
Chapter 11
Artificial Neural Networks and Deep
Learning for Genomic Prediction
of Continuous Outcomes

11.1 Hyperparameters to Be Tuned in ANN and DL

Successful applications of ANN or DL are related to the user’s ability to choose the
right hyperparameters. Hyperparameter selection is done with the goal that a model
neither underfits nor overfits the training data sets. However, this task is challenging
because the number of hyperparameters required in ANN and DL is large. Below we
provide a list of the hyperparameters that need to be tuned for implementing ANN
and DL models.

1. Network topology
2. Activation functions
3. Loss function
4. Number of hidden layers
5. Number of neurons in each layer
6. Regularization type
7. Learning rate
8. Number of epochs and number of batches
9. Normalization scheme for input data

Next, we provide some general tips for choosing each hyperparameter.

11.1.1 Network Topology

Choosing the neural network topology is a critical step for the successful implemen-
tation of ANN and DL models. A safe approach is to choose a feedforward network
with a large amount of neurons since there is a lot of empirical evidence that this
neural network performs a good optimization process and finds proper weights while
at the same time avoiding overfitting. Even though there is empirical evidence that
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other topologies also work well in some circumstances, the application of DL is still
at an early stage (experimental stage) with no definite conclusions. Picking the right
network topology is more an art than a science and only practice will make a proper
neural network architect (Chollet and Allaire 2017). However, with images data the
most powerful DNN are convolutional neural networks, see Chap. 13.

11.1.2 Activation Functions

The principal rule for choosing activation functions for output layers depends on the
type of response variable at hand. For this reason, for binary data, the best option is
the sigmoid activation function, for ordinal or multiclass classification problems, the
softmax activation function, and for continuous data, the linear activation function is
suggested. However, even though there are no clear rules for choosing the activation
functions for hidden layers, there is a lot of evidence that using sigmoid activation
functions is not a good choice for hidden layers since sigmoid functions very often
discard information due to saturation in both forward and backpropagation. RELU
activation functions are the most used for hidden neurons, as can be seen in modern
deep learning networks today, but RELU activation functions have the problem that
some neurons may never activate across the entire training data set. For this reason,
the suggestion is to use the leaky RELU activation function in hidden layers which
have no zero gradient for all input values (Patterson and Gibson 2017).

11.1.3 Loss Function

Choosing the right loss function is a key component for the successful implemen-
tation of ANN and DL models. Next are given some general rules for selecting the
right loss function: (a) when the response variable is continuous, use the sum of
squares error loss as the primary option and the sum of absolute percentage error
loss as the secondary option; (b) when the response variable is binary, use the hinge
loss or logistic (cross-entropy) loss; (c) however, if you are interested in the
probability of success of each individual, the logistic loss is the best option; and
(d) for categorical responses, the categorical cross-entropy loss is the most used, but
when the response variable is a count, a reasonable choice is the Poisson loss or
negative binomial loss.
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11.1.4 Number of Hidden Layers

Selecting the number of hidden layers is a very important issue in the configuration
process of DL models. According to the universal approximation theorem (Cybenko
1989), a network with one hidden layer and a large number of neurons is enough to
approximate any arbitrary function to the desired degree of accuracy. However, the
reality is that many times the required number of neurons is so large that its imple-
mentation is not practical. Also, there is a lot of evidence that more than one hidden
layer is required when the data are not separated linearly (Fig. 11.1b). Therefore, if
your data are linearly separable (Fig. 11.1a) (which you often unknow by the time you
begin coding an ANN or DL model), then you don’t need any hidden layers at all. Of
course, you don’t need an ANN or DLmodel to resolve your data either, but it will still
do the job. One hidden layer is sufficient for most problems.

In general, neural networks with two hidden layers can represent functions with
any kind of shape. There are currently no strong theoretical reasons to use neural
networks with any more than two hidden layers, but empirical evidence shows that
using more than two hidden layers can capture in a better way non-linear patterns
and complex interactions (Chollet and Allaire 2017). Further, for many practical
problems, there’s no reason to use any more than one hidden layer. Problems that
require two hidden layers are not very common. Differences between the number of
hidden layers are summarized in Table 11.1.

Fig. 11.1 Schematic representation of linearly and nonlinearly separable patterns. (a) Linearly
separable patterns. (b) Nonlinearly separable patterns

Table 11.1 Guide for determining the number of hidden layers

Number of hidden
layers Result

None Only capable of representing linear separable functions or decisions

1 Can approximate well any functions that contain continuous mapping from
one finite space to another

2 Represent a decision boundary to arbitrary accuracy with rational activa-
tion functions and can approximate any smooth mapping to any degree of
accuracy
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11.1.5 Number of Neurons in Each Layer

The number of neurons in the network is very important since using too few neurons
in the hidden layers will result in underfitting, while using too many neurons in the
hidden layers can result in severe overfitting. For the input layer, the number of
neurons is predetermined by the number of input features (predictors) of the input
data. Also, in the output layer, the number of neurons is determined by the number of
response variables (outputs) to be predicted or by the number of classes of the
response variable when it is ordinal or categorical. For example, if we want to
predict grain yield, a continuous outcome, using information of 3000 markers as
input variables, this means that the input layer should have 3000 neurons and the
output layer just 1, since we are only interested in one response variable that is
continuous. However, if instead of predicting a continuous outcome we are inter-
ested in predicting an categorical output with ten categories, in this case the required
number of neurons in the output layer should be equal to the number of categories in
the categorical response variable. But defining the number of neurons in the hidden
layers is challenging, and it is left to the user to decide which number to use prior to
training the model. According to the literature review we performed, we found that
there is no unique and reliable rule for determining the required number of neurons
in the hidden layers, since this number depends on (a) the number of input neurons;
(b) the amount of training data; (c) the quality of the training data; and (d) the
complexity of the learning task (Lantz 2015).

As a general rule, the more complex the network topology (with more neurons,
layers, etc.), the more powerful the network for learning more complex problems.
That is, the more neurons and layers are used, the better the representation of the
training data, which means that the predicted values should be very close to the true
values observed in the training set; however, this runs the risk of overfitting and may
generalize poorly to new data. We also need to be aware that increasing the
complexity of the network also implies that more computational resources are
required for its implementation (Lantz 2015). However, as pointed out before,
there is empirical evidence that only one hidden layer with a large number of neurons
is enough even for complex applications, since increasing the number of layers
increases the computational resources required by the complexity of the neural
network. For this reason, in general, increasing the number of neurons instead of
the number of layers is suggested, for example, if we have a neural network with
100 neurons in the single hidden layer, computationally it is better to increase to
200 neurons in the same hidden layer than to add a second hidden layer with
100 neurons. Of course, this suggestion is not always valid since there are many
applications in the fields of pattern recognition and image classification, among
others, were to be able to create adequately complex decision boundaries. It is very
important to add more hidden layers to better capture the complexity of the phe-
nomenon we want to predict.

Given the difficulties mentioned above, there are two very general approaches for
specifying the required number of neurons in the hidden layers. The first one, called
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the backward approach, suggests starting with a very large number of neurons and
evaluating their performance, and then decreasing the number of neurons until there
is no more gain in the reduction of the testing error. The second one, called the
forward approach, suggests starting with half (50%) of the input neurons and then
increasing the number of neurons until no significant gain in the prediction perfor-
mance of sample data is observed. Since there is no consensus about how to choose
the required number of hidden neurons, next we provide some general rules: (a) the
number of hidden neurons should be in the range between the size of the input layer
and the size of the output layer; (b) the number of hidden neurons should be 2/3 of
the input layer size, plus the size of the output layer; (c) the number of hidden
neurons should be less than twice the input layer size; (d) Hecht-Nielsen (1987)
suggested using 2P +1 hidden neurons (where P is the number of inputs) for a
network with one hidden layer to compute an arbitrary function; (e) Lippmann
(1987) suggested that the maximum number of neurons required for the single
hidden layer should be equal to L � (P + 1), where L is the number of output
neurons; and (f) for a single hidden layer classifier, an upper bound is about 2P + 1
hidden neurons, whichever is larger.

But in practical terms, the optimal size of the hidden layer is usually between the
size of the input and size of the output layers. In some problems, one could probably
achieve a decent performance (even without a second optimization step) by setting
the hidden layer configuration following just two rules:

1. the number of hidden layers is equal to one and
2. the number of neurons in that layer is the mean of the neurons in the input and

output layers.

These rules are only starting points that you may want to consider. Ultimately, the
selection of the neurons of your neural network will come down to trial and error
following a backward or forward approach. Of course, the idea is to use as few
neurons as possible that provide good performance in validation data sets. In general,
rules (e) and (f) many times are conservative given that fewer neurons are often
sufficient, since in a lot of cases, using only a small number of hidden neurons in the
artificial neural network offers a tremendous amount of learning ability. Also, we
need to recall that according to the universal approximation theorem, an artificial
neural network with at least one hidden layer with a lot of neurons is a good universal
function approximator (Lantz 2015).

11.1.6 Regularization Type

The main goal of regularization is to avoid overfitting, and the basic idea is to
penalize the weights in such a way that the model increases its prediction perfor-
mance in out-of-sample data. The most common methods are the L2 (Ridge penal-
ization), L1 (Lasso penalization), L2-L1 (Elastic Net penalization), and the dropout
method. The L1 regularization forces many weights to be exactly zero, which
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provides a sparse solution, while with L2 regularization, the larger the weight, the
stronger the penalization. The L2-L1 is somewhere between the L2 and L1 regular-
ization, while the dropout method fixes a certain percentage of weights to be exactly
zero in the input or hidden neurons. However, it is not easy to suggest one of them,
since all of them do a reasonable job in particular contexts, but any of them works
well for all types of data. But, in general, the L2 and dropout regularizations perform
well in many applications.

11.1.7 Learning Rate

The learning rate modifies weights and thresholds (bias) of the neural network, in
order for a given input to the network to produce a favored output. It also determines
the speed for convergence of the backpropagation algorithm to an optimal solution.
Typically, a value of 0.001 or less is used to initialize the learning rate; however, in
general, it is a hard task to choose the appropriate learning rate. Before explaining the
problems involved in choosing the learning rate, we will first mention that the
backpropagation algorithm can stop because (1) the number of maximum epochs
allowed was reached and (2) an optimal solution was found (Baysolow II 2017).
Figure 11.2 illustrates how to reach an optimal solution with an optimal learning rate.

