
Resilient Navigation Among Dynamic
Agents with Hierarchical Reinforcement

Learning

Sijia Wang1,2, Hao Jiang1,2(B), and Zhaoqi Wang1,2

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
jianghao@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Behaving safe and efficient navigation policy without know-
ing surrounding agents’ intent is a hard problem. This problem is chal-
lenging for two reasons: the agent need to face high environment uncer-
tainty for it can’t control other agents in the environment. Moreover,
the navigation algorithm need to be resilient to various scenes. Recently
reinforcement learning based navigation has attracted researchers inter-
est. We present a hierarchical reinforcement learning based navigation
algorithm. The two-level structure decouples the navigation task into
target driven and collision avoidance, leading to a faster and more stable
model to be trained. Compared with the reinforcement learning based
navigation methods in recent years, we verified our model on navigation
ability and the resilience on different scenes.

Keywords: Reinforcement learning · Navigation

1 Introduction

Navigating in crowded space with high efficiency and safety is a challenging
task. Traditional approaches often need to adjust theirs parameters manually for
different scenes, which restricts the application environment [10,18]. In order to
perform adaptive and resilient behaviors for diverse scenes, navigation algorithm
needs to understand different environment semantic.

To address the above issues, some work attempt to learn navigation behaviors
from data. According to the source of data, the approaches can be divided into
imitation learning and reinforcement learning (RL). Imitation learning [6,12,14,
17,20] learns navigation policy based on human walking trajectory data from
real word, resulting in that the agent can perform similar behaviors to humans.
However, the application of imitation learning restrict to the scenes of collected
data.

In recent years, RL shows the level of human beings in go and games [15,16].
More and more researchers try to apply RL to navigation. Reinforcement learn-
ing does not depend on real data sets, it can continuously obtain training data
c© Springer Nature Switzerland AG 2021
N. Magnenat-Thalmann et al. (Eds.): CGI 2021, LNCS 13002, pp. 504–516, 2021.
https://doi.org/10.1007/978-3-030-89029-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89029-2_39&domain=pdf
https://doi.org/10.1007/978-3-030-89029-2_39


Resilient Navigation 505

through the virtual environment. Moreover, the optimization goal of RL is the
cumulative environmental feedback signal. Compared with imitation learning,
instead of simply imitating the real data, RL thinks about what strategies will
make the cumulative environmental feedback higher. In recent years, the RL
based navigation methods have achieved good results [3–5,13], which verify the
effectiveness of RL.

To address this, we propose to use hierarchical RL to generate plausible and
collision free trajectories. The main contributions of our work include:

1) We built an effective and novel HRL framework to guide the agent to reach
the destination efficiently. By using hierarchical RL framework, the naviga-
tion task is decoupled into target driving and collision avoidance, so that a
stable and robust model can be trained, which can quickly adapt to a new
environment.

2) Through comparisons with state-of-the-art RL-based methods, our model
achieves superior performance, especially in various challenging resilient
experiments.

2 Related Work

In this section, we review related works on navigation and hierarchical RL which
our work refers to.

2.1 Conventional Methods for Navigation

Helbling et al. [9,10] proposed social forces model to describe interactions among
pedestrians. The model is based on a potential field in which attractive forces lead
agents to the destination and repulsive forces block the surrounding obstacles.
Reactive model predicts the collision time based on the current velocity. The
representing work is ORCA [21], which is based on RVO [2]. ORCA seeks joint
obstacle avoidance velocities under reciprocal assumptions. These models which
are designed elaborately by researchers behave well in the specific application
scene, while they rely on hand-craft functions and can not generalize well to
various scenes.

2.2 Deep Reinforcement Learning Methods for Navigation

Earlier works [8,23] was limited by calculate capability, thus researches tried to
simplify problems when applying RL to the navigation problem. The combina-
tion of RL and deep learning enables processing data with higher dimensions and
larger state space. Recent work of navigation by deep reinforcement learning can
be divided into two categories according to the algorithm.

One is value based reinforcement learning, which decomposes the action
space into discrete velocity set V according to speed and direction. The method
CADRL [5] first applied DRL to navigation, which adapted two-agent to the



506 S. Wang et al.

multi-agent case through maximin operation to pick up the best action. Chen
et al. [4] proposed SARL which rethinks human-robot pairwise interactions with
a self-attention mechanism.

