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Abstract. Process discovery aims to learn a process model from
observed process behavior. From a user’s perspective, most discovery
algorithms work like a black box. Besides parameter tuning, there is no
interaction between the user and the algorithm. Interactive process dis-
covery allows the user to exploit domain knowledge and to guide the dis-
covery process. Previously, an incremental discovery approach has been
introduced where a model, considered to be under “construction”, gets
incrementally extended by user-selected process behavior. This paper
introduces a novel approach that additionally allows the user to freeze
model parts within the model under construction. Frozen sub-models are
not altered by the incremental approach when new behavior is added to
the model. The user can thus steer the discovery algorithm. Our experi-
ments show that freezing sub-models can lead to higher quality models.

Keywords: Process mining · Process discovery · Hybrid intelligence

1 Introduction

Executing business processes generates valuable data in the information systems
of organizations. Process mining comprises techniques to analyze these event
data and aims to extract insights into the executed processes to improve them [1].
This paper focuses on process discovery, a key discipline within process mining.

Conventional process discovery algorithms use observed process behavior,
i.e., event data, as input and return a process model that describes the process,
as recorded by the event data. Since event data often have quality issues, process
discovery is challenging. Apart from modifying the input (event data), the algo-
rithm’s settings, or the output (discovered model), there is no user interaction.

To overcome this limitation, the field of interactive process discovery has
emerged. The central idea is to exploit the domain knowledge of process partic-
ipants within process discovery in addition to the standard input of event data.

An extended version is available online: https://arxiv.org/abs/2108.00215.
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Fig. 1. Overview of the proposed freezing option extending incremental process dis-
covery. A user incrementally selects traces from the event log and optionally freezes
sub-models that should not get altered in the model “under construction”

Several techniques have been proposed. However, most existing approaches only
attempt to use additional inputs besides the event data. Thus, a user still has
only limited options to interact with the algorithm during the actual discovery
phase, and the algorithm remains a black box from a user’s perspective.

In [11], we have introduced an incremental process discovery algorithm, allow-
ing a user to incrementally add process behavior to a model under construction.
This allows the user to control the algorithm by interactively deciding which pro-
cess behavior to add next. In this context, we propose in this paper a novel way to
interact with a discovery algorithm as a user. During the discovery phase, we allow
a user to freeze sub-models of the model under construction. By marking sub-
models as frozen, the incremental discovery approach does not alter these frozen
model parts during the incremental discovery. Figure 1 summarizes the proposed
approach that can be applied with any incremental discovery algorithm.

There are many use cases where freezing sub models during incremental pro-
cess discovery is beneficial. For instance, it enables a user to combine de jure and
de facto models [1]. De jure models describe how a process should be executed
(normative), and de facto models describe how a process was executed (descrip-
tive). A user might freeze a model part because, from the user’s perspective, the
sub-model to be frozen is already normative. Therefore, a user wants to pro-
tect this sub-model from being further altered while incrementally adding new
behavior to the model under construction. Thus, the proposed freezing approach
allows combining process discovery with modeling. Our conducted experiments
show that freezing sub-models can lead to higher quality models.

This paper is structured as follows. Section 2 presents related work while
Sect. 3 presents preliminaries. Section 4 presents the proposed freezing approach.
Section 5 presents an evaluation, and Sect. 6 concludes this paper.
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Table 1. Example of an event log from an e-commerce process

Case-ID Activity Timestamp · · ·
151 Place order (p) 10/03/21 12:00 · · ·
153 Cancel order (c) 10/03/21 12:24 · · ·
152 Place order (p) 11/03/21 09:11 · · ·
151 Payment received (r) 11/03/21 10:00 · · ·
· · · · · · · · · · · ·

2 Related Work

For an overview of process mining and conventional process discovery, we refer
to [1]. Hereinafter, we mainly focus on interactive process discovery.

In [7], the authors propose to incorporate precedence constraints over the
activities within process discovery. In [4], an approach is presented where an
already existing process model is post-processed s.t. user-defined constraints are
fulfilled. In [10], an approach is presented where domain knowledge in form of
an initial process model is given. Compared to our extended incremental process
discovery, all approaches remain a black-box from a user’s perspective since
they work in a fully automated fashion. In [5], an interactive Petri net modeling
approach is proposed in which the user is supported by an algorithm.

