
Chapter 5
Linear Mixed Models

5.1 General of Linear Mixed Models

Linear mixed models (LMM) are flexible extensions of linear models in which fixed
and random effects enter linearly into the model. This is useful in many disciplines to
model repeated, longitudinal, or clustered observations, in which random effects are
introduced to help capture correlation or/and random variation among observations
in the same group of individuals. Random effects are random values associated with
levels of a random factor, and often represent random deviations from the population
mean and linear relationships described by fixed effects (Pinheiro and Bates 2000;
West et al. 2014).

The first formulation of a linear mixed model was applied in the field of
astronomy to analyze repeated telescopic observations made at various hourly
intervals over a range of nights (West et al. 2014). The mixed model approach is
often called by various names, depending on the discipline in which it is applied. For
example, in the social sciences, this approach is known as a multilevel or hierarchical
model that is often used to flexibly measure the different levels of grouping present
in the data structure (e.g., an impact evaluation of a new teaching method, survey of
job satisfaction, education applications, etc.) (Goldstein 2011; Speelman et al. 2018;
Finch et al. 2019).

Other application areas can be found in medicine (health care research, Leyland
and Goldstein 2001; Brown and Prescott 2014), agriculture, ecology, industry, and
animal science, where this model is often referred to as the random effects or mixed-
effects model (Pinheiro and Bates 2000; Raudenbush and Bryk 2002; Meeker et al.
2011; Zuur et al. 2009). Specifically, now there is an increasing number of applica-
tions of this model in genomic selection for plant and animal breeding, where
molecular markers obtained by genotyping-by-sequencing or other technologies
are used to predict breeding values for non-phenotyped lines to select candidate
lines prior to phenotypic evaluation (Meuwissen et al. 2001; Poland et al. 2012;
Cabrera-Bosquet et al. 2012; Araus and Cairns 2014; Crossa et al. 2017;
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Covarrubias-Pazaran et al. 2018; Wang et al. 2018; Cappa et al. 2019). However, the
use of this model in animal science can be traced back to Henderson (1950).

The general univariate linear mixed model (Harville 1977) is provided by the
formula

Y ¼ Xβþ Zbþ e, ð5:1Þ

where Y is the n � 1 random response vector, X is the n � ( p + 1) design matrix for
the fixed effects, β = (β0, β1, . . ., βp)

T is the ( p + 1) � 1 coefficient vector of fixed
effects, b is a q � 1 vector of random effects, Z is the associate matrix design for the
random effects, and e is the n � 1 vector of random errors. It assumes that e is a
random vector with a mean vector of 0 and a variance–covariance matrix R, b is a
random vector with a mean of 0 and variance–covariance matrix D, and a null
variance–covariance matrix between e and b, Cov(e, b) ¼ 0n � q. In genomic
applications, b often includes the genotypic effects and genotype � environment
interaction effects, while X may contain information about environment covariates
and other related information.

Note that under this model, E(Y) ¼ Xβ and the variance–covariance matrix of the
response vector is Var(Y) ¼ ZDZT + R.

5.2 Estimation of the Linear Mixed Model

5.2.1 Maximum Likelihood Estimation

One method typically used for the estimation of the parameters of the LMM is the
maximum likelihood approach. For the estimation under an LMM, the random errors
and the random effects components are needed. Assuming that e � Nn(0,R), and
b� Nq(0,D), with R and D positive semi-defined matrices, the marginal distribution
of the response vector Y is Nn(Xβ,ZDZ

T + R), and so the likelihood of the
parameters is given by

L β,D,R; yð Þ ¼ Vj j�1
2

2πð Þn2 exp � 1
2

y� Xβð ÞTV�1 y� Xβð Þ
h i

, ð5:2Þ

where V ¼ ZTDZ + R is the marginal variance of Y.
The maximum likelihood estimators (MLE) of the parameters, β, D, and R, are

the values that maximize the likelihood function (5.2) (Searle et al. 2006; Stroup
2012), but due to the fact that no explicit formulas to estimate these parameters exist,
numerical methods such as Newton–Raphson and Fisher Scoring are used. See
details for implementing these methods in Jennrich and Sampson (1976) for the
case where: D is a block diagonal with a submatrix in each diagonal of the form
σ2jA j, where Aj is a known matrix and σ2j is the variance component parameter to be
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estimated in this case; while for R¼ σ2C, where C is a known matrix, only σ2 should
be estimated. For a more general explanation, see Jennrich and Schluchter (1986),
and for an improvement of the algorithms proposed by these authors, consult
Lindstrom and Bates (1988).

Another numerical method that can be used to obtain the MLE is the expected
maximization (EM) algorithm, which is conceptually a simple algorithm for param-
eter estimation in this model (Laird and Ware 1982). This algorithm is an iterative
numerical method to obtain maximum likelihood in the context of missing or hidden
data (Borman 2004). The EM algorithm is described for the case where R ¼ σ2In,
and where In is the identity matrix of dimension n. This algorithm, for some specific
variance–covariance matrices of random effects, as described and used below, can
be implemented using the sommer R package (Covarrubias-Pazaran 2016, 2018),
which provides two additional algorithms available to obtain the MLE of the
parameters in this same model.

5.2.1.1 EM Algorithm

The likelihood for complete data, y and b, is given by

f Y,b y, bð Þ ¼ f Yjb yjbð Þ f b bð Þ

¼ Dj j�1
2

2πσ2ð Þn2 exp � 1
2σ2

y� Xβ� Zbð ÞT y� Xβ� Zbð Þ � 1
2
bTD�1b

h i
As such, the log-likelihood for the complete data, y and b, is given by

ℓc β, θ; y, bð Þ ¼ log f Y,b y, bð Þ� �
¼ � n

2
log 2πσ2

� �� 1
2σ2

y� Xβ� Zbð ÞT y� Xβ� Zbð Þ

� 1
2
bTD�1b� 1

2
log Dj jð Þ,

where θ is the vector parameter that defines the variance–covariance matrix of the
random effects (D) and the random vector (R). Some specific examples are given
below.

E Step

Because E(uTAu) ¼ tr[AVar(u)] + E(u)TAE(u) and b j Y = y � Nq
eb, eD� �

(see

Appendix 1), given the current values of the parameters β(t) and θ(t), the conditional
expected value of the complete likelihood, ℓc(β, θ; y, b), is given by [Step (E)]:
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Q β, θjβ tð Þ, θ tð Þ,
� �

¼ Ebjy ℓc β, b, θ; yð Þ½ �

¼ � n
2
log 2πσ2

� �� 1
2σ2

tr ZeD tð ÞZT
� �

� 1
2σ2

y� Xβ� Zeb tð Þ
� �T

y� Xβ� Zeb tð Þ
� �

� 1
2
tr D�1eD tð Þ
� �

� 1
2
ebTtð ÞD�1eb tð Þ � 1

2
log Dj jð Þ

¼ � n
2
log 2πσ2

� �� 1
2σ2

tr ZeD tð ÞZT
� �

þ y� Xβ� Zeb tð Þ
� �T

y� Xβ� Zeb tð Þ
� �� 	

� 1
2

tr eD tð Þ þ eb tð ÞebTtð Þ� �
D�1

h i
þ log Dj jð Þ

n o

where eD tð Þ = D�1
tð Þ þ σ�2

tð Þ Z
TZ

� ��1
, eb tð Þ = σ�2

tð Þ eD tð ÞZT y� Xβ tð Þ
� �

, and β(t), σ2tð Þ, and

D(t + 1) are the current values of β, σ
2, and D, respectively.

