
Chapter 15
Random Forest for Genomic Prediction

15.1 Motivation of Random Forest

The complexity and high dimensionality of genomic data require using flexible and
powerful statistical machine learning tools for effective statistical analysis. Random
forest (RF) has proven to be an effective tool for such settings, already having
produced numerous successful applications (Chen and Ishwaran 2012). RF is a
supervised machine learning algorithm that is very flexible, easy to use, and that
without a lot of effort produces very competitive predictions of continuous, binary,
categorical, and count outcomes. Also, RF allows measuring the relative importance
of each predictor (independent variable) for the prediction. For these reasons, RF is
one of the most popular and powerful machine learning algorithms that has been
successfully applied in fields such as banking, medicine, electronic commerce, stock
market, and finance, among others.

Due to the fact that there is no universal model that works in all circumstances,
many statistical machine learning models have been adopted for genomic prediction.
RF is one of the models adopted for genomic prediction with many successful
applications (Sarkar et al. 2015; Stephan et al. 2015; Waldmann 2016; Naderi
et al. 2016; Li et al. 2018). For example, García-Magariños et al. (2009) found
that RF performs better than other methods for binary traits when the sample size is
large and the percentage of missing data is low (García-Magariños et al. 2009).
Naderi et al. (2016) found that, for binary traits, RF outperformed the GBLUP
method only in a scenario combining the highest heritability, the largest dense
marker panel (50K SNP chip), and the largest number of QTL. González-Recio
and Forni (2011) found that RF performed better than Bayesian regression when
detecting resistant and susceptible animals based on genetic markers. They also
reported that RF produced the most consistent results with very good predictive
ability and outperformed other methods in terms of correct classification.

Some of the reasons for the increased popularity of RF models are (a) they require
very simple input preparation and can handle binary, categorical, count, and

© The Author(s) 2022
O. A. Montesinos López et al., Multivariate Statistical Machine Learning Methods
for Genomic Prediction, https://doi.org/10.1007/978-3-030-89010-0_15

633

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89010-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-89010-0_15#DOI

continuous dependent variables without the need for any preprocessing also of
independent variables like scaling, (b) they perform implicit variable selection and
provide a ranking of predictor (feature) importance, (c) they are inexpensive in terms
of computational resources needed for their training since there are few
hyperparameters that commonly need to be tuned (number of trees, number of
features sampled, and number of samples in the final nodes) and because instead
of working directly with all independent variables simultaneously each time, they
use only a fraction of the independent variables, (d) some algorithms can beat
random forests, but it is never by much, and other algorithms many times take
much longer to build and tune than an RF model, (e) contrary to deep neural
networks that are really hard to build, it is really hard to build a bad random forest,
since it depends on very few hyperparameters and some of them are not very
sensitive, which means that a lot of tweaking and fiddling is not required to get a
decent random forest model, (f) they have a very simple learning algorithm, (g) they
are easy to implement since there are many free and open-source implementations,
and (h) RF parallelization is possible because each decision tree is grown
independently.

For this reason, this chapter provides the fundamentals for building RF models as
well as many illustrative examples for continuous, binary, categorical, and count
response variables in the context of genomic prediction. All examples are provided
in the context of genomic selection with the goal of facilitating the learning process
of users that do not have a strong background in statistics and computer science.

15.2 Decision Trees

A decision tree is a prediction model used in various fields ranging from social
science to astrophysics. Given a set of data, logic construction diagrams are
manufactured that are very similar to rule-based prediction systems, which serve
to represent and categorize a series of conditions that occur in succession, to solve a
problem. Nodes in a decision tree involve testing a particular independent variable
(attribute). Often, an attribute value is compared with a constant.

As can be seen in Fig. 15.1, decision trees use a conquer-and-divide approach for
regression or classification. They work top-down, at each stage seeking to split an
attribute that best separates the classes in classification problems, and then recur-
sively processing the subproblems that result from the split. Under this strategy, a
decision tree is built that can be converted into decision rules. Leaf nodes give a
classification that applies to all instances that reach the leaf, or a set of classifications
or a probability distribution over all possible classifications (Fig. 15.1b). In a
decision tree, each internal node represents a “test” on an independent variable,
each branch represents the outcome of the test, and each leaf node represents a class
label in a classification problem. To classify a new individual, it is routed down the
tree according to the values of the independent variables tested in successive nodes,
and when a leaf is reached, the new individual is classified according to the class
assigned to the leaf.

634 15 Random Forest for Genomic Prediction

Next, the following synthetic data set illustrates how to use the library party with
the function ctree().

> Data_GY
GY X1 X2 X3 X4

1 9.98 7.56 8.45 10.0 8.99
2 9.48 7.39 8.23 9.92 9.04
3 10.0 8.32 8.84 9.25 10.0
4 7.11 6.96 7.13 9.24 8.49
5 9.07 7.07 9.07 9.41 8.63
6 10.0 9.02 9.65 10.0 9.93
7 8.79 7.91 8.27 8.89 8.48
8 8.61 7.24 8.22 8.38 9.86
9 10.0 8.34 8.55 9.50 8.95
10 10.0 8.30 9.72 9.66 10.0
11 7.84 6.60 8.49 9.00 8.67
12 6.41 7.11 7.34 8.83 8.29

The basic R code to build decision trees in the library is given next:

Control_GY=ctree_control(teststat = c("quad", "max"),
testtype = c("Univariate"),

mincriterion = 0.05, minsplit =2, minbucket = 1,
stump = FALSE, nresample = 101, maxsurrogate =2,

Fig. 15.1 Illustration of a decision tree for a classification problem

15.2 Decision Trees 635

mtry =2, savesplitstats = TRUE, maxdepth = 30, remove_weights =
FALSE)

Grades_tree=ctree(GY~X1+X2+X3+X4, controls= Control_GY,
data=Data_GY)

The output of the decision tree built with the ctree() function is given next:

> Grades_tree

Conditional inference tree with five terminal nodes
Response: GY
Inputs: X1, X2, X3, X4
Number of observations: 12

1) X2 <= 7.34; criterion = 0.991, statistic = 6.812
2)* weights = 2

1) X2 > 7.34
3) X1 <= 7.24; criterion = 0.982, statistic = 5.561
4)* weights = 3

3) X1 > 7.24
5) X3 <= 9.25; criterion = 0.85, statistic = 2.07
6)* weights = 2

5) X3 > 9.25
7) X4 <= 9.04; criterion = 0.55, statistic = 0.57
8)* weights = 3

7) X4 > 9.04
9)* weights = 2

And the corresponding plot of this decision tree is given next (Fig. 15.2):

Fig. 15.2 Decision tree for a regression problem with five terminal nodes

636 15 Random Forest for Genomic Prediction

The ctree () function of the party package allows you to fit conditional decision
trees. The choice between a regression tree or a classification tree is made automat-
ically depending on whether the response variable is of a continuous type or factor. It
is important to note that only these two types of response variables are allowed; if
one type of character is passed, an error is returned.

The predictive capacity of models based on a single tree is considerably lower
than that achieved with other models. This is due to the tendency of those models to
overfitting and high variance. One way to improve the generalizability of decision
trees is to use regularization or to combine multiple trees, and one of these
approaches is called random forest. Decision trees are also sensitive to unbalanced
training data (one class dominates over the others). When dealing with continuous
predictors, decision trees lose some of their information by categorizing them at the
time of node splitting. As described before, the creation of tree branches is achieved
by the recursive binary splitting algorithm. This algorithm identifies and evaluates
the possible divisions of each predictor according to a certain measure (RSS, Gini,
entropy, etc.). Continuous predictors are more likely to contain, just by chance, some
optimal cutoff point, which is why they tend to be favored in the creation of trees.
For these reasons, decision trees are not able to extrapolate outside the range of the
predictors observed in the training data.

15.3 Random Forest

Random forest (RF) is a decision tree-based supervised statistical machine learning
technique. Its main advantage is that you get better generalization performance for
similar training performance than with decision trees. This improvement in gener-
alization is achieved by compensating for the errors in the predictions of the different
decision trees. To ensure that the trees are different, what we do is that each one is
trained with a random sample of the training data. This strategy is called bagging.

As mentioned before, RF is a set (ensemble) of decision trees combined with
bootstrapping (bagging). When using bootstrapping, what actually happens is that
different trees see different portions of the data. No tree sees all the training data.
This entails training each tree of the forest with quite different data samples for the
same problem. In this way, by combining their results, some errors are compensated
for by others and we have a prediction that generalizes better. The RF adds additional
randomness to the model while growing the trees. Instead of searching for the most
important independent variable while splitting a node, it searches for the best
independent variable among a random subset of independent variables. This gener-
ates a wide heterogeneity that generally improves the model performance. A good
binary split partitions data from the parent tree node into two daughter nodes so that
the ensuing homogeneity of the daughter nodes is improved by the parent node.

In Fig. 15.3 we can see that a collection of ntree >1 trees is grown in which each
tree is grown independently using a bootstrap sample of the original data. The
terminal nodes of the tree contain the predicted values which are tree-aggregated

15.3 Random Forest 637

to obtain the forest predictions. For example, in classification, each tree casts a vote
for the class and the majority vote determines the predicted class label, while in
regression problems the predicted value is the average of the observations in the
terminal nodes. Rather than splitting a tree node using all p independent variables
(features), RF, as mentioned above, selects at each node of each tree, a random
subset of 1 � mtry � p independent variables that is used to split the node where
typically mtry is substantially smaller than p. The purpose of this two-step random-
ization is to decorrelate trees and reduce variance. RF trees are grown deeply (with
many ramifications) which reduces bias. In general, a RF tree is grown as deeply as
possible under the constraint that each terminal node must contain no fewer than
nodesize �1 cases. The nodesize is the minimum size of terminal nodes.

Figure 15.4 provides more details of how both randomizations take place. We can
see that the bootstrap samples have the same number of observations as the original
training data, but with the difference that not all observations are present since some
rows are repeated. In general, 2/3 (63.2%) of the original observations are
maintained in a bootstrap sample. Also, we can see in Fig. 15.4 that not all
independent variables are present in each bootstrap sample, and that only three
randomly selected samples (observations) are present in each bootstrapped sample.
It is important to point out that the bootstrapping phase is independent of the feature
subsampling.

Fig. 15.3 Illustration of how the random forest model works and combines multiple trees

638 15 Random Forest for Genomic Prediction

15.4 RF Algorithm for Continuous, Binary,
and Categorical Response Variables

RF is an interchange of bootstrap aggregating that builds a large collection of trees,
and then averages out the results. Each tree is built using a splitting criterion (loss
function), that should be appropriate for each type of response variables (continuous,
binary, categorical, and count). For training data (Breiman 2001), RF takes
B bootstrap samples and randomly selects subsets of independent variables as
candidate predictors for splitting tree nodes. Each decision tree will minimize the
average loss function in the bootstrapped (resampled) data and is built up using the
following algorithm:

For b ¼ 1, . . ., B bootstrap samples {yb,Xb}

Step 1. From the training data set, draw bootstrap samples of size Ntrain.
Step 2. With the bootstrapped data, grow a random forest tree Tb with the specific

splitting criterion (appropriate for each response variable), by recursively repeating

Fig. 15.4 Illustration of how bootstrap samples and samples of predictors are selected under the
random forest model

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 639

the following steps for each terminal node of the tree, until the minimum node size
(minimum size of terminal nodes) is reached.

(a) Randomly draw mtry out of the p independent variables (IVs); mtry is a user-
specified parameter and should be less or equal to p (total number of IVs).

(b) Pick the best independent variable among the mtry IVs.
(c) Split the node into two child nodes. The split ends when a stopping criterion is

reached, for instance, when a node has less than a predetermined number of
observations. No pruning is performed.

Step 3. The ensemble of trees is obtained Tbf gB1 .
The predicted value of testing set (byi) individuals with input xi is calculated asbyi ¼ 1

B

PB
b¼1

Tb xið Þ when the response variable is continuous, but when the response

variable is binary or categorical, the predicted values are calculated as byic ¼
majority vote bCb xið Þ

n oB

1
, where bCb xið Þ is the class prediction of the bth RF tree.

Readers are referred to Breiman (2001) and Waldmann (2016) for details on the
theory of RF. As explained above, the choice of splitting function is very important
since we need to use different splitting rules for each type of response variable.

