
Chapter 10
Fundamentals of Artificial Neural Networks
and Deep Learning

10.1 The Inspiration for the Neural Network Model

The inspiration for artificial neural networks (ANN), or simply neural networks,
resulted from the admiration for how the human brain computes complex processes,
which is entirely different from the way conventional digital computers do this. The
power of the human brain is superior to many information-processing systems, since
it can perform highly complex, nonlinear, and parallel processing by organizing its
structural constituents (neurons) to perform such tasks as accurate predictions,
pattern recognition, perception, motor control, etc. It is also many times faster than
the fastest digital computer in existence today. An example is the sophisticated
functioning of the information-processing task called human vision. This system
helps us to understand and capture the key components of the environment and
supplies us with the information we need to interact with the environment. That is,
the brain very often performs perceptual recognition tasks (e.g., voice recognition
embedded in a complex scene) in around 100–200 ms, whereas less complex tasks
many times take longer even on a powerful computer (Haykin 2009).

Another interesting example is the sonar of a bat, since the sonar is an active
echolocation system. The sonar provides information not only about how far away
the target is located but also about the relative velocity of the target, its size, and the
size of various features of the target, including its azimuth and elevation. Within a
brain the size of a plum occur the computations required to extract all this informa-
tion from the target echo. Also, it is documented that an echolocating bat has a high
rate of success when pursuing and capturing its target and, for this reason, is the envy
of radar and sonar engineers (Haykin 2009). This bat capacity inspired the devel-
opment of radar, which is able to detect objects that are in its path, without needing to
see them, thanks to the emission of an ultrasonic wave, the subsequent reception and
processing of the echo, which allows it to detect obstacles in its flight with surprising
speed and accuracy (Francisco-Caicedo and López-Sotelo 2009).
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In general, the functioning of the brains of humans and other animals is intriguing
because they are able to perform very complex tasks in a very short time and with
high efficiency. For example, signals from sensors in the body convey information
related to sight, hearing, taste, smell, touch, balance, temperature, pain, etc. Then the
brain’s neurons, which are autonomous units, transmit, process, and store this
information so that we can respond successfully to external and internal stimuli
(Dougherty 2013). The neurons of many animals transmit spikes of electrical activity
through a long, thin strand called an axon. An axon is divided into thousands of
terminals or branches, where depending on the size of the signal they synapse to
dendrites of other neurons (Fig. 10.1). It is estimated that the brain is composed of
around 1011 neurons that work in parallel, since the processing done by the neurons
and the memory captured by the synapses are distributed together over the network.
The amount of information processed and stored depends on the threshold firing
levels and also on the weight given by each neuron to each of its inputs (Dougherty
2013).

One of the characteristics of biological neurons, to which they owe their great
capacity to process and perform highly complex tasks, is that they are highly
connected to other neurons from which they receive stimuli from an event as it
occurs, or hundreds of electrical signals with the information learned. When it
reaches the body of the neuron, this information affects its behavior and can also
affect a neighboring neuron or muscle (Francisco-Caicedo and López-Sotelo 2009).
Francisco-Caicedo and López-Sotelo (2009) also point out that the communication
between neurons goes through the so-called synapses. A synapse is a space that is
occupied by chemicals called neurotransmitters. These neurotransmitters are respon-
sible for blocking or passing on signals that come from other neurons. The neurons
receive electrical signals from other neurons with which they are in contact. These
signals accumulate in the body of the neuron and determine what to do. If the total
electrical signal received by the neuron is sufficiently large, the action potential can
be overcome, which allows the neuron to be activated or, on the contrary, to remain
inactive. When a neuron is activated, it is able to transmit an electrical impulse to the
neurons with which it is in contact. This new impulse, for example, acts as an input

Fig. 10.1 A graphic representation of a biological neuron
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to other neurons or as a stimulus in some muscles (Francisco-Caicedo and López-
Sotelo 2009). The architecture of biological neural networks is still the subject of
active research, but some parts of the brain have been mapped, and it seems that
neurons are often organized in consecutive layers, as shown in Fig. 10.2.

ANN are machines designed to perform specific tasks by imitating how the
human brain works, and build a neural network made up of hundreds or even
thousands of artificial neurons or processing units. The artificial neural network is
implemented by developing a computational learning algorithm that does not need to
program all the rules since it is able to build up its own rules of behavior through
what we usually refer to as “experience.” The practical implementation of neural
networks is possible due to the fact that they are massively parallel computing
systems made up of a huge number of basic processing units (neurons) that are
interconnected and learn from their environment, and the synaptic weights capture
and store the strengths of the interconnected neurons. The job of the learning
algorithm consists of modifying the synaptic weights of the network in a sequential
and supervised way to reach a specific objective (Haykin 2009). There is evidence
that neurons working together are able to learn complex linear and nonlinear input–
output relationships by using sequential training procedures. It is important to point
out that even though the inspiration for these models was quite different from what
inspired statistical models, the building blocks of both types of models are quite
similar. Anderson et al. (1990) and Ripley (1993) pointed out that neural networks
are simply no more than generalized nonlinear statistical models. However,
Anderson et al. (1990) were more expressive in this sense and also pointed out
that “ANN are statistics for amateurs since most neural networks conceal the
statistics from the user.”

Fig. 10.2 Multiple layers in a biological neural network of human cortex
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10.2 The Building Blocks of Artificial Neural Networks

To get a clear idea of the main elements used to construct ANN models, in Fig. 10.3
we provide a general artificial neural network model that contains the main compo-
nents for this type of models.

x1, . . ., xp represents the information (input) that the neuron receives from the
external sensory system or from other neurons with which it has a connection.
w ¼ (w1, . . .,wp) is the vector of synaptic weights that modifies the received
information emulating the synapse between the biological neurons. These can be
interpreted as gains that can attenuate or amplify the values that they wish to
propagate toward the neuron. Parameter bj is known as the bias (intercept or
threshold) of a neuron. Here in ANN, learning refers to the method of modifying
the weights of connections between the nodes (neurons) of a specified network.

The different values that the neuron receives are modified by the synaptic
weights, which then are added together to produce what is called the net input. In
mathematical notation, that is equal to

v j ¼
Xp
j¼1

ωijx j

This net input (vj) is what determines whether the neuron is activated or not. The
activation of the neuron depends on what we call the activation function. The net
input is evaluated in this function and we obtain the output of the network as
shown next:

Fig. 10.3 General artificial neural network model
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y j ¼ g v j

� �
,

where g is the activation function. For example, if we define this function as a unit
step (also called threshold), the output will be 1 if the net input is greater than zero;
otherwise the output will be 0. Although there is no biological behavior indicating
the presence of something similar to the neurons of the brain, the use of the
activation function is an artifice that allows applying ANN to a great diversity of
real problems. According to what has been mentioned, output yj of the neuron is
generated when evaluating the net input (vj) in the activation function. We can
propagate the output of the neuron to other neurons or it can be the output of the
network, which, according to the application, will have an interpretation for the user.
In general, the job of an artificial neural network model is done by simple elements
called neurons. The signals are passed between neurons through connection links.
Each connection link has an associated weight, which, in a typical neuronal network,
multiplies the transmitted signal. Each neuron applies an activation function (usually
nonlinear) to the network inputs (sum of the heavy input signals) for determining its
corresponding sign. Later in this chapter, we describe the many options for activa-
tion functions and the context in which they can be used.

A unilayer ANN like that in Fig. 10.3 has a low processing capacity by itself and
its level of applicability is low; its true power lies in the interconnection of many
ANNs, as happens in the human brain. This has motivated different researchers to
propose various topologies (architectures) to connect neurons to each other in the
context of ANN. Next, we provide two definitions of ANN and one definition of
deep learning:

Definition 1. An artificial neural network is a system composed of many simple
elements of processing which operate in parallel and whose function is determined
by the structure of the network and the weight of connections, where the processing
is done in each of the nodes or computing elements that has a low processing
capacity (Francisco-Caicedo and López-Sotelo 2009).

Definition 2. An artificial neural network is a structure containing simple elements
that are interconnected in many ways with hierarchical organization, which tries to
interact with objects in the real world in the same way as the biological nervous
system does (Kohonen 2000).

Deep learning model. We define deep learning as a generalization of ANN where
more than one hidden layer is used, which implies that more neurons are used for
implementing the model. For this reason, an artificial neural network with multiple
hidden layers is called a Deep Neural Network (DNN) and the practice of training
this type of networks is called deep learning (DL), which is a branch of statistical
machine learning where a multilayered (deep) topology is used to map the relations
between input variables (independent variables) and the response variable (out-
come). Chollet and Allaire (2017) point out that DL puts the “emphasis on learning
successive layers of increasingly meaningful representations.” The adjective “deep”
applies not to the acquired knowledge, but to the way in which the knowledge
is acquired (Lewis 2016), since it stands for the idea of successive layers of
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representations. The “deep” of the model refers to the number of layers that
contribute to the model. For this reason, this field is also called layered representa-
tion learning and hierarchical representation learning (Chollet and Allaire 2017).

It is important to point out that DL as a subset of machine learning is an aspect of
artificial intelligence (AI) that has more complex ways of connecting layers than
conventional ANN, which uses more neurons than previous networks to capture
nonlinear aspects of complex data better, but at the cost of more computing power
required to automatically extract useful knowledge from complex data.

To have a more complete picture of ANN, we provide another model, which is a
DL model since it has two hidden layers, as shown in Fig. 10.4.

