
Model-Based Knowledge Searching

Maxim Bragilovski(B) , Yifat Makias, Moran Shamshila, Roni Stern ,
and Arnon Sturm

Ben-Gurion University of the Negev, Beer Sheva, Israel
{maximbr,makias,moranshi}@post.bgu.ac.il, {sternron,sturm}@bgu.ac.il

Abstract. As knowledge increases tremendously each and every day,
there is a need for means to manage and organize it, so as to utilize it
when needed. For example, for finding solutions to technical/engineering
problems. An alternative for achieving this goal is through knowledge
mapping that aims at indexing the knowledge. Nevertheless, searching
for knowledge in such maps is still a challenge. In this paper, we propose
an algorithm for knowledge searching over maps created by ME-MAP, a
mapping approach we developed. The algorithm is a greedy one that aims
at maximizing the similarity between a query and existing knowledge
encapsulated in ME-maps. We evaluate the efficiency of the algorithm
in comparison to an expert judgment. The evaluation indicates that the
algorithm achieved high performance within a bounded time. Though
additional examination is required, the sought algorithm can be easily
adapted to other modeling languages for searching models.

Keywords: Conceptual modeling · Matching · Searching

1 Introduction

Knowledge, especially in technology and engineering domains, is developing at
a tremendous pace [5]. In such domains, we are especially concerned with know-
how, the kind of knowledge that guides action towards practical objectives, pre-
scribing solutions to technical problems, and evaluating alternative solutions
[4,15]. Know-how management can provide various benefits such as: domain
review, trade-off analysis, and support for decision making. While there is almost
instant access to published know-how online, to the best of our knowledge, there
has been little advance in how a body of know-how is organized for easier access,
in particular, for searching the knowledge. Nowadays, searching for knowledge
is mostly done textually using search engines. Yet, the outcomes of such search
results are of limited accuracy, that is, many non-relevant answers are being
retrieved leading to low efficiency of the search. To address this limitation, we
suggest taking advantage of the underlying structure of the knowledge under
examination. In the case of know-how, the underlying structure resembles the
means-end relationship. For that purpose, we devised a knowledge scheme called
ME-MAP [17] that uses the means-end relationship to map out know-how. Using

c© Springer Nature Switzerland AG 2021
A. Ghose et al. (Eds.): ER 2021, LNCS 13011, pp. 242–256, 2021.
https://doi.org/10.1007/978-3-030-89022-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89022-3_20&domain=pdf
http://orcid.org/0000-0002-4778-7897
http://orcid.org/0000-0003-0043-8179
http://orcid.org/0000-0002-4021-7752
https://doi.org/10.1007/978-3-030-89022-3_20

Model-Based Knowledge Searching 243

that scheme, we are structuring and organizing the knowledge and are able to
query it more precisely. The population of the scheme can be regarded as a graph
that can now be searched using various techniques. In this paper, we adapt an
algorithm for searching ME-maps and explore its effectiveness [2]. We also eval-
uated the performance of the algorithm by various information retrieval metrics
and found the result promising.

The paper is structured as follows. Section 2 provides a background of the
ME-MAP approach. Section 3 refers to search problems in graphs. Section 4
introduces the sought algorithm and Sect. 5 presents its evaluation. Finally,
Sect. 6 concludes and sets plans for future research.

2 ME-MAP in a Nutshell

The ME-MAP approach draws its core concepts from the goal-oriented require-
ment engineering (GORE) paradigm [20]. It further leverages on concept maps
[11] and specializes its nodes and link types. A main objective of the ME-MAP
is to take advantage of the inherent means-ends relationship that characterizes
know-how, where the identification of problems and development of feasible solu-
tions is a key concern. The approach aims at presenting problems identified in
a domain, properties of problems that are particularly relevant in the domain,
and offer a systematic review of proposed solutions. In the following, we briefly
introduce the ME-MAP language elements.

Fig. 1. A partial ME-MAP of the Sentiment Analysis domain

– A Task is a key element in the means-ends hierarchy. A Task can be inter-
preted either as a problem or as a solution depending on its location within the
hierarchy. Tasks are graphically depicted as rectangular shapes. In Fig. 1, the
task Execute Classification Algorithm is a problem that should be addressed,

244 M. Bragilovski et al.

whereas the task Use Annotated Data Algorithm is one alternative solution
for that problem. When referring to the latter it is now a problem to be
addressed. One alternative solution is the Use Topic-Based Features. Tasks
are usually named as an action (verbal sentence), other alternatives exist such
as placing a known technique (i.e., noun) with its name, implying the usage
of the technique.