Next, we explain the consequences of choosing a learning rate that is too small or
too large. When the learning rate is very small, it is more likely to stop the
backpropagation algorithm in a non-optimal condition since the first stopping
condition is satisfied. Although apparently this can be fixed by increasing the
number of epochs, this solution is not optimal since increasing the number of epochs
considerably increases the required computation resources. On the other hand, when
the learning rate is very large, it is possible not to reach the optimal solution due to
the fact that the loss function in each epoch may overcorrect and give updated values
for the coefficient that are far too small or far too large (Figs. 11.3 and 11.4). For this
reason, the suggestion is to try several learning rate values and see how the algorithm
performs across each epoch (Baysolow II 2017).

Fig. 11.2 Optimal learning
rate for efficient error
minimization
(Samarasinghe 2007)
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11.1.8 Number of Epochs and Number of Batches

Before defining an epoch, we will define a sample (individual) as a single row of data
that contains inputs that are fed into the algorithm and an output (prediction) that is
compared to the true value to calculate an error. The number of epochs is a
hyperparameter that defines the number of times that the learning algorithm will
work across the entire training data set. One epoch means that each sample in the
training data set has had an opportunity to update the internal model parameters. An
epoch is comprised of one or more batches. For example, assume you have a data set
with 600 samples (rows of data) and you choose a batch size of 15 and 500 epochs.
This means that the data set will be divided into 40 batches, each with 15 samples.
The model weights will be updated after each batch of 15 samples. This also means
that one epoch will involve 40 batches or 40 updates of 15 samples to be completed.
With 500 epochs, the model will be exposed to or will pass through the whole data
set 500 times. That is, a total of 40� 500¼ 20,000 batches during the entire training
process. Therefore, with this example, it is clear that the number of batches in each
epoch is equal to the number of samples in the data sets divided by the batch size. To
better understand these two hyperparameters, you can think of a for-loop over the
number of epochs where each loop proceeds over batches of the training data set.
Within this for-loop is another nested for-loop that iterates over each batch of
samples, where one batch has the specified “batch size” number of samples.

Fig. 11.4 The effect on the
learning process of a
learning rate that is too high.
(Samarasinghe 2007)

Fig. 11.3 The effect of a
high learning rate on the
learning process
(Samarasinghe 2007)
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The number of epochs is traditionally large, often hundreds or thousands,
allowing the learning algorithm to run until the error from the model has been
sufficiently minimized. You may see examples of the number of epochs in the
literature and in tutorials set to 10, 100, 500, 1000, and larger. This means that the
number of epochs can be set to an integer value between one and a very large value.
You can run the algorithm for as long as you like and even stop using other criteria
besides a fixed number of epochs, such as a change (or lack of change) in the model
error over time. The more complex the features and relationships in your data, the
more epochs you’ll require for your model to learn, adjust the weights, and minimize
the loss function. With regard to the batch size, that is, the number of samples
processed before the model is updated, this hyperparameter should be more than or
equal to one and less than or equal to the number of samples in the training data set.
Popular batch sizes include 32, 64,128 samples and so on.

It is common to create line plots that show epochs along the x-axis as time, and the
error or skill of the model on the y-axis. These plots were mentioned in Chap. 10 and
were called learning curves under the early stopping rule. These plots can help to
diagnose whether the model has over learned, under learned, or is suitably fit to the
training data set. Since there are no magic rules on how to configure these param-
eters, you must try different values and see what works best for your problem.

11.1.9 Normalization Scheme for Input Data

It is generally good practice to scale input variables to have the same scale. When
input variables have different scales, the scale of the weights of the network will, in
turn, vary accordingly. This introduces a problem when using weight regularization
because the absolute or squared values of the weights must be added for use in the
penalty. Also, without normalization, the input variable with greater numeric range
has larger impact than the one having less numeric range, and this could, in turn,
impact prediction accuracy. This problem can be addressed by the following
methods applied to each input variable:

Standardizing. Subtract the mean and divide by the standard deviation. Many
times it is good practice to only divide each input by the standard deviation without
centering.

Min-max normalization. Subtract from each observation the min value of the
input and divide this by the range (max value-min value) of the input. The disad-
vantage of the min-max normalization technique is that it tends to bring the data
toward the mean. Details of this method and other methods of scaling were provided
in Chap. 2 of this book.
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11.2 Popular DL Frameworks

Given that the adoption of DL has proceeded at an alarming pace, the maturity of the
ecosystem has also shown phenomenal improvement. Thanks to many large tech
organizations and open-source initiatives, we now have a plethora of options to
choose from. Due to the evolution of the software industry, today it is far easier to
develop high-end software than it was a few years back, thanks to the available tools
that have automated complex problems in a way that’s simple to use.

Given the maturity of software tools available today, we can afford to automate
several complexities that happen in the background. These tools are nothing but
building blocks for software systems. You technically don’t need to start from
scratch; you can instead rely on available powerful tools that have matured signif-
icantly to take care of several software-building services. Given the level of abstrac-
tion a framework provides, we can classify it as a:

(a) Low-level DL framework and
(b) High-level DL framework

A few of the popular low-level frameworks for DL are Theano, Torch, PyTorch,
MxNet, TensorFlow, etc. The previously mentioned frameworks can be defined as
the first level of abstraction for DL models. You would still need to write fairly long
codes and scripts to get your DL model ready, although much less than using just
Python or C++. The advantage of using the first-level abstraction is the flexibility it
provides in designing a model. However, to simplify the process of DL models, we
have frameworks that work on the second level of abstraction called High-Level DL
Frameworks. Rather than using the previously mentioned frameworks directly, we
can use a new framework on top of an existing framework and thereby simplifying
DL model development even further. The most popular high-level DL framework
that provides a second-level abstraction to DL model development is Keras. Other
frameworks like Gluon, Lasagne, and so on are also available, but Keras has been the
most widely adopted one.

Keras is a high-level neural network API written in Python, and it can help you in
developing a fully functional DL model with few lines of code. Since it is written in
Python, it has a larger community of users and supporters and is extremely easy to
get started on. The simplicity of Keras is that it helps users to quickly develop DL
models and provides a ton of flexibility while still being a high-level API. This really
makes Keras a special framework to work with. By far the most widely adopted
usage of Keras is with TensorFlow as a back end (i.e., Keras as a high-level DL API
and TensorFlow as its low-level API back end). In a nutshell, the code you write in
Keras gets converted to TensorFlow, which then runs on a computing instance. You
can read more about Keras and its recent developments here: https://keras.io/.

For this reason, in this book, we use Keras for implementing ANN and DL
models (Allaire and Chollet 2019). The examples that follow use this framework.
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11.3 Optimizers

The optimizer is a key component of the model training process. Up to this point, we
are only familiar with the backpropagation algorithm that provides feedback to the
model to reach a good trained process. The loss function of ANN is the main element
to understand how well or poorly the current set of weights has performed on the
training sample. The next step for the model is to reduce the loss. How does it know
what steps or updates it should perform on the weights to reduce the loss? As we
observed in the previous chapter, the optimizer function is a mathematical algorithm
that uses calculus (derivatives and partial derivatives) to estimate how much change
the network will need in the loss function to be able to reach the minimum. The
change in the loss function, which would be a decrease or increase, helps in finding
the direction of the change required in the weight of the connection. The math
equations required are specific for each optimizer and are beyond the scope of this
book (Géron 2019), but the general issues are those provided in Chap. 10 for the
back propagation algorithm.

Batch Gradient Descent (BGD). The implementation of BGD requires training
the model with the full data sets at every step. As a result, it is considerably slow on
very large training sets. The BGD will eventually converge to the optimal solution
for convex functions with a fixed learning rate, but requires a considerable amount of
time (Géron 2019). Under BGD, the cost function has the shape of a bowl when the
inputs have the same scale, but an elongated bowl with different scales of the
features is also possible. Figure 11.5 shows gradient descent on a training set
where features 1 and 2 have the same scale (on the left), and on a training set
where feature 1 has much smaller values than feature 2 (on the right).

Other optimizers based on gradient descent available in Keras are listed next.
Stochastic Gradient Descent (SGD). SGD, at the extreme, simply chooses a

random instance in the training set at each step and calculates the gradients only in
that single instance, that is, SGD uses batch_ size¼ 1 in the model training function.

Fig. 11.5 Gradient descent with and without input (feature) scaling (Géron 2019). On the left are
shown the two features on the same scale that reach the target faster, while on the right the two
features have different scales and take longer to reach the target
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Obviously, this makes the algorithm much faster, since in each iteration, it has less
data to manipulate (Fig. 11.6). To reduce high fluctuations in SGD optimizations, a
better approach would reduce the number of affected iterations in a mini-batch.
Mini-batch gradient descent is a modification of the gradient descent method that
splits the training data set into small batches that are used to calculate model
prediction error and update model coefficients. This approach has been more suc-
cessful and results in a more fluid training process. The batch size is usually set to
powers of 2 (i.e., 32, 64, 128, etc.) (Géron 2019).

Adaptive Moment Estimation (Adam). This is by far the most popular and widely
used optimizer in DL. In most cases, you can blindly choose the Adam optimizer and
forget about the optimization alternatives. This optimization technique computes an
adaptive learning rate for each parameter. It defines momentum and variance of the
gradient of the loss and leverages a combined effect to update the weight parameters.
The variance and momentum together help smooth the learning curve and effectively
improve the learning process.

Other important optimizers. There are many other popular optimizers for DL
models. We will not discuss all of them in this book. We will list only a few of the
most popular optimization alternatives used and available within Keras (Adadelta,
RMSProp, Adagrad, Adamax, Nadam). There is no perfect optimization method
since each of them has its own pros and cons. Each optimizer requires tunable
parameters like learning rate, momentum, and decay. The saddle point and vanishing
gradient are two problems often faced in DL. These problems can be explored in
more detail while choosing the best optimizer for your problem. But Adam always
works fine in most cases (Géron 2019).