From Fig. 10.4 we can see that an artificial neural network is a directed graph
whose nodes correspond to neurons and whose edges correspond to links between
them. Each neuron receives, as input, a weighted sum of the outputs of the neurons
connected to its incoming edges (Shalev-Shwartz and Ben-David 2014). In the
artificial deep neural network given in Fig. 10.4, there are four layers (V0, V1, V2,
and V3): V0 represents the input layer, V1 and V2 are the hidden layers, and V3 denotes
the output layer. In this artificial deep neural network, three is the number of layers of
the network since V0, which contains the input information, is excluded. This is also
called the “depth” of the network. The size of this network is Vj j ¼ ST

t¼0 Vt

�� �� ¼

Fig. 10.4 Artificial deep neural network with a feedforward neural network with eight input
variables (x1, . . . ,x8), four output variables (y1, y2, y3, y4), and two hidden layers with three
neurons each
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9þ 4þ 4þ 4j j ¼ 21. Note that in each layer we added +1 to the observed units to
represent the node of the bias (or intercept). The width of the network is max|Vt|¼ 9.

The analytical form of the model given in Fig. 10.4 for output o, with d inputs,M1

hidden neurons (units) in hidden layer 1, M2 hidden units in hidden layer 2, and O
output neurons is given by the following (10.1)–(10.3):

V1j ¼ g1
Xd
i¼1

w 1ð Þ
ji xi

 !
for j ¼ 1, . . . ,M1 ð10:1Þ

V2k ¼ g2
XM1

j¼1

w 2ð Þ
kj V1j

 !
for k ¼ 1, . . . ,M2 ð10:2Þ

yl ¼ g3
XM2

k¼1

w 3ð Þ
lk V2k

 !
for l ¼ 1, . . . ,O ð10:3Þ

where (10.1) produces the output of each of the neurons in the first hidden
layer, (10.2) produces the output of each of the neurons in the second
hidden layer, and finally (10.3) produces the output of each response variable
of interest. The learning process is obtained with the weights (w 1ð Þ

ji ,w 2ð Þ
kj , and w 3ð Þ

lk Þ,
which are accommodated in the following vector: w=
w 1ð Þ
11 ,w

1ð Þ
12 , . . . ,w

1ð Þ
1d ,w

2ð Þ
21 ,w

2ð Þ
22 , . . . ,w

2ð Þ
2M1

,w 3ð Þ
31 ,w

3ð Þ
32 , . . . ,w

3ð Þ
3M2

� �
, g1, g2, and g3 are

the activation functions in hidden layers 1, 2, and the output layer, respectively.
The model given in Fig. 10.4 is organized as several interconnected layers: the

input layer, hidden layers, and output layer, where each layer that performs nonlinear
transformations is a collection of artificial neurons, and connections among these
layers are made using weights (Fig. 10.4). When only one output variable is present
in Fig. 10.4, the model is called univariate DL model. Also, when only one hidden
layer is present in Fig. 10.4, the DL model is reduced to a conventional artificial
neural network model, but when more than one hidden layer is included, it is
possible to better capture complex interactions, nonlinearities, and nonadditive
effects. To better understand the elements of the model depicted in Fig. 10.4, it is
important to distinguish between the types of layers and the types of neurons; for this
reason, next we will explain the type of layers and then the type of neurons in more
detail.

(a) Input layer: It is the set of neurons that directly receives the information coming
from the external sources of the network. In the context of Fig. 10.4, this
information is x1, . . . ,x8 (Francisco-Caicedo and López-Sotelo 2009). There-
fore, the number of neurons in an input layer is most of the time the same as the
number of the input explanatory variables provided to the network. Usually
input layers are followed by at least one hidden layer. Only in feedforward
neuronal networks, input layers are fully connected to the next hidden layer
(Patterson and Gibson 2017).
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(b) Hidden layers: Consist of a set of internal neurons of the network that do not
have direct contact with the outside. The number of hidden layers can be 0, 1, or
more. In general, the neurons of each hidden layer share the same type of
information; for this reason, they are called hidden layers. The neurons of the
hidden layers can be interconnected in different ways; this determines, together
with their number, the different topologies of ANN and DNN (Francisco-
Caicedo and López-Sotelo 2009). The learned information extracted from the
training data is stored and captured by the weight values of the connections
between the layers of the artificial neural network. Also, it is important to point
out that hidden layers are key components for capturing complex nonlinear
behaviors of data more efficiently (Patterson and Gibson 2017).

(c) Output layer: It is a set of neurons that transfers the information that the network
has processed to the outside (Francisco-Caicedo and López-Sotelo 2009). In
Fig. 10.4 the output neurons correspond to the output variables y1, y2, y3, and
y4. This means that the output layer gives the answer or prediction of the
artificial neural network model based on the input from the input layer. The
final output can be continuous, binary, ordinal, or count depending on the setup
of the ANN which is controlled by the activation (or inverse link in the statistical
domain) function we specified on the neurons in the output layer (Patterson and
Gibson 2017).

Next, we define the types of neurons: (1) input neuron. A neuron that receives
external inputs from outside the network; (2) output neuron. A neuron that produces
some of the outputs of the network; and (3) hidden neuron. A neuron that has no
direct interaction with the “outside world” but only with other neurons within the
network. Similar terminology is used at the layer level for multilayer neural
networks.

As can be seen in Fig. 10.4, the distribution of neurons within an artificial neural
network is done by forming levels of a certain number of neurons. If a set of artificial
neurons simultaneously receives the same type of information, we call it a layer. We
also described a network of three types of levels called layers. Figure 10.5 shows
another six networks with different numbers of layers, and half of them (Fig. 10.5a,
c, e) are univariate since the response variable we wish to predict is only one, while
the other half (Fig. 10.5b, d, f) are multivariate since the interest of the network is to
predict two outputs. It is important to point out that subpanels a and b in Fig. 10.5 are
networks with only one layer and without hidden layers; for this reason, this type of
networks corresponds to conventional regression or classification regression models.

Therefore, the topology of an artificial neural network is the way in which
neurons are organized inside the network; it is closely linked to the learning
algorithm used to train the network. Depending on the number of layers, we define
the networks as monolayer and multilayer; and if we take as a classification element
the way information flows, we define the networks as feedforward or recurrent. Each
type of topology will be described in another section.
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In summary, an artificial (deep) neural network model is an information
processing system that mimics the behavior of biological neural networks, which
was developed as a generalization of mathematical models of human knowledge or
neuronal biology.

10.3 Activation Functions

The mapping between inputs and a hidden layer in ANN and DNN is determined by
activation functions. Activation functions propagate the output of one layer’s nodes
forward to the next layer (up to and including the output layer). Activation functions

Fig. 10.5 Different feedforward topologies with univariate and multivariate outputs and different
number of layers. (a) Unilayer and univariate output. (b) Unilayer and multivariate output. (c) Three
layer and univariate output. (d) Three layer and multivariate output. (e) Four layer univariate output.
(f) Four layer multivariate output
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are scalar-to-scalar functions that provide a specific output of the neuron. Activation
functions allow nonlinearities to be introduced into the network’s modeling capa-
bilities (Wiley 2016). The activation function of a neuron (node) defines the func-
tional form for how a neuron gets activated. For example, if we define a linear
activation function as g(z) ¼ z, in this case the value of the neuron would be the raw
input, x, times the learned weight, that is, a linear model. Next, we describe the most
popular activation functions.

10.3.1 Linear

Figure 10.6 shows a linear activation function that is basically the identity function.
It is defined as g(z) ¼ Wz, where the dependent variable has a direct, proportional
relationship with the independent variable. In practical terms, it means the function
passes the signal through unchanged. The problem with making activation functions
linear is that this does not permit any nonlinear functional forms to be learned
(Patterson and Gibson 2017).

10.3.2 Rectifier Linear Unit (ReLU)

The rectifier linear unit (ReLU) activation function is one of the most popular. The
ReLU activation function is flat below some threshold (usually the threshold is zero)
and then linear. The ReLU activates a node only if the input is above a certain
quantity. When the input is below zero, the output is zero, but when the input rises
above a certain threshold, it has a linear relationship with the dependent variable g
(z) ¼ max (0, z), as demonstrated in Fig. 10.7. Despite its simplicity, the ReLU
activation function provides nonlinear transformation, and enough linear rectifiers
can be used to approximate arbitrary nonlinear functions, unlike when only linear

Fig. 10.6 Representation of a linear activation function
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activation functions are used (Patterson and Gibson 2017). ReLUs are the current
state of the art because they have proven to work in many different situations.
Because the gradient of a ReLU is either zero or a constant, it is not easy to control
the vanishing exploding gradient issue, also known as the “dying ReLU” issue.
ReLU activation functions have been shown to train better in practice than sigmoid
activation functions. This activation function is the most used in hidden layers and in
output layers when the response variable is continuous and larger than zero.

10.3.3 Leaky ReLU

Leaky ReLUs are a strategy to mitigate the “dying ReLU” issue. As opposed to
having the function be zero when z < 0, the leaky ReLU will instead have a small
negative slope, α,where α is a value between 0 and 1 (Fig. 10.8). In practice, some

Fig. 10.7 Representation of the ReLU activation function

Fig. 10.8 Representation of the Leaky ReLU activation function with α ¼ 0.1
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success has been achieved with this ReLU variation, but results are not always
consistent. The function of this activation function is given here:

g zð Þ ¼
z if z > 0

αz otherwise

(

10.3.4 Sigmoid

A sigmoid activation function is a machine that converts independent variables of
near infinite range into simple probabilities between 0 and 1, and most of its output
will be very close to 0 or 1. Like all logistic transformations, sigmoids can reduce
extreme values or outliers in data without removing them. This activation function
resembles an S (Wiley 2016; Patterson and Gibson 2017) and is defined as g
(z) ¼ (1 + e�z)�1. This activation function is one of the most common types of
activation functions used to construct ANNs and DNNs, where the outcome is a
probability or binary outcome. This activation function is a strictly increasing
function that exhibits a graceful balance between linear and nonlinear behavior but
has the propensity to get “stuck,” i.e., the output values would be very close to 1 or
0 when the input values are strongly positive or negative (Fig. 10.9). By getting
“stuck” we mean that the learning process is not improving due to the large or small
values of the output values of this activation function.