Also, the adequate selection of these hyperparameters could significantly improve
the prediction performance of the models, but the choice of the optimal values is case
study-dependent. Next are given the importance and influence of these tuning
parameters in the prediction performance considering that input and response vari-
ables correspond to the same time point or individual.

(a) Number of trees in the forest (ntree). The number of decision trees used to build
up the ensemble has an explicit influence on prediction performance. The higher
the number of trees, the smaller the error. But this trend is asymptotic: if the
number of trees is large enough, increasing the number of trees does not result in
significant improvement of the prediction accuracy. Besides, using more trees
requires longer computing times. For this reason, the number of trees is set based
on a trade-off solution between computing time and predictive performance.
Each tree makes use of around two-thirds (63.2%) of the observations to build
the tree. The remaining observations are referred to as Out-Of-Bag (OOB). One
may predict the response for the ith observation using all of the trees in which
these observations are OOB.

(b) Number of independent variables randomly selected to be contemplated at each
split (mtry) in RF. To choose the value of the mtry parameter, it is necessary to
consider the correlation between the input variables. With highly correlated
input variables, it is preferable to use a small value. Generally, mtry ¼ p/3 for
regression forests (continuous outputs) and mtry ¼ ffiffiffi

p
p

for classification (binary
or categorical outputs) forests (where p is the total number of input variables).
On the other hand, if there are many irrelevant input variables, a larger value of
mtry would be needed in order to obtain better predictions. In any problem, there

640 15 Random Forest for Genomic Prediction

are independent variables that may be of relatively minor importance (irrele-
vant). An input variable highly uncorrelated with the rest of the input could be
very important due to its unique role in the analysis, or not important at all in the
prediction if not linked to the response.

(c) Node size. A decision tree works by recursive partitioning of the training set.
Every node t of a decision tree is related to a set of nt observations from the
training set:

By node size we understand the minimum node size; in Fig. 15.5 the minimum
node size is 12. This parameter essentially sets the depth of your decision trees. The
depth of each particular decision tree can be either fine-tuned manually or have the
algorithm select it automatically. When decision trees grow too deep, there is the risk
of overfitting. For this reason, this parameter also needs to be tuned. The terminal
nodes of the tree contain the predicted values which are tree-aggregated (by average
for continuous variables and majority vote for categorical variables) to obtain the
forest predictions. This means that in classification, each tree casts a vote for the
class and the majority vote determines the predicted class label, while in continuous
response variables the average is reported as prediction performance.

15.4.1 Splitting Rules

The splitting rule defined as the rule on how to decide whether to split it is a central
component of RF models and crucial for the performance of each tree of a RF model.
For continuous response variables, there are many criteria to decide where to split,
and the most common splitting criterion is the least squares criterion. Suppose the
proposed split for the root node is of the form X � c and X > c for a continuous
variable X, and a split threshold of c. The best split is the one that minimizes the
weighted sum of square errors (SSE):

Fig. 15.5 Illustration of the
minimum node size in a
decision tree

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 641

SSE ¼ SSELΩL þ SSERΩR,

where SSEL ¼
PL

i¼1 yi � �yLð Þ2 represents the sum of square errors for the left node,
L denotes the number of elements that contain the left partition, �yL is the mean of the
response variables of elements in the left partition and ΩL ¼ nL

n is the proportion of
observations of the left node. SSER ¼PR

i¼1 yi � �yRð Þ2 denotes the sum of square
errors for the right node, R is the number of elements that contain the right partition,
and �yR is the mean of the response variables of elements in the right partition.
ΩR ¼ nR

n is the proportion of observations of the right node and n ¼ nL + nR. When
ΩL ¼ ΩR ¼ 1, the SSE is reduced to its unweighted version.

For binary and categorical response variables, there are some options for splitting
criteria. Next, we provide the weighted Gini index criterion that should minimize

GI ¼
XC

i¼1
pLi 1� pLið Þ

h i
ΩL þ

XC

i¼1
pRi 1� pRið Þ

h i
ΩR,

where C is the number of classes in the response variable, pLi ¼ nLi
nL
is the probability

of occurrence of class i in the left node, ΩL ¼ nL
n is the proportion of observations in

the left node, pRi ¼ nRi
nR
is the probability of occurrence of class i in the right node, and

ΩR ¼ nR
n is the proportion of observations in the right node and n ¼ nL + nR. The GI

making ΩL ¼ ΩR ¼ 1 is reduced to the unweighted Gini index.
Another splitting criterion for binary and categorical response variables is the

weighted binary (or categorical) cross-entropy, which is defined as

CE ¼ �
XC

i¼1
pLi log pLið Þ

h i
ΩL �

XC

i¼1
pRi log pRið Þ

h i
ΩR

Also, the weighted binary (or categorical) cross-entropy is reduced to its
unweighted version by making ΩL ¼ ΩR ¼ 1. For most of the examples, we will
use the fast unified random forests for survival, regression, and classification of
(randomForestSRC) R package. This package performs parallel computing of
Breiman’s random forests (Breiman 2001) for a variety of data settings including
regression, classification, and right-censored survival and competing risks (Ishwaran
and Kogalur 2008). Other important applications cover multivariate classification/
regression, quantile regression (see quantreg), unsupervised forests, and novel
solutions for class imbalanced data. However, in this chapter, we will only use the
randomForestSCR library for illustrating the implementation of RF for univariate
and multivariate outcomes for binary, categorical, and continuous response vari-
ables. Different splitting rules can be invoked under RF applications, for which
variable importance measures (VIM) can also be computed for each predictor. There
are many measures of variable importance; one common approach for regression
trees is to calculate the decrease in prediction accuracy from the testing data set. For
each tree, the testing set portion of the data is passed through the tree and the
prediction error (PE) is recorded. Each predictor variable is then randomly permuted

642 15 Random Forest for Genomic Prediction

and j new PE is computed. The differences between the two are then averaged over
all the trees, and normalized by the standard deviation of the differences. The
variable showing the largest decrease in prediction accuracy is the most important
variable. These VIM can be displayed in a variable importance plot of the top-ranked
variables.

To implement RF models in the randomForestSRC package, we used the function
rfsrc(), for which we show the main elements of its usage:

rfsrc(formula, data, ntree = 1000, mtry = NULL, nodesize= NULL,
splitrule = NULL, importance =TRUE),

where formula is a symbolic description of the model to be fitted. If missing,
unsupervised splitting is implemented, data is a data frame containing the y-outcome
and x-variables, ntree represents the number of trees, andmtry denotes the number of
variables randomly selected as candidates for splitting a node. The default is
mtry ¼ p/3 for regression, where p equals the number of independent variables.
For all other families (including unsupervised settings), the default is mtry ¼ ffiffiffi

p
p

.
Values are always rounded up. Nodesize denotes the forest average number of
unique cases (data points) in a terminal node. The defaults are classification (1),
regression (5), competing risk (15), survival (15), mixed outcomes (3), and
unsupervised (3). It is good practice to explore with different nodesize values.
Splitrule denotes the splitting rule, for regression analysis (continuous response
variables) can be used the mean squared error (mse) also known as the least square
criterion. The mse splitting rule implements the weighted mean squared error
splitting criterion (Breiman et al. 1984, Chapter 8.4), while for classification analysis
(binary and categorical response variables), there are three splitting rules available in
this package: (a) Gini: default splitrule implements Gini index splitting (Breiman
et al. 1984, Chapter 4.3), (b) auc: AUC (area under the ROC curve) splitting for both
two-class and multi-class settings. AUC splitting is appropriate for imbalanced data,
and (c) entropy: entropy splitting (Breiman et al. 1984, Chapter 2.5, 4.3) and
importance ¼ TRUE compute VIM for each predictor. Default action is code
importance ¼ “none”.

Next, we provide some examples for implementing RF models for continuous,
binary, and categorical response variables.

Example 15.1
For this example, we also used the Data_Toy_EYT.RData data set composed of
40 lines, four environments (Bed5IR, EHT, Flat5IR, and LHT), and four response
variables: DTHD, DTMT, GY, and Height. G_Toy_EYT is the genomic relationship
matrix of dimension 40 � 40. The first two variables are ordinal with three
categories, the third is continuous (GY ¼ Grain yield), and the last one (Height) is
binary.

First, using the continuous response variable (GY), we illustrate how to imple-
ment the RF for continuous outcomes. We build the design matrices that jointly will
form the input for the RF model. The design matrices for this example were built as

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 643

Design matrix of genotypes
ZG <- model.matrix(~0 + GID, data=Pheno)
Compute the Cholesky factorization of the genomic relationship
matrix
ZL <- chol(Geno)
###Incorporating the information of the GRM to the design matrix of
genotypes
ZGL <- ZG %*% ZL
####Design matrix of environments
ZE <- model.matrix(~0 + Env, data=Pheno)
Design matrix of the interaction between genotype and environment
(GE)
ZGE <- model.matrix(~0 + ZGL:Env, data=Pheno)

Joining the design matrices of environments and genotypes

X <- cbind(ZGL, ZE)

First, using all the data set at hand in the Data_Toy_EYT.RData, we show how to
train an RF model with a continuous outcome and how to extract and plot variable
importance. It is important to point out that as input we not used directly the
information of markers but the square root of the genomic relationship matrix.

Data frame with the response variable and all predictors (environments
+ genotypes)
Data <- data.frame(y=Pheno$GY, X)
Fit the model with importance=TRUE for computing the variable
importance
model <- rfsrc(y ~ ., data=Data, importance=TRUE)

Get the variable importance

> head(model$importance)
EnvBed5IR EnvEHT EnvFlat5IR EnvLHT

0.1471930788 0.3345026471 0.2117008212 1.7597458640
GID6569128 GID6688880

-0.0001849502 -0.0003675786

Plot the ten most important variables with their own functions

Plot <- plot_importances(model$importance, how_many=10)
Plot

As mentioned above, with the rfsrc(), the RF model is fitted for continuous
response variables that use the mse splitting rule by default; then with
model$importance we extract the variable importance values for each of the inde-
pendent variables of matrix X; however, only ten of them are printed. When the
response variables are categorical, the values of VIM are probabilities; for this

644 15 Random Forest for Genomic Prediction

reason, the output of the VIM is a probability distribution, that is, a probability for
each categorical response that sums up to 1 in each row (individual). For this reason,
extracting the VIM should be done for each category; for example,
model$importance[, 2] and model$importance[, C] extract the VIM for categories
2 and C, respectively, of the response variable. Then with the plot_importance() that
is available in Appendix 1, a plot is generated for only the ten most important
independent variables. This plot is given in Fig. 15.6 for the example given above for
the continuous response variable (GY). The complete code for generating Fig. 15.6
is given in Appendix 2.

Figure 15.6 shows that the most important predictors are the dummy variables of
environments and that each of the lines has a small effect. However, it is important to
point out that in this plot, genetic and environmental effects are together, but what
we see in Fig. 15.6 is not unusual, since in plant breeding trials the environmental
main effect is always larger than the genetic effects.

Fig. 15.6 Variable importance measures (VIM) for the ten most important predictors of the data set
Data_Toy_EYT.RData

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 645

The way of extracting and building the VIM is similar for continuous, binary, and
categorical outcomes; as mentioned above, for this reason, it is not necessary to give
examples for other types of response variables.

Next, we will illustrate how to make predictions for new data with RF, but now
using not only the information of environments and genotypes in the predictor but
also taking into account the genotype–environment interaction. For this reason,
again first we stack the information on environment, lines, and genotype–environ-
ment interaction.