Related work can also be found in the area of process model repair [6]. How-
ever, the setting of model repair, which attempts to make the repaired model
as similar as possible to the original, differs from incremental process discovery.
In [2] an interactive and incremental repair approach is proposed.

3 Preliminaries

We denote the power set of a set X by P(X). We denote the universe of multi-
sets over a set X by B(X) and the set of all sequences over X as X∗, e.g.,
〈a, b, b〉 ∈ {a, b, c}∗. Given two sequences σ and σ′, we denote their concatenation
by σ·σ′, e.g., 〈a〉·〈b, c〉 = 〈a, b, c〉. We extend the · operator to sets of sequences,
i.e., let S1, S2 ⊆ X∗ then S1·S2 = {σ1·σ2 |σ1 ∈ S1 ∧ σ2 ∈ S2}. For sequences
σ, σ′, the set of all interleaved sequences is denoted by σ � σ′, e.g., 〈a, b〉�〈c〉 =
{〈a, b, c〉, 〈a, c, b〉, 〈c, a, b〉}. We extend the � operator to sets of sequences. Let
S1, S2 ⊆ X∗, S1 � S2 denotes the set of interleaved sequences, i.e., S1 � S2 =⋃

σ1∈S1,σ2∈S2
σ1 � σ2.

For σ ∈ X∗ and X ′ ⊆ X, we define the projection function σ↓X′ :X∗→(X ′)∗

with: 〈〉↓X′ = 〈〉,
(
〈x〉·σ

)
↓X′

= 〈x〉·σ↓X′ if x ∈ X ′ and (〈x〉·σ)↓X′ = σ↓X′ other-
wise.

Let t = (x1, . . . , xn) ∈ X1 × · · ·×Xn be an n-tuple over n sets. We define pro-
jection functions that extract a specific element of t, i.e., π1(t) = x1, . . . , πn(t) =
xn, e.g., π2 ((a, b, c)) = b.



Freezing Sub-models During Incremental Process Discovery 17

→
n0

�
n1.1

×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a

n2.4

T1=�T0 (n1.1) T2=�T0 (n1.2)

Fig. 2. Process tree T0 =
({no, . . . , n4.4},

{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, λ, n0

)
with

λ(n0) = →, . . . , λ(n4.4) = d

3.1 Event Data and Process Models

The data that are generated during the execution of (business) processes are
called event data [1]. Table 1 shows an example of an event log. Each row repre-
sents an event. Events with the same case-id belong to the same process execu-
tion often referred to as a case. The sequence of executed activities for a case is
referred to as a trace, e.g., the partial trace for case 151 is: 〈p, r, . . . 〉.

Process models allow us to specify the control flow of a process. In this paper,
we use process trees [1], e.g., see Fig. 2. Leaves represent activities and τ rep-
resents an unobservable activity, needed for certain control flow patterns. Inner
nodes represent operators that specify the control flow among their subtrees.
Four operators exist: sequence (→), excl. choice (×), parallel (∧), and loop (�).

Definition 1 (Process Tree Syntax). Let A be the universe of activities with
τ /∈ A. Let

⊕
= {→,×,∧,�} be the set of process tree operators. We define a

process tree T = (V,E, λ, r) consisting of a totally ordered set of nodes V , a set
of edges E ⊆ V × V , a labeling function λ: V →A ∪ {τ}∪

⊕
, and a root node

r ∈ V .

–
(
{n}, {}, λ, n

)
with λ(n) ∈ A ∪ {τ} is a process tree

– given k > 1 trees T1 = (V1, E1, λ1, r1), . . . , Tk = (Vk, Ek, λk, rk) with r /∈
V1 ∪ · · · ∪ Vk and ∀i, j ∈ {1, . . . , k}(i �= j ⇒ Vi ∩ Vj = ∅) then T = (V,E, λ, r)
is a tree s.t.:

• V = V1 ∪ · · · ∪ Vk ∪ {r}
• E = E1 ∪ · · · ∪ Ek ∪

{
(r, r1), . . . , (r, rk)

}

• λ(x) = λj(x) for all j ∈ {1, . . . , k}, x ∈ Vj

• λ(r) ∈
⊕

and λ(r) = � ⇒ k = 2

We denote the universe of process trees by T .