10.3.5 Softmax

Softmax is a generalization of the sigmoid activation function that handles multino-
mial labeling systems, that is, it is appropriate for categorical outcomes. Softmax is

Fig. 10.9 Representation of the sigmoid activation function
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the function you will often find in the output layer of a classifier with more than two
categories. The softmax activation function returns the probability distribution over
mutually exclusive output classes. To further illustrate the idea of the softmax output
layer and how to use it, let’s consider two types of uses. If we have a multiclass
modeling problem we only care about the best score across these classes, we’d use a
softmax output layer with an argmax() function to get the highest score across all
classes. For example, let us assume that our categorical response has ten classes;
with this activation function we calculate a probability for each category (the sum of
the ten categories is one) and we classify a particular individual in the class with the
largest probability. It is important to recall that if we want to get binary classifica-
tions per output (e.g., “diseased and not diseased”), we do not want softmax as an
output layer. Instead, we will use the sigmoid activation function explained before.
The softmax function is defined as

g z j
� � ¼ exp z j

� �
1þPC

c¼1 exp zcð Þ , j ¼ 1, ::,C

This activation function is a generalization of the sigmoid activation function that
squeezes (force) a C dimensional vector of arbitrary real values to a C dimensional
vector of real values in the range [0,1] that adds up to 1. A strong prediction would
have a single entry in the vector close to 1, while the remaining entries would be
close to 0. A weak prediction would have multiple possible categories (labels) that
are more or less equally likely. The sigmoid and softmax activation functions are
suitable for probabilistic interpretation due to the fact that the output is a probabilistic
distribution of the classes. This activation function is mostly recommended for
output layers when the response variable is categorical.

10.3.6 Tanh

The hyperbolic tangent (Tanh) activation function is defined as tanh zð Þ ¼
sinh zð Þ= cosh zð Þ ¼ exp zð Þ� exp �zð Þ

exp zð Þþ exp �zð Þ . The hyperbolic tangent works well in some

cases and, like the sigmoid activation function, has a sigmoidal (“S” shaped) output,
with the advantage that it is less likely to get “stuck” than the sigmoid activation
function since its output values are between �1 and 1, as shown in Fig. 10.10. For
this reason, for hidden layers should be preferred the Tanh activation function. Large
negative inputs to the tanh function will give negative outputs, while large positive
inputs will give positive outputs (Patterson and Gibson 2017). The advantage of tanh
is that it can deal more easily with negative numbers.

It is important to point out that there are more activations functions like the
threshold activation function introduced in the pioneering work on ANN by
McCulloch and Pitts (1943), but the ones just mentioned are some of the most used.
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10.4 The Universal Approximation Theorem

The universal approximation theorem is at the heart of ANN since it provides the
mathematical basis of why artificial neural networks work in practice for nonlinear
input–output mapping. According to Haykin (2009), this theorem can be stated as
follows.

Let g() be a bounded, and monotone-increasing continuous function. Let Im0

denote the m0-dimensional unit hypercube 0, 1½ �m0 . The space of continuous func-
tions on Im0 is denoted by C Im0ð Þ. Then given any function f 3 C Im0ð Þ and ε > 0,
there is an integerm1 and sets of real constants αi, bi, and wij, where i¼ 1,. . ., m1 and
j ¼ 1,. . ., m0 such that we may define

F x1, . . . , xm0ð Þ ¼
Xm1

i¼1

αig
Xm0

j¼1

wijx j þ bi

 !
ð10:4Þ

as an approximate realization of function f(�); that is,

F x1, . . . , xm0ð Þ � f x1, . . . , xm0Þð j < εj

For all x1, . . . , xm0 that lie in the input space.
m0 represents the input nodes of a multilayer perceptron with a single hidden

layer. m1 is the number of neurons in the single hidden layer, x1, . . . , xm0 are the
inputs, wij denotes the weight of neuron i in input j, bi denotes the bias corresponding
to neuron i, and αi is the weight of the output layer in neuron i.

This theorem states that any feedforward neural network containing a finite
number of neurons is capable of approximating any continuous functions of arbitrary
complexity to arbitrary accuracy, if provided enough neurons in even a single hidden
layer, under mild assumptions of the activation function. In other words, this
theorem says that any continuous function that maps intervals of real numbers to

Fig. 10.10 Representation of the tanh activation function
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some output interval of real numbers can be approximated arbitrarily and closely by
a multilayer perceptron with just one hidden layer and a finite very large number of
neurons (Cybenko 1989; Hornik 1991). However, this theorem only guarantees a
reasonable approximation; for this reason, this theorem is an existence theorem. This
implies that simple ANNs are able to represent a wide variety of interesting functions
if given enough neurons and appropriate parameters; but nothing is mentioned about
the algorithmic learnability of those parameters, nor about their time of learning,
ease of implementation, generalization, or that a single hidden layer is optimum. The
first version of this theorem was given by Cybenko (1989) for sigmoid activation
functions. Two years later, Hornik (1991) pointed out that the potential of “ANN of
being universal approximators is not due to the specific choice of the activation
function, but to the multilayer feedforward architecture itself.”

From this theorem, we can deduce that when an artificial neural network has more
than two hidden layers, it will not always improve the prediction performance since
there is a higher risk of converging to a local minimum. However, using two hidden
layers is recommended when the data has discontinuities. Although the proof of this
theorem was done for only a single output, it is also valid for the multi-output
scenario and can easily be deduced from the single output case. It is important to
point out that this theorem states that all activation functions will perform equally
well in specific learning problems since their performance depends on the data and
additional issues such as minimal redundancy, computational efficiency, etc.

10.5 Artificial Neural Network Topologies

In this subsection, we describe the most popular network topologies. An artificial
neural network topology represents the way in which neurons are connected to form
a network. In other words, the neural network topology can be seen as the relation-
ship between the neurons by means of their connections. The topology of a neural
network plays a fundamental role in its functionality and performance, as illustrated
throughout this chapter. The generic terms structure and architecture are used as
synonyms for network topology. However, caution should be exercised when using
these terms since their meaning is not well defined and causes confusion in other
domains where the same terms are used for other purposes.

More precisely, the topology of a neural network consists of its frame or
framework of neurons, together with its interconnection structure or connectivity:

Artificial neural network topology
1Þ artificial neural framework

2Þ interconnection structure:

(

The next two subsections are devoted to these two components.
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Artificial neural framework Most neural networks, including many biological
ones, have a layered topology. There are a few exceptions where the network is
not explicitly layered, but those can usually be interpreted as having a layered
topology, for example, in some associative memory networks, which can be seen
as one-layer neural networks where all neurons function both as input and output
units. At the framework level, neurons are considered abstract entities, therefore
possible differences between them are not considered. The framework of an artificial
neural network can therefore be described by the number of neurons, number of
layers (denoted by L ), and the size of the layer, which consists of the number of
neurons in each of the layers.

Interconnection structure The interconnection structure of an artificial neural
network determines the way in which the neurons are linked. Based on a layered
structure, several different kinds of connections can be distinguished (see
Fig. 10.11): (a) Interlayer connection: This connects neurons in adjacent layers
whose layer indices differ by one; (b) Intralayer connection: This is a connection
between neurons in the same layer; (c) Self-connection: This is a special kind of
intralayer connection that connects a neuron to itself; (d) Supralayer connection:
This is a connection between neurons that are in distinct nonadjacent layers; in other
words, these connections “cross” or “jump” at least one hidden layer.

With each connection (interconnection), a weight (strength) is associated which
is a weighting factor that reflects its importance. This weight is a scalar value
(a number), which can be positive (excitatory) or negative (inhibitory). If a connec-
tion has zero weight, it is considered to be nonexistent at that point in time.

Fig. 10.11 Network topology with two layers. (i) denotes the six interlayer connections,
(s) denotes the four supralayered connections, and (a) denotes four intralayer connections of
which two are self-connections
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Note that the basic concept of layeredness is based on the presence of interlayer
connections. In other words, every layered neural network has at least one interlayer
connection between adjacent layers. If interlayer connections are absent between any
two adjacent clusters in the network, a spatial reordering can be applied to the
topology, after which certain connections become the interlayer connections of the
transformed, layered network.

Now that we have described the two key components of an artificial neural
network topology, we will present two of the most commonly used topologies.

Feedforward network In this type of artificial neural network, the information
flows in a single direction from the input neurons to the processing layer or layers
(only interlayer connections) for monolayer and multilayer networks, respectively,
until reaching the output layer of the neural network. This means that there are no
connections between neurons in the same layer (no intralayer), and there are no
connections that transmit data from a higher layer to a lower layer, that is, no
supralayer connections (Fig. 10.12). This type of network is simple to analyze, but
is not restricted to only one hidden layer.

Fig. 10.12 A simple two-layer feedforward artificial neural network
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Recurrent networks In this type of neural network, information does not always
flow in one direction, since it can feed back into previous layers through synaptic
connections. This type of neural network can be monolayer or multilayer. In this
network, all the neurons have (1) incoming connections emanating from all the
neurons in the previous layer, (2) ongoing connections leading to all the neurons in
the subsequent layer, and (3) recurrent connections that propagate information
between neurons of the same layer. Recurrent neural networks (RNNs) are different
from a feedforward neural network in that they have at least one feedback loop since
the signals travel in both directions. This type of network is frequently used in time
series prediction since short-term memory, or delay, increases the power of recurrent
networks immensely. In this case, we present an example of a recurrent two-layer
neural network. The output of each neuron is passed through a delay unit and then
taken to all the neurons, except itself. In Figs. 10.13 and 10.14, we can see that only
one input variable is presented to the input units, the feedforward flow is computed,
and the outputs are fed back as auxiliary inputs. This leads to a different set of hidden
unit activations, new output activations, and so on. Ultimately, the activations
stabilize, and the final output values are used for predictions.

