
Deriving a Single Interpretable Model
by Merging Tree-Based Classifiers

Valerio Bonsignori, Riccardo Guidotti, and Anna Monreale(B)

University of Pisa, Pisa, Italy
v.bonsignori@studenti.unipi.it,

{riccardo.guidotti,anna.monreale}@unipi.it

Abstract. Decision tree classifiers have been proved to be among the
most interpretable models due to their intuitive structure that illus-
trates decision processes in form of logical rules. Unfortunately, more
complex tree-based classifiers such as oblique trees and random forests
overcome the accuracy of decision trees at the cost of becoming non
interpretable. In this paper, we propose a method that takes as input any
tree-based classifier and returns a single decision tree able to approximate
its behavior. Our proposal merges tree-based classifiers by an intensional
and extensional approach and applies a post-hoc explanation strategy.
Our experiments shows that the retrieved single decision tree is at least
as accurate as the original tree-based model, faithful, and more inter-
pretable.

Keywords: Interpretable machine learning · Decision tree · Oblique
tree · Model transparency · Merging decision trees

1 Introduction

Decision tree (DT) classifiers are very popular models still widely adopted in
various business domains because their tree-like representation of knowledge is
intuitive and because generally makes the decision logic employed interpretable
by humans. The drawback of DTs is that their greedy training procedure returns
models which are not remarkably accurate, especially for complex classification
problems. To address this issue, DTs have been “empowered” either by using
ensembles such for Random Forests [8] or by adopting multivariate and nonlinear
splitting conditions such as in Oblique Trees [18]. Such models can reach higher
levels of accuracy than regular DTs. Unfortunately, the high accuracy of these
complex tree-based classifiers is paid by giving up interpretability.

In the literature, we can find two research lines to deal with the lack of inter-
pretability of these complex tree-based classifiers. The first one relates to tree
merging procedures [1,5,7] and the idea is to merge a set of DTs into a single one
“summarizing” their behavior. Strategies for merging trees are different: joining
DTs learned in parallel from disjoint subsets of data [7]; inducing a DT from
the intersection of decision tables, each one representing a tree [1]; applying a
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 347–357, 2021.
https://doi.org/10.1007/978-3-030-88942-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88942-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-88942-5_27

348 V. Bonsignori et al.

recursive lossless merging procedure that makes the order of the merging not
relevant [5]. The second research line is related to eXplainable Artificial Intelli-
gence (XAI) approaches [6]. Starting from [2], in the literature we can find a set
of works aiming at approximating the behavior of a classifier with a single DT
for explaining the classification reasoning. To reach this goal different strategies
have been proposed: inducing a DT from a set of selected “prototypes” [10];
using genetic programming to evolve DTs to mimic the behavior of a neural net-
work [9]; building several ensembles on synthetically augmented data and then,
learning a single DT on the enriched data [3]; constructing a DT by using the set
of rule conjunctions that represent the original decision forest [13]; interpreting
tree ensembles by finding tree prototypes in the tree space[16].

In this paper we combine these two research lines. We propose a single-tree
approximation method (same) that exploits a procedure for merging decision
trees, a post-hoc explanation strategy, and a combination of them to turn any
tree-based classifier into a single and interpretable DT.

The implementation of same required to adapt existing procedures for merg-
ing traditional decision trees to oblique trees by moving from an intensional
approach to an extensional one. Our experiments on eight tabular datasets show
that same is efficient and that the retrieved single decision tree is at least as
accurate as the original non interpretable tree-based model.

2 Setting the Stage

We address the single tree approximation of tree-based black box classifiers [2,6].
Consider a classification dataset X,Y consisting of a set X = {x1, x2, . . . , xn} of
instances with l labels (or classes) assigned to an instance in the vector Y ∈ Nn.
An instance of x ∈ Rm consist in a set of m pairs of attribute-value (ai, vi),
where ai and vi is a value from the domain of ai. We define a classifier as a
function f : X (m) → Y which maps data instances x from a feature space X (m)

with m input features to a decision y in a label space Y, where y can take l
different labels. We write f(x) = y to denote the decision y given by f on x. We
assume that any classifier can be queried at will.

