
Chapter 6
Bayesian Genomic Linear Regression

6.1 Bayes Theorem and Bayesian Linear Regression

Unlike classic statistical inference, which assumes that the parameter θ that defines
the model is a fixed unknown quantity, in Bayesian inference it is considered as a
random variable whose variation tries to represent the knowledge or ignorance about
this, before the data points are collected (Box and Tiao 1992). The probability
density function which describes such variation is known as the prior distribution
and is an additional component in the specification of the complete model in a
Bayesian framework.

Given a data set yn = (y1, . . ., yn) whose distribution is assumed to be f(y| θ), and a
prior distribution for the parameter θ, f(θ), the Bayesian analysis uses the Bayes
theorem to combine these two pieces of information to obtain the posterior distri-
bution of the parameters, on which the inference is fully based (Christensen et al.
2011):

f θjyð Þ ¼ f y, θð Þ
f yð Þ ¼ f θð Þf yjθð Þ

f yð Þ / f θð ÞL θ; yð Þ,

where f(y) ¼ R
f(y| θ)f(θ)dθ ¼ Eθ[f(y| θ)] is the marginal distribution of θ. This

conditional distribution describes what is known about θ after data is collected and
can be thought of as the updated prior knowledge about θ with the information
contained in the data, which is done through the likelihood function L(θ; y) (Box and
Tiao 1992).

In general, because the posterior distribution doesn’t always have a recognizable
form and it is often not easy to simulate from this, numerical approximation methods
are employed. Once a sample of the posterior distribution is obtained, estimation of a
parameter is often found by averaging the sample values or averaging a function of
the sample values when another quantity is of interest. For example, in genomic
prediction with dense molecular markers, the main interest is to predict the trait of
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interest of the non-phenotyped individuals that have only genotypic information,
environment variables, or other information (covariates). In this situation, a conve-
nient practice is to include the individuals to be predicted (yp) in the posterior
distribution to be sampled.

Specifically, a standard Bayesian framework for a normal linear regression model
(see Chap. 3)

Y ¼ β0 þ
Xp
j¼1

X jβ j þ E ð6:1Þ

with E a random error with normal distribution with mean 0 and variance σ2, is fully
specified by assuming the next non-informative prior distribution: β and log(σ)
approximately independent and locally uniform.

f β, σ2
� � / σ�2 ð6:2Þ

which is not a proper distribution because it does not integrate to 1 (Box and Tiao
1992; Gelman et al. 2013). However, when X is of full column rank, the posterior
distribution is a proper distribution and is given by

f β,σ2jy,X� �/ σ2
� ��n

2 exp � 1
2σ2

y�Xβð ÞT y�Xβð Þ
h i

σ2
� ��1

/ σ2
� ��n

2 exp � 1
2σ2

βTXTXβ�2yTXβþyTy
� �h i

σ2
� ��1

/ σ2
� ��pþ1

2 exp � 1
2σ2

β�eβ� �T
XTX β�eβ� �

� 1
2σ2

yTy�eβTXTXeβ� �� �
σ2
� ��1� n�p�1ð Þ=2

/ σ2
� ��pþ1

2 exp � 1
2σ2

β�eβ� �T
XTX β�eβ� �� �

σ2
� ��1� n�p�1ð Þ=2

exp � 1
2σ2

yT I�Hð Þy
h i

/ σ2
� ��pþ1

2 exp � 1
2σ2

β�eβ� �T
XTX β�eβ� �� �

σ2
� ��1�n�p�1

2 exp � n�p�1ð Þeσ2
2σ2

� 	
,

where eβ= XTX
� �2 1

XTy, eσ2 ¼ 1
n�p�1 y

T I2Hð Þy, and H = X(XTX)�1XT. From here

the marginal posterior distribution of σ2 is σ2 j y,X � IG n� p� 1ð Þ=2, n�p�1ð Þeσ2
2

� 	
with mean n�p�1ð Þbσ2

2 = n� p� 1ð Þ=2½ � ¼ eσ2 , and given σ2, the posterior conditional

distribution of β is given by β j σ2, y,X � N eβ, σ2 XTX
� �2 1

� �
:

6.2 Bayesian Genome-Based Ridge Regression

When p > n, X is not of full column rank and the posterior of model (6.1) may not be
proper (Gelman et al. 2013), so a solution is instead to consider independently proper
prior distributions, β � N(0, Iσ2) and σ2 � IG(α0, α0), which for large values of σ2
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(106) and small values of α0 (10�3) is an approximation to the standard
non-informative prior given in (6.1) (Christensen et al. 2011). A similar prior
specification is taken in genomic prediction where different models are obtained
by adopting different prior distributions of the parameters. For example, the Bayes-
ian Linear Ridge Regression (Pérez and de los Campos 2014) with standardized
covariates (Xj

0s) is given by

Y ¼ μþ
Xp
j¼1

X jβ j þ E ð6:3Þ

with a flat prior for mean parameter (μ), f(μ) / 1, which can be approximately
specified by μ � N 0, σ20

� �
, with a large value of σ20 (1010), a multivariate normal

distribution with mean vector 0 and covariance matrix σ2βIp on the beta coefficients,

β0 = β1, . . . , βp
� �T j σ2β � Np 0, Ipσ2β

� �
, and scaled inverse Chi-square distributions

as priors for the variance component: σ2β � χ�2
vβ , Sβ

(prior for the variance of the

regression coefficients βj) and σ2 � χ�2
v,S (prior for the variance of random errors, E),

where χ�2
v,S denotes the scaled inverse Chi-squared distribution with shape parameter

v and scale parameter S. The joint posterior distribution of the parameters in this

model, θ= μ, βT0 , σ
2, σ2β

� �T
, is given by

f μ,βT0 ,σ
2
β,σ

2jy,X
� �

/ L μ,βT0 ,σ
2;y

� �
f θð Þ

/ L μ,βT0 ,σ
2;y

� �
f μð Þf β0jσ2β

� �
f σ2β

� �
f σ2
� �

/ 1

2πσ2ð Þn2 exp � 1
2σ2

y�1nμ�X1β0k k2
h i

� exp � 1
2σ20

μ2
� 	

� 1

σ2β

� �p
2
exp � 1

2σ2β
βT0β0

" # !
�

Sβ
2

� �vβ
2

Γ
vβ
2

� �
σ2β

� �1þvβ
2

exp � Sβ
2σ2β

 !

�
S
2

� �v
2

Γ v
2

� �
σ2ð Þ1þv

2

exp � S
2σ2

� �
:

This has no known form and it is not easy to simulate values of it, so numerical
methods are required to explore it. One way to simulate values of this distribution is
by means of the Gibbs sampler method, which consists of alternatingly generating
samples of the full conditional distributions of each variable (or block of variables)
given the rest of the parameters (Casella and George 1992).

The full conditional posteriors to implement the Gibbs sampler are obtained in the
lines below.

6.2 Bayesian Genome-Based Ridge Regression 173



The conditional posterior distribution of β0 is given by

f β0j�ð Þ / L μ, βT0 , σ
2; y

� �
f β0jσ2β
� �

/ exp � 1
2σ2

y� 1nμ � X1β0k k2 � 1
2σ2β

βT0β0

" #
/ exp � 1

2
βT0 σ�2

β In þ σ�2XT
1X1

� �
β0 � 2σ�2 y� 1nμð ÞTX1β0

h in o
/ exp � 1

2
β0 � eβ0� �TeΣ�1

0 β0 � eβ0� �� �
 �

eΣ0 = σ�2
β Ip þ σ�2XT

1X1

� ��1
and eβ0 = σ�2eΣ0XT

1 y2 1nμð Þ . That is,

β0 j �� Np
eβ0, eΣ0

� �
. Similarly, the conditional distribution of μ is μ j � �

N eμ,eσ20� �
, where eσ20 ¼ σ2

n and eμ ¼ 1
n 1

T
n y2X1β0ð Þ.

The conditional distribution of σ2 is

f σ2j�� � / L μ, βT0 , σ
2; y

� �
f σ2
� �

/ 1

σ2ð Þn2 exp � 1
2σ2

y� 1nμ � X1β0k k2
h i S

2

� �v
2

Γ v
2

� �
σ2ð Þ1þv

2

exp � S
2σ2

� �

/
eS
2

� �ev
2

σ2ð Þ1þev2 exp � eS
2σ2

� 	
,

where ev ¼ vþ n and eS ¼ Sþ y2 1nμ� X1β0j jj j2 . So σ2 j � � χ�2ev,eS , where χ�2
v,s

denotes a scaled inverse Chi-squared distribution with parameters v and S. Similarly,
σ2β j � � χ�2evβ ,eSβ , where evβ ¼ vβ þ p and eSβ ¼ Sβ þ βT0β0.

In summary, for the Ridge regression model, a Gibbs sampler consists of the
following steps:

1. Choose initial values for μ, β0, and σ2.
2. Simulate a value of the full conditional distribution of σ2β:

σ2β j μ, β0, σ2 � χ�2ev,eSβ ,
where χ�2ev,eSβ denotes a scaled inverse Chi-square distribution with shape

parameter evβ ¼ vβ þ p and scale parameter eSβ ¼ Sβ þ βT0β0.
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3. Simulate the full conditional posterior distribution of β0:

β0 j μ, σ2β, σ2 � Np
eβ0, eΣ0

� �
,

where eΣ0 ¼ σ�2
β Ip þ σ�2XT

1X1

� ��1
and eβ0 ¼ σ�2eΣ0XT

1 y� 1nμð Þ
4. Simulate the full conditional distribution of μ:

μ j β0, σ2β, σ2 � N eμ,eσ2μ� �
,

where eσ2μ ¼ σ2

n and eμ ¼ 1Tn y2X1β0ð Þ:
5. Simulate the full conditional distribution of σ2:

σ2 j μ, β0, σ2β � χ�2ev,eS ,
where ev ¼ vþ n and eS ¼ Sþ y� 1nμ � X1β0k k2.