M Step

The second step of the EM algorithm is the M step, which consists of updating the
parameters by maximizing the conditional expected value of the complete likeli-
hood. First, we can observe that for any value of θ, the value of β that maximizes
Q(β, θ| β(t), θ(t)) is given by

β tþ1ð Þ ¼ XTX
� ��1

XT y� Zeb tð Þ
� �

which does not depend on the chosen values of θ, but rather specifically on
the chosen values of σ2 and D. Then by equating to zero, the derivative of
Q(β(t + 1), θ| β(t), θ(t)) with respect to σ2, and solving for σ2, we can obtain that the
value of σ2 that maximizes Q(β(t + 1), θ| β(t), θ(t)), for D fixed, is given by

σ2tþ1ð Þ ¼
1
n

tr ZeD tð ÞZT
� �

þ y� Xβ tþ1ð Þ � Zeb tð Þ
� �T

y� Xβ tþ1ð Þ � Zeb tð Þ
� �� 	

which is independent of the value ofD. Now, according to result 4.10 in Johnson and
Wichern (2002), the value of D that maximizes Q(β, θ| β(t), θ(t)) is given by

D tþ1ð Þ ¼ eD tð Þ þ eb tð ÞebTtð Þ
and does not depend on β and σ2. So, by joining the above optimization, we have the
M step that consists of updating the parameters β, σ2, and D, with β(t + 1), σ2tþ1ð Þ, and
D(t + 1), respectively. At this point, we can observe that the current value of the
parameters β(t), σ2tð Þ, and D(t) are used in the computation of eb and eD.

In the case of D ¼ σ2gA, where A is a known matrix (the case in some genomic
prediction models, where A corresponds to the genomic relationship matrix, the
pedigree matrix, or the environmental matrix), the unique variance parameters to
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estimate are σ2g and σ2, that is, θ ¼ σ2g, σ
2

� �� �
. In the same fashion, very often in

genomic applications but also in a more general setting, D ¼
Diag σ21A1, . . . , σ2K AK

� �
, where Ak represents a known variance–covariance matrix

(or correlation) structure (genomic relationship matrix, pedigree relationship matrix,
etc., Burgueño et al. 2012) between the different random effects included. In this
context, the variance component parameters to estimate are σ2k , k ¼ 1, . . . ,K, and
σ2 θ ¼ σ21, . . . , σ

2
K , σ

2
� �� �

, where Ak, k ¼ 1, . . ., K, are positive defined known
matrices of dimensions qk � qk, k ¼ 1, . . ., K, such that

PK
k¼1qk ¼ q, the E step can

be reduced (see Appendix 2) to

Q β,θjβ tð Þ,θ tð Þ
� �

¼�n
2
log 2πσ2

� �� 1
2σ2

tr ZeD tð ÞZT
� �

þ y�Xβ�Zeb tð Þ
� �T

y�Xβ�Zeb tð Þ
� �� 	

�1
2

XK
k¼1

σ2k tð Þ
σ2k

qk�σ2k tð Þtr AkZ
T
kV

�1
tð Þ Zk

� �
þσ�2

k tð ÞebTk tð ÞA
�1
k
ebk tð Þ

h i
þqk log σ2k

� �þ log Akj jð Þ
( )

,

where V(t) is the marginal matrix of variance–covariance of the response vector in the
current value of the parameters, Z = [Z1Z2⋯ZK] is the partitioned design matrix of
random effects, with Zk n � qk, the corresponding matrix design for the random

effects k, bk (b
T ¼ bT1 , . . . , b

T
K

� �
), ebTtð Þ = ebT1 tð Þ, . . . ,ebTK tð Þ

� �
, and σ2k tð Þ, k ¼ 1, . . . ,K,

are the current values of the variance parameters. Finally, for this specific model, the
maximization updates for the beta coefficients and variance components are the
same as before, where the variance components are

σ2k tþ1ð Þ ¼
1
qk

σ2k tð Þ qk � σ2k tð Þtr AkZ
T
kV

�1
tð Þ Zk

� �
þ σ�2

k tð ÞebTk tð ÞA
�1
k
ebk tð Þ

h i
, k ¼ 1, . . . ,K:

These are obtained by maximizingQ(β, θ| β(t), θ(t)) (defined above) with respect to
σ2k , k ¼ 1, . . . ,K:

5.2.1.2 REML

An alternative to the ML estimation of the variance components of model (5.1) and
to avoid the underestimation of the maximum likelihood method is the restricted
maximum likelihood estimation method (REML) proposed by Patterson and
Thompson (1971). Among the several ways to define this, one is discussed by
Laird and Ware (1982), which under a Bayesian paradigm, consists of estimating
the parameters of the variance components by maximizing the marginal posterior
distribution of the variance components by assuming a “locally” uniform prior to the
distribution for β and θ, that is, f(β, θ) / 1 (Pinheiro and Bates 2000). The marginal
posterior of the variance components is given in Appendix 3
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f θjyð Þ /
Z

f β, θjyð Þdβ /
Z

f yjβ, θð Þdβ

/ Vj j�1
2 XTV�1X


 

12 exp � 1

2
y� Xeβ� �T

V�1 y� Xeβ� �� �
,

where eβ ¼ XTV�1X
� ��1

XTV�1y, which corresponds to the maximum likelihood of
the fixed effects when the variance components are assumed known as generalized
least squares estimates of β (GLS). Then, the restricted maximum likelihood esti-
mators (REML) θ are those that maximize f(θ| y), or equivalently, the REML θ can
be defined as maximizing the

ℓR θ; yð Þ= � 1
2
log XTV�1X



 

� �� 1
2
log Vj jð Þ � 1

2
y� Xeβ� �T

V�1 y� Xeβ� �
This function is known as the restricted likelihood because it can be shown that

this also corresponds to the likelihood associated with the maximum number
(n � p � 1) of linearly independent error contrasts FY, where F is a full row rank
(n � p � 1) � n known matrix such that FX ¼ 0. It is important to point out that the
associated likelihood based on the transformed data, FY, gives the same result for
any chosen contrast error matrix F and, consequently, this is invariant to fixed effect
parameters (Harville 1974). Equivalently, the REML of β and θ can be defined as
those that maximize the

ℓR β, θ; yð Þ= � 1
2
log XTV�1X



 

� �� 1
2
log Vj jð Þ � 1

2
y� Xβð ÞTV�1 y� Xβð Þ

This objective function is like the natural logarithm of likelihood function given
in Eq. (5.2) (log-likelihood) except for the first term. To obtain the REML solutions
or the maximum a posteriory (when adopting a locally uniform prior for the
parameter, as described before) of the variance components parameters, (like for
the MLE) numerical methods are required. See Jennrich and Schluchter (1986) and
Lindstrom and Bates (1988) for details on the Newton–Raphson and Fisher Scoring
algorithms; consult the lme4 R package (Bates et al. 2015) which uses a generic
nonlinear optimizer and implements a large variety of different models (MLE and
REML) that arise from the LMMwhen different structures of the variance of random
effects and errors are adopted. For a derivation of the EM algorithm to obtain the
REML, see Laird andWare (1982) under model (5.1) for longitudinal data; this same
approach can be used for the genomic model previously described, where D ¼
Diag σ21A1, . . . , , σ2K AK

� �
and R = σ2In. Consult Searle (1993) and Covarrubias-

Pazaran (2016, 2018) for an implementation of this algorithm with the EM function
in the sommer R package.
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5.2.1.3 BLUPs

In many situations, in addition to the estimation of the fixed effects, the prediction of
the random effects is also of interest. A standard method for “estimating” the random
effects is the best linear unbiased predictor (BLUP; Robinson 1991), which origi-
nally was developed by Henderson (1975) in animal breeding for estimating merit in
dairy cattle and is now commonly employed in many research areas (Piepho et al.
2008). If the variance components D and R are known, the best linear unbiased
predictor (BLUP) of the random effects b is given by

eb� ¼ DZTV�1 y� Xeβ� �
,

where eβ ¼ XTV�1X
� ��1

XTV�1y is the generalized least squared (GLS) estimator of
β. This can be obtained by maximizing with respect to β and b, the joint density of y
and b, fY,b(y, b), and is the reason why Harville (1985) called these estimates of
realized values b (McLean et al. 1991), or likewise by solving the mixed model
equations (MME) (Henderson 1975):

XTR�1X XTR�1Z

ZTR�1X ZTR�1Zþ D�1

" # eβeb�
24 35 ¼

XTR�1y

ZTR�1y

" #

from which the inversion of the variance–covariance matrix of Y is avoided, which
can be helpful in some situations to save considerable computational resources. Note
that eb� corresponds to the posterior mean of the random effects where the fixed
effects are replaced by its GLS (Searle et al. 2006).