Given a not interpretable tree-based classifier b, such as Random Forests [8]
or Oblique Trees [18], our aim is to define a function taking as input b, X,
and Y and returns a single DT classifier d which should guarantee the following
properties. First, d must be able to mime the behavior of b, i.e., d(x) = b(x) for as
many instances x ∈ X as possible. Second, the accuracy of d on unseen instances
should be comparable with the accuracy of b. Third, d should not be a complex
and deep tree to guarantee high levels of interpretability. The single decision tree
d is intrinsically transparent because it is humanly possible to understand the
reasons for the decision process of every instance d(x) = y.

In the following we summarize some key concepts important for our proposal.

Merging Decision Trees. Merging DT approaches are accurately described
in [14]. Four phases are identified to merge a set of trees T1, T2, . . . , Tk trained
on various subsets of a given dataset into a unique decision tree T .

Deriving a Single Interpretable Model by Merging Tree-Based Classifiers 349

In the first phase, a decision tree Ti is transformed into a set of rules or rule
tables (also named decision regions or decision tables1). In the second phase, the
decision regions of two models T1, T2 are merged using a specific approach. The
most intuitive idea to merge two rule tables is to compute the intersection of
all the combinations of the rules from each region and use the results as merged
table model. If the regions of the rules that are being intersected are dis-joined,
the resulting rule will be empty. The intersection of two overlapping regions is
added to the final table model. The class label associated with it is obvious when
the two initial regions have the same outcome, otherwise it is necessary to solve
the class conflict by employing a specific strategy such as using the class of the
rule the highest confidence or probability [1]; or associating to each region a
weight and selecting the class with highest weight [15]. The approach presented
in [5] allows for simultaneously merging the decision regions of every tree. It uses
the notion of condition tree. Given a tree T and a condition C, let Sj denote
the condition set of node j in T , which is composed of conditions from root to
node j, then a condition tree T (C) is composed of those nodes in T such that
all the conditions in Sj satisfies C. Hence, if an inner node in T is not included
in T (C), then all its branches are not included in T (C). Once that two models
are merged, the third phase, named “pruning”, tries to reduce the number of
regions. In [1] the regions with the lowest relative number of training samples
are filtered out, while in [7] redundant rules are removed during the resolution of
class conflicts. Another strategy joins adjacent regions with the same predicted
class [1,15]. In [5] the final tree T is pruned by removing inner nodes having
as leaves the same class. Finally, the fourth phase consists in growing the final
DT from the decision regions. In [1,15] the final DT is obtained by using the
same procedure used to create the initial trees on the values in the regions in
the final decision table. In [5] the final DT is directly obtained from the merging
procedure.

We adopt the recursive merging procedure described in [5] because (i) it is
more efficient and requires less memory than others, (ii) it does not require to
re-train a DT at the end of the computation, (iii) it produces a DT with multi-
way splits that is theoretically less deep than a binary DT, (iv) the merging
method is lossless as it maintains for every instance the class label assigned by
the tree ensembles with the same majority voting.

Impact of Attribute Types on Tree-based Classifiers. The aforemen-
tioned procedure for merging DTs suffers in presence of many attributes, and
also in presence of large (potentially infinite) domains for each attribute. Indeed,
in [5] is shown that the size of T merged from the trees learned from data with
categorical attributes are much smaller than the trees learned from data with
numerical attributes. Therefore, in [5] numerical attributes are discretized using
the Recursive Minimal Entropy Partitioning (RMEP) method described in [4].
RMEP recursively divides the numerical values minimizing the entropy of the
target class. The obtained splits are used to define regions represented by a sin-
gle representative value. In [5] Fan et al. show that there is a negligible effect on
1 We use Ti for DT, rule tables, decision tables, and decision regions.

350 V. Bonsignori et al.

the classification accuracy when using discretization w.r.t. not using it. Finally,
we turn categorical attributes into numbers through target encoding [11].

Post-hoc Explanation Strategy. Research on XAI has flourished over the
last few years [6,12]. Explanation methods can be categorized as: intrinsic or
post-hoc, depending on whether the machine learning approach is transparent
or if the explanation is retrieved by querying the model after the training; and
local or global, depending on whether the explainer reveals the reasons for the
prediction of a specific instance, or the overall logic of obscure model. We mention
this categorization because in our work we rely on global post-hoc explanation.
Thus, given a black box classifier b trained on a dataset X,Y , a global post-hoc
explainer f applied on b and X aims at finding an interpretable classifier c, i.e.,
c = f(b,X), such that the behavior of c on X is adherent with the behavior of
b on X, i.e., b(X) ∼ c(X). For instance, in [2] a particular DT c is trained on
X, Ŷ = b(X) and the global interpretable model c is returned as explanation.