Joining the design matrices of environments, genotype, and interaction GE term

X <- cbind(ZGL, ZE, ZGE)

It is important to point out that since the response variable is continuous (GY), the
mse, also known as the least squares criterion, is used as the splitting rule. Since the
RF model has hyperparameters to tune in these examples, the following grid of
values was used for the following three hyperparameters:

ntrees=c(100, 200, 300)
mtry=c(80, 100, 120)
nodesize=c(3, 6, 9)

This means that the grid contains 3 � 3 � 3 ¼ 27 combinations that need to be
evaluated, with part of the training set and then will be selected the best combination
with which the RF model will be refitted but using the whole training (outer training)
set. With this final fitted model, the predictions for the testing set are performed. It is
important to point out that the larger the grid, the greater the possibility that you can
improve the prediction performance in the testing set. For the evaluation of the
prediction performance, in this example, ten random partitions were used and in each
partition 80% of the information was used for outer training and 20% for testing, but
the outer training set (80% of the original data set) in each random partition was also
split and 80% of the data was for inner training and the remaining 20% for tuning the
set. See Chap. 4 for a review of the outer and inner training concepts. The
27 hyperparameter combinations of the grid set given above were evaluated with
the inner training set. The basic code used for the tuning process is given next:

tuning_model <- rfsrc(y ~ ., data=DataInnerTraining, ntree=flags$ntree,
mtry=flags$mtry, nodesize=flags$nodesize, splitrule ="mse")

predictions <- predict(tuning_model, newdata=DataInnerTesting)$
predicted

This code is used for the tuning process, and for this reason, the RF with
continuous response variable (splitrule ¼ “mse”) is used for each of the 27 combi-
nations of the grid and the predicted values of each of the 27 combinations are
computed with the predict() function which requires as inputs the fitted model
(tuning_model); the newdata for which the predictions should be obtained in this

646 15 Random Forest for Genomic Prediction

https://doi.org/10.1007/978-3-030-89010-0_4

case is the DataInnerTesting (tuning set). Finally, from this function, only the
predicted values were extracted for computing the prediction performance of each
combination in the grid. Then the best hyperparameter combination was selected and
with this best combination, the RF was refitted but using all the outer training sets
(inner training+tuning set). The R code for doing this training process is the same,
but using the whole outer training set:

model <- rfsrc(y ~ ., data=DataTraining, ntree=best_params$ntree,
mtry=best_params$mtry, nodesize=best_params$nodesize,
splitrule ="mse")

predicted <- predict(model, newdata=DataTesting)$predicted

Finally, with this fitted model, the prediction performance was computed for each
of the ten testing sets. The average of the ten partitions [MAAPE, average Pearson’s
correlation (PC), coefficient of determination (R2), and mean square error (MSE) of
prediction] is reported as the prediction performance. The code for computing these
metrics and the plots of variable important measures are given in Appendix 1. The
whole code for reproducing the results given in Table 15.1 is provided in Appendix
3. As pointed out before, if the splitrule is ignored, the mse splitrule is implemented
by default.

Table 15.1 indicates that the best predictions under the MAAPE were observed in
environments Bed5IR and EHT, while under the PC and R2, the best predictions
were observed in environments Bed5IR and Flat5IR. However, under the MSE, the
best predictions were in environments Bed5IR and LHT. These results show that the
selection is in part affected by the metric used for the evaluation of prediction
performance; for this reason, using more than one is suggested.

Next, we show how to use RF for predicting a binary response variable (Height);
the independent variables (X) used for this example are exactly the same as the ones
used in the previous example for continuous response variables that contain infor-
mation of environments, genotypes, and genotype�environment interaction. How-
ever, since now we want to train RF for a binary outcome, first we need to convert
the response variable as factor:

Pheno$y <- as.factor(Pheno$y)

Pheno$y is the height trait that is binary. Also, the grid used for the tuning process
was exactly the same, with 27 combinations resulting from three values of ntrees,
three values of mtry, and three values of nodesize. However, now instead of using
random partitions for evaluating the prediction performance, we used five-fold cross-
validation, and each time four of them were used for training (outer training) and one
for testing. We used another strategy of cross-validation only with the purpose of
illustrating that in some circumstances one strategy should be preferred over others.
However, the k-fold cross-validation guarantees orthogonal folds. For selecting the
hyperparameters, we also used five-fold cross-validation with four for training (inner
training) and one for tuning, but now this five-fold cross-validation was performed in

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 647

T
ab

le
15

.1
P
re
di
ct
io
n
pe
rf
or
m
an
ce

fo
r
th
e
co
nt
in
uo

us
tr
ai
t
(G

Y
)
in

te
rm

s
of

M
A
A
P
E
,a
ve
ra
ge

P
ea
rs
on
’s
co
rr
el
at
io
n
(P
C
),
co
ef
fi
ci
en
t
of

de
te
rm

in
at
io
n
(R
2)
,

an
d
m
ea
n
sq
ua
re

er
ro
r
(M

S
E
).
T
en

ra
nd

om
pa
rt
iti
on

s
w
ith

80
%

of
da
ta
fo
r
tr
ai
ni
ng

an
d
20

%
fo
r
te
st
in
g
w
er
e
us
ed

E
nv

M
A
A
P
E

S
E
_M

A
A
P
E

P
C

S
E
_P

C
R
2

S
E
_R

2
M
S
E

S
E
_M

S
E

B
ed
5I
R

0.
04

21
0.
00

42
0.
48

05
0.
07

47
0.
28

11
0.
07

54
0.
10

87
0.
01

78

E
H
T

0.
06

7
0.
00

19
0.
30

04
0.
12

44
0.
22

94
0.
08

89
0.
30

86
0.
01

65

F
la
t5
IR

0.
09

33
0.
00

94
0.
47

28
0.
09

51
0.
30

5
0.
09

56
0.
47

82
0.
07

17

L
H
T

0.
11

24
0.
01

29
0.
01

93
0.
13

95
0.
17

55
0.
07

83
0.
17

08
0.
02

95

648 15 Random Forest for Genomic Prediction

each of the outer training sets. The key code for implementing RF for tuning is
given next:

tuning_model <- rfsrc(y ~ ., data=DataInnerTraining, ntree=flags$ntree,
mtry=flags$mtry, nodesize=flags$nodesize, splitrule="gini")

predictions <- predict(tuning_model, newdata=DataInnerTesting)$
predicted

Now instead of using MSE as splitrule, we used the Gini, which is appropriate for
binary and categorical response variables. However, if you do not specify the
splitrule, but the response variable is used as factor, the Gini split rule is used by
default, but when the response variable is continuous, the MSE split rule is used by
default. Again, once the best hyperparameter combination in each outer training set
was selected, the RF was refitted with the whole outer training set (inner training
+tuning set), and with this final refitted model, the predictions for each testing set are
performed. The R code using the rfsrc() for the final fitting process using the whole
training set is given next, and it is exactly the same as for the tuning process.

model <- rfsrc(y ~ ., data=DataTraining, ntree=best_params$ntree,
mtry=best_params$mtry, nodesize=best_params$nodesize,
splitrule="gini")

predicted <- predict(model, newdata=DataTesting)$predicted

The complete R code for implementing RF for the binary response variable is
given in Appendix 4. Finally, the proportion of cases correctly classified (PCCC) and
the Kappa coefficient (Kappa) in each of the five testing sets are computed with all
the predicted values of each testing set, and the average of five-fold is reported as the
prediction performance for each environment.

Table 15.2 indicates that the best prediction performance was observed in
environments Bed5IR (PCCC ¼ 0.7331 and Kappa ¼ 0.3746) and EHT
(PCCC ¼ 0.680079 and Kappa ¼ 0.2964).

Next, we provide the results of implementing RF for the same data set, but now
for the categorical response variable DTHD. The implementation was also done with
five-fold cross-validation (outer and inner) and all inputs and the grid used for the
tuning process were the same as in the previous binary example, except that now the
response variable was categorical. The R code given in Appendix 4 can also be used
for categorical response variables but by replacing the binary response variable

Table 15.2 Prediction performance for the binary trait (Height) in terms of the proportion of cases
correctly classified (PCCC) and the Kappa coefficient. Five-fold cross-validation was used

Env PCCC SE_PCCC Kappa SE_Kappa

Bed5IR 0.7331 0.0616 0.3746 0.183

EHT 0.68 0.107 0.2964 0.2436

Flat5IR 0.591 0.0679 0.0552 0.1519

LHT 0.611 0.1056 0.2397 0.1919

15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables 649

(Height) with the categorical response variable (DTHD). The results of the predic-
tion performance in terms of PCCC and Kappa coefficient are given in Table 15.3;
the best prediction performance was observed in environments Bed5IR
(PCCC ¼ 0.7623 and Kappa ¼ 0.5693) and EHT (PCCC ¼ 0.8057 and
Kappa ¼ 0.678).

15.5 RF Algorithm for Count Response Variables

The popular RF models presented before were originally developed for continuous,
binary, and categorical data. There are also RF models for count data (Chaudhuri
et al. 1995; Loh 2002) that can be implanted in R using the package part (Therneau
and Atkinson 2019). However, these RF models for count data are not appropriate
for counts with an excess of zeros. For this reason, Lee and Jin (2006) proposed an
RF method for counts with an excess of zeros, by building the splitting criterion with
the zero-inflated Poisson distribution, but the proposed method models both the
excess zero part and the Poisson part jointly, which is unlike the basic hurdle and
zero-inflated regression models that use two models, thus allowing different covar-
iate effects for each part. The excess zeros are generated by a disconnect process
from the count values and the excess zeros can be modeled independently. For this
reason, classic regression models for counts with an excess of zeros use a logistic
model for predicting excess zeros and a truncated Poisson model for counts larger
than zero.

For this reason, next are described two algorithms for count data with an excess of
zeros proposed by Mathlouthi et al. (2019) and applied by Montesinos-López et al.
(2021) for genomic prediction. The first algorithm is called zero-altered Poisson
random forests (ZAP_RF) and the other is called zero-altered Poisson custom
random forest (ZAPC_RF), both algorithms [zero-altered Poisson (ZAP) regression
models], assumed that Y¼ 0 with probability θ (0� θ < 1), and that Y follows a zero-
truncated Poisson distribution with parameter μ (μ > 0), given that Y > 0 (Mathlouthi
et al. 2019). That is, they are based on the ZAP random variable

Table 15.3 Prediction performance for the categorical trait (DTHD) in terms of the proportion of
cases correctly classified (PCCC) and the Kappa coefficient (Kappa). Five-fold cross-validation
was used

Env PCCC SE_PCCC Kappa SE_Kappa

Bed5IR 0.7623 0.0562 0.5693 0.0707

EHT 0.8057 0.069 0.678 0.0938

Flat5IR 0.7371 0.0948 0.5921 0.1426

LHT 0.7783 0.1095 0.5856 0.1933

650 15 Random Forest for Genomic Prediction

P Y ¼ yð Þ ¼
θ y ¼ 0

1� θð Þ exp �μð Þμy
1� exp �μð Þð Þy! y > 0

8><>:
The mean and variance for ZAP are

E Yð Þ ¼ 1� θð Þ exp �μð Þ
1� exp �μð Þð Þ and Var Yð Þ

¼ 1� θð Þ
1� exp �μð Þð Þ μþ μ2

� �� 1� θð Þ
1� exp �μð Þð Þ μ

� �2

In general, zero-altered models are two-part models, where the first part is a
logistic model, and the second part is a truncated count model. However, under the
ZAP_RF and ZAPC_RF, instead of assuming a linear predictor (like ZAP regression
models), it is assumed that the links between the covariates and the responses
(Mathlouthi et al. 2019) through μ and θ are given by nonparametric link functions
like

log μð Þ ¼ f μ xð Þ and log
θ

1� θ

� �
= f θ xð Þ, ð15:1Þ

where fμ and fθ are general unknown link functions. A general nonparametric and
flexible procedure can be used to estimate fμ and fθ in (15.1). However, here we used
a random forest in two steps instead of a parametric model:

Step 1. Zero model. Fit a binary RF to the response I(Y ¼ 0), that is, the binary
variable takes a value of 1 if Y ¼ 0 and a value of 0 if Y > 0. This model produces
estimates of bθ.

Step 2. Truncated model. Fit an RF using only the positive (Y > 0) observations.
Assume there are N+ such observations denoted by Yþ

1 , . . . , Y
þ
Nþ . This model pro-

duces estimates of bμ . However, to exploit the Poisson assumption, the splitting
criteria used in the RF with the truncated part was derived from the zero-truncated
Poisson likelihood that is equal to:

LLþ ¼ �Nþ log 1� exp �μð Þð Þ þ log μð Þ
XNþ

i

Yþ
i � Nþμ�

XNþ

i

log Yþ
i !