When the variance components are unknown, which is most often the case, they
are frequently estimated using restricted maximum likelihood estimators, which
replace them in the corresponding equations. Then, the approximate best linear
unbiased predictor is obtained and is referred to as the estimated or empirical best
linear unbiased predictor (EBLUP) (Rencher 2008).

To solve the mixed model equations, there are several software packages that can
be useful, but one in particular in the genomic context is the sommer package
(Covarrubias-Pazaran 2016, 2018) that internally solves the MME after the variance
components are estimated. The github version of the sommer R package can be
accessed at https://github.com/cran/sommer and can be installed with the following
commands:

install.packages('devtools');
library(devtools);
install_github('covaruber/sommer')
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5.3 Linear Mixed Models in Genomic Prediction

In a simple genomic prediction context where b includes the genotype effects, and
the genomic relationship matrix (VanRaden 2008), that is, G is available, very often
the assumed variance–covariance matrix of the random effects is σ2gG and the errors
are assumed as independently and identically distributed, R = σ2In, where n is the
total number of observations. In this case, the resultant model is known as the
GBLUP model and when the pedigree is used, it is referred to as PBLUP. Another
kind of information between lines can also be used, such as the relationship matrices
derived from hyperspectral reflectance information (Krause et al. 2019). Other
extensions of this model can be developed by taking into account other factors, for
example, genotype� environment interaction, as will be illustrated later in the
genomic prediction context.

In this case, where only the genotypic effects are taken into account, in the linear
mixed model (5.1), the fixed effects design matrix is X ¼ 1n, where the vector of
length n corresponds to the general mean β = β0, b = (b1, b2, . . ., bJ)

T contains the
genotypic effects of J lines, and Z is the incidence matrix design for the random line
effects (ZL):

Y ¼ 1nμþ ZLbþ e, ð5:3Þ

where b � NJ 0, σ2gG
� �

and R = σ2In.

The basic code to implement the GBLUP model (5.3) with the sommer package is
the following:

A = mmer(y ~ 1,random= ~ vs(GID,Gu=G) , rcov= ~ vs(units),
data=dat_F, verbose=FALSE)

where y and GID are the column names that contain the response variable and
genotypes in data set dat_F. G is the genomic relationship matrix for lines which is
specified in the Gu argument, that in general serves to provide a known variance–
covariance matrix between the levels of the random effects (GID). In the “rcov”
option, the argument “units” is always used to specify the error term.

5.4 Illustrative Examples of the Univariate LMM

Example 1 To illustrate the performance of the LMM in a genomic prediction
context doing the fitting process with the sommer package, we considered a wheat
data set that consisted of 500 markers measured for each line as the genomic
information, and with 229 observations in total that registered grain yield (tons/
ha): 30 lines in four environments with one or two repetitions.
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The prediction performance of the model given in Eq. (5.3) (M1) was evaluated with
10 random partitions, where each partition was made up of two subsets, one
containing 80% of the data and used for training the model, and the other containing
the remaining 20% of the data and used to evaluate the prediction performance of the
model in terms of the mean squared error of prediction (MSE).

Furthermore, this model assumes that the errors were independently and identi-
cally distributed as e � Nn(0, σ

2In); independently of the genotypic effects, b was
assumed multivariate normal with a null mean vector and a variance–covariance
matrix equal to σ2gG, where the genomic relationship matrix was computed with the
information of the 500 markers.

The variance components parameters, in this case σ2g and σ2, were estimated by
restricted maximum likelihood estimation with the mmer function in the sommer
package, using the default algorithm optimization, the Newton–Raphson method.
For univariate response variables, the EM algorithm through the EM function in this
R package can also be used.

The results are shown in Table 5.1, where we also present the Pearson’s corre-
lation (PC) and MSE of the same model but without taking into account the
information of the genomic relationship between lines (G), that is, the variance–
covariance matrix for the genotypic effects is assumed to be Var bð Þ ¼ σ2gIJ . This
model is referred to asM10. From this table, we can observe that modelM10 shows
a slightly better performance in terms of both MSE and PC criteria than the M1
model: the MSE of model M1 is 3.15% greater than the MSE ofM10, while the PC
of the M10 is 3.94% greater than the corresponding M1 model. The better average
performance was observed with model M10, which did not consider genomic
information, suggests that the marker information in this particular case did not
provide useful information; however, in general, this is not expected when using

Table 5.1 Prediction performance of the GBLUP model (5.3, M1) and the model (5.3) that results
from ignoring the genomic information (M10): mean squared error of prediction (MSE) and
Pearson’s correlation (PC), and its standard deviation for each criterion is reported for each partition

M1 M10

PT MSE PC MSE PC

1 0.7025 0.6917 0.6924 0.6969

2 0.4583 0.6681 0.4407 0.7044

3 0.5075 0.5251 0.4923 0.5506

4 0.4719 0.6024 0.4468 0.6328

5 0.6433 0.5479 0.6433 0.5307

6 0.3657 0.5088 0.3569 0.5255

7 0.6923 0.5081 0.6777 0.5243

8 0.3285 0.5054 0.2952 0.57

9 0.4364 0.6855 0.429 0.6962

10 0.6807 0.6374 0.6513 0.6811

Average (SD) 0.5287 (0.14) 0.5881 (0.078) 0.5126 (0.143) 0.6112 (0.078)
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marker information for prediction, although this could change with larger data sets
(more lines and more markers) or by improving the quality of the available data.

The R code to reproduce this result is given in Appendix 4. This can be adapted
easily to another CV strategy of interest where the objective, for example, can be the
prediction of non-observed lines in some environments or the prediction of lines in a
future year.

An extension of the GBLUP model is the G�E BLUP model that takes into
account the main environmental effects, the genotypic effects, and the genotype
�environment interaction effects:

Y ¼ 1nμþ XEβE þ ZLb1 þ ZELb2 þ e ð5:4Þ

where now the fixed effects are part of the linear mixed model (5.1) that was
explicitly split into the general mean part (1nμ) and the environment effects term
(XEβE), X¼ [1nXE] and β= μ, βTE

� �T
. Similarly, for the random effects, Z¼ [ZL ZEL]

and b= bT1 , b
T
2

� �T
, where b1 and b2 were the vectors with the random genotypic

effects and the vector with the random genotype�environment interaction effects,
with incidence matrix ZL and ZEL, respectively. For b1, the same distribution as the

GBLUP model was assumed, b1 � NJ 0, σ2gG
� �

, and for the second random effect,

b2~NJ(0,ΣE ⨂ G), where ΣE ⨂ G is the relationship matrix of the
genotype�environment interaction term, with ΣE the genetic variance–covariance
matrix between I environments; the ith element of the diagonal of ΣE, σ2Ei, is the
genetic variance in environment i, i ¼ 1, . . ., I, and σEikG is the genetic variance–
covariance matrix for lines in environments i and k, where σEik is the element (i, k) of
ΣE.

When ΣE has a non-diagonal structure, the information from the genomic rela-
tionship matrix and the correlated environments can be helpful for improving the
prediction performance of the model by borrowing information between lines inside
an environment and between lines across and among environments (Burgueño et al.
2012).

Example 2 To illustrate how model (5.4) can be implemented using the sommer
package, the same data used in Example 1 are considered, where the same 30 geno-
types are in the four environments. Besides the line indicator (GID), environment
information (Env) was also available in the data set, which was needed for
implementing model (5.4). The adopted structure for the variance–covariance matrix
between environments is ΣE ¼ σ2EGII and the resulting model is referred to as M2.
Another explored model (M20) was obtained under the same specification, with the
difference that G was set equal to the identity matrix.

