniolo, the non-determinism is enforced operationally by introducing func-
tional dependency constraints on relations. A functional dependency constraint
enforces that a particular subset of values in each tuple (the key) can only occur
once in the relation. For example, an ternary relation (x, y, z) with the func-
tional dependency constraint (x, y) → z ensures that the two tuples (1, 2, 3) and
(1, 2, 4) cannot simultaneously exist in the relation, since they both contain the
same values (1, 2) for the key (x, y). In this system, any tuple in the relation
causes all subsequent tuples that violate the functional dependency constraint
to be rejected from being inserted into the relation.

In this work, we report on the experience of implementing a choice construct
in Soufflé [25,34] and show (1) the simplicity of its semantics, (2) its ease of
implementation, and (3) its efficiency in contrast to having no choice construct
in the language. Prior work on choice has introduced functional dependencies
as local, rule-based constraints, where the permissible tuples of a relation are
only constrained on a rule-by-rule basis [16]. That work must be seen in the
context of database research in the 90s that typically have a small number of
rules. Soufflé programs have different characteristics, consisting of hundreds of
rules and relations [7], where the relations are held in memory. For such applica-
tions, a rule-based choice becomes tedious and error prone because the functional
dependency constraint may need to be repeated per rule. Hence, we introduce a
new variant of choice called relation-based choice. A relation-based choice makes
the underlying auxiliary relations of a ruled-based choice [10] explicit to the pro-
grammer. This approach is more amenable for logic programming with many
relations/rules to ease the burden for the programmer.

The contributions of our paper are summarized as follows:

– We introduce a relation-based choice construct for the Soufflé (a Datalog
engine) that enforces a global functional dependency upon a relation (not a
rule). With a choice construct, algorithms such as worklists can be expressed
effectively and efficiently.

– We show that the semantics of relation-based choice is easily implementable
in an engine like Soufflé with its intermediate representation, called the Rela-
tional Algebra Machine (RAM).

– We explain the differences between the semantics of rule-based choice in prior
work [10] and relation-based choice in Soufflé. We demonstrate that relation-
based choice is easier to understand by users of large-scale Datalog programs.

2 Motivating Example

Compilers and productivity tools require worklist algorithms [33], especially for
control and data-flow analysis [2]. As part of more elaborate analyses, an example
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1 x = 0 ;
2 while ( x < 10) {
3 i f ( x % 2 == 0) {
4 p r i n t ( ” f i z z ” ) ;
5 } else {
6 p r i n t ( ”buzz” ) ;
7 }
8 x++;
9 }

10 return x ;

(a) Example source code

L1

L2

L3

L4 L6

L8

L10

(b) CFG of example

L1

L2

L3

L4 L6

L8

L10

(c) Spanning tree of CFG

Fig. 1. Running Example, showcasing a snippet of source code with the corresponding
control flow graph and spanning tree

for a worklist algorithm is the construction of a spanning tree of a control-flow
graph. This kind of application can be found for efficient placement of profiling
code in programs [5], dataflow analysis [20,35], and loop reductions [19].

Control flow graphs (CFGs) express the traversal of control in a program
whose nodes are basic blocks (linear code) and edges of the graph indicate poten-
tial traversal between two basic blocks. Figure 1a shows an input program whose
control flow is depicted in Fig. 1b. The nodes in the control-flow graphs refer to
the statements in the corresponding lines of Fig. 1a. The spanning tree of the
CFG is illustrated in Fig. 1c, containing all the nodes of the CFG, but with only
a subset of edges. Each node has at most one incoming edge and all nodes are
connected, thus forming a spanning tree.

A standard worklist algorithm to compute a spanning tree is shown in Fig. 2a.
A worklist contains all the nodes that ought to be visited in the next few itera-
tions. The set nodes is used to store all visited nodes so far. The set st is used
to store the edges of the spanning tree. The worklist is initialized with the root
node, an artificial node with no incoming edge and a single out-going edge to the
first basic block of the program. New nodes of the spanning tree are discovered
and added to the worklist in each iteration, until no more valid nodes exist and
the worklist becomes empty. Inside the loop, the worklist algorithm chooses an
arbitrary node from the worklist. For this node, all adjacent nodes that haven’t
been visited yet will be added to the worklist and the spanning tree edges are
constructed for the newly discovered nodes. With the worklist algorithm we can
discover all reachable nodes and build the spanning tree in the discovery process.

While existing Datalog systems can be effectively used for many modern pro-
gram analysis workloads [7,25], worklist-style algorithms are often challenging.
Since standard modern Datalog engines are deterministic, they must explore all
paths in a graph to compute a spanning tree, before making an arbitrary choice
using a complex induction procedure. Datalog [1] represents programs as Horn
clauses of the form L0 :− L1, . . . , Ln. Each Li has the form Ri(x1, . . . , xm);
we say Li is a predicate with relation Ri of arity m, and each attribute xi is
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worklist {root}
while worklist = ∅ do

v a choice from worklist
nodes nodes ∪ {v}
for u in adj(v) \ nodes do

st st ∪ {(v, u)}
worklist worklist ∪ {u}

(a) Worklist Algorithm

.decl edge(v:symbol, u:symbol)

.input edge

.decl st(v:symbol, u:symbol) choice-domain u

.output st

st("root","L1").

st(v,u) :- st(_, v), edge(v,u).

(b) Soufflé with Choice

Fig. 2. Spanning tree: Worklist algorithm vs Soufflé with Relation-based choice

ether a constant or a variable. When the right hand side (the body) is empty, the
Horn clause is interpreted as a fact; facts are unconditionally true. Otherwise,
the Horn clause is interpreted as a rule, which means the head of the clause is
true when all the literals in the body are evaluated to true: L :− L1, . . . , Ln.
In particular, stratified negation [1], which is a standard semantics in Datalog
to handle negation, does not permit a straightforward implementation of the
worklist-style algorithms.

For example the spanning tree algorithm could be implemented with a rule
such as st(v,u) :- st( ,v), edge(v,u), !st( ,u). However, this is illegal in
standard Datalog engines because it contains a negation that is not stratified [1],
i.e., the recursive relation st depends on the negation of st itself. The choice
construct for rules overcomes the problem of choosing elements [27], which also
improves the overall expressive power of Datalog programs [15]. In this work,
we introduce a variation of rule-based choice which we call a relation-based
choice. Consider the spanning tree example expressed in the Soufflé language
as illustrated in Fig. 2. The Datalog program imposes a functional dependency
constraint for relation st with the keyword choice-domain on attribute u. The
functional dependency constraint ensures that for a given value of attribute u
there exists at most one tuple. For example, if the relation st already contains
the tuple (L5, L9), a subsequent insertion of a tuple such as (L7, L9) whose u’s
attribute value is L9 will be suppressed. With that functional dependency, the
relation st becomes a function whose domain is the attribute domain of v and
its co-domain is the attribute domain of u. For sake of brevity, we omit the co-
domain declaration in Soufflé so that all the excluded attributes of the domain
specification implicitly become the attributes of the co-domain.

Without a choice construct, the notion of non-deterministic choice must be
simulated via induction. This process is quite complex due to stratified nega-
tion. Stratification ensures that a simple expression of a complement set (i.e.,
to eliminate nodes that have already been visited) is impossible, since doing so
would involve a non-stratified negation. Instead, an algorithm written in strati-
fied Datalog must construct an explicit complement relation, and use induction
to select the next valid edge. Thus, while a spanning tree algorithm is expressible
in modern Datalog engines (see Appendix of [23] for a Soufflé implementation),
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the native solution is very expensive in terms of runtime, memory usage, and
code complexity.

To describe the native implementation in more detail, a rooted spanning
tree is built incrementally from a chosen start node. The program repeatedly
adds individual valid edges into the graph until no edges can be added. Since
several edges may be valid at any given point, and we wish to explore only one
arbitrary path, we must adorn the input edges with a total order so that ties
among incoming edges can be broken. As the ordering is arbitrary, it is enough to
assign a unique identifier to each edge in the graph. In Soufflé, unique numbers
can be generated using the global counter, $, a unary functor which generates
numbers sequentially when used, starting from the number zero (line 21). After
creating an order among edges, an induction chooses the next valid edge from
the worklist. A single valid edge must be chosen in each step, with elements
with a lower ID being prioritized to break ties. We introduce a helper relation
chosenEdgeInductive (line 127) with attributes step, edge id and is chosen
for constructing the induction. The step number identifies the current state of
construction, incrementing with each new edge added into the spanning tree. For
each step, we seed the induction with a dummy base case. The recursive rule
then sequentially checks every edge, incrementing the edge ID being checked
while they remain invalid. As soon as a valid edge is found, it is selected, and
the recursive case terminates. A tuple in the relation contains a TRUE in the
final column if and only if the edge with the given edge ID was chosen at that
step. We cannot simply negate validEdge to check if an edge is invalid in the
recursive rule for chosenEdgeInductive, since the validity of an edge relies on
the choices made in previous steps, which in turn depends on this inductive
rule again. Therefore, the assumptions of stratified negation would be broken.
Instead, invalidEdge must be constructed positively alongside validEdge.

The resulting program requires deeply recursive rules using inductive argu-
ments, the notion of total orders, and the positive construction of complement
sets. Hence, the simulation of choice in logic is tedious and error-prone result-
ing in programs with sub-optimal performance. In contrast, the choice construct
enables a much simpler and far more efficient expression of a spanning tree algo-
rithm. In contrast to the 21 Datalog rules required for the native Soufflé imple-
mentation, the running example in Fig. 1c demonstrates an implementation with
1 rule and a choice constraint for the relation st.

3 Semantics of Choice

In the previous section, we established that a choice construct in a language
like Soufflé is fundamental for implementing worklist style algorithms. However,
there are two options for implementing choice in a Datalog engine. The choice
construct can be either (1) rule-based or (2) relation-based. In this section, we
first explain the semantics of relation-based choice, which we choose to imple-
ment in Soufflé. We then explain the slight differences between the semantics
of relation-based choice and rule-based choice. After that, we provide an exam-
ple demonstrating why we believe relation-based choice makes more sense in
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modern Datalog language. Finally, we show that the expressive power of two
different choice constructs are really the same and how to simulate rule-based
choice semantics with relation-based choice construct.

Relation-Based Choice. Relation-based choice extends the expressiveness of logic
languages (e.g., Datalog) by introducing non-determinism into the logic frame-
work at the relation level. In particular, choice constraints are declared for a
relation, allowing programs to arbitrarily make a single choice out of a set of
possible candidates. For example, a relation declared with choice constraints in
the Souffle Language has the form:

.decl A(X1, . . . , Xn) choice-domain D1, . . . , Dk

Here, A is the relation name, and the sequence X1, . . . , Xn forms the attributes
of the relation. The choice constraints, choice-domain D1, . . . , Dk imposes a set
of relation-level constraints on the relation, where each domain Di is a subset of
attributes of the relation D1, . . . , Dm ⊆ {X1, . . . , Xn}. For example, a relation A
declared with .decl A(x:number, y:number, z:number) choice-domain x,
(x,z). has to respect two functional dependencies: x → (y, z) and (x, z) → y.
Semantically, each choice constraint Di encodes a relation-level invariant which
ensures that there is at most a single tuple in the relation for any particular
value for the attributes in the choice domain. This constraint is similar to the
notion of primary or candidate keys in a relational database [32].

We extend the standard fixpoint semantics of Datalog [1]. The choice con-
struct must have the ability to arbitrarily choose tuples in a relation such that
the resulting set of tuples satisfies the choice constraint. Consider a relation A
with attributes X1, . . . , Xn. Let D ⊆ {X1, . . . , Xn} be a choice domain, let MA

be the Cartesian product of the attribute domains of A, let A ⊆ MA be a set of
tuples for A, and let A∣

∣
D

be the set of instantiated values when tuples in A are
restricted to D. A choice function cD : 2MA → 2MA on a set of tuples, A, for
the relation A can be defined as

cD(A) :=
{

SingleChoice
({t ∈ A | t

∣
∣
D

∈ A∣
∣
D

})}

where t
∣
∣
D

is the set of instantiated values for attributes in D for the tuple t. For
each instantiation of attributes Xi in D, cD chooses exactly one tuple matching
that instantiation (via an extra function SingleChoice that arbitrarily chooses
one element in the set). In other words, the choice function enforces uniqueness
of values in the choice domain by arbitrarily choosing one tuple matching each
instantiation. If M is the Cartesian product of the domain of relations in Datalog
program P , then the choice function can be extended as c : 2M → 2M , which
applies cD to each relation with choice constraints. The result of applying the
choice function c to a Datalog instance is an instance that satisfies the uniqueness
condition of the choice constraints, by arbitrarily choosing one tuple for each
instantiated set of values for each choice domain.

The other important semantics for choice constraints is to exclude tuples that
already define values for the choice domain. The exclusion semantics applies for
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recursive rules, where an earlier iteration may define some values for the choice
domain, while a later iteration computes the same values. In this situation, the
tuples in the later iteration should be rejected, since those values in the choice
domain are already chosen. Given another set of tuples A′, the instantiations in
D that are already defined in A can be excluded by the exclusion function:

eA
D(A′) := A′ \ {t ∈ A′ | t

∣
∣
D

∈ A∣
∣
D

}

The exclusion function can also be extended to an instance I, where eI(I ′)
applies exclusion for the whole instance, excluding tuples in I ′ where values for
the choice domain are already defined in tuples in I.

We extend the standard semantics of Datalog with choice constraints such
that the result of applying the consequence operator always satisfies these con-
straints (using bottom-up evaluation). For this, we define a choice consequence
operator, Γ c

P , which applies the exclusion and choice operations, to I as follows:

Γ c
P (I) = I ∪ c(eI({t | t :− t1, . . . , tk is a rule instantiation with each ti ∈ I}))

It can be seen that Γ c
P (I) is monotone. Therefore, we can show that there exists

a minimum fixpoint of Γ c
P (I) by using Tarski’s Fixpoint Theorem [37]. The

resulting fixpoint is denoted the choice constraint model of Datalog program P
given instance I.

We extend the semi-naive evaluation (i.e., Algorithm Semi-Naive introduced
in Appendix of [23]) with the choice consequence operator. The choice opera-
tor applies the choice and exclusion function and is similar to the consequence
operator of semi-naive evaluation, defined as:

Γ c
P (Δ, I) = I ∪ c

(

eI
({

t

∣
∣
∣
∣

t :− t1, . . . , tk with each ti ∈ I
and at least one tj ∈ Δ

}))

The Algorithm Semi-Naive in Appendix of [23] can then be modified by replac-
ing the ordinary consequence operator ΓP with the newly introduced choice con-
sequence operator Γ c

P . With this simple change, the efficient fixpoint evaluation
of a choice program can be achieved.

Rule-Based Choice. Unlike relation-based choice, rule-based choice from prior
work enforces the functional dependency on the rule level. That is, only the tuples
generated by the rules with the choice constructs have to respect the functional
dependencies. Let’s consider the rule-based choice version of the rooted spanning
tree as an example.

st("root","L1").
st(v, u) :- st(_, v), edge(v,u), choice((u), (v)).

The keyword choice((X), (Y)) specifies the functional dependency X → Y
on the rule-level. Unlike the relation-based implementation, only the second
rule in the above program has to respect the functional dependency, while the
resulting relation st can still have a non-injecting relation between X and Y .
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In fact, the above program does not work as intended. Although the choice
construct on second rule enforces that every end node u has a unique predecessor,
there is nothing preventing the second rule from generating another edge to
the starting node L1. This does not break the functional dependency because
constraint is only enforced on rule-level and the tuple st("root", "L1") was
specified in another clause in line one. To correct this, we need to rewrite the
second rule as

st(v, u) :- st(_, v), edge(v,u), choice((u), (v)), u != "L1".

This program demonstrates a classic example where rule-based choice semantics
can sometime become error-prone and hard to handle in large scale Datalog
programs where each relation has dozens of rules.

Expressive Power. Although the user experience may differ, rule-based choice
and relation-based choice have the same expressive power. We present an exam-
ple of rewriting the rooted spanning tree example using rule-based choice seman-
tics, but using relation-based choice construct. Consider the semantics of the
rule-based choice implementation given under the stable model:

st("root","L1").
st(v, u) :- st(_, v), edge(v,u), chosen(u, v), u != "L1".
chosen(u, v) :- st(_, v), edge(v, u), !diffChoice(u, v).
diffChoice(u, v) :- chosen(u, v’), v != v’.

The above program cannot be computed under stratified semi-naive evaluation
because of the cyclic negation between chosen and diffChoice. However, it
is given by Giannotti et al. [9,10] under the stable model to formally describe
the semantics of the rule-based choice implementation. The intuitive meaning of
the program is to use an auxiliary table (diffChoice) to record the generated
tuples and prevent the rule from generating tuples that violate the dependency.
The implementation given by Giannotti et al. follows this intuition, and uses an
auxiliary table internally. To mimic the effect of this with relation-based choice,
we use a separate relation st’ with a relation-based choice constraint to act as
the auxiliary table.

.decl st’(v:symbol, u:symbol) choice-domain(u)

.decl st(v:symbol, u:symbol)
st("root","L1").
st’(v, u) :- st(_, v), edge(v,u), u != "L1".
st(v, u) :- st’(v, u).

In Sect. 4 we show that because of how relation-based choice is implemented,
this emulation does not suffer from any extra overhead and has the exact same
cost as the one proposed in the literature where an auxiliary table is used.
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4 Implementation in Soufflé

In the following, we describe the implementation of relation-based choice in the
state-of-the-art Datalog engine Soufflé [25]. A general overview of the Soufflé
infrastructure is shown in Fig. 3. Soufflé parses the input Datalog program into
an Abstract Syntax Tree (AST) representation. After parsing, Souffle applies
a series of high-level optimizations on the AST representation. The AST con-
tains information including all declared relations, rules and facts of the source
program. After applying the AST optimisations, the AST representation is low-
ered into an intermediate representation called the Relational Algebra Machine
(RAM). A RAM program consists of a set of relational operations along with
imperative constructs. Mid-level optimizations are then applied to the RAM
code, which finally is synthesized into an equivalent C++ program (or is
interpreted).
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Fig. 3. Execution model of Soufflé.

A relation can be declared with zero or more choice constraints, each of
which can contain a single attribute or a list of attributes. We extend the Soufflé
parser to read a list of choice domains, written in the same form as shown in
Sect. 3. We extend the current representation of relations in Souffle’s with an
extra attribute, storing each choice-domain as a list of indices representing the
corresponding attributes’ positions in the relation. For example, a relation decla-
ration .decl A(x, y) choice-domain x will have a single choice-domain value
{0} denoting that the first attribute in A is in the choice-domain. A semantic
check ensures that each choice-domain is valid (i.e., the attributes appear in the
source relation), and a high-level optimization is used to reduce any redundant
constraints.

At the final stage and before execution, we insert extra RAM operations to
ensure the semantic for each insertion happens on a relation with choice-domain.
We have various RAM elements implementing the semantics:

1. TupleElement(t,i) (or simply t[i]): It takes a runtime tuple t = (t1, . . . , tn)
and an index i as arguments, and returns the value of the ith element of t.

2. Insert(t,R): It inserts a runtime tuple t = (t1, . . . , tn) into a relation R.
3. ExistenceCheck(P,R): It checks if the given pattern P = (p0, . . . , pn) exists

in the relation R. pi can be either a runtime expression (e.g., TupleElement),
a constant or a special value ⊥ which matches with any value.
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Input: AST representation of the source program.
Output: RAM representation with insertion guarded by existence check to guaran-
tee the choice domain.
RAM translate the AST into RAM without concerning choice
for each insertion Insert(t, R) in RAM do

if R has choice-domain then
G a new GuardedInsert(t, R, E=∅)
for each choice-domain C do

add ExistenceCheck(P, R) into E, pi = t[i] if i ∈ C else pi = ⊥
if R has prefix NEW then

R the corresponding original relation of R.
add ExistenceCheck(P, R’) into E.

end if
replace the existing insertion with G in RAM .

end if
return RAM

Fig. 4. Augmenting a RAM program with Guarded Insertions

While inserting a tuple t into a relation R, the RAM program checks
whether a choice constraints is violated. For this, we apply the choice function
c and the exclusion function eI mentioned in Sect. 3. Before an Insert(t,R)
operation (which would add tuple t to relation R), we add an extra check
ExistenceCheck(P,R) with pattern P = (p0, . . . , pn). The value of pi is
defined as:

pi =

{

TupleElement(t, i) if the ith attribute is in D

⊥ otherwise

where D is the choice-domain D = {d0, . . . , dk} on R. If the existence check
finds a matching tuple, then the insert operation is rejected. Thus, prior to the
insertion tuples are filtered so that only tuples that do not violate the functional
dependency constraint of the choice domain are inserted.

For a non-recursive rule, the relation R in the ExistenceCheck would be the
original relation that the tuple is inserted into. However, for a recursive rule, the
relation R would denote a new auxiliary relation rather than the original one
(for semi-naiv̈e evaluation), which requires the exclusion function. To achieve
this in RAM, a similar existence check is applied to each version of the relation,
i.e., if R has the form R’, then we also create an ExistenceCheck(P,R’), which
ensures that any new tuples inserted into the relation will not replicate values
for the choice-domains already defined in an earlier iteration, thus executing the
semantics of the exclusion function.

To encapsulate the semantics of the filtering insertions, we introduce a new
RAM operation, GuardedInsert(t, R, E), i.e., a regular Insert operation
with an extra field E representing a list of ExistenceCheck operations. The
semantics of GuardedInsert specifies that the insertion only proceeds if all exis-
tence checks in E have been done. An algorithm is given in Fig. 4, demonstrating



The Choice Construct in the Soufflé Language 173

INSERT ("root", "a") INTO new_st

READ INPUT INTO delta_st.

LOOP

IF ((NOT (delta_st = ∅)) AND (NOT (graph = ∅)))
FOR a IN delta_st

FOR b IN graph ON INDEX b[0] = a[1]

IF (NOT (⊥,b[1]) ∈ new st) AND (NOT (⊥,b[1]) ∈ st)

INSERT (a[1], b[1]) INTO new_st

BREAK IF (new_st = ∅)
MERGE new_st INTO st

SWAP (delta_st, new_st)

CLEAR new_st

END LOOP

Fig. 5. Resulting RAM program from spanning tree with relation-based choice

the process of translating a Soufflé program with choice constraints. In this
algorithm each existing Insert operation is translated into a corresponding
GuardedInsert operation, which encodes the semantics of the choice and exclu-
sion functions.

With the new RAM transformation, the spanning tree program (Fig. 2b) is
translated into the RAM program as shown in Fig. 5. The parts highlighted in
blue are the extra existence checks introduced by the new translator. Because
relation-based choice only requires extra existence checks, it is easy to see the
emulation we describe in Sect. 3 has the same cost as the rule-based choice
implementation proposed in prior work.

Soufflé is equipped with highly-efficient data structures such as the specialized
B-tree [26]. During the translation from RAM to C++, Soufflé analyzes the RAM
representation to automatically compute indices for each primitive search [36].
This automatic index selection allows Soufflé to generate static C++ code that
is tailored to data structures specialized for each index. As a result, the existence
checks can be done efficiently with minimal overhead.

5 Experiments

This section explores the performance benefit of choice construct in Soufflé com-
pared to native Soufflé without choice, as well as exploring any performance
difference between relation-based choice and rule-based choice. Our experimen-
tal results illustrate that both choice constructs improve the environment of
native Soufflé with similar performance statistics. Furthermore, we also demon-
strate the applicability of choice and how it extends the expressive power of logic
language. These experiments aim to answer three main research questions:

1. Does choice substantially improve runtime and memory performance over
equivalent non-choice Datalog programs?
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2. Does choice allow for easier expressivity for Datalog programs requiring non-
determinism?

3. Is there any performance difference between relation-based and rule-based
choice?

Our experiments demonstrate a rooted spanning tree implementation applied
on real-world input, along with 5 other algorithms that utilize choice constructs.
For each algorithm, three versions are implemented:

1. Relation-based Choice: a Soufflé program that uses relation-based choice
constraint (as implemented in Sect. 4)

2. Rule-based Choice: a Soufflé program that uses relation-based choice con-
struct to emulate the rule-based choice semantics as described in Sect. 3.

3. Native: a Soufflé program that uses aggregates and auxiliary relations to
emulate the effects of choice without using an explicit choice constraint

The experiments were conducted on a machine with an AMD Ryzen 2990WX
32-Core CPU and 126 GB of memory. All programs were run in sequential mode.
Both runtime and memory usage were measured using the GNU time utility,
observing both user time and maximum resident set size respectively.

5.1 Rooted Spanning Tree

We extract Control Flow Graphs (CFGs) from the real-world benchmark suite
SpecCPU2000 [21]. These CFGs consist of large graphs with small connected
components, thus the spanning forest consists of one spanning tree for each con-
nected component. Computing the spanning tree of a program’s CFG is very
important for program analysis tools to identify loops, possible optimization
opportunities and security flaws, etc. Since each input file contains several con-
nected components, we modify the rooted spanning tree example in Fig. 2b by
computing a spanning forest with relation-based choice construct:

.decl edge(module:symbol, x:symbol, y:symbol)

.input edge

.decl startNode(module:symbol, x:symbol)

.input startNode

.decl st(module:symbol, x:symbol, y:symbol) choice-domain (module, y)

.output st

st(M,X,Y) :- startNode(M,X), edge(M,X,Y).

st(M,X,Y) :- st(M,_,X), edge(M,X,Y).

The attribute module identifies the name of the function where each connected
component is generated from. By providing a single root node startNode for each
component (line 4), we compute the spanning forest for the whole graph. The
choice domain of relation st is specified as (module, y), so that each module
(connected component) contains a single spanning tree. Finally, the rule on line
9 states that a spanning tree edge from X to Y in the connected component M
exists if the spanning tree reaches node X and there is an edge from X to Y .
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Table 1. Performance result from Spec CPU2000, timeout set to be 30 min.

Benchmark information Runtime (seconds) Memory usage (MBs)

Program # of components Average size (edges) Native Speedup factor Choice Native

gzip 84 28 2.75 275.00 5.00 10.95

swim 6 26 0.02 2.00 4.72 5.20

applu 16 56 1.42 142.00 4.84 8.69

gcc 1896 50 timeout >10k 8.00 573.72

art 26 35 1.57 157.00 4.93 9.23

equake 26 16 0.22 22.00 4.87 6.11

ammp 175 32 26.19 2619.00 5.14 28.01

sixtrack 213 49 312.8 >10k 5.30 94.32

gap 830 38 298.2 >10k 5.84 116.64

bzip2 72 34 7.8 780.00 5.07 16.64

apsi 96 30 6.41 641.00 4.84 13.70

wupwise 20 32 1.7 170.00 5.02 9.94

mgrid 10 26 0.06 6.00 4.79 5.45

vpr 261 22 18.4 1840.00 5.18 21.84

mesa 1064 29 1258.55 >10k 5.98 237.61

mcf 26 25 0.26 26.00 4.82 6.36

crafty 108 88 1037.3 >10k 5.10 176.52

parser 293 25 54.79 5479.00 4.93 34.68

perlbmk 234 44 174.4 >10k 5.09 61.21

vortex 918 29 426.92 >10k 5.66 112.27

twolf 180 62 419.25 >10k 5.12 96.55

The translated rooted spanning tree program in native Soufflé uses an induc-
tive approach as in Sect. 2 and is modified in a similar way to calculate the
spanning forest. Its implementation follows concepts from typical worklist algo-
rithms, incrementally generating the set of edges corresponding to a spanning
tree of the input graph. The inductive process ensures that each edge appears
only once in the output, and the output edges correspond to a tree, which con-
tains no cycles.

During this experiment, we find no measurable runtime or memory differ-
ence between the relation-based and rule-based choice implementations. Both
of them are able to finish all the benchmarks within 0.1 s and consume a simi-
lar amount of memory. Compared with relation-based choice, rule-based choice
implementation requires an extra relation to keep track of the inserted tuples,
and an extra insertion to dump the result from the auxiliary relation into the
final result. However, in real-world use cases, because of the functional depen-
dency constraint, the auxiliary relation tends to have a relatively small size,
which makes the extra overhead small in comparison to the overall runtime and
memory consumption. Specifically, in this experiment, the auxiliary relation in
the rule-based choice version contains only the edges of the result spanning tree,
which is much smaller than the overall graph size. Thus, we calculated a speed-
up factor based on two choice implementations to demonstrate the performance
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Table 2. Summary of experiment results.

Program Input Relation-based choice Rule-based choice Native

R# T(s) M(MB) R# T(s) M(MB) R# T(s) M(MB)

Eligible advisors 3000 1 0.01 5.5 2 0.01 5.7 4 0.11 13.7

Total order 2000 2 0.23 5.2 3 0.23 5.2 3 75.88 43.9

Bipartite matching 3000 1 2.73 93.2 2 2.73 93.2 15 timeout 771

More dogs than cats 18 000 3 4.42 7 4 4.42 7 1 0.01 6.7

Highest mark in grade 10 000 1 0.02 6 2 0.02 6.3 4 0.02 6.3

difference between the choice constructs and native Soufflé implementation in
Table 1.

The results show a significant improvement for the choice-based program
compared to the native Soufflé program, performing at least 2× faster and up to
more than 10k× faster on larger benchmarks such as gcc and mesa. In terms
of memory consumption, the choice version consumes considerably less memory
than the native Soufflé version, and achieves a consistent memory usage across
all benchmarks. In comparison, the native Soufflé version uses significantly more
memory as input size increases. This is because the choice constraint only com-
putes and stores edges that are included in the spanning tree, which are generally
fairly small compared to the constant overheads of executing a Soufflé program.
On the other hand, the native version needs to store many intermediate compu-
tations and relies on a complex recursive scheme to obtain the same results.

Another consideration is the code complexity of both the choice constructs
and native Soufflé implementation. For this spanning tree problem, the native
Soufflé implementation requires 21 rules with complex recursive structure. On
the other hand, relation-based choice version requires a minimum amount of
code, with only 2 rules and a choice construct on the st relation. Finally, for
rule-based choice, two extra auxiliary rules and one extra constraint are used as
described in Sect. 3.

5.2 Other Applications

Along with the spanning tree example, we present five other algorithms, most
of them are classic examples of non-deterministic algorithms in Datalog [9]:

– Eligible advisors: Choosing an advisor for each student.
– Total order: Assigning an arbitrary total order over an unordered list.
– Bipartite matching: Computing a matching over a bipartite graph.
– More dogs than cats: Taking two sets of elements and deciding if one set

contains more elements than the other one.
– Highest mark in grade: Finding the highest mark in a subset of marks

subject to a condition, e.g., the highest mark among students in each grade.

Table 2 shows the results for the choice versions compared to the native
Souffé implementations. No runtime or memory difference is discovered between
relation-based and rule-based choice. The reason is exactly the same as for the
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rooted spanning tree experiment, the overhead of rule-based choice implemen-
tation is extremely small because of the functional dependency constraint force
upon on the extra auxiliary relation. Thus, in the followings, we discuss only
relation-based choice and native implementations, unless otherwise specified.

For the majority of these benchmarks, choice constraints lead to significantly
better performance than the native Soufflé version. This improvement can be
attributed to native Soufflé versions usually requiring the full computation of a
relation, followed by selecting a unique subset satisfying the equivalent functional
dependencies as a post-processing step. On the other hand, choice constraints
allow for the functional dependencies to be checked on-the-fly, thus not needing
the full unconstrained relation, benefiting both memory and runtime.

The eligible advisors example most clearly demonstrates the improvement
in performance with the choice construct. Here, the relation-based choice can
simply compute the student/advisor relationship with a single rule with a choice
constraint on the advisor relation. However, the native Soufflé implementation
must compute the full unconstrained advisor relation, with a unique numbering
scheme to enforce a total ordering. Then, as a post-processing step, the algorithm
selects a subset satisfying the choice constraint by using the total ordering (for
example, by choosing the minimum value for the unique number).

Similar patterns can also be observed in the total order and bipartite matching
examples. These benchmarks demonstrate situations where choice constraints
allow for both an easier and more effective specification of the problem.

On the other hand, the benchmark highest mark shows a negligible perfor-
mance difference. In both implementations, an aggregation is used to summarize
the highest mark of each grade and is the main performance bottleneck of the
whole algorithm. The performance benefit of the choice constraint that is used
to restrict the result of the aggregation becomes insignificant. However, the dif-
ference in number of rules (4 v.s. 1) still demonstrate the expressiveness of the
choice constraint.

The only benchmark where the native Soufflé implementation outperformes
the choice version is more dogs than cats. In this example, the choice version
consider building an injective function between the two set of elements, and
then check if the domain covers all the codomain, if so, the size of the domain
set is greater than or equal to the codomain set. On the other hand, the native
implementation takes a more straightforward approach, using a simple count
aggregate to compute the sizes of the relations.

Importantly, for all examples, the choice version uses equal or less memory
compared to the native Soufflé counterpart. This improvement is a result of the
auxiliary relations each native Soufflé program utilizes to perform their compu-
tations. The difference is most evident in the total order example, where the
native Soufflé implementation suffers an approximate 850% increase in memory
usage as a result of its auxiliary relations.

Going beyond performance results, every example is implemented more ele-
gantly using choice constraints. For most of the benchmarks, the choice version
contains less than half the number of rules of the native Soufflé version, and
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in three of the five benchmarks, the choice version contains only a single rule.
While not a perfect measurement of elegance, the small number of rules indicates
that the choice-based implementations are generally more succinct and easier to
understand than the native Soufflé versions. As shown, native Soufflé implemen-
tations of programs requiring arbitrary choice, as in worklist algorithms, typi-
cally involve the construction of several intertwined recursive relations with their
complements, in addition to inductive rules, aggregate functions, and imposed
total orderings. Such substantial overhead often obscures the meaning of the
program. With the choice construct, such behavior is modeled with a simple
constraint declaration. Moreover, the clearer semantics of the choice versions
allows for a simpler extension and modification of the underlying program. For
example, modifying the spanning tree example in Sect. 5.1 to constrain over only
the attribute y rather than the pair (module, y) would involve changing only
the given choice constraint. In a native Soufflé implementation, changing these
functional dependencies could involve substantial structural changes to the aux-
iliary relations to ensure correctness.

In the context of Soufflé, these experiments demonstrate a significant impact
of choice constraints, both in terms of performance overhead as well as the ease
in expressing these algorithms. Thus, the introduction of choice constraints can
be seen as extending the effective expressive power of the language, since certain
problems that were infeasible using aggregates and auxiliary relations can now
be solved using choice constraints.

6 Related Work

In relational databases, the notion of functional dependencies [6,38] is an impor-
tant concept that allows a database designer to encode certain uniqueness prop-
erties as an invariant on a relation. These invariants are enforced when the
relation is modified, with the database system rejecting any data that violates
the uniqueness constraint. In logic programming, a deterministic computation
is expressed as a set of logic rules. To extend the capabilities of this framework,
previous work has introduced the choice construct [27,30] as a means of support-
ing non-determinism in Datalog, by enforcing uniqueness constraints similar to
functional dependencies. There is some prior work on choice for Prolog [29]. Over
the years, the applicability of choice has extended into the expression of greedy
algorithms [16–18], as well as improving the overall expressive power of Datalog
queries [11,14,15]. It has been cited to be particularly powerful when defining
aggregate functions for relations, especially when used in conjunction with other
predicates [8].

Choice constructs in prior work provide an intuitive foundation for enforc-
ing non-determinism using a rule-based choice constraint, which is applied to a
singular rule in the program, so that the underlying functional dependency is
exclusively enforced on the local level of the specific rule that the constraint is
declared on. In order to enforce these rule-based dependencies, auxiliary rela-
tions (e.g., the chosen relations in [16]) are required to provide an intermediate



The Choice Construct in the Soufflé Language 179

platform for computation for each rule with a constraint. The semantics of rule-
based choice can be tedious and error prone when applying on Soufflé’s programs
that consist of hundreds of rules and relations.

7 Conclusion

Extending the expressive power of logic languages is a pertinent research area,
especially with these languages becoming increasingly used in real-world prob-
lems. While languages such as Datalog have found success in a number of areas,
worklist-style algorithms require notions of non-determinism which is currently
challenging in modern Datalog engines. In this work, we report on implementing
a choice construct in the Soufflé Language. We experiment with two flavors of
the choice construct: rule-based choice (that has been reported in prior work)
and relation-based choice, which we introduce in this work.

We experiment with a number of classic algorithms using the two choice
constructs and show that using a choice construct significantly improves the
performance, along with greater elegance in expressing non-determinism in Dat-
alog. Our experiments indicate that there is a negligible performance difference
between the two flavors of choice constructs. However, we show with an example
that the semantics of rule-based choice can be tedious and error prone in Datalog
programs with a large number of rules and relations.
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Abstract. The development of programming languages can be quite
complicated and costly. Hence, much effort has been devoted to the
modular definition of language features that can be reused in various
combinations to define new languages and experiment with their seman-
tics. A notable outcome of these efforts is the algebra-based “datatypes
à la carte” (DTC) approach. When combined with algebraic effects,
DTC can model a wide range of common language features. Unfortu-
nately, the current state of the art does not cover modular definitions of
advanced control-flow mechanisms that defer execution to an appropri-
ate point, such as call-by-name and call-by-need evaluation, as well as
(multi-)staging.

This paper defines latent effects, a generic class of such control-flow
mechanisms. We demonstrate how function abstractions, lazy computa-
tions and a MetaML-like staging can all be expressed in a modular fash-
ion using latent effects, and how they can be combined in various ways
to obtain complex semantics. We provide a full Haskell implementation
of our effects and handlers with a range of examples.

Keywords: Effect handlers · Effects · Monads · Modularity · Staging

1 Introduction

Modern programming languages, be they general purpose or domain-specific, can
be built in a flexible manner by composing simple, off-the-shelf language com-
ponents. It is attractive to build languages in this way as it is useful to study
language components in isolation. Furthermore, it reduces the cost of develop-
ing new and improved programming languages. Indeed, reducing the effort of
building languages to the effort of composing off-the-shelf language components
for features such as function abstraction, exceptions or mutable state, is likely
to enable language designers with limited resources or expertise—e.g., domain
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experts—to build their own languages. Providing a modular definition for these
advanced language features enables a more widespread use of them, especially
in the development of domain-specific languages (DSLs).

To build programming languages from reusable components, we need a frame-
work for defining those components. Two promising techniques for such a frame-
work are Data Types à la Carte [23] (DTC) and Algebraic Effects & Handlers [18]
(AE&H). Using these, language interpreters can be implemented in two steps:

Syntax denote−−−−→ Effects handle−−−−→ Result

The first step defines a denote function that maps the syntax of an object lan-
guage onto effectful (monadic [13]) operations. By implementing denote using
DTC, we can seamlessly compose denote functions from isolated cases for dif-
ferent Syntax constructors.

In the second step, handle defines the semantics of effectful operations and
their effect interactions. Using AE&H allows cases of denote to be defined in an
effect polymorphic way; i.e., a case maps to a monad that has at least the relevant
operations, and possibly more. Furthermore, we can define handle functions for
different effects in isolation, and seamlessly compose them by nesting handlers.
Thus, DTC+AE&H provides a powerful framework for composing programming
languages from isolated components.

However, not all language fragments have an obvious modular definition in
terms of AE&H. Traditional algebraic effects and scoped effects [29] are baking
in assumptions about control-flow and data-flow. These assumptions get in the
way of expressing a modular semantics for some language features. In particu-
lar, control-flow mechanisms that defer execution, such as lambda abstractions
with effectful bodies, lazy evaluation strategies, or (multi-)staging, are neither
algebraic [17] nor scoped. This implies that the only way to implement these
mechanisms is by means of sophisticated encodings that are often relatively low-
level and non-modular. As such, these control-flow mechanisms present a severe
challenge for allowing non-experts to build programming languages by compos-
ing off-the-shelf components.

This paper presents a novel form of effects and handlers that addresses this
challenge: latent effects and handlers. Latent effect handlers defer the running
of side effects, such that they are “latent” until handlers for all effects have
been applied. This notion of effects can be used to directly define handlers for
language components that defer execution, such as lambda abstractions with
effectful bodies, lazy evaluation, and (multi-)staging.

After introducing the background (Sect. 2), our main contributions are:

– We introduce latent effect trees, implemented using Haskell (Sect. 3).
– We show how to encode lambda abstraction and application in terms of latent

effects. We illustrate how this allows us to define lambda abstraction with
effectful bodies as a composable language component (Sect. 3).