6. Repeat steps 2–5 depending on how many values of the parameter vector
(βT, σ2β, σ

2) you wish to simulate. Usually a large number of iterations are needed
and an early part of them are discarded, to finally average the rest of each
parameter to obtain estimates of them.

The Gibbs sampler described above can be implemented easily with the BGLR R
package: if the hyperparameters S-v and Sβ-vβ are not specified, by default the BGLR
function assigns v¼ vβ ¼ 5, and to S and Sβ assigns values such that the mode of the
priors of σ2 and σ2β (inverse scaled Chi-square) matches a certain proportion of the
total variance (1 � R2 and R2): S ¼ Var(Y ) � (1 � R2) � (v + 2) and Sβ ¼ Var
(Y ) � R2 � (vβ + 2) (see Appendix 2 for more details). Explicitly, in BGLR this
model can be implemented by running the following R code:

ETA = list( list( model = ‘BRR’, X = X1, df0 = vβ, S0 = Sβ, R2 = 1-R2) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)

where nIter ¼ 1e4 and burnIn ¼ 1e3 are the desired number of iterations and the
number of them to be discarded when computing the estimates of the parameters.
Remember that when the hyperparameter values are not given, they are set up in the
default values, as previously described.

A sub-model of the BRR that does not induce shrinkage of the beta coefficients is

obtained by assuming that β1, . . . , βp
� �T j σ2β � Np 0, Ipσ2β

� �
, ignoring the prior

distribution of σ2β and setting this at a very high value (1010). Note that this model is
very similar to the Bayesian model obtained by adopting the prior (6.2), under which
the beta coefficients are estimated solely with the information contained in the
likelihood function (Pérez and de los Campos 2014). This prior model can also be
implemented in the BGLR package and is called FIXED. Certainly, the Gibbs
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sampler steps for its implementation are the same as the steps described before for
the BRR, except that step 2 is removed (no simulations are obtained from σ2β) and
σ�2
β is set equal to zero in the full conditional of β0 (step 3).

6.3 Bayesian GBLUP Genomic Model

In genomic-enabled prediction, the number of markers used to predict the perfor-
mance of a trait of interest is often very large compared to the number of individuals
phenotyped in the sample ( p � n); for this reason, some computational difficulties
may arise when exploring the posterior distribution of the beta coefficients. When
the main objective is to use this model for predictive purposes, a solution consists of
reducing the dimension of the problem by directly simulating values of g ¼ X1β0
(breeding values or genomic effects, Lehermeier et al. 2013) instead of only from β0.

To do this, first note that because β0 j σ2β � Np 0, Ipσ2β
� �

, to induce a prior for g, this

is defined as g ¼ X1β0 j σ2β � Nn 0, σ2βX1XT
1

� �
¼ Nn 0, σ2gG

� �
, where σ2g ¼ pσ2β and

G= 1
pX1XT

1 , which is known as the genomic relationship matrix (VanRaden 2007).

Then, under this parameterization (g = X1β0 and σ2g ¼ pσ2β), the model specified in
(6.3), in matrix notation takes the following form:

Y ¼ 1nμþ gþ E ð6:4Þ

with a flat prior to mean parameter (μ), σ2 � χ�2
v,S , and the induced priors: g ¼

X1β0 j σ2g � Nn 0, σ2gG
� �

and σ2g � χ�2
vg, Sg

(vg ¼ vβ, Sg ¼ pSβ).

Similarly to what was done for model (6.3), the full conditional posterior distri-
bution of g in model (6.4) is given by

f gj�ð Þ / L μ, g, σ2; y
� �

f gjσ2g
� �

/ 1

2πσ2ð Þn2 exp � 1
2σ2

y� 1nμ� gk k2
h i 1

σ2g

� �n
2
exp � 1

2σ2g
gTG�1g

" # !

/ exp � 1
2

g� egð ÞTeG�1
g� egð Þ

h in o
,

where eG= σ�2
g G2 1 þ σ�2In

� ��1
and eg= σ�2eG y2 1nμð Þ , and from here g j

2 � Nn eg, eG� �
. Then, the mean/mode of g j � is eg ¼ σ�2eG y2 1nμð Þ, which is

also the best linear unbiased predictor (BLUP) of g under the mixed model
equation of Henderson (1975) using the machinery of a classic linear mixed
model described in the previous chapter for model (6.4), after recognizing the
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prior distribution of g as the distribution of the random effects in a model, ignoring
the priors specification of the rest of the parameters and assuming that they are
known (Henderson 1975). For this reason, model (6.4) is often referred to as
GBLUP. If G is replaced by the pedigree matrix A, the resulting model is known
as PBLUP or ABLUP.

The full conditional posterior of the rest of parameters is similar to the
BRR model: μ j � � N eμ,eσ20� �

, where eσ20 ¼ σ2

n and eμ ¼ 1
n 1

T
n y2 gð Þ; σ2 j � � χ�2ev,eS ,

where ev ¼ vþ n and eS ¼ Sþ y2 1nμ� gk k2; and σ2g j � � χ�2evg,eSg , where evg ¼
vg þ n and eSg ¼ Sg þ gTG�1g.

Note that when p� n, then the dimension of the parameter space of the posterior
of GBLUP model is lower than the BRR.

The GBLUP model (6.4) also can be implemented easily with the BGLR R
package, and when the hyperparameters S-v and Sg-vg are not specified, v ¼ vg ¼ 5
is used by default and the scale parameters are settled similarly as in the BRR.

The BGLR code to fit this model:

ETA = list( list( model = ‘RHKS’, K = G, df0 = vg, S0 = Sg, R2 = 1-R2)) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)

The GBLUP can be equivalently expressed and consequently fitted with the BRR
model by making the design matrix equal to the lower triangular factor of the
Cholesky decomposition of the genomic relationship matrix, i.e., X ¼ L, where
G ¼ LL0. So, with the BGLR package, the BRR implementation of a GBLUP
model is.

L = t(chol(G))
ETA = list( list( model = ‘BRR’, X = L, df0 = vβ, S0 = Sβ, R2 = 1-R2) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)

When there is more than one repetition of an individual in the data at hand, or a
more sophisticated design is used in the data collection, model (6.4) can be specified
in a more general way to take into account this structure, as follows:

Y ¼ 1nμþ Zgþ e ð6:5Þ

with Z the incident matrix of the genotypes. This model cannot be fitted directly in
the BGLR and some precalculus is needed first to compute the “covariance” matrix
of the predictor Zg in model (6.5): KL ¼ Var(Zg) ¼ ZGZT. The BGLR code for
implementing this model is the following:

Z = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))

K_L = Z%*%G%*%t(Z)
ETA = list( list( model = ‘RHKS’, K = K_L, df0 = vg, S0 = Sg, R2 = 1-R2)) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)
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where dat_F is the data set that contains the necessary phenotypic information (GID:
Lines or individuals; y: response variable of the trait of interest).

6.4 Genomic-Enabled Prediction BayesA Model

Another variant to the standard Bayesian model (6.1) is the BayesA model proposed
by Meuwissen et al. (2001), which is a slight modification of the BRR model
obtained with the same prior distributions, except that now a specific variance σ2β j

is assumed for each of the covariate (marker) effects, that is, β j j σ2β j
� N 0, σ2βj

� �
,

and these variance parameters are supposed to be independent random variables
with a scaled inverse Chi-square distribution with parameters vβ and Sβ, σ2β j

�
χ�2 vβ, Sβ
� �

. These specific variances for each marker effect provide covariate
heterogeneous shrinkage estimation. Furthermore, a gamma distribution is assigned
to Sβ, Sβ � G(r, s), where G(r, s) denotes a gamma distribution where r and s are the
rate and shape parameters, respectively. By providing a different prior variance for
each βj, this model has the potential of inducing covariate-specific shrinkage of
estimated effects (Pérez and de los Campos 2013).

Note that choosing r ¼ r�/vβ and taking very large values of vβ, the prior of σ2βj
collapses to a degenerate distribution at Sβ, and the BRR model is obtained, but with
a gamma distribution with parameters r� and s as priors to the common variance of
the effects σ2β ¼ Var β j

� � ¼ Sβ , instead of χ�2(vβ, Sβ). Furthermore, the marginal
distribution of each beta coefficient βj, that is, the unconditional distribution of βj j Sβ,
is a scaled-t-student distribution (scaled by

ffiffiffiffiffiffiffiffiffiffiffi
Sβ=vβ

p
). These distributions, compared

to the normal, have heavier tails and put higher mass around 0, which compared to
the BRR, induce fewer shrinkage estimates of covariates with sizable effects, and
induce strong shrinkage toward zero estimates of covariates with smaller effects,
respectively (de los Campos et al. 2013).

A Gibbs sampler implementation for estimating the parameters of this model can
be done following steps 1–6 of the BRR model, where the second step is replaced by
the next 2.1 and 2.2 steps, the third and the last step are replaced and modified by the
next steps 3 and 6:

2.1 Simulate from the full conditional of each σβ2j

σ2β j
j μ, β0, σ2�j, Sβ, σ

2 � χ�2ev j,eSβ j

,

where evβ j
¼ vβ þ 1 and scale parameter eSβ j

¼ Sβ þ β2j , where σ2�j is the

vector σ2β ¼ σ2β1 , . . . , σ
2
βp

� �
but without the jth entry.
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2.2 Simulate from the full conditional of Sβ

f Sβj�
� � / Yp

j¼1

f σ2β j
jSβ

� �" #
f Sβ
� �

/
Yp
j¼1

Sβ
2

� �vβ
2

Γ
vβ
2

� �
σ2β j

� �1þvβ
2

exp � Sβ
2σ2β j

 !2664
3775Ss�1

β exp �rSβ
� �

/ S
sþpvβ

2 �1
β exp � r þ 1

2

Xp
j¼1

1
σ2βj

 !
Sβ

" #

which corresponds to the kernel of the gamma distribution with rate
parameter er ¼ r þ 1

2

Pp
j¼1

1
σ2βj

and shape parameter es ¼ sþ pvβ
2 , and so Sβ j

� � Gamma er,esð Þ:
3. Simulate the full conditional posterior distribution of β0:

β0 j μ, σ2β, σ2 � Np
eβ0, eΣ0

� �
,

where eΣ0 ¼ D�1
p þ σ�2XT

1X1

� ��1
and eβ0 ¼ σ�2eΣ0XT

1 y� 1nμð Þ , Dp ¼
Diag σ2β1 , . . . , σ

2
βp

� �
:

6. Repeat steps 2–5 (given in the BRR method) depending on how many values of
the parameter vector (βT, σ2β, σ

2, Sβ) we wish to simulate.