Note that every operator (inner node) has at least two children except for the
loop operator which always has exactly two children. Next to the graphical rep-
resentation, any process tree can be textually represented because of its totally
ordered node set, e.g., T0 =̂→

(
�

(
×

(
→(a, b),∧(c, d)

)
, τ

)
,∧(e, a)

)
.

Given two process trees T1, T2 ∈T , we write T1 �T2 if T1 is a subtree of
T2. For instance, T1 �T0 and T1 �� T2 in Fig. 2. The child function cT :V →V ∗
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� � � a b � � � � � c � f � � �
(n1.1,
open)

(n2.1,
open)

(n3.1,
open)

(n4.1,
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(n4.2,
b)

(n3.1,
close)

(n2.1,
close)

(n2.2,
τ)

(n2.1,
open)

(n3.2,
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(n4.3,
c)

(n4.4,
d) � (n3.2,

close)
(n2.1,
close)
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close)

Fig. 3. Optimal alignment γ =
〈( �, (n1.1, open)

)
, . . . ,

( �, (n1.1, close)
)〉

for the trace
〈a, b, c, f〉 and the process tree T1 (Fig. 2)

returns a sequence of child nodes according to the order of V , i.e., cT (v) =
〈v1, . . . , vj〉 s.t. (v, v1), . . . , (v, vj)∈ E. For instance, cT

0 (n1.1) = 〈n2.1, n2.2〉. For
T = (V,E, λ, r)∈ T and v ∈ V , �T (v) returns the with root node v. For example,
�T0(n1.1) = T1.

For T = (V,E, λ, r) and nodes n1, n2 ∈ V , we define the lowest common
ancestor (LCA) as LCA(n1, n2) = n∈ V such that for �T (n) = (Vn, En, λn, rn)
n1, n2 ∈ Vn and the distance (number of edges) between n and r is maximal. For
example, LCA(n4.4, n2.2) = n1.1 and LCA(n4.4, n2.3) = n0 (Fig. 2).

Next, we define running sequences and the language of process trees.

Definition 2 (Process Tree Running Sequences). For the universe of
activities A (with τ, open, close/∈A), T = (V,E, λ, r)∈ T , we recursively define
its running sequences RS(T )⊆

(
V × (A ∪ {τ} ∪ {open, close})

)∗.

– if λ(r)∈ A ∪ {τ} (T is a leaf node): RS(T ) =
{〈

(r, λ(r))〉
}

– if λ(r) =→ with child nodes cT (r) = 〈v1, . . . , vk〉 for k ≥ 1:
RS(T ) =

{〈
(r, open)

〉}
·RS(�T (v1))· . . . ·RS(�T (vk))·

{〈
(r, close)

〉}

– if λ(r) = × with child nodes cT (r) = 〈v1, . . . , vk〉 for k ≥ 1:
RS(T ) =

{〈
(r, open)

〉}
·
{
RS(�T (v1))∪ . . . ∪RS(�T (vk))

}
·
{〈

(r, close)
〉}

– if λ(r) = ∧ with child nodes cT (r) = 〈v1, . . . , vk〉 for k ≥ 1:
RS(T ) =

{〈
(r, open)

〉}
·
{
RS(�T (v1))� . . . �RS(�T (vk))

}
·
{〈

(r, close)
〉}

– if λ(r) = � with child nodes cT (r) = 〈v1, v2〉:
RS(T ) =

{〈
(r, open)

〉
·σ1·σ′

1·σ2·σ′
2·. . .·σm·

〈
(r, close)

〉
| m≥ 1 ∧ ∀1≤ i≤ m(

σi ∈RS(�T (v1))
)

∧ ∀1≤ i≤ m−1
(
σ′

i ∈RS(�T (v2))
)}

.

Definition 3 (Process Tree Language). For given T ∈ T , we define its lan-
guage by L(T ):=

{(
π∗
2(σ)

)
↓A

| σ ∈RS(T )
}

⊆ A∗.

For example, consider the running sequences of T2 (Fig. 2), i.e., RS(T2) ={〈
(n1.2, open), (n2.3, e), (n2.4, a)), (n1.2, close)

〉
,

〈
(n1.2, open), (n2.4, a), (n2.3, e),

(n1.2, close)
〉}

. Hence, this subtree describes the language L(T2) =
{
〈e, a〉,

〈a, e〉
}
.