– We illustrate how to compose languages from reusable components using
latent effects by showing how to encode lazy evaluation (call-by-need and
call-by-name), and MetaML-like multi-staging (Sect. 4).
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– We provide an effect library1 with syntax and semantics in Haskell for various
simple and advanced language features. These features can be used as isolated
components to construct languages.

Finally, we discuss related work (Sect. 5) and conclude (Sect. 6). For an extended
version of this work, including a library of effects and an elobarion of our two
case studies, we refer to van den Berg et al. [2].

2 Background and Motivation

This section summarizes the state of the art in modular language definition by
means of DTC and AE&H, discusses the challenges and problems associated
with treating lambdas in this setting, and sketches how our new latent effects
enable the integration of modular forms of advanced control-flow effects.

2.1 Modular Syntax and Semantics with Data Types à la Carte

Data types à la Carte [23] (DTC) solves the core problem of assembling language
definitions from isolated components. It solves this for both syntax and semantics
to be composed in a modular way. For an accessible introduction to DTC, we
refer to [23]; we summarize the key points here.

Firstly, the abstract syntax of a language is modularized into the syntax of
each isolated feature. This is achieved by defining a recursive type Syntax S of
ASTs in terms of the shape S of its nodes. This shape S can be composed out
of shapes S1, . . . ,Sn of the individual features: S = S1 + . . . + Sn.

Secondly, the semantic function denote :: Syntax S → M that maps ASTs
Syntax S to their meaning M is modularized into the separate syntactic maps
of the individual features. This is done by parameterizing the recursive semantic
map of the AST with the semantic mapping of the individual nodes, denote =
fold denoteS where denoteS ::S M → M is composed out of the semantic maps:

denoteS1 :: S1 M → M
denoteSn

:: Sn M → M
denoteS = denoteS1 + . . . + denoteSn

This modular approach affords great flexibility to quickly assemble a range of
different languages and to explore language design: features can be added or
removed, and their semantic maps can be changed. We use the DTC approach
extensively when defining a library of effects in Sect. 4.3.

Unfortunately, this approach comes with a serious limitation: to be able to
combine the semantic maps of different features, they must agree on the semantic
domain M . This often prohibits the unanticipated combinations of features, even
due to small differences in their semantic domain, such as one feature requiring
access to an environment or store that the other feature does not expect.

1 https://github.com/birthevdb/Latent-Effect-and-Handlers.git.

https://github.com/birthevdb/Latent-Effect-and-Handlers.git
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Moggi [13] observed that many of the differences in semantic domains of
common language features, usually called (side-)effects, can be captured in the
category-theoretical pattern of monads. Although not all monads compose, the
state of the art in modular monads, algebraic effects and handlers (AE&H) [18],
is well-aligned with the DTC approach of modular language features.

In fact, AE&H tackles the problem of modularly defining a monad in much
the same way DTC tackles the problem of modularly defining a language. Indeed,
the API of the monad (its “syntax”) is modularized into separate effects; the
category-theoretical concept of a free monad plays the role of an abstract syntax
of API calls. A modular meaning is assigned to the free monad by means of
semantic maps for the separate effects. The key difference with DTC is that the
different effects do not all have to be mapped to the same semantics. Instead,
by means of “modular carriers” their semantics can be layered [20].

Whereas AE&H is used to define (simpler) language features, we use latent
effects and handlers, which we introduce in Sect. 3, to modularly define more
complex language features.

2.2 Advanced, Non-modular Control-Flow Effects

The AE&H literature shows how to express a range of different control-
flow effects such as exceptions, non-determinism and even call-with-current-
continuation. However, as traditional effects and handlers rely on assumptions
about data-flow and control-flow, more advanced and complicated control-flow
effects are missing, such as call-by-name and call-by-need evaluation or multi-
staging. These features typically defer execution and are non-algebraic.

An operation is algebraic when it meets the following requirements:

1. It can be expressed as op ::D → ∀a.M a → ... → M a where D represents the
non-computational parameters that the operation has, M is a monad with
algebraic operations, and each M a typed parameter represents a possible
continuation of the operation.

2. It satisfies the algebraicity property, which states that, no matter which pos-
sible continuation mi we take, the continuation immediately transfers control
to the current continuation k .

(op d m1 . . . mn) >>= k ≡ op d (m1 >>= k) . . . (mn >>= k)

Although many operations are algebraic, there are many common control-
flow operations that are not. For instance, catch :: ∀a.M a → M a → M a is
an operation that executes the computation in the first argument, and if that
computation raises an exception, proceeds by executing the second argument.
The catch operation is not algebraic; i.e.,

(catch m1 m2) >>= k �≡ catch (m1 >>= k) (m2 >>= k)

since exceptions raised during evaluation of k should not be handled by m2.
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The lack of support for control-flow effects such as exception handling, moti-
vated the development of scoped effects [29]. An operation is scoped when it can
be expressed as having the following type:

op :: D → ∀a.M a → ... → M a → ∀b.(a → M b) → ... → (a → M b) → M b

The universal quantification over a restricts data flow: for a given operation
op d m1 ...mn k1 ...km, it is only the possible continuations k1 ...km that can inspect
values yielded by computations mi. The allowable destinations of data produced
by the computation are restricted to those determined by the operation. The catch
operation is compatible with this restriction: it can be implemented as a scoped
operation catch ′ :: ∀a.M a → M a → ∀b.(a → M b) → M b.

However, this pattern does not apply to more advanced control-flow effects for
which the data produced by a computation can be used outside of the operation.
For example, lambda abstractions delay the execution of computations in the
body of a function until the function is applied (or not, depending on dynamic
control- and data flow). To support such deferred execution, the return type
V in the body of a lambda abstraction abstr :: String → M V → M V is
not universally quantified. Thus, abstr is not a scoped operation. It is also not
algebraic, as the equation abstr x m >>= k ≡ abstr x (m >>= k) would cause k
to be (wrongly) deferred, and could cause free variables in k to be captured.
Other control-flow effects, such as call-by-need and call-by-name evaluation and
multi-staging annotations for (dynamically) staging and unstaging code, defer
execution in a similar way, and are similarly neither scoped nor algebraic.

It is theoretically possible to define the control-flow effects discussed above,
by making the control flow of all operations explicit ; e.g., by writing interpreters
in continuation-passing style (CPS). However, the relatively low-level nature of
CPS and its non-modular style, make this approach fall short of our goal of
composing languages from simple, off-the-shelf components.

2.3 Our Approach: Latent Effects

We provide modular support for advanced control-flow effects such as function
abstraction, with its different evaluation semantics, and staging. Our solution
generalizes the approach of DTC and AE&H outlined above. In fact, it does
not require any changes to the DTC approach for modular abstract syntax
trees and modular semantic mapping. It only impacts the second part of the
pipeline, replacing AE&H with a more general notion of latent effects and han-
dlers (LE&H).

LE&H is based on a different, more sophisticated structure than AE&H’s free
monad. This structure supports non-atomic operations (e.g., function abstrac-
tion, thunking, quoting) that contain or delimit computations whose execution
may be deferred. Also, the layered handling is different. The idea is still the
same, to replace bit by bit the structure of the tree by its meaning. Yet, while
AE&H grows the meaning around the shrinking tree, LE&H grows little “pock-
ets of meaning” around the individual nodes remaining in the tree, and not just
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around the root. The latter supports deferred effects because later handlers can
still re-arrange the semantic pockets created by earlier handlers.

LE&H are the first to modularly express advanced control-flow effects, such
as staging and lambda abstractions, and provide different handlers, e.g., for
call-by-name and call-by-need evaluation. Moreover, they combine with existing
algebraic effects to express varying semantics for a large range of languages.

3 Latent Effects

This section presents latent effects. Latent effects generalize algebraic effects to
include control-flow mechanisms that defer computation. As our running exam-
ple we use lambda abstraction, which—as discussed in Sect. 2.2—is neither an
algebraic nor a scoped operation. We show that it can be defined as a latent
effect. We start from a non-modular version that we refine in two steps. First we
add support for modular signatures, and then support for modular handlers.

3.1 Non-modular Definition of Lambda Abstraction

First we provide a non-modular definition of the lambda abstraction effect.

Monadic Syntax Tree. The type LC v a is a non-modular monadic syntax tree
that supports three primitive operations for a de Bruijn indexed λ-calculus.

data LC v a where
Return :: a → LC v a
Var :: Int → (v → LC v a) → LC v a
App :: v → v → (v → LC v a) → LC v a
Abs :: LC v v → (v → LC v a) → LC v a

Here, the v of LC v a is a value type parameter, and a represents the return
type of the computation. Thus Return x is a trivial computation that returns x .
Var i k retrieves the value of type v associated with the ith variable and passes
it to the continuation k . The application App v1 v2 k applies the value v1 to
the value v2 and passes the result to the continuation. Finally, Abs e k builds a
closure value out of the function body e and passes it to the continuation.

For example, we can represent the lambda expression (λx → x ) 1 as the
LC expression Abs (Var 0 Return) (λv → App v 1 Return). This computation
constructs an abstraction and passes it to the continuation as a (closure) value
v . The continuation applies v to 1 and passes the result to Return. The closure
retrieves the value of variable with index 0 (i.e., x ) and passes it to Return.

Handler. The idea of a handler is to map the syntax tree onto its meaning. We
illustrate this on the LC v a type, where we use the type v = Closure for values.
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data Closure1 where
Clos1 :: FunPtr1 → Env1 → Closure1

type Store1 = [LC Closure1 Closure1 ]

type FunPtr1 = Int
type Env1 = [Closure1 ]

A closure contains a function pointer and an environment. The function pointer
is an index into a list of deferred computations (i.e., function bodies) that we
call the (resumption) store. The environment is a list that maps the closure’s
parameters (which are indexes) onto their values.

Now we are ready to define the handler handleAbs as a function that, given
an initial environment and store, maps an LC Closure a computation onto its
meaning, which is a tuple of the result value of type a and the final store.

handleAbs :: Env1 → Store1 → LC Closure1 Closure1 → (Store1 ,Closure1 )
handleAbs r (Return x ) = (r , x )
handleAbs env r (Var n k) = handleAbs env r (k (env !! n))
handleAbs env r (App v1 v2 k) = handleAbs env r ′ (k v)

where (Clos1 fp env ′) = v1
(r ′, v) = handleAbs (v2 : env ′) r (r !! fp)

handleAbs env r (Abs e k) = handleAbs env r ′ (k v)
where v = Clos1 (length r) env

r ′ = r ++ [e ]

First, the leaf case of the handler returns the value in that leaf, supple-
mented with the resumption store. Next, the variable case looks up the variable
in the environment and passes it to the continuation. Then, the application case
unpacks the closure, retrieves the corresponding function body from the resump-
tion store and applies it to the extended environment and store. The resulting
value is passed to the continuation. Finally, the abstraction case adds the func-
tion body to the resumption store, creates a closure that indexes this new entry,
and calls the continuation on this closure value.

3.2 Modular Latent Effect Signatures and Trees, Naively

We now modularize the definition of LC by separating the recursive structure of
the monadic syntax from the node shapes of the Var , App and Abs operations.

Latent Effect Signature. We call the node shapes the latent effect signature. In
this case, it is called Abstracting v with v the type of values.

data Abstracting v :: ∗ → (∗ → ∗) → ∗where
Var ′ :: Int → Abstracting v v NoSub
App′ :: v → v → Abstracting v v NoSub
Abs ′ :: Abstracting v v (OneSub v)
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Besides its first parameter v , the type Abstracting v p c is indexed by two further
parameters: The parameter p is the return type of the primitive operations; this is
the type of value they pass to their continuation. As all three primitive operations
return a value of type v , we have that p = v . The parameter c :: ∗ → ∗ captures
the number and result type of the subcomputations. As Var ′ and App′ have no
subcomputations, they use the type c = NoSub to indicate that. However,Abs ′ has
a subcomputation and it indicates this with c = OneSub v . This subcomputation
is the body of the function abstraction, whose return type is v . Hence, OneSub v
has one constructor One :: OneSub v v .

data NoSub :: ∗ → ∗where data OneSub v :: ∗ → ∗where
One :: OneSub v v

Latent Effect Tree, Version 1. The type Tree1 σ a extends a latent effect signa-
ture σ into a recursive syntactic structure that is a monad in a.

data Tree1 (σ :: ∗ → (∗ → ∗) → ∗) a where
Leaf 1 :: a → Tree1 σ a
Node1 :: σ p c → (∀x .c x → Tree1 σ x ) → (p → Tree1 σ a) → Tree1 σ a

The Leaf 1 constructor is trivial; Leaf 1 x returns a pure computation with result
x . The internal nodes are of the form Node op sub k where the fields have
the following meaning. The first, op, identifies what primitive operation the
node represents. Next, sub is a function that, in case of a non-atomic primitive,
selects the subcomputations of the node. Finally, k is the continuation of further
operations to perform after the current one.

Some notable characteristics are as follows:

– Every operation has a result type p that is made available to its continuation,
and a number of subcomputations c. To model these two, the signature of an
operation op :: σ p c is parameterized by p and c.

– The function sub has type ∀x .c x → Tree1 σ x . The input of type c x
determines what subcomputation to select; the parameter x indicates the
result type of that subcomputation.

– Likewise, continuations take as input the operation’s output value (p).
– The Tree1 data type is monadic, with a similar notion of return and bind as

the free monad [23]:

instance Monad (Tree1 σ) where
return = Leaf 1
(Leaf 1 x ) >>= f = f x
(Node1 op sub k) >>= f = Node1 op sub (λx → k x >>= f )

A monadic binding t >>= f thus “concatenates” the tree in f to the leaf
positions in the continuation (only) of t .
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var :: (Abstracting v < σ) ⇒ Int Tree1 σ v
var n = Node1 (injSig (Var n)) (λx case x of ) Leaf 1
app :: (Abstracting v < σ) ⇒ v v Tree1 σ v
app v1 v2 = Node1 (injSig (App v1 v2)) (λx case x of ) Leaf 1
abs :: (Abstracting v < σ) ⇒ Tree1 σ v Tree1 σ v
abs t = Node1 (injSig Abs ) (λOne t) Leaf 1

Fig. 1. The modular constructor functions of the Abstracting effect. These functions all
fix the continuation to Leaf 1, which can easily be replaced by an arbitrary continuation
k using the >>= operator of Tree1’s monad instance.

We can emulate the non-modular type LC v a with LC ′ v a.

type LC ′ v a = Tree1 (Abstracting v) a

The corresponding representation for LC ′s Return constructor is Leaf 1. The
Var constructor is represented with a Node1.

var1 :: Int → (v → LC ′ v a) → LC ′ v a
var1 i k = Node1 (Var ′ i) (λx → case x of ) k

This is a Var ′ i node. As there are no subcomputations, there are no branches
in the pattern match in the selection function on the value x of the empty type
NoSub. Lastly, the continuation k receives the value produced by the operation.

The encodings of the two other operations are similar. One notable aspect
of abs1 is that it does have one subcomputation. Hence, the selection function
matches on the One constructor and returns t :

app1 :: v → v → (v → LC ′ v a) → LC ′ v a
app1 v1 v2 k = Node1 (App′ v1 v2) (λx → case x of ) k
abs1 :: LC ′ v v → (v → LC ′ v a) → LC ′ v a
abs1 t k = Node1 Abs ′ (λOne → t) k

Modular Tree Constructors. We can create modular constructors for latent effect
operations, similarly to how DTC admits modular syntax constructors [23]. To
this end, we use a co-product operator + that combines latent effect signa-
tures, and a subtyping relation σ1 < σ2 with an associated injection function,
injSig :: σ1 p c → σ2 p c. Using these, we can implement the modular con-
structor functions in Fig. 1, that allow combining Abstracting with other latent
and algebraic effects. The subtyping requirements in the type signatures are
automatically inferrable by type class instance resolution in Haskell. The imple-
mentation details of + and < are given in DTC [23] or Appendix A of van den
Berg et al. [2].

We can now use these modular constructors to implement denotation function
cases. We can also write programs using the constructors directly. For example,
the following program with a lambda abstraction with an effectful body:
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prog :: ∀v .Num v ⇒ Tree1 (Mutating v + Abstracting v + Ending) v
prog = do

put (1 :: v)
f ← abs (do m ← var 0; (n :: v) ← get ; return (m + n))
put (2 :: v)
app f (3 :: v)

The body of the function abstraction increments the function argument value (de
Bruijn index 0) by the n yielded by the get operation. The signature of the pro-
gram tree is the co-product of three signatures: (1) Mutating V for mutable state;
(2) function abstractions Abstracting V ; and (3) the empty signature Ending ,
which provides no operations and serves as the base case. The Mutating V
effect recasts the traditional algebraic state effect as a latent effect, and has two
operations, get and put . Observe that prog is essentially an AST, with multiple
possible interpretations. If Mutating V is dynamic (runtime) state, then prog
evaluates to 3 + 2 = 5. However, if it is for macro bindings that are expanded
statically, then the get in the body of the abstraction is evaluated under the state
at the “definition site” of the lambda, and prog evaluates to 3 + 1 = 4. Next, we
show how handlers can map the prog syntax tree to different semantics.

3.3 Trees with Support for Modular Handlers

In the case of a modularly composed signature σ = σ1 + ... + σn + Ending , the
idea is to compose the handler function from individual handlers for the different
components of the signature h = hEnd ◦ hn ◦ ... ◦ h1. The type of each handler
would be hi :: ∀σ.Tree1 (σi + σ) a → Tree1 σ (Li a). Hence, it is polymorphic in
the remaining part of the signature and preserves those nodes in the resulting
tree. It only replaces the nodes of σi with their meaning, which is given in the
form of a functor Li that decorates the result type a.

Unfortunately, our Tree1 type and, in particular, the type of its Node1 con-
structor, needs some further refinement to fully support this idea. Indeed, if the
signature is σi+σ, and we apply hi to all the recursive occurrences of Tree (σi+σ)
in a σ-node Node1 (Inr ′ op) sub k , we get:

Before applying hi

Inr ′ op :: (σi + σ) p c
sub :: ∀x .c x → Tree1 (σi + σ) x
k :: p → Tree1 (σi + σ) a

After applying hi

op :: σ p c
hi ◦ sub :: ∀x .c x → Tree1 σ ( Li x )
hi ◦ k :: p → Tree1 σ (Li a)

The resulting fields do not together form a node of type Tree1 σ (Li a) because
the highlighted result type of the subcomputations is (Li x ) rather than x which
the Node1 constructor requires sub to have as return type.

The problem is that the Tree1 type is oblivious to the effect functor that
the return type of subcomputations in the tree are decorated by. To solve this
problem, we can expose the effect functor decoration in the tree type itself; e.g.,
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data Tree2 (σ :: ∗ → (∗ → ∗) → ∗) ( l :: ∗ → ∗ ) a where
Leaf 2 :: a → Tree2 σ l a
Node2 :: σ p c → (∀x .c x → Tree2 σ l ( l x ))

→ ( l p → Tree2 σ l a) → Tree2 σ l a

But the Tree2 type requires effect handlers to be applied to subcomputations
immediately. Motivated by modeling constructs that defer computation, we gen-
eralize the type further by parameterizing subcomputations by the effect functor
state, and making each node “remember” the effect state (the latent effects):

data Tree (σ :: ∗ → (∗ → ∗) → ∗) (l :: ∗ → ∗) a where
Leaf :: a → Tree σ l a
Node :: σ p c → l () → (∀x .c x → l () → Tree σ l (l x ))

→ (l p → Tree σ l a) → Tree σ l a

In Sect. 3.4 we discuss how Tree supports deferring computation. Tree is a
monad with a return and bind defined similarly to the ones for Tree1 in Sect. 3.2.
We can also define modular tree constructors using similar techniques as in
Sect. 3.2. For instance, using Tree instead of Tree1, the type of prog from Sect. 3.2
becomes:

prog :: Tree (Mutating V + Abstracting V + Ending) Id V

Here, the Id functor models the absence of latent effects in the tree. The type
V represents a concrete value type.

Example. Figure 2 shows how the type of the prog tree evolves when applying
successive handlers for the three parts of the signature:

(hEnd ◦ hAbs [ ] [ ] ◦ hMut 0) prog

First, we run the modular handler for mutable state Mutating s, which has type:

hMut :: Functor l ⇒ s → Tree (Mutating s + σ) l a → Tree σ (StateL s l) (s, a)

Given an initial state of type s, this handler transforms a tree into another tree.
The signature of the tree evolves from Mutating s + σ to σ because the handler
interprets the mutable state, but not the other effects. Also, the latent effect
functor evolves from l (the latent effects already present) to StateL s l , which
augments l with the value of the intermediate state.

newtype StateL s l a = StateL {unStateL :: (s, l a)}

The result type evolves from a to (s, a), which augments it with the final state.
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Second, the handler for Abstracting V behaves similarly to hMut , removing
itself from the signature and growing the latent effect functor. Finally, hEnd
handles the Ending base case. It takes a tree with an empty signature, which
thus necessarily only contains a leaf, and extracts the final result out of it.

hEnd :: Tree Ending l a → a
hEnd (Leaf x ) = x

The remainder of this section illustrates how modular handlers are
implemented.

Tree (Mutating Int+Abstracting V + Ending) Id V

hMut 0

Tree (Abstracting V+Ending) ( StateL Int Id) (Int,V )

hAbs [ ] [ ]

Tree (Ending) ( StateL (Store Ending (StateL Int Id) V ) (StateL Int Id)

( Store Ending (StateL Int Id) V , (Int,V ))

hEnd

(Store Ending (StateL Int Id) V , (Int,V ))

Fig. 2. The type of prog after successive handling steps.

3.4 Example: Two Modular Handlers for Function Abstractions

We implement two different modular handlers for the operations in Abstracting ,
which illustrate (1) how latent effects let us write handlers for function abstrac-
tion, and (2) the kind of fine-grained control the handlers provide. The first han-
dler we consider evaluates the body of a function abstraction using the latent
effects of its call site. Hence, the evaluation of side-effectful operations is post-
poned until the function is applied. The second handler evaluates the body of
the function abstraction using the latent effects of its definition site. This imme-
diately enacts the latent effects introduced by previously-applied handlers.

Modular Closure Values. A concern that arises when we step away from
the earlier non-modular handler for Abstracting is reuse. Notably, in a modular
setting we want to allow reuse of both handlers with different notions of values.
For that reason, they are parameterized in the type of values v . This type may
comprise various shapes of values; all the function abstraction handlers require
is that closures are one possible shape of value.

To express this requirement, we introduce another type class v1 <: v2
for subtyping, this time at kind ∗, which witnesses (1) that any v1 can
be “upcast” to the type v2; and (2) that a v2 can be “downcast” to type
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v1. The latter may fail, but the former does not. The minimal require-
ment for lambda abstractions is that the value type includes closure values.

class v1 <: v2 where
inj v :: v1 → v2
proj v :: v2 → Maybe v1

data Closure v where
Clos :: FunPtr → Env v → Closure v

type Env v = [v ]

In the modular setting, the types Closure v and Env v , of respectively closures
and value environments, are parameterized in the type of values used.

Modular Resumption Store. Recall that the resumption store keeps track
of the function bodies whose execution has been deferred; i.e., it is a list of
resumptions. In the modular setting, the type of resumptions is parametric in
the specific type of signature, latent effect functor and value type.

type Store σ l v = [R σ l v ]

Moreover, depending on whether we want to handle latent effects on the call site
or definition site, the definition of a resumption differs.

A resumption of a call-site effect is a function that takes an l () input, which
is the latent effect context of the call site where the resumption is evaluated.

type RCS σ l v = l () → Tree (Abstracting v + σ) l (l v)

The resumptions of a definition-site effect store are trees instead of functions
that produce trees. Indeed, they have no dependency on the latent effects of the
call site. Instead, they have been fully determined by the definition site.

type RDS σ l v = Tree (Abstracting v + σ) l (l v)

Although the resumption store makes the handlers verbose, it is a more modular
solution than storing Trees in values.

Modular Handlers. Figure 3 shows the modular handler hAbsCS that uses
the call-site latent effects when executing a function body2.

Compared to the non-modular definition, there are several differences. Firstly,
the handler only interprets part of the work and thus returns the remaining
tree instead. Hence, the Leaf case now returns a new leaf, and the other cases
use monadic do-notation to build a new tree. Secondly, because the signature
is a composition and the resulting value type is too, the pattern matching on
operations involves the Inl ′ and Inr ′ tags of the + co-product. The pattern
matching and construction of values involves inj v and proj v calls for the same
reason. Thirdly, the latent effects now matter and need to be properly threaded
in all the operation cases. Finally, there is an additional operation case, to handle

2 The function (<$) is short for fmap ◦ const .
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unknown operations from the remaining part of the signature by “forwarding”
them, i.e., copying them to the resulting tree for later handling.

As discussed, in a modular setting a second handler is possible: one that
uses the latent effects of the definition site for function bodies rather than their
call site. This definition-site handler, hAbsDS , looks much like its sibling. The
key difference is the type of resumptions, which affects the code in two places
(highlighted in gray). Firstly, the abstraction case applies the subtree function
to the latent effect of the definition site instead of deferring the application
(st One l instead of st One). Dually, the application case does not have to apply
the resumption to the call-site latent effect (r !! p instead of (r !! p) l).

hAbsCS :: (Closure v <: v ,Functor l)
⇒ Env v Store σ l v Tree (Abstracting v + σ) l a

Tree σ (StateL (Store σ l v) l) (Store σ l v , a)
hAbsCS r (Leaf x) = Leaf (r , x )
hAbsCS nv r (Node (Inl Abs ) l st k) = do let v = inj v (Clos (length r) nv)

let r = r ++ [ st One ]
hAbsCS nv r (k (v <$ l))

hAbsCS nv r (Node (Inl (App v1 v2)) l k) = case proj v v1 of

Just (Clos fp nv ) do (r , v) hAbsCS (v2 : nv ) r ( (r !! fp) l )

hAbsCS nv r (k v)
Nothing error "application error"

hAbsCS nv r (Node (Inl (Var n)) l k) = hAbsCS nv r (k ((nv !! n) <$ l))
hAbsCS nv r (Node (Inr op) l st k) = Node op (StateL (r , l))
(λc (StateL (r , l )) StateL <$> hAbsCS nv r (st c l))
(λ (StateL (r , lv )) hAbsCS nv r (k lv))

Fig. 3. Modular call-site abstraction handler. The gray highlights indicate the places
where it differs from a definition-site handler.

Example. With the abstraction handlers in place, let us revisit the prog example.
We run the handlers with default initial values, i.e., 0 for the state, the empty
variable environment and the empty resumption store. When using the call-site
abstraction handler after the state handler, the function body uses the value of
the state that was written right before its invocation.

> exampleCS = inspect $ hEnd $ hAbsCS [ ] [ ] $ hMut 0 prog
5

If we use the definition-site handler instead, the function body uses the state
value that was written right before the abstraction was created.

> exampleDS = inspect $ hEnd $ hAbsDS [ ] [ ] $ hMut 0 prog
4
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4 Case Studies

This section reports on two advanced control-flow features implemented using
this library: call-by-need lambdas (Sect. 4.1) and multi-staging (Sect. 4.2); and
on a case study implementation of a library with a range of modular effects
(Sect. 4.3). For the source code of these case studies, we refer to the implementa-
tion available at https://github.com/birthevdb/Latent-Effect-and-Handlers.git.

4.1 Call-by-Need Evaluation

We have implemented two different evaluation strategies, call-by-need (lazy) and
call-by-value (CBV), for lambdas by using different latent effect handlers. Our
approach is inspired by Levy’s call-by-push-value [10], which can express both
strategies. We summarize here; Appendix B of van den Berg et al. [2] has all the
details.

Call-by-need evaluation lazily delays the evaluation of argument expressions
of function applications, and uses memoization to ensure that evaluation only
happens once for delayed expressions. We build a lazy semantics for function
abstractions out of three primitive effects:

1. The Reading effect corresponds to the well-known reader monad from the
Haskell monad transformer library [11].

2. The Suspending effect delays the evaluation of function bodies, without mem-
oizing the result of the evaluation of the delayed subtrees.

3. The Thunking effect delays the evaluation of argument expressions of function
applications, memoizing the result of forcing a thunked computation.

The definition of these effects and their handlers can be found in the effect
library of Appendix A of van den Berg et al. [2]. Using these effects, we define
three operations for lazy evaluation (abs lazy, var lazy, and applazy). Lambda
abstraction suspends the body of a lambda, and pairs a pointer to the suspension
with the environment that the thunk should be evaluated under. The var lazy

and applazy functions memoize and recall argument values (possibly by forcing
the evaluation of a thunked computation), and evaluate the body of a lambda.
Application evaluates the first argument to a function value, and memoizes the
second argument, which is placed in the current environment. Then, the function
body is executed.

The following example program evaluates to 0 when using lazy evaluation:

prog lazy :: Tree ( Mutating V + Reading [V ] + Suspending V
+ Thunking V + Ending) Id V

prog lazy = applazy (abs lazy get) (do put 42; get)

Function application delays the evaluation of put in the argument, and is never
executed because the function body does not reference its parameter.We can run
the program with call-by-need by applying its handlers:

https://github.com/birthevdb/Latent-Effect-and-Handlers.git
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run <print "bar";
1 + (print "foo"; <2>)>

letbind (seq (print "foo") (quote (num 2)))
(unquote (quote (seq (print "bar")

(add (num 1) (splice (var 0))))))

Fig. 4. A MetaML program (left) and its latent effects implementation (right).

> inspect $ hEnd $ hThunk [ ] $ hSuspend [ ] $ hRead [ ] $ hMut 0 prog lazy

0

The inspect function extracts the final value out of the result that is decorated
with the latent effect functor (in this case nested StateL’s).

We can also recover a CBV semantics from applazy, abs lazy, and applazy

by implementing an alternative handler for the Thunking effect. This handler
eagerly evaluates subtrees and stores their value in a store.

> inspect $ hEnd $ hEager [ ] $ hSuspend [ ] $ hRead [ ] $ hMut 0 prog lazy

42

This case study demonstrates that modular call-by-need can be implemented
by decomposing it into modular, primitive latent effects and handlers. It also
shows how overloading the handler of the Thunking effect provides a means of
changing the semantics of a program without touching the program itself.

4.2 Staging

Another advanced control-flow feature that we have implemented with latent
effects is multi-staging. By applying effect handlers before the handler for the
staging effect, we can control which effects should be staged, and which not. The
implementation of these staging constructs can be found in Appendix C of van
den Berg et al. [2].

Our inspiration are the three constructs of MetaML [25]: (1) bracket expres-
sions (<_>) delay execution to a later stage; (2) escape expressions (~_) splice a
staged expression into another; and (3) run expressions (run _) run an expres-
sion that has been dynamically generated by bracket and escape expressions.

A key feature of MetaML is that staged code is statically typed and lexically
scoped. The staging constructs that we implement differ in two ways: our staging
constructs are untyped, and we provide two constructs for splicing code (push
and splice) instead of the single escape expression found in MetaML.

We use push for writing programs with escape expressions under binders
in staged code. The dynamic semantics of push creates an environment with
“holes” that represent unknown bindings, and splice automatically fills in these
holes with bindings from the dynamic context of the splice expression.

The four staging constructs we implement are thus: (1) quote, corresponding
to brackets in MetaML; (2) unquote, corresponding to run _ in MetaML; and



198 B. van den Berg et al.

Fig. 5. Effect library with Lines of Code (LoC) per effect.

(3+4) splice and push for code splicing. The programs in Fig. 4 illustrate the
difference in how splicing works. The MetaML program on the left prints the
string "foobar" and returns the value 3. The program on the right desugars
into latent effects. With the appropriate handlers, it gives the same output.

Yet, by switching the order of handlers for the print effect and staging, we
obtain a different semantics that eagerly handles print operations inside quoted
code. This makes the program on the right print "barfoo" instead.

4.3 Library Summary

We have given two examples where latent effects can be modularly composed to
form language features. Figure 5 gives an overview of our effect library3 and how
the primitive effects are combined into language features.

The left part shows the general framework code for implementing latent
effects, consisting of Trees, the DTC approach and helper definitions (e.g. Id ,
Void); the figure also indicates the associated lines of code (LoC). The middle
part shows ten different effects and their LoC. Each effect comes with an effect
signature, a handler, and smart constructors for their operations. For the detailed
implementation of these effects, we refer to the effect library (Appendix A of van
den Berg et al. [2]). The right part contains several language features that can be
implemented using these effects, with their associated LoC. Each feature comes
with its object language syntax and a mapping onto the effects. Each language
requires an additional two LoC, to indicate the effects and handlers used and
their order. A different order of effects and handlers may give different semantics.

Figure 5 only includes a few language features covered in the paper. How-
ever, as we provide ten effects and handlers, they can be modularly composed in
different order, using different combinations. In theory, when algebras are fixed,

3 https://github.com/birthevdb/Latent-Effect-and-Handlers.git.

https://github.com/birthevdb/Latent-Effect-and-Handlers.git
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we can define (10!+9!+ . . .+2!+1!) = 4,037,913 semantics, although some com-
positions may result in the same behaviour. Even more variations are possible,
varying the algebra that maps the object language syntax to the effects.

5 Related Work

Modular Semantics and Effects. Modularity has received much attention both
at the level of language definitions and of the effects used by those languages.
A landmark is the formulation of the expression problem [26], the challenge to
modularly extend languages with new features and new interpretation functions.
As different language features use different effects, this also requires the modular
composition of those effects. Monad transformers [11] are the most prominent
approach, including alternative implementations such as Filinksi’s layered mon-
ads [3] and Jaskelioff’s Monatron [7].

Algebraic Effects. Algebraic effects [16] have been proposed as a more structured
approach to monads that can also be composed [6]. The subsequent introduc-
tion of handlers [18] to deal with exceptions has enabled practical language
and library implementations, e.g., [8,9,12]. Schrijvers et al. [20] identified when
algebraic effect handlers are modular and related this to a subclass of monad
transformers, using the notion of modules [15]. Wu et al. [29] have identified a
class of what they call scoped effects, which cannot be expressed as algebraic
operations. To remedy the situation, they have proposed a practical generaliza-
tion of algebraic effects. Piróg et al. [14] have put this ad-hoc approach for scoped
effects on formal footing in terms of a free monad on a level-indexed category.

Latent Effects. There are many works on specific types of latent effects. For
instance, staging is a widely studied area [19,22,24]. Some works have also com-
bined algebraic effects with staging mechanisms [21,27,30]. Yet, we are, to the
best of our knowledge, the first to consider staging using effect handlers.

The call-by-push-value calculus of Levy [10] provides primitives for expressing
both call-by-name and call-by-value. These have been an inspiration for our
modular thunking handler. A more generic work is that of Atkey and Johann [1]
on interleaving data and effects to model the incremental production of the data,
and on interpreting these with f -and-m algebras.

Various forms of delimited control have been used in the literature to real-
ize sophisticated control mechanisms, such as the simulation of call-by-need by
Garcia et al. [5]. Moreover, several works [4] show the interdefinability of con-
ventional algebraic effects and delimited control. A further investigation into the
relative expressiveness of latent effects would be interesting.

In future work we would like to demonstrate the performance of latent effects,
using the techniques of fusion by Wu and Schrijvers [28].
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6 Conclusion

This paper has introduced the notion of latent effects. These extend algebraic
effects with the ability to modularly model advanced control-flow mechanisms
that can postpone the execution of certain computations and require fine-grained
control over the effects inside them. Lambda abstraction, lazy evaluation, and
staging were shown to be three prominent instances.

Acknowledgments. This work has been supported by EPSRC grant number
EP/S028129/1 on ‘Scoped Contextual Operations and Effects’, by the NWO VENI
project on ‘Composable and Safe-by-Construction Programming Language Definitions’
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Abstract. Program traces are a sound basis for explaining the dynamic
behavior of programs. Alas, program traces can grow big very quickly,
even for small programs, which diminishes their value as explanations.

In this paper we demonstrate how the systematic simplification of
traces can yield succinct program explanations. Specifically, we intro-
duce operations for transforming traces that facilitate the abstraction of
details. The operations are the basis of a query language for the defi-
nition of trace filters that can adapt and simplify traces in a variety of
ways.

The generation of traces is governed by a variant of Call-By-Value
semantics which specifically supports parsimony in trace representations.
We show that our semantics is a conservative extension of Call-By-Value
that can produce smaller traces and that the evaluation traces preserve
the explanatory content of proof trees at a much smaller footprint.

Keywords: Semantics · Language design · Domain-specific languages

1 Introduction

Explaining program behavior has many uses, including program maintenance,
debugging, and teaching. In particular, when the correctness of a program is
in doubt, an explanation can help to regain the user’s trust and confidence.
Users often employ debuggers to understand program behavior [14], even though
debugging is costly [15] and focuses more on identifying and removing bugs.
Moreover, debuggers typically already assume an understanding of the program
by the programmer [11]. Research on customizable debugging provides additional
evidence for the limitations of generic debugging approaches [7,9].

Perera, et al. [12] use partial program traces to explain program executions.
Through backward program slicing only those parts of a trace are retained that
contribute to a selected part of the output; all irrelevant parts of the trace are
replaced by holes. However, the resulting traces can still be large, even for simple
programs, because much of the information that is produced through slicing
techniques, while technically relevant, might not contribute to the explanation.

Partial traces can be very effective, but they may omit the wrong information.
In general, no one trace works equally well as an explanation for every user, since
c© Springer Nature Switzerland AG 2021
H. Oh (Ed.): APLAS 2021, LNCS 13008, pp. 202–221, 2021.
https://doi.org/10.1007/978-3-030-89051-3_12
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. . .a

fact 6⇓ 720b

case 6 of {0 -> 1; y -> 6*fact 5}⇓ 720c

6*fact 5⇓ 720d

fact 5⇓ 120e

. . .g

fact 0⇓ 1h

case 0 of {0 -> 1; y -> 0*fact (0-1)} 1i

6*120 = 720f

Fig. 1. Trace view for fact 6. (The LaTeX code for trace views was generated by our
prototype implementation, with some manual adjustment of horizontal positioning.)

different users typically have different questions about the behavior of a program.
The approach we present in this paper gives users the ability to manipulate
program traces through a query language and thus gives them control over which
parts of a trace to hide and which parts to keep. To illustrate this aspect, we
demonstrate how to create a trace for the factorial function that could be used,
for example, as a teaching aid. Consider the following definition.

fact = \x -> case x of {0 -> 1; y -> x * fact (x-1)}

Suppose that we want to explain the computation of fact 6. A proof tree
generated by a typical big-step Call-By-Value operational semantics consists of
80 nodes and 22 levels, which is a lot of information. However, to understand
how this computation works, one doesn’t need to see all instances of the recur-
sive function call. Specifically, one might expect a trace to execute all parts of
a definition once, but generally not more than that. One might also want to
filter out some of the more clerical arithmetic computations (for example, for
decrementing a counter) and the lookup of variable bindings. We call such a
filtered trace a trace view. In Fig. 1 we show a trace view with only 7 non-hidden
judgments on 8 levels that meets these expectations. The trace view is obtained
from a complete trace in six steps: (1) hiding top-level declarations, (2) hid-
ing and propagating variable lookups, (3) hiding and propagating evaluations of
subtractions, (4) hiding reflexive judgements, (5) hiding intermediate recursive
calls, and (6) hiding pattern matching evaluations.

These steps are achieved by filter operations which hide nodes and subtrees,
occasionally propagating information from hidden nodes to the rest of the trace.
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The nodes to which a particular filter is to be applied are determined by patterns
that are matched against the judgments in the nodes of the trace.

First, let expressions that define the program to be explained are contained
in nodes that carry judgements of the form let x=e′ in e⇓ v. A pattern for such
a judgment can use values or a wildcard symbol �. Thus, to hide the definition of
f we use the pattern let f = � in � ⇓ � Similarly, information about bindings is
presented by so-called binding nodes, which carry judgments of the form n:x=v,
saying that variable x has the value v and that the binding was introduced by
node n. To hide all binding nodes, as we do in this example, we use the pattern
�: � = �. However, we do not simply hide binding nodes, but also propagate
the bound values to where they are used. For reasons that will become clear in
Sect. 4, we call this operation factoring. The effect of factoring can be seen, for
example, in node c where the value 6 is used instead of the variable x.