When implementing this model in the BGLR package, by default v ¼ vβ ¼ 5 are
used and S ¼ Var(Y ) � (1 � R2) � (v + 2), which makes the mode of the priors of
σ2 (χ�2(v, S)) match a certain proportion of the total variance (1 � R2). If the
hyperparameters of the a priori for Sβ, s, and r, are not specified, by default BGLR
takes s ¼ 1.1 to have an a priori (Sβ � G(s, r)) that is relatively non-informative with
a coefficient of variation (1=

ffiffi
s

p
) of approximately 95%. Then, to the rate parameter it

assigns the value r ¼ (s � 1)/Sβ, with Sβ ¼ Var yð Þ � R2 � vβ þ 2
� �

=S2x, where S
2
x is

the sum of the variances of the columns of X and R2 is the percentage of the total
variation that a priori is required to attribute to the covariates in X. The BGLR code
for implementing this model is

ETA = list( list( model = ‘BayesA’, X=X1, df0 = vβ, rate0 = r, shape0 = s,
R2 = 1-R2))

A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 =
R2)
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6.5 Genomic-Enabled Prediction BayesB
and BayesC Models

Other variants of the model (6.1) are the BayesC and the BayesB models, which in
turn can be considered as direct extensions of the BRR and BayesA models,
respectively, by adding a parameter π that represents the prior proportion of
covariates with nonzero effect (Pérez and de los Campos 2014).

The BayesC is the same as the BRR, but instead of assuming a priori that the beta
coefficients are independent normal random variables with mean 0 and variance σ2β,

it assumes that with probability π each βj comes from a N 0, σ2β

� �
, and with

probability 1 � π comes from a degenerate distribution (DG) at zero, that is,

β1, . . . , βp j σ2β, π �iid πpN 0, σ2β

� �
þ 1� πp
� �

DG 0ð Þ (mix of a normal distribution

with mean 0 and variance σ2β , and degenerate distribution at zero). In addition, for
the parameter πp, a beta distribution is assigned as prior, that is, πp~Beta (πp0, ϕ0),
where πp0 ¼ E(πp) represents the mean and ϕ�1

0 is the “dispersion” parameter

(var πp
� � ¼ π

p0 1�πp0ð Þ
ϕ0þ1 ). If ϕ0 ¼ 2 and πp0 ¼ 0.5, the prior for πp is a uniform

distribution in (0,1). For large values of ϕ0, the distribution for πp is highly
concentrated around πp0, and so the BayesC is reduced to BRR when πp0 ¼ 1 for
large values of ϕ0.

For this model, the full conditional distributions of μ and σ2β are the same as the

model described before, that is, μ j � � N eμ,eσ2μ� �
and σ2 j � � χ�2ev,eS : However, for

the rest of the parameters, this does not have a known form and is not easy to
simulate from them. A solution is to introduce a latent variable to represent the prior
distribution of each βj, and compute all the conditional distributions in this aug-
mented scheme, including the distribution corresponding to the latent variable. To
do this, note that this prior can be specified by assuming that conditional to a binary
latent variable Zj,

β j j σ2β, Z j ¼ z � N 0, σ2β

� �
,

DG 0ð Þ,

8<:
where Zj is a Bernoulli random variable with parameter πp (Zj � Ber(πp)). With this
introduced latent variable, all the full conditionals can be derived, as is
described next.

If the current value of zj is 1, the full conditional posterior of βj is
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f β jj�
� � / L μ, β0, σ

2; y
� �

f β jjσ2β, z j
� �

/ exp � 1
2σ2

y� 1nμ � X1β0k k
� � 1ffiffiffiffiffiffiffiffiffiffi

2πσ2β

q exp � β2j
2σ2β

 !

/ exp � 1
2σ2

Xn
i¼1

yij � xijβ j

� �2 � 1
2σ2β

β2j

 !

/ exp � 1
2

σ�2
β þ σ�2

Xn
i¼1

x2ij

 !
β2j � 2σ�2

Xn
i¼1

xijyijβ j þ 1
σ2
Xn
i¼1

y2ij

" #( )

/ exp �
β j � eβ j

� �2
2eσ2j

264
375,

where yij ¼ yi �
Pp

k ¼ 1

k 6¼ j

xikβk , eσ2j ¼ σ�2
β þ σ�2

Pn
i¼1x

2
ij

� ��1
, and eβ j ¼

σ�2eσ2jPn
i¼1xijyij: That is, when the current value of zj is 1, β j j � � N eβ j,eσ2j� �

.

However, if zj ¼ 0, the full conditional posterior of βj is a degenerate random
variable at 0, that is, βj j � � DG(0).

The full conditional distribution of Zj is

f z jj�
� � / f β jjσ2β, z j

� �
f z j
� �

/ f β jjσ2β, z j
� �

πz j
p 1� π j

� �1�z j

from which, conditional on the rest of the parameters, Zj is a Bernoulli random

variable with parameter eπpj ¼
πpffiffiffiffiffiffi
2πσ2

β

p exp �
β2
j

2σ2
β

� 	
πpffiffiffiffiffiffi
2πσ2

β

p exp �
β2
j

2σ2
β

� 	
þ 1�πpð Þδ0 β jð Þ

. Note however that, if

βj 6¼ 0, eπpj ¼ 1, and then Zj ¼ 1 with probability 1, when simulating from the full
conditional posterior of βj, we will always obtain values different from zero, and this
cyclic behavior will remain permanent. On the other hand, note that if βj ¼ 0,

eπpj ¼
πpffiffiffiffiffiffi
2πσ2

β

p
πpffiffiffiffiffiffi
2πσ2

β

p þ 1�πpð Þ is not 0, then the next simulated value of βj will be different

from 0, and in this scenario, in the next steps of the “Gibbs,” Zj will at all times be
1, and so the chain has absorbing states and will not explore the entire sampling
space. A solution to this problem consists of trying to simulate from the joint
conditional distribution of βj and Zj, that is, from βj, Zj j �. This full joint conditional
distribution can be computed as
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f β j, z jj�
� � / f � z j

� �
f β jjz j,�
� � / f � z j

� �
L μ, β0, σ

2; y
� �

f β jjσ2β, z j
� �

,

where f�(zj) is the marginal conditional distribution of Zj conditioned to all param-
eters except βj (Zj j � j� f�(�)). Specifically, this is given by “integrating” ( f(βj,
zj|�) with respect to βj)

f � z j
� � / Z1

�1
f β j, z jj�
� �

dβ j /
Z1
�1

L μ, β0, σ
2; y

� �
f β jjσ2β, z j
� �

f z jjπp
� �

dβ j

/

R1
�1

exp � 1
2σ2

Xn
i¼1

yij � xijβ j

� �2" #
1ffiffiffiffiffiffiffiffiffiffi
2πσ2β

q exp � β2j
2σ2β

 !
πpdβ j

R1
�1

exp � 1
2σ2

Xn
i¼1

yij � xijβ j

� �2" #
δ0 β j

� �
1� πp
� �

dβ j

8>>>>>><>>>>>>:
/ πp

ffiffiffiffiffieσ2j
σ2β

s
1� πp:

8><>:
From here, Zj j � is a Bernoulli random distribution with parameter eπp ¼
πp

ffiffiffiffieσ2j
σ2β

r !
= πp

ffiffiffiffieσ2j
σ2β

r
þ 1� πp

 !
. With this and the full conditional distribution

derived above for βj, an easy way to simulate values from βj, Zj j � consists of
first simulating a zj value from Z j j �j � Ber eπp� �

, and then, if zj ¼ 1, simulating a

value of βj from β j j � � N eβ j,eσ2j� �
, otherwise take βj ¼ 0.

Now, note that the full conditional distribution of σ2β is

f σ2βj�
� �

/
Yp
j

f β jjσ2β, z j
� �h iz j

( )
f σ2β
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/ 1
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2σ2β
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2
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 ! Sβ
2
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2

Γ
vβ
2
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σ2β

� �1þvβ
2
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/ 1
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,

182 6 Bayesian Genomic Linear Regression



where zp ¼ 1=p
Pp

j¼1z j , eSβ ¼ Sβ þ
Pp

j¼1z jβ
2
j, and evβ ¼ vβ þ pzp . That is, σ2β j

μ, β0, σ
2, z � χ�2ev,eSβ . The full conditional distributions of μ and σ2 are the same as

BRR, that is, μ j � � N eμ,eσ2μ� �
and σ2 j � � χ�2ev,eS , with eσ2μ ¼ σ2

n , eμ ¼
1Tn y2X1β0ð Þ, ev ¼ vþ n, and eS ¼ Sþ y� 1nμ � X1β0k k2.

The full conditional distribution of πp is

f πpj�
� � / Yp

j¼1

f z jjπp
� �" #

f πp
� �

/ πpzpp 1� πp
� �p 1�zpð Þπϕ0πp0þ1�1

p 1� πp
� �ϕ0 1�πp0ð Þ�1

/ πϕ0πp0þpzp�1
p 1� πp

� �ϕ0 1�πp0ð Þþp 1�zpð Þ�1

which means that πp j � � Beta eπp0, eϕ0

� �
, with eϕ0 ¼ ϕ0 þ p and eπp0 ¼ ϕ0πp0þpzp

ϕ0þp .

The BayesB model is a variant of BayesA that assumes almost the same prior
models to the parameters, except that instead of assuming independent normal
random variables with common mean 0 and common variance σ2β for the beta

coefficients, this model adopts a mixture distribution, that is, β j j σ2β j
, π �iid

πN 0, σ2β j

� �
þ 1� πð ÞDG 0ð Þ, with π � Beta(π0, p0). This model has the potential

to perform variable selection and produce covariate-specific shrinkage estimates
(Pérez et al. 2010).