3 Single-Tree Approximation Method

Our proposal to tackle the problem formulated in Sect. 2 consists of reducing
any tree-based classifier to a single tree approximating its behavior. We name
it same, standing for single-tree approximation method, and we illustrate its
pseudo-code in Algorithm 1. The main idea of same is to exploit procedures for
merging DTs, a post-hoc explanation strategy, and a combination of them to
turn any tree-based classifier into a single interpretable DT.

same takes as input a known dataset X, a tree-based classifier b, a flag μ
indicating if oblique trees have to be merged, and a flag ν indicating if the
post-hoc explanation approach is applied separately to each oblique tree of the
forest. The algorithm returns a single DT classifier T . We assume that X has
statistical properties similar to the training set used by b. It works in different
ways depending on the type of b.
– Case 1. If b is a single DT it directly returns it (lines 9–10).
– Case 2. If b is a forest of DT (lines 11–12), then same runs the forest2single

function (lines 1–4) that exploits the mergeTrees procedure described in [5].
– Case 3. If b is a single oblique tree, same runs the b2forest function to derive

a random forest from b and then, from the forest it merges the various trees
with forest2single like in Case 2 (lines 13–15). The b2forest function (lines 5–
8) classifies X using the single oblique tree and then trains on X, Ŷ a random
forest classifier, i.e., it approximates the behavior of an oblique tree with a
random forest.

– Case 4. If b is a forest of oblique trees and μ is false, same applies the same
procedure described for Case 3, i.e., it runs the b2forest function that in this
case derives a random forest mimicking the forest of oblique trees and from
it merges the various trees with forest2single (lines 16–18).

– Case 5. If b is a forest of oblique trees and μ is true, same first runs the
oforest2osingle, that as described in following subsection derives an oblique

Deriving a Single Interpretable Model by Merging Tree-Based Classifiers 351

Algorithm 1: same
Input : X - known data, b - tree-based classifier, μ - merge oblique trees flag,

ν - disjoint post-hoc explanation flag
Output: T - single decision tree

1 function forest2single(b):
2 T = {T1, . . . , Tk} ← getTrees(b);
3 return mergeTrees(T);

4 function b2forest(b, X):

5 Ŷ ← b(X);

6 return trainRandomForest(X, Ŷ);

7 if b is Single Decision Tree then
8 T ← b;
9 else if b is Forest of Decision Trees then

10 T ← forest2single(b);
11 else if b is Single Oblique Trees then
12 RF ← b2forest(b, X);
13 T ← forest2single(RF);

14 else if b is Forest Oblique Trees ∧ ¬μ then
15 RF ← b2forest(b, X);
16 T ← forest2single(RF);

17 else if b is Forest of Oblique Trees ∧ μ ∧ ¬ν then
18 OT ← oforest2osingle(b, X);
19 RF ← b2forest(OT , X);
20 T ← forest2single(RF);

21 else if b is Forest Oblique Trees ∧ μ ∧ ν then
22 T ← ∅;
23 for OT i ∈ b do
24 RF i ← b2forest(OT i, X);
25 T ← T ∪ getTrees(RFi);

26 T ← forest2single(T);

27 return T ;

trees from a forest of oblique trees and, then it turns the oblique tree OT
into a single DT as in Case 3 (lines 19–22).

– Case 6. If b is a forest of oblique trees μ is true and ν is true, same turns each
oblique tree of the oblique forest into a forest of traditional DTs repetitively
applying b2forest . Finally, it runs the forest2single on the union of the derived
forests of DTs (lines 23–28).
same reduces any approximation problem with another one for which a solu-

tion is known in a sort of “cascade of approximations” making possible in this
way to turn any classifier based on traditional or oblique trees into a single
DT. The flags μ and ν controls the different type of approximation when the
tree-based classifier is a forest of oblique trees: if μ is false, the post-hoc expla-
nation strategy is directly employed for approximating the oblique forest; when
μ is true and ν is false, the forest of oblique trees is approximated directly with
the function oforest2osingle described in the following; when both are true, the
post-hoc explanation approach is applied separately for each oblique tree.