While we have hidden the binding node for fact (which is a premise for node
b), we haven’t propagated its value (the function definition), as can be seen
again in node c in the expression 6*fact 5. Responsible for this behavior is our
version of operational semantics, Call-By-Named-Value, introduced in Sect. 2,
which stores names with values. As explained in Sect. 3, the presentation of
traces exploits the names of function values to produce smaller and more readable
traces. This effect is extremely useful for tracing the execution of higher-order
functions where substituting function values for variables that are referenced
(potentially multiple times) can render traces effectively unreadable.

A filter for hiding and propagating some of the arithmetic is also expressed
through factoring with a pattern. In our example we use the pattern �-1⇓� to
hide only decrements by 1, since we want to retain some of the multiplication
expressions, which are important for explaining the functioning of fact. Also,
some of the judgements, for example, 5⇓ 5, do not add explanatory value to the
trace. A filter to hide all such judgements uses a pattern �a ⇓�a, that contains
indexed wildcards. Indexed wildcards force equivalence on values in different
places.

Hiding recursive fact calls is more complicated, since we don’t want to hide
all applications of fact. We can keep the first two calls and the last call as well
as the first and last expansion of the function body by modifying the set of
matched nodes through a function limitRec. The function limitRec is defined
with combinators described in Sect. 5. Note that we shouldn’t define limitRec
to simply remove the first and last of the matched nodes (assuming we can rely
on the matched nodes to appear in a particular order), because this wouldn’t
work well, for example, in the expression fact 5+fact 6. The definition provided
in Sect. 5 is more robust and works well with cases like these.

We also hide all pattern matching judgements of the form v|p� ρ (that match
a value v against a pattern p and produce a binding ρ), again using a pattern
with only wildcards: �| � ��. As with the recursive function calls, we only hide
nodes and don’t propagate any information. Finally, we also hide the definition
of fact to focus on the evaluation steps.
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hide (funDef fact)

factor binding

factor dec

hide reflexive

hide middleFact

hide patMatch

funDef f ≡ let f = � in � ⇓ �
binding ≡ �: � = �
dec ≡ �-1⇓ �
reflexive ≡ �a ⇓ �a

middleFact ≡ limitRec fact

patMatch �

Fig. 2. Filters used to produce the trace view for fact 6.

To summarize, the trace view in Fig. 1 can be produced from the complete
trace by applying the filters shown in Fig. 2, which can be done step-by-step in
the user interface of our prototype or by running a script.

Some of these filters are quite generic and can be reused in other examples.
In fact, we reuse them all in the next example to illustrate more features of our
approach. Consider the trace in Fig. 3 that explains the following program.

let twice = \f -> \x -> f (f x) in

let fact = \x -> case x of {0 -> 1; y -> x * fact (x-1)}

in twice fact 2

The trace view is generated by the following filter script, which uses two more
patterns (fun and fact2) whose meaning should be obvious. The two patterns
illustrate how general patterns can be combined into very specific ones. Here, the
first factoring step excludes the binding for f, and the sequencing combinator
then is used to apply the hiding operation to recursive nodes only after the
application of fact 2. (The sequencing combinator s1 then s2 performs the
node selection s2 to each subtrace whose root matches the result of selection s1
and then merges the results of the s2 selections.)

hide (funDef �)
factor binding except fun
hide fact2 then middleFact
...

funDef f ≡ let f = � in � ⇓ �
fun ≡ �: f = �
fact2 ≡ fact 2⇓�

Note that fact 2 needs to be computed twice in the above program. Thus, a
trace that is based on a proof tree would have two occurrences of the subtrace
for fact 2⇓ 2. However, explaining the same computation more than once does
not provide any additional benefit. On the contrary, the extra space requirement
is detrimental to an effective explanation. To address this problem, we represent
traces as DAGs. Here node g is a shared premise of nodes d and f. To avoid
potential clutter caused by DAG edges, we decided to represent multiple edges
to the same premise by showing nodes as a reference.

We can also observe another benefit of our Call-By-Named-Value semantics
in this trace. Standard Call-By-Value would have evaluated the expression in
node c to \x->f (f x) where f is bound to the definition of fact. The judgement
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. . .a

twice fact 2⇓ 2b

twice fact⇓ \x->fact (fact x)c

\x->f (f x)⇓ \x->fact (fact x)e

b: f=facth

fact (fact 2)⇓ 2d

fact 2⇓ 2f

case 2 of {0 -> 1; y -> 2*fact 1}⇓ 2g

2*fact 1⇓ 2i

fact 1⇓ 1j

. . .l

fact 0⇓ 1m

case 0 of {0 -> 1; y -> 0*fact (0-1)} 1n

2*1 = 2k

g

Fig. 3. Trace view for twice fact 2

in node d would then be f (f 2)⇓ 2 which is semantically correct, but can be
confusing, since the introduction of the alias f for fact causes an indirection that
has to be tracked by the user. Also, when f is applied, the reference to f would
be replaced by its value, the definition of fact, leading to a more complex trace.

Finally, we can observe how bindings are represented in traces using the
aforementioned binding nodes instead of as part of environments. Node h shows
that f is bound to the function fact (again showing the name instead of the
definition) and that the binding was generated by node b. The concept of binding
nodes allows us to omit environments in evaluation judgments, and our Call-By-
Named-Value semantics save us from the need to use closures as function values.
The main contributions of this paper are the following.

– A new Call-By-Named-Value semantics that facilitates the creation of par-
simonious traces by employing names for values (Sect. 2). We show that
Call-By-Named-Value is a conservative extension of Call-By-Value that can
generate smaller traces.

– A DAG structure for traces that substitutes binding nodes for environments
(Sect. 3) and uses operations for trace simplifications (Sect. 4). We show that
the evaluation traces preserve the explanatory content of proof trees at a
much smaller footprint.

– A notion of trace view that encapsulates the contraction of subtraces into
single nodes, plus corresponding operations for producing trace views through
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u, v ∈ Val ::= c ν . . . ν | \x->e | fix(\x->e, f)
p ∈ Pat ::= c p . . . p | x
ν ∈ NVal ::= vx ... x

e Expr ::= x e e case e of p->e; . . . ; p->e let x=e in e e op e ν

Fig. 4. Expressions, patterns, and (named) values

the hiding and factoring of judgments, which preserve the explanatory content
of traces. We show that the trace operations produce residual explanations
that can be expected from the corresponding trace simplifications.

– A trace query language that supports the modular definition of reusable,
expressive filters for trace simplifications (Sect. 5). The trace query language
turns basic trace transformations into comprehensive strategies for simplify-
ing traces.

After discussing related work in Sect. 6, we present conclusions in Sect. 7 where
we also comment on future work and briefly report results from an evaluation
of the space savings that can be achieved by trace views.

2 Call-By-Named-Value Semantics

Our object language is the untyped lambda calculus, extended by numbers and
algebraic data types (see Fig. 4). We use c to represent integers and construc-
tor names and x, y, and f for variables. A pattern is a constructor applied to
a (potentially empty) list of patterns or a variable. A value is a constructor
applied to a (potentially empty) list of (named) values, a function or a fixpoint
construction. A named value (ν) is a plain value which has a (possibly empty)
sequence of names attached to it, written as vx1...xk . The names have no seman-
tic significance but will be used to make traces shorter and more readable. A
binding is a pair of a name and a named value x=ν, and an environment ρ is
a sequence of bindings. Environments are extended on, and searched from, the
right end.

The semantics of our language are defined in Fig. 5 through rules for the
judgment ρ : e⇓ vx̄. Notably, our definition uses named values in addition to
plain values. Otherwise, the rules are a variation of Call-By-Value, and we call
the semantics therefore Call-By-Named-Value (CBNV ).

Names are attached to values when they are retrieved from the environment
(in rule Var). By repeatedly binding a value to different variables, the value
can accumulate a list of attached names (or “aliases”). Named values lose their
attached names in basic computations as described in rule BinOp. Another
departure from ordinary Call-By-Value is that we use plain lambda expressions
instead of closures to represent function values. The purpose, again, is to achieve
simpler traces. In rules Abs and Fix we substitute all free variables in abstraction
bodies (except x and f) by their bound values in ρ. This is done using the
environment as a function ρx̄(e), defined as follows.
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Con
ρ : c ⇓ c

Var
x=vȳ ∈ ρ

ρ :x ⇓ vȳx BinOp
ρ : e1 ⇓ vx̄

1 ρ : e2 ⇓ vȳ
2 v1 op v2 = v

ρ : e1 op e2 ⇓ v

AppF
ρ : e1 ⇓ (\x->e′)f̄ ρ : e2 ⇓ uȳ ρ, x=uȳ : e′ ⇓ vx̄

ρ : e1 e2 ⇓ vx̄

AppC
ρ : e1 ⇓ c v̄ȳ ρ : e2 ⇓ vx̄

ρ : e1 e2 ⇓ c v̄ȳ vx̄

AppFix
ρ : e1 ⇓ fix(\x->e, f)ḡ ρ : e2 ⇓ uȳ ρ, x=uȳ : [fix(\x->e, f)ḡ/f ]e ⇓ vx̄

ρ : e1 e2 ⇓ vx̄

Case
ρ : e ⇓ uȳ uȳ|pi � ρ′ ρ, ρ′ : ei ⇓ vx̄

i �j.1 ≤ j < i ∧ uȳ|pj � ρj

ρ : case e of {p1->e1; . . . ; pk->ek} ⇓ vx̄
i

Abs
ρ : \x->e ⇓ \x->ρx̄(e)

Fix
ρ : fix(\x->e, f)⇓ fix(\x->ρx,f (e), f)

PVar
vȳ|x � x=vȳ

PCon
vx̄1
1 |p1 � ρ1 . . . vx̄n

n |pn � ρn

c vx̄1
1 . . . vx̄n

n c p1 . . . pn � ρ1, . . . , ρn

Let
ρ : e′ ⇓ uȳ ρ, x=uȳ : e ⇓ vx̄

ρ : let x=e′
in e vx̄

Fig. 5. Big-step Call-By-Named-Value semantics

ρx̄(e) = [ν1/x1, . . . , νk/xk]e
where ρ|dom(ρ)−x̄ = {ν1=x1, . . . , νk=xk}

Since the only difference between CBNV and CBV semantics are the names
attached to values, both evaluate expressions to the same results, except for pos-
sible attached names and the resolving of closures in CBNV. A closure (\x->e,ρ)
can be viewed as being equivalent to its resolved form \x->ρx̄(e).1 Writing v ≈ v′

for the extension of this relation to all values, we can express the relationship
between CBV and CBNV as follows. (We ignore free variables in ρx̄(e), since
such expressions are considered meaningless in both semantics.)

Theorem 1. ρ : e ⇓CBNV vx̄ ∧ FV(v) = ∅ ⇐⇒ ρ : e ⇓CBV v′ ∧ v ≈ v′

3 From Proof Trees to Traces

We introduce a DAG model of traces for judgments j = ρ : e⇓ ν that eliminates
duplicates, replaces variable lookups by binding nodes, replaces function values
by their names in places they are not applied, and eliminates environments.

Let Pj = (N,L,R,E) be the proof tree for j where N is a set of nodes,
L : N → Jν maps each node to the judgment it is labeled with, R maps each
node to the name of the rule that was used to create it as a conclusion, and

1 Or fix(\x->ρx,f (e), f), if the closure is recursive.
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j ∈ Jν ::= ρ : e ⇓ ν | ν|p � b | v op v = v | x=ν ∈ ρ
j ∈ Jw ::= e ⇓ w | w|p � b | v op v = v | n·n�x=w | ···
w W ::= x v

Fig. 6. Judgments stored in proof trees (Jν) and traces (Jw).

(n,m) ∈ E iff m is a child of n in Pj . The root of Pj is labeled with j. The
type of judgments Jν used in proof trees is defined in Fig. 6. In addition to
evaluation judgments, Jν includes pattern matching judgments, equations for
binary operations, and variable lookups.

The type of judgments Jw used in traces is slightly different: First, evaluation
judgments don’t have an environment, and expressions don’t evaluate to named
values but to names or values (W ). Second, variable lookups are replaced by
binding nodes, and we have placeholder nodes (···), explained in Sect. 4.1. Finally,
all judgments only use plain values v (or names or values w) instead of named
values ν. The names associated with values are exploited in the translation
process to replace some of the values in e⇓w and w|p� ρ.

In the first step, we generate a DAG from the proof tree. To this end, we
need an equivalence predicate on the judgments Jν used in labels. Two values v
and v′ are equivalent (written as v ≡ v′) if they are identical. The same is true
for variables, patterns, and expressions. Two named values are equivalent if their
plain values are, that is, vȳ ≡ vx̄ (ignoring names increases the opportunities
for sharing). The following rules define the equivalence of environments and
judgments.

ν1 ≡ ν′
1 . . . νk ≡ ν′

k

{x1=ν1, . . . , xk=νk} ≡ {x1=ν′
1, . . . , xk=ν′

k}
ρ(e) ≡ ρ′(e′) ν ≡ ν′

ρ : e⇓ ν ≡ ρ′ : e′ ⇓ ν′

ν ≡ ν′ ρ ≡ ρ′

ν|p� ρ ≡ ν′|p� ρ′ v1 op v2 = v ≡ v1 op v2 = v
ν ≡ ν′

x=ν ∈ ρ ≡ x=ν′ ∈ ρ′

The equivalence of labels induces a corresponding equivalence for nodes: n ≡
m ⇔ L(n) ≡ L(m). To increase the potential for sharing, we could extend
equivalence to account for α-equivalence. However, this would require to use
“named variables” (similar to named values), since the transformation of traces
may change the binding parent of shared computations. Such a “bound variable
shift” is similar to the effect of “origin shift”, explained later (cf. Fig. 7). Since
α-equivalence would complicate our model further, we leave it for future work.

To generate the DAG, we choose a minimal subset of N that doesn’t lose any
judgments, that is, we pick a smallest set N≡ ⊆ N so that ∀j ∈ rng(L).∃n ∈
N≡.L(n) ≡ j. Next we redirect edges to/from nodes in N≡.

E≡ = {(n,m) | (n′,m′) ∈ E ∧ {n,m} ⊆ N≡ ∧ n ≡ n′ ∧ m ≡ m′}
Finally, we transform labels ρ : e⇓ ν ∈ rng(L) to ρ|FV(e) : e⇓ ν to restrict ρ to the
most recent bindings of free variables in e. We write L1

≡ for the resulting labeling
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(let x = 1 in x+1+1) + (let x = 1 in x+1)⇓ 5a

let x = 1 in x+1+1⇓ 3b

x+1+1⇓ 3e

x+1⇓ 2f

b: x=1h 1+1 = 2i

2+1 = 3g

let x = 1 in x+1⇓ 2c

f

3+2 = 5d

Fig. 7. Trace for (let x = 1 in x+1+1) + (let x = 1 in x+1).

function. Then Gj = (N≡, L1
≡, R,E≡) is the proof DAG for j derived from Pj . We

use superscripts to disambiguate the different versions of the labeling function
that result from each step.

In the second step, we tag variable bindings in environments with the nodes
of the judgments that created them, as well as with the nodes of the bindings’
scopes. Since some nodes are shared, it may happen that an environment contains
a binding that has more than one origin and scope. Consider the trace in Fig. 7.
The judgment x+1⇓ 2 in node f that results from the evaluation of both let

expressions is shared. One of its premises is the binding node h, which has its
origin in nodes b and c. We usually only show the origin of the binding for the
context of the node, in this case b, but when we transitively hide all the nodes
in the subtrace with root e, we still have to show node f as a premise for node
c. But now the origin of the binding x=1 is node c, which should be indicated
in the binding node (see Sect. 4.1).

To tag variable bindings, we must determine which nodes produce bindings
that are used by other nodes. To this end, we define a relation O ⊆ N≡ × N≡ ×
Var × N≡, where (n,m, x, nj) ∈ O means “the variable x is used in the label of
node nj , and has origin n and scope m.” We first define an auxiliary relation
O′ ⊆ N≡×N≡×Var that captures which nodes are considered origins and scopes.
We consider two cases: (A) For a node n with R(n) ∈ {AppF,Let,AppFix} that
has a child m with label ρ, x=uȳ : e′ ⇓ νx̄, we have (n,m, x) ∈ O′. (B) For a node
with R(n) = Case, that has a child m1 with R(m1) = PVar or R(m1) = PCon
(and thus having a label in the form v|p� ρ′) and a child m2 with a label in the
form ρ, ρ′ : ei ⇓ νx̄

i , we have (m1,m2, x) ∈ O′ iff x is bound in b.
Intuitively, O′ relates variables and their possible origins and scopes. How-

ever, O′ is too general, since it does not include information regarding which
occurrences of x have particular origins and scopes. We thus define a more pre-
cise O′′ relation as follows.

O′′ = {(n,m, x, nj) | (n,m, x) ∈ O′ ∧ nj ∈ σ∗
T (m)}

In the above expression, σ∗(m) is the set of nodes reachable from node m. The
new relation adds nodes nj that contain x as a free variable in their label.
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Unlike O′, only occurrences of x in descendants of the scope m are included.
Finally, to get O from O′′, we have to account for variable shadowing.

O = {(n,m, x, nj) ∈ O′′ | ∀n′,m′ ∈ N≡.(n′,m′, x, nj) ∈ O′′ ⇒ m′ /∈ σ∗
T (m)}

Intuitively, only the closest origins and scopes are included in O. We finally
transform each label’s environment to include the origin and scope information.
To this end we define scope/origin pairs for a variable x and node nj as follows.

ω(x, nj) = {n·m | (n,m, x, nj) ∈ O}

With this definition we then extend every binding x=v in an environment ρ
by the origin/scope information, yielding ω(x, nj)�x=v. We thus evolve L1

≡ as
follows.

L2
≡(nj) = {ω(x, nj)�x=v | x=v ∈ ρ} : e⇓ ν

The scope node of a binding is the top-most node in which that binding is
available. For some operations on traces, it’s necessary to know the set of all
nodes in which a binding is available, which is given by the following function.

Sx(m) = σ∗
T (m) −

⋃
{σ∗

T (m′) | (n′,m′, x, n′
j) ∈ O ∧ m′ ∈ σ∗

T (m)}

S(m) includes all descendants of m, except those that are descendants of another
scope node m′ further down the tree, to account for shadowing.

At this point, the environments contain information that will help us tailor
our traces later on. In particular, for a judgement of the form ρ : e⇓ ν, the scopes
of the variables bound in ρ can be used to determine nodes where e can be safely
replaced with v. We capture this information in a function η(n), which is defined
to work on evaluation judgments in the current mapping L2

≡.

η(n) =

{⋂
ō�x=ν∈ρ

⋃
n′·m∈ō Sx(m) if L2

≡(n) = ρ : e⇓ v

∅ otherwise

This definition ensures that an expression will be replaced by its value only in
labels of nodes where all free variables are defined and have the same value. If
no variables are bound in ρ, then the scope of a node is the entire trace, or N≡.

In the third step, we replace applications of the Var rule by binding nodes:
For each node k ∈ N≡ with R(k) = Var and L2

≡(k) = ρ :x⇓ vȳx where ō�x=vȳ ∈
ρ, we change L2

≡ to L3
≡(k) = ō�x=v and remove the node m with (k,m) ∈ E≡

as well as the edge (k,m).
In the final step, we replace named values by names or values. Specifically,

we replace named functions by their names and remove names from other values,
that is, we replace all (\x->e)zȳ by z (the first name assigned to the function) and
cx̄ by c. As a special case, if the first name z is equal to the variable being bound,
we instead use the second name (the first element of ȳ) if it is available. This is
a very simple strategy, but CBNV offers opportunities to explore more refined
replacement rules based on properties of the trace and guided by annotation from
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the user. We also eliminate the environments from all evaluation judgments, since
the origins of variable bindings are captured by their node tags. This yields L4

≡.
After the transformation steps, we can drop the rule labels R, since they are

no longer needed. We call the resulting DAG Tj = (N≡, L4
≡, E≡, η) a trace for

the judgment j. In the following we simply use N instead of N≡ (same for E
and L) and consider the “≡” subscript as implicitly present.

In the rest of the paper we use the following notation for accessing specific
parts of traces. In the definition of T [n], the notation L[n], E[n], and η[n] is used
to denote restrictions of the sets to element to only include nodes in σ∗

T (n).

T̂ root node of trace T
σT (n) = {m | (n,m) ∈ E} direct premises of node n
σ∗

T (n) = {m | (n,m) ∈ E∗} direct & indirect premises of node n
T [n] = (σ∗

T (n), L[n], E[n], η[n])} subtrace of T with root n

Traces represent comprehensive explanations of program executions that are
subject to systematic transformations using two specific trace operations, to be
introduced next.

4 Trace Views as Explanations

As described in [5], proof trees can be viewed as explanations. Specifically, the
judgment in each node is explained by the judgments in its children. In the con-
text of operational semantics, a rule defines what counts as a valid explanation
of a judgment, that is, in a rule P1, . . . , Pn =⇒ C the premises P1, . . . , Pn

explain the conclusion C in the sense that the correct answer to the question
“Why is C true?” is: “Because P1, P2, etc.” A proof tree is comprehensive as
an explanation of the judgment at its root, since it contains explanations for all
judgments in internal nodes that might themselves be in need of an explanation.

By strictly following the rules of the semantics in building a proof tree we also
ensure that the proof tree provides a correct explanation. This seems to be obvi-
ous, but it is important to point out that an explanation could, in principle be
incorrect, and since we will use transformations of explanations in the following,
we need to guard against the construction of incorrect ones. There are several
ways in which an explanation can be incorrect. First, an explanation could con-
tain an incorrect judgment. For example, 3⇓ 4 cannot be derived by the rules
and thus makes any explanation it is used in incorrect. Second, an explanation
could contain a correct judgment that doesn’t match the rule used for building
the explanation. For example, the correct explanation for 3+4⇓ 7 contains the
three premises 3⇓ 3, 4⇓ 4, and 3+4 = 7. If the first premise were replaced by 2⇓ 2

or the third premise were replaced by 2+5 = 7, the resulting explanation would
contain only correct judgments, but it would still be an incorrect explanation.
Finally, an explanation could contain extra judgments that, while true, don’t
contribute anything to the explanation. An example would be to add a fourth
premise 7⇓ 7 to the explanation of 3+4⇓ 7.
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While the construction of traces described in Sect. 3 does change the struc-
ture of judgments and turns the tree into a DAG, it doesn’t change the factual
statements of the judgments, and it doesn’t omit any facts either.

Proposition 1. The trace Tj derived from a proof tree Pj for a judgment j is
a correct and comprehensive explanation for j.

In the following we write T ∴ j when T is a correct explanation for j, that is,
the correctness part of Proposition 1 can be simply rephrased as Tj ∴ j.

While we always want to have correct explanations, we do not necessarily
need comprehensive explanations. Specifically, we don’t need an explanation for
a judgement that is well understood. A non-comprehensive explanation might
be often even preferable to a comprehensive one, since it is smaller and can thus
be understood more easily.

4.1 Hiding Judgments and Subtraces

We can consider two main cases for simplifying traces by omitting parts: removal
of leaves or complete subtrees (or sub-DAGs), and removal of (one or more)
internal nodes. The latter requires redirecting its incoming and outgoing edges,
which may cause incorrect explanations. Consider, for example, the explanation
for ρ : succ (succ 1)⇓ 3, which according to the AppF rule has three premises,
(a) ρ : succ⇓ \x->x+1, (b) ρ : succ 1⇓ 2, and (c) ρ, x = 2 : x+1⇓ 3. If we remove
(b) and replace it with its three premises (another (a), (d) ρ : 1⇓ 1, and (e)
ρ, x = 1 : x+1⇓ 2), the resulting explanation now has five premises, a, a, d, e,
and c. Now the premises d and e do not match the premise b required by the
AppF rule, and thus, the resulting trace is an incorrect explanation.

Therefore, nodes aren’t removed from a trace, but rather only hidden. More
precisely, they are marked as hidden, and (maximal) groups of connected hidden
nodes are shown in the trace as an ellipsis (···) when they have non-hidden
premises. Given a total order < on N , we can identify any connected hidden
subgraph with its smallest node. With ∼ being the reflexive, transitive, and
symmetric closure of edges from E that are between two nodes in H, we can
define a function R that performs this identification as follows.

R(n) = {min([n]∼) | n ∈ N}
Hidden sinks are subgraphs of hidden nodes with no outgoing edges, that is,
SH = {n ∈ R(N) | �(l,m) ∈ E : R(l) = n ∧ R(m) �= n}. The trace view of T
induced by H is the graph TH = (NH , LH , EH , η) where:

NH = R(N) − SH

EH = {(R(m), R(n)) | (m,n) ∈ E ∧ R(m), R(n) ∈ NH ∧ R(m) �= R(n)}
LH(n) =

{
··· if n ∈ H
L(n) otherwise

We use τ to range over trace views.
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The two basic operations for hiding and unhiding a single node are:

TH − n := TH∪{n} TH + n := TH−{n}

Due to their type, both operations are left associative.
A trace view is a correct explanation if all hidden nodes can be substituted

by (subgraphs of) judgments so that the resulting trace is a comprehensive and
correct explanation. Of course, this can be easily achieved by unhiding all the
hidden nodes, that is, trace views are by construction correct explanations.

Lemma 1. τ ∴ j =⇒ τ − n ∴ j and τ ∴ j =⇒ τ + n ∴ j

To make the interaction work with trace views intuitive, it is important that
node hiding and unhiding is commutative.

Lemma 2. τ − n − m = τ − m − n and τ + n + m = τ + m + n

Commutativity of node (un)hiding supports the incremental construction of
explanations, since hiding operations can be applied and undone in arbitrary
order. Hiding and unhiding are idempotent, but they are not inverses of each
other, because even though unhiding a hidden node will make the node visible,
hiding a node after unhiding it will still hide it in the resulting trace view.

τ − n − n = τ − n τ − n + n = τ

τ + n + n = τ + n τ + n − n = τ − n

If we could only hide individual nodes one by one, the construction of explana-
tions would be too arduous. Since it’s only natural to want to transitively hide all
premises of an understood judgment, we define a corresponding operation. How-
ever, we cannot simply hide all nodes m ∈ σ∗

T (n), since we shouldn’t hide nodes
that are still used as premises in other (non-hidden) parts of the trace view. We
should hide only those descendants of n that are only reachable through n. We
can gather this set of weak descendants through the following definition.

σ◦
T (n) = {n} ∪ {m ∈ σ∗

T (n) | deg−
T [n](m) = deg−

T (m)}

With the help of that function we can define the following operation for hiding
a node and all of its weak descendants. Similarly, we can also define transitive
functions for hiding and unhiding nodes.

TH � n := TH∪σ◦
T (n) TH ⊕ n := TH∪σ◦

T (n)

The transitive (un)hiding operations enjoy the same algebraic properties as the
single-node versions of the operations.

τ � n � n = τ � n τ � n ⊕ n = τ

τ ⊕ n ⊕ n = τ ⊕ n τ ⊕ n � n = τ � n
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(let x = 1 in x+1+1) + (let x = 1 in x+1)⇓ 5a

let x = 1 in 3⇓ 3b let x = 1 in x+1⇓ 2c

x+1⇓ 2e

c: x=1f 1+1 = 2g

3+2 = 5d

Fig. 8. Factoring judgment x+1+1⇓ 3 in node e (cf. Fig. 7).

4.2 Applying Judgments and Factoring Traces

In some cases traces can be simplified beyond hiding. For example, understanding
the judgment length []⇓ 0, we may in addition to hiding it actively employ it to
replace subexpressions length [] elsewhere by 0. We call the use of a judgment
L(n) = e⇓ v as a rewrite rule applying a judgment ; it is used within n’s scope,
that is, for the set of nodes in the trace where e is certain to be evaluated to
the same result v. The function η, included in each trace, contains this scope
for every node. We use η with one adjustment: We consider the scope of a
lambda abstraction to be only the node in which it is evaluated, and thus avoid
substituting lambda abstractions.

In the following definition we write !m for the condition m ∈ η(n) ∧ L(m) =
e′ ⇓w′, which identifies nodes that are subject to the simplification substitution.

(N,L,E, η)H • n := (N,L′, E, η)H where

L′(m) =

⎧
⎪⎨

⎪⎩

[v/e]e′ ⇓w′ if !m ∧ L(n) = e⇓w

[w/x]e′ ⇓w′ if !m ∧ L(n) = ō�x=w

L(m) otherwise

For example, to apply the judgment x+1⇓ 2 in node f in the trace from Fig. 7,
we have to substitute 2 for x+1 in the scope for x+1, which is given by the scope
for variable x. Since node f is shared, the binding node for x (that is, h) has two
scope nodes associated with it, namely b and c.

Applying a judgment leads to a redundant judgment of the form w ⇓w. We
generally want to hide such judgments, since they don’t contribute to the expla-
nation. Therefore, we define an additional operation factor that applies a judg-
ment and transitively hides it at the same time.

τ ÷ n := (τ • n) � n

We call the application of a factor operation trace factorization and also refer
to the result as factored trace. As an example, consider the factoring of the
judgment x+1+1⇓ 3 in node e in Fig. 7: Node e and its premise g are removed
from the trace. Because f, h, and i are shared as a premise of the judgment in
c, they will not be removed. The factored trace is shown in Fig. 8. Nodes f, h,
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q ::= hide s | hideAll s | apply s | factor s | q & q
s ::= ι | s and s | s or s | s except s | s then s | fix s | try s | root

ι ::= e v v e � b v op v = v x �x =v a

Fig. 9. Queries, selectors, and patterns

and i from Fig. 7 now appear as e, f, and g. Note that these nodes are no longer
children of b. The binding in f (which was previously h) is created in c, which
means that the binding node’s origin has to be changed from b to c.

Unlike the hiding of nodes, which changes merely the presentation of a trace,
the applying and factoring of judgments can change traces substantially through
the simplification of expressions.

In particular, when the root of an explanation is affected by e′ ⇓ v′, such an
altered trace does not explain the original judgment in the root anymore, that
is, j = e⇓ v turns into j′ = [v′/e′]e⇓ v, and we have τ ÷n ∴ j′ but not τ ÷n ∴ j.

But that is, we argue, exactly what one should expect of an explanation: A
residual explanation for e⇓ v that omits everything related to explaining e′ ⇓ v′

is an explanation for [v′/e′]e⇓ v, and that is the trace that one gets.
To formulate the formal relationship for factored traces, we write �j� to

denote the trace for a judgment j and j
j′ for �j� ÷ n with L(n) = j′. In general,

we have the following relationship for factored traces.

Theorem 2

FV(e′) = ∅ =⇒ e⇓ v

e′ ⇓ v′ =
[v′/e′]e⇓ v

v′ ⇓ v′

We can explain the idea also in terms of factoring and hiding.

Lemma 3. L(n) = e′ ⇓ v′ ∧ FV(e′) = ∅ =⇒ �e⇓ v� ÷ n = �[v′/e′]e⇓ v� � n

5 Trace Query Language

The query language consists of two parts: operations and selectors. The opera-
tions are as described in the previous sections. Selectors are used to find nodes
where operations should be applied. The grammars for these two components of
the language are given in Fig. 9; it also contains a grammar for patterns, which
is similar to Jw from Fig. 6, without the ellipsis and extended by a wildcard
symbol (we use e
 to stand for e or �, v
 to stand for v or �, etc.). Different
occurrences of an non-indexed wildcard � can be bound independently of one
another. To force the occurrence of the same bound value in different places, the
wildcard can be indexed, as for example in �a ⇓�a, which matches expressions
that evaluate to themselves.

When a selector s is applied to a trace, it yields a set of nodes matching the
selector, ordered according to a breadth-first traversal of the trace.
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If the selector is a pattern ι, it yields the set of all nodes with matching labels
(written as l ≺ ι). The matching relation is fairly straightforward: Each pattern
ι matches the corresponding judgment, while the wildcard � matches anything.

A selector may also be a combination of other selectors. For instance, s1 or s2
finds nodes that are selected by either s1 or s2. Similarly, s1 and s2 finds nodes
selected by both s1 and s2, and s1 except s2 will yield all nodes matched by s1
that are not matched by s2.

More sophisticated queries can be built with the selectors root, s1 then s2,
try s, and fix s: root returns the root node of the trace, sequencing s1 then s2
applies s2 to subtraces T [n] of T for every node n selected by s1 and merges the
final results, and fix computes fixed points.

We can use then to find evaluations of the factorial function that occur as
children of other evaluations of the function (indicating recursion).

(fact � ⇓ �) then ((fact � ⇓ �) except root)

Here except root ensures that only the children of the function application are
selected, and not the parent application itself. Here are a few more frequently
used general-purpose selectors (where all = � is just a convenient alias):

none = root except root
first s = s except (s then (s except root))

descendants = all except root
children = first descendants

The selector first s will find all nodes selected by s that are not children of
other nodes also selected by s. The selectors descendants and children find
the transitive and immediate children of the trace’s root node, respectively.

The combinator then in itself cannot be used to define more complicated
traversals of a trace. Instead, the fix selector can be used to perform an arbitrary
number of sequencing operations. It works by repeatedly sequencing s with itself
until the result of the sequencing stops changing. To help avoid fixed points where
no nodes are selected, the try s combinator can be used, which returns the root
of the graph if s does not select any nodes. This way, we are able to terminate
the sequencing right before hitting an empty result, rather than after. We can
use fix to find all nodes that are used outside of a call to the factorial function.

fix ((children or root) except (fact � ⇓ �))

The new combinator enables us to define a few more general purpose selectors.

last s = fix (try (s except root))
uniqueChildren s = (s then all) except (fix ((children or root) except s))

The last s selector will find all nodes selected by s that do not have other nodes
selected by s as descendants, while uniqueChildren s will find descendants of
nodes selected by s that are not referenced anywhere else in the trace.

The semantics for the selector language are given in Fig. 10. We can now
use the arsenal of selectors to construct specialized queries to help with creating
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ι (L, N, E) = {n | L(n) ≺ ι}
s1 and s2 T = s1 T ∩ s2 T

s1 or s2 T = s1 T ∪ s2 T

s1 except s2 T = s1 T − s2 T

root T = T̂

s then s′ T =
⋃

n∈ s T s′ (T [n])

fix s T =

{
s T if s then s T = s T

s then (fix s) T otherwise

try s T =

{
root T if s T = ∅

s T otherwise

Fig. 10. Selector semantics

explanations. For instance, we may want to hide all evaluations of a recursive
function except for the first and last one. This can be achieved with the limitRec
f selector, defined as follows, where f is the name of the recursive function.

nonFirst s = (s except first s) then descendants
afterLast s = last s then all
limitRec f = notFirst (f � ⇓ �) except afterLast (f � ⇓ �)

We can now define the semantics of queries as a transformation of trace
views through the operations introduced in Sect. 4. (Note that for any ordered
set of nodes M = {n1, . . . , nk}, we use for all � ∈ {−,�,+,⊕, •,÷} the notation
T � M as an abbreviation for T � n1 � . . . � nk).

�hide s�T = T − �s�T �apply s�T = T • �s�T

�hideAll s�T = T � �s�T �factor s�T = T ÷ �s�T

�q1 & q2�T = �q2�(�q1�T )

Note that the uniqueChildren combinator was not created arbitrarily; in fact,
its behavior closely aligns with that of the σ◦

T (n) function (defined in Sect. 4.1).
We capture this in the following lemmas (where Lemma 5 is a direct consequence
of Lemma 4).

Lemma 4. �uniqueChildren s�T =
⋃

n∈�s�T σ◦
T (n)

Lemma 5. �hideAll s�T = T − �uniqueChildren s�T

6 Related Work

Our Call-By-Named-Value semantics is similar to the work of Acar et al. [1], in
which the semantics of a language are extended to support provenance. They
use a fixed algorithm for disclosure slicing to reduce the size of traces, whereas
our approach allows tailoring of traces through a query language.

Problems with the visualization of large proof trees has been addressed
Dunchev et al. [3] through hiding structural rules (similar to our Var rule) and
unused contexts (similar to our hidden environments). Their Prooftool allows
users to focus on sub-proofs, similar to our hiding and factoring operations.
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They also discuss the use of proof DAGs but decided against them because of
the difficulty of finding graph layouts that avoid crossing edges.

Proof trees are universal structures to trace arbitrary programs. A different
kind of structure called value decomposition was introduced in [4] for explaining
the execution of dynamic programming algorithms. This approach is based on
a semiring model of dynamic programming, and while it can produce succinct
explanations, it is limited to only a small set of programs.

The work on explaining (imperative) functional programs [12,13] employs
program slicing as a technique to generate dynamic explanations for the part of
output selected by the user. Program slicing filters out parts from traces that
do not lead to the selected partial output. The approach assumes that a user
would like to understand certain part of the output, which isn’t always the case.
Also, the generated traces can still be quite large. Our approach is somewhat
orthogonal and could in principle be combined with program slicing techniques.

The idea of algorithmic debugging is to incrementally tailor a proof tree for
a computation by repeatedly asking users about the expected results of subex-
pression evaluations [10]. Like most other debugging approaches, the goal is not
to provide any explanation of why the output was generated in the first place.

The Java Whyline [8] is a debugger for Java program that allows program-
mers to ask questions about the output, which the debugger tries to answer
by computing a backward trace of the computations that caused the output.
Haskell’s debugger Hood [6] generates a trace of intermediate values of com-
putation. A programmer needs to annotate the interesting parts in the source
code. When the code is recompiled and rerun, the debugger results in a trace of
intermediate values along with the actual output. This is similar to our approach
in that the user has some control over the form and size of the produced trace.

The selector component of our query language was inspired by the rewrite
strategies approach presented by Visser et al. [16], which are used to define algo-
rithms that apply optimizations to programs. Much like our query language,
these strategies provide a toolbox of combinators that allow the user of the sys-
tem to construct more complicated traversal and transformation algorithms. The
selectors defined in this paper are more limited: they lack the ability to trans-
form the trace, and they are not capable of maintaining a context of encountered
expressions, or making decisions based on that context.

7 Conclusions and Future Work

We have presented a new approach for explaining program behavior that is
based on a new Call-By-Named-Value semantics, a DAG-based representation
for traces, and a query language for expressing trace manipulations. A major
innovation of our traces is the economical presentation of information and an
effective method for hiding large parts of uninteresting regions from a trace.

Our initial experiments with this new approach are encouraging: For a bench-
mark set of 21 functional programs used in an introductory CS course, we could
achieve reductions between 79% and 98% (in 90% of the cases the traces have
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been reduced by 85% or more). For this we needed 12 standard filters (7 of
these were always applied and 5 only in specific instances). (Details about this
evaluation, can be found in Bajaj et al. [2].)

In future work, we can make explanation traces even more succinct through
dead-code elimination, especially within expressions. For example, the True

branch in a judgment case False of {...; False -> 0}⇓ 0 can be omitted. This
strategy is applicable even if part of the code is not dead but “dormant” and
thus explanatorily irrelevant in the current part of the trace. Moreover, we can
further exploit the Call-By-Named-Value semantics by having users tag impor-
tant names, and we can also exploit the fact that named values can have an
arbitrary number of names. Instead of always displaying one specific name, the
decision can be made dynamically, for example, when a value acquires a more
meaningful name in the evaluation of a program (such as when list elements
acquire the name pivot during the execution of quicksort).

Acknowledgements. This work is partially supported by the National Science Foun-
dation under the grants CCF-1717300, DRL-1923628, and CCF-2114642.
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Abstract. Smart contract applications on the blockchain can only reach
their full potential if they integrate seamlessly with traditional software
systems via a programmatic interface. This interface should provide for
originating and invoking contracts as well as observing the state of the
blockchain. We propose a typed API for this purpose and establish some
properties of the combined system. Specifically, we provide an execution
model that enables us to prove type-safe interaction between programs
and the blockchain. We establish further properties of the model that
give rise to requirements on the API. A prototype of the interface is
implemented in OCaml for the Tezos blockchain.

Keywords: Smart contracts · Embedded domain specific languages ·
Types

1 Introduction

First generation blockchains were primarily geared towards supporting cryp-
tocurrencies. Bitcoin is the most prominent system of this kind [14]. Although
Bitcoin already features a rudimentary programming language called Script,
second generation blockchains like Ethereum [5] feature Turing-complete pro-
gramming facilities, called smart contracts. They provide robust trustworthy
distributed computing facilities even though the programs run on a peer-to-peer
network with untrusted participants. Each peer in the network runs the same
program and uses cryptographic methods to check the results among the other
peers and to create a persistent ledger of all transactions, the blockchain, thus
ensuring the integrity of the results. Third generation blockchains, like Tezos
[8], are adaptable to new requirements without breaking participating peers (no
“soft forks” required and “hard forks” can be avoided).