This model can also be considered an extension of the BayesC model with a
gamma distribution as prior to the scale parameter of the a priori distribution of the
variance of the beta coefficients, that is, Sβ � G(s, r). It is interesting to point out that
if π ¼ 1, this model is reduced to BayesA, which is obtained by taking π0 ¼ 1 and
letting ϕ0 go to 1. Also, this is reduced to the BayesC by setting s=r ¼ S0β and
choosing a very large value for r.

To explore the posterior distribution of this model, the same Gibbs sampler given
for BayesC can be used, but adding to the process the full conditional posterior
distribution of Sβ: Sβ j � � Gamma er,esð Þ , where er ¼ r þ 1

2σ2β
and shape parameteres ¼ sþ vβ

2 .
When implementing both these models in the BGLR R package, by default this

assigns πp0¼ 0.5 and ϕ0¼ 10, for the hyperparameters of the prior model of πp, Beta
(πp0,ϕ0), which results in a weakly informative prior. For the remaining
hyperparameters of the BayesC model, by default BGLR assigns values like those
assigned to the BRRmodel, but with some modifications to consider because a priori
now only a proportion π0 of the covariates (columns of X) has nonzero effects:
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v ¼ vβ ¼ 5,

S ¼ Var Yð Þ � 1� R2
� �� vþ 2ð Þ,

Sβ ¼ Var yð Þ � R2 � vβ þ 2
� �
S2xπ0

:

While for the remaining hyperparameters of BayesB, by default BGLR also
assigns values similar to BayesA: v ¼ vβ ¼ 5, S ¼ Var(Y ) � (1 � R2) � (v + 2),

r¼ (s� 1)/Sβ, with Sβ ¼ Var yð Þ � R2 � vβþ2ð Þ
S2xπ0

, where S2x is the sum of the variances

of the columns of X.
The BGLR codes to implement these models are, respectively:

ETA = list( list( model = ‘BayesC’, X=X1 ) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, df0 = v, S0 = S, probIn
= πp0, counts = ϕ0, R2 = R2)

and

ETA = list( list( model = ‘BayesB’, X=X1 ) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, df0 = v, rate0 = r,
shape0 = s, probIn = πp0, counts = ϕ0, R2 = R2)

6.6 Genomic-Enabled Prediction Bayesian Lasso Model

Another variant of the model (6.1) is the Bayesian Lasso linear regression model
(BL). This model assumes independent Laplace or double-exponential distributions
with location and scale parameters 0 and

ffiffiffiffi
σ2

p
λ , respectively, for the beta coefficients,

that is, β1, . . . , βp j σ2, λ �iid L 0,
ffiffiffiffi
σ2

p
λ

� �
. Furthermore, the priors for parameters μ and

σ2 are the same as in the models described before, while for λ2, a gamma distribution
with parameters sλ and rλ is often adopted.

Because compared to the normal distribution, the Laplace distribution has fatter
tails and puts higher density around 0, this prior induces stronger shrinkage estimates
for covariates with relatively small effects and reduced shrinkage estimates for
covariates with larger effects (Pérez et al. 2010).

A more convenient specification of the prior for the beta coefficients in this model
is obtained with the representation proposed by Park and Casella (2008), which is a
continuous scale mixture of a normal distribution: βj j τj � N(0, τjσ

2) and τj � Exp
(2/λ2), j ¼ 1, . . ., p, where Exp(θ) denotes an exponential distribution with scale
parameter θ. So, unlike the prior used by the BRR model, this prior distribution also
puts a higher mass at zero and has heavier tails, which induce stronger shrinkage
estimates for covariates with relatively small effect and less shrinkage estimates for
markers with sizable effect (Pérez et al. 2010).
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Note that the prior distribution for the beta coefficients and the prior variance of
this distribution in BayesB and BayesC can be equivalently expressed as a mixture
of a scaled inverse Chi-squared distribution with parameters vβ and Sβ, and a

degenerate distribution at zero, that is, β j � N 0, σ2β

� �
and σ2β � πpχ�2 vβ, Sβ

� �þ
1� πp
� �

DG 0ð Þ. So, based on this result and the connections between the models
described before, the main difference between all these models is the manner in
which the prior variance of the predictor variable is modelled.

Example 1 To illustrate how to use the models described before, here we consider
the prediction of grain yield (tons/ha) based on marker information. The data set
used consists of 30 lines in four environments with one and two repetitions and the
genotyped information contains 500 markers for each line. The numbers of lines
with one (two) repetition are 6 (24), 2 (28), 0 (30), and 3 (27) in Environments 1, 2,
3, and 4, respectively, resulting in 229 observations. The performance prediction of
all these models was evaluated with 10 random partitions in a cross-validation
strategy, where 80% of the complete data set was used to fit the model and the rest
to evaluate the model in terms of the mean squared error of prediction (MSE).

The results for all models (shown in Table 6.1) were obtained by iterating 10,000
times the corresponding Gibbs sampler and discarding the first 1000 of them, using
the default hyperparameter values implemented in BGLR. This indicates that the
behavior of all the models is similar, except the BayesC, where the MSE is slightly
greater than the rest.

The R code to obtain the results in Table 6.1 is given in Appendix 3.
What happens when using other hyperparameter values? Although the ones used

here (proposed by Pérez et al. 2010) did not always produce the best prediction
performance (Lehermeier et al. 2013) and there are other ways to propose the
hyperparameter values in these models (Habier et al. 2010, 2011), it is important
to point out that the values used by default in BGLR work reasonably well and that it

Table 6.1 Mean squared error (MSE) of prediction across 10 random partitions, with 80% for
training and the rest for testing, in five Bayesian linear models

PT BRR GBLUP BayesA BayesB BayesC

1 0.5395 0.5391 0.5399 0.5415 0.5470

2 0.3351 0.3345 0.3345 0.3411 0.3511

3 0.4044 0.4065 0.4056 0.4050 0.4106

4 0.3540 0.3583 0.3571 0.3561 0.3559

5 0.3564 0.3555 0.3556 0.3549 0.3604

6 0.7781 0.7772 0.7702 0.7777 0.7776

7 0.7430 0.7357 0.7380 0.7384 0.7431

8 0.3662 0.3717 0.3695 0.3669 0.3661

9 0.3065 0.3026 0.3056 0.3021 0.3030

10 0.5842 0.5822 0.5846 0.5860 0.6079

Mean
(SD)

0.4767 (0.1742) 0.4763 (0.1724) 0.476 (0.1716) 0.4769 (0.1734) 0.4822 (0.1744)
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is not easy to find other combinations that work better in all applications, and when
you want to use other combinations of hyperparameters you need to be very careful
because you can dramatically affect the predictive performance of the model that
uses the default hyperparameters.

Indeed, by means of simulated and experimental data, Lehermeier et al. (2013)
observed a strong influence on the predictive performance of the hyperparameters
given to the prior distributions in BayesA, BayesB, and the Bayes Lasso with fixed λ.
Specifically, in the first two models, they observed that the scale parameter Sβ of the
prior distribution of variance of βj had a strong effect on the predictive ability
because overfitting in the data occurred when a too large value of this value was
chosen, whereas underfitting was observed when too small values of this parameter
were used. Note that this is expected approximately by seeing that in both models

(BayesA and BayesB), Var β j

� � ¼ E σ2β j

� �
¼ Sβ= vβ � 1

�
), which is almost the

inverse of the regularization parameter in any type of Ridge regression model.

6.7 Extended Predictor in Bayesian Genomic Regression
Models

All the Bayesian formulations of the model (6.1) described before can be extended,
in terms of the predictor, to easily take into account the effects of other factors. For
example, effects of environments and environment–marker interaction can be added
as

y ¼ 1nμþ XEβE þ Xβþ XEMβEM þ e, ð6:6Þ

where XE and XEM are the design matrices of the environments and environment–
marker interactions, respectively, while βE and βEM are the vectors of the environ-
ment effects and the interaction effects, respectively, with a prior distribution that
can be specified as was done for β. Indeed, with the BGLR function all these things
are possible, and all the options described before can also be adopted for the rest of
effects added in the model: FIXED, BRR, BayesA, BayesB, BayesC, and BL.

Under the RKHS model with genotypic and environment–genotypic interaction
effects, in the predictor, the modified model (6.6) is expressed as

Y ¼ 1nμþ XEβE þ ZLgþ ZELgEþ e, ð6:7Þ

where ZL and ZLE are the incident matrices of the genomic and environment–
genotypic interaction effects, respectively. Similarly to model (6.5), this model
cannot be fitted directly in the BGLR and some precalculations are needed first to
compute the “covariance” matrix of the predictors ZLg and ZELgE, which are
KL ¼ σ�2

g Var ZLgð Þ ¼ ZLGZT
L and KLE ¼ σ�2

gEVar ZLEgEð Þ ¼ ZLE II⨂Gð ÞZT
LE ,
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respectively, where I is the number of environments. The BGLR code for
implementing this model is the following:

I = length(unique(dat_F$Env))
XE = model.matrix(~0+Env,data=dat_F)[,-1]
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique

(dat_F$GID)))
K_L = Z_L %*%G%*%t(Z_L)
Z_LE = model.matrix(~0+GID:Env,data=dat_F,

xlev = list(GID=unique(dat_F$GID),Env = unique(dat_F$Env)))
K_LE = Z_LE%*%kronecker(diag(I),G)%*%t(Z_LE)

ETA = list( list(model='FIXED',X=XE),
list( model = ‘RHKS’, K = K_L, df0 = vg, S0 = Sg, R2 = 1-R2)),

list(model='RKHS',K=K_LE )
A = BGLR(y,ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)

where dat_F is the data set that contains the necessary phenotypic information (GID:
Lines or individuals; Env: Environment; y: response variable of trait under study).