– A Quality expresses an attribute or a property that is desired for a task.
In the ME-MAP a quality is depicted as an ellipse. For example, in Fig. 1,
Performance and Effectiveness are qualities, which further characterize how
a solution that supports the Execute Classification Algorithm task should be
designed. A quality is therefore associated with a task. A quality can also be
linked to another quality independently of a task.

Link elements connect tasks and qualities. In the following we elaborate on the
link types included in ME-MAP:

– The achieved by link (a line arrow labeled by “achieved by”) represents the
means-ends relationship. The arrow points from the “end” to the “means”.
For example, in Fig. 1, Use Topic-based Feature is a means to accomplish Use
Annotated Data Algorithm. The link indicates an alternative for achieving an
end.

– The consists of link (a line arrow labeled by “consists of”) indicates that a
task has several sub-parts, all of which should be accomplished for the parent
task to be accomplished. Note that this link does not refer to the ordering or
dependencies of performing the task. For example, in Fig. 1, in order to use
Opinion Polarity Classification, there is a need for both Determine Classifi-
cation Level and to Execute Classification Algorithm.

– The association link (an unlabeled and non-directional link) indicates the
desirable qualities for a given task.

– The contribution link (a curved arrow labeled with a contribution level)
indicates a contribution towards a quality. Contributions can originate from
a task or a quality and are always directed to a quality. The contribution
ranges from strong negative (−−) to strong positive (++). For example, in
Fig. 1, Use Part of Speech positively contributes to the Effectiveness quality.

For further explanations on the ME-MAP we refer the reader to [17].

3 Related Work

One of the challenges in searching knowledge refers to how to store the mined
knowledge. Different studies suggest various structural databases that store
knowledge from natural language text that might be ambiguous, contextual,
and implicit [3]. In our research we use knowledge graph structure, yet, the
structure also refers to the actual knowledge semantics. As we explicitly refer to
know-how, we use the means-ends notion to store the knowledge [17].

Query knowledge graphs can be classified into four main categories: (1) graph-
based query [18], (2) keyword-based query [6], (3) natural-language-based query

Model-Based Knowledge Searching 245

[7,23], and (4) path query language queries [13]. Most of these methods (2–4)
transform the query to graph and then perform graph searching [18]. Searching
the graph is based on checking the alignment between the query and the graph
based on the node similarity and structure similarity.

Three different main path query languages described in [1] that are SPARQL,
Cypher, and Gremlin for querying a graph. SPARQL standard structural query
language to access Resource Description Framework (RDF) data and Cypher a
declarative language for querying property graphs are based on SQL language
while Gremlin, a query language of the Apache TinkerPop3 graph Framework,
is more similar to functional language. These query languages are based on the
assumption that users have prior knowledge about the graph that they search
in. However, it is impractical for users to write statements in these languages
due to the complexity of syntax and the lack of prior knowledge [6]. In contrast
to these languages, keywords search [6] and natural language questions provide
users with an interface for querying RDF data. However, they are still facing
problems. Keyword-based search lack due to the ambiguity presented either by
the keywords or their orders. Natural languages based search lacks due to the
challenge of transforming these into formal queries (which is an NP-hard prob-
lem) [23].

The similarity flooding algorithm [9] also helps to find pairs of elements that
are similar in two data schemes or two data instances. Yet, in this work we are
interested in paths considering also the labels of the vertices and edges.

Similar to our work, Wang et al. [18] present an algorithm that finds sub-
graphs in knowledge graphs given a query graph. They divided the task into
several phases: knowledge graph embedding, semantic graph generation, and A*
semantic search that is based on a defined path semantic similarity. They further
attempt to optimize response time. They experiment with the effectiveness and
efficiency and got a recall of 0.69 and the answering time took 136.81 ms for top
200 answers in DPpedia1. In our work, the proposed algorithm is inspired by
their semantic search algorithm. What differentiates it, is our use of a semantic
search that also includes graph semantics in addition to using words semantics,
and that we adopted the greedy approach.