� �
,

ð15:2Þ

where LL+ is the log-likelihood function of a sample of a zero-truncated Poisson
distribution. The estimate of μ is obtained by solving ∂LLþ

∂μ ¼ 0, which reduces to

15.5 RF Algorithm for Count Response Variables 651

PNþ

i
Yþ
i

Nþ ¼ μ
1� exp �μð Þ

For a given candidate split, the log-likelihood function given in (15.2) is com-
puted separately in the two children nodes and the best split is the one that
maximizes

dLLþ left nodeð Þ þ dLLþ right nodeð Þ,

where dLLþ (left node) and dLLþ (right node) are the log-likelihood for each node.
Once we have the estimates of μ and θ, the predicted values of Y under the

ZAP_RF are obtained with

bY ¼
1� bθ� �

exp �bμð Þ
1� exp �bμð Þð Þ ð15:3Þ

It is important to point out that in the prediction formula given above (15.3), (bY) is
equal to the mean of the ZAP model, while under the ZAPC_RF, the predictions are
obtained as

bY ¼
0, bθ > 0:5

bμ, bθ � 0:5

8<: ð15:4Þ

The ZAPC_RF as conventional logistic regression, the predicted values are
probabilities and those probabilities are converted to a binary outcome if the
probability is larger (or smaller) than some probability threshold (most of the time
this threshold is 0.5). However, under the ZAPC_RF, instead of converting the
probabilities to 0 and 1, we convert to zero if bθ > 0:5 (15.4) and to the estimated
expected count value (bμÞ if bθ � 0:5 (15.4). One limitation of the ZAPC_RF shared
with logistic regression is that the probability threshold is not unique, since many
other values between zero and one can be used. However, the threshold value of 0.5
is used most of the time since it assumes no prior information, and for this reason,
both categories have the same probability of occurring (Montesinos-López et al.
2021).

The implementation of the ZAP_RF and ZAPC_RF can be done using the
following function:

tuning_model<-zap.rfsrc(X_training, y_training,
ntree_theta=ntree_1, mtry_theta=mtry_1, nodesize_theta=nodesize_1,
ntree_lambda=ntree_2, mtry_lambda=mtry_2,
nodesize_lambda=nodesize_2)

652 15 Random Forest for Genomic Prediction

predictions <- predict(tuning_model, X_testing, type="original")$
predicted

It is important to point out that for the zap.rfsrc() function we need to provide a
training set with predictors (X_training) and the count response variable (y_train-
ing). Also, like the rfsrc() function, we need to provide the ntree, mtry, and nodesize;
however, we need to specify these parameters for the two parts (zero model and
truncated model) of the ZAP_RF model and ZAPC_RF. The parameters that end
with _theta are for the zero model and those that end with _lambda are for the
truncated model. It is important to point out that the specification given above in the
zap.rfsrc() is valid for the ZAP_RF and ZAPC_RF since the only difference between
the two models is in how the predictions are performed. For this reason, only by
changing in the predict() function the parameter type ¼ “original” that implements
the ZAP_RF to type ¼ “custom”, it is possible to implement the ZAPC_RF model.

Next, we show how to implement the ZAP_RF model using the same data set
used in the previous examples. First, it is important to point out that all the input
information used for implementing this example are the same as in the previous
examples (the same design matrices, the same grid for the tuning process, etc.),
except that now for the illustrating process, the response variable is assumed as
count. But since we are using the same data set (Data_Toy_EYT.RData) as in the
previous example, we assume trait DTHD as count. Next is given the basic R code
for the tuning process:

tuning_model=zap.rfsrc(X_inner_training, y_inner_training,
ntree_theta=flags$ntree, mtry_theta=flags$mtry,
nodesize_theta=flags$nodesize, ntree_lambda=flags$ntree,
mtry_lambda=flags$mtry, nodesize_lambda=flags$nodesize)

predictions <- predict(tuning_model, X_inner_testing,
type="original")$predicted

The R code for refitting the model with the best hyperparameter combination is
the same as above, with the only difference that instead of using the inner informa-
tion, the whole training set (inner_training+tuning set) is used. The whole code for
implementing the ZAP_RF is provided in Appendix 5.

Table 15.4 indicates that since the categorical trait (DTHD) was assumed as count
(only for illustration purposes), the prediction performance was reported in terms of
those metrics (MAAPE, PC, R2, MSE) used for continuous traits. Table 15.4 shows
that in terms of MAAPE, PC, and R2, the best predictions were observed in
environments Bed5IR and EHT, while in terms of MSE, the best predictions were
observed in environments EHT and LHT.

Next, we obtain the predictions under the ZAPC_RF that only differ from the
ZAP_RF model in specifying inside the predict() function in type ¼ “custom” as is
shown below.

predictions <- predict(tuning_model, X_inner_testing,
type="custom")$predicte

15.5 RF Algorithm for Count Response Variables 653

T
ab

le
15

.4
P
re
di
ct
io
n
pe
rf
or
m
an
ce

fo
r
th
e
ca
te
go

ri
ca
l
tr
ai
t
(D

T
H
D
)
as
su
m
ed

as
a
co
un

t
re
sp
on

se
va
ri
ab
le

un
de
r
th
e
Z
A
P
_R

F
m
od

el
w
ith

fi
ve
-f
ol
d
cr
os
s-

va
lid

at
io
n

E
nv

M
A
A
P
E

S
E
_M

A
A
P
E

P
C

S
E
_P

C
R
2

S
E
_R

2
M
S
E

S
E
_M

S
E

B
ed
5I
R

0.
33

28
0.
05

27
0.
35

03
0.
11

50
0.
17

56
0.
07

16
0.
72

86
0.
16

14

E
H
T

0.
28

95
0.
04

03
0.
27

79
0.
27

12
0.
37

15
0.
09

84
0.
71

11
0.
15

85

F
la
t5
IR

0.
31

96
0.
03

42
0.
53

32
0.
09

70
0.
31

96
0.
10

59
0.
90

44
0.
16

63

L
H
T

0.
33

32
0.
05

86
0.
37

00
0.
17

82
0.
26

39
0.
10

03
0.
72

22
0.
16

81

654 15 Random Forest for Genomic Prediction

For this reason, the code given in Appendix 5 can also be used for implementing
the ZAPC_RF, but by only changing type ¼ “original” to type ¼ “custom”. The
prediction performance of the ZAPC_RF is given in Table 15.5. Under MAAPE, the
best predictions were observed in the Bed5IR and LHT environments, while under
APC, R2, and MSE, the best predictions were observed in environments EHT and
LHT, respectively.

15.6 RF Algorithm for Multivariate Response Variables

Multivariate RF models are a generalization of univariate RF models, whereas a
typical univariate RF model involves a data set where each instance has a single
(continuous, binary, categorical, or count response) response value. The instances in
a multivariate (multi-trait) RF problem have two or more response values—i.e., the
output value is a vector rather than a scalar. There are two general approaches for
solving multivariate RF problems: either by transforming the problem into multiple
univariate problems or by adapting the RF algorithm so that it directly handles
multivariate response variables simultaneously. The naive approach of transforming
a multivariate problem into several univariate response problems is applicable for
regression (continuous response variable) just as for classification (binary and
categorical), and the same caveats apply.

Training any statistical machine learning model for predicting a continuous,
binary, categorical, and count response variable is a time-consuming task—partic-
ularly so when training data sets are very large. When multiple models need to be
trained using the same predictors in the data, but with different response variables,
time consumption can quickly get out of hand. Thus, for very large problems,
transforming a multivariate approach to univariate analysis may prove to be
unsuitable. Using the algorithm adaptation approach, it is possible to directly create
a model that simultaneously predicts a set of two or more continuous, binary,
categorical, or count responses, or even mixed response variables (continuous,
binary, and categorical) from a single training iteration. More importantly, when
the prediction tasks are related (i.e., there is a correlation or covariance between
response values), training a coherent multivariate model can potentially bring

Table 15.5 Prediction performance for the categorical trait (DTHD) assumed as a count response
variable under the ZAPC_RF model with five-fold cross-validation

Env MAAPE SE_MAAPE PC SE_PC R2 SE_R2 MSE SE_MSE

Bed5IR 0.4518 0.0486 0.2464 0.1546 0.1563 0.078 1.138 0.1837

EHT 0.3599 0.023 0.356 0.165 0.2356 0.048 1.0579 0.2311

Flat5IR 0.361 0.0276 0.3302 0.1637 0.2162 0.083 1.1595 0.3545

LHT 0.3729 0.0443 0.3428 0.1802 0.2473 0.0353 0.9504 0.2104

15.6 RF Algorithm for Multivariate Response Variables 655

benefits in the form of increased predictive performance compared to training
multiple disjoint models (Evgeniou and Pontil 2004).

RFs have already been adapted to handle multivariate response variables for
continuous, binary, categorical, and mixed (continuous, binary, and categorical)
outcomes (Segal 1992; Larsen and Speckman 2004; Zhang 1998; De’Ath 2002;
Faddoul et al. 2012; Segal and Xiao 2011; Glocker et al. 2012). For multivariate
regression analysis, Tang and Ishwaran (2017) suggest using an averaged standard-
ized variance splitting rule. Assuming that there are measures of q traits in each
observation, that is, yi¼ (yi,1, . . ., yi,q)

T, the goal is to minimize the multivariate sums
of squares (MSS),

MSS ¼
Xq
j¼1

XL

i¼1
yij � �yLj
� �2 þXR

i¼1
yij � �yRj
� �2� �

, ð15:5Þ

where �yLj and �yRj are the sample means of the jth response variable in the left and
right daughter nodes. Note that such a splitting rule (15.5) can only be effective if
each of the response variables is measured on the same scale, otherwise we could
have a response variable j with, say, very large values, and its contribution would
dominate MSS. We therefore calibrate MSS by assuming that each response variable
has been standardized (with mean zero and variance equal to one). The standardi-
zation is applied prior to splitting a node. To make this standardization clear, we
denote the standardized responses by y�ij (Tang and Ishwaran 2017). With some
elementary manipulations, it can be verified that minimizing MSS is equivalent to
minimizing

MSS ¼
Xq
j¼1

1
nL

XL

i¼1
y�ij

� �2
þ 1
nR

XR

i¼1
y�ij

� �2� �
ð15:6Þ

For multivariate classification, an averaged standardized Gini splitting rule is
used. According to Tang and Ishwaran (2017), the best split s for X is obtained by
maximizing

MGI ¼
Xr
j¼1

1
C j

XC j

k¼1

1
nL

XL

i¼1
zi kð Þj

� �2
þ 1
nR

XR

i¼1
zi kð Þj

� �2� � !
, ð15:7Þ

where r denotes the number of categorical traits, the response variable (yij) is a class
label from {1, . . .,Cj} for Cj � 2, and zi kð Þj ¼ 1 yij¼kf g . Note that the normalization

1/Cj employed in (15.7) for response variable j is required to standardize the
contribution of the Gini split from that response variable. Observe that (15.6) and
(15.7) are equivalent optimization problems, with optimization over yij for regression
and zi(k)j for classification. This leads to similar theoretical splitting properties in
regression and classification settings. Given this similarity, it is feasible to combine

656 15 Random Forest for Genomic Prediction

the two splitting rules ((15.6) and (15.7)) to form a composite splitting rule. The
mixed outcome splitting rule MCI is a composite standardized split rule of mean
squared error (15.6) and Gini index splitting (15.7), i.e.,

MCI ¼ MSSþMGI, ð15:8Þ

where p ¼ q + r. The best split for X is the value of s maximizing MCI (15.8). This
multivariate normalized composite splitting function of mean squared error and Gini
index splitting can be invoked with splitrule ¼ “mv.mix” inside the function rfscr()
for implementing multivariate RF for mixed outcomes (binary, categorical, and
continuous).

There are other splitting functions for continuous and categorical response vari-
ables. For continuous multivariate responses, Segal (1992) proposed the multivariate
Mahalanobis splitting rule:

SSE ¼
XL

i¼1
yi � �yLð ÞbΣ�1

θ, tð Þ yi � �yLð Þ þ
XR

i¼1
yi � �yRð ÞbΣ�1

θ, tð Þ yi � �yRð Þ,

where bΣ θ, tð Þ is an estimate of the covariance matrix obtained from the parent node t,
before the split, which may be modeled through a vector of parameters θ in order to
impose a specific structure, for example, exchangeable or autoregressive. Even when
no structure is imposed—that is, when the sample covariance matrix is used—bΣ θ, tð Þ
is still computed on the parent node before the split. The Mahalanobis splitting rule
allows incorporation of a correlation between response variables; however, it is not
available in the rfscr() function.