Example 2 (Includes Models with Only Env Effects and Models with Env
and LinexEnv Effects) To illustrate how to fit the extended genomic regression
models described before, here we consider the prediction of grain yield (tons/ha)
based on marker information and the genomic relationship derived from it. The data
set used consists of 30 lines in four environments, and the genotyped information of
500 markers for each line. The performance prediction of 18 models was evaluated
with a five-fold cross-validation, where 80% of the complete data set was used to fit
the model and the rest to evaluate the model in terms of the mean squared error of
prediction (MSE). These models were obtained by considering different predictors
(marker, environment, or/and environment–marker interaction) and different prior
models to the parameters of each predictor included.

The model M1 only considered in the predictor the marker effects, from which six
sub-models were obtained by adopting one of the six options (BRR, RKHS, BayesA,
BayesB, BayesC, or BL) to the prior model of β (or g). Model M2 is model M1 plus
the environment effects with a FIXED prior model, for all prior sub-models in the
marker predictor. Model M3 is model M2 plus the environment–marker interaction,
with a prior model of the same family as those chosen for the marker predictor (see in
Table 6.2 all the models we compared).

The performance prediction of the models presented in Table 6.2 is shown in
Table 6.3. The first column represents the kind of prior model used in both marker
effects and env:marker interaction terms, when the latter is included in the model. In
each of the first five prior models, model M2 resulted in better MSE performance,
while when the BL prior model was used, model M3, the model with the interaction
term, was better. The greater difference is between M1 and M2, where the average
MSE across all priors of the first model is approximately 21% greater than the
corresponding average of the M2 model. Similar behavior was observed with
Pearson’s correlation, with the average of this criterion across all priors about 32%
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greater in model M2 than in M1. So the inclusion of the environment effect was
important, but not the environment:marker interaction.

The best prediction performance in terms of MSE was obtained with sub-model
M25 (M2 with a BayesC prior) followed by M21 (M2 with a BRR prior). However,
the difference between those and sub-models M22, M23, and M24, also derived
fromM2, is only slight and a little more than with M26, which as commented before,
among the models that assume a BL prior, showed a worse performance than M36
(M3 plus a BL prior for marker effects and environment–marker interaction).

6.8 Bayesian Genomic Multi-trait Linear Regression Model

The univariate models described for continuous outcomes do not exploit the possible
correlation between traits, when the selection of better individuals is based on
several traits and these univariate models are fitted separately to each trait. Relative

Table 6.2 Fitted models: Mmd, m ¼ 1, 2, 3, d ¼ 1, . . ., 6

Model Sub-model

Predictor

Marker or G: Xβ Environment: XEβE
Interaction Env-Markers:
XEMβEM

M1 M11 BRR

M12 RKHS

M12 BayesA

M14 BayesB

M15 BayesC

M16 BL

M2 M21 BRR FIXED

M22 RKHS FIXED

M23 BayesA FIXED

M24 BayesB FIXED

M25 BayesC FIXED

M26 BL FIXED

M3 M31 BRR FIXED BRR

M32 RKHS FIXED RKHS

M33 BayesA FIXED BayesA

M34 BayesB FIXED BayesB

M35 BayesC FIXED BayesC

M36 BL FIXED BL

The third to fifth columns are the considered predictors corresponding to marker (genetic effect),
environment, and environment–marker (genetic effect) effects, respectively. The cells in row 2 and
column 3 indicate the prior distribution model specified for the beta parameters in each predictor
when that parameter is present. M1 : Y = 1μ + Xβ + e, M2 : Y ¼ 1μ + XEβE + Xβ + e, and
M3 : Y¼ 1μ + XEβE + Xβ + XEMβEM + e. For the RKHS prior model, predictors Xβ and XEMβEM are
replaced by g and Eg, respectively
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to this, some advantages of jointly modelling the multi-traits is that in this way the
correlation among the traits is appropriately accounted for and can help to improve
statistical power and the precision of parameter estimation, which are very important
in genomic selection, because they can help to improve prediction accuracy and
reduce trait selection bias (Schaeffer 1984; Pollak et al. 1984; Montesinos-López
et al. 2018).

An example of this is when crop breeders collect phenotypic data for multiple
traits such as grain yield and its components (grain type, grain weight, biomass, etc.),
tolerance to biotic and abiotic stresses, and grain quality (taste, shape, color, nutrient,
and/or content) (Montesinos-López et al. 2016). In this and many other cases,
sometimes the interest is to predict traits that are difficult or expensive to measure
with those that are easy to measure or the aim can be to improve all these correlated
traits simultaneously (Henderson and Quaas 1976; Calus and Veerkamp 2011; Jiang
et al. 2015). In these lines, there is evidence of the usefulness of multi-trait model-
ling. For example, Jia and Jannink (2012) showed that, compared to single-trait
modelling, the prediction accuracy of low-heritability traits could be increased by
using a multi-trait model when the degree of correlation between traits is at least
moderate. They also found that multi-trait models had better prediction accuracy
when phenotypes were not available on all individuals and traits. Joint modelling
also has been found useful for increasing prediction accuracy when the traits of
interest are not measured in the individuals of the testing set, but this and other traits
were observed in individuals in the training set (Pszczola et al. 2013).

6.8.1 Genomic Multi-trait Linear Model

The genomic multi-trait linear model adopts a univariate genomic linear model
structure for each trait but with correlated residuals and genotypic effects for traits
in the same individual. Assuming that for individual j, nT traits (Yjt, t¼ 1, . . ., nT) are
measured, this model assumes that

Y j1

Y j2

⋮
Y jnT

26664
37775 ¼

μ1
μ2
⋮
μnT

26664
37775þ

xTjβ1

xTjβ2
⋮

xTjβnT

266664
377775þ

g j1

g j2

⋮
gjnT

26664
37775þ

E j1

E j2

⋮
EjnT

26664
37775,

where μt, t ¼ 1, . . ., nT, are the specific trait intercepts, xj is a vector of covariates
equal for all traits, gjt, t ¼ 1, . . ., nT, are the specific trait genotype effects, and Ejt,
t ¼ 1, . . ., nT are the random error terms corresponding to each trait. In matrix
notation, it can be expressed as
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Y j ¼ μþ BT x j þ g j þ e j, ð6:8Þ

where Y j ¼ Y j1, . . . , Y jnT

 �T
, μ ¼ μ1, . . . , μnT

 �T
, B= β1, . . . , βnT

 �
, g j ¼

g j1, . . . , g jnT

 �T
, and e j ¼ E, . . . , EnT½ �T: The residual vectors are assumed to be

independent with multivariate normal distribution, that is e j � NnT 0,Rð Þ, and all
the random genotype effects are assumed to be g= gT1 , . . . , g

T
J

 �T � N 0,G⨂ΣTð Þ,
⨂ being the Kronecker product. For a full Bayesian specification of this model, we
suppose that β ¼ vec(B) � N(β0,Σβ), that is, marginally, for the fixed effect of each
trait, a prior multivariate normal distribution is adopted, βt � Np βt0,Σβt

� �
, t ¼

1, . . . , nT ; a flat prior for the intercepts, f(μ) / 1; and independent inverse Wishart
distributions for the covariance matrix of residuals R and for ΣT, that is, ΣT� IW(vt,
St) and R � IW(vR, SR).

Putting all the information together where the measured traits of each individual
(Yj) are accommodated in the rows of a matrix response (Y), model (6.8) can be
expressed as

Y ¼ 1JμT þ XBþ Z1b1 þ E, ð6:9Þ

where ¼[Y1, . . .,YJ]
T, X = [x1, . . ., xJ]

T, b1 ¼ [g1, . . ., gJ]
T, and E ¼ [e1, . . ., eJ]

T.
Note that under this notation, ET � MNnT�J 0,R, IJð Þ or equivalently E �
MNJ�nT 0, IJ ,Rð Þ , and bT1 � MNnT�J 0,ΣT ,Gð Þ or b1 � MNJ�nT 0,G,ΣTð Þ . Here
Z � MNJ�nT M,U,Vð Þ means that the random matrix Z follows the matrix variate
normal distribution with parameters M, U, and V, or equivalently, that the JnT
random vector vec(Z) is distributed as NJnT vec Mð Þ,V 	 Uð Þ, with vec(�) denoting
the vectorization of a matrix that stacks the columns of this in a single column. Note
that when ΣT and R are diagonal matrices, model (6.9) is equivalent to separately
fitting a univariate GBLUP model to each trait.

The conditional distribution of all traits is given by

f Yjμ,β,b1,ΣT ,Rð Þ¼ Rj j�J
2

2πð ÞJnT exp �1
2
tr R�1 Y�1Jμ

T�XB�Z1b1
� �T

IJ Y�1Jμ
T�Xβ�Z1b1

� �h in o
¼ Rj j�J

2

2πð ÞJnT exp �1
2

vec Y�1Jμ
T�XB�Z1b1

� � �T
R�1	 IJ
� �

vec Y�1Jμ
T�XB�Z1b1

� � �n o

and the joint posterior of parameters μ, B, b1, ΣT, and R is given by

f μ,B, b1,ΣT ,RjYð Þ / f Yjμ,B, b1,ΣT ,Rð Þf b1jΣTð Þf ΣTð Þf βð Þf Rð Þ,

where f(b1|ΣT) denotes the conditional distribution of the genotype effects, and f
(ΣT), f(β), and f(R) denote the prior density distribution of ΣT, B, and R, respectively.
This joint posterior distribution of the parameters doesn’t have closed form; for this
reason, next are derived the full conditional distributions for Gibbs sampler
implementation.
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Let β0 and Σβ be the prior mean and variance of β ¼ vec(B). Because tr
(AB) ¼ vec(AT)Tvec(B) ¼ vec(B)Tvec(AT) and vec (AXB) ¼ (BT 	 A)vec(X), we
have that

P βj�ð Þ/ f Yjμ,B,b1,ΣT ,Rð Þf βð Þ

/ exp
�1
2

vec Y�1Jμ
T�Z1b1

� �� InT 	Xð Þvec Bð Þ �T
R�1	 IJ
� �

� vec Y�1JμT�Z1b1ð Þ� InT 	Xð Þvec Bð Þ½ ��1
2
β�β0ð ÞTΣ�1

β β�β0ð Þ

8><>:
9>=>;

/ exp
�1
2

vec Y�1Jμ
T�Z1b1

� �� InT 	Xð Þβ �T
R�1	 IJ
� �

� vec Y�1JμT�Z1b1ð Þ� InT 	Xð Þβ½ ��1
2
β�β0ð ÞTΣ�1

β β�β0ð Þ

8><>:
9>=>;

/ exp �1
2

β�eβ0h iTeΣ�1
β β�eβ0h i
 �

,

where eΣβ ¼ Σ�1
β þ R�1 	 XTX

� �h i�1
and eβ0 ¼ eΣβ Σ�1

β β0 þ R�1 	 XT
� �

vec
h

Y2 1JμT 2Z1b1ð Þ�. So, the full conditional distribution of β is Np
eβ0, eΣβ

� �
. Simi-

larly, the full conditional distribution of g ¼ vec(b1) is NJ eg, eG� �
, with eG ¼

Σ�1
T 	 G�1

� �þ R�1 	 ZT
1Z1

� � ��1
and eg ¼ eG R�1 	 ZT

1

� �
vec Y2 1JμT 2XBð Þ:

Now, because vec 1JμTð Þ ¼ InT 	 1Jð Þμ, similarly as before, the full conditional of

μ is NnT eμ, eΣμ

� �
, where eΣμ ¼ J�1R and eμ ¼ eΣμ R�1 	 1J

� �
vec Y2XB2Z1Bð Þ.