The strength of programs on the blockchain is also their weakness. They are
fully deterministic in that they can only depend on data that is ultimately stored
on the chain including the parameters of a contract invocation. Moreover, the
code, the data, as well as all transactions are public. These properties make it
hard to react to external stimuli like time triggers or events like a price exceeding
a threshold unless these stimuli get translated to contract invocations.
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Arguably, smart contracts are more useful if they can be integrated with
traditional software systems and thus triggered from outside the blockchain.
Oracles [6,13] provide an approach for contracts to obtain outside information.
A contract registers a request and a callback with an oracle. The oracle invokes
the callback as soon as an answer is available.

There are other usecases for connecting a contract with traditional software.
One example is automating procedures like managing an auction, bidding in an
auction, optimizing fees, or initiating delivery of goods to a customer. While some
of these procedures are amenable to implementation as contracts, we might want
to save the fee of running them on the blockchain. In particular, for actions that
happen strictly within a single domain of trust, it is not worth running them on
the blockchain. For example, automated bidding runs on behalf of a single peer.

Building such automation requires a programmatic interface to implement
the interactions. Current blockchains mostly provide RPC interfaces, such as
the Ethereum JSON-RPC API [7] and the Tezos RPC API [8], but they require
cumbersome manipulation of string data in JSON format and do not provide
static guarantees (except that the response to a well-formed JSON input is also
a well-formed JSON output). To improve on this situation we present a typed
API for invoking contracts from OCaml programs. Our typed API supports the
implementation of application programs and oracles that safely interact with
smart contracts on the blockchain. Moreover, our approach provides a type-safe
facility to communicate with contracts where data is automatically marshalled
between OCaml and the blockchain. This interface is a step towards a seamless
integration of contracts into traditional programs.

Contributions

– A typed API for originating and invoking contracts as well as querying the
state of the blockchain.

– An operational semantics for functional programs running alongside smart
contracts in a blockchain.

– Established various properties of the combined system with proofs in upcom-
ing techreport.

– An implementation of a low-level OCaml-API to the Tezos blockchain, which
corresponds to the operational semantics1.

There is an extended version of the paper with further proofs2.

2 Motivation

Suppose you want to implement a bidding strategy for an auction that is
deployed on the blockchain as a smart contract. Your bidding strategy may
start at a certain amount and increase the bid until a limit is reached. Of course,
1 Available at https://github.com/tezos-project/Tezos-Ocaml-API.
2 Available at https://arxiv.org/abs/2108.11867.

https://github.com/tezos-project/Tezos-Ocaml-API
https://arxiv.org/abs/2108.11867
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parameter (or (unit %c l o s e )
(unit %bid ) ) ; # bid in t r an s f e r

storage (pair bool # bidd ing a l lowed
(pair address # contrac t owner
address # h i gh e s t b idder ’ s address

) ) ;

Listing 1.1. Header of the auction contract

# let auct ion = Cl . make contract hash auct ion hash
# ˜parameter : ( Ct . Or (Ct . Unit , Ct . Unit ) )
# ˜ s to rage : ( Ct . Pair (Ct . Bool , Ct . Pair (Ct . Addr , Ct . Addr ) ) ) ) ; ;
va l auct ion :

( ( unit , un i t ) E i ther . t ,
bool ∗ ( Cl . Addr . t ∗ Cl . Addr . t ) ) Cl . cont rac t

Listing 1.2. Getting the auction handle

you only want to increase your bid if someone else placed a higher bid. So you
want to write a program to implement this strategy.

This task cannot be implemented as a smart contract without cooperation
of the auction contract because it reacts on external triggers. Bidding requires
watching the current highest bid of the contract and react if another bidder
places a higher bid. The auction contract could anticipate the need for such
observations by allowing bidders to register callbacks that are invoked when a
higher bid arrives. However, we cannot assume such cooperation of the auction
contract nor would we be willing to pay the fee for running that callback.

For concreteness, Listing 1.1 shows the header of an auction contract in
Michelson [12]. The parameter clause specifies the contract’s parameter type. It is a
sum type (indicated by or) and each alternative constitutes an entrypoint, named
%close and %bid . The caller selects the entrypoint by injecting the argument into
the left or right summand. Both entrypoints take a unit parameter. The %bid

entrypoint considers the transferred tokens as the bid. The storage clause declares
the state of the contract, which is a nested pair type indicating whether bidding
is allowed (bool), the address of the contract owner (to prohibit unauthorized
calls to %close), and the bidder’s address. The highest bid corresponds to the
token balance of the contract.

We only outline the implementation of the entrypoints. The %close entrypoint
first checks its sender’s address against the owner’s address in the store. Then
it transfers the funds to the owner, closes the contract by clearing the bidding
flag, and leaves it to the owner to deliver the goods3. The %bid entrypoint
immediately returns each bid that is not higher than the existing highest bid.
Otherwise, it keeps the funds transferred, returns the previous highest bid to its
owner, and stores the current bidder as the new highest bidder.

We present a program that implements strategic bidding by interacting with
the blockchain. The bidding strategy cannot be implemented as a smart contract.

3 For simplicity we elide safeguarding by a third-party oracle.
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let rec po l l l im i t s tep =
let ( bidding , ( , h i gh e s t b i dd e r ) ) = Cl . g e t s t o r a g e auct ion ;
let h igh b id = Cl . g e t ba l ance auct ion ;
i f bidding && high b id < l im i t then

( i f h i gh e s t b i dd e r <> my address then (∗ en t rypo in t %bid ∗)
try

Cl . c a l l c o n t r a c t auct ion
( r i g h t (min ( h igh b id + step , l im i t ) ) )

with
| Cl .FAILWITH message −> po l l l im i t s tep ;

Time . s l e e p (5 ∗ 60 ) ;
p o l l l im i t s tep )

Listing 1.3. Bidding strategy

In Listing 1.2, we use the library function Cl.make contract from hash to obtain
a typed handle for the contract4. The function takes the hash of the contract
along with representations of the types of the parameter and the storage (from
module Ct). It checks the validity of the hash and the types with the blockchain
and returns a typed handle, which is indexed with OCaml types corresponding
to parameter and storage type.

The implementation of the bidding strategy in Listing 1.3 first checks the
state of the contract to find the current highest bid. As long as bidding is allowed
and the current bid is below our limit , we update our bid by a given amount
step, and then keep watching the state of the contract by polling it every five
minutes.

The functions get storage and get balance obtains the storage and current bal-
ance, respectively, of a contract from the blockchain. They never fail. Function
call contract takes a typed handle and a parameter of suitable type. It indicates
failure by raising an exception. If failure is caused by the FAILWITH instruc-
tion in the contract, then the corresponding Cl.FAILWITH exception is raised,
which carries a string corresponding to the argument of the instruction. In our
particular example, the auction may fail with signaling the message “closed” or
“bid too low”. Our code ignores this message for simplicity.

This code is idealized in several respects. Originating or running a contract
requires proposing a fee to the blockchain, which may or may not be accepted.
Starting a contract may also time out for a variety of reasons. So just invoking a
contract with a fixed fee does not guarantee the contract’s execution. Even if the
invocation is locally accepted, it still takes a couple of cycles before we can be sure
the invocation is globally accepted and incorporated in the blockchain. Hence,
after starting the invocation, we have to observe the fate of this invocation.
If it does not get incorporated, then we need to analyze the reason and react
accordingly. For example, if the invocation was rejected because of an insufficient
fee, we might want to restart with an increased fee. Or we might decide to wait
until the invocation goes through without increasing the fee.

4 Cl is the module containing the contract library.
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Hence, we would implement a scheme similar to the bidding strategy: start
with a low fee and increase (or wait) until the contract is accepted or a fee cap is
reached. On the other hand, an observer function like get state always succeeds.

The low-level interface that we propose in this paper requires the programmer
to be explicit about fees, waiting, and polling the state of contract invocations.

In summary, a useful smart-contract-API has facilities to

– query the current state of the blockchain (e.g., fees in the current block),
– query storage and balance of a contract (to obtain the current highest bid),
– originate contracts, invoke contracts, and initiate transfers. Hence, the API

has to run on behalf of some account (by holding its private key).

These facilities are supported by the (untyped) RPC interface of the Tezos
blockchain, which is the basis of our implementation.

3 Execution Model

The context of our work is the Tezos blockchain [2,8]. Tezos is a self-amending
blockchain that improves several aspects compared to established blockchains.
Tezos proposes an original consensus algorithm, Liquid Proof of Stake, that
applies not only to the state of its ledger, like Bitcoin [14] or Ethereum [5], but
also to upgrades of the protocol and the software.

Tezos supports two types of accounts: implicit accounts, which are associated
with a pair of private/public keys, and smart contracts, which are programmable
accounts created by an origination operation. The address of a smart contract
is a unique public hash that depends on the creation operation. No key pair
is associated with a smart contract. An implicit account is maintained on the
blockchain with its public key and balance. A smart contract account is stored
with its script, storage, and balance. A contract script maps a pair of a parameter
and a storage, which have fixed and monomorphic types, to a pair of a list of
internal operations and an updated storage. An account can perform three kinds
of transactions: (1) transfer tokens to an implicit account, (2) invoke a smart
contract, or (3) originate a new smart contract. A contract origination specifies
the script of the contract and the initial contents of the contract storage, while a
contract invocation must provide input data. Each transaction contains a fee to
be paid either by payment to a baker or by destruction (burning). A transaction
is injected into the blockchain network via a node, which then validates the
transaction before submitting it to the network. A transaction may be rejected by
the node for a number of reasons. After validation, the transaction is injected into
a mempool, which contains all pending transactions before they can be included
in a block. A pending transaction may simply disappear from the mempool,
for example, a transaction times out when 60 blocks have passed and it can no
longer be included in a block. When a transaction is included in the blockchain,
the affected accounts are updated according to the transaction result.

The execution model consists of functional (OCaml) programs that interact
with an abstraction of the Tezos blockchain [8]. As the blockchain is realized by
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a peer-to-peer network of independent nodes, interaction happens through local
nodes that receive requests to originate and invoke contracts from programs
that run on a particular node. We model the blockchain itself as a separate,
abstract global entity that represents the current consensual state of the system.
Our model does not express low-level details, but relies on nondeterminism to
describe the possible behaviors of the system. In particular, we do not formalize
the execution of the smart contracts themselves, we rather consider them as
black boxes and probe their observable behavior. Tezos’s smart contract language
Michelson and its properties have been formalized elsewhere [4].

We write ∅ for the empty set and e :: s to decompose a set nondeterminis-
tically into an element e and a set s. We generally use lowercase boldface for
metavariables ranging over values of a certain syntactic category, e.g., puk for
public keys, and the capitalized name for the corresponding type as well as for
the set of these values (as in Puk).

3.1 Local Node

A local node runs on behalf of authorities, which are called accounts in Tezos.
An account is represented by a key pair 〈pak,puk〉, where pak is a private key
and puk the corresponding public key in a public key encryption scheme.

The local node offers operations to transfer tokens from one account to
another, to invoke a contract, and to originate a contract on the blockchain.

op ::= transfer nt from puk to addr arg p fee fee

| originate contract transferring nt from puk running code init s fee fee

In the transfer, which also serves as contract invocation, nt is the amount of
tokens transferred, puk is the public key of the sender, addr is either a public
key for an implicit account (in case of a simple transfer) or a public hash for
a smart contract (for an invocation), p is the argument passed to the smart
contract, which is empty for a simple transfer, and fee is the amount of tokens
for the transaction fee. In originate, code is the script of a smart contract and s
is the initial value of the contract’s storage. Each operation returns an operation
hash oph, on which we can query the status of the operation.

The local node offers several ways to query the current state of the blockchain.
Some query operators are defined by the following grammar:

qop ::= balance | status | storage | contract | . . .

We obtain the balance associated with an implicit account or a contract by its
public key or public hash, respectively; the status of a submitted operation by
its operation hash; the stored value of a contract by its public hash; and the
public hash of a contract by the operation hash of its originating transaction.

The domain-specific types come with different guarantees. Values of type Puh
and Puk as well as Addr are not necessarily valid, as there might be no contract
associated with a hash/no account associated with a public key. In contrast, a
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c ::= i | fix | oph | puh | puk | code | nt | () | False | True
st ::= pending | included(i) | timeout

err ::= xPrg | xBal | xCount | xFee | xPub | xPuh | xArg | xInit
e ::= c | st | err | x | λx.e | ee | e + e | e = e | e and e | e or e | not e

| (e, e) | nil | cons e e | left e | right e | some e | none | match e with pat e . . .

| raise e | try e except e | (e : T ⇒ U)

| qop e | transfer e from e to e arg e fee e

| originate contract transferring e from e running e init e fee e

pat ::= x | (pat,pat) | nil | cons pat pat | left pat | right pat | some pat | none
| False | True | st | err

T, U ::= Puh | Puk | Addr | Cont T U | Code T U | Oph T U | Status | Exc | Tz
Int Unit Bool Str T U Pair T U List T Or T U Option T

Fig. 1. Syntax of expressions, e, and types, T

value of type Cont T is a public hash that is verified to be associated with a
contract with parameter type T . Operation hashes oph are only returned from
blockchain operations. As the surface language neither contains literals of type
Oph nor are there casts into that type, all values of Oph are valid.

Definition 1. The state of a node is a pair N = [e,A], where e is a set of
programs and A ⊆ Pak × Puk is a set of implicit accounts.

Queries and operations are started by closed expressions of type unit that run
on the local node. Each program can send transactions on behalf of any account
on the local node. Figure 1 defines the syntax of lambda calculus with sum,
product, list, and option types, exceptions and fixpoint. Pattern matching is the
only means to decompose values, cf. pat. The execution model envisions off-chain
programs interacting with smart contracts on the blockchain. The programs are
defined using expression scripts. The off-chain scripts run on behalf of a single
entity.

Domain-specific primitive types and constants c support blockchain interac-
tion, as well as several exceptional values collected in err. There is syntax to
initiate transfers and to originate contracts as well as for the queries. Finally,
there is a type cast (e : T ⇒ U), which we describe after discussing types. An
implementation provides all of these types and operations via a library API.

Types (also in Fig. 1) comprise some base types as well as functions, pairs,
lists, sums, and option types. These types are chosen to match with built-in types
of Michelson. There are domain specific types of public hashes Puh and public
keys Puk subsumed by a type of addresses Addr. Cont T U is the type of a con-
tract with parameter type T and storage type U . Code T U indicates a Michelson
program with parameter type T and storage type U . Tezos tokens have type Tz.
The type Oph T U signifies operation hashes returned by blockchain operations.
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E ::= [ ] | sc[v E e] | raise E | try E except e | match E with pat e . . .

v ::= c st err λx.e (v,v) nil cons v v left v right v some v none

Fig. 2. Evaluation contexts and values

The parameters of the hash carry the types when originating a contract. Oth-
erwise, they are set to the irrelevant type �. We take the liberty of omitting
irrelevant type parameters, that is, we write Oph for Oph � �. Querying the
status of an operation returns a value of type Status. Exceptions have type Exc.

Figure 2 defines evaluation contexts EC and values v. Here sc ranges over
the remaining syntactic constructors, which are treated uniformly: evaluation
proceeds from left to right. Values are standard for call-by-value lambda calculus.

Type casts are only applicable to certain pairs of types governed by a relation
<:, which could also serve as a subtyping relation. It is given by the axioms
Puh <: Addr, Puk <: Addr, and Cont T U <: Puh. A cast from T to U is only
allowed if T <: U (upcast) or U <: T (downcast). Upcasts always succeed, but
downcasts may fail at run time. In particular, public hashes and public keys
can both stand for addresses. Moreover, a smart contract with parameter type
T is represented by its public hash at run time. The corresponding downcast
must check whether the public hash is valid and has the expected parameter
and storage type.

Figure 3 presents selected typing rules for expressions. We rely on an external
typing judgment �C code : T for the contract language, which we leave unspec-
ified, and �V s : T for serialized values as stored on the blockchain. The latter
judgment states s is a string parseable as a value of type T .

3.2 Global Structures

Our execution model abstracts from the particulars of the blockchain imple-
mentation, like the peer-to-peer structure or the distributed consensus protocol.
Hence, we represent the blockchain by a few global entities: managers, contrac-
tors, and a pool of operations.

A manager keeps track of a single implicit account. Managers are represented
by a partial map M : Puk ↪→ Bal×Cnt. If M(puk) = 〈bal, cnt〉 is defined, then
puk is the public key of an account, bal is its balance and cnt is its counter
whose form is a value-flag pair (n, b) ∈ N × Bool, where n is the value of the
counter and b is its flag. The counter is used internally to serialize transactions.

A contractor manages a single smart contract. Contractors are represented
by a partial map C : Puh ↪→ Code × t × Bal × Storage. If C(puh) = 〈code,
t,bal, storage〉 is defined, then puh is the public hash of a contract, code is its
code, t is the time when it was accepted, bal is its current balance, and storage
is its current storage. The hash puh is self-verifying as it is calculated from the
fixed components code and t. All time stamps will be different in our model.
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Γ � i : Int Γ � oph : Oph T U Γ � puh : Puh Γ � puk : Puk

�C code : Pair Tp Ts

Γ � code : Code Tp Ts

Γ � nt : Tz Γ � () : Unit Γ � False : Bool

Γ � True : Bool Γ � pending : Status Γ � timeout : Status

Γ � e : Int
Γ � included(e) : Status

Γ � err : Exc Γ � x : Γ (x)
Γ,x : T ′ � e : T

Γ � λx.e : T ′ T

Γ � e : T ′ T Γ � e′ : T ′

Γ � e e′ : T

Γ � e : T Γ � e′ : T ′

Γ � (e, e′) : Pair T T ′
Γ � e : Exc

Γ � raise e : T

Γ � e : T Γ � e′ : Exc T

Γ try e except e′ : T

Γ � e : T T <: U ∨ U <: T

Γ (e : T U) : U

Fig. 3. Typing rules for expressions (excerpt)

Γ � e1 : Tz Γ � e2 : Puk Γ � e3 : Puk Γ � e4 : Unit Γ � e5 : Tz
Γ � transfer e1 from e2 to e3 arg e4 fee e5 : Oph � �

Γ � e1 : Tz Γ � e2 : Puk Γ � e3 : Cont Tp Ts Γ � e4 : Tp Γ � e5 : Tz
Γ � transfer e1 from e2 to e3 arg e4 fee e5 : Oph � �

Γ � e1 : Tz Γ � e2 : Puk Γ � e3 : Code Tp Ts Γ � e4 : Ts Γ � e5 : Tz
Γ � originate contract transferring e1 from e2 running e3 init e4 fee e5 : Oph Tp Ts

Γ � e : Addr
Γ � balance e : Tz

Γ � e : Oph T U

Γ � status e : Status
Γ � e : Cont Tp Ts

Γ � storage e : Ts

Γ � e : Oph T U T �= � U �= �
Γ contract e : Cont T U

Fig. 4. Typing rules for blockchain operations and queries

When an operation is started on a node, it enters a pool as a pending oper-
ation. A pending operation is either dismissed after some time or promoted to
an included operation, which has become a permanent part of the blockchain.

The pool is a partial map P = Oph ↪→ Op × Time × Status where

Status = pending + included Time + timeout

such that if P(oph) = 〈op, t, st〉 is defined, then oph is the public hash of the
operation, op is the operation, t is the time when the operation was injected, and
st is either pending, included t′, or timeout. A pool P is well-formed if, for all
oph, P(oph) = 〈op, t, included t′〉 implies t′ ≥ t and oph = genOpHash(op, t).
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A pending operation is represented by oph �→ 〈op, t,pending〉. Once
the operation is accepted, it changes its status to included: oph �→
〈op, t, included t′〉, where t′ ≥ t is when the operation was included in the
blockchain. The operation may also be dropped at any time, which is repre-
sented by oph �→ 〈op, t, timeout〉. There are several causes for dropping, pri-
marily timeout or overflow of the pending pool which is limited in size in the
implementation.

In summary, the state of a blockchain is a tuple B = [P,M,C, t] where P is
a pool of operations, M is a map of managers, C is a map of contractors, and t
is the current time.

We often use the dot notation to project a component from a tuple. For
instance, we write B.M to access the managers component.

A blockchain configuration has the form B[N1, . . . ,Nn], for some n > 0,
where B is a blockchain and the Ni are local nodes, for 1 ≤ i ≤ n. In a well-
formed configuration, the accounts on the local nodes are all different and each
local account has a manager in B:

1. for all 1 ≤ i < j ≤ n, Ni.A ∩ Nj .A = ∅;
2. for all 1 ≤ i ≤ n, ∀a ∈ Ni.A =⇒ a.puk ∈ dom(B.M).

4 Operational Semantics

The operational semantics is defined by several kinds of transitions:

1. −→E single-step evaluation of an expression in a local node,
2. −→N internal transitions of a node,
3. −→B transitions of the blockchain state,
4. −→ blockchain system transitions.

Evaluation of expressions is standard for call-by-value lambda calculus
defined using evaluation contexts E[]. Figure 5 shows some of the reduction rules.
The internal transitions of a node are just evaluation of expressions.

Node-Eval
e −→E e′

[E[e] :: e,A] −→N [E[e′] :: e,A]

E[(λx.e)v] E E[e[v/x]] E[try v except e] E E[v]

T <: U

E[(v : T U)] E E[v]
try /∈ F[]

E[try F[raise v] except e] E E[e v]

Fig. 5. Select expression reduction rules (pattern matching omitted)
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Node-Inject
〈pak,puk〉 ∈ A chkBal(M,puk,nt, fee) chkArg(C,puh,p)
chkCount(M,puk) chkPuh(C,puh) chkFee(C,puh,p, fee)

oph = genOpHash(op, t) op = transfer nt from puk to puh arg p fee fee

[E[op] :: e,A]‖[P,M,C, t] [E[oph] :: e,A]‖[oph 〈op, t, pending〉 :: P,
updCount(M,puk,True),C, t]

Node-Reject
¬ chkBal(B.M,op.puk,op.nt,op.fee)

[E[op] :: e,A]‖B [E[raise xBal] :: e,A]‖B

Block-Accept
op = transfer nt from puk to puh arg p fee fee t − t̂ ≤ 60

[oph 〈op, t̂, pending〉 :: P,M,C, t] B [oph 〈op, t̂, included t〉 :: P,
updSucc(M,puk,nt, fee), updConstr(C,puh,nt,p), t+ 1]

Block-Timeout
t − t̂ > 60

[oph 〈op, t̂, pending〉 :: P,M,C, t] B [oph 〈op, t̂, timeout〉 :: P,
updCount(M,op.puk,False),C, t]

Fig. 6. Lifecycle transitions of a transaction

The remaining transitions affect a local node in the context of the blockchain.
To this end, any local node may be selected.

Config-System
N‖B −→ N′‖B′

B[N :: N] −→ B′[N′ :: N]

Config-Node
N −→N N′

B[N :: N] −→ B[N′ :: N]

Config-Block
B −→B B′

B[N] −→ B′[N]

Figure 6 shows the transitions to start and finalize a contract invocation.
Node-Inject affects a local node and the blockchain. It nondeterminstically
selects a program that wants to do a transfer operation. It checks whether the
sender of the transfer is a valid local account, whether the balance is sufficient
to pay the fee and the transferred amount, whether there is an active transition
for this sender (chkCount), whether the public hash is associated with a smart
contract on the blockchain, whether the type of the input parameter matchs
with the smart contract’s parameter type (chkArg), and whether the fee is suf-
ficient. If these conditions are fulfilled, the transition forges an operation hash
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Contract-Yes
�C code : Pair T U B.C(puh) = 〈code, t̃,nt′, s′〉

[E[(puh : Puh ⇒ Cont T )] :: e,A]‖B [E[puh] :: e,A]‖B

Contract-No
B.C(puh) = 〈code, t̃,nt′, s′〉 ⇒ �C code : Pair T ′ U ∧ T �= T ′

[E[(puh : Puh Cont T )] :: e,A] B [E[raise xPrg] :: e,A] B

Fig. 7. Cast reductions (excerpt)

and returns it to the local node. The pending operation enters the pool and the
sender’s counter is set to indicate an ongoing transition.

We give just one example Node-Reject of the numerous transitions that
cover the cases where one of the premises of Node-Inject is not fulfilled. Each
of them raises an exception that describes which condition was violated.

Acceptance or rejection of a pending operation happens on the blockchain
independent of any local node. In our model, these transitions are nondeterminis-
tic so that acceptance can happen any time in the next 60 cycles Block-Accept.
Afterwards, a pending operation can only time out Block-Timeout. If the trans-
action is accepted, then the sender’s counter is reset, the balances of sender is
adjusted (updSucc), the smart contract’s storage and balance are updated (upd-
Constr), and the time stamp increases.

Whereas Node-Inject and Block-Accept are particular to the transfer oper-
ation, the timeout transition applies to all operations. It just changes the state of
the operation and resets the sender’s counter, thus rolling back the transaction.

4.1 Cast Reductions

Figure 7 contains the most interesting example of cast reductions, from a public
hash to a typed contract. These reductions force the local node to obtain infor-
mation from the blockchain. The cast succeeds on puh (‘CONTRACT-YES’), if
there is a contractor for puh such that the stored code has the parameter type
expected by the cast. The cast fails (‘CONTRACT-NO’), if puh is invalid or if
the types do not match.

4.2 Smart Contracts

The invocation of smart contracts is similar to a transfer, so we elide the details.
Figure 8 contains the transition Block-Originate to originate a smart contract.
The basic scheme is similar to the transfer. The preconditions for the operation
are checked, but there are extra preconditions for origination: the program must
be well-formed and typed, the initial storage value must match its type. The
operation ends up in the pool in pending status.
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Block-Originate
〈pak,puk〉 ∈ A

chkBal(M,puk,nt, fee) chkCount(M,puk) chkPrg(code)
chkFee(code, s,nt, fee) chkInit(code, s) oph = genOpHash(op, t)

op = originate contract transferring nt from puk running code init s fee fee

[E[op] :: e,A]‖[P,M,C, t] [E[oph] :: e,A]‖[oph 〈op, t, pending〉 :: P,
updCount(M,puk,True),C, t]

Block-Originate-Accept
op = originate contract transferring nt from puk running code init s fee fee

puh = genHash(code, t) t − t̂ ≤ 60

[oph 〈op, t̂, pending〉 :: P,M,C, t] B [oph 〈op, t̂, included t〉 :: P,
updSucc(M,puk,nt, fee),puh 〈code, t,nt, s〉 :: C, t+ 1]

Block-Accept-Query
op = originate contract transferring nt from puk running code init s fee fee

P(oph) = 〈op, t̂, included t̃〉 puh = genHash(code, t̃)
[E[contract oph] :: e,A] [P,M,C, t] [E[puh] :: e,A] [P,M,C, t]

Fig. 8. Smart contract origination

Query-Balance-Implicit
B.M(puk) = 〈bal, cnt〉

[E[balance puk] :: e,A]‖B [E[bal] :: e,A]‖B

Query-Balance-Fail
puk /∈ dom(B.M)

[E[balance puk] :: e,A] B [E[raise xPub] :: e,A] B

Fig. 9. Example queries

Acceptance of origination is slightly different as for transfers as shown in
Block-Accept. We calculate the public hash puh of the contract from the code
and the current time stamp and create a new contractor at that address.

We obtain the handle of the contract through a query, once the contract is
accepted on the blockchain in Block-Accept-Query. The query’s argument is
the operation hash, which is used to obtain the code and the time stamp of its
acceptance. From this information, we can re-calculate the public hash.

4.3 Queries

We conclude with two example transitions for a simple query in Fig. 9. To obtain
the balance of an implicit account puk, we obtain the account info from the
manager and extract the balance (Query-Balance-Implicit). If the account is
unknown, then we raise an exception (Query-Balance-Fail). Other queries are
implemented analogously.
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5 Properties

Having defined our execution model, we proceed to prove properties of the
combined systems that ensure type-safe interaction between programs and the
blockchain.

5.1 Properties of Blockchain State Transitions

One interesting property we wish to prove is that the execution of a program
that starts with valid references to accounts, operations, and contracts is not
corrupted by a transition.

Proposition 1. The following properties are preserved by a step on a well-
formed configuration [e,A]‖B:

– for all oph in e, oph ∈ dom(B.P),
– for all puk in e, puk ∈ dom(B.M),
– for all puh in e, puh ∈ dom(B.C).

Proposition 2. If [P,M,C, t] −→B [P′,M′,C′, t′], then

1. t ≤ t′

2. dom(P) ⊆ dom(P′)
3. invariant for the pool: if P(oph) = 〈op, t̂, st〉, then oph = genOpHash(op, t̂).
4. for all oph ∈ dom(P ), if P(oph) = 〈op, t̂, st〉, then either

– P′(oph) = P(oph); or
– st = pending and P′(oph) = 〈op, t̂, timeout〉; or
– st = pending, t − t̂ ≤ 60, P′(oph) = 〈op, t̂, included t〉, and t′ = t + 1.

5. for all oph ∈ dom(P ) and P(oph) = 〈op, t̂, st〉,
– if st = pending and M(op.puk) = 〈bal, cnt〉 then cnt.b = True and

bal ≥ op.nt + op.fee;
– if st = included t̂, then t̂ < t′.

6. dom(M) ⊆ dom(M′)
7. for all puk ∈ dom(M)

if M(puk) = 〈bal, cnt〉, then M′(puk) = 〈bal′, cnt′〉 and
– if cnt.b = True and cnt′.b = False, then cnt.n′ ∈ {cnt.n, cnt.n + 1},
– otherwise cnt.n = cnt′.n
– If cnt.n = cnt′.n, then bal = bal′.

8. dom(C) ⊆ dom(C′)
– for all puh ∈ dom(C), C(puh).code = C′(puh).code

9. invariant for contractors: for all puh ∈ dom(C),
C(puh) = 〈code, t̃, bal, storage〉 implies that puh = genHash(code, t̃).

Establishing items 4 and 7 relies on the preimage resistance of the various hash
functions used to calculate operation hashes and public hashes: we always feed
a fresh timestamp into the hash functions for operations and code. Items 2–5
describe an invariant and the lifecycle of operations. Items 6 and 7 describe the
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lifecycle of a transfer and items 8 and 9 describe invariants for contractors. The
invariants establish the self-verifying property common of blockchain entities.

The proofs of these properties refer to all transitions with the detailed spec-
ifications of the related functions, such as chkCount and updSucc. Due to page
limitations, not all transitions and their associated functions are presented in
this paper, so the full proofs will be provided in an upcoming technical report.
In this paper, we only provide the proofs for Proposition 2 at items 4 and 7.

Proof (4). After feeding into a node, the status of the operation is pending
according to the transition Node-Inject. This operation could either be accepted
by the blockchain on the condition that the elapsed time is less than 60 (t− t̂ ≤
60), and then its status is included t (the transition Block-Accept) or it is timed
out with the timeout status (Block-Timeout). When an operation is accepted
or timed out, its status is never changed. Therefore, if P(oph) = 〈op, t̂, st〉,
then there are three cases:

(1) if the operation’s status remains the same as st (still in pending, included
or timeout), then we have P′(oph) = 〈op, t̂, st〉. This means P′(oph) =
P(oph);

(2) if the operation’s status is pending (st = pending), and then the operation
is timed out, then we have P′(oph) = 〈op, t̂, timeout〉 according to the
transition Block-Timeout;

(3) if the operation’s status is pending, the time condition is satisfied, and then
the operation is accepted, then we have P′(oph) = 〈op, t̂, included t〉 and
t′ = t + 1 because the timestamp is incremented by one according to the
transition Block-Accept.

From (1), (2) and (3), the item 4 of Proposition 2 is proved.

Proof (7). To prove this point, let us consider the two related functions. The
function updCount(M,puk,b) updates the flag of the counter of the account
associated with the public key puk. Its specification is as follows:

updCount(puk �→ 〈bal, (n, b̂)〉, b) = puk �→ 〈bal, (n,b)〉
The function updSucc(M,puk,nt, fee) updates the balance and the counter

of the account associated with the public key puk. Its specification is as follows:

updSucc(puk �→ 〈bal, (n,True)〉, nt, fee) = puk �→ 〈bal − nt − fee, (n +
1,False)〉

if M(puk) = 〈bal, cnt〉, then M′(puk) = 〈bal′, cnt′〉 and we have:

(1) cnt.b = True means that the operation is injected and its status is pending
at the time t according to the transition Node-Inject. After that, there are
only two cases where the counter’s flag is reset to False. If the operation is
accepted, the counter’s flag is reset (cnt′.b = False) according to the tran-
sition Block-Accept and the counter’s value is incremented by 1 according
to the specification of the function updSucc (cnt.n′ = cnt.n+1). In another
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case, if the operation is timed out, the counter’s flag is also reset to False,
but the value of the counter remains the same (cnt.n′ = cnt) according to
the transition Block-timeout. That is, if cnt.b = True and cnt′.b = False,
then cnt.n′ ∈ {cnt.n, cnt.n + 1};

(2) otherwise, if the operation is still pending, the counter’s value remains the
same. This means cnt.n = cnt′.n;

(3) and then cnt.n = cnt′.n means that the operation is either still pending or
it has timed out. Therefore, the balance of the account remains the same
because the balance is only changed when the operation is accepted. This
means bal = bal′.

From (1), (2) and (3), the item 7 of Proposition 2 is proved.

5.2 Typing Related Properties

To describe the typing of contracts we maintain an environment Δ ::= · | puh :
T,Δ that associates a public hash with a type. We define typing for blockchains,
local nodes, and configurations.

dom(Δ) = dom(B.C) (∀puh ∈ dom(Δ)) Δ(puh) = Pair Tp Ts

�C B.C(puh).code : Pair Tp Ts �V B.C(puh).storage : Ts

Δ � B

The type for a hash is a pair type, which coincides with the type of the code
stored at that hash. The storage at that hash has the type expected by the code.

· � ei : Unit
� [e,A] ok

Δ � B � Ni ok

Δ � B[N]

Lemma 1 (Preservation). If B[N] −→ B′[N′] and Δ � B[N], then there is
some Δ′ ⊇ Δ such that Δ′ � B′[N′].

This lemma includes the standard preservation for the lambda calculus part.

Lemma 2 (Progress). If Δ � B[N], then either all expressions in all nodes
are unit values or there is a configuration B′[N

′
] such that B[N] −→ B′[N

′
].

The consistency lemma says that all committed transactions respect the typing.

Lemma 3 (Consistency). Consider a blockchain state with Δ � [P,M,C, t].
For all oph ∈ dom(P), if P(oph) = 〈op, t̂, st〉

– if op = transfer nt from puk to puk′ arg () fee fee, then
puk,puk′ ∈ dom(M);

– if op = transfer nt from puk to puh arg p fee fee, then
• puk ∈ dom(M) and puh ∈ dom(C),
• �V p : Tp where Δ(puh) = Pair Tp Ts;
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– if op = originate contract transferring nt from puk running code init s fee
fee and st = included t′, then

• puk ∈ dom(M) and puh = genHash(code, t′) ∈ dom(C),
• Δ(puh) = Pair Tp Ts, �C code : Pair Tp Ts and �V s : Ts.

Proof. Consider the proof of the second item of Lemma 3, which specifies the
property on type for a smart contract invocation. A smart contract call op has
the form transfer nt from puk to puh arg p fee fee. If P(oph) = 〈op, t̂, st〉,
then the operation op is injected into the node. According to the transition
Node-Inject for a smart contract invocation, the public key is valid and the
public hash must be associated with a smart contract on the blockchain. This
means puk ∈ dom(M) and puh ∈ dom(C). Moreover, the chkArg function
checks whether the type of the input parameter p matches the parameter type
of the smart contract. If the casted type of the smart contract is Δ(puh) =
Pair Tp Ts, then the type of the parameter must be Tp. This means �V p : Tp.
Therefore, this item is proved.

6 Related Work

The inability to access external data sources limits the potential of smart con-
tracts. Oracles [3,6,13] can help overcome this limitation by providing a bridge
between the outside sources and the blockchain network. A blockchain oracle is
used to provide external data for smart contracts. When the external data is
available, an oracle invokes a smart contract with that information. The invo-
cation can conveniently be made through a programmatic interface. There has
been extensive research on providing oracle solutions for blockchain. Adler et al.
[11] propose a framework to explain blockchain oracles and various key aspects
of oracles. This framework aims to provide developers with a guide for incorpo-
rating oracles into blockchain-based applications. The main problems with using
a blockchain oracle are the untrusted data provided maliciously or inaccurately
[1]. Ma et al. [10] propose an oracle equipped with verification and disputation
mechanisms. Similarly, Lo et al. [9] provide a framework for performing reliability
analysis of various blockchain oracle platforms.

Current blockchains such as Ethereum [5] and Tezos [8] often offer RPC APIs
and use loosely structured data, such as a JSON-based format that is difficult
for a programmatic program to handle. As a result, there is increasing work
to provide better programmatic interfaces to blockchains. Web3.js [15] provides
an Ethereum JavaScript API and offers Java Script users a convenient interface
to interact with the Etherum blockchain. Later, Web3.py [16], derived from
Web3.js, is developed to provide a Python library for interacting with Ethereum.
Our typed API not only supports for programmatic programs, but also provides
verifiable interaction with the Tezos smart contract platform.
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7 Conclusion

We present a first step towards a typed API for smart contracts on the Tezos
blockchain. Our formalization enables us to establish basic properties of the inter-
action between ordinary programs and smart contracts. We see ample scope
for future work to provide a higher-level interface that exploits the similari-
ties between blockchain programming and concurrent programs. The next step
will be to formalize the typing-related results. The formalization could connect
with the Mi-Cho-Coq formalization of Michelson contracts [4]. In the end, we
would like to state and prove properties of a system that contains OCaml code
(multi-threaded or distributed) connected to Michelson contracts on the Tezos
blockchain via the typed API.
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Abstract. We propose preprocessing techniques that improve efficiency
of testing language emptiness of alternating automata. We target mainly
automata that come from practical application such as processing reg-
ular expressions, LTL formulae, or string solving. Such automata often
have large alphabets and transition relations represented by succinct and
complex Boolean formulae that are more or less unrestricted and may
even mix symbols with states. Our main contribution are simplification
methods that can be seen as originating from a limited form of determini-
sation. Our transformations simplify the transition formulae and decrease
the number of states. We evaluate experimentally that our preprocessing
is beneficial when used together with most of the existing algorithms.
It generally improves running times and allows to solve examples that
could not be solved before within the given timeout.

1 Introduction

Finite alternating automata with their conjunctive branching are exponentially
more succinct than normal non-deterministic automata [10,25]. They can be
especially practical in applications where automata are combined with Boolean
and similar operations, as demonstrated in works on string solving, e.g. [2,35],
LTL model checking, e.g. [15,17,34], testing properties of regular expressions
and their combinations [11,12], and also deciding logics as WS1S [16,33] (with
their “language/automata terms” or “formula derivatives” that may be seen
as generalisation of AFA), and have a great potential in a number of other
applications such as regular model checking (e.g. [3,6,37]) or deciding linear
arithmetic with automata (e.g. [4,36]).

The price for the succinctness of AFA is the PSPACE-completeness of the
language emptiness test. Using AFA instead of non-deterministic finite automata
(NFA) thus does not decrease the worst case complexity, but it allows for post-
poning the payment of the computational cost from construction of the automata
to their language emptiness test (indeed, a naive AFA emptiness test would use
a worst case exponential conversion to an NFA). The fact that only the empti-
ness of the AFA language is of interest, not the explicit NFA, can be used to

This work has been supported by The Czech Science Foundation (GAČR), project No.
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a great advantage. A number of algorithms for deciding the emptiness question
use sophisticated heuristics to avoid constructing of the entire NFA. We can
name antichain algorithms of [38], later extended with an abstraction refine-
ment scheme [18], the congruence closure based algorithm [13], and adaptations
of model checking algorithms [22,35] such as Impact [27] or IC3/PDR [7,12,21].
These algorithms improve scalability of AFA emptiness testing a great deal.
Large and complex AFA however still remain a bottleneck.