Merging Oblique Trees. We define the oforest2osingle function used to merge
a forest of oblique trees into a single oblique tree as an extension of the algorithm
presented in [5]. The needs of adaptation comes from the higher complexity of
the test in the nodes of oblique trees that can take the form of a multivariate test,
and each multivariate test constitutes itself a meta-feature. A partition of the
space using this higher level test changes the shape of the regions to be merged

352 V. Bonsignori et al.

by the merging tree algorithm [5]. Thus, we define a different construction of the
condition tree, and a more complex procedure for selecting the features for the
final merge. We employ an available dataset X to model the relationship between
two conditions exploiting the records in X satisfying those conditions. In other
words, we turn the relationship between two conditions definition described in [5]
from intentional to extensional. In [5] the relationship between two conditions is
formally defined as:

Definition 1 (Relationships of Two Conditions). Given two conditions C1,
C2, where C1 is a condition si ∈ I1, and C2 is a condition sj ∈ I2, with si, sj

being a split attribute, and I1, I2 being real value intervals. If i = j and I1∩I2 = ∅,
then C1 ∩ C2 = ∅, in all the other cases C1 ∩ C2 �= ∅.
That is, two conditions C1 and C2 have a relationship (C1∩C2 �= ∅) if they iden-
tify a common region of the data. We define the data-driven relationship between
two multivariate conditions as follows, exploiting the notion of coverage of a mul-
tivariate condition defined as the set of records in X satisfying (or covered by)
the multivariate condition MC, i.e., covX(MC) = {xi|∀xi ∈ X s.t. MC(xi)},
where MC(xi) is true if the record xi satisfies the multivariate condition MC.

Definition 2 (Data-Driven Relationships of Two Multivariate Condi-
tions). Given a dataset X and two multivariate conditions MC1, MC2, we have
that if covX(MC1) ∩ covX(MC1) = ∅ then MC1 ∩ MC2 = ∅, in all the other
cases MC1 ∩ MC2 �= ∅.

MC indicates a multivariate condition of a given oblique tree node, that can
also involve a single variable. We define an oblique condition tree as follows:

Definition 3 (Oblique Condition Tree). Given an oblique decision tree T ,
a multivariate condition MC, and a dataset X, let Sj denote the multivariate
condition set of node j in T which is composed of the multivariate conditions
from root to node j. An oblique condition tree T (MC) is composed of the nodes
in the branch Sj satisfying {∀ MC ′ ∈ Sj ,MC ′ ∩ MC �= ∅}. If an inner node in
T is not included in T (MC), then all its branches are not included in T (MC).

Given an oblique decision tree T and a multivariate condition MC, a simple
algorithm for computing T (MC) is to traverse T depth-first from the root. For
each branch of multivariate condition MC ′ of inner node j, there are two cases:
(i) if MC ′ satisfies MC1∩MC2 �= ∅ keep the root of that branch and search that
branch recursively; (ii) if MC ′ satisfies MC1 ∩ MC2 = ∅ then the whole branch
is not included in T (MC). The definition of pruned condition trees is directly
applied to pruned oblique decision tree. Indeed, the inner node j is kept in the
oblique condition tree if there are records in X satisfying MC in both partitions
after the split determined by MC ′ in node j, i.e., |covX(MC ∧ MC ′)| > 0 and
|covX(MC ∧ ¬MC ′)| > 0. If this is not the case and |covX(MC ∧ MC ′)| = 0
or |covX(MC ∧ ¬MC ′)| = 0, then the oblique condition tree maintains only
the sub-branch covering at least one instance. If both |covX(MC ∧ MC ′)| = 0
and |covX(MC ∧ ¬MC ′)| = 0, then no sub-branches must be added to the tree.

Deriving a Single Interpretable Model by Merging Tree-Based Classifiers 353

Table 1. Datasets details (left). Tree-based classifiers performance (right).

Dataset n m l DT RF OT OF

acc F1 acc F1 acc F1 acc F1

iris 150 4 3 .933 .933 .933 .933 .933 .933 .933 .933

cancer 569 30 2 .921 .918 .930 .926 .921 .916 .956 .953

armchair 1000 2 3 .920 .922 .902 .902 .920 .922 .922 .924

german 1000 19 2 .720 .678 .660 .534 .735 .677 .755 .704

employee 1470 29 2 .816 .551 .854 .554 .871 .676 .850 .566

compas 7214 9 3 .628 .535 .631 .538 .634 .538 .636 .531

fico 10459 23 2 .712 .710 .717 .717 .707 .706 .730 .728

adult 32561 12 2 .853 .778 .854 .767 .851 .772 .850 .770

Table 2. Fidelity in approximating RF, OT, RF. Best values are underlined.