However, it is important to point out out that despite the just mentioned virtues of
recurrent artificial neural networks, they are still largely theoretical and produce
mixed results (good and bad) in real applications. On the other hand, the feedforward
networks are the most popular since they are successfully implemented in all areas of
domain; the multilayer perceptron (MLP; that is, onother name give to feedforward
networks) is the de facto standard artificial neural network topology (Lantz 2015).
There are other DNN topologies like convolutional neural networks that are
presented in Chap. 13, but they can be found also in books specializing in deep
learning.

10.6 Successful Applications of ANN and DL

The success of ANN and DL is due to remarkable results on perceptual problems
such as seeing and hearing—problems involving skills that seem natural and intu-
itive to humans but have long been elusive for machines. Next, we provide some of
these successful applications:

(a) Near-human-level image classification, speech recognition, handwriting tran-
scription, autonomous driving (Chollet and Allaire 2017)

(b) Automatic translation of text and images (LeCun et al. 2015)
(c) Improved text-to-speech conversion (Chollet and Allaire 2017)
(d) Digital assistants such as Google Now and Amazon Alexa
(e) Improved ad targeting, as used by Google, Baidu, and Bing
(f) Improved search results on the Web (Chollet and Allaire 2017)
(g) Ability to answer natural language questions (Goldberg 2016)
(h) In games like chess, Jeopardy, GO, and poker (Makridakis et al. 2018)
(i) Self-driving cars (Liu et al. 2017),
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(j) Voice search and voice-activated intelligent assistants (LeCun et al. 2015)
(k) Automatically adding sound to silent movies (Chollet and Allaire 2017)
(l) Energy market price forecasting (Weron 2014)

(m) Image recognition (LeCun et al. 2015)
(n) Prediction of time series (Dingli and Fournier 2017)
(o) Predicting breast, brain (Cole et al. 2017), or skin cancer

Fig. 10.13 A simple two-layer recurrent artificial neural network with univariate output
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(p) Automatic image captioning (Chollet and Allaire 2017)
(q) Predicting earthquakes (Rouet-Leduc et al. 2017)
(r) Genomic prediction (Montesinos-López et al. 2018a, b)

It is important to point out that the applications of ANN and DL are not restricted
to perception and natural language understanding, such as formal reasoning. There
are also many successful applications in biological science. For example, deep
learning has been successfully applied for predicting univariate continuous traits
(Montesinos-López et al. 2018a), multivariate continuous traits (Montesinos-López
et al. 2018b), univariate ordinal traits (Montesinos-López et al. 2019a), and

Fig. 10.14 A two-layer recurrent artificial neural network with multivariate outputs
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multivariate traits with mixed outcomes (Montesinos-López et al. 2019b) in the
context of genomic-based prediction. Menden et al. (2013) applied a DL method to
predict the viability of a cancer cell line exposed to a drug. Alipanahi et al. (2015)
used DL with a convolutional network architecture (an ANN with convolutional
operations; see Chap. 13) to predict specificities of DNA- and RNA-binding pro-
teins. Tavanaei et al. (2017) used a DL method for predicting tumor suppressor
genes and oncogenes. DL methods have also made accurate predictions of single-
cell DNA methylation states (Angermueller et al. 2016). In the area of genomic
selection, we mention two reports only: (a) McDowell and Grant (2016) found that
DL methods performed similarly to several Bayesian and linear regression tech-
niques that are commonly employed for phenotype prediction and genomic selection
in plant breeding and (b) Ma et al. (2017) also used a DL method with a
convolutional neural network architecture to predict phenotypes from genotypes in
wheat and found that the DL method outperformed the GBLUP method. However, a
review of DL application to genomic selection is provided by Montesinos-López
et al. (2021).

10.7 Loss Functions

Loss function (also known as objective function) in general terms is a function that
maps an event or values of one or more variables onto a real number intuitively
representing some “cost” associated with the event. An optimization problem seeks
to minimize a loss function. An objective function is either a loss function or its
negative (in specific domains, variously called a reward function, a profit function, a
utility function, a fitness function, etc.), in which case now the goal is a maximiza-
tion process. In the statistical machine learning domain, a loss function tries to
quantify how close the predicted values produced by an artificial neural network
or DL model are to the true values. That is, the loss function measures the quality of
the network’s output by computing a distance score between the observed and
predicted values (Chollet and Allaire 2017). The basic idea is to calculate a metric
based on the observed error between the true and predicted values to measure how
well the artificial neural network model’s prediction matches what was expected.
Then these errors are averaged over the entire data set to provide only a single
number that represents how the artificial neural network is performing with regard to
its ideal. In looking for this ideal, it is possible to find the parameters (weights and
biases) of the artificial neural network that will minimize the “loss” produced by the
errors. Training ANN models with loss functions allows the use of optimization
methods to estimate the required parameters. Although most of the time it is not
possible to obtain an analytical solution to estimate the parameters, very often good
approximations can be obtained using iterative optimization algorithms like gradient
descent (Patterson and Gibson 2017). Next, we provide the most used loss functions
for each type of response variable.
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10.7.1 Loss Functions for Continuous Outcomes

Sum of square error loss This loss function is appropriate for continuous response
variables (outcomes), assuming that we want to predict L response variables. The
error (difference between observed (yij) and predicted (byij) values) in a prediction is
squared and summed over the number of observations, since the training of the
network is not local but global. To capture all possible trends in the training data, the
expression used for sum of square error (SSE) loss is

L wð Þ ¼ 1
2

Xn

i¼1

XL

j¼1
byij � yij
� �2

Note that n is the size of your data set, and L, the number of targets (outputs) the
network has to predict. It is important to point out that when there is only one
response variable, the L is dropped. Also, the division by two is added for mathe-
matical convenience (which will become clearer in the context of its gradient in
backpropagation). One disadvantage of this loss function is that it is quite sensitive
to outliers and, for this reason, other loss functions have been proposed for contin-
uous response variables. With the loss function, it is possible to calculate the loss
score, which is used as a feedback signal to adjust the weights of the artificial neural
network; this process of adjusting the weights in ANN is illustrated in Fig. 10.15
(Chollet and Allaire 2017). It is also common practice to use as a loss function, the
SSE divided by the training sample (n) multiplied by the number of outputs (L ).

Figure 10.15 shows that in the learning process of an artificial neural network are
involved the interaction of layers, input data, loss function which defines the
feedback signal used for learning, and the optimizer which determines how the
learning proceeds and uses the loss value to update the network’s weights. Initially,
the weights of the network are assigned small random values, but when this provides
an output far from the ideal values, it also implies a high loss score. But at each
iteration of the network process, the weights are adjusted a little to reduce the

Fig. 10.15 The loss score is used as a feedback signal to adjust the weights
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difference between the observed and predicted values and, of course, to decrease the
loss score. This is the basic step of the training process of statistical machine learning
models in general, and when this process is repeated a sufficient number of times
(on the order of thousands of iterations), it yields weight values that minimize the
loss function. A network with minimal loss is one in which the observed and
predicted values are very close; it is called a trained network (Chollet and Allaire
2017). There are other options of loss functions for continuous data like the sum of

absolute percentage error loss (SAPE): L wð Þ ¼Pn
i¼1

PL
j¼1
byij�yij

yij

���� ���� and the sum of

squared log error loss (Patterson and Gibson 2017): L wð Þ ¼Pn
i¼1

PL
j¼1 log byij� �� log yij

� �� �2
, but the SSE is popular in ANN and DL models

due to its nice mathematical properties.

10.7.2 Loss Functions for Binary and Ordinal Outcomes

Next, we provide two popular loss functions for binary data: the hinge loss and the
cross-entropy loss.

Hinge loss This loss function originated in the context of the support vector
machine for “maximum-margin” classification, and is defined as

L wð Þ ¼
Xn

i¼1

XL

j¼1
max 0, yij � byij� �

It is important to point out that since this loss function is appropriate for binary
data, the intended response variable output is denoted as +1 for success and �1 for
failure.

Logistic loss This loss function is defined as

L wð Þ ¼ �
Xn

i¼1

XL

j¼1
yij � log byij� �þ 1� yij

� �� log 1� byij� �� �
This loss function originated as the negative log-likelihood of the product of

Bernoulli distributions. It is also known as cross-entropy loss since we arrive at the
logistic loss by calculating the cross-entropy (difference between two probability
distributions) loss, which is a measure of the divergence between the predicted
probability distribution and the true distribution. Logistic loss functions are preferred
over the hinge loss when the scientist is mostly interested in the probabilities of
success rather than in just the hard classifications. For example, when a scientist is
interested in the probability that a patient can get cancer as a function of a set of
covariates, the logistic loss is preferred since it allows calculating true probabilities.
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When the number of classes is more than two according to Patterson and Gibson
(2017), that is, when we are in the presence of categorical data, the loss function is
known as categorical cross-entropy and is equal to

L wð Þ ¼ �
Xn

i¼1

XL

j¼1
yij � log byij� �� �

Poisson loss This loss function is built as the minus log-likelihood of a Poisson
distribution and is appropriate for predicting count outcomes. It is defined as

L wð Þ ¼
Xn
i¼1

XL
j¼1

byij � yij log byij� �� �
Also, for count data the loss function can be obtained under a negative binomial

distribution, which can do a better job than the Poisson distribution when the
assumption of equal mean and variance is hard to justify.