Using the same validation scheme that was used in Example 1, the results for each
of the 10 random partitions are shown in Table 5.2, in which, for illustrative
purposes, model (5.3) plus environment as a fixed effect (M11) is also included,
that is,
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Y ¼ 1nμþ XEβE þ ZLbþ e,

where μ, βE, and b are as before (5.3), and XEβE is the predictor term corresponding
to the environment fixed effects.

From Table 5.2 we can observe yet again a moderately better performance of
model M20 that does not take into account the genomic information. Model M2 also
confirms the lack of usefulness of the marker information in this case, but again, this
in general is expected to change for other data sets with a greater number of lines,
markers, or more data quality. The MSE of model M2 is 5.11% greater than the MSE
of model M20, while the PC value of this last model is 6.98% greater than the
corresponding PC value obtained with the M20 model. When comparing the M20
model and M11, the MSE of this last model is just 0.075% greater than the
corresponding MSE of M20, but when considering the PC value, the first model
resulted in 13.98% greater than model (5.1) plus the environment effect. Indeed,
because of the high variation observed across partitions (SD values of PC and MSE),
there is no significant difference between models in Table 5.2.

Furthermore, in terms of the average MSE, the model with the best performance
between those presented in Table 5.1 (M10) is 13.73% greater than the average MSE
of the best performance model between those compared in Table 5.2 (M11), while in
terms of the average Pearson’s correlation, the best model in Table 5.2 (M20) is
25.42% greater than the average Pearson’s correlation of the best model in Table 5.1.
The worse average MSE performance of those in Table 5.1 (M1) is 17.31% greater
than the best average MSE performance in Table 5.2 (M20), and the best average PC

Table 5.2 Prediction performance of two sub-models of (5.4): model M2 in which Var b1ð Þ ¼ σ2gG

, b2~NJ(0,ΣE ⨂ G) and ΣE ¼ σ2EGII (M2); and model M20 that is the same as model M2 but the

genomic information is not taken into account, that is, G ¼ IJ

M2 M20 M11

PT MSE PC MSE PC MSE PC

1 0.5641 0.8198 0.5364 0.8576 0.5658 0.8168

2 0.4292 0.7645 0.4014 0.8393 0.4447 0.6424

3 0.3865 0.7873 0.3621 0.8497 0.4246 0.6422

4 0.45 0.6997 0.401 0.7897 0.3853 0.6992

5 0.6879 0.5307 0.6636 0.5902 0.595 0.5933

6 0.3048 0.6802 0.2819 0.7326 0.3267 0.5777

7 0.6405 0.6823 0.6369 0.7066 0.558 0.6914

8 0.4132 0.5261 0.4053 0.5562 0.2999 0.5817

9 0.3217 0.8384 0.2978 0.8869 0.3457 0.7797

10 0.5397 0.8368 0.5206 0.8572 0.5647 0.7307

Average
(SD)

0.4738
(0.13)

0.7166
(0.116)

0.4507
(0.133)

0.7666
(0.117)

0.451
(0.112)

0.6755
(0.083)

M11 is referred to as model (5.3) plus environment effects (Env). The mean squared error of
prediction (MSE) and Pearson’s correlation (PC) for each partition are reported. SD is the standard
deviation
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performance in Table 5.2 (M20) is 30.37% greater than the worse average PC
performance in Table 5.1 (M1). Actually, the best average MSE model in
Table 5.1 (M10) is 8.19 greater than the worse average MSE model in Table 5.2
(M2), while the worse average PC model in Table 5.2 (M11) is 10.51% greater than
the average PC model in Table 5.1 (M10).

The R code to reproduce these results is given in Appendix 5.
Other versions of model (5.4) can be obtained by adopting other variance–

covariance structures. For example, another version of model (5.4) can be obtained
when environment covariates are available (W) and they are used to model the G� E
predictor term, specifically when the genetic variance–covariance matrix between
environments, ΣE, is modeled by ΣE ¼ σ2EGO, where O ¼ 1

pw
WWT and the similarity

between environments is computed like the genomic relationship matrix (G), using
the information of pw environment covariates (Jarquín et al. 2014; Martini et al.
2020), or where O is obtained from phenotypic correlations across environments
from related historical data (Martini et al. 2020). In the sommer package, this can be
implemented using the following basic R code:

O = diag(I)#Specified the O matrix for the I environments
dat_F$Env_GID = paste(dat_F$Env,dat_F$GID,sep='_')
GE = kronecker(O,G)
rnGWE = expand.grid(row.names(G),unique(dat_F$Env))
row.names(GE) = paste(rnGWE[,2],rnGWE[,1],sep='_')
colnames(GE) = row.names(GE)
A = mmer(y ~ Env, random= ~ vs(GID,Gu=G)+ vs(Env_GID,Gu = GE),

rcov= ~ vs(units), data=dat_F)

Other more complex models can be explored with the sommer package when
more data information is available, such as specifying an unstructured variance–
covariance matrix for ΣE. A simpler model is the non-correlated heterogeneous
variance components (for environments) which arises by assuming a diagonal
structure, ΣE ¼ Diag σ21, . . . , σ

2
I

� �
. This can be implemented by replacing the inter-

action term in the predictor in sommer vs(Env,Gu¼G) by vs(ds(Env),GID,Gu¼G).
Similarly, for a specific environment residual variance, vs(units) need to be replaced
by vs(ds(Env),units) or vs(at(Env),units). See Appendix 7 for a basic code to
implement all these models and see Covarrubias-Pazaran (2018) for more variance
structures that can be exploited in this model.

5.5 Multi-trait Genomic Linear Mixed-Effects Models

In some genomic applications, there are several traits of interest and all of them are
measured in some lines but in other lines only subsets of those traits are measured.
Although separate univariate genomic linear mixed models can be performed to
analyze all measured traits, sometimes single univariate genomic models do not

152 5 Linear Mixed Models



work well, especially in traits with low heritability. When low heritability traits have
at least moderate correlation with high heritability traits, the prediction performance
ability for these low heritability traits could strongly increase by using a multi-trait
model (Jia and Jannink 2012; Montesinos-López et al. 2016; Budhlakoti et al. 2019).

If for each line ( j¼ 1, . . .J ), nT traits are measured, Yjt, t¼ 1, . . .nT, the multi-trait
genomic linear mixed-effects model adopts an unstructured covariance matrix for
the residuals between traits and for the random genotypic effects between traits, and
similar to the univariate trait models (5.3), this can be expressed as

Y j1

Y j2

⋮
Y jnT

26664
37775 ¼

μ1
μ2
⋮
μnT

26664
37775þ

g j1

g j2

⋮
gjnT

26664
37775þ

E j1

E j2

⋮
EjnT

26664
37775, j ¼ 1, . . . , J, ð5:5Þ

where μt, t ¼ 1, . . ., nT, are the specific trait means, gjt, t ¼ 1, . . ., nT, are the specific
trait genotypic effects, and Ejt, t ¼ 1, . . ., nT, are the random error terms
corresponding to each trait. Furthermore, b= gT1 , . . . , g

T
J

� �T � N 0,G⨂ΣTð Þ, g j ¼
g j1, . . . , g jnT

� �T
, j ¼ 1, . . ., J, and e j ¼ E j1, . . . , E jnT

� �T
, j ¼ 1, . . ., J, are

independent multivariate normal random vectors with null mean and variance RnT ,
ΣT is nT � nT matrix that represents the genetic covariance between traits, and ⨂ is
the Kronecker product.

In matrix notation, it is the linear mixed model (5.1) where Y = YT
1 , . . . ,Y

T
J

� �T
,

Y j ¼ Y j1, . . . ,Y jnT

� �T
, X= 1J⨂InT , β ¼ μ= μ1, . . . , μnT

� �T
, Z= InTJ ,

b ¼ gT1 , . . . , g
T
J

� �T
, e ¼ eT1 . . . e

T
J

� �T � N 0, IJ⨂RnTð Þ, and b= gT1 , . . . , g
T
J

� �T �
N 0,G⨂ΣTð Þ: Similarly, the extended model that arises by adding more fixed effects
(X) can be specified by adding a term Xβ to the predictor:

Y ¼ 1IJ⨂InTð Þμþ Xβþ Zbþ e ð5:5aÞ

When ΣT and R are diagonal matrices, model (5.5) is equivalent to separately
fitting a univariate GBLUP model to each trait.