Dataset RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 1.00 1.00 .933 1.00 .733 .333 1.00 1.00

cancer .991 .947 .860 .947 .912 .912 .932 .930

armchair .892 1.00 .918 1.00 .980 .838 .972 1.00

german .975 .975 .945 .925 .810 .820 .785 .880

employee 1.00 .959 .969 .956 .898 .969 .963 .966

compas .897 .979 .880 .996 .916 .859 .858 .994

fico .978 .962 .908 .962 .911 .894 .911 .900

adult .995 .994 .988 .951 .964 .992 .970 .988

Therefore, at a high level, the function oforest2osingle can be implemented as
in [5] but updating the definition of condition tree with the definition of oblique
condition tree. However, practically it is worth to mention another important
difference from [5]. Step 1 of the recursive merging procedure described in [5]
determines the split attribute to use for the root of T by selecting the most
frequent split attribute: when dealing with multivariate conditions of oblique
trees is not trivial to determine the most frequent attribute. Thus, we defined
the following policies: (i) Aiming at interpretability, we prefer univariate splits,
acting on a unique variable, to multivariate, splits2. Among traditional univariate
conditions we select the most frequent one. (ii) Among multivariate conditions
we prefer those leading to the highest information gain during the training of
the oblique tree that generated that split. (iii) In case of multivariate conditions
with the same number of splits and with the same gain, we randomly select one
of them.

2 We highlight that also oblique trees can adopt as best split a traditional split.

354 V. Bonsignori et al.

4 Experiments

In this section we show the effectiveness of same when approximating different
types of tree-based classifiers on various datasets3.

We experimented same on eight datasets4. Details are in Table 1 (left). We
split each dataset into three partitions: Xtr used for training tree-based classifiers
(56%), Xap used by same for the post-hoc approximation strategies (24%), Xts

used to measure the performance of the resultant single trees (20%).
We trained and approximated with a single decision tree the following tree-

based classifiers: Decision Tree (DT) and Random Forest (RF) as implemented
by scikit-learn; Oblique Decision Tree (ODT) and Oblique Forest (OF) as imple-
mented in [17]5. We select the best parameter setting for DTs and OTs using a
randomized search with cross-validation on Xtr analyzing different max depths
and class weights6. For RFs and OFs we used ensembles composed by 20 esti-
mators and with max depth equals to 4. For OTs we adopted the House Holder
CART version [18]. Regarding the parameters of same, for Case 3, 4, and 5 we
adopt a RF with 20 base estimators and a 20 max depth [4, 5, 6, 7], while for Case
6 we adopt a RF with 20 base estimators and a 20 max depth [4, 5, 6]. These
parameters are the result of an a randomized search to find the best settings7.

The classification performance are reported in Table 1 (right) in terms of
accuracy and F1-score. We immediately notice that the OFs ha generally the
best performance among the various tree-based classifiers. However, there is a
small but statistically significant discrepancy among the accuracy scores (and
F1-score) of the classifiers (non-parametric Friedman test p-value < 0.1).

To the best of our knowledge the problem treated is somewhat novel and in
the literature there are not competitors explicitly designed for this task. Con-
cerning post-hoc explanations, in line with Trepan [2], we compare same with
phdt, a post-hoc decision tree approximating any tree-based classifier with a
DT. When the tree-based classifier is an OF, we adopt the notation same¬μ,
sameμ¬ν , sameμν to indicate Cases 4, 5, and 6 (Sect. 3), respectively.

All the tree-based classifiers are trained on Xtr, same and phdt exploit the
Xap partition while the evaluation measures are computed on Xts.

Evaluation Measures. We evaluate the performances under different perspec-
tives on the partition Xts. First, we check to which extent the single tree
T is able to accurately mime the behavior of b. We define the fidelity as
fid(Yb, YT) = eval(Yb, YT) where Yb = b(Xts), YT = T (Xts), and eval can be

3 Python code and datasets available at: https://github.com/valevalerio/SAME.
Experiments run on Ubuntu 20.04 LTS, 252 GB RAM, 3.30GHz x 36 Intel Core
i9.