4 The Search Algorithm

The problem we are aiming to address is the search within ME-maps. For that
purpose, we devised a Greedy Search in Means-End Maps (GSME) algorithm
that addresses the concerns of complexity and semantics. GSME adopts the
similarity considerations appears in [14] and refers to label matching (exact
match among labels), structure matching (in terms of links), semantic matching
(in terms of labels semantic similarity and links’ semantics, e.g., synonyms and
related concepts), and type matching. In the following, we first set the ground
for the algorithm and then elaborate on its design and execution.

1 https://wiki.dbpedia.org/.

https://wiki.dbpedia.org/

246 M. Bragilovski et al.

Definition 1. A ME-MAP is a graph (G) consists of vertices (V) and edges
(E). G = (V, E).

V = Task ∪ Quality,
E = AchievedBy ∪ ConsistsOf ∪ Association ∪ Contribution

Definition 2. simw refers to the similarity of two words. This can be calculated
using for example WordNet [10], or Sematch [22].

Definition 3. siml refers to the similarity of two vertices labels. We suggest
achieving this task by two alternatives:

1. Using words similarity:

siml(list1, list2) =
Σw1εlist1(arg maxw2εlist2

(simw(w1,w2)))
arg max(length(list1), length(list2))

(1)

Where the lists order the words from the vertex’s label.
2. Using sentence similarity: We transform the labels into vectors and measure

the similarity using sbert2.

Definition 4. simt refers to a predefined similarity among vertex types. In the
case of the ME-MAP, based on our exploration we set simt(Task, Quality) =
0.5.

Definition 5. simv refers to the similarity of two vertices.

simv(v1, v2) =
siml(v1, v2) + simt(v1, v2)

2
(2)

siml can be either defined by Definition 3(1) or by Definition 3(2).

Definition 6. sime refers to a predefined similarity among edge types. Table 1
presents the similarity among ME-MAP edges. These similarities were deter-
mined by ME-MAP experts and represent the semantic similarity between types
of edges.

Table 1. Edge similarity

Achieved by Consists of Association Contribution

Achieved by 1 0.5 0.25 0.25

Consists of 0.5 1 0.25 0.25

Association 0.25 0.25 1 0.25

Contribution 0.25 0.25 0.25 1

Definition 7. Node-edge similarity is calculated as follow:

simne(v1, e1, v2, e2) =
2 ∗ simv(v1, v2) + sime(e1, e2)

3
(3)

2 https://www.sbert.net/.

https://www.sbert.net/

Model-Based Knowledge Searching 247

This definition captures the similarity of a vertex along with its incoming edge.
We considered the vertex similarity of double importance as it is used as the
basis for the similarity.

Definition 8. A query Q is represented as a ME-map. Single path query has
a single path of vertices and edges (see Fig. 2a). Multi paths query has multiple
paths (see Fig. 2b).

Fig. 2. Multi paths and Single path queries

Definition 9. To answer a query, we actually compare the similarity of the
paths of the query with those of the map. The following formula is used for that
purpose (NodeEdgeSim is a set of simne).

Path Sim
(
G1, G2, NodeEdgeSim

)
=

simv

(
vG1

1 , vG2

1

)
+

|NodeEdgeSim|∑

i=1

NodeEdgeSimi

This formula actually sums all the node-edge similarities between paths and
therefore we used it as an estimator for path similarity measurement.

In the following, we elaborate the algorithm for single path queries. We differ-
entiate between two types of node similarity. The first relies solely on the node
information, we call this Node-based similarity. The second also refers to the
edge connecting the node from the previous one, we call this node-edge based
similarity.

– The function of Node-based similarity returns the most similar node in
the ME-map to a node within the query as calculated by Definition 5.
Input: G = (V,E), query node, similarity function. The similarity function is
the one appears in Definition 3.
Output: a node from G.

– The function of Node-edge based similarity is responsible for retrieving
up to K most similar neighbors’ nodes that exceed a predefined threshold as
determined by Definition 7. If there is no single node that its similarity exceeds
the threshold, the function returns all the neighbor’s nodes with similarity of
the threshold.
Input: G, query node, parent node, similarity function, threshold, K
Output: node list and their similarities from G.