One is policy-based reinforcement learning, whose action space is continuous.
Long et al. [13] directly mapped raw sensor measurements to desired collision
avoidance policy and presented a multi-scene multi-stage training framework for
adapting to different scenes. Based on [7,13] learned safer and more resilient
behaviors for navigation by integrating uncertainty estimation.

2.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is inspired by divide-and-conquer,
decoupling task to reduce training difficulty. Bacon et al. [1] proposed Option-
Critic Framework which decouples the problem into two levels. The high policy is
responsible for choosing an option. The low level do the low-level policy following
the option until meet the option’s termination condition.

Vezhnevets [22] proposed FuUdal Networks where two levels of hierarchy
within an agent communicate via explicit goals. Both the high level and low
level are deep learning model and no gradients are propagated between two
levels. The Manager receives its learning signal from the environment alone.
Our model takes inspiration from the design of FeUdal Networks.

3 Approach

3.1 Overview

In this work, we consider the problem that an agent navigates towards a goal on
the ground where N dynamic obstacles exists. Both the agent and N dynamic
obstacles are modeled as discs with the same radius. The agent can not com-
municate with other dynamic obstacles. Therefore at each time t the agent’s
observation is N obstacles’ positions pti = [ptx, pty] ∈ P, P t = {pt1, p

t
2, · · · , ptn} and

velocities vt
i = [vt

x, vt
y] ∈ V, V t = {vt

1, v
t
2, · · · , vt

n}.
Figure 1 shows the overview of method, our model takes inspiration from

feudal reinforcement learning [22] where levels of hierarchy communicate via
explicit goals. The high-level module aims to optimize long term interest, whose
output is the sub-goal gt = (pt+c

x , pt+c
y ) for the future. The low-level module

aims to safely and efficiently navigate to the sub-goal, whose output is primitive
actions which is 2-dimensional velocity at+i = (vt+i

x , vt+i
y ). The low-level is the

module that actually interacts with the environment.
Both of high-level and low-level are constructed by deep RL models and

optimize their policy respectively on the reward received from the environment.
Similar to the FeUdal Networks [22], there are no gradient between two levels.
The information that agent can get from the environment, xt contains last six
consecutive observations: xt =

{
P t−5, V t−5, · · · , P t, V t

}
. As Fig. 2 shows, our

model converts the change of obstacles’ positions into the 360-degree laser form



Resilient Navigation 507

otz, the shape of which is 6 × 360. The high-level and low-level modules don’t
use the same neural network but share the same neural network architecture as
the Fig. 3 shows. Based on the current velocities of the obstacles, we predict the
obstacles’ positions in next 3 time steps by linear interpolation and convert the
future positions to the laser form otp. θt is the current agent’s orientation and
otz+p is a slice of otz and otp chosen by θt: otz+p = otz[θt] + otp[θt]. ptg is the agent’s
final goal (for high-level) or sub-goal (for low-level). vt is the agent’s current
velocity. Both high and low level take the agent’s position as the origin for the
local coordinate every time step, high-level’s y-axis points toward the final goal
and low-level’s y-axis points toward the sub-goal.

Here we introduce the transition between the high-level and low-level. Every
c time steps, the high-level module calculates the sub-goal gt for the future c
time steps and conveys it to the low-level module. c is a hyper-parameter which
we set 20. Low-level receives the sub-goal and starts the loop of calculating the
primitive action, two-dimensional velocity vt. The low-level module will not stop
until meeting the terminal conditions. The terminal conditions contain three
situations, the first one is the agent arrives the sub-goal, the second one is the
agent collides with other obstacle, the third one is the agent have performed
low-level action c times.

Fig. 1. The overview of our model. There are two levels in our model. The high-
level module aims to optimize long term interest, whose output is the sub-goal gt =
(pt+c

x , pt+c
y ) for the future. The low-level module aims to safely and efficiently navigate

to the sub-goal, whose output is primitive actions which is 2-dimensional velocity at+i =
(vt+i

x , vt+i
y ).

3.2 High-Level Module

Above all, low-level module actually interacts with the environment while high-
level module interacts with environment by directing low-level module. The
responsibility for high-level module is giving low-level module a good sub-goal
which can balance the need of the reaching final goal and safety. Therefore, we
estimate high-level policy by the trajectory that the low-level module actually
performed in loop after receiving the sub-goal from high-level.



508 S. Wang et al.

Fig. 2. In our model, the agent processes the environment observation to the form of
laser.

Fig. 3. The neural network shared by high-level and low-level module.