In this paper, we contribute to the state of the art of solving AFA emptiness by
devising a set of lightweight AFA preprocessing steps that improve performance
of language inclusion testing algorithms. We concentrate on alternating automata
such as those that come from applications areas of string solving, processing of
regular expressions, or translation from LTL formulae. They are characterised by
large alphabets (such as UNICODE with 232 symbols) that need to be encoded
symbolically and a complex Boolean structure of transitions. Our heuristics sim-
plify the Boolean structure of transitions and decrease the number of states.

We propose to use preprocessing steps of several categories. The basic prepro-
cessing uses transformations of the Boolean structure of the transition formulae
such as absorption or idempotence. Although relatively simple and common sense,
they are efficient and may even solve the emptiness problem by themselves. We do
not claim these transformations as entirely novel, similar and more sophisticated
heuristics in this spirit are used for simplification of and-inverter graphs [28]. Yet,
our version has some differences (such as n-ary ∧ and ∨-nodes that give a larger
reach to some local transformations) and our particular implementation of the
basic transformations seems to be working well on our experimental data and does
not seem superseded by the implementation of [28] in the model checker ABC [8].

Our main contribution is a pair of heuristics that simplify the transition for-
mulae and decrease the number of states. They assume the transition formulae in
the form of a directed acyclic graph (transition formulae DAG) with nodes being
sub-formulae of transition formulae (different occurrences of the same formula
share the same DAG node).

The first of the new preprocessing steps may be seen as a limited, local variant
of determinisation. Even though the full determinisation of AFA could be even
doubly exponential in the worst case, its limited forms may be used to remove
redundancies and ultimately decrease the automata size. An example of this is the
Brzozovski minimisation [9] where an NFA is transformed into its minimum DFA
by inverting, determinising by subset construction, and inverting and determinis-
ing again. The determinisation by subset construction can be generalised to AFA
as a “configuration formula” construction where the states of the DFA are not sets
of states but Boolean formulae. To prevent the construction from exploding, which
the full determinisation would be prone to, we limit the determinisation to local
parts of the automaton where it indeed tends to reduce the size of the automa-
ton rather than increase it. We also call this optimisation up-shifiting, since in the
transition formulae DAG view of the transition function, the construction may be
seen as shifting states upwards through the sub-formulae that are purely made of
states (they do not talk about symbols). Figure 1 shows an example.
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Fig. 1. State up-shifting. The left-most graph is an input AFA (its transition graph)
with states q1, q2, q3, initial state q1, a symbol variable v1, and the transition function
δ assigning transition formulae to states so that δ(q1) = q2 ∧ q3, δ(q2) = q1, δ(q3) = v1.
The second graph from left is the transition function δ of the input AFA as a function
assigning nodes of the transition formulae DAG to states. The right part of the figure
shows δ and the AFA after the up-shifting. The conjunction of states φ = q2 ∧ q3 is
up-shifted—it is replaced by a single state [φ]. After the currently unreachable states
q2, q3 are removed, the resulting automaton has a smaller number of states.

The second novel construction arises by extrapolating the intuition behind the
local determinisation—instead of upwards, we can also shift states downwards
through the formulae DAG. This may in theory lead to reverting the effect of the
up-shifting, but when applied carefully, it gives significant additional savings in
the number of states. The heuristic namely finds minimum cut through the tran-
sition formulae DAG and replaces the existing set of states by states transition-
ing to the nodes of the cut. The minimality of the cut guarantees that the new
states will be at most as many as there were the old states. We call this heuristic
down-shifting. Down-shifting may slightly resemble the concept of retiming from
hardware circuit optimisation [23,29]. Nevertheless, we have verified experimen-
tally that turning retiming on in the ABC tool does not have a significant impact
on model checking of the automata problems, while down-shifting has.

We design the heuristics carefully in order for them to be implementable with
a small cost relative to the overall cost of the emptiness testing. Especially the
local determinisation requires a well though algorithm to achieve this. Indeed, we
experimentally verify that our implementation, despite made in Haskell without
thorough focus on optimisation, is fast enough for the preprocessing cost to
be almost negligible. We have tested the power of the preprocessing on AFA
from several applications, namely, translated from LTL formulae [13], created
during deciding string constraints [22], and combinations of regular expressions
[12,13]. Our experiments show that depending on the type of benchmark, the
preprocessing may have significant impact on performance of emptiness checkers
and allows them to solve some examples that could not be solved before by any
of the checkers within a relatively generous timeout.

2 Preliminaries

A Boolean formula ψ over a set X is constructed as ψ ::= 0 | 1 | x |

∨
Φ |

∧
Φ | ¬φ

where x ∈ X, φ is a Boolean formula, and Φ is a set of Boolean formulae. Note
that the commutativity of the operators is implicit in this definition and we will
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treat it as such through the paper, even though we may write e.g. φ∧ψ to denote
∧
{φ, ψ}. The constants 0 and 1 stand for the false and true formulae, respectively.

We use B(X) to denote the set of all Boolean formulae over X. A positive Boolean
formula is a Boolean formula without negation and 0 and B

+
(X) is the set of

all positive Boolean formulae over X. The semantics is standard, with f |= φ
denoting that the assignment f : X → {0, 1} satisfies (is a solution of) φ.

Alphabet. Let V = {v1, v2, . . .} be a set of symbol-variables. An assignment a :
V → {0, 1} is a symbol and Σ is the alphabet, the set of all symbols. A word is a
sequence of symbols and Σ∗ is the set of all (finite) words.

Alternating Automata. We consider alternating automata in a succinct form (in
which they naturally arise in some applications in string solving or processing of
regular expressions). This form handles large alphabets symbolically by means
of encoding symbols as bit-vectors, and the transition relation for each state is
given as a Boolean formula over states and symbol-variables. The solutions of the
transition formula encodes both the symbol as well as the set of states into which
the state can transition. The formula allows to mix symbol variables and states
almost arbitrarily, the only restriction is that states do not appear under negation.

Formally, an alternating finite automaton (AFA) is a quadruple M =

(Q,V, δ, ι, F) where 1) Q is a finite set of states; 2) V is a finite set of symbol-
variables; 3) δ : Q → B

+
(Q ∪ B(V)) is a transition function; 4) ι ∈ Q is the initial

state; and 5) F ⊆ Q is a set of final/accepting states. An example of an AFA is in
Fig. 1.

A configuration of M is a mapping c : Q → {0, 1}. We will often abuse
the notation and treat configurations c as the sets {q | c(q) = 1} of which
they are characteristic functions (we write q ∈ c to denote c(q) = 1 and relate
configurations using ⊆). A run of M over a word a1 · · · an ∈ Σ∗ is a sequence
c0, a1, c1, a2, . . . , an, cn of the letters interleaved with configurations where ι ∈ c0,
and for all i : 0 ≤ i < n,

∧
q∈ci δ(q) |= ai+1 ∪ ci+1. The run is accepting if cn ⊆ F.

The language of M is the set L(M) of all accepted words.

Special Forms of AFA. The AFA is separated if every transition formula δ(q), q ∈

Q is a disjunction of the formulae (α1 ∧ ψ1) ∨ (αn ∧ ψn) where αi ∈ B(V) and
ψi ∈ B

+
(Q) for all i. δ is then usually given in the form of a function that returns

for αi and q the state formula δ(q, αi) = ψi.
The standard notion of a non-deterministic (symbolic) finite automaton

(NFA) then corresponds to a separated automaton where every δ(q, αi) is a
literal r ∈ Q. The triple q, αi, r is called a transition and denoted q

αi
−−→ r. A

deterministic (symbolic) finite automaton DFA is an NFA where for every q ∈ Q

and transitions q
α
−→ r and q

α′

−→ r ′ with r � r ′, α ∧ α′ is not satisfiable. We get
the standard, non-symbolic variants of NFA and DFA if the predicate α on their
transitions is satisfied by exactly one symbol.

AFA Without Final States and Language Emptiness. For simplicity, we will
present our preprocessing only for AFA with the empty set of final states (note
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that an AFA without final states accepts at the empty configuration). The deci-
sion problem of language emptiness of an AFA with final states can be easily
reduced to the language emptiness of an AFA without final states: intuitively, the
AFA without final states has the alphabet extended with a new symbol-variable
v$ and under v$ = 1 it can transition to the empty configuration instead of to a
configuration consisting only of final states.

Technically, we transform an AFA M = (Q,V, δ, ι, F) to the automaton M
′

with the empty set of final states as follows. We introduce a new symbol-variable
v$. We replace every occurrence of a non-final state q ∈ Q \ F in the transition
formulae by (q ∧ ¬v$) and every occurrence of a final state qf ∈ F by qf ∨ v$.
Then we empty the set of final states. The new automaton may then transition
to an empty configuration under a symbol with v$ = 1 if the old automaton could
transition to a final configuration. Otherwise it must use the old transitions with
v$ = 0.

Notice that after the modification of δ and emptying of F, the automaton
can accept only by a transition to an empty configuration, and so it cannot
accept the empty word ε (accepted because ι ∈ F). To remedy this, we start the
transformation of M to M

′ by replacing the initial states by a fresh state ι′ with
the transition formula δ(ι′) = ι. The modification of δ and emptying of F is done
after that.

The resulting automaton M
′ without final states then accepts exactly words

of L(M) prefixed with an arbitrary symbol, and so the language of M is empty
if and only if the language of M′ is.

Lemma 1. The language obtained from L(M′
) by projecting the variable v$

away from symbols equals Σ.L(M).

Shared AFA Representation. Through the paper, we will work with shared rep-
resentation of the transition formulae. Most of the implementations we have
experimented with do actually adopt such shared DAG representation. In it, the
sub-formulae of the formulae in the image of δ are nodes of a directed acyclic
graph Gδ , called the transition formulae DAG (formulae DAG for short), which
has an edge from each ¬φ to φ and from each φ◦φ′ to φ and to φ′, for ◦ ∈ {∧,∨}
(that is, from a formula to its immediate sub-formulae). An example of a formu-
lae DAG is shown in Fig. 1.

In some phases of preprocessing of the AFA, the shared representation may
become only partially shared, meaning that some sub-formulae may correspond
to more than one DAG node. Formally, in a partially shared representation, δ
maps states to nodes of a DAG G which is a domain of a graph homomorphism
h : G → Gδ .

Besides the formulae DAG, we will use a concept of a transition graph. It
arises from the formulae DAG by adding the edge from q to the node δ(q) for
every q ∈ Q. We also define reachability of nodes of Gδ and states based on it:
a node or a state is reachable if it is reachable in the transition graph from the
state ι.
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3 Basic Simplification

The basic simplification of the transition function uses mostly standard equiva-
lences of Boolean formulae, removes obvious redundancies in the formulae DAG
to achieve the fully shared form, and merges states with identical transition
formulae.

The basic simplification algorithm iterates three sub-procedures until fixpoint
(the formulae DAG can no longer be changed by either of them). The first sub-
procedure is a bottom-up sweep through the formulae DAG (starting from the
leaves and processing a node after all its children were processed) during which
the following Boolean transformations of the encountered nodes are performed:1

– idempotence laws, that replaces φ ∧ φ or φ ∨ φ by φ,
– identity laws, that replace φ ∨ 0 and φ ∧ 1 by φ,
– domination laws, that replace φ ∨ 0 and φ ∧ 1 by 0 or 1 respectively,
– double negation law, that replace ¬¬φ by φ,
– absorption laws, that replace φ ∧ (φ ∨ ψ) and φ ∨ (φ ∧ ψ) by φ;
– laws of common identities, that replace φ ∨ (¬φ ∧ ψ) by φ ∨ ψ, and, dually,

replace φ ∧ (¬φ ∨ ψ) by φ ∧ ψ,
– propagation of 0 and 1, that replaces in the formulae DAG every state q � ι

with δ(q) = x, x ∈ {0, 1} by x,2
– associative flattening, in which nested conjunctions are flattened into a single

n-ary conjunction. The conjuncts that are originally referenced from multi-
ple parents must however be kept as separate DAG nodes. Analogously for
disjunctions.

The bottom-up sweep also removes duplicities. Nodes are identified by the set of
their children (that are already supposed to appear uniquely in the DAG), and
if a currently processed node is found to have the same children and the same
top-most logical operator as another already existing node, the two are merged.

The second sub-procedure is merging duplicate states. When two states with
δ(q) = δ(r) are found, all occurrences of r are replaced by q and r is removed. We
note that the combination of identity and double negation law and propagation
of 0 and 1 iterated until fixpoint removes all literals 0 and 1 from the transition
formulae, except the case when even δ(ι) becomes 1 or 0 in which the language
emptiness becomes trivial.

The third sub-procedure removes unreachable nodes.

4 Local Determinisation (State Up-Shifting)

The first novel heuristic we use is inspired by the classical determinisation con-
struction. This may seem counter-intuitive, since already non-determinisation of
1 Although we use n-ary operators ∧ and ∨, for simplicity we describe the transfor-

mations with binary versions.
2 Note that is the only step which may alter the language: the new automaton can

now accept earlier, and thus accept a prefix of a word accepted by the original. The
(non)emptiness of the language however stays preserved.
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AFA (transformation to NFA) is exponential, which is the main reason for decid-
ing emptiness directly on alternating automata at the first place, and determin-
isation may lead to yet another level of exponential blow-up. Yet, when applied
in a limited manner, determinisation may simplify the transition relation and
decrease the number of states (a witness of a similar effect is the Brzozowski’s
construction of the minimal DFA [9], where two rounds of determinisation by
subset construction, backward followed by forward, transform any NFA to the
minimal DFA).

The idea is to use determinisation on local parts of the automaton where
it stays cheap and has a good chance of decreasing the size of the automaton.
Here we mean by AFA determinisation a construction similar to that used e.g.
in [26] for Boolean automata. Roughly, for a separated AFA, states of the DFA
are “state formulae”—Boolean formulae over states. The initial DFA state is the
atomic formula q0, the and the successor of a state formula ϕ over a letter α
is obtained from ϕ by substituting each state q in it by δ(q, α). To guarantee
termination, the constructed successor state formulae are taken modulo logi-
cal equivalence or are transformed to some normal form. With not separated
AFA, the substitution would be replaced by a more complex operation, which
would involve some kind of transformation to a separated form, or existential
quantification over the symbol α and quantifier elimination.

The step with a potential to simplify the automaton is the substitution of a
Boolean combination of states by a single state. An example of this is shown in
Fig. 1, where the conjunction of states q2∧q3 is replaced by a new state [q2∧q3].
Whether or not this indeed leads to a simplification depends on whether the
involved states, q2 and q3 in the example, appear in other configuration formula.
Since in the example they do not appear elsewhere, they can be removed. We
note that the name up-shifting comes from that states are moved upwards in
the formulae DAG, as Fig. 1 also shows.

Next, to keep our preprocessing on the level of a lightweight and cheap heuris-
tic, we replace the equivalence check of formulae/transformation to a normal
form (used in determinisation) by a less precise but cheaper mechanism.

In the following paragraphs, we describe the local determinisation in detail.
We describe the sub-procedures and then connect them in a fixed-point iteration.
We assume an AFA M = (ι,Q, δ, ∅) on the input, with the transition function in
the shared form, i.e., δ assigning nodes of the formulae DAG Gδ to states.

4.1 Up-Shifting of States

The main step of local determinisation is the up-shifting. Let us first define
notation needed in its description. We will say that a node of the formulae DAG
or the corresponding formula is pure if it belongs to B

+
(Q) (its literals are only

states). We also define the function Δ that generalizes δ to all formulae in B
+
(Q).

It is defined by the structural induction: for a state q ∈ Q, Δ(q) = δ(q) and for
a pure formula φ other than a state, Δ(φ) is obtained from φ by replacing each
immediate sub-formula ψ by Δ(ψ).
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Given a pure node φ of the formulae DAG, the operation of up-shifting
towards φ substitutes φ by a new state [φ] with the transition formula defined
as δ([φ]) = Δ(φ).

Technically, if the node Δ(φ) is already present in the formulae DAG, then
it may be directly used. If the node Δ(φ) is not present, then it is constructed
following the inductive definition of Δ(φ): We call a recursive procedure with
the input parameter φ that returns Δ(φ) if it exists in the DAG, and otherwise
the procedure recursively calls itself on the immediate sub-formulae of φ and
constructs Δ(φ) from the returned nodes.

Figure 1 shows an example where up-shifting decreases the size of an
automaton.

Lemma 2. Up-shifting preserves language (non)emptiness, and, assuming that
the formulae DAG does not contain the literal 1, it also preserves the language.3

Proof (idea). The proof of Lemma 2 is based on showing that the language
accepted from the state [φ] created by the up-shifting is obtained inductively to
the structure of φ from the languages of the literal states of φ. Recall that φ is
pure, that is, it is a boolean combination of states, and a boolean combination
of states can be expressed by a single state as outlined above. �

4.2 Preventing Nested Substitution

Up-shifting will be iterated until it has an effect. The procedure that generates
Δ(φ) during up-shifting may generate new pure nodes and these may be even-
tually also up-shifted. Due to loops in the reachability graph, this may cause
nontermination of up-shifting, as illustrated in Fig. 2. Essentially, the repetitive
application of up-shifting creates logically equivalent nodes and states with an
unboundedly nested structure.

A conceptually easy and natural way to prevent this would be the following:
Whenever a new node φ is created within up-shifting, search for an existing node
φ′ with φ ≡ φ′ and, if found, use φ′ in place of φ (similarly for states—we can test
logical equivalence of states after pruning from them all, possible nested, square
brackets). However, comparing the semantics of all existing nodes with φ would
be expensive. We hence opt for a much cheaper and light-weight termination
criterion. Even though it is, in theory, more strict, it is still sufficiently liberal
according to our empirical experience.

Namely, prior to the up-shifting procedure, we perform the depth first traver-
sal through transition graph starting at the initial state ι and we collect a set of
back edges (edges that lead in the tree induced by the DFS from a descendant
to a predecessor). Every cycle in the transition graph must contain a back edge.
Since we then work with the formulae DAG, which does not include the edges
from states q to their transition formulae δ(q), some of the back edges could be
lost. To prevent this, we modify the set of back edges after the DFS: every back
3 The assumption will be satisfied in our context since up-shifting will always be

preceded by the basic preprocessing from Sect. 3 that eliminates the literals 0 and 1.
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Fig. 2. Nontermination of unrestricted repeatition of up-shifting. The figure shows
two repetitions of up-shifting, proceeding from left to right. The first one replaces
node φ = q1 ∧ q2 with the state [φ], the second replaces ψ = q2 ∧ [φ] with state
[ψ] = [q2 ∧ [φ]] = [q2 ∧ [q1 ∧ q2]]. Notice the nested structure of the new state [ψ]

and also that the sub-graphs of all the three transition graphs induced by the bottom
three nodes are isomorphic. Further repetition of up-shifting would lead to creation of
more and more nested states and transition graphs where the same isomorphic sub-
graph is reached through a longer and longer initial string of states. (the figure uses
the graphical convention as in Fig. 1)

edge leading from a state q to δ(q) is removed from the set of back edges and in
its place, we add all the edges leading to q. The new set of back edges still has a
back edge in every cycle of the transition graph and all the back-edges now stay
fully preserved also in the formulae DAG.

The rule restricting the up-shifting then applies when every path from the
node of the DAG to its leaf states contains a back edge. We call such DAG node
a loop head. Up-shifting is not applied on loop heads.

Through the run of local determinisation, the formulae DAG is modified and
we need to preserve the invariant that every cycle in the transition graph has
a back edge. Running the entire DFS after every change of the DAG would
be expensive and we would have to resolve the problem that variability in the
returned set of back edges (caused possibly by non-determinism or by that the
transition graph may change in between various invocations of the DFS) could
again lead to non-termination. We therefore update the set of back edges after
every modification locally: When recursively constructing a DAG node Δ(φ) from
the immediate subnodes Δ(ψ), then the new edge (Δ(φ),Δ(ψ)) becomes a back
edge iff (φ, ψ) is a back edge.

4.3 Purification

The up-shifting can be applied only on conjunctions or disjunctions which are
pure. This limit its applicability significanlty. We therefore use the following
simple purification rules that separate impure sub-formulae from pure parts and
allow up-shifting to be applied on them:

– Associative extraction: (χ∧ φ)∧ψ where φ and ψ are pure while χ is not gets
transformed to χ ∧ (φ ∧ ψ).

– Distributive extraction: (χ ◦ φ) ◦̄ (χ ◦ ψ) where {◦, ◦̄} = {∧,∨} and φ and ψ
are pure while χ is not gets transformed to χ ◦ (φ ◦̄ ψ).
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These rules are a compromise between the power of the transformation and its
cost. They are simple, cheap, and do not increase the size of the formulae. We do
not use for instance the opposite direction of the distributive law, which would
indeed allow to separate more impurities, but could lead to a blow-up in the
formula size.

Since the purification rules modify the edges of the DAG, we have to update
the set of back edges used at cycle prevention. The rules are simple: 1) a back edge
into the original formula is replaced by a back edge into the modified formula,
and 2) if the path from the original formula to some of its sub-formulae χ, φ, ψ
had a back edge, then the edges in the new formula reaching this sub-formula
are also marked as back edges.

4.4 Local Determinisation Algorithm

Finally, local determinisation is implemented as bottom-up traversal through
the formulae DAG that combines up-shifting, purification, and prevention of
nested substitution discussed in the previous sections. It iteratively extends a
set Ground of “ground” nodes, initialised as the DAG leaves, and serving as
a pool of possible children of nodes that are candidates for up-shifting. One
iteration consists of the following steps:

1. Choose a candidate DAG node φ � Ground with all children in Ground .
2. If the candidate φ is not pure, apply purification if possible (as described in

Sect. 4.3) and return to step 1.
3. If φ is pure, then check whether it is a loop head (as discussed in Sect. 4.2).
4. If φ is pure and not a loop head, apply the up-shifting (as discussed in

Sect. 4.1, this introduces the state [φ]).
5. Add φ to Ground . Or instead, add [φ] to Ground if up-shifting has been

applied in the step 4.

The algorithm requires testing purity of nodes (in step 2 and also within the
purification procedure) and testing whether a node is a loop head (in step 3). To
do that efficiently, it maintains an auxiliary set Pure which records visited nodes
known to be pure, and an auxiliary set LoopHead that records visited nodes that
are known to be loop heads.

An invariant of the algorithm is that the set Pure is the set of pure nodes
contained in Ground . Testing purity of a node then reduces to testing whether
all its children are in Pure. To satisfy the invariant, Pure is initialised as Q
and nodes are added to Pure in step 2, when pure nodes are created within the
purification procedure, and also in step 3, when the candidate is identified as
pure.

The invariant of LoopHead is that it is the set of loop heads contained in
Ground . Testing whether a node is a loop head then reduces to testing whether
each of its children is either in LoopHead or is connected by a back-edge (recall
that by definition, a node is a loop head if all paths in the DAG from it to a
leaf contain a back edge, which is equivalent to the condition we are testing).
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LoopHead is initialised as ∅ and nodes are added to it in step 4 when they are
identified as loop heads.

The algorithm also keeps the formulae DAG in the shared form. Whenever
a new node is generated, we search for a duplicate node in the formulae DAG
and merge it with the new node if found. Since the shared form is invariant,
the duplicate node can be found simply as one with the same top-most logical
operator and the same children.

The bottom-up traversal terminates when there is no candidate (no node
outside Ground with children in ground). As the last step, the basic simplification
from Sect. 3 is applied again, mainly to remove all unreachable nodes and states
that may arise during the bottom-up traversal, but also to use new opportunities
for the Boolean and other transformations that the local determinisation may
have opened.

Algorithm 1: Local Determinisation
1 Perform DFS on the transition graph, mark back edges in the formulae DAG

Gδ ;
2 Ground := Q ∪ V ; Pure := Q; LoopHead := ∅;
3 while nodes(Gδ) � Ground do
4 Choose φ ∈ nodes(Gδ) \Ground such that children(φ) ⊆ Ground ;
5 if children(φ) ⊆ Pure then
6 Pure := Pure ∪ {φ}

7 if φ � Pure and purification from Section 4.3 is applicable then
8 Replace φ in Gδ with its purified image; continue
9 if children(φ) \ back-edge-children(φ) ⊆ LoopHead then

10 LoopHead := LoopHead ∪ {φ}

11 if φ ∈ Pure \ LoopHead then // Up-shifting

12 Construct the node Δ(φ) if it does not already exist in Gδ ;
13 [φ] := new state; δ([φ]) := Δ(φ);
14 Replace φ with [φ] in Gδ (i.e. all edges that led to φ are redirected to

[φ]);
15 Ground := Ground ∪ {[φ]}; Pure := Pure ∪ {[φ]}

16 else Ground := Ground ∪ {φ}

Algorithm 1 sums up the above description of local determinisation. Note
that the formulae DAG is modified in lines 8 and 12, implicitly updating the
set of back edges (as described in the end of Sects. 4.2 and 4.3) and merging
duplicates.

Lemma 3. Local determinisation preserves the language and terminates after
at most square of the number of nodes in the input formulae DAG iterations.

Proof (Idea). Let f be a function that assigns to every node φ the number of
states on longest path in the transition graph that starts in φ and does not have
a back edge, where by longest we mean one that traverses the highest number of
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states. Note that since every cycle has a back edge, f (φ) ≤ |Q | for any DAG node.
Consider a set X of the DAG nodes that are at the beginning of an iteration
outside Ground . Let f (X) =

∑
φ∈X f (φ). The termination argument is based on

showing that f (X) decreases with every iteration: Essentially, when not taking
purification into account, the iteration either removes a candidate φ from X
(by adding φ to Ground without up-shifting) or replaces it in X with a new
candidate Δ(φ) which has a smaller f value.4 The argument with purification
taken into account would be similar but more technical. The complexity bound
is then derived from that the initial f (X) cannot be larger than the number of
DAG nodes (the maximum size of X) multiplied by the number of states (the
maximum value of f (φ)). �

5 Down-Shifting of States Towards Minimal Cut

The number of automata states can also be decreased by an operation which is
complementary to the up-shifting of the local determinisation. Intuitively, while
the up-shifting moves states upwards through pure parts of the formulae DAG,
down-shifting moves states downwards through the pure parts of the formulae
DAG. Our algorithm implementing this idea is more informed than the local
determinisation, which up-shifts greedily. We down-shift the states towards the
minimum state cut through the formulae DAG to guarantee optimal savings in
the number of states. Figure 3 shows an example.

Formally, a cut of the formulae DAG is a set of its nodes C such that every
maximal path contains an element of C. We find a cut of a minimal size such
that none of its nodes is reachable in the DAG from a negation node, a node
of the form ¬φ. The restriction on the negation nodes is present in order for

Fig. 3. Down-shifting. The input AFA is on the left, with a minimum cut C = {φ =

q1 ∧ q2, ψ = q2 ∧ q3} in the formulae DAG, the resulting automaton is on the right. The
resulting AFA has one state less. (the figure uses the graphical convention as in Fig. 1)

4 We also have to account for that while creating the node Δ(φ), the recursive procedure
in Sec. 4.1 might have to create also some of its descendands. Luckily, the f values
of these nodes will amount to zero: if a descendant Δ(ψ) was newly created, then
ψ must have been a loop head (otherwise ψ would have been up-shifted, creating
Δ(ψ)), and therefore Δ(ψ) is also a loop head (since back edges are copied) and hence
its f value is zero.



Simplifying Alternating Automata for Emptiness Testing 255

the transformed automaton to conform to our definition of AFA, where the
states cannot appear in the transition formulae under negation.5 Another, rather
technical, restriction is that node δ(ι) must be in the cut. This is needed for the
down-shifting to preserve the original initial state ι.6 With the minimum cut C
fixed, the automaton is transformed as follows:

1. The set of states Q of M is replaced by the set {[φ] | φ ∈ C} of new states
created from the nodes in the cut, with the transitions formulae δ([φ]) = φ
(note that since δ(ι) ∈ C, the state [δ(ι)] is created and can now serve as the
new initial state),

2. every node φ ∈ C of the formulae DAG is replaced by the new state [φ],
3. every DAG edge to a state q ∈ Q is replaced by an edge to the node δ(q) and

the nodes q ∈ Q are removed from the DAG.7

Lemma 4. Down-shifting preserves the language.

Proof (idea). Lemma 4 follows from that down-shifting is an operation which is
an inverse to up-shifting. A sequence of up-shifting steps applied on nodes that
are in the third step of the description of down-shifting referred to as δ(q) would
revert the automaton to the original form. Lemma 4 then follows from Lemma 2.

�

A Note on Computation of the Minimum Cut C. We note that the minimum
cut C that is above all negation nodes can be computed by reduction to the
standard graph problem of computing a minimum edge cut of a flow network.
Namely, the transition graph Gδ is transformed into a flow network W by

1. adding a source node S that originates an edge to every node in the image of
δ,

2. adding a sink node E which is the target of an edge from every symbol-
variable, state, negation node of Gδ , and the node δ(ι) (to keep the initial
state),

3. assigning an infinite capacity to every existing edge,
4. replacing every node φ with a pair of nodes φ0, φ1 such that all the original

incoming edges of φ are redirected to φ0, the origin of all the outgoing edges
of φ are changed to φ1, and the two nodes are connected with a new edge
from φ0 to φ1 of capacity 1.

The minimum edge cut (which we obtain in a standard manner, using max-flow
min-cut theorem and Ford-Fulkerson’s method) contains only the new edges
from the step 4, from which the minimum state cut is obtained by mapping each
edge (φ0, φ1) to φ. It is well known that the minimum edge cut can be computed
with a complexity O(|E | · |C |) where E is the set of edges of Gδ .
5 This restriction could be lifted for Boolean automata [26] that allow negated states.
6 This restriction could be lifted if we allowed an initial formulae instead of just an

initial state.
7 Note that if C was not a cut, the formulae DAG would keep some states from Q.

But Q has been entirely replaced in the first step, hence the result would not be a
valid AFA.
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6 Experimental Evaluation

In this section, we experimentally evaluate the proposed AFA simplification. We
focus on evaluation of the novel simplification techniques of local determinisation
and of down-shifting. We do not put emphasis on the Basic simplification, as it
is mostly covered by more advanced heuristics in [28], whereas the basic simplifi-
cation in Sect. 3 is simpler and mostly rather common sense. Therefore, we start
from an automaton already processed by the basic simplification and focus on the
impact of the two novel heuristics. We evaluate their impact on the performance
on a number of existing tools and algorithms for deciding language emptiness
of AFA against benchmarks from several sources, including benchmarks found
in the literature, benchmarks from practical applications, and randomly gener-
ated ones. Our experiments were done on a machine with Intel(R) Core(TM)
i7-8565U CPU @ 1.80 GHz and 16 GB RAM.

Benchmark Collection. The first benchmark, called LTL, is a benchmark inspired
by [13] and based on randomly generated LTLF formulae (linear temporal logic
over finite traces [14]). Concretely, satisfiability of randomly generated LTLF

formulae are checked by their transformation to AFA and checking their language
emptiness. Our random generator is controlled by several parameters: 1) the
maximum depth of the formula syntax tree 2) the average depth of the formula
syntax tree, and 3) for each logical connective or variables, a probability of
that it will be generated next within a top-down construction of the tree. We
have experimented with various settings of these parameters to obtain 13700
formulae with different characteristics (the maximum depth ranges between 5
do 17, the average depth between 4 and 14, and we have three different settings
for probability distribution between the syntactic elements).

The second benchmark, RegexLib, is also taken from [13]. It is based on the
collection of regular expressions RegexLib [1]. From [13], we took 1000 instances
of the equality testing problem of the form r1 ∧ r2 ∧ r3 ∧ r4 = r1 ∧ r2 ∧ r3 ∧ r4 ∧ r4
(where the ris are regular expressions from the RegexLib for email filtering) and
423 problems of the form r1 ∧ r2 ∧ r3 = r1 ∧ r2 ∧ r3 ∧ r4 (this is 1423 automata
overall). The alternating automaton for the equality is constructed from the
AFA A and B for the two equality sides, respectively, and combining them into
an AFA for (L(A) ∩ L(B)′) ∪ (L(A)′ ∩ L(B)) which has empty language if and only
if the equality holds. A similar benchmark was used also in [11,12] (although we
were not able to obtain the concrete examples).

Besides those three sets of formulae, we also use two artificial parametric
benchmarks used in [13]. The first one, Lift, is a parametric LTLF formula from
[19] describing a lift operating on a parametric number of floors. The second
one, Counter, is a parametric LTLF formula from [32] describing a counter incre-
mented modulo the parameter (Lift as well as Counter formulae are satisfiable
in LTL but not in LTLF).

We have also tested our preprocessing on a 406 AFA emptiness problems
generated while solving satisfiability of practical string constraints by the algo-
rithm of [2]. Our heuristics did not have a significant impact here and so we do
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not discuss the results in detail. This result, even though negative, underlines
the fact that will be apparent also further in this section—that the source of
benchmarks is a crucial factor influencing effectiveness of our preprocessing (as
well as of the relative performance of AFA emptiness checkers).

The Top Level Preprocessing Algorithm. In our experiments, we use a preprocess-
ing algorithm that uses the discussed simplification steps in the following way:
1) local determinisation (which will be further referred to only as up-shifting);
2) basic simplification; 3) down-shifting iterated until fixpoint (until it cannot
decrease the number of states); and 4) basic simplification. This algorithm is
called the UpDown. We have observed that the impact of down-shifting is less
predictable—although it is often significantly helpful, it can also harm the per-
formance of the emptiness checkers. We therefore propose to run the algorithm
UpDown in parallel with the version which skips the steps 2 and 3, denoted Up,
and call the parallel version UpDown|Up.

Emptiness Checkers. We evaluate the impact of our preprocessing on the per-
formance of several AFA language emptiness checkers and algorithms from the
literature:

– Our own implementation of the backward antichain algorithm of [38], written
in C++, generalized to our form of symbolic AFA. It uses the SAT solver
MiniSAT [5] to construct predecessors of configurations, denoted Antichain.8

– An algorithm that uses bisimulation up to congruence of [13], implemented
by the authors in Java, denoted Bisimulation.

– A highly optimized implementation of the algorithm IC3 within the model
checker ABC [8,20,30,31], written in C++, run on the forward reduction of
the AFA language emptiness problem to reachability in Boolean transition
systems (BTS). The forward reduction is similar to the one used in [22] (the
BTS transitions between configurations in the same way as the AFA, starting
in ι, terminating at the empty configuration). This is denoted ABC.9

– IC3 within ABC but this time run on the backward/reverse reduction of the
AFA language emptiness problem to reachability in BTS, similar to the reduc-
tion used in [11,12]. Essentially, in the backward reduction we are checking
whether ι is reachable from

∧
q∈Q ¬q (satisfied only by the empty configu-

ration) by transitions specified by
∧
(q′ =⇒ δ(q)). This is denoted reverse

ABC.
– The emptiness checker JAltImpact implementing the algorithm [24], written

in Java. The algorithm is meant for so called data AFA that allow complex
reasoning about integers. It uses the model checking algorithm Impact [27].

8 It would be also interesting to test the algorithm of [18] which extends the antichain
algorithm of [38] with a overapproximating abstraction and a refinement scheme,
however, we are not aware of an implementation that could handle our form of AFA
and generalizing [18] to this case would not be trivial.

9 As suggested in [28], we run the following ABC preprocessing: b; rw; rf; b; rw; rwz;
b; rfz; rwz; b; pdr.
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To represent our AFA by the data AFA, symbol-variables v in a transition
formula are substituted by the integer predicates v = 1.

Finally, let us emphasize that our experimentation is not intended as a com-
parison of the emptiness checking algorithms or tools. Although our measure-
ments may provide some insides into this, they must be taken with a grain of
salt. The tools target different kinds of inputs and are implemented in different
languages with different levels of engineering and optimisation. Our intention
is to demonstrate that our preprocessing has a generally positive impact on
the performance of a wide spectrum of algorithms rather than to compare the
emptiness checkers and their algorithms.

6.1 Experiment “Best of Checkers”

In the first experiment, we investigate the impact of our optimisations on the
solving capabilities of all the emptiness checkers put together. For every bench-
mark, we pick the time of the best checker without preprocessing and the best
time with the preprocessing UpDown|Up. Recall that the automata on the input
are already preprocessed using basic simplification, thus the following results
show just the impact of Up and UpDown. The results for benchmarks LTL and
RegexLib are shown in Fig. 4.

The figures show that the preprocessing techniques have improved running
times significantly. They also allowed the checkers to solve 34 RegexLib exam-
ples in the 15 s timeout that could not be solved before by any checker. The
LTL benchmark was absolutely dominated by ABC reverse, which solved all
the benchmarks within 2 s (see Fig. 5) regardless the preprocessing. We there-
fore exclude the results of ABC reverse from the charts showing RegexLib in
Fig. 4, so that the impact of the preprocessing on the other checkers remains vis-
ible. The figures clearly show that checkers behave differently on different kinds
of benchmarks, as discussed more in Sect. 6.2. The figures also show that the
best times were almost always achieved with the preprocessing Up. Section 6.2
however shows that UpDown actually often helps the individual checkers more.

6.2 Experiment “Individual Checkers”

Here we investigate the impact of the preprocessing on the individual check-
ers. The results are shown in Fig. 5 and Table 1. The figures indicate that the
impact of the preprocessing as well as the overall performance varies significantly
depending on the combination of a checker and benchmark.

On RegexLib, only Antichain and Bisimulation perform well, ABC struggles
in both versions, and JAltImpact is not able to solve any examples, regardless the
preprocessing. Preprocessing allows all checkers to solve more examples within
the 15 s timeout (except JAltImpact). For antichain, Up is clearly very beneficial
while UpDown rather harms, but for the other checkers both UpDown and Up
can significantly improve performance. On LTL, all solvers perform quite well,
preprocessing always reduces the number of timeouts and generally improves
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Fig. 4. The impact of preprocessing on the collective best time. The top graphs show
results on LTL, the bottom on RegexLib. The results of ABC reverse are excluded
from the RegexLib benchmark. The vertical axis is the time without preprocessing,
the horizontal with UpDown|Up. The colour code on the left indicates the checker that
achieved the best time (Preprocessing means that the case has been already decided in
preprocessing, by replacing the initial state with 0 or 1), while on the right the colour
indicates the preprocessing with which the best time was obtained: UpDown, Up, or
None which means no preprocessing (recall that the input is already preprocessed using
basic simplification).

running times, with the exception of ABC reverse which solves all examples
within 2 s regardless preprocessing (the slightly worse time for ABC reverse with
preprocessing is caused by the summation with the time of preprocessing, but
the preprocessing does not harm its performance).

It is often the case that preprocessing can both improve and harm the perfor-
mance significantly. We consider the mixed effect also a good news since it shows
that preprocessing does have a large chance of improving the running time, gives
a better chance of solving difficult examples, and offers a potential for portfolio
solvers that run several algorithms in parallel. None of the two preprocessing
variants, UpDown and Up, strictly supersedes the other. Although Fig. 4 and
Fig. 5 favour mostly Up preprocessing, Fig. 6 indicates that UpDown preprocess-
ing is superior to Up on RegexLib benchmarks using ABC model checker.
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Table 1. Impact of preprocessing on the number of timeouts (15 ss). For each com-
bination of checker and benchmark, we report a triple of numbers: the number of
timeouts of the checker without preprocessing, with preprocessing by UpDown|Up, and
the number of examples that timed out in both cases.

Antichain Bisim ABC ABC reverse JAltImpact

LTL (13700) 303, 223, 183 530, 525, 519 56, 4, 3 0, 0, 0 133, 52, 52

RegexLib (1423) 188, 12, 12 120, 143, 112 1065, 1000, 984 107, 25, 17 1423, 1423, 1423

Fig. 5. Impact of preprocessing on individual checkers. The top row show results with
LTL, the bottom row with RegexLib. The vertical axis is the time without preprocessing
(in seconds), the horizontal with UpDown|Up. The colour of the dots indicates the
preprocessing method which obtained the best time, blue for UpDown and red for Up.

Fig. 6. RegexLib model checking time: comparison of Up and UpDown.

6.3 Parametric LTL Benchmarks

For the parametric benchmarks Lift and Counter, we measure the impact of
preprocessing with increasing parameter on every combination of checker and
preprocessing algorithm (none, Up, UpDown).

For Lift, only JAltImpact and ABC could handle more than 9 floors in the 15 s
timeout. JAltImpact could handle about 80 floors, but ABC reverse outclassed
any other method, and handled 200 floors in 0.3 s. The preprocessing slightly
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improved the running times of JAltImpact, by about 30%, but did not noticeably
influence running times of ABC reverse or any other tool.