When the response variable contains only binary or categorical variables, the
splitting criterion is

CE ¼
XS

k¼1
nLk n bπLk� �þ nRk n bπRk� ��

under the assumption that there are r categorical responses, and letting sj be the
number of different values of the categorical outcome fj, for j ¼ 1, . . ., r. The whole
vector (f1, . . ., fr) can be described through a single variable S, taking S ¼ Qr

j¼1s j
possible values or states, that is, each state corresponds to one unique combination of
the original variables. This way, the original vector of categorical responses is cast
into a single multinomial outcome with S possible values that we assume to be 1, 2, .
. . , S without loss of generality. This criterion amounts to casting all individual
responses into a single categorical outcome with S values and then using the usual
entropy criterion. This is in accordance with our goal to remain as free as possible
from assumptions, but obviously, this solution becomes impractical when S is too
large. In such a case, dimension reduction is required.

Also, for implementing multivariate RF, we will be using the rfsrc() function but
instead of specifying only one response variable (before ~), we need to specify at
least two response variables inside the Multivar(GY, DTHD, DTMT, Height)

15.6 RF Algorithm for Multivariate Response Variables 657

function or cbind(GY, DTHD, DTMT, Height) specification, where GY, DTHD,
DTMT, Height denote each of the four response variables. The specification of the
remaining parameters is the same. For example, below we show the basic code for
performing the tuning process:

tuning_model <- rfsrc(Multivar(GY, DTHD, DTMT, Height) ~ .,
data=DataInnerTraining, ntree=flags$ntree, mtry=flags$mtry,
nodesize=flags$nodesize)

predictions <- predict(tuning_model, DataInnerTesting)

The complete R code for implementing the multivariate RF for continuous traits
is given in Appendix 6. The mv.mse splitting rule is used by default for all
continuous response variables under a multivariate framework. Table 15.6 shows
that the best prediction performance in terms of MAAPE was observed in the GY
trait; however, in terms of PC and R2, the best predictions were observed in trait
DTMT. The predictions under the MSE are not comparable between traits because
the traits are on different scales.

Next we provide the basic R code for implementing multivariate RF for categor-
ical response variables.

model <- rfsrc(cbind(DTHD, DTMT, Height) ~ .,
data=DataTraining, ntree=best_params$ntree,
mtry=best_params$mtry, nodesize=best_params$nodesize

predicted <- predict(model, DataTesting)

We can see that there are no differences between the specification of a multivar-
iate RF model for continuous and categorical response variables; however, when
implementing the multivariate RF for categorical outcomes, all the response vari-
ables should be converted into factors. This is important because if this conversion is
ignored, the RF will be implemented assuming that all response variables are
continuous using the mv.mse splitting function. The multivariate Gini splitting
rule (splitrule ¼ “mv.gini”) is used by default when all response variables are
categorical. Only this splitting function is available in the rfsrc() for multivariate
categorical outcomes.

Next, we give the results in terms of PCCC and the Kappa coefficient for one
binary trait (Height) and two categorical traits (DTHD and DTMT) (Table 15.7).
Across environments, the best predictions were observed for trait DTHD
(PCCC ¼ 0.7348 and Kappa ¼ 0.5799) and the worst for the Height trait
(PCCC ¼ 0.6988 and Kappa ¼ 0.3959). For trait DTHD, the best predictions
were observed in the DHT environment, while for trait DTMT, the best predictions
were observed in environment Bed5IR; finally, for trait Height, the best predictions
were observed in environment EHT.

Finally, the specification in function rfsrc() of the multivariate RF model with
mixed outcomes (continuous, binary, and categorical) is equal to the specification
given above for all continuous outcomes or all categorical outcomes, but you need to
put as factors those categorical response variables and as numeric those continuous

658 15 Random Forest for Genomic Prediction

T
ab

le
15

.6
P
re
di
ct
io
n
pe
rf
or
m
an
ce

un
de
r
m
ul
tiv

ar
ia
te
R
F
as
su
m
in
g
al
l
tr
ai
ts
ar
e
co
nt
in
uo

us
w
ith

fi
ve
-f
ol
d
cr
os
s-
va
lid

at
io
n

E
nv

T
ra
it

M
A
A
P
E

S
E
_M

A
A
P
E

P
C

S
E
_P

C
R
2

S
E
_R

2
M
S
E

S
E
_M

S
E

B
ed
5I
R

G
Y

0.
05

52
0.
00

54
0.
38

16
0.
17

30
0.
26

54
0.
11

59
0.
15

44
0.
02

23

E
H
T

G
Y

0.
06

96
0.
00

45
0.
55

70
0.
14

11
0.
39

00
0.
16

00
0.
32

57
0.
05

48

F
la
t5
IR

G
Y

0.
08

26
0.
01

05
0.
47

62
0.
13

56
0.
30

03
0.
13

54
0.
45

28
0.
08

82

L
H
T

G
Y

0.
11

82
0.
01

98
0.
29

89
0.
21

16
0.
26

85
0.
13

50
0.
18

64
0.
04

52

B
ed
5I
R

D
T
H
D

0.
34

91
0.
04

51
0.
67

57
0.
04

48
0.
46

46
0.
06

19
0.
50

74
0.
10

08

E
H
T

D
T
H
D

0.
28

62
0.
01

58
0.
74

57
0.
03

38
0.
56

06
0.
04

91
0.
45

71
0.
04

99

F
la
t5
IR

D
T
H
D

0.
30

41
0.
04

70
0.
65

52
0.
18

54
0.
56

67
0.
15

69
0.
41

45
0.
11

83

L
H
T

D
T
H
D

0.
42

90
0.
05

38
0.
44

22
0.
17

69
0.
32

07
0.
15

73
0.
79

26
0.
14

56

B
ed
5I
R

D
T
M
T

0.
30

00
0.
05

61
0.
75

19
0.
03

58
0.
57

04
0.
05

15
0.
41

97
0.
12

94

E
H
T

D
T
M
T

0.
25

83
0.
01

89
0.
75

89
0.
04

54
0.
58

42
0.
06

73
0.
33

82
0.
04

94

F
la
t5
IR

D
T
M
T

0.
24

69
0.
03

52
0.
72

38
0.
09

66
0.
56

11
0.
12

17
0.
30

05
0.
08

89

L
H
T

D
T
M
T

0.
38

89
0.
06

11
0.
49

73
0.
09

95
0.
28

69
0.
10

13
0.
67

22
0.
09

67

B
ed
5I
R

H
ei
gh

t
0.
92

63
0.
12

13
0.
61

99
0.
09

30
0.
41

89
0.
09

77
0.
16

94
0.
01

51

E
H
T

H
ei
gh

t
0.
78

42
0.
07

71
0.
62

43
0.
13

54
0.
46

30
0.
12

97
0.
18

04
0.
03

69

F
la
t5
IR

H
ei
gh

t
1.
16

24
0.
03

26
0.
44

56
0.
12

30
0.
25

91
0.
11

38
0.
19

24
0.
02

34

L
H
T

H
ei
gh

t
1.
00

32
0.
07

85
�0

.1
67

5
0.
23

71
0.
25

29
0.
16

32
0.
27

95
0.
02

31

15.6 RF Algorithm for Multivariate Response Variables 659

outcomes; in this way, the splitting function to be used to perform the training
process will be the splitrule¼ “mv.mix” and the analysis should be performed in the
right way. In Table 15.8, we can see that for the continuous trait GY, the best
predictions were observed in the Bed5IR environment for all traits. For the binary
and categorical traits, the best predictions across environments were observed in trait
Height under both metrics.

15.7 Final Comments

Part of the power of RF is due to the fact that RF introduces two kinds of
randomization. First, a bootstrap sample randomly drawn from the training data is
used to grow a tree. Second, at each node of the tree, a randomly selected subset of
variables (covariates) is chosen as candidate variables for splitting. This means that
rather than splitting a tree node using all p variables (features), RF selects, at each
node of each tree, a random subset of 1 � mtry � p variables that is used to split the
node where typically mtry is substantially smaller than p. The purpose of this
two-step randomization is to decorrelate trees and reduce variance. RF trees are
grown deeply, which reduces bias. Averaging across trees, in combination with the
subsampling process used in growing a tree, enables RF to approximate rich types of
functions while maintaining low generalization error. Considerable empirical evi-
dence has shown RF to be highly accurate, comparable to state-of-the-art methods
such as bagging [Breiman 1996], boosting [Schapire et al. 1998], and support vector
machines [Cortes and Vapnik 1995].

As a tree-based ensemble statistical machine learning tool that is highly data
adaptive, RF can be applied successfully to “large p, small n” problems, and it is also
able to capture correlation as well as interactions among independent variables

Table 15.7 Prediction performance under multivariate RF assuming all traits are categorical with
five-fold cross-validation

Env Trait PCCC SE_PCCC Kappa SE_Kappa

Bed5IR DTHD 0.6929 0.1381 0.5888 0.156

EHT DTHD 0.7839 0.0516 0.6052 0.0943

Flat5IR DTHD 0.7486 0.0734 0.5697 0.1184

LHT DTHD 0.7138 0.092 0.556 0.1349

Bed5IR DTMT 0.7429 0.0863 0.6133 0.1203

EHT DTMT 0.7367 0.0493 0.5679 0.0656

Flat5IR DTMT 0.662 0.0409 0.4342 0.0494

LHT DTMT 0.5968 0.0822 0.3876 0.1019

Bed5IR Height 0.6857 0.1126 0.3743 0.2244

EHT Height 0.7911 0.1039 0.5515 0.2386

Flat5IR Height 0.7024 0.1107 0.3323 0.2521

LHT Height 0.6161 0.0864 0.3258 0.1287

660 15 Random Forest for Genomic Prediction

T
ab

le
15

.8
P
re
di
ct
io
n
pe
rf
or
m
an
ce

un
de
r
m
ul
tiv

ar
ia
te
R
F
w
ith

m
ix
ed

tr
ai
ts
(H

ei
gh

t¼
bi
na
ry
,D

T
H
D
an
d
D
T
M
T
¼

ca
te
go

ri
ca
l,
an
d
G
Y
¼

co
nt
in
uo

us
)
w
ith

fi
ve
-f
ol
d
cr
os
s-
va
lid

at
io
n

E
nv

T
ra
it

M
A
A
P
E

S
E
_M

A
A
P
E

P
C

S
E
_P

C
R
2

S
E
_R

2
M
S
E

S
E
_M

S
E

B
ed
5I
R

G
Y

0.
04

9
0.
00

9
0.
60

7
0.
14

5
0.
45

3
0.
14

9
0.
13

9
0.
04

2

E
H
T

G
Y

0.
07

8
0.
01

0
0.
03

3
0.
17

0
0.
11

7
0.
07

2
0.
41

5
0.
11

9

F
la
t5
IR

G
Y

0.
08

0
0.
01

0
0.
65

0
0.
06

3
0.
43

9
0.
07

5
0.
37

1
0.
08

2

L
H
T

G
Y

0.
12

1
0.
02

1
0.
28

0
0.
21

5
0.
26

3
0.
13

9
0.
18

2
0.
04

0

E
nv

T
ra
it

P
C
C
C

S
E
_P

C
C
C

K
ap
pa

S
E
_K

ap
pa

B
ed
5I
R

D
T
H
D

0.
54

5
0.
10

1
0.
26

0
0.
14

1

E
H
T

D
T
H
D

0.
65

7
0.
06

7
0.
07

9
0.
14

6

F
la
t5
IR

D
T
H
D

0.
66

5
0.
05

9
0.
47

6
0.
08

2

L
H
T

D
T
H
D

0.
42

5
0.
07

4
0.
05

6
0.
05

6

B
ed
5I
R

D
T
M
T

0.
67

3
0.
11

8
0.
29

6
0.
26

7

E
H
T

D
T
M
T

0.
69

0
0.
04

1
0.
28

6
0.
11

3

F
la
t5
IR

D
T
M
T

0.
65

5
0.
09

5
0.
44

0
0.
15

2

L
H
T

D
T
M
T

0.
29

4
0.
05

5
0.
08

5
0.
15

3

B
ed
5I
R

H
ei
gh

t
0.
71

2
0.
07

1
0.
41

7
0.
14

4

E
H
T

H
ei
gh

t
0.
67

7
0.
09

0
0.
27

7
0.
11

8

F
la
t5
IR

H
ei
gh

t
0.
79

8
0.
07

5
0.
57

5
0.
11

2

L
H
T

H
ei
gh

t
0.
49

3
0.
08

3
0.
13

4
0.
06

8

15.7 Final Comments 661

(Chen and Ishwaran 2012). RF is becoming increasingly used in genomic selection
because, unlike traditional methods, it can efficiently analyze thousands of loci
simultaneously and account for nonadditive interactions. For these reasons, RF is
very appealing for high-dimensional genomic data analysis. In this chapter, we
provide the motivation, fundamentals, and some applications of RF for genomic
prediction with genomic data with continuous, binary, ordinal, and count response
variables that are very often found in genomic selection.

