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Preface

This volume contains the papers selected for presentation at the 24th International
Conference on Discovery Science (DS 2021), which was organized to be held in
Halifax, Canada, during October 11–13, 2021. Due to the restrictions associated with
the COVID-19 pandemic, the conference was moved online and held virtually over the
same time period.

DS is a conference series that started in 1986. Held every year, DS continues its
tradition as the unique venue for the latest advances in the development and analysis
of methods for discovering scientific knowledge, coming from machine learning, data
mining, and intelligent data analysis, along with their application in various scientific
domains. In particular, major areas selected for DS 2021 included the folllowing: appli-
cations (including a relevant number of papers addressing the COVID-19 pandemic),
classification, data streams, feature selection, graph and network mining, neural net-
works and deep learning, preferences, recommender systems, representation learning,
responsible artificial intelligence, and spatial, temporal and spatiotemporal data.

DS 2021 received 76 international submissions that were carefully reviewed by three
ormore ProgramCommittee (PC)members or external reviewers, with a few exceptions.
After a rigorous reviewing process, 15 regular papers and 21 short papers were accepted
for presentation at the conference and publication in the DS 2021 volume.

We would like to sincerely thank all people who helped this volume come into being
andmadeDS 2021 a successful and exciting event. In particular, wewould like to express
our appreciation for the work of the DS 2021 PC members and external reviewers who
helped assure the high standard of accepted papers. We would like to thank all authors
of submissions to DS 2021, without whose work it would not have been possible to have
such high-quality contributions in the conference.

We are grateful to the Steering Committee chair, Sašo Džeroski, for his extraordinary
support in critical decisions concerning the event plan, particularly important in these
challenging times. We are also very grateful to the Program Committee chairs of DS
2020,AnnalisaAppice andGrigoriosTsoumakas, for all the information provided,which
made the whole organization much easier. We wish to express our thanks to the local
organization chairs, David Langstroth, NunoMoniz, Paula Branco, Vitor Cerqueira, and
Yassine Baghoussi, for their support and incredible work. We would like to express
our deepest gratitude to all those who served as organizers, session chairs, and hosts,
who made great efforts to meet the online challenge to make the virtual conference
a real success. Finally, our thanks are due to Alfred Hofmann and Anna Kramer of
Springer for their continuous support and work on the proceedings. We are grateful
to Springer for a special issue on Discovery Science to be published in the Machine
Learning journal. All authors were given the possibility to extend and rework versions
of their papers presented at DS 2021 for a chance to be published in this prestigious
journal. For DS 2021, Springer also supported a Best Student Paper Award, which was
given to Bart Bussmann and his co-authors, Jannes Nys and Steven Latré, for their paper
“Neural Additive Vector Autoregression Models for Causal Discovery in Time Series.”



vi Preface

This paper presents high quality work on a very relevant topic and is complemented
with the materials to reproduce it. We would like to congratulate the authors for this
achievement.

September 2021 Carlos Soares
Luis Torgo



Organization

Program Committee Chairs

Carlos Soares Universidade do Porto and Fraunhofer Portugal AICOS,
Portugal

Luis Torgo Dalhousie University, Canada

Program Committee

Martin Atzmueller Tilburg University, The Netherlands
Colin Bellinger National Research Council of Canada, Canada
Paula Branco Ottawa University, Canada
Alberto Cano Virginia Commonwealth University, USA
Daniel Castro Silva University of Porto, Portugal
Michelangelo Ceci University of Bari Aldo Moro, Italy
Victor Cerqueira Dalhousie University, Canada
Bruno Cremilleux University of Caen Normandy, France
Nicola Di Mauro University of Bari Aldo Moro, Italy
Ivica Dimitrovski Ss. Cyril and Methodius University in Skopje, North

Macedonia
Wouter Duivesteijn Eindhoven University of Technology, The Netherlands
Sašo Džeroski Jožef Stefan Institute, Slovenia
Johannes Fürnkranz Johannes Kepler University Linz, Austria
Mohamed Gaber Birmingham City University, UK
Dragan Gamberger Rudjer Bošković Institute, Croatia
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Automated Grading of Exam Responses:
An Extensive Classification Benchmark

Jimmy Ljungman(B), Vanessa Lislevand, John Pavlopoulos,
Alexandra Farazouli, Zed Lee, Panagiotis Papapetrou, and Uno Fors

Department of Computer and Systems Sciences,
Stockholm University, Stockholm, Sweden

{jimmy.ljungman,lislevand,ioannis,alexandra.farazouli,zed.lee,
panagiotis,uno}@dsv.su.se

Abstract. Automated grading of free-text exam responses is a very
challenging task due to the complex nature of the problem, such as lack
of training data and biased ground-truth of the graders. In this paper, we
focus on the automated grading of free-text responses. We formulate the
problem as a binary classification problem of two class labels: low- and
high-grade. We present a benchmark on four machine learning meth-
ods using three experiment protocols on two real-world datasets, one
from Cyber-crime exams in Arabic and one from Data Mining exams in
English that is presented first time in this work. By providing various
metrics for binary classification and answer ranking, we illustrate the
benefits and drawbacks of the benchmarked methods. Our results sug-
gest that standard models with individual word representations can in
some cases achieve competitive predictive performance against deep neu-
ral language models using context-based representations on both binary
classification and answer ranking for free-text response grading tasks.
Lastly, we discuss the pedagogical implications of our findings by iden-
tifying potential pitfalls and challenges when building predictive models
for such tasks.

Keywords: Automated grading · Answer grading · Natural language
processing · Machine learning

1 Introduction

The assessment of students’ knowledge and understanding in academic courses
plays a crucial role in effective teaching and usually takes place in the form
of distance or on-the-spot formal examinations. Exams are typically composed
of different types of questions, such as multiple-choice, true/false, and free-text
questions. Free-text questions, in particular, have benefits in terms of students’
learning as students are required to recall external knowledge, and freely and
concisely elaborate on a subject [14].

Supported by the AutoGrade project of Stockholm University.

c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 3–18, 2021.
https://doi.org/10.1007/978-3-030-88942-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88942-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-88942-5_1


4 J. Ljungman et al.

Table 1. Example of an exam question, three responses, their grades (Scores), and
their corresponding class labels (Converted; H for high, L for low).

Question Define the task of supervised learning and provide an
example of a supervisied learning method.

Scores Converted

Answer 1 Supervised learning refers to artificial systems that learn
to improve their performance by experience. In the case
of supervised learning, experience corresponds to labeled
objects, while performance refers to the ability to assign
class labels to new (previously unseen) objects. An
example of a supervised learning method is a decision tree

10 H

Answer 2 Supervised learning refers to artificial systems that learn
to improve their performance when given unseen data.
Their experience is improved by the use of training
examples that may contain class labels. An example of a
supervised learning method is a decision tree built using
training examples clustered into two groups
corresponding to two class labels

2.5 L

Answer 3 Supervised learning refers to clustering methods that
group similar objects together using some similarity
metric. An example of a supervised method is K-means

0.0 L

Automated grading of free-text responses to exam questions is divided into
two focus areas: Automated Essay Scoring (AES) and Automated Short-Answer
Grading (ASAG). AES focuses on language style, coherence, and ideas organiza-
tion, while ASAG focuses on assessing the correctness of the responses in terms
of semantic content, completeness, and relevance to the questions. Moreover,
open-ended responses, which include short-text answers (between a phrase and
a paragraph [3]), may not be strictly limited in the word count, as students are
usually allowed to write more than a paragraph. Although in this paper we use
an ASAG approach in the focus of assessment and the use of computational
methods, we are not limited to short-text answers, and we also include student
answers up to 1,000 words.

Free-text responses are written in natural language and hence require more
effort to grade. In Table 1 we see an example of an exam question (within the
area of Data Mining), along with three graded responses. Observe that Answers
1 and 3 are easy to grade since the first corresponds to a model answer while the
third one is clearly erroneous. However, Answer 2 contains several ambiguities
that may require extra attention from the examiner. In this sense, automated
grading of free-text questions can support academic staff by eliminating the
burden of grading large amounts of exam papers. In particular, it can function
as an effective means for filtering out easy to grade exam responses (e.g., Answers
1, 3) and focusing on those that require particular attention (e.g., Answer 2),
while minimizing potential marking errors.

In this paper, we propose an experiment workflow for automated grading of
exam responses and provide a benchmark on four machine learning methods for
this task. Our main contributions are summarized as follows:
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– We provide a workflow for automated grading of exams, which we refer to as
AutoGrade, that includes an extensive benchmark of four machine-learning
methods.

– We propose three evaluation protocols for the problem, which we refer to as
flatten, loqo, and q-based, depending on the objective of the experiment
(see Sect. 4).

– We benchmark AutoGrade for the binary classification problem (high/low-
grade) on two real-world datasets, one set of exams written in English and
another set of exams in Arabic.

– We discuss the pedagogical implications of our findings and identify potential
pitfalls and challenges when building predictive models for the task.

2 Related Work

Various approaches to address the automated grading task have been explored
from traditional handcrafted features [15], similarity-based [5] and rule-based
[28] formulations, to recent deep learning techniques [10,23].

To be more concrete, earlier studies involve manually defining features that
try to capture the similarity of answers in multiple levels [23]. Those features
include surface features, such as answer length ratios and lexical overlap; seman-
tic similarity measures, which refer to sentence embedding distances or knowl-
edge bases like WordNet [20]; and syntactic features like dependency graph align-
ment and measures based on the part-of-speech tag distribution in the student
answers [18]. Leacock and Chodorow’s [12] C-Rater is a scoring engine designed
to grade short answers matching the teacher and students’ answers based on the
number of concepts (main key points from the curriculum) identified in students’
answers matched with those concepts found in model answers. The matching is
based on a set of rules and a canonical representation of the texts using syntactic
variation, anaphora, morphological variation, synonyms, and spelling correction.
Results show a 84% agreement with the human graders.

Likewise, Rodrigues and Oliveira [22] have matched student answers with
referred correct answers by cosine similarity after preprocessing. Basu and Van-
derwende [2] and Süzen et al. [25] have made use of clustering techniques, creat-
ing groups and subgroups of answers based on the similarity between the model
and the student answer. Nandini and Maheswari [16] have proposed a system
which compares the model with the students’ answers and the grading depends
on the keywords used and context of the phrases conveying meaning. This system
employs question and answer classifications in the training phase according to
the type and focus of the question and answer. Then, in the prediction phase the
system examines if the question labels (factual, inductive, analytical) match the
answer labels (chronological/sequence ordering, descriptive/enumerative, com-
pare and contrast, problem/solution, cause and effect) and finally assigns grades
accordingly and provides feedback.

Deep learning methods have also been adopted for the task of automated
grading of free-text responses [10]. Sung et al. [24] have provided a solution based
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on BERT by adding a feed forward layer and fine-tuning the model to predict
whether student answers are correct, incorrect, or contradictory compared to
a reference answer. They have shown that fine-tuning BERT for the problem
of short-answer grading increases its effectiveness and outperforms most of the
existing techniques on a large number of tasks. However, little attention has been
given to further pre-training the language model incorporating domain-specific
knowledge. Similarly, in this work we fine tuned the state-of-the-art BERT-based
transformer XLM-RoBERTa (XLM-R) [4], which is further described in Sect. 4.

Based on the above, it becomes apparent that similarity-based solutions,
bag-of-words feature-based solutions, and deep learning based solutions can
achieve promising results for the problem of automated free-text response grad-
ing. Nonetheless, there is still no extensive benchmark of these lines of solutions
and no common experimental workflow for the problem.

3 Background

Let D = {D1, . . . , Dn} be a dataset of n written exams. Each exam Di ∈ D
is defined over three sets of ki questions, answers, and grades. More concretely,
each exam Di is a triplet <Qi,Ai, Gi>, with Qi = {Q(i,1), . . . , Q(i,ki)}, Ai =
{A(i,1), . . . , A(i,ki)}, and Gi = {G(i,1), . . . , G(i,ki)}. Each Q(i,j) and A(i,j) are
texts and each G(i,j) ∈ R.

In our formulation we assume that the exams in D correspond to a single
exam instance of a particular course. We additionally assume that each exam
may not necessarily contain the same set and number of questions (e.g., in the
case where exam instances are generated using a question bank). Figure 1 illus-
trates the structure of an exam D1.

In this paper we assume a simplified formulation that considers the binary
version of the problem, where G(i,j) ∈ {L,H}, with L,H corresponding to low
and high grade, respectively.

Problem 1. The AutoGrade Problem. Given an answer A(i,j) to an exam
question Qi,j with a corresponding ground-truth grade G(i,j), we want to learn
a classification model fD on a training dataset Dtrain with fD : A(i,j) → {L,H},
such that ||G̃(i,j) − G(i,j)|| is minimized, with G̃(i,j) being the predicted value.

4 The AutoGrade Workflow

We propose a three-step workflow for solving Problem1. The steps include (1)
feature extraction and tokenization, (2) modeling, and (3) evaluation. Next we
describe each step.

Step I: Feature Extraction and Tokenization. Depending on the ML model
used in Step II we perform feature extraction as a pre-processing step. For
the first three models we use TF-IDF, as it quantifies the relevance of a word
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Fig. 1. Structure of the exam D1. The exam contains a set of questions, a set of
responses and a grade per response.

in a document with respect to the whole corpus [7].1 The fourth model is a
transformer-based method and uses contextualized sub-word embeddings based
on SentencePiece [9] with a unigram language model [8].

Step II: Modeling. We employ four ML methods described below.

Distance-Based Methods. We use k-Nearest Neighbour (k-NN) that computes
the distance similarity between a test instance and each training instance. For a
new test instance, the output is the majority label of the k most similar training
instances. For this paper, we use both 1-NN and 3-NN. The distance metric used
is Euclidean distance.

Statistical Methods. We use Logistic Regression (LR) that applies the logistic
(sigmoid) function on top of a linear regressor, yielding a score from 0 to 1,
which can then be turned into a binary score with the use of a threshold. LR can
estimate the likelihood that a new sample belongs to a class using the coefficients
found in a classification environment.

Ensemble-Based Methods. Ensemble-based methods predict outcomes of new
instances by either majority voting or averaging on multiple models. The algo-
rithm used for this method is Random Forest (RF), where the ensemble models
are decision trees. Each tree is trained on a subset of the training data, and RF
classifies new instances using the majority vote of these trees. We set the number
of decision trees in the forest to 100.

Transformer-Based Methods. Lastly, XLM-R is chosen as the transformer-based
algorithm, which is a masked language model, fine-tuned to classify responses
as either low- or high-grade. XLM-R is a multilingual Masked Language Model
(MLM) that is based on Transformers [4,26], which are based on a multi-head
self-attention mechanism. XLM-R is a combination of the Cross-lingual Lan-
guage Model (XLM) and a Robustly Optimized BERT pretraining approach
1 We use TfidfVectorizer for feature extraction with all parameters set to default.



8 J. Ljungman et al.

Fig. 2. Architecture of our XLM-R-based model.

(RoBERTa). XLM has achieved state-of-the-art results on cross-lingual classifica-
tion, unsupervised and supervised machine translation [11]. It changes the MLM
by using continuous streams of text instead of sentence pairs and demostrated
that MLM can give strong cross-lingual features for pretraining. RoBERTa is
an improved form of Bidirectional Encoder Representations from Transformer
(BERT) [13], achieving state-of-the-art results on GLUE, SQuAD and RACE.
This method proves that training BERT with alternative design choices and
with more data, including the CommonCrawl News dataset, improves the per-
formance on downstream tasks.

The main idea of XLM-R is to follow the XLM approach as closely as possible
by training RoBERTa with the MLM objective on a huge multilingual dataset.
The amount of training data is significantly increased, especially for low resource
languages, by training XLM-R on one hundred languages using CommonCrawl
data2, in contrast to previous works such as BERT or XLM that are trained
on Wikipedia. For our task, we build the model by adding a Feed Forward
Neural Network (FFNN) on top of the pre-trained XLM-R. As Fig. 2 shows,
we feed XLM-R with vectors (length of 200) that contain the input ids of the
answers, and subsequently, XLM-R feeds the FFNN with its output, i.e., the
context-aware embedding (length of 768) of the [CLS] token of each sentence.
The number of nodes in the output layer is the same as the number of classes,
i.e., 2, and each node in the output layer uses a softmax activation function,
predicting a class probability between 0 and 1.

2 https://commoncrawl.org/.

https://commoncrawl.org/


Automated Grading of Exam Responses 9

Step III: Evaluation Protocol. We experimented with three different strate-
gies to create our training, development, and test sets. Initially, following an
experimental strategy that we call flatten, we trained and evaluated our mod-
els on responses from all questions, without discrimination. We then experi-
mented with a leave-one-question-out strategy (dubbed loqo), where all the
responses of a particular question (one at a time) are considered as the test set.
Thirdly, we trained and tested on the best supported and the balanced questions
separately. We call this setting q-based. The former two strategies, flatten
and loqo, are based on the following in-domain transfer-learning assumption:
in-domain knowledge can be transferred among the responses to different ques-
tions, i.e., a model trained to grade the responses of some questions will be able
to grade the responses to other questions.

5 Empirical Evaluation

5.1 Datasets

We employ two real-world datasets in our experiments from two different subject
areas: Data Mining (in English), referred to as DAMI and Cyber-crime (in Arabic),
referred to as AR-ASAG. Since in this paper we pose automated grading as a
binary classification problem, for both datasets the responses are labeled with
two distinct classes as follows:

– H: If the grade of the response is greater than or equal to half of the maximum
grade of the question.

– L: If the grade is lower than half of the maximum grade of the question.

In Fig. 3 we provide a summary of the two datasets regarding the length of the
responses (in # of words) and the overall class label distribution. Moreover, Fig. 4
shows the class label distribution per question for each dataset. As observed,
DAMI is more balanced (L:H of 41/59) compared to AR-ASAG (L:H of 33/67).
Next, we provide more details about each dataset.

DAMI. This dataset is obtained from Stockholm University and contains a
collection of three different sets of exams of a masters level course in Data Mining,
written in English. The dataset carry a total of 31 questions and 1,131 responses.
The grade of each response may range either from 0–10, from 0–8, or from 0–5.

As we observe in Fig. 3(a), high-grade responses (in green) are generally
longer than low-grade responses while there are responses that are up to a thou-
sand words long. Moreover, the number of responses and class distribution vary
per question (see Fig. 4(a)) For example, Questions 1 and 2 (i.e., Q1 and Q2)
have the highest support while low-grade is the most frequent class. By con-
trast, the vast majority of the rest of the questions comprised more high-grade
responses. Q12 and Q16, for example, have only three low-grade responses, com-
pared to 36 and 33 high-grade ones, respectively. Q1 has the best class balance
while maintaining a respectable support with regards to other questions in the
dataset. The vocabulary size of the dataset is 5,627.
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(a) DAMI (b) AR-ASAG

(c) DAMI (d) AR-ASAG

Fig. 3. Response length distribution per class, in words for both datasets (top row).
Different scale of the vertical axis is used across the two, due to the much lengthier
DAMI responses. Class distribution per dataset (bottom row). (Color figure online)

(a) DAMI (b) AR-ASAG

Fig. 4. Support of responses per question and per class for the DAMI (left) and the
AR-ASAG (right) datasets. There are 37 responses on average per question on the DAMI

dataset, and there are 44 responses on average on the AR-ASAG dataset.

AR-ASAG. This dataset has been collected by Ouahrani and Bennouar [17]
and contains three different exams taken by three different classes of Masters
students. Each exam contains 16 short answer questions with a total of 48 ques-
tions and 2,133 responses. The responses are independently graded by two human
experts, using a scale from 0 (completely incorrect) to 5 (perfect answer). The
average grade of the two annotators is treated as the gold standard.
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Figure 3(b) shows that high-grade responses are generally longer than short-
grade responses also for this dataset. However, both low- and high-grade AR-ASAG
responses are shorter than the ones of DAMI, with the latter being up to two
orders of magnitude longer and comprising more outliers compared to AR-ASAG.
Just as for DAMI, the question-wise class balance and support differs between
questions in AR-ASAG (Fig. 4(b)). For some questions, e.g., Question 1 (Q1),
the class balance is heavily imbalanced towards high-grade responses, while it is
heavily imbalanced towards low-grade responses on other questions like Question
30 (Q30). The vocabulary size of the dataset is 6,366.

5.2 Setup

Our experiments are based on the three evaluation strategies described in Sect. 4.
All four ML methods are benchmarked alongside a random classifier that pre-
dicts a class randomly with equal probability. The datasets are partitioned in a
stratified manner to maintain the class distribution. We keep 70% of the texts
for training, 15% for development, and 15% for testing. In loqo, we report the
results directly on the test set, because we do not use any split. In flatten
and q-based, the average score of five and ten repetitions of Monte Carlo Cross
Validation (MCCV) is reported, respectively [21].3

All models except XLM-R uses the default parameters set by the sklearn
library. For XLM-R, the implementation is based on Keras and Ktrain. We use
XLM-R’s tokenizer which is based on SentencePiece, and we define the maximum
length of the text to be 200. We train our model for 15 epochs on loqo and
30 epochs for the rest of the experiments, with a learning rate equal to 1e-5
and batch size equal to six. These parameters are selected after fine-tuning. The
source code is publicly available in our GitHub repository.4

We report precision, recall, F1, AUC, AUPRC, and accuracy. We also report
the Spearman’s ρ correlation coefficient between a model’s (high-grade) proba-
bility estimates and the respective ground truth grades for all the responses in
the test set. High correlation reflects the model’s ability to effectively rank the
responses correctly. The k-NN models, as well as the random classifier, have no
notion of probability estimates, as the former are distance-based while the latter
is random guessing. Therefore, Spearman’s ρ is not reported for these models.

5.3 Results

FLATTEN. As it can be observed in Table 2, XLM-R, RF, and LR are the best
performing models in terms of accuracy, AUPRC, and AUC on DAMI. All three
models also have equal performance in Spearman’s rho. For precision, recall, and
F1, the results do not lead to any clear winner. RF achieves a higher F1 on the
high-grade responses due to a high recall, while XLM-R achieves the highest F1

3 The size of flatten restricts us from running the models for more repetitions.
4 https://github.com/dsv-data-science/autograde DS2021.

https://github.com/dsv-data-science/autograde_DS2021
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Table 2. Results of 5 repetitions of MCCV following the flatten strategy, for both
datasets (DAMI support 70/100; AR-ASAG support 109/211). RC is a random classifier.

P R F1 AUPRC ρ AUC Ac P R F1 AUPRC ρ AUC Ac

DAMI AR-ASAG

XLM-R L 0.68 0.63 0.65 0.70 0.49 0.78 0.73 0.64 0.45 0.52 0.60 0.48 0.75 0.73

H 0.76 0.79 0.77 0.82 0.76 0.87 0.81 0.85

RF L 0.72 0.52 0.61 0.71 0.50 0.79 0.72 0.62 0.21 0.31 0.52 0.39 0.69 0.69

H 0.73 0.86 0.79 0.84 0.70 0.94 0.80 0.81

LR L 0.67 0.46 0.54 0.70 0.49 0.77 0.69 0.62 0.09 0.16 0.54 0.41 0.71 0.67

H 0.69 0.85 0.76 0.84 0.68 0.97 0.80 0.83

3-NN L 0.52 0.80 0.63 0.52 – 0.67 0.61 0.53 0.32 0.40 0.45 – 0.66 0.67

H 0.78 0.48 0.60 0.72 0.71 0.85 0.78 0.75

1-NN L 0.53 0.64 0.56 0.48 – 0.62 0.62 0.49 0.41 0.44 0.40 – 0.59 0.65

H 0.72 0.60 0.64 0.66 0.72 0.78 0.75 0.71

RC L 0.42 0.51 0.46 0.40 – 0.49 0.51 0.33 0.49 0.40 0.34 – 0.51 0.49

H 0.60 0.50 0.55 0.59 0.66 0.49 0.56 0.67

on the low-grade ones due to equally high performance in precision and recall.
LR underperforms both models in terms of F1.

For AR-ASAG, all models perform worse on the low-grade responses compared
to DAMI. RF and LR even underperform RC on low-grade F1. This could be due
to the fact that DAMI has a better class balance than AR-ASAG (see Fig. 3). Even
so, XLM-R performs reasonably well, having the highest score on all metrics
except for recall, and has similar accuracy, AUC, and Spearman’s rho as in
DAMI. XLM-R also performs better in terms of AUPRC, F1, and recall on the
high-grade class, but drops in recall on the low-grade class which leads to an F1
reduction. The lower AUPRC on the low-grade responses also indicates that the
above-mentioned weakness holds for all classification thresholds.

LOQO. Table 3 presents the performance of all models when we followed the
loqo experiment on both datasets. One can observe similar behaviors as for
flatten, namely that RF, LR, and XLM-R are the best performing models on
DAMI, and that XLM-R is the best performing model on AR-ASAG. However, in
this case, the performance of XLM-R deteriorates much more when we move
from DAMI to AR-ASAG. Moreover, even though LR has the best performance on
F1 on the high-grade class, it fails to classify the low-grade responses. When we
focus on Spearman’s rho, all models fail. Similarly to flatten, when focusing
on DAMI, XLM-R achieves the best F1 for low-grade, while RF achieves the best
F1 for high-grade.

QBASED. We use the two questions with the highest support and equal balance
to experiment with for DAMI (Q1 and Q2; see Fig. 4(a)). For AR-ASAG, we use
Q13 and Q33. Q13 has the best support in the dataset while Q33 has the best
class balance (see Fig. 4(b)).

Table 4 presents the results when following the q-based approach on DAMI.
For the most balanced question of the two (Q1; topmost), LR and RF are the
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Table 3. Results following the LOQO strategy.

P R F1 AUPRC ρ AUC Ac P R F1 AUPRC ρ AUC Ac

DAMI AR-ASAG

XLM-R L 0.66 0.59 0.62 0.64 0.43 0.74 0.71 0.40 0.44 0.42 0.39 0.17 0.56 0.58

H 0.74 0.78 0.76 0.77 0.69 0.65 0.67 0.70

RF L 0.69 0.52 0.59 0.70 0.53 0.77 0.71 0.35 0.26 0.30 0.34 0.03 0.50 0.58

H 0.72 0.84 0.77 0.81 0.65 0.75 0.70 0.70

LR L 0.60 0.56 0.58 0.65 0.45 0.71 0.67 0.28 0.13 0.18 0.33 0 0.49 0.58

H 0.71 0.74 0.72 0.77 0.64 0.82 0.72 0.66

3-NN L 0.42 0.87 0.57 0.44 – 0.55 0.46 0.31 0.36 0.33 0.33 – 0.47 0.50

H 0.66 0.17 0.27 0.62 0.63 0.58 0.60 0.64

1-NN L 0.44 0.85 0.58 0.44 – 0.55 0.49 0.35 0.46 0.39 0.35 – 0.50 0.52

H 0.70 0.25 0.37 0.62 0.65 0.55 0.60 0.65

RC L 0.41 0.47 0.44 0.41 – 0.49 0.50 0.35 0.49 0.41 0.35 – 0.50 0.51

H 0.59 0.52 0.55 0.59 0.66 0.52 0.58 0.65

Table 4. Results of 10 repetitions of MCCV on Q1 and Q2 per class for DAMI.

P R F1 AUPRC ρ AUC Ac P R F1 AUPRC ρ AUC Ac

Question 1 Question 2

XLM-R L 0.77 0.76 0.74 0.88 0.58 0.82 0.74 0.70 0.86 0.76 0.82 0.30 0.66 0.65

H 0.75 0.71 0.71 0.81 0.27 0.24 0.25 0.58

RF L 0.80 0.88 0.83 0.91 0.73 0.89 0.81 0.68 0.93 0.78 0.82 0.30 0.63 0.65

H 0.88 0.75 0.79 0.88 0.20 0.10 0.13 0.52

LR L 0.81 0.84 0.82 0.91 0.67 0.88 0.81 0.67 1.00 0.80 0.86 0.40 0.71 0.67

H 0.83 0.78 0.79 0.89 0.00 0.00 0.00 0.59

3-NN L 0.84 0.69 0.75 0.80 – 0.82 0.76 0.67 0.64 0.65 0.70 – 0.50 0.44

H 0.72 0.85 0.77 0.69 0.28 0.34 0.30 0.40

1-NN L 0.86 0.69 0.74 0.75 – 0.77 0.76 0.67 0.56 0.60 0.68 – 0.50 0.52

H 0.73 0.85 0.77 0.69 0.33 0.44 0.37 0.36

RC L 0.53 0.59 0.50 0.53 – 0.48 0.50 0.72 0.45 0.55 0.67 – 0.47 0.51

H 0.47 0.51 0.48 0.50 0.36 0.62 0.45 0.35

Table 5. Results of 10 repetitions of MCCV on Q13 and Q33 per class AR-ASAG.

P R F1 AUPRC ρ AUC Ac P R F1 AUPRC ρ AUC Ac

Question 13 Question 33

XLM-R L 0.85 0.75 0.78 0.95 0.65 0.98 0.93 0.78 0.75 0.73 0.94 0.81 0.93 0.79

H 0.94 0.99 0.96 0.99 0.86 0.81 0.77 0.95

RF L 0.00 0.00 0.00 0.77 0.54 0.90 0.78 0.77 1.00 0.85 0.91 0.78 0.91 0.80

H 0.78 1.00 0.88 0.97 0.80 0.62 0.68 0.94

LR L 0.00 0.00 0.00 0.84 0.53 0.92 0.78 0.82 0.59 0.63 0.81 0.55 0.77 0.69

H 0.78 1.00 0.88 0.98 0.61 0.78 0.68 0.82

3-NN L 0.50 0.30 0.37 0.62 – 0.76 0.84 0.56 0.30 0.35 0.63 – 0.66 0.59

H 0.84 1.00 0.91 0.89 0.56 0.83 0.65 0.66

1-NN L 0.67 0.45 0.51 0.54 – 0.71 0.86 0.44 0.44 0.43 0.52 – 0.50 0.51

H 0.87 0.97 0.91 0.87 0.49 0.55 0.51 0.55

RC L 0.20 0.45 0.27 0.26 – 0.45 0.48 0.48 0.44 0.43 0.51 – 0.50 0.54

H 0.75 0.49 0.57 0.78 0.59 0.66 0.59 0.57
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Fig. 5. Grades of the DAMI dataset in %.

best performing models with top-performance in F1, AUPRC, AUC, Spearman’s
rho, and accuracy. Moreover, the k-NN models perform reasonably well where
1-NN has a better F1 score on the high-grade class than XLM-R.

On the more supported but imbalanced question (Q2), the performance on all
models deteriorates. This is especially true for predicting the minority class of the
question (H), where RC outperforms in precision, recall, and F1, which means
that all models fail to distinguish high-grade responses from low-grade ones.
Focusing on specific evaluation measures, LR holds the best Spearman’s rho, and
AUPRC for both classes, with XLM-R and RF close behind. However, looking
at precision, recall, and F1 of RF and LR, the accuracy stems from the high
performance for the frequent low-grade class and is outweighed by the very low
performance on the high-grade class. The high AUPRC and low precision, recall,
and F1 scores of the models indicate that tuning the classification threshold
would lead to better performance.

In AR-ASAG, the results follow similar patterns as was observed in DAMI.
That is, the models deteroriate on the more imbalanced but higher supported
question (Q13) in contrast to the more balanced but less supported question
(Q33). Interestingly, while all other models fail to distinguish the two classes,
XLM-R actually produces better scores on all metrics except Spearman’s rho
for Q13 than for Q33. XLM-R is also the best performing model overall for both
questions (Table 5).

5.4 Lesson Learned

The experimental results indicate that there is not a single best-performing
method for our classification task. When training and evaluating the responses
of a single question (q-based), the class balance generally seems more signifi-
cant than the overall support. For the more supported but imbalanced questions,
the transformer-based method (XLM-R) produces better results than any other
method (DAMI Q2; AR-ASAG Q13). For the more balanced but less supported
questions, the overall best method is, however, unclear. XLM-R, RF, and LR
have similar performances on Q1, while XLM-R performs best on Q33. When
training on all the responses except for those of a particular question (loqo),
the best performing XLM-R and RF achieve relatively high scores. As the mod-
els are not trained on any of the responses to the tested question, this indicates
that the models could be used to assist the grader in evaluating responses to a
new question. For AR-ASAG, however, results deteriorate compared to q-based.
The reason behind this is probably due to a lower semantic coverage between
the responses of different questions. When training on all the responses without
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discriminating between the questions (flatten), similar scores are achieved for
DAMI, but are much higher for AR-ASAG. This is probably because the responses
to all questions are used to train the models. Hence, problems such as a lim-
ited coverage between the questions can be bypassed (e.g., XLM-R achieves a
correlation of 0.48, compared to 0.17 in loqo).

Creating a system for automated grading of free-text responses is a challeng-
ing task due to complexity issues related to the data quality [27] and faith in the
process [3]. More specifically these challenges regard 1) the limited availability
of data; 2) the quality of such data; and 3) the complex process of analysis and
understanding of natural language. The lack of publicly available test datasets
for training and evaluating automated grading systems is a crucial challenge.
Most datasets containing students’ responses in exams are not easily shared due
to privacy reasons, leading researchers to be limited in the use of their own
institutions’ data. Consequently, generalised conclusions cannot be made from
the developments of systems based on limited data as this could lead to bias
in terms of a specific domain, student group and teacher approach. The assess-
ment of free-text responses requires the grader to extract the exact meaning of
the students’ answers and appropriately evaluate the knowledge obtained by the
students. This type of question requires a deep understanding of a topic from
students in order to be able to recall knowledge and synthesise their response
freely. Furthermore, they are widely used in assessments because they can show-
case complex learning goals more holistically and effectively [1,6]. This type of
questions is very beneficial in terms of developing students’ cognitive skills and
demonstrating knowledge in short texts [14]. Through the assessment of such
questions, the teacher may have a clearer view of the level of students’ under-
standing of the subject in question and their knowledge gaps.

Taking a closer look at DAMI we observe that over 50% of the grades assigned
to students’ answers from the examiner fall into either the min or max grade
(e.g., they are 0s and 10s; see Fig. 5). This observation led us further analyse the
key requirements of such type of questions which are to test whether a student
1) knows/understands a concept and 2) can elaborate, explain, justify or provide
examples in a specific topic or concept. Requirement 1 is a prerequisite to meet
requirement 2 and grading is employed accordingly, meaning that the examiner
awards maximum points when both requirements are met (correct answers),
minimum points when none of them is met (incorrect answers) and in-between
points when there are contradictory or mislead answers in the responses. Drawing
inspiration from this, our future goal is to create an automated grading system
which will award maximum and minimum scores when high-precision threshold
is exceeded. In this way, the volume of the answers that the grader should pay
special attention could be significantly decreased. In addition, we also aim to
highlight the problematic areas of the grey answers and suggest a grade. This
would help the graders in terms of revealing possible patterns of mistakes and
providing formative feedback to the students.
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Developing automated grading systems is expected to reduce teachers’ bur-
den and augment their judgment, by providing useful insights for their students
and enhance the reliability of grading. However, we note that human graders will
still be required to supervise and calibrate such systems as the main assessors in
grading. Another challenge is that human graders may judge free-text responses
differently, making it hard to find a 100% agreed “golden standard”. The exact
details of how human graders will employ such systems are not yet known. A
possible solution could be borrowed from user-generated comment moderation,
where toxicity detection systems are meant to assist and not substitute the
expert [19]. In grading, a similar approach could be adopted, with systems being
used with two thresholds, one to filter clearly low and one to filter clearly high
graded responses. Any remaining responses, which systems were less confident
to classify, are probably the ones that human graders would like to assess with
full attention. This scenario, however, remains to be investigated in future work.

6 Conclusions

This work provided a classification benchmark on automated grading of student
responses into high- and low-grade classes. Machine learning methods based on
distance, regression, ensemble, and Transformers were applied on two real-world
datasets, one from Cyber-crime exams in Arabic and one from Data Mining
exams in English that was introduced in this work. The experimental results
indicate that there is no single best-performing method for our classification task.
When training and assessing per question, class balance seem more important
than overall support. When the questions have many responses, XLM-R performs
the best overall. When training on all responses except for some, XLM-R and
RF perform considerably well in Arabic and in English. However, when train-
ing on all responses except for a particular question, XLM-R and RF perform
considerably well only in English. In future work, we aim to study the collabora-
tion between automated grading systems and human evaluators by investigating
semi-automated grading and the employment of rationale generation mecha-
nisms that could assist the grader decide between a low- and a high-grade.
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Abstract. Many code smell detection techniques and tools have been
proposed, mainly aiming to eliminate design flaws and improve software
quality. Most of them are based on heuristics which rely on a set of
software metrics and corresponding threshold values. Those techniques
and tools suffer from subjectivity issues, discordant results among the
tools, and the reliability of the thresholds. To mitigate these problems, we
used machine learning to automate developers’ perception in code smells
detection. Different from other existing machine learning used in code
smell detection we trained our models with an extensive dataset based
on more than 3000 professional reviews on 518 open source projects. We
conclude by an empirical evaluation of the performance of the machine
learning approach against PMD, a widely used metric-based code smell
detection tool for Java. The experimental results show that the machine
learning approach outperforms the PMD classifier in all evaluations.

Keywords: Code smells · Machine learning · Software engineering

1 Introduction

Code smells are properties of the source code that may indicate either flaws
in its design or some poor implementation choices. Differently from a bug, a
code smell does not necessarily affect the technical correctness of a program,
but rather it may be a symptom of a bad design pattern affecting the quality of
a software system. Also, the experimental evaluation shows a direct correlation
between code smells and software evolution issues, design vulnerabilities, and
software failure in the long run [6,25,30]. Even in well-managed and designed
projects, code smells could be inadvertently added into the code by inexperienced
developers, and as such it is very important to detect them early in the design
process [18,28].

Typically, code refactoring is a solution to the design problem coming from
code smells [10,11]. Due to the subjectivity of their definition, detection of code
smells, and the associated refactoring, are non-trivial tasks. The manual detec-
tion process requires tremendous efforts and is infeasible for large-scale software.
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 19–28, 2021.
https://doi.org/10.1007/978-3-030-88942-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88942-5_2&domain=pdf
http://orcid.org/0000-0002-9063-0705
http://orcid.org/0000-0003-2898-2168
http://orcid.org/0000-0003-3746-3618
https://doi.org/10.1007/978-3-030-88942-5_2


20 C. Soomlek et al.

Commonly used automated approaches in tools and academic prototypes are
search-based, metric-based, symptom-based, visualization-based, probabilistic-
based, and machine learning [2,13,24]. The metric-based approach defines code
smells systematically using a fixed set of metrics and corresponding threshold
values. It is the most commonly used approach in both open-source and com-
mercial tools and the idea has been adopted for more than a decade. The major
problems of the metric-based approach are: (1) matching subjective perception
of developers who often perceive code smells differently than the metrics classi-
fication and (2) reliability of the threshold values. Currently, many well-known
code smell detectors adopt the metrics and their threshold values from Lanza
and Marinescu’s work [15] in 2006 as reference points. However, finding the
best-fit threshold values for a certain type of code smell requires significant
efforts on data collection and calibration. For example, Lanza and Marinescu’s
analysis [15] is based on their manual review of few dozen mid-size projects.
Moreover, the concept of code smells was introduced and cataloged more than
20 years ago. During this period, programming languages have been evolving
to today’s modern programming language which comprises both functional and
advanced object-oriented features. To obtain more reliable code smell detection
results, human perceptions on design issues should be integrated into an auto-
mated analysis. Machine learning is one of the promising solutions for this case
because it enables a machine to mimic the intelligence and capabilities of humans
to perform many functions.

Following this direction, we define the following research questions:

– RQ1: Can we mimic a developer’s perception of a code smell?
– RQ2: How does machine learning perform when comparing to existing tools?

We use a large dataset of industry projects reviewed by developers [17], we clean
and prepare the data so to be utilized in training a machine learning model, and
finally, we compare the results with those coming from a modern tool using a
metric-based approach. This includes the validation of the two approaches con-
cerning the perception by human experts. We make the dataset publicly available
on OpenML [29]. Each of the above steps can be considered as a contribution to
our work on its own. From the experimental results, we can conclude a better
performance of the machine learning approach for code smells detection, com-
pared to the tools based on static rules.

2 Related Work

While there is no general agreement on the definition of code smells or of their
symptoms, many approaches have been introduced in the literature to automate
code smell identification. There exist both commercial and open-source tools.
Detection approaches can be classified from guided manual inspection to fully
automated: manual, symptom-based, metric-based, probabilistic, visualization-
based, search-based, and cooperative-based [12]. The metric-based approach is
the most used technique in both research and tools. In this case, the generic code
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smell identification process involves source code analysis and matching the exam-
ining source code to the code smell definition and specification by using specific
software metrics [24]. Object-oriented metrics suite [4] and their threshold values
are commonly used in the detection process. The accuracy of the metric-based
approach depends on (i) the metric selection, (ii) choosing the right threshold
values, and (iii) on their interpretation.

In recent years, many studies adopted artificial intelligence and machine
learning algorithms for code smell identification [27], classification [5,8,13,16],
and prioritization [9,20]. Machine learning techniques provide a suitable alter-
native to detect code smells without human intervention and errors, solving the
difficulty in finding threshold values of metrics for identification of bad smells,
lack of consistency between different identification techniques, and developers’
subjectiveness in identifying code smells. Those techniques differ in the type of
code smell detected, the algorithms used, the size of the dataset used for training,
and the evaluation approaches and performance metrics.

Originally, Kreimer [14] proposed a prediction model based on decision trees
and software metrics to detect blobs and long methods in Java code. The results
were evaluated experimentally with regard to accuracy. The efficiency in using
decision trees has been confirmed in mid-size open-source software projects [1].
For an extensive review of the existing approaches and their comparison, we
refer the reader to [13].

Two closest works to ours are [8] and [5]. They both applied machine learning
techniques to detect data class, blob, feature envy, and long method. In [8]
the results of 16 supervised machine learning algorithms were evaluated and
compared using 74 software systems from Qualitas Corpus. A large set of object-
oriented metrics were extracted and computed from this training data by using
deterministic rules in the sampling and manual labeling process. Labeling results
were confirmed by master students. Due to their limited software engineering
experience, relying on them can be considered a limitation of this work. The
authors of [5] repeated the work of the authors of [8] to reveal critical limitations.
In contrast, our work is based on a dataset constructed by more than 3000
reviews by human experts on more than 500 mid- to large-size software projects.

3 Dataset Construction and Pre-processing

To conduct our empirical study, we need to collect (1) data or a reliable and
up-to-date dataset reporting human perceptions on a set of code smells that
is large enough to train a machine learning model, and (2) software metrics of
the software projects matching to (1). To achieve this, we first surveyed exist-
ing datasets and discussed with their contributors the scientific definitions and
data collection process. From this study, we selected the dataset that fitted our
requirements best. Finally, we used the selected dataset to define (1) a set of
software projects, (2) the types of code smells we were interested in and their
corresponding detectors, and (3) a set of software metrics to be extracted from
the set of software projects.
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The MLCQ Dataset. Madeyski and Lewowski contributed the MLCQ data set
which contains industry-relevant code smells with severity levels, links to code
samples, the location of each code smell in the Java project, and background
information of the experts [17]. More specifically, they collaborated with 26 pro-
fessional software developers to review the code samples with regard to four
types of code smells both at class and function levels: blob, data class, feature
envy, and long method. The reviews are based on four severity levels, i.e., criti-
cal, major, minor, and none. The none severity level is assigned to a code sample
when the expert does not consider it as a code smell, i.e., a negative result. If
however the sample is marked by any of the other severity levels then the sample
should be considered as a positive result and thus as a code smell. In summary,
the samples contain 984, 1057, 454, and 806 positive cases of blob, data class,
feature envy, and long method, respectively. For negative results, 3092, 3012,
2883, and 2556 samples are available. The MLCQ dataset captures the contem-
porary understanding of professional developers towards code smells from 524
active Java open-source projects. This improves on other existing datasets that
either rely on graduate and undergraduate students to collect and review soft-
ware projects or use automatic code smell detectors tools that impose threshold
values from legacy literature, to identify certain types of code smells. However,
MLCQ is not ready to be used for our research as it does not provide any soft-
ware metric of the code samples and software projects. Therefore, we expanded
the dataset accordingly. Furthermore, since there are 14,853 reviews on 4,770
code samples, it is often more than one expert review on the same code samples.
We thus needed to pre-process the dataset. Next, we describe this step.

Pre-processing and Code Smell Selection. Expert reviewers can disagree
on the interpretation of a code smell on a given code sample, in particular to the
severity levels assigned to it. To combine the multiple reviews on a code sample
to a single result, we need to ensure the validity of the results. In other words, the
combined result must stay positive when the majority of the reviewers did not
evaluate the severity level of the code sample as none. Likewise, the combined
results must be negative if the majority assigned none to the sample. Thus,
we mapped the severity level of a review to a corresponding numerical severity
score (critical = 3, major = 2, minor = 1, none = 0), and calculated the average
severity score for each code sample. The result of the last step can be considered
as the average review score. If the experts agree on the definition of a code smell
but they have different opinions for the severity level, the approach still can
identify which sample is a certain type of code smells and which is not.

Table 1 presents the distribution of the number of reviews together with the
average of the average review score and standard deviation calculated for each
group of reviews separately. Surprisingly, for blob and data class, the review
results have no significant difference. However, when considering long method
and feature envy, we noticed a considerable disagreement on the reviews. For
blob, the variation is mostly within one category, either in critical to major
(occurring in one sample with 6 reviews) or in minor to none (as we see in
the cases of 3 to 5 reviews per sample). A similar situation happens when we
consider the data class. In case of feature envy, however, when there are four
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Table 1. Distribution of the number of reviews (first column). Per code smell, we
show for each encountered number of reviewers, the average of the average review
score (ARS) that was granted, as well as the average standard deviation (calculated
across standard deviations per code sample).

Rev. Blob Data class Feature envy Long method

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

No. of

Samp.

Average

ARS± Std

1 1562 0.00 ± 0.00 1566 0.00 ± 0.00 1954 0.00 ± 0.00 1967 0.00 ± 0.02

2 147 0.88 ± 0.12 147 0.49 ± 0.00 82 0.20 ± 0.16 162 0.68 ± 1.16

3 409 0.50 ± 0.70 411 0.66 ± 0.69 303 0.43 ± 0.73 302 0.00 ± 0.31

4 198 0.66 ± 0.84 196 0.79 ± 0.79 70 0.73 ± 0.97 73 0.96 ± 1.96

5 39 0.73 ± 0.88 39 0.87 ± 0.88 6 0.53 ± 0.87 7 0.97 ± 2.20

6 1 2.33 ± 0.52 1 0.00 ± 0.00 0 N/A 0 N/A

reviews for a sample, the combined severity score has a variation from none to
major, which indicates a diversity of reviewers’ opinions. This is not an incident,
as the numbers in the table refers to 70 samples. The situation for the long
method is even worse. There are 73 code samples with four reviews, leading to
an average of the average review score of 0.96 with a standard deviation of 1.96.
There are 7 code samples with 5 reviewers, having an average of the average
review score of 0.97 and standard deviation of 2.20. The high average standard
deviation in these two cases reveal a more spread out disagreement among the
human experts. Therefore, we decided to omit feature envy and long method
from our experiments.

Selecting Code Smell Detectors. Among all the popular tools in the litera-
ture [7,19,24], we selected PMD [22] because it is an active source code analyzer
that can automatically analyze a Java project to identify our targeted code
smells and also long method, by using metrics and threshold values. By explor-
ing PMD’s documentation, relevant sets of Java rules, and PMD source code, we
found that the latest version of PMD (6.35.0) available at the time of writing this
paper still adopts metrics and threshold values from [15]. Therefore, we decided
to use PMD as a representative of metric-based code smell detectors based on
threshold values from legacy literature to describe the characteristics of a class
containing a particular code smell.

PMD detects blobs by using the following metrics: weighted method count
(WMC), access to foreign data (AFTD), and tight class cohesion (TCC) [22].
PMD detects data classes by using the following metrics: weight of class (WOC),
number of public attributes (NOPA), number of accessor methods (NOAM),
and WMC are employed to identify a sign of encapsulation violation, poor data
behavior proximity, and strong coupling [22]. For long method, PMD uses 100
lines of code as a default threshold value to indicate excessive method length [22].
We could not find out on what study this value is based on. However, to the
best of our knowledge, there seems not to be a common agreement on threshold
values for long methods. According to the MLCQ dataset, the average length of
code samples identified as a long method is 20.7 lines, a threshold much lower
than the one used in PMD.
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Table 2. Performance of PMD methods against code smells determined by human
experts. The assessment of the human expert was labelled as code smell if the average
review was higher than 0.75.

Code smells TP TN FP FN Precision Recall F1-score

Blob 111 1822 207 186 0.349 0.374 0.361

Data class 80 1987 46 217 0.635 0.269 0.378

Long method 80 1830 326 166 0.197 0.325 0.245

As a preliminary experiment, we deploy the results from PMD on the classes
evaluated in the MLCQ dataset. As such, we compared the detection results
against the average review score we calculated from the MLCQ dataset. Because
there are a few archives of Java projects in the MLCQ datasets that are either
corrupted or no longer exist, we could only analyze and compare 518 projects
in total. These can be considered as a baseline of the contemporary understand-
ing of professional developers. Table 2 presents the comparison results in terms
of the number of true positive (TP), true negative (TN), false positive (FP),
false negative (FN), as well as precision, recall, and F1-Score.

From the comparison results, we can see that the metric-based approach is far
from being accurate when considering human experts’ perceptions of code smells.
The only exception is perhaps the precision of data class (with a poor recall),
but we will see later that even in this case, the machine learning approach will
perform better. Note that the precision scores are the lowest for long method,
indicating the discrepancy between the threshold value set by PMD and the
much lower perceived average value calculated from the expert reviews.

Collecting the Software Metrics. In order to deploy machine learning models
to detect code smells, we need to extract metrics from each code file. PMD is a
metric-based code smell detector, and the API allows us to extract the metrics
it calculates, which turns out to be a good starting point. When we employed
PMD to analyze the 518 Java open-source projects, PMD presented the code
smell identification results with the corresponding metrics. However, PMD does
not provide any metric information for the healthy classes and methods as well
as their locations in the project. In other words, PMD only provides positive
cases with a set of metrics and identified locations. To obtain the negative cases,
we customized PMD to present relevant metric information for every path PMD
traversed. For instance, when the customized PMD is run and the GodClass rule
(for detecting the code smell blob) for a Java program is called, WMC, AFTD,
and TCC are calculated for the examining class. Note that there are cases when
TCC cannot be calculated, e.g., there is no violation of a certain rule. In which
case, PMD presents NaN as the metric value.

Additionally, we employed the Understand tool by SciTools [26] version 6.0
(build 1055) to analyzed the 518 Java projects. Understand is static code anal-
ysis and code visualization tool that can analyze 60 metrics for Java, project
structure, and relationships among files, classes, functions, and variables. The
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metrics calculated by Understand also cover the CK metrics suite [4]. As a result,
we constructed another set of data containing a wide variety of metrics and a
very detailed program structure.

4 Empirical Study Definition and Evaluation

Generally, these machine learning models are induced based on a dataset D =
{(xj , yj) | j = 1, . . . , n} with n datapoints to map an input x to output f(x),
which closely represents y. In this setting, xi is typically the vector of numerical
features F(C) from some code block C. To deploy a machine learning classifier on
the task of predicting whether a certain piece of code is considered code smell, we
need to have a notion of ground truth (labels) and some features that describe
labeled pieces of code. The human expert described per class that was inspected
whether it is considered to be a certain type of code smell or not, representing
our n data points, and for each of these we now have label yj (human expert
assessment). The main challenge is representing a piece of code C as feature
vector F(C). For this, we will use two sources of features: features extracted by
PMD and features extracted by the Understand tool.

Although both Understand and the human experts report a fully-qualified
Java name (which can also be at a subclass in a specific file), PMD uses a
different convention. Although PMD is also capable of reporting at (sub-)class
level, it does not report the fully-qualified Java name, meaning that ambiguities
can arise with duplicated class names, when automatically making the mapping
with the class labels. We solve this by predicting code smells at the file level,
rather than at the class level. As such, we have more observations in our dataset
than actual observations from the human expert dataset. For each class in which
a code smell was detected, we now need to study all subclasses as well. If in either
of these a code smell was detected, we consider this file a positive case.

We are confronted with the following design choice. The human experts have
graded the code smell severity with four levels, i.e., none, minor, major and
critical. Additionally, since some code pieces were judged by multiple reviewers,
we have a broad range of severity levels. If we were to employ a binary classifier,
we have to decide from which severity level we consider a piece of code a positive
class (code smell). As such, we have to determine a severity threshold. To avoid
subjectivity, we run the experiment with various ranges of severity. The cate-
gorical assessments of the human experts are averaged as described in Sect. 3,
such that severity levels around 0 correspond to a negative class, severity levels
around 1 correspond to minor code smell, severity levels around 2 correspond to
major code smell, and severity levels around 3 correspond to critical code smell.
As such, the assumption is that when increasing the severity threshold, detect-
ing the code smell should become easier for the machine learning approach. We
ran the experiment several times, with each severity threshold ranging from 0.25
until 2.50 with intervals of 0.25.



26 C. Soomlek et al.

(a) Acc. Blob (b) Prec. Blob (c) Acc. Data class (d) Prec. Data class

Fig. 1. Results of various machine learning classifiers on prediction whether a certain
file has a code smell of the indicated type, where Acc. is accuracy and Prec. is precision.

5 Results and Discussion

We compared the performance of the machine learning approach in identifying
the code smell based on the ground truth decided by human experts. Although
we could use any model, we show decision tree [23] and random forest [3], as these
both have a good trade-off between performance and interpretability. Both are
used as implemented in Scikit-learn [21]. Additionally, we also show the major-
ity class classifier. As most important baseline, we employ the PMD classifier.
Indeed, the PMD classifier can also identify code smell based on its own decision
rules, and this can be evaluated against the ground truth set by human experts.
Note that the PMD classifier is a set of static decision rules, whereas the machine
learning models learn these patterns based on the data. Per figure, we show a
different performance measure: accuracy and precision. For the majority class
classifier we only show accuracy, as it fails to identify any positive class.

Figure 1a and b show the results for blob. The x-axis shows the severity
threshold at which a certain experiment was run, and the y-axis shows the perfor-
mance of the given experiment. As can be seen, the machine learning approaches
outperform both baselines in terms of accuracy and precision. Also in terms of
recall, the machine learning models are better than the PMD classifier for most
of the severity thresholds (figures omitted). It seems that the random forest has
a slight edge over the decision tree classifier, and also focuses slightly more on
precision.

For data class, the results in Fig. 1c and d confirm that the machine learning
techniques have superior accuracy and precision. Altogether, the results seem to
indicate that the machine learning techniques are capable of better identifying
blob and data class than the static PMD rules.

6 Conclusion and Future Directions

This research intends to mimic contemporary developer’s perception of code
smell to machine learning and support automated analysis. More specifically,
our first research question was ‘Can we mimic a developer’s perception of a code
smell?’

To this aim, we investigated which data we could leverage for building a
machine learning classifier. A recent and reliable dataset containing code smells
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and developers’ perceptions of the design flaws are crucial for this. MLCQ con-
tains four types of code smell, due to constraints with other tools we could use
two (data class and blob) for this research. This provides for a wide number of
classes information whether a developer considers it a code smell or not. As such,
we can employ a binary classifier. We enriched this dataset by automatically
extracted metrics from two common tools, i.e., Understand and PMD. These
features enable us to train machine learning models on the data and make the
machine learning model detect code smells. The machine learning models were
able to outperform a majority class baseline on all settings.

The second research question was ‘How does machine learning perform when
comparing to existing tools?’ We compared this machine learning model to PMD,
a static metric-based code smell detection tool. We employed both the random
forest and decision tree classifier, in settings that had to classify code smells from
various severity levels. We measured both accuracy and precision. The results
indicate that the machine learning-based models outperform the metric-based
tool for both code smells.

Finally, we also make the dataset derived from MLCQ and developed in
this research publicly available on OpenML [29]. The dataset would elevate and
support advanced studies in the research areas.
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Abstract. In this paper, we propose a novel method for extracting infor-
mation from HTML tables with similar contents but with a different
structure. We aim to integrate multiple HTML tables into a single table
for retrieval of information containing in various Web pages. The method
is designed by extending tree-structured LSTM, the neural network for
tree-structured data, in order to extract information that is both linguis-
tic and structural information of HTML data. We evaluate the proposed
method through experiments using real data published on the WWW.

1 Introduction

Tables in Web pages are useful for displaying data representing relationships.
We can find them on Web pages showing, for example, syllabus in universi-
ties, product information in companies, and flight information in airlines. Our
research aims at integrating tables from various pages but representing the same
type of relational data into a single table for retrieval of information. In this
paper, we propose a novel method, called HTML-LSTM, for extracting informa-
tion from tables in HTML with the same type of contents but with a different
structure.

When we browse Web pages, tables representing the same type of relation-
ships look to have similar visual structures but may not be matched completely.
In some tables, every tuple is represented in a row, and in other pages, it is in a
column. The ordering features (or attributes) may be different. Moreover, they
are not always presented as similar HTML source code because different pages
are usually designed by different organizations. The source code may contain
noises such as codes for visual decorations and additional information. There-
fore in order to extract and amalgamate relations from tables in different Web
pages, we need to unify them in a common set of features (that is, relational
schema), as well as in the structure in the level of HTML source codes. For
this purpose, many methods have been proposed [2], but they work well only
for HTML tables having almost the same structure in source codes or for the
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case where each feature to be extracted clearly differs from each other. There-
fore, extracting and amalgamating relations from tables of similar content but of
non-uniform structure is still a major challenge. We solve this problem by using
neural networks developed recently and present our solution as HTML-LSTM.

Some neural networks for extracting effectively features from tree and graph
structures have been proposed [5,7,13,25]. The Tree-LSTM [25] neural network
is a generalization of LSTM to handle tree-structured data, and it is shown
that the network effectively works mainly as a feature extractor for parse trees
in the field of natural language processing. Since the source codes of HTML
are also parsed into tree structures, we extend Tree-LSTM into HTML-LSTM
for extracting features in relational data and tree structure from HTML data
simultaneously.

We cannot apply Tree-LSTM to HTML data for the following reason: In
parse trees of texts in natural language, linguistic information is given only in
the leaves, while the other nodes are given information about the relationship
between words. Therefore, Tree-LSTM transfers information in the direction
from the leaves to the root and is often has been applied to tasks such as machine
translation and sentiment analysis [6,25]. On the other hand, when an HTML
source code is parsed into a tree, information is attached not only leaves but
internal nodes and the root. In addition, when extracting the features of each
element in HTML source codes for tables representing relational data, the path
from the root tag <table> to the element is quite essential. This means that
for extracting information from table data, manipulating parsing trees in the
direction from the root to leaves as well as in the direction from leaves to the
root. Therefore HTML-LSTM is designed so that information can be transferred
in both directions.

In applying HTML-LSTM to information extraction from real HTML data,
we first extract the substructure of a table in the data and convert it into a tree.
Next, we extract features from the obtained tree structure using HTML-LSTM
and classify the features to be extracted for each node. Finally, we integrate
the extracted information into a new table. We also introduce a novel data
augmentation method for HTML data in order to improve the generalization
performance of information extraction.

We evaluate and confirm the effectiveness of the HTML-LSTM method for
integrating HTML data formats by applying the method explained above to
tables of preschools of local governments and tables of syllabuses published by
universities, which are published on the Web. As the results, we succeeded in
extracting the required information with an accuracy of an F1-measure of 0.96
for the data of preschools and an F1-measure of 0.86 for the syllabus data. Fur-
thermore, our experimental results show that HTML-LSTM outperforms Tree-
LSTM.

This paper is organized as follows. In Sect. 2, we describe previous methods
for extracting information from Web pages. In Sect. 3, we introduce the archi-
tecture of our proposed method, HTML-LSTM, and how to use HTML-LSTM
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for information extraction. In Sect. 4, we summarize the results of experiments
using HTML data on the Web. Finally, in Sect. 5, we provide our conclusion.

2 Related Work

Extracting information from documents and websites and organizing it into
a user-friendly form is called information extraction and is widely studied.
The research field originates with the Message Understanding Conference
(MUC) [8,24], which started in the 1980s. At this conference, every year, a
competition is held to extract information from newspapers on, for example,
terrorist activities, product development, personnel changes, corporate merg-
ers, rocket launches, and participants competed for some scores evaluating their
technique for information extraction.

In the early years of the research area, rule-based methods were widely
used [4,22], where rules are defined based on features such as the representa-
tion of the characters of the tokens in the sentence, the notation of the tokens
(uppercase, lowercase, mixed case of uppercase and lowercase, spaces, punctu-
ation, etc.), and the parts of speech of the tokens. Such rule-based methods
require experts who manually create rules depending on the types of objects
they want to extract. Since it is very time-consuming, algorithms have been
developed to automatically create rules using labeled data [1,3,23]. In recent
years, statistical methods have also been used in order to treat documents
which may have many noises. Example of methods are Support Vector Machine
(SVM) [26], Hidden Markov Model (HMM) [21], Maximum Entropy Markov
Model (MEMM) [17], Conditional Markov Model (CMM) [16], and Conditional
Random Fields (CRF) [19].

Our key idea is to introduce natural language processing methods for infor-
mation extraction and simultaneously handle structural and linguistic informa-
tion. Every Web page is written as a source code in HTML, with a clear tree
structure after parsing it. The method to extract a specific part from a Web
page using the structural information is called Web wrapper [14]. Some of the
methods extract information by regarding a specific part in a Web page as data
in a tree structure [11,18]. These methods work for Web pages of almost similar
structure, and it is difficult to apply them to pages whose structure is completely
different, but the meaning of them is the same. This situation often appears in
tables representing relational data.

Other types of methods are treating linguistic features of Web pages based
on natural language processing, in other words, treating the meaning of the
texts on each page. These methods have the disadvantage that they cannot cap-
ture the structure of pages. However, natural processing has greatly advanced
thanks to the introduction of greatly improved neural network techniques. Some
researchers propose new types of neural networks which treat the parsing tree
of texts in natural languages. This motivates us to apply such neural networks
to extracting information taking into account structure and meaning simultane-
ously.
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Fig. 1. The HTML-LSTM framework for information extraction and integration from
HTML tables in web pages

3 HTML-LSTM

The overview of our proposed method is shown in Fig. 1. First, we extract the
substructure of the table from the entire HTML data. Since Table tags (<table>
</table>) are usually used to represent tables in HTML, we can extract the
table by focusing on the region surrounded by the table. tags. Next, we convert
the HTML data into a tree structure called DOM tree so that HTML-LSTM can
take it as its input. Then, the obtained tree structure data is input to HTML-
LSTM for feature extraction, and the obtained features of nodes are used to
classify which attribute values each node belongs to. Finally, we pick up the
nodes’ information classified into the extraction target’s attribute values and
integrate the information in a new single table.

3.1 Extracting Information

In this subsection, we explain the details of HTML-TLSM and the extraction of
information from HTML data using it. The workflow of information extraction
is shown in Fig. 2. First, each element of the HTML data is encoded using Bi-
LSTM (Bidirectional LSTM) [10,20] in order to obtain the language representa-
tion of each element. Next, HTML-LSTM is applied to obtain the features of the
HTML data, considering the relationship between the positions of the elements
in the parsed tree. In order to use the information of the whole tree structure of
HTML data effectively, HTML-LSTM extends Tree-LSTM, in which the informa-
tion flows only from leaf to root, to enable the flow of information from root to
leaf as well as from leaf to root. Finally, the features of each node obtained by the
HTML-LSTM are passed through the fully connected layer, and the softmax clas-
sifier is applied to determining which attribute value each node is classified as.

Encoding of HTML Data: The DOM tree that is fed into HTML-LSTM is
obtained by parsing the HTML source code. In general, when parsing HTML
data to a tree, the values of the nodes in the tree structure are HTML tags. In
our method, in order to extract information by effective use of the linguistic and
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Fig. 2. The workflow of information extraction using HTML-LSTM

structural information of HTML, each node of the tree has three types of values:
the HTML tag, the text between the start and end tags, and the PoS (part-
of-speech) tags of the text, as shown in Fig. 3. The extracted text is treated
as a sequence of words. The PoS tag is the sequence of parts-of-speech data
corresponding to the sequence of words of the text. If the attribute names to be
extracted differ from a Web page to a Web page, a dictionary is used to unify
the attribute names. Finally, the obtained tree is converted into a binary tree
because HTML-LSTM accepts only binary trees as input.

After converting the HTML data into a binary tree, the text, the sequence of
PoS tags, and the HTML tag in each node are converted using a neural network
to a representation for input to the HTML-LSTM. In particular, we combine
the one-hot encoding of the tag tj of a node j and the text wj and PoS tags
pj converted by the embedding matrices Econtent and Epos, and feed them to
Bi-LSTM:

ej
t =
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j
t )‖Epos(p

j
t )

]
,
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where onehot is a function that converts a tensor to one-hot a representation
and ‖ is the concatenation of two tensors. The function

−−−−→
LSTM is the forward

LSTM and
←−−−−
LSTM is the backward LSTM of the Bi-LSTM. The outputs at the

last time T of the forward and backward LSTMs are combined to obtain the
representation xj =

[−→
hT ‖←−

hT

]
for each node.
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Fig. 3. Example of converting HTML data to a tree structure

HTML-LSTM: HTML-LSTM is composed of Upward Tree-LSTM, in which
information flows from leaves to roots, and Downward Tree-LSTM, in which
information is transmitted from roots to leaves. Upward Tree-LSTM uses Binary
Tree-LSTM [25]. The model is expressed as follows:

ij = σ
(
W (i)xj +

∑

k∈{L,R}
U (i)

k hj
k + b(i)

)
,

f j
[L,R] = σ

(
W (f)xj +

∑

k∈{L,R}
U (f)

[L,R]khj
k + b(f)

)
,

oj = σ
(
W (o)xj +

∑

k∈{L,R}
U (o)

k hj
k + b(o)

)
,

uj = tanh
(
W (u)xj +

∑

k∈{L,R}
U (u)

k hj
k + b(u)

)
,

cj = ij � uj +
∑

k∈{L,R}
f j

k � cj
k,

hj = oj � tanh
(
cj

)
.

Upward Tree-LSTM has a forget gate f j , an input gate ij , an output gate oj , a
memory cell cj , and a hidden state hj , just like a simple LSTM. In the expres-
sions, σ denotes the sigmoid function and � denotes the element-wise product.
Both of the parameters W and U are weights, and b is the bias. All of these
parameters are learnable. As shown in Fig. 4a, Upward Tree-LSTM is a mecha-
nism that takes two inputs and gives one output. In this case, the forget gate uses
its own parameters UL and UR to select the left and right children’s information
cj
L, cj

R.
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On the other hand, Downward Tree-LSTM, in which information flows from
roots to leaves, is as follows:

ij = σ
(
W (i)xj + U (i)hj + b(i)

)
,

f j
[L,R] = σ

(
W (f)xj + U (f)
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)
,
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[L,R] = σ

(
W (o)xj + U (o)

[L,R]h
j + b(o)

)
,

uj = tanh
(
W (u)xj + U (u)hj + b(u)

)
,
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∑

k∈{L,R}
f j

k � cj ,

hj
[L,R] = oj

[L,R] � tanh(cj
[L,R]).

As shown in Fig. 4b, this mechanism takes one input and gives two outputs. In
this case, the forgetting gate generates two outputs by operating on the input cj

with different parameters UL and UR, so that the model can choose information
to transmit to the left and right children.

Finally, we combine the Upward Tree-LSTM hidden state hj
↑ and the Down-

ward Tree-LSTM hidden states hj
l↓, hj

jr↓ to obtain hj = [hj↑‖hjl↓‖hjr↓] as the
feature of each node. A softmax classifier predicts the label ŷj from among the
N classes,

p = softmax
(
W (s)hj + b(s)

)
,

ŷj = arg max
i∈{1,...,N}

pi,

where W (s), b(s) are the learnable parameters. The set of labels consists of the set
of attributes to be extracted and a special label Other that does not belong to
any of the attributes to be extracted. For example, when extracting the attributes
Name andAge from the table shown in Fig. 1 (left), there are three types of classes:
Name, Age, and Other. The attribute values “Hirai” and “8” in the table belong to
the class of Name and Age, respectively, while the attribute value “hirai@ghi” and
the attribute names “Name”, “Age”, and “Email” belong to the class ofOther. We
classify all the nodes in the HTML tree to determine what attribute each node is
(or is not included in any of the attributes to be extracted).

Every HTML source code may contain much information that is not required
to be extracted and noise for decoration. In treating real data, most nodes are not
the target of extraction, and therefore the trees as the inputs of HTML-LSTM
tend to be imbalanced. In order to treat such trees, we use Focal Loss [15] which
is an extension of Cross-entropy Loss to deal with class imbalance. Focal Loss is
defined as follows with the correct label N and one-hot vector t:

Lfocal = −αi

N∑

i=1

(1 − pi)
γ

ti log (pi) ,

where αi is the frequency inverse of each class and γ is the hyperparameter.
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Fig. 4. HTML-LSTM architecture
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Also, in order to improve scores of the model’s recall and precision in a well-
balanced way, F1 loss is used jointly. The F1 Loss is given by 1 − F1, where F1

is the average of the F1 measures of each class. This is denoted as Lf1, and the
final loss function L is given as

L = Lfocal + Lf1.

Furthermore, the table data on the Web is equivalent to the original data
even if the order of the rows and columns of the table is changed. Therefore,
we introduce a data augmentation technique that randomly changes the order
of rows and columns, thereby increasing the number of HTML data used for
training.

3.2 Integrating Information

After classifying the class of each node in the HTML tree using HTML-LSTM,
we extract the required information from the tree and integrate it into a new
table. For each class (attribute), the node with the highest classification score in
the HTML tree is selected, and the text of that node is extracted and put into
the table. Here, the classification score is the maximum value of the output of
the softmax classifier for each class, i.e., max

i
pi. The left side of Fig. 5 shows an

example of the tree after classifying the class of each node. Each node contains
the text of the original element (top row in the box), the class with the highest
classification score (bottom row left in the box), and the classification score
(bottom row right in the box). For example, to extract the information of Name
class from this tree, extract the text of the node elements classified as Name
class. In this case, the only node classified in the Name class is “Tanaka”, so
we extract “Tanaka” as the Name information of this HTML tree and put it in
the table. In the same way, when we extract the Age class information, we find
that there are two nodes classified as Age class: “12” and “None”. Comparing
the classification scores, the classification score of “12” is 0.87, and “None” is
0.23. Since the score of “12” is higher, we extract “12” as the Age information
of this HTML tree and put it in the table. However, if multiple values should be
classified into a certain class, there will be omissions in the extraction. Therefore,
when it is expected that there are multiple values classified into a certain class in
the web table, a threshold value is set, and all the texts of the nodes that exceed
the threshold value are extracted. For example, suppose that in a given HTML
tree, there are three nodes classified into the Name class, “Tanaka”, “Suzuki”,
and “Apple” with classification scores of 0.97, 0.89, and 0.23, respectively. If the
threshold is set to 0.5, then “Tanaka” and “Suzuki” will be extracted as the
Name class information for this tree.

3.3 Implementation Details

The dimensions of the hidden layer of the model are 128 and 5 for the embed-
ding layer of the text and part-of-speech tags, respectively, in the information
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Fig. 5. Example of information integration

embedding part of the HTML data. The dimensions of the hidden layer of the
HTML-LSTM are 64, and the dimensions of the linear layer used for classifica-
tion are 64.

We use Adam [12] as the optimization algorithm, with a minibach size of
128. The learning rate starts from 10−2 and is divided 2 every 15 epochs, and
the model is trained for 50 epochs. The parameters of Adam are α of 10−2, β1

of 0.9 and β2 of 0.999. We use Dropout [9] with a probability of 0.5 is used to
prevent overfitting.

4 Experiments

We evaluate our method on tables of preschools published by local governments
and tables of syllabus published by universities. These data are published on
the Web, and the information is presented using table structures represented by
HTML. For evaluation, we use Recall, Precision, and their harmonic mean, F1

measure. F1 measure and Precision and Recall are defined by

F1 = 2 · Precision · Recall
Precision + Recall

,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP , TN , FP , and FN are the true positives, true negatives, false posi-
tives, false negatives, respectively.

4.1 Experiments on Preschool Data

Many local governments publish a list of preschools in their localities in a table on
the Web. Those pages have common information, such as the preschools’ name,
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Table 1. Information extraction result for the preschool data

Attribute Precision Recall F1 measure

name 0.94 1 0.97

address 0.92 1 0.96

telephone number 0.87 1 0.92

other 1 0.98 0.99

mean 0.93 0.99 0.96

Table 2. Information integration result for the preschool data

address, and phone number, but each page has a different HTML structure. In
this experiment, we extracted and integrated the information of name, address,
and phone number from these pages. We collected a total of 47 HTML data from
47 local governments that contain information on preschools for the experiment.
The HTML data were converted into a tree with a text, PoS tags, and HTML
tags at each node. The obtained ordered trees had 22–249 nodes (107 nodes on
average) and contained 16 types of PoS tags. Since the data collected for the
experiment was in Japanese, the word boundaries are not obvious. Therefore,
the series of text and PoS tags were obtained by morphological analysis using
Janome1. We also unified attribute names that have the same meaning but
different notation, and labeled each node manually. The classes were four types
of labels: name, address, phone number, and other.

Table 1 shows the results of information extraction for each attribute in the
case of 10 fold cross-validation of preschool data. Table 2 shows the integrated
table of the information extracted from the preschool data. We can see that
our model does good work on information extraction and integration from these
results.

1 https://mocobeta.github.io/janome/.

https://mocobeta.github.io/janome/
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Table 3. Information extraction result for the syllabus data

Attribute Precision Recall F1 measure

course title 0.76 0.82 0.77

instructor name 0.81 0.79 0.80

target student 0.90 0.76 0.82

target year 0.94 0.75 0.83

year/term 0.97 0.83 0.89

day/period 0.89 0.87 0.88

number of credits 0.83 0.94 0.88

other 0.99 0.99 0.99

mean 0.89 0.84 0.86

4.2 Experiments on Syllabus Data

The syllabus is the data which shows the contents of lectures in universities
and is published on the Web by many universities, mainly using a table format.
We collected the syllabus from 22 different universities on the Web and used the
HTML data of 20,257 pages for the experiment. The syllabus data was converted
into a tree structure in the same way as the data of preschools, and the attribute
names with different notations were unified and labeled. The obtained ordered
tree has 19 to 1,591 nodes (109 on average) and contains 25 kinds of tags. Since
some of the obtained trees contain much noise other than necessary information,
we clipped the nodes after the 100th node in the post-order in the syllabus data.
The extracted attributes are course title, instructor name, target student, target
Year, year/term, day/period, and number of credits. Therefore, there are eight
types of labels in the syllabus data, including other in addition to these seven
classes.

Table 3 shows the results of information extraction for each attribute in the
case of 5 fold cross-validation of syllabus data. In each split, 18 (or 17) of
the 22 universities were used for training, and 4 (or 5) were used for testing.
Table 4 shows the integrated table of the information extracted from the syl-
labus data. The F1 measure of the information extraction in the syllabus data is
less than that in the preschool data. We believe this is because more attributes
are extracted than in the preschool data, and more noise is included in the syl-
labus data. The result of the information integration shows that information can
be extracted even in the blank areas (i.e., areas that originally had no informa-
tion). This shows that our model can use not only linguistic information but also
structural information.
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Table 4. Information integration result for the syllabus data

Table 5. Ablation study result

Method F1 measure

Tree-LSTM [25]
(Upward Tree-LSTM)

0.8285

HTML-LSTM
(Upward Tree-LSTM + Downward Tree-LSTM)

0.8414

HTML-LSTM
w/ HTML data augmentaion 0.8575

4.3 Ablation Experiments

We conducted ablation studies to investigate the effect of adding root-to-leaf
information transfer, which is the opposite direction of the traditional Tree-
LSTM, and the effect of HTML data augmentation introduced in this study.
In the HTML data augmentation, the order of any pair of rows and any pair
of columns in the table was switched with a probability of 0.5. The setting of
the experiment is the same as the previous experiment on syllabus data, and we
compare the average values of all classes of F1 measure of the traditional Tree-
LSTM, our HTML-LSTM, and the HTML-LSTM with data augmentation.

The results are shown in the Table 5. This result shows that the ability of
information extraction can be improved by using not only the root-to-leaf direc-
tion but also the leaf-to-root direction. We can also see that the data augmen-
tation of HTML can further improve the accuracy of information extraction.



42 K. Kawamura and A. Yamamoto

5 Conclusion

In this paper, we proposed HTML-LSTM, a method for extracting and inte-
grating required information from tables contained in multiple Web pages. The
method is an extension of Tree-LSTM, which is mainly used in the field of nat-
ural language processing and extracts words in texts attached to the leaves of
DOM trees of HTML data in a bottom-up manner. Our method treats DOM
trees in a bottom-up manner and then a top-down manner to extract sequences
of part-of-speeches and tags attached to nodes in the DOM trees. We applied
HTML-LSTM to a list of childcare facilities and syllabus data that are opened
on the Web and confirmed that HTML-LSTM could extract information with
F1 measures of 0.96 and 0.86, respectively.

In the future, we would improve HTML-LSTM to extract information from
fragments of HTML data other than tables. Such fragments are also transformed
into DOM trees. For tables or lists, some special tags are prepared in HTML,
but other fragments may not have such tags. In order to overcome the prob-
lem, choosing good positive and negative examples would be important. Also,
modifying the HTML-LSTM algorithm would be needed.

References

1. Aitken, J.S.: Learning information extraction rules: an inductive logic programming
approach. In: ECAI, pp. 355–359 (2002)

2. Chang, C.H., Kayed, M., Girgis, M., Shaalan, K.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

3. Ciravegna, F.: Adaptive information extraction from text by rule induction and
generalisation. IJCAI 2, 1251–1256 (2001)

4. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework
and graphical development environment for robust NLP tools and applications. In:
ACL, pp. 168–175 (2002)

5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NeurIPS, pp. 3844–3852 (2016)

6. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural
machine translation. In: ACL, vol. 2, pp. 823–833 (2016)

7. Goller, C., Kuechler, A.: Learning task-dependent distributed representations by
backpropagation through structure. Neural Netw. 1, 347–352 (1996)

8. Grishman, R.: Message understanding conference-6: a brief history. In: COLING,
pp. 466–471 (1996)

9. Hinton, G.: Dropout: a simple way to prevent neural networks from overfitting.
JMLR 15, 1929–1958 (2014)

10. Hochreiter, S., Urgen Schmidhuber, J.: Long short-term memory. Neural Comput.
9(8), 1735–1780 (1997)

11. Kashima, H., Koyanagi, T.: Kernels for semi-structured data. In: ICML, pp. 291–
298 (2002)

12. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR
(2015)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)



HTML-LSTM: Information Extraction from HTML Tables in Web Pages 43

14. Kushmerick, N.: Wrapper induction: efficiency and expressiveness. Artif. Intell.
118(1–2), 15–68 (2000)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. In: ICCV, pp. 3844–3852 (2017)

16. Malouf, R.: Markov models for language-independent named entity recognition.
In: CoNLL, pp. 187–190 (2002)

17. Michael, A.: Maximum entropy Markov models for information extraction and
segmentation Andrew. In: ICML, pp. 591–598 (2000)

18. Muslea, I., Minton, S., Knoblock, C.: Active learning for hierarchical wrapper
induction. In: AAAI, p. 975 (1999)

19. Peng, F., McCallum, A.: Information extraction from research papers using con-
ditional random fields. Inf. Process. Manage. 42(4), 963–979 (2006)

20. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Sig. Process. 45(11), 2673–2681 (1997)

21. Seymore, K., Mccallum, A., Rosenfeld, R.: Learning hidden Markov model struc-
ture. In: AAAI Workshop, pp. 37–42 (1999)

22. Shaalan, K., Raza, H.: Arabic named entity recognition from diverse text types.
In: Nordström, B., Ranta, A. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp.
440–451. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85287-
2 42

23. Soderland, S.: Learning information extraction rules for semi-structured and free
text. Mach. Learn. 34(1), 233–272 (1999)

24. Sundheim, B.M.: Overview of the fourth message understanding evaluation and
conference. In: 4th Message Understanding Conference, pp. 3–22 (1992)

25. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. In: ACL-IJCNLP, vol. 1, pp.
1556–1566 (2015)

26. Takeuchi, K., Collier, N.: Use of support vector machines in extended named entity
recognition. In: COLING, pp. 1–7 (2002)

https://doi.org/10.1007/978-3-540-85287-2_42
https://doi.org/10.1007/978-3-540-85287-2_42


Predicting Reach to Find Persuadable
Customers: Improving Uplift Models for

Churn Prevention
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Abstract. Customer churn is a major concern for large companies
(notably telcos), even in a big data world. Customer retention campaigns
are routinely used to prevent churn, but targeting the right customers on
the basis of their historical profile is a difficult task. Companies usually
have recourse to two data-driven approaches: churn prediction and uplift
modeling. In churn prediction, customers are selected on the basis of their
propensity to churn in a near future. In uplift modeling, only customers
reacting positively to the campaign are considered. Though uplift is bet-
ter suited to maximize the efficiency of the retention campaign because of
its causal aspect, it suffers from several estimation issues. To improve the
uplift accuracy, this paper proposes to leverage historical data about the
reachability of customers during a campaign. We suggest several strate-
gies to incorporate reach information in uplift models, and we show that
most of them outperform the classical churn and uplift models. This is
a promising perspective for churn prevention in the telecommunication
sector, where uplift modeling has failed so far to provide a significant
advantage over non-causal approaches.

