
Learning Time Series Counterfactuals
via Latent Space Representations

Zhendong Wang1(B), Isak Samsten1, Rami Mochaourab2,
and Panagiotis Papapetrou1

1 Stockholm University, Stockholm, Sweden
{zhendong.wang,samsten,panagiotis}@dsv.su.se

2 RISE Research Institutes of Sweden, Stockholm, Sweden
rami.mochaourab@ri.se

Abstract. Counterfactual explanations can provide sample-based
explanations of features required to modify from the original sample
to change the classification result from an undesired state to a desired
state; hence it provides interpretability of the model. Previous work
of LatentCF presents an algorithm for image data that employs auto-
encoder models to directly transform original samples into counterfactu-
als in a latent space representation. In our paper, we adapt the approach
to time series classification and propose an improved algorithm named
LatentCF++ which introduces additional constraints in the counterfactual
generation process. We conduct an extensive experiment on a total of
40 datasets from the UCR archive, comparing to current state-of-the-art
methods. Based on our evaluation metrics, we show that the LatentCF++

framework can with high probability generate valid counterfactuals and
achieve comparable explanations to current state-of-the-art. Our pro-
posed approach can also generate counterfactuals that are considerably
closer to the decision boundary in terms of margin difference.

Keywords: Time series classification · Interpretability ·
Counterfactual explanations · Deep learning

1 Introduction

Machine learning (ML) is developing rapidly to address real-world classification
problems and automate decisions in different fields. Especially, time series classi-
fication (TSC) has gained popularity in many critical applications, such as Elec-
trocardiogram (ECG) signal classification [9], sensor signal classification [19],
and stream monitoring [16]. Nevertheless, most ML methods remain opaque,
although model interpretability is crucial to gaining trust from practitioners.
Recent governmental regulations, such as the EU General Data Protection Reg-
ulation (GDPR), indicate that the public is entitled to receive “meaningful infor-
mation” from automated decision-making processes [18]. Towards that direction,
Wachter et al. [18] suggested counterfactual explanations as a solution to provide
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 369–384, 2021.
https://doi.org/10.1007/978-3-030-88942-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88942-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-88942-5_29

370 Z. Wang et al.

sample-based explanations, aligning with the data protection regulations from
GDPR. Counterfactuals provide information on which features of the original
test example are required to be modified and how to change the classification
result from an undesired state (e.g., “abnormal” ECG) to a desired state (e.g.,
“normal” ECG), without opening the “black-box” classifier.

Several earlier approaches towards time series counterfactuals have appeared
in the literature, with the main highlights including two techniques presented
by Karlsson et al. [11]. The two techniques are model specific and they are
defined for the random shapelet forest (RSF) classifier [10] as well as the k-NN
classifier. Nonetheless, both techniques focus on specific evaluation metrics, i.e.,
compactness, referring to the fraction of time series points that need to alter
in order to create a counterfactual, and cost, referring to the distance of the
original time series to its counterfactual. Despite their promising performance
on a large set of collection of time series datasets, both techniques are hampered
by the chosen evaluation metrics as they mostly focus on minimizing the two
selected metrics, which fail to assess whether the generated counterfactuals are
compliant with the data distribution and they fall within the dataset manifold.

A recent approach that attempts to address some of the above limitations for
image data has been proposed by Balasubramanian et al. [3], where the LatentCF
framework was proposed to generate counterfactuals by means of a representative
latent space using auto-encoders. The framework established a simple baseline
for counterfactual explanations using latent spaces representations. However,
the authors solely evaluated their method on image data, while we observed
the limitation of ineffective counterfactual generation when we replicated their
experiments. In this paper, we re-formulate this problem for the time series
domain, and present an adaptation of the original approach, which we refer to as
LatentCF++, by integrating Adam optimization and additional constraints on the
latent space perturbation to generate more robust counterfactuals. Additionally,
we demonstrate the generalizability considering several deep learning models
serving as components to construct effective LatentCF++ instantiations.

To highlight the importance of the problem we solve in this paper, consider
the example in Fig. 1, where we provide two examples of time series counter-
factuals generated by LatentCF++ using two datasets from the UCR time series
repository: TwoLeadECG (left) and FordA (right). Illustrated in blue are the
original time series and in red the generated counterfactuals of the opposite
class. By inspecting these counterfactuals, domain experts can not only gain
improved understandings of the classifier decision boundary, but also can gain
insight on how these predictions can be reversed.
Related Work. There is a wide range of TSC algorithms proposed using dif-
ferent techniques in recent years, such as elastic distance measures, intervals,
shapelets and ensemble methods [2]. It is different from traditional ML clas-
sification problems due to the feature dependency of ordered data. Shapelet-
based methods (e.g. shapelet transformations) identify shapelets (subsequences
of whole time series) used as discriminatory features to train classifiers such as
SVM and random forest [2,10]. More recently, researchers have introduced sev-

Time Series Counterfactuals via Latent Representations 371

(a) ECG example (b) FordA example

Fig. 1. Examples of generated counterfactuals using LatentCF++ on TwoLeadECG
(left) and FordA (right). Illustrated in blue are the original time series and in red
the generated counterfactuals of the opposite class. (Color figure online)

eral breakthrough algorithms with comparable benchmark metrics in TSC that
are considered state-of-the-art, e.g., InceptionTime [7] and ROCKET [5]. Nev-
ertheless, most of these methods are considered black-box models. As such, they
lack model transparency and prediction interpretability.

