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Abstract. Over the past few years, single-view 3D face reconstruction
methods can produce beautiful 3D models. Nevertheless, the input of
these works is unobstructed faces. We describe a system designed to
reconstruct convincing face texture in the case of occlusion. Motivated
by parsing facial features, we propose a complete face parsing map gen-
eration method guided by landmarks. We estimate the 2D face structure
of the reasonable position of the occlusion area, which is used for the
construction of 3D texture. An excellent anti-occlusion face reconstruc-
tion method should ensure the authenticity of the output, including the
topological structure between the eyes, nose, and mouth. We extensively
tested our method and its components, qualitatively demonstrating the
rationality of our estimated facial structure. We conduct extensive exper-
iments on general 3D face reconstruction tasks as concrete examples
to demonstrate the method’s superior regulation ability over existing
methods often break down. We further provide numerous quantitative
examples showing that our method advances both the quality and the
robustness of 3D face reconstruction under occlusion scenes.
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1 Introduction

3D face reconstruction refers to synthesizing a 3D face model given one input
face photo. It has a wide range of applications, such as face recognition and
digital entertainment [25]. Existing methods mainly concentrate on unobstructed
faces, thus limiting the scenarios of their actual applications. Reconstructing a
3D face model from a single photo is a classical and fundamental problem in
computer vision. The reconstruction task is challenging as human face structure
partial invisibility when considering occluded scenes. Over the past five years,
the related problem of face inpainting in images has gradually developed to the
rationality of face photo generation in the most extreme scenes [15].
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We cannot use artificial intelligence to robustly predict the 3D texture of the
occluded area of the face. On the other hand, when faces are partially occluded,
existing methods often indiscriminately reconstruct the occluded area. With the
assistance of face parsing map, we find a way to identify the occluded area and
reconstruct the input image to a reasonable 3D face model. The main contribu-
tions are summarized as follows:

• We propose a novel algorithm that combines feature points and face parsing
map to generate face with complete facial features.

• To address the problem of invisible face area under occluded scenes, we pro-
pose synthesizing input face photo based on Generative Adversarial Network
rather than reconstructing 3D face directly.

• We have improved the loss function of our 3D reconstruction framework for
occluded scenes. Our method obtains state-of-the-art qualitative performance
in real-world images.

2 Related Works

2.1 Generic Face Reconstruction

The classic methods use reference 3D face models to fit the input face photo.
Some recent techniques use Convolution Neural Networks (CNNs) to regress
landmark locations with the raw face image. Some recent techniques firstly used
CNNs to predict the 3DMM parameters with input face image.

2.2 Face Image Synthesis

Deep pixel-level face generating has been studied for a few years. Many methods
achieve remarkable results. EdgeConnect [12] shows impressive proceeds which
disentangling generation into two stages: edge generator and image completion
network. Contextual Attention [22] takes a similar two-step approach. First,
it produces a base estimate of the invisible region. Next, the refinement block
sharpens the photo by background patch sets. The typical limitations of current
face image generate schemes are the necessity of manipulation, the complexity
of fundamental architectures, the degradation in accuracy, and the inability of
restricting modification to local region.

3 Our Approach

3.1 Landmark Prediction Task

Figure 1 shows the entire process of our work.In the landmark prediction task,
we found that generating accurate 68 feature points Zlmk ∈ R2×68 was a crucial
part under occlusion scenes. The architecture Nlmk aims to generate landmarks
from a corrupted face photo Icor : Zlmk=Nlmk (Icor; θlmk), where θlmk denotes
the trainable parameters. Since we want to focus more on efficiency and follow
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Fig. 1. Overall our pipeline. We first remove the occluded area and reconstruct the
face with complete facial features. Then we utilize ResNet-50 and texture refinement
network to reconstruct the final 3D model.

face parsing map generation task, we built a sufficiently effective Nlmk upon
the MobileNet-V3 [6]. Nlmk is focused on feature extraction, unlike traditional
landmark detectors. The final module is realized by fully connecting the fused
feature maps. We set the loss function Llmk as follows:

Llmk=
∥
∥
∥Z(i)

lmk
− Ẑ(i)

gt

∥
∥
∥

2

2
(1)

where Ẑ(i)
gt

denotes the ith ground truth face landmarks.

