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Abstract. The emergence of NoSQL databases and polyglot persistence
demands to address classical research topics in the context of new data
models and database systems. Schema evolution is a crucial aspect in
database management to which limited attention has been paid for
NoSQL systems. The definition of a taxonomy of changes is a central
issue in the design of any schema evolution approach. Proposed tax-
onomies of changes for NoSQL databases have considered simple data
models, which significantly reduce the set of considered schema change
operations. In this paper, we present a unified logical data model that
includes aggregation and reference relationships, and takes into account
the structural variations that can occur in schemaless NoSQL stores. For
this data model, we introduce a new taxonomy of changes with opera-
tions not considered in the existing proposed taxonomies for NoSQL. A
schema definition language will be used to create schemas that conform
to the generic data model, and a database-independent language, created
to implement this taxonomy of changes, will be shown. We will show how
this language can be used to automatically generate evolution scripts for
a set of NoSQL stores, and validated on a case study for a real dataset.

Keywords: NoSQL databases · Schema evolution · Taxonomy of
changes · Schema change operations · Domain specific language

1 Introduction

NoSQL (Not only SQL) systems and polyglot persistence emerged to tackle
the limitations of relational databases to satisfy requirements of modern, data-
intensive applications (e.g., social media or IoT). The predominance of relational
systems will probably continue, but they will coexist with NoSQL systems in
heterogeneous database architectures. In this scenario, new database tools are
needed to offer for NoSQL systems the functionality already available for rela-
tional systems. Moreover, these tools should support several data models, as four
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kinds of NoSQL systems are widely used: columnar, document, key-value, and
graphs, with interest in polyglot persistence continuously growing.

Among those aforementioned tools are schema evolution tools. Schema evo-
lution is the ability to make changes on a database schema and adapting the
existing data to the new schema. This topic has been extensively studied in
relational [1,6] and object-oriented databases [10]. So far, the attention paid to
NoSQL schema evolution has been limited, and building robust solutions is still
an open research challenge.

Most NoSQL systems are “schema-on-read”, that is, the declaration of
schemas is not required prior to store data. Therefore, schemas are implicit in
data and code. In addition, no standard or specification of NoSQL data model
exists. This means that schema evolution approaches for the same type of NoSQL
store could be based on different definitions of data models. The proposals pub-
lished are limited in three aspects: (i) The data models considered do not cover
all the possible elements to be subject to evolution; (ii) This leads to taxonomies
of changes that do not include some schema change operations potentially use-
ful; (iii) Except for [3,7], the proposals do not embrace the NoSQL paradigm
heterogeneity. Two features not considered in these proposals are structural vari-
ations and the existence of aggregation and reference relationships. Taking into
account these modeling concepts, new operations can be included into the tax-
onomy of changes.

In this paper, we present a NoSQL schema evolution proposal based on a
unified data model that includes aggregation and reference relationships, and
structural variations [2]. This paper contributes in the following: (i) A taxonomy
of changes that includes valuable operations not included in previous propos-
als; (ii) A domain-specific language (DSL), Orion, was developed to implement
the set of schema change operations (SCOs) defined in the taxonomy; (iii) Our
approach is based on a unified data model with more expressive power than other
proposals [3,7]; and (iv) A non-trivial refactoring case study for a real dataset
used to improve query performance. Given an Orion script, the operations that
adapt databases to the schema changes are automatically generated. Also, the
inferred or declared schema is automatically updated from Orion scripts.

This paper is organized as follows. First, we present the unified data model
for the four NoSQL paradigms considered. Then, we will define the taxonomy
of changes and present the Orion language. Next, the validation process will be
described, finally ending with the discussion of the related work and drawing
some conclusions and future work.

2 Defining Schemas for a Unified Data Model

U-Schema is a unified metamodel that integrates the relational model and data
models for the four most common NoSQL paradigms [2]. The taxonomy pre-
sented here is based on U-Schema. We will describe the elements of U-Schema
through the Athena language. Figure 1 shows an Athena schema for a gamifica-
tion application. We will use this schema as a running example.
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Fig. 1. The Gamification schema defined using Athena.