248 M. Bragilovski et al.

Algorithm 1. GSME
Input similarNodes, knowledgeGraph, queryGraph, K, threshold,
queryID, isV isited
Output Set of sub graphs with their similarities

1: results ← {θ}
2: if similarNodes ≡ {θ} || vqueryID /∈ VqueryGraph then
3: return results
4: end if
5: for node in similarNodes do
6: if node ∈ isV isited then
7: continue
8: end if
9: isV isited ← isV isited ∪ node

10: similarNodes ← Node − edge based function(
knowledgeGraph, queryGraph[queryID], node, K, threshold)

11: if similarNodes ≡ {θ} || arg maxsim∈similarNodes(sim) ≤ threshold then

results
′ ← GSME(

similarNodes, knowledgeGraph, queryGraph, K, th, queryID, isV isite)
12: else
13: results

′ ← GSME(similarNodes, knowledgeGraph, queryGraph, K,
threshold, queryID + +, isV isite)

14: end if
15: results ← results

′ ∪ results
16: end for
17: return results

To start the execution of the GSME, the number of nodes (K) the algorithm
handles in each round (that refers to the next step of the query) and the threshold
for the similarity need to be determined. The algorithm uses the Node-edge based
similarity function to find the appropriate list of nodes for its execution in each
iteration. We also have to determine the knowledge graph(s) in which the search
should take place and similarNodes where the search should start (this task can
be achieved by the Node-based similarity function). For the query, we have the
queryGraph that needs to be found in the (set of) knowledgeGraph. Additional
required parameters include the queryID that refers to the id of the node in
a queryGraph and is initialized with ‘−1’ that represents the first node of the
query where we want to start the search from. isV isited is a list that contains
all the nodes that GSME already iterates over in the knowledgeGraph to allow
GSME to handle graphs with cycles. The output of the algorithm is a set of sub-
graphs from the knowledgeGraph that are the most similar to the queryGraph.
The algorithm is described in Algorithm 1.

The GSME algorithm steps are as following: (line 1) Initialize results with an
empty set; (lines 2–4) Stop GSME if there are no nodes in the similarNodes or
there are no nodes with a given ID in the queryGraph; (lines 6–8) skip already
visited nodes; (line 9) For each node in similarNodes we add it to isV isited
list; (line 10) Get up to K most similarNodes by the Next-edge based function

Model-Based Knowledge Searching 249

described above; (lines 11–12) If there are no nodes in similarNodes or the sim-
ilarity of the nodes in the similarNodes is below the threshold the algorithm
will run recursively for the selected similarNodes and queryID, without mov-
ing on the next node; (lines 12–14) If there are nodes in similarNodes and the
similarity of the nodes in the similarNodes are above the threshold - the algo-
rithm will run recursively for the selected similarNodes (up to K nodes) and
queryID, each time moving on to the next node – in other words, in order to
allow the return of results that are transitive, the node in the query is promoted
only when the similarity obtained for the node is higher than the threshold;
(line 15) Merge the results that the algorithm retrieved with the results within
the function arguments. The algorithm continues until it passes all the nodes
and edges of the query. At the end of the algorithm, sub-graphs from the ME-
maps that answer the query will be obtained. The sub-graphs will be sorted by
their similarity ranking, as determined by Definition 9 and normalized by the
length. The ranking is a weighing of the similarity of the edges and nodes and
is represented by a number 0-1.

Fig. 3. GSME execution example

In the following, we demonstrate the execution of GSME over the ME-
map shown in Fig. 3 whereas the expected output is marked in green with the
requested query shown in Fig. 2a. We set the threshold to 0.65 and the number
of lookup nodes (K) to 2. These parameters were determined based on a pre-
execution evaluation. We also did a sensitivity analysis on the threshold (‘th’)
and found that the value of 0.65 leads to the most accurate results.