3.2 Alignments

Alignments quantify deviations between observed process behavior (event data)
and modeled behavior (process models) [3]. Figure 3 shows an alignment for the
trace 〈a, b, c, f〉 and T1 (Fig. 2). Ignoring the skip-symbol �, the first row of
an alignment always corresponds to the trace and the second row to a running
sequence of the tree. In general, we distinguish four alignment move types.
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1. synchronous moves (shown light-gray in Fig. 3) indicate no deviation

2. log moves (shown black in Fig. 3) indicate a deviation, i.e., the observed
activity in the trace is not executable in the model (at this point)

3. visible model moves (shown dark-gray in Fig. 3) indicate a deviation, i.e.,
an activity not observed in the trace must be executed w.r.t. the model

4. invisible (τ, open, close) model moves (shown white in Fig. 3) indicate no
deviation, i.e., opening or closing of a subtree or an executed τ leaf node

Since multiple alignments exist for a given tree and trace, we are interested in an
optimal alignment, i.e., the number of log and visible model moves is minimal.

4 Freezing-Enabled Incremental Process Discovery

In Sect. 4.1, we formally define the problem of freezing sub-models during incre-
mental discovery. Then, we introduce the proposed approach in Sect. 4.2.

Fig. 4. Overview of the proposed freezing-enabled IPDA approach

4.1 Problem Definition

Reconsider Fig. 1 showing the overall framework of our proposal. A user incre-
mentally selects subtrees from a process tree “under construction” and a trace
σ from an event log. Both, the tree with frozen subtree(s) and the trace, are the
input for an freezing-enabled incremental process discovery algorithm, which
returns a modified tree that contains the frozen subtree(s) and accepts the
selected trace. Next, we define an Incremental Process Discovery Algorithm
(IPDA).

Definition 4 (IPDA). α : T ×A∗ ×P(A∗)�T is an IPDA if for arbitrary
T ∈T , σ ∈A∗, and previously added traces P∈ P(A∗) with P⊆ L(T ) it holds
that {σ}∪P⊆ L

(
α(T, σ,P)

)
. If P�L(T ), α is undefined.
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Starting from an (initial) tree T , a user incrementally selects a trace σ not
yet described by T . The algorithm alters the process tree T into T ′ that accepts
σ and the previously selected/added traces. T ′ is then used as input for the
next incremental execution. For a specific example of an IPDA, we refer to our
previous work [11]. Next, we formally define a freezing-enabled IPDA.

Definition 5 (Freezing-Enabled IPDA). αf : T ×A∗ ×P(A∗)× P(T )�T
is a freezing-enabled IPDA if for arbitrary T ∈T , σ ∈A∗, previously added
traces P∈ P(A∗) with P⊆ L(T ), and n≥ 0 frozen subtrees T = {T1, . . . , Tn}∈
P(T ) s.t. ∀i, j ∈ {1, . . . , n}(Ti � T ∧ i �= j ⇒ Ti ��Tj) it holds that {σ}∪P⊆
L

(
αf (T, σ,P,T)

)
and ∀T ′ ∈T

(
T ′ � αf (T, σ,P,T)

)
.

If P�L(T ) or ∃i, j ∈ {1, . . . , n}(Ti ��T ∨ i �= j ⇒ Ti � Tj), αf is undefined.

4.2 Approach

This section presents the proposed freezing approach, i.e., a freezing-enabled
IPDA, that is based on an arbitrary, non-freezing-enabled IPDA. The central idea
is to modify the input and output artefacts of an non-freezing-enabled IPDA.
Thus, the proposed freezing approach is compatible with any IPDA. Figure 4
provides an overview of the proposed approach. The remainder of this section is
structured along the input/output modifications shown in Fig. 4.