Much more exciting result was achieved by preprocessing on the parametric
family Counter (a notoriously hard benchmark according to [13]). ABC again
outperforms the other solvers by order of magnitude even in its slowest variant.
Its running times with increasing parameter values are shown in Fig. 7. Without
preprocessing, the best of the solvers, ABC reverse, can handle parameter values
up to 290 in the 15 s timeout, however, with preprocessing by Up, ABC handles
parameter values up to 500 in less than 2 s and ABC reverse in less than 1 s.
ABC reverse performs similarly with UpDown.

Fig. 7. The time taken by the variants of the ABC checker and of the preprocessing Up
on AFA translated from parametric LTLF formula Counter with increasing parameter.

A Note on the Running Time of Preprocessing. In all the experiments (Sects. 6.1,
6.2, and 6.3), the time taken by preprocessing is included in the overall time of
testing emptiness. Preprocessing was taking time almost negligible compared to
the time taken by the checkers on examples that took more than one second.
In cases that took less than one second, the time of preprocessing was becom-
ing comparable to that taken by the checkers. We note that the preprocessing
is implemented as an unoptimised Haskell code and its running time can be
probably much improved.

6.4 Basic Simplification

In this section, we briefly discuss the impact of basic simplification from Sect. 3.
Although the performance of basic simplification was not our primary concern
(recall that the experiments discussed above start from automata already pro-
cessed by basic simplification), its impact on the performance of the checkers is
quite significant and seems worth reporting on. Its impact on the best time of all
checkers on the united benchmark LTL and RegexLib is shown in Fig. 8 on the
left. Using basic simplification allowed the solvers to finish 118 more examples
within the 15 s timeout.

As mentioned before, the techniques of Basic simplification cannot be claimed
conceptually novel, and similar and even more sophisticated ones are used in
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ABC [28]. Surprisingly, our particular implementation of these techniques is not
superseded by ABC, and has a notable positive impact on its performance. This
is shown in Fig. 8, the second and third graph from the left. Basic preprocessing
allowed ABC to solve 113 more examples and reverse ABC solved 108 more
examples with their help.

6.5 Impact of Preprocessing on Size of Automata

As shown in Fig. 9, for LTL benchmarks, the preprocessing often decreases the
number of automata states, most often by about 25% and increases the number
of DAG nodes and edges by about the same percentage. On the other hand,
it changes these numbers rather slightly in the case of RegexLib benchmark.
These numbers suggest that the impact on the solver performance is not only
in decreasing the size of the formulae DAG or the number of states, but also in
restructuring of the automaton.

Fig. 8. Impact of the basic simplification in the united benchmarks RegexLib and
LTL. Its impact on the best time of all checkers is shown on the left, the impact on
the performance of ABC and reverse ABC is shown in the other two figures.

Fig. 9. Random LTL (row 1) and RegexLib (row 2) benchmarks: Impact of Up (red)
and UpDown (blue) preprocessing on automaton size. (Color figure online)
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Abstract. We propose an automated method for proving termination
of π-calculus processes, based on a reduction to termination of sequential
programs: we translate a π-calculus process to a sequential program, so
that the termination of the latter implies that of the former. We can then
use an off-the-shelf termination verification tool to check termination of
the sequential program. Our approach has been partially inspired by
Deng and Sangiorgi’s termination analysis for the π-calculus, and checks
that there is no infinite chain of communications on replicated input
channels, by converting such a chain of communications to a chain of
recursive function calls in the target sequential program. We have imple-
mented an automated tool based on the proposed method and confirmed
its effectiveness.

1 Introduction

We propose a fully automated method for proving termination of π-calculus
processes. Although there have been a lot of studies on termination analysis for
the π-calculus and related calculi [11–13,19,25,28,29], most of them have been
rather theoretical, and there have been surprisingly little efforts in developing
fully automated termination verification methods and tools based on them. To
our knowledge, Kobayashi’s TyPiCal [18,19] is the only exception that can
prove termination of π-calculus processes (extended with natural numbers) fully
automatically, but its termination analysis is quite limited (see Sect. 6).

Our method is based on a reduction to termination analysis for sequential
programs: we translate a π-calculus process P to a sequential program SP , so
that if SP is terminating, so is P . The reduction allows us to use powerful,
mature methods and tools for termination analysis of sequential programs [7,14,
17,21,23].

The idea of the translation is to convert a chain of communications on repli-
cated input channels to a chain of recursive function calls of the target sequential
program. Let us consider the following Fibonacci process:
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∗ fib?(n, r).if n < 2 then r!(1)
else (νs1)(νs2)(fib!(n − 1, s1) | fib!(n − 2, s2) | s1?(x).s2?(y).r!(x + y))

| fib!(m, r)

Here, the process ∗fib?(n, r). . . . is a function server that computes the n-th
Fibonacci number in parallel and returns the result to r, and fib!(m; r) sends a
request for computing the m-th Fibonacci number; those who are not familiar
with the syntax of the π-calculus may wish to consult Sect. 2 first. To prove that
the process above is terminating for any integer m, it suffices to show that there
is no infinite chain of communications on fib:

fib(m, r) → fib(m1, r1) → fib(m2, r2) → · · · .

We convert the process above to the following program:1

let rec fib(n) = if n<2 then () else (fib(n-1) [] fib(n-2)) in
fib(m)

Here, [] represents the non-deterministic choice. Note that, although the calcu-
lation of Fibonacci numbers is not preserved, for each chain of communications
on fib, there is a corresponding sequence of recursive calls:

fib(m) → fib(m1) → fib(m2) → · · · .

Thus, the termination of the sequential program above implies the termination
of the original process. As shown in the example above, (i) each communication
on a replicated input channel is converted to a function call, (ii) each commu-
nication on a non-replicated input channel is just removed (or, in the actual
translation, replaced by a call of a trivial function defined by f(x̃) = ( )), and
(iii) parallel composition is replaced by a non-deterministic choice. We formalize
the translation outlined above and prove its correctness.

The basic translation sketched above sometimes loses too much information.
For example, consider the following process:

∗ pred?(n, r).r!(n − 1)
| ∗f?(n, r).if n < 0 then r!(1) else (νs)(pred !(n, s) | s?(x).f !(x, r))
| f !(m, r)

The translation sketched above would yield:

let pred(n) = () in
let rec f(n) = if n<0 then () else (pred(n) [] f(*)) in
f(m)

1 The actual translation given later is a little more complex.
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Here, * represents a non-deterministic integer: since we have removed the input
s?(x), we do not have information about the value of x. As a result, the sequential
program above is non-terminating, although the original process is terminating.
To remedy this problem, we also refine the basic translation above by using a
refinement type system for the π-calculus. Using the refinement type system, we
can infer that the value of x in the original process is less than n, so that we can
refine the definition of f to:

let rec f(n) = ... else (pred(n) [] let x=* in assume(x<n);f(x))

The target program is now terminating, from which we can deduce that the
original process is also terminating. We have implemented an automated tool
based on the refined translation above.

The contributions of this paper are summarized as follows.

– The formalization of the basic translation from the π-calculus (extended with
integers) to sequential programs, and a proof of its correctness.

– The formalization of a refined translation based on a refinement type system.
– An implementation of the refined translation, including automated refine-

ment type inference based on CHC solving, and experiments to evaluate the
effectiveness of our method.

The rest of this paper is structured as follows. Section 2 introduces the source
and target languages of our translation. Section 3 formalizes the basic translation,
and proves its correctness. Section 4 refines the basic translation by using a
refinement type system. Section 5 reports an implementation and experiments.
Section 6 discusses related work, and Sect. 7 concludes the paper.

2 Source and Target Languages

This section introduces the source and target languages for our reduction. The
source language is the polyadic π-calculus [22] extended with integers and con-
ditional expressions, and the target language is a first-order functional language
with non-determinism.

2.1 π-Calculus

Syntax. Below we assume a countable set of variables ranged over by
x, y, z, w,. . . and write Z for the set of integers, ranged over by i. We write
·̃ for (possibly empty) finite sequences; for example, x̃ abbreviates a sequence
x1, . . . , xn. We write len(x̃) for the length of x̃ and ε for the empty sequence.

The sets of processes and simple expressions, ranged over by P and v respec-
tively, are defined inductively by:

P (processes) :: = 0 | x!(ṽ; w̃).P | x?(ỹ; z̃).P | ∗x?(ỹ; z̃).P | (P1 | P2) | (νx : κ)P
| if v then P1 else P2 | let x̃ = �̃ in P

v (simple expressions) :: = x | i | op(ṽ)
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The syntax of processes on the first line is fairly standard, except that the values
sent along each channel consist of two parts: ṽ for integers, and w̃ for channels;
this is for the sake of technical convenience in presenting the translation to
sequential programs. The process 0 denotes an inaction, x!(ṽ; w̃).P sends a tuple
(ṽ, w̃) along the channel x and behaves like P , and the process x?(ỹ; z̃).P receives
a tuple (ṽ, w̃) along the channel x, and behaves like [ṽ/ỹ, w̃/z̃]P . We often just
write ṽ for ṽ; ε or ε; ṽ. The process ∗x?(ỹ; z̃).P represents infinitely many copies
of x?(ỹ; z̃).P running in parallel. The process P1 | P2 runs P1 and P2 in parallel,
and (νx :κ)P creates a fresh channel x of type κ (where types will be introduced
shortly) and behaves like P . The process if v then P1 else P2 executes P1 if the
value of v is non-zero, and P2 otherwise. The process let x̃ = �̃ in P instantiates
the variables x̃ to some integer values in a non-deterministic manner, and then
behaves like P . The meta-variable op ranges over integer operations such as +
or ≤.

The free and bound variables are defined as usual. The only binders are
(νx : κ) (which binds x), let x̃ = �̃ in (which binds x̃), x?(ỹ; z̃). and ∗x?(ỹ; z̃).
(which bind ỹ and z̃). Processes are identified up to renaming of bound variables,
and we implicitly apply α-conversions as necessary.

We write P → Q for the standard one-step reduction relation on processes.
The base cases of the communication are given by:

x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → [̃i/ỹ, w̃/z̃]P1 | P2

∗x?(ỹ; z̃).P1 | x!(ṽ; w̃).P2 → ∗x?(ỹ; z̃).P1 | [̃i/ỹ, w̃/z̃]P1 | P2

provided that ṽ evaluates to ĩ. The full definition is given in the extended ver-
sion [26]. We say that a process P is terminating if there is no infinite reduction
sequence P → P1 → P2 → · · ·.

In the rest of the paper, we consider only well-typed processes. We write ι
for the type of integers. The set of channel types, ranged over by κ, is given by:

κ :: = chρ(ι̃; κ̃)

The type chρ(ι̃; κ̃) describes channels used for transmitting a tuple (ṽ; w̃) of
integers ṽ and channels w̃ of types κ̃. Below we will just write ι̃ for ι̃; ε and κ̃ for
ε; κ̃. The subscript ρ, called a region, is a symbol that abstracts channels; it is
used in the translation to sequential programs. For example, chρ1(ι; chρ2(ι)) is
the type of channels that belong to the region ρ1 and are used for transmitting
a pair (i, r) where r is a channel of region ρ2 used for transmitting integers. We
use a meta-variable σ for an integer or channel type.

Type judgments for processes and simple expressions are of the form Γ ;Δ � P
and Γ ;Δ � v : σ, where Γ and Δ are sequences of bindings of the form x : ι and
x : κ, respectively. The typing rules are shown in Fig. 1. Here Γ ;Δ � ṽ : σ̃ means
Γ ;Δ � vi : σi holds for each i ∈ {1, . . . , len(ṽ)}. We omit the explanation of the
typing rules as they are standard.
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Γ ;Δ 0
Γ ;Δ v : ι Γ ;Δ P1 Γ ;Δ P2

Γ ;Δ if v then P1 else P2

Γ ;Δ P1 Γ ;Δ P2

Γ ;Δ P1 | P2

Γ ;Δ, x : κ P

Γ ;Δ (νx : κ)P
Γ, x̃ : ι̃;Δ P

Γ ;Δ let x̃ = ˜ in P

Γ ;Δ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;Δ, z̃ : κ̃ P

Γ ;Δ x?(ỹ; z̃).P

Γ ;Δ x : chρ(ι̃; κ̃) Γ ;Δ ṽ : ι̃ Γ ;Δ w̃ : κ̃ Γ ;Δ P

Γ ;Δ x!(ṽ; w̃).P

Γ ;Δ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;Δ, z̃ : κ̃ P

Γ ;Δ ∗x?(ỹ; z̃).P

x : ι ∈ Γ
Γ ;Δ x : ι

x : κ ∈ Δ
Γ ;Δ x : κ Γ ;Δ i : ι

Γ ;Δ ṽ : ι̃
Γ ;Δ op(ṽ) : ι

Fig. 1. The typing rules of the simple type system for the π-calculus

2.2 Sequential Language

We define the target language of our translation, which is a first-order functional
language with non-determinism.

A program is a pair (D, E) consisting of (a set of) function definitions D and
an expression E, defined by:

D (function definitions) :: = {f1(x̃1) = E1, . . . , fn(x̃n) = En}
E (expression) :: = ( ) | let x̃ = �̃ in E | f(ṽ) | E1 ⊕ E2

| if v then E1 else E2 | Assume(v);E
v (simple expressions) :: = x | i | op(ṽ)

In a function definition fi(x1, . . . , xki
) = Ei, the variables x1, . . . , xki

are bound
in Ei; we identify function definitions up to renaming of bound variables,
and implicitly apply α-conversions. The function names f1, . . . , fn need not
be distinct from each other. If there are more than one definition for f , then
one of the definitions will be non-deterministically used when f is called. We
explain the informal meanings of the non-standard expressions. The expression
let x̃ = �̃ in E instantiates x̃ to some integers in a non-deterministic manner.
The expression E1⊕E2 non-deterministically evaluates to E1 or E2. The expres-
sion Assume(v);E evaluates to E if v is non-zero; otherwise the whole program
is aborted. The other expressions are standard and their meanings should be
clear.

We write (D, E) � (D, E′) for the one-step reduction relation, whose defini-
tion is given in the extended version [26]. We say that a program is terminating
if there is no infinite reduction sequence.
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3 Basic Transformation

This section presents our transformation from a π-calculus process to a sequential
program, so that if the transformed program is terminating then the original
process is terminating.

As explained in Sect. 1, the idea is to transform an infinite chain of message
passing on replicated input channels to an infinite chain of recursive function
calls. Table 1 summarizes the correspondence between processes and sequential
programs. As shown in the table, a replicated input process is transformed to
a function definition, whereas a non-replicated input process is just ignored,
and integer bound variables are non-deterministically instantiated. Note that
channel arguments z̃ are ignored in both cases. Instead, we prepare a global
function name fρ for each region ρ; ρx in the table indicates the region assigned
to the channel type of x.2

Table 1. Correspondence between processes and sequential programs

Processes Sequential programs

Replicated input (∗x?(ỹ; z̃). · · ·) Function definition fρx (ỹ) = · · ·
Non-replicated input (x?(ỹ; z̃). · · ·) Non-deterministic instantiation (let ỹ = �̃ in · · · )
Output (x!(ṽ; w̃). · · ·) Function call (fρx (ṽ) ⊕ · · ·)
Parallel composition (· · · | · · ·) Non-deterministic choice (· · · ⊕ · · ·)

We define the transformation relation Γ ;Δ � P ⇒ (D, E), which means that
the π-calculus process P well-typed under Γ ;Δ is transformed to the sequential
program (D, E). The relation is defined by the rules in Fig. 2.

We explain some key rules. In SX-Nil, 0 is translated to (D, ( )), where D is
the set of trivial function definitions. In SX-In, a (non-replicated) input is just
removed, and the bound variables are instantiated to non-deterministic integers;
this is because we have no information about ỹ; this will be refined in Sect. 4.
In contrast, in SX-RIn, a replicated input is converted to a function definition.
Since D generated from P may contain ỹ, they are bound to non-deterministic
integers and merged with the new definition for fρ. In SX-Out, an output is
replaced by a function call. In SX-Par, parallel composition is replaced by non-
deterministic choice.

Example 1. Let us revisit the Fibonacci example used in the introduction to
explain the actual translation. Using the syntax we introduced, the Fibonacci
process Pfib can now be defined as:

2 Thus, the simple type system with “regions” introduced in the previous section is
used here as a simple may-alias analysis. If x and y may be bound to the same
channel during reductions, the type system assigns the same region to x and y,
hence x and y are mapped to the same function name fρx by our transformation.
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Γ ;Δ 0 ⇒ ({fρ(ỹ) = ( ) | x : chρ(ι̃; κ̃) ∈ Δ, len(ỹ) = len(ι̃)}, ( ))
(SX-Nil)

Γ ;Δ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;Δ, z̃ : κ̃ P ⇒ (D, E)
Γ ;Δ x?(ỹ; z̃).P ⇒ (let ỹ = ˜ in D, let ỹ = ˜ in E)

(SX-In)

Γ ;Δ x : chρ(ι̃; κ̃) Γ, ỹ : ι̃;Δ, z̃ : κ̃ P ⇒ (D, E)
Γ ;Δ ∗x?(ỹ; z̃).P ⇒ ({fρ(ỹ) = E} ∪ (let ỹ = ˜ in D), ( ))

(SX-RIn)

Γ ;Δ x : chρ(ι̃; κ̃) Γ ;Δ ṽ : ι̃ Γ ;Δ w̃ : κ̃ Γ ;Δ P ⇒ (D, E)
Γ ;Δ x!(ṽ; w̃).P ⇒ (D, fρ(ṽ) ⊕ E)

(SX-Out)
Γ ;Δ P1 ⇒ (D1, E1) Γ ;Δ P2 ⇒ (D2, E2)

Γ ;Δ P1 | P2 ⇒ (D1 ∪ D2, E1 ⊕ E2)
(SX-Par)

Γ ;Δ, x : κ P ⇒ (D, E)
Γ ;Δ (νx : κ)P ⇒ (D, E)

(SX-Nu)

Γ ;Δ v : ι Γ ;Δ P1 ⇒ (D1, E1) Γ ;Δ P2 ⇒ (D2, E2)
Γ ;Δ if v then P1 else P2 ⇒ (D1 ∪ D2, if v then E1 else E2)

(SX-If)

Γ, x̃ : ι̃;Δ P ⇒ (D, E)
Γ ;Δ let x̃ = ˜ in P ⇒ (let x̃ = ˜ in D, let x̃ = ˜ in E)

(SX-LetND)

let x̃ = ˜ in := f(ỹ) = (let x̃ = ˜ in E) f(ỹ) = E

Fig. 2. The rules of simple type-based program transformation

(νfib : chρ1(ι; chρ2(ι))) ∗ fib?(n; r).
if n < 2 then r!(1) else (νr1 : chρ2(ι))(νr2 : chρ2(ι))
(fib!(n − 1; r1) | fib!(n − 2; r2) | r1?(x).r2?(y).r!(x + y))

| let m = � in (νr : chρ2(ι))fib!(m; r)

Note that (νfib) and let m = � in have been added to close the process. We can
derive ∅; ∅ � Pfib ⇒ (D, E), where D and E are given as follows:3

D = {fρ1(z) = if z < 2 then fρ2(1) else (fρ1(z − 1) ⊕ fρ1(z − 2)
⊕ let x = � in let y = � in fρ2(x + y)),

fρ2(z) = ( )}
E = let m = � in fρ1(m)

3 The program written here has been simplified for the sake of readability. For
instance, we removed some redundant ( ), trivial function definitions, and unused
non-deterministic integers. The other examples that will appear in this paper are
also simplified in the same way.
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Here fρ1 is the “Fibonacci function” because ρ1 is the region assigned to the
channel fib in Pfib. The function call fρ2(x+y) corresponds to the output r!(x+y);
the argument of the function call is actually a nondeterministic integer because
r?(x) and r?(y) are translated to non-deterministic instantiations. Since the
program (D, E) is terminating, we can verify that Pfib is also terminating. 
�
Example 2. To help readers understand the rule SX-RIn, we consider the fol-
lowing process, which contains a nested input:

∗f?(x; r). ∗ g?(y, z).(if y ≤ 0 then r!(z) else g!(y − 1, x + z)) | f !(2; r).g!(3, 0)

where f :chρ1(ι; chρ2(ι)) and g :chρ3(ι, ι). This process computes x∗y+z (which
is 6 in this case) and returns that value using r. This program is translated to:

fρ1(x) = ( ) fρ2(z) = ( )
fρ3(y, z) = let x = � in if y ≤ 0 then fρ2(z) else fρ3(y − 1, x + z)

with the main expression fρ1(2) ⊕ fρ3(3, 0). Note that the body of fρ1 , which is
the function corresponding to f , is ( ). This is because when the rule SX-RIN is
applied to ∗g?(y, z) . . ., the main expression of the translated program becomes
( ). Observe that the function definition for fρ3 still contains a free variable x at
this moment. Then fρ3 is closed by let x = � in when we apply the rule SX-RIn
to ∗f?(x; r) . . .. We can check that the above program is terminating, and thus
we can verify that the original process is terminating. Note that some precision
is lost in the application of SX-RIn above since we cannot track the relation
between the argument of fρ1 and the value of x used inside fρ3 . This loss causes
a problem if, for example, the condition y ≤ 0 in the process above is replaced
with y ≤ x. The body of fρ3 would then become let x = � in if y ≤ x · · · ,
hence the sequential program would be non-terminating. 
�
Remark 1. A reader may wonder why a non-replicated input is removed in
SX-In, rather than translated to a function definition as done for a repli-
cated input. It is actually possible to obtain a sound transformation even if
we treat non-replicated inputs in the same manner as replicated inputs, but
we expect that our approach of removing non-replicated inputs often works
better. For example, consider x?(y).x!(y) | x!(0). Our translation generates
({fρx

(z) = ( )}, (let y = � in fρx
(y)) ⊕ fρx

(0)) which is terminating, whereas
if we treat the input in the same way as a replicated input, we would obtain
({fρx

(z) = fρx
(z)}, fρx

(0)) which is not terminating. Our approach also has
some defect. For example, consider x!(0) | x?(y).if y = 0 then 0 else Ω where
Ω is a diverging process. Our translation yields ({fρx

(z) = ( )}, fρx
(0) ⊕ let y =

� in if y = 0 then ( ) else Ω′) which is non-terminating. On the other hand, if
we treat the input like a replicated input, we would obtain ({fρx

(z) = if z = 0
then ( ) else Ω′}, fρx

(0)) which is terminating. This issue can, however, be mit-
igated by the extension with refinement types in Sect. 4. Our choice of removing
non-replicated inputs is also consistent with Deng and Sangiorgi’s type sys-
tem [13], which prevents an infinite chain of communications on replicated input
channels by using types and ignores non-replicated inputs. 
�
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The following theorem states the soundness of our transformation.

Theorem 1 (soundness). Suppose ∅; ∅ � P ⇒ (D, E). If (D, E) is terminat-
ing, then so is P .

We briefly explain the proof strategy; see the extended version [26] for the
actual proof. Basically, our idea is to show that the translated program sim-
ulates the original process. Then we can conclude that if the original process
is non-terminating then so is the sequential program. However, there is a slight
mismatch between the reduction of a process and that of the sequential program
that we need to overcome. Recall that ∗f?(x).P | f !(1) | f !(2) is translated to
fρf

(1) ⊕ fρf
(2) with a function definition for fρf

. In the sequential program, we
need to make a “choice”, e.g. if fρf

(1) is called, we cannot call fρf
(2) anymore.

On the other hand, the output f !(2) can be used even if f !(1) has been used
before. To fill this gap, we introduce a non-standard reduction relation, which
does not discard branches of non-deterministic choices and show the simulation
relation using that non-standard semantics. Then we show that if there is an infi-
nite non-standard reduction sequence, then there is an infinite subsequence that
corresponds to a reduction along a certain choice of non-deterministic branches.
This step is essentially a corollary of the König’s Lemma. This is because the
infinite non-standard reduction sequence can be reformulated as an infinite tree
in which branches correspond to non-deterministic choices ⊕ (thus the tree is
finitely branching) and paths correspond to reduction sequences.

The following example indicates that the basic transformation is sometimes
too conservative.

Example 3. Let us consider the following process Pdec:

∗ pred?(n; r).r!(n − 1)
| ∗f?(n; r).if n < 0 then r!(1) else (νs : chρ2(ι))(pred !(n; s) | s?(x).f !(x; r))
| f !(m; r)

where pred : chρ1(ι; chρ2(ι)), f : chρ3(ι; chρ4(ι)) and r : chρ4(ι). This process,
which also appeared in the introduction, keeps on decrementing the integer m
until it gets negative and then returns 1 via r. We can turn this process into a
closed process P ′

dec by restricting the names pred , f , r and adding let m = � in
in front of the process. Note that P ′

dec is terminating.
The process P ′

dec is translated to:

fρ1(n) = fρ2(n − 1), fρ2(x) = ( ), fρ4(x) = ( ),
fρ3(n) = if n < 0 then fρ4(1)

else (fρ1(n) ⊕ let x = � in fρ3(x))

with the main expression let m = � in fρ3(m). Observe that the function fρ3 is
applied to a non-deterministic integer, not n − 1. Thus, this program is not ter-
minating, meaning that we fail to verify that the original process is terminating.
This is due to the shortcoming of our transformation that all the integer val-
ues received by non-replicated inputs are replaced by non-deterministic integers.
This problem is addressed in the next section. 
�
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4 Improving Transformation Using Refinement Types

In this section, we refine the basic transformation in the previous section by
using a refinement type system.

Recall that in Example 3, the problem was that information about values
received by non-replicated inputs was completely lost. By using a refinement
type system for the π-calculus, we can statically infer that x < n holds between
x and n in the process in Example 3. Using that information, we can transform
the process in Example 3 and obtain

fρ3(n) = if n < 0 then · · · else (fρ1(n)⊕ let x = � in Assume(x < n); fρ3(x))

for the definition of fρ3 . This is sufficient to conclude that the resulting program
is terminating.

In the rest of this section, we first introduce a refinement type system in
Sect. 4.1 and explain the refined transformation in Sect. 4.2. We then discuss how
to automatically infer refinement types and achieve the refined transformation
in Sect. 4.3.

4.1 Refinement Type System

The set of refinement channel types, ranged over by κ, is given by:

κ :: = chρ(x̃;φ; κ̃)

Here, φ is a formula of integer arithmetic. We sometimes write just chρ(x̃;φ) for
chρ(x̃;φ; ε). Intuitively, chρ(x̃;φ; κ̃) describes channels that are used for trans-
mitting a tuple (x̃; ỹ) such that (i) x̃ are integers that satisfy φ, and (ii) ỹ are
channels of types κ̃. For example, the type chρ1(x; true; chρ2(z; z < x)) describes
channels used for transmitting a pair (x, y), where x may be any integer, and
y must be a channel of type chρ2(z; z < x), i.e., a channel used for passing an
integer z smaller than x. Thus, if u has type chρ1(x; true; chρ2(z; z < x)), then
the process u?(n; r).r!(n − 1) is allowed but u?(n; r).r!(n) is not.

Type judgments for processes and expressions are now of the form Γ ;Φ;Δ �
P and Γ ;Φ;Δ � v :σ, where Φ is a sequence of formulas. Intuitively, Γ ;Φ;Δ � P
means that P is well-typed under the environments Γ and Δ assuming that all
the formulas in Φ holds.

The selected typing rules are shown in Fig. 3. The rules for the other con-
structs are identical to that of the simple type system; the complete list of typing
rules appears in the extended version [26]. The rules shown in Fig. 3 are fairly
standard rules for refinement type systems. In RT-Out, the notation Φ � φ
means that φ is a logical consequence of Φ; for example, x < y, y < z � x < z
holds. In the typing rules, we implicitly require that all the type judgments are
well-formed, in the sense that all the integer variables occurring in a formula is
properly declared in Γ or bound by a channel type constructor; see the extended
version [26] for the well-formedness condition.
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Γ ;Φ;Δ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;Δ, z̃ : κ̃ P

Γ ;Φ;Δ x?(ỹ; z̃).P
(RT-In)

Γ ;Φ;Δ x : chρ(ỹ;φ; κ̃) Γ ;Φ;Δ ṽ : ι̃ Φ [ṽ/ỹ]φ
Γ ;Φ;Δ w̃ : [ṽ/ỹ]κ̃ Γ ;Φ;Δ P

Γ ;Φ;Δ x!(ṽ; w̃).P
(RT-Out)

Γ ;Φ;Δ x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;Δ, z̃ : κ̃ P

Γ ;Φ;Δ ∗x?(ỹ; z̃).P
(RT-RIn)

Γ ;Φ;Δ v : ι Γ ;Φ, v = 0;Δ P1 Γ ;Φ, v = 0;Δ P2

Γ ;Φ;Δ if v then P1 else P2
(RT-If)

x : κ ∈ Δ

Γ ;Φ;Δ x : κ
(RT-Var-Ch)

Fig. 3. Selected typing rules of the refinement type system for the π-calculus

4.2 Program Transformation

Based on the refinement type system above, we refine the transformation relation
to Γ ;Φ;Δ � P ⇒ (D, E). The only change is in the following rule for non-
replicated inputs.4

Γ ;Φ;Δ � x : chρ(ỹ;φ; κ̃) Γ, ỹ : ι̃;Φ, φ;Δ, z̃ : κ̃ � P ⇒ (D, E)
Γ ;Φ;Δ � x?(ỹ; z̃).P

⇒ (let ỹ = �̃ in Assume(φ);D, let ỹ = �̃ in Assume(φ);E)

(RX-In)

Here, we insert Assume(φ), based on the refinement type of x. The expres-
sion let ỹ = �̃ in Assume(φ);E first instantiates ỹ to some integers in a non-
deterministic manner, but proceeds to evaluate E only if the values of ỹ satisfy
φ. Thus, the termination analysis for the target sequential program may assume
that ỹ satisfies φ in E.

Example 4. Let us explain how the process Pdec introduced in Example 3 is
translated by the refined translation. Recall that the following simple types were
assigned to the channels:

pred : chρ1(ι; chρ2(ι)), f : chρ3(ι; chρ4(ι)), r : chρ4(ι), s : chρ2(ι).

By the refinement type system, the above types can be refined as:

pred : chρ1(n; true; chρ2(x;x < n)), f : chρ3(n; true; chρ4(x; true)),
r : chρ4(x; true), s : chρ2(x;x < n).

For example, one can check that the output r!(n − 1) on the first line of Pdec

is well-typed because |= [n − 1/x]x < n holds. Note that this r is the variable
bound by pred?(n; r) and thus has the type chρ2(x;x < n).

4 The rule for replicated inputs is also modified in a similar manner.
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Therefore, by the rule RX-In, the input s?(x).f !(x; r) is now translated as
follows:

Γ ;Φ;Δ � s : chρ2(x;x < n) Γ, x : ι;Φ, x < n;Δ � f !(x; r) ⇒ (D, fρ3(x))
Γ ;Φ;Δ � s?(x).f !(x; r)

⇒ ((let x = � in Assume(x < n);D), (let x = � in Assume(x < n); fρ3(x)))

with suitable Γ , Φ and Δ. By translating the whole process, we obtain

fρ3(n) =if n < 0 then fρ4(1)
else (fρ1(n) ⊕ let x = � in Assume(x < n); fρ3(x))

as desired. The other function definitions are given as in the case of Example 3
(except for the fact that some redundant assertions let x = � in Assume(x < n)
are added). 
�

The soundness of the refined translation is obtained from the following argu-
ment. We first extend the π-calculus with the Assume statement. Then the
refined translation can be decomposed into the following two steps: (a) given
a π-calculus process P , insert Assume statements based on refinement types
and obtain a process P ′; and (b) apply the translation of Sect. 3 to P ′ (where
Assume is just mapped to itself) and obtain a sequential program S. The sound-
ness of step (b) follows by an easy modification of the proof for the basic trans-
formation (just add the case for Assume). So, the termination of S would imply
that of P ′. Now, from the soundness of the refinement type system (which fol-
lows from a standard argument on type preservation and progress), it follows
that the Assume statements inserted in step (a) always succeed. Thus, the ter-
mination of P ′ would imply that of P . We can, therefore, conclude that if S is
terminating, so is P .

4.3 Type Inference

This section discusses how to infer refinement types automatically to automati-
cally achieve the transformation. As in refinement type inference for functional
programs [5,24,27], we can reduce refinement type inference for the π-calculus
to the problem of CHC (Constrained Horn Clauses) solving [4].

We explain the procedure through an example. Once again, we use the process
Pdec introduced in Example 3. We first perform type inference for the simple type
system in Sect. 2, and (as we have seen) obtain the following simple types for
pred and f :

pred : chρ1(ι; chρ2(ι)), f : chρ3(ι; chρ4(ι))

Here, we have omitted the types for other (bound) channels r, s, as they can be
determined based on those of pred and f . Based on the simple types, we prepare
the following templates for refinement types.

pred : chρ1(n;P1(n); chρ2(x;P2(n, x))), f : chρ3(n;P3(n); chρ4(x;P4(n, x))).
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Here, Pi (i ∈ {1, . . . , 4}) is a predicate variable that represents unknown
conditions.

Based on the refinement type system, we can generate the following con-
straints on the predicate variables.

∀n.(P1(n) =⇒ P2(n, n − 1)) ∀n.(P3(n) ∧ n < 0 =⇒ P4(n, 1))
∀n.(P3(n) ∧ n ≥ 0 =⇒ P1(n))
∀n, x.(P3(n) ∧ n ≥ 0 ∧ P2(n, x) =⇒ P3(x))
∀m.(true =⇒ P3(m))

Here, the first constraint comes from the first line of the process, and the second
constraint (the third and fourth constraints, resp.) comes from the then-part
(the else-part, resp.) of the second line of the process. The last constraint comes
from f !(m; r).

The generated constraints are in general a set of Constrained Horn Clauses
(CHCs) [4] of the form ∀x̃.(P1(ṽ1) ∧ · · · ∧ Pk(ṽk) ∧ φ =⇒ H), where P1, . . . , Pk

are predicate variables, φ is a formula of integer arithmetic (without predicate
variables), and H is either of the form P (ṽ) or φ′. The problem of finding a
solution (i.e. an assignment of predicates to predicate variables) of a set of CHCs
is undecidable in general, but there are various automated tools (called CHC
solvers) for solving the problem [5,20]. Thus, by using such a CHC solver, we
can solve the constraints on predicate variables, and obtain refinement types by
substituting the solution for the templates of refinement types.

For the example above, the following is a solution.

P1(n) ≡ true P2(n, x) ≡ x < n P3(x) ≡ true P4(n, x) ≡ true.

This is exactly the predicates we used in Example 4 to translate Pdec using the
refined approach.

Adding Extra CHCs. Actually, a further twist is necessary in the step of
CHC solving. As in the example above, all the CHCs generated based on the
refinement typing rules are of the form · · · =⇒ Pi(ṽ) (i.e., the head of every
CHC is an atomic formula on a predicate variable). Thus, there always exists a
trivial solution for the CHCs, which instantiates all the predicate variables to
true. For the example above,

P1(n) ≡ true P2(n, x) ≡ true P3(n) ≡ true P4(n, x) ≡ true

is also a solution, but using the trivial solution, our transformation yields the
non-terminating program. This program is essentially the same as the one in
Example 3 since let x = � in Assume(true);E is equivalent to let x = � in E.
Typical CHC solvers indeed tend to find the trivial solution.

To remedy the problem above, in addition to the CHCs generated from the
typing rules, we add extra constraints that prevent infinite loops. For the example
above, the definition of fρ3 (which corresponds to the channel f) in the translated
program is of the form

fρ3(n) = ifn < 0then ( )else fρ1(n)⊕ (let x = � in Assume(P2(n, x)); fρ3(x)).
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Thus we add the clause:
P2(n, x) =⇒ n �= x

to prevent an infinite loop fρ3(m) → fρ3(m) → · · ·. With the added clause, a
CHC solver HoIce [5] indeed returns x < n as the solution for P2(n, x).

In general, we can add the extra CHCs in the following, counter-example-
guided manner.

1. C := the CHCs generated from the typing rules
2. θ := callCHCsolver(C)
3. S := the sequential program generated based on the solution θ
4. if S is terminating then return OK; otherwise, analyze S to find an infinite

reduction sequence, add an extra clause to C to disable the infinite sequence,
and go back to 2.

More precisely, in the last step, the backend termination analysis tool generates
a lasso as a certificate of non-termination. We extract a chain f(x̃) → · · · →
f(x̃′) of recursive calls from the lasso, and add an extra clause requiring x̃ �= x̃′

to C. This is naive and insufficient for excluding out an infinite sequence like
f(1) → f(2) → f(3) → · · ·. We plan to refine the method by incorporating more
sophisticated techniques developed for sequential programs [16].

5 Implementation and Preliminary Experiments

5.1 Implementation

We have implemented a termination analysis tool for the π-calculus based on
the method described in Sects. 3 and 4. This tool was written in OCaml. We
chose C language as the actual target of our translation, and used Ultimate
Automizer [17] (version 0.2.1) as a termination analysis tool for C.

For the refinement type inference described in Sect. 4.3, we have used
HoIce [5] (version 1.8.3) and Z3 [20] (version 4.8.10) as backend CHC solvers.
Since a stronger solution for CHCs is preferable as discussed at the end of
Sect. 4.3, if HoIce and Z3 return different solutions {P1 �→ φ1, . . . , Pn �→ φn}
and {P1 �→ φ′

1, . . . , Pn �→ φ′
n}, then we used the solution {P1 �→ φ1∧φ′

1, . . . , Pn �→
φn ∧ φ′

n} for inserting Assume commands.
To make the analysis precise, the implementation is actually based on an

extension of the refinement type system in Sect. 4.1 with subtyping; see the
extended version [26].

5.2 Preliminary Experiments

We prepared a collection of π-calculus processes, and ran our tool on them.
Our experiment was conducted on Intel Core i7-10850H CPU with 32 GB mem-
ory. For comparison, we have also run the termination analysis mode of TyPi-
Cal [18,19] on the same instances.



Termination Analysis for the π-Calculus 279

Table 2. Results of the experiments

Test case Basic Refined TyPiCal

client-server 2.5 2.7 0.006

stateful-server-client FAIL FAIL 0.006

parallel-or 2.4 2.9 0.006

broadcast 3.6 3.3 0.004

btree FAIL FAIL 0.011

stable FAIL FAIL 0.003

ds-ex5-1 FAIL FAIL 0.002

factorial 3.9 4.4 0.002

ackermann 22.4 26.0 0.003

fibonacci 4.8 4.4 0.003

even/odd 7.0 7.6 0.002

factorial-pred FAIL 28.2 FAIL

fibonacci-pred FAIL 28.2 FAIL

even/odd-pred FAIL 10.1 FAIL

sum-neg 7.6 13.1 FAIL

upperbound 3.8 3.9 FAIL

nested-replicated-input1 2.3 2.4 FAIL

nested-replicated-input2 FAIL FAIL FAIL

nested-replicated-input3 3.7 4.0 0.010

deadlock FAIL 2.9 FAIL

The experimental results are summarized in Table 2. The columns “Basic”
and “Refined” show the results for the basic method in Sect. 3 and the refined
method in Sect. 4 respectively. The numbers show the running times mea-
sured in seconds, and “FAIL” means that the verification failed due to the
incompleteness of the reduction; non-terminating sequential programs were
obtained in those cases. The column “TyPiCal” shows the analogous result
for TyPiCal. The termination analysis of TyPiCal roughly depends on Deng
and Sangiorgi’s method [13]. “FAIL” in the column means that the process
does not satisfy the (sufficient) conditions for termination [13]. The termina-
tion analysis of TyPiCal treats numbers as natural numbers, and is actu-
ally unsound in the presence of arbitrary integers (for example, f !(m; r) |
∗f?(x; r).if x = 0 then r!(1) else f !(x − 1; r) is judged to be terminating for
any m).

The test cases consist of two categories. The first one, shown above the hor-
izontal line, has been taken from the sample programs of TyPiCal. Among
them, we have excluded out those that are not related to termination analysis
(note that TyPiCal can perform deadlock/lock-freedom analysis and informa-
tion flow analysis besides termination analysis). The second category, shown
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below the horizontal line, consists of those prepared by us,5 including the sam-
ples discussed in the paper. All the processes in the test cases are terminating.