Fig. 11.6 Stochastic
gradient descent (Géron
2019)
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11.4 Illustrative Examples

Example 11.1 MaizeToy
In this example, we use the MaizeToy data set. This data set is preloaded in the
BMTME library, and for this reason it is important to first install this library and also
the Keras library. To see the information of this data set, we can use:

rm(list=ls())
library(keras)
library(BMTME)
##########Set seed for reproducible results###################
use_session_with_seed(45)
#################Loading the MaizeToy data sets#############
data("MaizeToy")
ls()
head(phenoMaizeToy)

Using this code, we can see in the console that this data set has two objects:
“genoMaizeToy” and “phenoMaizeToy.” The first contains the genomic relationship
matrix (GRM) of the lines, while the second contains the phenotypic information for
which the first six observations resulting from using the head() command are shown:

> head(phenoMaizeToy)
Line Env Yield ASI PH

1 CKDHL0008 EBU 6.88 2.7 226
2 CKDHL0008 KAK 4.83 1.7 227
3 CKDHL0008 KTI 4.84 3.0 240
4 CKDHL0039 EBU 6.85 1.3 239
5 CKDHL0039 KAK 5.23 0.7 212
6 CKDHL0039 KTI 6.18 2.0 238

Here we can observe that in this data set, the first column contains the names of
the lines, the second contains the name of the environments, while columns 3–5
contain the measured traits: grain yield (Yield), anthesis-silking interval (ASI), and
plant height (PH).

Next we order the data, first in terms of environments and then in terms of lines
inside each environment, using the following commands:

##################Ordering the data ###############################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,5)

438 11 Artificial Neural Networks and Deep Learning for Genomic Prediction. . .



The output of five observations using the head() function is equal to:

> head(phenoMaizeToy,5)
Line Env Yield ASI PH

1 CKDHL0008 EBU 6.88 2.7 226
2 CKDHL0039 EBU 6.85 1.3 239
3 CKDHL0042 EBU 6.37 2.3 238
4 CKDHL0050 EBU 4.98 3.1 239
5 CKDHL0060 EBU 7.07 1.4 242

Here it is clear that the data are ordered first in terms of environments and then in
terms of lines inside each environment. Next, we build the design matrices required
to implement a model with a predictor with information of environments, lines, and
genotype by environment interaction. To do this, the following code can be used:

#################Design
matrices####################################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*% LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG<-model.matrix(~0 +as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2

It is important to point out that the design matrices are built using the model
matrix command of R that is specialized for this task, but the resulting design
matrices of lines and genotype by environment interaction are post-multiplied by
the Cholesky decomposition of the GRM of lines or genotype� environment. In the
next code, we select the available response variables and create the training–testing
set using a CV strategy with five-fold.

##############Selecting the response variable######################
Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])
####Training–testing sets using the BMTME package###############
pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy[, 2],

Response = phenoMaizeToy[, 3])
CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

The Y matrix contains information of the three traits available in the MaizeToy
data sets. The pheno variable is an auxiliary object that contains information of lines,
information of environments, and the response variable of only one trait to be able to
create a training-testing partition according to a five-fold cross-validation strategy
where information of some lines is missing in some environments but not in all. The
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CrossV$CrossValidation_list argument was used to print the testing observations for
each fold.

> CrossV$CrossValidation_list
$partition1
[1] 88 79 59 67 3 36 90 14 23 78 10 27 26 24 74 9 13 72

$partition2
[1] 12 39 30 69 41 65 83 63 87 57 48 53 2 38 20 31 43 29

$partition3
[1] 89 80 75 17 11 54 33 52 28 84 56 7 35 37 42 21 34 70

$partition4
[1] 81 58 44 8 73 19 4 66 51 6 86 60 40 76 61 16 15 64

$partition5
[1] 45 82 18 5 71 47 46 49 85 50 25 55 62 22 32 68 1 77

We used the following code to select only one trait to be our response variable
(Yield), and we also collected in an X matrix the information of environments, lines,
and genotype by environment that will be the input of our artificial deep neural
network model:

################Part 0: Final X and y before splitting ################
y=(phenoMaizeToy[, 3])
length(y)
X=cbind(Z.E,Z.G,Z.EG)
dim(X)

The output of this code shows that the total number of observations is 90, that is,
30 for each environment, and the number of input variables (predictors) is
123, which corresponds to the number of columns in matrix X. For the moment,
we will only work with one-fold of the five training–testing sets, and we will also
specify the number of epochs and units (neurons) used to implement our first
artificial deep neural network model in Keras.

#####################One holdout cross-validation##################
tst_set=CrossV$CrossValidation_list[[2]]
No_Epoch=1000
N_Units=33
X_trn=X[-tst_set,]
X_tst=X[tst_set,]
y_trn=y[-tst_set]
y_tst=y[tst_set]

Before specifying the model, we will explain the pipe operator (%>%) that
connects functions or operations together in the Keras library. We will be using
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the pipe operator (%>%) to add layers to the network. The pipe operator allows us to
pass the value on its left as the first argument to the function on its right.

Next, we define the artificial neural network model and compile it in Keras:

build_model <- function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =N_Units, activation = "relu", input_shape = c(dim

(X_trn)[2])) %>%
layer_dropout(rate = 0.0) %>%
layer_dense(units = 1, activation = "linear")

model %>% compile(
loss = "mse",
optimizer = "rmsprop",
metrics = c("mse"))

model}

model <- build_model()
model %>% summary()

The first part of this code specifies the type and topology of the model. With
keras_model_sequential we are using Keras to implement a feedforward (or densely
connected) network. The sequential model is composed of a linear stack of layers.
Layers consist of the input layer, hidden layers, and an output layer. Sequential
models are appropriate when the information available is in two dimensions: one
dimension for samples (observations or individuals) and the other for predictors
(features), since the available data set is a matrix where the rows correspond to
observations and the columns correspond to the features at hand. The first
layer_dense is used to specify the first hidden layer and also the required number
of neurons (units), and in the input_shape is specified the dimension of the input
variables (in this case, it is equal to the number of columns in the training set of the
predictors, that is, 123). Also specified here is the linear activation function which
gives as output positive values. Next in layer_dropout() we are instructing Keras that
any of the weights of the neurons of the first hidden layer will be set to zero, that is,
all specified neurons will be used since rate ¼ 0. Then the second layer_dense() is
used to specify the output layer, which only used one neuron since the response
variable under study is continuous and unique (univariate); in this layer we used the
linear activation function, which is a good choice for continuous outputs. An input
shape argument is not required in the second or other hidden layers since its input
shape is automatically inferred as being the output of the previous layer.

Next, the compilation step is done in which the learning process of the network is
configured and where you should specify the optimizer, the loss function(s), and the
metric used for monitoring the match between observed and predicted values. In this
case, for the optimizer we specified “rmsprop,” which is a gradient-descent-based
algorithm that combines Adagrad and Adadelta adaptive learning ability. Adagrad is
a gradient-descent-based algorithm that accumulates previous costs to do adaptive
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learning. Adadelta is a gradient-descent-based algorithm that uses Hessian approx-
imation to do adaptive learning. The loss function and metric used in this case is the
mean squared error (mse) since the response variable is quantitative. The last two
lines of this code provide a summary of the model that will be implemented.

> model <- build_model()

> model %>% summary()

_________________________________________________________________________

_________________________

Layer (type)                                Output Shape                           Param #        

=================================================================

=================================

dense_1 (Dense)                             (None, 33)                             4092           

_________________________________________________________________________

_________________________

dropout_1 (Dropout)                         (None, 33)                             0              

_________________________________________________________________________

_________________________

dense_2 (Dense)                             (None, 1)                              34             

=================================================================

=================================

Total params: 4,126

Trainable params: 4,126

Non-trainable params: 0

From this summary output of the neural model that will be implemented, we can see that there are
33 neurons (since we decided to use 33 neurons) in the hidden layer, and any of their weights will be
fixed at zero since the dropout percentage is zero. For this reason, the number of parameters
(weights) in the first hidden layer is equal to 123 � 33 + 33 ¼ 4092, and to 34 in the second layer
since there are 34 weights that connect from the hidden layer to the output layer; this corresponds to
33 units plus an intercept (bias) term. For this reason, the total number of parameters to estimate is
equal to 4126.
We then provide the code for training (fitting) the model and also specify a plot to visualize training
and validation metrics by epoch:
print_dot_callback <- callback_lambda(
on_epoch_end ¼ function(epoch, logs) {

if (epoch %% 20 ¼¼ 0) cat("\n")
cat(".")

})
##########Internally this part of the code split the training set in
training-inner and validation###
model_fit <- model %>% fit(
X_trn, y_trn,
shuffle¼F,
epochs ¼No_Epoch, batch_size ¼72,
validation_split ¼0.2,
verbose ¼ 0,
callbacks ¼ list(print_dot_callback))

############Plot history ###################
plot(model_fit)

(continued)
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(continued)

The first part of the code is a custom callback function for replacing the default training output with
a single dot per epoch, while the second part is for fitting the artificial neural model and storing
training stats. Also, in this second part of the code is specified the input and output training
information, the number of epochs and batch size, and the size of the inner validation set, which in
this case was 0.2 or 20%. The model will set apart this fraction of the training data, will not train on
it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The
validation data are selected from the last samples in the X and y data provided, before shuffling
(permining the data). The goal is to shuffle the training data before each epoch when TRUE is
specified, but not when FALSE is specified. The plot of model_fit is for visualizing the model’s
training progress using the metrics stored in the model_fit variable. We want to use these data to
determine how long to train before the model stops making progress.

In Fig. 11.7, the mean square error is plotted in the bottom panel, and the loss in
the top panel. In this plot you can see that after 250 epochs, there is no relevant
improvement in the prediction performance of the validation set. Next, we calculate
the MSE for the training set; the predictions and MSE of the testing set were obtained
using the following code:

############MSE for No_epochs=1000 in the outer testing set##########
model_fit$metrics$val_mse[No_Epoch]
pred=model%>% predict(X_tst)
Pred=c(pred)
Obs=y_tst
MSE_First=mean((Obs-Pred)^2)
MSE_First

The first part of the code extracts the MSE for the training set implemented with
1000 epochs, which is equal to 4.5429; the second manually calculates the MSE for
the testing set, which is equal to 1.8688. Next, we refit the model but using the early

Fig. 11.7 Training and validation metrics
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stopping approach to stop the training process when there is no more improvement
in terms of prediction accuracy.