Interpretability is crucial to help uncover domain findings in opaque machine
learning models and has recently attained increased attention[13]. Counterfac-
tual explanations have surged in the last few years in high-stake applications
among the wide range of interpretable methods [17]. For TSC problems, Ates
et al. [1] presented a counterfactual explanation solution on sample-based pre-
dictions using CORELS, focusing on multivariate time series datasets. Simi-
larly, Karlsson et al. [11] proposed local and global solutions for counterfactual
explanation problems on univariate time series data utilizing RSF and k-NN
classifiers. However, both local and global approaches were proposed to provide
model-specific explanations, since they cannot be applied in conjunction with
other classifiers, e.g. neural networks or other state-of-the-art models in TSC.

A large number of counterfactual approaches were proposed that can pro-
vide model-agnostic explanations for any black-box classifier [17]. By utilizing a
variational auto-encoder (VAE) architecture, Pawelczyk et al. [15] conducted an
experiment to generate counterfactuals uniformly around spheres of the original
data representation for tabular data. Joshi et al. [8] applied a VAE as the gen-
eration model, a linear softmax classifier as the classification model, to sample
the set of counterfactuals with high probability paths of changes to change the
outcome. The LatentCF approach was presented to apply gradient descent on
the latent representations of input samples and transform into counterfactuals
using an auto-encoder (AE) [3]. To the best of our knowledge, these counterfac-
tual solutions using latent representations mainly focused on tabular or image
data, and none of them has been generalized in the TSC domain.
Contributions. We propose a novel time series counterfactual generation
framework, named LatentCF++, that ensures the robustness and closeness of

372 Z. Wang et al.

the generated counterfactuals. Our specific contributions of this paper are sum-
marized as follows:

• we formulate the time series counterfactual explanation problem for univari-
ate time series data and provide a novel solution LatentCF++ to solve the
problem by employing a latent representation for generating counterfactuals;

• we demonstrate two instantiations of our proposed solution, where we incor-
porate classifiers and auto-encoders based on convolutional neural networks
and LSTM, together with an extension of the model based on a composite
auto-encoder;

• we conduct an in-depth experiment comparing our solution and the origi-
nal framework, together with current state-of-the-art RSF, k-NN and FGD as
baseline models. We show that our proposed framework outperforms other
methods in terms of validity and margin difference; while it achieves the
comparable performance of proximity compared to RSF.

2 Problem Formulation

Similar to the definition of counterfactual time series explanation problem for
multivariate time series classification [1], we define univariate time series coun-
terfactual explanations as follows: given a black-box ML model that predicts
the binary output probability from a univariate time series sample, the counter-
factual method shows the modifications of the input sample that are required
to change the classification result from an undesired state (e.g. negative) to a
desired state (e.g. positive). We assume a given classifier in our formulation, and
a pre-trained auto-encoder that can transform the time series into the latent
representation and back to the original feature space. Note that we do not need
to access internal structures of the classifier (e.g. weights); only the prediction
function is required. Let Y defines the set of target class labels, and we consider
a binary classification problem where Y = {‘+’,‘−’}. The formal definition of
the problem is as follows:

Problem 1. Univariate time series counterfactual explanations. Give any
given classifier f(·) and a time series sample x containing t timesteps, such that
the output represents as f(x) = ‘−’ with probability ŷ. In the problem, ŷ is
smaller than the decision boundary threshold τ (i.e. ŷ < τ) as it determines
negative. Our goal is to utilize an auto-encoder composed of an encode function
E(·) and a decode function D(·) to find the generated counterfactual x′ with
desired positive outcome. We want to perturb the encoded latent representation
z = E(x) through a gradient descent optimization iteratively to generate a new
time series sample x′ = D(z) such that the output target f(x′) = ‘+’. Finally,
we aim to minimize the objective function denoting the loss between ŷ and τ .

For example, given a classifier f(·) and an auto-encoder with functions E(·)
and D(·) trained on time series of ECG measurements, we intend to generate
counterfactuals through both E(·) and D(·) functions. An exemplified counter-
factual x′ with the desired prediction f(x′) = ‘+’ (i.e. normal) for a time series
sample x with an undesired prediction f(x) = ‘−’ (i.e. abnormal).

Time Series Counterfactuals via Latent Representations 373

3 The LatentCF++ Time Series Counterfactuals
Framework

The LatentCF framework was presented as a simple baseline for counterfactual
explanations, which employs an auto-encoder model to directly transform orig-
inal samples into counterfactuals using gradient descent to search in the latent
space [3]. Due to the low efficiency of gradient descent in the original imple-
mentation, it requires an extensive search for the proper learning rate to avoid
getting stuck in a local optimum. As such, LatentCF often fails to generate valid
counterfactuals.