An Athena schema is formed by a set of schemas types that can be entity
types to represent domain entities or relationship types to represent relation-
ships between nodes in graph stores. In the Gamification example, there are
five entity types: User, PersonalInfo, Stage, Minigame, and MinigameSummary.
User, Stage, and Minigame are root entity types, that is, their objects are not
embedded in any other object, while PersonalInfo and MinigameSummary are
non-root as their instances are embedded into User objects. Each entity type
can have a set of structural variations that include a set of features or properties.
The features that are common to all the variations are separately declared. User
has three common features: id, email, and personalInfo. Each variation may
add optional features: the second User variation has games and points.

A feature declaration specifies its name and type. There are three
kinds of features: attributes, aggregates, and references. For example, the
User.personalInfo feature specifies that PersonalInfo objects are embedded
in User objects, and the Minigame.stageIds feature specifies that Minigame
objects reference Stage objects by holding values of their key attributes. A car-
dinality needs to be specified for references and aggregations, such as one to one
or one to many. The features may have modifiers as key (“+”) or optional (“?”).

Attributes have a scalar type as Number or String, e.g., email and points.
The Identifier scalar type is used to declare unique identifiers, e.g., id for
users. Certain scalar types allow to add restrictions to their possible values, such
as numeric ranges, value enumeration or using regular expressions. The most
frequently used collection types are offered: such as Maps, Lists or Tuples.

Athena provides mechanism to favor reuse: schema import and inheritance.
Also, composition of schemas is possible through a set of operators. In addition
to types, the notion of set of features is used to group any set of features, that
can be later combined to create more complex schemas.



Towards a Taxonomy of Schema Changes for NoSQL Databases 179

3 A Taxonomy of Changes for NoSQL Databases

A taxonomy determines the possible changes to be applied on elements of the
database schema that conforms to a particular data model. Different categories
are established according to the kind of schema element affected by the changes.
A taxonomy also specifies the change semantics. Here, we present a taxonomy for
U-Schema, which includes novel operations related to the abstractions proper to
U-Schema, such as aggregates, references, and structural variation. Our taxon-
omy also incorporates the operations of previous proposals for NoSQL evolution.

As shown in Table 1, our taxonomy has categories for the following U-Schema
elements: schema types, features, attributes, aggregates and references. Schema
type category groups change operations on entity and relationship types. The Fea-
ture category groups the operations with the same semantics for the three kinds
of features. Three operations for variations have been included in the schema
type category: create a union schema, adapt a variation to other, and delete a
variation. The former is useful to squash variations into a single variation for a
schema type, and the other two with several uses, such as removing outliers [8].

Next, the terminology used to define the semantics in the taxonomy is intro-
duced. Let S = E ∪ R be the set of schema types formed by the union of the
set of entity types E = {Ei}, i = 1 . . . n, (and the set of relationship types
R = {Ri}, i = 1 . . .m, if the schema corresponds to a graph database.) Each
schema type t includes a set of structural variations V t = {vt1, vt2, . . . , vtn}, and
vti .features denotes the set of features of a variation vti . Then, the set of features
of a schema type t is F t =

⋃n
i=1 v

t
n ∪ Ct, where Ct denotes the set of common

features of t. The set F t will include attributes, aggregates, and references. We
will use dot notation to refer to parts of a schema element, e.g., given an entity
type e, e.name and e.features refer to the name and set of features (F e), respec-
tively, of the entity type. Finally, the symbol “←” will be used to express the
change of state of a schema element by means of an assignment statement.

For the Schema type category, in addition to the atomic operations: add,
delete, and rename, three complex SCOs are added to create new schemas types:
The extract, split and merge operations. Also three operations to manipulate
variations are introduced: The delvar, adapt and union operations. Due to space
restrictions, the semantics of these operations is only formally given in Table 1.

The Feature category includes complex SCOs to copy a feature from a schema
type to another one, either maintaining (copy) or not (move) the feature copied
in the original schema type. Also, it includes SCOs to move a feature from/to an
aggregate: nest and unnest. The Attribute category includes operations to add
a new attribute, change its type (cast), and add/remove an attribute to/from
a key: promote and demote. Finally, the Reference and Aggregate categories
include the morph operations to transform aggregates into references and vice
versa, card to change the cardinality, as well as add and cast commented for
attributes.