Keywords: Causal inference · Churn prediction · Uplift modeling

1 Introduction

The telecommunication market is saturated, and companies need to invest in
customer relationship management to keep their competitive edge. It is com-
mon knowledge that preventing churn is less expensive than attracting new
customers [11]. The classical strategy for churn prevention consists in ranking
customers according to their churn risk and offering the most probable to leave
an incentive to remain (e.g. a promotional offer). Predicting churn is a difficult
problem, involving large class imbalance, high dimension, latent information, low
class separability, and large quantities of data. A wide variety of machine learning
models have been applied to this problem in the literature [13,19,21,22,26,30].
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 44–54, 2021.
https://doi.org/10.1007/978-3-030-88942-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88942-5_4&domain=pdf
http://orcid.org/0000-0002-2047-5690
http://orcid.org/0000-0001-8621-316X
https://doi.org/10.1007/978-3-030-88942-5_4


Predicting Reach to Find Persuadable Customers 45

Fig. 1. Overview of the pipeline for customer retention.

The pipeline for a typical customer retention campaign is outlined in Fig. 1.
First, a predictive model is trained on historical data from past campaigns.
Then, this model predicts a score for each customer and ranks them accordingly.
The list of customers with the highest scores is randomly split in a target and
a control group, and the target group is sent to a call center. The call center
contacts each of them individually, and the reaction of the customer is recorded
and added to the historical data set for training future models.

The customers’ ranking is provided by a predictive model estimating the
probability of churn. This approach, however, disregards the causal aspect of
the problem. Targeting high-risk customers is not necessarily the best strategy:
for instance, some customers slightly less inclined to churn could be far more
receptive to retention offers, and focusing the campaign on these customers could
be more effective. This idea is exploited by uplift models, which estimate the
causal effect of the campaign on an individual customer, rather than the risk of
churn [10]. A wide variety of uplift models has been developed in the literature [1,
8,14,17,29].

However, the added value of uplift modeling over churn prediction has been
seldom assessed empirically. While it is clear that uplift is less biased than churn
for estimating causal effects, the gain in performance is debated and context-
dependent [5,7,27]. In settings such as customer retention, characterized by non-
linearity, low class separability, and high dimensionality, the theoretical advan-
tages of uplift might be insufficient to outweigh its drawbacks with respect to
the usual strategy of churn prediction.

In this article, we suggest leveraging information about the reaction of the
customer to the campaign to improve uplift estimation. In the marketing domain,
reach denotes the proportion of the population exposed to the campaign, more
specifically for advertisement campaigns [6]. In this article, we define reach as
the reaction of the customer to the attempted call, that is, whether or not the
customer picked up the phone and had a conversation with the phone operator.
This variable is potentially informative about customer behavior, and, as a result,
could improve the estimation of customer uplift. It is important to note that
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reach is only known after the campaign. Thus, it cannot be simply added as
input to the model as an additional feature. We have to devise a dedicated
approach to incorporate it into the learning process. In this sense, reach serves
as an inductive bias for the uplift model, rather than an additional predictive
feature. This paper shows that an uplift model, properly adapted to account
for this new source of information, provides a significant improvement over the
state-of-the-art.

The main contributions of this paper are:

– The proposal of 4 original strategies to incorporate reach in uplift models.
– An assessment of these strategies on a real-world data set from our industrial

partner Orange Belgium, a major telecom company in Belgium.
– A significant improvement of uplift estimation, clearly outperforming state-

of-the-art uplift models and the classical churn prediction approach.

The rest of this paper is divided as follows. In Sect. 2, we define basic notions
in churn prediction and uplift modeling. In Sect. 3, we present reach modeling
and various strategies to improve uplift estimation. In Sect. 4, we evaluate these
strategies against several baselines, and we present our results in Sect. 5. We
discuss our findings and suggest future work in Sect. 6.

2 Churn Prediction and Uplift Modeling

In what follows, uppercase letters denote random variables, bold font denotes
sets, and lowercase letters denote realizations of random variables. Causal infer-
ence notions are formalized using Pearl’s notation [23]: an intervention fixing a
variable T to a value t is noted do(T = t), and a random variable Y in a system
under such an intervention is noted Yt. For example, Y0 is the churn indicator
when the customer is in the control group (T = 0), whereas Y1 is the churn
indicator for the target group. We also denote customer features by a set of
variables X, with a realisation x. Finally, R is the reach indicator (R = 1 for
reached customer, R = 0 otherwise).

Let us first formalize in probabilistic terms the two main approaches for
selecting customers in a retention campaign: churn prediction and uplift mod-
eling. Churn prediction estimates the probability P (Y = 1 | X = x) that a
customer churns (Y = 1) given the customer descriptive features x. Typical
examples of descriptive features are tariff plan, metadata on calls and messages,
mobile data usage, invoice amount, customer hardware, etc. Conventional super-
vised learning models can be used to predict churn [16,20,24,25]. An extensive
review of machine learning for churn prediction is given in [15]. The main draw-
back of this approach is the absence of causal insight: in fact, there is no indi-
cation that the campaign will be most effective on customers with a high prob-
ability of churn. The causal perspective is instead adopted by uplift modeling.

Uplift modeling estimates the causal effect of the campaign on the customer’s
probability of churn. To estimate this effect, it considers two scenarios: the inter-
vention case do(T = 1) (i.e. the customer is offered an incentive) vs the control
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case do(T = 0) (i.e. the customer is not contacted). The uplift is the difference
in the probability of churn between these two scenarios. For a set of descriptive
features X = x, it is

U(x) = P (Y0 = 1 | X = x) − P (Y1 = 1 | X = x). (1)

Note that, unlike probabilities, uplift can be negative. A negative uplift indicates
that the customer is more likely to churn when contacted by the call center. An
uplift model is trained on historical data from one or more past campaigns with
a randomized group assignment (target or control). The reaction of the customer
(e.g. stay or churn) is then monitored for a fixed period of time, typically some
months. The group assignment and customer churn records can then be used
to update the historical data set, and subsequently train a new uplift model.
Several approaches exist to estimate uplift, either using one or more predictive
models [14,17] or estimating uplift directly [1,8,29]. For a review of state-of-the-
art uplift models, we refer the reader to [10].

3 Reach Modeling

While uplift modeling is theoretically unbiased for maximizing campaign effi-
ciency, there is some evidence in the literature that it suffers from estimation
issues [7,27]. This aspect can be so relevant as to cancel the benefits related to
its causal design. Nevertheless, there is an additional piece of information that
can be used to improve uplift estimation: the reaction of the customer to the
call. More specifically, some customers will not pick up the phone, will hang up
immediately, or more generally will not respond positively to the call. This infor-
mation, automatically recorded by the call center, is a strong marker of customer
receptivity. In email and online advertisement, a similar notion exists, under the
name of click-through-rate [28] or response rate [12]. Although response mod-
els have been developed to improve direct marketing [2,9,12], current literature
on uplift modeling ignores this information during the learning process. Expert
knowledge in the telecom sector indicates that customers who do not pick up the
phone or hang up immediately should be avoided because targeting them can
increase their propensity to churn. We denote with R = 1 reached customers, i.e.
customers who picked up the phone and had a dialogue with the phone operator.
Otherwise, the customer is deemed unreached (R = 0). We present three ways
to integrate reach information to improve uplift estimation. The four resulting
equations are summarized in Table 1.

Reach Probability as a Feature. The first approach (called R-feature) consists
in building a predictive model of reach from historical data, and integrating the
reach probability r̂ among the input features of the uplift model. Note that we
cannot directly plug the reach indicator as an input feature, since such informa-
tion is not available before the campaign. This approach consists in learning the
function U(x) = P (Y0 = 1 | x, r̂) − P (Y1 = 1 | x, r̂).
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Decomposition of Probability. The second approach (R-decomp) is based on the
decomposition of the probability of churn with respect to the reach:

U(x) = P (Y0 = 1 | x) − P (Y1 = 0 | x) (2)
= P (Y0 = 1 | x) − P (R1 = 0 | x)P (Y1 = 1 | x, R1 = 0)

− P (R1 = 1 | x)P (Y1 = 1 | x, R1 = 1) (3)
= P (Y0 = 1 | x) − P (R1 = 0 | x)P (Y1 = 1 | x, R1 = 0)

− [1 − P (R1 = 0 | x)]P (Y1 = 1 | x, R1 = 1) (4)
= P (Y0 = 1 | x) − P (Y1 = 1 | x, R1 = 1)
+ P (R1 = 0 | x) [P (Y1 = 1 | x, R1 = 1) − P (Y1 = 1 | x, R1 = 0)] . (5)

The last equation contains 5 terms but can be estimated with two uplift models
and a simple classifier. The first two terms, P (Y0 = 1 | x) − P (Y1 = 1 | x, R1 =
1), can be estimated with a uplift model by restricting the target group to
reached customers. The third term, P (R1 = 1 | x), can be estimated by a
predictive model of reach. The last two terms between brackets, P (Y1 = 1 |
x, R1 = 1) − P (Y1 = 1 | x, R1 = 0), can also be returned by an uplift model,
but using the reach indicator R instead of T as the treatment indicator for the
model.

Bounds on Uplift. In marketing, there is empirical evidence that non-reached
customers tend to have a negative uplift. Not reaching a customer has thus a
doubly detrimental effect: the resources of the call center are wasted, and the
customer is more likely to churn than if no call had been made. This domain
knowledge may be translated into an inequality P (Y1 = 1 | x, R1 = 0) ≥ P (Y0 =
1 | x). We derive the third approach (R-upper) using this assumption and the
decomposition in Eq. (3):

U(x) = P (Y0 = 1 | x) − P (Y1 = 1 | x)
≤ (1 − P (R1 = 0 | x))P (Y0 = 1 | x)

− P (Y1 = 1 | x, R1 = 1)P (R1 = 1 | x)
= P (R1 = 1 | x) [P (Y0 = 1 | x) − P (Y1 = 1 | x, R1 = 1)] . (6)

Equation (6) requires two models: a simple predictive model of the reach variable
(using only the target group), and an uplift model where the target group has
been restricted to reached customers.

A symmetrical reasoning may lead to the hypothesis that a reached customer
is less likely to churn than if not contacted: P (Y1 = 1 | x, R1 = 1) ≤ P (Y0 = 1 |
x). From such assumption and (3), we derive a lower bound:

U(x) ≥ P (R1 = 0 | x) [P (Y0 = 1 | x) − P (Y1 = 1 | x, R1 = 0)] . (7)

Equation (7) is similar to Eq. (6) but it requires the probability of not being
reached, and the target group of the uplift model’s training set is restricted to
non-reached customers. This approach is named R-lower. Note that, among all
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methods presented in this section, R-upper and R-lower are the only biased esti-
mators of uplift (since they estimate a bound instead). R-feature and R-decomp
both estimate uplift, although they differ in the way they incorporate reach infor-
mation.

4 Experiment

This experimental session benchmarks the approaches of Sect. 3 against several
baselines:

Table 1. Summary of the approaches used to integrate reach in uplift modeling. The
conditioning on x is implicit in every term.

Approach Equation

R-feature P (Y0 = 1 | r̂) − P (Y1 = 1 | r̂)
R-decomp P (Y0 = 1) − P (Y1 = 1 | R1 = 1)

+P (R1 = 0) · [P (Y1 = 1 | R1 = 1) − P (Y1 = 1 | R1 = 0)]

R-upper P (R1 = 1) [P (Y0 = 1) − P (Y1 = 1 | R1 = 1)]

R-lower P (R1 = 0) [P (Y0 = 1) − P (Y1 = 1 | R1 = 0)]

– Uplift: An uplift model with no information about reach.
– ML approach: A classical churn prediction model1 returning P (Y = 1 | x).
– R-target: Using the estimated probability of reach as a score, that is, P (R =

1 | x).

Since the first two baselines are state-of-the-art strategies, it is important to
check whether incorporating reach information outperforms those approaches.
The baseline R-target is introduced to check whether the reach alone may be
used to find persuadable customers. Based on previous experiments [27], we used
the X-learner algorithm [17] to build uplift models, and random forests [3] to
learn churn and reach predictive models. The unbalancedness between churners
and non-churners is addressed with the EasyEnsemble strategy [18], averaging
models trained on positive instances (churners) with models trained on equally-
sized sampled subsets of negative instances (non-churners).

The dataset is provided by our industrial partner Orange Belgium and relates
to a series of customer retention campaigns in 2020, spanning over 3 months. A
monthly dataset concerns about 4000 customers, for a total of 11896 samples.
Each campaign includes a control group of about 1000 customers (for a total of
2886 control samples, 24.3% of the total), and a target group whose size depends
on the load of the call center. Customer churn is monitored up to two months
following the call. The churn rate in the control group is 3.6%, and 3.4% in the

1 Note that ML stands for maximum likelihood of churn.
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target group. The reach rate is 44.1% in the target group. Additional details
cannot be disclosed for evident confidentiality reasons.

Results are evaluated in terms of uplift curve [10], which estimates the causal
effect of the campaign for different numbers of customers. The uplift curve mea-
sures the difference in probability of churn between customers in the target and
control groups. For a given predictive model f , and a threshold τ over the score
provided by f , the uplift curve is defined as

Uplift(τ) = P (Y0 = 1 | f(X) > τ) − P (Y1 = 1 | f(X) > τ). (8)

This quantity is estimated empirically by subtracting the proportion of churners
in the control and target groups, restricted to the customers with a score above
the threshold. The uplift curve then is obtained by varying the threshold over
all possible values.

In order to obtain a measure of the performance variability, we created 50
independent random splits of the data set into training and test sets, in propor-
tion 80%/20%. Each of these splits is used to train each model, and we report
the area under the uplift curve on the test set, averaged over the 50 runs.

We also evaluated several variations of the 4 approaches listed in Table 1.
But, since they did not provide any significant improvement, we did not include
them in the results. These variations are: i) the average of R-lower and R-upper,
ii) the product of the reach and uplift model predictions, and iii) the average of
the reach and uplift models prediction.

5 Results

Table 2. Area under the uplift
curve (AUUC), averaged over 50
runs. The confidence interval is
one standard deviation. The best
approach is underlined.

Approach AUUC

R-feature 0.894 (±0.419)

R-decomp 0.767 (±0.605)

R-upper 0.608 (±0.525)

R-lower 0.747 (±0.519)

Uplift 0.663 (±0.537)

ML approach 0.665 (±0.568)

R-target 0.28 (±0.417)
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Fig. 3. Average ranking of the different approaches, with a line grouping approaches
which do not have a significant rank difference. The critical mean rank difference is
CD = 1.24, based on a Friedman-Nemenyi test with p = 0.05.

Table 2 reports the average area under the uplift curve (AUUC) over 50 runs
while the uplift curves of the first run are in Fig. 2. A Friedman-Nemenyi test of
rank [4] is reported on Fig. 3, which indicates the mean rank of each approach
over the 50 runs. A method is considered significantly better if the mean rank
difference is larger than CD = 1.24, based on a p-value of p = 0.05. The best
performing model, in terms of area under the uplift curve and standard devi-
ation, is R-feature. It is significantly better than all other models, except for
R-lower. Among the approaches integrating reach, R-decomp and R-lower per-
form similarly, while R-upper is not able to outperform the baselines. The two
baselines Uplift and ML approach have similar performances, and, as expected,
R-target performs quite poorly.

Note that, due to the small size of the dataset, the standard deviation of the
AUUC is quite high. The data set contains only 11896 samples, 20% of these
samples are used in the test set, and the churn rate is only a few percent. This
leaves a very limited number of churners in the test set, and thus induces a high
variability in the uplift curve between the different runs of the experiment.

6 Conclusion and Future Work

This paper shows the potential of reach information to improve the estimation
of uplift. The superiority of reach models (such as R-feature) over conventional
churn or uplift models is not surprising, since the information provided by the
reach indicator is not available to the baseline methods. However, since reach
information is not directly available before the campaign, specific strategies must
be used. In these strategies, reach plays more the role of inductive bias than the
one of churn predictor.

A potential advantage of this approach is that reach models are relevant
to a wider range of use cases than churn prevention. It is common for telecom
companies to perform different campaigns using the voice call channel, such as
up-sell (to propose a better product to the customer), or cross-sell (to present
additional products). A model of reach can be used in these contexts as well while
using the same training data. This is a significant advantage, both in terms of
computation time and data volume.
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The applicability of this approach is limited by several factors. Firstly, as
it is the case for all uplift models, it requires historical data from past reten-
tion campaigns. Our approach further requires records on the reaction of the
customers to the call. This data might not be readily available for companies
with no experience in direct marketing. Secondly, since uplift modeling is a new
area of research, only a few uplift datasets are publicly available online. None of
these datasets include information about reach. Therefore, it is difficult to assess
new approaches exploiting reach information outside the scope of a collaboration
with a private company.

We plan to evaluate our approach in future live retention campaigns. Cur-
rently, customer retention campaigns are still based on the churn prediction
approach, since uplift models have failed so far to provide a significant improve-
ment. This is a unique opportunity to evaluate the added value of our improved
uplift model over the classical approach, and going beyond the use of historical
data sets. From the perspective of a practitioner, several improvements of the
approach can be devised: for example, we considered only the random forest
model to predict reach. Other machine learning models might provide better
performances. Also, our pipeline addresses class unbalancedness with the Easy
Ensemble strategy, and the reach model is included during this step. Since the
reach indicator is not as heavily imbalanced as the churn indicator, it might be
beneficial to train the reach model separately. Finally, we did not investigate
the use of more fine-grained reach information, such as the time of call, or a
more detailed description of the customer’s reaction. This could potentially fur-
ther improve uplift estimation. Such detailed information can also be exploited
proactively, by calling the customer at a time and a day which maximizes the
probability of reach.
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Abstract. The spread of misinformation in social media outlets has
become a prevalent societal problem and is the cause of many kinds
of social unrest. Curtailing its prevalence is of great importance and
machine learning has shown significant promise. However, there are two
main challenges when applying machine learning to this problem. First,
while much too prevalent in one respect, misinformation, actually, rep-
resents only a minor proportion of all the postings seen on social media.
Second, labeling the massive amount of data necessary to train a useful
classifier becomes impractical. Considering these challenges, we propose a
simple semi-supervised learning framework in order to deal with extreme
class imbalances that has the advantage, over other approaches, of using
actual rather than simulated data to inflate the minority class. We tested
our framework on two sets of Covid-related Twitter data and obtained
significant improvement in F1-measure on extremely imbalanced scenar-
ios, as compared to simple classical and deep-learning data generation
methods such as SMOTE, ADASYN, or GAN-based data generation.

Keywords: Semi-supervised learning · Class imbalance ·
Misinformation detection

1 Introduction

The spread of misinformation in social media outlets has become a prevalent
societal problem and is the cause of many kinds of social unrest. Curtailing its
prevalence is of great importance and machine learning advances have shown
significant promise for the detection of misinformation [11]. However, to build
a reliable model a large data set of reliable posts as well as posts containing
misinformation is needed. In practice, this is not feasible since detecting posts
containing misinformation is inherently a class imbalanced problem: the majority
of posts are reliable whereas a very small minority contains misinformation.
For instance, according to The Verge, Twitter removed 2,230 misleading tweets
between March 16 and April 18, 20201. Given that, on average, 6,000 tweets

1 https://www.theverge.com/2020/4/22/21231956/twitter-remove-covid-19-tweets-
call-to-action-harm-5g.
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are tweeted every second2, the class imbalance ratio is around 0.000014% for
that month, or 1 unreliable Tweet for every 71,428 reliable ones, an extreme
imbalance ratio.

The class imbalance problem has been pervasive in the Machine Learning
field for over two decades [3]. Over the years, many techniques for dealing with
class imbalances have been proposed including classical methods for inflating the
minority class such as SMOTE [4] and ADASYN [8] and Deep-Learning based
methods such as DEAGO [1] and GAMO [15], which use an autoencoder and a
Generative Adversarial Network, respectively. One of the issues with previously
proposed minority-class oversampling methods for the class imbalance problem is
that either the data used to inflate the minority class is real but simply repeated
from the existing minority class, as in random oversampling, or it is artificial
as in SMOTE, ADASYN, DEAGO and GAMO Random oversampling is not
an acceptable solution given that it is known to cause overfitting [6]. Artificial
oversampling, while not overfitting as much as random oversampling, generates
artificial data. While this kind of data approximates real data fairly well in
continuous domains such as computer vision, it is not as representative in non-
continuous domains such as text [9].

Semi-Supervised Learning for text data is not new and was first proposed
in the context of class imbalance in [13]. However, we are dealing with such an
extremely imbalanced data set that solutions of the type proposed in [13] are
not expected to work. Semi-supervised learning in the class-imbalanced setting
is also not new. Authors in [10] review existing approaches and propose their
own. However, they focus on algorithmic modifications rather than the simpler
and more practical re-sampling strategy.

Our framework is similar to standard approaches previously designed to
tackle the class imbalance problem, but it differs from them in one important
way. On the one hand, like methods such as SMOTE, GAMO and so on, it
proposes to oversample the minority class, but on the other hand, unlike these
approaches, instead of using generated samples it identifies candidates from the
unlabeled data set to inflate the minority class with. Although the search for
such candidates could be extremely costly, we show how the use of a K-D Tree
makes it tractable.

We evaluate our framework on two data sets related to Covid-19 misinfor-
mation in social media, the one collected and curated in-house, early in the
pandemic [2], and a data set obtained from English COVID-19 Fake News and
Hindi Hostile Posts data set [17]. Our framework takes two forms: the direct
approach in which the labeled minority samples alone are used to search the
unlabeled data set; and the indirect approach, designed to increase the diversity
of the search, where artificial data are first generated from the minority class
and these samples, along with the original minority samples, are used to search
the unlabeled set. Different instantiations of these approaches are compared to
traditional ways of overcoming the class imbalance problem and to the results
obtained on the original imbalanced data set. The results show that the direct

2 https://www.internetlivestats.com/twitter-statistics/.
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implementation of our framework is superior to the indirect approach, which in
turn, is superior to the traditional approaches. All of them improve upon not
attempting to counter the class imbalance problem.

The remainder of the paper is organized as follows. In Sect. 2, we discuss
previous work on oversampling methods for class imbalances, semi-supervised
learning, and discuss the functionality of K-D Trees. Section 3 introduces our
framework and discusses its direct and indirect instantiations. The experimental
set-up is discussed in Sect. 4, and the results of our experiments are presented
in Sect. 5. Section 6 concludes the paper.

2 Related Work

This section reviews previous work related to this study. We first discuss the
methods for inflating the minority class that were previously proposed in the
context of the class imbalance problem, and we then move to a discussion of
previous work in semi-supervised learning, especially for class imbalanced data.
We then describe the K-D Tree data structure along with the Nearest Neighbor
Search algorithm associated with it, and used in this paper.

2.1 Methods for Oversampling the Minority Class

We focus on four methods previously proposed for oversampling the minority
class.

SMOTE and ADASYN. The Synthetic Minority Oversampling Technique
(SMOTE) [4], is an oversampling approach that generates minority class
instances to balance data sets. It searches for the K closest minority neigh-
bors of each sample point in the minority class using the Euclidean distance.
For each minority class sample xi, the algorithm randomly chooses a number of
samples from its K closet minority neighbors denoted as xi(nn). For each xi, we
generate new samples using the following formula

xnew
i = xi + α (xi(nn) − xi) ,

where α is a random number from 0 to 1. For the purpose of this work, we use
the implementation found in the imbalanced-learn python library, with K = 2.
In Adaptive Synthetic Sampling (ADASYN) [8], a mechanism is used to auto-
matically determine how many synthetic samples need to be generated for each
minority sample. For each minority class sample xi, with its K nearest neigh-
bors xi(nn), it is possible to calculate the ratio ri = xi(nn)

K , and then normalize
this ratio to obtain the density distribution Γi = ri∑

ri
. The calculation of a syn-

thetic sample is obtained by gi = Γi × G, where G is the discrepancy between
2 classes. For the purpose of this work, we use the ADASYN package from the
imbalanced-learn python library, with K = 2.
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Generating Adversarial Networks (GANs). A generative adversarial net-
work (GAN) [7] consists of two neural networks: a generator G and a discrim-
inator D. These two networks are trained in opposition to one another. The
generator G takes as input a random noise vector z ∼ p(z) and outputs m sam-
ple x̃i = G

(

zi
)

. The discriminator D receives as input the training sample xi

and x̃i and uses the loss function

V̌max =
1
m

m
∑

i=1

log D
(

xi
)

+
1
m

m
∑

i=1

log
(

1 − D
(

x̌i
))

to update the discriminator D ’s parameters θd;
Then it uses another random noise vector z ∼ p(z) and loss function:

V̌min =
1
m

m
∑

i=1

log
(

1 − (

D
(

G
(

zi
)))

to update the generator G’s parameters θg.
A VAE-GAN is a Variational Autoencoder combined with a Generative

Adversarial Network [12]. It uses a GAN discriminator that can be used in
place of a Variational Autoencoder (VAE) decoder to learn the loss function.
The VAE loss function equals the negative sum of the expected log-likelihood
(the reconstruction error) and a prior regularization term as well as a binary
cross-entropy in the discriminator. This is what was used in this work.

2.2 Semi-supervised Learning

Semi-supervised learning is highly practical since labeling work is usually costly
in terms of manpower and material resources [21]. There are two common meth-
ods used in semi-supervised learning [20]. The first one relies on the “clustering
assumption” which assumes that the data follows a cluster structure and that
samples in the same cluster belong to the same category. Another method follows
the “manifold assumption” which assumes that the data is distributed on a man-
ifold structure and that adjacent samples on that structure should output similar
values. In such methods, the degree of proximity is often used to described the
degree of similarity. The manifold hypothesis can be viewed as a generalization
of the clustering hypothesis. Since we are working in the context of detection,
a special case of classification, the “clustering assumption” is sufficient for our
purposes.

Semi-supervised learning in the context of the class imbalance problem was
considered in [10,13,19]. These works, however, do not consider the approach
that consists of inflating the minority class nor do they look at the extremely
imbalanced context.

2.3 K-Dimensional Tree and Nearest Neighbor Search

The search for nearest neighbors that we propose to undertake to identify data
close to the labeled minority class data is computationally expensive. K-D Trees
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(K-dimension trees) are a kind of binary trees, which divide the k-dimensional
data space hierarchically, and stores the points in the k-dimension space in order
to query its tree-shaped data structure afterwards [16]. K-D Trees are built with
a recursive rule that splits the data according to the dimension/feature with
highest variance. The dimension selected for splitting is set as the root node of
the K-D Tree or subtree under consideration. This is done by finding the median
for this dimension and using that value as a segmentation hyperplane, i.e., all the
points whose value in that dimension is smaller than the median value are placed
in the left child, and all the points with a greater value are placed in the right
child. This procedure is followed recursively until nodes cannot be split anymore.
A query search using a K-D Tree starts from the root node and moves down the
tree recursively. It goes to the left or right child of the node it is currently visiting
depending on its relation to the node value. Once the search reaches a leaf node,
the algorithm sets it as “best current result”. It then searches the other side
of the parent to find out whether a better solution is available there. If so, it
continues its search there, looking for a closer point. If such a point does not
exist, it moves up the tree by one level and repeats the process. The search is
completed when the root node is reached.

Using K-D Trees can reduce the search space compared to other clustering
algorithm such as K-Nearest Neighbors which have a time complexity of O(n ×
m), where n is the size of the data set and m is its dimension. Commonly, the K-
D Tree can be constructed in O(n log n), and the query algorithm has a running
time O(

√
n + k) where k is the number of nearest points reported.

3 Our Framework

We propose a data augmentation method which, instead of randomly sampling
from the minority class or generating synthetic minority samples based on the
existing minority samples, leverages the unlabeled data set. The method is geared
at non-continuous feature spaces such as those emanating from text applications,
which present particular difficulty for data generation processes. Our approach
works on binary data and takes as input a labeled imbalanced data set LI
and an unlabeled data set U , drawn from the same population. It outputs a
labeled balanced data set LB that is then used for classification. We consider two
instantiations of our framework: the direct approach and the indirect approach.
The direct approach constructs a K-D Tree from the labeled minority instances
present in LI. Because the minority class can contain a very small number of
samples, we also propose the indirect approach which implements Step 2. The
rationale for the indirect approach is that the minority data set may be very
small and not diverse enough to help direct the search for appropriate additional
instances from U . We now describe each of the steps of our algorithm in detail:

Step 1: Pre-processing: We conduct the corpus cleaning work first. Since
we are working with Twitter textual data, we remove all special symbols,
white spaces, emoticon icons and stop words from the tweets. We used the
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pre-trained checkpoints provided by the Digital Epidemiology Lab [14] as a
starting checkpoint and trained a BERT model [5], to compute an embedding
for our tweet corpora.

Step 2: Synthetic Sample Generation: In this step, used by the indirect
approach, we generate synthetic samples by using both classical and deep-
learning means. In particular, we use: SMOTE, ADASYN and a VAE-GAN.
The samples are generated according to the processes described in Sect. 2 for
each of the approaches.

Step 3: K-D Tree Construction and Nearest Neighbor Search: In this
step, we construct a K-D tree and search through it for the nearest neighbors,
using the procedures described in Sect. 2.3.

Step 4: Balanced Data Set Formation and Classification: We first assume
there are nmax instances of the majority class and nmin instances of the
minority class in the data set. For the K-D Tree method, we augment the
data using the following rule: For each minority data xi, we traverse the
tree composed of unlabeled data and find the naugi = nmax−nmin

nmin
. We add

naug =
∑nmin

i=1 naugi to the data set after assigning them to the minority class.
For SMOTE, ADASYN and VAE-GAN, we generate naug = (nmax − nmin)
artificial samples, set them as minority class and add to the data set. After
the data set is balanced, a logistic regression classifier is trained.

4 Experimental Evaluation

4.1 Data Sets

Data Set 1: The first data set was collected for the study by [2] which initially
randomly collected a sample of 282,201 Twitter users from Canada by using the
Conditional Independence Coupling (CIC) method [18]. A carefully curated and
labeled sub data set was carved out from the random subset and includes 280
reliable and 280 unreliable Tweets and represent data set LI. The remaining
1,040 samples are unlabeled and correspond to data set U1. We created a testing
set Test1 by randomly selecting 40 reliable and 40 unreliable tweets from LI.
From the rest of the labeled data, we created several LI1n data sets with all the
240 reliable tweets and different numbers, n, of unreliable tweets.

Data Set 2: The second data set is the COVID-19 Fake News Data set from [17]
which includes a manually annotated data set of 10,700 social media posts and
articles of real and fake news on Covid-19. We randomly selected 6,000 of them
(3,000 true news and 3,000 fake news) for LI and randomly selected 100 reliable
and 100 unreliable tweets from LI to create our testing set, Test2. To create
training sets LI2n, we randomly selected 900 samples from the true news subset
and different numbers, n, from the fake news subset. The samples that were not
selected were stripped of their labels and constitute the unlabeled data set U2.
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4.2 Training and Testing Method

Training: In our experiments, we trained the logistic regression classifier on
the two data sets (Data Set 1 and Data Set 2), using the different data aug-
mentation methods previously discussed to balance the training set. In more
detail, we ran the following series of experiments on both Data Sets 1 and 2.
Each experiment was repeated for a minority class of size n where n belongs to
{5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 150}. Each of the 150 generated data sets are
called LIn.

– Train Logistic Regression on LIn. The results for this series of experiments
are seen on the curve called “Original”.Which is also regard as baseline.

– Train Logistic Regression on LIn augmented by: SMOTE, ADASYN, VAE-
GAN. The SMOTE and ADASYN functions we used in our task come from
the python package “imblearn”. The results for this series of experiments
are reported on the curves called “SMOTE”, ADASYN” and “VAE-GAN”
respectively.

– Train Logistic Regression on LIn augmented using the K-D Tree and Nearest
Neighbor Search technique on the n instances of the minority class present
in LIn. We recall that technique selects data from U , the unlabeled set,
that most closely resembles the n samples of the minority class. This is the
Direct implementation of our framework that skips Step 2 in the Algorithm
of Sect. 3. The results for this series of experiments are reported on the curve
called “K-D Tree”.

– Train Logistic Regression on LIn augmented using the K-D Tree and nearest
neighbor search technique on the n instances of the minority class and their
augmentations through: SMOTE, ADASYN and VAE-GAN. We recall that
this technique selects data from U , the unlabeled set, that most closely resem-
bles the n samples of the minority class and the synthetic samples generated
from them using one of the generation method shown above. This is the indi-
rect implementation of our framework that uses Step 2 in the Algorithm of
Sect. 3. The results for this series of experiments are reported on the curves
called “SMOTE-KD, “ADASYN-KD”, and “Replace-GAN”.

Testing Regimen: In total, we conducted 192 tests on 24 LI data sets with
different numbers of minority class samples from the 2 data sets. The final result
for each of these 192 experiments are reported based on the testing sets Test1 and
Test2, respectively. We use the Bootstrap error estimation technique to evaluate
the performance of our Method3. We report the F1, Precision, and Recall values
of all the classifiers tested on the test set.

5 Results

The results of our experiments appear in Fig. 1. In all the graphs, the horizon-
tal axis represents the number of labeled minority instances used to train the
3 Bootstrap technique is implemented by repeating the sampling and testing procedure
previously described 100 times and using the results of these experiments to estimate
the real F1, Precision and Recall values and evaluate their standard deviation.
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Fig. 1. The F1, Precision and Recall values of Data sets 1 (up) and 2 (down)

Logistic Regression classifier (with or without the different kinds of minority
class inflation considered in this work). The graphs show that distinct differ-
ences in the results really happen when n, the number of minority instances
initially present, is small. As n increases, the differences between the methods
becomes less and less visible. We also find that the results are similar for dataset
1 and dataset 2.

In general, we find that “Original”, where no correction for the class imbal-
ance domain is made, obtains the worst performance. This is followed closely
by the three synthetic approaches (SMOTE, ADASYN and VAE-GAN) with a
slight advantage for VAE-GAN in Data Set 1 and a slight advantage for SMOTE
and ADASYN (which show identical performance in all experiments) in Data
Set 2. As shown in all graphs, the advantage gained by these synthetic resam-
pling methods is modest. Next, in terms of performance, come the three indirect
methods of our framework, SMOTE-KD, ADASYN-KD, ReplaceGAN. We recall
that these are the methods that generate synthetic data but do not use them
directly. Instead, they are used to identify appropriate unlabeled samples to add
to the minority class. The results show that these approaches obtain noticeably
higher F1, Precision and Recall results, with a distinct advantage for Replace-
GAN. This is true for both data sets, and suggests that the addition of real
data through our semi-supervised scheme rather than synthetically generated
data is a superior proposition. Finally, the results show, that in both domains,
using the Direct implementation of our framework yields a better performance
than the ReplaceGAN strategy. That difference is slight in Data Set 1, where
the standard decision bars indicate that ReplaceGAN, while slightly less accu-
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rate, is more stable than K-D Tree, but it is unmistakable in Data Set 2 where
ReplaceGAN is noticeably less accurate than K-D Tree. This suggests that our
hypothesis regarding the advantage that a greater diversity to start off our unla-
beled data set search for minority sample candidates did not pan out and the
indirect implementation of our framework is less desirable than its Direct imple-
mentation.

In terms of run time, we tested the K-D tree and ReplaceGAN’s running
time with data set 2 and found, as expected, that the K-D Tree has a much
lower running time than ReplaceGAN. The results are available on GitHub4.

6 Discussion

In this paper, we presented a semi-supervised framework for identifying appro-
priate unlabeled samples to inflate the minority class and create a more bal-
anced data set to learn from. The framework was designed specifically for non-
continuous domains such as text, and tested on two misinformation/Fake news
detection data sets where it obtained remarkable results, especially in cases of
extreme class imbalance. Two categories of approaches of the framework were
tested: the direct and indirect approach. The direct approach (K-D Tree) per-
formed better than the indirect approach using a GAN (ReplaceGAN) but was
not as stable in the smaller dataset (dataset 1). The direct approach is also more
efficient than the indirect one, but the disparity is less noticeable in smaller data
sets. The results obtained with our framework were significantly better than
those obtained by methods that augment the data by synthetic generation, thus
supporting the assumption that synthetic generation in non-continuous domains
such as Text is not particularly useful and that semi-supervised methods such
as ours fare much better.

In the future, we propose to investigate the utility of the ReplaceGAN indirect
approach more carefully. We will also extend our framework to different domains
(e.g., genetic and image domains) including continuous and discrete ones where
an unlabeled data set exists, and test other classifiers on our resulting augmented
data sets. This will allow us to test whether the advantage we noticed in text
data and with logistic regression carries over to other types of domains and
classifiers as well. More generally, we will also attempt to use our framework in
the context of a data labeling tool having only a few seed labels to start from.
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Abstract. Numerous machine learning applications involve dealing
with imbalanced domains, where the learning focus is on the least fre-
quent classes. This imbalance introduces new challenges for both the
performance assessment of these models and their predictive modeling.
While several performance metrics have been established as baselines in
balanced domains, some cannot be applied to the imbalanced case since
the use of the majority class in the metric could lead to a misleading
evaluation of performance. Other metrics, such as the area under the
precision-recall curve, have been demonstrated to be more appropriate
for imbalance domains due to their focus on class-specific performance.
There are, however, many proposed implementations for this particular
metric, which could potentially lead to different conclusions depending
on the one used. In this research, we carry out an experimental study to
better understand these issues and aim at providing a set of recommen-
dations by studying the impact of using different metrics and different
implementations of the same metric under multiple imbalance settings.

Keywords: Imbalanced domains · Performance metrics · Performance
evaluation · Precision-recall curve

1 Introduction

The choice of performance metrics constitutes a crucial part of assessing the
effectiveness of a classification model. In imbalanced domains, due to the com-
monly used accuracy and error rate not being suitable metrics for performance
evaluation [2], the research community has turned towards other metrics, such
as the well-known Fβ-measure and Geometric Mean (G-Mean).

While these are generally regarded as appropriate to assess the performance
of classifiers on imbalanced data, they do present some drawbacks. For instance,
they cannot provide a general picture of the classifier’s performance at varying
thresholds [13] and assume knowledge of the context where the classifier is being
deployed [9]. Therefore, other metrics, namely the Receiver Operating Charac-
teristic (ROC) curve, the precision-recall (PR) curve, and their corresponding
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area under the curve (AUC), have risen in popularity. However, many have crit-
icized the usage of the former [3,4,13], and the latter present some issues for
which multiple implementations have been proposed [3,7,12,14].

With the advent of new, more complex algorithms, it becomes imperative
to have standardized metrics to evaluate and compare their performance [8].
Given this wide array of performance metrics available, we wanted to explore
the impact of using the different metrics proposed for imbalanced domains as
well as study alternative implementations of the same metric.

Our main contributions are: (i) provide a synthesis and analysis of per-
formance assessment metrics typically used under an imbalanced setting and
their different estimation approaches; (ii) propose a novel rank-based measure
to assess the divergence of the results when using different performance metrics;
(iii) study the impact of using different metrics and different implementations
of the same metric under multiple imbalance settings; and (iv) provide a set
of recommendations regarding the evaluated metrics. The rest of this paper is
structured as follows: Sect. 2 reviews some commonly used metrics to evaluate
classification performance in imbalanced domains as well as different implemen-
tations/interpolations of the PR curve; Sect. 3 compares and discusses the exper-
imental results obtained; and Sect. 4 concludes this paper.

2 Review of Performance Metrics and Estimation
Approaches for Imbalanced Binary Classification

The performance evaluation of imbalanced classification problems is a common
challenge for which multiple performance metrics have been defined. Using the
classification proposed by Ferri et al. [6], these metrics can be clustered into
three categories: threshold metrics, ranking metrics, and probabilistic metrics.
While probabilistic metrics sometimes do behave well in imbalanced domains, it
is not their probabilistic quality that makes them do so [9]. Hence, in this paper,
we will focus on the most used threshold and ranking metrics.

These metrics will be defined in the case of a binary classification problem,
using the prediction values of a confusion matrix and the inferred recall, speci-
ficity, and precision as demonstrated in Table 1, where we consider the negative
class as the majority class and the positive class as the minority.

2.1 Threshold Metrics

Threshold-based metrics are single scalar values that aim at quantifying the
model’s prediction errors.

Fβ-Measure. Metrics based on precision, recall, and specificity are often favored
in imbalanced domains as they consider class-specific performance. The Fβ-
Measure aims to represent the trade-off between precision and recall in a single
value. The value of β represents the weight assigned to either metric. If β is
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Table 1. Confusion matrix of a binary classification problem.

Predicted

Positive Negative

Actual
Values

Positive
True Positive

(TP)

False Negative

(FN)

Recall
(Sensitivity)

TP/(TP + FN)

Negative
False Positive

(FP)

True Negative

(TN)

Specificity

TN/(TN + FP )

Precision
TP/(TP + FP )

Negative Predictive Value

TN/(TN + FN)

1, precision and recall have the same importance, while for values of β higher
(lower) than 1, higher importance is given on recall (precision).

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
(1)

G-Mean. The G-Mean is defined as the square root of the recall of each
class [11]. This metric aims at maximizing the accuracies of both classes. How-
ever, it assigns equal importance to both classes. To address this issue, other
formulations, such as one that replaces specificity with precision to focus only
on the positive class, have also been proposed [9].

GMean =
√

sensitivity · specificity (2)

2.2 Ranking Metrics

Ranking metrics are based on how well a model ranks or separates the samples
in different classes [6]. They use the probabilities of a sample belonging to a
class outputted by the model and apply different thresholds to test the model’s
performance across the whole range of thresholds, thus identifying the model’s
ability to separate (rank) the classes.

These metrics are often represented in graph form, which allows the user to
visualize the model’s performance across the different thresholds and give more
insight into the trade-off between the measurements. However, it can often be
hard to compare multiple graphics between models and evaluate the best one,
especially in cases where they intersect. Therefore, the AUC is often computed
and used as it provides a single-value metric that allows for a more concise and
straightforward comparison between models.

Receiver Operating Characteristic Curve. The ROC curve, as demon-
strated in Fig. 1a, plots the true positive rate (recall) against the false positive
rate: FPR = FP

FP+TN , with each point representing a threshold value.
While the AUC of the ROC curve, often referred to as the ROC AUC, can

be defined as the definite integral over the whole range of values, there exist
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multiple ways of practically interpolating it, such as the trapezoidal method or
the Mann–Whitney–Wilcoxon statistic interpretation [5].

Finally, it is worth noting that while the ROC curve is widely used in imbal-
anced domains, it has been criticized as it can present an overly optimistic eval-
uation of the model’s performance when the imbalance is pronounced [3,5] and
can lead to incorrect interpretations [13]. Other alternatives, such as the PR
curve, can provide a different perspective on the evaluation.

Precision-Recall Curve. Similar to the ROC curve, the PR curve uses dif-
ferent thresholds on the model’s predictions to compute different scores of two
metrics: precision and recall. However, whereas the ROC curve had a fixed base-
line, this is not the case for the PR curve. In fact, a random classifier would be
displayed as a horizontal line at the y value equal to the minority class proportion
of the dataset, as it can be seen in Fig. 1b.

To obtain the AUC of the PR curve, one could consider linearly interpolating
the points in the curve as it is carried out in the ROC AUC computation.
However, the typical saw-tooth shape of the PR curve, which is explained by
the fact that the precision value does not vary linearly with the recall value,
makes it incorrect to use linear interpolation to compute the AUC under the PR
curve since it would lead to an overly optimistic estimation of the performance
[3]. Multiple solutions have been proposed to address this issue, and we will
review the main ones in this paper.

Interpolated Precision. The interpolated precision, as described by Manning
et al. [12], interpolates the precision of any recall point r as the highest precision
value found for any recall point greater than r. This process allows getting rid
of the undesirable saw-tooth effect of the PR curve, and the AUC can then be
computed using the usual methods.

Average Precision. The average precision (AP) is defined as the sum of precision
at each point weighted by the difference in recall with the previous point, as
described in Eq. 3 [14]. Therefore, its value is different from computing the AUC
under the PR curve as it is not dependent on any curve and consequently does
not require any interpolation strategy.

AP =
∑

n

(Recalln − Recalln−1)Precisionn (3)

Davis’ Interpolation. Davis and Goadrich proposed an interpolation of the PR
AUC [3] that we will refer to as Davis’ interpolation. Their proposition is based
on the fact that every point of the PR curve is composed of their True Positive
(TP) and False Positive (FP) underlying values. Keeping that in mind, we can
interpolate the TP and FP values between two points. Considering A and B, two
consecutive points, we can first evaluate how many negative examples it takes
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Fig. 1. ROC and PR curves of a random and a typical classifier.

to equal one positive, referred to as the local skew: FPB−FPA

TPB−TPA
. Then, new points

are created such that TP = TPA + x, where x represent all integer values such
that 1 ≤ x ≤ TPB − TPA. Finally, we can interpolate FP using the local skew,
and the resulting interpolated points can be described by Eq. 4.

(
TPA + x

TotalPos.
,

TPA + x

TPA + x + FPA + FPB−FPA

TPB−TPA
x

) (4)

Precision-Recall-Gain Curve. In their 2015 contribution [7], Flach and Kull
demonstrate why the use of an arithmetic average over metrics that are repre-
sented on a harmonic scale, such as precision, recall, and F-Measure is fundamen-
tally wrong and how it affects the PR curve. More specifically, they introduce a
novel approach to the PR analysis by proposing the Precision-Recall-Gain curve
(PRG curve) and its corresponding AUC. This new approach aims to address
some of the drawbacks of the PR curve compared to the ROC curve, such as the
lack of universal baseline and linear interpolation. In this context, two new mea-
surements are defined as valid alternatives to the precision and recall metrics:
the precision gain (Eq. 5) and recall gain (Eq. 6).

precG =
prec − π

(1 − π)prec
(5)

recG =
rec − π

(1 − π)rec
(6)

where π represents the precision of the baseline, i.e., the always-positive classifier.
By plotting the precision gain against the recall gain, one can then obtain the
PRG curve and compute its corresponding AUC using linear interpolation.
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3 Experimental Data

This section describes the experiments conducted to determine if different con-
clusions can be drawn from the same model while using different metrics or
interpolation strategies.

In these experiments, we used 4 different classifiers: decision tree, random
forest, XGBoost, and support vector machine (SVM). We used a 5-fold cross-
validation procedure and evaluated the performance in 15 datasets obtained from
the KEEL repository [1]. The datasets were selected based on their imbalance
ratio (IR), which is defined as the number of majority class samples over the
number of minority class samples.

We selected 5 datasets from each one of 3 different groups exhibiting different
IR levels, as follows: less than 5 (slightly imbalanced), between 9 and 13 (moder-
ately imbalanced), and higher than 16.9 (heavily imbalanced). We recorded the
8 previously discussed performance assessment metrics for each of these datasets
and classifiers.

3.1 Assessing the Impact of the Performance Metrics

Our main goals are: (i) to determine if there is a significant disparity between
the use of one metric compared to the others; and (ii) to determine the impact
of using different interpolation methods to compute the same metric (PR curve
AUC). For this reason, we will present the majority of the results using rankings.
We will compute the score of each classifier using a set of performance metrics.
Then, for each performance metric considered, each model will be ranked using
the score obtained. To evaluate the differences in the rankings obtained, we use
the following two measures: the well-known Krippendorff’s Alpha score [10] and
Mode Difference, a novel score specifically proposed to assess the impact in the
performance in our particular setting.

In order to optimally observe which metric results differ from the others,
we propose the use of a novel metric named Mode Difference (MD) (cf. Eq. 8).
Suppose we have the results of a set of n different performance metrics when
using k different classifiers. We start by obtaining the rankings for a given metric
m ∈ {1, · · · , n} for all tested classifiers, rm,1, rm,2, . . . , rm,k. Then, we calculate
the mode of all the rankings obtained for each classifier (cf. Eq. 7). This will
provide the most frequent rank value (or the average of the most frequent values
when there are ties) for a classifier. Thus, Moj will show the most commonly
occurring ranking across all metrics tested for classifier j.

Moj = Mode(r1,j , r2,j , . . . , rn,j) (7)

MDi,j = |ri,j − Moj | (8)

where ri,j represents the rank obtained for performance metric i on classifier
j. The value of MDi,j measures the deviation from the mode of the rank of a
classifier in a metric.
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Finally, to have a global overview of variation of the MD for a specific perfor-
mance metric i, we calculate the MD AV Gi, as shown in Eq. 9. This average will
quantify the observed variability in the rankings for each tested metric across
all classifiers used.

Considering a total number of k classifiers tested, we compute the average of
the mode differences over a performance metric i as follows:

MD AV Gi = Avg(MDi,1,MDi,2, . . . ,MDi,k) (9)

We use Krippendorff’s Alpha and Mode Difference to assess the divergence in
the results obtained by the 8 performance metrics selected in our study.

3.2 Results and Discussion

The initial results of our experiments include the score of each of the 8 per-
formance metrics evaluated for each one of the 15 datasets using 4 different
classifiers. We transformed the scores into rankings and calculated the Mode
Difference. Table 2 present the obtained rankings and mode difference scores for
each classifier in each performance metric in a selected dataset. We chose to
include only one dataset due to space constraints and for illustration purposes.
The results on all the remaining datasets, as well as all the necessary code to
reproduce our experiments, are freely available at https://github.com/jgaud/
PerformanceMetricsImbalancedDomains.

To present the results more concisely, we aggregated the results obtained
per class imbalance level, i.e., we considered the 3 following IR levels: slightly
(IR < 5), moderately (9 < IR < 13), and heavily (16.9 < IR) imbalanced.
Table 3 presents the average MD of all metrics for each class imbalance level.

Two main conclusions can be drawn by observing the first results presented
in Table 3. The G-Mean, F1 measure, and ROC AUC are the worst-performing
metrics in terms of disagreement level across all imbalance ratios. In effect, these
3 metrics present the most disagreement with the rank given by the other alter-
native metrics. This behavior meets our initial expectations, as the remaining
metrics are different interpolations of a same metric. It also confirms that these
metrics (PR AUC with Linear Interpolation, Interpolated Precision AUC, AP,
PR-Gain AUC, and PR AUC Davis) generally provide a similar ranking. A sec-
ond interesting observation is related to the agreement level verified for the AUC
computed from Davis’ interpolation of the PR curve. This metric achieves the
best scores, in terms of MD average, across all imbalance ratios, which means
that it consistently agreed the most with the remaining metrics tested. We fur-
ther establish this last conclusion by restricting our comparison to the different
implementations of the PR curve AUC in Table 4.

https://github.com/jgaud/PerformanceMetricsImbalancedDomains
https://github.com/jgaud/PerformanceMetricsImbalancedDomains
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Table 2. Ranks and mode difference of each performance metrics on the pima dataset
(best performing model for each metric is underlined).

Metric Decision Tree Random Forest XGBoost SVM MDAV G

Rank MD Rank MD Rank MD Rank MD

F1 4 0 1 2 2 0 3 2 1

GMean 3 1 2 1 1 1 4 3 1.5

ROC AUC 4 0 2 1 1 1 3 2 1

PR AUC (Linear

Interpolation)

4 0 3 0 2 0 1 0 0

Interpolated

Precision AUC

4 0 3 0 2 0 1 0 0

AP 4 0 3 0 2 0 1 0 0

PR-Gain AUC 4 0 1 2 2 0 3 2 1

PR AUC Davis 4 0 3 0 2 0 1 0 0

Table 3. MD of all metrics averaged by imbalance class (best score by imbalance level
is underlined; best overall score is in boldface).

Metric IR < 9 9 < IR < 13 16.9 < IR

F1 0.825 0.675 0.8

GMean 0.925 0.775 0.9

ROC AUC 0.275 0.675 0.55

PR AUC (Linear Interpolation) 0.125 0.025 0.25

Interpolated Precision AUC 0.125 0.175 0.15

AP 0.075 0.125 0.45

PR-Gain AUC 0.375 0.225 0.35

PR AUC Davis 0.075 0.025 0.05

Table 4. MD of all PR AUC definitions averaged by imbalance class.

Metric IR < 9 9 < IR < 13 16.9 < IR

PR AUC (Linear Interpolation) 0.1 0 0.125

Interpolated Precision AUC 0.1 0.2 0.025

AP 0.1 0.1 0.575

PR AUC Davis 0.1 0 0.075

Krippendorff’s Alpha 0.95 0.94375 0.79375

With more detail, we observe from Table 4 that Davis’ interpolation method
performs the best in terms of agreement in two out of 3 class imbalance levels.
For the case where it is not the best one, which corresponds to the datasets with a
higher imbalance ratio, the PR AUC with Davis’ interpolation is the second best.
Moreover, we also observe a general trend where the metrics are more stable on
less imbalanced data but display a higher divergence when moving on to highly
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imbalanced data, i.e., the MD average has higher discrepancies for higher class
imbalance levels. This conclusion is also confirmed by the Krippendorff’s alpha,
which declines with the increase of the imbalance ratio, which means that the
rankings produced by the scores of the tested metrics agree less with each other
for datasets with a higher class imbalance level.

We continued to inspect further the results obtained, by computing the MD
and Krippendorff’s Alpha results, considering only the most consistent interpo-
lation method tested. This means that we observed the results of the follow-
ing metrics: F1, G-Mean, ROC AUC, PR-Gain AUC, and PR AUC Davis. We
selected Davis’ interpolation as the metric representing the PR AUC because
of our previous observations where it proved to be the most consistent metric
among the tested interpolation methods. Table 5 shows the MD average of these
metrics. We observe that G-Mean is the metric that deviates the most from the
others across all datasets. It is important to note the discrepancy between thresh-
old (F1, G-Mean) and rank-based metrics (ROC AUC, PR-Gain AUC, and PR
AUC Davis). We also observe a lower Krippendorff’s Alpha score for datasets
with higher imbalance, confirming that the agreement between the rankings
obtained with these metrics decreases as the imbalance ratio increases.

Table 5. MD of each metric and the best performing PR AUC interpolation averaged
by class imbalance level.

Metric IR < 9 9 < IR < 13 16.9 < IR

F1 0.725 0.4 0.625

GMean 0.875 0.5 0.725

ROC AUC 0.075 0.4 0.575

PR-Gain AUC 0.125 0.5 0.375

PR AUC Davis 0.175 0.35 0.325

Krippendorff’s Alpha 0.639 0.6124 0.5098

Table 6. MD of threshold-based metrics against a rank-based metric averaged by class
imbalance level.

Metric IR < 9 9 < IR < 13 16.9 < IR

Test 1 F1 0.133 0.05 0

GMean 0.233 0.15 0.1

PR AUC Davis 0.766 0.65 0.8

Test 2 F1 0.166 0.016 0.016

GMean 0.166 0.183 0.116

ROC AUC 0.633 0.616 1.183

Given the results described, we compared the agreement between threshold
metrics and a rank-based metric. To investigate the presence of disparities in the
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agreement, we carried out two tests shown in Table 6. To this end, we observed
the impact in MD average score when comparing: (i) the threshold metrics with
Davis’ interpolation of the PR AUC (Test 1 in the table); and (ii) the threshold
metrics with the ROC AUC (Test 2 in the table). Both experiments show that
the ranking metrics differ widely from the threshold metrics. In effect, we observe
MD average results between 0 and 0.233 for the two threshold metrics while the
ranking metrics exhibit much higher MD average values between 0.616 and 1.183.
Moreover, we observe again that this divergence is more marked for datasets with
a higher imbalance ratio.

4 Conclusion

This paper explores the impact of using different evaluation metrics and inter-
polation strategies for imbalanced classification tasks. We review the most fre-
quently used metrics, presented some flaws when carrying out the interpolation
of the PR curve, and presented methods to solve this issue. We propose MD,
a novel metric for evaluating the level of agreement between the rankings of
multiple raters.

The different interpolations of the PR AUC tested proved to give fairly sim-
ilar rankings, especially when comparing them to other metrics. However, we
observed that Davis’ interpolation method performed the best, as it was the
most consistent across all experiments, which means it agreed the most with the
other interpolations tested. Another important observation was the noticeable
discrepancy between ranking and threshold metrics, which shows the impor-
tance of using multiple types of metrics when evaluating the performance under
imbalanced domains. Finally, a general trend was also observed throughout these
experiments: as the imbalance increases, the metrics agreement tends to decrease.
As future work, we plan to extend this study to the multi-class imbalance prob-
lem, where multiple ways of computing the ROC and PR curves have been
defined.
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Abstract. A common approach to aggregate classification estimates in
an ensemble of decision trees is to either use voting or to average the prob-
abilities for each class. The latter takes uncertainty into account, but not
the reliability of the uncertainty estimates (so to say, the “uncertainty
about the uncertainty”). More generally, much remains unknown about
how to best combine probabilistic estimates from multiple sources. In
this paper, we investigate a number of alternative prediction methods.
Our methods are inspired by the theories of probability, belief functions
and reliable classification, as well as a principle that we call evidence
accumulation. Our experiments on a variety of data sets are based on
random decision trees which guarantees a high diversity in the predic-
tions to be combined. Somewhat unexpectedly, we found that taking the
average over the probabilities is actually hard to beat. However, evi-
dence accumulation showed consistently better results on all but very
small leafs.

Keywords: Random decision trees · Ensembles of trees ·
Aggregation · Uncertainty

1 Introduction

Ensemble techniques, such as bagging or boosting, are popular tools to improve
the predictive performance of classification algorithms due to diversification and
stabilization of predictions [5]. Beside learning the ensemble, a particular chal-
lenge is to combine the estimates of the single learners during prediction. The
conventional approaches for aggregation are to follow the majority vote or to
compute the average probability for each class. More sophisticated approaches
are to use classifier fusion [14], stacking [18] or mixture of experts [19]. Most
of these approaches mainly aim to identify strong learners in the ensemble, to
give them a higher weight during aggregation. However, this ignores the possi-
bility that the predictive performance of each learner in the ensemble may vary
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depending on the instance to be classified at hand. To take these differences into
account, we argue that considering the certainty and uncertainty of each individ-
ual prediction might be a better strategy to appropriately combine the estimates.
This should be particularly the case for ensembles generated using randomization
techniques since this potentially leads to many unstable estimates.

A popular and effective strategy is to randomize decision trees. The prediction
of a single decision tree is usually based on statistics associated with the leaf node
to which a test instance is forwarded. A straight-forward way of assessing the
reliability of a leaf node’s estimate is to consider the number of instances which
have been assigned to the node during learning. For example, imagine a leaf
containing 4 instances of class A and 0 of B, and another leaf with 10 instances
in class A and 40 in class B. The first source of prediction has considerably less
evidence to support its prediction in contrast to the second leaf. If both leafs
need to be combined during prediction, it seems natural to put more trust on
the second leaf and, therefore, one may argue that class B should be preferred
though the average probability of 0.6 for A tells us the opposite. However, one
may argue for A also for another reason, namely the very high confidence in the
prediction for A, or put differently, the absence of uncertainty in the rejection
of B. The certainty of the prediction is also known as commitment in the theory
of belief functions. In this work, we will review and propose techniques which
are grounded in different theories on modelling uncertainty and hence take the
support and strength of evidence differently into account.

More specifically, Shaker and Hüllermeier [16] introduced a formal framework
which translates observed counts as encountered in decision trees into a vector
of plausibility scores for the binary classes, which we use for the prediction,
and scores for aleatoric and epistemic uncertainty. While aleatoric uncertainty
captures the randomness inherent in the sample, the latter captures the uncer-
tainty with regard to the lack of evidence. The theory of belief functions [15]
contributes two well-founded approaches to our study in order to combine these
uncertainties. In contrast to the theory of belief functions, in probability theory
the uncertainty is usually expressed by the dispersion of the fitted distribution.
We introduce a technique which takes advantage of the change of the shape
of the distribution in dependence of the sample size. And finally, apart from
combining the probabilities themselves, one can argue that evidence for a partic-
ular class label should be properly accumulated, rather than averaged across the
many members of the ensemble. In this technique, we measure the strength of
the evidence by how much the probabilities deviate from the prior probability.

As an appropriate test bed for combining uncertain predictions, we choose
to analyse these methods based on random decision trees (RDT) [6]. In contrast
to other decision tree ensemble learners, such as random forest, RDT do not
optimize any objective function during learning, which results in a large diversity
of class distributions in the leafs. This puts the proposed methods specifically to
the test in view of the goal of the investigation and makes the experimental study
independent of further decisions such as the proper selection of the splitting
criterion. We have compared the proposed techniques on 21 standard binary
classification data sets. Surprisingly, our experimental evaluation showed that
methods, which take the amount of evidence into consideration, did only improve
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over the simple averaging baseline in some specific cases. However, we could
observe an advantage for the proposed approach of evidence accumulation which
takes the strength of the evidences into account.

2 Preliminaries

This section briefly introduces RDT, followed by a short discussion on previous
work which is relevant to us. Throughout the paper, we put our focus on binary
classification which is the task of learning a mapping f : Xm → y between an
instance x ∈ Xm with m numerical and/or nominal features and a binary class
label y ∈ {�,⊕} through a finite set of observations {(x1, y1), . . . , (xn, yn)}.

2.1 Random Decision Trees

Introduced by Fan et al. [6], the approach of RDT is an ensemble of randomly
created decision trees which, in contrast to classical decision tree learners and
random forest [2], do not optimize a objective function during training. More
precisely, the inner tests in the trees are chosen randomly which reduces the
computational complexity but still achieves competitive and robust performance.

Construction. Starting from the root node, inner nodes of a single random tree
are constructed recursively by distributing the training instances according to
the randomly chosen test at the inner node as long as the stopping criterion of
a minimum number of instances for a leaf is not fulfilled. Discrete features are
chosen without replacement for the tests in contrast to continuous features, for
which additionally a randomly picked instance determines the threshold. In case
that no further tests can be created, a leaf will be constructed in which infor-
mation about the assigned instances will be collected. For binary classification,
the number of positive w⊕ and negative w� class labels are extracted. Hence, a
particular leaf can be denoted as w = [w⊕, w�] where w ∈ W and W = N

2.

Prediction. For each of the K random trees in the ensemble, the instance to
be classified is forwarded from the root to a leaf node passing the respective
tests in the inner nodes. The standard approach mainly used in the literature to
aggregate the assigned leaf nodes w1, . . . ,wK is to first compute the probability
for the positive class on each leaf which is then averaged across the ensemble.

2.2 Related Work

A very well known approach used for improving the probability estimates of deci-
sion trees is Laplace smoothing, which essentially incorporates epistemic uncer-
tainty through a prior. However, whereas Provost and Domingos [12] showed a
clear advantage over using the raw estimates for single decision trees, Bostrom [1]
observed that for random forest better estimates are achieved without smooth-
ing. Apart from that correction, the reliability of the individual predictions in
decision trees is usually controlled via pruning or imposing leaf sizes [12,20].
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While the common recommendation is to grow trees in an ensemble to their
fullest extent, Zhou and Mentch [20] argue that depending on the properties of
the underlying data greater leafs and hence more stable predictions are prefer-
able. With respect to RDT, Loza Menćıa [8] reward predictions with higher con-
fidence in the ensemble using the inverted Gini-index. However, their weighting
approach has not been directly evaluated.

The Dempster-Shafer theory of evidence, or theory of belief functions, [15] is
also concerned with the strength of the confidences. The general framework for
combining prediction of Lu [9] is based on this theory and the study showed that
the proposed technique can improve upon the Bayesian approach. Raza et al.
[13] similarly combined outputs of support vector machines but only compared
to a single classifier in their evaluation. Nguyen et al. [10] take uncertainties in an
alternative way into account by computing interval-based information granules
for each classifier. They could improve over common ensemble techniques, how-
ever, their approach requires additional optimization during learning and during
classification. As already discussed in Sect. 1, meta and fusion approaches also
often require additional learning steps and ignore the uncertainty of individual
predictions. Costa et al. [3] also ignore the uncertainties but propose interesting
alternative aggregations for ensembles based on generalized mixture functions.

3 Aggregation of Scores from Leafs

Based on the leaf nodes w1, . . . ,wK to which an instance has been assigned to
during prediction, the concept explained in this section is to first convert the
leafs into scores which are then combined using aggregation functions.

3.1 Scoring Methods

In this section, the scoring methods are introduced of which most are designed
to take the uncertainty of the leafs into account. We denote p : W → R as the
function which assigns a score v = p(w) to a leaf w ∈ W where w = (w⊕, w�).
All scoring methods proposed in this work are designed such that the sign of
the resulting score indicates whether the positive or the negative class would be
predicted. In order to understand how the scoring methods deal with uncertainty,
we introduce an approach to visualize and compare them in Fig. 1.

Probability and Laplace. Computing the probability pprob(w) is the conven-
tional approach to obtain a score from a leaf. Hence, it will serve as a reference
point in this work. In addition, we include the Laplace smoothing plap(w) which
corrects the estimate for uncertainty due to a lack of samples.

pprob(w) =
w⊕

w⊕ + w� − 0.5 plap(w) =
w⊕ + 1

w⊕ + w� + 2
− 0.5

In Fig. 1, we can see how both pprob and plap converge to the same score for
larger leafs but that plap has much less extreme predictions for small leafs.
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Plausibility. The idea of this approach is to measure the uncertainty in terms
of aleatoric and epistemic uncertainty. In order to define the uncertainty, Shaker
and Hüllermeier [16] introduces the degree of support for the positive class
π(⊕|w) and the negative class π(�|w) which can be calculated for a leaf w
as follows:

π(⊕|w) = sup
θ∈[0,1]

min

⎛
⎝

(
θ

( w⊕
w⊕+w� )

)w⊕ (
1 − θ

( w�
w⊕+w� )

)w�

, 2θ − 1

⎞
⎠ ,

π(�|w) = sup
θ∈[0,1]

min

⎛
⎝

(
θ

( w⊕
w⊕+w� )

)w⊕ (
1 − θ

( w�
w⊕+w� )

)w�

, 1 − 2θ

⎞
⎠ .

Based on this plausibility the epistemic uncertainty ue(w) and the aleatoric
uncertainty ua(w) can be defined as:

ue(w) = min [π(⊕|w), π(�|w)] ua(w) = 1 − max [π(⊕|w), π(�|w)]

Following Nguyen et al. [11], the degree of preference for the positive class s⊕(w)
can be calculated as

s⊕(w) =

⎧⎪⎨
⎪⎩

1 − (ua(w) + ue(w)) if π(⊕|w) > π(�|w),
1−(ua(w)+ue(w))

2 if π(⊕|w) = π(�|w),
0 if π(⊕|w) < π(�|w)

and analogously for the negative class. We use the trade-off between the degrees
of preference as our score:

ppls(w) = s⊕(w) − s�(w).

With respect to Fig. 1, we can observe that the plausibility approach mod-
els the uncertainty similarly to the Laplace method but also preserves a high

Fig. 1. Evolution of the scores (y-axis) for each scoring method based on simulating
a leaf to which random samples are added (x-axis) with a probability of 75% for the
positive class. This Bernoulli trial is repeated 100 times (cyan lines). The average over
the trials scores is depicted by the red line and the 10%, 25%, 75% and 90% quantiles
by the green and purple line, respectively. (Color figure online)
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variability for small leaf sizes. From that point of view, it could be seen as a
compromise between the Probability and the Laplace method.

Confidence Bounds. Another possibility to consider uncertainty is to model
the probability of the positive and the negative class each with a separate prob-
ability distribution and to compare these. In this work, we use a beta-binomial
distribution parameterized with w⊕ + w� number of tries, α = w⊕ + 1, and
β = w� + 1 to model the probability of the positive class, analogously for the
negative class. To get a measure c(w) of how well both classes are separated, we
take the intersection point in the middle of both distributions, normalized by
the maximum height of the distribution, and use this as in the following:

pcb(w) = (1 − c(w))
(

w⊕

w⊕ + w� − 0.5
)

Hence, c(w) generally decreases with 1) increasing class ratio in the leaf, or 2)
with more examples, since this leads to more peaky distributions. In contrast to
Laplace and Plausibility in Fig. 1, the scores of confidence bounds are increasing
more steadily which indicates a weaker consideration of the size of the leafs than
the aforementioned methods.

3.2 Aggregation Functions

In a final step the scores v1, . . . , vK , where vi = p(wi), need to be combined
using an aggregation function h : RK → R. Due to space restrictions, we limit
our analysis in this work to the arithmetic mean and 0-1-voting

havg(v) =
1
K

K∑
i=1

vi hvote(v) =
1
K

K∑
i=1

sgn(vi > 0)

with sgn(·) as the sign function. We consider hvote as a separate method in the
following, since all presented scoring methods change their sign equally. Note
that pprob in combination with havg corresponds to what is known as weighted
voting, and pcb an instantiation of weighted averaging over pprob.

Similarly to Costa et al. [3], we found in preliminary experiments that alter-
native approaches, including the median, maximum and a variety of generalized
mixture functions [7], could be beneficial in some cases, but did not provide
meaningful new insights in combination with the explored scoring functions.

4 Integrated Combination of Leafs

In contrast to the aggregation of scores, the integrated combination of leafs skips
the intermediate step of score generation and directly combines the statistics of
the leafs g : WK → R to form a prediction for the ensemble. Through this
approach the exact statistics of the leafs can be considered for the aggregation
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which would otherwise be inaccessible using scores. In contrast to Fig. 1, Fig. 2
depicts the outputs of 100 simulated ensembles.

Pooling. The basic idea of pooling is to reduce the influence of leafs with a low
number of instances which otherwise would obtain a high score either for the
positive or the negative class. Therefore, this approach first sums up the leaf
statistics and then computes the probability which can be defined as:

gpool(w1,w2, . . . ,wK) =
∑K

i=1 w⊕
i∑K

i=1

(
w⊕

i + w�
i

) − 0.5

With respect to Fig. 2, we can observe that pooling behaves similarly to
the probability approach. The reduced variability is mainly caused due to the
simulation of more leafs.

Dempster. Based on the Dempster-Shafer framework, leaf aggregation can also
be performed using the theory of belief functions [15]. For our purpose the states
of belief can be defined as Ω = {⊕,�}, where ⊕ represents the belief for the posi-
tive and � represents the belief for the negative class. A particular mass function
m : 2Ω → [0, 1] assigns a mass to every subset of Ω such that

∑
A⊆Ω m(A) = 1.

Based on the plausibility (c.f. Sect. 3.1), we define the mass function for a par-
ticular leaf w as follows:

mw(∅) = 0 mw({⊕}) = s⊕(w)
mw({�}) = s�(w) mw({⊕,�}) = ue(w) + ua(w).

In order to combine the predictions of multiple leafs, the mass functions can be
aggregated using the (unnormalized) Dempster’s rule of combination:

(mw1 ∩ mw2)(A) =
∑

B∩C=A

mw1(B)mw2(C) ∀A ⊆ Ω

Hence, for the ensemble we can define the following belief function:

mdempster(A) = (mw1 ∩ (mw2 ∩ (. . . ∩ mwK
)))(A)

Fig. 2. Evolution of the scores (y-axis) for each combination method based on simulat-
ing 100 ensemble’s final predictions (cyan lines) based each on 100 leafs sampled like
in Fig. 1.
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which can be used to form a score for the positive class as follows:

gdempster(w1,w2, . . . ,wK) = mdempster({⊕}) − mdempster({�})

Cautious. A particular drawback of Dempster’s rule of combination is that
it requires independence among the combined mass functions which is usually
not true for classifiers in an ensemble which have been trained over the same
data. The independence assumption can be omitted by using the cautious rule
of combinations [4]. The idea behind the cautious rule is based on the Least
Commitment Principle [17] which states that, when considering two belief func-
tion, the least committed one should be preferred. Following this principle, the
cautious rule ∧ can be used instead of Dempster’s rule of combination ∩ . For
more information we refer to Denœux [4]. Hence, for the ensemble we can define
the following belief function

mcautious(A) = (mw1 ∧ (mw2 ∧ (. . . ∧ mwK
)))(A)

which can be transformed to a score for the positive class as follows:

gcautios(w1,w2, . . . ,wK) = mcautious({⊕}) − mcautious({�})

We use a small value (10−5) as the minimum value for certain steps during the
calculation to deal with numerical instabilities for both Dempster and Cautious.

In order to provide a more intuitive explanation, consider the following three
estimates to combine: s⊕(w1) = s⊕(w2) = 0.4 and s�(w3) = 0.4. Dempster
would consider that there are two estimates in favor of the positive class and
hence predict it, whereas Cautious ignores several preferences for the same class,
since they could result from dependent sources, and would just take the stronger
one. Hence, Cautious would produce a tie (but high weights for ∅ and {⊕,�}).
This behaviour can also be observed in Fig. 2 where the plot for Cautious resulted
very similar to that of the maximum operator (not shown due to space restric-
tions). For Dempster, in contrast, the majority of leafs confirming the positive
class very quickly push the prediction towards the extreme. Consider for that
the following scenario, which also visualizes the behaviour under conflict. For
s⊕(w1) = s⊕(w2) = 0.8 and s�(w3) = 0.98 Dempster’s rule would prefer the
negative over the positive class, but already give a weight of 0.94 to neither ⊕
nor �, whereas Cautious would prefer the negative class with a score of 0.20 and
0.78 for ∅.

Evidence Accumulation. In the presence of uncertainty, it may make sense to
reach a decision not by combining individual recommendations themselves, but
by accumulating the evidence underlying each recommendation. This motivates
a new combining rule, here called EVA (Evidence Accumulation).

To get the intuition behind the idea, consider a police inspector investigating
a crime. It is perfectly possible that no clue by itself is convincing enough to
arrest a particular person, but jointly, they do. This effect can never be achieved
by expressing the evidence as probabilities and then averaging. E.g., assume
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there are 5 suspects, A, B, C, D, E; information from Witness w1 rules out D
and E, and information from Witness w2 rules out A and B. Logical deduction
leaves C as the only possible solution. Now assume w1 and w2 express their
knowledge as probabilities: w1 returns (0.33, 0.33, 0.33, 0, 0) (assigning equal
probabilities to A, B and C and ruling out D and E), and w2 returns (0, 0,
0.33,0.33, 0.33). Averaging these probabilities gives (0.17, 0.17, 0.33, 0.17, 0.17),
when logic tells us it should be (0, 0, 1, 0, 0). Note that 1 is out of the range
of probabilities observed for C: no weighted average can yield 1. Somehow the
evidence from different sources needs to be accumulated.

In probabilistic terms, the question boils down to: How can we express
P (y | ∧

wi) in terms of P (y | wi)? Translated to our example, how does the
probability of guilt, given the joint evidence, relate to the probability of guilt
given each individual piece? There is not one way to correctly compute this:
assumptions need to be made about the independence of these sources. Under the
assumption of class-conditional independence (as made by, e.g., Naive Bayes),
we can easily derive a simple and interpretable formula:

P (y |
∧
i

wi) ∼ P (
∧

wi | y) · P (y) = P (y)
∏

i

P (wi | y) ∼ P (y)
∏

i

P (y | wi)
P (y)

Thus, under class-conditional independence, evidence from different sources
should be accumulated by multiplying the prior P (Y ) with a factor
P (y | wi)/P (y) for each source wi. That is, if a new piece of information, on
its own, would make y twice as likely, it also does so when combined with other
evidence. In our example, starting from (0.2, 0.2, 0.2, 0.2, 0.2), w1 multiplies the
probabilities of A, B, C by 0.33/0.2 and those of D, E by 0, and w2 lifts C, D, E
by 0.33/0.2 and A, B by 0; this gives (0, 0, 0.54, 0, 0) which after normalization
becomes (0, 0, 1, 0, 0).

Coming back to the binary classification setting, we compute

geva(w1,w2, . . . ,wK) = P (⊕)
∏

i

P (⊕ | wi)
P (⊕)

− P (�)
∏

i

P (� | wi)
P (�)

where P (⊕) and P (�) is estimated by the class distribution on the training data
and P (y | wi) essentially comes down to pprob(wi). We apply similar tricks as in
Naive Bayes for ensuring numerical stability such as a slight Laplace correction
of 0.1 in the computation of P (y | wi).

With respect to Fig. 2, we can observe an even stronger decrease of the abso-
lute score with increasing leaf size than for Cautious. This indicates that the
output of EVA can be highly influenced by smaller leafs which are more likely
to carry more evidence than larger leafs, in the sense that their estimates are
more committed.

5 Evaluation

A key aspect of our experimental evaluation is to compare our proposed methods
for combining predictions with respect to the conventional approaches of voting
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and averaging probabilities. In order to put the combination strategies to the
test, our experiments are based on random decision trees which, in contrast to
other tree ensembles, guarantee a high diversity of estimates in the ensemble.

Table 1. Binary classification datasets and statistics.

name #instances #features class ratio name #instances #features class ratio

scene 2407 299 0.18 sonar 208 60 0.47

webdata 36974 123 0.24 mushroom 8124 22 0.48

transfusion 748 4 0.24 vehicle 98528 100 0.50

biodeg 1055 41 0.34 phishing 11055 30 0.56

telescope 19020 10 0.35 breast-cancer 569 30 0.63

diabetes 768 8 0.35 ionosphere 351 34 0.64

voting 435 16 0.39 tic-tac-toe 958 9 0.65

spambase 4601 57 0.39 particle 130064 50 0.72

electricity 45312 8 0.42 skin 245057 3 0.79

banknote 1372 4 0.44 climate 540 20 0.91

airlines 539383 7 0.45

5.1 Experimental Setup

Our evaluation is based on 21 datasets for binary classification1, shown in
Table 1, which we have chosen in order to obtain diversity w.r.t. the size of
dataset, the number features and the balance of the class distribution. To con-
sider a variety of scenarios for combining unstable predictions, we have performed
all of our evaluations with respect to an ensemble of 100 trees and minimum leaf
sizes 1, 2, 3, 4, 8 or 32. Note that a single RDT ensemble for each leaf size
configuration is enough in order to obtain the raw counts wi and hence produce
the final predictions for all methods. We used 5 times two fold cross validation
in order to decrease the dependence of randomness on the comparability of the
results.2

For measuring the performance, we have computed the area under receiver
operating characteristic curve (AUC) and the accuracy. For a better comparison
we have computed average ranks across all datasets. As an additional reference
points to our comparison, we added the results of a single decision tree and
a random forest ensemble. Note that though imposing an equal tree structure,
these trees were trained with the objective of obtaining a high purity of class dis-
tributions in their leaves. Therefore, we did not expect to reach the performance
w.r.t. classification but it was intended to show to what degree advanced com-
bination strategies are able to close the gap between using tree models resulting
merely from the data distribution and tree models specifically optimized for a
specific task.

1 Downloaded from the UCI Machine Learning Repository http://archive.ics.uci.edu
and OpenML https://www.openml.org/.

2 Our code is publicly available at https://github.com/olfub/RDT-Uncertainty.

http://archive.ics.uci.edu
https://www.openml.org/
https://github.com/olfub/RDT-Uncertainty
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5.2 Results

Figure 3 shows a comparison between all methods with respect to different tree
structures. The first observation is that most of the methods perform around the
baseline of taking the average probability. Exceptions are evidence accumulation,
which is on top of the remaining approaches especially in terms of accuracy, and
the approaches based on the theory of belief functions, which especially exhibit
problems in producing rankings (AUC). Nonetheless, Dempster rule of combi-
nation has an advantage over the other methods for middle to large sized leafs
in terms of accuracy. Figure 4 shows again how close the methods are together
(Dempster, Cautious, Pooling and Voting were left out). We can see that plap

always is worse than pprob, regardless of the leaf size. While ppls is not much
worse than the best method (pprob) on small leafs, it falls behind with increasing
leaf size. Without geva, pcb would be the best method on medium sized or larger

Fig. 3. Comparison of the average ranks with respect to the 11 methods and the 6 leaf
configurations (worst rank is 6 · 11 = 66). Left: AUC. Right: Accuracy.

Fig. 4. Heatmap of pairwise comparisons. Each row and each column belongs to a
method in the order pprob, plap, ppls, pcb, and geva and the number and color indicates
how often the method in the row had a better AUC score than the method in the
column. •, � and � indicate a significant difference according to the Bonferroni corrected
Wilcoxon signed-rank test with α = 0.05, 0.01 and 0.001, respectively.
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leafs but geva has even better results there. Overall, pprob most often has the
best results on very small leafs, but for not much larger leafs, pprob starts falling
behind geva.

Figure 5 provides further insights on four selected datasets (single random
50% train/test split). It becomes apparent that the advantage of EVA is also
often substantial in absolute terms. On the other hand, we can also observe
cases where EVA falls behind the other approaches (airlines). Interestingly, the
accuracy of EVA on webdata increases with increasing leaf size long after the
other methods reach their peak, contrary to the general trend.

We can further observe that, as expected, the performances of the proposed
methods lay between those of random forests and the single decision tree. How-
ever, Fig. 6 reveals that an important factor is the class ratio of the classification
task. While random forest clearly outperform all other methods for highly imbal-
anced tasks, the advance is negligible for the balanced problems. This indicates
a general problem of RDT with imbalanced data, since it gets less likely on such
data to obtain leafs with (high) counts for the minority class.

Fig. 5. Accuracy of selection of five combination strategies and distribution with mean
(dashed blue line), 1, 2 and 3 standard deviations (blue shaded areas) over accuracies of
the underlying individual trees in the ensemble (turquoise dots). (Color figure online)
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5.3 Discussion

In the following, we discuss the results of each individual method in more detail.

Probability, Laplace, Voting and Pooling. Computing the expectation over
pprob straightforwardly showed to be very effective compared to most of the
alternative method ideas. Especially when small leafs are involved this behaviour
was not expected since we believed that small leafs with overly certain but
likely wrong estimates (probabilities 0 and 1) would out-weight the larger leafs
which provide more evidence for their smoother estimates. Instead, the results
indicate that a large enough ensemble (we used 100 trees) makes up for what
we considered too optimistic pprob leaf predictions [1]. In fact, applying Laplace
correction towards uniform distribution was hindering especially for small leaf
sizes in our experiments. Voting is able to catch-up with the other methods only
for the configuration of trees with very small leafs, where, indeed, the scores
to be combined are identical to those of pprob except for leafs with size greater
one. Interestingly, Pooling improves over the other methods on a few datasets
as it can be seen for airlines in Fig. 5. Nevertheless, the results on most of the
datasets indicate that the consideration of the leaf size by this method might be
too extreme in most cases, leading generally to unstable results.