For “stateful-server-client”, “btree”, “stable”, and “ds-ex5-1” in the first cate-
gory, and “nested-replicated-input2” in the second category, our analysis fails for
essentially the same reason. The following is a simplified version of “ds-ex5-1”:

a!() | b!() | ∗a?().b?().a!().

The process above is terminating because each run of the third process con-
sumes a message on b. Our reduction however ignores communications on b and
produces the following non-terminating program:

({fρa
() = fρa

(), fρb
() = ( )}, fρa

() ⊕ fρb
()).

For the second category, our refined method clearly outperforms the basic
method and TyPiCal. We explain some of the test cases in the second category.
The test cases “fibonacci” and “nested-replicated-input3” are from Example 1
and 2 respectively, and “even/odd” is a mutually recursive process that judges
whether a given number is even or odd. The process “deadlock” is the following
one:

∗loop?().loop!() | r?().loop!().

This process is terminating, because the subprocess r?().loop!() is blocked for-
ever, without ever sending a message to loop. With the refinement type system,
the channel r is given type: chρ(ε; false), and r?().loop!() is translated to:

let ε = ε in Assume(false); fρloop
(),

which is terminating by Assume(false). The process “upperbound” is the fol-
lowing process:

f !(0) | ∗f?(x).if x > 10 then 0 else f !(x + 1).

It is terminating because the argument of f monotonically increases, and is
bounded above by 10. TyPiCal cannot make such reasoning.

6 Related Work

As mentioned in Sect. 1, there have been a number of studies on termination of
the π-calculus [11–13,19,25,28,29], but most of them have been rather theoreti-
cal, and few tools have been developed. Our technique has been partially inspired
by Deng and Sangiorgi’s work [13], especially by their observation that a process
is terminating just if there is no infinite chain of communications on replicated
input processes. Deng and Sangiorgi ensured the lack of infinite chains by using a
type system. They actually proposed four system, a core system and three kinds
5 Unfortunately, there are no standard benchmark set for the termination analysis for

the π-calculus.
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of extensions. Our approach roughly corresponds to the first extension of their
system ([13], Sect. 4), which requires that, in every chain of communications,
the values of messages monotonically decrease. An advantage of our approach
is that we can use mature tools for sequential programs to reason about how
the values of messages change. Our approach does not subsume the second and
third extensions of Deng and Sangiorgi’s system, which take into account syn-
chronizations over multiple channels; it is left for future work to study whether
such extensions can be incorporated in our approach.

To our knowledge, TyPiCal [18,19] is the only automated termination anal-
ysis tool. TyPiCal’s termination analysis is based on Deng and Sangiorgi’s
method [13], but is quite limited in reasoning about the values sent along chan-
nels; it only considers natural numbers, and the ordering on them is limited to
the standard order on natural numbers. Thus, for example, TyPiCal cannot
prove the termination of the process “upperbound” as described in Sect. 5.

Recently, there have been studies on type systems for estimating the (time)
complexity of processes for the π-calculus [1,2] and related session calculi [8,9].
Since the existence of a finite upper-bound implies termination, those analyses
can, in principle, be used also for reasoning about termination, but the result-
ing termination analysis would be too conservative. It would be interesting to
investigate whether our approach of reduction to sequential programs can be
extended to achieve complexity analysis for the π-calculus. Refinement types for
variants of the π-calculus have been studied before [3,15]. Our contribution in
this regard is the application to termination analysis.

Cook et al. [6] proposed a method for proving termination of multi-threaded
programs. Their technique also makes use of a termination tool for sequen-
tial programs. As their language model is quite different from ours (they deal
with imperative programs with shared memory and locks, rather than message-
passing programs), however, their method is quite different from ours.

7 Conclusion

We have proposed a method for reducing termination verification for the
π-calculus to that for sequential programs and implemented an automated ter-
mination analysis tool based on the method. Our approach allows us to reuse
powerful termination analysis tools developed for sequential programs.

Future work includes (i) a further refinement of our reduction and (ii) appli-
cations of our method to other message-passing-style concurrent programming
languages. As for the first point, there are a few known limitations in the cur-
rent reduction. Besides the issues mentioned at the end of Example 2 and Sect. 5,
there is a limitation that channels of the same region are merged to the same
function, which leads to the loss of precision. For example, consider:

∗ c?(x).if x < 0 then 0 else c!(x − 1)
| ∗d?(x).if x > 0 then 0 else d!(x + 1)
| e!(c) | e!(d) | c!(0)
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The process is terminating, but our approach fails to prove it. Since the same
region is assigned to c and d (because both are sent along e), the replicated input
processes are translated to non-deterministic function definitions:

fρ(x) = if x < 0 then ( ) else fρ(x − 1)
fρ(x) = if x > 0 then ( ) else fρ(x + 1),

which cause an infinite reduction fρ(0) → fρ(−1) → fρ(0) → · · ·. One remedy to
this problem would be to introduce region polymorphism and translate processes
to higher-order functional programs.
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Abstract. There is increasing interest in applying verification tools to
programs that have bitvector operations. SMT solvers, which serve as
a foundation for these tools, have thus increased support for bitvector
reasoning through bit-blasting and linear arithmetic approximations.

In this paper we show that similar linear arithmetic approximation of
bitvector operations can be done at the source level through transforma-
tions. Specifically, we introduce new paths that over-approximate bitvec-
tor operations with linear conditions/constraints, increasing branching
but allowing us to better exploit the well-developed integer reasoning
and interpolation of verification tools. We show that, for reachability of
bitvector programs, increased branching incurs negligible overhead yet,
when combined with integer interpolation optimizations, enables more
programs to be verified. We further show this exploitation of integer
interpolation in the common case also enables competitive termination
verification of bitvector programs and leads to the first effective tech-
nique for linear temporal logic (LTL) verification of bitvector programs.
Finally, we provide an in-depth case study of decompiled (“lifted”) binary
programs, which emulate X86 execution through frequent use of bitvec-
tor operations. We present a new tool DarkSea, the first tool capable
of verifying reachability, termination and LTL of lifted binaries.

1 Introduction

There is increasing interest in using today’s verification tools in domains where
bitvector operations are commonplace. Toward this end, there has been a variety
of efforts to enable bitvector reasoning in Satisfiability Modulo Theory (SMT)
solvers, which serve as a foundation for program analysis tools. One common
strategy employed by these SMT solvers is bit-blasting, which translates the
input bitvector formula to an equi-satisfiable propositional formula and uti-
lizes Boolean Satisfiability (SAT) solvers to discharge it. Another strategy is to
approximate bitvector operations with integer linear arithmetic [14]. CVC4 now
employs a new approach called int-blasting [53], which reasons about bitvector
formulas via integer nonlinear arithmetic.
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Inspired by these SMT strategies, this paper explores the use of linear
approximations of bitvector operations through source-level transformations,
toward enabling Termination/LTL verification of bitvector programs. Our bit-
wise branching introduces new conditional, linear arithmetic paths that over-
approximate many but not all bitvector behaviors. These paths cover the com-
mon cases and, in the remaining cases, other paths fall back on the exact bitvec-
tor behavior. As a result, in the common case, the reasoning burden is shifted
to linear arithmetic conditions/constraints, a domain more suitable to today’s
automated termination/LTL techniques. We created source-translation rewrit-
ing rules for expressions as well as assignment statements and implemented them
as a transformation on Boogie programs, within the Ultimate verifier [31].

We first examine the impact of bitwise branching on reachability and exper-
imentally demonstrate that the translation imposes negligible overhead (from
introducing additional paths), yet allows existing tools to verifying more bitvec-
tor programs. There are limited SV-COMP bitvector benchmarks (existing
benchmarks require little or no real bitvector reasoning) so we first prepared
26 new bitvector reachability benchmarks, including examples drawn from Sean
Anderson’s “BitHacks” repository1, which use bitvector operations for various
purposes. Without bitwise branching, Ultimate’s default setting (Z3 and SMT-
Interpol) is only able to verify 2 of the 26 benchmarks. We show that bitwise
branching allows us to verify these benchmarks with comparable performance
with existing tools across a variety of back-end SMT solvers (MathSAT, Z3,
CVC4, SMTInterpol). We also show that bitwise branching is comparable in
performance (both time and problems solved) with Z3.

The ability to use integer interpolation in the common case has far-reaching
consequences, which we explore in the remainder of the paper. In Sect. 6 we show
that, for bitwise termination benchmarks, bitwise branching improves Ultimate
and is competitive with other tools that support termination of bitvector pro-
grams (e.g.,AProVE, KITTeL, CPAchecker). Again SV-COMP does not
have sufficient benchmarks for termination of bitvector programs, so we cre-
ated new benchmarks by extending examples from the SV-COMP termination
category [6], as well as the AProVE bitvector benchmarks [1].

More notably, our work leads to one of the first tools for verifying tempo-
ral logic (LTL) properties of bitvector programs. To our knowledge, the only
existing tool is Ultimate, and we show that bitwise branching improves Ulti-
mate’s ability to verify LTL from merely 3 examples to a total of 59 new LTL
benchmarks (out of a total of 67 benchmarks), adapted from Ultimate’s LTL
repository [7] and the BitHacks repository.

Case Study: Temporal Verification of Lifted Binaries. In Sect. 7 we explore how
bitwise branching can be used as part of a novel strategy for verifying decompiled
(“lifted”) binaries. Lifted binaries have lost their source data-types and instead
emulate the behavior of the architecture with extensive use of bitvector operations.
We developed a new tool called DarkSea, built on top of our Ultimate-based
bitwise branching, as well as IDA Pro [48] and McSema [25]. Although these
1 https://graphics.stanford.edu/∼seander/bithacks.html.

https://graphics.stanford.edu/~seander/bithacks.html
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decompilation tools generate IR/C programs and today’s verification tools do
parse C programs, we also describe some critical translations that were needed to
make the output ofMcSema suitable for verification (rather than re-compilation).

We experimentally validated our work and show that DarkSea is the first
tool for verifying temporal properties of lifted binaries. DarkSea is able to prove
or disprove LTL properties of 8 lifted binaries. The most comparable alternative
is Ultimate, which cannot prove any of them without DarkSea’s translations,
and can only verify 6 of them without bitwise branching.

Contributions. In summary, our contributions are:

– (Section 4) Bitwise branching, introducing paths with linear approximations.
– (Section 5) An evaluation showing that it allows one to prove reachability of

more bitvector programs, with negligible overhead.
– (Section 6) An evaluation showing competitive performance on termination,

and the first effective technique for LTL of bitvector programs.
– (Section 7) A case study and new tool called DarkSea, the first temporal

verification technique for decompiled (lifted) binaries.
– New suites of bitvector benchmarks for reachability (23), termination (31),

LTL (41) and lifted binaries (8).

We conclude with related work (Sect. 8). All code, proofs and benchmarks
are available online2. Our benchmarks have also been submitted to SV-COMP.

2 Motivating Examples

Ex. 1. Reachability Ex. 2. Termination Ex. 3. LTL ϕ = �(♦(n < 0))

int r, s, x;
while (x>0){

s = x >> 31;
x--;
r = x + (s&(1-s));
if (r<0) error();

}

a = *;
assume(a>0);
while (x>0){

a--;
x = x & a;

}

while (1) {
n = *; x = *; y = x-1;
while (x>0 && n>0) {

n++;
y = x | n;
x = x - y;

}
n = -1;

}}

and_reach1.c and-01.c or_loop3.c

We will refer to the above bitvector programs throughout the paper. To prove
error unreachable in the Ex. 1, a verifier must be able to reason about the
bitvector >> and & operations. Specifically, it must be able to conclude that
expression s&(1-s) is always positive (so r cannot be negative) which also
depends on the earlier x>>31 expression. We will use this example to explain
our work in Sect. 4, and compare performance of Ultimate using state-of-the-
art SMT solvers, with and without bitwise branching.

We will see that the key benefits of bitwise branching arise when concerned
with termination and LTL. Ex. 2 involves a simple loop, in which a is decre-
mented, but the loop condition is on variable x, whose value is a bitvector expres-
sion over a. Today’s tools for termination of bitvector programs struggle with
2 github.com/cyruliu/darksea.

https://github.com/cyruliu/darksea
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this example: AProVE, CPAchecker and Ultimate report unknown and
KITTeL and 2LS timeout after 900 s (details in the Appendix of the extended
version [40]). Critical to verifying termination of this program are (1) proving
the invariant x > 0∧a > 0 on Line 3 within the body of the loop and (2) synthe-
sizing a rank function. To prove the invariant I, tools must show that it holds
after a step of the loop’s transition relation T = x>0∧a′=a−1∧x′=x&a′, which
requires reasoning about the bitwise-& operation because if we simply treat the
& as an uninterpreted function, I ∧ T ∧ x′>0 �=⇒ I ′.

The bitwise branching strategy we describe in this paper helps the veri-
fier infer these invariants (and later synthesize rank functions) by transforming

a = *; assume(a > 0);
while (x > 0) {

{ x > 0 ∧ a > 0 }
a--;

if (x >= 0 && a >= 0)

then { x = *; assume(x <= a); }
else { x = x & a; }

}

the bitvector assignment to x into linear con-
straint x<=a, but only under the condition
that x>=0 and a>=0. That is, bitwise branch-
ing translates the loop in Ex. 2 as depicted
in the gray boxes to the right. This changes
the transition relation of the loop body from
T (the original program) to T ′:

T ′ = x>0 ∧ a′=a−1 ∧ ((x≥0 ∧ a′≥0 ∧ x′≤a′) ∨ (¬(x≥0 ∧ a′≥0) ∧ x′=x&a′))

Importantly, when I holds, the else branch with the & is infeasible, and thus
we can treat the & as an uninterpreted function and yet still prove that I ∧
T ′ ∧ x′>0 =⇒ I ′. With the proof of I a tool can then move to the next step
and synthesizes a rank function R(x, a) that satisfies I ∧ T ′ =⇒ R(x, a)≥0 ∧
R(x, a)>R(x′, a′), namely, R(x, a) = a.

Bitwise branching also enables LTL verification of bitvector programs. We
examine the behavior of programs such as Ex. 3 above, with LTL property
�(♦(n < 0)). The state of the art program verifier for LTL is Ultimate, but
Ultimate cannot verify this program due to the bitvector operations. (Ulti-
mate’s internal overapproximation is too imprecise so it returns Unknown.) In
Sect. 6 we show that with bitwise branching, our implementation can prove this
property of this program in 8.04 s.

Case Study: Decompiled Binary Programs. In recent years many tools
have been developed for decompiling (or “lifting”) binaries into a source code
format [9,15,25,45,51]. The resulting code, however, has long lost the original

while (1) {

y = 1; x = *;

while (x>0) {

x--;

if (x <= 1)

y = 0; } } }

source abstractions and instead emulates the hard-
ware. These programs are an interesting case study
because their frequent use of bitvector operations
places them beyond the capabilities of existing tools
for LTL verification.

Consider the (source) program shown to the right.
This program, which does not contain any bitvector
operations, is taken from the Ultimate repository3. Some existing techniques

3 http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/
PotentialMinimizeSEVPABug.c.

http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c
http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c
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and tools [7,20] can prove that the LTL property �(x > 0 ⇒ ♦(y = 0))
holds. However, after the program is compiled (with gcc) and then disassembled
and lifted (with IDPro and McSema), the resulting code has many bitvector
operations. The resulting lifted code is quite non-trivial. (The full version is given
in the extended version [40]). It required substantial engineering efforts just to
parse and analyze the lifted code with existing verifiers (see Sect. 7). Let us first
focus on the bitvector complexities; here is a fragment of the lifted IR (in C for
readability):

1 while(true) {
2 tmp_x = load i32 , i32* bitcast (% x_type* @x to i32*)
3 ...
4 if ( ((tmp_x >> 31) == 0) & ((tmp_x == 0) ^ true) ) {
5 tmp_40 = add i32 tmp_x , -1
6 store i32 tmp_40 , i32* bitcast (% x_type* @x to i32*)
7 tmp_xp = load i32 , i32* bitcast (% x_type* @x to i32*)
8 tmp_42 = tmp_xp + -1; tmp_45 = tmp_42 >> 31;
9 tmp_43 = tmp_xp + -2; tmp_44 = tmp_43 >> 31;

10 if ((((((( tmp_42 != 0u)&1)) & (((((( tmp_44 == 0u)&1)) ^ (((((( tmp_44
^ tmp_45) + tmp_45)) == 2u)&1)))&1)))&1))) {

11 store i32 0, i32* bitcast (% y_type* @y to i32*)
12 }
13 } else { break; }
14 }

Roughly, Line 4 corresponds to the x>0 comparison, and Line 10 corresponds
to the x<=1 comparison. These bitvector operations, introduced to emulate the
behavior of the binary, make the program challenging for existing verifiers.

We describe a new tool DarkSea that uses bitwise branching in the context
of a decompilation toolchain involving IDA Pro, McSema and Ultimate. The
lifting performed by tools like McSema is geared toward recompilation rather
than verification, thus foiling existing tools. In Sect. 7.2 we describe translations
performed by DarkSea to tailor lifted binaries for verification. In Sect. 7.3, our
experimental results show that DarkSea is the first tool capable of proving
reachability, termination and LTL of lifted binaries.

3 Preliminaries

Our formalization is based on Boogie programs [12], denoted P . Our implemen-
tations parse input source C programs (or binaries decompiled to C) that may
have bitvector operations. These programs are then translated into Boogie pro-
grams, in which bitvector operations are represented as uninterpreted functions.
Figure 1 includes the standard syntax of a statement Stmt in a Boogie program
P . For bitvector programs, we assume the following abbreviated expression Expr
syntax, which includes bitvector operations:
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Stmt ::= assume Expr; | assert Expr;
| call forall Id (NondetExpr); | Id : Stmt
| Lhs(, Lhs)∗ := Expr(, Expr)∗; | break Id;
| if (NondetExpr){ Stmt∗ } Else | goto Id(, Id)∗;
| while (NondetExpr) LoopInv∗ {Stmt∗ } | call CallLhs Id ();

| call CallLhs Id (Expr(, Expr)∗); | havoc Id(, Id)∗;
| call forall Id (Expr(, Expr)∗); | return;

Lhs ::= Id | Id[Expr(, Expr)∗]
NondetExpr ::= * | Expr

Else ::= else if (NondetExpr){ Stmt∗ }Else | else { Stmt∗ }

CallLhs ::= Id(, Id)∗ :=

LoopInv ::= free invariant Expr;

Expr ::= BinOp | UnOp | UninterpFn | ...
BinOp ::= + | - | * | / | % | && | || | ==> | <==> | ...
UnOp ::= - | ! | ...

UninterpFn ::= bwAnd | bwOr | bwXor | bwShL | bwShR | bwCompl

Fig. 1. Boogie statement syntax in Ultimate framework.

We assume conditional branching has been transformed to non-deterministic
branching: if * then {assume(b);s1} else {assume(!b);s2}. As discussed later,
Ultimate (used in our implementation) has two modes: “bitvector mode,” in
which these uninterpreted expressions are translated into SMT bitvector sorts
and “integer mode,” in which they remain uninterpreted.

For the semantics, we assume a state space Σ : Var → Val , mapping variables
to values. We let [[e]] : Σ → Val and [[s]] : Σ → P(Σ) be the semantics of
expressions and statements, respectively, and [[P ]] denotes traces of P .

4 Bitwise-Branching

We build our bitwise-branching technique on the known strategy of transform-
ing bitvector operations into integer approximations [14,53] but explore a new
direction: source-level transformations to introduce new conditional paths that
approximate many (but not all) behaviors of a bitvector program. These new
paths through the program have linear input conditions and linear output con-
straints and frequently cover all of the program’s behavior (with respect to the
goal property), but otherwise fall back on the original bitvector behavior when
none of the input conditions hold. We provide two sets of bitwise-branching rules:

1. Rewriting rules of the form C 	E ebv � eint in Fig. 2a. These rules are
applied to bitwise arithmetic expressions ebv and specify a condition C for
which one can use integer approximate behavior eint of ebv. In other words,
rewriting rule C 	E ebv � eint can be applied only when C holds and a bit-
wise arithmetic expression e in the program structurally matches its ebv with
a substitution δ. Then, e will be transformed into a conditional approxima-
tion: Cδ ? eintδ : ebv. Note that, although modulo-2 is computationally more
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e1 = 0 �E e1&e2 � 0
(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 �E e1&e2 � e1

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) �E e1&e2 � e1&&e2
e1 ≥ 0 ∧ e2 = 1 �E e1&e2 � e1%2

e2 = 0 �E e1|e2 � e1
(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 �E e1|e2 � 1

e2 = 0 �E e1^e2 � e1
e1 = e2 = 0 ∨ e1 = e2 = 1 �E e1^e2 � 0

(e1 = 1 ∧ e2 = 0) ∨ (e1 = 0 ∧ e2 = 1) �E e1^e2 � 1
e1 ≥ 0 ∧ e2 = CHAR BIT * sizeof(e1) − 1 �E e1>>e2 � 0
e1 < 0 ∧ e2 = CHAR BIT * sizeof(e1) − 1 �E e1>>e2 � −1

(a) Rewriting rules for arithmetic expressions.

e1 ≥ 0 ∧ e2 ≥ 0 �S r ople e1&e2 � r<=e1 && r<=e2
e1 < 0 ∧ e2 < 0 �S r ople e1&e2 � r<=e1 && r<=e2 && r<0
e1 ≥ 0 ∧ e2 < 0 �S r opeq e1&e2 � 0<=r && r<=e1

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) �S (e1|e2)==0 � e1==0 && e2==0
e1 ≥ 0 ∧ is const(e2) �S r opge e1|e2 � r>=e2

e1 ≥ 0 ∧ e2 ≥ 0 �S r opge e1|e2 � r>=e1 && r>=e2
e1 < 0 ∧ e2 < 0 �S r opeq e1|e2 � r>=e1 && r>=e2 && r<0
e1 ≥ 0 ∧ e2 < 0 �S r opeq e1|e2 � e2<=r && r<0
e1 ≥ 0 ∧ e2 ≥ 0 �S r opge e1^e2 � r>=0
e1 < 0 ∧ e2 < 0 �S r opge e1^e2 � r>=0
e1 ≥ 0 ∧ e2 < 0 �S r ople e1^e2 � r<0

e1 ≥ 0 �S r ople ∼e1 � r<0
e1 < 0 �S r opge ∼e1 � r>=0

(b) Weakening rules for relational expressions and assignments. ople ∈ {<,<=,==,:=},
opge ∈ {>,>=,==,:=}, and opeq ∈ {==,:=}

Fig. 2. Rewriting rules. Commutative closures omitted for brevity.

expensive, it is often more amenable to integer reasoning strategies. For con-
ciseness, we omitted variants that arise from commutative re-ordering of the
rules (in both Figs. 2a and 2b).
For example, consider the bitvector arithmetic expression s&(1-s) in Ex. 1
of Sect. 2. If we apply the rewriting rule e1 ≥ 0 ∧ e2 = 1 	E e1&e2 � e1%2
with the substitution s/e1, 1-s/e2 then the expression is transformed into
s>=0&&(1-s)==1 ? s%2 : (s&(1-s)). Since s reflects the sign bit of the posi-
tive variable x, it is always 0 and the if condition is feasible. In general, we
can further replace the remaining bitwise operation in the else expression
with other applicable rules. There may still be executions that fall into the
final catch-all case where the bitwise operation is performed. However, as we
see in the subsequent sections of this paper, these case splits are nonetheless
practically significant because often the final else is infeasible.
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2. Weakening rules of the form C 	S sbv � sint are in Fig. 2b. These
rules are applied to relational condition expressions (e.g., from assump-
tions) and assignment statements sbv, specifying an integer condition C
and over-approximation transition constraint sint. When the rule is applied
to a statement (as opposed to a conditional), replacement sint can be
implemented as assume(sint). When a weakening rule C 	S sbv � sint is
applied to an assignment s with substitution δ, the transformed statement
is if Cδ assume(sintδ) else sbv. In addition, when sbv of a weakening rule
can be matched to the condition c in an assume(c) of the original pro-
gram via a substitution δ, then the assume(c) statement is transformed
to if Cδ then assume(sintδ) else assume(c). The assignment operator in
Figs. 2a and 2b, denoted :=, is included in three group of operators (ople, opge,
opeq).
Proofs for each rule were done with Z3. Details are in the extended ver-
sion [40]. The rules in Fig. 2a and Fig. 2b were developed empirically, from
the reachability/termination/LTL benchmarks in the next sections and, espe-
cially, based on patterns found in decompiled binaries (Sect. 7). We then gen-
eralized these rules to expand coverage.

Translation Algorithm. We implemented bitwise branching via a translation algo-
rithm, on top of Ultimate, denoted UltimateBwB. Our translation acts on the
AST of the program, with one method TE : exp -> exp to translate expressions
and another method TS : stmt -> stmt to translate assignment statements, each
according to the set of available rules (algorithms of TE and TS are given in the
extended version [40]). In brief, when we reach a node with a bitwise operator,
we recursively translate the operands, match the current operator against our
collection of rules, and apply all matching rules to construct nested if-then-else
expressions/statements. We found that, when multiple rules matched, the order
did not matter much.

Let TE{e} : e denote the result of applying substitutions to e, and similar for
TS{s} : s. We lift this to a translation on a Boogie program P with TE{P} : P
and TS{P} : P , referring to all expressions and statements in P , respectively.

Lemma 1 (Rule correctness). For every rule C 	E e � e′, ∀σ. C(σ) ⇒
[[e]]σ = [[e′]]σ. For every C 	S s � s′, ∀σ. C(σ) ⇒ [[s]]σ ⊆ [[s′]]σ.

Theorem 1 (Soundness). For every P, TE , TS, [[P ]] ⊆ [[TS{TE{P}}]].

Proof. See AppendixA.
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Control-Flow Automata. We have formalized bitwise branching via ASTs for
readability but it can also be represented as a transformation on a program rep-
resented as a control-flow automaton. A (deterministic) control flow automaton
(CFA) [35] is a tuple A = 〈Q, q0,X, s,−−�〉 where Q is a finite set of control
locations and q0 is the initial control location, X is a finite sets of typed variables,

q0 q1
x := x&a

translated into:
q0

qa qb

q1

¬(x ≥ 0 ∧ a ≥ 0) x ≥ 0 ∧ a ≥ 0

x := x&a assume(x ≤ a)

s is the loop/branch-free statement lan-
guage and −−�⊆ Q × s × Q is a finite set
of labeled edges.

Continuing with Ex. 2, an edge of
the CFA labeled with statement x = x&

a is shown to the right. Next shown is
the result after applying the first weaken-
ing rule in Fig. 2b. Conditional edges are
introduced (e.g., x ≥ 0∧q ≥ 0 to qb) along
with linear constraints (e.g., assume(x ≤ a

)) and bitvector operations remain in the
fallback case.

5 Reachability of Bitvector Programs

We now evaluate the effectiveness of bitwise branching (BwB), as implemented in
our UltimateBwB, toward reachability verification. Existing SV-COMP bench-
marks require little or no bitvector reasoning; even when bitvector operations
are present, they are often irrelevant to the property and can be abstracted away.
We therefore created a new suite of 28 bitvector programs, including 12 simple
programs (ReachBit) and 16 programs adapted from the existing code snippets
“BitHacks” [10], which use bitwise operations for various tasks.

Ultimate can verify bitvector programs in two modes: integer and bitvec-
tor. In the integer mode, bitvector operations are overapproximated to nonde-
terminism and overflow/underflow is accounted for with assume statements. In
the bitvector mode, Ultimate utilizes a variety of back-end SMT solvers with
internal bitvector reasoning strategies, such as CVC4, Z3 and MathSAT (MS).
Our implementation of bitwise branching, embodied in UltimateBwB, does
not use bitvector mode but instead transforms bitvector programs (through bit-
wise branching) and verifies them in Ultimate’s integer mode using the same
set of back-end SMT solvers.

We ran our experiments with BenchExec [13] on a Linux 5.4.65 machine
with an AMD Ryzen 3970X 32-core 3.7 GHz CPU and 256 GB RAM. We limited
CPU time to 5 min, memory to 8 GB, and restricted each run to two cores.
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Fig. 3. Performance of UltimateBwB with bitwise branching “BwB” in integer mode
(solid lines) versus Ultimate (dashed lines, “BV” indicating bitvector mode) on bitvec-
tor programs, using various SMT solvers.

Figure 3 plots the number of ReachBit and BitHacks benchmarks solved ver-
sus the cumulative time between UltimateBwB with bitwise branching (solid
lines) and Ultimate (dashed lines). These results show that the performance of
UltimateBwB is comparable to Ultimate’s bitvector mode, despite the fact
that the bitwise branching transformation introduces new paths.

Because Ultimate’s verification algorithms heavily utilize interpolation for
optimizations, we also ran the experiment with interpolation enabled when possi-
ble, using MathSAT’s interpolation (MS-Itp, in both modes) and SMTInter-
pol (SItp, only in the integer mode because SMTInterpol does not support
bitvectors). Notably, without bitwise branching, Ultimate with the default set-
ting (integer mode SItp-Z3 in Fig. 3) returns Unknown for 10/12 “ReachBit”
and 16/16 “BitHacks” benchmarks, despite the fact that it has a good trend in
terms of runtime, while UltimateBwB can verify all 28 programs in the same
settings. Moreover, while interpolation is less effective in the bitvector mode (see
BV-MS-Itp vs. BV-MS), when combined with bitwise branching in the integer
mode, it improves over those solvers and has the best results (BwB-SItp-Z3).
The detailed result can be found in the extended version [40].

6 Termination and LTL of Bitvector Programs

Tool BitVec. Term. LTL

Ultimate Limited Yes Yes
AProVE [29] Yes Yes No
KITTeL [26] Yes Yes No
CPAchecker [50] Limited Yes No
2LS [18] Yes Yes No

UltimateBwB Yes Yes Yes

We now evaluate bitwise branching on
the main target: liveness properties
of bitvector programs. There are few
comparable tools that support bitvec-
tor reasoning and these properties; the
most comparable (and mature) tools
are listed to the right, along with their
limitations.
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✔ 5 1 7 8 2 18 1 3 3 14 2 2
E✔ 1 - - - - - - - - - - -
✗ 6 10 - 8 - 13 - - - - - -
E✗ 2 7 - 3 - - - 10 - - 2 6
? 14 13 - - 29 - 10 3 - 1 14 8
T 3 - 19 12 - - 7 - 10 2 - 1
M - - - - - - - - - 1 - 1
j - - 5 - - - - 2 5 - - -

Termination. We compare bit-
wise branching with these termi-
nation provers in the table. We
applied these tools to two bench-
marks suites: (i) We first used 18
bitvector terminating programs
selected from AProVE’s bitvec-
tor benchmarks [34]. Notably,
those benchmarks were designed
with general bitvector arithmetic
in mind so that there is only a
small portion of bitvector pro-
grams in it (i.e. 18/118 or 15%).
(ii) We therefore built a sec-
ond set of 31 termination bench-
marks, including 18 terminat-
ing programs (✔) and 13 non-
terminating programs (✗), called
TermBitBench with bitvector operations including bitwise |, &, ^, <<, >>, ~.
Results. To the right is a table summarizing our results (details in [40]). For
the AProVE benchmarks, our tool can correctly prove the termination or non-
termination of 2 programs, which is less than the number of programs that
can be proved by CPAchecker (3), KITTeL (3), and 2LS (14). However, for
TermBitBench, while UltimateBwB can prove all 31 programs, CPAchecker,
KITTeL, and 2LS can only prove at most 16 programs. Moreover, while our
tool was built on top of Ultimate, it outperforms Ultimate in proving ter-
mination and non-termination of bitwise programs. This is because Ultimate’s
algorithms for synthesizing termination [32] and non-termination proofs [39] are
not applicable to SMT formulas containing bitvectors, as discussed in Sect. 2. As
a consequence, Ultimate relies on integer-based encodings of source programs
together with overapproximations of bitwise operations. The 6 false results in
AproveBench are spurious counterexamples that arise due to Ultimate’s overap-
proximation of unsigned integers. Our results here confirm that bitwise branching
provides an effective means for termination of bitvector programs.

Linear Temporal Logic. We compared our tool against Ultimate, which is
the state-of-the-art LTL prover and the only mature LTL verifier that supports
bitvector programs. To our knowledge, there are no available bitwise bench-
marks with LTL properties so we create new benchmarks for this purpose: (iii)
New hand-crafted benchmarks called LTLBitBench of 42 C programs with LTL
properties, in which bitwise operations are heavily used in assignments, loop con-
ditions, and branching conditions. There are 22 programs in which the provided
LTL properties are satisfied (✔) and 20 programs in which the LTL proper-
ties are violated (✗). (iv) Benchmarks adapted from the “BitHacks” programs,
consisting of 26 programs with LTL properties (18 satisfied and 8 violated).
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(iv) Bithacks
(iii)
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✔ 3 10 - 21
✗ - 7 - 20
? 21 5 42 -
T 1 1 - 1
M 1 3 - -

The table to the right summarizes the result
of applying Ultimate and UltimateBwB on
these two bitvector benchmarks (see [40] for
details). UltimateBwB outperforms Ulti-
mate: UltimateBwB can successfully ver-
ify 41 of 42 programs in LTLBitBench and
18 of 26 BitHacks programs while Ultimate
can only handle a few of them. Note that we
have more out-of-memory results in BitHacks
Benchmarks, perhaps due to memory consump-
tion reasoning about the introduced paths. In
conclusion, bitwise branching appears to be the
first effective technique for verifying LTL prop-
erties of bitvector programs.

Bitwise-branching can be combined with
other tools beyond Ultimate, making it an appealing general strategy. In this
paper, we implemented bitwise branching within Ultimate [31] source code
(during the C-to-Boogie translation) so that we could compare against unmod-
ified Ultimate, which is already one of the more effective Termination/LTL
verifiers. Furthermore, to our knowledge other tools do not allow one to flip
a switch to enable their own bit-precise analysis (i.e., CBMC’s Bitblasting or
CPAchecker’s FixedSizeBitVectors theory) or disable that analysis, abstract-
ing with integers.

7 Case Study: LTL of Decompiled Binaries

Decompiled binary executables are rife with bitvector operations, making them
an interesting domain for a case study. Many tools [8,24,25,27,28,36,48] have
been developed for decompilation. Similar to compilation, the decompilation
process consists of multiple phases, beginning with disassembly. Some techniques
have emerged for verifying low-level aspects of decompiled binaries such as archi-
tectural semantics [11,23,47], decompilation into logic [43–45,51], and transla-
tion validation [22] (discussed in Sect. 8).

Further along the decompilation process, other tools aim to represent a binary
at a higher level of abstraction through a process called lifting. A lifted binary
can be represented in IR or source code, but includes only some of the source-
level abstractions of the original program. Instead, a lifted “program” emulates
the machine itself, with data structures that mimic the hardware (e.g., registers,
flags, stack, heap, etc.) and control that mimics the behavior of the binary.

While some of the above mentioned works involve manual or semi-automated
proofs of safety properties, we have not yet seen many automated techniques
for verifying reachability, termination and temporal properties of those lifted
binaries. To a large extent today’s automated verification techniques have relied
on source abstractions (e.g., invariants and rank functions over loop variables,
structured control flow, procedure boundaries, etc.).
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7.1 Bitvector Operations in Lifted Binaries

Lifted binaries frequently use bitvector operations e.g., to reflect signed/unsigned
comparison of variables whose type was lost in compilation. As we show in
Sect. 7.3, lifted programs are beyond the capabilities of termination verification
tools such as Ultimate, CPAchecker, AProVE or KITTeL.

While the source code for the inner loop of PotentialMinimizeSEVPABug.c in
Ex. 3 is straight-forward (decrement x; assign 0 to y if x <= 1) the corresponding
expressions in the lifted binaries involve multiple bitvector operations:

(((tmp_42 != 0u)&1) &

((((tmp_44 == 0u)&1 ^ (((((tmp_44 ^ tmp_45) + tmp_45) == 2u)&1)))&1)))&1

This expression simulates branch comparisons that the machine would perform
on values whose type was discarded during compilation. The source code variable
x is a signed integer, but compilation has stripped its type. During decompila-
tion, to approximate, lifting procedures consider these tmp variables (and all
integer variables) to be unsigned. Meanwhile, in the binary, the condition x<=0

is compiled to be a signed comparison. Therefore, lifting recreates a signed com-
parison using the unsigned tmp variables. Lifted binaries are good candidates for
bitwise branching; in this example 3 rules can be applied.

7.2 DarkSea: A Toolchain for Temporal Verification of Lifted
Binaries

Bitvector operations are not the only issue: lifted binaries have several other
wrinkles that preclude them from being verified with today’s tools. We briefly
discuss these issues and how we address them in a new toolchain called Dark-
Sea, the first tool capable of verifying reachability, termination and LTL prop-
erties of lifted binaries. DarkSea is comprised of several components:

DarkSea takes as input a lifted binary (obtained from IDA Pro and McSema)
in LLVM IR format, which then can be converted to C via llvm-cbe.

Lifting tools like McSema [9,25] are often designed with the goal of re-
compilation rather than verification. Consequently, the McSema IR, even if con-
verted to C, cannot be analyzed by existing tools (see Sect. 7.3) which either crash,
timeout, memout, or fail during parsing. We therefore perform a series of transla-
tions discussed below to re-target the lifted binaries into a format more amenable
to verification, which we then input to UltimateBwB. The translations below
work with LLVM-8.0 and consist of around 500 lines of C++ and 200 lines of bash.
We also identified and fixed several defects in McSema [3–5].

1. Run-time environment. For re-compilation, lifting yields code that switches
context between the run-time environments and the simulated code, akin
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to how a loader moves environment variables onto the stack. A first pass
of DarkSea analyzes lifted output to discover the original program’s main,
decouples the surrounding context-switch code, and removes it.

2. Passing emulation state through procedures. McSema generates lifted pro-
grams in which function arguments pass emulation state that is used for
re-compilation. We found this to make it difficult for verifiers to track state.
We thus eliminate these arguments from every function call, creating a single
global pointer to the emulation state struct and replacing all uses of the first
argument in the function body with a use of our new pointer.

3. Nested structures. Lifted binaries simulate hardware features (e.g., regis-
ters, arithmetic flags, FPU status flags) and, for cache efficiency, represent
them as nested structures, e.g., state->general_registers.register13.union
.uint64cell. DarkSea flattens these nested data structures, creating indi-
vidual variables for all the innermost and separable fields, and then translates
accesses to these nested structures.

4. Property-directed slicing. Not all the instructions are relevant to the proper-
ties we aim to verify, so we further slice the program to keep only property-
dependent code, using DG [17] in termination-sensitive mode. For LTL prop-
erties, we use the atomic propositions’ variables to seed our slicing criteria.

A longer discussion of these translations can be found in [40].

7.3 Experiments

We evaluated whether our translations (Sect. 7.2) and bitwise branching (Sect. 4)
enabled tools to verify termination and LTL properties of decompiled binaries.

Termination of Lifted Binaries. As discussed in Sect. 6, there are several
termination provers that support bitvector programs. We thus applied those
termination provers to today’s lifting results on both the raw output of McSema

Table 1. Termination of lifted binaries,
with and without DarkSea translations.

Raw McSema DarkSea transl.
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✔ - - - - - - - - - - 18 18

j - 18 - - 3 - - - - - - -

M - - - - - 3 - - - - - -

T - - 18 - 15 15 - 18 18 - - -

? 18 - - 18 - - 18 - - 18 - -

and then on the output of our trans-
lation. We used a standard termi-
nation benchmark (i.e., 18 small,
but challenging programs in liter-
ature selected from the SV-COMP
termination-crafted benchmark). As
discussed in Sect. 7.2, lifted code is
more complicated than its correspond-
ing source (e.g., >10k vs 533 LOC
in total). Although today’s termination
provers can verify the source of these
programs, they struggle to analyze the
corresponding code lifted from the pro-
grams’ binaries, as seen in the Raw
McSema columns in Table 1 (details
in [40]).
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We devoted genuine effort to overcome small hurdles but, fundamentally,
without the DarkSea translations, tools struggled for the following reasons:

– AProVE: Errors in conversion from LLVM IR to internal representation.
– KITTeL: Parsing (from C to KITTeL’s format via LLVM bitcode with
LLVM2KITTeL) succeeded, but then KITTeL silently hung until timeout.

