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Abstract. Process analytics is an umbrella of data-driven techniques
which includes making predictions for individual process instances or
overall process models. At the instance level, various novel techniques
have been recently devised, tackling next activity, remaining time, and
outcome prediction. At the model level, there is a notable void. It is the
ambition of this paper to fill this gap. To this end, we develop a tech-
nique to forecast the entire process model from historical event data.
A forecasted model is a will-be process model representing a probable
future state of the overall process. Such a forecast helps to investigate
the consequences of drift and emerging bottlenecks. Our technique builds
on a representation of event data as multiple time series, each capturing
the evolution of a behavioural aspect of the process model, such that
corresponding forecasting techniques can be applied. Our implementa-
tion demonstrates the accuracy of our technique on real-world event log
data.

Keywords: Process model forecasting + Predictive process modelling -
Process mining - Time series analysis

1 Introduction

Process analytics is an area of process mining [1] which encompasses Predictive
Process Monitoring (PPM) aimed at making predictions for individual process
instances or overall process models. At the instance level, various novel PPM
techniques have been recently devised, tackling problems such as next activity,
remaining cycle time, or other outcome predictions [6]. These techniques make
use of neural networks [26], stochastic Petri nets [23], and general classification
techniques [27].
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At the model level, there is a notable void. Many analytical tasks require
not only an understanding of the current as-is, but also the anticipated will-be
process model. A key challenge in this context is the consideration of evolution
as processes are known to be subject to drift [15,20,31,32]. A forecast can then
inform the process analyst how the will-be process model might differ from the
current as-is if no measures are taken, e.g., against emerging bottlenecks.

This paper presents the first technique to forecast whole process models.
To this end, we develop a technique that builds on a representation of event
data as multiple time series. Each of these time series captures the evolution of
a behavioural aspect of the process model in the form of directly-follows rela-
tions (DFs), such that corresponding forecasting techniques can be applied for
directly-follows graphs (DFGs). Our implementation on six real-life event logs
demonstrates that forecasted models with medium-sized alphabets (10-30 activ-
ities) obtain below 15% mean average percentage error in terms of conformance.
Furthermore, we introduce the Process Change Exploration (PCE) system which
allows to visualise past and present models from event logs and compare them
with forecasted models.

This paper is structured as follows. Section2 discusses related work and
motivates our work. Section 3 specifies our process model forecasting technique
together with the PCE visualisation environment. Section 4 describes our evalu-
ation, before Sect.5 concludes the paper.

2 Related Work and Motivation

Within the field of process mining, research on and use of predictive modelling
techniques has attracted plenty of attention in the last five years. PPM tech-
niques are usually developed with a specific purpose in mind, ranging from next
activity prediction [5,26], over remaining time prediction [29], to outcome predic-
tion [11]. For a systematic literature review of the field, we refer to [18]. Beyond
the PPM field, this work is related to previous research on stage-based process
mining [19], in which a technique is presented to decompose an event log into
stages, and work on the detection of time granularity in event logs [22].

The shift from fine-granular PPM techniques, including next activity, remain-
ing time, and outcome prediction, to model-based prediction, allows to obtain
new insights into the global development of the process. Consider the example in
Fig. 1 where the road fine traffic management event log is partitioned into 100
intervals in which an equal number of DF relations occur. The DFs in the first 50
intervals are used to predict the next 25 intervals. The DFGs show how process
model forecasting and change exploration can provide multiple unique insights
at a glance:

1. Compared to the initial 50 intervals the proportion of fines sent decreases in
the later intervals;

2. The proportion of penalties remains comparable between the first 50 and next
25 time intervals;
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3. The number of occurrences and arc weights between Create Fine and Send
Fine are forecasted with reasonable error (£15%);