Instead, we propose to improve the counterfactual generation process by inte-
grating an adequate gradient-based optimization algorithm based on adaptive
moment estimation (Adam) [12], making the counterfactual generation more
robust. Adam optimization can be considered a combination of two momentum-
based gradient descent algorithms AdaGrad and RMS-Prop. Employing the
advantages of both allows the algorithm to deal with sparse features and non-
stationary objectives and obtain faster convergence [12]. To further improve the
validity of the counterfactual explanations, we add constraints (see Line 5 in
Algorithm 1) to ensure that the class probability of the generated counterfac-
tual has crossed the decision boundary threshold τ . We call the improved version
of the LatentCF framework, LatentCF++.

Algorithm 1: Counterfactual explanations for time series classification
using LatentCF++

input : A time series sample x, threshold of decision boundary τ , learning
rate α, loss tolerance tol, maximum iteration max iter

output: A generated counterfactual x′ with desired target class y′

1 z ← Encode(x)
2 ypred ← Predict(Decode(z))
3 loss ← MSE(ypred − τ)
4 iter ← 0
5 while loss > tol ∧ ypred < τ ∧ iter < max iter do
6 z ← AdamOptimize(z, loss, α)
7 ypred ← Predict(Decode(z))
8 loss ← MSE(ypred − τ)
9 iter ← iter + 1

10 x′ ← Decode(z)
11 return x′

Given an input of time series sample x, a pre-trained encoder encodes it into
latent representation z, followed by a decoder that reconstructs it back to the
original feature space. Consecutively, a predictor function estimates the class
probability of the reconstructed sample. On Line 5, the constraints are validated
to guarantee that the loss iteratively decreases and that the output probability

374 Z. Wang et al.

ypred crosses the threshold of decision boundary τ . The loss is measured using
the mean of squared error between ypred and τ . Subsequently, on Line 6 the
AdamOptimize() function is used to update the latent representation z using
Adam. The output counterfactual is the decoded result x′ when the while loop
condition breaks (i.e., either loss is lower than tol, ypred is larger than or equal
to τ , or the while loop reaches the maximum number of allowed iterations).

Finally, as we can observe from the architecture in Algorithm 1, the algorithm
requires two main components: a pre-trained classifier and a pre-trained auto-
encoder which can decompose into an encoder and a decoder.

4 Experimental Evaluation

We conduct our experiments using the UCR time series archive [4]. We mainly
focus on the problem of counterfactuals for binary univariate time classification.
After filtering, a subset of 40 datasets from the UCR archive is selected, con-
taining representations from different data sources. For example, TwoLeadECG
represents ECG measurements in the medical domain and Wafer exemplifies
sensor data in semiconductor manufacturing. In terms of time series length, it
varies from 24 (ItalyPowerDemand) to 2709 timesteps (HandOutlines) in our
chosen subset. For the evaluation, we choose to apply a standard stratified split
of 80% for training and the remainder for testing, for all the datasets. More-
over, to compensate for the imbalanced target classes, we apply an up-sampling
technique that resamples the minority class during training.

4.1 Experiment Setup

There are three main deep neural network architectures that have been adopted
for time series classification tasks in recent years: multi-layer perceptron (MLP),
convolutional neural networks (CNN) and recurrent neural networks (RNN) [6].
In the experiment, we choose to train separate CNN and long short-term mem-
ory (LSTM, a variant of RNN) classification and auto-encoder models, as main
components to apply the LatentCF and LatentCF++ frameworks. Despite the
fact that more recent state-of-the-art architectures have been proposed in the

Table 1. Summary of model components and hyperparameters for each instantiation
in the experiment.

Method Instantiation Auto-encoder Classifier Optimization Threshold

LatentCF++ 1dCNN 1dCNN-AE 1dCNN-CLF Adam 0.5

LSTM LSTM-AE LSTM-CLF Adam 0.5

1dCNN-C 1dCNN-C Adam 0.5

LatentCF 1dCNN 1dCNN-AE 1dCNN-CLF Vanilla GD No

LSTM LSTM-AE LSTM-CLF Vanilla GD No

Time Series Counterfactuals via Latent Representations 375

Table 2. Summary of architectures and hyperparameters for the deep learning models,
representing different components.

Instan. Components #Layers #Conv #LSTM Norm Pooling Output

1dCNN 1dCNN-AE 5 5 0 No Max Linear

1dCNN-CLF (shallow) 3 1 0 Yes Max Sigmoid

(deep) 4 3 0 Yes Max Sigmoid

LSTM LSTM-AE 5 0 4 No Max Sigmoid

LSTM-CLF (shallow) 2 0 1 Yes None Sigmoid

(deep) 3 0 2 Yes None Sigmoid

1dCNN-C 1dCNN-C 8 6 0 No Max Lin.+Sig.

literature, we opt to use these simpler architectures to highlight the explainable
power of latent space representations.

Thus, we construct two instantiations for both LatentCF and LatentCF++
in our experiment: 1dCNN and LSTM. We show a detailed comparison of dif-
ferent components and hyperparameters for each instantiation in Table 1. For
illustration, the 1dCNN instantiation comprises a 1dCNN-AE auto-encoder and a
1dCNN-CLF classifier, together with an Adam optimization and the probability
threshold of 0.5. Additionally, LatentCF++ is extended with one composite auto-
encoder structure (1dCNN-C) instead of utilizing the two components.