We first introduce the notations of the trajectory that the low-level mod-
ule generated, then introduce the estimation criteria on the trajectory. After
the low-level received sub-goal, assume that low-level performed cL times
before meeting the terminal condition, cL ≤ c. Then the agent’s trajectory is
{pt, pt+1, · · · , pt+cL}, the minimal distances between the agent and obstacles are
{dt, dt+1, · · · , dt+cL}.

Let the displacement during cL times be pt+cL −pt and the travelled distance

be
∑k=cL

k=1 ‖pt+k − pt+k−1‖. Let the agent’s final goal be g, then g − pt is the
relative vector from the final goal to the agent’s position at the beginning of the
loop.

We define dgoal to represent the relative distance that the agent navigate to
the final goal during the cL times and the relative distance the agent move per
unit time is UnitGoal.

dgoal =
(pt+cL − pt)(g − pt)

‖ g − pt ‖ (1)

UnitGoal =
dgoal
cL

(2)

If the agent’s minimal distance to the obstacles is less than 0.25 m, then the
reward function will give a penalty signal for being too close to obstacles, which
is −0.25+d. Formula 3 is the sum of the distance penalty CloseDist, 1d<0.25(d)
is an indicator function.



Resilient Navigation 509

CloseDist =
cL∑

t=1

1d<0.25(d) ∗ (−0.25 + d) (3)

We define ExtraPath to represent the difference between the travelled distance
and displacement.

ExtraPath =
k=cL∑

k=1

‖pt+k − pt+k−1‖ − ‖pt+cL − pt‖ (4)

Formula 5 is the high-level reward function, which takes UnitGoal, CloseDist,
and ExtraPath into account. w1, w2, w3 is weighting parameters which are set
0.5, −0.5 and 0.5 at the beginning for dimensional homogeneity. Then these
parameters were gradually adjusted by persistent attempts to w1 = 0.8, w2 =
−0.5, w3 = 0.4.

Rt = w1UnitGoal + w2ExtraPath + w3CloseDist (5)

High-level module is responsible for giving a good sub-goal, therefore we train
the module to maximize the one step interest. We refer to the training design of
DDPG [11], a policy based RL algorithm, and transform the design to optimize
one step interest. There are three neural networks, a policy network Actor for
giving out the sub-goal, two value networks Critic and Critictarget for describing
the state value. The network structure of Critic and Critictarget is the same. The
task of Critictarget is to provide policy’s value without gradient, thus it won’t
be optimized when training, the parameters of Critictarget will periodically copy
from Critic. The loss for Critic is shown as Formula 6, whose aim is minimizing
the value estimated by Critic and the real reward. The loss for Actor is shown
as Formula 7, whose aim is maximizing the state value that the Actor can bring.

critic loss = (Critic(st, gt) − rt)2 (6)
actor loss = −Critictarget(st, Actor(st)) (7)

3.3 Low-Level Module

The responsibility for low-level module is navigating to the sub-goal safely, this
task is similar to the mono-layer RL work [4,13]. The termination condition of
low-level is reaching sub-goal or colliding with obstacles or the executions is over
c. Formula 8 shows the low-level reward function which awards navigating to the
sub-goal and penalizes collisions.

If the agent collides with other obstacles, we will give penalty rcollision = −3.
If the agent is too close to other obstacles (the distance to other obstacles is less
than 0.2 m), we will give penalty on the uncomfortable distance: −0.6+dmin/2.
Otherwise, we will give the award for navigating to the sub-goal: −wg(‖pt−1 −
g‖ − ‖pt − g‖), where wg = 2.5. Our reward function doesn’t award for reaching
the final goal specially like the mono-layer RL method [4,13], because low-level



510 S. Wang et al.

can end up with reaching the final goal or reaching the sub-goal or timeout so
that awarding the final goal will induce the inequality. Previous discount factor
γ in [4,13] is over 0.9. However the collision influence doesn’t need be so far,
thus the discount factor γ in our model is 0.6.

rt =

⎧
⎨

⎩

rcollision pt − ptj < 2R
−0.6 + dmin/2 dmin < 0.2
−wg(‖pt−1 − g‖ − ‖pt − g‖) otherwise

(8)