4. The arc weights of the ending activities are predicted with reasonable error
(£15%).

DFG: first 50 time intervals /;ﬂ{ﬁ Insert Fine Notiication (118831) o
5716 T~
Create Fine (113437) —|»- \
tart (261416) 113437 79047 Send Fine (112099) 55
32523 5 Add penally (110723) | end (261416)
Entropic relevance: 49dsa (1) Proportion of sent fines T
o o
6.66 | changed (43% vs. 39%) 473261 (2) Proportion of penalties
- n f T = 1 remains stable (42%
DFG: actual 25 next time intervals : 50 R | (42%)
1 T~
18154 v ~ i f
- Create Fine (38792) ———» H i
start (81907) 38792 25092| Send Fine (31682) 1751 * T
N ; P
6525 Add penally (35060 > end 61907)
; (818
Entropic (3) Fragment predicted 15834 ; ;)
relevance: 11.11 with reasonable error (+/- 15%) 12936 : '
. A T T i
DFG: forecasted 25 next time intervals | 052 Insert Fine Notfication (36425) | !
\ |
16476 ! !
JPE—— Create Fine (32849) ——»—— 1 (4) End activities pregicted
start (82145) 34646 24996 Send Fine (36029) | with reasonable error (+/-15%)
11938 i '
i
16169 15 Add penalty (3421 7)nd (81852)
Entropic Cj‘j
15929

relevance: 11.11

Fig. 1. Directly-follows graphs of the 50 first intervals of the event log, as well as a
forecasted and actual DFG of the 25 next intervals.

These results provide insight both in terms of the past and present model,
see items (1)—(2), and the quality of forecasts between the actual and forecasted
model, (3)—(4). Being able to construct such forecasts allows stakeholders to
make estimates regarding how the overall fine system will evolve and allows to
answer questions such as “How many more fines will be received?”, “Will the
backlog of fines be reduced?”, “Will all fines be paid”, and “Will the ratio of
unpaid fines stay the same?” This motivating example shows that, where process
mining focuses on learning the as-is model to reason about trajectories of future
cases and suggest potential repairs and improvements, process model forecasting
allows to grasp the future stage of the overall process model in terms of a will-be
model.

A suitable means to evaluate the forecasts quantitatively is entropic rele-
vance [21]. This measure captures the quality of the discovered and forecasted
DFGs with respect to the event logs they represent. Entropic relevance penalises
the discrepancies in the relative frequencies of traces recorded in the log and
described by the DFG as it stands for the average number of bits used to encode
a log trace using the DFG, with small values being preferable to large ones. If the
entropic relevance of the forecasted DFG and the actual future DFG with respect
to the test log is the same, then both DFGs represent the future behaviour simi-
larly well. The entropic relevance of the historical DFG derived from the training
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log with respect to the testing log is 6.66 as indicated in Fig. 1, suggesting that
the future behaviour shifts and the historical DFG still represents the behaviour
in the log better than both the actual and forecasted DFGs which sit at an
entropic relevance of 11.11.

Measurement values are not enough to fully reveal the change of behaviour
to the analyst. To this end, we complement the model-level prediction technique
with a visualisation system to enable analysts to understand the forthcoming
changes to the processes. Various process analysis tasks benefit from process
forecasting [20]; most notably process forecasting helps understanding the incre-
mental changes and adaptations that happen to the process model and to project
them into the future. In terms of visualisation principles, we follow the “Visual
Information-Seeking Mantra”: overview first, zoom and filter, then details-on-
demand [25]. Thus, we expect the design of our visualisation system to assist in
the following tasks:

T1. Identify process adaptations: The visualisation system should assist the
user in identifying the changes that happen in the process model of the future
in respect to the past;

T2. Allow for interactive exploration: The user should be able to follow
the visual information-seeking principles, including overview first, filtering,
zooming, and details-on-demand.

Forecasting entire process models provides a new perspective on predictive
process monitoring. The forecast horizon is substantially longer as compared to
what existing next-activity prediction models can achieve. Moreover, where next
activity and related PPM techniques have a strong case-level focus, a forecast at
the model level provides a more comprehensive picture of the future development
of the process.

3 Process Model Forecasting

This section outlines how time series of directly-follows relationships are
extracted from event logs as well as how they are used to obtain process model
forecasts with a range of widely-used forecasting techniques. Finally, the visual-
isation of such forecasts is introduced.

3.1 From Event Log to Directly-Follows Time Series

An event log L contains the recording of traces o € L which are sequences of
events produced by an information system during its execution. A trace o =
(€1,...,e|q|) € X* is a finite sequence over the alphabet of activities X' which
serves as the set of event types. Directly-follows relations between activities in an
event log can be expressed as counting functions over activity pairs >: X x X —
N so >, (a1, az2) counts the number of times activity a; is immediately followed
by activity as in the event log L. Directly-follows relations can be calculated over
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all traces or a subset of subtraces of the log. Finally, a Directly-Follows Graph
(DFG) of the process then is the weighted directed graph with the activities as
nodes and DF relations as weighted edges, i.e., DFG = (X, >).