Fig. 6. Accuracy ranks on dataset with relatively even class ratio (0.4 to 0.6) on the
left and relatively uneven class ratio (less than 0.3 or greater 0.7) on the right.

Plausibility, Dempster and Cautious. We expected that a precise compu-
tation and differentiation of plausibility and uncertainties would be beneficial in
particular for small leaf sizes. However, we were not able to observe a systematic
advantage of ppls over the pprob baseline in our experiments. Nonetheless, the
usage of the uncertainty estimates in Dempster’s rule of combinations shows the
potential of having access to such scores. When the data was balanced, Demp-
ster classified as good or better than EVA or even the random forest. The gap
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w.r.t. AUC demonstrates that the proposed translation of the components of the
mass function into one score is not yet optimal. Moreover, the results suggests
that the lack of independence is not problematic when combining predictions in
RDT, but on the contrary, the way the Cautious rule addressed it caused serious
problems.

Confidence Bounds. Among the methods with similar performance to pprob,
the approach using confidence bounds exhibits the greatest (but still small)
advantage over the baseline for trees with medium to large leaf sizes. For very
small leafs, however, the chosen statistical modeling is obviously not ideal, at
least for ranking. Also, it might be possible to achieve even better results with
the same idea by using distributions or more elaborated strategies which can
achieve a better fit.

Evidence Accumulation. Using a small value for Laplace smoothing, geva

proved to be a very effective prediction strategy across all but the very smallest
leafs. This suggests that the assumptions underlying EVA are well-met by RDTs.
The randomness of the leaves fits EVA’s independence assumption.

The stronger consideration of the class prior probability than in other meth-
ods may also play a role on why EVA works better on unbalanced data, partic-
ularly for larger leaf sizes (Fig. 6). Remind that EVA relates the estimates for
each source to the prior probability and judges the evidence according to how
much the leaf distribution deviates from it. Leafs for the minority class might
hence have a higher impact on the final prediction than for other methods, where
such leafs are more likely to be out-ruled by the average operation and the leafs
following the class prior.

6 Conclusions

In this work, we proposed methods to combine predictions under uncertainty in
an ensemble of decision trees. Uncertainty here refers not only to how uncertain a
prediction is, but also to uncertainty about this uncertainty estimate. Our meth-
ods include Laplace smoothing, distinguishing between aleatoric and epistemic
uncertainty, making use of the dispersion of probability distributions, combining
uncertainties under the theory of belief functions, and accumulating evidence.
Random decision trees ensured a high diversity of the predictions to combine
and a controlled environment for our experimental evaluation. We found that
including the support for the available evidence in the combination improves
performance over averaging probabilities only in some specific cases. However,
we could observe a consistent advantage for the proposed approach of evidence
accumulation.

This result suggests that the strength of the evidence might be a better
factor than the support for the evidence when combining unstable and diverse
predictions from an ensemble. However, the principle of evidence accumulation
revealed additional aspects, like the rigorous integration of the prior probabil-
ity or the multiplicative accumulation of evidence, which might also be relevant
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for the observed improvement. Moreover, Dempster’s rule showed that combin-
ing support (through the plausibilities) and commitment of evidence produces
good results when certain conditions, such as even class ratio, are met. We
plan to investigate these aspects in future work, e.g. by integrating a prior into
Dempster’s rule or aspects of reliable classification into EVA. Further research
questions include which insights can be carried over to random forest ensembles,
which are more homogeneous in their predictions, or if the presented strategies
have a special advantage under certain conditions, such as small ensembles.
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Abstract. Semi-supervised learning aims at training accurate predic-
tion models on labeled and unlabeled data. Its realization strongly
depends on selecting pseudo-labeled data. The standard approach is to
select instances based on the pseudo-label confidence values that they
receive from the prediction models. In this paper we argue that this is
an indirect approach w.r.t. the main goal of semi-supervised learning.
Instead, we propose a direct approach that selects the pseudo-labeled
instances based on their individual contributions for the performance of
the prediction models. The individual instance contributions are com-
puted as Shapley values w.r.t. characteristic functions related to the
model performance. Experiments show that our approach outperforms
the standard one when used in semi-supervised wrappers.

Keywords: Semi-supervised learning · Data valuation · Shapley value

1 Introduction

Semi-supervised learning is an effective paradigm for training prediction models
on labeled and unlabeled training data [18]. It can improve the model perfor-
mance if the union of these data form meaningful clusters. Successful examples
of semi-supervised learning include applications in web, drug discovery, part-of-
speech tagging etc. for problems with small labeled and large unlabeled data.

There are several methods for semi-supervised learning [18]. Among them
we focus on inductive wrappers due to their simplicity and widespread use. A
wrapper is a meta method that can be iteratively applied to any prediction
model following two consecutive steps. First, a prediction model is trained on
the labeled data and then used to label the unlabeled data. Second, the pseudo-
labeled data is added to the labeled data. The wrapper repeats the steps until a
stopping condition is met. Hence, in the next iterations (a) the prediction model
is retrained on the initial labeled data and selected pseudo-labeled data, and
(b) labeling the unlabeled data is realized by a continuously updated prediction
model. Once the stopping condition holds, the wrapper outputs the prediction
model trained on the initial labeled data and final selected pseudo-labeled data.
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Central to the success of inductive wrappers is the step of selecting pseudo-
labeled data. If this step is accurate, the prediction models can be accurate
as well, and, thus labeling the unlabeled data. All the existing wrapper meth-
ods select pseudo-labeled instances individually using confidence values that the
prediction models employed output for the labels of those instances1. If a label
confidence value is high enough for a new-labeled instance, then the instance is
selected; otherwise, it is rejected. Thus, the main assumption is that the distri-
bution of highly-confident pseudo-labeled instances is close to the distribution
of the labeled data. This implies that adding those instances to training process
can boost the performance of the prediction models in inductive wrappers and,
thus, the overall process of semi-supervised learning. Although it is a plausible
assumption, it may not always hold in practice, for example, when the prediction
models are not calibrated (see Sect. 2 for a detailed explanation).

In this paper we propose an alternative approach to selecting pseudo-labeled
instances that is not based on the above assumption. The approach selects the
instances based on their individual contributions to the performance of the pre-
diction models used in inductive wrappers; i.e. it selects only those pseudo-
labeled instances that boost the performance of the models. In this respect our
approach is simpler and more direct than the one based on confidence values.

To estimate the individual contribution of pseudo-labeled instances, we pro-
pose to use data-valuation techniques that are based on the Shapley value [6,13].
The Shapley value of a labeled instance is defined as the average marginal contri-
bution of the instance for the generalization performance of a prediction model
estimated by a characteristic function (related to metrics such as accuracy, ROC
AUC, F1 score etc.). It is computed w.r.t. the available data and thus instance
dependencies are taken into account.

We employ an algorithm for computing exact Shapley values based on nearest
neighbor classification [13]. The characteristic function outputs the average prob-
ability of correct labels of validation instances. We incorporate the algorithm into
the simplest inductive wrapper, the self-trainer wrapper [21]. Depending on the
validation procedure of the characteristic function we propose two wrapper ver-
sions: hold-out Shapley-value self trainer and cross-validation Shapley-value self
trainer. Both wrappers are experimentally compared to existing semi-supervised
methods from a survey provided in [17]. The experiments show that despite their
simplicity, the proposed wrappers outperform most of the existing methods.

The paper is organized as follows: Sect. 2 provides related work. Section 3
introduces semi-supervised classification and wrappers. Section 4 discusses data
valuation and its algorithms. Section 5 introduces the two new semi-supervised
wrappers. Sections 6 and 7 provide experiments and conclusions.

1 For example, if the prediction model is a probabilistic classifier, the confidence value
is the posterior probability of the label for an unlabeled instance.
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2 Related Work

The existing semi-supervised methods select pseudo-labeled instances using con-
fidence values that the employed prediction models output for the labels of those
instances. There are many such models [17,18] from purely probabilistic classi-
fiers [3,8,14,19,21,22,24] to scoring ensembles [4,7,23]. The probabilistic classi-
fiers output directly posterior class probability estimates. The non-probabilistic
scoring classifiers usually transform the posterior class scores to probability esti-
mates, i.e. through score normalization, function transformation etc.

To secure robustly selecting pseudo-labeled instances, the probability esti-
mates need to be well calibrated [25]. A prediction model is well calibrated if
among the instances x that receive the same probability estimates p̂(y|x) for
class y, the proportion of those that belong to y equals p̂(y|x). This implies
that calibrated prediction models allow us to control the accuracy of selecting
pseudo-labeled instances above a user-defined lower bound and, thus, to improve
semi-supervised learning. Unfortunately, most of the existing inductive wrapper
methods do not employ calibrated prediction models and, recently, this problem
was recognized in [12,25]. The author in [12] proposed to calibrate the prediction
models by training them on mixed training and pseudo-labeled instances. The
authors in [25] used the class label scores of the prediction models to compute
a p-value for each class label (using the conformal framework). Then the accep-
tance of any class label is realized on a user-predefined significance level; i.e. the
pseudo-labeled instances are selected below a user-predefined error.

Selecting pseudo-labeled instances is a multi-test process that sequentially
decides whether to accept/reject any successive pseudo-labeled instance (x, y)
based on the probability estimate p̂(y|x) for the assigned class label y. Due
to the probabilistic instance selection, this process accumulates an error after
handling n pseudo-labeled instances even if the employed prediction model is
calibrated. Depending on the assumption for the generation of the training data
and unlabeled data (i.i.d./non-i.i.d), there exist several methods developed that
try to keep this error bounded [1,10], however, without any statistical guarantees.

In this paper we argue that selecting pseudo-labeled instances based on the
probability estimates of the assigned classes is an indirect approach: we first
label the unlabeled data and assume that the distribution of highly-confident
pseudo-labeled instances is close to the distribution of the labeled data. Then we
employ the pseudo-labeled instances to boost the performance of the prediction
models in inductive wrappers. Although our main assumption is plausible, it
may not always hold in practice, for example, when the prediction models are
not calibrated and, thus, the overall error of selecting pseudo-labeled instances
is uncontrollable. Thus, we need a direct approach that is not dependent on the
properties of the prediction models such as calibration.

In this paper we propose selecting pseudo-labeled instances to be based on
their contribution for the performance of the predictions models used in inductive
wrappers; i.e. we relate instance selection directly to the final goal - boosting
the performance of the final prediction models. In addition, it is worth noting
that our approach does not suffer from problems of the existing approaches



Shapley-Value Data Valuation for Semi-supervised Learning 97

to selecting pseudo-labeled instances such as calibrating the class probability
estimates and controlling the overall error of sequentially labeling.

3 Semi-supervised Classification and Inductive Wrappers

Semi-supervised classification assumes the presence of instance space X, discrete
class variable Y , and unknown probability distribution PX×Y over X × Y . The
labeled training data set L is a set of N instances (xn, yn) ∈ X × Y i.i.d. drawn
from PX×Y . The unlabeled training data set U is a set of M instances xm ∈ X
i.i.d. drawn from another unknown probability distribution QXn. The semi-
supervised classification task is to find a class estimate ŷ for a test instance
x ∈ X according to PX×Y using information from the training data sets L and
U assuming that PX and QX are close enough. To solve the task a classifier
h : X → Y is identified in a hypothesis space H using the sets L and U . For the
rest of the paper we assume that for any test instance x ∈ X classifier h outputs
a class estimate ŷ plus a confidence value.

Inductive wrappers are classifier-agnostic methods for semi-supervised clas-
sification. The standard self-trainer wrapper [9] is presented in Algorithm 1.

Algorithm 1: Standard Self Trainer Wrapper
Input : Labeled training data set L and Unlabeled training data set U .

1 Train a base classifier h on data L;
2 Set the set L′ of selected pseudo-labeled data equal to ∅;
3 repeat
4 UL ← {(x, h(x)) | x ∈ U};
5 Select subset S ⊆ UL of the most relevant pseudo-labeled instances in a

function of L, L′, and UL;
6 if S �= ∅ then
7 U ← {x ∈ U | (x, y) �∈ S};
8 L′ ← L′ ∪ S;
9 Train h on L ∪ L′;

10 end

11 until S = ∅ or maximum iterations reached ;
12 Output set L′ and classifier h.

The standard self-trainer wrapper starts by training classifier h on the labeled
training data L (step 1). It uses classifier h to pseudo-label all the instances in the
unlabeled training data U and adds them to set UL (step 4). The most relevant
pseudo-labeled instances are assigned to set S (step 5) while the remaining are
assigned to set U without the pseudo-labels (step 7). If S is nonempty, set S is
added to the set L′ of the selected pseudo-labeled instances so far (step 8) and
classifier h is retrained on the union of L and L′ (step 9). This process is repeated
until convergence when S = ∅ or a maximum iteration number is reached.
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The standard approach to select pseudo-labeled instances is to use confidence
values provided by classifier h. In this paper we propose to select those instances
based on their contributions for the performance of classifier h. Computing these
contributions can be realized with data valuation introduced in the next section.

4 Data Valuation

This paper employs data valuation based on Shapley values [6,13]. The Shapley
values were first proposed in cooperative game theory [16]. A Shapley value of a
player in a game is the player’s averaged marginal contribution for all coalitions of
players, where each coalition has a known value. In Shapley-value data valuation,
any labeled instance (x, y) in a training data set T is considered as a player
and any coalition is defined as a subset S ⊆ T , where T is considered as the
“grand” coalition. The value of any training data subset (coalition) S is defined
w.r.t. a characteristic function v(h, S, V ). The function outputs the value of the
chosen performance metric for a classifier h when trained on S and tested on
a validation set V . In this context, the Shapley value SV (x, y) for any training
instance (x, y) ∈ T can be computed using Eq. 1.

SV (x, y) =
1

|T |
∑

S⊆T\(x,y)

1
(|T |−1

|S|
) (v(h, S ∪ {(x, y)}, V ) − v(h, S, V )) (1)

The Shapley value is the average marginal contribution of the training
instance (x, y) ∈ T for the performance of classifier h estimated by the char-
acteristic function v(h, S, V ) when trained over all possible subsets S of the
“grand” coalition T and tested on V . This implies that the Shapley value of
(x, y) is w.r.t. all the instances (players) of the “grand” coalition T .

Shapley values are used in data valuation due to the following properties:

– Group Rationality: v(h, T, V ) =
∑

(x,y)∈T SV (x, y).
– Fairness: for any subset S ⊆ T and any two instances (xi, yi), (xj , yj) ∈ T

if v(h, S∪{(xi, yi)}, V ) = v(h, S∪{(xj , yj)}, V ) then SV (xi, yi) = SV (xj , yj).
– Additivity: for any instance (x, y) ∈ T we have SV1(x, y) + SV2(x, y) =

SV12(x, y), where SV1(x, y), SV2(x, y), and SV12(x, y) are Shapley values of
(x, y) ∈ T for characteristic functions v1, v2, and v1 + v2, respectively.

The brute-force Shapley-value algorithm based on Eq. 1 is exponential in the
size of T . There exist several approximation algorithms based on Monte-Carlo
simulation [6]. Although they are faster, they do not find exact Shapley values.
Recently, authors in [13] proposed an algorithm for computing exact Shapley
values for K-nearest neighbor classification (K-ESVNN). It was shown to be
more computationally efficient than any predecessor.

To introduce K-ESVNN let (xj , yj) ∈ V be a validation instance. We order
training instances (xi, yi) ∈ T in an increasing order of their distance to (xj , yj)
and consider the first K of them: (xπ(1), yπ(1)), (xπ(2), yπ(2)), . . . , (xπ(K), yπ(K)).
They can be used to estimate the probability p(yj |xj) of validation instance
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(xj , yj) as 1
K

∑K
k=1 1[yπ(k) = yn], where 1 is the indicator function. p(yj |xj) can

be viewed as the characteristic value v(T, h, {(xj , yj)}) of the “grand” coalition
T for the validation instance (xj , yj) through K-nearest-neighbor classifier h:

v(T, h, {(xj , yj)}) =
1
K

min(K,|V |)∑

k=1

1[yπ(k) = yj ]. (2)

Following the additivity property characteristic values v(T, h, {(xj , yj)}) are
summed over all the instances in the validation set V to receive characteristic
value v(T, h, V ) of the “grand” coalition T for the whole V :

v(T, h, V ) =
1

|V |
|V |∑

j=1

v(T, h, {(xj , yj)}). (3)

K-ESVNN computes exact Shapley values using the characteristic function
from Eq. (3). For this purpose, it first computes Shapley value SVj(xi, yi) of
every training instance (xi, yi) ∈ T for every validation instance (xj , yj) ∈ V .
This is realized as follows: for any validation instance (xj , yj) the algorithm
sorts the training instances (xi, yi) ∈ T in an increasing order of their distance
to (xj , yj). Then it visits each instance in the sorted sequence (xπ(1), yπ(1)),
(xπ(2), yπ(2)), . . . ,(xπ(|T |), yπ(|T |)) in reverse order and assigns the Shapley values
SVj(xi, yi) according to a recursive rule:

sj(π(|T |)) =
1[yπ(|T |) = yj ]

|T | , (4)

sj(π(i)) = sn(π(i + 1)) +
1[yπ(i) = yj ] − 1[yπ(i+1) = yj ]

K

min(K, i)
i

. (5)

Once Shapley values SVj(xi, yi) of all the training instances (xi, yi) ∈ T have
been computed for all validation instances (xj , yj) ∈ V , the algorithm computes
the final Shapley value SV (xi, yi) of any training instance (xi, yi) ∈ T . The
latter is computed following the additive property as the average of the Shapley
values SVj(xi, yi) over all the validation instances (xj , yj) ∈ V .

Figure 1 presents distributions of the exact Shapley values of correctly and
incorrectly labeled training instances. The right shift of the distribution of the
correctly labeled training instances shows that Shapley values can be used to
discriminate correctly from incorrectly labeled training instances. This is a moti-
vation for the semi-supervised wrappers presented in the next section.

5 Shapley-Value Self-trainer Wrappers

In this section we propose a new approach to selecting pseudo-labeled instances.
The approach selects the instances based on their individual contributions to
the performance of the classifiers employed in inductive wrappers. The individ-
ual instance contributions are computed as Shapley values w.r.t. characteristic
functions v related to the classifiers’ performance.



100 C. Courtnage and E. Smirnov

Fig. 1. (a) The original labels of a two class problem. (b) The same two class prob-
lem with class labels randomly flipped with probability of 1

10
. The randomly flipped

instances are considered as incorrectly labeled instances. (c) The Shapley value distri-
bution of the correctly and incorrectly labeled instances.

Our approach can be directly used in the standard self-trainer wrapper. Con-
sider step 5 in Algorithm 1. In this step we select the most relevant pseudo-
labeled instances from the pseudo-labeled training data set UL produced in the
current iteration. The instance selection has to be performed in a function of the
labeled training data L, already-selected pseudo-labeled training data L′, and
UL itself. Following our approach we need to compute the Shapley values for all
the instances in UL using a characteristic function v related to the performance
of classifier h in the wrapper. However, since h has been trained on fixed L ∪ L′

and on a to-be-selected subset of UL, we compute the Shapley values for all the
instances in L ∪ L′ ∪ UL for a “grand” data coalition of L ∪ L′ ∪ UL2.

Given the “grand” data coalition of L∪L′ ∪UL and classifier h, to complete
our design of the Shapley-value computations we need to determine the perfor-
mance metric for h and validation data set V for the characteristic function v.
Depending on the way we acquire set V , we employ different validation methods
for classifier h when implementing function v. This results in different charac-
teristic functions v and, thus, in different self-trainer wrappers introduced in the
next two sub-sections.

5.1 Hold-Out Shapley Value Self-trainer Wrapper

If we acquire the validation set V as a randomly selected subset of the labeled
training data L, then we can use L\V for training the wrapper classifier h. This
implies that we can compute the Shapley values only for the instances in the
union (L\V )∪L′ ∪UL for a reduced “grand” data coalition of (L\V )∪L′ ∪UL.
Hence, the characteristic function v in this case has to output performance-metric
values for the wrapper classifier h trained on subsets S ⊆ (L \ V ) ∪ L′ ∪ UL and
tested on V ; i.e. v has to be based on hold-out validation.

If we employ the characteristic function v based on hold-out validation for
computing Shapley values and employ these values for selecting pseudo-labeled
instances, we will receive the Hold-Out Validation Shapley Value Self-Trainer

2 Note that T equals L ∪ L′ ∪ UL in formula 1 in our case.
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Wrapper (HSVSTW). This wrapper is similar to the standard self-training wrap-
per and is present in Algorithm2. Its execution steps can be described analo-
gously (see Sect. 3). The main difference is that the wrapper classifier h is trained
on (L\V )∪L′ each time due to the hold-out validation and of course that pseudo-
labeled instances are selected based on their Shapley values.

Algorithm 2: Hold-Out Validation Shapley Value Self-Trainer Wrapper
Input : Labeled training data set L,

Unlabeled training data set U ,
Validation labeled data set V ,
Acceptance threshold γ.

1 Randomly select validation set V as a subset of L;
2 Set the set L′ of selected pseudo-labeled data equal to ∅;
3 Train a base classifier h on (L \ V ) ∪ L′;
4 repeat
5 UL ← {(x, h(x)) | x ∈ U};
6 Calculate Shapley value SV (x, y) for any instance

(x, y) ∈ (L \ V ) ∪ L′ ∪ UL w.r.t. V using characteristic function v based
on the hold-out validation of the wrapper classifier h;

7 S ← {(x, y) ∈ UL | SV (x, y) > γ};
8 if S �= ∅ then
9 U ← {x ∈ U | (x, y) �∈ S};

10 L′ ← L′ ∪ S;
11 Train h on (L \ V ) ∪ L′;
12 end

13 until S = ∅ or maximum iterations reached ;
14 Output set L′ and classifier h.

HSVSTW computes the Shapley values for all the instances in (L\V )∪L′∪UL
in each iteration. It is possible that after some iterations the labeled instances in
L ∪ L′ receive low Shapley values; i.e. their contributions for the performance of
the wrapper classifier h diminish. To remove these instances for next iterations
we introduce option Remove-L. When the option is on, the labeled instances in
L ∪ L′ with Shapley values below a threshold parameter β are removed.

The accuracy of HSVSTW is related to the trade-off between the data sets
L\V and V . On one hand: the larger the set L\V , the more accurate the wrapper
classifier h and the smaller the set V . Hence, we can label more correctly but
we can estimate Shapley values less precisely. On the other hand: the smaller
the set L \ V , the less accurate the wrapper classifier h and the bigger the set
V . Hence, we can label less correctly but we can estimate Shapley values more
precisely. To avoid the trade-off between the data sets L\V and V , we introduce
another wrapper in the next section that is based on cross validation.
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5.2 Cross-Validation Shapley Value Self-trainer Wrapper

Assume that we randomly divide the labeled training data L into K equally-
sized folds Lk in a stratified manner. Then for any k ≤ K we can compute the
Shapley values of the instances in (L\Lk)∪L′ ∪UL using hold-out validation (as
described in the previous section). These values indicate the individual instance
contributions for the performance of the wrapper classifier h on the validation
folder Lk. If we perform the aforementioned operation for all k ≤ K, then:

– any instance (x, y) ∈ L will receive K − 1 Shapley values SVk(x, y), and
– any instance (x, y) ∈ L′ ∪ UL will receive K Shapley values SVk(x, y).

The Shapley values SVk1(x, y) and SVk2(x, y) that any instance (x, y) receives
for k1 �= k2 belong to different data “grand” coalitions (L \ Lk1) ∪ L′ ∪ UL and
(L \ Lk2) ∪ L′ ∪ UL. Hence, the additivity property does not hold. However, if
we assume that K is big enough, then:

– the Shapley value for any instance (x, y) ∈ L can be approximated by
ŜV (x, y) =

∑K
k=1 SVk(x, y)/(K − 1) since SVk(x, y) = 0 for (x, y) ∈ Lk,

– the Shapley value for any instance (x, y) ∈ L′ ∪ UL can be approximated by
ŜV (x, y) =

∑K
k=1 SVk(x, y)/K.

If we employ this cross-validation manner for computing approximated
Shapley values ŜV (x, y) and employ these values for selecting pseudo-labeled
instances, we get the Cross-Validation Shapley Value Self-Trainer (CVSVSTW).
This wrapper is also similar to the standard self-training wrapper and is present
in Algorithm 3. Its execution steps can be described analogously (see Sect. 3).

The main advantages of CVSVSTW are as follows. First, there is no trade-off
between the training and validation data as in HSVSTW. Second, CVSVSTW
trains the wrapper classifier h on the union L ∪ L′ in each iteration. This means
that all the available labeled data L is used which benefits accurately labeling
the unlabeled data. Third, any instance in L∪L′ ∪UL receives an estimation of
the true Shapley value with reduced variance due to averaging (see steps 11 and
13 in Algorithm 3). This improves selecting pseudo-labeled instances and, thus,
semi-supervised learning organized by CVSVSTW.

An interesting property of CVSVSTW is that it computes an approximated
Shapley value ŜV (x, y) for any instance (x, y) ∈ L in each iteration. This implies
that we have ŜV (x, y) even when (x, y) is used for validation in some folder Lk.
Hence, if ŜV (x, y) is low, we can exclude (x, y) from valuating instances in
(L \ Lk) ∪ L′ ∪ UL which can benefit estimating instance Shapley values. This
functionality is activated by option Exclude-V. When it is on, all the labeled
instances in L with Shapley values below a threshold parameter β are not used
for instance valuation but not removed from L. In addition, we note that for the
same reason as in HSVSTW option Remove-L is present in CVSVSTW.

We illustrate CVSVSTW on two semi-supervised binary classification data
sets when it employs the K-ESVNN algorithm. The first (second) set is class
(non-) linearly-separable set given in Fig. 2a (Fig. 3a). The labeled and unlabeled
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Algorithm 3: Cross-Validation Shapley-Value Self-Trainer Wrapper
Input : Labeled training data set L,

Unlabeled training data set U ,
Number K of folds,
Acceptance threshold γ.

1 Split labeled training data set L into K folds Lk

2 Set the set L′ of selected pseudo-labeled data equal to ∅;
3 Train a base classifier h on L ∪ L′

4 repeat
5 UL ← {(x, h(x)) | x ∈ U}
6 for k ← 1 to K do
7 Calculate Shapley value SVk(x, y) for any instance

(x, y) ∈ (L \ Lk) ∪ L′ ∪ UL w.r.t. Lk using characteristic function v
based on the hold-out validation of the wrapper classifier h;

8 Set Shapley value SVk(x, y) for any instance (x, y) ∈ Lk equal to 0;

9 end
10 for (x, y) ∈ UL ∪ L ∪ L′ do
11 if (x, y) ∈ L then

12 ̂SV (x, y) ← ∑K
k=1 SVk(x, y)/(K − 1)

13 else

14 ̂SV (x, y) ← ∑K
k=1 SVk(x, y)/(K)

15 end

16 end

17 S ← {(x, y) ∈ UL | ̂SV (x, y) > γ}
18 if S �= ∅ then
19 U ← {x ∈ U | (x, y) �∈ S}
20 L′ ← L′ ∪ S
21 Train h on T ∪ L′

22 end

23 until S = ∅ or maximum iterations reached ;
24 Output set L′ and classifier h.

data are generated by the same distributions but the labels of the unlabeled data
are omitted.

Figures 2b, 2c, 3b, and 3c show pseudo-labeled instances added in the first
iteration of CVSVSTW. Figures 2b and 3b show that when the pseudo-labeled
instances with the highest 90% of Shapley values are added, they appear to be
evenly spread over the distributions of the training labeled instances. In contrast,
Figs. 2c and 3c show that when the pseudo-labeled instances with the highest
10% of Shapley values are added, they tend to be closer to the centers of the
distributions of the training labeled instances. This means that adding high
Shapley-value pseudo-labeled instances can be safe, and, thus, useful for semi-
supervised learning.
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Fig. 2. (a) Linearly-separable labeled data, (b) the same linearly-separable labeled data
with pseudo-labeled instances with the highest 90% of Shapley values, and (c) the same
linearly-separable labeled data with pseudo-labeled instances with the highest 10% of
Shapley values. Note: the darker colors represent the originally labeled instances, the
lighter colors represent the pseudo-labeled instances.

Fig. 3. (a) Non-linearly-separable labeled data, (b) the same non-linearly-separable
labeled data with pseudo-labeled instances with the highest 90% of Shapley values, and
(c) the same non-linearly-separable labeled data with pseudo-labeled instances with the
highest 10% of Shapley values. Note: the darker colors represent the originally labeled
instances, the lighter colors represent the pseudo-labeled instances.

6 Experiments

In this section we experimentally compare HSVSTW and CVSVSTW with 14
semi-supervised methods from an extensive empirical study presented in [17].

6.1 Methods’ Setup

HSVSTW and CVSVSTW are set as follows. The wrapper classifier is 3-nearest
neighbor classifier. The Shapley value algorithm is the 3-ESVNN algorithm (see
Sect. 4). The internal hold-out validation of HSVSTW is stratified with 66.67%
of the data reserved for training and 33.33% for testing. The internal cross-
validation of CVSVSTW is stratified for 10 folds. The remaining parameters are
set to maximize the performance of both wrappers.

The 14 semi-supervised methods from [17] are as follows: Self-Training Wrap-
per [21], Ant Based Semi-supervised Classification (APSSC) [8], Self-Training
with Editing (SETRED) [14], Semi-Supervised learning based on Nearest Neigh-
bor rule and Cut Edges (SNNRCE) [20], Co-training [2], CoTraining by Commit-
tee: Bagging (CoBagging) [7], Co-trained Random Forest (CoForest) [15], Adap-
tive Data Editing based CoForest (ADE-CoForest) [4], TriTraining [24], Tri-
Training with Data Editing (DE-TriTraining) [3], Local Cluster Centers (CLCC)
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[11], Democratic Co-Learning (Democratic-Co) [23], Random Subspace Method
for Co-Training (RASCO) [19], and Co-Training with Relevant Random Sub-
Spaces (Rel-RASCO) [22]. The classifiers setups are those from [17]. All the
methods select pseudo-labeled data using pseudo-label confidence values. All
classifier-agnostic methods employ a nearest-neighbor classifier as a base one to
ensure a fare comparison with HSVSTW and CVSVSTW.

6.2 Data Sets

The experiments are performed on ten UCI data sets from [5] employed in [17].
The features of the data sets are summarized in Table 1.

Table 1. Data sets employed in the experiments

Data set # Instances #Attributes #Classes

Bupa 345 6 2

Dermatology 297 33 6

Glass 366 9 7

Haberman 336 3 2

Heart 270 13 2

Hepatitis 155 19 2

Iris 150 4 3

Monk-2 432 6 2

Spectfheart 267 44 2

Tae 151 5 3

6.3 Validation Setup

The validation set up is the one from [17]. All the classifiers are evaluated using
10-fold cross-validation. 40% of data in each fold is labeled and 60% is not. To
ensure that the obtained results for HSVSTW and CVSVSTW are comparable
to the 14 classifiers from [17], the same labeled, unlabeled and test folds were
used (as indicated in [17])3. The metric for classifier validation is accuracy.

6.4 Results and Discussion

Table 2 presents the accuracy results of the 16 semi-supervised methods on the
10 data sets. The results show that: HSVSTW and CVSVSTW belong to the
best four semi-supervised methods in terms of averaged accuracy: HSVSTW has
the fourth place and CVSVSTW the second. The first and third places belong
3 Due to the exactly same cross-validation we do not perform experiments with the 14

classifiers from [17]. We process the experimental data from [17] together with ours.
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Table 2. Accuracy in percentages and standard deviations (in parentheses) of the
16 semi-supervised methods on all the data sets from Table 1. The methods are
ordered according to their averaged accuracy. The best accuracy results are in bold.
All classifier-agnostic methods employ nearest-neighbor classifier indicated with (NN).

Algorithms Bupa Dermatology Glass Haberman Heart

CoForest 62,67 (5,59) 95,21 (4,59) 67,96 (9,82) 60,75 (8,20) 77,04 (8,41)

CVSVSTW 67,24 (6,80) 82,12 (6,82) 69,84 (8,32) 74,12 (4,83) 68,22 (6,59)

Democratic-Co 60,35 (5,93) 94,39 (4,21) 55,35 (12,85) 74,49 (2,12) 82,59 (10,22)

HSVSTW 65,85 (6,83) 77,97 (6,73) 64,45 (9,60) 74,65 (5,31) 67,75 (7,84)

SETRED 58,74 (9,47) 94,66 (4,08) 64,87 (6,75) 69,24 (7,44) 77,41 (10,79)

Co-Bagging (NN) 57,24 (11,34) 93,83 (3,72) 64,89 (7,99) 67,62 (8,97) 78,15 (11,17)

Self-Trainer(NN) 57,60 (9,50) 94,93 (4,36) 65,55 (5,69) 67,91 (7,33) 78,15 (10,27)

ADE-CoForest 59,00 (9,27) 94,67 (3,63) 61,16 (11,21) 64,42 (7,23) 72,22 (6,88)

SNNRCE 58,07 (8,21) 94,94 (3,33) 64,38 (9,57) 69,59 (3,41) 77,78 (10,86)

DE-TriTraining (NN) 54,10 (6,79) 92,97 (4,78) 60,32 (8,35) 69,63 (6,70) 79,63 (9,26)

TriTraining (NN) 53,25 (11,64) 92,69 (5,24) 65,81 (9,26) 66,66 (5,78) 76,30 (10,37)

CLCC 57,32 (3,71) 85,79 (5,54) 56,25 (11,69) 73,53 (0,94) 78,52 (5,93)

APSSC 56,04 (7,52) 93,26 (3,81) 49,22 (9,82) 63,39 (6,71) 83,70 (7,63)

Co-Training (NN) 57,05 (8,53) 92,15 (44,9) 59,20 (6,52) 58,10 (9,73) 76,30 (8,80)

Rasco (NN) 59,66 (9,19) 57,53 (7,02) 54,99 (7,20) 65,95 (9,28) 74,44 (10,53)

Rel-Rasco (NN) 60,79 (7,32) 60,57 (5,58) 54,73 (7,71) 66,61 (5,70) 71,85 (10,76)

(a) Results for the data sets Bupa, Dermatology, Glass, Haberman, and Heart.

Algorithms Hepatitis Iris Monk-2 Spectfheart Tae

CoForest 84,03 (11,69) 92,67 (6,29) 99,77 (0,68) 77,91 (6,93) 43,08 (7,60)

CVSVSTW 83,16 (13,38) 96,03 (3,47) 96,47 (3,44) 79,49 (1,78) 39,91 (10,07)

Democratic-Co 85,43 (12,24) 97,33 (3,27) 95,43 (3,38) 69,72 (13,34) 41,04 (8,18)

HSVSTW 82,83 (11,59) 95,48 (5,34) 95,27 (3,26) 79,72 (3,73) 39,66 (11,68)

SETRED 83,92 (12,83) 93,33 (4,22) 77,61 (5,67) 75,00 (7,21) 41,75 (9,06)

Co-Bagging (NN) 84,28 (10,37) 94,00 (3,59) 78,38 (5,76) 70,46 (7,75) 47,63 (8,91)

Self-Trainer(NN) 79,34 (15,52) 92,67 (4,67) 77,61 (5,94) 73,48 (8,03) 41,75 (8,01)

ADE-CoForest 85,09 (15,29) 90,67 (6,11) 85,49 (5,30) 77,19 (8,21) 39,00 (11,36)

SNNRCE 79,50 (12,96) 92,00 (8,33) 74,19 (6,04) 75,74 (6,50) 39,71 (8,77)

DE-TriTraining (NN) 82,61 (12,99) 92,67 (9,17) 75,02 (6,67) 75,30 (5,22) 38,42 (12,57)

TriTraining (NN) 80,92 (14,84) 93,33 (4,22) 70,31 (6,00) 74,91 (6,26) 45,08 (9,96)

CLCC 83,43 (11,29) 92,00 (8,84) 73,47 (8,09) 79,42 (1,66) 38,33 (10,67)

APSSC 84,59 (15,17) 92,00 (6,53) 78,76 (7,56) 45,71 (6,25) 44,42 (8,63)

Co-Training (NN) 84,03 (14,17) 87,33 (7,57) 72,78 (8,28) 58,11 (9,81) 41,71 (12,59)

Rasco (NN) 78,53 (16,69) 66,67 (11,16) 76,19 (5,29) 74,17 (5,80) 46,42 (13,48)

Rel-Rasco (NN) 83,51 (16,35) 67,33 (10,93) 76,02 (6,76) 71,62 (8,34) 37,12 (11,71)

(b) Results for the data sets Hepatitis, Iris, Monk-2, Spectfheart, and Tae.

to CoForest and Democratic-Co that are both not based on nearest-neighbor
classification. In addition, we see that HSVSTW and CVSVSTW have both two
wins as CoForest and Democratic-Co. Thus, HSVSTW and CVSVSTW are the
best semi-supervised classifier-agnostic methods that employ nearest-neighbor
classification in terms of averaged accuracy and win numbers.
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CVSVSTW outperforms HSVSTW on 8 data sets. Thus, the experiments
confirm that cross-validation estimation of Shapley values improves the wrapper
accuracy. However, this improvement can diminish for large data. Thus, in this
case HSVSTW can be more preferable due to its computational efficiency.

CVSVSTW and HSVSTW outperform the standard self-training wrapper
(with a nearest-neighbor base classifier) on 6 (out of 10) data sets with big accu-
racy margins. This shows that selecting pseudo-labeled data based on Shapley
values results in rather different and eventually more accurate wrappers than
selecting based on pseudo-label confidence values.

7 Conclusion

This paper introduced an alternative approach to selecting pseudo-labeled data
for semi-supervised learning. The approach selects pseudo-labeled instances
based on their individual contributions for the final-model performance. It was
shown experimentally that it is capable of outperforming the standard selection
approach that is based on the pseudo-label confidence values.

Estimating instance contributions was considered as a data-valuation prob-
lem, and, therefore, Shapley-value methods were proposed for this problem. The
applicability of data valuation to semi-supervised learning implies two unre-
searched possibilities. The first one is that we can perform data valuation for
different performance metrics such as ROC AUC, F1 score, R2 etc. and, thus, we
can perform semi-supervised learning for different aspects of the task in hand.

The second possibility is based on the fact that we can provide a value for
any individual unlabeled instance for a model performance. Thus, it can be a
first step for the eminent commoditization of unlabeled data.
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Abstract. Deep neural network architectures have recently achieved
state-of-the-art results learning flexible and effective intrusion detection
models. Since attackers constantly use new attack vectors to avoid being
detected, concept drift commonly occurs in the network traffic by degrad-
ing the effect of the detection model over time also when deep neural
networks are used for intrusion detection. To combat concept drift, we
describe a methodology to update a deep neural network architecture
over a network traffic data stream. It integrates a concept drift detection
mechanism to discover incoming traffic that deviates from the past and
triggers the fine-tuning of the deep neural network architecture to fit
the drifted data. The methodology leads to high predictive accuracy in
presence of network traffic data with zero-day attacks.

Keywords: Network intrusion detection · Deep learning · Data
stream · Concept drift detection · Transfer learning

1 Introduction

A Network Intrusion Detection System (NIDS) aims to protect information secu-
rity by detecting malicious activities (attacks) in computer networks. In recent
studies, advances in Deep Learning (DL) have been widely exploited to design
accurate neural network (NN) models that turn out robust and effective also
in detecting zero-day attacks [2–6]. However a limit of current DL-based NIDSs
is that they follow the assumption of stationary traffic data distribution, while
this assumption is ineffective in modern network traffic environments, where the
malicious activities are often polymorphic and evolve continuously. The desir-
able behaviour is that NIDS models built around to “normal connections” or
“intrusions” change over time to deal with the “concept drift” of the network
traffic characteristics [13]. This behaviour can be actually achieved by resorting
to data stream learning, in order to incorporate the most recent behaviours of
intruders into NIDS models.
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In this paper, we define the stream version of the DL-based network intru-
sion detection method described in [3]. We select this method for the stream
upgrade described in this study as experiments [3] have proved that it outper-
forms several, recent state-of-the-art intrusion detection methods evaluated in
various static settings. We describe a stream learning methodology that resorts
to the Page-Hinkley test (PHT) [15] to capture possible drifts in traffic data.
When these changes get being as significant, we fine-tune the current DL model
on the most recent normal and attack data that have been processed to alert
the drifts. This corresponds to transfer the previously trained DL models to new
data, updating only the layer weights, while avoiding the effect of catastrophic
forgetting [11]. We investigate the effectiveness of the presented data stream
methodology in a benchmark stream of network flows.

The rest of this paper is organised as follows. Related works are presented in
Sect. 2. The basic DL architecture is described in Sect. 3. The proposed stream
learning DL methodology is described in Sect. 4. The results of the evaluation
are discussed in Sect. 5. Finally, Sect. 6 refocuses on the purpose of the research
and illustrates possible future developments.

2 Related Works

The problem of learning intrusion detection models able to handle streaming
traffic data has not still attracted large interest. A few studies that have inves-
tigated the task basically resort to sequential learning approaches. The authors
of [17] explore the capability of a RNN to build unsupervised autoencoders.
Once these models learn the distribution of the normal network traffic, they are
used to recognise anomalous data that are restored with difficulty, since they
come from a different distribution. However, to assess the reconstruction quality
and the detection rate, these methods need ranking metrics that deem as true
intrusions only samples with higher scores. Autoencoders for anomaly detection
are also explored in [14], while the ranking is also investigated in [19] with an
unsupervised approach based on feed-forward and recurrent deep networks.

On the other hand, the availability of labelled public network traffic
datasets has prompted more studies of DL focused on supervised classifica-
tion approaches, than studies that discard training activities. For instance, the
authors of [12] propose a CNN-LSTM architecture working also on network-
ing metadata besides connection features. The model is continuously re-trained,
after the validation of the malicious events by the human analyst. However, in a
streaming scenario, the human validation turns out to be unfeasible. The authors
of [1] focus on the generalisation properties of the model rather than on a way to
re-train it. They learn a RNN based on a new regularizer that decays the weights
of the hidden layers according to their standard deviation in the weight matri-
ces. In any case, the above-mentioned studies have been proved as adequate for
real-time environments that do not necessarily exhibit data distribution drift.
Instead, handling concept drift has been extensively studied coupled with con-
ventional machine learning approaches [9] that do not offer the great detection
performance of DL techniques like CNN-based architectures [2,3,5].
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3 Background: MINDFUL

MINDFUL [3] is a DL-based NIDS that is trained processing a flow-level his-
torical network traffic training set D = {(xi, yi)}Ni=1 composed of N training
network flows. Each training sample xi ∈ R

D is a row vector corresponding
to an input sample defined over D flow-level attributes, while yi is the cor-
responding binary label denoting a normal or an attack sample. The intru-
sion detection model is trained combining an unsupervised DL architecture—
based on two autoencoder—with a supervised DL architecture—based on a 1D
CNN. Specifically, two independent autoencoders—zn and za—are separately
learned from the subset of training samples, whose label is normal, resp. attack.,
respectively. These autoencoders are used to map single-channel training sam-
ples to a multi-channel representation that is used as input to a 1D CNN.
In particular, each training sample xi ∈ D is replaced by 3-channel sample
x̂i = [xi, zn(xi), za(xi)]� ∈ R

D×3, where zn(xi) and za(xi) correspond to the
reconstructed representations of the single-channel sample xi in both autoen-
coders zn and za. We note that when the samples belong to two different distribu-
tions, samples xi, labelled as normal should be more similar to the representation
zn(xi) than that of za(xi), or equivalently ||xi − zn(xi)||2 < ||xi − za(xi)||2, and
viceversa. A 1D CNN—cnn—is trained from the multi-channel representation
of the training samples.

4 Data Stream Methodology: Str-MINDFUL

In this Section we present Str-MINDFUL—a supervised stream learning
algorithm—that trains the MINDFUL architecture over the network traffic data
stream by incrementally updating the weights of the trained architecture to
fit possible changes occurring in the network traffic. Str-MINDFUL initialises
the MINDFUL architecture using the initial labelled samples recorded in the
stream. At the completion of this initialisation step, as a new unlabelled sample
is recorded in the stream, Str-MINDFUL uses the current MINDFUL architecture
to yield the class prediction. After the true class label of the sample is avail-
able in the stream, Str-MINDFUL processes this information to identify possible
drifts in network data that, if neglected, may worsen the intrusion detection
ability of the current MINDFUL architecture. The drift detection triggers the
update of the MINDFUL architecture for the subsequent predictions. The block
diagram of Str-MINDFUL algorithm is reported in Fig. 1. The algorithm uses the
Page-Hinkley test (PHT) to detect possible drifts in the network traffic data and
trigger the operation of incremental updating of the MINDFUL architecture as
requested. We briefly describe basics of the Page-Hinkley test in Sect. 4.1, while
we specify the details of the initialisation step and the incremental learning step
of Str-MINDFUL in Sects. 4.2 and 4.3, respectively.
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Fig. 1. Architecture of Str-MINDFUL.

4.1 Page-Hinkley Test

The Page-Hinkley test (PHT) [15] is commonly used for monitoring data drift
detection in the average of a timestamped Gaussian variable vt [10]. As a new
value vt is acquired at time t, the test updates a variable mt, defined as the
cumulative difference between the observed values and the mean up until the
current time t. Formally, m0 = 0 and mt = α × mt−1 + (vt − vt − δ), where

vt = 1
t

t∑

i=1

vi, δ is the tolerable magnitude of the drifts and α is the fading

factor introducing a forgetting mechanism for accumulating the oldest data.
In addition, the test updates Mt = min

i=1,...,t
mi, i.e. the minimum of mt. The

PHT detects a drift by monitoring the difference PHTt = mt − Mt. When this
difference is greater than λ a change is flagged. According to comments reported
in [10], larger λ will entail fewer false alarms, but may miss some changes. In
Str-MINDFUL, we use the PHT to monitor the classification errors, as well as
the reconstruction errors of the samples restored through autoencoders.

4.2 Initialisation Step

Let S be a stream of labelled network flows (samples), that is S = {(xt, yt)}
with t = 1, 2, . . . , N, . . ., where xt is a vector of flow-level attribute values and yt
is the corresponding binary label denoting a normal or an attack sample. The
initialisation step of Str-MINDFUL starts as a historical training set is acquired
from S. This corresponds to acquire the N initial labelled samples (xt, yt) of
S (with t = 1, . . . , N) and record these labelled samples in the N -sized data
synopsis D. The training samples recorded in D are processed to complete the
initialization phase in three steps:
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1. The MINDFUL architecture is initialized by learning both the weights of zn
and za—the autoencoder NNs—and the weights of cnn—the multi-channel
1D CNN. This is done by running the DL algorithm described in [3].

2. The cumulative variables of the PHT, PHTy, PHTzn and PHTza , are ini-
tialised, so that: (1) the cumulative variables of PHTy are initialised with
the sequence of classification errors ||yt − y′

t|| with y′
t is the label predicted

with the multi-channel CNN cnn, that is, y′
t = cnn([xt, zn(xt), za(xt)]); (2)

the cumulative variables of PHTzn and PHTza are initialised with the recon-
struction errors ||xt − zn(xt)|| and ||xt − za(xt)|| of the samples restored
through the autoencoders zn and za, respectively.

3. The stratified sampling algorithm is used to retain a M -sized representative
sub-sample of original D for the next incremental learning stage. This sample
is maintained in D and used as a historical background for the update of
the weights of zn, za and cnn during the incremental learning step. This
step allows us to speed-up any subsequent update operations involving the
processing of historical data.

4.3 Incremental Learning Step

For each new sample xt recorded at the time step t of S, the sample reconstruc-
tions zn(xt) and za(xt) of xt are restored through the current autoencoders zn
and za, respectively. Both reconstructions are used to derive the multi-channel
representation of the sample and predict the label y′

t = cnn([xt, zn(xt), za(xt)])
by using the current cnn.

As soon as the class label yt is available, this information is used to under-
stand if a drift has occurred in the network traffic. To perform the drift detection,
Str-MINDFUL updates the cumulative variables of PHTy according to the clas-
sification error value ||yt − y′

t||. In addition, if the label yt is equal to normal
then Str-MINDFUL updates the cumulative variables of PHTzn according to the
sample reconstruction error ||xt − zn(xt)|| and records the sample (xi, yi) in the
sliding window synopsis Wn. Otherwise, if the label yt is equal to attack then
Str-MINDFUL updates the cumulative variables of PHTza according to sample
reconstruction error ||xt − za(xt)|| and records the sample (xi, yi) in the sliding
window Wa. Both Wn and Wa are windows with size w, which record the last
w normal samples and the last w attack samples acquired in S, respectively.

By analysing the updated cumulative variables of PHTy, PHTzn and PHTza ,
Str-MINDFUL can raise alerts on drifts detected either testing the classification
error (test on PHTy) or testing the reconstruction error of the normal samples
(test on PHTzn) and the attack samples (test on PHTza). The detection of a drift
event triggers the refresher of the historical training data actually recorded in D.
In particular, if a drift alert is raised by the test on PHTzn then Str-MINDFUL
updates D with the samples currently recorded in Wn. Let |Wn| be the number
of normal samples currently recorded in Wn. Str-MINDFUL first removes |Wn|
random normal samples from D. Then it adds all the samples recorded in Wn to
D and empties Wn. Similarly, if a drift alert is raised by the test on PHTza then
Str-MINDFUL updates D with the samples currently recorded in Wa. Finally, if



116 G. Andresini et al.

neither the test on PHTzn nor the test on PHTzn raise a drift alert, while the
test on PHTy raises a drift alert then Str-MINDFUL updates D with the samples
that are currently recorded in both Wn and Wa.

Finally, based on the alerts raised from the drift detection module, Str-
MINDFUL starts the adaptation of zn, za and cnn to fit these NNs to the change
occurred in the network traffic data. The autoencoder NN zn is updated if an
alert is raised from PHTzn ; the autoencoder NN za is updated if an alert is
raised from PHTza ; the multi-channel 1D CNN cnn is updated if an alert is
raised by either PHTzn or PHTza or PHTy. For re-training zn, za and cnn,
Str-MINDFUL runs the algorithm in [3] with current D as training set. In this
incremental stage, zn, za and cnn are re-trained by using the weights saved in
the initial networks as starting point. This is a simple application of a transfer
learning principle in DL [18]. In fact, the structure and the weights of zn, za
and cnn are transferred from the past data to the new data. The weights saved
from the previous networks are fine-tuned on the refined input-output pair data
available for the intrusion detection task. Final concerns regard the fact that the
fine-tuning operation may be completed only after that a few new samples are
acquired in S. In this case, old weights of zn, za and cnn are still used to classify
a few incoming samples even after the drift detection. This happens until the
fine-tuning of the new weights of these architectures have not been completed.

5 Empirical Evaluation

This empirical evaluation is conducted using a stream of timestamped network
flows to verify the accuracy and efficiency of the proposed IDS methodology.

5.1 Implementation Details

St-MINDFUL is implemented in Python 3.6 using the Keras 2.4 library with Ten-
sorFlow as back-end. The source code is available online.1 The autoencoder archi-
tectures and the multi-channel architecture are implemented as described in [3].
In the initialization step, the weights are initialized following the Xavier scheme.
In the incremental learning step, the weights saved from the previous network are
used as a starting point of the new fine-tuning operation. During the initializa-
tion step, a hyper-parameter optimization is conducted following the description
reported in [3]. Finally, the Page Hinkley test is that implemented in the Scikit-
multiflow library. It is used with the default parameter set-up, that is, λ = 50,
δ = 0.005 and α = 1−0.0001. The minimum number of samples before detecting
a data drift is set equal to 30.

5.2 Dataset Description

CICIDS2017 was collected by the Canadian Institute for Cybersecurity in 2017.
The original dataset is a 5-day labelled log collected from Monday July 3, 2017
1 https://github.com/gsndr/Str-MINDFUL.

https://github.com/gsndr/Str-MINDFUL
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(a) Stream (b) Wednesday detail

Fig. 2. Label distribution of the entire network flow stream (Fig. 2a) and zooming in
a portion of data streamed on Wednesday (Fig. 2b).

to Friday July 7, 2017 [16]. The first day (Monday) contains only benign traffic,
while the other days contain various types of attacks, in addition to normal
network flows. Every network flow sample is spanned over 79 attributes extracted
with CICFlowMeter processing the real PCAPs. We consider the stream of data
with labels distributed as reported in Fig. 2. We note that new types of attacks
appear over time in the captured network traffic.

5.3 Experimental Setting

The labelled data recorded on both Monday and Tuesday are processed in the
initialisation step, while the data streamed on Wednesday, Thursday and Friday
are processed in the incremental learning step. The effectiveness of Str-MINDFUL
is measured by analysing the performance of the algorithm in monitoring the
data streamed on Wednesday, Thursday and Friday. When a drift is detected, we
consider the past model to predict incoming samples until the update of the new
model has been completed. The accuracy performance is measured by analysing
the Overall Accuracy (OA), F1-score (F1) and False Alarm Rate (FAR) of the
classifications. The efficiency performance is evaluated with the computation
time spent processing each new sample monitored on Wednesday, Thursday and
Friday. The computation time is measured in seconds on a Linux machine with
an Intel(R) Core(TM) i7-9700F CPU @ 3.00 GHz and 32 GB RAM. All the
experiments are executed on a single GeForce RTX 2080.

5.4 Results

Figures 3a, 3b, 3c and 3d report the OA, F1, FAR and average TIME spent
(in seconds) by monitoring each sample recorded on Wednesday, Thursday and
Friday by varying w among 750, 1500 (default), 3000 and 4500 with M = 12000.
Figures 4a, 4b, 4c and 4d report the OA, F1, FAR and average TIME spent
(in seconds) by monitoring each sample recorded on Wednesday, Thursday and
Friday by varying M among 6000, 12000 (default) and 24000 with w = 1500.
These results show that both the accuracy and efficiency performances vary
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(a) OA (b) F1 (c) FAR (d) TIME

Fig. 3. OA (%), F1 (%), FAR (%) and average TIME (in seconds) spent by varying w
among 750, 1500, 3000 and 4500 with M = 12000

(a) OA (b) F1 (c) FAR (d) TIME

Fig. 4. OA (%), F1 (%), FAR (%) and average TIME (in seconds) by varying M among
6000, 12000 and 24000 with w= 1500

slightly with M and w. The default configuration (M = 12000 and w = 1500)
achieves the best trade-off of accuracy and efficiency of the in-stream monitoring.

Figure 5 reports the TIME spent in seconds processing each sample recorded
on Wednesday, Thursday and Friday with the default configuration of Str-
MINDFUL (M = 12000 and w = 1500). This computation time ranges between
0.04 and 22.85 s. The computation peaks are achieved as the drifts alerts are
raised. This is because drifts trigger the fine-tuning of the weights of the autoen-
coders and/or the multi-channel 1D CNN. In any case, the time spent completing
this fine-tuning stage is low (less than 23 s). This is thanks to the application of
a transfer learning approach that starts from weights saved from the previous
NNs coupled with the use of a sample set of the historical data sample that is
appropriately updated with a sufficient amount of the newest drifted samples.

Finally, Table 1 compares the accuracy performance of Str-MINDFUL to that
of the baseline MINDFUL and the competitor described in [7]. In MINDFUL the
intrusion detection model learned during the initialisation step with the samples
recorded on Monday and Tuesday is consider to predict all the samples recorded
on Wednesday, Thursday and Friday without triggering any NN update opera-
tion. The competitor described in [7] handles the intrusion detection task as an
anomaly detection problem. These results confirm that Str-MINDFUL leverages
the ability to deal with concept drift outperforming significantly MINDFUL. In
addition, Str-MINDFUL takes advantage of a supervised learning process com-
pleted with normal and attack samples achieving better performance than [7]
that completes the learning stage with the normal samples only.
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Fig. 5. The TIME spent in seconds. Drifts on reconstruction errors with zn and za are
denoted with blue squares and red crosses, respectively. Drifts on classification errors
of predictions yielded with cnn are denoted with green circles. (Color figure online)

Table 1. OA, F1 and FAR of Str-MINDFUL (M = 12000 and w = 1500), its baselines
MINDFUL and the anomaly detector described in [7].

Method OA (%) F1 (%) FAR (%)

Str-MINDFUL 99.49 99.13 0.19

MINDFUL 88.01 74.90 0.80

[7] – 89.89 6.15

6 Conclusion

In this study, we have presented a DL-based network intrusion detection method-
ology that takes advantage of the PHT technique to detect events of concept drift
in the monitored traffic network data stream and applies a transfer learning
technique to fine-tune the DL architecture to the drifted data. The experimental
analysis confirms the effectiveness of the proposed methodology.

One research direction is investigating a strategy to add the ability to classify
the attack category (e.g., Dos, Port Scan). Another direction is that of exploring
the use of count-based windowing [8] to update the intrusion detection model as
a fixed number of connections has been streamed in. Then, we plan to explore
different stream learning mechanisms, in alternative to the PHT test, in order
to detect the concept drift in network traffic data. Finally, we intend to validate
the effectiveness of the proposed methodology with datasets comprising different
attack categories.
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Abstract. The online and potentially infinite nature of data streams
leads to the inability to store the flow in its entirety and thus restricts
the storage to a part of – and/or synopsis information from – the stream.
To process these evolving data, we need efficient and accurate method-
ologies and systems, such as window models (e.g., sliding windows)
and summarization techniques (e.g., sampling, sketching, dimensional-
ity reduction). In this paper, we propose, RW-kNN, a k-Nearest Neigh-
bors (kNN) algorithm that employs a practical way to store informa-
tion about past instances using the biased reservoir sampling to sample
the input instances along with a sliding window to maintain the most
recent instances from the stream. We evaluate our proposal on a diverse
set of synthetic and real datasets and compare against state-of-the-art
algorithms in a traditional test-then-train evaluation. Results show how
our proposed RW-kNN approach produces high-predictive performance
for both real and synthetic datasets while using a feasible amount of
resources.

Keywords: Data stream classification · K-nearest neighbors ·
Reservoir sampling · Sliding window

1 Introduction

Data have become ubiquitous in today’s fast-paced world. The evolution of tech-
nology has invaded our lives in multiple domains and changed the way in which
we generate and manage data. These data can be transformed into valuable infor-
mation and insightful decisions through machine learning tools and techniques.
Several emerging applications and devices generate an overwhelming volume of
data that are continuously arriving in an online fashion as “streams”. The appli-
cation Internet of Things (IoT) is a good example, where connected devices and
sensors yield to a massive amount of data [11,14].

Research in data mining is mainly devoted to static and offline environments
where patterns hidden in data are fixed and instances1 can be accessed several
times. Classification is one of the most popular tasks with widely used data
1 In the sequel, we use the terms instance or observation interchangeably.
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mining methods that consists in building a model based on the attribute values
of existing instances and seeks to predict the class labels of a given test set
of unlabelled observations [25]. Multiple static classifiers have been proposed
which build and test the model in the traditional batch setting by accessing the
data more than once. However, when applied on streams, static algorithms fail
to process potentially infinite sequence of data because of its evolving nature
that requires methods to adapt automatically. Moreover, with the data stream
model, we have resource limitations, so we need to address the space and time
restrictions. Under these constraints, an efficient classification algorithm should
have the following properties: (i) obtain a high – relatively good – accuracy; and
(ii) use a low computational cost, in terms of memory and time.

These properties are somewhat correlated because reducing the memory and
time used by a classifier will lead to a loss in information that can impact the
accuracy. An algorithm can be fast by processing less information and using
less space, on the other hand, the accuracy can increase if more information
are stored. To sum up, it is a resource-accuracy tradeoff that depends on the
application purposes.

To cope with the main data stream challenges (e.g., the memory and time
constraints) and address the stream framework requirements while processing
evolving data, stream algorithms use well-established manners [2]. The latter
techniques include, but not limited to, one-pass processing where instances
should be processed only once, sliding window [27] of a fixed size, where only the
most recent instances from the stream are stored, reservoir sampling [32] which
is a probabilistic method for stream synopsis construction through sampling,
and dimensionality reduction [5] to reduce the number of attributes of data.

Several classification algorithms have been proposed to deal with evolving
data streams, mostly derived from the traditional algorithms for the offline set-
ting. For instance, decision trees [16,19,20], naive Bayes [7,17], k-Nearest Neigh-
bors (kNN) [6,10,26], and the ensemble-based methods [21–23,28].

The kNN is a well-known algorithm that has been adapted to the stream
setting by maintaining a sliding window of a fixed size since it is impossible
to store the entire stream in memory [10]. Despite the fact that this stream
version of kNN is limited by the size of the moving window, previous empirical
studies [10,29] and our analysis (in Sect. 4) show that the standard stream kNN
is still costly in terms of memory usage and time.

To cope with this issue, we investigate the benefits of using reservoir sampling
with the kNN algorithm. We also investigate the predictive performance gains
of using this technique.

The main contributions of this work are the following:

– We propose a kNN algorithm for evolving data streams that uses a small
sliding window to maintain the recent observations from the stream, along
with a reservoir sampling to keep track of old observations that are removed
constantly from the window.
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– We provide an experimental study where we evaluate our proposed app-
roach and compare it against state-of-the-art classification algorithms using
a diverse set of real and synthetic datasets.

The remainder of this work is organized as follows. In Sect. 2, we detail related
work for comparison. Section 3 contains the description of the proposed kNN
approach for evolving data streams. Section 4 details the datasets used and the
comparison results of our proposal with the state-of-the-art methods. We finally
make concluding remarks and poses directions for future work in Sect. 5.

2 Related Work

The evolving data stream mining has gained in popularity during the past decade
because of the overwhelming volume of data generated daily in different domains.
Classification is one of the most widely used tasks for data stream mining, where
several classifiers have been thoroughly studied and used with evolving data
streams. A stream algorithm must be able to process instances as fast as possible
by reading every instance only once (one-pass) or a small number of times using
limited resource capabilities [18].

For instance, the Naive Bayes (NB) [17] is the simplest classifier that updates
counters with each observation and uses the assumption “all the attributes are
independent of each other given the class label”. In order to make prediction, the
NB classifier computes the Bayes theorem using the stored counters which makes
it useful with massive data streams. This naive assumption between attributes
does not always hold in practice, which can lead to (potentially) bad results.

Unlike naive Bayes, the kNN algorithm does not learn any model, since it
maintains all instances in order to find the neighbors for every test instance. A
basic implementation consists in keeping a moving window that stores the most
recent instances from the stream. Self-Adjusting Memory kNN (SamkNN) [26]
algorithm is another kNN variation that builds an ensemble of models to deal
with concept drifts. For this to happen, the SamkNN algorithm uses two mem-
ories: short-term memory to target current concept, the long-term memory to
keep track about the past concepts.

In [10], Bifet et al. proposed a Probabilistic Adaptive Window (PAW) which
is based on the approximate counting of Morris. PAW includes older instances as
well as the most recent ones from the stream, and therefore maintains somewhat
information about past concept drifts and adapts to new ones. PAW has been
used with the kNN as a window to maintain instances. In order to add an explicit
change detection mechanism to the aforementioned kNN, authors in [10] used, on
top of PAW, ADWIN [8], a change detector that keeps a variable-length window
of recently seen instances to handle drifts in the distribution.

The aforementioned single algorithms serve the purpose of common baselines
since they are used for comparison in the data stream classification.
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3 Reservoir Stream kNN

We start by defining the notation used throughout this paper and the data
stream classification problem. Let S = x1, x2, x3, . . . be an open-ended sequence
of observations arriving over time. Each observation is composed of a vector of
d attributes x ∈ R

d. Unlike the offline classification, the stream classification
task must build the model incrementally with each incoming instances from the
stream. It starts by predicting to which class a new arrived instance belongs,
then uses it to update (and build) the model. Filtering spam emails is a good
example for classification where we predict if an email is a spam or not based
on the text contents (attributes).

More formally, the classifier builds a model f and given an instance x we want
to predict its discrete class y from a set of class labels C, st. y = f(x). Back to
our previous example, x could be the email text and y determines whether the
email is spam or not.

3.1 Background

The unbounded nature of data streams requires some innovative adaptations over
the traditional setting in order to extend the offline algorithms to the streaming
framework. Many synopsis techniques such as sketches, histograms and wavelets
are designed for approximations and to be used with particular applications. We
will give an overview of some techniques, considered in this paper, which have
been used with some stream classification algorithms.

Window models are a very popular way to keep instances in the memory
for data streams. For instance, the sliding window with a fixed size that moves
forward as time progresses. It maintains the most recent observations from the
stream consisting of a smaller number than the real size of the huge stream
(which is potentially infinite). Several stream mining algorithms uses windows,
e.g., the kNN and SAMkNN algorithms. Nevertheless, the use of sliding window
uniquely may represent an unstable solution because we lose the entire history
of the past data stream.

Reservoir Sampling (RS) [32] is an important class of synopsis construction
techniques from evolving streams that processes data in one-pass. The basic idea
of RS is to maintain an unbiased sample through the probabilistic insertions and
deletions. In the offline setting, a dataset is composed of N instances, so it is
trivial to construct a sample from this dataset of size r where all instances have
an equal probability of r/N to be added to the sample.

However, in the continuous stream process, the size of the stream “N” can-
not be known in advance and is potentially infinite. In fact, the probability
of insertion reduces with the stream progression since N increases, i.e., recent
observations will not be added to the reservoir. So, we may have another extreme
unstable solution that will not be efficient with applications where recent data
may be more relevant. In very general terms, the quality of learning will degrade
when the stream progresses since few instances in the reservoir remain relevant
with time.
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3.2 Algorithm

The kNN is one of the fundamental algorithms used for classification. In the
offline setting, the kNN algorithm stores all the instances and searches for the k
closet instances to an unlabeled instance by computing a distance metric (e.g.,
the Euclidean distance). The prediction is therefore made by taking the most
frequent class label over the k-nearest neighbors in the dataset. In data stream
learning, since it is infeasible to maintain of all the instances from the stream due
to eventual resource limitations, a basic adaptation of the kNN algorithm to the
stream setting consists in an implementation that maintains a sliding window of
a fixed size moving over the stream. The class label of a test instance has to be
predicted by taking the majority vote of its k closest instances from the sliding
window instead of the entire instances seen so far.

As mentioned before, the sliding window is indeed an efficient technique
to make some static algorithms applicable on evolving data streams. However,
it only maintains the most recent instances in the stream and forgets about
the history of the past instances which may potentially impact the predictive
performance of some stream algorithms that uses sliding windows, such as the
kNN.

On the other hand, a different solution where we use the kNN with exclusively
the RS technique will lead to another problem where only historical instances
will be maintained in the reservoir because, as explained before (in Sect. 3.1),
the probability of insertion reduces over the progression of stream [24].

To cope with these issue, we propose in this paper a kNN that uses a RS
technique in conjunction with a sliding window. Besides, the standard reservoir
sampling technique [32] assumes a reservoir of size r stores the first r instances
from the stream (r is a predefined parameter). After that, when an instance n
arrives, with probability r/n, we insert it to the reservoir, otherwise we discard
it. If this instance is kept, it will replace another one, in the reservoir, picked
randomly. Consequently, the instances are inserted into the reservoir with a
decreasing probability, r/n, that reduces with time (when n increases). By the
end, most of the observations in the reservoir will represent the very old data
from the stream [1], since recent instances will mostly be ignored because of their
low insertion probabilities.

In order to regulate the choice of the stream sampling, in [31], a RS exten-
sion has been proposed, called Biased Random/Reservoir Sampling (BRS), that
ensures the insertion of recently arrived instances from the stream over instances
that arrived before. Similar to the RS, the BRS technique starts by filling the
reservoir with the first instances from the data stream. Then, it does not need to
compute the insertion probability of later instances because they will definitely
enter the reservoir. The insertion is made by replacing the instance at the posi-
tion of a random number (generated randomly in the range [0, r]) with the new
instance from the stream.

Taking into consideration these techniques, we use particularly (i) a sliding
window in order to keep the most recent instances from the stream; and (ii) a
biased reservoir sampling to keep track of the old instances from the stream.



Incremental k-Nearest Neighbors Using Reservoir Sampling for Data Streams 127

Algorithm 1. RW-kNN algorithm.
Symbols: S: data stream; C: set of class labels; k: number of neighbors; W :
sliding window; w: maximum window size; R: biased reservoir; r: maximum
reservoir size.
1: function RW-kNN(S, w, r, k)
2: W ← ∅
3: R ← ∅
4: while HasNext(S) do
5: (x, y) ← Next(S)
6: if size(W ) > 0 then
7: N ← DW,k(x) � kNN in W
8: N ← DR,k(x) � Add the kNN in R
9: end if

10: ŷ ← Predictŷ∈CDN,k(x) � Predict the class label for x
11: if size(W ) < w then
12: W ← Add((x, y)) � Add the instance in W
13: else � If size(W ) ≥ w
14: (x0, y0) = Remove(W [0]) � Delete the oldest instance in W
15: W ← Add((x, y)) � Add the recent instance to W
16: if size(R) < r then
17: R ← Add((x0, y0))
18: else � If the reservoir is entirely filled
19: i = Random(0, r) � Pick a random index in the reservoir
20: R ← Add(i, (x0, y0)) � Replace the instance of index i
21: end if
22: end if
23: end while
24: end function

Hence, we aim to obtain a stable kNN solution that takes into account, not
only the recent instances for prediction, as the standard stream kNN, but also
historical instances received so far from the stream.

In the following, we propose a kNN algorithm that uses the Euclidean dis-
tance function to obtain the nearest neighbors. Let us consider a window W , the
Euclidean distance between pairs of instances, xi and xj , is computed as follows:

Dxj
(xi) =

√
‖xi − xj‖2. (1)

Likewise, the k-nearest neighbors distance is defined as follows:

DW,k(xi) = min
(Wk ),xj∈W

k∑
j=1

Dxj
(xi), (2)

where
(
W
k

)
stands for the subset of k-nearest neighbors to the instance xi in W .

The overall pseudocode for the Reservoir Window kNN (RW-kNN) is pre-
sented in Algorithm 1. The RW-kNN is focused on the well-known test-then-train
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Table 1. The algorithms we consider

Abbr. Classifier Parameters

NB Naive Bayes

kNN k-Nearest Neighbors w = 1000, k = 10

SamkNN Self adjusting memory kNN w = 1000, k = 10

kNNW kNN with PAW w = 1000, k = 10

kNNA
W kNN with PAW + ADWIN w = 1000, k = 10

RW-kNN Reservoir-Window kNN w = 500, r = 500, k = 10

setting, where every instance is firstly used for testing (prediction) and then
for training. Besides, the RW-kNN algorithm does not build a model, hence
the training instances are used to evaluate its classification performance before
being used for training. The latter consists of maintaining the instances inside
the window and the reservoir (rather than building a model as learners do, such
as naive Bayes and decision trees).

When a new instance arrives from the stream, the prediction is made by
taking the most frequent label over the nearest neighbors (line 10, Algorithm 1)
retrieved from the moving window W and the biased reservoir R (line 7–8, Algo-
rithm 1) using the kNN distance (Eq. (2)). Assuming that the class label y for
an instance is available before the next instance arrives, we use this information
to maintain in memory the instance with its the true label.

The strategy used in the RW-kNN approach to keep instances begins by
adding the first w instances from the stream into the sliding window (line 12,
Algorithm 1) and whenever the window is filled, we remove the oldest instance
from the window and add the new one to it (line 14–15, Algorithm 1) in order to
maintain a window that slides over the stream with the same size. To keep track
of the old instances, we add each instance removed from the window (line 14,
Algorithm 1) to the biased reservoir sampling R and when it becomes full, we
generate a random number between 0 and the size of the reservoir r. The instance
at the index of the generated number will be replaced by the new instance (line
19–20, Algorithm 1).

4 Experimental Study

In this section, we look at the performance offered by our proposed RW-kNN
algorithm against its competitors (presented in Sect. 2), in terms of predictive
performance and resources usage. All the algorithms evaluated in this paper were
implemented in Java using the Massive Online Analysis (MOA) software [9].
These algorithms and their parameterization are displayed in Table 1.

Based on the empirical results in [6,10,26], we select w = 1000 and k = 10
for all the kNN-based algorithms except our proposed reservoir window kNN
(RW-kNN), where we divide the 1000 instances between the reservoir and the
window and fix w = 500, r = 500.
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Table 2. Overview of the datasets

Dataset #Instances #Attributes #Classes Type MF label LF label

RTG 1,000,000 200 5 Synthetic 46.89 2.70

Hyper 1,000,000 10 2 Synthetic 50.00 50.00

LEDa 1,000,000 24 10 Synthetic 10.08 9.94

LEDg 1,000,000 24 10 Synthetic 10.08 9.94

SEAa 1,000,000 3 2 Synthetic 57.55 42.45

SEAg 1,000,000 3 2 Synthetic 57.55 42.45

AGRa 1,000,000 9 2 Synthetic 52.83 47.17

AGRg 1,000,000 9 2 Synthetic 52.83 47.17

IMDB 120,919 1, 001 2 Real 72.96 27.04

Nomao 34,465 119 2 Real 71.44 28.56

Poker 829,201 10 10 Real 41.55 2.00

CNAE 1,080 856 9 Real 12.00 12.00

Har 10,299 561 6 Real 19.44 14.06
MF and LF labels (in %) stands for the Most and Less Frequent class label, respectively.

4.1 Datasets

In our experiments, we used a diverse set of both synthetic and real datasets
in different scenarios. For this paper, we used data generators and real data,
where most of them have been thoroughly used in the literature to assess the
performance of data stream classification algorithms. Table 2 shows an overview
of the datasets used while further details are provided in the rest of this section.

RTG The random tree generator builds a decision tree by randomly choos-
ing attributes as split nodes. This dataset allows customizing the number of
attributes as well as the number of classes. RTG generates instances with 200
attributes.

Hyper The hyperplane generator used to generate streams with incremental
concept drift by changing the values of its weights. We parameterize Hyper with
10 attributes and a magnitude of change equals to 0.001.

LED The LED generator produces 24 attributes, where 17 are considered
irrelevant. The goal is to predict the digit displayed on the LED display. LEDa
simulates 3 abrupt drifts, while LEDg simulates 3 gradual drifts.

SEA The SEA Generator proposed by [30] is generated with 3 attributes,
where only 2 are relevant, and 2 decision classes. SEAa simulates three abrupt
drifts while SEAg simulates 3 gradual drifts.

AGR The AGRAWAL generator [3] creates data stream with 9 attributes and
2 classes. A perturbation factor is used to add noise to the data, both AGRa

and AGRg includes 10% perturbation factor. AGRa simulates 3 abrupt drifts in
the generated stream while AGRg simulates 3 gradual drifts.
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IMDB It is movie reviews dataset2 that was first proposed for sentiment anal-
ysis, where reviews have been pre-processed, and each review is encoded as a
sequence of word indexes (integers).

Nomao It is a large dataset that has been provided by Nomao Labs [12]. This
dataset contains data that arrive from multiple sources on the web about places
(name, website, localization, address, fax, etc. · · · ).

Poker The poker-hand dataset3 consists of 829.201 instances and 10
attributes describing each hand. The class indicates the value of a hand.

CNAE CNAE is the national classification of economic activities dataset, ini-
tially used in [13]. It contains 1,080 instances, each of 856 attributes, representing
descriptions of Brazilian companies categorized into 9 classes. The original texts
were preprocessed to obtain the current highly sparse dataset.

Har Human Activity Recognition dataset [4] built from several subjects per-
forming daily living activities, such as walking, walking upstairs/downstairs, sit-
ting, standing and laying, while wearing a waist-mounted smartphone equipped
with sensors. The sensor signals were preprocessed using noise filters and
attributes were normalized and bounded within [−1, 1].

4.2 Results

In our experiments, we used the test-then-train evaluation methodology [15],
where every instance is used for prediction and then used for training. For fair
comparison, we used the configuration previously stated in Table 1.

Table 3 reports the predictive performance results of all algorithms stated in
Table 1 with the different datasets in Table 2. The accuracy is measured as the
final percentage of correctly classified instances over the test-then-train evalua-
tion. Table 4 shows the memory (measured in MB) used by the neighborhood-
based classification methods, induced on synthetic and real datasets, in order to
maintain the instances and/or statistical information from the stream. Table 5
reports the running time (in seconds) of the classification algorithms, which
consists in the time used in order to make prediction.

Figure 1 shows the standard deviation based on the accuracies obtained over
several runs with the different datasets. Figure 2 depicts the sensitivity of our
proposed RW-kNN approach to the sizes of the biased reservoir R and the sliding
window W , r and w respectively.

4.3 Discussions

Table 3 shows that, on the overall average of all the methods, our RW-kNN
performs good by obtaining accurate results in comparison with its competitors.
We notice that the kNN-based methods perform much better than the baseline
naive Bayes because of the naive assumption between attributes that does not
hold always. One exception of naive Bayes, where it performs better, is obtained

2 http://waikato.github.io/meka/datasets/.
3 https://archive.ics.uci.edu/ml/datasets/Poker+Hand.

http://waikato.github.io/meka/datasets/
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
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Table 3. Accuracy comparison (%)

Dataset RW-kNN kNN SamkNN kNNW kNNA
W NB

RTG 51.03 48.62 47.00 49.03 49.03 74.75

Hyper 85.12 83.32 84.02 83.87 83.87 70.90

LEDa 64.72 64.24 59.61 65.94 66.01 53.96

LEDg 63.62 63.19 58.49 64.99 64.86 54.02

SEAa 87.10 86.79 85.46 87.17 87.17 85.37

SEAg 86.85 86.54 85.21 86.93 86.93 85.37

AGRa 69.29 62.44 67.43 64.87 64.88 65.73

AGRg 67.92 61.26 65.73 63.60 63.54 65.75

IMBD 71.49 70.23 72.64 70.07 70.99 67.61

Nomao 95.83 96.09 96.68 96.03 96.23 86.86

Poker 75.97 69.34 78.32 66.81 68.78 59.55

CNAE 78.80 71.75 81.75 69.07 69.07 55.92

Har 90.87 92.33 87.43 93.07 93.03 73.36

Overall avg 76.05 73.55 74.60 73.96 74.18 69.17

with the RTG dataset which is associated to the fact that the underlying data
generator is based on a tree structure constructed with a random assignment
of values to instances. This structure leads sometimes to uncorrelated features
(200) with the class label making it a good fit to NB, which has the assumption
that attributes are independent of each other knowing the class label, but not
to neighborhood-based algorithms.

Surprisingly, the strategy employed in our RW-kNN approach is very compet-
itive to the baselines which are coupled with an explicit concept drift mechanism,
notably the SamkNN and the kNNA

W . The specific strategy, used to keep track
of old instances (in the biased reservoir) while maintaining a sliding window of
the most recent instances, performs well with datasets that contain drifts (e.g.,
with AGRa, AGRg). It is worth it to point out that the SamkNN showed lim-
ited capabilities, in comparison to our proposal, on tracking the drifts on these
datasets despite its explicit strategy employed to handle drifts.

Our approach achieves better accuracy than all the competitors on the overall
average, and is slightly defeated by kNNW and kNNA

W on some datasets (e.g.,
SEAa, SEAg) where the difference is mostly after the decimal point. We also
achieved better accuracy than vanilla kNN that only uses a sliding window (on
84.62% of the datasets), we however are defeated by only two datasets, such as
the Har dataset, where we are predicting the human current activity based on
information transmitted from his smartphone. So the most recent instances are
more relevant for such task making this dataset a good fit for baselines that
exclusively use sliding window.

For fair comparison, we assess the performance of our proposal against the
neighborhood-based competitors using the same values for k and w. In Table 4,
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Table 4. Memory comparison (MB)

Dataset RW-kNN kNN SamkNN kNNW kNNA
W

RTG 20.01 19.99 11.70 28.25 28.30

Hyper 1.32 1.32 8.88 1.91 1.94

LEDa 2.67 2.67 10.75 3.89 3.90

LEDg 2.67 2.67 10.13 3.81 3.77

SEAa 0.84 0.83 8.81 1.23 1.18

SEAg 0.84 0.83 8.87 1.23 1.18

AGRa 1.25 1.25 9.34 1.86 1.76

AGRg 1.25 1.25 9.30 1.82 1.76

IMBD 106.19 106.09 88.00 151.55 152.27

Nomao 10.63 10.62 13.76 11.47 14.99

Poker 1.32 1.32 8.80 1.94 1.94

CNAE 92.82 92.73 86.19 71.25 71.28

Har 57.40 57.35 58.27 82.71 82.36

Overall avg 23.27 22.99 25.60 27.92 28.20

Table 5. Runtime comparison (s)

Dataset RW-kNN kNN SamkNN kNNW kNNA
W

RTG 560.63 6911.97 769.20 16333.34 29205.99

Hyper 81.64 265.06 148.81 635.00 1207.41

LEDa 113.98 545.69 306.42 886.38 1709.50

LEDg 112.90 537.36 305.10 866.66 2391.58

SEAa 55.71 105.44 110.15 257.83 412.63

SEAg 55.84 104.28 109.59 208.56 436.85

AGRa 72.36 237.68 84.76 406.85 747.15

AGRg 71.36 242.62 81.04 410.18 851.20

IMBD 242.16 5672.10 558.07 10657.48 18116.53

Nomao 9.76 71.83 33.86 99.05 189.47

Poker 59.40 223.10 99.01 374.72 541.89

CNAE 1.60 28.97 2.09 24.35 28.80

Har 12.99 195.56 23.84 227.58 249.70

Overall avg 111.56 1164.74 202.46 2414.46 4314.52

we observe that the RW-kNN uses less memory than its competitors on the
overall average except for the standard kNN where the difference is very small.