The full conditional distribution of ΣT

P ΣT j�ð Þ / P b1jΣTð ÞP ΣTð Þ
/ ΣTj j�J

2 Gj j�
nT
2 exp � 1

2
tr bT1G

�1b1Σ�1
T

 �n o
P ΣTð Þ

/ Σ�vTþJþnTþ1
2

T exp � 1
2
tr bT1G

�1b1 þ ST
� �

Σ�1
T

n o
:

From here we have that ΣT j � � IW vT þ J, bT1G
�1b1 þ ST

� �
: Now, because

P Rj�ð Þ/ f Yjμ,B,b1,ΣT ,Rð Þf Rð Þ
/ Rj j�J

2 exp �1
2
tr R�1 Y�1Jμ

T�XB�Z1b1
� �T

IJ Y�1Jμ
T�Xβ�Z1b1

� �h in o
Rj j�vRþnTþ1

2 exp �1
2
tr STR

�1
� �n o

/ Rj j�
vRþJþnTþ1

2 exp �1
2
tr ST þ Y�1Jμ

T�XB�Z1b1
� �T

Y�1Jμ
T�Xβ�Z1b1

� �h i
R�1

n o
the full conditional distribution of R is IW evR,eSR� �

, where evR ¼ vR þ J and eSR ¼
ST þ Y2 1JμT � XB� Z1b1ð ÞT Y2 1JμT � Xβ� Z1b1ð Þ:
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In summary, a Gibbs sampler exploration of the joint posterior distribution of μ,
β, g, ΣT, and R can be done with the following steps:

1. Simulate β from a multivariate normal distribution Np
eβ0, eΣβ

� �
, where eΣβ ¼

Σ�1
β þ R�1	XTX

� �h i�1
and eβ0 ¼ eΣβ Σ�1

β β0þ R�1	XT
� �

vec Y21JμT2Z1b1ð Þ
h i

.

2. Simulate μ from NnT eμ, eΣμ

� �
, where eΣμ ¼ J�1R and eμ ¼ eΣμ R�1 	 1J

� �
vec Y2XB2Z1Bð Þ.

3. Simulate g = vec(b1) from NJ eg, eG� �
, where eG ¼ Σ�1

T 	 G�1
� �þ

R�1 	 ZT
1Z1

� ���1 and eg ¼ eG R�1 	 ZT
1

� �
vec Y2 1JμT 2XBð Þ:

4. Simulate ΣT from IW vT þ J, bT1G
�1b1 þ ST

� �
.

5. Simulate R from IW evR, eSR� �
, where evR ¼ vR þ J and eSR ¼ ST þ

Y � 1JμT � XB� Z1b1ð ÞT Y � 1JμT � Xβ� Z1b1ð Þ:
6. Return to step 1 or terminate when chain length is adequate to meet convergence

diagnostics and the required sample size is reached.

An implementation of this model can be done using the github version of the
BGLR R library, which can be accessed from https://github.com/gdlc/BGLR-R and
can be installed directly in the R console by running the following commands:
install.packages('devtools'); library(devtools); install_git('https://github.com/gdlc/
BGLR-R'). This implementation also uses a flat prior for the fixed effect regression
coefficients β, and in such a case, the corresponding full conditional of this parameter
is the same as step 1 of the Gibbs sampler given before, but removing Σ�1

β and Σ�1
β β0

from eΣβ and eβ0, respectively. Specifically, model (6.8) can be implemented with this
version of the BGLR package as follows:

ETA = list( list( X=X, model='FIXED' ), list( K=Z1GZ
T
1, model=’ RKHS’ ) )

A = Multitrait(y = Y, ETA=ETA, resCov = list( type = 'UN', S0 = SR, df0 =
vR ), nIter = nI, burnIn = nb)

The first argument in the Multitrait function is the response variable which many
times is a phenotype matrix where each row corresponds to the measurement of nT
traits in each individual. The second argument is a list predictor in which the first
sub-list specifies the design matrix and prior model to the fixed effects part of the
predictor in model (6.9), and in the second sub-list are specified the parameters of the
distribution of random genetic effects of b1, where it is specified the K ¼ G genomic
relationship matrix, that accounts for the similarity between individuals based on
marker information, df0 ¼ vT and S0¼ ST are the degrees of freedom parameter (vT)
and the scale matrix parameter (ST) of the inverse Wishart prior distribution for ΣT,
respectively. In the third argument (resCOV), S0 and df0 are the scale matrix
parameter (SR) and the degree of freedom parameter (vR) of the inverse Wishart
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prior distribution for R. The last two arguments are the required number of iterations
(nI) and the burn-in period (nb) for running the Gibbs sampler.

Similarly to the univariate case, model (6.9) can be equivalently described and
implemented as a multivariate Ridge regression model, as follows:

Y ¼ 1JμT þ XBþ X1B1 þ E, ð6:10Þ

where X1 ¼ Z1LG, G=LGLT
G is the Cholesky factorization of G, B1 ¼ L�1

G b1 �
MNJ�nT 0, IJ ,ΣTð Þ , and the specifications for the rest of parameters and prior
distribution are the same as given in model (6.8). A Gibbs sampler implementation
of this model is very similar to the one described before, with little modification.
Indeed, a Gibbs implementation with the same multi-trait function is as follows:

LG= t(chol(G))
X1= Z1LG

ETA = list( list( X=X, model='FIXED' ), list( X=X1, model='BRR' ) )
A = Multitrait(y = Y, ETA=ETA, resCov = list( type = 'UN', S0 = SR, df0 =
vR ), nIter = nI, burnIn = nb)

with the only change in the second sub-list predictor, where now the design matrix
X1 and the Ridge regression model (BRR) are specified.

Example 3 To illustrate the performance in terms of the prediction power of these
models and how to implement this in R software, we considered a reduced data set
that consisted of 50 wheat lines grown in two environments. In each individual, two
traits were measured: FLRSDS and MIXTIM. The evaluation was done with a
five-fold cross-validation, where lines were evaluated in some environments with
all traits but are missing for all traits in other environments. Model (6.9) was fitted
and the environment effect was assumed a fixed effect.

The results are shown in Table 6.4, where the average (standard deviation) of two
performance criteria is shown for each trait in each environment: average Pearson’s
correlation (PC) and the mean squared error of prediction (MSE). Table 6.4 shows
good correlation performance in both traits and in both environments, and better
predictions were obtained in environment 2 with both criteria. The magnitude of the

Table 6.4 Average Pearson’s correlation (PC) and mean squared error of prediction (MSE)
between predicted and observed values across five random partitions where lines were evaluated
in some environments with all traits but are missing for all traits in other environments, SD represent
standard deviation across partitions

Env Trait PC (SD) MSE (SD)

1 FLRSDS 0.6252 (0.276) 4.3009 (2.343)

MIXTIM 0.6709 (0.367) 0.457 (0.343)

2 FLRSDS 0.6895 (0.219) 3.9553 (2.171)

MIXTIM 0.7523 (0.157) 0.3764 (0.249)
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MSE in the first trait is mainly because the measurement scale is greater than in the
second trait.

The R codes to reproduce these results (Table 6.4) are shown in Appendix 5.

6.9 Bayesian Genomic Multi-trait and Multi-environment
Model (BMTME)

Model (6.9) does not take into account the possible trait–genotype–environment
interaction (T � G � E), when environment information is available. An extension
of this model is the one proposed by Montesinos-López et al. (2016), who added this
interaction term to vary the specific trait genetic effects (gj) across environments. If
the information of nT traits of J lines is collected in I environments, this model is
given by

Y ¼ 1IJμT þ XBþ Z1b1 þ Z2b2 þ E, ð6:11Þ

where ¼[Y1, . . .,YIJ]
T, X = [x1, . . ., xIJ]

T, Z1 and Z2 are the incident lines and the
incident environment–line interaction matrices, b1 ¼ [g1, . . ., gJ]

T, b2 ¼ [g21, . . .,
g2IJ]

T, and E ¼ [e1, . . ., eIJ]
T. Here, b2 j ΣT ,ΣE � MNIJ�nT 0,ΣE⨂G,ΣTð Þ , and

similar to model (6.2), b1 j ΣT � MNJ�nT 0,G,ΣTð Þ and E � MNIJ�nT 0, IIJ ,Rð Þ .
The complete Bayesian specification of this model assumes independent multivar-
iate normal distributions for the columns of B, that is, for the fixed effect of each trait
a prior multivariate normal distribution is adopted, βt � Np βt0,Σβt

� �
, t ¼ 1, . . . , nT ;

a flat prior for the intercepts, f(μ)/ 1; and independent inverse Wishart distributions
for the covariance matrices of residuals R and for ΣT, ΣT � IW(vT,ST) and R � IW
(vR,SR), and also an inverse Wishart distribution for ΣE, ΣE � IW(vE,SE).