In order to obtain forecasts regarding the evolution of the DFG we construct
DFGs for subsets of the log. Many aggregations and bucketing techniques exist
for next-step, performance, and goal-oriented outcome prediction [19,26,27], e.g.,
predictions at a point in the process rely on prefixes of a certain length, or
particular state aggregations [3]. In the forecasting approach proposed here, we
integrate concepts from time-series analysis. Hence, the evolution of the DFGs
is monitored over intervals of the log where multiple aggregations are possible:

— Equitemporal aggregation: each sublog L; € L of interval s contains a
part of the event log of some fixed time duration. This can lead to sparsely
populated sublogs when the events’ occurrences are not uniformly spread over
time; however, it is easy to apply on new traces.

— Equisized aggregation: each sublog Ly € L of interval s contains a part
of the event log where an equal amount of DF pairs occurred which leads to
well-populated sublogs when enough events are available.

Tables1 and 2 exemplify the aggregations. These aggregations are useful for
the following reasons. First, an equisized aggregation, in general, has a higher
likelihood of the underlying DFs approaching a white noise time series which
is required for a wide range of time series forecasting techniques [9]. Second,
both offer different thresholds at which forecasting can be applied. In the case
of the equisized aggregation, it is easier to quickly construct a desired number of
intervals by simply dividing an event log into the equisized intervals. However,
most time series forecasting techniques rely on the time intervals being of equal
duration which is embodied into the equitemporal aggregation [10]. Time series
for the DFs >7, = (>, (a1,a2),...,>1, (a1,a2)),Vai,as € ¥ x X can be
obtained for all activity pairs where Uii = L by applying the aforementioned
aggregations to obtain the sublogs for the intervals.

3.2 From DF Time Series to Process Model Forecasts

The goal of process model forecasting is to obtain a forecast for future DFGs by
combining the forecasts of all the DF time series. To this purpose, we propose to
use time series techniques to forecast the DFG at time T+ h given time series
up until T ﬁ:‘\GTHl = (X, {>r4nr., o 101,02 € X x X}) for which various
algorithms can be used. In time series modelling, the main objective is to obtain
a forecast g1 for a horizon h € N based on previous 7' values in the series
(y1,..-,yr) [9]. For example, the naive forecast simply uses the last value of the
time series T" as its forecast {7447 = yr. An alternative naive forecast uses the
average value of the time series T' as its forecast §p 7 = %EIT Yi-

A trade-off exists between approaching DFGs as a multivariate collection
of DF time series, or treating each DF separately. Traditional time series tech-
niques use univariate data in contrast with multivariate approaches such as Vec-
tor AutoRegression (VAR) models, and machine learning-based methods such
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as neural networks or random forest regressors. Despite their simple setup, it is
debated whether machine learning methods necessarily outperform traditional
statistical approaches. The study in [16] found that this is not the case on a
large number of datasets and the authors note that machine learning algorithms
require significantly more computational power. This result was later reaffirmed,
although it is noted that hybrid solutions are effective [17]. For longer horizons,
traditional time series approaches still outperform machine learning-based mod-
els. Given the potentially high number of DF pairs in a DFG, the proposed
approach uses a time series algorithm for each DF series separately. VAR mod-
els would require a high number of intervals (at least as many as there are DFs
times the lag coefficient) to estimate all parameters of all the time series despite
their potentially strong performance [28]. Machine learning models could poten-
tially leverage interrelations between the different DFs but again would require
training set way larger than typically available for process mining to account
for dimensionality issues due to the potentially high number of DF's. Therefore,
in this paper, traditional time series approaches are chosen and applied to the
univariate DF time series, with at least one observation per sublog/time interval
present.

Autoregressive, moving averages, ARIMA, and varying variance models make
up the main families of traditional time series forecasting techniques [9]. In addi-
tion, a wide array of other forecasting techniques exist, ranging from simple mod-
els such as naive forecasts over to more advanced approaches such as exponential
smoothing and auto-regressive models. Many also exist in a seasonal variant due
to their application in contexts such as sales forecasting.

The Simple Exponential Smoothing (SES) model uses a weighted average
of past values whose importance exponentially decays as they are further into
the past, where the Holt’s models introduce a trend in the forecast, meaning
the forecast is not ‘flat’. Exponential smoothing models often perform very
well despite their simple setup [16]. AutoRegressive Integrating Moving Average
(ARIMA) models are based on auto-correlations within time series. They com-

Table 1. Example event log with 3
traces and 2 activities.