The operations in Table 1 have attached information regarding the gaining
or loss of information they cause. C+ is used for an additive change, C− for a
subtractive change, C+,− when there is a loss and gain of information (e.g., move
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Table 1. Schema change operations of the taxonomy.

Schema Type Operations

Add (C+) Let t be a new schema type, S ← S ∪ {t}.
Delete (C−) Given a schema type t, S ← S \ {t}.
Rename (C=) Given a schema type t and a string value n, t.name ← n.

Extract
(C+,=)

Given a schema type t, a set of features f of t, f ⊂ F t, and a string value n, then a new
type t1 is created such that t1.name ← n ∧ t1.features ← f and S ← S ∪ {t1}.

Split (C=) Given a schema type t and two sets of features f1 ⊂ t.features and f2 ⊂ t.features,
and two string values n1 and n2, then two new types t1 and t2 are created such that
t1.name ← n1 ∧ t1.features ← f1 and t2.name ← n2 ∧ t2.features ← f2, and
S ← S \ {t} and S ← S ∪ {t1, t2}.

Merge (C=) Given two schema types t1 and t2 and a a string value n, a new schema type t is created such
that t.name ← n ∧ t.features ← t1.features ∪ t2.features and S ← S \ {t1, t2}
and S ← S ∪ {t}.

DelVar (C−) Given a variation vt of a schema type t, then t.variations ← t.variations \ {vt}.
Adapt (C+/−) Given two variations vt

1 and vt
2 of a schema type t, then vt

1.features ← vt
2.features,

and t.variations ← t.variations \ {vt
1}.

Union (C+) Given a schema type t that has m variations, t.features ← t.features ∪m
i=1 vt

i .

Feature Operations

Delete (C−) Given a schema type t and a feature f ∈ t.features, then t.features ← t.features \
{f}.

Rename (C=) Given a schema type t, a feature f ∈ t.features, and a string value n, then f.name ← n.

Copy (C+) Given two schema types t1 and t2 and a feature f ∈ t1.features, then t2.features ←
t2.features ∪ {f}.

Move (C+,−) Given two schema types t1 and t2 and a feature f ∈ t1.features, then t2.features ←
t2.features ∪ {f} ∧ t1.features ← t1.features \ {f}.

Nest (C+,−) Given an entity type e1, a feature f ∈ e1.features, and an aggregate ag ∈
e1.aggregates ∧ ag.type = e2, then e2.features ∪ {f} ∧ e1.features \ {f}.

Unnest
(C−,+)

Given an entity type e1, an aggregate ag ∈ e1.aggregates∧ ag.type = e2, and a feature
f ∈ e2.features, then e1.features ∪ {f} ∧ e2.features \ {f}.

Attribute Operations

Add (C+) Given a schema type t and an attribute at (name and type), then t.attributes ←
t.attributes ∪ {at}.

Cast (C+/−) Given a schema type t, an attribute at ∈ t.attributes, and a scalar type st, then at.type ←
st.

Promote (C=) Given an entity type t and an attribute at, then at.key ← True.

Demote (C=) Given an entity type t and an attribute at, then at.key ← False.

Reference Operations

Add (C+) Given a schema type t and a reference rf (name and entity type), then t.references ←
t.references ∪ {rf}.

Cast (C+/−) Given a schema type t, a reference rf ∈ t.references, and a scalar type st, then
rf.type ← st.

Card (C+/−) Given a schema type t, a reference rf ∈ t.references, and two numbers l, u ∈ [−1, 0, 1]∧
l ≤ u, then rf.lowerBound ← l ∧ rf.upperBound ← u.

Morph (C=) Given a schema type t and a reference rf ∈ t.references, then t.aggregations ←
t.aggregations ∪ {ag}, where ag.name ← rf.name ∧ ag.type ← rf.type and
t.references ← t.references \ {rf}.

Aggregate Operations

Add (C+) Given an entity type e and an aggregation ag (name an entity type), then
e.aggregations ← t.aggregations ∪ {ag}.

Card (C+/−) Given an entity type e, and an aggregation ag ∈ e.aggregations and two numbers l, u ∈
[−1, 0, 1] ∧ l ≤ u, then ag.lower ← l ∧ ag.upper ← u.