– CPAchecker: Crashes on all benchmarks, while parsing system headers.
– Ultimate: Crashes on 3 benchmarks, due to inconsistent type exceptions.

Table 1 also shows the verification results of those termination provers when
applied to DarkSea’s translated output (second set of columns).

In sum, the results show that our translations benefit both CPAchecker
and Ultimate (which already have sophisticated parsers), reducing crashes in
analyzing lifted code. As highlighted in green, DarkSea translations enabled
Ultimate to prove termination on all of the 18 lifted programs, as compared to
Ultimate timing out on 15 of the programs without DarkSea’s translations.

LTL of Lifted Binaries. We finally evaluate the effectiveness of DarkSea on
LTL properties of 8 lifted binaries. In Table 2 we report the LTL property and
expected verification result of each, as well as the verification time and result
of Ultimate and DarkSea on them. Green cells use slightly different settings
for single block encoding. DarkSea’s translations eliminate unsoundness results
that come from applying Ultimate directly to McSema IR.

Table 2. Ultimate vs. DarkSea on lifted programs with LTL properties.

Ultimate DarkSea

Benchmark Property Exp. Time Result Time Result

01-exsec2.s.c ♦(�x = 1) ✔ 4.45 s j 11.23 s ✔

01-exsec2.s.f.c.c ♦(�x �= 1) ✗ 6.31 s j 10.36 s ✗

SEVPA gccO0.s.c �(x > 0 ⇒ ♦y = 0) ✔ 6.31 s j 22.92 s ✔

SEVPA gccO0.s.f.c �(x > 0 ⇒ ♦y = 2) ✗ 5.16 s ? 14.92 s ✗

acqrel.simplify.s.c �(x = 0 ⇒ ♦y = 0) ✔ 5.17 s j 9.00 s ✔

acqrel.simplify.s.f.c.c �(x = 0 ⇒ ♦y = 1) ✗ 6.06 s j 17.60 s ✗

exsec2.simplify.s.c �♦x = 1 ✔ 4.92 s j 5.60 s ✔

exsec2.simplify.s.f.c.c �♦x �= 1 ✗ 4.55 s j 6.28 s ✗

In summary, we have shown that DarkSea can verify reachability, termina-
tion and LTL properties of lifted binaries. To our knowledge, DarkSea is the
first to do so.

8 Related Work

Bitvector Reasoning. Many works support bitvector reasoning in SMT solvers
(e.g., [52]). Kroening et al. [38] perform predicate image over-approximation.
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Niemetz et al. [46] propose a translation from bitvector formulas with parametric
bit-width to formulas in a logic supported by SMT solvers, making SMT-based
procedures available for variant-size bitvector formulas.

He and Rakamarić [30] build on spurious counterexamples from overapprox-
imations of bitvector operations. Mattsen et al. [41] use a BDD-based abstract
domain for indirect jump reasoning. Bryant et al. [16] iterative construct an
abstraction of a bit vector formula.

Other works have targeted reasoning about termination of bitvector pro-
grams. Cook et al. [21] use Presburger arithmetic for representing rank functions.
Chen et al. [19] employ lexicographic rank function synthesis for bit precision and
rely on the bit-precision of an underlying SMT solver. Falke et al. [26] propose
an approach, implemented in KITTeL, which derives linear approximations of
bitvector operations using some rules similar to our bitwise-branching rules for
expressions. However, Falke et al. create a large disjunction of cases which puts
a large burden on the solver. By contrast, our bitwise-branching creates multiple
verification paths, but solver queries for most of them can be avoided through
integer interpolation. As we show in Sect. 6, our UltimateBwB was able to
solve 33/49 benchmarks, where as KITTeL solved only 10. Moreover, KITTeL
does not support LTL properties and crashes on lifted binaries.

Tools for Disassembly and Decompilation. Jakstab [37] focuses on accurate con-
trol flow reconstruction in the disassembly process. BAP [15] performs static dis-
assembly of stripped binaries. Angr [49] includes symbolic execution and value-
set analysis used especially for control flow reconstruction. IDA Pro [48] (used in
DarkSea) demonstrated high accuracy and uses value-set-analysis. Hex-Rays
Decompiler [2], Ghidra [8], and Snowman [24] further de-compile disassembled
output to higher level representations such as LLVM IR or C code.

Verifying Binaries. Some works focus on the low-level aspects of the binary and
aim at precise de-compilation. Roessle et al. [47] de-compile x86-64 into a big
step semantics. Earlier, others performed “decompilation-into-logic” (DiL) [43–
45], translating assembly code into logic. While DiL provides a rich environment
for precise reasoning about fine-grained instruction-level details, it incurs high
complexity for reasoning about more coarse-grained properties such as reacha-
bility, termination, and temporal logic. In more recent work, Verbeek et al. [51]
use the semantics of Roessle et al. [47] and describe techniques to decompile into
re-compilable code.

Others focus on verifying the decompilation/lifting process itself. Dasgupta
et al. [22] describe a translation validation on x86-64 instructions that employs
their semantics for x86-64 (Dasgupta et al. [23]). Metere et al. [42] use HOL4
to verify a translation from ARMv8 to BAP. Hendrix et al. [33] discuss their
ongoing work on verifying the translation performed by their lifting tool reopt.
Numerous other works (e.g., Sail [11]) provide formal semantics of ISAs.
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9 Conclusion

We have shown that a source-level translation to approximate bitvector opera-
tions leads to tools that are competitive to the state-of-the-art in reachability and
termination of bitvector programs. We show that bitwise branching incurs neg-
ligible overhead, yet enables more programs to be verified. Notably, we showed
that this approach leads to the first effective technique for verifying LTL of
bitvector programs and, to our knowledge, the first technique for verifying reach-
ability, termination and LTL of lifted binary programs.
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A Proof of Theorem1

Proof. Induction on traces, showing equality on expression translation TE via
induction on expressions/statements and then inclusion on statement transla-
tions TS . First show that TE preserves traces equivalence. Structural induction
on e, with base cases being constants, variables, etc. In the inductive case, for
a bitvector operation e1 ⊗ e2, assume e1, e2 has been (potentially) transformed
to e′

1, e
′
2 (resp.) and that Lemma 1 holds for each i ∈ {1, 2}: ∀σ.[[ei]]σ = [[e′

i]]σ.
Since ⊗ is deterministic, [[e′

1 ⊗ e′
2]]σ = [[e1 ⊗ e2]]σ. Finally, applying the trans-

formation to ⊗, we show that [[TE{e′
1 ⊗ e′

2}]] = [[e′
1 ⊗ e′

2]] again by Lemma 1.
Next, for each statement s or relational condition c step, we prove TS preserves
trace inclusion: that [[s]] ⊆ [[TS{s}]] or that [[c]] ⊆ [[TS{c}]]. We do not recur-
sively weaken conditional boolean expressions, which would require alternating
strengthening/weakening. Thus, inclusion holds directly from Lemma1.
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Abstract. Not-substring is currently among the least supported types
of string constraints, and existing solvers use only relatively crude heuris-
tics. Yet, not-substring occurs relatively often in practical examples and
is useful in encoding other types of constraints. In this paper, we propose
a systematic way to solve not-substring using based on flat abstraction.
In this framework, the domain of string variables is restricted to flat
languages and subsequently the whole constraints can be expressed as
linear arithmetic formulae. We show that non-substring constraints can
be flattened efficiently, and provide experimental evidence that the pro-
posed solution for not-substring is competitive with the state of the art
string solvers.

Keywords: String constraints · Not-substring relation · Flat
abstraction · Formal verification

1 Introduction

Due to the fast growth of web applications, string data type plays an increasingly
important role in computer software. Many software security vulnerabilities, such
as cross-site scripting and injection attack, are caused by careless treatment of
strings in programs [1], which jeopardize the end-users’ trust in digital technol-
ogy. There is therefore a crucial need of rigorous engineering techniques to ensure
the correctness of string manipulating programs. Such techniques (e.g. (bounded)
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model checking [10,15,21], symbolic execution techniques [11,19], and concolic
testing [17,24]) are highly based on efficient symbolic encodings of executions
into a formula, and rely on highly performing constraint solvers for computing
on such encodings. The types of constraints needed depend on the types of pro-
gram expressions to be analyzed. In the case of scripting languages, constraint
solvers need to support different combinations of string operations.

Thus, string constraint solvers such as [3–5,7,8,12,18,20,25] are the engine
of modern web program analysis techniques. Due to the high demand, there is a
boosting amount of publications on this subject in recent years (e.g., [3,9,13,22]).
Implementing a constraint solver to cover all standard string libraries in program-
ming languages is a challenging task. One can choose to develop a specialized solv-
ing procedure for each string operation, but it requires enormous maintenance
efforts. A more feasible solution is to define a minimal set of core constraints that is
expressive to encode all others and develop solving procedures only for these core
constraints. A common set of such constraints includes: (1) equality constraints,
e.g., x.y = y.z, which says the concatenation of string variables x and y equals the
concatenation of y and z, (2) membership constraints, e.g., x ∈ L(ab∗), which says
the value of x is the character a followed by a sequence of b’s, and (3) length con-
straints, e.g., |x| = |y| + 3, which says the length of x is the length of y plus 3, and
(4) “not substring constraints”, e.g., NotSubstr(x, y), which says x is not a sub-
string of y. Most of the early works focused on the first three types of constraints.
The “not substring” constraints have not been systematically studied before1. In
fact, many common string operations, such as, indexOf and replace, cannot be
precisely expressed without using “not substring constraints”. Previous study [23]
suggests that those operations are among the most commonly used string opera-
tion in the applications they studied. The same observation holds while checking
existing string constraint benchmarks [2].

More concretely, for two string variables x, y, the operations indexOf(x, y)
should return the first occurrence of y in x. We can use the equality and length
constraints to encode the position y in x as follows. We need two extra free
variables p and s. Then we can use x = p.y.s to express that y is a substring of
x and in this case, |p| is the position of y in x. However, there is no guarantee
that this y is the first occurrence in x. To do so, we still need to make sure
y never occurs in p.y′ where y′ is the prefix of y with only the last character
removed, i.e., y′.z = y ∧ |z| = 1 for some z. This can be guaranteed using the
constraint NotSubStr(y, p.y′). In fact, this is exactly how the Z3 SMT solver
encodes indexOf constraint [20].

Observe that the positive version x � y (i.e., x is a substring of y) can be
easily encoded as y = p.x.s using two extra variables. However, the negated
version of x � y is not equivalent to y �= p.x.s. For example, (x, y, p, s) =
(“a”, “ab”, ε, ε) is a model for this latter formula, but x is a substring of y in this
case. To capture the not-substring relation precisely, we need to establish that,

1 More precisely, “replace all” constraints [5] and string-integer conversion con-
straints [3] are not covered by these common set of constraints. Nevertheless, both
have been systematically discussed in recent years.
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for all strings p and s, y does not equal p.x.s; or more formally ∀p, s : y �= p.x.s.
Unfortunately, it is known that equality constraint with universal quantifiers
is undecidable [16]. Although state-of-the-art solvers, such as Z3, reduce the
indexOf and replace constraints by the not-substring constraint, their procedures
for solving the latter do not provide much guarantee regarding completeness. It is
not hard to find instances with not-substring constraints that the most advanced
solvers like CVC4 and Z3 fail to solve (see Fig. 1).

v.u = u.v u = p1.“123456”.s1 v = p2.“12345”.s2 u = 21 u.“a”.v v.“a”.y

Fig. 1. An example that both CVC4 and Z3 fail to solve in 3 min

In this work, we extend the framework of flat underapproximation [3–5]
to handle not substring. The framework has been shown efficient and easily
extensible to a rich set of string constraints. It was for instance one of the first
approaches to handle string-to-int constraints [3] and it is competitive in effi-
ciency with the best solvers. It relies on construction of so called flattening as an
underapproximation of string constraints. Namely, it restricts domains of string
variables to flat languages of the form w∗

1w
∗
2 · · · w∗

n, where n and the length of
the words w1, . . . , wn are parameters controlling the balance between the cost
and the precision of the underapproximation. Under this restriction, string con-
straints are losslesly translated into quantifier-free linear integer arithmetic for-
mula. The formula is then efficiently handled by the state-of-art SMT solvers.
The flat underapproximation is then combined with an overapproximation mod-
ule capable of proving unsatisfiability. In this work, we are using particularly
the method of [13,14], implemented in the tool OSTRICH, to prove the unsat-
isfiability. The overapproximation module either solves the constraint as is, if it
fits the straight-line fragment of OSTRICH, or it solves an overapproximation
of the constraints that fits the fragment. Namely, not-substring constraints of
the form t1 �� t2 are first overapproximated as disequalities t1 �= t2, and if the
straight-line restriction is broken after that, it is recovered by replacing certain
occurrences of variables by fresh variables. String-integer conversion constraints,
that are not handled by OSTRICH, are simply removed.

A main contribution of this work is a construction that allows to flatten
also non-substring constraints. Our solution is efficient despite that the final
arithmetic formula for not-substring is not entirely quantifier free—it contains
a single universal quantifier. The SMT solver Z3 apparently solves the formulae
generated by our implementation fast.

We have evaluated our implementation of the extended framework on a large
set of benchmarks from the literature, and a new benchmark collected from
executions of the symbolic executor Py-Conbyte2 on three GitHub projects. Our
experimental results show that our prototype, STR, is among the best tools for

2 https://github.com/alan23273850/py-conbyte.

https://github.com/alan23273850/py-conbyte
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solving basic string constraints and outperforms all other tools on benchmarks
with not substring constraints.

2 Preliminaries

We use N (resp., Z+) to denote the set of non-negative integers (resp., positive
integers). For m,n ∈ Z

+, we write [n] (resp. [m,n]) to denote the set {1, . . . , n}
(resp. {m,m + 1, . . . , n}). We use x,y, . . . to denote the integer variables.

In this paper, we assume that Σ is a finite alphabet satisfying Σ ⊆ N. The
elements of Σ are called characters. We use a, b, . . . to denote the characters.
A string u over Σ is a sequence a1 . . . an where ai ∈ Σ for all i. We use ε to
represent the empty string. For two strings u and v, u is said to be a substring of
v if there exist strings w and w′ such that v = wuw′. For a string u = a1 . . . an,
|u| represents the length of u, that is n; moreover, for i ∈ [n], u(i) = ai represents
the i-th character of u. In addition, for a string u and a ∈ Σ, we use |u|a to
denote the number of occurrences of a in u. We use Σ∗ to denote the set of
strings over Σ, and Σ≤n to denote the set of strings in Σ∗ of length at most n.
For convenience, we assume that ε is encoded by a fixed natural number from
N \ Σ, and let Σε denote Σ ∪ {ε}.

We use x, y, . . . to denote string variables ranging over Σ∗ and we use X to
denote the set of string variables. A string term is a sequence over Σε ∪ X.

A linear integer arithmetic (LIA) formula is defined by φ ::= t o 0 | t ≡
c mod c | φ ∧ φ | φ ∨ φ | ¬φ | ∃x. φ | ∀x. φ and t ::= c | x | t + t | t − t, where
o ∈ {=, �=, <,>,≤,≥} and x, c are integer variables and constants respectively. A
quantifier-free LIA (QFLIA) formula is an LIA formula containing no quantifiers.
The set of free variables of φ, denoted by Var(φ), is defined in a standard manner.
Given an LIA formula φ, and an integer interpretation of Var(φ), i.e. a function
I : Var(φ) → Z, we denote by I |= φ that I satisfies φ (which is defined in the
standard manner), and call I a model of φ. We use �φ� to denote the set of
models of φ.

Finally, the Parikh image of a word w ∈ Σ∗ maps each Parikh (integer)
variable #a, where a ∈ Σ, to the number of occurrences of a in w. Let #Σ =
{#a | a ∈ Σ}. The Parikh image of w is a function P(w) : #Σ → N such that
P(w)(#a) = |w|a, for each a ∈ Σ. The Parikh image of a language L is defined
as P(L) = {P(w) | w ∈ L}. It is well known that the Parikh image of a regular
language can be characterized by an LIA formula.

3 String Constraints

In this paper, we extend the class of atomic constraints handled in the frame-
work of [3–5] with not-substring. We focus especially on the core constraints,
conjunctions of the atomic constraints of the following forms:

– a string equality constraint t1 = t2, where t1, t2 are string terms,
– a not-substring constraint t1 �� t2, where t1, t2 are string terms,
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– a QFLIA formula over the integer variables |x| for string variables x,
– a regular constraint x ∈ A, where x is a string variable and A is an FA.

We note that presented extension is compatible also with the other types of con-
straints handled by [3–5], especially context-free membership, transducer con-
straints, string-integer conversions, negated membership, and disequality. We
omit these for simplicity of presentation. For a string constraint φ, let us use
StrVar(φ) and LenVar(φ) to denote the set of string variables and the set of
length (integer) variables respectively.

While the semantics of linear integer constraints and regular constraints are
standard, let us explain the semantics of the string equality constraints and
string not-substring constraints:

– A string equality constraint t1 = t2 has a solution iff there is a homomorphism
h from (X ∪ Σ)∗ to Σ∗ such that h(u) = u for all u ∈ Σ∗ and h(t1) = h(t2).
For instance, let t1 = abxc, t2 = yc, and t3 = ya. Then h(x) = ε and h(y) = ab
is a solution of t1 = t2. However, for all homomorphisms h, h(t1) �= h(t3),
thus t1 = t3 is not satisfiable.

– A not-substring constraint t1 �� t2 has a solution iff there is a homomorphism
h from (X ∪ Σ)∗ to Σ∗ such that h(u) = u for all u ∈ Σ∗ and h(t1) is not
a substring of h(t2). For instance, let t1 = ax, t2 = abxc, and t3 = bx. Then
h(x) = a is a solution of t1 �� t2. However, t3 �� t2 is not satisfiable since
t3 = bx is a subterm of t2 = abxc.

We would like to remark that although the aforementioned class of string con-
straints does not include explicitly the constraint that t1 is a substring of t2,
they can be encoded by the string equality constraint t2 = xt1y, where x, y are
the freshly introduced string variables.

4 Solving String Constraints with Flattening

In this section, we will recall the principles of the flattening approach to string
solving used in the works [3–5], which we will then extend with not-substring
constraints in Sect. 5.

4.1 (Parametric) Flat Languages

We will present our underapproximations in terms of flat languages, which are
used to restrict the domain of string variables, and parametric flat languages,
that are used to specify them.

For integers k and � and a string variable x, we define the family of indexed
character variables CharVark,�(x) = {xi

j | 1 ≤ i ≤ k, 1 ≤ j ≤ �}. A parametric
flat language (PFL) with the period � and the cycle count k is the language
PFLk,� of strings over the alphabet CharVark,�(x) that conform to the regular
expression

(x1
1 . . . x1

�)
∗ · . . . · (xk

1 . . . xk
� )∗
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That is, the words of PFLk,� consist of k consecutive parts, each created by
iterating a cycle, a string xi

1 . . . xi
� of � unique character variables.

A word w = x1 . . . xn ∈ PFLk,� will be interpreted respective to an inter-
pretation of the character variables IChar : CharVark,�(x) → Σε as a string
IChar(w) = IChar(x1) · · · IChar(xn) over Σ.

The property of a PFL that is central in our approach is that every PFL is
fully characterised by its Parikh image. Let ParVark,�(x) = {#xj

i | 1 ≤ i ≤ �, 1 ≤
j ≤ k} be the set of Parikh variables for CharVark,�(x). Their interpretation
IPar : ParVark,�(x) → N can be unambiguously decoded as a word from the
language PFLk,�:

Proposition 1. There is a function P
−1
k,� : (ParVark,�(x) → N) → PFLk,� which

acts as the inverse function of P, namely, P−1
k,�(P(w)) = w for each w ∈ PFLk,�.

Intuitively, the function P
−1
k,� computes the word w ∈ PFLk,� by repeating each

cycle several times, the number of repetitions of the i-the cycle being P(w)(#xi
1)

(note that P(w)(#xi
j) is the same for all xi

j , j ∈ [�]).
Hence, an interpretation of Parikh variables IPar : ParVark,�(x) → N together

with an interpretation of character variables IChar : CharVark,�(x) → Σε encode
a word over Σ, namely the word IChar(P−1

k,�(IPar)).
The set of all strings over Σ that can be encoded as such pair of interpreta-

tions IChar, IPar is the flat language with the cycle count k and period �:

FLk,� = {IChar(P−1
k,�(IPar)) | IChar : CharVark,�(x) → Σε, IPar : ParVark,�(x) → N}

We note that we implement parametric flat languages as parametric flat
automata. A parametric flat automaton is a finite automaton with a restricted
structure—a sequence of cycles, each representing a cycle of the parametric lan-
guage, as illustrated on Fig. 2. The automata form is needed for computing
flattening of regular, context free, and other constraints (presented in [3,4]).
Flattening of non-substring constraints, the subject of this paper, can be how-
ever explained using the simpler language view, hence we can abstract from the
technicalities of automata in the current paper.

q10 q20 qk
0

q11

q12

q1� q21

q22

q2� qk
1

qk
2

qk
�

x1
1

x1
2

x1
�

ε ε ε

xk
1

xk
2

xk
�x2

1

x2
2

x2
�

Fig. 2. The flat automaton A accepting the language PFLk,�.

4.2 Flattening of String Constraints

Let us now formalise the notion of flattening, a construction of LIA formulas
that encode string constraints restricted to the domain of flat languages.
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A flat semantics for a string constraint φ is obtained from the semantics of
φ by restricting the domain of each string variable to the language FLk,�, for
chosen k and �. Let k and � be fixed for the rest of this section.

An assignment I of Var(φ) is called k, �-flat if for each x ∈ StrVar(φ), I(x) ∈
FLk,�. The flat semantics of φ is then defined as

�φ�k,� = {I ∈ �φ� | I is k, �-flat}

Our approach to string solving is built on that the flat semantics of the string
constraint can be precisely encoded by a QFLIA formula in which every string
variable x ∈ StrVar(φ) is represented by the character and Parikh variables
CharVark,�(x) and ParVark,�(x), respectively, and which inherits the integer
variables.

A flat solution of φ, I ∈ �φ�k,�, is encoded as an assignment I ′ = IFlat ∪ IInt.
IFlat is the assignment of flattening variables that encodes the values of the orig-
inal string variables. In other words, I ′ is the union of assignments ICharVark,�(x) :
CharVark,�(x) → Σε and IParVark,�(x) : ParVark,�(x) → N for every x ∈ StrVar(φ)
satisfying that

I(x) = ICharVark,�(x)(P
−1
k,�(IParVark,�(x)))

The encoding is not unique (a string can often be k, �-encoded in multiple
ways), hence the encoding function returns the set of all encodings of I, denote
encodek,�(I).

Decoding is the inverse of encoding, though, due to Proposition 1 it is unam-
biguous, as stated by this lemma:

Lemma 1. If encodek,�(I) ∩ encodek,�(J) �= ∅, then I = J .

Hence we can define the decoding as a function that returns an unique inter-
pretation of variables (not a set, as in the case of encoding):

decodek,�(I ′) = I iff I ′ ∈ encodek,�(I)

We can now specify the required properties of the flattening QFLIA of φ. It
is formula flattenk,�(φ) that encodes the flat semantics of φ, that is

�φ�k,� = decodek,�(�∃AuxVar : flattenk,�(φ)�) (1)

The existential quantification is above used to abstract away additional auxil-
iary variables AuxVar, variables other than FlatVar(φ) and LenVar(φ), which the
formula flattenk,�(φ) is sometimes constructed with.

The formula flattenk,�(φ) is constructed inductively by following the structure
of φ: flattenk,�(φ1∧φ2) = flattenk,�(φ1)∧flattenk,�(φ2). Therefore, it is sufficient
to show how to construct flattenk,�(φ) for atomic constraints φ. Later on in
Sect. 5, we will show how to construct flattenk,�(t1 �� t2). The construction of
flattenk,�(φ) for the other atomic constraints is discussed in [3].

For the inductive construction to work, flattening of the atomic constraint
has to satisfy a stronger condition than Eq. 1. Namely, the obtained QFLIA
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formula must capture all encodings of the solutions of the string constraint,
not only some of them. Otherwise for instance the inductive construction of
flattening of a conjunction from flattenings of its conjuncts could be incorrect
(the intersection of solution encodings could be empty while the sets of solutions
themselves do intersect). Formally, the flattening of the atomic constraints must
satisfy that:

encodek,�(�φ�k,�) = �∃AuxVar : flattenk,�(φ)� (2)

where, again, AuxVar contains auxiliary variables of flattenk,�(φ) other than
FlatVar(φ) and LenVar(φ)). A major point of this paper is a construction of
flattening of non-substring constraints satisfying Eq. 2, as presented in Sect. 5.

4.3 String Constraint Solving Algorithm

We now shortly recall the whole string solving algorithm. It uses an underap-
proximation module based on the flat abstraction and an overapproximation
module. The two modules are run in parallel. The main loop is summarised in
Algorithm 1.

The underapproximation module tries to prove satisfiability of a flat under-
approximation, gradually incrementing both the period and cycle count, until
the underapproximation is SAT or a limit is reached.

The overapproximation can use any algorithm capable of proving UNSAT.
We do not claim any contribution in the overapproximation part, but to demon-
strate that such combination indeed yields a capable tool, we combine our under-
approximation technique with the method of [13,14] implemented in the tool
OSTRICH. It is a complete method for the so called straight-line fragment of
string constraints that supports regular and transducer constraints, replace-all,
word-equations and other constraints. The straight-line restriction imposes, intu-
itively, that the constraint must have been obtained from a program in a single
static assignment form in which every string variables is assigned at most once
and is not used on the right side of an assignment before it is itself assigned.
The length constraints are unrestricted (we refer the reader to [13,14] for the
precise definition). The overapproximation module either solves the constraint
as is, if it fits the straight-line fragment, or it solves an overapproximation of the
constraints that fits the fragment. Namely, not-substring constraints of the form
t1 �� t2 are first overapproximated as disequalities t1 �= t2, and if the straight-line
restriction is broken after that, it is recovered by replacing certain occurrences
of variables by fresh variables. String-integer conversion constraints, that are not
handled by OSTRICH, are simply removed.

5 Flattening of Not-Contains Constraints

We will now describe the construction of the flattening formula for not-substring,
the formula flatten(1,�)(t1 �� t2), for given terms t1, t2.
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Algorithm 1: String solving via flattening
Input: string constraint φ, initial period k0 and cycle count �0, flattening limit

flim
do in parallel

for i from 0 to flim do
if flattenk0+i,�0+i(φ) is SAT then return SAT

if Overapproximate(φ) is UNSAT then return UNSAT
return UNKNOWN

5.1 Simplifying Assumptions

To simplify the presentation, we will consider flat domain restrictions with the
cycle count k = 1 only. This is without loss of generality since using a flat domain
restriction FLk,� with k > 1 is equivalent to replacing every substituting string
variable x by the concatenation x1 · · · xk and using FL1,�. The assumption of
k = 1 makes the upper index 1 of the character variables x1

i superfluous, hence
we will omit it and write only xi.3

We also make the following simplifying assumptions on the input string con-
straint φ:

1. We assume that StrVar(t1) ∩ StrVar(t2) = ∅. Note that any string constraint
can be made to satisfy this by replacing one of the occurrences of a string vari-
able y ∈ StrVar(t1)∩StrVar(t2) by its fresh primed variant y′ and introducing
an additional constraint y = y′.

2. We assume that t1 and t2 do not contain constant strings, that is, they are
concatenations of string variables. Every equality or not substring constraint
can be transformed into this form by replacing each occurrence of a con-
stant a with a fresh variable xoc (each occurrence with a unique fresh vari-
able) together with the regular constraint xoc ∈ {a}. Such modification does
not influence the constraints membership in the decidable fragment used for
overapproximation (whereas replacing all occurrences of a by a single fresh
variable could).

5.2 Construction of the Flattening Formula

The construction of flatten(1,�)(t1 �� t2) is based on the following observation.

Observation 1. For every two strings u, v ∈ Σ∗, u �� v iff either |u| > |v| or
|u| ≤ |v| and for every shift ∈ [0, |v| − |u|], there exists pos ∈ [|u|], u(pos) �=
v(shift + pos).

Intuitively, either t1 is longer than t2, or, as illustrated on Fig. 3, for any position
shift where we try to fit t1 inside t2, we can find a position pos in t1 which will
not match the corresponding position shift + pos in t2.

The core of the flattening formula will be constructed as a disjunction of two
formulae that express the two cases of Observation 1, ψ|t1|>|t2| and ψ|t1|≤|t2|.

3 Our implementation however handles cycle counts k larger than one directly.
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String Lengths and Effective Periods. To express the two cases of Observation 1,
we will speak about effective periods of string variables and about their lengths,
for which we introduce auxiliary constants and variables.

First, the effective period of a string variable z is the number �z of character
variables in CharVar(1,�)(z) that are assigned a non-ε value (a character from
Σ) under a given assignment of character variables. Whenever a constant repre-
senting an effective period is used, we must ensure that it is indeed the effective
period.

To make this test easier and the formula testing this more compact, we
restrict the space of encodings of strings by requiring that the interpretations of
the variables x ∈ StrVar(φ) to ones that are sorted. That means that character
variables xj assigned ε appear only at the end of the cycle, namely after all
character variables that are assigned letters of Σ. This is achieved by conjoining
the flattening of φ with the formula ψε-end:

ψε-end =
∧

x∈StrVar(φ)

∧

j∈[�−1]

(xj = ε → xj+1 = ε)

Note that this only restricts the encodings of the solutions of φ but not the set
of solutions itself, since every solution has among its encodings one with aligned
ε’s.

In sorted interpretations, it holds that �z ∈ [�] if and only if z�z
is the last

character variable assigned a non-ε character, and �z = 0 if and only if z1 is
assigned ε. This is checked by the formula ψ

(z,�z)
period:

ψ
(z,�z)
period =

⎧
⎨

⎩

z�z
�= ε ∧ z�z+1 = ε if �z ∈ [� − 1]

z� �= ε if �z = �
z1 = ε if �z = 0

The length lenz of z is then determined from �z and the value of the Parikh
variable #z1 as lenz = �z ∗ #z1. Indeed, #z1, the number of occurrences of z1,
is the number of iterations of the cycle z1 · · · z�, and each iteration of the cycle
produces a string of the length equals to the effective period �z. Additionally,
we also need to ensure that #z1, . . . ,#z� are the same, since z1 · · · z� is iterated
as a whole, which is captured by

∧
i∈[�−1] #zi = #zi+1. Put together, we create

the formula ψlen:

ψlen = ψε-end ∧
∧

z∈StrVar(t1 ��t2)

ψ
(z,�z)
period ∧ lenz = �z ∗ #z1 ∧

∧

i∈[�−1]

#zi = #zi+1

Since �z is a constant, lenz = �z ∗ #z1 is not a multiplication of two integer
variables, but only an abbreviation of �z-fold addition of #z1.

Formula for Observation 1, case t1 longer than t2. Using the effective periods
and lengths, the first case of Observation 1 with t1 longer than t2 can now be
expressed as the formula ψ|t1|>|t2|.
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Suppose that t1 = x1 · · · xm and t2 = y1 · · · yn. The case |t1| > |t2| is specified
simply by the formula

ψ|t1|>|t2| =
∑

i∈[m]

lenxi
>

∑

i∈[n]

lenyi

Formula for Observation 1, case t1 not longer than t2. The second case of Obser-
vation 1, with t1 no longer than t2, is expressed as the formula ψ|t1|≤|t2|. It is
more complicated than the previous case.

Recall that it states that |t1| ≤ |t2| and for every shift ∈ [0, |t2| − |t1|], there
exists pos ∈ [|t1|], t1(pos) �= t2(shift + pos), as shown on Fig. 3. The formula,
that allows to check this, is constructed as follows:

1. For every positions shift where t1 could fit into t2 (|t1| + shift ≤ |t2|),
2. find a position pos in t1 such that t2 could fit inside t1 at this position,
3. find a string variable (xm′)α and a string variable (yn′)β of t2 which appear

at positions pos and pos + shift , respectively, and
4. verify (xm′)α �= (yn′)β (hence t1 at pos differs from t2 at pos + shift).

First, t1 shifted by shift must still “fit” inside t2, that is:

ψshift = (0 ≤ shift ≤
∑

i∈[n]

lenyi
−

∑

i∈[m]

lenxi
)

Second, there are conflict variables xm′ and yn′ , m′ ∈ [m] and n′ ∈ [n] such
that t1(pos) corresponds to some character of xm′ and such that t2(shift + pos)
corresponds to some character of yn′ . This is formally expressed by the formulas

ψxm′ =
∑

i∈[m′−1]

lenxi
< pos ≤ ∑

i∈[m′]
lenxi

ψyn′ =
∑

i∈[n′−1]

lenyi
< shift + pos ≤ ∑

i∈[n′]
lenyi

Third, t1(pos) and t2(shift+pos) must correspond to the values of some character
variables (xm′)α in (xm′)1 · · · (xm′)�x

m′ and (yn′)β in (yn′)1 · · · (yn′)�y
n′ . The

indices α and β are specified as follows:

– The following formula checks that (xm′)α is indeed at the position pos in
t1. The formula assumes an effective period of xm′ and also verifies that
assumption:

ψ
(�x

m′ ,α)
xm′ = ψ

(xm′ ,�x
m′ )

period ∧ (pos −
∑

i∈[m′−1]

lenxi
) ≡ α mod �xm′

– Similarly, the following formula checks that (yn′)β is indeed at the posi-
tion shift + pos in t2. It assumes an effective period of yn′ and verifies that
assumption:

ψ
(�y

n′ ,β)
yn′ = ψ

(yn′ ,�y
n′ )

period ∧ (shift + pos −
∑

i∈[n′−1]

lenyi
) ≡ β mod �yn′
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Fig. 3. An overview of the construction of ψ|t1|≥|t2|.

Fourth, having the indices α, β of character variables specified as above,
t1(pos) �= t2(shift +pos) can be expressed as (xm′)α �= (yn′)β . The entire formula
ψ|t1|≤|t2| then is:

ψ|t1|≤|t2| =
∑

i∈[m]

lenxi
≤

∑

i∈[n]

lenyi
∧ ∀shift ∃pos. ψshift →

∨

m′ ∈ [m],
n′ ∈ [n]

⎛

⎜⎜⎝

ψxm′ ∧ ψyn′ ∧
∨

�x
m′ ,�y

n′ ∈[�]

∨
α ∈ [�x

m′ ],
β ∈ [�y

n′ ]

(
ψ
(�x

m′ ,α)
xm′ ∧ ψ

(�y
n′ ,β)

yn′ ∧
(xm′)α �= (yn′)β

)
⎞

⎟⎟⎠

Finally, we construct the flattening of the not substring constraint as:

flatten(1,�)(t1 �� t2) = ψlen ∧ (ψ|t1|>|t2| ∨ ψ|t1|≤|t2|)

Theorem 1 states that the construction is indeed correct in the sense that
it satisfies Eq. 2, only with modified, primed, variant of encode(1,�), restricted
only to sorted interpretations (satisfying ψε-end). This is still enough for Eq. 2
to be true for conjunctive constraints that contain non-substring atomic pred-
icates. AuxVar are variables other than string and length variables x and |x|,
x ∈ Var(t1 �� t2).

Theorem 1. encode ′
(1,�)(�t1 �� t2�(1,�)) = �∃AuxVar : flatten(1,�)(t1 �� t2)�

6 Implementation and Evaluation

We compare STR4 with the other state-of-the-art string solvers, namely, CVC4
(version 1.8)5 [8] and Z3 (version 4.8.9)6 [20]. For these tools, the versions we

4 The github link will be made available after the double blind review process.
5 https://github.com/CVC4/CVC4/releases/tag/1.8.
6 https://github.com/Z3Prover/z3/releases/tag/z3-4.8.9.

https://github.com/CVC4/CVC4/releases/tag/1.8
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.9


Solving Not-Substring Constraint with Flat Abstraction 317

used are the latest release version. Observe that CVC4 and Z3 are DPLL(T)-
based string solvers. We do not compare with Sloth [18] since it does not support
length constraints, which occur in most of our benchmarks. Moreover, we do not
compare with ABC [7] (a model counter for string constraints) and Trau+ [4–6]
as well, because they do not support many string functions occurring in our
benchmarks, especially those containing the “not contains” functionality.

We performed the experiments on two benchmark suites. The first benchmark
suite is new and obtained by running the symbolic executor Py-Conbyte7 on the
following three GitHub projects,

– biopython8: freely available Python tools for computational molecular biology
and bioinformatics,

– django9: a high-level Python Web framework that encourages rapid develop-
ment and clean, pragmatic design,

– thefuck10: an app that corrects errors in previous console commands, inspired
by a @liamosaur tweet.

The symbolic executor Py-Conbyte produces files in the SMT2 format. We only
keep those SMT2 files where the function “(str.contains x y)” or “(str.indexof x
y n)” with a non-constant first or second argument occurs.

The second benchmark suite contains sets of standard benchmarks from [3]
that have been used previously in the comparison of existing string solvers.

We carry out the experiments on a PC with an Intel Core i7-10700 (2.90 GHz)
processor with 8 cores and 16 threads, a 48 GB of RAM, and a 1.8 TB, 7200 rpm
hard disk drive running the Ubuntu 20.04.1 LTS operating system. The timeout
was set to 10s for each SMT file. In the implementation of STR, we modify the
SAT handling component of Trau to the version described in this paper, and use
it to handle SAT instances. Then STR run Ostrich and the modified Trau in
parallel, and terminate when Ostrich reports UNSAT or Trau reports SAT. The
experimental results are summarized in Table 1. Columns with heading SAT
(resp. UNSAT) show the number of SAT (resp. UNSAT) test cases for which
the solver returns correct answers. Column with heading FAILED indicates the
number of test cases for which the solver returns UNKNOWN or cannot finished
with 10 s.

From Table 1, we can see that overall STR is better than Z3 and has a sim-
ilar performance to CVC4 in handling SAT instances. The handling of UNSAT
instances is worse than the others, but this is mainly due to the use of OSTRICH.
Observe that the over-approximation module is not the main focus of this paper
since our main goal is to address the major weakness of the flattening framework
of handling not-substring constraint and to provide an under-approximation
technique which has at least as good, and in many cases better, performance
than the state-of-the-art tools.

7 https://github.com/alan23273850/py-conbyte.
8 https://github.com/biopython/biopython.
9 https://github.com/django/django.

10 https://github.com/nvbn/thefuck.

https://github.com/alan23273850/py-conbyte
https://github.com/biopython/biopython
https://github.com/django/django
https://github.com/nvbn/thefuck
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Table 1. Results on new and existing benchmarks

BENCHMARK SAT UNSAT FAILED

z3 cvc4 STR z3 cvc4 STR z3 cvc4 STR

biopython (77222) 5180 5707 5770 70190 70518 62435 1852 997 9017

django (52645) 8404 9297 9487 41871 42161 33471 2370 1187 9687

thefuck (19872) 1883 2313 2194 17545 17530 16018 444 29 1660

Leetcode (2666) 880 881 876 1785 1785 1658 1 0 132

PyEx (25421) 16656 20651 21420 3775 3857 3316 4990 913 685

aplas (600) 122 54 132 100 205 1 378 341 467

cvc4-str (1880) 22 18 25 1802 1841 184 56 21 1671

full-str-int (21571) 2875 4379 4433 16708 16985 12234 1988 207 4904

slog (3391) 1296 1309 1290 2082 2082 2054 13 0 47

stringfuzz (1065) 429 716 534 208 243 62 428 106 469

7 Conclusion and Future Work

We have proposed an extension of the flattening techniques for string constraints
that handles constraints of the type not-substring. Our techniques generates
flattening formulae that express the flat semantics of string constraints precisely.
Although they do contain a single universal quantifier, they can still be handled
efficiently by existing solvers. Our experimental results show that our prototype
can solve not-substring constraints better than other tools (especially SAT cases)
and it is competitive on the other types of constraints.

An interesting possibility for future is to solve string logic with not substring
constraint precisely, not only under the flat abstraction. A possibility of flat
abstraction of not substring which would be fully quantifier free is also not
closed and is worth further investigation.
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14. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. PACMPL
3(POPL), 49:1–49:30 (2019)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

16. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of
extended word equations: the boundary between decidability and undecidability.
CoRR abs/1802.00523 (2018). http://arxiv.org/abs/1802.00523

17. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)
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