10.7.3 Regularized Loss Functions

Regularization is a method that helps to reduce the complexity of the model and
significantly reduces the variance of statistical machine learning models without any
substantial increase in their bias. For this reason, to prevent overfitting and improve
the generalizability of our models, we use regularization (penalization), which is
concerned with reducing testing errors so that the model performs well on new data
as well as on training data. Regularized or penalized loss functions are those that
instead of minimizing the conventional loss function, L(w), minimize an augmented
loss function that consists of the sum of the conventional loss function and a penalty
(or regularization) term that is a function of the weights. This is defined as

L w, λð Þ ¼ L wð Þ þ 0:5� λEP,

where L(w, λ) is the regularized (or penalized) loss function, λ is the degree or
strength of the penalty term, and EP is the penalization proposed for the weights;
this is known as the regularization term. The regularization term shrinks the weight
estimates toward zero, which helps to reduce the variance of the estimates and
increase the bias of the weights, which in turn helps to improve the out-of-sample
predictions of statistical machine learning models (James et al. 2013). As you
remember, the way to introduce the penalization term is using exactly the same
logic used in Ridge regression in Chap. 3. Depending on the form of EP, there is a
name for the type of regularization. For example, when EP ¼ wTw, it is called Ridge
penalty or weight decay penalty. This regularization is also called L2 penalty and has
the effect that larger weights (positive or negative) result in larger penalties. On the
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other hand, when EP ¼PP
p¼1 wp

�� ��, that is, when the EP term is equal to the sum of
the absolute weights, the name of this regularization is Least Absolute Shrinkage and
Selection Operator (Lasso) or simply L1 regularization. The L1 penalty produces a
sparse solution (more zero weights) because small and larger weights are equally
penalized and force some weights to be exactly equal to zero when the λ is
considerably large (James et al. 2013; Wiley 2016); for this reason, the Lasso
penalization also performs variable selection and provides a model more interpret-
able than the Ridge penalty. By combining Ridge (L2) and Lasso
(L1) regularization, we obtained Elastic Net regularization, where the loss function
is defined as L w, λ1, λ2ð Þ ¼ L wð Þ þ 0:5� λ1

PP
p¼1 wp

�� ��þ 0:5� λ2
PP

p¼1w
2
p , and

where instead of one lambda parameter, two are needed.
It is important to point out that more than one hyperparameter is needed in ANN

and DL models where different degrees of penalties can be applied to different layers
and different hyperparameters. This differential penalization is sometimes desirable
to improve the predictions in new data, but this has the disadvantage that more
hyperparameters need to be tuned, which increases the computation cost of the
optimization process (Wiley 2016).

In all types of regularization, when λ¼ 0 (or λ1¼ λ2¼ 0), the penalty term has no
effect, but the larger the value of λ, the more the shrinkage and penalty grows and the
weight estimates will approach zero. The selection of the appropriate value of λ is
challenging and critical; for this reason, λ is also treated as a hyperparameter that
needs to be tuned and is usually optimized by evaluating a range of possible λ values
through cross-validation. It is also important to point out that scaling the input data
before implementing artificial neural networks is recommended, since the effect of
the penalty depends on the size of the weights and the size of the weights depends on
the scale of the data. Also, the user needs to recall from Chap. 3 where Ridge
regression was presented, that the shrinkage penalty is applied to all the weights
except the intercept or bias terms (Wiley 2016).

Another type of regularization that is very popular in ANN and DL is the dropout,
which consists of setting to zero a random fraction (or percentage) of the weights of
the input neurons or hidden neurons. Suppose that our original topology is like the
topology given in Fig. 10.16.16a, where all the neurons are active (with weights
different to zero), while when a random fraction of neurons is dropped out, this
means that all its connections (weights) are set to zero and the topology with the
dropout neurons (with weights set to zero) is observed in Fig. 10.16b. The contri-
bution of those dropped out neurons to the activation of downstream neurons is
temporarily removed on the forward pass and any weight updates are not applied to
the neuron on the backward pass. Dropout is only used during the training of a model
but not when evaluating the skill of the model; it prevents the units from co-adapting
too much.

This type of regularization is very simple and there is a lot of empirical evidence
of its power to avoid overfitting. This regularization is quite new in the context of
statistical machine learning and was proposed by Srivastava et al. (2014) in the paper
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. There are no
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Fig. 10.16 Feedforward neural network with four layers. (a) Three input neurons, four neurons in
hidden layers 1 and 3, and five neurons in hidden layer 2 without dropout and (b) the same network
with dropout; dropping out one in the input neuron, three neurons in hidden layers 1–3
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unique rules to choose the percentage of neurons that will be dropped out. Some tips
are given below to choose the % dropout:

(a) Usually a good starting point is to use 20% dropout, but values between 20% and
50% are reasonable. A percentage that is too low has minimal effect and a value
that is too high results in underfitting the network.

(b) The larger the network, the better, when you use the dropout method, since then
you are more likely to get a better performance, because the model had more
chance to learn independent representations.

(c) Application of dropout is not restricted to hidden neurons; it can also be applied
in the input layer. In both cases, there is evidence that it improves the perfor-
mance of the ANN model.

(d) When using dropout, increasing the learning rate (learning rate is a tuning
parameter in an optimization algorithm that regulates the step size at each epoch
(iteration) while moving toward a minimum (or maximum) of a loss function) of
the ANN algorithm by a factor of 10–100 is suggested, as well as increasing the
momentum value (another tuning parameter useful for computing the gradient at
each iteration), for example, from 0.90 to 0.99.

(e) When dropout is used, it is also a good idea to constrain the size of network
weights, since the larger the learning rate, the larger the network weights. For
this reason, constraining the size of network weights to less than five in absolute
values with max-norm regularization has shown to improve results.

It is important to point out that all the loss functions described in the previous
section can be converted to regularized (penalized) loss functions using the elements
given in this section. The dropout method can also be implemented with any type of
loss function.

10.7.4 Early Stopping Method of Training

During the training process, the ANN and DL models learn in stages, from simple
realizations to complex mapping functions. This process is captured by monitoring
the behavior of the mean squared error that compares the match between observed
and predicted values, which starts decreasing rapidly by increasing the number of
epochs (epoch refers to one cycle through the full training data set) used for training,
then decrease slowly when the error surface is close to a local minimum. However,
to attain the larger generalization power of a model, it is necessary to figure out when
it is best to stop training, which is a very challenging situation since a very early
stopping point can produce underfitting, while a very late (no large) stopping point
can produce overfitting of the training data. As mentioned in Chap. 4, one way to
avoid overfitting is to use a CV strategy, where the training set is split into a training-
inner and testing-inner set; with the training-inner set, the model is trained for the set
of hyperparameters, and with the testing-inner (tuning) set, the power to predict out
of sample data is evaluated, and in this way the optimal hyperparameters are
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obtained. However, we can incorporate the early stopping method to CV to fight
better overfitting by using the CV strategy in the usual way with a minor modifica-
tion, which consists of stopping the training section periodically (i.e., every so many
epochs) and testing the model on the validation subset, after reaching the specified
number of epochs (Haykin 2009). In other words, the stopping method combined
with the CV strategy that consists of a periodic “estimation-followed-by-validation
process” basically proceeds as follows:

(a) After a period of estimation (training)—every three epochs, for example—the
weights and bias (intercept) parameters of the multilayer perceptron are all fixed,
and the network is operated in its forward mode. Then the training and validation
error are computed.

(b) When the validation prediction performance is completed, the estimation (train-
ing) is started again for another period, and the process is repeated.

Due to its nature (just described above), which is simple to understand and easy to
implement in practice, this method is called early stopping method of training. To
better understand this method, in Fig. 10.17 this approach is conceptualized with two
learning curves, one for the training subset and the other for the validation subset.
Figure 10.17 shows that the prediction power in terms of MSE is lower in the
training set than in the validation set, which is expected. The estimation learning
curve that corresponds to the training set decreases monotonically as the number of

Fig. 10.17 Schematic representation of the early stopping rule based on cross-validation (Haykin
2009)
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epochs increases, which is normal, while the validation learning curve decreases
monotonically to a minimum and then as the training continues, starts to increase.
However, the estimation learning curve of the training set suggests that we can do
better by going beyond the minimum point on the validation learning curve, but this
is not really true since in essence what is learned beyond this point is the noise
contained in the training data. For this reason, the minimum point on the validation
learning curve could be used as a sensible criterion for stopping the training session.
However, the validation sample error does not evolve as smoothly as the perfect
curve shown in Fig. 10.17, over the number of epochs used for training, since the
validation sample error many times exhibits few local minima of its own before it
starts to increase with an increasing number of epochs. For this reason, in the
presence of two or more local minima, the selection of a “slower” stopping criterion
(i.e., a criterion that stops later than other criteria) makes it possible to attain a small
improvement in generalization performance (typically, about 4%, on average) at the
cost of a much longer training period (about a factor of four, on average).

10.8 The King Algorithm for Training Artificial Neural
Networks: Backpropagation

The training process of ANN, which consists of adjusting connection weights,
requires a lot of computational resources. For this reason, although they had been
studied for many decades, few real applications of ANN were available until the
mid-to-late 1980s, when the backpropagation method made its arrival. This method
is attributed to Rumelhart et al. (1986). It is important to point out that, indepen-
dently, other research teams around the same time published the backpropagation
algorithm, but the one previously mentioned is one of the most cited. This algorithm
led to the resurgence of ANN after the 1980s, but this algorithm is still considerably
slower than other statistical machine learning algorithms. Some advantages of this
algorithm are (a) it is able to make predictions of categorical or continuous out-
comes, (b) it does a better job in capturing complex patterns than nearly any other
algorithm, and (c) few assumptions about the underlying relationships of the data are
made. However, this algorithm is not without weaknesses, some of which are (a) it is
very slow to train since it requires a lot of computational resources because the more
complex the network topology, the more computational resources are needed, this
statement is true not only for ANN but also for any algorithm, (b) it is very
susceptible to overfitting training data, and (c) its results are difficult to interpret
(Lantz 2015).