Table 2. An example of using an inter-
val of 3 used for equitemporal aggrega-
tion (75 min in 3 intervals of 25 min) and

Case ID | Activity | Timestamp equisized intervals of size 2 (6 DF's over
1 a1 11:30 3 intervals)).

1 a2 11:45

1 a 12:10 DF Equitemporal | Equisized
1 az 12:15 <ws (a1,a1) (0,1,0) (1,0,0)

2 a 11:40 <rs (a1,a2)|(1,1,1) (1,1,1)

2 a1 11:55 <rs (a2, a1)|(0,1,0) (0,1,0)

3 a 12:20 <rs (az,a2)|(0,0,1) (0,0,1)

3 az 12:40

3 az 12:45
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bine auto-regressions with a moving average over error terms. It is established
by a combination of an AutoRegressive (AR) model of order p to use the past
p values in the time series and to apply a regression over them and a Moving
Average (MA) model of order ¢ to create a moving average of the past forecast
errors. Given the necessity of using a white noise series for AR and MA models,
data is often differenced to obtain such series [9]. ARIMA models then combine
both AR and MA models where the integration occurs after modelling, as these
models are fitted over differenced time series. ARIMA models are considered to
be one of the strongest time series modelling techniques [9]. An extension to
ARIMA, which is widely used in econometrics, are the (Generalized) AutoRe-
gressive Conditional Heteroskedasticity ((G)ARCH) models [7]. These models
relax the assumption that the variance of the error term has to be constant over
time, and rather model this variance as a function of the previous error term.
For AR-models, this leads to the use of ARCH-models, while for ARMA models
GARCH-models are used as follows. An ARCH(q) model captures the change in
variance by allowing it to gradually increase over time or to allow for short bursts
of increased variance. A GARCH(p,q) model combines both the past values of
observations and the past values of variance. (G)ARCH models often outperform
ARIMA models in contexts such as the forecast of financial indicators, in which
the variance often changes over time [7].

In general, we can regard linear SES models as a subset of ARIMA mod-
els, where (G)ARCH models are specializations of ARIMA models that can be
regarded as increasingly complex and better capable of modelling particular
intricacies in the time series. However, the success of different models for fore-
casting purposes does not depend on their complexity, and the most suitable
technique is mainly determined by performance on training and test sets.

3.3 Process Change Exploration

In Sects. 3.1 and 3.2 we described the approach for forecasting process models.
To that end, gaining actual insights from such forecasted values remains a dif-
ficult task for the analyst. This section sets off to present the design of a novel
visualisation system to aid analysts in the exploration of the event logs and their
corresponding (forecasted) discovered process models.

Following the user tasks T1 and T2 from Sect.2, we designed a Process
Change Exploration (PCE) system to support the interpretation of the process
model forecasts. PCE is an interactive visualisation system that consists of three
connected views.

Adaptation Directly-Follows Graph (aDFG) View. This is the main view
of the visualisation that will show the model of the process. In order to accom-
plish task T1, we modify the DFG syntax. To display the process model adapta-
tion from time range T;, — T}, %0 < jo, to T, — T}, , 41 < j1, we display the union
of the process models of these regions, annotating the nodes and edges with the
numbers of both ranges. We colour the aDFG as follows: we use colour satu-
ration to show the nodes with higher values. We colour edges with a diverging
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saturation (red-black-green) schema. This colouring applies red colour to edges
that are dominant in the T;, — T}, range, and green if edges are dominant in the
T;, — T}, range, otherwise the edge colour is close to black. For coloring edges,
we reused the idea of the three colour schema from [12].

Timeline View with Brushed Regions. This view represents the area chart
graph that shows how the number of activity executions changes with time.
The colour of the area chart is split into two parts, one for the actual data and
the other to show the time range of forecasted values. Analysts can brush one
region in order to zoom in, creating one region of interest T, — T},,%0 < Jo
that is displayed on the DFG. Analysts can also brush two regions of the area
chart to select two time ranges, updating the DFG to the aDFG representation.
The brushed regions are coloured accordingly to the schema for colouring aDFG
transitions. The earlier brushed region is coloured in red, while the second one
is coloured green.

Activity and Path Sliders. We adopt two sliders to simplify the DFG [13]
and the aDFG for detailed exploration of the models.

Based on the described views, we conjecture that the analyst can accomplish
tasks T1 and T2 with ease.