Actually, the SamkNN uses a dual memory (short-term and long-term mem-
ories) to maintain models for current and past concepts which makes it memory
inefficient on several datasets. Nevertheless, on other datasets, such as RTG and
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Fig. 1. Standard deviation of the RW-kNN with different datasets.

IMDB mainly the high-dimensional ones, it is more efficient due to its clean-
ing process that could decide to remove instances from the short-term and the
long-term memories as the distribution may change which leads to an effective
smaller window size than the one kept by the RW-kNN and the other kNN-based
methods [26]. Besides, the kNNW maintains, other than the probabilistic approx-
imate window, statistics related to the probability of insertion of a new instance
to the window, and the kNNA

W , on top of that, uses the drift detector, ADWIN,
to handle concept drifts. Therefore, with its simple strategy of keeping a small
reservoir and window, our proposed RW-kNN approach is memory-efficient.

The results in Table 5 show that the RW-kNN outperforms the standard
kNN, SamkNN, kNNW , and kNNA

W in terms of execution time thanks to the
strategy of using a window and a reservoir instead of one big window. In fact,
at a prediction time, the pairwise distance calculations in a big window (of
1000 instances in the case of the baselines) are more costly, i.e., slower, than
calculations in a small window and a reservoir (each of 500 instances). Thus,
computing the kNN distance in two small data structures, such as the reservoir
and window, provides faster result than extracting the k nearest neighbors from
one big window. We observe that with high-dimensional datasets (e.g., RTG,
IMDB, CNAE), our RW-kNN offers a very significant gain.

Similar behavior, in terms of accuracy and computational demand, has been
obtained with different configurations (different values of k, w, and r) in compar-
ison with the competitors. Our RW-kNN uses feasible computational resources
and produces good accurate results while implicitly dealing with drifts.
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Fig. 2. Sensitivity of the RW-kNN approach to parameters r and w.

Due to the stochastic nature of the biased reservoir and therefore our RW-
kNN approach, we study the standard deviation in Fig. 1. For all the datasets,
the proposed approach has a small standard deviation (very close to zero), i.e.,
for all the runs, the achieved accuracies are close to the mean reported in this
paper.

To evaluate the sensitivity of our proposed RW-kNN approach to parameters,
we performed evaluation with some datasets using different size values of the
window and the reservoir as shown in Fig. 2. We remark that the best accuracy
is obtained using the biggest reservoir and window sizes (1000 each: the yellow
bar), which slightly more accurate than the performance with smaller reservoir
and window. This is an expected result because the more instances we have,
the better is the predictive performance with the kNN algorithms. Still, the
difference with the other configurations (w = 500, r = 500; w = 600, r = 400;
and w = 400, r = 600) is not huge which reveals the insensitivity of RW-kNN to
the sizes of R and W . Based on the results of different sizes with all the datasets,
we concluded that the size of the reservoir should be at least equal to the window
size in order to keep track of more instances from the past.
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5 Conclusions

In this paper, we introduced the reservoir window kNN approach, RW-kNN,
for data stream classification that is built upon the use of a sliding window,
to maintain recent instances from the stream, and biased random sampling, to
keep track of old instances from the stream in a reservoir. The prediction for
incoming instances is done by taking the majority vote over the nearest neighbors
extracted from the window and the biased reservoir sampling.

We used a range of different datasets to show empirical evidence that our pro-
posed approach is very competitive and tends to improve the predictive perfor-
mance while consuming less computational resources in comparison with state-
of-the-art baselines. On top of that, we showed its ability in handling the presence
of concept drifts without being coupled with a particular drift detector, thanks
to its reservoir-window strategy that keeps track of old and recent instances from
the stream.

We want to pursue our promising approach further by investigating the devel-
opment of an ensemble method that uses kNN with multiple reservoirs which
might lead to better predictive performance.
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Abstract. Analysing correlations between streams of events is an
important problem. It arises for example in Neurosciences, when the
connectivity of neurons should be inferred from spike trains that record
neurons’ individual spiking activity. While recently some approaches for
inferring delayed synaptic connections have been proposed, they are lim-
ited in the types of connectivities and delays they are able to handle, or
require computation-intensive procedures. This paper proposes a faster
and more flexible approach for analysing such delayed correlated activ-
ity: a statistical Analysis of the Connectivity of spiking Events (ACE),
based on the idea of hypothesis testing. It first computes for any pair of
a source and a target neuron the inter-spike delays between subsequent
source- and target-spikes. Then, it derives a null model for the distri-
bution of inter-spike delays for uncorrelated neurons. Finally, it com-
pares the observed distribution of inter-spike delays to this null model
and infers pairwise connectivity based on the Pearson’s χ2 test statis-
tic. Thus, ACE is capable to detect connections with a priori unknown,
non-discrete (and potentially large) inter-spike delays, which might vary
between pairs of neurons. Since ACE works incrementally, it has potential
for being used in online processing. In an experimental evaluation, ACE is
faster and performs comparable or better than four baseline approaches,
in terms of AUPRC (reported here), F1, and AUROC (reported on our
website), for the majority of the 11 evaluated scenarios.

Keywords: Machine learning from complex data · Event streams ·
Neurosciences · Neural connectomics · Connectivity inference

1 Introduction

An important problem in various applications is detecting correlations between
streams of events. This is of particular importance in Neurosciences, where
it arises for example when inferring the functional connectivity of neurons
[PGM67]. Given spike trains with recordings of the neuron’s individual spike
activity, the objective is to detect correlations between the spike activities of
pairs or networks of neurons. Most of the existing approaches are designed for
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Fig. 1. Schematic visualisation of ACE (Analysis of Connectivity of spiking Events).

detection of correlated synchronous activity, considering solely events within the
same discretised time interval. More recently, the detection of delayed synaptic
connections has gained attention. However, existing methods have limitations in
the types of connectivities and delays they are able to handle, for example due
to requiring range-parameters for expected delays, or they require computation-
intensive procedures, such as computing cross-correlation histograms or perform-
ing cross-evaluations of parameter values.

We propose a faster and more robust approach for the detection of delayed
correlated activity. The principle of this statistical Analysis of Connectivity of
spiking Events (ACE) of neural spikes is illustrated in Fig. 1. This statistical
approach follows the idea of hypothesis testing: Starting (A) with data in the
form of spike trains that are recorded for several neurons, the aim is to infer
for any pair of source (NS) and target neuron (NT ) the pairwise connectivity
between them. For this purpose, we compute in step (B) for any pair of neurons
the inter-spike intervals, i.e. the delays between their subsequent spikes (dS,S ,
dS,T1 and dS,T2). In the third step (C), we use the inter-spike intervals of a
potential source neuron to determine the null distribution of delays for uncon-
nected target neurons (shown on top as P (dS,unconnected)). If a target neuron is
not connected to the source neuron, the observed distribution of the inter-spike
intervals should follow this distribution (shown on the bottom as H(dS,T2)). In
contrast, if this observed distribution (shown at the center as H(dS,T1)) differs
sufficiently, we assume that these two neurons are connected. Thus, in step (D)
we use the Pearson’s χ2 test statistic to determine the connectivity for each pair
of neurons.

As a consequence, and in contrast to existing methods, our approach works
incrementally. It requires neither a cross-correlation histogram (faster), nor pre-
specified range-parameters for expected delays (more flexible), but assumes that
the signal reaches the target neuron faster than the source neuron fires again.
This makes it particularly interesting for online processing. Summarising, the
contributions of our statistical ACE approach are:
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– A statistical, principled approach based on hypothesis testing, by modelling
the null distribution of delays between pairs of unconnected neurons,

– which is fast and robust (no sensitive parameters),
– does not assume a particular type of connectivity pattern,
– capable to detect connections with unknown, non-discrete delays, that might

vary in length between connections.
– Based on the distribution of the F1 score for different datasets with simi-

lar neuron types (with known ground truth), experiments indicate that the
threshold is a robust parameter (transferable to other data sets, see [KKP20]).

2 Related Work

There is a rich literature on analysing neuronal spike train data for inferring con-
nectivity. This comprises recent reviews, e.g., [MYD18], and a recent machine
learning challenge on neural connectomics [BGL+17]. Following [MYD18], we
distinguish model-based approaches from model-free ones. An important limi-
tation of model-based approaches is that they rely on assumptions on the data
generating process. Their structure and function depend on a large number of
factors, resulting in a variety of models and approaches [MYD18]. These include
autoregressive models, which are fast but assume a directed linear interaction
and generalised linear models, which despite recent extensions to handle trans-
mission delays remain limited to small and uniform delays within the network.

In contrast, model-free approaches rely on principles from descriptive statis-
tics, information theory, and supervised learning. This comprises approaches
based on the correlation between the activities of neurons, which was the
key component in the winning approach of the neural connectomics chal-
lenge [BGL+17]. While in the simplest form only simultaneous spikes are con-
sidered, the extension to cross correlation allows for a delay τ between spike
times [IHH+11]. Extending the idea presented at the neural connectomics chal-
lenge, [Moh14] suggested to use inverse covariance estimates together with an
initial convolution filter to preprocess the data. The convolution kernel and
other parameter are learned by optimising the binomial log-likelihood function
[Moh14] on a training data set, where ground truth is known. In the above men-
tioned challenge they report comparable AUC scores and accuracy compared to
the winner, while being noticeably faster.

A further group of model-free approaches are based on information theo-
retic approaches. Their applicability for neural connectomics was investigated in
[GNMM09], comparing methods based on Mutual Information, Joint-Entropy,
Transfer Entropy (TE) and Cross-Correlation. This study revealed Transfer
Entropy and Joint-Entropy being the best of the aforementioned methods.
Transfer Entropy (TE) is equivalent to Granger causality for Gaussian vari-
ables [BBS09], which describes a statistical hypothesis test that measures the
ability of predicting future events of a time series based on past events of related
time series. However, pairwise Granger causality only detects direct correla-
tions. This leads to problems when two neurons are driven by a common third
neuron with different delays [CDHD08]. In [IHH+11], two different TE-based
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approaches are proposed, one using Delayed TE (DTE) and one using Higher
Order TE (HOTE). DTE calculates the TE for multiple delays (e.g. 1–30 ms),
which is extended in HOTE by considering multiple bins for each delay.

Recently, statistical methods for analysing synchrony across neurons were
reviewed in [HAK13]. Therein, it is emphasised that the statistical identification
of synchronous spiking presumes a null model that describes spiking without
synchony. Then, if the observed synchrony is not consistent with the distribution
under the null model, i.e. there is more synchony than expected by chance, the
null hypothesis of no synchrony is rejected. For hypothesis testing, [HAK13] focus
their discussion on deriving the test statistics from a cross-correlation histogram
(CCH). This shows the observed frequency of different time delays between two
spike trains, but is scaling dependent and computationally costly.

Convolutional Neural Networks have also been used [Rom17] to learn connec-
tivity directly from calcium imaging data. This scored worse than the correlation-
based approaches, and required extremely high computation time [BGL+17].

3 A Method for Analysing Potential Connectivity in
Events

The new method ACE (Analyser for Correlated spiking Events) is a statistical
approach following the idea of hypothesis testing. Observing the inter-spike inter-
vals of a potential source neuron, we determine the null distribution of delays
for unconnected target neurons. If the real observed distribution differ suffi-
ciently (using the Pearson’s χ2 test statistic), we infer that these two neurons
are connected. In contrast to existing methods, our approach works incremen-
tally without using a cross-correlation histogram (faster) and without providing
range-parameters for expected delays (more flexible).

The complete analysis pipeline of our algorithm is provided in Fig. 1: In the
first step, we compute the delays of two consecutive spikes of all neurons to deter-
mine the neuron’s parameters λ and RP (Sect. 3.1, Fig. 1B (top)). Thereby, we
are able to reconstruct the neuron’s delay distribution and to determine the null
model for the delay distribution between two neurons (Sect. 3.2, Fig. 1C (top)).
As we estimate the null model in advance, we have information on the expected
delay distribution and can use the histogram with intervals according to the
quantiles to estimate the distribution of observed delays (Sect. 3.3). Then, the
real delays from the source neurons to the target neurons are determined and the
histogram is completed (Fig. 1C (bottom)). The χ2 statistic provides a score for
distinguishing connected and unconnected neurons (Sect. 3.4, Fig. 1D). A thresh-
old is used to determine if the connection score was sufficiently large. A detailed
description follows in the next subsections, while the threshold specification is
discussed in the evaluation section.

3.1 Modeling Spiking Behaviour of a Single Neuron

As we will show in Sect. 3.2, the null-distribution for the delays between uncon-
nected source and target neurons depends on the distribution of time intervals
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(delays) d between consecutive spikes of the source neuron (NS). To model the
random variable (XNS→NS

) corresponding to these delays, we use an exponen-
tial distribution as a simplification of the gamma distribution, in accordance to
[Pil09]. This yields two parameters: the refractory period RP , describing the
time a neuron is inhibited to spike again, and the firing rate λ, defining the
shape of the exponential distribution. The probability density function (pdf) of
XNS→NS

= EXP (λ) + RP and its first two moments are given as:

fNS→NS
(d) =

{
λ exp(−λ(d − RP )) d ≥ RP
0 d < RP

(1)

E(XNS→NS
) = E(EXP (λ) + RP ) = E(EXP (λ)) + RP = 1/λ + RP (2)

V (XNS→NS
) = V (EXP (λ) + RP ) = V (EXP (λ)) = 1/λ2 (3)

The expectation value E(XNS→NS
) and the variance V (XNS→NS

) can be
incrementally calculated [BDMO03] to find the values for both parameters RP
and λ.

λ = 1/
√

V (XNS→NS
) RP = E(XNS→NS

) − 1/λ (4)

3.2 Determining the Null-Distribution for Uncorrelated Neurons

Our approach follows the idea of a statistical test: Instead of deriving models
for cases when a source neuron (NS) is connected to a target neuron (NT ),
we develop a model to describe the delays d if NS and NT are unconnected.
Observing a spike at the target neuron at time t, and knowing the time tS of
the source neuron’s last spike, this delay is d = t − tS .

If the source neuron (NS) is not connected to the target neuron (NT ), spikes of
NT seem to appear randomly from the perspective of NS as they are independent.
Instead of using the real spike time points, we could also use an equal number of
randomly chosen time points. Thus, the null-distribution solely depends on the
firing frequency of the source neuron, which is defined by its parameters RP and
λ. Determining the distribution of delays d = t− tS corresponds to estimating the
probability P (XNS→NS

> d) that NS has not spiked again within [ts, t]:

P (XNS→NS > d) = 1−
∫ d

0

fNS→NS (d′) dd′ =

{
exp(−λ(d − RP )) d ≥ RP
1 0 ≤ d < RP

(5)∫ ∞

0

P (XNS→NS > d) dd′ = RP +
1

λ

∫ ∞

0

λ exp(−λd) dd′ = RP +
1

λ
(6)

Using the normalised probability from above, we obtain the distribution XNS→N?

of delays between NS and an unconnected neuron N?:

fNS→N?(d) =
P (XNS→NS

> d)∫ ∞
0

P (XNS→NS
> d′) dd′ =

{
exp(−λ(d−RP ))

RP+1/λ
d ≥ RP

1
RP+1/λ

0 ≤ d < RP
(7)



Statistical Analysis of Pairwise Connectivity 143

Summarising, this null model describes the distribution of delays between two
unconnected neurons. Hence, our model is based on (but not similar) to the
interspike intervals of neuron NS which depends on the refractory period (RP )
and the firing rate (λ).

3.3 Estimating the Distribution of Observed Delays

To compare the true distribution of observed delays to the distribution under the
null model, we build a histogram with B bins such that every bin should contain
the same amount of delays following the null distribution. The delay interval of
bin b ∈ {1, . . . , B} is given in Eq. 8 with F−1 being the quantile function (inverse
cumulative distribution function) of the null distribution:

Ib =
[
F−1

(
b − 1

B

)
, F−1

(
b

B

)[
(8)

Given the source neuron’s RP and λ, this quantile function is:

F−1(q) =

⎧⎨
⎩RP − ln

(
1−(q− RP

RP+1/λ
)·(λRP+1)

)

λ q > RP
RP+1/λ

q · (RP + 1/λ) q ≤ RP
RP+1/λ

(9)

3.4 Infering Connectivity Using the Pearson’s χ2-test Statistic

Following the null hypothesis (neurons are not connected), the previously men-
tioned histogram should be uniformly distributed. Hence, the frequencies Hb of
bin b should be similar to Hb ≈ N/B (N =

∑
Hb, which is the total number of

delays). Our method uses the Pearson’s χ2-Test statistic to find a threshold for
distinguishing connected and unconnected neurons.

χ2 =
B∑

b=1

(Hb − N
B )2

N
B

(10)

Instead of calculating the p value, we directly use the χ2 statistic to determine
a threshold as the degrees of freedom (B−1) are similar for every pair of neurons.

4 Experimental Evaluation

We evaluate our algorithm to the most used baseline techniques [MYD18] regard-
ing its detection quality and its robustness to parameters like the detection
threshold. All code and data are available at our repository1.

1 https://bitbucket.org/geos/ace-public.

https://bitbucket.org/geos/ace-public
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4.1 Baseline Algorithms and Performance Scores

We compare our algorithm with the method proposed by [Moh14] (denoted as
IC ), which is as the winner of the Neural Connectomics Challenge based on
inverse covariance but faster, and the higher order transfer entropy (HOTE )
approach [IHH+11]. Besides the threshold that all connectivity detection algo-
rithms have in common, both methods require an additional binning parameter
that influences the performance. Following the suggestions, we use realistic stan-
dard parameters and two variants with 20 and 50 bins. The experiments were
implemented in MATLAB (HOTE was provided by the author of [IHH+11]).

As in the challenge and common in literature, we compare the algo-
rithms’ connection scores using the Area Under the Precision-Recall Curve
(AUPRC) (see [Pow11] and [MYD18]). This describes the relationship between
precision TP

TP+FP and recall TP
TP+FN at different thresholds [MYD18].

4.2 Sensitivity of the Algorithms

To evaluate the sensitivity of algorithms to different neural patterns, in our first
series of experiments we used artificially generated data with varying neural
parameters, which are summarised in Table 1. Each parameter range has been
chosen according to animal studies [Izh06] and related comparisons [MYD18].

To evaluate the detection capabilities for each algorithm, we show the
AUPRC scores in Table 1. Our algorithm outperforms all competitors except
for the data set NU H with higher number of neurons (equal performances with
the HOTE approach) and the data set with high delays (DE H) which is more
difficult for all algorithms. To explain our poor performance on the latter, we
need to recall that the self-initiated firing rate is between 17 ms and 36 ms,
calculated as the interval given in expected latency (default [10, 25)) plus the
RP ([7, 11)) for the DE H data set. If we observe delays longer than the source
neuron’s inter-spike intervals (here: 9ms ≤ d < 120 ms) it is likely that the
source neuron spiked again before its signal reaches the target neuron. Hence,
we are not able to link the spike of the source with the spike of the target neu-
ron which makes it impossible to find the respective connection. Fortunately,
this behaviour is rare in real neural systems [Izh06].

Unfortunately, it is not possible to set the detection threshold of the algo-
rithms to a fixed value. In this section, we aim to evaluate the sensitivity of the
respective parameter mentioned in Table 1. Therefore, we use each of the three
different configurations (low, mid, high) as one fold of an experiment. For each
fold, we tune the detection threshold on the remaining folds and calculate the
F1 score accordingly. Except for the data set with varying delays, our approach
shows superior performance than the baseline algorithms although the AUPRC
score differences have not been that large. This indicates that our detection score
is more robust to changes in the number of neurons (NU), the latency (LA), the
number of connections (CO) and noise (NO). The F1 scores for the delay (DE)
data sets for our approach ACE are: DE L 0.6164, DE M = ST 0.7539 and
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DE H = 0.1100. We see that the previously discussed low performance on DE H
is the reason for the low mean score.

In the experiments, we presented two variants of IC and HOTE as they
need an additional parameter which highly influences the results. Our param-
eter B has not such an influence on the performance and the runtime (see also
Sect. 4.3) of ACE. This is visualised in Fig. 3 which plots the AUPRC w. r. t.
the number of bins B on the ST data set. The plot shows that the performance
generally increases with higher resolution, but only marginally beyond B = 100,
our default for further experiments.

Table 1. Area Under the Precision-Recall Curve values for all algorithms on data sets
with varying characteristics. The default values for unvaried characteristics are 100
neurons (in the dataset), [10, 25) ms + RP expected latency (between two consecutive
spikes), 1% as relative number of connections, [5, 9) ms delay (between two connected
neurons), and +0 ms noise (when determining spike times). The length of the spike
stream is 30s and the refractory period (RP) is uniformly between 7 and 11 ms. The
data set name is composed by the characteristic abbreviation and a suffix for either
low, mid or high. Thus, the setting with 200 Neurons is called NU H.

Characteristic ACE IC20 IC50 HOTE20 HOTE50

ST Defaults 0.8626 0.2028 0.1409 0.7832 0.7761

NU L 50 neurons 0.8519 0.0834 0.0616 0.6310 0.6186

NU H 200 neurons 0.9504 0.2586 0.1038 0.9552 0.9553

LA L [1, 10) ms + RP latency 0.8652 0.0219 0.0138 0.5579 0.5546

LA H [25, 50) ms + RP latency 0.8135 0.2500 0.1430 0.8126 0.8119

CO L 5o/oo connections 0.8850 0.2656 0.1620 0.8738 0.8739

CO H 2% connections 0.8086 0.0406 0.0317 0.5952 0.5894

DE L [2, 5) ms delay 0.7598 0.2770 0.1528 0.7671 0.7670

DE H [9, 120) ms delay 0.1334 0.1687 0.1053 0.1505 0.3669

NO M +[0, 3) ms noise 0.7838 0.2248 0.1225 0.7246 0.7224

NO H +[0, 5) ms noise 0.8518 0.2246 0.1021 0.8322 0.8309

4.3 Computational Complexity

To provide a computational run time complexity bound of ACE, let N denote the
number of neurons, M the number of spikes over all neurons, and B the number
of bins used in the histogram. ACE’s first step is estimating the refractory period
RP and firing rate λ for each neuron by iterating once over all its spikes, suming
up to O(M) constant time operations for all neurons. Second, for each neuron’s
bin the frequencies according to its null model are computed, resulting overall
in O(N · B). Third, the histograms of all neurons are updated after each spike,
requiring to insert the observed delay into the corresponding bin. Using a k-
d-tree, this requires overall O(M · N · log(B)). Fourth, the χ2-test statistic is
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computed and tested for each pair of neurons, requiring O(N2 · B) operations.
The last two steps dominate, giving an overall complexity of O(M · N · log(B))
or O(N2 ·B), respectively. In practice, the third step might be the bottleneck, as
the number of spikes depends on the number of neurons, i.e., M > N , and the
number of bins is small (e.g., B = 100). In contrast, HOTE’s time complexity is
O(N2 ·(F ·D ·R+2R)), with firing rate F , recording duration after discretisation
D, and R being the total order (k + l + 1) used in the calculations. IC’s time
complexity is O(N2 ·T +N2 · log(N)), with T as number of considered time lags.

Fig. 2. Runtime over data sets with
varying number of neurons.

Fig. 3. AUPRC scores of ACE with vary-
ing bin sizes on the ST dataset.

Figure 2 shows the empirical runtime2 of all strategies according to the num-
ber of neurons in the data set. Those runtimes are obtained by creating datasets
that duplicate the spike trains from NE L and evaluating them 10 times. One
can see that ACE is the fastest. IC20 and IC50 only differ slightly in runtime.
HOTE20’s runtimes are higher than the ones from IC20 and IC50 for N ≤ 300.
The number of bins affects HOTE’s runtime, making HOTE50 the slowest.

5 Conclusion

This paper proposed ACE for detecting correlated, but delayed event patterns in
streams, e.g., for detecting delayed connectivity of neurons. Using a null model
for the distribution of inter-spike delays of uncorrelated neurons, ACE employs
principles from hypothesis testing. Against this null-distribution, the distribution
of observed inter-spike delays is compared using a Pearson’s χ2 test statistic.

In an experimental evaluation, this algorithm was compared against recently
proposed approaches based on inverse covariance and higher order transfer
entropy, on data sets with varying characteristics based on our own data gen-
erator. On all data sets, ACE is faster and performs comparable or better in
terms of AUPRC, F1 and AUROC (see [KKP20]) score, except for networks
with very long inter-spike delays that interfere with uncorrelated spike activity.
In particular, ACE performs also better on the publicly available, state-of-the-
art benchmark data generator with realistic spike characteristics. ACE has only
2 Experiments were performed using a Intel(R) Core(TM) i7-6820HK CPU @

2.70 GHz, 16 GB RAM.
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two parameters, both being very robust and transferable between data sets of
similar characteristic. ACE is fast and flexible, allowing to detect connections
with a priori unknown, non-discrete delays, that might vary in length between
connections. Furthermore, due to its incremental nature, ACE has potential for
being used in online processing.
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Abstract. Recent years have witnessed a significant growth in Graph
Convolutional Networks (GCNs). Being widely applied in a number
of tasks, the safety issues of GCNs have draw the attention of many
researchers. Recent studies have demonstrated that GCNs are vulner-
able to adversarial attacks such that they are easily fooled by delib-
erate perturbations and a number of attacking methods have been pro-
posed. However, state-of-the-art methods, which incorporate meta learn-
ing techniques, suffer from high computational costs. On the other hand,
heuristic methods, which excel in efficiency, are in lack of satisfactory
attacking performance. In order to solve this problem, it is supposed to
find the patterns of gradient-based attacks to improve the performance
of heuristic algorithms.

In this paper, we take advantage of several patterns discovered in
untargeted attacks to propose a novel heuristic strategy to attack GCNs
via creating viscous edges. We introduce the Fast Heuristic Attack (FHA)
algorithm, which deliberately links training nodes to nodes of different
classes. Instead of linking nodes fully randomly, the algorithm picks a
batch of training nodes, which are of the same type, and links them
to another class each time. Experimental studies show that our pro-
posed method is able to achieve competitive attacking performance when
attacking against various GCN models while significantly outperforming
Mettack, which is the state-of-the-art untargeted structure attack, in
terms of runtime.

Keywords: Graph Convolutional Network · Graph deep learning ·
Adversarial attack

1 Introduction

Graphs are widely used in a variety of domains such as academic citation analysis
[1], scientific knowledge graphs [6], social network analysis [21], pandemic fore-
casting [10] and on-line banking [16], which is highly safety-critical. As a result,
graph-based deep learning methods have received significant research attention.
Graph Convolutional Networks (GCNs), in particular, have achieved state-of-
the-art performance in a variety of graph learning tasks and have become one
of the most popular research topics in the field of artificial intelligence.
c© Springer Nature Switzerland AG 2021
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In order to apply GCNs in real world scenarios, especially those safety-critical
ones, it’s important to investigate the robustness of GCN models. On one hand,
attackers aim to degrade the performance of GCNs. On the other hand, users of
GCNs want to ensure the performance against such adversarial attacks. Studies
on deep learning models have demonstrated the vulnerability of Deep Neural
Networks (DNNs) under adversarial attacks [7]. Although GCNs have a discrete
nature and take advantage of the structure information on graphs, recent studies
show that they are also easily fooled by adversarial perturbations [29].

Graph adversarial attacks, which deliberately modify the graph structures or
contaminate the node features, are able to successfully inject adversarial informa-
tion around the node neighborhoods and thus reduce the classification accuracies
of GCNs. Various kinds of techniques such as heuristic algorithm [28], gradient
decent [23], meta learning [29] and exploratory strategy [15] have been applied
in graph adversarial attacks. Heuristic Approaches such as Random Attack and
DICE [28] Attack are computationally efficient but their attacking performance
are not as satisfactory as gradient-based attacks. On the other hand, meta-
learning based algorithms, which use a surrogate model to simulate the GCN
and compute meta-gradients iteratively when choosing perturbations, achieve
state-of-the-art performance in grey-box scenarios while costing numerous com-
putational resources. Especially for untargeted attacks, which aim to reduce the
classification accuracies on the whole graph instead of a certain victim vertex,
the algorithm need to compute the gradients for all possible edges on the entire
graph, resulting in a long running time.

To remedy the above problems and to find a balance between performance
and efficiency, this paper proposes to attack the graph topology with a heuristic
algorithm which is based upon the patterns of gradient attacks. Several patterns
have been discussed by previous studies. At first, attacking algorithms prefer to
add edges instead of removing ones [22]. Secondly, graph structure attacks tend
to connect nodes from different classes [30]. Finally, untargeted attacks tend to
perturb the graph unevenly such that the algorithms modify a higher ratio of
edges near the training set [25].

Carefully taking advantage the above patterns, we construct the Fast Heuris-
tic Attack (FHA) algorithm. Instead of randomly linking dissimilar nodes, FHA
divides the node labels into pairs. For each pair of labels, FHA randomly con-
nects the nodes from the selected labels and ensures that at least one of the node
is in the training set. Experiments show that when comparing with the state-of-
the-art Mettack algorithm, FHA has competitive attacking performance while
being much faster. When comparing with other attacking algorithms, FHA has
better performance.

The contributions of this paper can be summarized as follows:

– We propose a novel heuristic algorithm to perform untargeted GCN attacks.
To our best knowledge, it’s the first untargeted structure attack to take advan-
tage of discovered patterns to improve the efficiency.
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– We conduct experiments on three widely-used graph datasets to verify the
effectiveness of FHA. Experiments show that our proposed method excels in
both attacking performance and runtime measurements.

– Besides the representative GCN model proposed by Kipf et al. [11], we show
that FHA is also effective against various graph defense methods.

For the rest of the paper, we cover related works in Sect. 2. Then we introduce
mathematical preliminaries in Sect. 3 before introducing our proposed method
in Sect. 4. Experimental results are reported in Sect. 5 while we conclude our
paper in Sect. 6.

2 Related Works

2.1 Graph Convolutional Networks (GCNs)

Firstly introduced by Bruna et al. [2], Graph Convolutional Networks have
became a research hot spot since the introduction of the representative GCN
model [11]. Generalizing the convolution operation from Convolutional Neural
Networks to the graph domain, GCNs have a “message-passing” mechanism
which aggregates information according to the graph topology. According to
the methods used to aggregate messages, GCNs are divided into two families:
spectral GCNs and spatial GCNs. Spectral GCNs are based on spectral repre-
sentations of graphs. Typical spectral GCNs include ChebNet [4] and CayleyNet
[13]. Spatial GCNs directly define the convolution operations on the graph topol-
ogy. The representative GCN model proposed by Kipf et al. [11] is considered to
be both spectral and spatial since it simplifies the spectral convolution defined
in ChebNet into a spatial operation. Most recent GCN methods such as GAT
[18], JK-Net [24] and FastGCN [3] are of the spatial family.

2.2 Graph Adversarial Attacks and Defenses

Various taxonomies of graph adversarial attacks have been discussed [17]. In
order to review the related works, we briefly introduce three fundamental tax-
onomies. For more information on graph adversarial attacks, we refer the readers
to recent surveys such as [17] and [9].

– Goal of the attacker: targeted attacks aim to fool the GCN to misclassify
a set of victim vertices, untargeted attacks aim to reduce the classification
accuracies of all testing nodes.

– Accessible information of the attacker: white-box attacks allow the attacker to
access all possible information. In the settings of grey-box attacks, the training
data is hacked but no model parameters are available. For black-box attacks,
training data is also not accessible.

– Type of perturbations: feature attacks modify the node features to inject
adversarial information. Structure attacks add or delete edges in the graph.
Other kinds of attacks include node-injection attack [19], which adds viscous
nodes to the graph, and label-flipping attack [26], which modifies the ground-
truth labels of the training nodes.
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In this work, we focus on untargeted grey-box structure attacks. White-box
untargeted structure attacks include PGD Attack, which utilize projected gra-
dient descent, and Min-Max Attack, which considers the attacking problem as
a bi-level optimization problem [23]. In grey-box scenarios, model parameters
are not accessible so a surrogate model is used to approximate parameters and
gradients. Mettack [28] chooses perturbations by computing the meta-gradients
of the surrogate iteratively and reaches the state-of-the-art performance.

Following the efforts to develop graph attacking algorithms, researches on
the methods to defend against the attacks and to increase the robustness of
GCNs are also conducted. Pre-processing methods detect and delete adversarial
edges [22] or utilize low-rank approximation [5] before the training of GCN.
Robust GCN (R-GCN) [27], which is a robust training method based on the
attention mechanism, learns the hidden representations of nodes as Gaussian
distributions and reduces the weights of high-variance nodes. Graph structure
learning methods such as Pro-GNN [8] is also proposed to improve the robustness
of GCNs.

3 Notations and Preliminaries

3.1 Mathematical Notations

We denote an undirected graph as G = (V,E) where V is the set of N vertices
while E ⊆ V × V is the set of edges. The adjacency matrix of G is denoted as
A ∈ {0, 1}N×N and the features of nodes are encoded in one-hot vectors, which
form a feature matrix X ∈ {0, 1}N×F . Each node Vi has a ground-truth label
and we denote it as a one-hot vector −→y i ∈ {0, 1}C where C is the number of
classes. The N × N identity matrix is denoted as IN . The indicator function is
denoted as I(·) such that

I(p) =

{
1 if p is true
0 if p is false

. (1)

3.2 Graph Convolutional Networks

In this work, we focus on the GCN model introduced by Kipf et al. [11]. This
model is used as the surrogate model in our proposed method. Consisting of 2
layers, each layer is defined as:

H(l+1) = σ(ÂH(l)θ(l)), (2)

where σ is an activation function such as ReLU , Â is the normalized adjacency
matrix and H(l) is the hidden representations in the lth layer. The trainable
weights are denoted as θ(l). For the normalization of A, the renormalization trick
[11] is used such that Â = D̃− 1

2 ÃÃ− 1
2 , where Ã = A + IN and D̃ii =

∑
j Ãij .

The full network is defined as:

f(X,A) = softmax(Âσ(ÂXθ(0))θ(1)) ∈ R
N×C , (3)
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where fθ(X,A)i ∈ {0, 1}C , the ith row of the output, is the prediction of the ith

node. The whole network is trained with a cross-entropy loss:

Ltrain = −
∑

v∈Vtrain

C∑
i=1

C∑
i=1

−→y v log f(X,A)v. (4)

The performance of GCN is usually evaluated by the classification accu-
racies on the testing set [11]. The accuracy is defined as acctest(fθ(A,X)) =
1 − Etest(fθ(A,X)) where

Etest(fθ(A,X)) =
1

|Vtest|
∑

i∈Vtest

I(max fθ(X,A)i �= max −→yi ). (5)

3.3 Problem Definition

We now define the attacking problem and its conditions. Given a graph G =
(V,E). The attacker is allowed to access the adjacency matrix A, feature matrix
X. In addition, both the training set Vtrain and validation set Vval are hacked
such that their labels are also accessible. The algorithm is supposed to return a
new adjacency matrix A′ such that for a GCN network f(X,A):

A′ = argmaxA′ Etest(fθ∗(A′,X))
s.t. θ∗ = argminθ Ltrain(fθ(A′,X)).

(6)

The number of perturbations is also restricted by a budget Δ such that at
most Δ edges are allowed to be created. Mathematically, the restriction is stated
as:

‖A′ − A‖2F ≤ 2Δ. (7)

4 Proposed Method

Equation (6) is a bi-level optimization problem. In order to solve the bi-level
optimization problem, Mettack [28] incorporates a meta learning framework.
While achieving promising performance, the meta learning process requires a
numerous amount of computational resources. In this section, we describe our
proposed method to relieve this problem.

4.1 Exploring the Patterns of Attacks

We take advantage of three significant patterns discovered in graph structure
attacks. In order to demonstrate the patterns, we conduct a case study on a
Cora graph which is attacked by Mettack with a perturbation rate of 25%. We
use the Meta-Self variant of Mettack without the log-likelihood restraint.
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Tendency to Add Edges. While both adding or deleting edges are possible
in graph structure attacks, Wu et al. [22] report that attacking methods tend to
add fake edges instead of removing existed edges. Intuitively, creating fake edges
will inject new information from newly linked neighbors while removing edges
only influences the weights of existed neighbors during the message passing. In
our case study, the statistics show that among the 1267 perturbations, 1230 of
them are additions while only 37 deletions are crafted.

Connect Different Classes. Wu et al. [22] and Jin et al. [8] find that dissimilar
nodes are more likely to be connected by attacking algorithms. Zügner et al. [30]
report that nodes from different classes are more likely to be connected. In our
case study on the attacked graph, we find that 92.93% newly connected pairs of
nodes are from different classes.

Perturb Around the Training Set. In targeted attacks, it has been revealed
that directed attack, which directed modifies edges that are incident to the
target node, is the more effective than indirect attacks [29]. Similar patterns
are also discussed for untargeted attacks. Wang et al. [20] suggest that in graph
adversarial learning perturbations are mostly crafted in the neighborhoods of
training nodes. Zhan et al. [25] find that perturbations crafted by Mettack are
uneven such that a higher perturbation rate is observed near the training set. In
our case study, we find that 1130 out of 1267 perturbations are focused on the
connections between the training set and the rest of the graph.

4.2 The FHA Algorithm

Fig. 1. The illustration of the FHA algorithm. (a) Before the training, (b) After the
training of GCN, the pseudo-labels are generated, (c) the FHA connects nodes in a
paired manner.
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Although it’s not hard to incorporate the discovered patterns, a major chal-
lenge is to take advantage of them to achieve competitive attacking performance.
Simply utilizing them as restrictions will only lead to an improved version of ran-
dom attack. In order to guarantee promising performance, we propose a novel
Fast Heuristic Attack (FHA) algorithm.

The general framework of FHA is illustrated in Fig. 1. Before the training of
FHA, the labels of the testing nodes are not known. In order to take advantage
of the second pattern to connect nodes from different classes, we use GCN to
pre-train the graph in order to get pseudo-labels for testing nodes. The pseudo-
labels are used as the estimations of the real labels for testing nodes and the
GCN is trained for only once.

After the pseudo-labels are generated, the algorithms pairs the labels to
connect instead of adding edges randomly. Intuitively, connecting nodes from
fixed pairs of labels will be more misleading for the algorithm since the deci-
sion boundaries between the paired classes will be blurred. Each pair contains
one training-specific label and one universal label. For the training-specific
label, we only connect training nodes of this label. For the universal label, we
connect both the training nodes of this label and non-training nodes with the
same pseudo-label. For instance, as shown in Fig. 1(c), a total number of 4 classes
are in the dataset and the algorithm divides them into two pairs. In the first pair,
blue is the training-specific label while red is the universal label. When FHA is
crafting adversarial connections, blue nodes in the training set are connected to
arbitrary red nodes, i.e., the red nodes being connected could be in either the
training set, the validation set or the testing set.

How many blue training nodes should be linked to red nodes? Instead of
randomly picking the pair to link each time a perturbation is being created,
we propose a cyclic perturbation strategy. Each time, the algorithm creates a
batch of k edges between a pair of classes. For example, in the case described
in Fig. 1, k fake edges, which link blue training nodes with arbitrary red nodes,
are created. If the attacking budget is not used up, then the algorithm traverses
for the next pair of classes. If only Δ′ = Δ − nk < k perturbations are allowed
after traversing through n pairs of labels, the algorithm will only create a batch
of Δ′ perturbations for the final pair of labels. In the FHA algorithm, the label
pairs are selected with two pointers in the list of labels.

To determine the batch sizes, we introduce two parameters. At first, the sizes
of all batches are bounded by a parameter α. Secondly, to prevent from saturation
when the algorithm is dealing with rarely-appeared labels, a parameter η is
introduced such that if the training-specific label appears x times in Vtrain and
Vval, then the batch size of this label pair is bounded by η · x.

The pseudocode of FHA is reported in Algorithm1. In line 1, FHA utilizes
GCN to generate pseudo-labels for testing nodes. In lines 2–5, FHA initializes the
modified adjacency matrix A′ and label pointers. Δ perturbations are selected
via lines 7–16. Notice that in line 14 we require that A′

tu = 0 so the algorithm
will only choose unconnected pairs of node hence no deletion of edges will be
crafted.
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Algorithm 1. Fast Heuristic Attack
Input: Adjacency matrix A, node feature X, number of classes C, attack budget Δ,

training set Vtrain, validation set Vval, ground-truth labels −→y i for i in Vtrain or
Vval, parameters α and η.

Output: Modified adjacency matrix A′.
1: Train GCN to get pseudo-labels for testing nodes.
2: F ∈ N

C ← Frequencies of the labels in Vtrain and Vval.
3: A′ ← A;
4: Training-specific pointer pt ← 0;
5: Universal pointer pu ← 1;
6: Batch counter c ← 0;
7: for i ∈ [1, Δ] do
8: if c > η · F [pt mod C] ∨ c > α then
9: pt ← (pt + 2) mod C;

10: pu ← (pu + 2) mod C;
11: c ← 0;
12: end if
13: Choose node t in the training set such that t is of the class pt;
14: Choose node u in the graph such that u is of class pu and A′

tu = 0.
15: A′

tu = A′
ut = 1.

16: end for
return: A′.

5 Experiments

In this section, we evaluate our proposed FHA algorithm against several graph
defense algorithms. We want to answer the following research questions.

– RQ1: Does FHA has competitive attacking performance when comparing
with state-of-the-art methods?

– RQ2: Is FHA as efficient as expected?
– RQ3: How does FHA differ from the naive combination of the attacking

patterns? How much does the cyclic perturbation strategy contributes to
FHA?

5.1 Experimental Settings

Before reporting the experimental results, we introduce the experimental con-
ditions and settings at first. The experiments are conducted on a Windows 10
workstation with an Intel i9-10980XE CPU and two Nvidia RTX6000 GPUs.
We use CUDA 10.2, Python 3.7.6, Numpy 1.18.5, Scipy 1.3.1, Pytorch 1.5.0,
Tensorflow 1.15.0 and DeepRobust [14] (commit id 456f8b5).

Datasets. In our experiments, we used three publicly available datasets that
are commonly used in previous studies such as [12,27,28]. All the three datasets
are citation networks in which each node represents an academic paper and if
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Table 1. Statistics of datasets. We only consider the largest connected components.

Dataset |V | |E| Classes Features

Cora 2485 5069 7 1433

Citeseer 2110 3668 6 3703

Cora-ML 2810 7981 7 2879

two nodes are connected they have a citation relationship. Following [28], we
only consider the largest connected components of the graphs. The statistics of
the datasets are reported in Table 1. For each dataset, we follow [8] to randomly
split the nodes into three subsets. For each graph, the training set contains 10%
of the nodes, the validation set contains another 10%. The remaining nodes,
which occupy 80% of the vertex set, form the testing set.

Baselines. In order to demonstrative the performance of FHA, we compare it
with 4 baselines, which include both grey-box methods, white-box methods and
random attack, which is black-box.

– Mettack: Mettack [28] is a state-of-the-art untargeted structure attacking
method. Being a grey-box algorithm it requires the same information as FHA.
Various variants of Mettack have been proposed and we use the Meta-Self
variant, which is suggested by [28]. The log-likelihood constraint is released
for fair comparison.

– PGD Attack: PGD Attack [23] is a white-box method which utilizes pro-
jected gradient descent and it assumes that the GCN will not be retrained
after the initial training.

– DICE: DICE is a baseline method introduced by [28]. It’s a white-box
method such that it randomly connects nodes from different classes and dis-
connects vertices of the same label. In our study, we only allows DICE to add
edges.

– Random: Random Attack simply flips the edges randomly on the graph. In
our comparison, Random Attack is only allowed to add edges.

Defense Methods. The vanilla GCN proposed by Kipf et al. [11] is the major
target of our study. However, we also employ several representative defense meth-
ods in our study.

– GCN: The representative model introduced in Sect. 3.2.
– R-GCN: An attention-based defense method introduced by Zhu et al. [27].
– GCN-Jaccard: A pre-processing method introduced by [22]. It deletes edges

which connect dissimilar nodes before the training of GCN.
– GCN-SVD: Another pre-processing method which performs low-rank

approximation on the adjacency matrix [5].
– Pro-GNN: A robust training method which incorporates graph structure

learning with graph representation learning [8].
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Implementation and Parameters. We use the official PyTorch implemen-
tation of GCN and the official implementation of R-GCN, which is Tensorflow-
based. For Random Attack, DICE, GCN-Jaccard, GCN-SVD and Pro-GNN we
use the implementations provided by DeepRobust [14]. As for parameters, we
adopt the default parameters in the implementations for all baselines and defense
methods. For our proposed FHA algorithm, we set α = 200 and η = 2.0 in our
experiments.

5.2 Attack Performance

Table 2. Attack performance against the original GCN (Classification accuracy ± Std).

Dataset Ptb FHA Mettack PGD DICE Random

Cora 0% 83.59± 0.17 83.59± 0.17 83.59± 0.17 83.59± 0.17 83.59± 0.17

5% 75.48± 1.54 75.97± 1.54 80.45± 1.69 81.27± 1.06 82.25± 1.13

10% 64.72± 1.04 71.33± 1.81 76.88± 1.87 79.55± 1.06 80.56± 1.18

15% 58.77± 1.49 63.73± 2.44 73.53± 1.55 77.97± 0.99 79.28± 0.88

20% 54.19± 1.27 57.15± 4.42 72.76± 2.29 74.99± 2.04 78.48± 0.76

25% 50.9± 1.49 51.99± 4.97 70.01± 2.32 72.99± 1.26 76.55± 0.83

Citeseer 0% 73.90± 0.41 73.90± 0.41 73.90± 0.41 73.90± 0.41 73.90± 0.41

5% 72.19± 0.76 74.07± 0.80 75.88± 0.58 75.17± 0.53 75.29± 0.52

10% 68.89± 0.84 70.47± 1.61 75.83± 0.53 73.95± 0.46 74.90± 0.46

15% 65.08± 1.14 65.28± 2.22 75.54± 0.56 72.78± 0.74 74.18± 0.40

20% 59.72± 1.57 62.03± 2.82 74.77± 1.06 71.50± 0.34 73.78± 0.69

25% 57.1± 1.83 55.57± 2.99 74.28± 0.58 70.24± 0.65 72.34± 0.55

Cora-ML 0% 83.59± 0.17 83.59± 0.17 83.59± 0.17 83.59± 0.17 83.59± 0.17

5% 77.68± 0.76 78.55± 1.02 81.36± 0.90 80.91± 0.84 82.11± 0.88

10% 72.82± 1.20 67.28± 2.15 76.00± 2.04 79.03± 1.06 79.99± 1.51

15% 65.12± 1.58 58.47± 2.87 71.21± 1.99 76.38± 0.72 77.53± 2.97

20% 59.05± 1.89 47.00± 3.49 66.50± 2.10 73.90± 1.20 77.39± 1.30

25% 52.19± 2.02 42.63± 3.67 58.76± 2.34 72.65± 1.35 75.38± 1.06

In this subsection, we answer the research question RQ1. The performance of
FHA and the baselines against GCN, R-GCN, GCN-Jaccard, GCN-SVD and
Pro-GNN are reported in Table 2, 3, 4, 5 and 6 respectively. Following both GCN
[11] and Mettack [28], we evaluate the attacking performance via comparing the
classification accuracies after attacks. For each combination of attacking method,
defense method and perturbation rate, we run the experiments for 10 times and
we report the average accuracies along with the standard deviations. 75 different
settings are tested for each attacking method. Hence, we conduct experiments
on 375 different experimental combinations and 3750 runs are conducted. For
each setting, the best performance is highlighted in bold.

As revealed in the tables, among the 75 experimental settings, our proposed
FHA algorithm achieves the best performance in 55 different settings. Mettack
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Table 3. Attack performance against R-GCN (classification accuracy ± Std).

Dataset Ptb FHA Mettack PGD DICE Random

Cora 0% 85.48± 0.27 85.48± 0.27 85.48± 0.27 85.48± 0.27 85.48± 0.27

5% 78.46± 0.87 78.27± 0.82 83.81± 0.90 83.68± 0.39 84.55± 0.34

10% 67.17± 1.22 73.88± 1.03 82.28± 1.08 82.01± 0.74 83.11± 0.52

15% 60.47± 1.07 67.60± 1.86 81.19± 0.92 80.46± 0.42 82.23± 0.52

20% 53.79± 0.98 61.18± 2.99 79.40± 1.30 78.77± 0.73 81.23± 0.61

25% 49.49± 1.78 57.10± 3.25 77.92± 1.07 76.87± 0.86 80.38± 0.53

Citeseer 0% 76.39± 0.13 76.39± 0.13 76.39± 0.13 76.39± 0.13 76.39± 0.13

5% 70.94± 1.39 73.70v0.80 76.52± 0.48 75.24± 0.48 75.62± 0.39

10% 66.68± 0.65 70.30± 1.46 76.08± 0.56 73.87± 0.43 74.86± 0.63

15% 62.64± 0.78 65.70± 1.48 75.51± 0.66 72.97± 0.65 74.25± 0.42

20% 60.13± 1.10 61.22± 2.07 74.92± 0.83 71.64± 0.34 73.93± 0.78

25% 58.14± 1.30 56.74± 2.26 74.16± 1.14 70.44± 0.42 72.87± 0.83

Cora-ML 0% 95.66± 0.15 95.66± 0.15 95.66± 0.15 95.66± 0.15 95.66± 0.15

5% 81.54± 0.60 76.51± 0.68 85.51± 0.49 84.31± 0.27 85.03± 0.36

10% 76.43± 1.03 70.64± 0.70 83.81± 0.63 82.75± 0.57 83.62± 0.51

15% 69.20± 1.31 69.58± 0.80 82.03± 0.98 80.68± 0.36 82.32± 0.62

20% 62.70± 1.60 68.24± 1.03 80.25± 1.48 78.75± 0.51 81.76± 0.35

25% 50.78± 1.86 66.27± 0.57 77.58± 1.94 77.24± 0.59 79.96± 0.55

Table 4. Attack performance against GCN-Jaccard (classification accuracy ± Std).

Dataset Ptb FHA Mettack PGD DICE Random

Cora 0% 82.32± 0.50 82.32± 0.50 82.32± 0.50 82.32± 0.50 82.32± 0.50

5% 79.50± 0.85 77.62± 1.13 79.77± 1.05 80.97± 0.23 81.40± 0.64

10% 74.73± 0.76 74.05± 1.06 77.83± 1.36 79.76± 0.41 80.59± 0.66

15% 70.43± 1.09 71.51± 1.05 76.57± 1.37 78.79± 0.53 80.15± 0.31

20% 65.86± 1.32 68.31± 2.28 73.62± 2.49 77.77± 0.55 79.27± 0.46

25% 61.00± 1.12 66.02± 1.99 73.49± 1.68 77.05± 1.07 78.94± 0.58

Citeseer 0% 73.73± 0.93 73.73± 0.93 73.73± 0.93 73.73± 0.93 73.73± 0.93

5% 70.34± 0.43 70.03± 1.87 72.70± 0.97 72.87± 0.44 72.61± 0.70

10% 66.09± 1.19 66.79± 1.08 71.76± 0.91 71.04± 0.57 72.17± 0.80

15% 63.98± 1.37 65.69± 1.50 70.50± 0.83 69.90± 0.77 71.30± 0.54

20% 63.15± 1.16 62.66± 1.29 70.13± 1.21 69.13± 0.82 70.93± 0.84

25% 62.04± 1.74 61.05± 1.90 69.36± 1.44 67.69± 0.91 69.72± 0.97

Cora-ML 0% 85.38± 0.30 85.38± 0.30 85.38± 0.30 85.38± 0.30 85.38± 0.30

5% 81.93± 0.71 80.56± 0.39 80.58± 0.88 83.68± 0.36 84.07± 0.53

10% 75.61± 0.86 75.82± 0.45 75.55± 1.33 82.02± 0.43 83.12± 0.54

15% 68.39± 1.12 73.14± 0.45 71.80± 1.70 80.63± 0.38 82.64± 0.69

20% 62.22± 1.72 70.32± 0.75 69.03± 1.77 79.50± 0.34 81.71± 0.38

25% 51.44± 2.50 65.16± 1.05 67.48± 2.00 77.83± 0.54 80.96± 0.58
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Table 5. Attack performance against GCN-SVD (classification accuracy ± Std).

Dataset Ptb FHA Mettack PGD DICE Random

Cora 0% 73.03± 0.64 73.03± 0.64 73.03± 0.64 73.03± 0.64 73.03± 0.64

5% 71.50± 1.02 72.51± 0.41 72.17± 1.04 71.68± 0.74 72.15± 0.69

10% 68.93± 1.09 69.54± 1.15 72.65± 1.71 70.15± 0.52 70.84± 0.54

15% 64.37± 1.71 67.18± 1.14 72.54± 0.81 68.77± 0.98 70.57± 0.75

20% 57.41± 2.19 63.13± 3.16 72.42± 1.14 67.56± 1.19 69.94± 0.43

25% 51.67± 2.36 60.89± 2.64 72.13± 1.62 66.72± 0.86 68.96± 1.15

Citeseer 0% 70.97± 1.52 70.97± 1.52 70.97± 1.52 70.97± 1.52 70.97± 1.52

5% 69.55± 1.25 71.27± 0.97 70.01± 1.16 70.27± 0.94 70.30± 1.38

10% 69.92± 0.95 68.79± 1.68 69.54± 1.09 68.89± 0.93 69.63± 1.03

15% 59.32± 19.16 68.56± 1.72 69.67± 1.50 68.37± 0.80 68.32± 1.05

20% 57.52± 18.42 67.90± 0.87 69.18± 1.76 67.23± 1.12 67.52± 1.32

25% 59.36± 2.87 65.95± 1.47 69.24± 1.78 66.38± 1.23 66.66± 1.27

Cora-ML 0% 79.84± 0.16 79.84± 0.16 79.84± 0.16 79.84± 0.16 79.84± 0.16

5% 77.76± 0.72 79.69± 0.32 79.60± 0.35 78.55± 0.57 79.17± 0.36

10% 73.04± 1.15 78.96± 0.45 79.97± 0.41 77.43± 0.41 78.17± 0.66

15% 67.88± 1.46 78.35± 0.11 79.27± 0.84 75.84± 0.86 77.47± 0.49

20% 64.02± 2.22 77.01± 0.69 70.24± 20.35 74.73± 0.70 76.14± 0.68

25% 57.72± 2.43 75.71± 0.39 73.23± 3.15 73.70± 0.79 75.29± 0.50

Table 6. Attack performance against Pro-GNN (classification accuracy ± Std).

Dataset Ptb FHA Mettack PGD DICE Random

Cora 0% 84.95± 0.82 84.95± 0.82 84.95± 0.82 84.95± 0.82 84.95± 0.82

5% 80.81± 1.19 77.81± 0.90 81.49± 1.16 83.04± 0.75 83.88± 0.39

10% 72.46± 1.39 73.03± 1.10 79.57± 1.54 81.20± 0.46 82.50± 0.56

15% 63.12± 2.58 68.33± 1.24 77.34± 2.21 79.65± 0.72 81.75± 0.58

20% 51.17± 1.59 62.00± 3.04 75.57± 1.83 78.00± 0.54 80.76± 0.58

25% 46.55± 1.88 58.17± 4.09 73.36± 2.60 76.64± 0.78 80.40± 0.60

Citeseer 0% 73.79± 0.52 73.79± 0.52 73.79± 0.52 73.79± 0.52 73.79± 0.52

5% 70.10± 0.99 72.18± 1.36 71.69± 1.27 73.03± 0.72 73.08± 0.95

10% 68.26± 1.67 68.89± 0.82 69.85± 1.78 71.90± 0.66 72.88± 0.84

15% 65.47± 2.30 65.53± 1.24 70.24± 2.36 71.02± 0.89 72.01± 1.33

20% 63.71± 1.56 60.63± 1.89 70.08± 2.06 70.37± 0.60 71.71± 0.83

25% 63.16± 2.63 57.53± 2.77 69.31± 1.95 69.46± 0.45 71.08± 0.73

Cora-ML 0% 84.96± 0.46 84.96± 0.46 84.96± 0.46 84.96± 0.46 84.96± 0.46

5% 82.24± 0.65 82.80± 0.63 84.10± 0.75 82.41± 0.49 83.12± 0.46

10% 76.74± 1.34 81.47± 0.42 81.91± 1.74 81.05± 0.39 82.11± 0.52

15% 71.18± 1.75 80.59± 0.59 79.53± 1.50 79.98± 0.42 81.30± 0.49

20% 64.47± 2.80 78.09± 0.92 77.03± 1.37 77.98± 0.59 80.74± 0.76

25% 48.10± 4.33 72.11± 2.84 72.67± 3.16 77.21± 0.60 79.51± 0.44
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wins 19 settings while PGD Attack wins exactly one of them. This demonstrates
the efficacy of the FHA algorithm.

5.3 Runtime Analysis

In this subsection, we answer the research question RQ2. As revealed in Sect. 5.1,
our proposed method has competitive attacking performance when comparing
with Mettack. As a heuristic method which doesn’t need to compute gradients
iteratively, is FHA faster than Mettack?

Fig. 2. (a) Runtime analysis of five attacking methods; (b) Ablation study on FHA.

We report the running times of the attacking algorithms on the Cora dataset
in Fig. 2(a). Two perturbation rates are selected. As shown in Fig. 2(a), FHA
is faster than Mettack and PGD Attack, which are gradient-based. Especially
when the perturbation rate is 20%, FHA is 314 times faster than Mettack while
achieving better performance. Random Attack and DICE are faster than FHA
but they have the worst performance. Hence, FHA reaches a balance between
performance and efficiency.

5.4 Ablation Study

In this subsection, we aim to answer the research question RQ3. A naive com-
bination of the three patterns discussed in Sect. 4 is possible such that in each
step, the naive algorithm links a training node to a non-training node from a
different class. Our FHA algorithms extend the naive approach in two aspects.
At first, we introduce a paired linking strategy which fixes the pairs of labels to
be linked. Secondly, we propose a cyclic attacking strategy such that the label
pairs are traversed in a specific order and adversarial edges are added by batches.
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Hence, we compare the FHA algorithm with two model variants. The first
variant is the naive algorithm. The second variant only has the paired linking
strategy but it doesn’t traverse among different label pairs, i.e. it only focuses
on a first pair of labels. The Cora dataset is used in the ablation study. The
defending model is the GCN described in Sect. 3.2.

As shown in Fig. 2(b), the performance of the naive algorithm is even worse
than Random Attack. The Pair-only algorithm performs better than Random
Attack when the perturbation rate is low but it becomes saturated when pertur-
bation rate reaches 10%. Hence, both the paired linking strategy and the cyclic
attacking strategy play vital roles in the success of the FHA algorithm.

6 Conclusions

Meta-learning based graph attacking algorithms have achieved promising attack-
ing performance but they are in need of numerous computational resources. In
this work, we investigate three different patterns of graph structure attacks and
we propose the FHA algorithm, which is based upon the patterns. Experimental
results show that our proposed method has competitive performance while being
more efficient. In the future we aim to explore more patterns in graph adversarial
attacks and to improve the performance of defense methods.
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Abstract. Graph neural networks (GNNs) have been successfully
applied in many structured data domains, with applications ranging
from molecular property prediction to the analysis of social networks.
Motivated by the broad applicability of GNNs, we propose the family of
so-called RankGNNs, a combination of neural Learning to Rank (LtR)
methods and GNNs. RankGNNs are trained with a set of pair-wise pref-
erences between graphs, suggesting that one of them is preferred over
the other. One practical application of this problem is drug screening,
where an expert wants to find the most promising molecules in a large
collection of drug candidates. We empirically demonstrate that our pro-
posed pair-wise RankGNN approach either significantly outperforms or
at least matches the ranking performance of the näıve point-wise base-
line approach, in which the LtR problem is solved via GNN-based graph
regression.

Keywords: Graph-structured data · Graph neural networks ·
Preference learning · Learning to rank

1 Introduction

Bringing a set of objects o1, . . . , oN into a particular order is an important prob-
lem with many applications, ranging from task planning to recommender systems.
In such domains, the criterion defining the underlying order relation � typically
depends on properties (features) of the objects (for example the price and quality
of a product). If the sorting criterion (and hence the relation �) is not explicitly
given, one may think of inferring it from exemplary data, often provided in the form
of a set of pair-wise orderings oi � oj (e.g., representing that the user prefers prod-
uct oi over product oj). This gives rise to a machine learning task often referred to
as Learning to Rank (LtR). Thus, the goal is to learn a general ordering strategy
(preference model) from sample data of the above kind, which can then be used to
sort any new (previously unseen) set of objects.

While existing state-of-the-art LtR approaches assume that objects oi are
represented by feature vectors xi ∈ R

n, in this paper, we will consider the
LtR problem for another quite natural and practically important representa-
tion, namely the domain of finite graphs. Methods for learning to rank objects
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represented in the form of graphs can, for example, be used in applications such
as drug screening, where the ranked objects are the molecular structures of drug
candidates.

To support the ranking of structured objects such as graphs, existing LtR
methods need to be adapted. Previously, Agarwal [1] has considered the problem
of ranking the vertices within a given graph. However, to the best of our knowl-
edge, the graph-wise LtR problem has so far only been described in the context
of specific domains, such as drug discovery, where manually chosen graph fea-
ture representations were used [29]. Motivated by the success of graph neural
networks (GNNs) in graph representation learning, we propose a simple architec-
ture that combines GNNs with neural LtR approaches. The proposed approach
allows for training ranking functions in an end-to-end fashion and can be applied
to arbitrary graphs without the need to manually choose a domain-specific graph
feature representation.

Our neural graph ranking architecture will be introduced in Sect. 4. Before,
the LtR and GNN models that are used in this architecture are described in
Sect. 2 and Sect. 3, respectively. In Sect. 5, we evaluate our approach on a selec-
tion of graph benchmark datasets.

2 Object Ranking

LtR approaches are often categorized as point-wise, pair-wise, and list-wise meth-
ods. We begin with a short overview of these families. Afterwards, a more in-
depth introduction is given to a selection of neural pair-wise approaches that we
shall built upon in Sect. 4.

2.1 Overview of LtR Approaches

Point-wise methods assume the existence of a (latent) utility function represent-
ing the sought preference relation �, i.e., that an ordinal or numeric utility score
ui ∈ R can be assigned to each object oi ∈ O such that

∀ oi, oj ∈ O : ui ≥ uj ⇔ oi � oj .

Based on training data in the form of exemplary (and possibly noisy) ratings,
i.e., object/utility pairs {(xi, ui)}N

i=1 ⊂ X × R, where xi ∈ X is the feature
representation of oi, the LtR problem can be solved by fitting a model fu : X →
R using standard ordinal or numeric regression methods. Given a new set of
objects {o′

j}M
j=1 to be ranked, these objects are then sorted in decreasing order

of their estimated utilities fu(o′
j). Note that point-wise methods are restricted to

linear orders but cannot represent more general relations, such as partial orders.

Pair-wise methods proceed from training data in the form of a set of ordered
object pairs S = {oai

� obi}N
i=1, i.e., relative training information in the form of

pair-wise comparisons rather than absolute assessments. Based on such training
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samples S, the goal is to learn the underlying preference relation �. The resulting
model f� : O × O → {0, 1} is a binary classifier, which is supposed to return
f�(oi, oj) = 1 iff oi � oj .

One of the first pair-wise preference methods was the Ranking SVM [13]—
essentially a standard support vector machine (SVM) trained on the differences
between vector representations of object preference pairs. Later, Burges et al. [5]
proposed the RankNet architecture, which is also trained using feature vector dif-
ferences but uses a multilayer perceptron (MLP) instead of an SVM. Since then,
multiple extensions of those approaches have been developed [4]. One common-
ality between all of them is their training optimization target, namely to mini-
mize the number of predicted inversions, i.e., the number of pairs oi � oj with
f�(oi, oj) = 0. An important difference between existing pair-wise approaches
concerns the properties they guarantee for the learned preference relation; three
properties commonly considered are

– reflexivity (∀x : x � x),
– antisymmetry (∀x, y : x � y ⇒ y � x), and
– transitivity (∀x, y, z : (x � y ∧ y � z) ⇒ x � z).

The set of desirable properties depends on the domain. While some approaches
guarantee that the learned relation fulfills all three properties [16], others, for
example, explicitly allow for non-transitivity [22].

Assuming a suitable pair-wise ranking model f� was selected and trained,
one then typically wants to produce a ranking for some set of objects {o′

i}M
i=1.

To this end, a ranking (rank aggregation) procedure is applied to the preferences
predicted for all pairs (o′

i, o
′
j). A simple example of such a procedure is to sort

objects oi by their Borda count ci =
∑

j �=i f�(oi, oj), i.e., by counting how often
each object oi is preferred over another object. Alternatively, the classifier f�
can also be used directly as the comparator function in a sorting algorithm; this
reduces the number of comparisons from O(M2) to O(M log M). While the latter
approach is much more efficient, it implicitly assumes that f� is transitive. The
rankings produced by an intransitive sorting comparator are generally unstable,
because they depend on the order in which the sorting algorithm compares the
objects [19]. This might not be desirable in some domains.

List-wise methods generalize the pair-wise setting. Instead of determining the
ordering of object pairs, they directly operate on complete rankings (lists) of
objects, training a model based on a list-wise ranking loss function. One of the
first list-wise losses was proposed by Cao et al. [7]. Given a set S of objects,
their ListNet approach uses a probability distribution over all possible rankings
of S and is trained by minimizing the cross-entropy between the model’s cur-
rent ranking distribution and some target distribution. Compared to pair-wise
approaches, list-wise methods exhibit a higher expressivity, which can be use-
ful to capture effects such as context-dependence of preferences [21]. In general,
however, if this level of expressiveness is not required, recent results by Köppel
et al. [16] suggest that the list-wise approaches have no general advantage over
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the (typically simpler) pair-wise methods. To tackle the graph LtR problem in
Sect. 4, we will therefore focus on the pair-wise approach.

2.2 Neural Pair-Wise Ranking Models

As already stated, we propose a combination of existing LtR methods and
GNNs to solve graph ranking problems. Due to the large number of existing
LtR approaches, we will however not evaluate all possible combinations with
GNNs, but instead focus on the following two representatives:

1. DirectRanker [16]: A recently proposed generalization of the already men-
tioned pair-wise RankNet architecture [5]. It guarantees the reflexivity, anti-
symmetry, and transitivity of the learned preference relation and achieves
state-of-the-art performance on multiple common LtR benchmarks.

2. CmpNN [22]: Unlike DirectRanker, this pair-wise architecture does not
enforce transitivity. The authors suggest that this can, for example, be useful
to model certain non-transitive voting criteria.

Formally, the DirectRanker architecture is defined as

fDR
� (oi, oj) := σ

(
w�(h(xi) − h(xj))

)
, (1)

where xi, xj ∈ R
n are feature vectors representing the compared objects oi, oj ,

the function h : R
n → R

d being a standard MLP, w ∈ R
d a learned weight

vector and an activation function σ : R → R such that σ(−x) = −σ(x) and
sign(x) = sign(σ(x)) for all x ∈ R. One could, for example, use σ = tanh
and interpret negative outputs of fDR

� (oi, oj) as oj � oi and positive outputs
as oi � oj . This model can be trained in an end-to-end fashion using gradi-
ent descent with the standard binary cross-entropy loss. Note that fDR

� can
be rewritten as σ(fDR

u (xi) − fDR
u (xj)), with fDR

u (x) := w�h(x). DirectRanker
therefore effectively learns an object utility function fDR

u and predicts oi � oj iff
fDR

u (xi) ≥ fDR
u (xj). Thus, the learned preference relation fDR

� directly inherits
the reflexivity, antisymmetry and transitivity of the ≥ relation. The main dif-
ference between DirectRanker and a point-wise regression model is that Direc-
tRanker learns fDR

u indirectly from a set of object preference pairs. Consequently,
DirectRanker is not penalized if it learns some order-preserving transformation
of fDR

u . We will come back to this point in Sect. 5.3.
Let us now look at the so-called Comparative Neural Network (CmpNN)

architecture, which generalizes the DirectRanker approach. The main difference
between both is that CmpNN does not implicitly assign a score fu(xi) to each
object oi. This allows it to learn non-transitive preferences. CmpNNs are defined
as follows:

fCmp
� (oi, oj) := σ(z� − z�), with (2)

z� := τ(w�
1 z1 + w�

2 z2 + b′), z1 := τ(W1xi + W2xj + b),

z� := τ(w�
2 z1 + w�

1 z2 + b′), z2 := τ(W2xi + W1xj + b).
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Here, w1, w2 ∈ R
d and W1,W2 ∈ R

d×n are shared weight matrices, b, b′ bias
terms, and σ, τ activation functions. Intuitively, z� ∈ R and z� ∈ R can be
interpreted as weighted votes towards the predictions oi � oj and oj � oi, respec-
tively. A CmpNN will simply choose the alternative with the largest weight. The
key idea behind the definitions in (2) is that the pairs z�, z� and z1, z2 will swap
values when swapping the compared objects oi, oj . Consequently, fCmp

� must be
reflexive and antisymmetric [see 22]. If we set W1 = w1 = 0, the voting weights
z�, z� ∈ R reduce to the predictions of a standard MLP h with the input oi

and oj , respectively, i.e., z� = h(xi) and z� = h(xj). In this case, the CmpNN
effectively becomes a DirectRanker model. By choosing non-zero weights for W1

and w1, the model can however also learn non-transitive dependencies between
objects. In fact, Rigutini et al. have shown that CmpNNs are able to approximate
almost all useful pair-wise preference relations [22, Theorem 1].

3 Graph Neural Networks

Over the recent years, GNNs have been successfully employed for a variety of
graph ML tasks, with applications ranging from graph classification and regres-
sion to edge prediction and graph synthesis. Early GNN architectures were moti-
vated by spectral graph theory and the idea of learning eigenvalue filters of graph
Laplacians [3,10]. Those spectral GNNs take a graph G = (V,E) with vertex
feature vectors xi ∈ R

n as input and iteratively transform those vertex features
by applying a filtered version of the Laplacian L of G. Formally, the filtered
Laplacian is defined as L̂ = U�g(Λ)U , where L = U�ΛU is an eigendecom-
position of L and g is a learned eigenvalue filter function that can amplify or
attenuate the eigenvectors U . Intuitively, spectral GNNs learn which structural
features of a graph are important and iteratively aggregate the feature vectors of
the vertices that are part of a common important structural graph feature. Each
of those aggregations is mathematically equivalent to a convolution operation.
This is why they are referred to as (graph) convolution layers.

One important disadvantage of spectral convolutions is their computational
complexity, making them especially unsuitable for large graphs. To overcome this
limitation, Kipf and Welling proposed the so-called graph convolutional network
(GCN) architecture [15], which restricts the eigenvalue filters g to be linear. As a
consequence of this simplification, only adjacent vertices need to be aggregated
in each convolution. Formally, the simplified GCN convolution can be expressed
as follows:

x′
i = σ

⎛

⎝W

⎛

⎝ηii xi +
∑

vj∈Γ (vi)

ηij xj

⎞

⎠

⎞

⎠ (3)

Here, xi, x
′
i ∈ R

d are the feature vectors of vi ∈ V before and after applying the
convolution, Γ (vi) is the set of neighbors of vi, W ∈ R

d×n is a learned linear
operator representing the filter g, σ some activation function, and ηii, ηij ∈ [0, 1]
normalization terms that will not be discussed here. After applying a series
of such convolutions to the vertices of a graph, the resulting convolved vertex
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features can be used directly to solve vertex-level prediction tasks, e.g. vertex
classification. To solve graph-level problems, such as graph classification or graph
ranking, the vertex features must be combined into a single graph vector repre-
sentation. This is typically achieved via a pooling layer, which could, for example,
simply compute the component-wise mean or sum of all vertex features. More
advanced graph pooling approaches use sorting or attention mechanisms in order
to focus on the most informative vertices [17,28].

Xu et al. [27] show that restricting the spectral filter g to be linear not only
reduces the computational complexity but also the discriminative power of the
GCN architecture. More precisely, they prove that any GNN using a vertex neigh-
borhood aggregation scheme such as (3) can at most distinguish those graphs
that are distinguishable via the so-called 1-dimensional Weisfeiler-Lehman (WL)
graph isomorphism test [6]. GCNs do, in fact, have a strictly lower discrimina-
tive power than 1-WL, i.e., there are 1-WL distinguishable graphs, which will
always be mapped to the same graph feature vector by a GCN model. In addi-
tion to this bound, Xu et al. [27] also propose the graph isomorphism network
(GIN) architecture, which is able to distinguish all 1-WL distinguishable graphs.
Recently, multiple approaches going beyond the 1-WL bound have been pro-
posed. The so-called 2-WL-GNN architecture, for example, is directly based on
the 2-dimensional (Folklore) WL test [8]. Other current approaches use higher-
order substructure counts [2] or so-called k-order invariant networks [18].

4 Neural Graph Ranking

To tackle the graph LtR problem, we propose the family of RankGNN models.
A RankGNN is a combination of a GNN and one of the existing neural LtR
methods. The GNN component is used to embed graphs into a feature space.
The embedded graphs can then be used directly as the input for a comparator
network, such as DirectRanker [16] or CmpNN [22]. Formally, a RankGNN is
obtained by simply using a GNN to produce the feature vectors xi, xj in (1) and
(2) for a given pair of graphs Gi, Gj . Since all components of such a combined
model are differentiable, the proposed RankGNN architecture can be trained in
an end-to-end fashion. Despite the simplicity of this approach, there are a few
details to consider when implementing it; these will be discussed in the following
sections.

4.1 Efficient Batching for RankGNNs

In the existing neural LtR approaches for objects oi that are represented by
features xi ∈ R

n, efficient batch training is possible by encoding a batch of k
relations {oai

� obi}k
i=1 with two matrices

A :=
( xa1...

xak

)

∈ R
k×n, B :=

(
xb1...
xbk

)

∈ R
k×n
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Fig. 1. General architecture of the proposed family of RankGNNs. Here the common
sparse adjacency representation for message-passing GNNs is shown; different types of
graph batch encodings can of course also be used.

and using

Y :=
(

1...
1

)

∈ R
k

as the target prediction of the model. However, this approach is suboptimal in the
graph LtR setting. Given the relations {G0 � G1, G1 � G2}, the graph G1 would
for example have to be encoded twice. When dealing with datasets that consist
of possibly large graphs, such redundant encodings quickly become infeasible
due to the additional memory and runtime requirements incurred by the GNN
having to embed the same graph multiple times. To prevent this redundancy,
each graph occurring on the left or the right side of a relation should instead
only be encoded once as part of a single graph batch. This graph batch can be
fed directly into a GNN to produce a matrix Z of graph feature embeddings. The
individual graph relation pairs Gi � Gj can then be simply represented as pairs
of indices (i, j) pointing to the corresponding feature vectors in the embedding
matrix Z. Using those pointers, the graph vector representations for each pair
can be looked up in Z. Figure 1 illustrates this idea.

4.2 Sorting Graphs with RankGNNs

After training a RankGNN model using a set of graph relation pairs, the model
can be used to compare arbitrary graph pairs. Following the approach of Köppel
et al. [16] and Rigutini et al. [22], a set of graphs can then be ordered by using the
RankGNN as the comparator function in a standard sorting algorithm. We pro-
pose a simple parallelized quicksort-based scheme to sort graphs. When imple-
menting a RankGNN model on a parallel compute device, such as a GPU, there
is a constant time overhead for each call to the model. To reduce the total cost
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of this call overhead, we suggest that all pivot comparison queries in one layer of
the recursive quicksort call tree should be evaluated by the RankGNN in parallel.
Using this parallel comparison approach, only one model invocation is required
for each layer of the call tree, i.e., the asymptotic model call overhead for sorting
n graphs is in O(log n). Additionally, a more efficient approach is available for
DirectRanker-based models. There, the implicitly learned utility function fDR

u

can be computed directly for a set of graphs. A standard sorting algorithm can
then be applied without any further calls to the model, which reduces the call
overhead to O(1).

5 Evaluation

To evaluate the family of RankGNNs described in Sect. 4, we choose six different
combinations of GNNs and comparator networks. The evaluated graph embed-
ding modules are GCN [15], GIN [27], and 2-WL-GNN [8]. Those three GNN
methods are combined with the previously described DirectRanker [16] and the
CmpNN [22] comparator. Because there are currently no common graph ranking
benchmark datasets, we instead convert a selection of graph regression bench-
marks into ranking problems by interpreting the numeric regression targets as
utility values, which are used to determine the target orderings. The following
five graph regression datasets are used:

1. TRIANGLES: This is a synthetic dataset that we created. It consists of
778 randomly sampled graphs, each of which contains 3 to 85 unlabeled ver-
tices. The regression target is to learn how many triangles, i.e. 3-cliques,
a given graph contains. The triangle counts in the sampled graphs vary
between 0 and 9. The sampled graphs are partitioned into 80%/10%/10%
training/validation/test splits.

2. OGB-molesol, -mollipo and -molfreesolv: These three datasets are pro-
vided as part of the Open Graph Benchmark (OGB) project [11]. They con-
tain 1128, 4200, and 642 molecular structure graphs, respectively. The regres-
sion task is to predict the solubility of a molecule in different substances. We
use the dataset splits that are provided by OGB.

3. ZINC: This dataset contains the molecular structures of 250k commercially
available chemicals from the ZINC database [24]. The regression task is to
predict the so-called octanol-water partition coefficients. We use the prepro-
cessed and presplit graphs from the TUDataset collection [20].

To train the proposed pair-wise graph ranking network architecture, a subset of
graph pairs from the training split is sampled uniformly at random. The size of a
training sample is M = αN , where N is the number of graphs in the training split
of a dataset and α ∈ R

+ is a constant factor. We use a sampling factor of α = 20
for all datasets except ZINC, where we use α = 3 due to the large number of
graphs in the training split (NZINC = 220011, whereas e.g. NOGB-mollipo = 3360).
This sampling strategy guarantees that each training graph occurs in at least
one sampled pair with a probability of at least 1 − e−2α; thus, for both α = 20
and even α = 3, all graphs are considered with high probability (>99.75%).
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In addition to the six pair-wise RankGNN model variants, we also evaluate
the ranking performance of standard point-wise GNN graph regression models,
which are trained directly on graph utility values. We use two different target
graph utilities: The original regression target yi ∈ R for each training graph Gi,
and the normalized graph rank r̄i ∈ [0, 1], i.e. the normalized ordinal index of
each training graph Gi when sorted by yi.

5.1 Experimental Setup

We evaluate the performance of the different RankGNN variants via Kendall’s τB

rank correlation coefficient. Given two graph rankings r1 : G → N, r2 : G → N,
this coefficient is defined as

τB :=
C − D

√
(C + D + T1)(C + D + T2)

,

where C is the number of concordant pairs

{{Gi, Gj} | i �= j ∧ r1(Gi) < r1(Gj) ∧ r2(Gi) < r2(Gj)} ,

D is the number of discordant pairs

{{Gi, Gj} | i �= j ∧ r1(Gi) < r1(Gj) ∧ r2(Gi) > r2(Gj)} ,

and T1,2 are the numbers of tied graph pairs, which have the same rank in r1
and r2, respectively. Kendall’s τB rank coefficient ranges between −1 and +1,
where τB = +1 indicates that the two compared rankings are perfectly aligned,
whereas τB = −1 means that one rankings is the reversal of the other.

Another commonly used metric in the LtR literature is the normalized dis-
counted cummulative gain (NDCG), which penalizes rank differences at the
beginning of a ranking more than differences at the end. This is motivated by
the idea that typically only the top-k items in a ranking are of interest. We do
not employ the NDCG metric because this motivation does not hold for the used
target graph rankings. Since the target rankings are derived from regression tar-
gets, such as the water solubility of a molecule, both, the beginning and the end
of a ranking are of interest and should therefore be weighted equally.

To train the evaluated point- and pair-wise models, we use the standard
Adam optimizer [14]. The mean squared error (MSE) loss is used for the point-
wise regression models, while the pair-wise variants of those GNNs are optimized
via binary cross-entropy. All models were tuned via a simple hyperparameter grid
search over the following configurations:

1. Layer widths: {32, 64}. The width of both, the convolutional layers, as well
as the fully-connected MLP layers that are applied after graph pooling.

2. Number of graph convolutions: {3, 5}. A fixed number of two hidden
layers was used for the MLP that is applied after the pooling layer.
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3. Pooling layers: {mean, sum, softmax}. Here, “mean” and “sum” refer to the
standard arithmetic mean and sum operators, as described by Xu et al. [27],
while “softmax” refers to the weighted mean operator described by Damke
et al. [8].

4. Learning rates: {10−2, 10−3, 10−4}.

We used standard sigmoid activations for all models and trained each hyperpa-
rameter configuration for up to 2000 epochs with early stopping if the validation
loss did not improve by at least 10−4 for 100 epochs. The configuration with the
highest τB coefficient on the validation split was chosen for each model/dataset
pair. To account for differences caused by random weight initialization, the train-
ing was repeated three times; 10 repeats were used for the TRIANGLES dataset
due to its small size and fast training times. Note that, depending on the type
of GNN, the pair-wise models can have between 3% and 10% more trainable
weights than their point-wise counterparts, due to the added comparator net-
work. All models were implemented in Tensorflow and trained using a single
Nvidia GTX 1080Ti GPU. The code is available on GitHub1.

5.2 Discussion of Results

Table 1 shows the ranking performance of the evaluated point- and pair-wise
approaches on the test splits of the previously described benchmark datasets.
Each group of rows corresponds to one of the three evaluated GNN variants.
The first two rows in each group show the results for the point-wise models
that are trained directly on the original regression targets and on the normalized
ranks, respectively. The last two rows in each group hold the results for the pair-
wise DirectRanker- and CmpNN-based models. Generally speaking, the pair-wise
approaches either significantly outperform or at least match the performance of
the point-wise regression models. The most significant performance delta between
the point- and pair-wise approaches can be observed on the ZINC and OGB-
mollipo datasets. Only on the OGB-molesol dataset, the point-wise models achieve
a slightly higher average τB value than the pair-wise models, which is however
not significant when considering the standard deviations. Overall, we find that the
pair-wise rank loss that directly penalizes inversions is much better suited for the
evaluated graph ranking problems than the point-wise MSE loss.