3.2 Face Parsing Map Generation

Pixel-level recognition of occlusion and face skin areas is a prerequisite for
our framework to ensure accuracy. To benefit from the annotated face dataset
CelebAMask-HQ [10], we used an encoder-decoder architecture Nα based on
U-Net [17] to estimate pixel-level label classes. Given a squarely resized face
image Ifac ∈ RH×W×3 , we applied the trained face parsing model Nα to obtain
the parsing map Mα ∈ RH×W×1 . On the other hand, given the landmarks
Zlmk ∈ R2×68, we connected the feature points to form a region. Then these
regions can form a parsing map Mβ ∈ RH×W×1 including facial features. Please
notice that, in our work, we assumed that facial features only include only
five parts, including facial skin, eyebrows, eyes, nose and lips. The final map
Mγ ∈ RH×W×1 (see Fig. 2) without occluded objects needs Mα plus Mβ . In
order to generate Mγ including the complete facial features, we designed Algo-
rithm 1.
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Fig. 2. Our face parsing map generation module, which follows Algorithm 1. The results
shown in the figure show that our method finally successfully removed the occlusion of
fingers and hair

Algorithm 1. Face Parsing Map Plus Algorithm, our proposed algorithm. All experiments
in the papers Map A and Map B have the same width and height.

Input: Ai, pixels point on the face parsing map A. Bi, pixels point on the face parsing map
B. V (z), the function of getting the grayscale value of point z. X(i), the horizontal

coordinate value of i in the map. Y (i), the vertical coordinate value of i in the map. W, the
width of the map. H, the height of the map. S, the gray value range of the facial features area
(only include four parts:eyebrows, eyes, nose, lips). O, gray value range of the facial skin area.
Input: Face parsing map A and B
Output: Ci, pixels point on the new face parsing map C

1: while Y (i) <= H do � Start to generate complete face skin

2: while X(i) <= W do

3: if Ai ∈ O then

4: Ci ← Ai, X(i) + 1 ← X(i)
5: else if Ai NOT ∈ O AND Bi ∈ O then
6: Ci ← Bi, X(i) + 1 ← X(i)
7: else Ci ← Ai, X(i) + 1 ← X(i)

8: end while

9: Y (i) + 1 ← Y (i)
10: end while

11:
12: while Y (i) <= H do � Start to generate complete facial features

13: while X(i) <= W do

14: if Ai ∈ S then
15: Ci ← Ai, X(i) + 1 ← X(i)

16: else if Ai NOT ∈ S AND Bi ∈ S then
17: Ci ← Bi, X(i) + 1 ← X(i)

18: else Ci ← Ai, X(i) + 1 ← X(i)

19: end while
20: Y (i) + 1 ← Y (i)

21: end while
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3.3 Face Image Synthesis with GAN

Face Image Synthesis Network. To benefit from the Pix2Pix architecture,
we proposed a Face Image Synthesis Network (FISN) Net, which was based
on Pix2PixHD [26] as a backbone. FISN receives Ifac ∈ RH×W×3 and Mα as
inputs. The detailed architecture is shown in Fig. 1. To fuse Ifac and Mα , we
used Spatial Feature Transform (SFT) layer [14] learned a mapping function
M that outputs a parameter pair (γ, β) based on the prior condition Ψ from
the features Mα . A pair of affine transformation parameters (γ, β) model the
prior Ψ . Here, the mapping equation can be expressed as (γ, β) = M (Ψ) . After
obtaining (γ, β) , the transformation is carried out by the SFT layer:

SFT (Fmap|γ, β) = γ � F + β (2)

where Fmap denotes the feature maps from Ifac,� denotes Hadamard product.
Therefore, we conditioned spatial information Mα on style data Ifac and
generated affine parameters (xi,yi) followed (xi,yi)=Net (Ifac,Mα). Related
research [14] showed that ordinary normalization layers would “wash away”
semantic information. To transfer (xi,yi) to new mask input Mγ , we utilized
semantic region-adaptive normalization (SEAN) [29] on residual blocks zi in the
FISN. Let H, W and C be the height, width and the number of channels in the
activation map of the deep convolutional network for a batch of N samples. The
modulated activation value at the site was defined as:

SEAN (zi, xi, yi) = xi
zi − μ (zi)

σ (zi)
+ yi (3)

where μ (zi) and σ (zi) are the mean and standard deviation of the activation
(n ∈ N, c ∈ C, y ∈ H,x ∈ W ) in channel c :

μ (zi) =
1

NHW

∑

n,y,x

hn,c,y,x (4)

σ (zi) =
√

1
NHW

∑

n,y,x

(

(hn,c,y,x)2 − μ(zi)
2
)

(5)

FISN is a generator that learns the style mapping between Ifac and Mγ according
to the spatial information provided by Mα . Therefore, face features (e.g. eyes
style) in Ifac are shifted to the corresponding position on Mγ so that FISN can
synthesis image Iout which removed occlusion.