4 The datasets are available on same Github, on the UCI repository https://archive.
ics.uci.edu/ml/index.php, and on Kaggle https://www.kaggle.com/datasets.

5 scikit-learn: https://scikit-learn.org/, [17] Github repository https://github.com/
TorshaMajumder/Ensembles of Oblique Decision Trees.

6 max depth ∈ {5, 6, 7, 8, 10, 12, 16, unbounded}, class weight ∈ {normal , balanced}.
7 Details of the parameters tested can be found in same repository.

https://github.com/valevalerio/SAME
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
https://scikit-learn.org/
https://github.com/TorshaMajumder/Ensembles_of_Oblique_Decision_Trees
https://github.com/TorshaMajumder/Ensembles_of_Oblique_Decision_Trees

Deriving a Single Interpretable Model by Merging Tree-Based Classifiers 355

the accuracy or the F1-score. Second, we test if T can replace b, i.e., how much
is accurate T if compared with the b on unseen instances Xts. We define the
accuracy deviation Δ as Δ = eval(Y, YT)− eval(Y, Yb) where Y being the vector
of real class for the partition Xts, Yb = b(Xts), YT = T (Xts) and eval can be the
accuracy or the F1-score. Δ is positive if T is better than b on unseen data, it is
negative otherwise, it is zero if they have exactly the same performance8. Third,
we measure characteristics describing a decision tree T such as: number of leaves,
number of nodes, tree depth, and average path length. We aim at obtaining low
values since a simple model is generally more interpretable.

Results. We present the results obtained by approximating single trees with
same and phdt from DT, RF, OT, and OF with the available variants.

Table 2 reports the fidelity using the accuracy as eval (similar results are
recorded for F1-score). We observe that both same and phdt have good per-
formance in approximating the behavior of the various tree-based classifiers.
Indeed, they are even in terms of times which overcomes the other method. For
same the best approximations are those performed using Case 2 on the RF.

Table 3. Accuracy deviation on test set for RF, OT, OF. Best values are underlined.

Dataset RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 0.000 0.000 0.067 0.000 -0.200 –0.600 0.000 0.000

cancer –0.009 0.000 –0.035 –0.018 –0.053 –0.070 –0.035 –0.035

armchair –0.065 0.000 –0.047 0.000 –0.010 –0.105 –0.012 0.000

german –0.015 –0.015 –0.025 –0.035 –0.050 –0.060 –0.025 -0.030

employee 0.000 –0.014 -0.010 –0.017 –0.061 –0.001 –0.010 –0.007

compas –0.023 0.003 –0.034 –0.001 –0.003 –0.024 -0.026 –0.001

fico –0.002 –0.003 0.006 0.001 –0.022 –0.009 –0.021 –0.016

adult –0.001 –0.002 –0.003 –0.010 –0.016 0.000 –0.008 –0.002

Table 3 and Table 4 shows respectively (i) the accuracy deviation using the
accuracy as eval (similar results for F1-score), and (ii) the accuracy of the deci-
sion trees obtained from the approximation of tree-based models trained on Xtr

compared with DTs directly trained on Xtr and tested on Xts. In Table 3 we
observe that the deviation accuracy is only limitedly smaller than zero. This
indicates that the approximated trees have a predictive power comparable to
the original tree-based classifiers. same leads to a decision tree which is more
accurate than the original model four times more than phdt does. Table 4 high-
lights that in five cases out of eight, the decision tree approximated by same is
a better model than a decision tree directly trained on the training data. Table 5
8 We highlight that even though they can have the same performance there is no
guarantee that the mis-classification errors are the same.

356 V. Bonsignori et al.

Table 4. Accuracy on test set for single trees approximating RF, OT, OF compared
with the accuracy of the DT. Best values are underlined.

Dataset DT RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris .933 .933 .933 1.00 .933 .733 .333 .933 .933

cancer .921 .912 .921 .895 .912 .868 .851 .921 .921

armchair .920 .855 .920 .855 .902 .910 .815 .910 .922

german .720 .705 .705 .635 .625 .685 .675 .730 .725

employee .816 .816 .802 .844 .837 .810 .870 .840 .843

compas .628 .605 .631 .597 .630 .631 .610 .610 .635

fico .712 .710 .709 .723 .718 .685 .798 .709 .714

adult .843 .852 .851 .851 .844 .835 .851 .842 .848

reports the tree depth. We omit the other characteristics describing decision
trees for space reasons. We observe that in general the trees returned by phdt
are more compact than those returned by same. However in both cases they are
nearly always deeper than the original DTs.