→
�

×

→

a b

∧

c d

τ

∧

e a

frozen subtree T2

(a) Initial tree T (same as shown in Fig. 2)
with frozen subtree T2

→
�

×

→

a b

∧

c d

τ

→

openT2 closeT2

replaced frozen subtree

(b) Tree T ′ with replaced frozen subtree

→
�

×

→

a b

∧

c d

τ

→

openT2 �

τ a

closeT2

(c) Tree T ′′ after applying an IPDA

→
�

×

→

a b

∧

c d

τ

∧

∧

e a

�

τ a

inserted
frozen T2

(d) Tree T ′′′ containing frozen subtree T2

Fig. 5. Running example of the freezing approach. Previously added traces: {σ1 =
〈d, c, a, b, a, e〉, σ2 = 〈a, b, e, a〉}. Trace to be added next: σ = 〈c, d, a, e, a, a, e〉

Replacing Frozen Subtrees. As shown in Fig. 4, we assume an (initial) tree T
with frozen subtrees T1, . . . , Tn � T and return a modified tree T ′. For example,
Fig. 5a shows the tree T (same as in Fig. 2) with the frozen subtree T2. To replace
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T2, we choose two unique labels which are neither in the event log nor in the tree,
e.g., openT2 and closeT2 . Next, we replace T2 by →(openT2 , closeT2) and get T ′

(Fig. 5b). Semantically, openT2 represents the opening and closeT2 the closing of
T2. In general, we iteratively replace each frozen subtree.

Projecting Previously Added Traces. The set of previously added traces
{σ1, . . . , σm} (Fig. 4), which fits the tree T , does not fit T ′ because of the replaced
frozen subtree(s). Thus, we have to modify the traces accordingly.

We replay each trace {σ1, . . . , σm} on T and mark when a frozen subtree is
opened and closed. Next, we insert in these traces the corresponding replacement
label whenever a frozen subtree was opened/closed and remove all activities in
between that are replayed in a frozen subtree. Other activities remain unchanged.
For example, reconsider T (Fig. 5) and its frozen subtree T2 that was replaced
by →(openT2 , closeT2). Assume the traces {σ1 = 〈d, c, a, b, a, e〉, σ2 = 〈a, b, e, a〉}.
Below, we show the running sequence of σ1 on T and the projected trace σ′

1.

extract of the running sequence for σ1 on T = T0 (see Fig. 2):
〈. . . (n4.4, d), (n4.3, c) . . . (n4.1, a), (n4.2, b) . . . (n1.2, open), (n2.4, a), (n2.3, e), (n1.2, close) . . . 〉
projected trace σ′

1 based on above running sequence:

〈d, c, a, b, openT2 , closeT2 〉

We transform σ1 = 〈d, c, a, b, a, e〉 into σ′
1 = 〈d, c, a, b, openT2 , closeT2〉 (and σ2

into σ′
2 = 〈a, b, openT2 , closeT2〉). Note that σ′

1, σ
′
2 ∈L(T ′) since σ1, σ2 ∈L(T ).

�
n0

τ

n1.1

∧
n1.2

e

n2.1

a

n2.2

corresponds to
frozen subtree T2

(a) Abstraction tree A used to detect full executions of frozen tree T2 (Fig. 2)
move index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

trace c d � � a e � � � a a e � �
model � � (n0,

open)
(n1.2,
open)

(n2.2,
a)

(n2.1,
e)

(n1.2,
close)

(n1.1,
τ)

(n1.2,
open)

(n2.2,
a) � (n2.1,

e)
(n1.2,
close)

(n0,
close)

(b) Optimal alignment of σ=〈c, d, a, e, a, a, e〉 and abstraction tree A

Fig. 6. Detecting full executions of T2 (Fig. 2) in σ = 〈c, d, a, e, a, a, e〉

Projecting Trace to Be Added Next. The idea is to detect full executions
of the frozen subtree(s) within the trace to be added next and to replace these
full executions by the corresponding replacement labels.

Reconsider Fig. 5 and the trace to be added next σ = 〈c, d, a, e, a, a, e〉. To
detect full executions of the frozen subtree T2 =̂∧(e, a) independent from the
entire tree T , we align σ with the abstraction tree A =̂ �(τ,∧(e, a)), cf. Fig. 6a.
The alignment (cf. Fig. 6b) shows that T2 is twice fully executed, i.e., 4–7 and 9–
13 move. Thus, we project σ onto σ′ = 〈c, d, openT2 , closeT2 , openT2 , a, closeT2〉.
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Reinserting Frozen Subtrees. This section describes how the frozen sub-
tree(s) are reinserted into T ′′, returned by the IPDA (Fig. 4). Note that T ′′ can
contain the replacement label for opening and closing of a frozen subtree multi-
ple times because the IPDA may add leaf nodes having the same label. Thus, we
have to find appropriate position(s) in T ′′ to insert the frozen subtree(s) back.