4 Implementation and Evaluation

In this section, an experimental evaluation over six real-life event logs is reported.
The aim of the evaluation is to measure to what extent the forecasted DFG
process models are capable of correctly reproducing actual future DFGs in terms
of allowing for the same process model behaviour. To this end, we benchmark
the actual against the forecasted entropic relevance, as discussed in Sect. 2. This
is done for various parts of the log, i.e. forecasts for the middle time spans of
the event logs up to the later parts of the event log to capture the robustness
of the forecasting techniques in terms of the amount of data required to obtain
good results for both the equisized and equitemporal aggregation.

4.1 Re-sampling and Test Setup

To obtain training data, time series are constructed by specifying the number
of intervals (i.e., time steps in the DF time series) using either equitemporal or
equisized aggregation, as described in Sect. 3.1. Time series algorithms are para-
metric and sensitive to sample size requirements [8]. Depending on the number
of parameters a model uses, a minimum size of at least 50 steps is not uncom-
mon. However, typically, model performance should be monitored at a varying
number of steps. In the experimental evaluation, the event logs are divided into
100 time intervals with a varying share of training and test intervals. A constant
and long horizon h = 25 is used meaning all test sets contain 25 intervals, but
the training sets are varied from ts = 25 to ts = 75 intervals; the forecasts pro-
gressively target the forecast of intervals 25-50 (the second quarter of intervals)
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over to 75-100 (the last quarter of intervals). This allows us to inspect the dif-
ference in results when only a few data points are used, or data points in the
middle or towards the end of the available event data are used.

Resampling is applied based on 10-fold cross-validation constructed following
a rolling window approach for all horizon values h € [1,25] where a recursive
strategy is used to iteratively obtain fyipn7,,, , With (y1,...,y7, ..., Jt4n-1)
[30]. Ten training sets are hence constructed for each training set length ts and
range from (y1,...,yr—n—ys) and the test sets from (yr—p—f41,...,yr—s) with
f €10,9] the fold index [4]. While direct strategies with a separate model for
every value of h can be used as well and avoid the accumulation of error, they
do not take into account statistical dependencies for subsequent forecasts.

Six often-used, publicly available event logs are used: the BPI challenge of
2012 log, 2017, and 2018, the Sepsis cases event, an Italian help desk, and the
Road Traffic Fine Management Process log (RTFMP) event log. Each of these
logs has a diverse set of characteristics in terms of case and activity volume and
average trace length, as shown in Table 3.

Table 3. Overview of the characteristics of the event logs used in the evaluation.

Event log | # cases | # activities | Average trace length
BPI 12 13,087 | 36 20.02
BPI 17 31,509 | 26 36.83
BPI 18 43,809 | 170 57.39
Sepsis 1,050 | 16 14.49
RTFMP | 150,370 | 11 3.73
Italian 4,580 | 14 4.66

There are a few considerations concerning the DF time series in these event
logs. Firstly, DFs of activity pairs containing endpoint activities (i.e. at the
start/end of a trace) often only contain meaningful numbers at very particular
parts of the series and are hard to process by longitudinal algorithms which
require a more extended pattern to extract a meaningful pattern for forest-
ing. Secondly, the equitemporal aggregation can suffer from event logs in which
events do not occur frequently throughout the complete log’s timespan. For
instance, the Sepsis log’s number of event occurrences tails off towards the end
which can be alleviated by pre-processing (not done here to remain consistent
over the event logs). Finally, suppose the level of occurrences of the DF pairs
is low and close to zero. In that case, the series might be too unsuitable for
analysis using white noise series analysis techniques that assume stationarity.
Ideally, every time series should be evaluated using a stationarity test such as
the Dickey-Fuller unit root test [14], and an appropriate lag order established for
differencing to ensure a white noise process is used for training. Furthermore, for
each algorithm, especially for ARIMA-based models, (partial) auto-correlation
has to be established to obtain the ideal p and ¢ parameters. However, for the
sake of simplicity and to avoid solutions where each activity pair has to have
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different parameters, various values are used for p, d, and ¢ and applied to all
DF pairs where only the best-performing are reported below for comparison
with the other time series techniques. The results contain the best-performing
representative of each forecasting family.

4.2 Results

All pre-processing was done in Python with a combination of pm4py' and the
statsmodels package [24]. The code is publicly available.?