Low-level module is trained using Deep Deterministic Policy Grading (DDPG)
[11], a policy based method. Compare to the stochastic policy search of Proximal
Policy Optimization (PPO) [19], the deterministic policy of DDPG accelerates
convergence on navigation problem. When navigating in the crowded environ-
ment, low-level module will frequently collide with other obstacles, which possi-
bly leading to the training lies in local minimum. For improving this problem,
low-level module uses two tricks. The first is controlling the ratio of success
and fail trajectories in the data set, which we set 0.6:0.4 in our paper. The sec-
ond is adding protect for the low-level policy, the 2-d velocity. The conventional
method ORCA has robust collision avoidance ability, whose input is the prefer
velocity. After the low-level policy network outputs the velocity vt, we use ORCA
to reduce the collision probability by taking vt as the prefer velocity. In other
words, we treat the low-level model’s output as the prefer velocity for ORCA to
increase security.

4 Experiment

4.1 Scene Design

The scenes should be able to verify the model’s navigation ability, we design
the scenes from two aspect: First, the agent should be able to maintain naviga-
tion ability when the scene’s size changed. Second, the agent should be able to
maintain navigation ability when the scene change to dissimilar scene.

Therefore, this paper train and test on following three scenes which are easy
to change size. Figure 4 shows the diagram of these three scenes, the red disc
represents the agent and the blue disc represents the human, the stars with
the corresponding color represents the agent’s or humans’ goals. Fig(a) is scene
Squeeze, where an agent and a human randomly positioned on a circle of radius
of rm and their goal positions are on the opposite side of the same circle. (b) is
scene Circle, its design is similar to Squeeze, the only difference is Circle has one
agent and five humans. (c) is scene Square, an agent and five humans randomly
positioned on a square whose side length is w m.

We design two kinds of experiment. Experiment 1 compares the models’
navigation, where the train and test scene is the same. Experiment 2 compares
the models’ resilience from two aspect: compare the resilience explicitly on scene
size and scene type.



Resilient Navigation 511

Fig. 4. The scenes that we use in this paper to verify the effectiveness of our model.

4.2 Perform Metrics

To fairly compare our model with other models, every test scene is evaluated
for 100 repeats. We use the three performance metrics. Success rate represents
the ratio that the agent successfully arrived the destination without collision.
Collision rate represents the ratio that the agent collide with other obstacles.
Average navigation time represents the average navigation time of the successful
trajectories.

4.3 Navigation Ability Comparison

We compared with the representative models which are based on RL. As
expected, the CADRL and the SARL have low collision rate due to their training
algorithm is value based, which cautiously enumerates all the discrete actions.
Long et al. [13] uses policy-based algorithm which action space is continuous,
which exploration space is further higher than the value based. With the scene’s
complexity increase, Long et al. fails to avoid the obstacles. The collision rates of
Squeeze, Circle and Square are 0.24, 0.3, 0.47 respectively. Our model’s hierarchi-
cal structure decouples the navigation task into target-driven task and collision
avoidance task, each layer concentrates on the its own responsibility and our
low-level module add ORCA policy to protect, thus our model has the highest
success rate among three scenes.

As for the average navigation time, the value-based methods’ has longer time
than the policy-based methods on Circle and Square. Because the value-based
methods’ action space is discrete, which means its trajectories are less smooth
than the policy-based trajectories. We also make a statistic on the trajectories’
kinetic energy, we compute the minimum, mean value and maximum of 100
trajectories’ energy. As the fifth row in Table 1 shows, our model has the lowest
value among Circle and Square.



512 S. Wang et al.

4.4 Resilience Comparison

Table 1. Testing the learning ability of the model: train and test on the same scene.

Metrics Method Squeeze Circle Square

SuccessRate CADRL 0.95 – –

SARL 0.93 0.93 0.96

Long et al. 0.76 0.7 0.53

Our model 0.96 0.96 1.0

CollisionRate CADRL 0.05 – –

SARL 0.07 0.01 0.0

Long et al. 0.24 0.3 0.47

Our model 0.04 0.04 0.0

AvgNavTime CADRL 9.96 – –

SARL 9.77 10.93 8.23

Long et al. 10.25 8.8 5.61

Our model 8.5 9.66 6.76

Energy CADRL (31.2,36.8,51.6) – –

SARL (32.5,38.0,49.0) (32.7,37.9,46.4) (6.0,29.6,68.3)

Long et al. (37.3,37.3,37.3) (30.6,30.6,30.6) (4.9,16.3,43.0)

Our model (29.5,32.5,41.0) (23.3,28.8,38.0) (2.8,22.4,41.0)