Next, we provide the derivation of the backpropagation algorithm for the multi-
layer perceptron network shown in Fig. 10.18.

As mentioned earlier, the goal of the backpropagation algorithm is to find the
weights of a multilayered feedforward network. The multilayered feedforward
network given in Fig. 10.18 is able to approximate any function to any degree of
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accuracy (Cybenko 1989) with enough hidden units, as stated in the universal
approximation theorem (Sect. 10.4), which makes the multilayered feedforward
network a powerful statistical machine learning tool. Suppose that we provide this
network with n input patterns of the form

xi ¼ xi1, . . . , xiP½ �T,

where xi denotes the input pattern of individual i with i ¼ 1, . . ., n, and xip denotes
the input pth of xi. Let yij denote the response variable of the ith individual for the jth

Fig. 10.18 Schematic representation of a multilayer feedforward network with one hidden layer,
eight input variables, and three output variables
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output and this is associated with the input pattern xi. For this reason, to be able to
train the neural network, we must learn the functional relationship between the
inputs and outputs. To illustrate the learning process of this relationship, we use
the SSE loss function (explained in the section about “loss functions” to optimize the
weights) which is defined as

E ¼ 1
2

Xn

i¼1

XL

j¼1
byij � yij
� �2 ð10:5Þ

Now, to explain how the backpropagation algorithm works, we will explain how
information is first passed forward through the network. Providing the input values
to the input layer is the first step, but no operation is performed on this information
since it is simply passed to the hidden units. Then the net input into the kth hidden
neuron is calculated as

z hð Þ
ik ¼

XP

p¼1
w hð Þ
kp xip ð10:6Þ

Here P is the total number of explanatory variables or input nodes, w hð Þ
kp is the

weight from input unit p to hidden unit k, the superscript, h, refers to hidden layer,
and xip is the value of the pth input for pattern or individual i. It is important to point
out that the bias term (b hð Þ

j ) of neuron k in the hidden layer has been excluded from
(10.6) because the bias can be accounted for by adding an extra neuron to the input
layer and fixing its value at 1. Then the output of the k neuron resulting from
applying an activation function to its net input is

V hð Þ
ik ¼ g hð Þ z hð Þ

ik

� �
, ð10:7Þ

where g(h) is the activation function that is applied to the net input of any neuron k of
the hidden layer. In a similar vein, now with all the outputs of the neurons in the
hidden layer, we can estimate the net input of the jth neuron of the output unit j as

z lð Þ
ij ¼

XM

k¼1
w lð Þ
jk V

hð Þ
ik , ð10:8Þ

whereM is the number of neurons in the hidden layer and w lð Þ
jk represents the weights

from hidden unit k to output j. The superscript, l,refers to output layer. Also, here the
bias term (b lð Þ

j Þ of neuron j in the output layer was not included in (10.8) since it can
be included by adding an extra neuron to the hidden layer and fixing its value at
1. Now, by applying the activation function to the output of the jth neuron of the
output layer, we get the predicted value of the jth output as
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byij ¼ g lð Þ z lð Þ
ij

� �
, ð10:9Þ

where byij is the predicted value of individual i in output j and g(l ) is the activation

function of the output layer. We are interested in learning the weights (w hð Þ
kp ,w

lð Þ
jk ) that

minimize the sum of squared errors known as the mean square loss function (10.5),
which is a function of the unknown weights, as can be observed in (10.6)–(10.8).
Therefore, the partial derivatives of the loss function with respect to the weights
represent the rate of change of the loss function with respect to the weights (this is the
slope of the loss function). The loss function will decrease when moving the weights
down this slope. This is the intuition behind the iterative method called
backpropagation for finding the optimal weights and biases. This method consists
of evaluating the partial derivatives of the loss function with regard to the weights
and then moving these values down the slope, until the score of the loss function no
longer decreases. For example, if we make the variation of the weights proportional
to the negative of the gradient, the change in the weights in the right direction is
reached. The gradient of the loss function given in (10.5) with respect to the weights
connecting the hidden units to the output units (w lð Þ

jk Þ is given by

Δw lð Þ
jk ¼ �η

∂E

∂w lð Þ
jk

, ð10:10Þ

where η is the learning rate that scales the step size and is specified by the user. To be
able to calculate the adjustments for the weights connecting the hidden neurons to
the outputs, w lð Þ

jk , first we substitute (10.6)–(10.9) in (10.5), which yields

E ¼ 1
2

Xn

i¼1

XL

j¼1
yij � g lð Þ XM

k¼1
w lð Þ
jk g

hð Þ XP

p¼1
w hð Þ
kp xip

� �� �� �2
Then, by expanding (10.10) using the change rule, we get

Δw lð Þ
jk ¼ �η

∂E
∂byij ∂byij

∂z lð Þ
ij

∂z lð Þ
ij

∂w lð Þ
jk

Next, we get each partial derivative

∂E
∂byij ¼ � yij �byij� �
∂byij
∂z lð Þ

ij

¼ g lð Þ´ z lð Þ
ij

� �
ð10:11Þ
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∂z lð Þ
ij

∂w lð Þ
jk

¼ V hð Þ
ik

By substituting these partial derivatives in (10.10), we obtain the change in
weights from the hidden units to the output units, Δw lð Þ

jk , as

Δw lð Þ
jk ¼ η yij � byij� �

g lð Þ´ z lð Þ
ij

� �
V hð Þ
ik ¼ ηδijV

hð Þ
ik , ð10:12Þ

where δij ¼ yij �byij� �
g lð Þ´ z lð Þ

ij

� �
. Therefore, the formula used to update the weights

from the hidden units to the output units is

w lð Þ tþ1ð Þ
jk ¼ w lð Þ tð Þ

jk þ Δw lð Þ
jk ¼ w lð Þ tð Þ

jk þ ηδijV
hð Þ
ik ð10:13Þ

This equation reflects that the adjusted weights from (10.13) are added to the
current estimate of the weights, w lð Þ tð Þ

jk , to obtain the updated estimates, w lð Þ tþ1ð Þ
jk .

Next, to update the weights connecting the input units to the hidden units, we
follow a similar process as in (10.12). Thus

Δw hð Þ
kp ¼ �η

∂E

∂w hð Þ
kp

ð10:14Þ

Using the chain rule, we get that

�η
∂E

∂w hð Þ
kp

¼ ∂E
∂byij ∂byij

∂z lð Þ
ij

∂z lð Þ
ij

∂V hð Þ
ik

∂V hð Þ
ik

∂z hð Þ
ik

∂z hð Þ
ik

∂w hð Þ
kp

,

where ∂E
∂byij and ∂byij

∂z lð Þ
ij

are given in (10.11), while

∂z lð Þ
ij

∂V hð Þ
ik

¼ w lð Þ
jk

∂V hð Þ
ik

∂z hð Þ
ik

¼ g hð Þ´ z hð Þ
ik

� �
ð10:15Þ

∂z hð Þ
ik

∂w hð Þ
kp

¼ xip
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Substituting back into (10.14), we obtain the change in the weights from the input
units to the hidden units, Δw hð Þ

kp , as

Δw hð Þ
kp ¼ η

XL

j¼1
δijw

lð Þ
jk g

hð Þ´ z hð Þ
ik

� �
xip ¼ ηψ ikxip, ð10:16Þ

where ψ ik ¼
PL

j¼1δijw
lð Þ
jk g

hð Þ´ z hð Þ
ik

� �
. The summation over the number of output

units is because each hidden neuron is connected to all the output units. Therefore,
all the outputs should be affected if the weight connecting an input unit to a hidden
unit changes. In a similar way, the formula for updating the weights from the input
units to the hidden units is

w hð Þ tþ1ð Þ
kp ¼ w hð Þ tð Þ

kp þ Δw hð Þ
kp ¼ w hð Þ tð Þ

kp þ ηψ ikxip ð10:17Þ

This equation also reflects that the adjusted weights from (10.17) are added to the
current estimate of the weights, w hð Þ tð Þ

kp , to obtain the updated estimates, w hð Þ tþ1ð Þ
kp .

Now we are able to put down the processing steps needed to compute the change in
the network weights using the backpropagation algorithm. We define w as the entire
collection of weights.

10.8.1 Backpropagation Algorithm: Online Version

10.8.1.1 Feedforward Part

Step 1. Initialize the weights to small random values, and define the learning rate (η)
and the minimum expected loss score (tol). By tol we can fix a small value that when
this value is reached, the training process will stop.

Step 2. If the stopping condition is false, perform steps 3–14.
Step 3. Select a pattern xi ¼ [xi1, . . ., xiP]

T as the input vector sequentially (i ¼ 1
till the number of samples) or at random.

Step 4. The net inputs of the hidden layer are calculated: z hð Þ
ik ¼PP

p¼0w
hð Þ
kp xip ,

i ¼ 1, . . ., n and k ¼ 0, . . ., M.

Step 5. The outputs of the hidden layer are calculated: V hð Þ
ik ¼ g hð Þ z hð Þ

ik

� �
Step 6. The net inputs of the output layer are calculated: z lð Þ

ij ¼PM
k¼0w

lð Þ
jk V

hð Þ
ik , j ¼ 1, . . . , L

Step 7. The predicted values (outputs) of the neural network are calculated:byij ¼ g lð Þ z lð Þ
ij

� �
Step 8. Compute the mean square error (loss function) for pattern i error: Ei ¼

1
2nL

PL
j¼1 byij � yij
� �2 þ Ei ; then E(w) ¼ Ei + E(w); in the first step of an epoch,
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initialize Ei ¼ 0. Note that the value of the loss function is accumulated over all data
pairs, that is, (yij, xi).