To get a grasp of the forecasting performance in combination with the actual
use of DFGs (which are rarely used in their non-aggregated form [2]) we present
the mean absolute percentage error (MAPE) between the entropic relevance of
the actual and forecasted DFGs at both full size, at 50%, and 75% reduction
which is node-based (i.e. only the Q2/Q3 percentile of nodes in terms of fre-
quency is retained). Hence, we obtain a measure of accuracy in terms of the
discrepancy of the actual and forecasted model behaviour. Using different levels
of aggregation also balances recall and precision, as aggregated DFGs are less
precise but possibly less overfitting. The results can be found in Tables4, 5 and
6. NAs are reported when the algorithms did not converge, no data was available
(e.g. Sepsis for the 75-100 equitemporal intervals), or extremely high values were
forecasted.

When no reduction is applied, Table4 shows that for the BPI12 and BPI17
logs, a below 10% error can be achieved, primarily for equisized aggregation. For
the Ttalian help desk log, results are in the 10-37% bracket, while for the other
logs, results are often well above a 100% deviation (with the entropic relevance
of the actual DFGs being lower, hence better, than the entropic relevance of the
forecasted DFGs). However, for the RTFMP and BPI18 log, results are better
when more training points are used (e.g., 50 or 75 to obtain forecasts for the
50-75 and 75-100 intervals). There is no significant difference between equisized
and equitemporal aggregation except for the occasional outliers. Overall, the
percentage error is lower in Table 5 when a reduction of 50% is applied with sub-
10% results for the BPI12, Sepsis, and BPI17 logs. The results for the RTFMP
log are occasionally better but mostly worse, similar to BPI18. Finally, the results
in Table 6 show a further reduction of errors for the BPI12, Sepsis, BPI17, and
Ttalian logs and a drastic decrease to close to 0% for RTFMP. The results for
the BPI18 log remain bad at over 100% error rates.

These results are commensurate with the findings in [21], which contains
entropic relevance results for the BPI12, Sepsis, and RTFMP logs, indicating
that entropic relevance of larger DFGs is lower (better) for RTFMP /Sespsis, and
the entropic relevance goes up strongly for small models of RTFMP meaning the
drastically improved error rates reported here are for models performing worse in
terms of recall and precision. The entropic relevance for the BPI12 log is stable
for the full spectrum of DFG sizes as per [21], which is reflected in the consistently

! https://pm4py.fit.fraunhofer.de.
2 https://github.com/JohannesDeSmedt/pmf.
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good error rates presented here. This means that the low error rates reported are
produced by the reduced DFGs, which still score strongly in terms of recall and
precision. Matching all results to the event log characteristics, we notice that the
event logs with longer traces with medium-sized alphabets (>20) such as BPI12
and BPI17 consistently report good results. The BPI18 log’s high number of
activities seems to inflate error rates quickly, which is further aggravated when
DFGs are reduced. Given that DFGs are based on activity pairs, this result is not
surprising. For Sepsis and the Italian event logs, good error rates are obtained
once DFGs are reduced, indicating that forecasting the low-frequent edges and
activities might lead to high error rates when the alphabet is smaller and traces
are shorter, which is potentially also caused by the lack of precision as witnessed
with the RTFMP log.

Overall, there exist many scenarios in which process model forecasting is
delivering solid results. For the BPI12, BPI17, Italian, and Sepsis event logs, sub-
10% error rates can be achieved both for equisized and equitemporal aggregation
combined with model reductions which readers of DFGs typically apply. In some
cases, even a naive forecast is enough to obtain a low error rate. However, the
AR and ARIMA models report the best error rates in most cases. Nevertheless,
results are often close except when fewer training points are used. Then, results
are often varying widely. In future work, the robustness of the forecast algorithms
will be further investigated, e.g., via scrutinising the confidence intervals of the
forecasted DF outcomes.

Table 4. Overview of the mean percentage error in terms of entropic relevance for the
full DFGs.