More specifically, to evaluate LatentCF and LatentCF++ for each dataset,
we first train five deep learning models representing different components in the
framework: CNN auto-encoder (1dCNN-AE), CNN classifier (1dCNN-CLF), LSTM
auto-encoder (LSTM-AE), LSTM classifier (LSTM-CLF) and CNN composite auto-
encoder (1dCNN-C). Since our goal is not to assess the performance of classifiers
or auto-encoders, we apply a one-size-fits-all plan to utilize a standard set of
model architectures for all the datasets. Table 2 shows architectures and hyper-
parameters for all different deep learning models. From the table, we can see
that each instantiation comprises two components - an auto-encoder and a clas-
sifier, e.g., 1dCNN consists of 1dCNN-AE and 1dCNN-CLF. Besides, the model exten-
sion 1dCNN-C contains only one component of composite auto-encoder. For each
instantiation, we apply a parameter search for the learning rate between 0.001
and 0.0001, and then report the model metrics with the best validity.

Note that we have two slightly different structures (shallow and deep) for
classifiers 1dCNN-CLF and LSTM-CLF, due to different timestep sizes and varied
amounts of available training data. During the training, either a shallow or a deep
classifier is trained for both CNN and LSTM instantiations. We then evaluate
on each specific dataset using the model with the best performance. Empirically,
this strategy generalizes well for all datasets in our experiment.
CNN Models. For the detailed architecture of 1dCNN-AE, the network contains
four convolutional layers with 64, 32, 32 and 64 filters with kernel size 3 and
activated using ReLU. The network’s output consists of a final convolutional
layer, which is corresponding to the reconstructed output. The first two layers
are followed by a max pooling operation; while the next two layers are followed by

376 Z. Wang et al.

Fig. 2. Illustration of 1dCNN composite model architecture.

up-sampling transformations of size 2. The deep 1dCNN-CLF model is composed of
three convolutional layers followed by a final dense layer with sigmoid activation.
For each convolutional layer, the number of filters is fixed to 64 and the kernel
size is set to 3, with ReLU activation and batch normalization. Moreover, the
shallow model contains only one convolutional layer compared to three in the
deep model and finally a 128-unit dense layer after the input.
LSTM Models. LSTM-AE consists of four consecutive LSTM layers with respec-
tively 64, 32, 32 and 64 units with tanh activation functions. The final layer is a
dense layer with a sigmoid activation function. The shallow model for LSTM-CLF
contains one 32-unit LSTM layer with tanh activation; while the deep model
comprises two continuous LSTM layers with 64 and 16 units, respectively. Each
LSTM layer is followed by a batch normalization operation. Finally, a dense
layer with sigmoid activation function is fully connected to the previous layer,
where the output represents the probability of the target prediction.
LatentCF++ Extension: Composite Model. In addition to the two instan-
tiations, we intend to evaluate a model extension of LatentCF++ with a CNN
composite auto-encoder 1dCNN-C. The model has a unique architecture com-
pared to the previously described models, which is shown in Fig. 2. It has three
elements: an encoder for encoding the input into the latent space, followed by a
decoder and a classifier. Accordingly, it contains two different output layers in
the architecture: one convolutional layer as the decoder and a sigmoid function
for the classifier. The encoding and decoding components share the same setup
of layers as 1dCNN-AE: the encoding component has two convolutional layers with
64 and 32 filters followed by max pooling; the decoder comprises three convo-
lutional layers with 32, 64 and 1 filters, respectively. While for the component
of classifier, a convolutional layer (16 filters with kernel size 3) followed by a
50-unit dense layer are connected after the shared latent space; a final sigmoid
dense layer is fully connected with the previous layer for output probability of
the target class. In the implementation of LatentCF++, we directly apply the
Predict() function on latent representation z to adjust for the 1dCNN-C model,
instead of using the Decode() function.

Time Series Counterfactuals via Latent Representations 377

Implementation Details. All deep learning models are implemented in Keras1.
For 1dCNN-AE, LSTM-AE, and 1dCNN-C, we set the training epochs to 50; while
for classification models, the training epochs are set to 150 for both 1dCNN-CLF
and LSTM-CLF. To reduce overfitting and improve the generalizability of our
networks, we employ early stopping during model training. Adam optimizer is
employed for all networks with learning rates ranging from 0.0001 and 0.001 for
different models. The batch size is set to 32 for all of them.

4.2 Baseline Models

We adopt the first baseline model from the original paper, FGD [3], which applies
the LatentCF method with only a classifier 1dCNN-CLF to perturb samples in the
original feature space directly. In addition, we apply two extra baseline methods
from local and global time series tweaking approaches [11] - random shapelet
forest (RSF) and the k-NN counterfactual method (k-NN). Similar to the evalu-
ation of LatentCF and LatentCF++, we apply the same parameter setup across
all datasets for these baseline models. For RSF, we set the number of estimators
to 50 and max depth to 5; while the other parameters are kept at their default
values2. For k-NN, we first train a k-NN classifier with k equals to 5 and the
distance metric set to Euclidean; then the trained classifier is utilized to find
counterfactual samples for further evaluation.