Morph (C=) Given an entity type e and an aggregation ag ∈ e.aggregations, then e.references ←
e.references ∪ {rf}, where rf.name ← ag.name ∧ rf.type ← ag.type and
e.aggregations ← e.aggregations \ {rf}.
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feature), C= means no change in information, and C+/− adds or subtracts,
depending on the operation parameters (e.g., casting a feature to boolean).

4 Implementing the Taxonomy: The Orion Language

Once the taxonomy was defined, we created the Orion language to allow devel-
opers to write and execute their schema change operations. Orion keeps the
system-independence feature of the taxonomy by providing the same abstract
and concrete syntax for any database system, although the semantics of each
operation must be implemented in a different way depending on each system.

Figure 2 shows a Orion script to refactor the running example schema. Using
specifies the schema to apply changes, which allows checking the feasibility of all
the change operations. This checking requires sequentially executing the opera-
tions, and updating the schema before launching the execution of the following
operation.

Fig. 2. Refactoring of the Gamification schema using Orion.

Figure 2 shows changes on entity types of the Gamification schema: casting
on attributes (lines 5, 16, and 24), deleting attributes (line 6), nesting attributes
to an aggregate (lines 10 and 18), morphing an aggregate to a reference (11),
renaming entity types (line 13) and attributes (22), and adapting a variation
(line 9). Entity types and features are also created (lines 28–45).

Implementing a taxonomy of schema changes entails tackling the update of
both the schema and the data. The Orion engine generates the updated schema
as well as the code scripts to produce the changes required in the database. So far,
MongoDB and Cassandra are supported. Orion can also provide an estimation
of the time required to perform the change operations.
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Table 2 gives insights on the implementation of some operations for each
database, as well as a time estimation. The symbol is used for constant-time
operations; when traversing all the instances of an entity type is required;
is used when traversing one or two entity types and creating a new entity type,
and is used if all the instances of an entity type have to be serialized and then
imported back into the database. is used for operations with very high cost.

Not all operations can be applied to all database systems. For example
variation-related operations cannot be applied in Cassandra, since it requires
the definition of a schema prior to store data.

Table 2. Excerpt of operation costs in Orion for each database system considered.

MongoDB operations Cost Cassandra operations Cost

Add schema type createCollection(),$addFields CREATE Tab

Split schema type 2x($project,$out),drop() (4xCOPY,2xCREATE,DROP) Tab

Rename feature $rename 2xCOPY Tab,DROP Col,ADD Col

Copy feature $set 2xCOPY Tab,ADD Col

Add attribute $addFields ADD Col

Cast attribute $set,$convert (2xCOPY,DROP,CREATE) Tab

Card reference $set (2xCOPY,DROP,CREATE) Tab

Morph reference $lookup,$out,$unset,drop() CREATE Type,ADD Col,DROP Tab* —

Add aggregate $addFields CREATE Type,ADD Col

Card aggregate $set (2xCOPY,DROP,CREATE) Tab

Although the main purpose of the Orion language is to support schema
changes in a platform-independent way, it may have other uses: (i) An Orion
script can bootstrap a schema by itself if no initial schema is given; (ii) Dif-
ferences between Athena schemas may be expressed as Orion specifications;
and (iii) Orion specifications may be obtained from existing tools such as PRIS-
M/PRISM++ [1].

5 The Validation Process

A refactoring was applied on the StackOverflow dataset1 in order to validate
Orion. We injected this dataset into MongoDB, and its schema was inferred by
applying the strategy from [2]. Figure 3 shows an excerpt of four of the seven
entity types discovered, visualized with the notation introduced in [5].

Analyzing the schema, we realized that this dataset did not take advantage
of constructs typical for document databases such as aggregations (nested docu-
ments), and that some features could be casted to specific MongoDB types. By
slightly changing the schema we might improve query performance in MongoDB.
We designed a scenario to measure the query performance by introducing changes
in the schema. We aggregated Badges into Users, PostLinks into Posts, and
created two new aggregates for the metadata information for Posts and Users.
1 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange
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Fig. 3. Excerpt of the StackOverflow inferred schema.