BPI 12 Sepsis RTFMP BPI17 Italian BPI18
50 75 100 50 75 100 50 75 100 50 75 100 50 75 100 50 75 100
Equisize | nav 9.74 |856 |9.82 |97.09 |97.40 100.76 |437.14 |105.81|115.34 |6.86 |8.80 7.00 |25.93 |16.52 |37.71 | 82.10 |99.90 |38.41
arima212 [12.41 |9.75 [10.80 | NA 83.31 |100.58 | 398.66 | NA NA 10.03 |8.54 [13.23 |24.60 |9.17 |39.01 |82.81 |NA 30.12
ar2 NA 8.45 | 9.62 |97.04|97.40 100.76 | NA NA 110.14 |6.83 |14.84 |13.83 |23.81 |13.98 |36.89 | 78.82 | NA NA
hw 8.61 [8.96 |10.14 |97.09 | 97.40 100.76 |402.83 |110.17 |130.10 |6.81 |8.68 186.94 | 22.54 | 9.14 | 43.31 |81.04 |NA NA
garch 11.47 |8.60 |10.17 |97.09 |97.40 |100.76 |426.71 |109.79 |117.15 |6.89 |8.82 |186.94|25.48 |31.29 |65.54 |72.89 |[NA |28.59
Equitemp | nav 15.57 [10.14|12.63 |98.51 |100.75 | NA 199.69 |29.70 [36.15 |7.12 |8.63 |13.41 |27.12 [26.86 |39.94 |[NA |NA |54.57
arima212 | NA 11.67 | 12.00 | 89.07 | 100.39 | NA 122.63 | 28.55 |33.82 |8.13 |158.70|18.74 |26.59 |24.26 |38.03 | NA 42.83 | NA
ar2 NA 9.97 |12.43 |98.37 |100.75 |NA NA 29.74 | NA 7.09 |NA 19.60 |26.33|30.02 |38.68 NA NA NA
hw 13.09 |10.46 | 12.08 |98.40 | 100.75 | NA 162.94 [29.34 | 36.15 7.07 |8.35 |186.91|26.90 |23.57|36.20 NA 43.02 | NA
garch 17.80 [10.29|12.71 |95.75 |100.75 |NA 199.13 |30.44 | 36.00 7.37 |187.45|186.91|27.11 |45.58 |55.67 | NA 46.69 |42.97

Table 5. Overview of the mean percentage error in terms of entropic relevance for the
DFGs with a 50% reduction.

BPI 12 Sepsis RTFMP BpPI17 Italian BPI18
50 75 100 |50 |75 100 | 50 75 100 50 |75 100 |50 75 100 |50 75 100
Equisize | nav 4.65 | 5.83 | 11.50|8.35 8.80 |6.29 |234.18 |295.99 |203.68 |7.82 |9.22 |11.04 |23.05 |14.18 |21.66 |252.76 |231.44 160.66
arima212 | 7.96 |22.89|13.43 |8.55 |8.81 |6.14|234.14 |288.27 |198.86 |4.49 |5.98 |10.67 |22.31 |7.32 |23.17 |369.47 |252.24 |218.93
ar2 24.53|27.58 | 30.81 |8.54 |8.72 |6.30 |234.57 [293.10 |201.21 |4.27|6.08 | 10.22|21.26 |11.91 |20.56 [ NA 230.02 | NA
hw 45.80|38.02|13.13 |8.73 |8.65 |6.17 |233.05 |151.19 |111.89|4.51 |5.37|11.06 |20.33|7.28 |26.12 |391.38 |280.59 |226.27
garch 26.30|23.77 | 48.86 |8.63 |8.87 |7.06 | 231.70|295.93 |203.45 |4.50 |9.41 |11.09 |23.18 |29.07 |45.31 |315.99 |234.79 |217.62
Equitemp | nav 7.15 |6.86 [17.86 |6.41 |7.73 |[NA |75.48 |36.18 |86.46 |593 |7.23 |30.98 |24.35 18.64 |26.48 |NA 219.13 | 410.13
arima212 | 49.87 | 10.59 [ 19.59 |4.91|8.13 |NA |135.97 |40.22 |86.74 |5.64|5.13|30.30|23.48 16.32 |20.45|205.21|261.81 |253.38
ar2 21.06|7.49 |18.85 |7.17 |8.08 |NA |95.44 |36.30 |86.60 |5.70 |[NA [30.97 |23.67 |21.71 |25.44 |NA NA 443.76
hw 741 |7.02 |17.54|6.72 |10.34 | NA |77.93 |36.62 |[86.76 |5.95 |7.39 |30.86 |23.55 |15.6622.91 |NA 236.37 | 439.04
garch 57.44132.8537.98 |6.76 |7.85 |NA |75.48 |36.20 86.52 5.93 |7.33 | 31.12 |24.24 |36.51 |40.40 |NA 283.40 |492.85
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4.3 Visualising Process Model Forecasts

In Sect. 4.2, we evaluated forecasting results, ensuring the conformance and inter-
pretability of the predicted process models. To that end, gaining insights from
such predicted data remains a difficult task for the analyst. This section sets
off to present a novel visualisation system to aid analysts in exploring the event
logs. The process of designing and implementing the system started by design-
ing several prototypes that undergone rounds of discussions to mature into the
implemented visualisation system.