4.3 Evaluation Metrics

To evaluate the performance of our proposed approach in terms of explainability,
we present three metrics: validity, proximity and closeness. Validity is defined
to measure whether the generated counterfactual explanations lead to a valid
transformation of the desired target class [14,17]. More specifically, it reports
the fraction of counterfactuals predicted as the opposite class (i.e. have crossed
the decision boundary τ) according to the standalone classifier. It is defined as:

validity(ycf , τ) =
#(yi ≥ τ, yi ∈ ycf)

#ycf
, (1)

where ycf is the output probability of all the generated counterfactual samples,
and τ is a user-defined threshold of the decision boundary. In our evaluation, we
set the threshold τ to be 0.5.

Proximity is applied to measure the feature-wise distance between gener-
ated counterfactuals and corresponding original samples [14]. Karlsson et al.
[11] reported a similar metric named cost in the evaluation of local and global
time series tweaking approaches. In our case, we define proximity as Euclidean
distance between transformed and original time series samples:

proximity(x, x′) = d(x, x′), (2)
1 https://keras.io.
2 See https://github.com/isaksamsten/wildboar.

https://keras.io
https://github.com/isaksamsten/wildboar

378 Z. Wang et al.

where d(·) is the Euclidean distance and x and x′ are the original time series
and generated counterfactual sample respectively. We report the average value
of the proximity scores for each dataset.

To measure how close is the predicted probability of a generated counter-
factual compared to the decision boundary, we propose a new metric which we
denote as margin difference. The margin difference captures the amount of infor-
mation that has been altered from the original class and is defined as:

margin diff (ycf , τ) = ycf − τ, (3)

where ycf is the output probability of counterfactual x′, and τ is the target
decision boundary. Note that this metric can be either positive or negative,
indicating whether the counterfactual has crossed the decision boundary or not.
We record both the mean and standard deviation of margin differences for all
generated counterfactuals as metrics for each dataset.

In addition, we show the classification performance of all models report as
the balanced accuracy in the results. Moreover, we report the reconstruction
loss of the auto-encoder models.

4.4 Results

In this section, we first compare the validity of our presented explainable models
from LatentCF and LatentCF++, as well as FGD, RSF and k-NN counterfactual
methods. For a detailed comparison, we choose to report metrics from a subset
of 20 datasets with the sample size larger than 500. Then we report a subset
average for different explainable models; together, we also present the average
score (denoted as Total avg.) across all 40 datasets in the experiment3.

Table 3 shows the validity, which we considered as the main metric for the
evaluation of interpretability. Again, we report the results with the value of
decision boundary τ = 0.5 in Eq. 1. Across three different groups, we found that
the RSF method achieved the best metric of subset average of 1.0000; in contrast,
1dCNN from the LatentCF++ method obtained the highest validity (0.9920) in
terms of the total average, which indicates that an average of 99.20% of the
generated counterfactuals is considered valid. In comparison, 1dCNN from the
LatentCF method and FGD baseline both received validity that was lower than
0.2. This evidence suggests that our proposed LatentCF++ method can ensure a
high fraction of valid counterfactual transformations similar to RSF.

In Table 4, we show a comparison for individual mean scores of margin dif-
ference for the subset of 20 datasets, together with the average score at the
bottom. In addition, we report the average of standard deviations for both the
subset (Subset std.) and the total (Total std.). From the table, we observed
that 1dCNN from LatentCF++ achieved the best metric to both subset average
(0.0333) and total average (0.0168), which indicates that generated counterfac-
tuals are considerably closer to the decision boundary compared to other meth-
ods. In terms of the total average, LSTM models from LatentCF and LatentCF++

3 The full result table is available at our supporting website.

Time Series Counterfactuals via Latent Representations 379

Table 3. Summary of validity for a subset of 20 different datasets in our experiment.
The best score for each dataset is highlighted in bold.