Comparing the two evaluated variants of point-wise regression models, we
find that the ones trained on normalized graph ranks generally either have a
similar or significantly better ranking performance than the regression models
with the original targets. We will come back to this difference in Sect. 5.3.

Looking at the results for the synthetic TRIANGLES dataset, we find that
only the higher-order 2-WL-GNN is able to reliably rank graphs by their triangle
counts. This is plausible, because architectures bounded by the 1-WL test, such
as GCN and GIN, are unable to detect cycles in graphs [9]. While both the point-
and the pair-wise 2-WL-GNN models achieve perfect or near-perfect τB scores

1 https://github.com/Cortys/rankgnn.

https://github.com/Cortys/rankgnn
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Table 1. Mean Kendall’s τB coefficients with standard deviations for the rankings
produced by point- and pair-wise models on unseen test graphs.

TRIANGLES OGB-molesol -mollipo -molfreesolv ZINC

GCN Utility regr. 0.273 ± 0.004 0.706 ± 0.001 0.232 ± 0.002 0.015 ± 0.242 0.547 ± 0.414

Rank regr. 0.172 ± 0.040 0.702 ± 0.012 0.224 ± 0.006 0.446 ± 0.038 0.823± 0.005

DirectRanker 0.234 ± 0.002 0.714 ± 0.003 0.327 ± 0.006 0.483 ± 0.011 0.879 ± 0.002

CmpNN 0.195 ± 0.007 0.632 ± 0.076 0.381 ± 0.008 0.351 ± 0.055 0.819 ± 0.002

GIN Utility regr. 0.469 ± 0.056 0.729± 0.006 0.353 ± 0.052 0.243 ± 0.125 0.790± 0.003

Rank regr. 0.481 ± 0.014 0.717 ± 0.011 0.310 ± 0.017 0.495 ± 0.021 0.827 ± 0.011

DirectRanker 0.502 ± 0.028 0.712 ± 0.007 0.429 ± 0.026 0.439 ± 0.065 0.894 ± 0.012

CmpNN 0.520 ± 0.070 0.710 ± 0.007 0.506 ± 0.013 0.518 ± 0.018 0.891 ± 0.006

2-WL Utility regr. 0.997 ± 0.006 0.747 ± 0.007 0.318 ± 0.017 0.379 ± 0.207 0.803 ± 0.006

Rank regr. 0.972 ± 0.017 0.720 ± 0.019 0.332 ± 0.083 0.524 ± 0.020 0.810 ± 0.003

DirectRanker 1.000 ± 0.000 0.745± 0.009 0.505 ± 0.012 0.525 ± 0.010 0.894 ± 0.008

CmpNN 1.000 ± 0.000 0.718± 0.020 0.503 ± 0.010 0.527 ± 0.064 0.873 ± 0.002

on this task, the pair-wise approaches did perform more consistently, without a
single inversion on the test graphs over 10 iterations of retraining.

Since the target graph rankings for all evaluated datasets are derived from
regression values, all models have to learn a transitive preference relation. Con-
sequently, the ability of CmpNN-based RankGNNs to learn non-transitive pref-
erences is, in theory, not required to achieve optimal ranking performance. If
the sample size of training graph pairs is too small, such that it contains few
transitivity-indicating subsets, e.g. {G1 � G2, G2 � G3, G1 � G3}, the higher
expressiveness of CmpNNs could even lead to overfitting and therefore worse
generalization performance compared to DirectRanker. Nonetheless, with the
used sampling factor of α = 20 (and α = 3 for ZINC), each graph is, in expec-
tation, sampled 40 times (6 for ZINC). This appears to be sufficient to pre-
vent overfitting. In fact, the CmpNN-based RankGNNs perform very similarly
to their DirectRanker-based counterparts. However, since DirectRanker-based
models allow for a more efficient sorting implementation than CmpNN-based
ones (cf. Sect. 4.2), we suggest the use of DirectRanker for problems where tran-
sitivity can be assumed.

5.3 Analysis of the Implicit Utilities of DirectRanker GNNs

As described in Sect. 2.2, a DirectRanker model fDR
� : O ×O → {0, 1} implicitly

learns a utility function fDR
u : O → R from the set of pairs it sees during

training. We will now take a closer look at this implicitly learned utility function
fDR

u and compare it to the explicitly learned utilities futil.
u and f rank

u of the
point-wise GNN regression models. Figure 2 shows the values of all three, fDR

u

(in red), futil.
u (in blue) and f rank

u (in gray), normalized to the unit interval. Any
monotonically increasing curve corresponds to a perfect ranking (τB = +1),
while a monotonically decreasing curve would signify an inverse ranking (τB =
−1).
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Fig. 2. Normalized learned utility values of the point-wise GNN regression model
trained on the original utilities (in blue), the point-wise model trained on normalized
ranks (in gray) and the pair-wise DirectRanker model (in red). For each dataset, we
plot the predicted utilities of the GNN architecture that achieved the best point-wise
ranking performance in Table 1, i.e. 2-WL-GNN for OGB-molesol and -molfreesolv and
GIN for OGB-mollipo. Each point along the horizontal axes corresponds to a graph in
the training split of a dataset. The graphs are sorted in ascending order by the ground
truth utility values (shown in black) from which the target rankings are derived. (Color
figure online)

As expected, the blue utility curves of the point-wise approaches align with
the black target utility curves, while the gray curve more closely follows the 45◦

diagonal line on which the normalized graph ranks would lie. However, this align-
ment does not necessarily imply good ranking performance. For example, on the
OGB-molfreesolv dataset, the blue utility curve of the point-wise 2-WLGNN
model fits the black target curve fairly well for the graphs in the middle of
the ranking. However, near the low and the high graph ranks, the target curve
abruptly falls/rises to its minimum and maximum values; the point-wise regres-
sion model that is trained on the original utilities ignores those outliers. By
instead training a point-wise model on the normalized ranks, outliers in the
original utility values are effectively smoothed out, as can be seen in the gray
OGB-molfreesolv utility curve. Looking at Table 1, we find that this corresponds
to a significantly higher mean τB coefficient and a lower variance on the OGB-
molfreesolv dataset. The pair-wise DirectRanker-based approach solves the prob-
lem of outliers in a more general fashion. It uses a loss function that does not
penalize for learning a monotonous, rank-preserving transformation of the tar-
get utility curve. This allows it to effectively “stretch” the target utilities into
a linearly growing curve with fewer abrupt changes, which results in a similar
performance to that of the regression model trained on normalized ranks.

The target utilities of the OGB-molesol dataset are distributed more
smoothly, without any outliers. There the advantage of approaches that work
well with outliers (e.g. pair-wise models) over the ones that do not is less pro-
nounced. Lastly, looking at the OGB-mollipo dataset, we also do not find outliers
in the target utility curve. However, there the pair-wise RankGNN models per-
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form significantly better than the point-wise approaches. The reason for this
performance difference is not yet fully understood.

6 Conclusion

In this paper, we addressed the problem of learning to rank graph-structured
data and proposed RankGNNs, a combination of neural pair-wise ranking models
and GNNs. When compared with the näıve approach of using a point-wise GNN
regression model for ranking, we found that RankGNNs achieve a significantly
higher or at least similar ranking performance on a variety of synthetic and real-
world graph datasets. We therefore conclude that RankGNNs are a promising
approach for solving graph ranking problems.

There are various directions for future research. First, due to the lack of
graph ranking benchmark datasets, we had to use graph regression datasets in
our evaluation instead. For a more thorough analysis of the practical applicability
of graph ranking models, a collection of real-world graph ranking benchmarks
should be created. One potential benchmark domain could, for example, be the
drug screening problem we described in the introduction, where the training
data consists of drug candidate pairs ranked by a human expert.

Second, list-wise graph ranking approaches could be evaluated in addition to
the point- and pair-wise models considered in this paper. Such list-wise models
can be useful to learn a human’s individual preferences for structured objects,
such as task schedules or organizational hierarchies, represented as directed
acyclic graphs or trees, respectively. A list-wise ranking approach [e.g. 21] would
be able to consider context-dependent preferences in such scenarios [12]. Yet
another interesting idea, motivated by the behavior we observed for the point-
and pair-wise 2-WL-GNN-based models on the OGB-molfreesolv dataset (cf.
Fig. 2), is a hybrid approach that combines regression and ranking, that is, point-
wise and pair-wise learning [23].

Third, although graph neural networks are quite popular these days, the
problem of graph ranking could also be tackled by well-established kernel-based
methods. In the past, there has been a lot of work on graph kernels [25], making
graph-structured data amenable to kernel-based learning methods. In principle,
one may hence think of combining graph kernels with learning-to-rank methods
such as RankSVM. However, our first experiences with an approach of that
kind suggest that kernel-based approaches are computationally complex and do
not scale sufficiently well, even for point-wise implementations—for larger data
sets, the running time as well as the memory requirements are extremely high
(which is also the reason why we excluded them from the experiments). Although
they can be reduced using suitable approximation techniques, complexity clearly
remains an issue. Besides, the ranking performance turned out to be rather
poor. For pair-wise approaches, not only the complexity further increases, but
the problem also becomes conceptually non-trivial. This is because the simple
reduction of ranking to classification, on which RankSVM is based, no longer
works (this reduction takes differences between feature vectors, an operation that
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cannot be applied to graphs). Instead, a (preference) kernel function on pairs of
pairs of objects, i.e. on quadruples, has to be used [26]. Nevertheless, this does
of course not exclude the existence of more efficient (approximate) algorithms
operating on kernel-representation for graphs.
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Abstract. Survival analysis techniques model the time to an event where the
event of interest traditionally is recovery or death from a disease. The distribu-
tion of survival data is generally highly skewed in nature and characteristically
can include patients in the study who never experience the event of interest. Such
censored patients can be accommodated in survival analysis approaches. During
the COVID-19 pandemic, the rapid reporting of positive cases is critical in pro-
viding insight to understand the level of infection while also informing policy. In
this research, we introduce the very novel application of survival models to the
time that suspected COVID-19 patients wait to receive their positive diagnosis.
In fact, this paper not only considers the application of survival techniques for
the time period from symptom onset to notification of the positive result but also
demonstrates the application of survival analysis for multiple time points in the
diagnosis pathway. The approach is illustrated using publicly available data for
Ontario, Canada for one year of the pandemic beginning in March 2020.

Keywords: COVID-19 · Survival analysis · Process mining · Knowledge
discovery · Process discovery and analysis

1 Introduction

On the 11th March 2020, the World Health Organisation declared, after reporting cases
in 114 different countries, that the Coronavirus 2019 disease outbreak had become a
global pandemic. Like many other countries, COVID-19 has had a significant impact on
Canada with the first reported case in January 2020 and the first community acquired
case in early March 2020. The total number of COVID-19 positive cases in Canada
now is almost 1.4 million (as of 10th June 2021), with most found to be in Ontario and
Quebec. In Ontario there have been 538,651 cases (as of 10th June, 2021) representing a
rate of 3623.8 per 100,000 population with 8,935 deaths representing 60.1 per 100,000
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population. The spread of the virus in Ontario has resulted in significant deaths, the
significant disruption of learning in schools and an impact on business and the economy
through government mandated closures.

Like many other countries, Canada introduced non-pharmaceutical interventions
(NPIs) to fight the pandemic and control the spread of the disease infection in the
population. As one of its NPIs, Ontario applied school closures during the first wave
of the COVID-19 pandemic. While children were seen to be less likely to manifest
symptoms, there was concern that they could still transmit the virus to older more
vulnerable members of their household or high risk members of the community [1]. As
a result, school children attended school online for the remainder of the school year
to June 2020. Prior to schools returning, Phillips et al. [2] proposed an Agent Based
Model of transmission within a childcare centre and households. This considered family
clustering of students along with student-to-educator ratios to propose approaches for
childcare and primary school reopening. In September, schools reopened in Ontario for
face to face learning with significantly altered organizational structures to reduce student
interactions.

Naimark et al. [1] created an agent-based transmission model that clustered a syn-
thetic population of 1 million individuals into households, and neighbourhoods, within
either rural districts, cities or rural regions. They further allocated the synesthetic pop-
ulation based on a life stage construct to either attending day care facilities, classrooms
(elementary/high school), colleges or universities, and workplaces. Based on their mod-
elling, they concluded that school closures were a lower priority NPI than more broader
community encompassing NPIs such as reducing contacts outside the household and
closing non-essential workplaces. However, their research proposed projections through
to 31st October. While this model considered the potential rate of transmission within
schools and the follow on effect of the risk of spread, they did not consider another
important aspect of the increased burden on testing due to schools returning.

When children returned to school in Ontario on the 9th September 2020, new public
health guidelines were in place requiring any child exhibiting any symptoms, from a
defined list, to not be allowed to return to school unless they were symptom free or had a
negative COVID-19 test. In addition, children wishing to play hockey were also required
to be tested. This placed a significant load on testing both within laboratories and within
primary care locations who were required to assess and request the test. As a result,
significant delays of several days were experienced before a specimen for testing was
collected. Alongside NPIs, considerations for diagnostic COVID-19 tests must also be
made with rapid accurate diagnostic tests for rapid detection of patients actively pursued
to improve on diagnostic preparedness and deal with future global waves or regional
outbreaks [3]. These are commonly referred to as Test and Trace or Test-Trace-Isolate
or Test-Trace-Quarantine strategies where success is dependent on “high rates of routine
testing, rapid return of test results, high rates of contact tracing, and social support for
people who have been diagnosed or quarantined” [4]. The implementation of each of
these components is critical in delivering a successful strategy, one which has already
presented challenges and criticism for the United States and United Kingdom. Torres
et al. [5] conducted analysis on delays in processing COVID-19 tests for Ecuador where
they report an average national processing time of 3 days until results are communicated
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to the patient and local authorities and approximately 12% of patients not receiving
results within 10 days. They conclude that such delays may mask a case burden higher
than what is reported, that it could impede timely awareness, adequate clinical care
provision and vaccination strategies and subsequentmonitoring.Meanwhile inAustralia,
a public inquiry into the Victorian Government’s COVID-19 contact tracing system
and testing regime concluded that 90% of tests and reporting positive cases should be
completed within 24 hours’ and positive case’s close contacts should be notified within
48 hours in order to reduce onward transmission by up to 40 per cent [6]. This suggests
a benchmark for countries when assessing their strategies. The timely detection and
isolation of positive cases is of utmost importance in preventing the spread of disease
in the community [6]. This is key for informing policy for the introduction of NPIs and
preparedness for future infection waves. In this paper we explore the time to reporting
of COVID-19 positive cases in Ontario, Canada. To date, such data reporting has used
descriptive statistics of average times for reporting visualized throughgraphicalmethods.
However, the time to reporting is highly skewed in nature with large variability in the
data [5]. Hence, in this research, we provide novel knowledge discovery of delays in
COVID-19 reporting using a robust statistical technique. Survival analysis is designed to
model time to event skewed data and hence ideally placed to make a robust assessment
of case reporting data.

We propose creating a statistical distribution to represent the delay times and explore
how this can be developed and use the limited number of other information about the
patients who are delayed to inform the model. We do this for Ontario, Canada which has
openly available data for the times between the key events in the testing process. Due
to the skewness of the data and the time to event nature, we use the survival analysis
approaches of Kaplan-Meier to estimate survival curves to evaluate the percentage com-
pleted within certain time limits and the Cox proportional hazards method to explore the
other information on the tests/patients to evaluate statistical significance.

The remainder of the paper has the following structure. In Sect. 2 we describe the
publicly available dataset that has been used in the study and provide the theoretical
foundations for using survival analysis for modelling the delay in information flow
between different stages of the COVID-19 reporting process. In Sect. 3 we provide a
detailed presentation and discussion of the results obtained. Finally, in Sect. 4 we provide
our concluding remarks in addition to the directions for our future research.

2 Methods

2.1 An Overview of COVID-19 Dataset

In this study we use publicly available data on positive COVID-19 cases in Ontario,
Canada from the Ontario Ministry of Health and Long-Term Care’s consolidation of
Public Health Unit (PHU) data [7]. For each positive case the information provided
includes, the estimated date of the symptom onset of disease, the exact dates for when
their specimen was collected and processed in the lab, and when the lab notified the PHU
about the positive case. We assume that each of these four dates represent one stage in
the COVID-19 reporting process, with the entire timeline illustrated in Fig. 1.
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To investigate the effectiveness of the COVID-19 reporting process during the time
that encompasses all three infection waves, we focus on analysing the incidence records
thatwere collected in the period between 1stApril 2020 and 31stMarch 2021. In addition
to the four previously mentioned dates, we aggregated the dataset to also include the
information on patients’ age and outcome. The patient ages are represented in 10 year age
bands (“20s”, “30s”, …, “90+”), except for those younger than 20 and those whose age
was not recorded or unknown, who are labelled as “<20” and “Unknown”, respectively.
The patient outcomes are classified as fatal, resolved or not resolved.

Fig. 1. End to end COVID-19 reporting process, with tEOD→SCD, tSCD→TRD, tTRD→CRD,
tSCD→CRD, and tEOD→CRD, denoting the elapsed time in days between: symptoms onset and
specimen collection, specimen collection and lab processing, lab processing and PHU notification,
specimen collection and PHU notification and symptoms onset and PHU notification, respectively.

2.2 Survival Analysis Approach for Modelling the Delays in the COVID-19
Information Reporting Process

Survival analysis is a collection of methods used to model the time until an event of
interest occurs (survival time). Typical to survival analysis is the highly skewed nature
of the survival times when plotted on a graph which generally will peak at the beginning
and slowly tail off to the right as fewer individuals will experience the event as time
progresses. A common feature in survival analysis is that of censoring where the patient
may not have experienced the event over the course of the study period [8, 9].

Traditionally, survival analysis models the time to an event occurringwhere the event
of interest is the patient experiencing an event such as death or recovery [9]. In the context
of this paper, the event of interest is the patient experiencing a delay of at least one day
in the overall end-to-end COVID-19 reporting process. Our aim is to investigate which
stages of this process takes excessive time which may suggest a back log or bottle neck
in the process. Hence the survival time is the time elapsed in days between the different
stages in the reporting process with longer survival times indicating slower information
flow from one stage to another. Of note, a record is considered to be censored when the
reporting from one stage to another occurred on the same day, as this would suggest no
delay so the event of interest was not experienced.
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In this manuscript we propose an approach in which the delay in information flow
between different stages of reporting process is modeled with a survival function that is
computed according to the Kaplan-Meier (KM) estimator [10]. This survival function,
denoted as Sx→y(t), can be interpreted as the function that gives the probability that the
delay in information flow from stage x to stage y (i.e. x → y) in the record processing
pipeline will be experienced after at least the specified amount of t days, where x → y ∈
{EOD → SCD, SCD → TRD,TRD → CRD, SCD → CRD,EOD → CRD}. Using
the KM estimator the survival function is approximated as follows:

Ŝx→y(t) =
∏

k:tk≤t

(
1 − d(tk)

n(tk)

)
(1)

where tk indicates the time in days when at least one record experienced a delay,
d(tk) indicates the number of records that experienced a reporting delay of tk days, and
n(tk) indicates the number of records that are still at risk of experiencing a reporting
delay at time tk (i.e. the records that are neither censored nor delayed prior to time tk ).

To investigate how the delays in the information flow between different stages
affected the entire COVID-19 reporting process, and how these delays evolved over
the analysed time period, we fitted survival curves for each calendar month separately.
We then performed pairwise comparisons using log-rank tests to investigate statistically
significant differences in the distributions of their survival times [11]. Given that themul-
tiple pairwise comparisons increase the chance of committing Type I errors, we used the
Bonferroni correction to adjust the test significance level. This information allows us to
better understand which months the effect of the reporting delay on the survival times
was the strongest, and whether it has the tendency to improve over time.

One of the limitations of the KM estimator is that it cannot account for the simultane-
ous effects of multiple covariates on the survival function. To overcome this problem we
used the Cox proportional hazards model which is linear and semi-parametric technique
that allows the assessment of the effect that each covariate has on the rate of occurrence
of the event of interest (i.e. experiencing delay in reporting process) at a specific point
of time [12]. This rate is also known as the hazard rate [13], calculated as follows:

hx→y(t) = h0x→y(t) · e
∑

i∈{month,age,outcome} βiXi (2)

where h0x→y(t) indicates the baseline hazard (the probability that the delay will be
experienced at time t if all covariates Xi are equal to 0), and βi the coefficients that
measure the effect of covariates Xi. If any of the coefficients eβi , the hazard ratios equal
one, this will indicate that the corresponding covariate Xi has no effect on the length of
survival time, the reporting process delay length. Values greater than one are associated
with shorter delay times, and vice versa. The entire analysis presented in this paper has
been performed using the R v4.0.3 programming language and its survival library [14].

3 Results and Discussions

The publicly available dataset described in Sect. 2.1 consists of 351,419 instances of
reported positiveCOVID-19 cases.Of those, 25,923 caseswere omitted from the analysis
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because at least one of the dates did not appear ranked in the order required by the
COVID-19 reporting process shown in Fig. 1 (eg TRD occurred before SCD).

The mean overall reporting delays between different stages of the COVID-19 report-
ing process are depicted in Fig. 2 a). We can see that as time progresses the mean over-
all time from symptoms onset to reporting to PHU (i.e. EOD → CRD) significantly
decreased, from 6.26 (95% CI = [6.16, 6.37]) days in April 2020 to 3.56 (95% CI =
[3.52, 3.60]) days in March 2021. As this overall delay time can be expressed as the sum
of the delay times between each individual stage, we can see that the largest contribut-
ing factors to such long reporting times are the delays experienced between the stage
symptom onset to specimen collection (i.e.EOD → SCD) and from specimen collection
and processing in the lab (i.e. SCD → TRD). This suggests that those infected could
continue to spread the disease possibly also reflecting a lack of knowledge of the general
public for the importance of reporting early, which has improved as time has progressed
(as more public health awareness campaigns are rolled out).

Fig. 2. An overview of the processing times for each stage of the reporting timeline where a)
represents the average reporting time delay and b) represents the percentage of processed records
within one day for each stage for each month of the period under investigation.

The longest delays were in both cases in April and May 2020, which have been
significantly reduced by the end of the study period. The experienced delays in infor-
mation processing in the EOD → SCD stage were 4.01 (95% CI = [3.91, 4.11]) and
3.6 (95% CI = [3.48, 3.73]) in April and May 2020 respectively, and 2.12 (95% CI =
[2.09, 2.15]) days, a year later in March 2021. In the same time period, delays expe-
rienced in the SCD → TRD stage were 2 (95% CI = [1.96, 2.04]), 3.22 (95% CI =
[3.1, 3.34]) and 1.31 (95% CI = [1.3, 1.32]) days, for April 2020, May 2020 and March
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2021 respectively. Figure 2 b) shows that the main reason for significant improvement
in delay times is due to the significant increase in records being processed within one
day. Fluctuations in processing times drive the mean reporting times. Interestingly, PHU
notification is almost instant. The average delay times in information flow between lab
reporting and PHU notification (TRD → CRD) are uniformly distributed with records
processed within one day increasing from 95% to 99%, when comparing April 2020
with March 2021 and the average processing times for TRD → CRD, 0.255 (95% CI =
[0.237, 0.273]) days and 0.13 (95% CI = [0.11, 0.15]) days, respectively.

Fig. 3. The Kaplan-Meier estimated survival curve for delays in the information flow in the
COVID-19 reporting process for the overall time from specimen collection to PHU notification.

With the TRD → CRD reporting delays being very short and almost constant during
the observed time period, we can observe that the delays in information flow between
SCD → TRD stages are the main drivers behind increased processing times between
specimen collection and reporting to PHU (SCD → CRD). The average delay between
SCD → CRD stages followed the same trend as the delay between SCD → TRD stages
and was 2.25 (95% CI = [2.22, 2.29]) days in April 2020 and 1.44 (95% CI = [1.42,
1.47]) days in March 2021.

In order to analyse how the quality of information flow between the stages of the
COVID-19 reporting process changes over time,we apply survival analysis as introduced
in Sect. 2.2. Consider Fig. 3. which represents the Kaplan-Meier estimate of the survival
distribution for the probability that the delay in information flow from stage SCD to
stage CRD will be experienced after at least t days. The vertical dashed line indicates
the time window by which [7] proposes 90% of the cases should have reported within
24 hours. From this data set, this is only the case for February and March 2021.

It is apparent that as time progresses, the delays become smaller and hence the system
appears to becoming more efficient. It is also clear that there is a lot of variation between
months so to further explore these differences we consider the most extreme months
in Fig. 4 and examine the estimated survivals for the different component parts within
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SCD → CRD. Figure 4 a) shows the largest delay occurring in the pipeline between
SCD → TRD for September 2020, whereas the delay for TRD → CRD (Fig. 4 b),
shows September 2020 performing as good as the best performing months of February
andMarch 2021. Although thismay appear odd especially given there are fewer numbers
of COVID-19 confirmed cases in September 2020, it is likely that the change in policy
outlined in Sect. 1 could have impacted on the processing times for SCD → TRD where
there was quite likely many more school children presenting for COVID-19 in order to
enable them to return to School in September. There is around a 6% chance that the
delay in the information flow between SCD → CRD stages will be at least two days
in February, meaning that 94% of delays get processed within a day. Similarly, there
is around a 9% chance that this delay will be at least two days in March, meaning that
91% of delays is within 1 day. Therefore in both cases we can see that at the end of
the observation process (Feb/March) Ontario is performing according to the Australian
guidelines of at least 90% through within 24 hours. At the 95% confidence level, the log-
rank with Bonferroni correction suggests that there is very highly significant differences
in survival distributions between the selected months (p < 0.0001), thus indicating a
significant improvement in the efficiency of COVID-19 reporting services.

Fig. 4. The Kaplan-Meier estimated survival curve for delays in the COVID-19 reporting process
from a) specimen collection to lab test processing, b) lab test processing to PHU notification and
c) the overall time from specimen collection to PHU notification, for selected months.

The results of the Cox proportional hazards test also highlight some interesting
insights where the baseline reference group represent those cases reported positive in
April 2020,who are less than 20years andwhose outcome is fatal.With all else remaining
constant, if we consider different age groups, most hazard ratios are close if not exactly
one. The last column in Fig. 5 provides the p values resulting from testing the null
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hypothesis that the hazard ratio value is not significantly different to one. However, the
20–40 years age group are showing a significantly different delay than the under 20 year
olds and likewise, there is a very highly significant difference for patients who are over
80 years of age with a much higher delay for the older age groups, when all other factors
remain constant. This may be explained by the mechanism in which the specimens are
collected and delivered to the testing lab for instance differences in mobility may have
an influence where those aged over 80 years may have to wait to get their specimens
collected and taken to the labs for testing or be in nursing homes where specimens may
only be collected in batches at specific times for all residents.

Fig. 5. Hazard ratio values calculated using the Cox Proportional Hazards approach for patient
characteristics age group, timeline and outcome.

It is also clear from Fig. 5, that there is significant variation in the delay times
compared to the baseline of April 2020. This again confirms earlier analysis that there
is a large amount of variation in delay times depending on the time (month) when the
test is conducted. It seems reasonable that the delays in April 2020 (not long after the
pandemic had spread and grown in the community) would be significantly longer than
later in the pandemic when it would be expected that testing and healthcare facilities
would have had time to allocate resources to the testing process and to organize and co-
ordinate testing. As would be expected, there is significant improvement in processing
times in July and August 2020 when the case numbers had reduced placing less demand
on the facilities while again in December 2020, we see significantly slower processing
times when Ontario was experiencing another wave (peak in cases), with more demand
placed on resources. Interestingly, for September 2020, Cox proportional hazards shows
a significant increase in processing similar to that observed in earlier analyses.
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4 Conclusions and Further Research

Rapid reporting ofCOVID-19positive cases is key in providing governmentswith insight
on the level of infection in the country and informpolicy through the introduction ofNPIs
and preparedness for future infection waves. Failure to report quickly means a delay in
critical decision making at the policy level and may lead to an escalation in cases. The
time to reporting data is typically highly skewed in nature with large variability thus
providing motivation for the research in this paper where we provide novel knowledge
discovery of delays in COVID-19 reporting using the very novel application of robust
survival models. The approach has been illustrated using publicly available data for
Ontario, Canada for one year of the pandemic beginning in March 2020. The survival
methodology used in this paper garners additional insights regarding the delay times and
identify specificallywhat factors significantly impact these. It does so using visual graphs
of the Kaplan-Meier estimated survival distributions which are useful at comparing the
different months’ delays and extends this to consider the impact of patient characteristics
on the delay times using the Cox proportional hazards model.

There has been much debate over the timely follow up of contacts hence if such data
were available, there is the opportunity to extend the analysis in this paper to include
contacts and their follow up time.Wewish to expand our work to incorporate the survival
model of time to reporting presented in this paper into a disease infection model.
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Abstract. After the recent outbreak of COVID-19, researchers have
risen working on several challenges related to the mining of social data
to learn about people’s reactions to the epidemic. Recent studies have
largely focused on extracting current themes and inferring broad atti-
tudes, with a particular emphasis on the English language. This study
presents various perspective for Arabic social data mining to provide in-
depth insights related to the COVID-19 pandemic. We initially devised
a method for inferring geographical whereabouts from Arabic tweets not
initially geotagged. Secondly, a sentiment analysis mechanism based on
Arabic word embeddings is introduced, with several levels of geograph-
ical granularity (regions/countries) considered. Sentiment-based classifi-
cations of topics and subtopics related to COVID-19 will also be pre-
sented. According to our findings, the overall percentage of location-
enabled tweets has increased from 2% to 46% (about 2.5M tweets). Dur-
ing the pandemic, Arab Twitter users’ negative emotions about lock-
down, restriction, and law enforcement were also widely expressed.

Keywords: Arabic tweets · COVID-19 pandemic · Sentiment
Analysis · Social data mining · Arabic COVID-19

1 Introduction

Social media has turned into a home for a variety of real-life events that may
occur in our daily lives (such as today’s top trending issues, the COVID-19 epi-
demic) [15]. Specifically, millions of Arab users utilize social media to communi-
cate and contribute a significant amount of daily Arabic material, particularly
on Twitter. As a result, researchers used the Arabic material on Twitter to learn
more about people’s opinions, thoughts, and feelings related to the COVID-19
epidemic. Sentiment Analysis (SA) is one of the areas related to social data
mining [21]. Recent research on SA has centered on evaluating social data by
identifying current themes and inferring general attitudes from related subjects,
with a particular focus on the English language. However, sentiment research
connected to COVID-19 on Arabic social media has not been properly addressed.
c© Springer Nature Switzerland AG 2021
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Several researchers have been interested in natural language processing (NLP)
approaches such as word embedding models and n-gram feature weighted by
TF-IDF for topic analysis and classification, even for non-COVID-19 related
information. Other researchers, on the other hand, used feature extraction in
feature-based sentiment analysis to determine sentiment polarity and predict
sentiments in social data, with the use of Machine Learning (ML) classifiers
to evaluate their findings. However, there has been some investigation into the
correlation between official health statistics and social media content.

In this study, we analyze Arabic social data from Twitter related to the
COVID-19 pandemic to identify people’s sentiments. We want to examine the
effects of the worldwide pandemic on a variety of factors at many spatial and
temporal levels. This study presents a comprehensive social data mining app-
roach for the Arabic language, by employing Arabic-specific word embedding
techniques. Our approach presents several unique contributions over existing
works as follows:

1. From January 2020 to November 2020, we gathered Arabic tweets regarding
COVID-19 from publicly available datasets (about 5.5M tweets). Then, based
on user profiles and textual content, we created a location inference approach
for non-geotagged tweets, which increased the total percentage of location-
enabled tweets from 2% to 46%. (about 2.5M tweets). We created a Geo-
Database that includes bi-lingual (English and Arabic) names of international
countries and capitals, as well as well-known Arab cities.

2. Developed an innovative sentiment analysis technique that uses unique
insights from users’ responses on important topics (like lockdown and vac-
cination) at multiple degrees of geographic granularity (regions, nations, and
cities).

3. Based on the produced geo-social dataset, sentiment analysis, official health
records, and lockdown data, a set of studies was conducted.

The following is a description of the paper’s structure: A review of some
related work is included in Sect. 2. Section 3 presents the suggested methodol-
ogy’s description and execution. The suggested methodology’s results and find-
ings are described in Sect. 4. Section 5 concludes with some last comments and
future research objectives.

2 Related Work

The SA process reflects the users’ opinions in a variety of ways and a variety of
linguistic styles. Researchers began examining COVID-19-related social media
content in the early days of 2020. Previous research on social media content has
mostly focused on English tweets regarding COVID-19 or other Latin languages
while few have looked at Arabic. Many research works prompted topic analysis
to demonstrate the popular subjects talked on social media. Other researchers
used feature extraction in feature-based sentiment analysis to detect sentiment
polarity and predict sentiment in social data, while others used feature extraction



196 T. Elsaka et al.

in feature-based sentiment analysis to assess sentiment polarity and forecast
sentiment in social data [6]. Many of them utilized machine learning classifiers
to improve the results of semantic analysis. Our evaluation of the most research
papers on social streams, notably in Arabic, is organized in the sections below.

2.1 Collection and Classification of Social Data

Recent research has mostly focused on analyzing social data by extracting trend-
ing topics and inferring general opinions from related subjects, with a particular
emphasis on English material and less on Arabic content. Many research works
have been driven by the desire to acquire social datasets to be shared. Further-
more, these datasets were utilized in statistical analysis studies such as Alanazi
et al. [2] and Haouari et al. [13]. Some researchers, like Alharbi [3], discov-
ered a coronavirus collection of Arabic tweets, mostly from three Saudi social
media streams. Furthermore, several research works focused on the study of
Twitter datasets for classification, such as Hamdy et al. [11]. Some researchers,
such as Qazi et al. [23], researched location-enabled elements of social data and
released the GeoCoV19, a large-scale Twitter dataset connected to the COVID-
19 epidemic. They derived their geolocation information using a gazetteer-based
technique to extract toponyms from user location and tweet content using Nom-
inatim (Open Street Maps) data at geolocation granularity levels. Lamsal [17]
also released the COV19Tweets Dataset, a large-scale English language tweets
dataset including sentiment ratings. They created the GeoCOV19Tweets Dataset
by filtering the COV19Tweets Dataset’s geotagged tweets, which comprises just
141k tweets (0.045%).

2.2 Topic and Semantic Analysis

Alshalan et al. [5] analyzed hate speech related to the COVID-19 epidemic in
the Arab world using the ArCov-19 dataset [13]. Likewise, Alsafari et al. [4]
developed an Arabic hate and offensive speech detection system in response
to the growing prevalence of hate speech on social media. As Well, Hamoui et
al. [12] examined the Arabic content on Twitter to see what the most popular
topics were among Arabic users. Similarly, Al-Laith et al. [1] used tweets and
a rule-based approach to categorize 300,000 tweets to assess people’s emotional
reactions during the COVID-19 epidemic. While, Bahja et al. [7] showed the pre-
liminary findings of determining the relevance of tweets and what Arab people
wrote regarding COVID-19 feelings/emotions (Safety, Worry, and Irony). How-
ever Essam and Abdo [10] looked into how Arabs on Twitter are dealing with
the COVID-19 epidemic. Manguri et al. [18] collected Twitter data from Twit-
ter social media and then did sentiment analysis. Furthermore, Chakraborty et
al. [8] showed that tweets containing all important handles for COVID-19 and
WHO failed to properly lead people through the pandemic outbreak. In addition,
Kabir et al. [14] developed a neural network model and trained it using manu-
ally labeled data to recognize various emotions in Covid-19 tweets at fine-grained
labeling.
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2.3 Discussion:

To summarize, the authors attempted to analyze COVID-19-related social data
many times. They used numerous Arabic-language social media datasets col-
lected over a while, mostly in the year 2020. Researchers looked at social media
postings to see how people are reacting to the COVID-19 epidemic. The current
research is based on English data, with Arabic data receiving fewer contribu-
tions. Furthermore, previous research on Arabic social data does not take into
account the spatial-temporal component of COVID-19 material. In addition, the
relationship between official health statistics and social media content has not
been thoroughly investigated.

3 Sentiment Analysis of Arabic COVID-19 Tweets

Using machine learning models and topic detection and tracking techniques, we
propose a method for automatically detecting and processing social datasets
including Arabic tweets related to the COVID-19 epidemic. The workflow of our
technique is depicted in Fig. 1, and the subsections following discuss each phase
in greater depth.

Dataset Collection Feature
Extraction

Sentiment
AnalysisCOVID-19

Dataset

Fig. 1. The Workflow of our methodology to analyze the social data.

3.1 Dataset Collection

We began by collecting Arabic tweet data from the two openly available Arabic
datasets for COVID-19 tweets, [2] (3,314,859 tweets) and [13] (2,111,650 tweets).
Both datasets were collected by matching Arabic tweets with a list of COVID-
19-related keywords (such as Coronavirus, Corona, and Pandemic) often used
by ordinary people, news organizations, and government agencies. We filtered
tweets in both datasets using the time frame of January 1, 2020, to November
30, 2020. We gathered tweets from both datasets and created a new geo-tagged
dataset from them to feed our studies. Unfortunately, the provided datasets
only contain tweet IDs due to Twitter’s privacy policy. As a result, we hydrated
(recollected) the dataset to retrieve the complete tweet objects from Twitter.
The new dataset comprises about 5.5 million tweets (5,054,141 unique tweets
and around 115,561 geo-tweets - about 2% only), with an average of 21 words
per tweet.
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3.2 Features Extraction

In our approach, we developed in the “Feature Extraction” module some pro-
cesses such as “Prepare Dataset”, “Infer Location-Enabled Tweets” and “Extract
Location Features”. The process “Prepare Dataset” contains some sub-processes
like “Clean Dataset”, “Filter Fields” and “Prepare Arabic Text”.

Algorithm 1: Location Extraction
1 begin
2 “Tweets Dataset” = loadTweetsCorpus()
3 for each tweet in Tweets Dataset do
4 if “Tweets Place” is not None then
5 country = “Tweet Country”;
6 if country is not None then
7 place name = “Tweets Place”;
8 country code = “Country Code”;
9 coordinates = “Tweet Coordinates”;

10 end

11 else
12 if “Tweets Place” is None OR country is None then
13 Select country from “Countries-Cities Database” where

“TU” = country;
14 if country is None then
15 Select country from “Countries-Cities Database” where

“User Location” = city;

16 end
17 country code, coordinates = retrieveData(“Geo-Location

Database”);

18 end

19 end

20 end

Each tweet object includes numerous metadata elements that provide a
wealth of information. The geo-location information, such as “Place” and “User”
Information, are essential pieces of information that identify the tweet’s origin.
Unfortunately, they always need refining because they are dependent on optional
entry by users. Furthermore, it might be written in a variety of languages or
contains inaccurate information. As a result, the two used datasets has a tiny
percentage of geotagged tweets as 2% and 2.4% for the COVID-19 Arabic dataset
[2] and the ArCov-19 [13] respectively.

Therefore, we designed a mechanism to generate “Location-Enabled Tweets”
from non-geotagged tweets as outlined in Algorithm 1. It requires the use of
GeoDB, our manually created geo-location database that comprises bilingual
names (English and Arabic) of international country names, capital cities, and
well-known towns in the Arab world. To extract the tweet source, this method
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examines all data fields found in the tweet object, such as “Place name”, “Coun-
try”, and “User location”. We extracted the Chrononyms and Astionyms [16]
from user location. Therefore, the merged dataset contained location-enabled
tweets around 46% (approximately 2.5 million tweets) more than the original
combined dataset, which enriches the experiments applied on it.

3.3 Sentiment Analysis

In our model, we developed Unsupervised SA processes that applied lexicon-
based method. We created our Arabic sentiment lexicon by combining nine
Arabic lexicons previously tested by the research community (Bing Liu Lexi-
con; NRC Emotion Lexicon; MPQA Subjectivity Lexicon; SemEval-2016 Ara-
bic Lexicon; AEWNA Lexicon; NileULex Lexicon [9,19,20,22,24]. Then we uti-
lized polarized Bag of Words (BoW) technique, a word-frequency approach, that
counts positive, negative, and neutral words in each tweet to assign the tweet
polarity as “positive”, “negative”, or “neutral”. Algorithm 2 shows the SA pro-
cesses such as: 1) loads the Arabic corpus of text gathered from Arabic geo-
tweets dataset, 2) prepares the Arabic corpus by employing some sub-processes,
3) determines polarity of each tweet’s words, 4) uses four machine learning (ML)
classifiers to evaluate the sentiment analysis’ classification performance: Linear
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multinomial Nave
Bayes (NB), and Random Forest (RF).

The KNN is a scalable approach capable of handling training data that are
too large to fit in memory. The most important parameters of KNN classi-
fier are neighbors: {5}, weights: {uniform}, leaf-size: {30}, Power: {2}, metric:
{minkowski}, and n-jobs: {None}. The SVM is used for Classification as well as
Regression to create the best line or decision boundary that can segregate n-
dimensional space into classes. It uses the parameters penalization: {standard},
Tolerance: {1e-4}, multi-class-trains: {n-classes}, intercept-scaling: {1}, class-
weight: {1}, Random-State: {None}, and max-iterations: {1000}. Multinomial
NB is a powerful algorithm that is used for text data analysis and with multiple
classes problems. The default parameters used with this classifier are Additive:
{smoothing}, fit-prior: {True}, and class-prior: {None}. Random forests is the
most flexible and easy to use classification and regression algorithm. It creates
decision trees on randomly selected data samples, gets prediction from each tree
and selects the best solution by means of voting. We applied with RF the follow-
ing parameters estimators: {10}, max-depth: {5}, and max-features: {1}. Our
algorithm uses the Arabic polarity corpus to extract characteristics and labels
as the source for the classifiers’ data. The corpus is then divided into train and
test datasets, with 80% and 20% split ratios, respectively. Then it uses the TF-
IDF Vectorizer to vectorize the training dataset. Following that, the algorithm
uses the classifier model applied to the test dataset using the classifier’s scores,
including precision, recall, f1-score, and accuracy.
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Algorithm 2: Sentiment Extraction
1 begin
2 “Tweets Corpus” = loadTweetsCorpus();
3 RemoveDuplicatedTweets(TC);
4 for each tweet in “Tweets Corpus” do
5 FilterTweetsFields(tweet);
6 CleanTweets(tweet);
7 NormalizeTweets(tweet);
8 RemoveArabicStopWords(tweet);
9 RemoveduplicatedWords(tweet);

10 TokenizeTweetsText(tweet);
11 StemTweetsWords(tweet);
12 GetTweetPolarity(tweet, “Arabic Lexicon”);
13 SetTweetPolarity(tweet);

14 end
15 “Classifiers List” = {SVM, KNN, NB, RF};
16 for each classifier in “Classifiers List” do
17 ExtractFeaturesLabels(TC);
18 Train, Test = SplitDataset(TC);
19 for n in uni-gram do
20 Vectorising(Train, TF-IDF);
21 Prediction = Predict(“Classifiers List”, Test);
22 ConfusionMatrix = (precision, recall, f1-score);

23 end

24 end

4 Results and Discussion

Researchers may examine the influence of health prevention measures, environ-
mental variables, and conversation topics on the spread of the COVID-19 pan-
demic using spatial-temporal analysis of social media posts. The geo-tagging of
social media postings is required for this spatial-temporal analysis. Only a small
portion of the recorded stream of postings (4.5% at most) has been geotagged on
previous research. As a result, we used our mechanism to increase the size of the
experiment’s dataset from about 115K (2%) to 2.5M (46%) geotagged tweets.
We used the occurrence-based approach to quantitatively assess the location-
enabled Arabic tweets in the new geo-tweets dataset (2.5M tweets). The vast
majority of Arabic tweets originate from Arab users all over the world, with the
vast majority of them based in the Arab world. As a result, we compared the
two locations (Arab and Non-Arab) in terms of the origins of the Arabic tweets
that fuel our experiments. From January to November 2020, Saudi Arabia and
Kuwait are the two Arab countries with the most tweets and hashtags. The
United Kingdom and France, on the other hand, were the top two nations in the
non-Arab area.

The monthly results of the sentiment analysis of COVID-19 Arabic tweets
are shown in Fig. 2a. Figure 2b compares the results obtained after using the four
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(a) SA of COVID-19 Arabic Tweets (b) Classifiers’ performance

Fig. 2. Sentiment analysis

 

(a) Sentiment Analysis (b) Lockdown Days

Fig. 3. Visualization of experiments’ results

machine learning classifiers. The SVM classifier scored about 92% in all four cat-
egories: Precision, Recall, F1, and Accuracy. This is a higher score than prior
research projects have attained. Other classifiers obtain similar results, but the
TF-IDF unigram achieves a better performance. Finally, to explain the insight
gained from the analysis of progressively huge datasets, we ran numerous exper-
iments using our Arabic tweets COVID-19 dataset and additional data acquired
from earlier studies. The findings might be crucial in representing our large-scale
dataset with official data that came in early. We offered figures such as Fig. 3a
and 3b to help us extract information, better comprehend the data, and make
more effective decisions by displaying data and results in an understandable and
engaging way using the world maps. Therefore, we demonstrated that there is a
link between the number of COVID-19 confirmed cases and the issues addressed
in Arabic social media, such as government-imposed lockdown and travel restric-
tions. They clarify that the majority of them are from Saudi Arabia and Egypt,
which have the largest populations and Internet users, respectively [15]. Some
correlation research suggests that during the epidemic, unfavorable emotions
among Arab Twitter users increased. Furthermore, the research revealed that
there is a link between Arab users’ unfavorable feelings and the number of daily
confirmed cases of COVID-19.
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5 Conclusion

This article presented a complete social data mining technique in Arabic for
obtaining COVID-19-related insights, with an emphasis on the connection
between spatio-temporal social data and health data. It also included a sen-
timent analysis technique that could be used to a variety of geographical granu-
larities and subject scales. Furthermore, a strategy for inferring geo-information
from non-geotagged tweets was created, which boosted the overall percentage of
location-enabled tweets from 2% to 46%, much above the results of most prior
studies. We used sentiment-based classifications to generate people’s opinions
at various geographical resolutions (regions/countries) and subject abstraction
levels (subtopics and main topics) to validate sentiment analysis performance.
Finally, using the created geo-social dataset, sentiment analysis, official health
records, and lockdown data from across the world, we ran several tests and dis-
played our findings. Our findings suggested that combining social data mining
with other data sources, such as health data, has a lot of promise for forecast-
ing the emergence of such events. Furthermore, such correlations may be used
in other forms of data, such as contact tracing and GPS data, to give a more
comprehensive knowledge of human behavior and the relationship between social
and physical user interactions. In the future, we plan to expand the dataset to
include more Arabic social content to analyze the most recent periods when
social media users’ attention shifted from COVID-19 in general to vaccines. Fur-
thermore, we want to undertake additional research to enhance the suggested
location inferencing approach by using a natural language processing (NLP) pro-
cedure to process the tweet’s text to boost the percentage of geotagged tweets
created.
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Abstract. The COVID-19 pandemic triggered a wave of novel scientific
literature that is impossible to inspect and study in a reasonable time
frame manually. Current machine learning methods offer to project such
body of literature into the vector space, where similar documents are
located close to each other, offering an insightful exploration of scientific
papers and other knowledge sources associated with COVID-19. How-
ever, to start searching, such texts need to be appropriately annotated,
which is seldom the case due to the lack of human resources. In our
system, the current body of COVID-19-related literature is annotated
using unsupervised keyphrase extraction, facilitating the initial queries
to the latent space containing the learned document embeddings (low-
dimensional representations). The solution is accessible through a web
server capable of interactive search, term ranking, and exploration of
potentially interesting literature. We demonstrate the usefulness of the
approach via case studies from the medicinal chemistry domain.

Keywords: COVID-19 · Literature-based discovery · Representation
learning

1 Introduction

Severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 is a coron-
avirus, member of the Coronaviridae family, a positive-sense single-stranded
(+ssRNA) RNA virus [1]. The novel virus (initially 2019-nCoV now named
SARS-CoV-2; ‘n’ - novel) was reported in December of 2019 to be originating
from Wuhan, Hubei China [40]. In the closing of 2019-early 2020, the virus caused
a global pandemic of the COVID-19 disease [35]. The latter is of grave concern, as
the majority of cases display mild symptoms, but up to 15% of patients progress
to pneumonia and multi-organ failure leading to potential death, especially with-
out medical assistance [36].
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While there are no registered drugs, but several drug and vaccine discov-
ery programs are being actively developed and scaled up, the scientific commu-
nity coherently responded to the COVID-19 pandemic resulting in an increasing
amount of literature that is beyond the search capabilities of individual medical
professionals [38]. Exploration of scientific literature can be facilitated by com-
putationally feasible approaches to summarizing a large amount of text [17].
This work explores how unsupervised document representation learning and
keyphrase extraction methodologies [5,11] can be used to build a fast, scalable
web server suitable for literature prioritization. To this end, we implemented
a web server tool and showcase the solution’s scalability on one of the largest cur-
rently known collections of COVID-19-related full medical document databases
– CORD19 [38].

We next present the related work, followed by the developed web server and
its use cases. We conclude with a discussion of the developed tool and further
work.

2 Related Work

With the introduction of freely available literature, multiple tools have been
recently developed [14].

Bras et al. [21] propose bubble-like visualization of the COVID-19 literature
using keyword groups, resulting in hundreds of documents retrieved. The tool
offers search based on pre-defined sets of keywords, which can be ambiguous and
potentially result in papers not directly related to a given query, offering a fast
overview of key topics.

Another interesting project is the Watson Annotator of Clinical data1, capa-
ble of highlighting key terms within a given document. This tool aims not to
provide the global search across the literature but to annotate an e.g., copy-
pasted document with named entities. Such annotation can be very useful for
medical professionals, as it offers, similarly to this work, quick insights into the
key concepts appearing in a given document. A substantially different approach
was undertaken by Google2, where a question answering regime was adopted.
Their search engine can identify publications based on a natural language-based
query, e.g., “What is the medical care for patients during COVID-19 epidemic?”.
The engine recommends (according to its internal ranking) the documents that
are of potential interest.

An interesting approach is also CADTH COVID-19 pandemic online tool3,
which offers string search to topics related to COVID-19. Another recently
released tool is the COVIDScholar4 whose core functionality is the most sim-
ilar to the tool presented in this paper. It is based on word and document
embedding techniques used for semantic search. It leverages open data from
1 https://www.ibm.com/cloud/watson-annotator-for-clinical-data.
2 https://covid19-research-explorer.appspot.com/.
3 https://covid.cadth.ca/literature-searching-tools/cadth-covid-19-search-strings/.
4 https://covidscholar.org/.

https://www.ibm.com/cloud/watson-annotator-for-clinical-data
https://covid19-research-explorer.appspot.com/
https://covid.cadth.ca/literature-searching-tools/cadth-covid-19-search-strings/
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various data sources. The main results are links to full papers with abstracts
and the most similar documents via document embeddings. The tool, however,
does not explore the possibility of full-text annotation via keyphrase extrac-
tion, which is among the key functionalities of our tool. Finally, the SPIKE tool
by the Allen Institute also offers an exploration of documents at scale, offering
insight into named entities and their relations within documents, which can be
very useful when attempting to answer specific queries based on literature5. The
data set that gave rise to the tools was initially offered at Kaggle6. The major-
ity of the available data on the heavily studied SARS-CoV-2 topic and related
COVID-19 pandemic resides on traditional literature bodies that employ heavy
user involvement and literature study. A few examples of the literature bodies
besides the aforementioned CORD19 database are offered by NIH as SARS-CoV-
2 Resources7, NCBI as LitCovid8, Rutgers university as COVID-19 Information
Resources9, ECDC10, WHO11,12, USCF13, Wiley14, ACS15 and others. A more
comprehensive overview of related literature databases and tools [37] is provided
by CDC16.

3 COVID-19 Explorer Design, Implementation
and Functionality

The proposed COVID-19 Explorer webserver architecture, shown in Fig. 1, is
comprised of two main parts.

First, the raw body of COVID-19-related literature is preprocessed and stored
in the form, suitable for the two subsequent machine learning tasks. The first
task, keyphrase extraction, is conducted with the recently introduced RaKUn
algorithm [32], additionally equipped with scientific stop-word lists to prevent
noisy keyphrases from being detected. The second task, document represen-
tation learning, is conducted by using the widely adopted doc2vec document
embedding algorithm [20], used to learn representations of abstracts of individ-
ual documents. Once keyphrases and document embeddings are obtained, they
are stored in a form suitable for fast access. The document embeddings are also
projected to 2D with UMAP [25], a non-linear dimensionality reduction tool,
as the front end part of the webserver offers interactive exploration also by
querying the semantic (2D) space directly.
5 https://spike.covid-19.apps.allenai.org/datasets/covid19/search.
6 https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.
7 https://ncbi.nlm.nih.gov/sars-cov-2/.
8 https://nncbi.nlm.nih.gov/research/coronavirus/.
9 libguides.rutgers.edu/covid19 resources/.

10 ecdc.europa.eu/en/coronavirus.
11 search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/.
12 who.int/emergencies/diseases/novel-coronavirus-2019.
13 guides.ucsf.edu/COVID19/literature.
14 novel-coronavirus.onlinelibrary.wiley.com.
15 acs.org/content/acs/en/covid-19.html.
16 cdc.gov/library/researchguides/2019novelcoronavirus.

https://spike.covid-19.apps.allenai.org/datasets/covid19/search
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://ncbi.nlm.nih.gov/sars-cov-2/
https://nncbi.nlm.nih.gov/research/coronavirus/
https://libguides.rutgers.edu/covid19_resources/
https://ecdc.europa.eu/en/coronavirus
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/
https://who.int/emergencies/diseases/novel-coronavirus-2019
https://guides.ucsf.edu/COVID19/literature
https://novel-coronavirus.onlinelibrary.wiley.com
https://acs.org/content/acs/en/covid-19.html
https://cdc.gov/library/researchguides/2019novelcoronavirus
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Fig. 1. Visualization of the main processing steps considered by the proposed solution.

All the information is presented in the form of a responsive and fast front
end, requiring minimal computational resources on the client-side.

3.1 Keyphrase Extraction

One of the key functionalities of the COVID-19 Explorer is that it enables a
direct search via keyphrases, computed from whole scientific documents (papers,
reports, etc.). The extraction method is the in-house developed RaKUn algo-
rithm [32]. The algorithm first transforms a given collection of sentences (a
document) into a document graph – a graph comprised of key tokens, linked via
the co-occurrence relation. An example graph is shown in Fig. 2.

Once the graph is constructed for a given collection of text, ranking of nodes
is performed to identify single, two, and three-term keyphrases. The webserver
also implements an auto-suggestion option, which offers interactive exploration
of possible search queries in real-time. The current implementation of RaKUn
employs load centrality, a centrality measure based on the amount of shortest
paths that pass through a given node. The keyphrase computation step is con-
ducted in parallel for each of the considered documents. The resulting keyphrases
and the underlying token graphs are stored and browsed interactively as a part
of the front-end functionality. Further, the keyphrase extraction offers another
functionality that is crucial in the considered document prioritization task – each
keyphrase has a dedicated score for a given document, meaning that the docu-
ments themselves can be prioritized for the global keyphrase score. An example
of how this space can be directly inspected is shown in Fig. 3. In addition to
scoring a given keyphrase within a given document, the search results also show
other keyphrases and the document title linked to the corresponding DOI.
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Fig. 2. An example RaKUn token graph. Each node represents a token in the docu-
ment. Documents, when linked together, form the whole document graph suitable for
identifying the keyphrases (as paths in this graph).

3.2 Global Document Representation Learning

A prominent capability of the natural language processing methods developed in
recent years is that of learning the representation of a collection of texts, instead
of merely considering the set of hand-crafted features. The current implementa-
tion of the COVID-19 Explorer exploits the widely used doc2vec algorithm [20]
to learn the representations of every document abstract. The purpose of this step
is to map the considered collection of documents into the same semantic space,
offering the capability to explore the e.g., semantic neighborhoods of a given
document, interactively. The current implementation of the COVID-19 Explorer
first computes 256-dimensional representations of individual abstracts and next
projects them to two dimensions via the UMAP [25] tool that approximates a
low dimensional manifold representative of the learned high dimensional space.
The implemented semantic viewer is shown in Fig. 4.
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Fig. 3. Global interactive space of document embeddings.

4 Case Studies

This section presents the application of the reported webserver tool and its
main functionalities. We also showcase its performance on multiple use-cases,
aimed at the fast and efficient hypothesis elaboration for research on COVID-19
drug design. We present the general research-field examination together with
key scientific questions regarding the development of novel drugs against the
SARS-CoV-2 pathogen and SARS-CoV-2 therapeutic target examination. In the
presented cases, we demonstrate how the COVID-19 Explorer effectively identi-
fies the relevant semantically associated literature. Upon navigating to https://
covid19explorer.ijs.si/, the user is presented with a welcome screen where key-
word(s) can be chosen (Fig. 5, subfigure 1) and their relationship using Boolean
operators (Fig. 5, subfigure 2). The user is then presented with a list of examined
keywords (Fig. 5, subfigure 3) and the list of semantically connected articles is
dynamically updated in the output field below (Fig. 5, subfigure 4). Individual
pinpointed articles can be examined in detail and its semantic space visualized
(Fig. 5, subfigure 5).

https://covid19explorer.ijs.si/
https://covid19explorer.ijs.si/
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Fig. 4. The COVID-19 Explorer’s semantic viewer. Each point in the shown space
represents a document. The positions in the global space of documents are determined
based on the distances between the representations of the documents’ abstracts. Intu-
itively, the documents close to one another can offer insight into the semantically
similar document. The implemented viewer offers a direct exploration of documents –
each point is clickable and triggers an element with a detailed description of a given
document.

4.1 Case Study 1: General COVID-19 Domain Inquiry

Single keyword examination using the term pandemic yields results where the
top-scoring article (Score: 0.542) entitled “The pandemic present” immediately
affords social anthropology discourse on current pandemic threats including
COVID-19 [39], Amongst the 10 top scoring peer-review articles offered by the
COVID-19 Explorer, 7 investigate the COVID-19 emergency and 3 articles offer
information on the influenza pandemics. The former and latter are two major
subjects found in modern medicinal literature regarding the general topic of
pandemics [7,10,18]. The journals found by the COVID-19 Explorer are all of
high-impact in the respective fields and encompass Social Anthropology, Journal
of Medical Humanities, Emerging Infectious Diseases, Public Health, The Cana-
dian Journal of Addiction, The Lancet and British Journal of Surgery. The key-
word pandemic thus offered a balanced perspective from social studies (20%)
and modern medical science perspective (80%) on the field of pandemic studies,
especially focusing on COVID-19 on the first, and influenza in the second place.
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Fig. 5. The COVID-19 Explorer’s welcome screen and user input fields. Relevant key
sections of the online tool are emphasized and numbered in red color: 1. user keyword
inspection and input field, 2. Boolean operators imposed on keywords, 3. selected key-
word inspection window, 4. Dynamically updating result field displaying semantically
related peer-review articles, 5. specific article detail button and 2D visualization of the
corresponding semantic space. (Color figure online)

A similar broad, yet subject-focused outlook in correlation to the present-time
problem would be difficult to impossible for identification using one search oper-
ation in other peer-review literature search engines. Supplementing the search
with the covid keyword and using AND Boolean operator offered by COVID-19
Explorer shifts the result focus entirely to COVID-19 related peer-review arti-
cles. Top scoring hits offer the general outlook on COVID-19 health effects [30],
possible treatments [13], promoting the mental healthcare during the COVID-19
pandemic [2,27], elaborating on children study problems [3] and clinical prob-
lems encountered during the COVID-19 pandemic [6,12]. The results in effect
mirror the key media-reported problems and challenges imposed by the current
global crisis and could be retrieved by COVID-19 Explorer in a single search
operation.

4.2 Case Study 2: SARS-CoV-2 Potential Therapeutic Drug/target
Identification

There are only a few therapeutic options for SARS-CoV-2, a pathogen causing
worldwide havoc [16,34]. Therefore, novel drug design is paramount, as well as
an inquiry into viral biochemistry along with the identification and assessment
of potential novel therapeutic targets that could be of use for the development
of novel drugs [40]. Using the COVID-19 Explorer, we examined the subject
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by using two straightforward keywords, i.e. sars-cov-2 and receptor joined by
AND operator. The reported web server tool immediately delivered a focused
overview on the subject comprised of 10 top scoring articles where peer-review
literature offered an outlook on the antimicrobial chemical matter with activity
against SARS-CoV-2 virus - a repurposing study in one article [15], human-
to-human transmission of COVID-19 in one article [26], elaboration on human
ACE2 receptor in 7 articles [23,28,29,41], current insight into viral morphology,
biochemistry, and pathogenesis [19] and involvement of the virus in resulting
COVID-19 disease [31]. Worth mentioning is also the correctly identified con-
nection between ACE2 host entry receptor and viral binding partner S-protein
[41] (COVID-19 Explorer 4th hit article with the score of 0.295). This key finding
represents a prominent therapeutic target for the development of novel drugs and
vaccines against SARS-CoV-2 [42]. Modifying the search to sars-cov-2 and tar-
get keywords, associates the discourse tightly to medicinal chemistry and results
in peer-review article focus on ACE2 in viral pathogenesis [33], comparison of the
SARS-CoV-2 with SARS-CoV and MERS-CoV [9] as well as identifying two key
potential therapeutic targets for the development of novel drugs against SARS-
CoV-2 - 3CLpro and RdRp [4,22]. Furthermore, the top 10 suggested articles of
the COVID-19 Explorer tool also include elaboration on the viral entry mecha-
nism involving TMPRSS2 extracellular protease (5th hit with a score of 0.285)
[31]. TMPRSS2 protease is essential in understanding spike protein processing
and the mechanism of viral cell entry [24].

Fig. 6. Left: API hitlist for the keyword 3clpro; Right: article counts from specific
journals
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4.3 Using the COVID-19 Explorer API

For the user benefit, the COVID-19 Explorer web server tool also exposes a
RESTful API with a simple syntax:

http://cord19explorer.ijs.si/gp/api?keyword=query

where query is a user-defined search term. Additional keywords can be added
with &query2&query3... and the search output hitlist can be limited with a
limit=N and N is the requested number of articles. To restraint the server
load, the current hitlist is limited to 50 but this can be adjusted as needed.
For example, using a scripting language (e.g., Python) and perhaps a notebook
software (e.g., Jupyter) elaborate search patterns can be performed and results
analyzed. For example upon searching for a simple keyword=3clpro a hitlist
is obtained and can be readily analysed article/publisher-wise Fig. 6.

Similarly, the user can easily obtain articles with a specific term in the
abstract. For example, a list of articles with a term inhibitor in the abstract
as a subset of API hitlist, discern the publication year, field of study and so on.
The exposed RESTful API is thus an easy approach towards automatization and
incorporation of COVID-19 Explorer’s searches into other tools and workflows.

5 Discussion

Let us discuss the usefulness of the proposed tool alongside its drawbacks. The
developed COVID-19 Explorer offers scalable and highly efficient summariza-
tion of scientific documents via keyphrases, based on whole texts. Compared to
e.g., conventional approaches are undertaken by large databases such as e.g.,
PubMed, where the keywords are determined by the authors themselves (and
manually tagged by professionals), the purpose of this work was to demonstrate
that at least to some extent, this process can be automated in and unsupervised
manner, without any human interventions, and offers a scalable approach to the
exploration of vast amounts of scientific literature. One of the key goals of the
COVID-19 Explorer is to filter existing information and thus simplify arduous
exploration (often random) of scientific literature to domain experts.

The proposed implementation offers two fundamentally different approaches
to the exploration of the document, which we were able to link – namely, the tool
offers exploration directly in the space of latent embeddings of documents via an
interactive 2D visualization, but also exploration directly via ranked keywords,
present throughout the documents. Exploration via keywords was specifically
optimized by taking into account the existing lists of scientific stopwords. Thus
the RaKUn keyphrase extraction phase was adopted for the scientific domain,
which is also a contribution of this work. Furthermore, RaKUn was updated
with the capability of detecting connectives – words that link multiple terms;
for example “COVID-19 in the USA” represents a keyphrase where in was iden-
tified to fit between the two key phrases. The RaKUn achieves such behavior
by backtracking back to the raw text and statistically identifying how suitable a
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given connective is. Therefore a suitable context can be tailored upon the search
request. Finally, we believe that the existing semantic space could be improved by
incorporating both the document embedding information, additionally equipped
with the whole-document keywords. Finally, we plan to explore more sophisti-
cated summarisation techniques, summarised for the interested reader in [8];
many of these techniques are based on computationally more expensive neural
language models, which, however, could offer superior performance.

Using the reported tool for general COVID-19 subject outlook revealed a
hit-list of semantically connected articles where a broad overview on the global
COVID-19 crisis from the social studies and a modern medicinal perspective was
obtained in a single search query. Furthermore, simple keyword exploration of
the general subjects from the Medicinal chemistry domain quickly afforded rel-
evant high-impacting peer-review articles from journals respective on the field.
In essence, a review article deconstruction was achieved with key articles, ideas,
and themes offered as top hits. Inspection of specific terms from SARS-CoV-2
antiviral drug design returned lists of relevant primary literature as well as asso-
ciations to other complementary research approaches, e.g., exploration of 3CLpro
target exposed associations to PLpro, RdRp, and 2’-O-MTase therapeutic tar-
gets. Furthermore, the reported tool helps the user with an implemented API
in the background and precomputed lists of related keywords in the foreground.
Upon inputting a specific keyword, a list of semantically related suggestions is
offered, unaffected by the user preference but rather derived from the underlying
body of data.

6 Conclusions

In this work, we presented an approach for summarization of large collections of
scientific documents based on automatic keyphrase extraction. The approach was
extended with a simple-to-use web interface, where users can explore the seman-
tic space of COVID-19-related medical literature. As keyphrases were computed
based on whole texts automatically, the proposed tool offers exploration capabil-
ities beyond a few author-assigned keywords present in dominant search engines.
Furthermore, the keyphrase extraction algorithm was specifically adapted for the
biomedical domain via scientific stop word lists, which substantially improved
the search performance and the quality of the results.

We demonstrated the usefulness of the proposed approach in different case
studies, studying different aspects of the current COVID-19 pandemic, from
molecular (receptor) level to more general, disease co-occurrence level. We
demonstrated that the tool indeed offers a fast and intuitive exploration of the
scientific literature as well as an alternative view on the underlying body of work.
Furthermore, the proposed article ranking system, which assigns a score to each
paper, was shown to prioritize the literature in a manner suitable for literature-
based discovery and exploration. The article ranking idea is also a novelty of
this paper. Finally, even though the existing web service offers an intuitive and
fast exploration of existing literature, we believe the approach could be extended
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to incorporate contextual embeddings, which could further distill the relevant
literature. Even though the focus of this work was the CORD-19 corpus, the
authors are aware, the proposed approach can be generalized for any collection
of relevant literature.

7 Availability and Requirements

COVID-19 Explorer is available at https://covid19explorer.ijs.si/ as a freely
accessible webserver. The web server’s landing page includes the links to the
repository and the data used to completely reproduce the webserver locally.
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Abstract. In response to the COVID-19 pandemic, governments around
the world are taking a wide range of measures. Previous research on
COVID-19 has focused on disease spreading, epidemic curves, measures
to contain it, confirmed cases, and deaths. In this work, we sought to
explore another essential aspect of this pandemic, how do people feel and
react to this reality and the impact on their emotional well-being. For
that reason, we propose using epidemic indicators and government policy
responses to estimate the sentiment, as this is expressed on Twitter. We
develop a nowcasting approach that exploits the time series of epidemic
indicators and the measures taken in response to the COVID-19 out-
break in the United States of America to predict the public sentiment at
a daily frequency. Using machine learning models, we improve the short-
term forecasting accuracy of autoregressive models, revealing the value
of incorporating the additional data in the predictive models. We then
provide explanations to the indicators and measures that drive the pre-
dictions for specific dates. Our work provides evidence that data about
the way COVID-19 evolves along with the measures taken in response
to the COVID-19 outbreak can be used effectively to improve sentiment
nowcasting and gain insights into people’s current emotional state.

Keywords: Sentiment · Nowcasting · COVID-19 · Twitter · Measures

1 Introduction

Epidemics of infectious diseases are triggered by factors such as changes in the
ecology of a population or a novel pathogen. One such example is the outbreak
of COVID-19, which resulted in a substantial burden to the world in terms of
health risks and unnecessary deaths as well as financial risks and global economic
turmoil. Identifying the optimal sequence of mitigation measures is always a chal-
lenge [17], with countries all over the world adopting different policies to control
and limit the impact of the pandemic. Such decisions vastly rely on epidemic
models (e.g., compartmental models [19]) that attempt to capture and reflect
epidemic indicators, such as infection rate, recovery rate, deaths, and population
mobility [2]. Recent work on reinforcement learning has also attempted to iden-
tify optimal mitigation policies [12,13] by defining reward functions considering
the impact of the pandemic on public health and the economy.
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Nonetheless, the attention to public sentiment has been limited as a result of
the pandemic and the mitigation measures taken [11]. Sentiment analysis con-
cerns the classification of the intentions of a text’s author (e.g., of a tweet) as
positive, negative, or neutral. This is a well-known field in Natural Language
Processing [23], and it is often applied on social media texts [22]. When the out-
come is emotions instead of a sentiment class, the task is called textual emotion
recognition [6] (also known as emotion prediction, detection, or classification).
Recent works have started to explore the automated analysis of sentiments of
social media posts related to the recent COVID-19 pandemic as a means to
understand people’s behaviors and responses during the pandemic [11,21]. Pre-
vious research on nowcasting sentiment has employed different datasets. Either
to measure consumer sentiment with the use of Google search data [5,7] or to pre-
dict people’s mood using Twitter data [14] and several other heterogeneous data
(Twitter, Facebook, mood forms, mobile phone use data, and sensor data) [20].

The effects of COVID-19 contact minimization, isolation measures, lock-
downs, as well as the potential fear of infection and death can have an undoubt-
edly long-term negative psychological and emotional impact on the population.
This can, in turn, lead to severe indirect socio-economical consequences [8]. In
this paper, our goal is to explore the emotional well-being of the population
and identify potential factors that contribute to negative emotions related to
the COVID-19 pandemic. More concretely, we propose a workflow for nowcast-
ing negative sentiment, as expressed by Twitter, using governmental mitigation
policies and epidemic indicators as exogenous variables.

Our main contributions can be summarized as follows: (1) We propose a
sentiment nowcasting workflow for predicting the daily sentiment in response
to the mitigation measures and epidemic indicators related to the COVID-19
pandemic; (2) We employ a sentiment extraction approach from tweets using
a transformer-based, multi-lingual, masked language model called XLM-R; (3)
Our workflow supports both statistical as well as machine learning models. For
the latter, it also provides explanations for the predictions in the form of local
model agnostic explainable features, using LIME; (4) Our empirical evaluation
on data including tweets, mitigation measures, and epidemic indicators, obtained
over two periods during the development of the pandemic suggests that mitiga-
tion measures and epidemic indicators can potentially function as factors for
predicting negative public sentiment.

2 Sentiment Nowcasting

We propose a workflow for estimating the negative sentiment value related to
COVID-19 one day ahead of the latest ground-truth value by taking advantage of
exogenous variables, such as epidemic indicators and mitigation measures. Let T
define a set of tweets written in natural language. The first step of our workflow is
to convert T to a time series of sentiment values by employing a function g(·). Let
Y = y1, . . . , yt denote the time series of t real-valued sentiment observations, with
each yi ∈ R. We additionally consider a set of exogenous variables X = {X j}
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that can occur concurrently with Y . Each X j comprises a set of variables that
together correspond to some common exogenous factor that can contribute to
the estimation of Y . The main goal of this paper is to define a function f(·)
that predicts the next observation yt+1 = f(Y,X) by taking into account both
the historical observations of Y , as well as the sets of exogenous variables up to
time t. In our setup, Y models the degree of negative sentiment per day, which
is extracted as an aggregate value from a set of tweets that are filtered based on
language and location. Moreover, we employ two sets of exogenous variables. The
first (X 1) contains 20 indicators and four indices that correspond to government
mitigation policies for COVID-19, while the second (X 2) contains 55 epidemic
metrics related to the development of COVID-19.

Sentiment Extraction. Each tweet was annotated regarding sentiment by
XLM-R, a multilingual, Transformer-based model [3]. We fine-tuned XLM-R to
extract sentiment for a tweet as a valence score from zero (very negative) to one
(very positive), and we binarized that score by using a threshold (see Sect. 3.1).
Then, yt is the fraction of the negative tweets out of the filtered tweets of day t.

Data Smoothing. We decided to smooth the sentiment data to eliminate noise
and random fluctuations. This allows important patterns to more clearly stand
out and is intended to ignore one-time outliers. We choose to apply a Trailing
Moving Average. The value at time t is calculated as the average of the raw
observations over a time window of length w = 3 ending at time t.

Statistical Models. Models handling time series are used in order to predict
future values of indices by extracting relevant information from historical data.
Traditional time series models are based on various mathematical approaches,
such as autoregression. For this study, we apply the models of Autoregression,
Exponential Smoothing, ARIMA, and ARIMAX.

Machine Learning Models. We used regression models to assess whether
the inclusion of mitigation measures and epidemic indicators can improve the
accuracy of the classical methods. Regression analysis is a form of predictive tech-
nique that models the relationship between a dependent (target) and one or more
independent variables (predictor). In our case, the target is the negative senti-
ment expressed on Twitter and the predictors are the epidemic indicators and
the mitigation measures. For this study, we apply Linear Regression, Ridge
Regression, Lasso Regression, Random Forest, and eXtreme Gradient
Boosting (XGBoost). For each model, the best hyperparameters are selected
in each training phase by Grid Search and 10-fold Cross-validation.
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3 Empirical Evaluation

3.1 Data Description

Sentiment Evaluation Data. To evaluate the performance of sentiment
extraction through XML-R, we used the SemEval-2018 Affect in Tweets senti-
ment dataset (V-reg), which considers sentiment as a score from zero (very neg-
ative) to one (very positive) [15]. More specifically, scores below 42.9% indicate
the negative sentiment class, scores above 61% indicate the positive sentiment
class, and scores in between indicate the neutral sentiment class. The dataset
consists of 2,567 tweets that were annotated by 175 annotators (49,856 annota-
tions reported in total), and it is already split into 1,181 tweets for training, 449
for validation, and 937 for testing.

Twitter COVID-19. The tweets that were used in our study were obtained
through the Twitter Streaming API. Considering we are interested in capturing
the sentiment during the COVID-19 pandemic, we filtered the tweets that com-
prise COVID-19 related keywords. Our data spans two chronological periods.
The first period is from 3/11/2020 to 17/12/2020, but unfortunately, we have
a few missing dates for a total of 32 days of available data. The second period
is from 20/4/2021 to 14/5/2021, for a total of 25 days. We have more than 13
million tweets and an average of 179,000 tweets per day. We filter the tweets
based on their location to include only tweets from the USA, and we obtain
almost 654,000 tweets. The fraction of negative tweets (threshold of 42.9%; see
the above paragraph) is 317,000.

Mitigation Measures. The Oxford COVID-19 Government Response Tracker
(OxCGRT) was designed to systematically collect information on different com-
mon policy responses taken by governments in response to the pandemic [9]. It
contains data from 186 countries on various policies, including school closures,
stay-at-home orders, economic support for households, and vaccination. The data
is publicly available [1], and more concretely comprises 20 indicators of govern-
ment responses that can be grouped into three categories: (1) Containment and
closure policies (indicators C1-C8), such as school closures and restrictions in
movement, (2) Economic policies (indicators E1-E4), such as income support
to citizens or provision of foreign aid, and (3) Health system policies (indica-
tors H1-H8), such as the COVID-19 testing regime, emergency investments into
healthcare, and most recently, vaccination policies. The data from these 20 indi-
cators is aggregated into a set of four indices: (1) Overall government response
index; (2) Containment and health index; (3) Economic support index; (4) Strin-
gency index.

Epidemic Indicators. We additionally use the COVID-19 dataset maintained
by Our World in Data [18]. The data is updated daily throughout the COVID-
19 pandemic covering 226 countries and territories on 55 metrics, including (1)
confirmed cases and deaths, (2) hospitalizations and intensive care unit (ICU)
admissions, (3) tests and positivity data, (4) vaccination data, (5) other variables
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of interest. We should note that due to the long reporting chain of new cases
and deaths, the daily reported number does not necessarily represent the actual
number on each day. For that reason, negative values in cases and deaths may
appear if a country corrects previously overestimated historical data.

3.2 Setup

We choose to study the United States of America (USA), an English-speaking
country, as it is better represented in the Twitter dataset. We construct the
statistical and machine learning models to produce the sentiment predictions.
Initially, we split our datasets into training and test sets (85%–15%). The train-
ing data is used to estimate and generate the models’ parameters, and the test
data is used to calculate the accuracy of the models. However, at every step of
the training, we update the training set with the latest historical value, and the
models are retrained (i.e., we employ dynamic training). Thus, the models are
updated with the latest information available to include any fluctuation in the
sentiment, indicating an increase in COVID-19 cases, a new measure taken, etc.

At each step, we obtain a new predicted value for the sentiment. Once the
training is completed, we have our predictions according to the initial test set’s
length. Then, we evaluate the accuracy of the predictions with respect to the
initial test set that contains the actual sentiment values. We consider standard
performance indicators to evaluate the performance of the predictive models:
the Pearson Correlation, the Mean Absolute Percentage Error (MAPE), and the
Root Mean Square Error (RMSE) [4,10].

3.3 Results

Sentiment Extraction. We used XLM-R, which achieves a root mean square
error (RMSE) of 0.015 and a mean absolute percentage error (MAPE) of 0.261
on the test set of the SemEval-2018 V-reg sentiment dataset. The high predictive
power of the model, reflected by the low error, makes it a suitable candidate for
our sentiment annotation task. We note that our data comprises more than a
million tweets, making human annotation impossible. On the same evaluation
dataset, NLTK’s Sentiment Intensity Estimation baseline model achieves a much
worse RMSE (0.053) and MAPE (0.529) score.1

Statistical Models. Table 1 presents the performance indicators for the statis-
tical models that use only the endogenous variable, i.e., the sentiment. We notice
that the three models, Autoregression, Exponential Smoothing, and ARIMA per-
form very similarly with respect to the three metrics, and they are able to capture
somehow the way the sentiment evolves in time, but not very accurately.

We conclude that the sentiment time series itself is not sufficient to predict the
future sentiment. For that reason, we attempt to estimate the future sentiment
by including different sets of exogenous variables into the ARIMAX model. Table 2

1 http://www.nltk.org/howto/sentiment.html.

http://www.nltk.org/howto/sentiment.html
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Table 1. Performance indicators of the statistical models.

Model Pearson MAPE RMSE

Autoregression 0.620 1.502 0.009

Exp Smoothing 0.626 1.560 0.009

ARIMA 0.610 1.580 0.009

Table 2. Performance indicators of the ARIMAX model. We use the sentiment variable
along with the independent variables referring to the COVID-19 indicators (COV),
mitigation measures (ME), and a combination of all (COV&ME).

Model Pearson MAPE RMSE

COV ME COV&ME COV ME COV&ME COV ME COV&ME

ARIMAX 0.258 0.563 0.051 3.750 2.021 4.484 0.021 0.011 0.025

Table 3. Performance indicators of the machine learning models. We make use of
the independent variables referring to the COVID-19 indicators (COV), mitigation
measures (ME) and a combination of all (COV&ME).

Model Pearson MAPE RMSE

COV ME COV&ME COV ME COV&ME COV ME COV&ME

Linear 0.232 0.598 0.520 4.581 2.017 1.763 0.027 0.014 0.011

Ridge 0.616 0.610 0.612 2.318 1.917 2.323 0.013 0.013 0.014

Lasso 0.716 0.355 0.714 1.623 2.185 1.721 0.009 0.013 0.009

RF 0.868 0.666 0.870 1.718 1.455 1.570 0.009 0.009 0.009

XGBoost 0.666 0.618 0.892 1.427 1.451 1.082 0.008 0.009 0.006

presents the performance indicators for the ARIMAX model that makes use of
the sentiment variable along with the independent variables referring to the
COVID-19 indicators (COV), mitigation measures (ME), and a combination of
all (COV&ME). We see that not only the exogenous variables do not improve
the performance, but in the case of COV&ME, where the number of features
is very high, the model fails to predict the future sentiment. We explain such a
result due to the nature of the model that assumes a linear relationship between
the target variable and the various features. In this case, the model is incapable
of selecting only the relevant features, resulting in the inclusion of noisy signals.

Machine Learning Models. At this point, we choose to explore the possi-
bility of estimating the sentiment more accurately with the machine learning
models that use the different sets of exogenous variables without incorporating
any autoregressive behavior. Table 3 presents the performance indicators for the
machine learning models. We test the performance of Linear, Ridge, and Lasso
Regressions, as well as Random Forest (RF) and XGBoost. We test the models
with the use of a) the COVID-19 indicators (COV), b) the mitigation measures
(ME), c) a combination of the COVID-19 indicators and mitigation measures
(COV&ME). Overall, the XGBoost outperforms the other prediction models in
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Fig. 1. Ground-truth sentiment time series along with the predictions from the
XGBoost model with the COVID-19 indicators and mitigation measures (COV&ME).
The left plot zooms in the predictions time frame of the right plot.

terms of Pearson correlation, MAPE, and RMSE. It outperforms all the statis-
tical models, as well as the other machine learning models. More specifically, we
observe that the best results are obtained when we make use of both the epidemic
indicators and mitigation measures (COV&ME), with a Pearson correlation of
0.892, MAPE of 1.082, and RMSE of 0.006.