1. In the first stage, the Node-based similarity function is executed. The follow-
ing results demonstrate the output for the node “View Source Code” in the
query graph:

For the query node: ’View Source Code’
[-1]: sim(’How to View Source Code’,’View Source Code’) = 0.526
[-3]: sim(’Open your web browser.’,’View Source Code’) = 0.513

(For all other nodes in the graph, the similarity was below 0.513)
2. Following the highest similarity of 0.526, GSME starts from the node ‘How

to View Source Code’ (id: ‘−1’). In this stage, the algorithm keeps trying to

250 M. Bragilovski et al.

find the K (K = 2 in our case) most similar adjacent nodes to the selected
node in the knowledge graph to the next node of the query graph, that is,
‘web browser’. The results were the following:

For the query node: [’web browser’]
[-2]: sim(’Chrome, Firefox, Edge, and Internet Explorer’,
’web browser’) = 0.512
[-7]: sim(’Safari’,’web browser’) = 0.513
[-14]: sim(’On Wikis’,’web browser’) = 0.511
The most similar node is: [(0.6, -2), (0.6, -7), (0.6, -14)]

3. Since all the nodes simne value (Definition 7) is below the threshold, all the
nodes advance recursively to the next step without advancing to the next
query node. We will only demonstrate the iteration over the node with id
‘−2’ in this step, and the iteration over node ‘−14’ in step number 4(b),
despite the fact that the algorithm does a similar iteration also over the node
with id ‘−7’.

For the query node: [’web browser’]
[-3]: sim(’Open your web browser’,’web browser’) = 0.682
[-4]: sim(’Navigate to a webpage.’,’web browser’) = 0.678
(other neighbors nodes below the 0.678 similarity)
The most similar nodes are: [(0.682, -3), (0.678, -4)]

4. The GSME algorithm terminates only when one of the following scenarios
occur:
(a) GSME finishes iterating over the nodes in the queryGraph therefore,

GSME finds at least one sub-graph among all the potential sub-graphs
like in step 3.

(b) There are no more nodes to iterate in the knowledgeGraph. For example,
in one of the steps of the GSME, it reaches node ‘−14’:
For the query node: [’web browser’]
The neighbors of vertex: -14 are: []
The most similar node is: []

therefore, all the sub-graphs that end with node ’-14’ are irrelevant
answers.

5. Finally, the results paths are calculated for their similarity based on Defini-
tion 9 and are sorted accordingly.

1 : (path: ’-1,-2,-3’, Path-Sim: 0.603, map id: 4796)
2 : (path: ’-1,-7,-4’, Path-Sim: 0.601, map id: 4796)

Indeed, the first row in the results appears in Fig. 3. Its path similarity is calcu-
lated by Definition 9 as follow: 0.526+0.6+0.682

3 = 0.603.

Model-Based Knowledge Searching 251

5 Evaluation

To evaluate GSME, we conducted three experiments to check the algorithm
performance in various settings. This section will be focusing on the technical
aspects of GSME rather than the benefits of using GSME.

5.1 Settings

We considered several maps from the Human Know-How Dataset [12] for the
first experiment. For the second experiment, we considered three domains for
which we developed ME-maps: (1) a simple map referring to the search domain.
(2) a DPSL map that (partially) maps out [8]. (3) a Sentiment Analysis map
that (partially) maps out [19]. For the domains from the Human Know-How
Dataset, we performed transformations from their graph format to the ME-MAP
representation. These maps contain only tasks and two link types: ‘Achieved By’
and ‘Consists of’ unlike the maps in the second experiment that have all the types
of edges and vertices. The transformations rules were the following rules:

1. ‘MainTask’, ‘Steps’, ‘Methods’ and ‘Parts’ nodes were transformed to a ‘Task’
node.

2. The label of the nodes was set according to the name of the attribute of the
JSON object.

3. An edge from ‘MainTask’ to ‘Methods’ is labeled with ‘Achieved By’ label.
4. All the other edges were labeled with ‘Consists of’ label.

The purpose of the first experiment was to examine the algorithm’s ability to
handle maps with long labels and to check its accuracy, in terms of finding the
relevant map. The goal of the second experiment is to examine how well GSME
performs against maps that have short labels, especially in finding the relevant
sub-graphs. The third experiment was executed on a synthetic map to examine
GSME’s performance on a large map.

We set several queries for each experiment that were classified into three
categories of complexity. The complexity of the categories was determined based
on two parameters: (1) Length the number of vertices in the graph; and (2) N-
hop supporting hop edge in the map according to the expected result. In other
words, the difference between the length of the query graph and the expected
graph. That is, the number of skips on the graph edges required to get to the
desired result.