Resilience on Scene Size. In this experiment, we train the model on Squeeze
with diameter 8 m, then test the model on Squeeze with diameter 16 m. The
same configuration for Circle and Square. The test results are shown in Table 2
(3rd, 4th and 5th column). Above all, the value-based model CADRL and SARL
behaved bad on scene Squeeze and Circle, the success rates of which are 0.03 and
0 respectively. Because Square changes little with its side length increases, the
SARL still retains 0.49 success rate. This is because, the value-based method
chooses policy by the formula at ← arg maxat∈AR(st, at) + γV (ŝt+1) which
highly depends on the accurate estimation on the state value, V (ŝt+1). If the
value network hasn’t seen the state st+1 before, it is hard for value-based method
to choose a reasonable action.

The policy-based method uses the policy network to learn the relation of
environment state and the action. Therefore, even if the method meets the unfa-
miliar environment state, the policy network still knows the general direction of
the action. As the second row in Table 2 shows, the success rates of the Long et
al. are 0.76, 0.7 and 0.53 explicitly, which are apparently higher than value-based
method. However, it has higher collision rate with the complexity of the scene
increases. Our model retains high success rate when the scene size increased,



Resilient Navigation 513

where the success rates are 0.96, 0.95, and 0.92 explicitly. Our high-level module
helps to avoid the relative crowded area by choosing temporal destination.

Resilience on Scene Type. For testing the resilience on scene type, we train
the model on Squeeze with diameter 8 m, then test on Circle with diameter 8
m and Square with side length 8 m. Thus the scene sizes of train and test are
the same. The test results are shown in Table 2 (6th and 7th column). Face to
the unfamiliar scene with the same size, the CADRL and SARL retain some
navigation ability, whose success rates are over 0.65. The SARL behaves better
than CADRL for its value network can process crowd while the CADRL can
only process pair-wise relationship. The success rate of our model on Circle and
Square are 0.99 and 0.92, apparently behaves better than other models.

Table 2. Testing the resilience of the model: train and test on different scenes.

Metrics Method Resilience on scene size Resilience on scene type

Squeeze (8m→16m) Circle (8m→16m) Square (8m→16m) Squeeze→Circle Squeeze→Square

SuccessRate CADRL 0.03 – – 0.65 0.67

SARL 0 0 0.49 0.83 0.89

Long et al. 0.88 0.71 0.54 0.82 0.79

Our model 0.96 0.95 0.92 0.99 0.92

CollisionRate CADRL 0.02 – – 0.03 0.03

SARL 0.05 0.05 0.00 0.17 0.11

Long et al. 0.12 0.29 0.31 0.18 0.21

Our model 0.04 0.00 0.00 0.00 0.00

AvgNavTime CADRL 20.08 – – 12.94 7.40

SARL – – 10.73 8.48 6.60

Long et al. 21.50 17.00 11.88 8.25 6.40

Our model 18.07 18.07 12.62 9.54 8.92

Energy CADRL (79.3,82.9,86.3) – – (25.7,103.4,165.9) (6.0,25.2,61.5)

SARL – – (9.0,57.2,77.0) (31.5,33.4,43.5) (6.0,24.8,47.6)

Long et al. (82.4,82.4,82.4) (64.6,64.6,64.6) (2.9,43.2,76.0) (30.4,30.4,30.4) (3.0,21.0,41.6)

Our model (66.3,70.5,74.9) (48.7,64.2,70.8) (11.1,49.6,76.2) (25.3,29.7,39.3) (1.1,23.8,57.1)

Table 3. Test the navigation ability of the model: train and test in Concentric scene.

Success Collision AvgNavTime

Mono-layer 0.18 0.82 19.05

Our model 0.99 0.00 20.21

4.5 Ablation Experiment

To verify the effectiveness of our hierarchical architecture, we compare our model
with mono-layer RL model. The reward function and train configuration of
mono-layer RL is same to our model’s low-level module, except the low-level
module calculate velocity policy based on sub-goal while our model based on
final goal. We compare the two models under the scene Concentric (the Fig(d)
in Fig. 4). The radius of two circles are 8 m and 16 m. The test result is shown



514 S. Wang et al.

in Table 3. The success rate of our model is 0.99 which are much higher than
the mono-layer’s 0.18. As the Fig. 5 shows, mono-layer model’s policy (the left
trajectory) is aggressive that the agent walks straight to the final goal. Although
the agent tried to avoid the nearby obstacles, the high-density led to collision at
last. Our policy (the right trajectory) avoid the high-density by sub-goals which
are represented as red stars in Fig. 5.