Figure 1 presents the ground-truth sentiment time series along with the pre-
dictions from the XGBoost model with the COVID-19 indicators and mitigation
measures (COV&ME). We observe that the predictions are able to monitor the
evolution of the sentiment accurately over time. Moreover, Table 3 and Fig. 1
reflect the added value of using the epidemic indicators and measure data over
the historical autoregressive and Exponential Smoothing approaches. Forecasts
obtained with XGBoost are significantly more accurate for COV&ME compared
to the statistical models.

Feature Importance. In general, AI models make it difficult, even for the
experts, to explain the rationale of their conclusions. For that reason, we consider
it crucial to provide understandable results, not only to verify their correctness
and quality but, above all, to explain what drives the sentiment of the people
during the COVID-19 pandemic period. A benefit of using XGBoost is that it is
easy to retrieve importance scores for each feature. Generally, importance pro-
vides a score indicating how useful or valuable each feature was in constructing
the boosted decision trees within the model. The more an attribute is used to
make key decisions with decision trees, the higher its relative importance. We
notice in Fig. 1 that the biggest error is for the prediction of 2021-05-10. For that
reason, we choose to analyze this particular record to explain what drives the
prediction on this day.

Figure 2 (left) shows the 20 most important features (importance on the x-
axis) that drive the prediction of 2021-05-10, as calculated from XGBoost with
the epidemic indicators and mitigation measures (COV&ME). The most impor-
tant feature is “stringency index” with an importance of 0.461, which records
the strictness of “lockdown style” policies that primarily restrict people’s behav-
ior. We have several COVID-19 indicators that score between the most impor-
tant features related to tests, cases, deaths, and ICU patients. Additionally, we
have the “GovernmentResponseIndex” which records the government’s response
throughout the outbreak, and the “H7 Vaccination policy” indicator that records
the vaccination policy of the health system.
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Local Explanations. Feature importance measures rarely provide insight into
the average direction that a feature affects the response function. They state the
magnitude of a feature’s relationship with the response compared to other fea-
tures used in the model. We cannot know specifically the influence of each factor
for a single observation. We hence decided to use LIME, which stands for Local
Interpretable Model-agnostic Explanations [16] to help us understand individu-
ally what features and how they influence the sentiment of each day. LIME is
a novel explanation technique that explains the prediction of any classifier or
regressor in an interpretable and faithful manner by approximating it locally
with an interpretable model. LIME supports explanations for tabular models,
text classifiers, and image classifiers.

Fig. 2. Local explanation of the 20 most important features that drive the prediction of
the 2021-05-10, as calculated by XGBoost (left) and with LIME for XGBoost (right)
with the COVID-19 indicators and mitigation measures (COV&ME). (Color figure
online)

Figure 2 (right) provides the local explanation for the most important fea-
tures that drive the prediction of 2021-05-10 and their relative strength. Each
feature is then color-coded to indicate the relative increase or decrease in the
prediction probability, i.e., whether the feature supports or increases the predic-
tion value (Green) or it has a negative effect or decreases the prediction value
(Red), respectively. For example, “new cases smoothed” is the most important
feature with a weight of 0.003, and “new tests per thousand” the second most
important with a weight of 0.0025, both of green color, which indicates that
they increase the value of the prediction. On the contrary, “total cases” and
“total tests per thousand” are red, indicating a decrease in the prediction value.

Comparing the most important features obtained from the XGBoost model
and LIME, we see that the two approaches have 15 out of 20 features in common.
That is a very good indicator of the goodness of this result. To further verify
if those 15 features are indeed the most relevant for our predictions, we test
the accuracy of the predictions with the ARIMAX model that suffered greatly
from the increased number of features. In Table 4 we report the results from
an ARIMAX model that uses all the features and an ARIMAX model that uses
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Table 4. Performance indicators of the ARIMAX model with all the features and of the
ARIMAX model with only the 15 (ARIMAX-15).

Model Pearson MAPE RMSE

ARIMAX-COV&ME 0.051 4.484 0.025

ARIMAX-15 0.604 1.774 0.009

only these 15 (ARIMAX-15). Comparing the two models, we observe that feature
filtering improves the performance of ARIMAX in terms of the three metrics. We
should note that ARIMAX does not outperform the simpler statistical models. Our
objective, however, is to emphasize the improvement in its performance with the
filtered features and not to suggest it as a better model. XGBoost remains as
the model with the best performance when using both the epidemic indicators
and mitigation measures (COV&ME).

4 Conclusions

In this paper, we highlighted the limitations of earlier work in considering the
direct emotional and psychological impact of the mitigation measures taken in
response to the COVID-19 pandemic. We hence proposed a workflow for iden-
tifying potential exogenous factors that can be used for the task of negative
sentiment nowcasting, employing both statistical and machine learning mod-
els. Our results suggest that machine learning models, such as XGBoost, can
substantially improve sentiment nowcasting compared to standard autoregres-
sive models. Directions for future work include the exploration of multivariate
statistical models, such as VARMAX, as well as RNN- and Transformer-based
architectures. We will also explore more extensive feature selection technique as
an assistive preprocessing step to statistical models, and the use of data collected
over a more extended period, e.g., over the whole pandemic.
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Abstract. The emergence of transformer models like BERT means that
deep learning language models can achieve reasonably good performance
in document classification with few labelled instances. However, there is
a lack of evidence for the utility of applying BERT-like models on long
document classification in few-shot scenarios. This paper introduces a
long-text-specific model—the Hierarchical BERT Model (HBM)—that
learns sentence-level features of a document and works well in few-shot
scenarios. Evaluation experiments demonstrate that HBM can, with only
50 to 200 labelled instances, achieve higher document classification per-
formance than existing state-of-the-art methods, especially when docu-
ments are long. Also, as an extra benefit of HBM, the salient sentences
identified by a HBM are useful as explanations for document classifica-
tions. A user study demonstrates that highlighting these salient sentences
is an effective way to speed up the document annotation required in inter-
active machine learning approaches like active learning.

Keywords: Document classification · Few-shot learning · BERT ·
Interactive machine learning

1 Introduction

In many real-world scenarios, it is difficult to access sufficiently large collec-
tions of labelled data to train deep learning models. However, recent advances
in transformer model architectures, for example the Bidirectional Encoder Rep-
resentations from Transformers (BERT) approach and its variants [4,7], provide
language models that can extract extensive general language features from large
corpora and transfer this learned knowledge to a target domain where labelled
data is limited. Previous work has demonstrated that this pre-training and fine-
tuning approach based on BERT outperforms existing approaches to document
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classification when only 100–1,000 labelled examples per class are available [13].
However, in its basic form BERT does not handle long texts well [5] and there
is a lack of evidence for the utility of BERT-based models for long text classifi-
cation when labelled examples are scarce—for instance the datasets used in [13]
are short Amazon reviews and Twitter posts.

To address this our work introduces the Hierarchical BERT Model (HBM),
a sentence-level model based on BERT that handles long texts and is effective
in few-shot learning scenarios. In the same way that BERT captures the connec-
tions between words, the HBM is designed to capture the connections between
sentences, overcoming the loss of document structure information that occurs
when simple word vector averaging (typical in BERT-based approaches) is used
to form document representations.

The sentence attention mechanism in HBM means that information from
sentences that receive higher attention scores are more likely to be aggregated
into the representation of the document. We propose that these are important
sentences in the document and so can be used as explanations for document
classification. This is especially useful for tasks like automated literature screen-
ing [8] where a human annotator works in close collaboration with a document
classification model, and highlighting salient sentences can make the annotator’s
job much more efficient.

Yang et al. [15] were the first to propose a sentence-level model for document
classification, Hierarchical Attention Network (HAN), and they adopted the Bi-
GRU with attention as their architecture. Other work investigating the effec-
tiveness of sentence-level models based on BERT includes Yang et al. [14] who
proposed a sentence-level BERT model integrated with audio features to forecast
the price of a financial asset over a certain period, and Zhang et al. [16] who
designed HIBERT for document summarisation. Though all use sentence-level
information, our approach differs from these in its use of the pre-training/fine-
tuning paradigm and our focus on scenarios when labelled data is scarce. The
contributions of this paper are:

– the Hierarchical BERT Model (HBM), a sentence-level BERT-based model
that is shown to be effective in few-shot, long text classification scenarios

– a demonstration that the salient sentences identified by the HBM are useful
as explanations for document classification, and can help annotators label
documents faster

The remainder of the paper is organised as follows: Sect. 2 describes the
HBM method in detail; Sect. 3 describes an evaluation experiment comparing
the HBM method with state-of-the-art methods under the few-shot learning sce-
nario; Sect. 4 introduces the approach to identifying important sentences used in
HBM; Sect. 5 describes a user study demonstrating that highlighting important
sentences selected using the HBM method leads to faster annotation; and, finally,
Sect. 6 draws conclusions.
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2 The Hierarchical BERT Model
Figure 1 illustrates the Hierarchical BERT Model (HBM) architecture which
consists of 3 components: (1) the token-level RoBERTa encoder [7]; (2) the
sentence-level BERT encoder; and (3) the prediction layer. To make predictions
using this model, raw text is first fed into the token-level RoBERTa encoder
to extract text features and form the vector representation for each sentence.
These sentence vectors are used as input for the sentence-level BERT encoder.
The intermediate representation generated by the sentence-level BERT encoder
is then input into the prediction layer to make a classification. The details of
each component are described in the following sections.

Fig. 1. The Hierarchical BERT Model for document classification. (Color figure online)

2.1 Token-Level RoBERTa Encoder
RoBERTa [7] uses the same architecture of BERT but optimises key hyper-
parameters and pre-trains with larger datasets. It has achieved state-of-the-art
results across many NLP tasks and is adopted as the word-level foundation of
HBM. Briefly, the multi-head self-attention mechanism in RoBERTa can effec-
tively capture the semantic and syntactic information between words in a doc-
ument. We leverage a pre-trained RoBERTa model to extract raw text features
to represent a document as D = (E1, E2, . . . , Em), where Ei denotes the ith

sentence vector of document D ∈ R
m×de generated by the token-level RoBERTa

encoder, and m is a specified maximum number of sentences (zero padding is
used for shorter documents). Sentence vectors are generated by averaging the
representations of each token in a sentence and are input to the sentence-level
BERT encoder.
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2.2 Sentence-Level BERT Encoder

The sentence-level BERT encoder generates an intermediate document represen-
tation, S, based on the sentence vectors, D, output by the token-level RoBERTa
encoder. The sentence-level BERT encoder consists of several identical BERT
layers and one feedforward neural network with a tanh activation. Initially, sen-
tence vectors D from the token-level RoBERTa encoder are input together into a
BERT layer, BertAtt, where the multi-head self-attention mechanism is applied.
The output of BertAtt is calculated as:

BertAtt(D) = LayerNorm (D + MultiHead(D)) (1a)
MultiHead(D) = Concat(head1,head2, . . . ,headh) × WO (1b)

where h is the number of heads in the BertAtt layer; LayerNorm is layer nor-
malization; WO ∈ R

hde×de is the weight matrix for dimension transformation;
and headi is the attention of the ith head. Each headi value is calculated as:

headi = Attention(Qi,Ki, Vi) = Softmax(Qi × K�
i /

√
de) × Vi (2a)

Qi = D × WQ
i Ki = D × WK

i Vi = D × WV
i (2b)

where WQ
i ,WK

i ,WV
i ∈ R

de×de are weight matrices for the ith head; and, Softmax
(Qi×K�

i /
√
de) is an m×m matrix in which the entry at the ath row and jth col-

umn denotes the attention weight that the ath sentence pays to the jth sentence.
Here, Vi contains information from sentences to pass through the following layers
while the attention weights matrix, Softmax(Qi × K�

i /
√
de), acts as a gate to

control how much information can be passed through (i.e. after the multiplica-
tion, it is hard for sentences with low attention score to further propagate their
information).

The output of BertAtt is passed through a standard feedforward neural net-
work with a residual mechanism and layer normalisation:

D′ = LayerNorm(BertAtt(D) + Relu(BertAtt(D) × W r) × WS) (3)

where W r ∈ R
de×nde is a weight matrix that transforms the dimension of

BertAtt(D) from de to nde (n = 4 in this work); and WS ∈ R
nde×de is the

weight matrix with dropout to transform the dimension back to de. D′ then
goes into multiple identical BERT layers to form the matrix Z which is used for
computing the intermediate document representation S.

The intermediate document representation S ∈ R
1×de output by the sentence-

level BERT encoder can be computed as:

S = Tanh(Avg(Z) × W t) (4)

where W t ∈ R
de×de is a weight matrix; Z ∈ R

m×de is the output of the multiple
BERT layers; and Avg denotes the mean pooling layer (i.e. Avg(Z) ∈ R

1×de). S
is then passed to the prediction layer.
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2.3 Prediction Layer

The prediction layer is appended to the sentence-level BERT encoder for final
prediction as shown in Fig. 1. The output, S, from the sentence-level BERT
encoder is multiplied by a weight matrix W ∈ R

de×y (y is the number of classes),
then fed into a CrossEntropy layer for computing loss.

2.4 Training a Hierarchical BERT Model (HBM)

BERT-like models usually exploit the pre-training + fine-tuning procedure to
perform downstream tasks [4,7]. In pre-training the model is trained using self-
supervised methods with various, large, unlabelled datasets. Then in fine-tuning,
a task-specific head is added to the model to further update all parameters of
the model by supervised learning over small local datasets. However, pre-training
and fine-tuning are a little different in the HBM approach. Since the RoBERTa
encoder used in HBM is pre-trained with large generic corpora, we assume that
the RoBERTa encoder can encode the token-level information well. Hence, we
do not further adjust the pre-trained RoBERTa model during fine-tuning so its
weights are frozen. The weights in the sentence-level BERT encoder and the
prediction layer are randomly initialised and updated based on our prediction
objectives. This is illustrated in Fig. 1 with the dashed green and blue rectangles.

3 Experiment 1: Evaluating the Effectiveness of HBM

This section describes an experiment performed to compare the performance of
HBM for document classification to state-of-the-art methods, especially when
training datasets are small. The datasets used in the experiments, the set up of
several baselines as well as HBM, and the experimental results are described.

3.1 Datasets

Six fully-labelled binary document classification datasets are used in this exper-
iment (the average number of sentences per document in each dataset is shown
in brackets): Movie Reviews (33.12) [12]; Multi-domain Customer Review (3.78)
[2]; Blog Author Gender (22.83) [11]; Guardian 2013 (politics vs business) (27.88)
[1]; Reuters (acq vs earn) (7.40); 20 Newsgroups (comp.sys.mac.hardware vs
comp.sys.pc.hardware) (10.61). Most of the datasets contain long documents
(from news feeds, blogs, etc.), but datasets that consist of short documents are
also included to investigate the performance of HBM on short texts.

3.2 Baselines and Setup

Partially following [13], we compare HBM with several baseline methods. We
selected an SVM model using a document representation based on FastText
(FastText+SVM), an SVM model using text representations based on a pre-
trained RoBERTa model (RoBERTa+SVM) and a fine-tuned RoBERTa model
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as baselines due to their strong performance. We also used another sentence-level
model, Hierarchical Attention Network (HAN) [15], as a baseline.1

Table 1. Performance measured using AUC score of different methods that are trained
with limited labelled data across six datasets.

Dataset Movie review
#Instances n = 50 n = 100 n = 150 n = 200 Avg rank

FastText+SVM 0.6653± 0.171 (5) 0.7942± 0.020 (4) 0.8040± 0.018 (4) 0.8260± 0.010 (4) 4.25

RoBERTa+SVM 0.8743± 0.032 (3) 0.9132± 0.025 (3) 0.9397± 0.010 (3) 0.9449± 0.008 (3) 3.00

Fine-tuned
RoBERTa

0.8878± 0.018 (2) 0.9298± 0.013 (2) 0.9451± 0.007 (2) 0.9536± 0.005 (2) 2.00

HAN 0.7013± 0.096 (4) 0.7789± 0.014 (5) 0.7504± 0.082 (5) 0.8128± 0.011 (5) 4.75

HBM 0.9139 ± 0.020 (1) 0.9420±0.011 (1) 0.9572±0.007 (1) 0.9638±0.006 (1) 1.00

Blog author gender

FastText+SVM 0.6400± 0.043 (4) 0.6669± 0.021 (5) 0.6899± 0.009 (4) 0.6861± 0.023 (5) 4.50

RoBERTa+SVM 0.5538± 0.153 (5) 0.6783± 0.025 (3) 0.7058± 0.017 (3) 0.7213± 0.012 (3) 3.50

Fine-tuned
RoBERTa

0.6462± 0.036 (2) 0.6892± 0.021 (2) 0.7177± 0.019 (2) 0.7295± 0.024 (2) 2.00

HAN 0.6402± 0.017 (3) 0.6670± 0.010 (4) 0.6845± 0.008 (5) 0.6876± 0.014 (4) 4.00

HBM 0.6820±0.025 (1) 0.7150±0.031 (1) 0.7371±0.007 (1) 0.7488±0.013 (1) 1.00

Reuters

FastText+SVM 0.9757± 0.010 (4) 0.9795± 0.005 (5) 0.9851± 0.004 (5) 0.9862± 0.003 (5) 4.75

RoBERTa+SVM 0.9838± 0.007 (2) 0.9890± 0.003 (3) 0.9931± 0.001 (3) 0.9930± 0.001 (3) 2.75

Fine-tuned
RoBERTa

0.9885±0.005 (1) 0.9933±0.002 (1) 0.9953± 0.001 (2) 0.9955± 0.001 (2) 1.50

HAN 0.9270± 0.038 (5) 0.9804± 0.005 (4) 0.9865± 0.003 (4) 0.9897± 0.002 (4) 4.25

HBM 0.9825± 0.008 (3) 0.9917± 0.004 (2) 0.9980±0.003 (1) 0.9990±0.001 (1) 1.75

Multi-domain customer review

FastText+SVM 0.6694± 0.047 (4) 0.6927± 0.030 (4) 0.7226± 0.030 (5) 0.7471± 0.018 (5) 4.50

RoBERTa+SVM 0.8317± 0.020 (2) 0.8558± 0.036 (2) 0.8976± 0.019 (2) 0.9190± 0.006 (2) 2.00

Fine-tuned
RoBERTa

0.9110±0.036 (1) 0.9437±0.007 (1) 0.9534±0.003 (1) 0.9565±0.004 (1) 1.00

HAN 0.6497± 0.021 (5) 0.6907± 0.011 (5) 0.7312± 0.014 (4) 0.7739± 0.034 (4) 4.50
HBM 0.7669± 0.024 (3) 0.8342± 0.014 (3) 0.8615± 0.010 (3) 0.8913± 0.004 (3) 3.00

Gurdian 2013

FastText+SVM 0.9720± 0.003 (3) 0.9789± 0.005 (5) 0.9794± 0.004 (5) 0.9789± 0.005 (5) 4.50

RoBERTa+SVM 0.9694± 0.011 (4) 0.9814± 0.003 (3) 0.9860± 0.003 (2) 0.9852± 0.002 (3) 3.00

Fine-tuned
RoBERTa

0.9727± 0.010 (2) 0.9848± 0.002 (2) 0.9854± 0.003 (3) 0.9864± 0.002 (2) 2.25

HAN 0.9684± 0.005 (5) 0.9794± 0.001 (4) 0.9850± 0.002 (4) 0.9849± 0.002 (4) 4.25

HBM 0.9740±0.013 (1) 0.9862±0.007 (1) 0.9904±0.003 (1) 0.9925±0.001 (1) 1.00

20Newsgroups

FastText+SVM 0.7052±0.030 (1) 0.7516± 0.033 (3) 0.7827± 0.012 (3) 0.8094± 0.013 (3) 2.50

RoBERTa+SVM 0.5969± 0.100 (5) 0.6988± 0.024 (5) 0.7117± 0.030 (5) 0.7436± 0.011 (4) 4.75

Fine-tuned
RoBERTa

0.6098± 0.051 (4) 0.7555± 0.041 (2) 0.8576± 0.060 (2) 0.8838± 0.045 (2) 2.50

HAN 0.6296± 0.030 (3) 0.7142± 0.005 (4) 0.7295± 0.012 (4) 0.7417± 0.029 (5) 4.00

HBM 0.6883± 0.094 (2) 0.8168±0.024 (1) 0.8579±0.021 (1) 0.9158±0.018 (1) 1.25

To simulate the few-shot training scenario, we randomly subsample a small
set of data from the fully labelled dataset as the training data. For each dataset,
we subsample 50, 100, 150 and 200 instances respectively and we always use the
1 Setup of all parameters, experiment code, the user study platform, and all user

study samples are available at https://github.com/GeorgeLuImmortal/Hierarchical-
BERT-Model-with-Limited-Labelled-Data.

https://github.com/GeorgeLuImmortal/Hierarchical-BERT-Model-with-Limited-Labelled-Data
https://github.com/GeorgeLuImmortal/Hierarchical-BERT-Model-with-Limited-Labelled-Data
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full dataset minus 200 instances as the test set. For each experiment, the training
is repeated 10 times with training datasets subsampled by 10 different random
seeds and we report the averaged result of these 10 repetitions. We use mean
area under the ROC curve (AUC) to measure the classification performance.

3.3 Results and Analysis

Table 1 summarises the results of the evaluation experiments performed. The
leftmost column denotes the modelling approach, the topmost row denotes the
relevant dataset, and n is the number of instances in the training set. The num-
bers in brackets stand for the ranking of each method when compared to the
performance of other approaches for a dataset with a specific number of labelled
instances. Avg Rank denotes the average ranking of each model for a specific
dataset across training set sizes. The best performance in each column is high-
lighted in bold. It is clear from Table 1 that the performance of each method
improves as the number of instances in the training set increases. The HBM
method is shown to outperform the state-of-the-art methods in the majority
of experiments. Following [3], Friedman tests were also performed on ranks for
mean AUC scores across the models and the p-values were 0.0382 (n = 50),
0.0010 (n = 100), 0.0014 (n = 150), and 0.0006 (n = 200) respectively, indicat-
ing that differences in ranks for mean AUC scores were significant. This clearly
demonstrates the utility of the HBM approach for few-shot learning.

The performance of HBM is not good for the Multi-domain Customer Review
and Reuters datasets (even lower than that of the approach based on the pre-
trained RoBERTa model for the former). We believe that this is because number
of sentences per document in these datasets is so low—3.78 and 7.40 on average
for the Multi-domain Customer Review and Reuters datasets respectively—and
that the HBM approach cannot effectively extract any sentence structure infor-
mation from such short documents. This highlights that the HBM approach
works best in domains with longer documents.

4 Extracting Salient Sentences Using a HBM Model

As mentioned previously, one advantage of the HBM approach is that the atten-
tion scores assigned to sentences in a document can be used as an indication of
the saliency of those sentences in determining document class. The most salient
sentences in a document can be used as an explanation of the classifications that
a HBM model produces. This section describes how this can be done.

As described in Eq. 2, Softmax(Qi×K�
i /

√
de) is a matrix of attention weights

used to compute the weighted average of the self-attention heads in the BertAtt
layer of HBM. In this matrix, entry eaj (at the ath row and jth column) is the
attention weight that the ath sentence pays to the jth sentence. In other words,
the jth column represents all the attention weights the jth sentence received
from other sentences. We use the sum of all entries in the jth column as the
saliency score of the jth sentence. Therefore, we compute the saliency score of
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each sentence in a document by summing up all entries in the corresponding
column of the attention weights matrix of the last sentence-level BERT layer.

After obtaining the saliency score of all sentences in a document, we select the
salient sentences based on the ratio of the sentence saliency score to the highest
saliency score. We regard all sentences with a ratio bigger than 0.9 as salient
sentences in a document and disregard other sentences. We believe that, besides
the sentence with the highest saliency score, those with a saliency score close to
the highest saliency score also contribute to the document representation and
should be highlighted. In the next subsection, we will demonstrate the usefulness
of highlighting salient sentences in a user study.

5 User Study

It is interesting to understand to what extent we can take advantage of important
sentences identified by the HBM. In many few-shot learning scenarios human
annotators are used to generate labelled data using approaches such as active
learning [6,9]. The objective of this user study is to investigate whether or not
highlighting the important sentences in a text makes it easier for annotators to
provide class labels, thus facilitating labelling of larger numbers of texts in a
short time.

5.1 Experiment Setup
The user study was run on an online platform and data collected is stored anony-
mously. We recruited participants by circulating an advertisement among social
media such as Twitter and Facebook, and internal email lists of two Irish research
centres.2 In this study, all participants were required to be fluent English speak-
ers. Participants were shown texts and asked to indicate which category, from
a list of options provided, best describes it. We use ten documents from the
Movie Review and Multi-domain Customer Review datasets. We assume these
two sentiment classification datasets would be easy for participants to annotate
for both datasets only two label categories could be chosen: positive or negative.
Ground truth categories for the texts used in the study exist, and these were
used to measure the accuracy of the category labels provided by participants.
The time taken for participants to select a category for each document were also
collected to measure the annotation efficiency.

A between-subject design was used for the experiment. Half of the partic-
ipants were shown texts in which important sentences have been highlighted
based on HBM (highlighting condition group) to make it easier for them to
come to a judgement on the category that best describes the text. Half of the
participants were shown texts without highlighting (no-highlighting condition
group). All documents were presented to the participants in a random sequence.
The accuracy of labels provided and the time taken to provide them were com-
pared across the two groups to measure the impact of providing highlighting.
2 The Insight Centre for Data Analytics (https://www.insight-centre.org/) and

ADAPT Centre (https://www.adaptcentre.ie/).

https://www.insight-centre.org/
https://www.adaptcentre.ie/
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5.2 Results and Analysis

We had 75 participants in total: 38 participants in the highlighting condition
group and 37 participants in the no-highlighting condition group. To mitigate
against participants who didn’t pay careful attention to the tasks in the study,
we removed the records of participants who achieved accuracy of less than 60%
or who spent less than 90 seconds in total on all ten questions. Similarly, to
mitigate against participants who left the study for a long period of time, we also
removed data from participants who spent more than 420 s providing the answer
for a single document. After this cleaning, we retained 57 valid participants,
among these participants 32 were in the highlighting condition group and 25
were in the no-highlighting condition group.

Figure 2 shows a box plot of the time spent per user in providing cate-
gory labels for each document, where red boxes denote the performance of the
highlighting condition group, and blue boxes denote the performance of the no-
highlighting condition group. It is obvious that except for documents CR-2 and
MR-3, the time spent by the highlighting condition group is much less than that
spent by the no-highlighting condition group.

H
NH

Fig. 2. A box plot of the time cost per user on each document. The vertical axis is the
time cost per document (unit second); the horizontal axis represents the documents.

We also analyse the results from the user perspective, the average total time
spent labelling all ten documents per user in the highlighting condition group
is 375.50 s, and in the no-highlighting condition group is 645.54 s. Following [10]
we analyse these results using a Mann Whitney U test in which the p-value is
0.01939, indicating that we can reject the null hypothesis at the 0.05 confidence
level and consider a significant difference between the time spent by members
of the two groups. The average accuracy achieved by participants in the high-
lighting condition group is 0.9575, while the average accuracy achieved by par-
ticipants in the no-highlighting condition group is 0.9448. A Mann Whitney U
test on average accuracy gives a p-value of 0.3187, which indicates no significant
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difference between the average accuracy of the two groups. Based on the pre-
vious analysis, we conclude that highlighting important sentences identified by
the HBM can significantly improve the human’s annotation efficiency while still
maintaining a high annotation quality.

6 Conclusions

In this work we have proposed a novel text classification approach, the Hierar-
chical BERT Model (HBM), which has been demonstrated to perform well with
limited labelled data especially when documents are long. Experiment results
show the superior performance of the HBM approach compared to other state-
of-the-art methods under a few-shot training scenario. We also demonstrated
that using a HBM facilitates extracting salient sentences from a document for
classification explanation and showed through a user study that highlighting
these sentences leads to more efficient labelling.

However, as demonstrated previously, HBM is limited when documents are
short, necessitating a further exploration of using HBM on short-texts. An abla-
tion study would also be useful to understand the contribution each component
of HBM makes to its performance. We also plan to integrate the HBM method
into an active-learning based document screening platform taking advantage of
its strong performance with small labelled datasets, and the ability to use HBM
to highlight salient sentences to make the annotation task easier.
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Abstract. Long-tailed distributions and class imbalance are problems of
significant importance in applied deep learning where trained models are
exploited for decision support and decision automation in critical areas
such as health and medicine, transportation and finance. The challenge
of learning deep models from such data remains high, and the state-of-
the-art solutions are typically data dependent and primarily focused on
images. Important real-world problems, however, are much more diverse
thus necessitating a general solution that can be applied to diverse data
types. In this paper, we propose ReMix, a training technique that seam-
lessly leverages batch resampling, instance mixing and soft-labels to effi-
ciently enable the induction of robust deep models from imbalanced and
long-tailed datasets. Our results show that fully connected neural net-
works and Convolutional Neural Networks (CNNs) trained with ReMix
generally outperform the alternatives according to the g-mean and are
better calibrated according to the balanced Brier score.

Keywords: Deep learning · Calibration · Class imbalance · Long-tail
distribution

1 Introduction

There is a growing amount of interest in applying deep learning to complex and
critical domains, such has medicine, health and safety and finance [22,23], that
exhibit long tails, imbalanced class priors and asynchronous misclassification
costs. To be safely applied, the learned predictive models must achieve high
recall on the minority classes, and be well-calibrated. Deep learning algorithms,
however, have been shown to exhibit unsatisfactory predictive performance on
poorly represented classes [5,6], suffer from poor calibration [13] and drastically
shift their predictions with small changes in the input space. These facts lead
to safety concerns related to the use of deep learning in real-world applications
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Fig. 1. A comparison on the generation process and the distribution of samples gener-
ate by ReMix and SMOTE. The figure demonstrates that ReMix expands the minority
class space and adds structure between the classes, which reduces predictive bias and
improves generalization.

[1,11]. Although there has been a great deal of research into imbalanced learning,
existing techniques do not fully ameliorate the problem of deep learning from
imbalanced and long tailed data.

Traditional methods to deal with class imbalance involve resampling (ran-
dom undersampling the majority class, random oversampling the minority class
and generating additional synthetic minority samples) or cost-adjustment [4,17].
Synthetic resampling methods based on SMOTE are generally preferred as they
are simple-to-apply preprocessing steps that are classifier independent [8]. Whilst
these methods have been shown to improve the predictive performance of shallow
models, they do not improve calibration with respect to underrepresented classes
[25]. In addition, they are not well-suited for batch training in deep learning [20].

In the context of deep learning, recently proposed strategies have focused on
the generation of additional synthetic samples via GANs and VAEs to balance
the training set [10,20,27]. The existing work, however, is primarily intended
for image classification problems, and its efficacy on other data types is not well
established. Moreover, these methods necessitate the learning of additional mod-
els and/or significantly more parameters. Training with GAMO [20], a recently
proposed GAN-based synthetic oversampling technique, for example, requires
one generator and discriminator per class, plus the classifier, which can quickly
become prohibitive in domains with a large number of classes. Thus, the size and
complexity of existing methods renders inappropriate in many cases. Finally,
these methods are limited in their ability to expand the minority space and do
not improve model calibration because, a) they focus the generation of synthetic
training samples within the manifold of the minority class(es), and b) they assign
hard class labels for training.

We propose ReMix, a data-independent algorithm, for integrated training of
deep models. ReMix is an advancement of the Mixup algorithm [29] for domains
with imbalanced class priors and long tails. ReMix improves the predictive per-
formance and model calibration on imbalanced and long-tailed datasets via a
prioritized mixing strategy that efficiently balances the classes in each batch of
training data and expands the minority class space to reduce predictive bias.
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A comparison of SMOTE-based sample generation and ReMix is provided in
Fig. 1. ReMix is unique from previous resampling strategies as it generates
soft labels in addition to the synthetic feature vectors. The soft labels are
approximate class probabilities that account for label uncertainty due to the
synthetic resampling process. The use of soft labels as part of the resampling
regime increases the learnt model’s robustness to noisy synthetic samples. More-
over, training deep learning models with soft labels has been shown to improve
calibration, which we postulate should be a key focus of imbalanced learning
solutions.

Our empirical results on imbalanced binary and multi-class tabular and long-
tailed image datasets show that deep learning models training using ReMix,
achieve equivalent or better predictive performance, and better calibration than
models trained with deep generation, traditional imbalanced learning techniques
and cost-adjustment methods.

2 Related Work

The authors in [2], studied the impact of training NNs on imbalanced classifica-
tion data and found that the majority class errors dominate the gradient-based
weight updates during training. This results in a predictive bias towards the
majority classes. Cost-adjustment and re-sampling are the standard techniques
to deal with the predictive bias during NN training [5,9,15,16]. In highly param-
eterized deep models, however, these approaches can cause the models to over-fit
the limited information in the minority classes [6]. ReMix addresses these issues
by balances the training batches, increasing the diversity in the minority samples
and incorporating soft labels.

Within long-tailed and imbalanced image classification, there is a strong
emphasis on generation based methods that exploit autoencoders, variational
autoencoders and generative adverserial networks [3,10,20,27]. These techniques
have been shown to improve performance on image domains. However, they are
not designed for general data formats that are common in most real-world appli-
cations. Moreover, the rely on large, highly parameterize generator models that
are likely to suffer from a lack of training data in highly imbalanced domains.

In [25], the authors found that for models trained on imbalanced data the
minority class predictions were poorly calibrated, and that standard resampling
methods do not improve model calibration. Moreover, recent studies of deep
learning models have shown that they have worse calibration than shallow models
[21]. Model calibration in deep learning applied to balanced classification has
been addressed by training with soft-labels [13], however, it has not been explored
for class imbalance. ReMix offers a solution that uses soft-labels with resampling.

3 ReMix: Resampling MixUp

3.1 Sample Generation

As proposed in [29], ReMix utilizes the principle of Vicinal Risk Mini-
mization (VRM) [7]. Under this principle, the model is trained on batches
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Bν := {(x̃i, ỹi)}m
i=1 of synthetic feature-target pairs (x̃, ỹ) drawn vicinity of

the true data X and labels Y . This is known as the vicinal distribution.
This mechanism enables us to sample an infinite supply of training samples
(x̃, ỹ) ∼ νX,Y (·). The vicinal distribution is approximated by random convex
combinations between the seeds in S := {(xi, yi)}m

i=1, with balanced class repre-
sentation, and a random subset of the training data X ′ := {(xj , yj)}m

j=1. Specif-
ically, give a mixing parameter λ, the seed data and labels SX , SY and the
alternate samples X ′

X ,X ′
Y , a batch is generated as:

BX = λSX + (1 − λ)X ′
X

BY = λSY + (1 − λ)X ′
Y ,

where the true labels SY and X ′
Y are label matrices of one-hot vectors and the

resulting BY is a soft label matrix (i.e., the probability mass spread over multiple
classes rather than placed on a single class). The λ ∈ [0, 1] is independently
sampled from a Beta distribution Beta(α, α) with α ∈ [0,∞] for each batch of
training. Sampling a new λ value for each batch reduces the risk of memorization
and improves generalization by driving down the chance of training on the same
synthetic sample more than once. The α-value is a user-specified as a hyper-
parameter that controls the amount of mixing between training samples. The
details of the ReMix algorithm are presented in Algorithm 1.

Algorithm 1. ReMix Algorithm.
Input: Beta parameter α ≥ 0, mini-batch size B
Output: Balanced random mini-batch X ′′ sampled from ν(X, y)
Algorithm:

1: Sample the next seed set SX,Y with probability inversely proportional to the class
priors

2: Sample the next mixing set X ′
X,Y with uniform probability

3: Sample a mixing parameter λ = Beta(α, α)
4: MixUp features X ′′ = λ × SX + (1.0 − λ) × X ′

X ]
5: MixUp labels Y ′′ = λ × SY + (1.0 − λ) × X ′

Y

6: return ReMixed mini-batch X ′′, Y ′′

4 Experimental Setup

4.1 Datasets

We conducted classification experiments on 2 long-tailed image datasets and 7
tabular imbalanced binary and multi-class datasets. The datasets were created
by randomly removing samples from the original datasets in order to create
imbalanced and long-tailed problems. For the tabular data, class imbalance ratios
(IR = N−

N+ ) in the range of 0.1 to 0.01 were created. For each dataset, the lower
limit was determined by the original class sizes.
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Table 1. Details of the binary and
multi-class datasets used in the follow-
ing experiments. All datasets are avail-
able at [12].
Dataset Classes Dim Inst IRs

Musk 0/1 168 6, 597 0.01, 0.025, 0.05

Segment 1/2..7 19 2, 310 0.01, 0.025, 0.05

Statlog 1/2..7 36 6, 435 0.01, 0.025, 0.05

Seizure 1/2..5 179 11, 500 0.05, 0.025, 0.01

coil2000 0/1 86 9, 000 0.05, 0.025, 0.01

Ozone 0/1 73 2, 536 0.025, 0.01

APS −1/1 171 60, 000 0.01

Seizure 1, 2/3...5 179 11, 500 0.25, 0.1, 0.05

Digits 1...3/0, 4...9 64 5, 620 0.25, 0.1, 0.05

Landsat 2...4/1, 5...7 36 6, 435 0.25, 0.1, 0.05

Table 2. Samples per-class in
MNIST Fashion [28] and CIFAR10
datasts [18].

The long-tailed distributions were motivated by the work of [20]. The smallest
class in Level 1 has 20 samples, and subsequent classes double until 5,000. Level
2 starts at 80 and increases in non-uniform steps. The specifics of the tabular
datasets are outlined in Table 1 and the long-tailed image data are in Table 2. We
examine standard imbalance in tabular data and long-tailed image datasets in
order to understand on the effectiveness of ReMix on a wide variety of problems
of interest to the imbalanced learning community.

4.2 Deep Learning Models

In the tabular data experiments, we utilize a three layer deep NN with 0.1
dropout and relu activation. For the image data, we employ a convolutional NN
with relu activation, two 3 × 3 convolutional layers and two 2 × 2 max pooling
layers interleaved, and a dense layer. Both network architectures utilize cate-
gorical cross-entropy loss with ADAM optimization. These represent common
baseline architectures for the target datasets.

4.3 Resampling and Cost-Adjustment Methods

Standard domain-independent resampling methods are applied to the tabu-
lar data. This includes adjusting the misclassification costs to account for the
class imbalance (cost adjustment), generating additional minority samples by
random interpolation (SMOTE), and ReMix. For comparison on the image
datasets, DEnoising Autoncoder Oversampling (DEAGO) [3], Generative Adver-
sarial Minority Oversampling (GAMO) and resampling minority instances from
a Conditional Generative Adversarial Network (cGAN) [19] are utilized.

DEAGO and cGAN are trained on data sampled from the minority class prior
to training the classifier, and then are utilized to generated additional samples
as a pre-processing step. GAMO learns a generator and discriminator for each
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Table 3. Mean and standard deviation performances on MNIST Fashion (left) and
CIFAR10 (right) level 1 long-tailed data. ReMix achieves the better performance than
the more complex generative methods on MNIST Fashion. ReMix and cGAN achieve
the top g-mean performance and ReMix is superior in terms of the balanced Brier
score.

Mean GM Std GM Mean 1-BBS Std 1-BBS Mean GM Std GM Mean 1-BBS Std 1-BBS

ReMixα=0.5 0.787 0.015 0.853 0.005 ReMixα=0.1 0.345 0.027 0.531 0.01

GAMO 0.515 0.298 0.815 0.015 GAMO 0.0 0.0 0.389 0.018

cGAN 0.743 0.023 0.827 0.006 cGAN 0.344 0.022 0.494 0.014

DEAGO 0.734 0.029 0.816 0.007 DEAGO 0.276 0.139 0.476 0.01

Baseline 0.738 0.027 0.825 0.007 Baseline 0.331 0.081 0.509 0.007

class, along with the multi-class classifier in parallel. Thus, a 10-class problem
requires 10 generators and discriminators and one 10-class classifier. Training is
conducted as an adversarial game that improves generation and classification of
minority samples. After training, the multi-class classifier is used to classify the
test set.

4.4 Metrics and Evaluation

We compare the imbalanced learning methods to the baseline classifier and one
trained with Mixup. Classification performance is assessed with the g-mean
(GM), a standard metric for imbalanced classification. It calculates the geo-
metric mean of the true positive rate and true negative rate [5]. To be consistent
with the work of [25,26], calibration is assessed with respect to the Brier score.
We generalize the previous work as the arithmetic mean of the Brier score cal-
culated independently for each class for multi-class settings and denote it the
balanced Brier score (BBS):

BBS =

∑K
j BSj

K
,

where K is the number of classes. This treats the calibration of each class as
equally important, and is the calibration equivalent of the balanced per-class
accuracy. Values closer to zero indicate better calibration. Our future work will
evaluate the ECE metric for imbalance learning [13].

The results for each setup are recorded as the mean and standard deviation
calculated across 10 × 2-fold cross validation. During model learning 30 percent
of the training set is partitioned off for model validation. All experiments were
performed with Tensorflow 2 on Ubuntu 18.04 desktop running a GeForce RTX
2080 Ti GPU1.

1 The code will be made available after publication.
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5 Results

Table 3 present the mean and standard deviation of the g-mean and 1-BBS2

results for the level 1, long-tailed MNIST Fashion and CIFAR10 datasets. The
level 2 results are withheld for space considerations. ReMix produces better mean
performance than the alternate methods at both imbalance levels for MNIST
Fashion. On CIFAR10, both ReMix and cGAN are competitive with respect to
the g-mean. According to the BBS, however, ReMix produces a model that is
much more calibrated.

Table 4. The sum of ranks on
the binary and multi-class tabular
datasets.

Binary Multi-class

GM BBS GM BBS

Baseline 65 63 31 38

Cost Adjusted 70 66 28 36

SMOTE 36 54 24 30

MixUp 77 63 40 22

ReMix 22 22 12 9

Table 4 summarizes the performance in
terms of the rank of each training strategy
across all IR3. Each cell shows the sum of
ranks for the method, with lower being bet-
ter. ReMix produces the best rank of GM
and BBS for both the binary and multi-
class data. Resampling with SMOTE pro-
duces the second best performance. It is
worth emphasizing that relative to MixUp,
ReMix produces a significant improvement
in calibration and predictive performance.

Figure 2 illustrates the performance of ReMix at different levels of imbalance.
It shows the mean performance gain over the baseline deep NN achieved by
ReMix and the comparison methods. The top row includes the GM gain, which
is calculated as:

GM(falternative) − GM(fbaseline),

and the bottom row reports BBS gains, which is calculated as:

BBS(falternative) − BBS(fbaseline).

A large positive score indicates a greater improvement over the baseline deep
NN. Each plot shows the gain for IRs 0.05, 0.025 and 0.01, along with the mean
gain overall IRs (All).

The results show that ReMix produces a greater mean improvement than
the alternative methods. The greatest improvements in GM are produced by
ReMix on the binary data. Both ReMix and SMOTE (the second best method
in terms of GM), see their GM gains decline with more extreme imbalance.
As hypothesized, the BBS Gain indicates that ReMix produces a much larger
improvement in calibration than the alternative methods on the binary and
multi-class tabular data.

2 We use 1-BBS so higher scores are better.
3 Individual results for all datasets including means and standard deviation are

included in the supplementary material.
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Fig. 2. Mean performance gains over the baseline on the tabular binary and multi-class
classification data at different imbalance ratios.

6 Discussion

Fig. 3. Sensitivity of deep learning model to the α
parameter in ReMix on MNIST Fashion.

The reasonable range of the
ReMix parameter is 0 <
α < 1, where 0 produces
instance replication and 1
produces uniform interpola-
tion. Figure 3 shows the sensi-
tivity of the resulting MNIST
Fashion models on this range
of parameters in terms of
g-mean and balanced Brier
score. The results indicate
that ReMix is robust across
the 0.1 ≤ α ≤ 0.8 range.
From the imbalance Level 2
results, we see a slight pref-
erence for larger α values on
more extreme levels of imbal-
ance. We hypothesize that
setting the α closer to 0.8 is
helpful in these cases because
it expands the minority space
more, thereby reducing the predictive bias.

A potential negative impact of large α values results from the risk of syn-
thetic minority samples harmfully encroaching into other classes. This suggests a
potential limitation of feature level mixing for imbalance classification. We note
that image-specific data augmentations can be integrated into ReMix to improve
performance on image data and avoid sample encroachment. The development
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and integration of automatic and data independent augmentation into ReMix
could be very beneficial. If they can be made computationally efficient, the inte-
gration of recent methods, such as manifold MixUp [24] and out-of-manifold data
augmentation [14], into ReMix may serve to improve performance on multi-class
and image data.

7 Conclusion

Deep learning algorithms are increasingly being applied to critical domains
involving class imbalance. In order for the models to be safe and effective tools,
they must have both excellent predictive performance and be well calibrated.
Nonetheless, the literature on imbalanced deep learning remains limited in scope
and it is typically focused on optimized solutions for individual datasets and
domains.

In this work, we analyze the efficacy of imbalance learning techniques for
deep learning on long-tailed image data and imbalanced tabular data, and we
propose the ReMix algorithm. It inflates the number of minority class samples in
the mini-batches and expands the minority class space to reduce predictive bias.
Moreover, it generates soft-labels that improve model calibration and reduce the
impact of any noisy synthetic samples by distributing the probability mass in
one-hot labels for samples that are far from their seed. ReMix is a general strat-
egy for training deep models on imbalanced data that is simple to implement
and computationally efficient. Our empirical results show that deep learning
models training on imbalanced datasets using ReMix achieve equivalent or bet-
ter predictive performance and are better calibrated, than models trained with
imbalanced learning methods such as deep generation and resampling.
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Abstract. Storing large volumes of data on distributed devices has
become commonplace in recent years. Applications involving sensors,
for example, capture data in different modalities including image, video,
audio, GPS and others. Novel distributed algorithms are required to
learn from this rich, multi-modal data. In this paper, we present an algo-
rithm for learning consensus based multi-layer perceptrons on resource-
constrained devices. Assuming nodes (devices) in the distributed sys-
tem are arranged in a graph and contain vertically partitioned data and
labels, the goal is to learn a global function that minimizes the loss. Each
node learns a feed-forward multi-layer perceptron and obtains a loss on
data stored locally. It then gossips with a neighbor, chosen uniformly at
random, and exchanges information about the loss. The updated loss is
used to run a back propagation algorithm and adjust local weights appro-
priately. This method enables nodes to learn the global function with-
out exchange of data in the network. Empirical results reveal that the
consensus algorithm converges to the centralized model and has perfor-
mance comparable to centralized multi-layer perceptrons and tree-based
algorithms including random forests and gradient boosted decision trees.
Since it is completely decentralized, scalable with network size, can be
used for binary and multi-class problems, not affected by feature over-
lap, and has good empirical convergence properties, it can be used for
on-device machine learning.

Keywords: Multi-layer perceptron · Gossip · Consensus · Distributed
learning
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1 Introduction

Distributed systems store, process and analyze large volumes of data [2] from
the mega-scale cloud data-centers to resource constrained devices, such as the
Internet of Things (IoT) and mobile devices. While the cloud can be used for
executing large scale machine learning algorithms on big data, these algorithms
exert severe demands in terms of energy usage, memory requirements and com-
puting resources, limiting their adoption in resource constrained, network edge
devices. The new breed of intelligent devices and high-stake applications (drones,
augmented/virtual reality, autonomous systems, etc.), require distributed, low-
latency and reliable machine learning at the wireless network edge. Thus com-
puting services have now started to move from the cloud to the edge.

Deep learning-based intelligent services [25] and applications have become
prevalent. However, their use in edge computing devices has been somewhat
limited due to the following reasons: (a) Cost: Training and inference of deep
learning models in the distributed infrastructures requires consumption of large
amount of network bandwidth. (b) Latency: The access to data and services is
generally not guaranteed and delay is not short enough for time-critical applica-
tions. (c) Reliability: Most distributed computing applications rely on wireless
communications and backbone networks for connecting users to services, but
intelligent services must be highly reliable, even when network connections are
lost (d) Privacy: The data required for deep learning may involve private informa-
tion, and privacy protocols need to be adhered. The current state of distributed
deep learning systems on edge devices leaves much to be desired.

In this paper, we address this shortcoming by developing multi-layer percep-
trons for resource constrained edge devices. When compute power is abundant
and devices are not resource-constrained, deep neural networks can be trained
using the DistBelief framework [8] with model parallelism within (via multi-
threading) and across machines (via message passing). Aside from the fact that
a parallel architecture has a single point of failure and therefore often unsuit-
able for adoption in resource constrained leaderless environments, synchroniza-
tion requirements lends these algorithms even more unsuitable for use on edge
devices. Our algorithm operates on peer-to-peer computing environments and as
such interweaves local learning and label propagation [30]. Specifically, it opti-
mizes a trade-off between smoothness of the model parameters over the network
on the one hand and the model’s local learning on the other. It has similarities
to collaborative learning of personalized (peer-to-peer) models over networks [3]
– however, unlike them, the work presented here learns the global function in
the network, instead of solitary, local models.

Finally, it must be pointed out that this work explicitly considers vertically
partitioned data or the setting in which features are distributed across nodes.
Recent work on large scale distributed deep networks has primarily focused on
horizontal partitions (for e.g. cross-data silo Federated Learning [15]) where-
in all features are observed at the nodes [4,19] and a centralized parameter
server updates models. Our work is closely related to the cross-silo Federated
Learning [15,28] model, except that the single point of failure parameter server in
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those models is replaced with a peer-to-peer architecture. This seemingly minor
change has far reaching implications – it removes the need for synchronization
with the parameter server at every iteration of the algorithm. While peer-to-
peer Federated Learning has been proposed in recent work [17,27] to the best of
our knowledge its use in the design of deep learning algorithms in the cross-silo
setting has not been explored.

This paper is organized as follows: Sect. 2 describes use cases for consensus
based multi-layer perceptrons; Sect. 3 describes related work; Sect. 4 provides
details of the algorithm and empirical results are presented in Sect. 5. Section 6
concludes the paper.

2 Use Cases for Learning Consensus Based Multi-layer
Perceptrons

We motivate the need to develop consensus based multi-layer perceptrons by
describing the following applications:

– Medical Diagnosis: Collaborations amongst health entities1 on mobile
devices [10] require examination of different modalities of patient data such
as Electronic Health Records (EHR), imaging, pathology results, and genetic
markers of a disease.

– Drug Discovery: The pharmaceutical industry requires platforms that
enable drug discovery using private and competitive Drug Discovery related
data and hundreds of TBs of image data2.

– Autonomous Vehicles: Google, Uber, Tesla, and many automotive com-
panies have developed autonomous driving systems. Applications (such as
forward collision warning, blind spot, lane change warnings, and adaptive
cruise control.) are time critical and require real time learning and updates
from individual vehicles [21].

– Home Sensing: In home monitoring and sensing applications [13] non-
intrusive load monitoring systems are used to study fluctuations in signals.

– Manufacturing Operations: which requires industrial data that is inter-
operable and scalable3. In applications of this genre, the sensors and IoT
devices collect data at different time points often from different locations and
these are then subjected to analysis.

3 Related Work

Scalable algorithms for deep learning have been explored in several papers in
recent years. We discuss related work which make use of two different archi-
tectures: (a) Parallel – which ensures the presence of a master to control slave
workers and (b) Distributed which is a fully decentralized, peer-to-peer archi-
tecture without the need for a master.
1 https://featurecloud.eu/about/our-vision/.
2 https://cordis.europa.eu/project/id/831472.
3 https://musketeer.eu/project/.

https://featurecloud.eu/about/our-vision/
https://cordis.europa.eu/project/id/831472
https://musketeer.eu/project/


256 H. Dutta et al.

Parallel DNN Algorithms: A large proportion of the research in this domain
has focused on data parallelism and the ability to exploit compute power of
multiple slave workers, with a single master controlling the execution of slaves.
McDonald et al. [18] present two different strategies for parallel training of struc-
tured perceptrons and use them for named entity recognition and dependency
parsing. TernGrad [26] uses ternary levels {−1, 0,+1} to reduce overhead of gra-
dient synchronization and communication. DoReFa-Net [31] train convolutional
neural networks that have low bit width weights, activations and gradients. Seide
et al. [22] show that it is possible to quantize gradients aggressively during train-
ing of deep neural networks using SGD making it feasible to use in data parallel
fast processors such as GPUs. Quantized SGD (QSGD) [1] explores the trade-
off between accuracy and gradient precision. A slightly different line of work
[29] explores the utility of asynchronous Stochastic Gradient Descent algorithms
suggesting that if the learning rate is modulated according to the gradient stal-
eness, better theoretical guarantees for convergence can be established than the
synchronous counterpart.

Distributed DNN Algorithms: In the fully decentralized setting, [14] present
a consensus-based distributed SGD (CDSGD) algorithm for collaborative deep
learning over fixed topology networks that enables data parallelization as well
as decentralized computation. Sutton et al. [23] explore neural network archi-
tectures in which the structures of the models are partitioned prior to training.
Partitioning of deep neural networks have also been studied in the context of
distributed computing hierarchies such as the cloud, end and edge devices [24].
Gupta et al. [10] present an algorithm for training DNNs over multiple data
sources. The research described above fundamentally differ from the material
presented in this paper in that our consensus algorithm relies on both model
and data partitioning to construct local multi-layer perceptron models which
can independently learn global information.

4 Distributed Multi-layer Perceptrons

We present the consensus based multi-layer perceptron algorithm in this section.
In the distributed setting, let M denote an N × n matrix with real-valued

entries. This matrix represents a dataset of N tuples of the form xi ∈ R
n, 1 ≤

i ≤ N . Each tuple has an associated label yi = {+1,−1}. Assume this dataset
has been vertically4 distributed over m nodes S1, S2, · · · , Sm such that node Si

has a data set Mi ⊂ M,Mi : N × ni and each xj ∈ Mi is in R
ni , ni ≤ n. Thus,

M = M1 ∪ M2 ∪ · · · ∪ Mm denotes the concatenation of the local data sets. The
labels are shared across all the nodes. The goal is to learn a deep neural network
on the global data set M , by learning local models5 at the nodes, allowing
4 This implies that all the nodes have access to all N tuples but have limited number

of features i.e. ni ≤ n.
5 We assume that the models have the same structure i.e. the same number of input,

hidden and output layers and connections.
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exchange of information among them using a gossip based protocol [9,16] and
updating the local models with new information obtained from neighbors. This
ensures that there is no actual data transfer amongst nodes.

Model of Distributed Computation. The distributed algorithm evolves over
discrete time with respect to a “global” clock6. Each node has access to a local
clock or no clock at all. Furthermore, each node has its own memory and can
perform local computation (such as estimating the local weight vector). It stores
fi, which is the estimated local function. Besides its own computation, nodes
may receive messages from their neighbors which will help in evaluation of the
next estimate for the local function.

Communication Protocols. Nodes Si are connected to one another via an
underlying communication framework represented by a graph G(V,E), such that
each node Si ∈ {S1, S2, · · · , Sm} is a vertex and an edge eij ∈ E connects nodes
Si and Sj . Communication delays on the edges are assumed to be zero.

Distributed MultiLayer Perceptron (DMLP): Assume that each node St

has a simple model of a fully connected multi-layer perceptron with Rectified
Linear Unit (ReLU) activations for hidden layers and softmax for the output
layer. The network is called Nt. It has L layers – the 0th is the input layer,
followed by (L − 1) hidden layers and the Lth layer is the output layer. Let ri

denote the number of units in the ith layer (note that r0 = ni and rL = 1).

Feed-Forward Learning: Let ωk
ij denote the weight from ith node of (k − 1)th

layer to jth node of kth layer, ak
j is the weighted sum of inputs from the previous

layer to the jth node of kth layer, ok
j is the output of jth node of kth layer, bk

j is the
bias to jth node of kth layer. The feed-forward step for the first node of the first
hidden layer can then be written as: a1

1 = b11 + x0
1 ∗ ω1

11 + x0
2 ∗ ω1

21 + ... + x0
ni1 ∗

ω1
ni1. The output a1

1 is given by: o11 = max(0, a1
1). So, the output of jth node of

kth layer is, ok
j = max(0, ak

j ) where, ak
j = bk

j + (
∑rk−1

i=1 ok−1
i ∗ wk

ij). The output
from the network Nt is given by ŷNt

i = softmax(aL
1 ), where softmax refers to the

normalized exponentiated function. The local loss at node Si is then given by Lt.

Gossip: Node St selects uniformly at random, a neighbor Su with whom it
wishes to gossip. Both St and Su have computed their local losses. When gos-
siping each node updates its current local loss with Lgossip = Lt+Lu

2 . This new
loss is used for back propagation at both nodes St and Su.

6 Existence of this clock is of interest only for theoretical analysis.
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Back Propagation: The back propagation algorithm learns the weights for
a multi-layer network, given a network with a fixed set of units and intercon-
nections. It employs gradient descent to attempt to minimize the error between
the network output values and the target values for these outputs. We use the
new loss (Lgossip) obtained after gossiping with a neighbor, in-place of the local
loss (Lt), for our back propagation phase. This modification helps the local
node St to incorporate information about the loss from its neighbor Su into its
back propagation learning phase, thereby helping to minimize the global loss
instead of the local loss. This is a crucial step in our algorithm. The local loss

at node St after gossip is then given by Lgossip = 1
2

∑N
i=1(yi − ŷ

Nt
i +ŷNu

i

2 )2 =
1
2 (y − ygossip)2;ygossip = ŷ

Nt
i +ŷNu

i

2 where the bold fonts are used to represent
the loss vectors and the example assumes squared error7. Algorithm 1 presents
the steps of the DMLP algorithm.

Input: N × ni matrix at each node Si, G(V,E) which encapsulates the
underlying communication framework, T : no of iterations

Output: Each node Si has a multilayer perceptron network Ni

for t = 1 to T do
(a) Node Si uses the network Ni for feedforward learning and locally
estimates the loss on N instances;
(b) Node Si gossips with its neighbors Sj and obtains the loss from the
neighbor;
(c) Gossip: node Si averages the loss between Si and Sj and sets this as
the new loss;
(d) Perform backpropagation on the current node and the neighbor node
using the gossiped loss; Update the weight vectors in each layer using
Stochastic Gradient Descent (SGD);
(e) If there is no significant change in the local weight vectors, STOP ;

end

Algorithm 1: Distributed Multilayer Perceptron Learning (DMLP)

4.1 Discussion

Some interesting aspects of our algorithm are:

1. The algorithms presented in the above section are called anytime algorithms
[32]. Anytime algorithms are those whose quality of results change gradually
as computation time increases. At a given time a node may be interrupted to
obtain an estimate of the performance.

2. Algorithm 1 works with different kinds of loss functions (such as cross-entropy,
softmax) and activations (such as linear, tanh).

7 Cross-entropy loss was used in empirical results.
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3. The number of hidden layers of the multi-layer perceptron can be incremented
as required by a node, without the need for any algorithmic changes.

4. It must be noted that the algorithm presented above does not depend on
how the features are partitioned across the nodes. If a given node has more
features than others, it would build a larger local model and have larger weight
matrices as appropriate. Since only the loss is exchanged (and it is assumed
that the number of instances at each node remains fixed), no algorithmic
changes are required to adapt to a different split of the feature space. This is
empirically verified in Sect. 5.

5 Empirical Results

The empirical results demonstrate the utility of the DMLP algorithm. We exam-
ine the following questions:

1. Is there empirical support for the conjecture that the performance of the
distributed model is better than that of the centralized model?

2. Does the distributed model empirically converge to the centralized one?
3. How does the performance of the proposed method compare to feature sub-

space learning methods such as Random Forests [6] and tree boosting algo-
rithms (such as XGBoost [7])?

The answers to the above questions are explored using the data sets shown in
Table 1 [11].

Table 1. Characteristics of the datasets used for empirical analysis.

Dataset No. train No. test No. features

Arcene 100 100 10000

Dexter 300 300 20000

Dorothea Bal. 156 68 100000

Gisette 6000 1000 5000

Madelon 2000 600 500

HT Sensor 14560 3640 10

MNIST 60000 10000 784

The experimental process is as follows:

1. The Peersim simulator [20] is used to construct a fully connected graph of 10
nodes. Each node can independently store vertically partitioned data.

2. The total number of features in the train data is split into 10 roughly equal
parts. Each node is assigned the data with the corresponding split containing
all the examples but only those features it has been assigned.
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3. Each node builds a local neural network model. The local loss vector is gen-
erated.

4. Each node selects a neighbor uniformly at random according to the underlying
distributed graph, and exchanges the local loss vector with its neighbor. The
new loss vector is computed as the average of its own loss vector and that of
the neighbor’s.

5. Each node participates in back propagation using the new loss generated after
gossiping with a neighbor.

6. The above process is repeated for several iterations until the nodes converge
to a solution.

Testing the Model: Each node is provided with the test set having only those
features that the node used to construct the local model. Therefore, each node
can test its own performance. For experiments presented here, we construct the
following hypothetical scenario: for each test sample, an average predicted prob-
ability is obtained across all nodes, and the distributed test AUC is then esti-
mated. This is not a requirement of the algorithm, but it enables us to compare
performance against benchmarks.

Table 2. Performance of the centralized (C) and distributed algorithms (D). The
consensus multi-layer perceptron uses cross-entropy loss function, ReLU activation for
the hidden layer, and softmax activation for the output layer. The results are averaged
over three trials.

Dataset No. hidden No. hidden Learning Centralized Distributed 95% C. I. Cent. Itr. (IC) Dist. Itr. (ID)
neurons (C) neurons (D) rate AUC AUC

Arcene 50 5 0.001 0.94 ± 0.01 0.94 ± 0.01 [0.90, 0.97] 3000 ± 1256 6466 ± 1087

Dexter 15 2 0.05 0.67 ± 0.07 0.85 ± 0.02 [0.79, 0.86] 171 ± 27 168 ± 22

Dorothea Bal 100 10 0.5 0.93 ± 0.01 0.92 ± 0.01 [0.87, 0.97] 180 ± 99 130 ± 28

Gisette 200 20 0.001 0.98 ± 0.00 0.99 ± 0.00 [0.991, 0.997] 6400 ± 698 7667 ± 1497

Madelon 50 5 0.005 0.62 ± 0.01 0.64 ± 0.00 [0.61, 0.68] 18333 ± 4497 16411 ± 2867

HT Sensor 20 2 0.1 0.99 ± 0.00 0.99 ± 0.01 [0.92, 0.94] 910 ± 0 1533 ± 618

MNIST 4000 400 0.0001 0.82 ± 0.10 0.91 ± 0.02 [0.91, 0.91] 27333 ± 8379 45000 ± 16309

We measure the performance of the model by the area under the Receiver
Operating Characteristic (ROC) curve [5] denoted by θ. The centralized algo-
rithm is executed by assuming that the entire dataset is available at a node. In
the distributed setting, a neural network is employed at each node, and is fed
partial data, partitioned in the feature space. The number of total hidden neu-
rons is kept the same for both the centralized and distributed experiments. This
implies that each distributed node has roughly No. of hidden neurons in cent. model

No. of nodes
hidden neurons in its model. We tune the model(s) in each experiment by select-
ing different parameters for learning rate, number of hidden neurons, number of
hidden layers and activation functions.
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Table 3. Comparison of the performance of the consensus algorithm to tree based
algorithms Random Forest (RF) and XGBoost.

Dataset RF AUC XGBoost AUC Dist AUC Cent AUC

Arcene 0.79 0.84 0.94 0.94

Dexter 0.93 0.95 0.67 0.85

Dorothea Bal. 0.88 0.89 0.92 0.93

Gisette 0.99 0.99 0.99 0.98

Madelon 0.77 0.71 0.64 0.62

HT 1 0.99 0.99 0.99

MNIST 0.67 0.71 0.91 0.82

Fig. 1. AUC on the test sets for both centralized and distributed settings on all the
datasets discussed above. For the distributed algorithm, test AUC results averaged
over three random vertical feature splits without overlap are presented.

The steps outlined for the distributed algorithm above were repeated for
three random feature splits and the test AUC averaged over the trials. We also
compute the symmetric 95% confidence interval for distributed test AUC (θD)
and observe centralized test AUC (θC) in relation to this interval. Figure 1 shows
the AUC curves for all the datasets used in this study. The Standard Error (SE)
for estimated area under the ROC curve in relation to the sample size (n) and
θD can be computed as described in [12]:

SE =
√

θD(1−θD)+(n−1)(Q1+Q2−2θ2
D)

n2 where Q1 = θD

2−θD
, Q2 = 2θ2

D

1+θD
.

Given SE, the symmetric 95% confidence interval (CI) is given by
θD ± 1.96(SE). The centralized algorithm and distributed algorithm can be
deemed approximately comparable if θC lies within these bounds, i.e. if θD −
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Table 4. Performance of the centralized(C) and distributed algorithms(D) with 20%
overlap of features. The consensus neural network uses cross-entropy loss function,
ReLU activation for the hidden layer, and softmax activation for the output layer. The
results are averaged over three trials.

Dataset Cent AUC Dist. w/overlap AUC 95% C. I.

Arcene 0.94 ± 0.01 0.92 ± 0.00 [0.88, 0.96]

Dexter 0.67 ± 0.07 0.90 ± 0.02 [0.87, 0.93]

Doro. Bal. 0.93 ± 0.01 0.91 ± 0.03 [0.87, 0.97]

Gisette 0.98 ± 0.00 0.99 ± 0.00 [0.98, 0.99]

Madelon 0.62 ± 0.01 0.60 ± 0.04 [0.57, 0.63]

HT Sensor 0.99 ± 0.00 0.99 ± 0.01 [0.99, 0.99]

MNIST 0.82 ± 0.10 0.95 ± 0.02 [0.95, 0.95]

Fig. 2. AUC on the test sets for both centralized and distributed settings on all the
datasets discussed above with varying degree of feature overlap. For the distributed
algorithm, test accuracy results averaged over three random vertical feature splits with
and without overlap are presented.

1.96(SE) <= θC <= θD +1.96(SE). In empirical studies (Table 2), it was found
that the distributed algorithm obtains comparable or better test AUC scores
than the centralized algorithm for all the datasets.

Implementation Details: An implementation of the DMLP Algorithm is
available from: https://github.com/Saurabh7/consensus based dl.

https://github.com/Saurabh7/consensus_based_dl
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5.1 Empirical Convergence of DMLP Algorithm

To test the convergence of the DMLP algorithm, we measure the difference in
L2 norms of the normalized weight vectors in the centralized and distributed
algorithms as they progress through the algorithm. Figure 3 shows that for all
the data sets, this difference approaches zero, thereby supporting our conjecture
that the distributed algorithm follows the behavior of the centralized one. This
is a very important result, because even though the multi-layer perceptrons were
trained on separate nodes with partial data, the global objective function was
being minimized lending it useful for many applications on resource constrained
devices. Furthermore, the anytime nature of the algorithm is also demonstrated
by these experiments. After convergence, if new information arrives at a node it
will continue to re-compute and update its local weights.

Fig. 3. Verification of the empirical convergence of the distributed algorithm. The
distributed algorithm has 10 nodes.
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5.2 Scalability of DMLP with Number of Nodes in the Network

We study the performance of the distributed algorithm when the number of
nodes in the network is varied from between 10–100 and compare it to the
centralized setting. The results (Fig. 4) show that an increase in network size
does not significantly change the performance of the algorithm in all the datasets.

Fig. 4. Scalability of the DMLP algorithm in terms of the number of nodes in the
network.

5.3 Effect of Overlap of Features

We study the impact of the overlap of features at each node on the performance
of the consensus algorithm using the overlap ratio parameter. An overlap ratio
of 0 indicates that the features present at one node are not present at any other
node, i.e. the feature space is partitioned with mutual exclusivity. On the other
hand, an overlap ratio greater than 0, indicates that a subset of the feature
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space is shared among all nodes. When overlap ratio is 1, all data is available
at all nodes but model partition still exists. Table 4 presents the results of the
experiments with overlap ratio set to 0.2. Figure 2 shows the effect of variation
of the overlap ratio parameter on performance of the algorithm. In general,
it is observed that when the overlap ratio is incremented by a factor of 0.2,
the AUC on the test set gradually improves. Our results reveal that in general,
the overlap of features amongst nodes is beneficial and boosts the performance
of the consensus algorithm. However, this behavior is not consistent for highly
nonlinear datasets (such as Madelon) and those which have very large number
of features (such as Dorothea) where-in the performance decreases as overlap
increases and overfitting sets in.

5.4 Comparison with Feature Sub-space Learning Algorithms

Given that data partition at each node involves exploring a subset of the feature
space, we compare the consensus algorithm to state-of-the-art tree-based algo-
rithms which learn on feature subspaces (such as Random Forests and XGBoost).
The results are presented in Table 3. We observe that the consensus algorithm
has comparable performance to RF and XGBoost in all the datasets, except
Dexter and Madelon – two particularly difficult datasets with no informative
features [11].

6 Conclusion and Future Work

This paper presents the Distributed Multi-Layer Perceptron (DMLP) algorithm
for learning consensus based vertically partitioned multi-layer perceptrons in
resource constrained edge devices. The algorithm interweaves local learning with
label propagation in the network. Each node constructs a local model by feed
forward learning, exchanges losses with a randomly chosen neighbor, averages
losses and uses this new loss for back propagation in the network. The itera-
tive algorithm demonstrates good empirical convergence properties and can be
used for both binary and multi-class classification problems. Empirical results
on several real world data sets reveal that the DMLP algorithm has performance
comparable to the centralized counterpart and tree-based learning algorithms.
The performance of the algorithm is not affected by an increase in network size
and therefore it can be used efficiently on edge devices in completely decentral-
ized environments for on-device machine learning.
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Abstract. GANS have been used for a variety of unconditional and
conditional generation tasks; while class-conditional generation can be
directly integrated into the training process, integrating more sophisti-
cated conditioning signals within the training is not as straightforward.
In this work, we consider the task of sampling from P (X) such that the
silhouette of (the subject of) X matches the silhouette of (the subject
of) a given image; that is, we not only specify what to generate, but
we also control where to put it: more generally, we allow a mask (this
is actually another image) to control the silhouette of the object to be
generated. The mask is itself the result of a segmentation system applied
to a user-provided image. To achieve this, we use pre-trained BigGAN
and State-of-the-art segmentation models (e.g. DeepLabV3 and FCN)
as follows: we first sample a random latent vector z from the Gaussian
Prior of BigGAN and then iteratively modify the latent vector until the
silhouettes of X = G(z) and the reference image match. While the Big-
GAN is a class-conditional generative model trained on the 1000 classes
of ImageNet, the segmentation models are trained on the 20 classes of
the PASCAL VOC dataset; we choose the “Dog” and the “Cat” classes
to demonstrate our controlled generation model.

Keywords: Generative model · Image segmentation · Computational
creativity tools

1 Introduction

Generative adversarial networks (GANS) have been used for a variety of uncondi-
tional and conditional generation tasks; while unconditional generation involves
learning and sampling from P (X), conditional generation can be described as
sampling from P (X|f(X) = 1), where f is a binary indicator function. Most com-
monly studied conditional generation are class-conditional generation wherein f
is a binary class-membership function. While class-conditional generation can
be directly integrated into the training process, integrating more sophisticated
indicator functions within the training is not as straightforward. Specifically, in
this work, we aim learn to replace the silhouette of a subject in an image (in our
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examples, an animal) with a different subject (e.g. a different animal) that still
fits the exact same silhouette. Some generative models conditionally generate
images by transforming vectors that lie in a large latent space. BigGAN, for
example, has been trained to conditionally generate realistic images from any
of the 1000 different categories of Imagenet, including various breeds of dogs
and cats. While it is straightforward to sample from any of these categories;
attributes like shape, size and posture cannot be directly manipulated to match
our preference. These visible attributes are influenced by the choice of latent
vector, but the nature of that influence is neither explicit, nor easily invertible,
i.e. it is not clear how to choose a latent vector in order to achieve a desired
visual attribute.

We introduce an iterative optimization-based approach to allow control over
the silhouette of the image subject. We use a publicly-available pre-trained seg-
mentation model to obtain a proxy for the silhouettes and the pre-trained Big-
GAN generator to conditionally generate our desired subject. We compute the
differences in both silhouettes and optimize to iteratively produce images that
can match silhouette of the given subject. This is done by (locally) optimizing
over the latent-space of GAN until the euclidean distance between the segmenta-
tion maps is minimized. Figure 1 shows an example of our final system’s output
as it iterates to find an image whose silhouette matches that of the source image
(8a).

Fig. 1. Image (8a) is a provided source image. In this case, the source image happens
to be itself a generated image (i.e. none of these images are photographs). Image (8b)
shows a class-conditionally generated dog image for a random initial latent vector z,
and (8c–8e) show the progression of images as we optimize z through the latent space
(described in Sect. 3) to arrive at an image (8e) of a different dog from the original
source, but whose silhouette matches that of the source image. These images were
found using the ensemble model as described in Sect. 4. Images (8f)–(8j) show the
corresponding segmentation maps.
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1.1 Background

Our system depends crucially on two types of models: a GAN-based generator,
and segmentation model. We discuss each of these.

Image Generation. Generative adversarial networks (GANS) [6] use a neural
network (G) to transform a latent vector z sampled from a prior distribution p(z)
to produce an output image X = G(z). The generator network further comprises
of intermediary layers G1...Gl, where the first layer takes as input the latent
vector to produce features tensors. The initial features are used by the next layer
to produce higher abstraction of these features yi = G(yi−1). Lastly, The final
layer is responsible for producing an output image X = Gl(yl−1). Large scale
class-conditional image synthesis [1] demonstrated that GANS could improve
sample variety and fidelity from scaling up the number of parameters and batch
size. BigGAN employs a shared class embedding c that is linearly projected to
every layer and uses skip connections from the noise vector z to multiple layers
of generator yi = Gi(yi−1, z). This allows the latent space to directly influence
features at different levels of hierarchy. This is done by splicing z into one chunk
per resolution and concatenating it with the shared class embedding c. They
truncate the latent prior N(0, I) during inference to improve sample quality.
Although sampling from a truncated prior distribution during inference improves
individual sample quality it also introduces undesirable saturation artifacts. In
our framework, BigGAN provides a suitable generator because of its ability to
generate diverse high resolution samples including multiple species and breeds
of various animals (useful for our example purposes). The architecture details of
BigGAN are described in Fig. 2.

Image Segmentation. An important part of our framework is realised using
Semantic segmentation. It can be explained by extending the idea of classifica-
tion to the pixel level where an image is partitioned—or more accurately, the set
of pixels of an image is partitioned—such that each pixel in a partition belongs
the same class. Since the class of every pixel in the image is being predicted, this
task is commonly referred as dense prediction. Earlier approaches have relied on
primitive thresholding, clustering, edge-detection and graph-based methods for
segmentation. In contrast, a majority of the work [18] [2] for segmentation in
deep learning builds on convolution neural networks (or CCNs) which helps by
learning increasingly abstract feature representations. However, this approach
introduces challenges like reduced resolution which may impede dense predic-
tion tasks, where detailed spatial information is desired. State-of-the-art models
like Deeplabv3 [3]use atrous convolution (also known as dilated convolutions)
Fig. 3 to overcome this problem. For example, a kernel of size K × K with a
dilation rate of N will cover (N − 1) ∗ K × (N − 1) ∗ K pixels for an expan-
sion of (N − 1) × (N − 1). This allows to control the resolution of features
while preserving the number of parameters. The pre-trained semantic segmen-
tation model from deeplabv3 provides segmentation images of 20 classes in the
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(a) BigGAN 512 generator (b) BigGAN 256 generator

Fig. 2. BigGAN generators architecture

PASCAL dataset including dogs and cats. This provides us the required segment
masks to facilitate controlled generation from BigGAN.

Fig. 3. Cascaded modules without and with atrous convolution [3]

2 Related Work

GAN frameworks [6], like BigGAN [1] and StyleGAN [10,11] are powerful image
synthesizers and have achieved impressive results in generation of variety of
high quality images. Various improvements have been made to the original GAN
model over the years, primarily to obtain higher quality images and more stable
training, but most of those improved models still provide little direct control over
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the generated images other than selecting image classes or adjusting StyleGAN’s
style vector.

In studies like [5,9,15,16,20] there were attempts made to add control over
the generated output images by focusing on supervised learning of latent direc-
tions. A few studies like [13,17,19] also provided useful control over spatial layout
of the synthesized output images.

Our work focuses on exploring changes in the manifolds corresponding to
the spatially localized region within the masked area of the image. We hope
to discover smoothly varying sequences of latent vectors that lead to smooth
transition of the generated “new subject” image (e.g. the new breed of dog) to
exactly fit the mask corresponding to that of the target image (e.g. the silhouette
of the dog in the provided source image).

A study by Yang et al. [21] have explored similar results by applying a rect-
angular mask over features of the image like eye or mouth regions and learning a
function that can be applied over the latent vector that allowed targeted control
over the appearance of feature within the rectangular mask. Another study by
Srinivas et al. [8] shows that we can identify interpretable control over GAN gen-
erated image’s pose, shape, facial and landscape attributes by applying principal
component analysis (PCA) in latent space for StyleGAN, and feature space for
BigGAN. Shen et al. [16] propose a framework called InterFaceGAN, to identify
the semantics encoded in the latent space of well-trained face synthesis mod-
els and then utilize them for semantic face editing. A paper by Nguyen-Phuo
et al. [14] proposes a novel method for the task of unsupervised learning of 3D
representations from natural images. Their method enables direct manipulation
of view, shape and appearance in generative image models. To generate new
views of the same scene, transformations are applied to the learnt 3D features,
and the results are visualised using a neural renderer that was jointly trained.
Huang et al. [7] propose a framework that decomposes the latent space of images
into content space and style space and recombines the style spaces of different
images to achieve style transfer.

Our attempt is to experiment with careful tuning of latent vector space in
order to gain more control over the targeted portions of the generated image.
We achieve this by changing the latent vector to fit the targeted image in the
mask of the input image. An another study [12] proposes a solution to do face
swap by combining neural networks with simple pre- and post-processing steps.
We achieved subject-swapping for animals by pre-processing the input and by
defining a loss function which takes input from both an image segmentation
model and BigGAN model.

3 Model

A conditional GAN is a latent generative model that maps a point z in the latent
space Z to an image G(z) that follows a lifelike distribution R. The likelihood of
G(z) ∼ R is influenced by the selection of z. Empirical evidence [4,16] suggests
that this mapping from z → G(z) is not always smooth and there are hidden
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but expressive transformations that remain to be explored. We propose a mask-
guided image editing framework to swap a given subject in a given image (e.g. a
dog) with another subject (e.g. a different dog!) using manifold transformation
exploration. Our optimization framework requires four inputs: a source image
Xs, a mask M(Xs) (of the subject of interest) in the source image, a generated
image Xg and its corresponding subject mask M(Xg). Note that the user only
provides a single source image Xs; the other image Xg is generated, and the
masks of both images are obtained by the resnet-based semantic segmentation
models. The framework F (Xs, zg), where Xs being the target image and zg
being the input latent vector for image to be generated optimises z to discover a
meaningful transformation that can overlap the subject in the generated image
Xg with that in Xs. The source image Xs can also come from another class of the
generator. The optimization based exploration progresses using L2 loss between
the source image segmentation map M(Xs) and generated image segmentation
map M(Xg).

Our optimization framework is described in Fig. 4. The segmentation model is
used to get the segmentation maps for both the target image and the BigGAN
generated image. Mean squared error is computed between the segmentation
maps of the target image and the BigGAN generated image. The computed
loss is then back propagated through the model to the input latent vector z of
the generator. This vector, in turn, is optimised to minimize the MSE between
these maps, and thus incrementally generate images that can fit within the
segmentation map of the target image. We used the BigGAN generator due to
both availability of pretrained parameters1 and its ability to generate diverse
samples.

4 Experimental Results

We initially tested this framework by performing small transformations, such
as translations and rotation on a generated image, where we had access to the
latent vector zs used to generate the source image. This allows to assess model’s
ability to find the transformed vector from a good initialization point. This can
be done by using the same BigGAN generated image as source and target image,
where a known and controlled transformation has been applied to the source in
order to generate the target. Figure 5 shows the results of this test.

The experiment in AppendixC (Fig. 12) shows that the segmentation model
struggles to segment the generated image when it is undergoing transitions.
The segmentation part of the model is regularised by adding another, second,
segmentation model into the pipeline as shown in Fig. 7. FCN ResNet101 is
selected for supplementation because it has a global pixel-wise accuracy of 91.9%
on COCO val2017 dataset and also shares the same architectural backbone as
DeepLabv3.

1 https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=
deepmind.

https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=deepmind
https://tfhub.dev/s?network-architecture=BIGGAN,BIGGAN-deep&publisher=deepmind
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Fig. 4. Optimizing in Z: The top “row” of this figure stays fixed during optimization:
given input image Xs is passed through a segmentation model to get a segmentation
map, resulting in a mask M(Xs). This is the source mask. In the bottom “row”, the
latent variable z is optimized using the L2 loss between the target map M(Xs) and
segmentation map M(Xg) of the generated image Xg. The generated image, X(g),
is a itself generated based on the latent variable, i.e. Xg = G(z). This allows us to
incrementally update z until we are able to generate an image G(z) such that its mask
is very close to that of the source image, i.e. M(G(z)) ≈ M(Xs).

The average segmentation map is generated by computing the weighted aver-
age of the two maps (obtained by DeeplabV3 and FCN Resnet101). MSE loss
is computed on the average maps of both the generated and target image. The
model can benefit from averaging due to partial independent errors of the individ-
ual models. AppendixB contains further details about implementation. Another
ensemble method which was also implemented but did not produce desirable
results is discussed in Appendix A.