The categories were as following: (1) Simple the query length is less then 3
and n-hop equals to 0. (2) Medium the query length is more then 2 and n-hop
equals to 0. (3) Complex the query has more then 1 n-hop.

Examples of simple, medium, and complex queries are shown in Fig. 4. The
labels for each node of the queries are matched to the node labels in Fig. 3 to
simplify the demonstration of how the complexity parameters influence the dif-
ficulty level of each category. Figure 4a is a simple query because the expected
result is ′How to V iew Source Code′ → ′On Wikis′ therefore, N-hop = 0

252 M. Bragilovski et al.

and Length = 2. Figure 4b is a medium query because the expected output
is ′How to V iew Source Code′ → ′Safari′ → ′Open Safari′ and as a
result N-hop = 0 and Length = 3. Finally Fig. 4c is a complex query seeing
as ′How to V iew SourceCode′ → ′Safari′ → ′Open Safari′ results in N-hop
= 1.

Table 2. Graph statistics

Experiment Nodes Edges Number of

neighbors

Label length Number of queries Number

of maps

1 12.452(4.17) 11.452(4.17) 5.359(2.33) 6.169(2.37) 15 200

2 21.333(2.35) 37.333(11.26) 2.770(0.12) 2.355(0.68) 18 each map (56) 3

3 65,599 131,951 3.964 1 9 1

Fig. 4. Three complexity query levels

Table 2 shows the statistical information of the maps and queries in each
experiment. The numbers indicate the average and the standard deviation in
brackets. The experiment material and results can be found in3.

To evaluate the performance of the GMSE algorithm we used the following
metrics. (1) Exact and Domain Mean Reciprocal rank (MRR) indicates
whether the right path and map were retrieved, respectively; (2) Graph Simi-
larity (G-sim) measures the similarity between a query graph and a sub-graph
from the knowledge graph as defined in Definition 9. The G-sim takes into the
account the highest G-sim score of each query and ignores cases in which no
answer was found; (3) Recall@5 that determines whether the expected result
appears within the top five results in term of domain match; (4) The time it
took the algorithm to return a result;

We executed GSME with K = 2, threshold = 0.65, and with two different
label similarity (siml) functions. The first is Definition 3(1) and the second is
Definition 3(2). We also checked whether sime and simt contributed to improv-
ing the search results by running the algorithm using siml as the only semantic

3 https://tinyurl.com/y4ar8bhb.

https://tinyurl.com/y4ar8bhb

Model-Based Knowledge Searching 253

similarity (LSO) using both Definition 3(1) and Definition 3(2) and comparing
the results to a GSME that uses all similarity functions (siml, sime, simt) as
defined in Definition 9. We measured the execution time on an Intel® Core™ i-7
6700HQ CPU @ 2.600 GHz processor with 16 GM of RAM.

5.2 Results

Table 3 presents the results of the first two experiments. The complexity column
refers to the query complexity. The similarity column refers to the label simi-
larity function used in the experiment: word2vec is used for siml as defined in
Definition 3(1), sent2vec is used for siml as described in Definition 3(2), and LSO
as defined above. Next, the various metrics are presented. Each metric column
was split into two sub-columns. In the first experiment, it appears that using
sent2vec leads to better results in terms of E-MRR, D-MRR and Recall@5. In
the second experiment, it appears that the mean results achieved by executing
GSME on the three different maps using 18 queries using siml as defined in
Definition 3(1), led to more accurate results in terms of E-MRR.

With respect to performance, executing the queries on small maps takes a
fraction of a second. In the third experiment, in which we checked the perfor-
mance of GSME on large maps, we found out that the time it took to get the
response was on average 2.23 s with a standard deviation of 0.104 s. The mea-
sured runtime of GSME was achieved without the use of siml. The decision not
to use siml is due to the fact that the use of the said function increases the
runtime during the initialization of GSME due to a lack of indexing.

In addition, we checked which value of the threshold yields a better result
in certain groups of complexity. We found a positive correlation between the
complexity and threshold values.