########Fitting the model with early stopping#######
######## The patience parameter is the amount of epochs to check for
improvement.
early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min', patience =50)

model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trn, y_trn,
shuffle=F,
epochs =No_Epoch, batch_size =72,
validation_split = 0.2,
verbose=0, callbacks = list(early_stop,print_dot_callback))

########################Plot history #############################
length(model_fit_Final$metrics$mean_squared_error)
plot(model_fit_Final)

The first part of this code is a function that will help to implement the early
stopping process in Keras, and the function to monitor is the validation loss score.
The patience parameter is the number of epochs with no improvement, after which
training will be stopped. The second part is exactly the same as the one used before
for fitting the model, with the difference that now the training process will stop
according to the information provided in the early stopping function. The code
length(model_fit_Final$metrics$mse) prints the number of epochs during the stop-
ping process. Finally, the history of the training and validation process is depicted in
this plot (Fig. 11.8).

Fig. 11.8 Training and validation metrics under the stopping approach
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In the plot it is clear that the stop occurred in epoch 282, which means that the
training process was done with this number of epochs and not with 1000 as before.
Finally, the following code was used to obtain the predicted values and MSE for the
testing set using the training information with 282 epochs. Two MSE were also
printed, one using the original 1000 epochs (MSE_First) and the last one with
282 epochs.

################Prediction of testing set##########################
predicted=model_Final %>% predict(X_tst)
Predicted=c(predicted)
Observed=y_tst
plot(Observed,Predicted)
MSE=mean((Observed-predicted)^2)
MSE
Obs_Pred=cbind(Observed,predicted)
colnames(Obs_Pred)=c("Observed","Predicted")
Obs_Pred

########Results with and without early stopping MSE and MSE_First##
MSE_First
MSE

Finally, this code, in addition to providing the observed and predicted values, of
which we show the first six observations, also provides the MSE of both training
processes:

> head(Obs_Pred)
Observed Predicted

[1,] 7.55 5.824002
[2,] 5.91 4.806885
[3,] 5.62 4.344528
[4,] 5.39 4.817317
[5,] 5.23 4.776768
[6,] 6.39 5.039447
>
>
> ########Results with and without early stopping are printed as MSE and
MSE_Firt, respectively ##
> MSE_First
[1] 1.868842
> MSE
[1] 1.806609

From this output it is clear that when the training process was done with the early
stopping approach, the MSE of the testing set was better by 3.4% (even though
maybe it is not so relevant since the predictions are still quite far from the true
values), than when using all the epochs originally used. However, it is important to
point out that the early stopping method did not always improve the prediction
performance.
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Example 11.2 MaizeToy Example with a Tuning Process
The last example illustrated how to use the early stopping rule to train ANN or DL
models. However, that example only used one partition of the data sets (one TRN
with 80% and one TST with 20%) and one value of neurons. However, if another
TRN–TST split and number of neurons are used, the expected MSE will be different.
For this reason, next we split the training into five TRN–TST inner subsets and also
train the ANN model with a grid of two values for the neurons and two dropout
values.

Tuning a DNN model often requires exploring many hyperparameters to find the
best combination that produces the best out-of-sample predictions. The best way to
approach this in Keras is by defining external flags (a map of the model parameter
name and an arrangement of values to try) for key parameters, which you may want
to vary instead of progressively changing your source code of the training script each
time. In other words, this is a way in Keras for specifying a grid search. The flags()
function provides a flexible mechanism for defining flags and varying them across
training runs. For this reason, for tuning hyperparameters in Keras, we will now use
the tfruns package (Allaire 2018), which uses flags and provides a lot of flexibility
for tracking, visualizing, and managing training runs and experiments in R. This
package allows tracking the metrics, hyperparameters, source code of every training
run, and output, and visualizes the results of individual runs and comparisons
between runs. For this reason, first we created the Keras script with flags called
Code_Tuning_With_Flags_00.R, as follows:

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.01),
flag_numeric("val_split",0.2),
flag_numeric("reg_l1",0.001))

####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1,

input_shape = c(dim(X_trII)[2])) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units=1, activation ="linear")

#####c) Compiling the DNN model
model %>% compile(
loss = "mse",
optimizer =optimizer_adam(FLAGS$learning_rate),
metrics = c("mse"))

model}
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model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =50)

###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =FLAGS$Epoch1, batch_size =FLAGS$batchsize1,
shuffled=F,
validation_split = FLAGS$val_split,
verbose=0,callbacks = list(early_stop,print_dot_callback))

In part a) of the above code, we declare the flags for each of the candidate
hyperparameters to be tuned. It is important to point out that the type of flag that
is used depends on the type of hyperparameter, and there are four types of flags: a)
flag_integer() for integer values like 1, 2, 3, 4, etc., b) flag_numeric() for floating
point values like 2.5, 4.4.�1.23, 1.35, etc., c) flag_boolean() for logical values (e.g.,
true, false, 1, 0), and d) flag_string(), for example, character values (e.g., “RELU”).

Next we incorporate the flag parameters within our model. In part b) of the code, a
feedforward neural network is defined, but incorporating the flags for units and
hidden activation function allows us to vary the values of these hyperparameters and
not only work with the literal values of these hyperparameters. The definition of the
DNN model differs from the previous DNN model in the use of flags. In part c), the
compilation of the DNN model is done using flags and in this part the only flag used
was for the learning rate. Finally, in part d), the model is fitted; flags were also used
here but now for epochs, batch_size, and validation_split.

Next we created a grid of hyperparameters and we called the last R code
(Code_Tuning_With_Flags_00.R) to be able to vary each flag with a grid of values
using the tfruns::tuning_run() function where the grid of values for each of the
hyperparameters is specified. The following code performs a tuning process for
choosing the optimal hyperparameters. The data used here are the same as before
(MaizeToy data sets), but it is important to point out that to be able to use this code,
first all the codes that were used in Example 11.1 should be used, until part 0: Part 0:
Final X and y before splitting.

################a) Inner cross-validation##########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
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X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

############b) Grid search using the tuning_run() function of tfruns
package########
runs.sp<-tuning_run("Code_Tuning_With_Flags_00.R",runs_dir =
'_tuningE1',flags=list(dropout1= c(0,0.05),

units = c(33,67),
activation1=("relu"),
batchsize1=c(28),
Epoch1=c(1000),
learning_rate=c(0.001),
val_split=c(0.2)),sample=1,confirm =
FALSE,echo =F)

#####c) Saving each combination of hyperparameters in the Hyperpar
data.frame
#### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1),]
runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,

metric_val_mse=runs.sp$metric_val_mse,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}

#####d) Summarizing the five inner fold by hyperparameter combination
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%
select(grid_length,val_mse,dropout1,units,batchsize1,

learning_rate, epochs) %>%
mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

######e) Selecting the optimal hyperparameters############
Min=min(Hyperpar_Opt$val_mse)
pos_opt=which(Hyperpar_Opt$val_mse==Min)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selecting the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate
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print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

########f) Refitting the model with the optimal values#################
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape =

c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1, activation =activation_O)

model_Sec %>% compile(
loss = "mean_squared_error",
optimizer = optimizer_adam(lr=lr_O),
metrics = c("mean_squared_error"))

ModelFited <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O, #####validation_split=0.2,
early_stop,
verbose=0,callbacks=list(print_dot_callback))

#############g) Prediction of testing set ##########################
Yhat=model_Sec%>% predict(X_tst)
y_p=Yhat
y_p_tst=as.numeric(y_p)
y_tst=y[tst_set]
plot(y_tst,y_p_tst)
MSE=mean((y_tst-y_p_tst)^2)
MSE

In part a) of the above code, the number of inner TRN–TST partitions that will be
implemented is specified; in this case, there are five. Then a data.frame called
Hyperpar is defined in which the results of each combination of hyperparameters
resulting from each inner partition will be saved. Then we start the loop for
implementing the five inner CV strategies for selecting the best hyperparameters.
Then the outer training set is shuffled (permuted; using sample without replacement)
in such a way that the TRN–TST partition constructed internally in Keras using the
validation_set function does not use the same validation and training set in each
inner partition.

Part b) of this code specifies the grid for each hyperparameter. It is important to
point out that two values were used, 0 (0%) and 0.05 (5%), for dropout. Also, two
values, 33 and 67, were used for units, while for the rest of the hyperparameters only
one value was used. For this reason, a total of four hyperparameter combinations
should be evaluated. It is important to point out that you can put many more values
for each hyperparameter, for example, using a grid of 4 values for each
hyperparameter implies a total of 47¼ 16,384 combinations since 7 hyperparameters
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can be tuned with the flags specified in the above code, which illustrates that the
hyperparameter search space explodes quickly with DL models since there are many
hyperparameters that need to be tuned. For this reason, the tuning_run () function, in
addition to implementing by default a full Cartesian grid search (with sample ¼ 1),
also allows implementing a random grid search by specifying a value between 0 and
1 in the sample command inside the tuning_run() function. For example, by spec-
ifying sample¼ 0.25, only 25% of the total combinations of hyperparameters should
be evaluated.

In part c) of the code, first the outputs of the tuning_run function are ordered, that
were saved in the runs.sp object. The ordering should be done for all those
hyperparameters that have more than one value for evaluation. We did the ordering
process only for dropout1 and units (hyperparameter neurons) that have two values
each to be evaluated. However, if more hyperparameters contain more than one
value to be evaluated, they should also be ordered. Then we added to the runs.sp data
frame the unique consecutive number for each unique combination of
hyperparameters under study. Then in parameters, in addition to the grid length,
the important hyperparameters are saved for each inner fold in the Hyperpar data
frame. In part d) the average prediction performance is obtained for each of the four
hyperparameters under study in this problem. In e) the best combination of
hyperparameters is selected. Then in part f), the model with the optimal
hyperparameters is refitted, and finally in part g), the predictions of the second-
outer cross-validation are obtained.