Another advantage of RF over alternative machine learning methods is variable
importance measures, which can be used to identify relevant independent variables
(input) or perform variable selection. In general, RF provides a very powerful
algorithm that often has great predictive accuracy and has become one of the
benchmarks in the predictive field due to the good results it generates in very diverse
problems. RF comes with all the benefits of decision trees (with the exception of
surrogate splits) and bagging, but greatly reduces instability and between-tree
correlation. And due to the added split variable selection attribute, RF models are
also faster than bagging (not explained in this book) as they have a smaller feature
search space at each tree split. However, RF will still suffer from slow computational
speed as the data sets get larger but, similar to bagging, the algorithm is built upon
independent steps, and most modern implementations allow for parallelization to
improve training time.

Appendix 1

Metrics for computing prediction performance and variable important plots.

library(dplyr)
library(caret)

Mean Square Error of prediction
mse <- function(actual, predicted) {
return(mean((actual - predicted)^2, na.rm=TRUE))

}

Proportion of cases correctly classified
pccc <- function(actual, predicted) mean(actual == predicted, na.
rm=TRUE)

Mean arctangent absolute percentage error
maape <- function(actual, predicted) {
return(mean(atan(abs(actual - predicted) / abs(actual)),

na.rm=TRUE))
}

Kappa coefficient
kappa <- function(actual, predicted) {

662 15 Random Forest for Genomic Prediction

confusion_matrix <- confusionMatrix(table(actual, predicted))
return(confusion_matrix$overall[2])

}

Generates folds for K-fold cross-validation.
From a data set with "n_records" returns a list with "k"
lists containing the elements to be used as training and testing in each
fold.
CV.Kfold <- function(n_records, k=5) {
folds_vector <- findInterval(cut(sample(n_records, n_records),

breaks=k), 1:n_records)

folds <- list()

for (fold_num in 1:k) {
current_fold <- list()
current_fold$testing <- which(folds_vector == fold_num)
current_fold$training <- setdiff(1:n_records,

current_fold$testing)

folds[[fold_num]] <- current_fold
}
return(folds)

}

Generates folds for random cross-validation.
From a data set with "n_records" it is returned a list with "n_folds"
lists containing "testing_proportion" elements records for testing
and the
complement for training.
CV.Random <- function(n_records, n_folds=10, testing_proportion=0.2)
{
folds <- list()

for (fold_num in 1:n_folds) {
current_fold <- list()
current_fold$testing <- sample(n_records, n_records *

testing_proportion)
current_fold$training <- setdiff(1:n_records,

current_fold$testing)
folds[[fold_num]] <- current_fold

}
return(folds)

}
apply_white_theme <- function(Plot) {
Plot <- Plot + theme(axis.text=element_text(size=14),

axis.title=element_text(size=14, face="bold")) +
theme_bw() +
theme(text=element_text(size=18))

Appendix 1 663

return(Plot)
}

plot_importances <- function(importances, how_many=10,
color="#248a8a") {
importances <- importances[!is.na(importances)]
importances <- importances[importances > 0]
n_indices <- min(length(importances), how_many)
indices <- order(importances, decreasing = TRUE)[1:n_indices]
best_importances <- importances[indices]

X_names <- names(best_importances)
if (is.null(X_names)) {
X_names <- 1:length(best_importances)

}

X_names <- factor(X_names, levels=X_names)
PlotData <- data.frame(value=best_importances, variable=X_names)

Plot <- ggplot(PlotData, aes(x=variable, y=value)) +
geom_bar(stat="identity", color=color, fill=color) +
coord_flip()

Plot <- apply_white_theme(Plot)

return(Plot)
}

save_plot <- function(Plot, file="plot.png", width=700, height=450,
res=110) {
png(file=file, width=width, height=height, res=res)
print(Plot)
dev.off()

}

Appendix 2

R code for implementing RF for continuous response variables and how to extract
variable importance predictors.

Remove all variables from our workspace
rm(list=ls(all=TRUE))
library(randomForestSRC)
library(dplyr)
library(ggplot2)

Import the own function for plotting variable importances
source("utils.R")

664 15 Random Forest for Genomic Prediction

Import the data set
load("Data_Toy_EYT.RData", verbose=TRUE)
Pheno <- Pheno_Toy_EYT
Pheno$Env <- as.factor(Pheno$Env)
Geno <- G_Toy_EYT

Sorting data
Pheno <- Pheno[order(Pheno$Env, Pheno$GID),]
geno_sort_lines <- sort(rownames(Geno))
Geno <- Geno[geno_sort_lines, geno_sort_lines]

Design matrices definition
ZG <- model.matrix(~0 + GID, data=Pheno)

Compute the Choleski factorization
ZL <- chol(Geno)
ZGL <- ZG %*% ZL
ZE <- model.matrix(~0 + Env, data=Pheno)

Bind all design matrices in a single matrix to be used as predictor
X <- cbind(ZE,ZGL)
dim(X)

Create a data frame with the information of response variable and all
predictors
Data <- data.frame(y=Pheno$GY, X)
head(Data[, 1:5])

Fit the model with importance=TRUE for also computing the variable
importance
model <- rfsrc(y ~ ., data=Data, importance=TRUE)

Get the variable importance
head(model$importance,10)

Plot the 30 most important variables with own function
Plot <- plot_importances(model$importance, how_many=10)
Plot
save_plot(Plot, "plots/1.continuous.png")

Appendix 3

R code for implementing RF for continuous response variables with ten random
partitions.

Remove all variables from our workspace
rm(list=ls(all=TRUE))
library(randomForestSRC)

Appendix 3 665

library(dplyr)
library(caret)
library(purrr)

Import some useful functions such as CV.Random, CV.Kfold, mse, maape,
etc.
source("utils.R")

Import the data set
load("Data_Toy_EYT.RData", verbose=TRUE)
Pheno <- Pheno_Toy_EYT
Geno <- G_Toy_EYT

########## PREPARE DATA ##########
Pheno$Env <- as.factor(Pheno$Env)
Pheno$Height <- as.factor(Pheno$Height)

Sorting data
Pheno <- Pheno[order(Pheno$Env, Pheno$GID),]
geno_sort_lines <- sort(rownames(Geno))
Geno <- Geno[geno_sort_lines, geno_sort_lines]

Design matrices definition
ZG <- model.matrix(~0 + GID, data=Pheno)
Compute the Choleski factorization
ZL<-chol(Geno)
ZGL<-ZG %*% ZL

ZE<-model.matrix(~0 + Env, data=Pheno)
#Interaction design matrix
ZGE <- model.matrix(~0 + ZGL:Env, data=Pheno)

###Joining the three design matrices
X <- cbind(ZGL, ZE, ZGE)
dim(X)

Create a data frame with the information of response variable and all
predictors
Data <- data.frame(y=Pheno$GY, X)
head(Data[, 1:5])

n_records <- nrow(Pheno)
n_outer_folds <- 10
outer_testing_proportion <- 0.2
n_inner_folds <- 1
inner_testing_proportion <- 0.2

Get the indices of the elements that are going to be used as training and
testing in each fold
outer_folds <- CV.Random(n_records, n_folds=n_outer_folds,

testing_proportion=outer_testing_proportion)

666 15 Random Forest for Genomic Prediction

Grid values for the tuning process
tuning_values <- list(ntrees=c(100, 200, 300),

mtry=c(80, 100, 120),
nodesize=c(3, 6, 9))

Get all possible combinations of the defined tuning values -(3 * 3 * 3)
all_combinations <- cross(tuning_values)
n_combinations <- length(all_combinations)

########## RANDOM FOREST TUNING AND EVALUATION ##########
Define the variable where the final results of each fold will be stored in
Predictions <- data.frame()

Iterate over each generated fold
for (i in 1:n_outer_folds) {
cat("Outer Fold:", i, "/", n_outer_folds, "\n")
outer_fold <- outer_folds[[i]]

Divide our data into testing and training sets
DataTraining <- Data[outer_fold$training,]
DataTesting <- Data[outer_fold$testing,]

Tuning only with training data
n_tuning_records <- nrow(DataTraining)
Variable that will hold the best combination of hyperparameters and

the MSE
that was produced.
best_params <- list(mse=Inf)

inner_folds <- CV.Random(n_tuning_records, n_folds=n_inner_folds,
testing_proportion=inner_testing_proportion)

for (j in 1:n_combinations) {
cat("\tCombination:", j, "/", n_combinations, "\n")

flags <- all_combinations[[j]]

cat("\t\tInner folds: ")
for (m in 1:n_inner_folds) {
cat(m, ", ")
inner_fold <- inner_folds[[m]]

DataInnerTraining <- DataTraining[inner_fold$training,]
DataInnerTesting <- DataTraining[inner_fold$testing,]

Fit the model using the current combination of hyperparameters
tuning_model <- rfsrc(y ~ ., data=DataInnerTraining,

ntree=flags$ntree,
mtry=flags$mtry, nodesize=flags$nodesize, splitrule="mse")

predictions <- predict(tuning_model, newdata=DataInnerTesting)$
predicted

Appendix 3 667

Compute MSE for the current combination of hyperparameters
current_mse <- mse(DataInnerTesting$y, predictions)

If the current combination gives a lower MSE set it as new best_params
if (current_mse < best_params$mse) {
best_params <- flags
best_params$mse <- current_mse

}
}
cat("\n")

}

Using the best params combination retrain the model but using the
complete
training set
model <- rfsrc(y ~ ., data=DataTraining, ntree=best_params$ntree,

mtry=best_params$mtry, nodesize=best_params$nodesize,
splitrule="mse")
predicted <- predict(model, newdata=DataTesting)$predicted

Save the information of the predictions in the current fold
CurrentPredictions <- data.frame(Position=outer_fold$testing,

GID=Pheno$GID[outer_fold$testing],
Env=Pheno$Env[outer_fold$testing],
Partition=i,
Observed=DataTesting$y,
Predicted=predicted)

Predictions <- rbind(Predictions, CurrentPredictions)
}

head(Predictions)
tail(Predictions)

Summarize the results across environment computing four metrics
ByEnvSummary <- Predictions %>%

Calculate the metrics disaggregated by Partition and Env
group_by(Partition, Env) %>%
summarise(MSE=mse(Observed, Predicted),

Cor=cor(Predicted, Observed, use="na.or.complete"),
R2=cor(Predicted, Observed, use="na.or.complete")^2,
MAAPE=maape(Observed, Predicted)) %>%

select_all() %>%

Calculate the metrics disaggregated Env with standard errors
of each partition
group_by(Env) %>%
summarise(SE_MAAPE=sd(MAAPE, na.rm=TRUE) / sqrt(n()),

MAAPE=mean(MAAPE, na.rm=TRUE),
SE_Cor=sd(Cor, na.rm=TRUE) / sqrt(n()),
Cor=mean(Cor, na.rm=TRUE),
SE_R2=sd(R2, na.rm=TRUE) / sqrt(n()),
R2=mean(R2, na.rm=TRUE),

668 15 Random Forest for Genomic Prediction

SE_MSE=sd(MSE, na.rm=TRUE) / sqrt(n()),
MSE=mean(MSE, na.rm=TRUE)) %>%

select_all() %>%

mutate_if(is.numeric, ~round(., 4)) %>%
as.data.frame()

ByEnvSummary

write.csv(Predictions, file="results/2.GY_random_all.csv", row.
names=FALSE)
write.csv(ByEnvSummary, file="results/2.GY_random_summary.csv", row.
names=FALSE)

Appendix 4

R code for implementing RF for binary response variables with five-fold cross-
validation.