Table 3. Experiments Results

Comp. Sim. E-MRR D-MRR Recall@5 Time G-sim

FE SE FE FE FE SE FE SE

Simp. word2vec 0.222 0.944(0.471) 0.49 0.6 12.39s(3.41) 0.047s(0.028) 0.803 0.897(0.012)

sen2vec 0.8 0.388(0.360) 0.802 0.8 0.430s(0.07) 0.005s(0.024) 0.6 0.664(0.153)

LSO 0.002 0.665(0.209) 0.602 0.6 0.003s(0.0) 0.064s(0.031) 0.561 0.913(0.043)

Med. word2vec 0.3 0.638(0.274) 0.47 0.6 8.049s(2.74) 0.041s(0.017) 0.732 0.861(0.076)

sen2vec 0.4 0.333(0.272) 0.801 0.8 0.450s(0.06) 0.021s(0.019) 0.6 0.446(0.377)

LSO 0.281 0.221(0.314) 0.610 0.4 0.394s(0.04) 0.055s(0.016) 0.57 0.935(0.068)

Complex word2vec 0.072 0.666(0.360) 0.487 0.6 9.74s(3.47) 0.064s(0.028) 0.6 0.8(0.103)

sen2vec 0.25 0.611(0.437) 0.850 1 0.401s(0.04) 0.064s(0.028) 0.601 0.412(0.352)

LSO 0.281 0.666(0.417) 0.803 0.4 0.369s(0.06) 0.059s(0.016) 0.575 0.792(0.072)

E-MRR = Exact-MRR;LSOse = LSO using sematch; FE = First experiment; SE = Second experiment;

Comp. = Complexity; Sim = Similarity; Simp. = Simple; Med. = Medium

5.3 Discussion

In this section, we discuss the results with respect to the parameters of GSME
and the input characteristics.

254 M. Bragilovski et al.

In the experiment, we set the number of neighbors (K) to 2. It might be
beneficial to increase K in correlation to the number of neighbors of each node.
This might increase the accuracy of the search and allow the exploration of
additional paths. On the other hand, it might increase the execution time.

The threshold parameter also affects the results by determining the relevant
nodes from which the algorithm moves forward. It’s possible that the threshold
should be determined based on the domain and the siml function. The semantic
of two nodes (siml) depends on two parameters: the similarity of two labels
(Definition 3(1) or Definition 3(2)) and the length of a node’s label in terms of
how many words the vertex contains. In the case of long labels, the similarity
that is defined in Definition 3(2) leads to better accuracy. For short labels, using
the similarity in Definition 3(1) achieves better results.

Recent path algorithms showed similar results in terms of recall, and in
the second experiment also in terms of time [18,21]. Still, there are differences
between recent works to ours. The results of [21] are dependent on the qual-
ity of prior knowledge while queries in our experiments are constructed by the
assumption that the user does not has this knowledge. [18] assumes that each
edge in the target path needs to be similar to at least one edge in the query
graph. We speculate that this assumption leads to better performances in terms
of time than ours in the third experiment. In addition, these path algorithms
are focused only on the similarity between paths rather than the similarity of
the path to the domain that the path comes from. This domain similarity is
expressed in our experiment by the D-MRR metric.

Alternatives path algorithms appear in [16]. These algorithms look for a
specific pattern in an unknown graph. Therefore they search for isomorphic
graph. In our problem, isomorphic graph may not be the optimal result for a
query graph because we also consider the semantic similarities of the labels.
Using such algorithms, for complex queries will not retrieve relevant result.

5.4 Threats to Validity

The initial evaluation we performed should be taken with caution and should
consider the following threats to validity:

– Small maps: The maps in the experiment are of limited size. Wang et al.
[18] used DBPedia, Freebase, Yago, and a synthetic set for experimental val-
idation. These knowledge graphs are more convincing but they are not based
on know-how mapping. We should explore the algorithm with much larger
know-how maps.

– Self-authoring: We as the authors of the paper, developed the queries and
the domain maps in the second experiment, so some biases might exist. Nev-
ertheless, our aim in this evaluation was to challenge the algorithm, so the
queries we devised accordingly.

– Simple queries: As the domain maps are small, so are the queries. There is
a need to incorporate more complex queries and multi-paths ones as well.

Model-Based Knowledge Searching 255

– Comparing to other works: Indeed, the results should be compared to
other alternatives. Yet, such alternatives need to be adjusted for searching
Know-How maps.