The full conditional distributions of μ, B, b1, b2, and R can be derived as in model
(6.9). The full conditional distribution of ΣT is

f ΣT j�ð Þ / f b1jΣTð ÞP b2jΣT ,ΣEð ÞP ΣTð Þ
/ ΣTj j�J

2 Gj j�L
2 exp � 1

2
tr bT1G

�1b1Σ�1
T

 �n o
� ΣTj j�IJ

2 ΣE 	 Gj j�
nT
2 exp � 1

2
tr bT2 Σ�1

E 	 G�1
� �

b2Σ�1
T

 �n o
P ΣTð Þ

/ Σ�vTþJþIJþnTþ1
2

T exp � 1
2
tr bT1G

�1b1 þ bT2 Σ�1
E 	 G�1

� �
b2 þ St

� �
Σ�1
T

n o
,

that is, ΣT j � � IW vT þ J þ IJ, bT1G
�1b1 þ bT2 Σ�1

E 	 G�1
� �

b2 þ ST
� �

:
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Now, let be b�2 a JnT � I matrix such that vec bT2
� � ¼ vec b�2

� �
: Then because

bT2 j ΣT ,ΣE � MNnT�IJ 0,ΣT ,ΣE⨂Gð Þ , vec bT2
� � j ΣT ,ΣE � N 0,ΣE⨂ G⨂ΣTð Þð Þ,

and b�2 j ΣT ,ΣE � MNnT�IJ 0,G⨂ΣT,ΣEð Þ, the full conditional posterior distribution
of ΣE is

P ΣEjELSEð Þ / P b2jΣEð Þ P ΣEð Þ
/ ΣEj j�JL

2 G	 ΣTj j�I
2 exp � 1

2
tr Σ�1

E b�T2 G�1 	 Σ�1
T

� �
b�2

 �n o
SEj j

υEþI�1
2 � ΣEj j�

υE
2 exp � 1

2
tr SEΣ�1

E

� �n o
/ ΣEj j�

υEþJLþIþ1
2 exp � 1

2
tr b�T2 G�1 	 Σ�1

T

� �
b�2 þ SE

� � �
Σ�1
E

n o
which means that ΣE j � � IW υE þ JL, b�T2 G�1 	 Σ�1

T

� �
b�2 þ SE

� �
.

A Gibbs sampler to explore the joint posterior distribution of parameters of model
(6.11), μ, β, b1,b2, ΣT, ΣE, and R, can be implemented with the following steps:

1. Simulate β from a multivariate normal distribution Np
eβ0, eΣβ

� �
, where eΣβ ¼

Σ�1
β þ R�1 	 XTX

� �h i�1
and eβ0 ¼ eΣβ Σ�1

β β0 þ R�1 	 XT
� �h

vec Y2 1IJμT 2Z1b1 2Z2b2ð Þ�.
2. Simulate μ from NnT eμ, eΣμ

� �
, where eΣμ ¼ IJð Þ�1R and eμ ¼ eΣμ R�1 	 1IJ

� �
vec Y2XB2Z1b1 2Z2b2ð Þ.

3. Simulate g1 = vec(b1) from NJ eg1, eG� �
, where eG ¼ Σ�1

T 	 G�1
� �þ

R�1 	 ZT
1Z1

� ���1 and eg ¼ eG R�1 	 ZT
1

� �
vec Y2 1IJμT 2XB2Z2b2ð Þ:

4. Simulate g2 = vec(b2) from NJ eg2, eG2

� �
, where eG2 ¼ Σ�1

T 	 Σ�1
E ⨂G�1

� �þ
R�1 	 ZT

2Z2

� ���1 and eg2 ¼ eG2 R�1 	 ZT
2

� �
vec Y2 1IJμT 2XB2Z1b1ð Þ:

5. Simulate ΣT from IW vT þ J þ IJ, bT1G
�1b1 þ bT2 Σ�1

E 	 G�1
� �

b2 þ ST
� �

.

6. Simulate ΣE from IW υE þ JL, b�T2 G�1 	 Σ�1
T

� �
b�2 þ SE

� �
:

7. Simulate R from IW evR, eSR� �
, where evR ¼ vR þ IJ and eSR ¼ ST þ

Y2 1IJμT � XB� Z1b1 � Z2b2ð ÞT Y2 1IJμT � Xβ� Z1b1 � Z2b2ð Þ:
8. Return to step 1 or terminate when chain length is adequate to meet convergence

diagnostics and the required sample size is reached.

A similar Gibbs sampler is implemented in the BMTME R package, with the
main difference, that this package does not allow specifying a general fixed effect
design matrix X, only the corresponding to the design matrix for the environment
effects, and also the intercept vector μ is ignored because it is included in the fixed
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environment effects. Specifically, to fit model (6.11) where the only fixed effects to
be taken into account are the environment’s effects, the R code to implement this
with the BMTME package is as follows:

XE = model.matrix(~Env,data=dat_F)
Z1 = model.matrix(~0+GID,data=dat_F)
Lg = t(chol(G))
Z1_a = Z1%*%Lg
Z2 = model.matrix(~0+GID:Env,data=dat_F)
G2 = kronecker(diag(dim(XE)[2])),Lg)
Z2 _a = Z2%*%G2
A = BMTME(Y = Y, X = XE, Z1 = Z1_a, Z2 = Z2_a, nIter = nI, burnIn = nb, thin =
2, bs = 50)

where Y is the matrix of response variables where each row corresponds to the
measurement of nT traits in each individual, XE is a design matrix for the environ-
ment effects, Z1 is the incidence matrix of the genetics effects, Z2 is the design
matrix of the genetic–environment interaction effects, nI and nb are the required
number of interactions and the burn-in period, and bs is the number of blocks to use
internally to sample from vec(b2).

Example 4 To illustrate how to implement this model with the BMTME R package,
we considered the data in Example 2, but now the explored model includes the trait–
genotype–environment interaction.

The average results of the prediction performance in terms of PC and MSE for
implementing the same five-fold cross-validation used in Example 3 are shown in
Table 6.5. These results show an improvement in terms of prediction performance
with this model in all trait environments combinations and in both criteria (PC and
MSE) to measure the prediction performance, except in trait MIXTIM and Env
2, where the MSE is slightly greater than the one obtained with model (6.9), which
does not take into account the triple interaction (trait–genotype–environment).

The R code used to obtained these results is given in Appendix 5.

Table 6.5 Average Pearson’s correlation (PC) and mean squared error of prediction (MSE)
between predicted and observed values across five random partitions where lines were evaluated
in some environments with all traits but are missing for all traits in other environments

Env Trait PC (SD) MSE (SD)

1 FLRSDS 0.668 (0.243) 3.4483 (1.9)

MIXTIM 0.6913 (0.35) 0.4255 (0.325)

2 FLRSDS 0.7218 (0.219) 3.2304 (2.034)

MIXTIM 0.7667 (0.188) 0.3806 (0.287)
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Appendix 1

• The probability density function (pdf) of the scaled inverse Chi-square distribu-
tion with v degrees of freedom and scale parameter S, χ�2(v, S), is given by

f σ2; v, S
� � ¼ S

2

� �v
2

Γ v
2

� �
σ2ð Þ1þv

2
exp � S

2σ2

� �
:

and the mean, mode, and variance of this distribution are given by S
v�2,

S
vþ2, and

2S2

v�2ð Þ2 v�4ð Þ, respectively.

• The pdf of the gamma distribution with shape parameter s and rate parameter r:

f Sβ x; s, rð Þ ¼ rsxs�1

Γ sð Þ exp �rxð Þ:

The mean, mode, and variance of this distribution are s/r, (s � 1)/r, and s/r2,
respectively.

• The pdf of a beta distribution with mean μ and precision parameter ϕ (“disper-
sion” parameter ϕ�1) is given by

f x; μ,ϕð Þ ¼ 1
B μϕ, 1� μð Þϕ½ � x

μϕ�1 1� xð Þ 1�μð Þϕ�1,

where the relation with the standard parameterization of this distribution, Beta
(α, β), is

μ ¼ α
αþ β

,ϕ ¼ αþ β:

• The pdf of a Laplace distribution is

f x; bð Þ ¼ 1
2b

exp � xj j
b

� 	
, b > 0, �1 
 x 
 1:

The mean and variance of this distribution are 0 and 2b2.
• A random matrix Σ of dimension p � p is distributed as inverse Wishart

distribution with parameter v and S, Σ � IW(v, S), if it has a density function

f Σð Þ ¼ 1

2
vp
2Γp v=2ð Þ Sj jv2 Σj j�vþpþ1

2 exp � 1
2
tr SΣ�1
� �h i

,

where Γp(v/2) is the multivariate gamma function, v > 0, and Σ and S are
positive defined matrices. The mean matrix of this distribution is S

v�p�1 :
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• A ( p � q) random matrix Z follows the matrix normal distribution with matrix
parameters M ( p � q), U ( p � p), and V(q � q), Z � MNp, q(M,U,V), if it has
density

f ZjM,U,Vð Þ ¼
exp � 1

2 tr V�1 Z�Mð ÞTU�1 Z�Mð Þ
h in o
2πð Þpq=2 Vj jp=2 Uj jq=2

:

Appendix 2: Setting Hyperparameters for the Prior
Distributions of the BRR Model

The following rules are those used in Pérez and de los Campos (2014), and provide
proper but weakly informative prior distributions. In general, this consists of
assigning a certain proportion of the total variance of the phenotypes, to the different
components of the model.