Dataset LatentCF++ LatentCF Baseline

1dCNN LSTM 1dCNN-C 1dCNN LSTM FGD k-NN RSF

Yoga 0.9973 1.0000 0.9912 0.4347 1.0000 0.4507 1.0000 1.0000

TwoLeadECG 0.9914 0.9052 0.9835 0.3966 1.0000 0.0000 1.0000 1.0000

ItalyPower 1.0000 1.0000 0.9912 0.0000 0.2456 0.0000 1.0000 1.0000

MoteStrain 1.0000 1.0000 0.9918 0.2017 0.0455 0.0000 1.0000 1.0000

Wafer 1.0000 0.8625 0.8117 0.2353 0.1875 0.0588 1.0000 1.0000

FreezerRegular 1.0000 1.0000 0.9666 0.5633 1.0000 0.4967 1.0000 1.0000

PhalangesOutlines 1.0000 1.0000 1.0000 0.3833 0.7048 0.2333 0.8629 1.0000

FreezerSmall 0.9791 1.0000 0.9790 0.6794 1.0000 0.5122 1.0000 1.0000

HandOutlines 0.9091 0.9661 1.0000 0.2727 0.0000 0.0000 0.9359 1.0000

FordA 1.0000 0.0000 0.9838 0.0055 0.0000 0.0000 0.8903 1.0000

FordB 1.0000 1.0000 1.0000 0.0027 1.0000 0.0000 0.9324 1.0000

SonyAIBORobot2 0.9916 0.8560 0.9917 0.0168 1.0000 0.0000 1.0000 1.0000

SemgHandGender 0.8358 1.0000 0.8310 0.5970 1.0000 0.6567 0.6528 1.0000

MiddlePhalanx 1.0000 1.0000 1.0000 0.1111 1.0000 0.0000 0.8431 1.0000

ProximalPhalanx 1.0000 1.0000 1.0000 0.0000 0.1282 0.0000 0.6842 1.0000

ECGFiveDays 0.9773 0.8864 0.9773 0.5114 1.0000 0.0000 1.0000 1.0000

DistalPhalanx 1.0000 1.0000 1.0000 0.0769 0.3036 0.0000 1.0000 1.0000

SonyAIBORobot1 1.0000 1.0000 0.9818 0.0182 1.0000 0.0000 1.0000 1.0000

Computers 1.0000 0.3824 1.0000 0.4839 0.5000 0.3548 0.5593 1.0000

Strawberry 1.0000 1.0000 0.9600 0.4146 0.0000 0.3333 1.0000 1.0000

Subset avg. 0.9841 0.8929 0.9720 0.2703 0.6058 0.1548 0.9180 1.0000

Total avg. 0.9920 0.8256 0.9615 0.1676 0.5779 0.0774 0.9496 0.9802

achieved the second and third best margin difference scores of 0.0520 and 0.0580,
respectively. In comparison, RSF model received a less favourable metric of mar-
gin difference (0.0614) since it does not optimize towards the threshold. Instead,
it tries to minimize the difference between the original samples and counterfactu-
als. 1dCNN-C, FGD and 1dCNN from LatentCF received negative scores according
to total average, which means that they could not constantly guarantee coun-
terfactuals to cross the decision boundary. Nonetheless, 1dCNN-C outperformed
all the other models in 10 out of the 20 individual datasets.

In addition, we observed that the standard deviation for 1dCNN from the
LatentCF++ framework resulted in the lowest of 0.0175 while k-NN achieved
the maximum of 0.1218 in Table 4. Thus, this evidence shows that LatentCF++
can generate counterfactuals that are more stable in terms of margin differ-
ence. In other words, our proposed approach can better guarantee to produce
counterfactuals that can cross the decision boundary and obtain more compact
transformations.

From the previous comparison of validity, we found that several models
received scores lower than 0.2, which means that these models cannot guarantee
the fraction of valid counterfactuals. As our primary evaluation was based on the
validity, we intended to compare the rest of the five best-performed models for

380 Z. Wang et al.

Table 4. Summary of margin difference for a subset of 20 different datasets in our
experiment. The best score for each dataset is highlighted in bold.

Dataset LatentCF++ LatentCF Baseline

1dCNN LSTM 1dCNN-C 1dCNN LSTM FGD k-NN RSF

Yoga 0.0005 0.1810 –0.0003 –0.0383 0.3115 –0.0531 0.4096 0.0199

TwoLeadECG 0.0005 0.0002 0.0006 –0.0347 0.4941 –0.1854 0.4914 0.1936

ItalyPower 0.0005 0.0005 0.0006 –0.3020 –0.0854 –0.4144 0.5000 0.2077

MoteStrain 0.0005 0.0005 0.0004 –0.0343 -0.0261 –0.3766 0.4704 0.0382

Wafer 0.0005 0.0034 –0.0486 –0.2831 –0.3181 –0.4545 0.5000 0.0334

FreezerRegular 0.0005 0.4995 –0.0028 0.0614 0.4999 0.0016 0.3916 0.1278

PhalangesOutlines 0.0005 0.0005 0.0005 –0.0004 –0.0002 –0.0044 0.2783 0.0573

FreezerSmall 0.4774 0.4636 –0.0081 0.1878 0.4766 0.0156 0.3683 0.1605

HandOutlines –0.0220 0.0061 0.0005 –0.2385 –0.5000 –0.3531 0.4051 0.0379

FordA 0.0005 –0.0382 0.0002 –0.1302 –0.0568 –0.1816 0.2363 0.0196

FordB 0.0005 0.1443 0.0005 –0.2152 0.2182 –0.2709 0.2551 0.0198

SonyAIBORobot2 0.0005 0.0056 0.0005 –0.1871 0.5000 –0.4431 0.3413 0.0311

SemgHandGender 0.2016 0.1822 –0.0416 0.0863 0.1908 0.1640 0.1556 0.0238

MiddlePhalanx 0.0005 0.0005 0.0001 –0.0084 0.0030 –0.0088 0.2255 0.1015

ProximalPhalanx 0.0005 0.0004 0.0005 –0.2328 –0.0026 –0.0963 0.2088 0.1905

ECGFiveDays 0.0005 0.0003 0.0004 0.0018 0.4985 –0.4627 0.4934 0.0786

DistalPhalanx 0.0006 0.0005 0.0004 –0.1098 –0.0009 –0.1899 0.3151 0.0932

SonyAIBORobot1 0.0004 0.0005 0.0004 –0.2647 0.4795 –0.4233 0.4690 0.0425

Computers 0.0005 0.0203 0.0001 –0.0082 0.1415 –0.0772 0.0864 0.0202

Strawberry 0.0005 0.0005 –0.0028 –0.1076 –0.4322 –0.1311 0.4587 0.1245

Subset avg. 0.0333 0.0736 –0.0049 –0.0929 0.1196 –0.1973 0.3530 0.0811

Subset std. 0.0348 0.0246 0.0287 0.2072 0.0453 0.1848 0.1600 0.0623

Total avg. 0.0168 0.0580 –0.0120 –0.0896 0.0520 –0.1435 0.3608 0.0614

Total std. 0.0175 0.0234 0.0310 0.1193 0.0240 0.1081 0.1218 0.0576

further investigation. Namely, we chose to exclude 1dCNN, LSTM from LatentCF
and FGD from baseline models in our comparison of proximity. Similar to the
previous evaluation, we reported metrics from the subset of 20 datasets with
respective subset and total average scores, as in Table 5.