Before giving the output of the refitted model, we printed the average prediction
performance of the five inner cross-validations of the four combinations of
hyperparameters in the grid search for the outer fold cross-validation of the second
partition:

> Hyperpar_Opt
grid_length val_mse dropout1 units batchsize1 learning_rate epochs

1 1 8.093 0.00 33 28 0.001 298.0
2 2 1.008 0.05 33 28 0.001 299.4
3 3 13.309 0.00 67 28 0.001 177.2
4 4 0.971 0.05 67 28 0.001 247.6

We can see that the best combination of hyperparameters, in partition 2, of the
inner cross-validation is combination 4 (with dropout ¼ 0.05, units ¼ 67, and
epochs ¼ 247.6) since it has the lowest MSE (0.971) in the testing set (validation
set). Then with the optimal values of dropout, epochs, and neurons, the ANN was
refitted, but using the whole second outer training set, and then, with the final trained
ANN, the predictions for the outer testing set were obtained. Finally, the plot of the
observed and predicted values of the outer testing set was done, as shown in
Fig. 11.9. The MSE was calculated and was equal to (0.810), which is lower than
the MSE obtained (1.222) using only one split (inner TRN–TST) for partition 2.

Finally, using the code given in Appendix 1, we implemented the above code
using the five outer folds and five inner folds, and the MSE resulting from the
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average of the five outer CV is equal to 0.892; it is slightly larger than when using
only fold 2, which means that the variability of fold to fold is considerably large.

Example 11.3 MaizeToy Example with Five-fold CV with Dropout
Next, we perform a five-fold CV for the MaizeToy data sets but with different
percentages of dropout, a type of regularization. It is important to point out that now,
in addition to reporting the MSE by fold, we also provide the MSE for each
environment. First, we provide the MSE for each environment, then we average
the five-folds, using as input the information of environments + the information of
lines (taking into account the marker information). The code used to obtain these
results is given in Appendix 2. This code also uses the
Code_Tuning_With_Flags_00.R, but now the grid search is performed not only
for two hyperparameters since we use two values for the following hyperparameters:
units, batchsize, and learning_rate, which means that the total combinations to be
evaluated are equal to 23 ¼ 8, while the remaining four hyperparameters, validation
split, dropout, activation function, and number of epochs, were fixed at 0.20, 0, relu,
and 1000, respectively. Next we provide the key part of the Appendix 2 code:

runs.sp<-tuning_run("Code_Tuning_With_Flags_00.R",flags=list
(dropout1= c(0),

units = c(33,67),
activation1=("relu"),
batchsize1=c(28,56),

Fig. 11.9 Observed versus predicted values for fold 2 trained with a grid search
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Epoch1=c(1000),
learning_rate=c(0.001,0.01),

val_split=c(0.2)), sample=1, confirm=FALSE,echo =F),

where it is clear that the % of dropout value was fixed at zero. Of course, when
you want to use other dropout percentages, you only need to specify in dropout1
the new value in the above code for tuning and it is modified in the
Code_Tuning_With_Flags_00.R the following part of the code

layer_dropout(rate = 0.05) %>%

This means that when the Code_Tuning_With_Flags_00.R is executed with 5%
dropout, in this code, the line above is modified with a rate¼ 0.05, but if you want to
run with 25% dropout, the rate parameter is changed to 0.25. This code in Appendix
2 is run for the following dropout percentages: 0%, 5%, 15%, 25%, and 35%. This
code was run once for a grid of the five dropout percentage values, but first without
taking into account the genotype by environment interaction and then with the
genotype by environment interaction. It is important to point out that by changing
the value of the sample argument in the tuning_run() function, we can implement the
random search grid that tests only the proportion of hyperparameter combinations
that is specified in the sample. For example, if we specify sample ¼ 0.5, this means
that only half of the total number of hyperparameter combinations in the grid will be
evaluated, while if we specify sample ¼ 0.10, only 10% of the total number of
hyperparameter combinations should be evaluated. However, to use the code in
Appendix 2 with a value of sample less than one, it is also important to modify the
number of inner testing CV to 1 (nCVI ¼ 1, ####Number of folds for inner CV)
since with more than two (nCVI¼ 2, 3, 4, . . .), the R code given in Appendix 2 is not
valid.

Table 11.2 shows that in general, the prediction performance in terms of MSE and
MAAPE improved using different dropout percentages, since the best prediction
performance was observed using 15% of dropout (rows in bold).

Table 11.3 gives the prediction performance using the same dropout percentages
using the code given in Appendix 2, but now taking into account as predictors the
information corresponding to the G � E interaction term which is obtained by
replacing, in Appendix 2, X ¼ cbind(Z.E, Z.G) with X ¼ cbind(Z.E, Z.G, Z.EG).
This table shows that there is a gain in prediction performance with a dropout
percentage larger than zero and the best predictions are obtained with 15% dropout.
However, it is clear that the predictions are worse when the G� E interaction term is
ignored, which can be attributed in part to the fact that the number of data sets used is
small and that ANN with at least one hidden layer can capture complex interactions
by the nonlinear transformations performed in the hidden layer. Perhaps for this
reason, in many cases providing as input the information corresponding to the G� E
interaction term is not required. It is possible to increase the prediction accuracy of
this model with the G � E interaction term by increasing the number of neurons in
the hidden layer, but this also increases the computational resources required.
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Example 11.4 MaizeToy Example with More Than One Hidden Layer
with Inner CV
The goal of this section is to show how to train DL models with different number of
layers and how they impact the prediction performance. Now the grid contains the
number of neurons (33, 67), three dropout percentages (0, 5, and 10%) and two batch

Table 11.2 Prediction performance of trait yield with five-fold CV with different dropout percent-
ages without the genotype � environment interaction term

% Dropout Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0 EBU Yield 1.538 0.350 0.174 0.018

0 KAK Yield 0.443 0.097 0.103 0.016

0 KTI Yield 1.222 0.185 0.154 0.021

5 EBU Yield 1.371 0.315 0.163 0.016

5 KAK Yield 0.407 0.091 0.105 0.012

5 KTI Yield 1.140 0.206 0.144 0.021

15 EBU Yield 1.465 0.278 0.168 0.018
15 KAK Yield 0.380 0.066 0.101 0.009
15 KTI Yield 1.055 0.214 0.138 0.018
25 EBU Yield 1.540 0.332 0.174 0.020

25 KAK Yield 0.473 0.112 0.112 0.016

25 KTI Yield 1.194 0.184 0.144 0.018

35 EBU Yield 1.348 0.227 0.169 0.018

35 KAK Yield 0.411 0.110 0.100 0.016

35 KTI Yield 1.280 0.183 0.150 0.019

Table 11.3 Prediction performance of trait yield with five-fold CV with different dropout percent-
ages with the G � E interaction term

% Dropout Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0 EBU Yield 1.772 0.137 0.176 0.012

0 KAK Yield 0.696 0.212 0.126 0.020

0 KTI Yield 1.422 0.255 0.150 0.015

5 EBU Yield 10.849 9.412 0.289 0.125

5 KAK Yield 5.518 5.003 0.246 0.135

5 KTI Yield 6.801 5.397 0.279 0.128

15 EBU Yield 1.680 0.235 0.168 0.012
15 KAK Yield 0.536 0.094 0.116 0.011
15 KTI Yield 1.426 0.243 0.153 0.015
25 EBU Yield 1.867 0.259 0.185 0.010

25 KAK Yield 0.592 0.162 0.116 0.017

25 KTI Yield 1.393 0.285 0.150 0.013

35 EBU Yield 1.771 0.289 0.175 0.016

35 KAK Yield 0.581 0.128 0.113 0.015

35 KTI Yield 1.413 0.294 0.147 0.015
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size values (28, 56), and again the number of epochs is chosen using the early
stopping approach. All 12 combinations are evaluated, since they were implemented
using the full grid search with sample ¼ 1. It is important to point out that this grid
was implemented with an outer 5FCV and inner 5FCV. The code used for
implementing this grid with four hidden layers is given in Appendix 4 (this code
call the code given in Appendix 3 that contains the flags). It is very similar to the
code used in Appendix 2, but one of the most important parts is how the layers are
added to this code. Next we provide the part where the layers are added.

model %>%
layer_dense(units =Units_O , activation =activation_O, input_shape =

c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1)

This part of the code that forms part of Appendix 4 is for a DL model with four
hidden layers; the lines that start with layer_dense() specified all the layers, but the
first four correspond to the hidden layers and the last one to the output layer. Also,
this DL model corresponds to a neural network with five layers.

Table 11.4 shows the prediction performance with one to four different hidden
layers; the prediction performance is affected by the number of hidden layers used,
but in this case, the best predictions across environments were obtained with three
hidden layers.

Table 11.4 Prediction performance of trait yield with five outer fold CV, five inner fold CV, with
different dropout percentages without the G � E interaction term. Env denotes environments

No. layers Environment Trait MSE SE_MSE MAAPE SE_MAAPE

1 EBU Yield 1.489 0.316 0.170 0.018

1 KAK Yield 0.426 0.088 0.102 0.015

1 KTI Yield 1.251 0.147 0.153 0.020

2 EBU Yield 1.456 0.260 0.168 0.016

2 KAK Yield 0.427 0.110 0.103 0.015

2 KTI Yield 1.118 0.115 0.151 0.016

3 EBU Yield 1.372 0.212 0.157 0.015
3 KAK Yield 0.412 0.062 0.101 0.007
3 KTI Yield 1.134 0.203 0.148 0.022
4 EBU Yield 1.724 0.291 0.184 0.017

4 KAK Yield 0.350 0.060 0.092 0.008

4 KTI Yield 1.320 0.298 0.162 0.024
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Example 11.5 MaizeToy Example with More Than One Hidden Layer Without
Inner CV
The goal of this example is to implement exactly the same grid used in Example
11.4, but instead of implementing the five inner fold CV, we implemented this with
only one inner random partition. The code used here is the one given in Appendix 5
with only one inner cross-validation.