10.8.1.2 Backpropagation Part

Step 9. The output errors are calculated: δij ¼ yij �byij� �
g lð Þ´ z lð Þ

ij

� �
Step 10. The hidden layer errors are calculated: ψ ik ¼ g hð Þ´ z hð Þ

ik

� �PL
j¼1δijw

lð Þ
jk

Step 11. The weights of the output layer are updated: w lð Þ tþ1ð Þ
jk ¼ w lð Þ tð Þ

jk þ ηδijV
hð Þ
ik

Step 12. The weights of the hidden layer are updated: w hð Þ tþ1ð Þ
kp ¼ w hð Þ tð Þ

kp þ ηψ ikxip
Step 13. If i < n, go to step 3; otherwise go to step 14.
Step 14. Once the learning of an epoch is complete, i ¼ n; then we check if the

global error is satisfied with the specified tolerance (tol). If this condition is satisfied
we terminate the learning process which means that the network has been trained
satisfactorily. Otherwise, go to step 3 and start a new learning epoch: i ¼ 1, since E
(w) < tol.

The backpropagation algorithm is iterative. This means that the search process
occurs over multiple discrete steps, each step hopefully slightly improving the model
parameters. Each step involves using the model with the current set of internal
parameters to make predictions of some samples, comparing the predictions to the
real expected outcomes, calculating the error, and using the error to update the
internal model parameters. This update procedure is different for different algo-
rithms, but in the case of ANN, as previously pointed out, the backpropagation
update algorithm is used.

10.8.2 Illustrative Example 10.1: A Hand Computation

In this section, we provide a simple example that will be computed step by step by
hand to fully understand how the training is done using the backpropagation method.
The topology used for this example is given in Fig. 10.19.

The data set for this example is given in Table 10.1, where we can see that the
data collected consist of four observations, the response variable ( y) takes values

Fig. 10.19 A simple
artificial neural network
with one input, one hidden
layer with one neuron, and
one response variable
(output)
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between 0 and 1, and the input information is for only one predictor (x). Addition-
ally, Table 10.1 gives the starting values for the hidden weights (w hð Þ

kp Þ and for the

output weights (w lð Þ
jk ). It is important to point out that due to the fact that the response

variable is in the interval between zero and one, we will use the sigmoid activation
function for both the hidden layer and the output layer. A learning rate (η) equal to
0.1 and tolerance equal to 0.025 were also used.

The backpropagation algorithm described before was given for one input pattern
at a time; however, to simplify the calculations, we will implement this algorithm
using the four patterns of data available simultaneously using matrix calculations.
For this reason, first we build the design matrix of inputs and outputs:

X ¼

1 0:33
1

1

1

0:95

0:27

1:3

266664
377775, y ¼

0:9

0:6
0:95

0:7

26664
37775

We also define the vectors of the starting values of the hidden and output weights:

w hð Þ ¼ 1:86

�3:3

	 

, w lð Þ ¼ �1:5

4:4

	 

:

Here we can see that P ¼ 1,and M ¼ 2. Next we calculate the net inputs for the
hidden layer as

z hð Þ ¼ Xw hð Þ ¼

1 0:33
1

1

1

0:95

0:27

1:2

266664
377775 1:86

�3:3

	 

¼

0:771

�1:275
0:969

�2:430

26664
37775

Now the output for the hidden layer is calculated using the sigmoid activation
function

Table 10.1 Input (X) and response variable ( y) for four individuals (observations) and initial
weights

Observation X y Output weights (w lð Þ
jk ) Hidden weights (w hð Þ

kp Þ
1 0.33 0.9 �1.5 1.86

2 0.95 0.6 4.4 �3.3

3 0.27 0.95

4 1.3 0.7
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V hð Þ ¼

V hð Þ
11 ¼ 1= 1þ exp �z11ð Þð Þ

V hð Þ
21 ¼ 1= 1þ exp �z21ð Þð Þ

V hð Þ
31 ¼ 1= 1þ exp �z31ð Þð Þ

V hð Þ
41 ¼ 1= 1þ exp �z41ð Þð Þ

2666664

3777775 ¼

0:6837

0:2184
0:7249

0:0809

26664
37775,

where V hð Þ
ik ¼ g hð Þ z hð Þ

ik

� �
, i ¼ 1, . . . , 4 and g(h)(z) ¼ 1/(1 + exp (�z)), which can be

replaced by another desired activation function. Then the net inputs for the output
layer are calculated as follows:

z lð Þ ¼ 1,V hð Þ
h i

w lð Þ ¼

1 0:6837
1

1

1

0:2184

0:7249

0:0809

26664
37775 �1:5

4:4

	 

¼

1:5084

�0:5390
1:6896

�1:1440

26664
37775

The predicted values (outputs) of the neural network are calculated as

by ¼
by1 ¼ 1= 1þ exp �z1ð Þð Þby2 ¼ 1= 1þ exp �z2ð Þð Þby3 ¼ 1= 1þ exp �z3ð Þð Þby4 ¼ 1= 1þ exp �z4ð Þð Þ

26664
37775=

0:8188

0:3684
0:8442

0:2416

26664
37775,

where byi ¼ g lð Þ z lð Þ
i1

� �
, i ¼ 1, . . . , 4 and g(l )(z) ¼ 1/(1 + exp (�z)). Next the output

errors are calculated using the Hadamard product, ∘, (element-wise matrix multipli-
cation) as

δ lð Þ ¼ y� byð Þ∘by∘ 1� byð Þ

¼

0:9

0:6
0:95

0:7

�

0:8188

0:3684

0:8442

0:2416

0BBBBB@

1CCCCCA∘

0:8188

0:3684
0:8442

0:2416

0BBB@
1CCCA∘

1

1
1

1

�

0:8188

0:3684

0:8442

0:2416

0BBBBB@

1CCCCCA ¼

0:0120

0:0539
0:0139

0:0839

26664
37775

The hidden layer errors are calculated as
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ψ= V hð Þ∘ 1�V hð Þ
� �h i

∘δ lð ÞwT lð Þ
1 ¼

0:6837

0:2184
0:7249

0:0809

0BBB@
1CCCA∘

1

1
1

1

�

0:6837

0:2184

0:7249

0:0809

0BBBBB@

1CCCCCA

2666664

3777775∘
0:0120

0:0539
0:0139

0:0839

26664
37775 4:4½ �

8>>><>>>:
9>>>=>>>;

¼

0:0114

0:0405
0:0122

0:0275

26664
37775,

where w lð Þ
1 is w(l ) without the weight of the intercept, that is, without the first element.

The weights of the output layer are updated:

w lð Þ 2ð Þ ¼ w lð Þ 1ð Þ þ η 1,V hð Þ
h iT

δ lð Þ

w lð Þ 2ð Þ ¼ �1:5

4:4

	 

þ 0:1

1 1 1 1

0:6837 0:2184 0:7249 0:0809

	 
 0:0120

0:0539
0:0139

0:0839

26664
37775

¼ �1:4836

4:4037

	 

,

where 2 denotes that the output weights are for epoch number 2. Then the weights
for epoch 2 of the hidden layer are obtained with

w hð Þ 2ð Þ ¼ w hð Þ 1ð Þ þ ηXTψ

w hð Þ 2ð Þ ¼ 1:86

�3:3

	 

þ 0:1

1 1 1 1

0:33 0:95 0:27 1:3

	 
 0:0114

0:0405
0:0122

0:0275

26664
37775 ¼ 1:8692

�3:2918

	 


We check to see if the global error is satisfied with the specified tolerance (tol).
Since E wð Þ ¼ 1

2n

Pn
i¼1 byi � yið Þ2 ¼ 0:03519 > tol ¼ 0:025, this means that we need

to increase the number of epochs to satisfy the tol ¼ 0.025 specified.
Epoch 2. Using the updated weights of epoch 1, we obtain the new weights after

epoch 2. First for the output layer:
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w lð Þ 3ð Þ ¼ �1:4836

4:4037

	 

þ 0:1

1 1 1 1

0:6863 0:2213 0:7272 0:0824

	 
 0:0111

0:0526
0:0132

0:0842

26664
37775

¼ �1:4675

4:4073

	 

And next for the hidden layer:

w hð Þ 3ð Þ ¼ 1:8692

�3:2918

	 

þ 0:1

1 1 1 1

0:33 0:95 0:27 1:3

	 
 0:0106

0:0399
0:0115

0:0280

26664
37775

¼ 1:8782

�3:2838

	 

Now the predicted values are by1 ¼ 0:8233, by2 ¼ 0:3754, by3 ¼ 0:8480, and by4 ¼

0:2459 , and again we found that E wð Þ ¼ 1
2n

Pn
i¼1 byi � yið Þ2 ¼ 0:03412 > tol ¼

0:025: This means that we need to continue the number of epochs to be able to
satisfy the tol ¼ 0.025 specified. The learning process by decreasing the MSE is
observed in Fig. 10.20, where we can see that tol ¼ 0.025 is reached in epoch
number 13, with an MSE ¼ E(w) = 0.02425.

Fig. 10.20 Behavior of the learning process by monitoring the MSE for Example 10.1—a hand
computation
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10.8.3 Illustrative Example 10.2—By Hand Computation

Table 10.2 gives the information for this example; the data collected contain five
observations, the response variable (y) has a value between �1 and 1, and there are
three inputs (predictors). Table 10.2 also provides the starting values for the hidden
weights (w hð Þ

kp Þ and for the output weights (w lð Þ
jk ). Due to the fact that the response

variable is in the interval between �1 and 1, we will use the hyperbolic tangent
activation function (Tanh) for the hidden and output layers. Now we used a learning
rate (η) equal to 0.05 and a tolerance equal to 0.008 (Fig. 10.21).