Fig. 5. Train and test the models on Concentric scene. (Color figure online)

5 Conclusion

In this paper, we propose a hierarchical reinforcement learning based naviga-
tion algorithm, which decouple navigation task into target-driven and collision
avoidance. We evaluated our approach by comparing the trajectories taken by
the agent with previous methods. Our experimental results suggest that our
approach produces motion that is more resilience in different scenes.

Acknowledgments. This work was supported by National Key Research and Devel-
opment Program of China (No. 2018AAA0103002 and 2017YFB1002600) and National
Natural Science Foundation of China (No. 61702482 and 62002345).

References

1. Bacon, P., Harb, J., Precup, D.: The option-critic architecture. CoRR
abs/1609.05140 (2016)

2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent navigation. In: 2008 IEEE International Conference on Robotics and
Automation, pp. 1928–1935. IEEE (2008)

3. Chen, C., Hu, S., Nikdel, P., Mori, G., Savva, M.: Relational graph learning for
crowd navigation. arXiv preprint arXiv:1909.13165 (2019)

4. Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware robot
navigation with attention-based deep reinforcement learning. In: 2019 International
Conference on Robotics and Automation (ICRA), pp. 6015–6022. IEEE (2019)

http://arxiv.org/abs/1909.13165


Resilient Navigation 515

5. Chen, Y.F., Liu, M., Everett, M., How, J.P.: Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 285–292. IEEE
(2017)

6. Fahad, M., Chen, Z., Guo, Y.: Learning how pedestrians navigate: A deep inverse
reinforcement learning approach. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 819–826. IEEE (2018)

7. Fan, T., Long, P., Liu, W., Pan, J., Yang, R., Manocha, D.: Learning resilient
behaviors for navigation under uncertainty. In: 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5299–5305. IEEE (2020)

8. Godoy, J., Chen, T., Guy, S.J., Karamouzas, I., Gini, M.: ALAN: adaptive learning
for multi-agent navigation. Autonomous Robots 42(8), 1543–1562 (2018)

9. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407(6803), 487–490 (2000)

10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282 (1995)

11. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

12. Liu, Y., Xu, A., Chen, Z.: Map-based deep imitation learning for obstacle avoid-
ance. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 8644–8649. IEEE (2018)

13. Long, P., Fan, T., Liao, X., Liu, W., Zhang, H., Pan, J.: Towards optimally decen-
tralized multi-robot collision avoidance via deep reinforcement learning. In: 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 6252–
6259. IEEE (2018)

14. Long, P., Liu, W., Pan, J.: Deep-learned collision avoidance policy for distributed
multiagent navigation. IEEE Robot. Autom. Lett. 2(2), 656–663 (2017)

15. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

16. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: DeepMimic: example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graph.
(TOG) 37(4), 1–14 (2018)

17. Pfeiffer, M., et al.: Reinforced imitation: sample efficient deep reinforcement learn-
ing for mapless navigation by leveraging prior demonstrations. IEEE Robot.
Autom. Lett. 3(4), 4423–4430 (2018)

18. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34 (1987)

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

20. Tai, L., Zhang, J., Liu, M., Burgard, W.: Socially compliant navigation through
raw depth inputs with generative adversarial imitation learning. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1111–1117.
IEEE (2018)

21. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Robotics Research, pp. 3–19. Springer (2011). https://doi.org/10.
1007/978-3-642-19457-3 1

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1


516 S. Wang et al.

22. Vezhnevets, A.S., et al.: Feudal networks for hierarchical reinforcement learning.
In: International Conference on Machine Learning, pp. 3540–3549. PMLR (2017)

23. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with lim-
ited communication. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-Agent Systems, pp. 1101–1108 (2013)


	Resilient Navigation Among Dynamic Agents with Hierarchical Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Conventional Methods for Navigation
	2.2 Deep Reinforcement Learning Methods for Navigation
	2.3 Hierarchical Reinforcement Learning

	3 Approach
	3.1 Overview
	3.2 High-Level Module
	3.3 Low-Level Module

	4 Experiment
	4.1 Scene Design
	4.2 Perform Metrics
	4.3 Navigation Ability Comparison
	4.4 Resilience Comparison
	4.5 Ablation Experiment

	5 Conclusion
	References