The R code to fit this multivariate model with the sommer package is

A = mmer(cbind(T1,. . .,TnT) ~x1+x2+. . .+xp ,
random= ~ vs(GID,Gu=G), rcov= ~ vs(units), data=dat_F)

where y and GID are again the column names corresponding to the response vari-
ables and genotypes in data set dat_F, while T1, . . ., TnT are the column names of
the matrix of response variables (y) in dat_F corresponding to the traits to be used,
and similarly, x1, x2,. . ., xp are the column names of p covariates to be included in
the fitting process (see below the R code for Example 3). The rest of the arguments
are the same as those described in the R code of model 5.3.
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Example 3 To illustrate the fitting of the multi-trait genomic model (5.5) (M3), we
considered the same data set used in Examples 1 and 2, but with the addition of trait
(y2) to be able to explore the implementation of a bivariate trait genomic model. The
same CV strategy implemented in Example 1 was used. In addition to model (5.5),
we also evaluated a sub-model that was obtained by considering a diagonal structure

for ΣT, that is, ΣT ¼ Diag σ2T1
, σ2T2

� �
. This model will be referred to as M32.

The results are in Table 5.3. On average, the two evaluated models (M3 and M32)
showed a similar performance in terms of the two criteria used, MSE and PC, for
both traits, but in all partitions a slightly better performance was observed in favor of
model M3. For trait T1, the simpler model (M32) gave an MSE 0.785% greater than
model M3, while the more complex model (M3) gave a PC only 1.066% greater than
that of model M32. The difference was less for the second trait (T2), where the
average MSE of M32 was only 0.165% greater than the one corresponding to model
M3, while the PC of M3 was only 0.046% greater than the PC of M32.

Furthermore, note that the difference between the univariate models presented in
Tables 5.1 and 5.2 and the multivariate models of Table 5.3 is not significant (only
on average the models in Table 5.2 result better than models in Table 5.1) because
the large standard deviation observed across partitions in MSE and PC, which in this
case indicate that the multivariate model does not help improve the prediction
accuracy in the trait of interest (first trait). But as commented before, this benefit
could be obtained with more related auxiliary secondary traits and larger data sets of
good quality.

Table 5.3 Prediction performance of a bivariate trait model (5.5)

Models M3 M32

Trait T1 T2 T1 T2

PT MSE PC MSE PC MSE PC MSE PC

1 0.6959 0.6954 0.0978 0.984 0.6973 0.6939 0.0982 0.9835

2 0.4476 0.6851 0.1411 0.9256 0.4526 0.6759 0.1409 0.9253

3 0.494 0.5448 0.0446 0.9846 0.503 0.5315 0.0436 0.985

4 0.4636 0.6125 0.1258 0.9665 0.4674 0.6079 0.1266 0.9663

5 0.6398 0.5496 0.1588 0.9306 0.6413 0.5489 0.1596 0.93

6 0.3598 0.5192 0.0691 0.9775 0.3632 0.5134 0.0693 0.9772

7 0.6864 0.514 0.0273 0.9953 0.691 0.5094 0.0272 0.9951

8 0.3104 0.5421 0.2011 0.9492 0.3187 0.5267 0.2 0.9482

9 0.4394 0.678 0.1983 0.9468 0.4359 0.6833 0.2005 0.9452

10 0.6685 0.6575 0.0838 0.974 0.6759 0.644 0.0837 0.9738

Average
(SD)

0.5205
(0.142)

0.5998
(0.074)

0.1148
(0.061)

0.9634
(0.024)

0.5246
(0.141)

0.5935
(0.076)

0.115
(0.061)

0.963
(0.024)

This model is referred to as M3 and when assuming a diagonal structure for ΣT, ΣT ¼
Diag σ21T , σ

2
2T

� �
, it is referred to as M32. The mean squared error of prediction (MSE) and Pearson’s

correlation (PC) for each trait in each partition are reported. SD is the standard deviation
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The R code to obtain the results given in Table 5.3 is provided in Appendix 6. At
the end of this Appendix, in the comment lines, the code is also available for a CV
strategy, when we are interested in evaluating the performance of a bivariate model
where only trait y2 is missing in testing data set and all the information of the other
trait (y1) is available. This could be useful in real applications where the interest lies
in predicting traits that are difficult or expensive to measure, with the phenotypic
information of correlated traits that are easy or inexpensive to measure (Calus and
Veerkamp 2011; Jiang et al. 2015). Of course, the code could be adapted for any
other relevant strategy.

In a similar fashion, just as univariate genomic linear mixed model (5.4), model
(5.5) can be directly extended to a model that considers the genotype �environment
interaction term. Next, we do this for the balanced case, and for this we assume that
for each environment i ¼ 1, . . ., I, J lines were phenotyped for nT traits, Yijt, t ¼ 1,
. . ., nT. In matrix notation, the extended G� E model (5.4) plus fixed effects (Xβ) is
given by

Y ¼ 1IJ⨂InTð Þμþ Xβþ ZLb1 þ ZELb2 þ e, ð5:6Þ

where Y = YT
1 . . .Y

T
I

� �T
, Y i = YT

i1, . . . ,Y
T
iJ

� �T
, Y ij = Y ij1, . . .Y ijnT

� �T
, i ¼ 1, . . .,

I, j ¼ 1, . . ., J, 1IJ is the vector of ones of order IJ, InT is the identity matrix of
dimension nT, μ= μ1, . . . , μnT

� �T
is the vector with the general specific trait means,

ZL = 1I⨂InTJ and ZEL = IIJnT are the incidence matrices of genotype random effects
(b1) and the incidence matrices of the genotype�environment interactions random
effects (b2), respectively, with b1 = gT1 , . . . , g

T
J

� �T
and b2 = gT21, . . . , g

T
2I

� �T
, g j ¼

g j1, . . . , g jnT

� �T
, g2i = gT2i1, . . . , g

T
2iJ

� �T
, and g2ij = g2ij1, . . . g2ijnT

� �T
, i ¼ 1, . . .,

I, j ¼ 1, . . ., J. In addition, it is assumed that e ¼ eT1 . . . e
T
I

� �T � N 0, IIJ⨂RnTð Þ ,
b1 � N(0,G ⨂ ΣT), and b2 � N(0,ΣE ⨂ G ⨂ Σ2T).

This shows that when ΣT, Σ2T, ΣE, and R are diagonal matrices, model (5.6) is
equivalent to separately fitting a univariate GBLUP model for each trait.

Example 4 To illustrate the fitting and evaluation process of model (5.6), we
considered a data set that contains the information of two traits, for which
150 lines were phenotyped each in two environments, and given a total of 300 bivar-
iate phenotypic data points. Also, a genomic relationship matrix for the lines is
available that was computed with marker information.

The first explored model is referred to as M4 and assumes an unstructured
variance–covariance matrix for all the components in model (5.6), except for the
assumption that ΣE = II, i.e., the model assumes the same variance–covariance
among environments. In addition to this model (M4), three sub-models were also
explored: M42, which considers a diagonal structure for the genetic variance–

covariance between traits, Σ2T ¼ Diag σ21T1
, σ21T2

� �
, model M43 in which Σ1T ¼

Diag σ21T1
, σ21T2

� �
and Σ2T ¼ Diag σ22T1

, σ22T2

� �
, and model M44 which is the same as
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M43 but with an assumed diagonal variance–covariance matrix structure for the

error, R ¼ Diag σ2e1 , σ
2
e2

� �
.