Table 5. Decision trees depth. Bests values are underlined.

Dataset DT RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 3 4 3 5 3 4 1 4 3

cancer 6 19 6 5 6 1 13 10 4

armchair 7 4 6 3 6 4 4 5 5

german 4 3 3 21 8 13 13 14 7

employee 3 28 5 9 7 4 10 17 4

compas 8 13 10 12 10 5 10 10 11

fico 7 25 12 16 9 32 24 14 8

adult 8 15 10 12 13 13 10 8 11

5 Conclusion

We have presented same, a single-tree approximation method designed to effec-
tively and efficiently turn every tree-based classifier into a single DT. Exper-
imentation on various datasets reveals that same is competitive with baseline
approaches or overcomes them. Moreover, the approximated tree can replace the

Deriving a Single Interpretable Model by Merging Tree-Based Classifiers 357

original model as it can have better performance. Possible future research direc-
tions are: extending same to any type of tree-based and rule-based classifier and
using same as post-hoc global explanation method for any black box.

Acknowledgment. Work partially supported by the European Community H2020
programme under the funding schemes: G.A. 871042 SoBigData++, G.A. 761758
Humane AI, G.A. 952215 TAILOR and the ERC-2018-ADG G.A. 834756 “XAI: Sci-
ence and technology for the eXplanation of AI decision making”.

References

1. Andrzejak, A., et al.: Interpretable models from distributed data via merging of
decision trees. In: CIDM, pp. 1–9. IEEE (2013)

2. Craven, M.W., et al.: Extracting tree-structured representations of trained net-
works, pp. 24–30 (1995)

3. Domingos, P.M.: Knowledge discovery via multiple models. Intell. Data Anal. 2(1–
4), 187–202 (1998)

4. Dougherty, J., et al.: Supervised and unsupervised discretization of continuous
features. In: ICML, pp. 194–202. Morgan Kaufmann (1995)

5. Fan, C., et al.: Classification acceleration via merging decision trees. In: FODS,
pp. 13–22. ACM (2020)

6. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM
Comput. Surv. 51(5), 93:1–93:42 (2019)

7. Hall, L.O., et al.: Combining decision trees learned in parallel. In: Working Notes
of the KDD-97 Workshop on Distributed Data Mining, pp. 10–15 (1998)

8. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

9. Johansson, U., et al.: Evolving decision trees using oracle guides. In: CIDM, pp.
238–244. IEEE (2009)

10. Krishnan, R., et al.: Extracting decision trees from trained neural networks. Pattern
Recognit. 32(12), 1999–2009 (1999)

11. Micci, D.: A preprocessing scheme for high-cardinality categorical attributes in
classification and prediction problems. SIGKDD Explor. 3(1), 27–32 (2001)

12. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

13. Sagi, O., Rokach, L.: Explainable decision forest: transforming a decision forest
into an interpretable tree. Inf. Fusion 61, 124–138 (2020)

14. Strecht, P.: A survey of merging decision trees data mining approaches. In Pro-
ceedings of10th Doctoral Symposium in Informatics Engineering, pp. 36–47 (2015)

15. Strecht, P., Mendes-Moreira, J., Soares, C.: Merging decision trees: a case study in
predicting student performance. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014.
LNCS (LNAI), vol. 8933, pp. 535–548. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14717-8 42

16. Tan, S., et al.: Tree space prototypes: another look at making tree ensembles inter-
pretable. In: FODS, pp. 23–34. ACM (2020)

17. Torsha, M.: Ensembles of oblique decision trees (2020)
18. Wickramarachchi, D.C., et al.: HHCART: an oblique decision tree. Comput. Stat.

Data Anal. 96, 12–23 (2016)

https://doi.org/10.1007/978-3-319-14717-8_42
https://doi.org/10.1007/978-3-319-14717-8_42

	Deriving a Single Interpretable Model by Merging Tree-Based Classifiers
	1 Introduction
	2 Setting the Stage
	3 Single-Tree Approximation Method
	4 Experiments
	5 Conclusion
	References