Remove all variables from our workspace
rm(list=ls(all=TRUE))
library(randomForestSRC)
library(dplyr)
library(caret)
library(purrr)

Import some useful functions such as CV.Random, CV.Kfold, mse, maape,
etc.
source("utils.R")

Import the data set
load("Data_Toy_EYT.RData", verbose=TRUE)
Pheno <- Pheno_Toy_EYT
Geno <- G_Toy_EYT

########## PREPARE DATA ##########
Pheno$Env <- as.factor(Pheno$Env)
Pheno$Height <- as.factor(Pheno$Height)

Sorting data
Pheno <- Pheno[order(Pheno$Env, Pheno$GID),]
geno_sort_lines <- sort(rownames(Geno))
Geno <- Geno[geno_sort_lines, geno_sort_lines]

Design matrices definition
ZG <- model.matrix(~0 + GID, data=Pheno)
Compute the Choleski factorization
ZL <- chol(Geno)
ZGL <- ZG %*% ZL

Appendix 4 669

ZE <- model.matrix(~0 + Env, data=Pheno)
Interaction design matrix
ZGE <- model.matrix(~0 + ZGL:Env, data=Pheno)

Bind all design matrices in a single matrix to be used as predictor
X <- cbind(ZGL, ZE, ZGE)
dim(X)

Create a data frame with the information of response variable and all
predictors. As Height is binary response variable that is already
condired as factor variable automatically it will be trained a classifier
random forest.
Data <- data.frame(y=Pheno$Height, X)
head(Data[, 1:5])

n_records <- nrow(Pheno)
n_outer_folds <- 5
n_inner_folds <- 5

Get the indices of the elements that are going to be used as training and
testing in each fold
outer_folds <- CV.Kfold(n_records, k=n_outer_folds)

Define the values which are going to be evaluated in the tuning process
tuning_values <- list(ntrees=c(100, 200, 300),

mtry=c(80, 100, 120),
nodesize=c(3, 6, 9))

Get all possible combinations of the defined tuning values -(3 * 3 * 3)
all_combinations <- cross(tuning_values)
n_combinations <- length(all_combinations)

########## RANDOM FOREST TUNING AND EVALUATION ##########
Define the variable where the final results of each fold will be stored
Predictions <- data.frame()

Iterate over each generated fold
for (i in 1:n_outer_folds) {
cat("Outer Fold:", i, "/", n_outer_folds, "\n")
outer_fold <- outer_folds[[i]]

Divide our data into testing and training sets
DataTraining <- Data[outer_fold$training,]
DataTesting <- Data[outer_fold$testing,]

Tuning only with training data
n_tuning_records <- nrow(DataTraining)
Variable that will hold the best combination of hyperparameters and

the PCCC
that was produced.
best_params <- list(pccc=-Inf)

670 15 Random Forest for Genomic Prediction

inner_folds <- CV.Kfold(n_tuning_records, k=n_inner_folds)

for (j in 1:n_combinations) {
cat("\tCombination:", j, "/", n_combinations, "\n")

flags <- all_combinations[[j]]

cat("\t\tInner folds: ")
for (m in 1:n_inner_folds) {
cat(m, ", ")
inner_fold <- inner_folds[[m]]

DataInnerTraining <- DataTraining[inner_fold$training,]
DataInnerTesting <- DataTraining[inner_fold$testing,]

Fit the model using the current combination of hyperparameters
tuning_model <- rfsrc(y ~ ., data=DataInnerTraining,

ntree=flags$ntree,
mtry=flags$mtry, nodesize=flags$nodesize)

predictions <- predict(tuning_model, newdata=DataInnerTesting)$
class

Compute PCCC for the current combination of hyperparameters
current_pccc <- pccc(DataInnerTesting$y, predictions)

If the current combination gives a greater PCCC, set it as new
best_params

if (current_pccc > best_params$pccc) {
best_params <- flags
best_params$pccc <- current_pccc

}
}
cat("\n")

}

Using the best params combination, retrain the model but using the
complete
training set
model <- rfsrc(y ~ ., data=DataTraining, ntree=best_params$ntree,

mtry=best_params$mtry, nodesize=best_params$nodesize)
predicted <- predict(model, newdata=DataTesting)$class

Save the information of the predictions in the current fold
CurrentPredictions <- data.frame(Position=outer_fold$testing,

GID=Pheno$GID[outer_fold$testing],
Env=Pheno$Env[outer_fold$testing],
Partition=i,
Observed=DataTesting$y,
Predicted=predicted)

Predictions <- rbind(Predictions, CurrentPredictions)
}

Appendix 4 671

head(Predictions)
tail(Predictions)

Summarize the results across environment computing two metrics
ByEnvSummary <- Predictions %>%

Calculate the metrics disaggregated by Partition and Env
group_by(Partition, Env) %>%
summarise(PCCC=pccc(Observed, Predicted),

Kappa=kappa(Observed, Predicted)) %>%
select_all() %>%

Calculate the metrics disaggregated Env with standard errors
of each partition
group_by(Env) %>%
summarize(SE_PCCC=sd(PCCC, na.rm=TRUE) / sqrt(n()),

PCCC=mean(PCCC, na.rm=TRUE),
SE_Kappa=sd(Kappa, na.rm=TRUE) / sqrt(n()),
Kappa=mean(Kappa, na.rm=TRUE)) %>%

select_all() %>%
mutate_if(is.numeric, ~round(., 4)) %>%
as.data.frame()

ByEnvSummary

write.csv(Predictions, file="results/3.Height_k_fold_all.csv", row.
names=FALSE)
write.csv(ByEnvSummary, file="results/3.Height_k_fold_summary.csv",
row.names=FALSE)

Appendix 5

R code for implementing RF for count response variables with five-fold cross-
validation.

Remove all variables from our workspace
rm(list=ls(all=TRUE))

Install the needed version of randomForestSRC library from this Github
repo
that contains the zap.rfsrc function if not installed or if you have
another
version of randomForestSRC
devtools::install_github("brandon-mosqueda/randomForestSRC")
library(randomForestSRC)
library(dplyr)
library(caret)
library(purrr)

672 15 Random Forest for Genomic Prediction

Import some useful functions such as CV.Random, CV.Kfold, mse, maape,
etc.
source("utils.R")

Import the data set
load("Data_Toy_EYT.RData", verbose=TRUE)
Pheno <- Pheno_Toy_EYT
Pheno$Env <- as.factor(Pheno$Env)
Geno <- G_Toy_EYT

Sorting data
Pheno <- Pheno[order(Pheno$Env, Pheno$GID),]
geno_sort_lines <- sort(rownames(Geno))
Geno <- Geno[geno_sort_lines, geno_sort_lines]

Design matrices definition
ZG <- model.matrix(~0 + GID, data=Pheno)
Compute the Choleski factorization
ZL <- chol(Geno)
ZGL <- ZG %*% ZL

ZE <- model.matrix(~0 + Env, data=Pheno)
Interaction design matrix
ZGE <- model.matrix(~0 + ZGL:Env, data=Pheno)

Bind all design matrices in a single matrix to be used as predictor
X <- data.frame(cbind(ZGL, ZE, ZGE))
dim(X)

Response variable
y <- Pheno$DTHD

n_records <- nrow(Pheno)
n_outer_folds <- 5
n_inner_folds <- 5

Get the indices of the elements that are going to be used as training and
testing in each fold
outer_folds <- CV.Kfold(n_records, k=n_outer_folds)

Define the values that are going to be evaluated in the tuning process
tuning_values <- list(ntrees=c(100, 200, 300),

mtry=c(80, 100, 120),
nodesize=c(3, 6, 9))

Get all possible combinations of the defined tuning values -(3 * 3 * 3)
all_combinations <- cross(tuning_values)
n_combinations <- length(all_combinations)

Appendix 5 673

########## RANDOM FOREST TUNING AND EVALUATION ##########
Define the variable where the final results of each fold will be stored
Predictions <- data.frame()

Iterate over each generated fold
for (i in 1:n_outer_folds) {
cat("Outer Fold:", i, "/", n_outer_folds, "\n")
outer_fold <- outer_folds[[i]]

Divide our data into testing and training sets
X_training <- X[outer_fold$training,]
y_training <- y[outer_fold$training]

X_testing <- X[outer_fold$testing,]
y_testing <- y[outer_fold$testing]

Tuning only with training data
n_tuning_records <- nrow(X_training)
Variable that will hold the best combination of hyperparameters and

the MSE
that was produced.
best_params <- list(mse=Inf)

inner_folds <- CV.Kfold(n_tuning_records, k=n_inner_folds)

for (j in 1:n_combinations) {
cat("\tCombination:", j, "/", n_combinations, "\n")

flags <- all_combinations[[j]]

cat("\t\tInner folds: ")
for (m in 1:n_inner_folds) {
cat(m, ", ")
inner_fold <- inner_folds[[m]]

X_inner_training <- X_training[inner_fold$training,]
y_inner_training <- y_training[inner_fold$training]

X_inner_testing <- X_training[inner_fold$testing,]
y_inner_testing <- y_training[inner_fold$testing]

Fit the model using the current combination of hyperparameters
tuning_model <- zap.rfsrc(X_inner_training, y_inner_training,

ntree_theta=flags$ntree,
mtry_theta=flags$mtry,
nodesize_theta=flags$nodesize,
ntree_lambda=flags$ntree,
mtry_lambda=flags$mtry,
nodesize_lambda=flags$nodesize)

You can also use custom as prediction type
predictions <- predict(tuning_model, X_inner_testing)$predicted

674 15 Random Forest for Genomic Prediction

Compute MSE for the current combination of hyperparameters
current_mse <- mse(y_inner_testing, predictions)

If the current combination gives a lower MSE, set it as new
best_params

if (current_mse < best_params$mse) {
best_params <- flags
best_params$mse <- current_mse

}
}
cat("\n")

}

Using the best params combination, retrain the model but using the
complete
training set
model <- zap.rfsrc(X_training, y_training,

ntree_theta=best_params$ntree,
mtry_theta=best_params$mtry,
nodesize_theta=best_params$nodesize,
ntree_lambda=best_params$ntree,
mtry_lambda=best_params$mtry,
nodesize_lambda=best_params$nodesize)

You can also use custom as prediction type
predicted <- predict(model, X_testing, type="original")$predicted

Save the information of the predictions in the current fold
CurrentPredictions <- data.frame(Position=outer_fold$testing,

GID=Pheno$GID[outer_fold$testing],
Env=Pheno$Env[outer_fold$testing],
Partition=i,
Observed=y_testing,
Predicted=predicted)

Predictions <- rbind(Predictions, CurrentPredictions)
}

head(Predictions)
tail(Predictions)

Summarize the results across environment computing four metrics
ByEnvSummary <- Predictions %>%

Calculate the metrics disaggregated by Partition and Env
group_by(Partition, Env) %>%
summarise(MSE=mse(Observed, Predicted),

Cor=cor(Predicted, Observed, use="na.or.complete"),
R2=cor(Predicted, Observed, use="na.or.complete")^2,
MAAPE=maape(Observed, Predicted)) %>%

select_all() %>%

Calculate the metrics disaggregated Env with standard errors
of each partition
group_by(Env) %>%

Appendix 5 675

summarise(SE_MAAPE=sd(MAAPE, na.rm=TRUE) / sqrt(n()),
MAAPE=mean(MAAPE, na.rm=TRUE),
SE_Cor=sd(Cor, na.rm=TRUE) / sqrt(n()),
Cor=mean(Cor, na.rm=TRUE),
SE_R2=sd(R2, na.rm=TRUE) / sqrt(n()),
R2=mean(R2, na.rm=TRUE),
SE_MSE=sd(MSE, na.rm=TRUE) / sqrt(n()),
MSE=mean(MSE, na.rm=TRUE)) %>%

select_all() %>%

mutate_if(is.numeric, ~round(., 4)) %>%
as.data.frame()

ByEnvSummary

write.csv(Predictions, file="results/7.DTHD_k_fold_all.csv", row.
names=FALSE)
write.csv(ByEnvSummary, file="results/7.DTHD_k_fold_summary.csv",
row.names=FALSE)

Appendix 6

R code for implementing RF for multivariate continuous response variables with
five-fold cross-validation.