5 Discussion

We observed that when the generator did not yield a high fidelity initial image
the model finds it difficult to converge and find a generation that can fit the
target map. Also, we found that certain classes used by the generator seemed
to allow better convergence than others, this may be attributed to the biases
of the BigGAN generator. We experimented with both the original proposed
pipeline and the extended ensemble version. The results shown in Fig. 8 are
generated using a single segmentation model while computing MSE on the target
and generated segmentation maps. The results in figure are generated using an
ensemble of segmentation modules as illustrated in Fig. 1.
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Fig. 5. Transformed generated image used as target. The target image is shown in 8a.
The generated images are results from Epoch 1, 5, 10, 20 respectively. The rotation
target is rotated 10 degrees to the left and the translation target is translated 10 pixels
to the right

Class Experiments
The multi-task nature of the models used in the pipeline allows for generation
of variety of animals. The segmentation models used are capable of segmenting
birds and cats. Figure 6 demonstrate the ability of the model to fit different
birds and cats. We can see in this example that while the cat image had a very
well-matched silhouette, the bird silhouette did not quite converge.
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Fig. 6. Different classes, Figures (b)–(e) shows the generated bird images with their
corresponding segmentation maps from Figure (g)–(j). Figures (l)–(o) shows generated
cat images with their corresponding segmentation maps from Figure (q)–(t).

6 Conclusion

In this paper, we were able to demonstrate that two independently trained mod-
ules when stacked together can achieve the task of subject swapping. Initial
experiments showed poor segmentation of images undergoing transition, so the
segmentation part of the model was regularised by adding an additional segmen-
tation model in an ensemble fashion. Future work may include using a discrim-
inator to further regularize the model to provide more gradient feedback.

A Alternative Ensemble methods

The segmentation models used share similar architecture(Resnet101) and train-
ing dataset. Although the range of the logits vary from network to network, we
could not find any evidence that computing an average across the logits pro-
duced by different segmentation modules should not necessarily produce good
results. Therefore, we tried averaging the logits and then applying soft-max on
the channel dimension before computing BCE Loss. The results of the average
segmentation are shown in (Fig. 9). We also tried a method where we average
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Fig. 7. Ensemble of two segmentation models

Fig. 8. Shifting Dog Face, target image is shown in (a), generated images are shown
in (b), (c), (d) and their corresponding segmentation maps in (f), (g), (h). The face of
the dog shifts from the right-side towards left-side.
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the losses as illustrated in (Fig. 10). This method did not work as well as the
method illustrated in (Fig. 7), The reason for this deviancy can be the BCE loss
that we used while implementing this method.

Fig. 9. Average over logits of two segmentation models, a) Deeplabv3 b) FCN
ResNet101

B Implementation Details

We use a pytorch ported version2 of the original model(As illustrated in Fig. 7).
The target and the generated image are used as inputs to two separate segmen-
tation models. The pretrained segmentation models were taken from pytorch
hub3,4.

2 https://github.com/ivclab/BIGGAN-Generator-Pretrained-Pytorch.
3 https://pytorch.org/hub/pytorch vision fcn resnet101/.
4 https://pytorch.org/hub/pytorch vision deeplabv3 resnet101/.

https://github.com/ivclab/BIGGAN-Generator-Pretrained-Pytorch
https://pytorch.org/hub/pytorch_vision_fcn_resnet101/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
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Fig. 10. Average losses

We use Adam optimzer with a learning rate of 1e − 1 and beta values
of 0.5–0.99. The model is run for a maximum of 25 epochs. The segmenta-
tion models expects the RGB channel to have the corresponding Mean(μ) =
[0.485, 0.456, 0.406] and Variance (σ) = [0.229, 0.224, 0.225] values, This is done
explicitly for every generated image. Mean squared error is used for comput-
ing the loss over the “Dog” channel of the two segmentation maps. Weighted
average with the ratio 0.6 : 0.4 is used for the segmentation models because the
DeepLabv3 segmentation model works better than FCN resnet101 segmentation
model.

Fig. 11. Background change. The model changes the background owing to inclusion of
background channel in loss computation
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C Loss and Channel Experiments

During training, we tried losses including cross-entropy, binary cross-entropy, soft
cross-entropy, and mean squared error. The results of the segmentation models
used contains 21 channels, where each channel outputs un-normalised probability
values for pixels belonging to a particular class. Channel 0 is the “Background
class”. While performing the transformation experiments shown in Fig. 5, we
used binary cross-entropy loss. The channels used for computing the loss were
the background channel and the “dog” channel. Figure 11 illustrates how the
model tries to fit the background while reducing the loss. We found excluding
the background channel and computing the mean squared error only on ‘dog’
channel works best.

Fig. 12. Ensemble Segmentation. Image (j) shows poor segmentation by DeeplabV3
and Image (o) shows poor segmentation by FCN.
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Abstract. Data is a major asset in today’s healthcare scenery. Hospi-
tals are one of the primary producers of healthcare-related data and the
value this data can provide is enormous. However, to use this to improve
healthcare practice and push science forward, it is necessary to safe-
guard the patient’s privacy and the ethical use of the data. The ethical
and legal requirements are vast and complex. Synthetic data appears as
a tool to overcome these hurdles and provide fast and reliable access to
data without compromising utility nor privacy. Even though Generative
Adversarial Networks (GANs) are receiving a lot of attention lately, the
application of most common models and architectures are not suited to
tabular data – the most prevalent healthcare-related data. This study
surveys the current GAN implementations tailored to this scenario. The
analysis was focused mainly on the models employed, datasets used, and
metrics reported regarding the quality of the generated data in terms
of utility, privacy and how they compare among themselves. We aim to
help institutions and investigators get a grasp of the tools to facilitate
access to healthcare data, as well as recommendations for testing data
synthesizers with privacy concerns.

Keywords: Synthetic data · Generative adversarial networks · Privacy

1 Introduction

With the growing technological advances, the quantity of healthcare-related data
produced around the world increased exponentially [22,27]. Consequently, the
potential for harvesting this data also increases. The value locked within this
data could help provide better healthcare with new information about diseases,
drugs, and preventive therapies. It can also help create better health information
systems, meaning an overall better clinical practice [18]. But for this to happen,
data must reach capable hands at the right time. But the release of clinical data
has several barriers attached and rightly so. The leakage of patient’s privacy
can break the confidence of the population in the healthcare professionals and
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institutions. Patient safety and privacy should be kept at all costs. However, the
current mechanisms for privacy maintenance are very long, bureaucratic and
time-consuming, nationally [23], and internationally [37]. The current scenario
and general methods for privacy safeguards are related to pseudo-anonymisation
techniques. The removal of certain attributes, identifier modification, code group-
ing, or discretization are some methodologies. But not even these are totally safe
[24]. Synthetic data appear as an alternative for clinical data sharing, promising
great data utility with minimal privacy concerns. Synthetic data is data that
is generated automatically through programmatic processes. This is especially
impactful for the case at hand since synthetic data has no explicit connection
with the original data. There are several mechanisms for data synthesis like
postulated by [25], there are process-driven methods and data-driven methods.
Process-driven methods generate data through pre-determined models inputted
into the generator. Data-driven methods produce new data based on inputted
source data. With this, it is possible to create new patient data that has no rela-
tion to reality while providing the same statistical relations between variables.
This provides the basis for quality clinical research on top of this new data. Even
though these techniques are still new and in rapid development, the results seem
interesting [25], but not without questions and doubts [40]. Creating a thor-
ough survey based on the generation of synthetic data is seldom a simple task
when compared to other surveys since synthetic data is present across several
domains and has several uses, like software testing, assessing methods, or gen-
erating hypotheses. Moreover, synthesis has the double meaning of summing up
information and generating something, easily wielding hundreds of results per
query. Finally, trying to filter algorithms aimed at tabular data is also burden-
some, since not always it is easy to discriminate input types. These factors make
the survey interesting to focus on the state-of-the-art mechanisms of generating
tabular data.

2 Theoretical Background

2.1 GANs

First introduced just over seven years ago, Generative Adversarial Networks
(GANs) [26] have been under the scope and have been proven very good for
generating complex data. Images, text, video have been successfully generated
with very good performances. The original architecture is based on two artificial
neural networks trained simultaneously in a competitive manner. One of them,
the generator, has the objective of generating the most realistic possible data,
while the second network – the discriminator, has the opposite aim of aiming
to distinguish the realistic data from the synthetic data the best it can. So, the
elegance of this architecture is that each network tries to make the other perform
better every time. The GAN architecture is shown in Fig. 1.

The generator is represented by Gθ where the parameter θ represents the
weights of the neural network. It takes as input, a Gaussian random variable, and
outputs Gθ(Z). Distribution of Gθ(Z) is denoted by Pθ. The goal of the generator
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Fig. 1. Generative Adversarial Network framework

is to choose θ such that the output Gθ(Z) has a distribution close to the real data.
The discriminator is represented by Dω, parametrised by weights ω. The goal of
the discriminator is to assign 1 to the samples from the real distribution PX and
0 to the generated samples (Pθ). So, GANs can be mathematically represented
by a minimax game identified by:

min
G

max
D

E[log(Dω(X)) + log(1 − Dω(Gθ(Z))] (1)

So, G must minimise this equation and D must maximise it, each one tweaking
the weights of its network (θ and ω) to do so. This is the loss function on the
initial GAN architecture. After the classification of D, the G is trained again with
the error signal from D through backpropagation. This equation is the log of the
probability of D predicting that the real data is genuine and the log probability
of D classifying synthetic data as not genuine. The equation is essentially the
same as minimising the Jensen-Shannon divergence [26]:

min
G

JS(Px||Pθ) (2)

Where the JS means the Jensen-Shannon divergence between the probability
of the real data and the probability of the generated data. The JS divergence
provides a measure of distance between two probability distributions. Therefore,
the minimisation over θ means, choosing the Pθ that is closest to the target
distribution PX in the JS divergence distance. Despite the significant results
provided by GANs with continuous real values, categorical values still seem to be
a problem for this approach [30], since it is not directly applicable for calculating
the gradients of latent categorical variables in order to train these networks
through backpropagation. This happens since the output of the generator, even
though can be transformed into a multinomial distribution with a softmax layer,
sampling from it is not a differentiable operation, limiting the backpropagation
process of the GAN.

3 Methods

This search was made during December 2020 and January 2021. It was made
on “Web of Science”, IEEE, PubMed, Arxiv and finally GitHub. The terms
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searched were related to GANs, synthetic data generation, electronic health
records, patient data, or tabular data. Applications of GANs to non-tabular
data were filtered, like image, sound, video, or graphs. Time series and text data
were also removed since the methodology for synthesising this type of data has
specific functions related to the nature of the data. The filter for date was after
2014 since GANs were introduced at that time. The queries used were similar
to the one below, adapted for the search mechanics for each website.

(“generation” OR “creation” OR “synthesis” OR “synthesizing” OR “generating” OR “creat-

ing”) AND (“synthetic data” OR “synthetic patient” OR “synthetic electronic health record” OR

“synthetic EHR” OR “realistic patient data” OR “realistic health record” OR (“synthetic” AND

“privacy” AND “utility”)) AND (“GAN” OR “Generative Adversarial Network”)

From the total articles found (1165) with all the queries, 100 articles were
chosen for full text and in the end, 22 papers with GAN implementations that
were tested on tabular data were selected.

4 Results

The selected papers ranged from 2017 to 2020. Being that 2 are from 2017,
4 from 2018, 8 from 2019 and 8 from 2020. All authors showed original GAN
implementations, apart from 2 papers. Beaulieu-Jones et al. [19] used a GAN

Table 1. Summary of the articles selected.

Year Acronym Article Metric Code

1 2017 medGAN [22] Utility, Privacy, Clinical [7]

2 2017 POSTER [33] Utility, Privacy [10]

3 2018 table-GAN [38] Utility, Privacy [14]

4 2018 dp-GAN [46] Utility, Privacy [3]

5 2018 mc-medGAN [21] Utility [6]

6 2018 TGAN [48] Utility [15]

7 2019 PATE-GAN [29] Utility, Privacy –

8 2019 SPRINT-GAN [19] Utility, Privacy, Clinical [13]

9 2019 GAN-based [32] Utility, Privacy –

10 2019 CTGAN [47] Utility [2]

11 2019 WGAN-DP [20] Utility, Privacy [16]

12 2019 PPGAN [31] Utility, Privacy [11]

13 2019 medBGAN [18] Utility –

14 2019 medWGAN [17] Utility [8]

15 2020 ADS-GAN [50] Utility, Privacy –

16 2020 corGAN [42] Utility, Privacy [1]

17 2020 CGAN [44] Utility –

18 2020 DPAutoGAN [41] Utility, Privacy [4]

19 2020 GAN Boosting [35] Utility, Privacy [9]

20 2020 RDP-CGAN [43] Utility, Privacy [5]

21 2020 WCGAN-GP [45] Utility, Privacy –

22 2020 SMOOTH-GAN [39] Utility [12]
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architecture that was originally published with usage on image datasets [36].
Additionally, Vega-Marquez et al. [44] used an already known implementation of
conditional GANs [34]. We classified papers regarding 3 metrics: utility, privacy
and clinical. For utility, we looked for methods for measuring the generated
data’s quality. As for privacy, we aimed for some mechanism for measuring the
privacy loss of the new data. Concerning clinical metrics, any kind of evaluation
from healthcare professionals was considered. This can be seen in Table 1.

The metrics the authors used are exhibited in Table 2. Regarding privacy, 15
papers assessed it or included some kind of mechanism to improve data protec-
tion. The most common was including Differential Privacy (DP) in the gener-
ation process. Other mechanisms for measuring privacy loss were Membership
Inference (Member. Inf.), Attributes Disclosure (Attrib. Disc.), Euclidean dis-
tance (Eucl.), record-linkage (R. Linkage) and Nearest Neighbours (KNN). As
for utility, all papers assessed it. There were 3 major areas of utility assessment:
Dimension-wise (DW) probability, cross-testing, and distance metrics. The most
basic one was dimension-wise probability, which is important for making san-
ity checks for the generated data, comparing the distributions of each column
between real and synthetic. In this category we can find Bernoulli (Bern.), cumu-
lative distributions (Cumul. Dist.), Pearson correlation (Pearson) and Spearman
correlation (Spearman), correlation coefficients (CCS), chi-squared test (χ2),
Kolmogorov-Smirnov (KS) or Correlation Matrices (Corre. Mat.). Cross-testing
was about training machine-learning algorithms with both datasets in order to
compare the results. The key factor is generating a synthetic dataset based on
the training set and then train models on the original train set and the generated
dataset. Then the models are compared regarding their predictive capability on
the (real) test set. This was a way of assessing if the generator models were cap-
turing inter-variable relationships. The authors applied different metrics from
AUC, F1, AUPRC, Accuracy (Acc.) to Mean Relative Error (MRE). Finally,
there was also the application of distance metrics, for measuring the difference
between column distribution in both datasets. Jensen Shannon divergence (JSD),
Wasserstein Distance (WD), Bhattacharyya Distance (BD) or Generate Scores
(GS) that was a metric implemented by the authors of [31] that creates a metric
based on the sum of the mean of kullblack-leibler distance of all columns. Other
less used methods were Principal Component Analysis (PCA), Also, propensity
score mean squared error ratio (pMSE). NMI (Normalised Mutual Information),
which is the ability to capture correlations between columns by computing the
pairwise mutual information and MMD (Maximum Mean Discrepancy), which is
similar to distance metrics were also used. Regarding datasets utilised, the most
used was MIMIC-III [28] (9 times). The papers used 27 different datasets, being
16 healthcare-related and 11 non-healthcare related. Finally, regarding clinical
evaluation, only two papers assessed it, like it is possible to see in Table 1. Both
had a group of clinicians assessing a sample of both real and synthetic infor-
mation and evaluating from 0 to 10, where 10 is most realistic. One major
point preventing a larger comparison is that despite some papers using the same
dataset and same methodologies, the presented values are different, making it
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difficult for a clear comparison of results. One example is dimension-wise predic-
tion with F1 score for MIMIC-III. CorGAN presents the mean difference between
the two classifications (real on real and synthetic on synthetic), while medBGAN
presents the correlation coefficients of the two, and medGAN only presents the
visual comparisons. Regarding code availability, 16 papers had the code pub-
licly available in some form. As of January 2021, papers pointed in Table 1 have
public code.

5 Implications for Future Research

From the work done on this paper, it is clear that synthetic data generation is a
growing field. The increasing number of papers through the years as the growing
quality in the mechanisms of generating data and assessing its quality are a clear
proof. It also became apparent that privacy and utility in synthetic data repre-
sent a delicate balance. The very same definition of differential privacy represents
it. The compromise between privacy and utility is real and should be taken into
account when creating privacy demanding datasets. Creating statistically good
tabular datasets is already possible, but that task becomes increasingly difficult
if privacy concerns are added. However, privacy is also a complex subject, and
the context of the setting is important for privacy assessment, which explains the
different approaches for evaluating privacy protection of synthetic data. From
this review, we believe that a proper evaluation of synthetic data generators in
the healthcare setting with privacy concerns should at least include utility and
privacy evaluations. For utility, we believe that evaluating column-wise is a nice
first check but insufficient alone. For table-wise, since there is not a fundamental
metric for assessing the inter-column correlations between mixed-type variables,
cross-testing is the best next thing. Distance metrics are a nice to have and seem
to have the potential for creating a table-wise metric [49], so presenting them is
important. Second, for privacy evaluation, we believe that Differential Privacy
in itself is not a guarantee of protection for real patients. More research and
depth should be employed when presenting results for such generators; record-
linkage and attribute disclosure can provide extra guarantees. Thirdly, a clinical
evaluation should be done as well to understand if the synthetic patients are a
reality in the clinical setting. Since the correlations could be correct but clinically
(or biologically) they might not make sense. Finally, in the scope of this paper,
only GANs were assessed, but there are more mechanisms for generating data
and could be interesting to assess how all of them perform on the same datasets.
There are other methods for handling the mixed data types that regularly appear
in clinical settings, like Variational Autoencoders, Gaussian Mixtures, Bayesian
Networks, and imputation mechanisms, making them excellent candidates for
this assessment.
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Table 2. Metrics utilised for evaluation

Acronym Utility Privacy

medGAN 1. Bern. 2. Pred F1 1. Attrib. disc. 2. Memb. inf. 3. KNN

POSTER 1. Pred Acc. 2. Corre. Mat. 3. BD DP

table-GAN 1. Cumul. Dist. 2. Pred F1|MRE 1. Eucl. 2. Member. inf.

dp-GAN 1. Pred AUC 2. Bern. DP

mc-medGAN 1. Pred F1|AUC 2. Bern. 3. ME F1|Acc –

TGAN 1. KNN 2. NMI 3. Pred F1 –

PATE-GAN 1. Pred AUC|AUPRC DP

SPRINT-GAN 1. Pred AUC 2. Corre. Mat. DP

GAN-based 1. Pred Acc. 2. Corre. Mat. 1. Hit. Rate 2. R. Linkage 3. Eucl.

CTGAN 1. Pred F1|R2|Acc. –

WGAN-DP 1. Corre. Mat. 2. PCA 3. Pearson RMSE 4. Pred

F1|RMSE|1-MAPE(F1)

1. Eucl. 2. Dupl. 3. DP

PPGAN 1. GS DP

medBGAN 1. Assoc. Rul. 2. CCS Pred F1 3. KS –

medWGAN 1. Assoc. Rul. 2. CCS Pred F1 3. KS –

ADS-GAN 1. χ2 2. JSD 3. WD 4. t-test 5. Pred AUROC 6.

Corre. Mat.

DP

CorGAN 1. Pred F1 2. Bern. Member. Inf.

CGAN 1. Pearson 2. Spearman 3. Pred F1|AUC|Acc –

DPAutoGAN 1. Pred AUROC|R2 2. Bern. DP

GAN Boosting 1. pRMSE 2. Pred AUROC|AUPRC|Acc. DP

RDP-CGAN 1. Pred F1|AUROC|AUPRC 2. MMD DP

WCGAN-GP 1. Corre. Mat. 2. Pred F1 1. Dupl. 2. Eucl.

SMOOTH-GAN 1. DW MAE 2. Pearson 3. Pred AUROC|AUPRC –

6 Summary

In this paper, we had the opportunity of surveying the current framework for
generating tabular data using GANs and which ones were already tested in the
healthcare setting. We summarised the utility and privacy metrics employed, and
the datasets used to measure them. We analysed the code availability and made
suggestions for further work on cataloging, comparing, and assessing synthetic
health data generators. A survey with a global benchmark of methodologies,
despite being arduous, could yield great results for the community and take the
aim of this paper further.
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Abstract. Recommender systems are designed to predict user prefer-
ences over collections of items. These systems process users’ previous
interactions to decide which items should be ranked higher to satisfy
their desires. An ensemble recommender system can achieve great rec-
ommendation performance by effectively combining the decisions gener-
ated by individual models. In this paper, we propose a novel ensemble
recommender system that combines predictions made by different mod-
els into a unified hypergraph ranking framework. This is the first time
that hypergraph ranking has been employed to model an ensemble of
recommender systems. Hypergraphs are generalizations of graphs where
multiple vertices can be connected via hyperedges, efficiently modeling
high-order relations. We perform experiments using four datasets from
the fields of movie, music and news media recommendation. The obtained
results show that the ensemble hypergraph ranking method generates
more accurate recommendations compared to the individual models and
a weighted hybrid approach.

Keywords: Recommender systems · Hypergraph learning · Ensemble
methods

1 Introduction

Nowadays, people use digital services more and more to fulfill their needs. The
owners of these services monitor users’ behavior and utilize users’ interactions
with provided items, such as movies, songs, commercial products, to predict
users’ preferences. This enables the personalization of digital services and the
rise of effective recommender systems (RSs) which learn from users’ preferences
and provide them with accurate recommendations. Generally, there are two main
categories in RSs: content-based filtering and collaborative filtering approaches.
Content-based RSs use the features that describe the items for computing simi-
larities between the items and the user interaction profile. Next, they recommend
items that are more similar to this user profile. Upon a recommendation query
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 295–304, 2021.
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for a target user, these RSs do not consider the interactions of the other users in
generating the recommendation list. In contrast to that, collaborative filtering
approaches infer the users’ preferences by processing the collaborative informa-
tion between users or items. In many applications, collaborative filtering RSs
generate more accurate [1] and less obvious [15] recommendations compared to
content-based approaches.

Each type of RS processes the information based on different assumptions
to decide which items should be ranked higher among many available ones. For
instance, memory-based collaborative filtering approaches (user-based and item-
based) assume that users (items) with similar interactions have similar interests.
Therefore, these approaches form neighborhoods to generate recommendations.
Model-based collaborative filtering approaches assume that users and items can
be represented in a common feature space and they use different learning meth-
ods to learn these latent features. While these approaches might vary in predic-
tion power, they convey relevant information from different perspectives, follow-
ing practically different learning strategies for the same recommendation task.
Ensemble methods include multiple learning methods and integrate their pre-
dictive power into a single system, achieving superior predictive performance
to individual models. Examples of ensembles in machine learning are bagging
and boosting. In recommendation tasks a hybrid RS can be applied to exploit
several data sources or the prediction power of different RSs to generate more
relevant recommendations. An ensemble RS is a hybrid model that employs the
ranking lists of multiple RSs to decide which items should be recommended to
each user [2].

In this paper we propose an ensemble hypergraph learning framework for
recommendation. This way we integrate the predictive power of several models
into a unified RS powered by hypergraph ranking. Unlike regular graphs, where
edges connect pairs of nodes, in hypergraphs multiple nodes can be connected via
hyperedges. These higher order relations in hyperedges empower hypergraphs to
cast more reliable information in the model [21]. Furthermore, hypergraph learn-
ing can inherently model the complex relations between different types of entities
in a unified framework. It is therefore a deliberate choice for the construction of
an ensemble of individual RSs driven by different types of information. Moreover,
as was shown in [12], hypergraph ranking-based methods can mitigate popular-
ity bias, enhance fairness and coverage as well as act as innate multi-stakeholder
RSs. The main contribution of this paper is to construct a hypergraph as an
ensemble framework for recommendation tasks. Despite its capability to stack
multiple connections in a unified model, to the best of our knowledge hyper-
graphs have not been employed to form ensembles of RSs.

The structure of this paper is as follows: Studies about applications of hyper-
graph learning in RSs are presented in Sect. 2. Next, in Sect. 3, we show how a
unified hypergraph can be formed as an RS (Sect. 3.1) and how it can formu-
late an ensemble of RSs (Sect. 3.2). In Sect. 4, four recommendation datasets
are described and the experimental setup in designing and testing the proposed
model is described. Next, the obtained results of comparing the proposed ensem-
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ble model against other methods on these four datasets are presented and dis-
cussed in Sect. 5. Finally, we draw conclusions and outline some directions for
future research in Sect. 6.

2 Related Work

Hypergraph learning has been applied to generate recommendation lists in sev-
eral applications. For instance in the music domain, Bu et al. [3] used hypergraph
learning to recommend music tracks where the relations between users, tracks,
albums and artists were modeled using a unified hypergraph. Hypergraph rank-
ing has been also used in news recommendation tasks [12,14]. News usually
contains very rich features such as text, tags and named entities. Therefore,
hypergraph learning can effectively model the relations between these entities.
Moreover, Pliakos et al. [19] used hypergraph ranking for a tag recommendation
task. They built a hypergraph ranking model to capture the complex relations
between different entities in the system, such as users, images, tags, and geo-tags.
Hypergraph-based RSs have been also used in e-commerce applications [16,22].
For instance in [16], a multipartite hypergraph is used to model the relations
between users, restaurants and attributes in a multi-objective setting. In such
applications, item attributes and sequences of user-item interactions are effec-
tively modeled in hypergraphs.

Hypergraph learning has been employed to address various issues in RSs.
A hypergraph can model the relations between different types of stakeholders
and objects and therefore, it can be intrinsically used as a multi-stakeholder
RS [11]. Additionally, it can be used to burst the filter bubble around the user
by querying a more diverse recommendation list based on the user history [12,14].
Moreover, hypergraph learning has been used to address fairness [12], the cold-
start problem [24] as well as context-awareness [23] in recommendation tasks.

An ensemble RS is a type of hybrid RSs that integrates the recommendations
of multiple individual RSs. Aggarwal [2] categorized hybrid RSs to monolithic,
ensembles, and mixed RSs. Burke et al. [4] provided another categorization where
hybrid models are categorized into weighted, switching, cascade, feature augmen-
tation, feature combination, meta-level and mixed RSs. A weighted hybrid RS
uses the weighted average of the scores from individual RSs to generate the rec-
ommendation list. For instance, Do et al. [6] applied a weighted hybrid RS based
on collaborative and content-based filtering approaches on Movielens dataset
and showed that it is more effective compared to the individual collaborative
and content-based RSs. Here, we employ a unified hypergraph as an ensemble
RS. Although hypergraph learning is very promising and effective in addressing
many problems in RSs, to the best of our knowledge, it has never been studied
as an ensemble RS.
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3 Methodology

3.1 Hypergraphs as Recommender Systems

Hereafter, uppercase bold letters are used for matrices, lowercase bold letters
represent vectors, uppercase non-bold letters are used for sets and lowercase
non-bold letters represent constants. The element in ith row and jth column of
matrix X is denoted as X(i,j).

A hypergraph consists of a set of nodes (vertices) N : {n1, n2 · · · , n|N |} and
a set of hyperedges E : {e1, e2 · · · , e|E|} that connect the nodes. Each hyperedge
can connect multiple nodes in the hypergraph. Based on the application, dif-
ferent types of hyperedges can be defined that capture different forms/sources
of information. We define these hyperedge types in Sect. 3.2. In a typical col-
laborative filtering setting there are two types of entities in a hypergraph: users
U : {u1, u2 · · · , u|U |} and items I : {i1, i2 · · · , i|I|}. Therefore, the set of nodes
N in a hypergraph is formed based on users and items (N : {U ∪ I}).

Let H of size |N | × |E| be the incidence matrix of the hypergraph, where
H(n, e) = 1, if node n is in hyperedge e and zero otherwise. Based on H, the
symmetric matrix A can be formed using Eq. 1:

A = Dn
−1/2HWDe

−1HTDn
−1/2 (1)

where Dn and De are the diagonal matrices that contain the node and hyperedge
degrees and W is the diagonal hyperedge weight matrix (here W = I). Each
element A(i, j) reflects the relatedness between nodes i and j. Higher values
indicate stronger relations between the corresponding nodes. Then, the recom-
mendation problem is formulated as finding a ranking (score) vector f ∈ IR|N |

that minimizes the following loss function [3]:

Q(f) =
1
2
fTLf + ϑ||f − y||22 (2)

where L is the hypergraph Laplacian matrix (i.e. L = I−A), ϑ is a regularizing
parameter and y ∈ IR|N | is the query vector. Every item of the ranking vector f or
query vector y corresponds to a node. Typically, to generate the recommendation
list for user u in a regular recommendation task, one can query the hypergraph
for user u by setting the corresponding value in the query vector to one (y(u) =
1) and all the other values that correspond to other nodes to zero. By solving
the optimization problem in Eq. 2, the optimal score (ranking) vector can be
calculated using Eq. 3:

f∗ =
ϑ

1 + ϑ

(
I − 1

1 + ϑ
A

)−1
y. (3)

Finally, the top k items that have the highest scores in f∗ are recommended to
the user u.
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3.2 An Ensemble Hypergraph-Based Recommender System

An ensemble RS1 utilizes the decisions of multiple individual RSs to decide
which items should be ranked higher in the final recommendation lists. Let M :
{m1,m2 · · · ,m|M |} be the set of individual methods that we want to incorporate
in our ensemble RS. Each of these individual methods mi can generate its own
top k rankings Ri ∈ IR|U |×k where each row in Ri is the top k ranked items for
the corresponding user. Then, based on the recommendation lists of each RS,
hyperedges are formed to connect users to their top k recommendations.

As is mentioned previously, the hypergraph consists of multiple types of
hyperedges. We consider three types of hyperedges, which are defined in Table 1.
The EUI hyperedges connect the users with the items that they have interacted
with. To make the relations between users with similar tastes more explicit,
the EUU hyperedges connect users to their k nearest neighbors. To find these
neighbors we use the user-item interaction matrix Z, where Z(i, j) ∈ {0, 1}. The
k nearest neighbors of user u are users that have the highest cosine similarity
with uth row of matrix Z. The EM hyperedges are considered to integrate the
recommendations of multiple RSs in the hypergraph. These RSs can be from
different families such as collaborative filtering or content-based approaches.
The fact that recommendations from any type of RS can be directly modeled as
hyperedges in our system is a vital advantage of the proposed method.

We constructed the EM hyperedge set using two well-established and pow-
erful matrix completion-based recommendation methods, namely Bayesian Per-
sonalized Ranking (BPR) [20] and Weighted Regularized Matrix Factorization
(WRMF) [13,18]. BPR is a learning-to-rank matrix completion approach which
uses user-specific relative preferences between observed and unobserved items
to learn items’ and users’ low rank matrices. WRMF is a matrix factorization
approach for implicit feedback datasets that uses the alternating-least-squares
optimization process to learn items and users’ parameters.

Table 1. Hyperedge definitions

Hyperedge Definition # of hyperedges

EUI Each user is connected to the items that the user
has interacted with

|U |

EUU Each user is connected to the k most similar
users

|U |

EM Each user is connected to top k recommended
items by a RS

|M | × |U |

The hypergraph and its incidence matrix H are constructed using the hyper-
edge sets of Table 1. Following that, the affinity matrix A is computed and the
1 The source code is available at https://github.com/alirezagharahi/ensemble

hypergraph.

https://github.com/alirezagharahi/ensemble_hypergraph
https://github.com/alirezagharahi/ensemble_hypergraph
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recommendation task is addressed as was described in Sect. 3.1. For the sake of
simplicity we consider equal weights for recommendations of different models and
also similar weights for items with different rankings in top k recommendation
lists and leave the weight optimization as future work.

4 Experimental Setup

To evaluate the performance of the proposed approach we use four datasets from
news, music and movie application domains. These datasets are described in
Table 2. AOTM is a publicly available dataset collected from the Art-of-the-Mix
platform that is based on user playlists [17]. Movielens2 is a publicly available
movie rating dataset [5]. As we only encode interactions in the hypergraph for
this dataset we transform ratings to binary feedback. Globo3 and Roularta4 are
news datasets that contain readers’ interactions with news articles.

Table 2. Datasets descriptions

AOTM Movielens Globo Roularta

Item type Music track Movie News article News article

# users 1,605 1,573 3,903 5.082

# items 2,199 2,053 1,246 2,739

Sparsity 3.8% 19.9% 5.7% 8.5%

In our experiments we consider the following five approaches5:

– BPR: Bayesian Personalized Ranking (BPR) [20] is a learning-to-rank matrix
completion approach as presented in the previous section.

– WRMF: Weighted Regularized Matrix Factorization (WRMF) [13,18] is a
MF approach using the alternating-least-squares optimization process to learn
items and users’ parameters as presented in the previous section.

– Hybrid: A weighted hybrid model that uses scores of BPR and WRMF
and then considers the weighted average of these scores to generate the final
ranking lists.

– H: A hypergraph-based RS explained in Sect. 3.1 that only contains the
hyperedge types of EUI and EUU from Table 1.

– HEns: The proposed hypergraph-based ensemble RS explained in Sect. 3.2.

2 http://www.grouplens.org.
3 http://www.globo.com.
4 http://www.roularta.be.
5 For BPR and WRMF we used implicit library (https://implicit.readthedocs.io/en/

latest/index.html).

http://www.grouplens.org
http://www.globo.com
http://www.roularta.be
https://implicit.readthedocs.io/en/latest/index.html
https://implicit.readthedocs.io/en/latest/index.html
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To validate the performance of the proposed method against the compared
methods we randomly hide ten interactions of each user from training and then
measure the ability of the methods in predicting these hidden interactions6. We
use precision@10 to measure the accuracy of predictions. Precision is a standard
information retrieval accuracy measure that reflects the proportion of relevant
items in the recommendation list. As the number of relevant items and length
of the recommendation lists are the same (10 items), precision, recall and F1-
score are all the same. Therefore, we only report precision in this paper. The
compared methods have some hyperparameters to be tuned. BPR and WRMF
have number of latent features, number of iterations, regularizing parameter and
learning rate, Hybrid model has a hybridization weight and H as well as HEns

have a regularizer as a hyperparameter. To tune these hyperparamters we form
a validation set for each dataset by randomly drawing five interactions of each
user from the training set as the validation set. The final tuned hyperparameter
values are based on precision@10 and are reported in Table 3.

Table 3. Hyperparameters

Range AOTM Movielens Globo Roularta

BPR # iterations [1000, 2000] 1645 1984 1598 1984

# latent features [100, 250] 129 500 168 129

regularizing parameter [0.01, 0.05] 0.0194 0.0412 0.0374 0.0412

learning rate [0.001, 0.07] 0.0284 0.0092 0.0174 0.0092

WRMF # iterations [1000, 2000] 1276 1393 1129 1288

# latent features [100, 250] 201 107 152 109

regularizing parameter [0.01, 0.05] 0.0374 0.0225 0.0432 0.0315

Hybrid Hybridization weight [0.01, 0.99] 0.6664 0.6664 0.3986 0.2701

H Regularizing parameter [0.01, 0.99] 0.2414 0.2414 0.0656 0.0616

HEns Regularizing parameter [0.01, 0.99] 0.4554 0.4554 0.8301 0.6325

5 Results and Discussion

The results of the proposed hypergraph-based ensemble RS and the selected
approaches on the four datasets are reported in Table 4. The reported values
are in terms of average precision@10 of the recommendation lists generated by
the compared approaches. As is shown in Table 4, the proposed hypergraph-
based ensemble RS (HEns) has superior predictive performance compared to
all the competitor approaches including the hybrid model in all datasets. The
competitor methods have different performance rankings in the four datasets.
Each of these methods processes the information based on different assump-
tions and learning approaches. The effectiveness of these assumptions and learn-
ing approaches differs across different applications. For instance, the pair-wise
6 Users with few interactions are omitted from experiments.
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learning-to-rank approach in BPR is more effective in Globo dataset compared
to the point-wise error minimization approach in WRMF, while this does not
hold in the other datasets. An ensemble RS exploits the combined predictive
power of the individual methods. It considers all assumptions and decisions of
various independent RSs and achieves overall superior performance regardless of
the application domain of the recommendation task.

Table 4. Results (precision@10 )

AOTM Movielens Globo Roularta

BPR 0.0373 0.1716 0.0937 0.0704

WRMF 0.0402 0.1718 0.0921 0.0764

H 0.0338 0.1503 0.1125 0.0657

Hybrid 0.0388 0.1828 0.0979 0.0769

HEns 0.0412 0.1860 0.1140 0.0773

In this study we keep the experiments simple by only using the collaborative
information, i.e. user-item interactions, to make them applicable on available
datasets and various application fields (i.e. movies, music, news). Nevertheless,
in cases where side information is available for users or items, content-based
approaches can be included in the ensemble RS. Hypergraph learning has the
natural capability of modeling the complex relations between different types of
entities in a unified hypergraph and therefore is a deliberate choice to construct
an ensemble of RSs with different types of information.

6 Conclusion

We proposed a new ensemble hypergraph learning-based RS. A unified hyper-
graph can integrate multiple connections between entities (here users and items)
and therefore can combine the predictive power of various individual RSs boost-
ing the precision of final recommendation lists. We empirically tested this method
on four datasets from different application domains, such as news, music, and
movies. The obtained results showed that the hypergraph-based ensemble RS
achieves superior performance compared to all the individual models, as well as
compared to a hybrid approach that averages individual scores to produce final
rankings, in all datasets.

For future work we outline the following directions:

– Weight optimization: For the sake of simplicity we considered equal weights
for individual RSs in the hypergraph-based ensemble RS and also similar
weights for items in different rankings. These weights can be optimized to
achieve even better performance.
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– Beyond accuracy evaluation: In this paper we only used user-item inter-
actions. Future approaches could include additional information and relevant
stakeholders so that fairness [12] and diversity [9] are also taken into account.

– Consumption level: We only captured the binary feedback between users
and items. In real applications usually the user feedback is graded [7] which
shows to what extend the user is interested in the item. This graded feedback
could be reflected in the hypergraph to model user preferences more precisely.

– Long-term vs short-term preferences: In some applications such as
news [8] and music [10] recommendation tasks, users’ short-term preferences
play important roles. Session-based RSs have been used to model such user
short-term preferences. An ensemble RS could include models for both long-
term and short-term preferences.
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Abstract. Sequential recommendation systems model dynamic pref-
erences of users based on their historical interactions with platforms.
Despite recent progress, modeling short-term and long-term behavior
of users in such systems is nontrivial and challenging. To address this,
we present a solution enhanced by a knowledge graph called KATRec
(Knowledge Aware aTtentive sequential Recommendations). KATRec
learns the short and long-term interests of users by modeling their
sequence of interacted items and leveraging pre-existing side informa-
tion through a knowledge graph attention network. Our novel knowledge
graph-enhanced sequential recommender contains item multi-relations at
the entity-level and users’ dynamic sequences at the item-level. KATRec
improves item representation learning by considering higher-order con-
nections and incorporating them in user preference representation while
recommending the next item. Experiments on three public datasets show
that KATRec outperforms state-of-the-art recommendation models and
demonstrates the importance of modeling both temporal and side infor-
mation to achieve high-quality recommendations.

Keywords: Sequential recommendations · Attention mechanism ·
Bidirectional transformers · Knowledge graph

1 Introduction

With the exploding growth of online platforms in recent years, recommendation
systems [11] have become an essential component in elevating user engagement
levels and thus have taken a central role in business success. Many services
leverage historical data of users and their interactions with their service (e.g., an
app or a website) to personalize recommendations. Such recommendation sys-
tems are increasingly popular in various domains including: e-commerce, social
media, search engines, content portals, and online publishing platforms.

In this work, we focus on exploiting the sequential behavior of users in order
to predict their upcoming interactions. Existing sequential recommender designs,
e.g., Markov chains [4,14,15], recurrent neural networks (RNN) [3,7], graph con-
volutional neural networks (GCN) [20,23], and self-attention based models [9,17]
(to name a few), primarily focus on various ways to model such historical data.
However, these sequential models tend to disregard the relationship between
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 305–320, 2021.
https://doi.org/10.1007/978-3-030-88942-5_24
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items. In particular, platforms usually have access to two types of information
that can be valuable for recommendations: (i) interactions of users and the ser-
vice, which may evolve over time, and (ii) side information about users, items,
and other auxiliary components. Recommender systems can generate more rel-
evant content by taking advantage of item relations that are hard to elicit from
interaction sequences of users. Such side information about the items can be
based on higher-order item-entity connections and co-occurrence patterns, which
can provide implicit information about related items (for instance, a mouse and
a laptop).

Efficient exploitation of both temporal data of users and side information is
the primary gap this paper attempts to fill. While there are many well-performing
solutions in the literature, they do not effectively capture both types of informa-
tion. For instance, models such as BERT4Rec, SASRec, and GRU4Rec [7,9,17]
heavily focus on the temporal aspect by encoding user behavior sequences.
Another stream of literature focuses on graph structure to capture item rela-
tions and side information, for example: TransE [1], TransH [21], and TransR
[12]. In this work, we build on both these prior works and provide a novel way
to integrate them. We follow this up by systematically exploring the importance
of capturing both types of information on recommendation quality.

To capture the short-term preferences, long-term interests, and item-item
relations, we propose the Knowledge Aware aTtentive Sequential Recommenda-
tions (KATRec) system. Our recommendation system consists of two modules:
(i) a bidirectional transformer, which captures sequential interests by consid-
ering the inter-dependencies among items at any temporal distance, and (ii) a
knowledge graph attention network that models higher-order user-item and item-
item relations. The user-item relations are based on the interactions of users with
items, e.g., click, purchase, view, etc., and capture collaborative information. The
item-item relations capture the semantic relatedness among items based on their
shared entities (e.g., movies with the same actor or genre). The importance of
capturing such information while making sequential recommendations has been
previously discussed in [8,13,22] to name a few. In addition to first-order rela-
tions, sequential recommendations generated by KATRec can use higher-order
connections and relations among items (e.g., an individual can be an actor in
a movie and a producer in another). Figure 1 illustrates two sequences of user
interactions. A traditional sequential recommendation system models these two
users differently, as they interact with different movies, although these users
show similar interests to movies with shared entities (genre, actor, producer,
etc.). Therefore, incorporating information using a knowledge graph can enhance
their representations, and consequently improve recommendation performance.

This work proposes a novel deep neural network architecture incorporating
both sequential behavior of users and side information about items. Our pro-
posed structure captures the temporal information using a sequential attention
mechanism and spatial information via a knowledge graph attention mechanism.
To summarize, the key contributions of this work are:
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Fig. 1. Sequential interactions of two users with the systems. While users interact with
different items, their collaborative signal can be detected via shared entities.

– KATRec builds on a knowledge graph neural network that captures multi-
relationships between items by tying them together using the underlying enti-
ties. This allows for better representations of items and enhances the recom-
mendation performance.

– KATRec models the short-term and long-term user preferences by adaptively
aggregating dynamic interactions and item-item multi-relations through a
gating mechanism. This mechanism can significantly alleviate the sparsity in
both user sequences and item relationships.

– KATRec captures co-occurrence information and collaborative signals by
leveraging attention mechanisms in the knowledge graph, which ultimately
impact the attention weights in the bidirectional transformer module and the
overall recommendations.

– We conduct experiments to evaluate the impact of different components on
the performance of KATRec, and show that it outperforms state-of-the-art
baselines on three public datasets.

The paper is organized as follows: in Sect. 2, we define the problem and
present the new architecture KATRec. We conduct a detailed comparison of the
performance of KATRec with multiple competitive baselines in Sect. 3. Section 4
concludes with some pointers to future directions.

2 Method

Our goal is to provide a personalized next item recommendation for users based
on their history and higher-order relations between items. In this section, we
first state a formal definition of the problem, and then we elaborate on different
parts of our proposed solution.

2.1 Problem Definition and Solution Overview

Given a set of users U and items I, we have a sequence of items Su =
{Su

1 , · · · , Su
T } that user u has interacted with over T time steps (T = |Su|).

Also, we have access to side information related to items (e.g., actors, directors,
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and genre as shown in Fig. 1). Based on the historical interaction sequence Su,
our goal is to predict the item that user u is most likely interested in at the next
time step T + 1.

In KATRec, we build a knowledge-aware attentive sequential recommenda-
tion system to facilitate modeling of dynamic behavior of users while capturing
the multi-relations between items. Specifically, our model contains two modules
as shown in Fig. 2, namely: (a) a graph neural network G which captures item
level multi-relations, and (b) a bidirectional transformer module that incorpo-
rates item embeddings from the knowledge graph network into the representa-
tions of dynamic preferences exhibited by the users. In the following, we discuss
the details of each.

Fig. 2. Illustration of different components of the knowledge graph attention module
(left) and the dynamic user interaction module (right). First, we learn the initial item
embeddings using the knowledge graph attention module. Then, we feed these item
embeddings and the user’s interaction sequence Su through M layers of the bidirec-
tional transformer (TFL) to obtain the final item embeddings that are then used for
next item recommendation.

2.2 Knowledge Graph Module with Attention

This module encodes items’ metadata as a unified graph to exploit the higher-
order connectivity between items. The graph G = (E ,R), where I ⊂ E , incorpo-
rates entities as nodes and relationships as the edges. For instance, entities in a
movie dataset include the items and their side information e.g., genres, producer,
actor, etc. We use entities as building blocks that capture connections between
items, and we focus on paths that start and end with items. Formally, the K-
order connectivity between items is a path that captures a higher-order rela-
tionship between items (i, j) as: i

r1−→ n1
r2−→ n2

r3−→ · · · rK−−→ j, where (i, j) ∈ I,
entity nk ∈ E , and relation rk ∈ R for k ∈ {1, 2, · · · ,K}. In addition to item and
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entities in the paths, we also model the joint occurrence of commonly related
items using a collaborative knowledge graph by adding users as nodes in the
graph. In particular, we integrate the item-user relations RU into the knowledge
graph, so in the resulting graph, the interactions of users with items are also
captured. We can represent the graph by a pair of nodes and their relation as
G = {(h, r, t)|h, t ∈ E ′, r ∈ R′}, where E ′ ⊂ E ∪ U and R′ ⊂ R ∪ RU . Figure 3
illustrates a collaborative knowledge graph where movie i and movie j are sec-
ond order neighbors related by entity n1 in the path i

r4−→ n1
r5−→ j or related by

user u2 in the path i
r3−→ u2

r2−→ j.

Fig. 3. Collaborative knowledge graph relates items i and j through user u2 and entity
n1 with different types of relations.

In order to encode these relations as item embeddings, we use the TransR
method [12]. TransR learns the embedding of each node and relation via the
translation principle: W reh +er ≈ W ret (eh, et ∈ R

d, er ∈ R
k, and W r ∈ R

k×d),
if triplet (h, r, t) exists in the knowledge graph. For each triplet (h, r, t) the
dissimilarity score is computed using:

s(h, r, t) = ‖W reh + er − W ret‖22,

The lower the score of s(h, r, t) the more likely is the triplet in the KG.
Following [20], we capture each relation’s importance by generating attentive
weights between a node and its higher-order neighbors. So, for each node h,
we initially consider all nodes that have the first-order relation with it, i.e.
Nh = {(h′, r, t)|(h′, r, t) ∈ G with h′ = h}.

The first order connectivity embedding of head node h is defined as the
linear combination of the embeddings of its neighbors (ego network) eNh

=∑
(h,r,t)∈Nh

π(h, r, t)et. The attention factor π(h, r, t) controls how much infor-
mation from different tails can be propagated to head h based on specific rela-
tions, and can be computed as π(h, r, t) = (W ret)� tanh(W reh + er).

This attention mechanism will propagate more information from closer
entities in the relationship space. Then, we normalize the coefficients
across all h’s first-order relations using a softmax function π′(h, r, t) =

exp(π(h,r,t))∑
(h,r′,t′)∈Nh

exp(π(h,r′,t′)) .
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We update the node’s representation by aggregating its representation and its
ego network/connectivity representation using the relation: e

(1)
h = f

(1)
G (eh, eNh

),
where aggregator f

(1)
G is defined as follows:

f
(1)
G = σ

(
W

(1)
1 (eh + eNh

)
)

+ σ
(
W

(1)
2 (eh � eNh

)
)
.

Here σ is the Leaky ReLU activation function and W
(1)
1 ,W

(1)
2 ∈ R

d(1) × R
d are

trainable weight matrices. We follow a similar intuition for residual connections
by aggregating information through the sum of two representations eh and eNh

and retain a copy of input by using the identity transformation. Note that � is
the element-wise product that captures feature interaction between eh and eNh

,
and ensures richer propagation of information from similar nodes.

For higher-order propagation, we stack more propagation layers to cascade
information from higher-order neighbors. The l-th step node representation can
be formulated as e

(l)
h = f

(l)
G (e(l−1)

h , e
(l−1)
Nh

). The information cascaded from l−1-th
ego network is defined as:

e
(l−1)
Nh

=
∑

(h,r,t)∈Nh

π′(h, r, t)e(l−1)
t .

Using this embedding propagation mechanism to stack L layers, the higher-
order connectivities can be captured in the node representation. Finally, we
concatenate these representations into one vector to get the final representation
of the node, e∗

h = [e(0)h ‖ · · · ‖ e
(L)
h ] ∈ R

q, where e
(0)
h := eh and q = d+d(1) + · · ·+

d(L). The different layers of knowledge graph attention module described above
are shown in Fig. 2 (left).

2.3 Dynamic User Interaction Module

To capture the sequential patterns among successive items that a user has inter-
acted with, we use the Bidirectional Encoder Representations from Transform-
ers (BERT) architecture [2,19]. In our context, BERT uses the historical item
sequence Su corresponding to user u and aims to predict the item that the user
is interested in the next time step T + 1. BERT models M bidirectional trans-
former layers and revises each item’s representation at each layer by exchanging
information across all positions at the previous layer. Our key contribution is
that we embed the higher-order connectivity of the item relations discussed in
Subsect. 2.2 into the BERT module to capture user preferences under a more
informative context. Below, we briefly discuss the self-attention structure used
in the BERT module of KATRec.

Embedding Layer: Since the self-attention mechanism doesn’t include any
recurrent or convolutional blocks, it cannot be aware of items’ position embed-
dings. So, we incorporate a pre-determined positional embedding P ∈ R

T×q
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into the input embedding, v
(0)
i = e∗

i + pi. In this equation, v
(0)
i computes the

input representation of items at each position index i = 1, · · · , T . Concatenating
embedding of T items in a user sequence, v

(0)
i ∈ R

q, results in V (0) ∈ R
T×q. Next,

this positional embedding matrix is provided as an input to the first transformer
layer. The transformer layer contains two sublayers, a multi-head self-attention
sublayer, and a position-wise feed-forward network. In the following, we describe
each of these sublayers briefly.

Transformer Layer: The attention mechanism helps the model capture depen-
dencies between each pair of items at any distance in the input sequence, across
multiple subspace representations simultaneously. To learn information in differ-
ent representation subspaces, we use multi-head attention [2]. First, we linearly
project V (0) into k subspaces using different learnable projections and then apply
attention function on each in parallel to create k heads H1, · · · ,Hk as follows:

Hj = Attention(V (0)WQ
j , V (0)WK

j , V (0)WV
j ),

where WQ
j , WK

j and WV
j are all R

q×q/k learnable projection matrices cor-
responding to head index j = 1, · · · , k. The attention function is a scaled
dot-product defined as Attention(Q,K,V) = softmax

(
QK�√

q/k

)
V. We concate-

nate these k heads and then project them. We input the multi-head attention
output, MH(V (0)), to a feed-forward sublayer at each position i = 1, · · · , T ,
PFF(V (0)) = [FF (v(0)

1 )� ‖ · · · ‖ FF (v(0)
T )�]. Other operations including the

dropout, residual connections, and layer normalization (LN) are kept similar
to the original BERT architecture for language modeling.

Output Layer: Capturing pairwise item relations plays an important role in the
effectiveness of the recommendation systems and also allows some degree of inter-
pretability. To include item-item relations in item embeddings, we concatenate
item embeddings learned by the sequential module and the knowledge graph.

Ê = σ((V ∗ ‖ E∗)Ŵ + b̂),

where Ê ∈ R
|I|×q is the set of final KATRec embeddings for item set I and

Ŵ ∈ R
2q×q and b̂ ∈ R

q are learnable parameters. V ∗ is the embedding matrix of
items learned by sequential module, and E∗ is the items embedding table learned
by the knowledge graph. Finally, the next item at time T + 1 is predicted by:

P (I) = softmax(GELU(v(M)
T+1W

P + bP )Ê� + bO),

where WP , bP , and bO are learnable parameters, Ê ∈ R
|I|×q is the embedding

matrix for item set I, and P (·) is the KATRec model’s predicted distribution
over the target items. v

(M)
T+1 is the hidden state of position T + 1 after M trans-

former layers, denoted by v∗
T+1 in Fig. 2.
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Existing approaches provide personalized recommendation by modeling the
user embedding either explicitly [11,15,18] based on users’ previous actions, or
implicitly [6,9,17] based on embeddings of the sequence of visited items by a
user. KATRec belongs to the latter category as we predict the next item at time
step T + 1 by considering the hidden state embedding v

(M)
T+1.

As an aside, we also considered explicit user behavior by incorporating user
embeddings learned from the knowledge graph into the user’s hidden state via
concatenation: [e∗

u ‖ v
(M)
T+1], where e∗

u is the embedding of user u in the knowl-
edge graph. Although this concatenation seems promising, we empirically did
not observe improvement in the model’s performance. This could be poten-
tially because the model learned users’ embedding very well by considering the
sequence of interacted items.

2.4 Optimization

The loss function of KATRec contains the TransR objective along with a reg-
ularizer. In particular, we use the TransR to train the entity embeddings. The
objective function can be minimized by discriminating between valid and invalid
triplets in the collaborative knowledge graph:

LG =
∑

(h,r,t,t′)

−ln σ
(
s(h, r, t′) − s(h, r, t)

)
+ λ‖Θ‖22, (1)

where the sum is over all valid (h, r, t) ∈ G and invalid (h, r, t′) /∈ G triplets in
the knowledge graph G, σ(·) is the sigmoid function, and λ‖Θ‖22 represents �2
regularization. Similar to [2], we implement the Cloze task training approach in
addition to pairwise ranking loss in Eq. (1). This allows us to learn the parameters
of the encoders in the transformer layers. In this approach, we randomly mask
a portion of items in the input sequence Su and try to predict them. The loss
for each masked input S′

u is given by:

LS =
1

|Sm
u |

∑

im∈Sm
u

− log P (im = i�m|S ′
u),

where Sm
u is the set of randomly masked items, i�m is the true item correspond-

ing to the masked item im, and P (.) is the predicted probability mass function
over the target item. These two losses are jointly minimized over their respec-
tive parameters using standard first-order approaches (see the next section for
details).

3 Experiments

We evaluate our model on three real-world datasets, which are different in
domains and have varying levels of sparsity1. We aim to answer the following
questions in this section:
1 Code is available at https://github.com/DanialTaheri/KATRec.

https://github.com/DanialTaheri/KATRec
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Q1: How does KATRec perform compared to the current state-of-the-art
sequential recommendation methods? Q2: How do different components of the
model (viz., knowledge graph based attention mechanism, information aggrega-
tion, and pre-training) affect the performance of KATRec? Q3: How KATRec’s
performance change in different settings and datasets?

Following prior work [9,17], we convert all numeric ratings to positive inter-
action with a value of 1, which indicates that the user has interacted with the
item. Then, we sort each user’s interactions by timestamp to build her inter-
action sequence. Similar to prior works, we split the user sequences into three
parts. The test dataset includes the most recent item each user has interacted
with (Su

T+1), the validation dataset consists of the second most recent item inter-
acted by each user (Su

T ), and the remaining items in the sequence belong to the
training data. To construct knowledge graph aware attention, we first build the
item knowledge graph for each dataset. We follow [20,23] to capture knowledge
graph triplets by mapping items into freebase entities. We include triplets with
one-hop and two-hop neighbor entities and filter out entities with less than ten
occurrences, and relations less than fifty occurrences. For LG in Eq. (1), we pair
each observed triplet with a broken (unobserved) triplet.

3.1 Datasets Description

We consider three datasets with different levels of sparsity. For most of the exper-
iments, we only include users and items with at least ten interactions to ensure
data quality [20]. The statistics of the datasets described below are presented in
Table 1 for ease of reference:

Table 1. Statistics of datasets

Datsets Users Items Interactions Entities Relations Triplets Density

Amazon-book 70679 24915 846434 88572 39 2557746 0.048%

LastFM 23566 48123 8057269 58266 9 464567 0.7105%

Yelp2018 45919 45538 1185068 90961 42 1853704 0.057%

Amazon-book: Amazon review data is one of the popular datasets in the
recommendation systems literature [5]. The data has been categorized based on
different product categories, and in this paper, we focus on the book category.

LastFM: This is a dataset about music listening patterns collected from the
Last.fm online music platform [16]. In this dataset, tracks are viewed as items,
and we consider a subset of the dataset from January 2014 to August 2014.

Yelp2018: This dataset is adopted from the Yelp 2018 recommendation system
challenge. In this dataset, local restaurants and bars are represented as items.

We calculate each dataset’s density based on the number of interactions, users,
and items as |Interactions|

|Users|·|Items| . Therefore, larger values in the density column rep-
resent datasets with more interactions (per user and item). Table 1 lists specific
properties and the density of each dataset. It also highlights that LastFM has a
substantially lesser number of relations and is significantly denser than others.
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3.2 Experimental Settings

Evaluation Metrics: We use two common top-K metrics to evaluate the per-
formance of our model. Hit@K and NDCG@K count the fraction of the time
the ground truth item is among the top K recommendations, without and with
defining a position-aware weight respectively. Mean Average Precision (MAP) is
also a ranked precision metric over all users that emphasizes correct predictions
at the top of the list with a position-aware weight. Following the works of [9,17],
we randomly sample 100 negative items for each user besides the ground-truth
item. We report the average of the metrics Hit@K, NDCG@K over all users.

Baselines: To compare the performance of our model with others, we consider
the following competitive baselines:

– GRU4Rec [7]: It implements a session-based recommendation model based
on RNNs. We consider each user’s sequence as a session.

– GRU4Rec++ [6]: It modifies the way GRU4Rec is optimized by implementing
a new loss function and a new sampling approach.

– SASRec [9]: It uses a self-attention mechanism with a left-to-right Trans-
former to improve the capturing of useful patterns in user sequences.

– BERT4Rec [17]: This is a recent state-of-the-art sequential recommendation
model that adapts the bidirectional Transformers language model architecture
to learn the temporal behavior of users.

Parameters for Models: We implement KATRec with Tensorflow (version
2.2.0). All parameters are initialized using a truncated normal distribution in the
interval [−0.02, 0.02]. We use the Adam optimiser [10] with learning rate 10−4

that decays linearly, β1 = 0.9, β2 = 0.999, and a weight decay of 0.01. We fix the
maximum sequence length proportional to the average sequence length in the
dataset, i.e., 50, 50, and 200 for Amazon-book, Yelp, and LastFM respectively.
We set the dimension of the hidden fully connected layers of KATRec to be
128. We propagate neighbors’ information up to three levels into each entity’s
embedding with hidden dimensions 32, 16, and 16. Finally, we set the embedding
of entities in the knowledge graph to be 64.

We search for hyperparameters to select the best parameters for different
baselines. These include changing embedding size from {8, 16, 32, 64, 128} and
the regularization hyperparameter λ across {0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}.
We use the optimization schemes and parameters suggested by the authors when-
ever possible. The models are trained on a single GeForce GTX 1080Ti GPU.

Performance Comparison: Table 2 shows the recommendation performance
of KATRec and baselines. We do not include Hit@1 since Hit@1 and NDCG@1
are equivalent. Since we have a single ground-truth, Hit@K is equivalent to
Recall@K, and it is proportional to Precision@K. We observe that KATRec
provides improved relative recommendation performance over all alternatives by
6.29% and 3.82% in Hit and 7.15% and 4.64% in NDCG on average, respectively
on the Amazon-book and Yelp2018 datasets.
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Table 2. KATRec versus baselines over three datasets. The improvement percentage
compares KATRec versus the next-best alternative.

Datasets Metrics GRU GRU++ SASRec BERT KATRec Improv

Amazon NDCG@1 0.3485 0.3464 0.3749 0.4344 0.4706 8.33%

NDCG@5 0.4404 0.4358 0.5267 0.5715 0.6110 6.91%

NDCG@10 0.4598 0.4574 0.5600 0.6022 0.6401 6.2%

Hit@5 0.5202 0.5148 0.6594 0.6910 0.7321 5.94%

Hit@10 0.58 0.5814 0.7621 0.7856 0.8217 4.6%

MAP 0.42 0.4259 0.5065 0.5539 0.5907 6.64%

LastFM NDCG@1 0.3646 0.3523 0.6771 0.6339 0.6931 2.36%

NDCG@5 0.4648 0.4448 0.7765 0.7606 0.7725 −0.51%

NDCG@10 0.4881 0.4674 0.7930 0.7786 0.7911 −0.24%

Hit@5 0.5531 0.5263 0.8600 0.8281 0.8426 −2.06%

Hit@10 0.6249 0.5958 0.9105 0.8836 0.9001 −1.15%

MAP 0.4577 0.4357 0.7598 0.7509 0.7618 0.26%

Yelp2018 NDCG@1 0.3946 0.4148 0.3723 0.4149 0.4405 6.17%

NDCG@5 0.5041 0.5143 0.5703 0.6039 0.629 4.15%

NDCG@10 0.5278 0.5395 0.6068 0.6400 0.663 3.6%

Hit@5 0.5991 0.6021 0.7434 0.7690 0.7927 3.08%

Hit@10 0.6721 0.68 0.8551 0.8796 0.899 2.2%

MAP 0.49 0.515 0.5351 0.5706 0.5946 4.21%

In particular, KATRec consistently outperforms BERT4Rec on Amazon-
book and Yelp2018 datasets, which shows the importance of modeling item-item
and user-item relations. KATRec achieves a considerable performance improve-
ment in Amazon-book, while the improvement in Yelp is relatively small. This
observation can be attributed to the difference in the sparsity of these two
datasets. The importance of the impact of data density and number of relations
on KATRec’s performance is highlighted explicitly with the LastFM dataset,
which we discuss in further detail in the ablation study that follows.

Ablation Study: In this section, we analyze variants of KATRec to understand
the impact of different components on model performance. The variations are
as follows: (1) No Attention: we remove the attention mechanism in the knowl-
edge graph and allocate equal weights to each entity’s neighbors. (2) Level-1 :
we decrease the level of information that can propagate from the neighbors to
a node, and study the impact of only using immediate neighbors to improve
node embeddings. (3) Connection: While there exists a connection between two
encoder modules in our model, we consider the setting where both modules train
independently using learnable embeddings. (4) No Pretraining : We forgo the pre-
trained embeddings of entities in the knowledge graph. (5) Concat : We remove
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a part of our model that deals with item co-occurrence, and only consider the
item embedding vector that results from the sequential module.

Results are shown in Table 3. We observe that incorporating the side infor-
mation in the bidirectional encoder module during the training results in better
parameter learning as shown in column Connection. Furthermore, the results of
making the NoPretrain choice in the knowledge graph show that incorporating
pre-trained embeddings increases the performance of the sequential recommen-
dation model. The attention mechanism between neighbors in the knowledge
graph increases the recommendation’s performance. However, this increase is
not substantial. We also observe that multiple layer information propagation
in an item’s embedding plays an important role in making next item recom-
mendations. Also, as expected, propagating the first layer’s information in the
knowledge graph has a higher impact, and this impact decreases when we incor-
porate higher level of connections. Finally, the results of the Concat choice shows
that incorporating non-linearity in the final layer is beneficial for learning item
embeddings, especially by combining features learned through the knowledge
graph and the bidirectional encoder.

Table 3. Ablation study of design choices in KATRec using three datasets.

Datasets Metrics KATRec NoAtten. Level-1 Connect. NoPretrain Concat.

Amazon-book NDCG@10 0.6401 0.6371 0.6386 0.621 0.6306 0.6318

Hit@10 0.8217 0.8178 0.8195 0.801 0.8092 0.8142

LastFM NDCG@10 0.7911 0.7836 0.7853 0.763 0.7587 0.7855

HIT@10 0.9001 0.8967 0.8957 0.8796 0.8752 0.8908

Yelp2018 NDCG@10 0.663 0.6567 0.6546 0.6458 0.6359 0.6515

HIT@10 0.899 0.8954 0.8929 0.885 0.8696 0.8881

We also study the recommendation performance of KATRec for users with
different sequence lengths and compare it with competitive baselines. The intu-
ition here is that the use of side information can compensate for potentially
sparse user item interactions. In Fig. 4, we illustrate the percentage of users with
varying sizes of item sequences associated with them in each dataset, and report
each method’s performance for each of the resulting user groups. KATRec out-
performs two other competitive baselines for all user groups for Yelp2018 and
Amazon-book datasets. Results for LastFM show that KATRec provides a rea-
sonably robust recommendation performance across user groups, while the per-
formance of the baselines is more sensitive to the user sequence length. This
robustness of KATRec can be attributed to the item-item and user-item rela-
tionships that are explicitly learned. Our model performs relatively better for
users with small sequence lengths. However, SASRec marginally outperforms
KATRec for users with long sequence lengths. This can be attributed to the
high number of interactions and low number of relations in the LastFM dataset,
which indicates that the impact of side information on dense datasets may not
be significant enough.
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Fig. 4. Performance comparison of models across users with different sequence lengths
on the Amazon-book, LastFM and Yelp2018 datasets.

Visualizing Attention Weights: This section visualizes the attention weights
related to items and positions to find a meaningful pattern and discuss their dif-
ferences with the BERT model’s attention weights. Figure 5 shows the heatmaps
of the average attention weights on the last 15 items of the sequences in the test
dataset of Yelp2018. In order to calculate the accurate average weights, we do not
incorporate weights of padded items in sequences shorter than 15 items. Com-
paring heatmaps (a) and (b) shows the impact of positional embeddings (PE).
In particular, heatmap (a) illustrates how positional embeddings results in items
attending more on recent items. Heatmaps (a) and (c) points out how items in
various heads and layers focus on different parts of the sequence at both the right
and left sides. To compare attentions in BERT4Rec and KATRec, we analyze
weights in the final layer as it is directly connected to the output layer and plays
an important role in the prediction (heatmaps (d) and (c)). The comparison
indicates that while BERT4Rec inclines to focus more on the recent items due
to the sparsity of the dataset, KATRec tends to attend on less recent items due
to incorporating side information through the knowledge graph. This behavior is
similar to the attention weights of self-attention blocks in dense datasets in [9].

Fig. 5. Yelp average attention weights on positions (x-axis) at time (y-axis)

Attention Weight Case Study. Figure 6a illustrates the co-occurrence ratio
between six items in user sequences, computed by the average number of times
that a pair of items appeared simultaneously in users’ sequence. Figure 6b com-
pares weights of the final attention layer in KATRec and Bert4Rec between the
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last item (item 6) and the rest of the items in a user sequence. Figure 6a shows
that item 6 has a high co-occurrence value with items 0, 2, 4, and 5. Figure 6b
confirms that KATRec places a higher attention values for items 4 and 5 and
lower values for items with low co-occurrence value, i.e., time 1 and 3. However,
we observe that BERT4Rec considers a higher weight between item 6 and 0
which is more aligned to their co-occurrence value.

Fig. 6. Attention heatmap comparison of a random user in Yelp2018 dataset. 6a shows
the co-occurrence ratio, which is the co-occurrence frequency of each pair of six items
among all users’ sequences. 6b compares these items’ attention weight at the last posi-
tion in KATRec and BERT4Rec.

4 Conclusion and Future Work

Designing robust deep neural network architectures that produce quality rec-
ommendations is challenging for several reasons. A couple of these challenges
were addressed in this work, namely leveraging of side information and getting
around data sparsity. In particular, we proposed incorporating item side infor-
mation to alleviate both these shortcomings while making recommendations.
This information is readily available in many real-world applications.

Our work introduces a novel neural network structure that leverages collab-
orative knowledge graphs to improve the representations of items in a sequen-
tial recommendation system setup. Empirical results are provided to illustrate
the benefit via multiple evaluation metrics: the proposed solution is compared
against multiple state-of-the-art sequential recommendation systems on three
different datasets. Similar to the way we included item metadata in building a
more performant recommendation system, further research in incorporating user
metadata can be undertaken.
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Abstract. Ordinal embedding aims at finding a low dimensional repre-
sentation of objects from a set of constraints of the form ”item j is closer
to item i than item k”. Typically, each object is mapped onto a point
vector in a low dimensional metric space. We argue that mapping to a
density instead of a point vector provides some interesting advantages,
including an inherent reflection of the uncertainty about the representa-
tion itself and its relative location in the space. Indeed, in this paper, we
propose to embed each object as a Gaussian distribution. We investigate
the ability of these embeddings to capture the underlying structure of
the data while satisfying the constraints, and explore properties of the
representation. Experiments on synthetic and real-world datasets show-
case the advantages of our approach. In addition, we illustrate the merit
of modelling uncertainty, which enriches the visual perception of the
mapped objects in the space.

Keywords: Ordinal embedding · Representation learning

1 Introduction

A crucial problem in machine learning is the assessment of similarities between
data instances. In fact, multiple tasks depend on such an ability. For example, in
clustering, similar items should be grouped together, or in classification, where
similar items should be assigned similar labels. In general, one expects to be given
a collection of data instances and a similarity function that allows determining
how similar objects are to each other. Yet, it is not always straight-forward to
define such a similarity function for a given data representation. Thus, recent
works in machine learning focus on a scenario in which the learner is only given
relative comparisons between data instances [1,10]. Instead of directly querying
the degree of similarity between items on an absolute scale, it has been shown
that eliciting ordinal feedback from subjects in the form of ”item i is more similar
to item j than to item k” is a more reliable form of supervision, especially when
the feedback is subjective [13]. The problem of interest is to learn representa-
tions in a low-dimensional metric space such that the relative distances of the
representation satisfy a set of ordinal triplet constraints of the above type. This
c© Springer Nature Switzerland AG 2021
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problem is known as ordinal embedding. It dates back to the classic non-metric
multidimensional scaling approach, but interest in the problem has renewed in
recent years. The main expected result of this task is a faithful geometric repre-
sentation that allows to easily visualize similarities between data instances.

We argue that the classical representation of items as points does not allow to
capture the inherent noise of the ordinal feedback and the resulting uncertainty
of the representation. Consider the case of an object for which the different
triplets are conflicting with each other or even revealing contradicting underlying
patterns. Such a discrepancy should be reflected and possibly visually expressed
by the learnt embedding. As a remedy, we propose to embed items as probability
distributions in R

d, with a location and a scale parameter, which captures the
uncertainty of the location. In particular, we focus on Gaussian distributions
which enjoy some desirable properties.

The paper is organized as follows: Sect. 2 formally introduce the problem of
ordinal embedding, Sect. 3 presents our approach for elliptical ordinal embedding.
Finally, Sect. 4 illustrates our empirical studies and analyze the results.

2 Problem Statement

In this section, we formally state the ordinal embedding problem and establish
the notation, for which we follow [11]. ‖·‖ denotes the �2 norm. Sd

+ is the set of all
positive definite matrices. In the scope of this work, we only focus on Gaussian
distributions which belong to the family of parametrized probability distribu-
tions zh,a,A having a location vector a ∈ R

d which represents the shift of the
distribution, a scale parameter A ∈ Sd

+, which represents the statistical disper-
sion of the distribution, and a characteristic generator function h. Specifically,
for Gaussian distributions, the scale parameter coincides with the covariance
matrix var(zh,a,A) = A. From now on, we denote Gaussian distributions (or
embeddings) as z(h,a,A) = N (a,A).

Consider n items in an abstract space X , which we represent by their indices
[n] = 1, ..., n. It is worth mentioning that no explicit representation of the items
is available so it is not possible to analytically express the dissimilarity between
the items. We assume a latent underlying dissimilarity (or similarity) function
δ : X × X −→ R≥0. Let T := {〈i, j, k〉 : 1 ≤ i �= j �= k ≤ n} be a set of unique
triplets of elements in X . We further have access to an oracle O which indicates
whether the inequality δ(i, j) < δ(i, k) holds or not:

O(〈i, j, k〉) =
{
+1 if δ(i, j) < δ(i, k)
−1 if δ(i, j) > δ(i, k) (1)

Note that at this stage, we do not require the latent function δ to be a metric.
Together, T and O represent the observed ordinal constraints on distances.

We can now formally define the problem as follows:

Definition 1 (Ordinal Embedding). Consider n vector points X =
(x1,x2, ...,xn) in a d-dimensional Euclidean space X . Given a set of triplets
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T ⊂ X 3 and an oracle O : X 3 → {−1, 1}, the ordinal embedding problem
consists of recovering X given O and T .

3 Elliptical Ordinal Embedding

We propose to learn probabilistic embeddings in lieu of the conventional
Euclidean embeddings, taking advantage of the fact that vectors can be con-
sidered as an extreme case of probability measures, namely a Dirac [11]. For
this purpose, we focus on the family of elliptical distributions, more precisely
Gaussian distributions, which enjoy many advantages. Our goal is to extend the
ordinal embedding problem, from Definition 1 for point embeddings, to Gaussian
embeddings. Hence the considered problem becomes:

Definition 2 (Probabilistic Ordinal Embedding). Suppose T ⊂ X 3 is a
set of triplets over X and O : X 3 → {−1, 1} is an oracle as defined in (1). Let
Z = {z1, . . . , zn} the desired probabilistic embedding, where each of the original
points xi is mapped to probability distribution parametrized by zi. Probabilistic
ordinal embedding is the problem of obtaining Z from ordinal constraints T and
O and a distance measure d such that sgn(d(zi, zj)−d(zi, zk)) = O(〈i, j, k〉), for
〈i, j, k〉 ∈ T .

This definition requires a distance measure d between distributions. For this
purpose, we selected the Wasserstein distance [12] which has been previously
used as a loss function for supervised learning [5] and in several applications.

The 2-Wasserstein Distance. In Optimal Transport (OT) theory, the Wasser-
stein or Kantorovich–Rubinstein metric is a distance function defined between
probability distributions (measures) on a given metric space M . The squared
Wasserstein metric for two arbitrary probability measures μ, ν ∈ P(Rd) is defined
as: W 2

2 (μ, ν) def= infX∼μ,Y ∼ν E‖X−Y ‖2 . In the general case, it is difficult to find
analytical solutions for the Wasserstein distance. However, a closed form solution
exists in the case of Gaussian distributions. Let α

def= N (a,A) and β
def= N (b,B),

where a,b ∈ R
d and A,B ∈ Sd

+ are positive semi-definite. When A = diag dA

and B = diag dB are diagonal, W 2
2 simplifies to the sum of two terms:

W 2
2 (α, β) = ‖a − b‖2 + h2(dA,dB) (2)

where h2(dA,dB)
def= ‖

√
dA−

√
dB‖2 is the squared Hellinger distance [2] between

the diagonal dA and dB.

Learning Problem. As mentioned earlier, the goal is to learn a function that
maps each item to a d-dimensional Gaussian embeddings in R

d such that the
2-Wasserstein distances between the embeddings satisfy as many triplets as pos-
sible. Each Gaussian embedding is denoted as zμ,Σ, which for the sake of com-
pactness, we abbreviate in z. Let Eij be the energy function between two items
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(i, j) [9] which characterizes our energy-based learning approach. In particular,
we set Eij = W 2

2 (zi, zj). Finally, the corresponding optimization problem is the
following: maxz1,...zn∈Rd

∑
t=(i,j,k)∈T O(t) · sgn(Eij −Eik) which is discrete, non-

convex and NP-hard. For these reasons, a relaxation of this optimization problem
is needed. We make the choice of using the hinge loss L((t = 〈i, j, k〉,O(t)), a well
established loss function in contrastive metric learning, as a convex surrogate:

L =
∑

t=〈i,j,k〉∈T
max(1 − O(t) · (Eij − Eik), 0) (3)

The empirical performance of embedding methods is evaluated by the empirical
error : Err = 1

|T ′|
∑

〈i,j,k〉∈T 1[(y · sgn(Eij − Eik)) = 1].

Complexity. The training complexity is linear to the size of T , which is the set
of all triplets and bounded by O(n3). However, a well chosen sampling strategy
may decrease this bound. It has been shown by [7] that the minimum number
of triplets to recover the ordinal embedding is Ω(nd log n) in R

d. We adapt this
result to the setting in which the parameters to be learnt are a mean vector in
R

d and a covariance matrix Sd
+. Hence, the dimensionality can be considered to

be d′ = d + d2 and O(d2). Thus, the new recovered lower bound for the triplets
becomes Ω(d2n log n), which is still polynomial in d and O(n log n). Since ordinal
embeddings typically map into a low-dimensional space, this is not a drastic loss
in efficiency.

Architecture and Hyperparameters. We noticed that ElOE is not very sen-
sitive to the number and size of hidden layers. For such, we chose a sufficiently
large hidden size, specifically hdim = 50. To embed the item i:

hi = relu(xiWi + b) μi = hiWμ + bμ σi = exp(hiWΣ + bΣ)

where xi is a random sample from N (0, Ih) and relu is the rectifier linear unit.
We apply the exponential function to make sure that σi is positive (and Σi is
positive definite). Weight matrices Wμ, WΣ and W are initialized with Xavier
initialization. As stated earlier, we do not regularize the norm of the mean vectors
but we bound the values of the covariance matrices with C = log(100). However,
we observe that this additional precaution is not needed unless the number of
contradicting triplets is too large. This is due to the self-regularizing nature of
the Wasserstein distance and it was confirmed by our experiments in which the
average value of the variance is far from that bound for reasonable levels of noise.
All parameters are optimized using Adam, with a fixed learning rate of 0.01 and
a learning rate decay of 10−5.

4 Experiments

In this section, we evaluate our method in two settings. First, we perform experi-
ments on synthetic datasets in order to gain some insight regarding our approach.
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We then apply our approach to real datasets in order to assess the performance
of our model in real cases. When the ground truth is available, an adequate error
metric to assess the embedding quality is the Procrustes distance [4] for which
we provided an extension defined in Eq. (4). Additional results and figures are
presented in the extended version of the paper [3].

Fig. 1. ElOE embeddings for synthetic experiments. From left to right, columns rep-
resent ground-truths, elliptical embeddings in nose-free setting (ε = 0) for increasing
numbers of triplets pd2n logn for p = {1, 2, 4} (col. 2–4) and increasing noise for p = 4
and ε = {0.1, 0.2} (col. 5–6). Color indicates labels not used for training. (Color figure
online)

Definition 3 (Procrustes Distance between distributions). Given two
finite sequences X = (xi)ni=1, X

′
= (x

′
i,μ,Σ)ni=1 in R

d of equal length with cen-
troids in x̄, x̄

′
and centroids sizes SX , SX′ 1, respectively, the Procrustes distance

d�
P (X,X

′
) between X and X

′
is defined as:

d�
P (X,X ′) = inf

R∈R

(
n∑

i=1

∥∥∥∥Rxi

SX
− μi

SX′

∥∥∥∥
2

+
Tr(Σi)
S2

X′

) 1
2

(4)

Visualization of Embeddings Using Ellipses. The most significant differ-
ence between our distribution-based approach and the point-based embeddings
is the variance. In particular, the variance has the purpose of reflecting the uncer-
tainty. It does so by enriching the scope of the embeddings and by providing the
possibility of continuously representing a discrete object in the metric space. In
most cases related to multidimensional scaling, the output dimensionality of the
representations is low, thus the learned embeddings can be visualized as they

1 Let us define the centroid x̄ as x̄ = 1
n

∑n
i=1 xi, then the centroid size SX is SX =

( 1
n

∑n
i=1(x̄−xi)

2)1/2, provided we ignore the trivial case in which all points coincide.
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are. We argue that mapping objects into ellipses on a plane allows to better
observe the relationship between objects visually. [11] state that visualizing the
variances as they are is not natural to the human eye, and they instead favor a
representation by the precision matrix rather than the covariance matrix. On the
contrary, we believe that in this context a visualization based on the variance is
preferable when the focus is on illustrating the spread around the location rather
than the distance between the embeddings themselves.

4.1 Reconstruction

We present empirical results that aim to evaluate the reconstruction abilities
of the proposed approach. For this, we follow the same experimental setting of
[6]. More specifically, we use three 2-dimensional synthetic datasets generated
with the scikit-learn package2 in Python. The datasets are: a) two interleaved
moons, b)a mixture of three Gaussians N (μ, 1√

2
I2) and c) two concentric circles.

For each dataset, n = 1000 points are generated. The label information is used
only for visualization purposes. We generate |T | random triplets sampled from
a uniform distribution. To simulate the ordinal feedback from the oracle, we
compute the difference of the squared �2 norm between the points for a given
triplet. The total number |T | is set to be pd2nlogn for p = {1, 2, 4}. To evaluate
the performance, we compute the triplet error as well as the Procrustes distance
shown in (4).

Noise-Free Setting. In this series of experiments, we aim at investigating the
influence of the number of triplets on the reconstruction ability, specifically on
the variance of the elliptical embeddings. We first test in a noise-free setting.
Figure 1(a) depicts the original datasets (to the left) and the learned embed-
dings for different values of T . From left to right, the number of used triplets
|T | increases with |T | = pd2nlogn, where p ∈ {1, 2, 4}. For all three datasets,
we observe that the reconstruction abilities w.r.t the location point improves
when the number of triplets increases. Furthermore, we observe that on average
the variance decreases with increasing |T |, which confirms that the uncertainty
about a point’s location decreases when more exact comparisons are available.
For example, for p = 4, the average area of the ellipses is minimal. We can also
observe that the variance enriches the visual representation. A point-vector rep-
resentation may be misleading because when the algorithm is given few triplets,
it has also to satisfy fewer constraints which means that the overall degree of
freedom for selecting the individual points is greater. However a point-based
visualization does not appreciate this fact.