The results are shown in Table 5.4, from which we can observe that for trait
1 (GY), the best performance under both criteria (MSE and PC) was obtained with
the more complex model: M4. For this trait (GY), the MSE of models M42, M43,
and M44 were 7.53%, 8.21%, and 8.17%, respectively, greater than the MSE of

Table 5.4 Prediction performance of some sub-models of model (5.6)

Model M4 M42

Trait T1 (GY) T2 (Testwt) T1 (GY) T2 (Testwt)

PT MSE PC MSE PC MSE PC MSE PC

1 0.1895 0.5962 1.0291 0.6416 0.1717 0.5691 0.9357 0.6942

2 0.2414 0.5091 0.8139 0.6466 0.2444 0.5127 0.7199 0.6965

3 0.2638 0.8089 1.2914 0.5875 0.2324 0.5661 1.0839 0.7705

4 0.475 0.1266 0.9975 0.7118 0.4856 0.101 1.0271 0.6846

5 0.2728 0.2237 0.8053 0.6897 0.272 0.2402 0.8 0.683

6 0.2919 0.7391 1.031 0.5288 0.29 0.373 0.6211 0.7809

7 0.2413 0.4145 1.0778 0.7836 0.3155 0.2617 1.1276 0.7808

8 0.1696 0.7954 1.0456 0.538 0.1785 0.4238 1.1182 0.726

9 0.2412 0.8813 1.0937 0.4014 0.3293 0.3998 1.9201 0.6492

10 0.2078 0.9006 1.4155 0.3746 0.2704 0.6108 1.7571 0.6505

Average
(SD)

0.2594
(0.085)

0.5995
(0.275)

1.0601
(0.186)

0.5904
(0.132)

0.279
(0.089)

0.4058
(0.166)

1.1111
(0.422)

0.7116
(0.051)

Model M43 M44

Trait T1 (GY) T2 (Testwt) T1 (GY) T2 (Testwt)

PT MSE PC MSE PC MSE PC MSE PC

1 0.1717 0.5602 0.9354 0.7015 0.1716 0.5438 0.9623 0.7053

2 0.25 0.4885 0.7258 0.6987 0.2515 0.4383 0.7536 0.6907

3 0.2344 0.5482 1.1496 0.7698 0.2324 0.5182 1.2674 0.7631

4 0.4956 0.0226 1.0861 0.6277 0.4852 �0.055 1.1752 0.5615

5 0.274 0.2154 0.806 0.6778 0.2738 0.1416 0.8357 0.66

6 0.2895 0.3758 0.6211 0.7803 0.2909 0.3468 0.6096 0.7864

7 0.2925 0.319 1.0604 0.7936 0.3001 0.2746 1.0997 0.7856

8 0.1782 0.4247 1.1177 0.7261 0.1828 0.3739 1.1289 0.7139

9 0.324 0.4071 1.9091 0.6488 0.3306 0.3438 1.9212 0.6499

10 0.2974 0.5764 1.8732 0.6506 0.2874 0.5483 1.9158 0.6434

Average
(SD)

0.2807
(0.091)

0.3938
(0.173)

1.1284
(0.439)

0.7075
(0.059)

0.2806
(0.088)

0.3474
(0.191)

1.1669
(0.445)

0.696
(0.071)

Model (5.6) with ΣE ¼ II is referred to as M4, and if additionally, Σ2T ¼ Diag σ21T1
, σ21T2

� �
, the

model is referred to as M42. Model M42 but with Σ1T ¼ Diag σ21T1
, σ21T2

� �
is referred to as M43,

and model M44 is the same as M43 but with R ¼ Diag σ2e1 , σ
2
e2

� �
. The mean squared error of

prediction (MSE) and Pearson’s correlation (PC) for each trait in each partition are reported. SD is
the standard deviation
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model M4. For the same trait (GY), the PC of model M4 was 47.73%, 52.24%, and
72.57%, greater than the PC of models M42, M43, and M44, respectively.

For the second trait (Testwt), model M4 also showed the best performance, but
only under the MSE criteria: the MSE of models M42, M43, and M44 were 4.81%,
6.44%, and 10.08%, respectively, greater than the MSE corresponding to model M4,
also suggesting an increasing degradation pattern in the MSE performance as the
model became simpler with fewer parameters to estimate in relation to M4. In terms
of PC, the best performance was achieved with model M42, which gave 20.54%,
0.583%, and 2.247% greater performances than models M4, M43, and M44,
respectively.

Appendix 7 shows the R code used to reproduce the results in Table 5.4 with the
sommer package. At the end of this code, we also included the basic code to explore
other variance–covariance structures. Specifically, this is the code used to explore
the model with heterogeneous genetic variance–covariance matrix, Σ2T, across
environments, that is, g2i � N(0,G ⨂ Σ2iT), i ¼ 1, . . ., I, which are assumed
independent across environments.

5.6 Final Comments

The multi-trait linear model proposed by Henderson and Quaas (1976) in animal
breeding can bring benefits in comparison to single-trait modeling for the improve-
ment of prediction accuracy when incorporating correlated traits, as well as for
obtaining an optimal and simplified total merit selection index (Okeke et al. 2017).

When the goal is to predict difficult or expensive traits that are correlated with
inexpensive secondary traits, the use of multi-trait models could be helpful in
developing better genomic selection strategies. Similarly, improvement of the accu-
racy of prediction for low-heritability key traits can follow from the use of high-
heritability secondary traits (Jia and Jannink 2012; Muranty et al. 2015). Further-
more, this can be combined with the information of traits obtained using the speed
breeding methodology to shorten the breeding cycles and accelerate breeding pro-
grams (Ghosh et al. 2018; Watson et al. 2019).

While the advantage of the multi-trait model is clearly documented, larger data
sets and more computing resources are required, as there are additional parameters
that need to be estimated (genetic and error covariances), which may affect the
accuracy of genomic prediction. Additionally, convergence problems often arise
when implementing complex mixed linear models and especially when small data
sets are used.

Although the application of multi-trait models can be easily adapted with regard
to genetic correlation, heritability, training population composition, and size of data
sets, some other factors need to be carefully considered when using these methods
for the improvement of genomic accuracy predictions (Lorenz and Smith 2015;
Covarrubias-Pazaran et al. 2018). For example, biased and suboptimal choices
between univariate and multi-trait models can result from using auxiliary traits that
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are measured on individuals to be tested, but appropriate cross-validations strategies
could be helpful in determining the usefulness of combining the multi-trait infor-
mation with multi-trait models (Runcie and Cheng 2019).

Appendix 1

f bjY bjyð Þ / f Yjb yjbð Þ f b bð Þ
/ 1

2πσ2ð Þ�n
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exp � 1

2σ2
y� Xβ� Zbð ÞT y� Xβ� Zbð Þ � 1

2
bTD�1b

h i
/ exp � 1

2
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� �
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Appendix 2

Because (ABAT + C)�1 ¼ C�1 � C�1A(ATC�1A + B�1)21ATC�1 (Johnson and
Wichern (2002)), then

eD ¼ Dþ σ�2ZTZ
� ��1 ¼ D� DZT ZDZT þ σ2In

� ��1
ZD

and thus

tr eD tð Þ
D�1

� �
¼ tr D tð Þ � D tð ÞZT ZD tð ÞZT þ σ2 tð ÞIn

� ��1
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� 	

¼
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k

σ2k
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T
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,

where V�(t) ¼ (ZD(t)ZT + σ2(t)In)
�1.
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Appendix 3

Because
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Appendix 4

R code for Example 1:

rm(list=ls())
library(sommer)
load('dat_ls_E1.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)
dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)
#Matrix design of markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
XM = scale(XM)
#Genomic relationship matrix derived from markers
dat_M = scale(dat_M)
G = tcrossprod(dat_M)/dim(dat_M)[2]
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dat_F$GID = factor(dat_F$GID,levels=row.names(G))
dat_F = dat_F[order(dat_F$Env,dat_F$GID),]

#10 random partitions
K = 10
n = dim(dat_F)[1]
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