For example, reconsider Fig. 5c. We receive T ′′=̂→
(
∧

(
×

(
→(a, b),∧(c, d)

)
, τ

)
,

→(openT2 ,�(τ, a), closeT2)
)
. We observe that between opening (openT2) and

closing (closeT2) of T2, a loop on a was inserted. First, we calculate the LCA
of openT2 and closeT2 , i.e., the subtree →(openT2 ,�(τ, a), closeT2). Next, we do
a semantic analysis of this subtree to determine how often openT2 and closeT2

can be replayed. This analysis is needed because the IPDA changes the tree
and openT2 or closeT2 could be now skipped or executed multiple times. In T ′′,
openT2 and closeT2 must be executed exactly once. Hence, we apply the case
{1} visualized in Fig. 7b where Ti represents the frozen subtree and T ′

c the LCA
subtree after removing nodes labelled with openT2 and closeT2 . We obtain T ′′′

(Fig. 5d) that contains the frozen subtree T2 and accepts the traces {σ, σ1, σ2}.
In general (cf. Fig. 4), we iteratively insert the frozen subtrees {T1, . . . , Tn}

back. For Ti ∈{T1, . . . , Tn}, we calculate the LCA from all nodes in T ′′ that are
labeled with the replacement label of Ti. Next, we do a semantic analysis of
the LCA to determine how often Ti has to be executed. This semantic analysis

•

•rc

parent of rc

Tc

(a) Initial
situation

•
∧

Ti

•rc

old parent of rc

T ′
c

(b) Case {1}

•
∧

×

τ Ti

•rc

old parent of rc

T ′
c

(c) Case {0, 1}

•
∧

�

Ti τ

•rc

old parent of rc

T ′
c

(d) Case {1, ∞}

•
∧

�

τ Ti

•rc

old parent of rc

T ′
c

(e) Case {0, ∞}

Fig. 7. Four cases showing how to insert a frozen subtree Ti back

Fig. 8. F-measure for a real-life event log [9] using two different initial process models,
each with a different frozen subtree. We refer to the proposed approach in this paper
as IPDA + Freezing (Advanced). Highlighted segments indicate that the proposed app-
roach outperforms the other evaluated algorithms
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results in one of the four cases shown in Fig. 7, which specify how the frozen
subtree needs to be inserted back into T ′′.

5 Evaluation

This section presents an experimental evaluation. We compare four different dis-
covery approaches: the Inductive Miner (a conventional discovery algorithm) [8],
an IPDA [11], a baseline freezing approach (described in the extended version of
this paper) using the IPDA in [11], and the proposed freezing approach (Sect. 4.2)
using the IPDA in [11]. All four approaches guarantee replay fitness, i.e., traces
given to the algorithm are accepted by the resulting tree. We use a publicly avail-
able event log [9]. We use the same initial model for all IPDA approaches per
run. Further, we do not change the frozen subtree during incremental discovery.
More detailed data of the experiments are available online1.

Figure 8 shows the F-measure of the incremental discovered trees based on
the entire event log. We observe that the proposed advanced freezing app-
roach clearly dominates the baseline freezing approach in both runs. Further, we
observe that the advanced freezing approach outperforms the other approaches
in the highlighted areas (Fig. 8a). Note that in reality, incorporating all observed
process behavior is often not desired because the event data contains noise,
incomplete behavior and other types of quality issues. For instance, after inte-
grating the first 17 most frequent trace-variants of the RTFM log, the process
model covers already 99% of the observed process behavior/traces. Comparing
IPDA with the proposed advanced freezing approach (Fig. 8), we observe that
the advanced freezing approach clearly dominates IPDA in most segments. In
general, the results indicate that freezing subtrees during incremental process
discovery can lead to higher quality models since we observe that the advanced
freezing approach dominates the other algorithms in many segments.

6 Conclusion

This paper introduced a novel option to interact with a process discovery algo-
rithm. By being able to freeze parts of a process model during incremental pro-
cess discovery, the user is able to steer the algorithm. Moreover, the proposed
approach combines conventional process discovery with data-driven process mod-
eling. In the future, we plan to explore strategies that recommend appropriate
freezing candidates to the user. Further, we plan to integrate the proposed app-
roach into the incremental process discovery tool Cortado [12].
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