Loss Function. The design of our loss function for FISN is inspired by
Pix2PixHD [26], MaskGAN [10] and SEAN [29], which contains three compo-
nents:
(1) Adversarial loss. Let D1 and D2 be two discriminators at different scales,
LGAN is the conditional adversarial loss defined by

LGAN=E [log (D1,2 (Ifac,Mα ))] + E [1 − log (D1,2 (Iout,Mα ))] (6)
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(2) Feature matching loss [26]. Let T be the total number of layers in dis-
criminator D .Lfea is the feature matching loss which computed the L1 distance
between the real and generated face image defined by

Lfea=E
T∑

i=1

∥
∥
∥D

(i)
1,2 (Ifac,Mα ) − D

(i)
1,2 (Iout,Mα)

∥
∥
∥
1

(7)

(3) Perceptual loss [8]. Let N be the total number of layers used to calculate
the perceptual loss, F (i) be the output feature maps of the ith layer of the VGG
network [21].Lper is the perceptual loss which computes the L1 distance between
the real and generated face image defined by

Lper=E
N∑

i=1

1
Mi

[
∥
∥
∥F (i) (Ifac) − F (i) (Iout)

∥
∥
∥
1
] (8)

The final loss function of FISN used in our experiment is made up of the above-
mentioned three loss terms as:

LFISN=LGAN + λ1Lfea + λ2Lper (9)

where we set λ1=λ2= 10 respectively in our experiments.

3.4 Camera and Illumination Model

Given an face image, we adopt the Basel Face Model (BFM) [16]. After the
3D face is reconstructed, it can be projected onto the image plane with the
perspective projection:

V2d (P) = f ∗ Pr ∗ R ∗ Smod + t2d (10)

where V2d (P) denotes the projection function that turned the 3D model into
2D face positions, f denotes the scale factor, Pr denotes the projection matrix,
R ∈ SO(3) denotes the rotation matrix, Smod denotes the shape of the face and
t2d ∈ R3 denotes the translation vector.

We approximated the scene illumination with Spherical Harmonics (SH) [3]
for face. Thus, we can compute the face as Lambertian surface and skin texture
follows:

C (ri,ni,γ) = ri �
B2
∑

b=1

γbΦb (ni) (11)

where ri denotes skin reflectance, ni denotes surface normal, � denotes the
Hadamard product, γ ∈ R9 under monochromatic lights condition, Φb : R3 → R
denotes SH basis function, B denotes the number of spherical harmonics bands
and γb ∈ R3 (here we set B = 3 ) denotes the corresponding SH coefficients.

Therefore, parameters to be learned can be denoted by a vector y =
(α̃i, β̃i , γ, p) ∈ R175, where p ∈ R6 = {pitch, yaw, roll, f, t2D} denotes face
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poses. In this work, we used a fixed ResNet-50 [5] network to regress these coeffi-
cients. The loss function of ResNet-50 follows Eq. 16. We then got the fundamen-
tal shape Sbase (coordinate,e.g. x, y, z) and the coarse texture Tcoa (albedo,e.g.
r, g, b). We used a coarse-to-fine network based on graph convolutional networks
of Lin et al. [11] for producing the fine texture Tfin.

3.5 Loss Function of 3D Reconstruction

Given a generated image Iout ,we used the ResNet to regress the corresponding
coefficient y. The design of loss function for ResNet contained four components:

(1) Landmark Loss. As facial landmarks convey the structural information of
the human face, we used landmark loss to measure how close projected
shape landmark vertices to the corresponding landmarks in the image Iout.
We ran the landmark prediction module Nlmk to detect 68 landmarks
{

z
(n)
lmk

}

from the training images. We obtained landmarks
{

l
(n)
y

}

from ren-
dering facial images. Then, we computed the loss as:

Llmk (y) =
1
N

N∑

n=1

∥
∥
∥z(n)lmk − l(n)y

∥
∥
∥

2

2
(12)

where ‖·‖2 denotes the L2 norm.

(2) Accurate Pixel-wise Loss. The rendering layer renders back an image I
(i)

y to

compare with the image I(i)out. The pixel-wise loss is formulated as:

Lpix (y) =

∑

i∈M Pi·
∥
∥
∥I(i)out − I(i)y

∥
∥
∥
2

∑

i∈M Pi
(13)

where i denotes pixel index, M is the reprojected face region which obtained
with landmarks [13], ‖·‖2 denotes the L2 norm and Pi is occlusion attention
coefficient which is described as follows. To gain robustness to accurate

texture, we set Pi =

{

1 if i ∈ facial features of Mα

0.1 otherwise
for each pixel i.

(3) Regularization Loss. To prevent shape deformation and texture degener-
ation, we introduce the prior distribution to the parameters of the face
model. We add the regularization loss as:

Lreg=ωα‖α̃i‖2 + ωβ

∥
∥
∥β̃i

∥
∥
∥

2

(14)

here, we set ωα=1.0, ωβ = 1.75e-3 respectively.
(4) Face Features Level Loss. To reduce the difference between 3D face with

2D image, we define the loss at face recognition level. The loss computes
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the feature difference between the input image Iout and rendered image Iy.
We define the loss as a cosine distance:

Lff=1-
< G(Iout), G(Iy) >

‖G(Iout)‖ · ‖G(Iy)‖ (15)

where G(·) denotes the feature extraction function by FaceNet [19], < ·, · >
denotes the inner product.