Specifically, for model (6.3), first the total variance of y is partitioned into two
components: (1) the error and (2) the linear predictor:

Var y j

� � ¼ Var xTjβ0
� �

þ σ2

Therefore, the average of the variance of the individuals, called total variance, is
equal to

1
n

Xn
j¼1

Var y j

� � ¼ 1
n

Xn
j¼1

Var xTjβ0
� �

þ σ2 ¼ 1
n
tr XXT
� �

σ2β þ σ2 ¼ VM þ V E:

Then, by setting R2
1 as the proportion of the total variance (Vy), that is explained

by markers a priori, VM ¼ R2
1Vy, and replacing σ2β in VM by its prior mode, Sβ

vβþ2, we

have that

1
n
tr XXT
� � Sβ

vβ þ 2

� 	
¼ R2

1Vy:

From here, once we have set a value for vβ, the scale parameter is given by

Sβ ¼ R2
1Vy

1
n tr XXT
� � vβ þ 2

� �
:
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A commonly used value of the shape parameter is vβ ¼ 5 and the value for the
proportion of explained variances is R2

1 ¼ 0:5.
Because the model only has two predictors and R2

1 was set as the proportion of the
total variance that is explained by markers a priori, the corresponding proportion that
is explained by error a priori is R2

2 ¼ 1� R2
1. Then, similar to what was done before,

once there is a value for the shape parameter of the prior distribution of σ2, v, the
value of the scale parameter is given by

S ¼ 1� R2
1

� �
Vy vþ 2ð Þ:

By default, v ¼ 5 is often used.

Appendix 3: R Code Example 1

rm(list=ls())
library(BGLR)
load('dat_ls_E1.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)

#Matrix design of markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
XM = scale(XM)
dim(XM)

n = dim(dat_F)[1]
y = dat_F$y

#10 random partitions
K = 10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

#BRR
ETA_BRR = list(list(model='BRR',X=XM))
Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
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Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_BRR,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP[k] = mean((y[Pos_tst]-yp_ts)^2)

}

#GBLUP
dat_M = scale(dat_M)
G = tcrossprod(XM)/dim(XM)[2]
dim(G)
#Matrix design of GIDs
Z = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
K_L = Z%*%G%*%t(Z)
ETA_GB = list(list(model='RKHS',K = K_L))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_GB,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_GB[k] = mean((y[Pos_tst]-yp_ts)^2)

}

#BA
ETA_BA = list(list(model='BayesA',X=XM))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_BA,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_BA[k] = mean((y[Pos_tst]-yp_ts)^2)

}

#BB
ETA_BB = list(list(model='BayesB',X=XM))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_BB,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
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yp_ts = A$yHat[Pos_tst]
Tab$MSEP_BB[k] = mean((y[Pos_tst]-yp_ts)^2)

}

#BC
ETA_BC = list(list(model='BayesC',X=XM))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_BC,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_BC[k] = mean((y[Pos_tst]-yp_ts)^2)

}

#BL
ETA_BL = list(list(model='BL',X=XM))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_BL,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_BL[k] = mean((y[Pos_tst]-yp_ts)^2)

}
Tab

#Mean and SD across the five partitions
apply(Tab[,-1],2,function(x)c(mean(x),sd(x)))

Appendix 4: R Code Example 2

rm(list=ls())
library(BGLR)
library(BMTME)
load('dat_ls_E2.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
dim(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)
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dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)

#Matrix design for markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
dim(XM)
XM = scale(XM)
#Environment design matrix
XE = model.matrix(~0+Env,data=dat_F)[,-1]
head(XE)
#Environment–marker design matrix
XEM = model.matrix(~0+XM:XE)
#GID design matrix and Environment-GID design matrix
#for RKHS models
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
Z_LE = model.matrix(~0+GID:Env,data=dat_F,

xlev = list(GID=unique(dat_F$GID),Env = unique(dat_F$Env)))
#Genomic relationship matrix derived from markers
dat_M = scale(dat_M)
G = tcrossprod(dat_M)/dim(dat_M)[2]
dim(G)
#Covariance matrix for Zg
K_L = Z_L%*%G%*%t(Z_L)
#Covariance matrix for random effects ZEg
K_LE = Z_LE%*%kronecker(diag(4),G)%*%t(Z_LE)
n = dim(dat_F)[1]
y = dat_F$y

#Number of random partitions
K = 5
PT = CV.KFold(dat_F,DataSetID = 'GID', K=5, set_seed = 1)
Models = c('BRR','RKHS','BayesA','BayesB','BayesC','BL')
Tab = data.frame()
for(m in 1:6)
{
ETA1 = list(list(model=Models[m],X=XM))
ETA2 = list(list(model='FIXED',X=XE),list(model=Models[m],X=XM))
ETA3 = list(list(model='FIXED',X=XE),list(model=Models[m],X=XM),

list(model=Models[m],X=XEM))
if(Models[m]=='RKHS')
{
ETA1 = list(list(model='RKHS',K=K_L))
ETA2 = list(list(model='FIXED',X=XE),list(model='RKHS',K=K_L))
ETA3 = list(list(model='FIXED',X=XE),list(model='RKHS',K=K_L),

list(model='RKHS',K=K_LE))
}
Tab1_m = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
Tab2_m = Tab1_m
Tab3_m = Tab2_m
for(k in 1:K)
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{
Pos_tst = PT$CrossValidation_list[[k]]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA1,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab1_m$MSEP[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_m$Cor[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA2,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab2_m$MSEP[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab2_m$Cor[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA3,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab3_m$MSEP[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab3_m$Cor[k] = cor(y[Pos_tst],yp_ts)

}
Tab = rbind(Tab,data.frame(Model=Models[m],Tab1_m,Tab2_m,Tab3_m))

}
Tab

Appendix 5

R Code Example 3

rm(list=ls(all=TRUE))
library(BGLR)
library(BMTME)
library(dplyr)

load('dat_ls.RData',verbose=TRUE)
dat_F = dat_ls$dat_F
head(dat_F)
Y = as.matrix(dat_F[,-(1:2)])
dat_F$Env = as.character(dat_F$DS)
G = dat_ls$G
J = dim(G)[1]
XE = matrix(model.matrix(~0+Env,data=dat_F)[,-1],nc=1)
Z = model.matrix(~0+GID,data=dat_F)
K = Z%*%G%*%t(Z)
#Partitions for a 5-FCV
PT_ls = CV.KFold(dat_FF, DataSetID='GID',K=5,set_seed = 123)
PT_ls = PT_ls$CrossValidation_list
#Predictor BGLR
ETA = list(list(X=XE,model='FIXED'),list(K=K,model='RKHS'))
#Function to summarize the performance prediction: PC_MM_f
source('PC_MM.R')#See below
Tab = data.frame()
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set.seed(1)
for(p in 1:5)
{
Y_NA = Y
Pos_NA = PT_ls[[p]]
Y_NA[Pos_NA,] = NA
A = Multitrait(y = Y_NA, ETA=ETA,

resCov = list( type = 'UN', S0 = diag(2), df0 = 5 ),
nIter = 5e3, burnIn = 1e3)

PC = PC_MM_f(Y[Pos_NA,],A$yHat[Pos_NA,],Env=dat_F$Env[Pos_NA])
Tab = rbind(Tab,data.frame(PT=p,PC))
cat('PT=',p,'\n')

}
Tab_R = Tab%>%group_by(Env,Trait)%>%select(Cor,MSEP)%>%summarise
(Cor_mean = mean(Cor),

Cor_sd = sd(Cor),
MSEP_mean = mean(MSEP),
MSEP_sd = sd(MSEP))

Tab_R = as.data.frame(Tab_R)
Tab_R
#Save in the same folder the following in a file with name “PC_MM.R”
#Performance criteria
PC_MM_f<-function(y,yp,Env=NULL)
{
if(is.null(Env))
{
Cor = diag(cor(as.matrix(y),as.matrix(yp)))
MSEP = colMeans((y-yp)^2)
PC = data.frame(Trait = colnames(y),Cor=Cor, MSEP=MSEP)

}
else
{
PC = data.frame()
Envs = unique(Env)
nE = length(Envs)
for(e in 1:nE)
{
y_e = y[Env==Envs[e],]
yp_e = yp[Env==Envs[e],]
Cor = diag(cor(as.matrix(y_e),as.matrix(yp_e)))
MSEP = colMeans((y_e-yp_e)^2)
PC = rbind(PC,data.frame(Trait = colnames(y),Env=Envs[e],Cor=Cor,

MSEP=MSEP))
}

}
PC

}
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R Code for Example 4

rm(list=ls(all=TRUE))
library(BMTME)
library(dplyr)
load('dat_ls.RData',verbose=TRUE)
dat_F = dat_ls$dat_F
head(dat_F)
Y = as.matrix(dat_F[,-(1:2)])
dat_F$Env = as.character(dat_F$DS)
G = dat_ls$G
Lg = t(chol(G))
XE = model.matrix(~Env,data=dat_F)
Z1 = model.matrix(~0+GID,data=dat_F)
Z1_a = Z1%*%Lg
Z2 = model.matrix(~0+GID:Env,data=dat_F)
L2 = kronecker(diag(dim(XE)[2]),Lg)
Z2_a = Z2%*%L2
#Partitions for a 5-FCV
PT_ls = CV.KFold(dat_FF, DataSetID='GID',K=5,set_seed = 123)
PT_ls = PT_ls$CrossValidation_list
source('PC_MM.R')#See file R “PC_MM.R” defined in example 6.1
Tab = data.frame()
set.seed(1)
for(p in 1:5)
{
Y_NA = Y
Pos_NA = PT_ls[[p]]
Y_NA[Pos_NA,] = NA
A = BMTME(Y = Y_NA, X = XE, Z1 = Z1_a, Z2 = Z2_a,

nIter = 3e3, burnIn = 5e2, thin = 2, bs = 50)
PC = PC_MM_f(Y[Pos_NA,],A$yHat[Pos_NA,],Env=dat_F$Env[Pos_NA])
Tab = rbind(Tab,data.frame(PT=p,PC))
cat('PT=',p,'\n')

}
Tab_R = Tab%>%group_by(Env,Trait)%>%select(Cor,MSEP)%>%summarise
(Cor_mean = mean(Cor),

Cor_sd = sd(Cor),
MSEP_mean = mean(MSEP),
MSEP_sd = sd(MSEP))

Tab_R = as.data.frame(Tab_R)
Tab_R
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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