Table 6. Overview of the mean percentage error in terms of entropic relevance for the
DFGs with a 75% reduction.

BPI 12 Sepsis RTFMP BPI17 Ttalian BPT18
50 75 100 |50 75 100 |50 |75 |100 |50 75 100 |50 5 100 50 75 100
Equisize | nav 0.96 {0.87 | 1.37 |2.40 | 2.91 |3.47/0.00 0.00 0.01|0.12 |0.29|0.14 |13.11 |15.11 |27.02 | 247.32|223.34 |146.27
arima212 |0.98 | 0.84 | 1.33|2.38|2.85 |3.65 | 0.00|0.00|0.01/0.06|0.30 |0.16 |13.08 |14.94 |26.97 |346.94 |236.73 |211.17
ar2 0.860.85 |1.35 |2.42 |2.58 | 3.47|0.00 0.00|0.01/0.12 | 0.30 |0.14 | 13.10 | 15.02 |26.97 | NA 222.06 | NA
hw 1.00 |0.85 |1.35 |2.73 |2.90 |3.47|0.00|0.00|0.01|0.11 |0.31 |0.15 |12.98|14.79 |27.08 |333.80 | 255.83 |207.86
garch 0.89 {0.86 | 1.35 | 2.51 |2.49|3.47|0.000.00|0.01|0.12 |0.29 |0.14 |13.13 |15.00 |26.89|299.59 |248.75 |182.07
Equitemp | nav 4.92 |3.55 |4.05 |2.31|1.65 NA |0.03/0.02/0.11|/0.05 0.11 (592 818 |30.10 |20.61 |NA 203.92 | 562.09
arima2124.93 |3.59 |3.86 [2.77 | 2.62 |[NA |0.030.02{0.11|0.11 | 0.14 |5.828.39 |30.20 |20.54 |180.36 245.18 |191.25
ar2 4.85 |3.52/4.04 |2.35 [2.93 |[NA |0.03/0.02/0.11/0.06 NA |591 819 |30.17 [20.58 |NA NA 559.14
hw 4.823.52|3.84 |2.47 | 1.67 |[NA |0.03/0.02/0.11|0.06 | 0.13 |5.85 |8.45 |20.00|15.90 NA 228.78 |384.37
garch 7.97 |3.54 [4.02 |2.34 [2.92 |[NA |0.03|0.02/0.110.05|0.12 |5.93 |8.17 |30.03 |20.52 NA 226.58 | 606.03

The design of the PCE system is shown in Fig.2. It offers an interactive
visualisation system with several connected views. The system is implemented
using the D3.js JavaScript library and is available as an open-source project.
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Fig. 2. Process Change Exploration (PCE) system. (a) shows Adaptation Directly-
Follows Graph (aDFG) view. (b) shows the Timeline view with brushed regions view.
Users can brush one or more regions on this graph in order to filter the scope of the
analysis (.1, and b.2). Two additional controls in (¢) show the activity and path sliders.
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5 Conclusion

In this paper, we presented the first genuine approach to forecast a process model
as a whole. To this end, we developed a technique based on time series analysis
of DF relations to forecast entire DFGs from historical event data. In this way,
we are able to make promising forecasts regarding the future development of
the process, including whether process drifts or major changes might occur in
particular parts of the process. The presented forecasting approach is supported
by the Process Change Exploration system, which allows analysts to compare
various parts of the past, present, and forecasted future behaviour of the process.
Our empirical evaluation demonstrates that, most notably for reduced process
models with medium-sized alphabets, we can obtain below 15% MAPE in terms
of conformance to the true models.

In future research, we plan to evaluate the use of machine learning techniques
for process model forecasting. More specifically, we aim at using recurrent neural
networks or their extension in long short-term memory networks (LSTMs) and
transformer-based architectures, as well as hybrid methods or ensemble fore-
casts with the traditional time series approaches presented here. Furthermore,
we want to explore opportunities for enriching our forecasted process models
with confidence intervals by calculating the entropic relevance at different confi-
dence levels and reporting the confidence intervals in the PCE system. Finally,
we will conduct design studies with process analysts to evaluate the usability of
different visualisation techniques.
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