The Orion script that specifies the StackOverflow schema changes is shown
in Fig. 4. The first operations (lines 4–6) are CASTs of attributes to types more
suitable for MongoDB. Then some NEST operations on Posts and Users are
applied to create aggregated objects (PostMetadata and UserMetadata, lines 8–
9). We also embedded Postlinks into Posts (lines 13–14) and Badges into
Users. These two last operations are not trivial, as Postlinks and Badges are
the entity types referencing Posts and Users, and therefore it is needed to first
copy certain features and then morph them (lines 16–18).

Fig. 4. Orion operations to be applied to the StackOverflow schema and data.

Given the Athena schema shown in Fig. 3 and the Orion script of Fig. 4,
the Orion engine generates the updated schema and the MongoDB API code
script to execute the changes on the data. Queries can then be adapted, and
performance can be measured and compared. MongoDB code is implemented
using aggregation pipelines and bulk writes to improve the performance.
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6 Related Work

A great research effort has been devoted to the database schema evolution prob-
lem for relational databases. Some of the most significant contributions have been
the DB-Main and PRISM/PRISM++ tools. DB-Main was a long-term project
aimed at tackling the problems related to database evolution on relational sys-
tems and other paradigms such as hierarchical or object-oriented [4,6]. The DB-
Main approach was based on two main elements: The GER unified metamodel to
achieve platform-independence, and a transformational approach to implement
operations such as reverse and forward engineering, and schema mappings; More
recently, Carlo Curino et al. [1] developed the PRISM/PRISM++ tool aimed to
automate migration tasks and rewriting legacy queries. PRISM/PRISM++ pro-
vides an evolution language based on operators able to modify schemas and
integrity constraints. Although much more mature and evolved than our work,
neither of these two approaches address the NoSQL database evolution.

A proposal of schema evolution for NoSQL document stores was presented
by Stefanie Scherzinger et al. in [9]. The work defines a 5-operation taxonomy
for a very simple data model: schemas are a set of entities that have properties
(attributes and embedded objects), but relationships or variations are not con-
sidered. The operations are add/remove/rename properties, and copy or move
a set of properties from an entity type to another. In our proposal, the generic
data model is more complex, which results in a richer change taxonomy.

Vavrek et al. explored schema evolution for multi-model database sys-
tems [7,11]. They suppose a layered architecture in which a database engine
interacts with individual engines for each data model, instead of defining a uni-
fied metamodel. A taxonomy of 10 operations is defined: 5 for entity types (kinds)
and 5 for properties. These latter correspond to those defined in [9], and the first 5
are add, drop, rename, split, and merge, with the same meaning as in our tax-
onomy. We propose a complex engine architecture for a unified model, instead
of a layered one, as most databases share a common set of features which can
be included in a single core model, which will act as a pivot model to support
schema mappings. Our goal is to provide native and broader support for the most
popular databases. Also, our taxonomy includes new operations such as trans-
forming aggregations into references and vice versa, joining all the variations,
removing a variation, or add/remove/rename references and aggregates.

In [3], a taxonomy is proposed as part of an approach to rewrite queries for
polystore evolution. The taxonomy includes six operations applicable to entity
types, four to attributes and four to relations. A generic language, TyphonML, is
used to define relational and NoSQL schemas. The language also includes phys-
ical mapping and schema evolution operations. Our richer data model allowed
us to define operations that separately affect aggregates and references, and
variations and relationship types are considered, among other differences.

7 Conclusions and Future Work

In this paper, we have taken advantage of the U-Schema unified data model to
present a schema changes taxonomy for NoSQL systems, which includes more
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complex operations than previous proposals. Evolution scripts for this taxonomy
are expressed by means of the Orion language.2 Currently, Orion works for two
popular NoSQL stores: MongoDB (document and schemaless) and Cassandra
(columnar that requires a schema declaration). Orion has been validated by
applying a refactoring on the StackOverflow dataset.

Our future work includes (i) The implementation of generators for different
database paradigms, such as Neo4j for graphs and Redis for key-value; (ii) Inves-
tigating optimizations of the generated code to evolve databases; (iii) Query
analysis and query rewriting; and (iv) Integrating Orion into a tool for agile
migration.
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