In Table 5, we observed that 1dCNN from our proposed LatentCF++ framework
achieved comparable proximity scores compared to the state-of-the-art method
RSF, with a subset average of 0.3891 in comparison with 0.2873. This evidence
indicates that the generated counterfactuals from 1dCNN are relatively closer to
the original samples. In contrast, LSTM received the worst average proximity of
2.5409 among all. When we checked the individual results, we found that both
1dCNN and 1dCNN-C from LatentCF++ outperformed RSF in 9 out of 20 datasets,
while RSF outperformed the others in 10 datasets. One of our key observations
was that the proximity score was strongly related to the corresponding auto-
encoder performance. Usually, if the 1dCNN-AE model from 1dCNN converged
with a low reconstruction loss, then 1dCNN would outperform the other methods.
However, it was challenging to ensure the performance of the auto-encoder since
we applied a unified structure of 1dCNN-AE for all datasets.

Time Series Counterfactuals via Latent Representations 381

Table 5. Summary of proximity for a subset of 20 different datasets in our experiment.
The best score for each dataset is highlighted in bold (three methods are excluded from
the comparison due to the low validity†).

LatentCF++ LatentCF Baseline

Dataset 1dCNN LSTM 1dCNN-C 1dCNN† LSTM† FGD† k-NN RSF

Yoga 0.2049 3.6447 0.7221 0.1759 3.6347 0.0277 1.0950 0.5281

TwoLeadECG 0.1447 1.4290 0.1839 0.1659 0.5681 0.0270 0.2655 0.1793

ItalyPower 0.4785 0.3986 0.2588 0.1609 0.3373 0.0066 0.3633 0.2513

MoteStrain 0.3167 0.4798 0.3884 0.2652 0.4798 0.0094 0.4673 0.1503

Wafer 0.2157 0.4416 0.2325 0.1062 0.3642 0.0069 0.5790 0.2547

FreezerRegular 0.2211 1.0497 0.1158 0.1812 0.6700 0.0409 0.0808 0.0569

PhalangesOutlines 0.1449 0.4592 0.2109 0.1060 0.5168 0.0190 0.2272 0.2238

FreezerSmall 1.9710 0.6919 0.1929 0.1978 0.5990 0.0319 0.0887 0.0598

HandOutlines 0.4359 23.9995 3.9276 0.2575 7.9567 0.0087 1.9754 1.1485

FordA 0.5670 2.3575 0.4368 0.2463 2.3087 0.0159 2.0811 0.4820

FordB 0.6099 2.2574 0.4261 0.2176 2.2092 0.0124 2.1105 0.3934

SonyAIBORobot2 0.3234 0.9515 0.3263 0.2293 0.9466 0.0054 0.6357 0.2862

SemgHandGender 0.4159 0.8741 0.2637 0.2676 0.8786 0.0351 0.2999 0.1006

MiddlePhalanx 0.1749 0.6519 0.3936 0.1496 0.6786 0.0000 0.2646 0.2568

ProximalPhalanx 0.2633 0.5222 0.2933 0.1359 0.5314 0.0145 0.1577 0.2539

ECGFiveDays 0.1654 0.9480 0.2829 0.1538 0.8912 0.0057 0.3459 0.1083

DistalPhalanx 0.2258 0.7235 0.1850 0.1450 0.7282 0.0133 0.3674 0.2724

SonyAIBORobot1 0.2719 0.5017 0.2440 0.1882 0.4951 0.0078 0.5752 0.2260

Computers 0.3759 1.3727 0.7971 0.3538 1.3243 0.0236 0.8305 0.1774

Strawberry 0.2545 1.1272 0.2947 0.2242 0.7843 0.0255 0.3734 0.3370

Subset avg. 0.3891 2.2441 0.5088 0.1963 1.3451 0.0169 0.6592 0.2873

Total avg. 0.8926 2.5409 0.9179 0.4415 1.9841 0.0087 1.4613 0.5241

For a detailed comparison, we investigated ECG examples of generated
counterfactuals by 1dCNN, LSTM from LatentCF++, and RSF (see Fig. 3). We
observed that 1dCNN and RSF generated similar counterfactuals for the ECG
sample, although the counterfactual from 1dCNN appeared slightly smoother
in this case. In contrast, LSTM’s counterfactual poorly aligned with the origi-
nal series and diverged in many timesteps. Moreover, we found that different
classification models performed similarly in balanced accuracy. As to the auto-
encoders, LSTM-AE achieved the highest reconstruction loss over most datasets
while 1dCNN-AE received the lowest reconstruction loss. This evidence explains
why LSTM from LatentCF and LatentCF++ attained the worst performance when
comparing proximity. It appeared that the LSTM auto-encoder could not learn a
representative latent space compared to other auto-encoders in the time series
domain.