Remove all variables from our workspace
rm(list=ls(all=TRUE))
library(randomForestSRC)
library(dplyr)
library(caret)
library(purrr)

Import some useful functions such as CV.Random, CV.Kfold, mse, maape,
etc.
source("utils.R")

Import the data set
load("Data_Toy_EYT.RData", verbose=TRUE)
Pheno <- Pheno_Toy_EYT
Pheno$Env <- as.factor(Pheno$Env)

Verify all variables are numeric
str(Pheno)
Geno <- G_Toy_EYT

Sorting data
Pheno <- Pheno[order(Pheno$Env, Pheno$GID),]
geno_sorted_lines <- sort(rownames(Geno))
Geno <- Geno[geno_sorted_lines, geno_sorted_lines]

676 15 Random Forest for Genomic Prediction

Design matrices definition
ZG <- model.matrix(~0 + GID, data=Pheno)
Compute the Choleski factorization
ZL <- chol(Geno)
ZGL <- ZG %*% ZL

ZE <- model.matrix(~0 + Env, data=Pheno)
Interaction design matrix
ZGE <- model.matrix(~0 + ZGL:Env, data=Pheno)

Bind all design matrices in a single matrix to be used as predictor
X <- cbind(ZGL, ZE, ZGE)
dim(X)

Create a data frame with the information of the four response variables
and all
predictors
Data <- data.frame(GY=Pheno$GY, DTHD=Pheno$DTHD,

DTMT=Pheno$DTMT, Height=Pheno$Height, X)
head(Data[, 1:8])

responses <- c("GY", "DTHD", "DTMT", "Height")
n_records <- nrow(Pheno)
n_outer_folds <- 5
n_inner_folds <- 5

Get the indices of the elements that are going to be used as training and
testing in each fold
outer_folds <- CV.Kfold(n_records, k=n_outer_folds)

Define the values which are going to be evaluated in the tuning process
tuning_values <- list(ntrees=c(100, 200, 300),

mtry=c(80, 100, 120),
nodesize=c(3, 6, 9))

Get all possible combinations of the defined tuning values (3 * 3 * 3)
all_combinations <- cross(tuning_values)
n_combinations <- length(all_combinations)

########## RANDOM FOREST TUNING AND EVALUATION ##########
Define the variable where the final results of each fold will be stored
Predictions <- data.frame()

Iterate over each generated fold
for (i in 1:n_outer_folds) {
cat("Outer Fold:", i, "/", n_outer_folds, "\n")
outer_fold <- outer_folds[[i]]

Divide our data into testing and training sets
DataTraining <- Data[outer_fold$training,]
DataTesting <- Data[outer_fold$testing,]

Appendix 6 677

Tuning only with training data
n_tuning_records <- nrow(DataTraining)
Variable that will hold the best combination of hyperparameters and

the
MAAPE that was produced.
best_params <- list(maape=Inf)
inner_folds <- CV.Kfold(n_tuning_records, k=n_inner_folds)
for (j in 1:n_combinations) {
cat("\tCombination:", j, "/", n_combinations, "\n")
flags <- all_combinations[[j]]
cat("\t\tInner folds: ")
for (m in 1:n_inner_folds) {
cat(m, ", ")
inner_fold <- inner_folds[[m]]
DataInnerTraining <- DataTraining[inner_fold$training,]
DataInnerTesting <- DataTraining[inner_fold$testing,]

Fit the multivariate model using the current combination of
hyperparameters
tuning_model <- rfsrc(Multivar(GY, DTHD, DTMT, Height) ~ .,

data=DataInnerTraining, ntree=flags$ntree,
mtry=flags$mtry, nodesize=flags$nodesize, splitrule="mv.

mse")
predictions <- predict(tuning_model, DataInnerTesting)

Compute MAAPE for all response variables with the current
combination of

hyperparameters
gy_maape <- maape(DataInnerTesting$GY,

predictions$regrOutput$GY$predicted)
dthd_maape <- maape(DataInnerTesting$DTHD,

predictions$regrOutput$DTHD$predicted)
dtmt_maape <- maape(DataInnerTesting$DTMT,

predictions$regrOutput$DTMT$predicted)
height_maape <- maape(DataInnerTesting$Height,

predictions$regrOutput$Height$predicted)

current_maape <- mean(c(gy_maape, dthd_maape, dtmt_maape,
height_maape))

If the current combination gives a lower MAAPE set it as new
best_params

if (current_maape < best_params$maape) {
best_params <- flags
best_params$maape <- current_maape

}
}
cat("\n")

}

Using the best hyper-params combination, retrain the model but using
the complete
training set
model <- rfsrc(Multivar(GY, DTHD, DTMT, Height) ~ .,

678 15 Random Forest for Genomic Prediction

data=DataTraining, ntree=best_params$ntree,
mtry=best_params$mtry, nodesize=best_params$nodesize,

splitrule="mv.mse")
predicted <- predict(model, DataTesting)

CurrentPredictions <- data.frame()
Bind the predictions of each response variable in the current fold
for (response_name in responses) {
CurrentPredictions <- rbind(
CurrentPredictions,
data.frame(
Position=outer_fold$testing,
GID=Pheno$GID[outer_fold$testing],
Env=Pheno$Env[outer_fold$testing],
Partition=i,
Trait=response_name,
Observed=DataTesting[[response_name]],
Predicted=predicted$regrOutput[[response_name]]$predicted

)
)

}

Predictions <- rbind(Predictions, CurrentPredictions)
}

head(Predictions)
tail(Predictions)

Summarize the results across environment computing four metrics per
response
ByEnvSummary <- Predictions %>%

Calculate the metrics disaggregated by Partition and Env
group_by(Trait, Partition, Env) %>%
summarise(MSE=mse(Observed, Predicted),

Cor=cor(Predicted, Observed, use="na.or.complete"),
R2=cor(Predicted, Observed, use="na.or.complete")^2,
MAAPE=maape(Observed, Predicted)) %>%

select_all() %>%

Calculate the metrics disaggregated Env with standard errors
of each partition
group_by(Env, Trait) %>%
summarise(SE_MAAPE=sd(MAAPE, na.rm=TRUE) / sqrt(n()),

MAAPE=mean(MAAPE, na.rm=TRUE),
SE_Cor=sd(Cor, na.rm=TRUE) / sqrt(n()),
Cor=mean(Cor, na.rm=TRUE),
SE_R2=sd(R2, na.rm=TRUE) / sqrt(n()),
R2=mean(R2, na.rm=TRUE),
SE_MSE=sd(MSE, na.rm=TRUE) / sqrt(n()),
MSE=mean(MSE, na.rm=TRUE)) %>%

select_all() %>%

Appendix 6 679

Order by Trait
arrange(Trait) %>%

mutate_if(is.numeric, ~round(., 4)) %>%
as.data.frame()

ByEnvSummary

write.csv(Predictions,
file="multivariate/results/1.all_as_continuous_all.csv",
row.names=FALSE)

write.csv(ByEnvSummary,
file="multivariate/results/1.all_as_continuous_summary.csv",
row.names=FALSE)

References

Breiman L (1996) Bagging predictors. Mach Learn 26:123–140
Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees.

Wadsworth, Belmont, California. MR0726392
Chaudhuri P, Lo WD, Loh WY, Yang C-C (1995) Generalized regression trees. Stat Sin 1995:641–

666
Chen X, Ishwaran H (2012) Random forests for genomic data analysis. Genomics 99:323–329
Cortes C, Vapnik VN (1995) Support-vector networks. Mach Learn 20:273–297
De’Ath G (2002) Multivariate regression trees: a new technique for modeling species-environment

relationships. Ecology 83(4):1105–1117
Evgeniou T, Pontil M (2004) Regularized multi–task learning. In: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining, ACM, pp
109–117

Faddoul JB, Chidlovskii B, Gilleron R, Torre F (2012) Learning multiple tasks with boosted
decision trees. In: Machine learning and knowledge discovery in databases. Springer, pp
681–696

García-Magariños M, Inaki LU, Cao R, Salas A (2009) Evaluating the ability of tree-based methods
and logistic regression for the detection of SNP-SNP interaction. Ann Hum Genet 73:360–369

Glocker B, Pauly O, Konukoglu E, Criminisi A (2012) Joint classification-regression forests for
spatially structured multi-object segmentation. In: Computer vision–ECCV 2012. Springer, pp
870–881

González-Recio O, Forni S (2011) Genome-wide prediction of discrete traits using Bayesian
regressions and machine learning. Genet Sel Evol 43:7

Ishwaran H, Kogalur UB (2008) RandomSurvivalForest 3.2.2. R package. http://cran.r-project.org
Larsen DR, Speckman PL (2004) Multivariate regression trees for analysis of abundance data.

Biometrics 60(2):543–549
Lee SK, Jin S (2006) Decision tree approaches for zero-inflated count data. J Appl Stat 33:853–865
Li B, Zhang N, Wang Y-G, George AW, Reverter A, Li Y (2018) Genomic prediction of breeding

values using a subset of SNPs identified by three machine learning methods. Front Genet 9:237.
https://doi.org/10.3389/fgene.2018.00237

LohWY (2002) Regression trees with unbiased variable selection and interaction detection. Stat Sin
2002:361–386

680 15 Random Forest for Genomic Prediction

http://cran.r-project.org
https://doi.org/10.3389/fgene.2018.00237

Mathlouthi W, Larocque D, Fredette M (2019) Random forests for homogeneous and
non-homogeneous Poisson processes with excess zeros. Stat Methods Med Res
29(8):2217–2237

Montesinos-López OA, Montesinos-López A, Mosqueda-Gonzalez BA, Montesinos-López JC,
Crossa J, Lozano-Ramirez N, Singh P, Valladares-Anguiano FA (2021) A zero altered Poisson
random forest model for genomic-enabled prediction. Genes, Genome and Genetics 11(2):
jkaa057

Naderi S, Yin T, König S (2016) Random forest estimation of genomic breeding values for disease
susceptibility over different disease incidences and genomic architectures in simulated cow
calibration groups. J Dairy Sci 99:7261–7273. https://doi.org/10.3168/jds.2016-10887

Sarkar RK, Rao AR, Meher PK, Nepolean T, Mohapatra T (2015) Evaluation of random forest
regression for prediction of breeding value from genomewide SNPs. J Genet 94(2):187–192.
https://doi.org/10.1007/s12041-015-0501-5

Schapire R, Freund Y, Bartlett P, Lee W (1998) Boosting the margin: a new explanation for the
effectiveness of voting methods. Ann Statist 26:1651–1686. MR1673273

Segal MR (1992) Tree-structured methods for longitudinal data. J Am Stat Assoc 87(418):407–418
Segal M, Xiao Y (2011) Multivariate random forests. WIREs Data Min Knowl Discov 1(1):80–87
Stephan J, Stegle O, Beyer A (2015) A random forest approach to capture genetic effects in the

presence of population structure. Nat Commun 6:7432. https://doi.org/10.1038/ncomms8432
Tang F, Ishwaran H (2017) Random forest missing data algorithms. Stat Anal Data Min 10:363–

377
Therneau T, Atkinson B (2019) rpart: recursive partitioning and regression trees. R Package

Version 4:1–15. https://CRAN.R-project.org/package¼rpart. Accessed Aug 2019
Waldmann P (2016) Genome-wide prediction using Bayesian additive regression trees. Genet Sel

Evol 48:42. https://doi.org/10.1186/s12711-016-0219-8
Zhang H (1998) Classification trees for multiple binary responses. J Am Stat Assoc

93(441):180–193

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References 681

https://doi.org/10.3168/jds.2016-10887
https://doi.org/10.1007/s12041-015-0501-5
https://doi.org/10.1038/ncomms8432
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=rpart
https://doi.org/10.1186/s12711-016-0219-8
http://creativecommons.org/licenses/by/4.0/

	Chapter 15: Random Forest for Genomic Prediction
	15.1 Motivation of Random Forest
	15.2 Decision Trees
	15.3 Random Forest
	15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables
	15.4.1 Splitting Rules

	15.5 RF Algorithm for Count Response Variables
	15.6 RF Algorithm for Multivariate Response Variables
	15.7 Final Comments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	References