#Example 1
#GBLUP model
Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
dat_F$y_NA = dat_F$y
dat_F$y_NA[Pos_tst] = NA
#M1
A = mmer(y_NA ~ 1,na.method.Y='include', random= ~ vs(GID,Gu=G),

rcov= ~ vs(units), data=dat_F,verbose=FALSE)
#BLUPs
#bv = A$U$`u:GID`$y_NA
yp = fitted(A)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp_ts = yp[Pos_tst]
#MSEP and Cor
Tab$MSEP[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor[k] = cor(dat_F$y[Pos_tst],yp_ts)

#M10
A2 = mmer(y_NA ~ 1,na.method.Y='include', random= ~ vs(GID),

rcov= ~ vs(units), data=dat_F,verbose=FALSE)
yp2 = fitted(A2)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp2_ts = yp2[Pos_tst]
#MSEP
Tab$MSEP10[k] = mean((dat_F$y[Pos_tst]-yp2_ts)^2)
Tab$Cor10[k] = cor(dat_F$y[Pos_tst],yp2_ts)

}

Appendix 5

#Example 2
rm(list=ls())
library(sommer)
load('dat_ls_E1.RData',verbose=TRUE)
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#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)
dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)
#Matrix design of markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
XM = scale(XM)
#Genomic relationship matrix derived from markers
dat_M = scale(dat_M)
G = tcrossprod(dat_M)/dim(dat_M)[2]

dat_F$GID = factor(dat_F$GID,levels=row.names(G))
dat_F = dat_F[order(dat_F$Env,dat_F$GID),]

#10 random partitions
K = 10
n = dim(dat_F)[1]
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

#Model (5.4)
#Y = mu + Env + GID + GID:Env
Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
dat_F$Env_GID = paste(dat_F$Env,dat_F$GID,sep='_')
GE = kronecker(diag(length(unique(dat_F$Env))),G)
rnGWE = expand.grid(row.names(G),unique(dat_F$Env))
row.names(GE) = paste(rnGWE[,2],rnGWE[,1],sep='_')
colnames(GE) = row.names(GE)
for(k in 1:K)
{
Pos_tst = PT[,k]
dat_F$y_NA = dat_F$y
dat_F$y_NA[Pos_tst] = NA
#M2
A = mmer(y_NA ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G)+ vs(Env_GID,Gu = GE),
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

yp = fitted(A)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp_ts = yp[Pos_tst]
#MSEP
Tab$MSEP[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor[k] = cor(dat_F$y[Pos_tst],yp_ts)

#M20
A20 = mmer(y_NA ~ Env,na.method.Y='include',
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random= ~ vs(GID)+vs(Env_GID),
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

yp20 = fitted(A20)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp20_ts = yp20[Pos_tst]
Tab$MSEP20[k] = mean((dat_F$y[Pos_tst]-yp20_ts)^2)
Tab$Cor20[k] = cor(dat_F$y[Pos_tst],yp20_ts)

#M11
A = mmer(y_NA ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G),
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

yp = fitted(A)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp_ts = yp[Pos_tst]
Tab$MSEP11[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor11[k] = cor(dat_F$y[Pos_tst],yp_ts)
#M10a: Model1 (5.4) plus environment effects but with G = IJ

A = mmer(y_NA ~ Env,na.method.Y='include',
random= ~ vs(GID),
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

yp = fitted(A)$dataWithFitted$y_NA.fitted
#Prediction of testing
yp_ts = yp[Pos_tst]
Tab$MSEP10a[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor10a[k] = cor(dat_F$y[Pos_tst],yp_ts)

}

#Basic code to implement model (5.4) with an unstructured form for
Sigma_E
A = mmer(y~ Env, na.method.Y='include',

random= ~ vs(GID,Gu=G)+vs(us(Env),GID,Gu=G),
rcov= ~ vs(units), data=dat_F)

#Basic code to implement model (5.4) with heterogeneous environment
variances
A = mmer(y ~ Env, ,

random= ~ vs(GID,Gu=G)+
vs(ds(Env),GID,Gu=G),#or vs(at(Env),GID,Gu=G)

rcov= ~ vs(units), data=dat_F)
#Y = mu + Env + GID + GID:ENV
#Y = mu + Env + GID + GID:ENV
#Basic code to implement model (5.4) with heterogeneous environment and
residuals variances
A = mmer(y ~ Env,

random= ~ vs(GID,Gu=G)+ vs(ds(Env),GID,Gu=G),
rcov= ~ vs(ds(Env),units),
data=dat_F)
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Appendix 6

rm(list=ls())
library(sommer)
load('dat_ls_E1.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)
dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)
#Matrix design of markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
XM = scale(XM)
dim(XM)
n = dim(dat_F)[1]
#Genomic relationship matrix derived from markers
dat_M = scale(dat_M)
G = tcrossprod(dat_M)/dim(dat_M)[2]

dat_F$GID = factor(dat_F$GID,levels=row.names(G))
dat_F = dat_F[order(dat_F$Env,dat_F$GID),]

#10 random partitions
K = 10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

#Example 3
Tab = data.frame(PT = 1:K)
set.seed(1)
for(k in 1:K)
{
#M3
Pos_tst = PT[,k]
dat_F$y_NA = dat_F$y
dat_F$y_NA[Pos_tst] = NA
dat_F$y2_NA = dat_F$y2
dat_F$y2_NA[Pos_tst] = NA
A = mmer(cbind(y_NA,y2_NA) ~ 1,na.method.Y='include',

random= ~ vs(GID,Gu=G) ,
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

#BLUPs
b_ls = A$U$`u:GID`
b_T1 = b_ls$y_NA# Trait 1
b_T2 = b_ls$y2_NA# Trait 2
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b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$y_NA))
#Y "fitted"
yp = A$fitted + b_mat[Pos,]
#Prediction of testing for both traits
yp_ts = yp[Pos_tst,1]# Trait 1
y2p_ts = yp[Pos_tst,2]# Trait 2
#MSEP and Cor
#Trait 1
Tab$MSEP_T1[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor_T1[k] = cor(dat_F$y[Pos_tst],yp_ts)
#Trait 2
Tab$MSEP_T2[k] = mean((dat_F$y2[Pos_tst]-y2p_ts)^2)
Tab$Cor_T2[k] = cor(dat_F$y2[Pos_tst],y2p_ts)
#M32: Sigma_T diagonal
A = mmer(cbind(y_NA,y2_NA) ~ 1,na.method.Y='include',

random= ~ vs(GID,Gu=G,Gtc=diag(2)),
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

#BLUPs
b_ls = A$U$`u:GID`
b_T1 = b_ls$y_NA# Trait 1
b_T2 = b_ls$y2_NA# Trait 2
b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$y_NA))
#Y "fitted"
yp = A$fitted + b_mat[Pos,]
#Prediction of testing
yp_ts = yp[Pos_tst,1]# Trait 1
y2p_ts = yp[Pos_tst,2]# Trait 2
#MSEP and Cor
#Trait 1
Tab$MSEP_T1_32[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
Tab$Cor_T1_32[k] = cor(dat_F$y[Pos_tst],yp_ts)

#Trait 2
Tab$MSEP_T2_32[k] = mean((dat_F$y2[Pos_tst]-y2p_ts)^2)
Tab$Cor_T2_32[k] = cor(dat_F$y2[Pos_tst],y2p_ts)

# #M3
# #dat_F$y2_NA = dat_F$y2
# dat_F$y_NA = dat_F$y# Trait T1 is not NA
# A = mmer(cbind(y_NA,y2_NA) ~ 1,na.method.Y='include',
# random= ~ vs(GID,Gu=G),
# rcov= ~ vs(units),#tolparinv = 1e-2,
# data=dat_F,verbose=FALSE)
# #BLUPs
# b_ls = A$U$`u:GID`
# b_T1 = b_ls$y_NA# Trait 1
# b_T2 = b_ls$y2_NA# Trait 2
# b_mat = cbind(b_T1,b_T2)
# Pos = match(dat_F$GID,names(b_ls$y_NA))
# #Y "fitted"
# yp = A$fitted + b_mat[Pos,]