382 Z. Wang et al.

(a) 1dCNN (b) LSTM (c) RSF

Fig. 3. Examples of generated counterfactuals by 1dCNN and LSTM instantiations from
LatentCF++, together with RSF in comparison. Illustrated in blue are the original time
series and in red the generated counterfactuals of the opposite class. (Color figure
online)

5 Conclusions

We presented a new counterfactual explanation framework named LatentCF++
for time series counterfactual generation. Our experimental results on the UCR
archive focusing on binary classification showed that LatentCF++ substantially
outperforms instantiations of its predecessor, LatentCF, and other baseline mod-
els. The results also suggest that LatentCF++ can provide robust counterfactuals
that firmly guarantee validity and are considerably closer margin difference to
the decision boundary. Additionally, our proposed approach achieved compa-
rable proximity compared to the state-of-the-art time series tweaking approach
RSF. Furthermore, we found that it was challenging to leverage the power of deep
learning models (both classifiers and auto-encoders) for datasets with the sample
size of less than 500. Hence our one-size-fits-all plan to utilize unified structures
of deep learning models as components for the framework did not address some
specific datasets in the experiment. However, we still showed the generalizability
of our proposed framework using a unified set of model components. For future
work, we plan to extend our work to generalize LatentCF++ to broader counter-
factual problems using other types of data, e.g. multivariate time series, textual
or tabular data. Also, we intend to conduct a qualitative analysis from domain
experts to validate that the produced counterfactuals are meaningful in different
application fields, such as ECG measurements in healthcare or sensor data from
signal processing.
Reproducibility. All our code to reproduce the experiments is publicly avail-
able at our supporting website4.

Acknowledgments. This work was supported by the EXTREMUM collabora-
tive project (https://datascience.dsv.su.se/projects/extremum.html) funded by Digital
Futures.

4 https://github.com/zhendong3wang/learning-time-series-counterfactuals.

https://datascience.dsv.su.se/projects/extremum.html
https://github.com/zhendong3wang/learning-time-series-counterfactuals

Time Series Counterfactuals via Latent Representations 383

References

1. Ates, E., Aksar, B., Leung, V.J., Coskun, A.K.: Counterfactual Explanations for
Machine Learning on Multivariate Time Series Data. arXiv:2008.10781 [cs, stat]
(August 2020)

2. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016)

3. Balasubramanian, R., Sharpe, S., Barr, B., Wittenbach, J., Bruss, C.B.: Latent-
CF: a simple baseline for Reverse Counterfactual Explanations. In: NeurIPS 2020
Workshop on Fair AI in Finance (December 2020)

4. Dau, H.A., et al.: Hexagon-ML: The ucr time series classification archive (October
2018). https://www.cs.ucr.edu/∼eamonn/time series data 2018/

5. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Disc. 34(5), 1454–1495 (2020)

6. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep
learning for time series classification: a review. Data Min. Knowl. Disc. 33(4),
917–963 (2019)

7. smail Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classification.
Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

8. Joshi, S., Koyejo, O., Vijitbenjaronk, W., Kim, B., Ghosh, J.: Towards Realistic
Individual Recourse and Actionable Explanations in Black-Box Decision Making
Systems. arXiv: 1907.09615 (July 2019)

9. Kampouraki, A., Manis, G., Nikou, C.: Heartbeat time series classification with
support vector machines. IEEE Trans. Inf Technol. Biomed. 13(4), 512–518 (2009)

10. Karlsson, I., Papapetrou, P., Boström, H.: Generalized random shapelet forests.
Data Min. Knowl. Disc. 30(5), 1053–1085 (2016)

11. Karlsson, I., Rebane, J., Papapetrou, P., Gionis, A.: Locally and globally explain-
able time series tweaking. Knowl. Inf. Syst. 62(5), 1671–1700 (2019)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR 2015)
(January 2015)

13. Molnar, C.: Interpretable Machine Learning - A Guide for Making Black Box Mod-
els Explainable (2019)

14. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 607–617 (January 2020)

15. Pawelczyk, M., Haug, J., Broelemann, K., Kasneci, G.: Learning model-agnostic
counterfactual explanations for tabular data. In: Proceedings of The Web Confer-
ence, vol. 2020, pp. 3126–3132 (2020)

16. Rebbapragada, U., Protopapas, P., Brodley, C.E., Alcock, C.: Finding anomalous
periodic time series. Mach. Learn 74(3), 281–313 (2009)

17. Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: A survey of contrastive
and counterfactual explanation generation methods for explainable artificial intel-
ligence. IEEE Access 9, 11974–12001 (2021)

http://arxiv.org/abs/2008.10781
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://arxiv.org/abs/1907.09615

384 Z. Wang et al.

18. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. SSRN Electron. J.
(2017)

19. Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T.: DeepSense: a unified Deep
Learning Framework for Time-Series Mobile Sensing Data Processing. In: Proceed-
ings of the 26th International Conference on World Wide Web. pp. 351–360 (April
2017)

	Learning Time Series Counterfactuals via Latent Space Representations
	1 Introduction
	2 Problem Formulation
	3 The LatentCF++ Time Series Counterfactuals Framework
	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Baseline Models
	4.3 Evaluation Metrics
	4.4 Results

	5 Conclusions
	References