Here the backpropagation algorithm was implemented using the five patterns of
data simultaneously using matrix calculations. Again, first we represent the design
matrix of inputs and outputs:

Table 10.2 Inputs (x1, x2, and x3) and response variable ( y) for four observations and initial
weights

Observation X ¼ c(x1,x2,x3) y Output weights (w lð Þ
jk ) Hidden weights (w hð Þ

1p ,w
hð Þ
2p Þ

1 0.15,0.20,0.37 0.88 �1.5 1.4, 0.6

2 0.05,0.30,0.55 0.20 3.9 �1.3,�0.48

3 0.45,0.20,0.42 �0.8 0.27 �0.8,0.06

4 0.35,0.10,0.22 0.62 �1.2,0.009

5 0.30,0.41,0.70 �0.8

Fig. 10.21 A simple artificial neural network with three inputs, one hidden layer with two neurons,
and one response variable (output)
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X ¼

1 0:15 0:20 0:37

1

1

1

1

0:05 0:30 0:55

0:45 0:20 0:42

0:35 0:10 0:22

0:30 0:41 0:70

2666666664

3777777775
, y ¼

0:88

0:20
�0:8

0:62

�0:8

26666664

37777775
Then we define the vectors of starting values of the hidden (w(h)) and output (w(l ))

weights:

w hð Þ ¼

1:4 0:6
�1:3

�0:8

�1:2

�0:48

0:060

0:009

2666664

3777775, w lð Þ ¼
�1:5
3:9

0:27

264
375:

Now P ¼ 3 and M ¼ 3. Next, we calculate the net inputs for the hidden layer as

z hð Þ ¼ Xw hð Þ ¼

1 0:15 0:20 0:37

1

1

1

1

0:05 0:30 0:55

0:45 0:20 0:42

0:35 0:10 0:22

0:30 0:41 0:70

2666666664

3777777775

1:4 0:6

�1:3

�0:8

�1:2

�0:48

0:060

0:009

2666664

3777775

¼

0:601 0:5433

0:435 0:5989
0:151

0:601

�0:158

0:3998

0:4399

0:4869

26666664

37777775
Now with the tanh activation function, the output of the hidden layer is

calculated:

V hð Þ ¼

V hð Þ
11 ¼ tanh z11ð Þ V hð Þ

12 ¼ tanh z12ð Þ
V hð Þ
21 ¼ tanh z21ð Þ V hð Þ

22
¼ tanh z22ð Þ

V hð Þ
31 ¼ tanh z31ð Þ V hð Þ

32 ¼ tanh z32ð Þ
V hð Þ
41 ¼ tanh z41ð Þ V hð Þ

42 ¼ tanh z42ð Þ

V hð Þ
51 ¼ tanh z51ð Þ V hð Þ

52
¼ tanh z52ð Þ

26666666664

37777777775
¼

0:5378 0:4955

0:4095 0:5363

0:1499 0:3798

0:5378 0:4136

�0:1567 0:4518

266666664

377777775
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Again V hð Þ
ik ¼ g hð Þ z hð Þ

ik

� �
, i ¼ 1; k ¼ 1, 2, and g hð Þ zð Þ ¼ tanh zð Þ ¼ exp zð Þ� exp �zð Þ

exp zð Þþ exp �zð Þ,

which can also be replaced by another activation function. Then the net inputs for the
output layer are calculated as

z lð Þ ¼ 1,V hð Þ
h i

w lð Þ ¼

1 0:5378 0:4955

1 0:4095 0:5363

1 0:1499 0:3798

1 0:5378 0:4136

1 �0:1567 0:4518

266666664

377777775
�1:5
3:9

0:27

264
375 ¼

0:7311

0:2418
�0:8130

0:7089

�1:9891

26666664

37777775
The predicted values (outputs) of the neural network are calculated as

by ¼
by11 ¼ tanh z11ð Þby21 ¼ tanh z21ð Þby31 ¼ tanh z31ð Þby41 ¼ tanh z41ð Þ
by51 ¼ tanh z51ð Þ

266666664

377777775=
0:6237

0:2372
�0:6712

0:6100

�0:9633

26666664

37777775,

where byij ¼ g lð Þ z lð Þ
i1

� �
, i ¼ 1, . . . , 5 and g lð Þ zð Þ ¼ tanh zð Þ ¼ exp zð Þ� exp �zð Þ

exp zð Þþ exp �zð Þ. The out-

put errors are calculated as

δ lð Þ ¼ y�byð Þ∘ 1� by2� �
¼

0:88

0:20
�0:8

0:62

�0:8

�

0:6237

0:2372

�0:6712

0:6100

�0:9633

0BBBBBBBB@

1CCCCCCCCA
∘

1

1
1

1

1

�

0:3890

0:0563

0:4506

0:3721

0:9279

0BBBBBBBB@

1CCCCCCCCA

¼

0:1566

�0:0351
�0:0707

0:0063

0:0118

0BBBBBB@

1CCCCCCA
The hidden layer errors are calculated as
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ψ = 1� V hð Þ2
� �h i

∘δ lð ÞwT hð Þ
1

¼

0:7108

0:8323

0:9775

0:7108

0:9754

0:7545

0:7124

0:8558

0:8289

0:7959

0BBBBBBBB@

1CCCCCCCCA
∘

0:1566

�0:0351
�0:0707

0:0063

0:0118

0BBBBBB@

1CCCCCCA 3:9 0:27½ �

26666664

37777775

¼

0:4341 0:0319

�0:1139 �0:0068
�0:2697

0:0174

0:0448

�0:01635

0:0014

0:0025

26666664

37777775,

where w hð Þ
1 is w(h) without the weights of the intercepts, that is, without the first row.

The weights of the output layer are updated:

w lð Þ 2ð Þ ¼ w lð Þ 1ð Þ þ η 1,V hð Þ
h iT

δ lð Þ

w lð Þ 2ð Þ ¼
�1:5
3:9

0:27

264
375þ 0:05

1 1 1 1 1

0:5378 0:4095 0:1499 0:5378 �0:1567

0:4955 0:5363 0:3798 0:4136 0:4518

264
375

�

0:1566

�0:0351
�0:0707

0:0063

0:0118

0BBBBBB@

1CCCCCCA ¼
�1:4965
3:9030

0:2720

264
375

Number 2 in w(l )(2) indicates that output weights are for epoch number 2. The
weights of the hidden layer in epoch 2 are obtained with

w hð Þ 2ð Þ ¼ w hð Þ 1ð Þ þ ηXTψ
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w hð Þ 2ð Þ ¼

1:4 0:6

�1:3

�0:8

�1:2

�0:48

0:060

0:009

2666664

3777775þ 0:05

1 1 1 1 1

0:15 0:05 0:45 0:35 0:30

0:20

0:37

0:30

0:55

0:20

0:42

0:10

0:22

0:41

0:70

266664
377775

�

0:4341 0:0319

�0:1139 �0:0068
�0:2697

0:0174

0:0448

�0:01635

0:0014

0:0025

26666664

37777775

¼

1:4056 0:6006

�1:3021

�0:7990

�1:1990

�0:4801

0:0601

0:00917

2666664

3777775
We check to see if the global errors are satisfied with the specified tolerance

(tol). E wð Þ ¼ 1
2n

Pn
i¼1 byi � yið Þ2 ¼ 0:01104 > tol ¼ 0:008 which means that we

have to continue with the next epoch by cycling the training data again.
Epoch 2. Using the updated weights of epoch 1, we obtain the new weights for

epoch 2.
For the output layer, these are

w lð Þ 3ð Þ ¼
�1:4965
3:9030

0:2720

264
375þ 0:05

1 1 1 1 1

0:5419 0:4147 0:1550 0:5414 �0:1508

0:4960 0:5368 0:3804 0:4142 0:4524

264
375

�

0:1442

�0:0578
�0:0810

�0:0016

0:0123

0BBBBBB@

1CCCCCCA

¼
�1:4958
3:9050

0:2727

264
375

While for the hidden layer, they are
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w hð Þ 3ð Þ ¼

1:4056 0:6006

�1:3021

�0:7990

�1:1990

�0:4801

0:0601

0:00917

2666664

3777775

þ 0:05

1 1 1 1 1

0:15 0:05 0:45 0:35 0:30

0:20

0:37

0:30

0:55

0:20

0:42

0:10

0:22

0:41

0:70

266664
377775

�

0:3975 0:0296

�0:1867 �0:0112
�0:3087

�0:0045

0:0468

�0:01885

�0:00037

0:0027

26666664

37777775 ¼

1:4028 0:6007

�1:3059

�0:8000

�1:2017

0:4803

0:06011

0:0091

2666664

3777775
Now the predicted values are by1 ¼ 0:6372 , by2 ¼ 0:2620 , by3 ¼ �0:6573 , by4 ¼

0:6226, by5 ¼ �0:9612, and the E wð Þ ¼ 1
2n

Pn
i¼1 byi � yið Þ2 ¼ 0:01092 > tol ¼

0:008, which means that we have to continue with the next epoch by cycling the
training data again. Figure 10.22 shows that the E(w) ¼ 0.00799 < tol ¼ 0.008 until
epoch 83.

In this algorithm, zero weights are not an option because each layer is symmetric
in the weights flowing to the different neurons. Then the starting values should be
close to zero and can be taken from random uniform or Gaussian distributions (Efron

Fig. 10.22 Behavior of the learning process by monitoring the MSE for Example 10.2—a hand
computation
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and Hastie 2016). One of the disadvantages of the basic backpropagation algorithm
just described above is that the learning parameter η is fixed.
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