164 5 Linear Mixed Models



# #Prediction of testing
# yp_ts = yp[Pos_tst,1]# Trait 1
# y2p_ts = yp[Pos_tst,2]# Trait 2
# #MSEP
# Tab$MSEP_T1_31[k] = mean((dat_F$y[Pos_tst]-yp_ts)^2)
# Tab$Cor_T1_31[k] = cor(dat_F$y[Pos_tst],yp_ts)
# Tab$MSEP_T2_31[k] = mean((dat_F$y2[Pos_tst]-y2p_ts)^2)
# Tab$Cor_T2_31[k] = cor(dat_F$y2[Pos_tst],y2p_ts)
}

Appendix 7

#Example 4
rm(list=ls())
library(sommer)
load('dat_ls_E4.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
dat_F = transform(dat_F, GID = as.character(GID))
#Genomic relationship matrix derived from markers
G = dat_ls$G
dat_F$GID = factor(dat_F$GID,levels=row.names(G))
dat_F = dat_F[order(dat_F$Env,dat_F$GID),]
#Fitting model M4 with data set
#A = mmer(cbind(GY,TESTWT) ~ Env,na.method.Y='include',
# random= ~ vs(GID,Gu=G) + vs(Env_GID,Gu=GE) ,
# rcov= ~ vs(units),
# data=dat_F,verbose=FALSE)
#Example 4
#10 random partitions
n = dim(dat_F)[1] ;K = 10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
#Model 5.6
#Y = mu + Env + GID + GID:Env + e
Tab = data.frame(PT = 1:K)
set.seed(1)
dat_F$Env_GID = paste(dat_F$Env,dat_F$GID,sep='_')
GE = kronecker(diag(length(unique(dat_F$Env))),G)
rnGWE = expand.grid(row.names(G),unique(dat_F$Env))
row.names(GE) = paste(rnGWE[,2],rnGWE[,1],sep='_')
colnames(GE) = row.names(GE)
for(k in 1:K)
{
Pos_tst = PT[,k]
#M4
Pos_tst = PT[,k]
dat_F$GY_NA = dat_F$GY
dat_F$GY_NA[Pos_tst] = NA
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dat_F$TESTWT_NA = dat_F$TESTWT
dat_F$TESTWT_NA[Pos_tst] = NA
A = mmer(cbind(GY_NA,TESTWT_NA ) ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G) + vs(Env_GID,Gu=GE) ,
rcov= ~ vs(units),tolparinv = 1,
data=dat_F,verbose=FALSE)

#BLUPs
b_ls = A$U$`u:GID`
b_T1 = b_ls$GY_NA# Trait 1
b_T2 = b_ls$TESTWT_NA# Trait 2
b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$TESTWT))
#Y "fitted"
yp = data.frame(A$fitted + b_mat[Pos,] )
colnames(yp) = names(b_ls)
plot(dat_F$GY,yp$GY_NA);abline(a=0,b=1)
#Prediction of testing of both traits
yp_tst = yp[Pos_tst,]
#plot(dat_F$y2,yp[,2]); abline(a=0,b=1)
#MSEP and Cor
#Trait 1
Tab$MSEPT1[k] = mean((dat_F$GY[Pos_tst]-yp_tst$GY_NA)^2)
Tab$CorT1[k] = cor(dat_F$GY[Pos_tst],yp_tst$TESTWT_NA)
#Trait 2
Tab$MSEPT2[k] = mean((dat_F$TESTWT[Pos_tst]-yp_tst$TESTWT_NA)^2)
Tab$CorT2[k] = cor(dat_F$TESTWT[Pos_tst],yp_tst$TESTWT_NA)

#M42
A42 = mmer(cbind(GY_NA,TESTWT_NA) ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G) + vs(Env_GID,Gu=GE,Gtc=diag(2)) ,
rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

#BLUPs
b_ls = A42$U$`u:GID`
b_T1 = b_ls$GY_NA# Trait 1
b_T2 = b_ls$TESTWT_NA# Trait 2
b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$TESTWT))
#Y "fitted"
yp = data.frame(A$fitted + b_mat[Pos,] )
colnames(yp) = names(b_ls)
#plot(dat_F$GY,yp$GY_NA);abline(a=0,b=1)
#Prediction of testing of both traits
yp_tst = yp[Pos_tst,]
#MSEP and Cor
#Trait 1
Tab$MSEPT1_42[k] = mean((dat_F$GY[Pos_tst]-yp_tst$GY_NA)^2)
Tab$CorT1_42[k] = cor(dat_F$GY[Pos_tst],yp_tst$TESTWT_NA)
#Trait 2
Tab$MSEPT2_42[k] = mean((dat_F$TESTWT[Pos_tst]-yp_tst$TESTWT_NA)

^2)
Tab$CorT2_42[k] = cor(dat_F$TESTWT[Pos_tst],yp_tst$TESTWT_NA)
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#M43
A43 = mmer(cbind(GY_NA,TESTWT_NA) ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G,Gtc=diag(2)) +
vs(Env_GID,Gu=GE,Gtc=diag(2)) ,

rcov= ~ vs(units),
data=dat_F,verbose=FALSE)

#BLUPs
b_ls = A43$U$`u:GID`
b_T1 = b_ls$GY_NA# Trait 1
b_T2 = b_ls$TESTWT_NA# Trait 2
b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$TESTWT))
#Y "fitted"
yp = data.frame(A$fitted + b_mat[Pos,] )
colnames(yp) = names(b_ls)
#plot(dat_F$GY,yp$GY_NA);abline(a=0,b=1)
#Prediction of testing of both traits
yp_tst = yp[Pos_tst,]
#MSEP and Cor
#Trait 1
Tab$MSEPT1_43[k] = mean((dat_F$GY[Pos_tst]-yp_tst$GY_NA)^2)
Tab$CorT1_43[k] = cor(dat_F$GY[Pos_tst],yp_tst$TESTWT_NA)
#Trait 2
Tab$MSEPT2_43[k] = mean((dat_F$TESTWT[Pos_tst]-yp_tst$TESTWT_NA)

^2)
Tab$CorT2_43[k] = cor(dat_F$TESTWT[Pos_tst],yp_tst$TESTWT_NA)
A44 = mmer(cbind(GY_NA,TESTWT_NA) ~ Env,na.method.Y='include',

random= ~ vs(GID,Gu=G,Gtc=diag(2)) +
vs(Env_GID,Gu=GE,Gtc=diag(2)) ,

rcov= ~ vs(units,Gtc=diag(2)),
data=dat_F,verbose=FALSE)

#A44$sigma
#BLUPs
b_ls = A44$U$`u:GID`
b_T1 = b_ls$GY_NA# Trait 1
b_T2 = b_ls$TESTWT_NA# Trait 2
b_mat = cbind(b_T1,b_T2)
Pos = match(dat_F$GID,names(b_ls$TESTWT))
#Y "fitted"
yp = data.frame(A$fitted + b_mat[Pos,] )
colnames(yp) = names(b_ls)
#plot(dat_F$GY,yp$GY_NA);abline(a=0,b=1)
#Prediction of testing of both traits
yp_tst = yp[Pos_tst,]
#MSEP and Cor
#Trait 1
Tab$MSEPT1_44[k] = mean((dat_F$GY[Pos_tst]-yp_tst$GY_NA)^2)
Tab$CorT1_44[k] = cor(dat_F$GY[Pos_tst],yp_tst$TESTWT_NA)
#Trait 2
Tab$MSEPT2_44[k] = mean((dat_F$TESTWT[Pos_tst]-yp_tst$TESTWT_NA)

^2)
Tab$CorT2_44[k] = cor(dat_F$TESTWT[Pos_tst],yp_tst$TESTWT_NA)
cat('k=',k,'\n')

}
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#Model 5.6 with Sigma_2T different for each Env
A4 = mmer(cbind(GY,TESTWT)~Env,

random = ~vs(GID,Gu=G)+vs(ds(Env),GID,Gu=G),data=dat_F,
rcov= ~ vs(units))
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