Table 11.5 shows that the best predictions are observed with three hidden layers,
but it is important to point out that in general the prediction performances using only
one inner random partition were not quite similar to performances using five inner
fold CV, as can be observed in Table 11.4 in Example 11.4.

Example 11.6 MaizeToy Example with One Hidden Layer with Inner CV
and Ridge, Lasso, and Elastic Net (Ridge-Lasso) Regularization
The code used for implementing a grid search with an outer and inner CV with Ridge
regularization (L2) is similar to the one given in Appendix 2, with the difference that
now for specifying the model the following part of the code is used:

model_Sec %>%
layer_dense(units =Units_O , activation =activation_O,

kernel_regularizer=regularizer_l2(Reg_l2_O), input_shape = c(dim
(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1, activation =”linear”)

The only new part of this code is the part that contains
kernel_regularizer ¼ regularizer_l2(Reg_l2_O) that specifies Ridge regularization,
and in Ridge_values, the following values were used: 0.001, 0.01, 0.1, 0.5, 1. The
grid here is composed of four values due to two unit values (33, 67) and two batch
size values (28, 56); we used sample¼ 1, which means that the four hyperparameters

Table 11.5 Prediction performance of trait yield with five outer fold CV, one inner fold CV, with
different hidden layers without the G � E interaction term and the inner CV

No. layers Env Trait MSE SE_MSE MAAPE SE_MAAPE

1 EBU Yield 1.2767 0.1807 0.1469 0.0131

1 KAK Yield 0.3508 0.0613 0.0962 0.0123

1 KTI Yield 1.0319 0.1332 0.138 0.0135

2 EBU Yield 1.1731 0.1579 0.1408 0.012

2 KAK Yield 0.4397 0.1274 0.1049 0.0161

2 KTI Yield 1.2271 0.1211 0.151 0.0134

3 EBU Yield 1.1565 0.1844 0.1435 0.007
3 KAK Yield 0.4852 0.1157 0.1138 0.0186
3 KTI Yield 1.1017 0.1213 0.1376 0.0155
4 EBU Yield 1.3575 0.1894 0.1602 0.0077

4 KAK Yield 0.4864 0.1152 0.1238 0.0189

4 KTI Yield 1.2323 0.2545 0.1481 0.0092
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were evaluated. Each of these values will add Ridge_val�weight_coefficient_value
to the total loss of the network. Since this penalty is only added at training time, the
loss for this network will be much bigger at training than at testing time. To
reproduce these results, you can replace in Appendices A3 and A4 the specification
of the model provided above each time you need to modify in
kernel_regularizer ¼ regularizer_l2(Reg_l2_O) the corresponding value of the
Ridge regularization parameter.

Table 11.6 gives the output without taking into account the G � E interaction
using the following L2 regularization values of lambda, 0.001, 0.01, 0.1, 0.5,
1, implemented with the early stopping method. We can see in Table 11.6 that the
best performance was obtained using the value of 0.01 for the L2 regularization
hyperparameter.

Table 11.7 provides the output without taking into account the G � E interaction
for the L1 regularization for the same grid containing the following values of
lambda, 0.001, 0.01, 0.1, 0.5, 1, two neuron values (33, 67), two batch size values
(28, 56), and 1000 epochs implemented with early stopping. The performance was
very similar using different values of L1 for regularization, but the performance
under the L1 regularization using a value of 0.01 was slightly better.

In similar fashion, Table 11.8 gives the output without taking into account the
G � E interaction for five regularization parameters (0.001, 0.01, 0.1, 0.5, 1) using
the Elastic Net regularization (L1-L2) for two neuron values (33, 67), two batch size
values (28, 56), and 1000 epochs implemented with early stopping. We can see in
Table 11.8 that the best performance was obtained using the value of 0.001 of the
L1-L2 regularization parameter across environments under the MAAPE and a value
of 0.01 of the L1-L2 regularization parameter under the MSE.

Table 11.6 Prediction performance of trait yield with five outer fold CV and five-fold inner CV
with different values of L2 regularization (0.001, 0.01, 0.1, 0.5, 1) without the G � E
interaction term

L2 value Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0.001 EBU Yield 1.639 0.231 0.166 0.011

0.001 KAK Yield 0.495 0.118 0.105 0.008

0.001 KTI Yield 1.366 0.268 0.150 0.017

0.01 EBU Yield 1.387 0.119 0.169 0.013
0.01 KAK Yield 0.338 0.080 0.085 0.008
0.01 KTI Yield 1.132 0.217 0.149 0.023
0.1 EBU Yield 1.371 0.252 0.168 0.022

0.1 KAK Yield 0.384 0.090 0.093 0.010

0.1 KTI Yield 1.165 0.247 0.144 0.026

0.5 EBU Yield 1.372 0.315 0.167 0.026

0.5 KAK Yield 0.428 0.132 0.101 0.015

0.5 KTI Yield 1.194 0.234 0.141 0.025

1 EBU Yield 1.413 0.342 0.168 0.027

1 KAK Yield 0.461 0.151 0.107 0.019

1 KTI Yield 1.215 0.233 0.142 0.025
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Table 11.7 Prediction performance of trait yield with five outer fold CV, five inner fold CV with
different values of L1 regularization (0.001, 0.01, 0.1, 0.5, 1) in the grid without the G � E
interaction term

L1 value Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0.001 EBU Yield 1.5623 0.2358 0.1668 0.0154

0.001 KAK Yield 0.4312 0.099 0.0959 0.0038

0.001 KTI Yield 1.2691 0.2402 0.1459 0.0178

0.01 EBU Yield 1.4894 0.2366 0.1762 0.0186
0.01 KAK Yield 0.4366 0.0717 0.1055 0.0113
0.01 KTI Yield 1.1368 0.2443 0.1365 0.0285
0.1 EBU Yield 1.4492 0.3605 0.1679 0.0275

0.1 KAK Yield 0.4813 0.1466 0.1138 0.0203

0.1 KTI Yield 1.2664 0.2405 0.1439 0.0236

0.5 EBU Yield 1.6529 0.389 0.1669 0.0288

0.5 KAK Yield 1.0277 0.2506 0.183 0.025

0.5 KTI Yield 1.2195 0.2598 0.1403 0.0232

1 EBU Yield 1.6669 0.3923 0.1675 0.029

1 KAK Yield 1.0326 0.2575 0.1829 0.026

1 KTI Yield 1.2108 0.2631 0.1398 0.0233

Table 11.8 Prediction performance of trait yield with five outer fold CV, five inner fold CV, with
different values of L1-L2 regularization (0.001, 0.01, 0.1, 0.5, 1) in the grid without the G � E
interaction term

L1_L2 value Environment Trait MSE SE_MSE MAAPE SE_MAAPE

0.001 EBU Yield 1.4893 0.1938 0.167 0.0154

0.001 KAK Yield 0.3991 0.1053 0.0909 0.0067

0.001 KTI Yield 1.2316 0.2226 0.1459 0.0181

0.01 EBU Yield 1.4719 0.2554 0.1761 0.0207

0.01 KAK Yield 0.4286 0.0767 0.1038 0.0096

0.01 KTI Yield 1.1693 0.2441 0.139 0.0276

0.1 EBU Yield 1.4484 0.3632 0.1677 0.0277

0.1 KAK Yield 0.5088 0.164 0.1141 0.0213

0.1 KTI Yield 1.2798 0.2451 0.1436 0.0236

0.5 EBU Yield 1.6546 0.3837 0.1672 0.0289

0.5 KAK Yield 1.0238 0.2445 0.1825 0.0247

0.5 KTI Yield 1.2159 0.2599 0.1398 0.023

1 EBU Yield 1.6574 0.3836 0.1674 0.0288

1 KAK Yield 1.0372 0.256 0.1833 0.026

1 KTI Yield 1.2208 0.2609 0.1402 0.0234
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Example 11.7 MaizeToy Example with One Hidden Layer with Inner CV,
a Dropout Rate of 5%, and Different Optimizers
In Table 11.9 are given the results of evaluating seven types of optimizers for a five
outer and five inner fold cross-validations without taking into account the
genotype�environment interaction. The code given in Appendix 2 was used in this
implementation, but with a 0% dropout rate and with only one hidden layer. The
neuron grid consists of two neurons (33 and 67), two batch sizes (28, 56) and they
were implemented with early stopping to find the optimal number of epochs, which
was fixed at 1000. Since the code given in Appendix 2 was used each time, this code
was run by replacing in the optimizer each of the seven types of optimizers. The results
in Table 11.9 show that the best performance in terms of prediction accuracy was
found under the optimizer_adamax and the worst under the optimizer_adagrad.

Finally, with these examples we illustrated how to use DNN models for
implementing genomic prediction models for continuous outcomes in Keras. Most
of the key elements for implementing DNN models were explained to enable you to
implement these models on your own data without any complications. However, as
mentioned before, the DNN training process is challenging due to the complexity of
tuning hyperparameters, but thanks to functions like the tfruns, this work is not as
hard. However, more research and automatization of all these activities are required
to be able to implement DNN models more quickly and efficiently since the tuning
process still requires a lot of time.