6 Summary

In this paper, we propose GSME, an algorithm for searching ME-maps. The
algorithm is a greedy one that takes into account structure, semantic, and type
similarity. The initial evaluation we performed shows promising results.

Nevertheless, we want to test how well the algorithm performs with other
domains and examine alternatives for calculating the similarity of the vertices
and edges. This includes the tuning of the algorithm’s parameters, either a-priory
or during its execution. We also plan to test the GSME performance with respect
to other adjusted alternatives (i.e., datasets and algorithms).

Acknowledgment. This research was partially supported by the Data Science
Research Center at Ben-Gurion University of the Negev (DSRC@BGU).

References

1. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations
of modern query languages for graph databases. ACM Comput. Surv. (CSUR)
50(5), 1–40 (2017)

2. Bragilovski, M., Makias, Y., Shamshila, M., Stern, R., Sturm, A.: Searching for
class models. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt,
R., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2021. LNBIP, vol. 421, pp. 277–292.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79186-5 18

3. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag.
31(3), 59–79 (2010)

4. Garud, R.: On the distinction between know-how, know-why, and know-what. Adv.
Strateg. Manag. 14, 81–101 (1997)

5. Greenstein, L.: Assessing 21st Century Skills: A Guide to Evaluating Mastery and
Authentic Learning. SAGE Publications, Thousand Oaks (2012)

6. Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF graphs-a query
graph assembly approach. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pp. 227–236 (2017)

7. Hu, S., Zou, L., Zhang, X.: A state-transition framework to answer complex ques-
tions over knowledge base. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2098–2108 (2018)

8. Khwaja, S., Alshayeb, M.: Survey on software design-pattern specification lan-
guages. ACM Comput. Surv. 49(1), 1–35 (2016)

9. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: Proceedings 18th
International Conference on Data Engineering, pp. 117–128. IEEE (2002)

10. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

https://doi.org/10.1007/978-3-030-79186-5_18

256 M. Bragilovski et al.

11. Novak, J., Cañas, A.: The theory underlying concept maps and how to construct
them (2006)

12. Pareti, E.H., Klein, P.: The human know-how dataset (2014). https://doi.org/10.
7488/ds/1394

13. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. (TODS) 34(3), 1–45 (2009)

14. Reinhartz-Berger, I.: Towards automatization of domain modeling. Data Knowl.
Eng. 69(5), 491–515 (2010)

15. Sarewitz, D., Nelson, R.R.: Progress in know-how: its origins and limits. Innov.
Technol. Gov. Global. 3(1), 101–117 (2008)

16. Stern, R., Kalech, M., Felner, A.: Finding patterns in an unknown graph. AI Com-
mun. 25(3), 229–256 (2012)

17. Sturm, A., Gross, D., Wang, J., Yu, E.: Means-ends based know-how mapping. J.
Knowl. Manag. 21, 454–473 (2017)

18. Wang, Y., Khan, A., Wu, T., Jin, J., Yan, H.: Semantic guided and response times
bounded top-k similarity search over knowledge graphs. In: 36th International Con-
ference on Data Engineering (ICDE), pp. 445–456. IEEE (2020)

19. Yadollahi, A., Shahraki, A.G., Zaiane, O.R.: Current state of text sentiment anal-
ysis from opinion to emotion mining. ACM Comput. Surv. 50(2), 1–33 (2017)

20. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. The MIT Press, Cambridge (2011)

21. Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., Zhao, D.: Semantic SPARQL
similarity search over RDF knowledge graphs. Proc. VLDB Endow. 9(11), 840–
851 (2016)

22. Zhu, G., Iglesias, C.A.: Sematch: semantic similarity framework for knowledge
graphs. Knowl.-Based Syst. 130, 30–32 (2017)

23. Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language
question answering over RDF: a graph data driven approach. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp 313–324
(2014)

https://doi.org/10.7488/ds/1394
https://doi.org/10.7488/ds/1394

	Model-Based Knowledge Searching
	1 Introduction
	2 ME-MAP in a Nutshell
	3 Related Work
	4 The Search Algorithm
	5 Evaluation
	5.1 Settings
	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity

	6 Summary
	References