In summary, the final loss function of 3D face reconstruction used in our
experiment is made up of the above-mentioned four loss terms as:

L3D=λ3Llmk + λ4Lpix + λ5Lreg + λ6Lff (16)

where we set λ3= 1.6e − 3, λ4= 1.4, λ5= 3.7e-4, λ6= 0.2 respectively in all our
experiments.

4 Implementation Details

Considering the question of landmark predictor, the 300-W dataset [18] has
labeled ground truth landmarks, while the CelebA-HQ dataset [9] does not. We
generated the ground truth of CelebA-HQ by the Faceboxes predictor [28] as
the reference. In experiments shown in this work, we use the 256 × 256 images
for training the landmark predictor Nlmk and the batch size = 16 . The learning
rate of Nlmk is 10e − 4. We use the trained face parsing model Nα [10] to
generate Mα . We obtain Mγ according to Algorithm 1. FISN follows the design
of Pix2PixHD [26] with four residual blocks. To train the FISN, we used the
CelebAMask-HQ dataset which has 30000 semantic labels with a size of 512×512.
Each label clearly marked the facial features of the face.

FISN does not use any ordinary normalization layers (e.g. Instance Normal-
ization) which will wash away style information. Before training the ResNet, we
take the weights from pre-trained of R-Net [3] as initialization. We set the input
image size to 224 × 224 and the number of vertices to 35709. We design our
texture refinement network based on the Graph Convolutional Network method
of Lin et al. [11]. We do not adopt any fully-connected layers or convolutional
layers in the refinement network refer to related research [11]. This will reduce
the performance of the module.

5 Experimental Results

5.1 Qualitative Comparisons with Recent Works

Figure 3 shows our results compared with the other work. The last two columns
show our results.The remaining columns demonstrate the results of 3DDFA [4],
DF2Net [27] and Chen et al. [2]. Qualitative results show that our method
surpasses other methods. Figure 3 shows that our method can reconstruct a
complete face model under occlusion scenes such as glasses, jewelry, palms, and
hair. Other methods focused on generating high-resolution face textures. These
frameworks cannot effectively deal with occluded scenes.
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Fig. 3. Comparison of qualitative results. Baseline methods from left to right: 3DDFA,
DF2Net, Chen et al. and our method.

5.2 Quantitative Comparison

Fig. 4. Comparison of error heat maps on the MICC Florence datasets. Digits denote
90% error (mm).

Comparison Result on the MICC Florence Datasets. MICC Florence
dataset [1] is a 3D face dataset that contains 53 faces with their ground truth
models. We artificially added some occluders as input. We calculated the average
90% largest error between the generative model and the ground truth model.
Figure 4 shows that our method can effectively handle occlusion.

Occlusion Invariance of the Foundation Shape. Our choice of using the
ResNet-50 to regress the shape coefficients is motivated by the unique robustness
to extreme viewing conditions in the paper of Deng et al. [3]. To fully support
the application of our method to occluded face images, we test our system on
the Labeled Faces in the Wild datasets (LFW) [7]. We used the same face test
system from Anh et al. [24], and we refer to that paper for more details.
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Fig. 5. Reconstructions with occlusions. Left: Qualitative results of Sela et al. [20] and
our shape. Right: LFW verification ROC for the shapes, with and without occlusions.

Figure 5 (left) shows the sensitivity of the method of Sela et al. [20]. Their
result clearly shows the outline of a finger. Their failure may be due to more
focus on local details, which weakly regularizes the global shape. However, our
method recognizes and regenerates the occluded area. Our method much robust
provides a natural face shape under common occlusion scenes. Though 3DMM
also limits the details of shape, we use it only as a foundation and add refined
texture separately.

Table 1. Quantitative evaluations on LFW.

Method 100%-EER Accuracy nAUC

Tran et al. [23] 89.40 ± 1.52 89.36 ± 1.25 95.90 ± 0.95

Ours (w/ Occ) 85.75 ± 1.12 86.49 ± 0.97 93.89 ± 1.31

Ours (w/o Occ) 90.57 ± 1.43 89.87 ± 0.71 96.59 ± 0.37

We further quantitatively verify the robustness of our method to occlusions.
Table 1 (top) reports verification results on the LFW benchmark with and with-
out occlusions (see also ROC in Fig. 5 (right)). Though occlusions clearly impact
recognition, this drop of the curve is limited, demonstrating the robustness of
our method.

6 Conclusions

In this work, we present a novel single-image 3D face reconstruction method
under occluded scenes with high fidelity textures. Comprehensive experiments
have shown that our method outperforms previous methods by a large margin
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in terms of both accuracy and robustness. Future work includes combining our
method with Transformer architecture to further improve accuracy.
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