Table 11.9 Prediction performance of trait yield with five outer and five inner fold CV with
different different optimizers without the genotype � environment interaction term

Optimizer Environment Trait MSE SE_MSE MAAPE SE_MAAPE

optimizer_adam EBU Yield 1.7009 0.2456 0.1679 0.0098

optimizer_adam KAK Yield 0.6735 0.1827 0.1254 0.019

optimizer_adam KTI Yield 1.4192 0.295 0.1505 0.0157

optimizer_sgd EBU Yield 1.457 0.3499 0.1702 0.0264

optimizer_sgd KAK Yield 0.4953 0.1385 0.1074 0.014

optimizer_sgd KTI Yield 1.2861 0.2312 0.1457 0.0236

optimizer_rmsprop EBU Yield 1.7165 0.2187 0.1682 0.0093

optimizer_rmsprop KAK Yield 0.862 0.2246 0.1484 0.0242

optimizer_rmsprop KTI Yield 1.5172 0.2486 0.1582 0.0103

optimizer_adagrad EBU Yield 32.0716 2.8222 0.7224 0.009

optimizer_adagrad KAK Yield 19.0737 1.3223 0.7157 0.0146

optimizer_adagrad KTI Yield 26.0565 1.9791 0.7131 0.0079

optimizer_adadelta EBU Yield 39.5482 2.2787 0.7805 0.0018

optimizer_adadelta KAK Yield 24.0182 0.9201 0.7783 0.007

optimizer_adadelta KTI Yield 33.2928 2.8686 0.7779 0.0041

optimizer_adamax EBU Yield 1.4955 0.1743 0.1664 0.0117
optimizer_adamax KAK Yield 0.427 0.117 0.0932 0.0093
optimizer_adamax KTI Yield 1.2982 0.2195 0.1522 0.0229
optimizer_nadam EBU Yield 1.709 0.2438 0.168 0.0098

optimizer_nadam KAK Yield 0.6759 0.1839 0.1255 0.0191

optimizer_nadam KTI Yield 1.4208 0.2942 0.1506 0.0155
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Appendix 1

MaizeToy example with five-fold CV.

rm(list=ls())
library(lsa)
library(keras)
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')

################Set seed for reproducible results###################
use_session_with_seed(45)

####################Loading the MaizeToy data sets##################
data("MaizeToy")
head(phenoMaizeToy)

#################Ordering the data ################################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,8)

#######################Design matrices############################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*%LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2

###############Selecting the response variable#####################
Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

##########Training–testing sets using the BMTME package##############
pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy[, 2],

Response = phenoMaizeToy[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)
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################Final X and y for fitting the model###################
y=(phenoMaizeToy[, 3])
X=cbind(Z.E,Z.G)

#####################Outer cross-validation#######################
digits=4
Names_Traits=colnames(Y)
results=data.frame()
t=1
for (o in 1:5){
#o=2
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set])
y_tst=(y[tst_set])

###################Inner cross-validation########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
set.seed(i+100)
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

#########Using the tuning_run function for tuning
hyperparameters#####

runs.sp<-tuning_run("Code_Tuning_With_Flags_00.R",flags=list
(dropout1= c(0,0.05), units = c(33,67), activation1=("relu"),
batchsize1=c(28), Epoch1=c(1000), learning_rate=c(0.001),
val_split=c(0.2)), sample=1,confirm =FALSE,echo =F)

###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1),]

runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,

metric_val_mse=runs.sp$metric_val_mse,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
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epochs=mean( epochs_completed)) %>%
select(grid_length,val_mse,dropout1,units,batchsize1,

learning_rate, epochs) %>%
mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

########################Optimal hyperparameters##################
Min=min(Hyperpar_Opt$val_mse)
pos_opt=which(Hyperpar_Opt$val_mse==Min)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selecting the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

###########Refitting the model with the optimal values##############
model_Sec<-keras_model_sequential()

model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape =

c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1)

model_Sec %>% compile(
loss = "mean_squared_error",
optimizer = optimizer_adam(lr=lr_O),
metrics = c("mean_squared_error"))

ModelFited <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

################Prediction of testing set #########################
Yhat=model_Sec%>% predict(X_tst)
y_p=Yhat
y_p_tst=as.numeric(y_p)
y_tst=y[tst_set]
MSE=mean((y_tst-y_p_tst)^2)
MSE
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###########Saving the predictions of each outer testing set##########
results<-rbind(results, data.frame(Partition=o,MSE_Env=MSE))
cat("CV=",o,"\n")

}

####Average prediction performance
MSE_global=mean(results$MSE_Env)
MSE_global

Appendix 2

MaizeToy example with five-fold CV with dropout.

rm(list=ls())
library(lsa)
library(keras)
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
options(bitmapType='cairo')

################Set seed for reproducible results###################
use_session_with_seed(45)

#####################Loading the MaizeToy data sets#################
data("MaizeToy")
head(phenoMaizeToy)

###################Ordering the data ##############################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,8)

#####################Design matrices##############################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*%LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2
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###############Selecting the response variable#####################
Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

#########Training–testing sets using the BMTME package###############
pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy[, 2],

Response = phenoMaizeToy[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

################Function for averaging the predictions##############
summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
results %>%
group_by(Environment, Trait, Partition) %>%
summarise(MSE = mean((Predicted-Observed)^2),

MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed)))) %>%
select(Environment, Trait, Partition, MSE, MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
SE_MSE = sd(MSE, na.rm = T)/sqrt(n()), MSE = mean(MSE, na.rm = T)) %>

%
select(Environment, Trait, MSE, SE_MSE, MAAPE, SE_MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_MSE <- NA
presum$SE_MAAPE <- NA
rbind(presum, finalSum)

}
)
return(out)

}

################Final X and y for fitting the model###################
y=(phenoMaizeToy[, 3])
X=cbind(Z.E,Z.G)
Drop_per=c(0,0.05,0.15,0.25,0.35)
Final_results=data.frame()
for (e in 1:5){
#e=1
############Outer cross-validation#######################
digits=4
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Names_Traits=colnames(Y)
results=data.frame()
t=1
for (o in 1:5){
#o=1
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set])
y_tst=(y[tst_set])

################Inner cross-validation###########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
#i=1
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

#########Using the tuning_fun function for tuning
hyperparameters#####

runs.sp<-tuning_run("Code_Tuning_With_Flags_00.R",flags=list
(dropout1= Drop_per[e],

units = c(33,67),
activation1=("relu"),
batchsize1=c(28,56),
Epoch1=c(1000),
learning_rate=c(0.001,0.01),
val_split=c(0.2)),sample=1,
confirm =FALSE,echo =F)

###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_batchsize1,

runs.sp$flag_learning_rate),]

runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,

metric_val_mse=runs.sp$metric_val_mse,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%
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select(grid_length,val_mse,dropout1,units,batchsize1,
learning_rate, epochs) %>%

mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

############Optimal hyperparameters############
Min=min(Hyperpar_Opt$val_mse)
pos_opt=which(Hyperpar_Opt$val_mse==Min)
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
pos_opt=pos_opt[1]
#####Selecting the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

#############Refitting the model with the optimal values############
model_Sec<-keras_model_sequential()

model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape

= c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1)

model_Sec %>% compile(
loss = "mean_squared_error",
optimizer = optimizer_adam(lr=lr_O),
metrics = c("mean_squared_error"))

ModelFited <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

####Prediction of testing set ##########################
Yhat=model_Sec%>% predict(X_tst)
y_p=Yhat
y_p_tst=as.numeric(y_p)

###########Saving the predictions of each outer testing
set#################

results<-rbind(results, data.frame(Position=tst_set,
Environment=CrossV$Environments[tst_set],
Partition=o,
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Units=Units_O,
Epochs=Epoch_O,
Observed=round(y[tst_set], digits), #$response,

digits),
Predicted=round(y_p_tst, digits),
Trait=Names_Traits[t]))

cat("CV=",o,"\n")
}

results

#############Average of prediction performance#####################
Pred_Summary=summary.BMTMECV(results=results, information =

'compact', digits = 4)
Pred_Summary
Final_results=rbind(Final_results,data.frame(Pred_Summary))

}
Final_results
write.csv(Final_results,
file="Example5_AppendixA2_modified_Table11.2.csv")

Appendix 3

Flags with four hidden layers.

####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",33),
flag_string("activation1", "relu"),
flag_integer("batchsize1",56),
flag_integer("Epoch1",1000),
flag_numeric("learning_rate", 0.001),
flag_numeric("val_split",0.2))

####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1,

input_shape = c(dim(X_trII)[2])) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units =FLAGS$units, activation =FLAGS$activation1) %>%
layer_dropout(rate=FLAGS$dropout1) %>%
layer_dense(units=1, activation =”linear”)
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#####c) Compiling the DNN model
model %>% compile(
loss = "mse",
optimizer =optimizer_adam(lr=FLAGS$learning_rate),
metrics = c("mse"))

model}

model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =50)

###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =FLAGS$Epoch1, batch_size =FLAGS$batchsize1,
shuffled=F,
validation_split =FLAGS$val_split,
verbose=0,callbacks = list(early_stop,print_dot_callback))

Appendix 4

MaizeToy example with five outer fold CV and five-folds inner CV without the
G � E interaction term and four hidden layers.

rm(list=ls())
library(lsa)
library(keras)
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
library(tfruns)
library(tfestimators) # provides grid search & model training
interface

##########Set seed for reproducible results###################
use_session_with_seed(45)

#################Loading the MaizeToy data sets###############
data("MaizeToy")
head(phenoMaizeToy)
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#################Ordering the data ################################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,8)

####################Design matrices###############################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*%LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2

############Selecting the response variable#######################
Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

####Training–testing sets using the BMTME package###############
pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy[, 2],

Response = phenoMaizeToy[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

################Function for averaging the predictions############
summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
results %>%
group_by(Environment, Trait, Partition) %>%
summarise(MSE = mean((Predicted-Observed)^2),

MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed)))) %>%
select(Environment, Trait, Partition, MSE, MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
SE_MSE = sd(MSE, na.rm = T)/sqrt(n()), MSE = mean(MSE, na.rm = T)) %>

%
select(Environment, Trait, MSE, SE_MSE, MAAPE, SE_MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
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presum$Partition <- as.character(presum$Partition)
presum$SE_MSE <- NA
presum$SE_MAAPE <- NA
rbind(presum, finalSum)

}
)
return(out)

}

################Final X and y for fitting the model###################
y=(phenoMaizeToy[, 3])
X=cbind(Z.E,Z.G)

#####################Outer sross-validation#######################
digits=4
Names_Traits=colnames(Y)
results=data.frame()
t=1
for (o in 1:5){
#o=1
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set])
y_tst=(y[tst_set])

###################Inner cross-validation########################
nCVI=5 ####Number of folds for inner CV
Hyperpar=data.frame()
for (i in 1:nCVI){
#i=1
Sam_per=sample(1:nrow(X_trn),nrow(X_trn))
X_trII=X_trn[Sam_per,]
y_trII=y_trn[Sam_per]

#########Using the tuning_fun function for tuning
hyperparameters#####

runs.sp<-tuning_run("Code_Tuning_With_Flags_00_4HL.R",flags=list
(dropout1= c(0,0.05,0.1),

units = c(33,67),
activation1=("relu"),
batchsize1=c(28,56),
Epoch1=c(1000),
learning_rate=c(0.001),

val_split=c(0.2)),sample=1,confirm =FALSE,
echo =F)

###### Ordering in the same way all grids
runs.sp=runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1,

runs.sp$flag_batchsize1),]

runs.sp$grid_length=1:nrow(runs.sp)
Parameters=data.frame(grid_length=runs.sp$grid_length,
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metric_val_mse=runs.sp$metric_val_mse,flag_dropout1=runs.
sp$flag_dropout1,flag_units=runs.sp$flag_units, flag_batchsize1=runs.
sp$flag_batchsize1,epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate, flag_activation1=runs.
sp$flag_activation1)

Hyperpar=rbind(Hyperpar,data.frame(Parameters))
}
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),

dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%

select(grid_length,val_mse,dropout1,units,batchsize1,
learning_rate, epochs) %>%

mutate_if(is.numeric, funs(round(., 3))) %>%
as.data.frame() -> Hyperpar_Opt

############Optimal hyperparameters############
Min=min(Hyperpar_Opt$val_mse)
pos_opt=which(Hyperpar_Opt$val_mse==Min)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selecting the best hyperparameters
Drop_O=Optimal_Hyper$dropout1
Epoch_O=round(Optimal_Hyper$epochs,0)
Units_O=round(Optimal_Hyper$units,0)
activation_O=unique(Hyperpar$flag_activation1)
batchsize_O=round(Optimal_Hyper$batchsize1,0)
lr_O=Optimal_Hyper$learning_rate

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})

###########Refitting the model with the optimal values################
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape =

c(dim(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =Units_O , activation =activation_O) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1)

model_Sec %>% compile(
loss = "mean_squared_error",
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optimizer = optimizer_adam(),
metrics = c("mean_squared_error"))

ModelFited <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =batchsize_O,

#####validation_split=0.2,early_stop,
verbose=0,callbacks=list(print_dot_callback))

################Prediction of testing set #########################
Yhat=model_Sec%>% predict(X_tst)
y_p=Yhat
y_p_tst=as.numeric(y_p)

###########Saving the predicctions of each outer testing
set#################
results<-rbind(results, data.frame(Position=tst_set,

Environment=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,
Observed=round(y[tst_set], digits),
#$response, digits),
Predicted=round(y_p_tst, digits),
Trait=Names_Traits[t]))

cat("CV=",o,"\n")
}

results

#############Average of prediction performance#####################
Pred_Summary=summary.BMTMECV(results=results, information =
'compact', digits = 4)
Pred_Summary

Appendix 5

MaizeToy example with five-fold CV with only one inner CV.

rm(list=ls())
library(lsa)
library(keras)
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)

################Set seed for reproducible results###################
use_session_with_seed(45)
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####################Loading the MaizeToy data sets##################
data("MaizeToy")
head(phenoMaizeToy)

#################Ordering the data ################################
phenoMaizeToy<-(phenoMaizeToy[order(phenoMaizeToy$Env,
phenoMaizeToy$Line),])
rownames(phenoMaizeToy)=1:nrow(phenoMaizeToy)
head(phenoMaizeToy,8)

####################Design matrices###############################
LG <- cholesky(genoMaizeToy)
ZG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line))
Z.G <- ZG %*%LG
Z.E <- model.matrix(~0 + as.factor(phenoMaizeToy$Env))
ZEG <- model.matrix(~0 + as.factor(phenoMaizeToy$Line):as.factor
(phenoMaizeToy$Env))
G2 <- kronecker(diag(length(unique(phenoMaizeToy$Env))), data.matrix
(genoMaizeToy))
LG2 <- cholesky(G2)
Z.EG <- ZEG %*% LG2

###############Selecting the response variable#####################
Y <- as.matrix(phenoMaizeToy[, -c(1, 2)])

##########Training–testing sets using the BMTME package##############
pheno <- data.frame(GID = phenoMaizeToy[, 1], Env = phenoMaizeToy[, 2],

Response = phenoMaizeToy[, 3])

CrossV <- CV.KFold(pheno, DataSetID = 'GID', K = 5, set_seed = 123)

###############Grid of hyperparameters#############################
Stage <- expand.grid(units_M =seq(33,67,33),epochs_M=1000, Dropout=c
(0.0,0.05,0.15, 0.25, 0.35))

################Function for averaging the predictions############
summary.BMTMECV <- function(results, information = 'compact', digits =
4, ...) {
results %>%
group_by(Environment, Trait, Partition) %>%
summarise(MSE = mean((Predicted-Observed)^2),

MAAPE = mean(atan(abs(Observed-Predicted)/abs(Observed)))) %>%
select(Environment, Trait, Partition, MSE, MAAPE) %>%
mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> presum

presum %>% group_by(Environment, Trait) %>%
summarise(SE_MAAPE = sd(MAAPE, na.rm = T)/sqrt(n()), MAAPE = mean

(MAAPE, na.rm = T),
SE_MSE = sd(MSE, na.rm = T)/sqrt(n()), MSE = mean(MSE, na.rm = T)) %>

%
select(Environment, Trait, MSE, SE_MSE, MAAPE, SE_MAAPE) %>%
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mutate_if(is.numeric, funs(round(., digits))) %>%
as.data.frame() -> finalSum

out <- switch(information,
compact = finalSum,
complete = presum,
extended = {
finalSum$Partition <- 'All'
presum$Partition <- as.character(presum$Partition)
presum$SE_MSE <- NA
presum$SE_MAAPE <- NA
rbind(presum, finalSum)

}
)
return(out)

}

################Final X and y for fitting the model###################
y=(phenoMaizeToy[, 3])
X=cbind(Z.E,Z.G)

#####################Outer cross-validation#######################
digits=4
Names_Traits=colnames(Y)
results=data.frame()
t=1
for (o in 1:5){
tst_set=CrossV$CrossValidation_list[[o]]
X_trn=(X[-tst_set,])
X_tst=(X[tst_set,])
y_trn=(y[-tst_set])
y_tst=(y[tst_set])

nCVI=1 ####Number of folds for inner CV
i=1
############Matrices for saving the output of inner CV################
Tab_pred_MSE=matrix(NA,ncol=length(Stage[,1]), nrow= nCVI)
Tab_pred_Epoch=matrix(NA,ncol=length(Stage[,1]), nrow= nCVI)
Tab_pred_Units=matrix(NA,ncol=length(Stage[,1]), nrow= nCVI)
Tab_pred_Drop=matrix(NA,ncol=length(Stage[,1]), nrow= nCVI)
X_trI=X_trn
y_trI=y_trn

for (stage in seq_len(dim(Stage)[1])) {
X_trII=X_trI
y_trII=y_trI
units_M <- Stage[stage, 1]
epochs_M <- Stage[stage, 2]
Drop_per= Stage[stage, 3]

build_model<-function() {
model <- keras_model_sequential()
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model %>%
layer_dense(units =units_M, activation = "relu", input_shape = c(dim

(X_trII)[2])) %>%
layer_dropout(rate=Drop_per) %>%
layer_dense(units=1)

model %>% compile(
loss = "mse",
optimizer =optimizer_adam(),
metrics = c("mse"))

model}

model<-build_model()
model %>% summary()

print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")

})

#################Fitting the model with early stopping#############
early_stop <- callback_early_stopping(monitor = "val_loss",
mode='min',patience =50)

##############Fit of the model for each values of the grid#############
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
X_trII, y_trII,
epochs =epochs_M, batch_size =72,
###shuffled=F,
validation_split = 0.2,
verbose=0,callbacks = list(early_stop, print_dot_callback))

##############Saving the output of each hyperparameter###############
No.Epoch_Min=length(model_fit_Final$metrics$val_mse)
Min_MSE=model_fit_Final$metrics$val_mean_squared_error[No.
Epoch_Min]

Tab_pred_MSE[i,stage]=Min_MSE
Tab_pred_Units[i,stage]=units_M
Tab_pred_Epoch[i,stage]=No.Epoch_Min[1]
Tab_pred_Drop[i,stage]=Drop_per
}

#################Selecting the optimal hyperparameters#############
Median_MSE_Inner=apply(Tab_pred_MSE,2,median)
Units_Inner=apply(Tab_pred_Units,2,max)
Drop_Inner=apply(Tab_pred_Drop,2,max)
Epoch_Inner=apply(Tab_pred_Epoch,2,median)
Pos_Min_MSE=which(Median_MSE_Inner==min(Median_MSE_Inner))
Units_O=Units_Inner[Pos_Min_MSE]
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Epoch_O= Epoch_Inner[Pos_Min_MSE]
Drop_O= Drop_Inner[Pos_Min_MSE]

##############Refitting the model with the optimal values#############
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation ="relu", input_shape = c(dim

(X_trn)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1)

model_Sec %>% compile(
loss = "mean_squared_error",
optimizer = optimizer_adam(),
metrics = c("mean_squared_error"))

ModelFited <-model_Sec %>% fit(
X_trn, y_trn,
epochs=Epoch_O, batch_size =30,
####### validation_split=0.2,early_stop,
verbose=0, callbacks=list(print_dot_callback))

################Prediction of testing set ##########################
Yhat=model_Sec %>% predict(X_tst)
y_p=Yhat
y_p_tst=as.numeric(y_p)

#########Saving the predicctions of each outer testing set###########
results<-rbind(results, data.frame(Position=tst_set,

Environment=CrossV$Environments[tst_set],
Partition=o,
Units=Units_O,
Epochs=Epoch_O,
Drop_Out=Drop_O,
Observed=round(y[tst_set], digits),
#$response, digits),
Predicted=round(y_p_tst, digits),
Trait=Names_Traits[t]))

cat("CV=",o,"\n")
}
results

#############Average of prediction performance#####################
Pred_Summary=summary.BMTMECV(results=results, information =
'compact', digits = 4)
Pred_Summary
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