Noisy Setting. Our next goal was to investigate the influence of noisy or
erroneous triplets on the behaviour of the variance. We follow the procedure
described above, but simulated noise by randomly swapping the assessment of

2 https://scikit-learn.org/.

https://scikit-learn.org/
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the oracle with a probability of ε = {0.1, 0.2}. Figure 1(b) shows the results
obtained. We notice that when the proportion of erroneous triplets increases
(from left to right), the variance on average increases for all triplets. Additionally,
in order to quantitatively estimate the performance of our approach we measure
the Procrustes distance d�

P Equation (4) with respect to the ground truths. As
a baseline, we compare our model to STE [14]. For 10 rounds, we compute d�

P e
Equation (4) w.r.t ε. We notice that generally, ElOE recovers better the density
estimate even considering the variance of the ellipses. Figure 2 illustrates the
relation between Procrustes distance and empirical triplet error and the number
of triplets, for STE and ElOE. We notice that overall, ElOE performs better than
the baseline embeddings.

Fig. 2. 1st row: Procrustes distance vs ε. 2nd row: Procrustes distance vs p. 3rd row:
Empirical error vs p.

4.2 Ordinal Embedding

Food Dataset. We evaluate our method on the Food relative similarity dataset
[15], humans were presented images of dishes and asked to compare similar dishes
based on their taste. A good embedding method should show clusters of dishes
of the same type. We compute 2d embeddings of the food images based on
the available unique triplets of 100 images with |T | =190376 and 9349 pairs of
contradicting triplets. We compare our embeddings to STE and we observe that
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our embeddings closely match the one produced by STE, which is the reference
model used by the authors of the dataset. For lack of space, these are available
at [3]. Note that for this dataset, no ground truth is available and hence there
is no way other than visual inspection for evaluating our results.

Fig. 3. Purity for MNIST
dataset.

MNIST Dataset. On this dataset, we reproduce
the experiment conducted in [8]. For n = 500, 1000
and 2500, we uniformly chose n MNIST digits ran-
domly and we generate 200n log n triplets compar-
isons based on the Euclidean distances between the
digits. Each comparison is incorrect with probability
ε = 0.15. We then generate an ordinal embedding
with d = 5 and compute a k-means clustering on
the obtained embeddings. Section 4.2 compares the
purity of the clusters obtained with STE and ElOE
embeddings. Purity is computed as purity(Ω, C) = n−1

∑
k |wk ∩ cj |, where the

clusters are Ω = {w1, . . . , wk} and the classes are C = {c1, . . . , cj}. High purity
is better. We concatenate the diagonal of the covariance matrix and the mean
vector for each embedding for evaluating our embeddings. We observe that the
purity of the clustering from ElOE is consistently higher for all values of n con-
sidered.

4.3 Semantic Embedding

In this section, we intend to embed a real-world full or partial ordinal relation
between data points, in this case images. In particular we study the following
three types of relations, where the given ordinal relation is derived from various
label structures of the objects, such as a linear or a hierarchical order.

Fig. 4. Linear order in the MNIST dataset. Color indicates the label of the handwritten
digits to better appreciate the linearity. (Color figure online)

Intuitively, we want all nodes that belong to the 1-hop neighborhood of item
i to be closer to i in their embedding, compared to the nodes in the 2-hop neigh-
borhood, which in turn will be closer than the items in the 3-hop neighborhood
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and so on. Moreover, we need to adapt the sampling strategy to deal with this
task because uniformly sampling triplets leads to oversampling more frequent
high-degree nodes. Thus, we use the following strategy: we first sample a node
i, then we sample a node from each of its neighborhoods, and randomly choose
one of those triplets.

This simple experiment aims at verifying whether our approach is able to
capture the structural information when the underlying ordinal feedback derived
from labels is a linear order with MNIST dataset. In this case, we use the same
sampling strategy described in Sect. 4.1. We train our model with 200n log n
triplets and we sample 500 digits for visualization. We perturbed a subset of the
available triplets defined by ε = {0, 0.1, 0.2, 0.3}. In the noise-free case (Fig. 4(a))
we obtain a linear relation in which the embedding have very small variances.
When perturbing 10% of the triplets, as shown in Fig. 4(b) the linear order
is maintained but we can observe an average increase in the variance of the
embeddings. Finally, for ε = 0.3 (Fig. 4(d)), the proportion of noisy triplets is so
high that even the linear order is perturbed. Nevertheless, the clusters defined
by the classes of the embeddings are still easily identified.

Hierarchical Relation. This experiment was conducted on CIFAR100, a multi-
class image dataset where each of the 60000 images has two different levels of
labels, a super-class and a fine-class label There are 20 super-classes, each of
which has 5 labels. The graph structures can be seen in [3]. We sample n =
5000 images to create 2nd2 log n triplets. The triplet score is computed with
the methodology described earlier, through the shortest path distance between
nodes.

Table 1. Link prediction scores.

CIFAR VOC
AUC AP AUC AP

STE 0.47 0.53 0.54 0.56
[6] 0.88 0.90 0.93 0.94
ELOE 0.89 0.92 0.95 0.95

To quantitatively assess the meaningful-
ness of the embeddings, we report the area
under the ROC curve (AUC) and the aver-
age precision (AP) of randomly sampled
triplets. We compare our results to [6] which
we re-implemented with the same hidden
size of ElOE and STE. It is worth noticing
that this method can also be seen as the pro-
ducing distributional vectors with null vari-
ance. The score considered for ElOE is Eij ,
‖xi − xj‖2 for STE and [6], where xi is the embedding of item i. Results are
reported in Table 1. We see that ElOE embeddings satisfy more triplets than STE
embeddings.

Multilabel Distance. Finally, we looked at the PASCAL VOC multi-label
dataset, where each image can be assigned to multiple labels. Here n = 5000 and
p = 2. The same concerns with respect to the sampling strategy occur in this
case as well, and we apply the same methodology described earlier. In this case,
an image node can be connected to multiple node classes. The obtained results
showed in Table 1 confirm our intuition, nodes with less diverse neighborhoods
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have a lower variance, hence less uncertainty compared to nodes that belongs to
multiple classes. In fact, the inclusion in multiple classes makes the embedding
location less certain.

5 Conclusion

We have proposed to generalize the ordinal embedding problem by mapping
objects in the space of Gaussian distributions endowed with the Wasserstein
distance. This is based on the generalization of point embeddings in R

d to dis-
tributions. Each embedding is described by a location parameter μ and a scale
parameter Σ, visualized as ellipses. We argue that this allows to more informa-
tive perceptual embeddings by representing uncertainty of the representation. In
a number of experiments on different datasets we demonstrate the validity of our
approach. We show that the proposed framework is robust and beneficial when
the triplet comparisons are noisy. Overall, with our proposed approach we are
able to obtain valid embedding that can be used for downstream tasks. As future
work we aim to study other distributions beyond Gaussian for the problem of
ordinal embedding.
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Abstract. The need for learning from unlabeled data is increasing in
contemporary machine learning. Methods for unsupervised feature rank-
ing, which identify the most important features in such data are thus
gaining attention, and so are their applications in studying high through-
put biological experiments or user bases for recommender systems. We
propose FRANe (Feature Ranking via Attribute Networks), an unsuper-
vised algorithm capable of finding key features in given unlabeled data
set. FRANe is based on ideas from network reconstruction and network
analysis. FRANe performs better than state-of-the-art competitors, as we
empirically demonstrate on a large collection of benchmarks. Moreover,
we provide the time complexity analysis of FRANe further demonstrat-
ing its scalability. Finally, FRANe offers as the result the interpretable
relational structures used to derive the feature importances.

Keywords: Feature ranking · Feature selection · Unsupervised
learning · Attribute networks · PageRank

1 Introduction

Increasing amounts of high-dimensional data, in fields such as molecular and
systems’ biology, require development of fast and scalable feature ranking algo-
rithms [14]. By being able to prioritize the feature space with respect to a given
target, feature ranking algorithms already offer, e.g., novel biomarker candidates.
However, the amount of available labeled data is potentially much smaller when
compared to the amount of unlabeled data, which remains largely unexploited.
In response, unsupervised feature ranking algorithms (that operate only on unla-
beled data) are actively developed.

We propose FRANe, a Feature Ranking approach based on Attribute
Networks), schematically shown in Fig. 1. FRANe achieves state-of-the-art per-
formance by exploiting data-derived relations between the features (which form
an undirected weighted graph). The contributions of this work are manifold, and
can be summarized as follows:
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Fig. 1. Overview of the FRANe method.

1. We propose FRANe, a fast algorithm for unsupervised feature ranking based
on reconstructing attribute networks and subsequent node ranking.

2. We demonstrate the algorithm’s state-of-the-art performance on 26 datasets,
validating our claims via Bayesian and classical performance analysis.

3. We present an extensive theoretical analysis of the proposed algorithm.
4. We offer an implementation of FRANe as a simple-to-use, freely available

Python library, which also includes other baseline approaches.

The remainder of this work is structured as follows. In Sect. 2, we discuss the
related work that has led us to propose FRANe. We describe the proposed
method in Sect. 3. Next, we discuss the experimental setup (Sect. 4), followed by
our results (Sect. 5) and conclusions (Sect. 6).

2 Related Work

Unsupervised feature ranking is a relatively new research endeavor. An overview
of unsupervised ranking algorithms [13] was published only recently. Some of
the currently well-established methods for unsupervised feature ranking include:
Laplace [8], MCFS, and NDFS. All of them construct a network of instances
by employing an instance similarity measure. Finally, recent work – awarded the
best paper award at ECML PKDD 2019 – uses autoencoder [7]: the AgnoS-S
algorithm gives feature ranking scores as a parameter vector at the early stages
of a neural network, which learns to reconstruct the input space and assigns each
input variable a score as a side-result.

Apart from the unsupervised feature ranking literature, we also draw inspi-
ration from the literature on network reconstruction and its applications in gene
expression analysis [5,9,12]. Network reconstruction derives a network from a
tabular data set, so that relations between instances (rows) or features (columns)
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are identified, maintained, and used for a given down-stream task. Once a tab-
ular data set is converted to a network (graph), various centrality measures can
be used to determine the centrality of the nodes in the network. Our method
uses PageRank centrality measure [11] and its generalization to weighted graphs.
While we use it in the unsupervised fashion (somewhat similarly to [16]), it can
be also used in the supervised scenario [1].

3 Method

Real data often consists of groups of similar features. Intuitively, each such group
has a representative feature that is most similar to all others. This feature can
be expected to predict the values of the other features in the group reasonably
well, making the others redundant. Thus, the most central features are poten-
tially good candidates for a set of features that a feature selection algorithm
would return. When the number of features in the data goes into thousands
and more, it is expected that many of them are effectively random noise or
completely redundant. The corresponding noisy weights could prevent discov-
ering the wanted centrality values: We therefore introduce a minimal weight
threshold and only connect the features that are similar enough.

It is not clear in advance which threshold value is the best. Therefore, we
try out a set of candidate thresholds, following geometric threshold progression
and ranging from the minimal to the maximal edge weight. We calculate the
centrality (feature importance) values from the corresponding graphs, and obtain
a set of feature rankings. Among those, we choose the one that maximizes the
heuristic that is based on the intuition that the feature importance values in a
good ranking have a large spread. Rankings obtained with low thresholds are
expected to be similar, whereas small increases of high thresholds can cause large
changes in the rankings. Sets of candidate thresholds with few low thresholds
and many large ones, e.g., the geometric threshold sequence, are expected to
give good results.

3.1 Algorithm

Let X = [xi,j ]i,j ∈ R
m×n be a data set, where m is the number of examples and

n is the number of features. The i-th example (row in the matrix X), 1 ≤ i ≤ m,
is given as xi = [xi,1, . . . , xi,n]. The j-th feature, 1 ≤ j ≤ n, is given as a feature
vector (column in the matrix X) fj = [x1,j , . . . , xm,j ]T .

The computation of FRANe is given in Algorithm 1. At input, it takes the
(training) data X, a minimal edge threshold and the number of iterations I.
First, it computes the feature similarly matrix W = [wj,k] ∈ R

n×n. It then
computes the geometric sequence T of (edge-weight) thresholds as follows. First,
we define the set of similarities between different features W ′ = {wj,k | j �= k},
together with M ′ = max(W ′) and m′ = min(W ′). Then, the dissimilarity values
D = {M ′ − w|w ∈ W ′ ∧ w < M ′} are computed. Finally, the thresholds ti ∈ T
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are defined as T = [t1, . . . , tI ] where

ti = M ′ − min(D) ·
(

max(D)
min(D)

)(i−1)/(I−1)

(1)

The temporary resort to dissimilarities is necessary, because we want to analyze
the region of larger similarities more thoroughly. For every threshold ti ∈ T , we
build a weighted graph G(ti) with n vertices that correspond to features. An
edge with the weight wj,k between fj and fk exists in G(ti), if wj,k ≥ ti. To
avoid too sparse graphs, we consider only those, for which the average degree
ē = |{wj,k|j < k ∧ wj,k ≥ ti}|/n exceeds ēmin = 1.

We run a PageRank on the graph G(ti), which returns a possible ranking
r(ti) = [PR(f1), . . . ,PR(fn)], where PR(fj) is the PageRank importance PR (j)
of the node of feature fj in G(ti), as defined in [1,11]. After iterating through
all thresholds, calculating the rankings r(ti) for each ti ∈ T , we pick as output
the ranking with the highest value of the ranking quality heuristic RQH, where

RQH(r) =
second largest score in r

second smallest score in r
. (2)

The second largest and smallest scores are taken for stability reasons as the
medians of the three largest and smallest scores, respectively.

Algorithm 1: FRANe(X, ēmin, I)
1 W = compute [wj,k]

n
j,k=1 = [PearsonCorr(fj , fk) + 1]nj,k=1 // wjk ≥ 0

2 S = [] // candidate rankings

3 T = list of I thresholds ti // Eq. (1)

4 for ti ∈ T do
5 ē = |{wj,k|j, k ∧ wj,k ≥ ti}|/n // Avoid sparse graphs

6 if ē ≥ ēmin then
7 r = PageRank(G(ti))
8 add r to S

9 return argmaxr∈S RQH(r) // Eq. (2)

The first step of the algorithm requires the computation of pairwise similari-
ties, yielding time complexity of O(mn2). Then, all the graphs G(ti) can be con-
structed in the total time of O(n2), if we start with a fully connected graph and
then incrementally remove the edges with the weights on the intervals [ti−1, ti).
Using the power method for PageRank and assuming that the number of iter-
ations is upper-bounded with some constant [11], computing PageRank takes
O(n2) steps. Thus, the total number of steps in the algorithm is O(m·n2+I ·n2).
Note that the most time-consuming step (similarity computation) can be easily
parallelized, and that computing PageRank demands only vectorizable matrix-
vector multiplication and vector-vector addition.
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4 Experimental Setup

In this section, we describe the experimental procedure that we employ to inves-
tigate the following questions: i) How does FRANe compare to state-of-the-art
methods for unsupervised feature ranking, and ii) What is the influence of the
different parameters or FRANe on its performance?

We first give a brief description of the data sets used, continue with the
evaluation procedure and finish with the parametrization of the methods. Note
that the code that allows for replicating our experiments (including the
computation of training and testing splits) is freely available at https://github.
com/FRANe-team/FRANe-dev.

We obtained the data from the Scikit-feature repository [10]. We wanted
to use all the datasets, but had to exclude three data sets from the study
(orlraws10P, lung-small and warpAR10P) to meet the independence assump-
tions of the statistical tests. Table 1 gives a more detailed description of the
data, including their domains. When evaluating the feature ranking algorithms,
we follow the approach of [7]. Here, an algorithm is evaluated via 10-fold cross-
validation. For a given partition of a data set into test part (one of the folds)
and train part (the remaining 9 folds), feature ranking is computed on the train
part. Then, the n′ top-ranked features are selected and the 5 nearest neighbor
(5NN) model that uses only these features for predicting the values of all the
features is trained (on the train part of the data). Finally, the performance of
the feature ranking algorithm is measured in terms of the predictive performance
of the 5NN model on the test set. As evaluation measure, we use the average
relative mean absolute error RMAE = 1

n

∑n
i=1

1
mTEST

∑mTEST
j=1

|x̂ij−xij |
σ(fi)

, where
mTEST is the number of examples in the test set, x̂ij is the 5NN’s prediction for
xij , and σ(fi) =

√
Var (fi) is the standard deviation of the feature fi. A low

Table 1. Number of features (n), examples (m) and the domain of the used bench-
marks.

n m Domain n m Domain

gli-85 22283 85 biology glioma 4434 50 biology

smk-can-187 19993 187 biology relathe 4322 1427 text data

cll-sub-111 11340 111 biology lymphoma 4026 96 biology

arcene 10000 200 mass spectrometry lung 3312 203 biology

pixraw10p 10000 100 face image pcmac 3289 1943 text data

nci9 9712 60 biology warppie10p 2420 210 face image

carcinom 9182 174 biology colon 2000 62 biology

allaml 7129 72 biology coil20 1024 1440 face image

leukemia 7070 72 biology orl 1024 400 face image

prostate-ge 5966 102 biology yale 1024 165 face image

tox-171 5748 171 biology isolet 617 1560 speech recognition

gisette 5000 7000 digit recognition madelon 500 2600 artificial

baseshock 4862 1993 text data usps 256 9298 drawings

https://github.com/FRANe-team/FRANe-dev
https://github.com/FRANe-team/FRANe-dev


Unsupervised Feature Ranking via Attribute Networks 339

value of RMAE means that the subset of n′ chosen features can well reconstruct
all the feature values.

The obtained RMAE values are averaged over the 10 folds. To see how
the predictive performance of 5NN changes as more and more top-ranked fea-
tures are considered, one can build a series of 5NN models that use n′ ∈
{1, 2, . . . , 2k} ∪ {n}, where 2k ≤ n < 2k+1 features, as shown in Fig. 2. This may
be more informative, but is harder to analyze when comparing different algo-
rithms through statistical tests. For such comparisons, performance at n′ = 16
is chosen. The hierarchical Bayesian t-test considered in this work is discussed
in more detail in [2]. The test approximates the posterior probability of the dif-
ference in performance between a pair of classifiers. The posterior plot can be
visualized as a simplex, where each point represents a sample from the poste-
rior distribution. By counting such samples in different parts of the simplex, the
probability of one classifier outperforming the other is estimated.

The number of iterations in FRANe was set to I = 100 and the threshold
for the average number of edges was set to ēmin = 1. For the decay factor δ in
PageRank, the recommended value of δ = 0.85 was used. For other algorithms,
we used the recommended parameter values. Additionally, the number of clusters
for the methods MCFS and NDFST was set to the number of classes in the
datasets at hand. This was possible since we used classification datasets from
the Scikit-feature repository. The classes were otherwise ignored.

5 Results

In this section, we first report the results of the comparison between FRANe
and its competitors. We then focus on different parts of FRANe and consider
alternative design choices.

The RMAE values for the different feature ranking methods, i.e., the corre-
sponding 5NN models, are shown in Table 2. We can see that FRANe outper-
forms its competitors. First of all, it has the best average rank (1.88) among
the considered algorithms. The second best algorithm (in terms of the average
rank) is Laplace with an average rank of 2.54. The difference between FRANe
and the other algorithms is even more visible when we compare the numbers of
wins: FRANe is the best performing algorithm in 12 cases (46% win rate). The
second highest number of wins (5) is achieved by NDFS.

To also show some statistical evidence for the quality of the FRANe rankings,
we employ the Bayesian hierarchical t-test [2], since it directly answers which
of the two compared algorithms is better. The other popular option – frequen-
tist non-parametric tests such as Friedman and Bonferroni-Dunn [6] – allow for
comparison of more than one algorithm, but these tests are typically too weak
(as follows from their definitions [6]), and are harder to interpret.

The Bayesian comparison indicates that FRANe dominates its closest com-
petitor (Laplace), in 26% of the cases, whereas the Laplace method is better in
only 2% of the cases. In the other cases, the difference in performance is smaller
than 0.001 and is considered practically insignificant. This is consistent with the
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Table 2. The performance (measured in terms of RMAE) of 5NN models that use the
n′ = 16 top-ranked features from a given feature ranking. The last two rows of the
table additionally give the average rank of each algorithm and its number of wins, i.e.,
the number of times it is ranked first. The best result in each row is shown in bold.

FRANe Laplace NDFS Agnos-S MCFS SPEC

gli-85 0.745 0.736 0.775 0.774 0.747 0.797

smk-can-187 0.610 0.612 0.62 0.656 0.626 0.597

cll-sub-111 0.716 0.738 0.736 0.763 0.77 0.777

arcene 0.759 0.457 0.457 0.734 0.457 0.733

pixraw10p 0.348 0.412 0.412 0.352 0.412 0.377

nci9 0.763 0.771 0.771 0.839 0.771 0.807

carcinom 0.719 0.739 0.751 0.743 0.717 0.743

allaml 0.711 0.726 0.747 0.775 0.744 0.749

leukemia 0.824 0.833 0.833 0.857 0.833 0.836

prostate-ge 0.485 0.503 0.482 0.552 0.509 0.649

tox-171 0.725 0.77 0.785 0.734 0.776 0.781

gisette 0.440 0.481 0.481 0.509 0.481 0.533

baseshock 0.174 0.188 0.163 0.182 0.191 0.197

glioma 0.609 0.643 0.636 0.716 0.615 0.685

relathe 0.182 0.174 0.183 0.284 0.187 0.218

lymphoma 0.774 0.873 0.873 0.804 0.873 0.873

lung 0.700 0.708 0.734 0.749 0.701 0.780

pcmac 0.156 0.147 0.160 0.168 0.147 0.163

warppie10p 0.370 0.526 0.526 0.316 0.526 0.526

colon 0.652 0.661 0.661 0.666 0.661 0.661

coil20 0.234 0.364 0.205 0.407 0.786 0.528

orl 0.572 0.703 0.703 0.479 0.703 0.703

yale 0.608 0.749 0.749 0.572 0.749 0.749

isolet 0.567 0.548 0.562 0.523 0.619 0.643

madelon 0.853 0.856 0.856 0.86 0.856 0.856

usps 0.371 0.338 0.283 0.337 0.422 0.394

average rank 1.88 2.54 2.88 4.04 3.19 4.42

number of wins 12 4 5 4 3 1

results in Table 2: the overall win-rate of FRANe is notably higher (12 against 4),
even though these two algorithms differ by less than one in average rank values.
A detailed (and more global) comparison of the rankings (where the number of
chosen features varies from 1 to n) on Gisette data set is given in Fig. 2. It is
clear that the FRANe rankings are the best as its corresponding curve is below
the curves of all other rankings.
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Fig. 2. Error curves for the different rankings on Gisette dataset.

5.1 Alternative Design Choices

After we have proved that FRANe offers state-of-the-art performance, we now
investigate the sensitivity of its performance to varying its key components.
Due to space constraints, we only vary the similarity measure used in the com-
putation of the matrix W , the threshold progression that defines the list of
edge-weight thresholds T , and the ranking quality heuristic RQH, while the
node-centrality measure is left fixed (PageRank), and left for further work. We
first give a brief description of the considered threshold progressions and similar-
ity measures between different features W ′ = {wj,k | j �= k}, with m′ = min W ′,
and M ′ = max W ′.

Similarity Measures. Let fj = [x1,j , . . . , xm,j ],fk = [x1,k, . . . , xm,k] ∈ R
m

be two feature vectors. Besides correlation, other similarity measures can be
used. They are all based on different distance measures d(fj ,fk): i) Can-
berra (

∑m
i=1

|xi,k−xi,j |
|xi,j |+|xi,k| , ii) Chebyshev (maxm

i=1 |xi,k − xi,j |), iii) Manhattan

(
∑m

i=1 |xi,k − xi,j |), and iv) Euclidean (
(∑m

i=1 |xi,k − xi,j |2
)1/2). The corre-

sponding similarity measures are defined as sim(fjfk) = M ′ − d(fjfk).

Threshold Functions. The definition of the thresholds ti from Eq. (1) originally
follows the geometric progression. The alternatives are: i) Linear(m′,M ′), ii)
Linear(mean(W ′),M ′), iii) Linear(median(W ′),M ′), and iv) Quantile, where
ti = i-th I-quantile of W ′’s for the latter, and ti = b−a

I−1 (i−1)+a for Linear(a, b).
The motivation for using linear progression that starts at the mean (or its more
stable analogue the median) of the W ′ values is that, intuitively, larger thresholds
are more interesting to analyze, since the corresponding graphs are sparser.

The results (see Fig. 3) show that FRANe is quite robust with respect to the
chosen threshold progression and to the chosen similarity measure. Except for
the correlation similarity (works best for 10/26 data sets), and the geometric
threshold progression (works best in 9/26 cases), all the similarity measures
and threshold progressions perform approximately equally well. Still, no fixed
(progression, similarity) pair has more than 3 wins. The detailed results are
available at https://github.com/FRANe-team/FRANe). They also include the
experiments with RQH, where we show that RQH outperforms random search
(in 22/26 cases), which is often considered a strong baseline in optimization [3].

https://github.com/FRANe-team/FRANe
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Fig. 3. Average ranks (over datasets) of different combinations similarity metric
- threshold progression. The legend denotes the average rank of a given metric-
progression combination (the lower, the better).

6 Conclusion

In this work we have presented FRANe, an algorithm for network-based unsu-
pervised feature ranking. In contrast to existing approaches, FRANe attempts
to reconstruct a representative network of features. By ranking nodes in this
network via the efficient PageRank approach, we achieve state-of-the-art results
for the task of unsupervised feature ranking.

The results indicate that the proposed unsupervised ranking algorithm is
indeed a strong competitor to the existing approaches. Theoretical analysis indi-
cates the O(n2) complexity of the distance computation as one of the main
bottlenecks. The current implementation of FRANe, however, exploits highly
optimized compiled routines and scales seamlessly for each of the considered
data sets. An extension which would reduce the quadratic complexity could
include random subspace sampling (where the probability of choosing a feature
depends on its variance).

The proposed methodology is suitable from the interpretability point of view,
as the key nodes (features) and their, e.g., correlation-based neighborhoods are
easily inspected. This can potentially offer novel insights into key parts of the
feature space governing a given data set’s structure.

Given that the main spatial bottleneck is related directly to computation
of PageRank scores (maintaining the graph in the memory), we believe that
an option for further scalability could potentially include distributed storage-
based matrix operations [4,15], which would facilitate ranking of attributes when
considering very large data sets.

As further work, we believe that distances between features could be also
computed in latent space, where embeddings of features would be first obtained
(via the transposed feature matrix), potentially speeding up the correlation com-
putation, as well as providing more robust rankings. Furthermore, the body of
work related to metric learning could similarly prove useful when determining
the most suitable similarity score.
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Abstract. Decision tree classifiers have been proved to be among the
most interpretable models due to their intuitive structure that illus-
trates decision processes in form of logical rules. Unfortunately, more
complex tree-based classifiers such as oblique trees and random forests
overcome the accuracy of decision trees at the cost of becoming non
interpretable. In this paper, we propose a method that takes as input any
tree-based classifier and returns a single decision tree able to approximate
its behavior. Our proposal merges tree-based classifiers by an intensional
and extensional approach and applies a post-hoc explanation strategy.
Our experiments shows that the retrieved single decision tree is at least
as accurate as the original tree-based model, faithful, and more inter-
pretable.

Keywords: Interpretable machine learning · Decision tree · Oblique
tree · Model transparency · Merging decision trees

1 Introduction

Decision tree (DT) classifiers are very popular models still widely adopted in
various business domains because their tree-like representation of knowledge is
intuitive and because generally makes the decision logic employed interpretable
by humans. The drawback of DTs is that their greedy training procedure returns
models which are not remarkably accurate, especially for complex classification
problems. To address this issue, DTs have been “empowered” either by using
ensembles such for Random Forests [8] or by adopting multivariate and nonlinear
splitting conditions such as in Oblique Trees [18]. Such models can reach higher
levels of accuracy than regular DTs. Unfortunately, the high accuracy of these
complex tree-based classifiers is paid by giving up interpretability.

In the literature, we can find two research lines to deal with the lack of inter-
pretability of these complex tree-based classifiers. The first one relates to tree
merging procedures [1,5,7] and the idea is to merge a set of DTs into a single one
“summarizing” their behavior. Strategies for merging trees are different: joining
DTs learned in parallel from disjoint subsets of data [7]; inducing a DT from
the intersection of decision tables, each one representing a tree [1]; applying a
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 347–357, 2021.
https://doi.org/10.1007/978-3-030-88942-5_27
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recursive lossless merging procedure that makes the order of the merging not
relevant [5]. The second research line is related to eXplainable Artificial Intelli-
gence (XAI) approaches [6]. Starting from [2], in the literature we can find a set
of works aiming at approximating the behavior of a classifier with a single DT
for explaining the classification reasoning. To reach this goal different strategies
have been proposed: inducing a DT from a set of selected “prototypes” [10];
using genetic programming to evolve DTs to mimic the behavior of a neural net-
work [9]; building several ensembles on synthetically augmented data and then,
learning a single DT on the enriched data [3]; constructing a DT by using the set
of rule conjunctions that represent the original decision forest [13]; interpreting
tree ensembles by finding tree prototypes in the tree space[16].

In this paper we combine these two research lines. We propose a single-tree
approximation method (same) that exploits a procedure for merging decision
trees, a post-hoc explanation strategy, and a combination of them to turn any
tree-based classifier into a single and interpretable DT.

The implementation of same required to adapt existing procedures for merg-
ing traditional decision trees to oblique trees by moving from an intensional
approach to an extensional one. Our experiments on eight tabular datasets show
that same is efficient and that the retrieved single decision tree is at least as
accurate as the original non interpretable tree-based model.

2 Setting the Stage

We address the single tree approximation of tree-based black box classifiers [2,6].
Consider a classification dataset X,Y consisting of a set X = {x1, x2, . . . , xn} of
instances with l labels (or classes) assigned to an instance in the vector Y ∈ Nn.
An instance of x ∈ Rm consist in a set of m pairs of attribute-value (ai, vi),
where ai and vi is a value from the domain of ai. We define a classifier as a
function f : X (m) → Y which maps data instances x from a feature space X (m)

with m input features to a decision y in a label space Y, where y can take l
different labels. We write f(x) = y to denote the decision y given by f on x. We
assume that any classifier can be queried at will.

Given a not interpretable tree-based classifier b, such as Random Forests [8]
or Oblique Trees [18], our aim is to define a function taking as input b, X,
and Y and returns a single DT classifier d which should guarantee the following
properties. First, d must be able to mime the behavior of b, i.e., d(x) = b(x) for as
many instances x ∈ X as possible. Second, the accuracy of d on unseen instances
should be comparable with the accuracy of b. Third, d should not be a complex
and deep tree to guarantee high levels of interpretability. The single decision tree
d is intrinsically transparent because it is humanly possible to understand the
reasons for the decision process of every instance d(x) = y.

In the following we summarize some key concepts important for our proposal.

Merging Decision Trees. Merging DT approaches are accurately described
in [14]. Four phases are identified to merge a set of trees T1, T2, . . . , Tk trained
on various subsets of a given dataset into a unique decision tree T .
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In the first phase, a decision tree Ti is transformed into a set of rules or rule
tables (also named decision regions or decision tables1). In the second phase, the
decision regions of two models T1, T2 are merged using a specific approach. The
most intuitive idea to merge two rule tables is to compute the intersection of
all the combinations of the rules from each region and use the results as merged
table model. If the regions of the rules that are being intersected are dis-joined,
the resulting rule will be empty. The intersection of two overlapping regions is
added to the final table model. The class label associated with it is obvious when
the two initial regions have the same outcome, otherwise it is necessary to solve
the class conflict by employing a specific strategy such as using the class of the
rule the highest confidence or probability [1]; or associating to each region a
weight and selecting the class with highest weight [15]. The approach presented
in [5] allows for simultaneously merging the decision regions of every tree. It uses
the notion of condition tree. Given a tree T and a condition C, let Sj denote
the condition set of node j in T , which is composed of conditions from root to
node j, then a condition tree T (C) is composed of those nodes in T such that
all the conditions in Sj satisfies C. Hence, if an inner node in T is not included
in T (C), then all its branches are not included in T (C). Once that two models
are merged, the third phase, named “pruning”, tries to reduce the number of
regions. In [1] the regions with the lowest relative number of training samples
are filtered out, while in [7] redundant rules are removed during the resolution of
class conflicts. Another strategy joins adjacent regions with the same predicted
class [1,15]. In [5] the final tree T is pruned by removing inner nodes having
as leaves the same class. Finally, the fourth phase consists in growing the final
DT from the decision regions. In [1,15] the final DT is obtained by using the
same procedure used to create the initial trees on the values in the regions in
the final decision table. In [5] the final DT is directly obtained from the merging
procedure.

We adopt the recursive merging procedure described in [5] because (i) it is
more efficient and requires less memory than others, (ii) it does not require to
re-train a DT at the end of the computation, (iii) it produces a DT with multi-
way splits that is theoretically less deep than a binary DT, (iv) the merging
method is lossless as it maintains for every instance the class label assigned by
the tree ensembles with the same majority voting.

Impact of Attribute Types on Tree-based Classifiers. The aforemen-
tioned procedure for merging DTs suffers in presence of many attributes, and
also in presence of large (potentially infinite) domains for each attribute. Indeed,
in [5] is shown that the size of T merged from the trees learned from data with
categorical attributes are much smaller than the trees learned from data with
numerical attributes. Therefore, in [5] numerical attributes are discretized using
the Recursive Minimal Entropy Partitioning (RMEP) method described in [4].
RMEP recursively divides the numerical values minimizing the entropy of the
target class. The obtained splits are used to define regions represented by a sin-
gle representative value. In [5] Fan et al. show that there is a negligible effect on
1 We use Ti for DT, rule tables, decision tables, and decision regions.
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the classification accuracy when using discretization w.r.t. not using it. Finally,
we turn categorical attributes into numbers through target encoding [11].

Post-hoc Explanation Strategy. Research on XAI has flourished over the
last few years [6,12]. Explanation methods can be categorized as: intrinsic or
post-hoc, depending on whether the machine learning approach is transparent
or if the explanation is retrieved by querying the model after the training; and
local or global, depending on whether the explainer reveals the reasons for the
prediction of a specific instance, or the overall logic of obscure model. We mention
this categorization because in our work we rely on global post-hoc explanation.
Thus, given a black box classifier b trained on a dataset X,Y , a global post-hoc
explainer f applied on b and X aims at finding an interpretable classifier c, i.e.,
c = f(b,X), such that the behavior of c on X is adherent with the behavior of
b on X, i.e., b(X) ∼ c(X). For instance, in [2] a particular DT c is trained on
X, Ŷ = b(X) and the global interpretable model c is returned as explanation.

3 Single-Tree Approximation Method

Our proposal to tackle the problem formulated in Sect. 2 consists of reducing
any tree-based classifier to a single tree approximating its behavior. We name
it same, standing for single-tree approximation method, and we illustrate its
pseudo-code in Algorithm 1. The main idea of same is to exploit procedures for
merging DTs, a post-hoc explanation strategy, and a combination of them to
turn any tree-based classifier into a single interpretable DT.

same takes as input a known dataset X, a tree-based classifier b, a flag μ
indicating if oblique trees have to be merged, and a flag ν indicating if the
post-hoc explanation approach is applied separately to each oblique tree of the
forest. The algorithm returns a single DT classifier T . We assume that X has
statistical properties similar to the training set used by b. It works in different
ways depending on the type of b.
– Case 1. If b is a single DT it directly returns it (lines 9–10).
– Case 2. If b is a forest of DT (lines 11–12), then same runs the forest2single

function (lines 1–4) that exploits the mergeTrees procedure described in [5].
– Case 3. If b is a single oblique tree, same runs the b2forest function to derive

a random forest from b and then, from the forest it merges the various trees
with forest2single like in Case 2 (lines 13–15). The b2forest function (lines 5–
8) classifies X using the single oblique tree and then trains on X, Ŷ a random
forest classifier, i.e., it approximates the behavior of an oblique tree with a
random forest.

– Case 4. If b is a forest of oblique trees and μ is false, same applies the same
procedure described for Case 3, i.e., it runs the b2forest function that in this
case derives a random forest mimicking the forest of oblique trees and from
it merges the various trees with forest2single (lines 16–18).

– Case 5. If b is a forest of oblique trees and μ is true, same first runs the
oforest2osingle, that as described in following subsection derives an oblique
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Algorithm 1: same
Input : X - known data, b - tree-based classifier, μ - merge oblique trees flag,

ν - disjoint post-hoc explanation flag
Output: T - single decision tree

1 function forest2single(b):
2 T = {T1, . . . , Tk} ← getTrees(b);
3 return mergeTrees(T );

4 function b2forest(b, X):

5 Ŷ ← b(X);

6 return trainRandomForest(X, Ŷ );

7 if b is Single Decision Tree then
8 T ← b;
9 else if b is Forest of Decision Trees then

10 T ← forest2single(b);
11 else if b is Single Oblique Trees then
12 RF ← b2forest(b, X);
13 T ← forest2single(RF);

14 else if b is Forest Oblique Trees ∧ ¬μ then
15 RF ← b2forest(b, X);
16 T ← forest2single(RF);

17 else if b is Forest of Oblique Trees ∧ μ ∧ ¬ν then
18 OT ← oforest2osingle(b, X);
19 RF ← b2forest(OT , X);
20 T ← forest2single(RF);

21 else if b is Forest Oblique Trees ∧ μ ∧ ν then
22 T ← ∅;
23 for OT i ∈ b do
24 RF i ← b2forest(OT i, X);
25 T ← T ∪ getTrees(RFi );

26 T ← forest2single(T );

27 return T ;

trees from a forest of oblique trees and, then it turns the oblique tree OT
into a single DT as in Case 3 (lines 19–22).

– Case 6. If b is a forest of oblique trees μ is true and ν is true, same turns each
oblique tree of the oblique forest into a forest of traditional DTs repetitively
applying b2forest . Finally, it runs the forest2single on the union of the derived
forests of DTs (lines 23–28).
same reduces any approximation problem with another one for which a solu-

tion is known in a sort of “cascade of approximations” making possible in this
way to turn any classifier based on traditional or oblique trees into a single
DT. The flags μ and ν controls the different type of approximation when the
tree-based classifier is a forest of oblique trees: if μ is false, the post-hoc expla-
nation strategy is directly employed for approximating the oblique forest; when
μ is true and ν is false, the forest of oblique trees is approximated directly with
the function oforest2osingle described in the following; when both are true, the
post-hoc explanation approach is applied separately for each oblique tree.

Merging Oblique Trees. We define the oforest2osingle function used to merge
a forest of oblique trees into a single oblique tree as an extension of the algorithm
presented in [5]. The needs of adaptation comes from the higher complexity of
the test in the nodes of oblique trees that can take the form of a multivariate test,
and each multivariate test constitutes itself a meta-feature. A partition of the
space using this higher level test changes the shape of the regions to be merged
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by the merging tree algorithm [5]. Thus, we define a different construction of the
condition tree, and a more complex procedure for selecting the features for the
final merge. We employ an available dataset X to model the relationship between
two conditions exploiting the records in X satisfying those conditions. In other
words, we turn the relationship between two conditions definition described in [5]
from intentional to extensional. In [5] the relationship between two conditions is
formally defined as:

Definition 1 (Relationships of Two Conditions). Given two conditions C1,
C2, where C1 is a condition si ∈ I1, and C2 is a condition sj ∈ I2, with si, sj

being a split attribute, and I1, I2 being real value intervals. If i = j and I1∩I2 = ∅,
then C1 ∩ C2 = ∅, in all the other cases C1 ∩ C2 �= ∅.
That is, two conditions C1 and C2 have a relationship (C1∩C2 �= ∅) if they iden-
tify a common region of the data. We define the data-driven relationship between
two multivariate conditions as follows, exploiting the notion of coverage of a mul-
tivariate condition defined as the set of records in X satisfying (or covered by)
the multivariate condition MC, i.e., covX(MC) = {xi|∀xi ∈ X s.t. MC(xi)},
where MC(xi) is true if the record xi satisfies the multivariate condition MC.

Definition 2 (Data-Driven Relationships of Two Multivariate Condi-
tions). Given a dataset X and two multivariate conditions MC1, MC2, we have
that if covX(MC1) ∩ covX(MC1) = ∅ then MC1 ∩ MC2 = ∅, in all the other
cases MC1 ∩ MC2 �= ∅.

MC indicates a multivariate condition of a given oblique tree node, that can
also involve a single variable. We define an oblique condition tree as follows:

Definition 3 (Oblique Condition Tree). Given an oblique decision tree T ,
a multivariate condition MC, and a dataset X, let Sj denote the multivariate
condition set of node j in T which is composed of the multivariate conditions
from root to node j. An oblique condition tree T (MC) is composed of the nodes
in the branch Sj satisfying {∀ MC ′ ∈ Sj ,MC ′ ∩ MC �= ∅}. If an inner node in
T is not included in T (MC), then all its branches are not included in T (MC).

Given an oblique decision tree T and a multivariate condition MC, a simple
algorithm for computing T (MC) is to traverse T depth-first from the root. For
each branch of multivariate condition MC ′ of inner node j, there are two cases:
(i) if MC ′ satisfies MC1∩MC2 �= ∅ keep the root of that branch and search that
branch recursively; (ii) if MC ′ satisfies MC1 ∩ MC2 = ∅ then the whole branch
is not included in T (MC). The definition of pruned condition trees is directly
applied to pruned oblique decision tree. Indeed, the inner node j is kept in the
oblique condition tree if there are records in X satisfying MC in both partitions
after the split determined by MC ′ in node j, i.e., |covX(MC ∧ MC ′)| > 0 and
|covX(MC ∧ ¬MC ′)| > 0. If this is not the case and |covX(MC ∧ MC ′)| = 0
or |covX(MC ∧ ¬MC ′)| = 0, then the oblique condition tree maintains only
the sub-branch covering at least one instance. If both |covX(MC ∧ MC ′)| = 0
and |covX(MC ∧ ¬MC ′)| = 0, then no sub-branches must be added to the tree.
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Table 1. Datasets details (left). Tree-based classifiers performance (right).

Dataset n m l DT RF OT OF

acc F1 acc F1 acc F1 acc F1

iris 150 4 3 .933 .933 .933 .933 .933 .933 .933 .933

cancer 569 30 2 .921 .918 .930 .926 .921 .916 .956 .953

armchair 1000 2 3 .920 .922 .902 .902 .920 .922 .922 .924

german 1000 19 2 .720 .678 .660 .534 .735 .677 .755 .704

employee 1470 29 2 .816 .551 .854 .554 .871 .676 .850 .566

compas 7214 9 3 .628 .535 .631 .538 .634 .538 .636 .531

fico 10459 23 2 .712 .710 .717 .717 .707 .706 .730 .728

adult 32561 12 2 .853 .778 .854 .767 .851 .772 .850 .770

Table 2. Fidelity in approximating RF, OT, RF. Best values are underlined.

Dataset RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 1.00 1.00 .933 1.00 .733 .333 1.00 1.00

cancer .991 .947 .860 .947 .912 .912 .932 .930

armchair .892 1.00 .918 1.00 .980 .838 .972 1.00

german .975 .975 .945 .925 .810 .820 .785 .880

employee 1.00 .959 .969 .956 .898 .969 .963 .966

compas .897 .979 .880 .996 .916 .859 .858 .994

fico .978 .962 .908 .962 .911 .894 .911 .900

adult .995 .994 .988 .951 .964 .992 .970 .988

Therefore, at a high level, the function oforest2osingle can be implemented as
in [5] but updating the definition of condition tree with the definition of oblique
condition tree. However, practically it is worth to mention another important
difference from [5]. Step 1 of the recursive merging procedure described in [5]
determines the split attribute to use for the root of T by selecting the most
frequent split attribute: when dealing with multivariate conditions of oblique
trees is not trivial to determine the most frequent attribute. Thus, we defined
the following policies: (i) Aiming at interpretability, we prefer univariate splits,
acting on a unique variable, to multivariate, splits2. Among traditional univariate
conditions we select the most frequent one. (ii) Among multivariate conditions
we prefer those leading to the highest information gain during the training of
the oblique tree that generated that split. (iii) In case of multivariate conditions
with the same number of splits and with the same gain, we randomly select one
of them.

2 We highlight that also oblique trees can adopt as best split a traditional split.
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4 Experiments

In this section we show the effectiveness of same when approximating different
types of tree-based classifiers on various datasets3.

We experimented same on eight datasets4. Details are in Table 1 (left). We
split each dataset into three partitions: Xtr used for training tree-based classifiers
(56%), Xap used by same for the post-hoc approximation strategies (24%), Xts

used to measure the performance of the resultant single trees (20%).
We trained and approximated with a single decision tree the following tree-

based classifiers: Decision Tree (DT) and Random Forest (RF) as implemented
by scikit-learn; Oblique Decision Tree (ODT) and Oblique Forest (OF) as imple-
mented in [17]5. We select the best parameter setting for DTs and OTs using a
randomized search with cross-validation on Xtr analyzing different max depths
and class weights6. For RFs and OFs we used ensembles composed by 20 esti-
mators and with max depth equals to 4. For OTs we adopted the House Holder
CART version [18]. Regarding the parameters of same, for Case 3, 4, and 5 we
adopt a RF with 20 base estimators and a 20 max depth [4, 5, 6, 7], while for Case
6 we adopt a RF with 20 base estimators and a 20 max depth [4, 5, 6]. These
parameters are the result of an a randomized search to find the best settings7.

The classification performance are reported in Table 1 (right) in terms of
accuracy and F1-score. We immediately notice that the OFs ha generally the
best performance among the various tree-based classifiers. However, there is a
small but statistically significant discrepancy among the accuracy scores (and
F1-score) of the classifiers (non-parametric Friedman test p-value < 0.1).

To the best of our knowledge the problem treated is somewhat novel and in
the literature there are not competitors explicitly designed for this task. Con-
cerning post-hoc explanations, in line with Trepan [2], we compare same with
phdt, a post-hoc decision tree approximating any tree-based classifier with a
DT. When the tree-based classifier is an OF, we adopt the notation same¬μ,
sameμ¬ν , sameμν to indicate Cases 4, 5, and 6 (Sect. 3), respectively.

All the tree-based classifiers are trained on Xtr, same and phdt exploit the
Xap partition while the evaluation measures are computed on Xts.

Evaluation Measures. We evaluate the performances under different perspec-
tives on the partition Xts. First, we check to which extent the single tree
T is able to accurately mime the behavior of b. We define the fidelity as
fid(Yb, YT ) = eval(Yb, YT ) where Yb = b(Xts), YT = T (Xts), and eval can be

3 Python code and datasets available at: https://github.com/valevalerio/SAME.
Experiments run on Ubuntu 20.04 LTS, 252 GB RAM, 3.30GHz x 36 Intel Core
i9.

4 The datasets are available on same Github, on the UCI repository https://archive.
ics.uci.edu/ml/index.php, and on Kaggle https://www.kaggle.com/datasets.

5 scikit-learn: https://scikit-learn.org/, [17] Github repository https://github.com/
TorshaMajumder/Ensembles of Oblique Decision Trees.

6 max depth ∈ {5, 6, 7, 8, 10, 12, 16, unbounded}, class weight ∈ {normal , balanced}.
7 Details of the parameters tested can be found in same repository.

https://github.com/valevalerio/SAME
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
https://scikit-learn.org/
https://github.com/TorshaMajumder/Ensembles_of_Oblique_Decision_Trees
https://github.com/TorshaMajumder/Ensembles_of_Oblique_Decision_Trees
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the accuracy or the F1-score. Second, we test if T can replace b, i.e., how much
is accurate T if compared with the b on unseen instances Xts. We define the
accuracy deviation Δ as Δ = eval(Y, YT )− eval(Y, Yb) where Y being the vector
of real class for the partition Xts, Yb = b(Xts), YT = T (Xts) and eval can be the
accuracy or the F1-score. Δ is positive if T is better than b on unseen data, it is
negative otherwise, it is zero if they have exactly the same performance8. Third,
we measure characteristics describing a decision tree T such as: number of leaves,
number of nodes, tree depth, and average path length. We aim at obtaining low
values since a simple model is generally more interpretable.

Results. We present the results obtained by approximating single trees with
same and phdt from DT, RF, OT, and OF with the available variants.

Table 2 reports the fidelity using the accuracy as eval (similar results are
recorded for F1-score). We observe that both same and phdt have good per-
formance in approximating the behavior of the various tree-based classifiers.
Indeed, they are even in terms of times which overcomes the other method. For
same the best approximations are those performed using Case 2 on the RF.

Table 3. Accuracy deviation on test set for RF, OT, OF. Best values are underlined.

Dataset RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 0.000 0.000 0.067 0.000 -0.200 –0.600 0.000 0.000

cancer –0.009 0.000 –0.035 –0.018 –0.053 –0.070 –0.035 –0.035

armchair –0.065 0.000 –0.047 0.000 –0.010 –0.105 –0.012 0.000

german –0.015 –0.015 –0.025 –0.035 –0.050 –0.060 –0.025 -0.030

employee 0.000 –0.014 -0.010 –0.017 –0.061 –0.001 –0.010 –0.007

compas –0.023 0.003 –0.034 –0.001 –0.003 –0.024 -0.026 –0.001

fico –0.002 –0.003 0.006 0.001 –0.022 –0.009 –0.021 –0.016

adult –0.001 –0.002 –0.003 –0.010 –0.016 0.000 –0.008 –0.002

Table 3 and Table 4 shows respectively (i) the accuracy deviation using the
accuracy as eval (similar results for F1-score), and (ii) the accuracy of the deci-
sion trees obtained from the approximation of tree-based models trained on Xtr

compared with DTs directly trained on Xtr and tested on Xts. In Table 3 we
observe that the deviation accuracy is only limitedly smaller than zero. This
indicates that the approximated trees have a predictive power comparable to
the original tree-based classifiers. same leads to a decision tree which is more
accurate than the original model four times more than phdt does. Table 4 high-
lights that in five cases out of eight, the decision tree approximated by same is
a better model than a decision tree directly trained on the training data. Table 5
8 We highlight that even though they can have the same performance there is no
guarantee that the mis-classification errors are the same.
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Table 4. Accuracy on test set for single trees approximating RF, OT, OF compared
with the accuracy of the DT. Best values are underlined.

Dataset DT RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris .933 .933 .933 1.00 .933 .733 .333 .933 .933

cancer .921 .912 .921 .895 .912 .868 .851 .921 .921

armchair .920 .855 .920 .855 .902 .910 .815 .910 .922

german .720 .705 .705 .635 .625 .685 .675 .730 .725

employee .816 .816 .802 .844 .837 .810 .870 .840 .843

compas .628 .605 .631 .597 .630 .631 .610 .610 .635

fico .712 .710 .709 .723 .718 .685 .798 .709 .714

adult .843 .852 .851 .851 .844 .835 .851 .842 .848

reports the tree depth. We omit the other characteristics describing decision
trees for space reasons. We observe that in general the trees returned by phdt
are more compact than those returned by same. However in both cases they are
nearly always deeper than the original DTs.

Table 5. Decision trees depth. Bests values are underlined.

Dataset DT RF OT OF

same phdt same phdt same¬μ sameμ¬ν sameμν phdt

iris 3 4 3 5 3 4 1 4 3

cancer 6 19 6 5 6 1 13 10 4

armchair 7 4 6 3 6 4 4 5 5

german 4 3 3 21 8 13 13 14 7

employee 3 28 5 9 7 4 10 17 4

compas 8 13 10 12 10 5 10 10 11

fico 7 25 12 16 9 32 24 14 8

adult 8 15 10 12 13 13 10 8 11

5 Conclusion

We have presented same, a single-tree approximation method designed to effec-
tively and efficiently turn every tree-based classifier into a single DT. Exper-
imentation on various datasets reveals that same is competitive with baseline
approaches or overcomes them. Moreover, the approximated tree can replace the
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original model as it can have better performance. Possible future research direc-
tions are: extending same to any type of tree-based and rule-based classifier and
using same as post-hoc global explanation method for any black box.

Acknowledgment. Work partially supported by the European Community H2020
programme under the funding schemes: G.A. 871042 SoBigData++, G.A. 761758
Humane AI, G.A. 952215 TAILOR and the ERC-2018-ADG G.A. 834756 “XAI: Sci-
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Abstract. In eXplainable Artificial Intelligence (XAI), several counter-
factual explainers have been proposed, each focusing on some desirable
properties of counterfactual instances: minimality, actionability, stabil-
ity, diversity, plausibility, discriminative power. We propose an ensemble
of counterfactual explainers that boosts weak explainers, which provide
only a subset of such properties, to a powerful method covering all of
them. The ensemble runs weak explainers on a sample of instances and
of features, and it combines their results by exploiting a diversity-driven
selection function. The method is model-agnostic and, through a wrap-
ping approach based on autoencoders, it is also data-agnostic.

1 Introduction

In eXplainable AI (XAI), several counterfactual explainers have been proposed,
each focusing on some desirable properties of counterfactual instances. Consider
an instance x for which a black box decision b(x) has to be explained. It should be
possible to find various counterfactual instances c (availability) which are valid
(change the decision outcome, i.e., b(c) �= b(x)), minimal (the number of fea-
tures changed in c w.r.t. x should be as small as possible), actionable (the feature
values in c that differ from x should be controllable) and plausible (the feature
values in c should be coherent with the reference population). The counterfactu-
als found should be similar to x (proximity), but also different among each other
(diversity). Also, they should exhibit a discriminative power to characterize the
black box decision boundary in the feature space close to x. Counterfactual
explanation methods should return similar counterfactuals for similar instances
to explain (stability). Finally, they must be fast enough (efficiency) to allow for
interactive usage.

In the literature, these desiderata for counterfactuals are typically modeled
through an optimization problem [12], which, on the negative side, favors only
a subset of the properties above. We propose here an ensemble of counterfac-
tual explainers (ece) that, as in the case of ensemble of classifiers, boosts weak
explainers to a powerful method covering all of the above desiderata. The ensem-
ble runs base counterfactual explainers (bce) on a sample of instances and of
features, and it combines their results by exploiting a diversity-driven selec-
tion function. The method is model-agnostic and, through a wrapping approach
based on encoder/decoder functions, it is also data-agnostic. We will be able to
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reason uniformly on counterfactuals for tabular data, images, and time series.
An extensive experimentation is presented to validate the approach. We compare
with state-of-the-art explanation methods on several metrics from the literature.

2 Related Work

Research on XAI has flourished over the last few years [5]. Explanation meth-
ods can be categorized as: (i) intrinsic vs post-hoc, depending on whether the
AI model is directly interpretable, or if the explanation is computed for a given
black box model; (ii) model-specific vs model-agnostic, depending on whether the
approach requires access to the internals of the black box model; (iii) local or
global, depending on whether the explanation regards a specific instance, or the
overall logic of the black box. Furthermore, explanation methods can be catego-
rized w.r.t. the type of explanation they return (factual or counterfactual) and
w.r.t. the type of data they work with. We restrict to local and post-hoc methods
returning counterfactual explanations, which is the focus of our proposal.

A recent survey of counterfactual explainers is [15]. Most of the systems
are data-specific and generate synthetic (exogenous) counterfactuals. Some
approaches search endogenous counterfactuals in a given dataset [9] of instances
belonging to the reference population. Exogenous counterfactuals may instead
break known relations between features, producing unrealistic instances. Early
approaches generated exogenous counterfactuals by solving an optimization
problem [12]. In our proposal, we do not rely on this family of methods as
they are typically computationally expensive. Another family of approaches are
closer to instance-based classification, and rely on a distance function among
instances [9,10]. E.g., [10] grows a sphere around the instance to explain, stop-
ping at the decision boundary of the black box. They are simple but effective,
and the idea will be at the core of our base explainers. Some approaches deal
with high dimensionality of data through autoencoders [3], which map instances
into a smaller latent feature space. Search for counterfactuals is performed in
the latent space, and then instances are decoded back to the original space. We
rely on this idea to achieve a data-agnostic approach.

3 Problem Setting

A classifier b is a function mapping an instance x from a reference population
in a feature space to a nominal value y also called class value or decision, i.e.,
b(x) = y. The classifier b is a black box when its internals are either unknown
to the observer or they are known but uninterpretable by humans. Examples
include neural networks, SVMs, ensemble classifiers [5].

A counterfactual of x is an instance c for which the decision of the black box
differs from the one of x, i.e., such that b(c) �= b(x). A counterfactual is actionable
if it belongs to the reference population. Since one may not have a complete
specification of the reference population, a relaxed definition of actionability is
to require the counterfactual to satisfy given constraints on its feature values.
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Algorithm 1: ece
Input : x - instance to explain, b - black box, X - known instances,

k - number of counterfactuals, A - actionable features, E - base explainers
Output: C - k-counterfactual set

1 C ← ∅; // init. result set
2 for fk ∈ E do // for each base explainer

3 X′ ← I(X); // sample instances

4 A′ ← F(A); // sample features

5 C ← C ∪ fk(x, b,X
′, A′); // call base explainer

6 C ← S(x,C, k); // select top k-counterfactuals
7 return C;

We restrict to simple constraints aA(c, x) that hold iff c and x have the same
values over for a set A of actionable features. Non-actionable features (such as
age, gender, race) cannot be changed when searching for a counterfactual.

A k-counterfactual explainer is a function fk returning a set C = {c1, . . . , ch}
of h ≤ k actionable counterfactuals for a given instance of interest x, a black
box b, a set X of known instances from the reference population, and a set
A of actionable features, i.e., fk(x, b,X,A) = C. For endogenous approaches,
C ⊆ X. A counterfactual explainer is model-agnostic (resp., data-agnostic) if
the definition of fk does not depend on the internals of b (resp., on the data
type of x). We consider the following data types: tabular data, time series and
images. For tabular data, an instance x = {(a1, v1), . . . , (am, vm)} is a tuple of m
attribute-value pairs (ai, vi), where ai is a feature (or attribute) and vi is a value
from the domain of ai. For example, x = {(age, 22), (sex ,male), (income, 800 )}.
The domain of a feature can be continuous (age, income), or categorical (sex ).
For (univariate) time series, an instance x = 〈v1, . . . , vm〉 is an ordered sequence
of continuous values (e.g., the body temperature registered at hourly rate). For
images, x is a matrix in Rm×m representing the intensity of the image pixels.
Problem Statement. We consider the problem of designing a k-counterfactual
explainer satisfying a broad range of properties: availability, validity, actionabil-
ity, plausibility, similarity, diversity, discriminative power, stability, efficiency.

4 Ensemble of Explainers

Our proposal to the stated problem consists of an ensemble of base explainers
named ece (ensamble of counterfactual explainers). Ensemble classifiers boost
the performance of weak learner base classifiers by increasing the predictive
power, or by reducing bias or variance. Similarly, we aim at improving base
k-counterfactual explainers by combining them into an ensemble of explainers.

The pseudo-code1 of ece is shown in Algorithm 1. It takes as input an
instance to explain x, the black box to explain b, a set of known instances X,
the number of required counterfactuals k, the set of actionable features A, a set
of base k-counterfactual explainers E, and it returns (at most) k counterfactuals

1 Implementation and full set of parameters at https://github.com/riccotti/ECE.

https://github.com/riccotti/ECE
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C. Base explainers are invoked on a sample without replacement X ′ of instances
from X (line 3), and on a random subset A′ of the actionable features A (line
4), as in Random Forests. All counterfactuals produced by the base explainers
are collected in a set C (line 5), from which k counterfactuals are selected (line
6). Actionability of counterfactuals is guaranteed by the base explainers (or by
filtering out non-actionable ones from their output). Diversity is enforced by
randomization (instance and feature sampling) as well as by tailored selection
strategies. Stability is a result of combining multiple base explainers, analogously
to the smaller variance of ensemble classification w.r.t. the base classifiers. More-
over, if all base explainers are model-agnostic, this also holds for ece.

4.1 Base Explainers

All bce’s presented are parametric to a distance function d() over the feature
space. In the experiments, we adopt: for tabular data, a mixed distance weight-
ing Euclidean distance for continuous features and the Jaccard dissimilarity for
categorical ones; for images and times series, the Euclidean distance.
Brute Force Explainer (bce-b). A brute force approach considers all subsets
A of actionable features A with cardinality at most n. Also, for each action-
able feature, an equal-width binning into r bins is computed, and for each bin
the center value will be used as representative of the bin. The binning scheme
considers only the known instances X with black box decision different from x.
The brute force approach consists of generating all the possible variations of x
with respect to any of the subset in A by replacing an actionable feature value
in x with any representative value of a bin of the feature. Variations are ranked
according to their distance from x. For each such variation c, a refine procedure
implements a bisecting strategy of the features in c which are different from x
while maintaining b(c) �= b(x). The procedure returns either a singleton with
a counterfactual or an empty set (in case b(c) = b(x)). The aim of refine is to
improve similarity of the counterfactual with x. The procedure stops when k
counterfactuals have been found or there is no further candidate. The greater
are n and r, the larger number of counterfactuals to choose from, but also the
higher the computational complexity of the approach, which is O(

(|A|
n

)
· n · r).

bce-b tackles minimization of changes and similarity, but not diversity.
Tree-Based Explainer (bce-t). This proposal starts from a (surrogate/sha-
dow [7]) decision tree T trained on X to mime the black box behavior. Leaves
in T leading to predictions different from b(x) can be exploited for building
counterfactuals. Basically, the splits on the path from the root to one such leaf
represent conditions satisfied by counterfactuals. To ensure actionability, only
splits involving actionable constraints are considered. To tackle minimality, the
filtered paths are sorted w.r.t. the number of conditions not already satisfied by
x. For each such path, we choose one instance c from X reaching the leaf and
minimizing distance to x. Even though the path has been checked for actionable
splits, the instance c may still include changes w.r.t. x that are not actionable.
For this, we overwrite non-actionable features. Since not all instances at a leaf
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have the same class as the one predicted at the leaf, we also have to check for
validity before including c in the result set. The search over different paths of the
decision tree allows for some diversity in the results, even though this cannot be
explicitly controlled for. The computational complexity requires both a decision
tree construction and a number of distance calculations.
Generative Sphere-Based Explainer (bce-s). The last base counterfactual
explainer relies on a generative approach growing a sphere of synthetic instances
around x [10]. Instance are generated in all directions of the feature space until
the decision boundary of the black box b is crossed and the closest counterfactual
to x is retrieved. The sphere radius is initialized to a large value, and then it
is decreased until the boundary is crossed. Next, a lower bound radius and an
upper bound radius are determined such that the boundary of b crosses the
area of the sphere between the lower bound and the upper bound radii. In its
original version, the growing spheres algorithm generates instances following a
uniform distribution. bce-s adopts instead a Gaussian-Matched generation [1].
To ensure actionability, non-actionable features of generated instances are set as
in x. Finally, bce-s selects from the instances in the final ring the ones which
are closest to x and are valid. The complexity of the approach depends on the
distance of the decision boundary from x, which in turn determines the number
of iterations needed to compute the final ring.

4.2 Counterfactual Selection

The selection function S at line 5 of Algorithm 1 selects k-counterfactuals from
those returned by the base explainers. This problem can be formulated as maxi-
mizing an objective function over k-subsets of valid counterfactuals C. We adopt
a density-based objective function:

arg max
S⊆C∧|S|≤k

|
⋃

c∈S

knnC(c)| − λ
∑

c∈S

d(c, x)

It aims at maximizing the difference between the size of neighborhood instances
of the counterfactuals (a measure of diversity) and the total distance from x (a
measure of similarity) regularized by a parameter λ. knnC(c) returns the h most
similar counterfactuals to c among those in C. We adopt the Cost Scaled Greedy
(csg) algorithm [4] for the above maximization problem.

4.3 Counterfactuals for Other Data Types

We enable ece to work on data types other than tabular data by wrapping
it around two functions. An encoder ζ : D→Rq that maps an instance from
its actual domain D to a latent space of continuous features, and a decoder
η : Rq→D that maps an instance of the latent space back to the actual domain.
Using such functions, any explainer fk(x, b,X,A) can be extended to the domain
D by invoking η(fk(ζ(x), b′, ζ(X), A′)) where the black box in the latent space



Ensemble of Counterfactual Explainers 363

is b′(x) = b(η(x)). The definition of the actionable features in the latent space
A′ depends on the actual encoder and decoder.

Let us consider the image data type (for time series, the reasoning is anal-
ogous). A natural instantiation of the wrapping that achieves dimensionality
reduction with a controlled loss of information consists in the usage of autoen-
coders (AE) [8]. An AE is a neural network composed by an encoder and
a decoder which are trained simultaneously for learning a representation that
reduces the dimensionality while minimizing the reconstruction loss. A draw-
back of this approach is that we cannot easily map actionable feature in the
actual domain to features in the latent space (this is a challenging research topic
on its own). For this, we set A′ to be the whole set of latent features and hence,
we are not able to deal with actionability constraints.

Table 1. Datasets description and black box accuracy. n is the no. of instances. m is
the no. of features. mcon and mcat are the no. of continuous and categorical features
respectively. mact is the no. of actionable features. m1h is the total no. of features
after one-hot encoding. Rightmost columns report classification accuracy: NN stands
for DNN for tabular data, and for CNN for images and time series.

Dataset n m mcon mcat mact m1h l RF NN

tabular adult 32,561 12 4 8 5 103 2 .85 .84

compas 7,214 10 7 3 7 17 3 .56 .61

fico 10,459 23 23 0 22 – 2 .68 .67

german 1,000 20 7 13 13 61 2 .76 .81

img mnist 60k 28 × 28 all 0 all – 10 – .99

fashion 60k 28 × 28 all 0 all – 10 – .97

ts gunpoint 250 150 all 0 all – 2 – .72

power 1,096 24 all 0 all – 2 – .98

ecg200 200 96 all 0 all – 2 – .76

5 Experiments

Experimental Settings. We consider a few datasets widely adopted as bench-
marks in the literature (see Table 1). There are three time series datasets, two
image datasets, and four tabular datasets. For each tabular dataset, we have
selected the set A of actionable features, as follows. adult: age, education, mar-
ital status, relationship, race, sex, native country; compas: age, sex, race; fico:
external risk estimate; german: age, people under maintenance, credit history,
purpose, sex, housing, foreign worker.

For each dataset, we trained and explained the following black box classifiers:
Random Forest (RF) as implemented by scikit-learn, and Deep Neural Networks
(DNN) implemented by keras for tabular datasets, and Convolutional Neural
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Networks (CNNs) implemented with keras for images and time series. We split
tabular datasets into a 70% partition used for the training and 30% used for
the test, while image and time series datasets are already released in partitioned
files. For each black-box and for each dataset, we performed on the training set
a random search with a 5-fold cross-validation for finding the best parameter
setting. The classification accuracy on the test set is shown in Table 1 (right).

We compare our proposal against competitors from the state-of-the-art offer-
ing a software library that is updated and easy to use. dice [12] handles cate-
gorical features, actionability, and allows for specifying the number k of coun-
terfactuals to return. However, it is not model-agnostic as it only deals with
differentiable models such as DNNs. The FAT [13] library implements a brute
force (bf) counterfactual approach. It handles categorical data but not the num-
ber k of desired counterfactuals nor actionability. The ALIBI library implements
the counterfactual explainers cem [3,11], cegp [14] and wach [16]. All of them
are designed to explain DNNs, do not handle categorical features and return
a single counterfactual, but it is possible to enforce actionability by specifying
the admissible feature ranges. Finally, ceml [2] is a model-agnostic toolbox for
computing counterfactuals based on optimization that does not handle categor-
ical features and returns a single counterfactual. We also re-implemented the
case-based counterfactual explainer (cbce) from [9]. For each tool, we use the
default settings offered by the library or suggested in the reference paper. For
each dataset, we explain 100 instances x from the test set. The set X of known
instances in input to the explainers is the training set of the black box. We report
aggregated results as means over the 100 instances, datasets and black boxes.

Evaluation Metrics. We evaluate the performances of counterfactual explain-
ers under various perspectives [12]. The measures reported in the following are
stated for a single instance x to be explained, and considering the returned k-
counterfactual set C = fk(x, b,X,A). The metrics are obtained as the mean
value of the measures over all x’s to explain.

Size. The number of counterfactuals |C| can be lower than k. We define size =
|C|/k. The higher the better. Recall that by definition of a k-counterfactual
explainer, any c ∈ C is valid, i.e., b(c) �= b(x).

Actionability. It accounts for the counterfactuals in C that can be realized: act =
|{c ∈ C | aA(c, x)}|/k. The higher the better.

Implausibility. It accounts for how close are counterfactuals to the reference
population. It is the average distance of c ∈ C from the closest instance in the
known set X. The lower the better.

impl =
1

|C|
∑

c∈C

min
x∈X

d(c, x)

Dissimilarity. It measures the proximity between x and the counterfactuals in
C. The lower the better. We measure it in two fashions. The first one, named
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Fig. 1. Aggregate metrics on tabular datasets by varying k.

disdist , is the average distance between x and the counterfactuals in C. The
second one, discount , quantifies the average number of features changed between
a counterfactual c and x. Let m be

disdist =
1

|C|
∑

c∈C

d(x, c) discount =
1

|C|m
∑

c∈C

m∑

i=1

1ci �=xi

Diversity. It accounts for a diverse set of counterfactuals, where different actions
can be taken to recourse the decision of the black box. The higher the better. We
denote by divdist the average distance between the counterfactuals in C, and by
divcount the average number of different features between the counterfactuals.

divdist =
1

|C|2
∑

c∈C

∑

c′∈C

d(c, c′) divcount =
1

|C|2m
∑

c∈C

∑

c′∈C

m∑

i=1

1ci �=c′
i

Discriminative Power. It measures the ability to distinguish through a naive
approach between two different classes only using the counterfactuals in C. In
line with [12], we implement it as follows. The sets X= ⊂ X and X �= ⊂ X
such that b(X=) = b(x) and b(X �=) �= b(x) are selected such that the instances
in X=,X �= are the k closest to x. Then we train a simple 1-Nearest Neighbor
(1NN) classifier using C ∪ {x} as training set, and d as distance function. The
choice of 1NN is due to its simplicity and connection to human decision making
starting from examples. We classify the instances in X= ∪ X �= and we use the
accuracy of the 1NN as discriminative power (dipo).

Instability. It measures to which extent the counterfactuals C are close to the
ones obtained for the closest instance to x in X with the same black box decision.
The rationale is that similar instances should obtain similar explanations [6]. The
lower the better.

inst =
1

1 + d(x, x′)
1

|C||C ′|
∑

c∈C

∑

c′∈C′
d(c, c′)

with x′ = argminx1∈X\{x},b(x1)=b(x) d(x, x1) and C ′ = fk(x′, b,X,A).
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Fig. 2. Aggregate metrics on images (1st row) and time series (2nd row) by varying k.

Fig. 3. Critical Difference (CD) diagrams for the post-hoc Nemenyi test at 95% confi-
dence level: tabular (left), images (center), and time series (right) datasets.

Runtime. It measures the elapsed time required by the explainer to compute the
counterfactuals. The lower the better. Experiments were performed on Ubuntu
20.04 LTS, 252 GB RAM, 3.30GHz x 36 Intel Core i9.

In line with [12,16], in the above evaluation measures, we adopt as distance
d the following mixed distance:

d(a, b) =
1

mcon

∑

i∈con

|ai − bi|
MAD i

+
1

mcat

∑

i∈cat

1ai �=bi

where con (resp., cat) is the set of continuous (resp., categorical) feature posi-
tions. Such a distance is not necessarily the one used by the compared explainers.
In particular, it substantially differs from the one used by ece.

Parameter Tuning. From an experimental analysis (not reported here) of the
impact of the components of ece, we set: for bce-b, r = 10 and n = 1; and for
ece, |E| = 10 base explainers chosen uniformly random.

Quantitative Evaluation. Figure 1 shows the performance of the compared
explainers on tabular data when varying k. From the first plot, we notice that
only ece, dice, cbce and bf are able to return at least 80% of the required
counterfactuals. Most of the other methods only return a single one. From the
second plot, we conclude that only ece, bf and cbce return a notable fraction
of actionable counterfactuals (act). From the plots on dissimilarity (discount
and disdist) and diversity (div count and divdist), it turns out that cbce (and
also dice) has good values of diversity, but performs poorly w.r.t. dissimilarity.
bf wins over ece w.r.t. the disdist measure, loses w.r.t. the divdist measure,
and is substantially equivalent w.r.t. the other two measures. As for discrimi-
native power dipo, ece performs slightly lower than dice, cbce, bf and ceml.
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Regarding plausibility (impl), ece is the best performer if we exclude methods
that return a single counterfactual (i.e., cem, cegp and wach). Indeed, ece
impl is constantly smaller that dice and bf and in line with cbce, which is
the only endogenous methods compared. Intuitively, counterfactuals returned
by ece resemble instances from the reference population. Concerning instability
inst , ece is slightly worse than bf and slightly better than dice. ceml is the
most stable, and cbce the most unstable. cem, cegp and wach are not shown in
the instability plot because, in many cases, they do not return counterfactuals for
both of the two similar instances. Finally, all the explainers, with the exception
of bf and ece, require on average a runtime of more than one minute. We sum-
marize the performances of the approaches by the CD diagram in Fig. 3 (left),
which shows the mean rank position of each method over all experimental runs
(datasets × black boxes × metrics × k). Overall, ece performs better than all
competitors, and the difference is statistically significant.

Figure 2 shows the performance on images (first row) and time series (sec-
ond row) datasets. We consider also the ece with the identity encoder/decoder
(named eceI), and with the kernel encoder/decoder (eceK7 for kernel of size
7 × 7 and eceK4 for kernel of size 4 × 4). For images, cem, cegp and wach
return only a single counterfactual, while ece provides more alternatives and
with the best diversity. wach returns the least implausible counterfactuals, the
variants of ece stand in the middle, while cem returns less realistic counter-
factuals. Regarding running time, cegp is the most efficient together with eceI
and eceK4. The usage of the autoencoder in ece increases the runtime. cem and
wach are the slowest approaches. Similar results are observed for time series,
with few differences. The CD diagrams in Fig. 3 (center, right) confirm that ece
and its variants are the best performing methods.
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Abstract. Counterfactual explanations can provide sample-based
explanations of features required to modify from the original sample
to change the classification result from an undesired state to a desired
state; hence it provides interpretability of the model. Previous work
of LatentCF presents an algorithm for image data that employs auto-
encoder models to directly transform original samples into counterfactu-
als in a latent space representation. In our paper, we adapt the approach
to time series classification and propose an improved algorithm named
LatentCF++ which introduces additional constraints in the counterfactual
generation process. We conduct an extensive experiment on a total of
40 datasets from the UCR archive, comparing to current state-of-the-art
methods. Based on our evaluation metrics, we show that the LatentCF++

framework can with high probability generate valid counterfactuals and
achieve comparable explanations to current state-of-the-art. Our pro-
posed approach can also generate counterfactuals that are considerably
closer to the decision boundary in terms of margin difference.

Keywords: Time series classification · Interpretability ·
Counterfactual explanations · Deep learning

1 Introduction

Machine learning (ML) is developing rapidly to address real-world classification
problems and automate decisions in different fields. Especially, time series classi-
fication (TSC) has gained popularity in many critical applications, such as Elec-
trocardiogram (ECG) signal classification [9], sensor signal classification [19],
and stream monitoring [16]. Nevertheless, most ML methods remain opaque,
although model interpretability is crucial to gaining trust from practitioners.
Recent governmental regulations, such as the EU General Data Protection Reg-
ulation (GDPR), indicate that the public is entitled to receive “meaningful infor-
mation” from automated decision-making processes [18]. Towards that direction,
Wachter et al. [18] suggested counterfactual explanations as a solution to provide
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 369–384, 2021.
https://doi.org/10.1007/978-3-030-88942-5_29
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sample-based explanations, aligning with the data protection regulations from
GDPR. Counterfactuals provide information on which features of the original
test example are required to be modified and how to change the classification
result from an undesired state (e.g., “abnormal” ECG) to a desired state (e.g.,
“normal” ECG), without opening the “black-box” classifier.

Several earlier approaches towards time series counterfactuals have appeared
in the literature, with the main highlights including two techniques presented
by Karlsson et al. [11]. The two techniques are model specific and they are
defined for the random shapelet forest (RSF) classifier [10] as well as the k-NN
classifier. Nonetheless, both techniques focus on specific evaluation metrics, i.e.,
compactness, referring to the fraction of time series points that need to alter
in order to create a counterfactual, and cost, referring to the distance of the
original time series to its counterfactual. Despite their promising performance
on a large set of collection of time series datasets, both techniques are hampered
by the chosen evaluation metrics as they mostly focus on minimizing the two
selected metrics, which fail to assess whether the generated counterfactuals are
compliant with the data distribution and they fall within the dataset manifold.

A recent approach that attempts to address some of the above limitations for
image data has been proposed by Balasubramanian et al. [3], where the LatentCF
framework was proposed to generate counterfactuals by means of a representative
latent space using auto-encoders. The framework established a simple baseline
for counterfactual explanations using latent spaces representations. However,
the authors solely evaluated their method on image data, while we observed
the limitation of ineffective counterfactual generation when we replicated their
experiments. In this paper, we re-formulate this problem for the time series
domain, and present an adaptation of the original approach, which we refer to as
LatentCF++, by integrating Adam optimization and additional constraints on the
latent space perturbation to generate more robust counterfactuals. Additionally,
we demonstrate the generalizability considering several deep learning models
serving as components to construct effective LatentCF++ instantiations.

To highlight the importance of the problem we solve in this paper, consider
the example in Fig. 1, where we provide two examples of time series counter-
factuals generated by LatentCF++ using two datasets from the UCR time series
repository: TwoLeadECG (left) and FordA (right). Illustrated in blue are the
original time series and in red the generated counterfactuals of the opposite
class. By inspecting these counterfactuals, domain experts can not only gain
improved understandings of the classifier decision boundary, but also can gain
insight on how these predictions can be reversed.
Related Work. There is a wide range of TSC algorithms proposed using dif-
ferent techniques in recent years, such as elastic distance measures, intervals,
shapelets and ensemble methods [2]. It is different from traditional ML clas-
sification problems due to the feature dependency of ordered data. Shapelet-
based methods (e.g. shapelet transformations) identify shapelets (subsequences
of whole time series) used as discriminatory features to train classifiers such as
SVM and random forest [2,10]. More recently, researchers have introduced sev-
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(a) ECG example (b) FordA example

Fig. 1. Examples of generated counterfactuals using LatentCF++ on TwoLeadECG
(left) and FordA (right). Illustrated in blue are the original time series and in red
the generated counterfactuals of the opposite class. (Color figure online)

eral breakthrough algorithms with comparable benchmark metrics in TSC that
are considered state-of-the-art, e.g., InceptionTime [7] and ROCKET [5]. Nev-
ertheless, most of these methods are considered black-box models. As such, they
lack model transparency and prediction interpretability.

Interpretability is crucial to help uncover domain findings in opaque machine
learning models and has recently attained increased attention[13]. Counterfac-
tual explanations have surged in the last few years in high-stake applications
among the wide range of interpretable methods [17]. For TSC problems, Ates
et al. [1] presented a counterfactual explanation solution on sample-based pre-
dictions using CORELS, focusing on multivariate time series datasets. Simi-
larly, Karlsson et al. [11] proposed local and global solutions for counterfactual
explanation problems on univariate time series data utilizing RSF and k-NN
classifiers. However, both local and global approaches were proposed to provide
model-specific explanations, since they cannot be applied in conjunction with
other classifiers, e.g. neural networks or other state-of-the-art models in TSC.

A large number of counterfactual approaches were proposed that can pro-
vide model-agnostic explanations for any black-box classifier [17]. By utilizing a
variational auto-encoder (VAE) architecture, Pawelczyk et al. [15] conducted an
experiment to generate counterfactuals uniformly around spheres of the original
data representation for tabular data. Joshi et al. [8] applied a VAE as the gen-
eration model, a linear softmax classifier as the classification model, to sample
the set of counterfactuals with high probability paths of changes to change the
outcome. The LatentCF approach was presented to apply gradient descent on
the latent representations of input samples and transform into counterfactuals
using an auto-encoder (AE) [3]. To the best of our knowledge, these counterfac-
tual solutions using latent representations mainly focused on tabular or image
data, and none of them has been generalized in the TSC domain.
Contributions. We propose a novel time series counterfactual generation
framework, named LatentCF++, that ensures the robustness and closeness of
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the generated counterfactuals. Our specific contributions of this paper are sum-
marized as follows:

• we formulate the time series counterfactual explanation problem for univari-
ate time series data and provide a novel solution LatentCF++ to solve the
problem by employing a latent representation for generating counterfactuals;

• we demonstrate two instantiations of our proposed solution, where we incor-
porate classifiers and auto-encoders based on convolutional neural networks
and LSTM, together with an extension of the model based on a composite
auto-encoder;

• we conduct an in-depth experiment comparing our solution and the origi-
nal framework, together with current state-of-the-art RSF, k-NN and FGD as
baseline models. We show that our proposed framework outperforms other
methods in terms of validity and margin difference; while it achieves the
comparable performance of proximity compared to RSF.

2 Problem Formulation

Similar to the definition of counterfactual time series explanation problem for
multivariate time series classification [1], we define univariate time series coun-
terfactual explanations as follows: given a black-box ML model that predicts
the binary output probability from a univariate time series sample, the counter-
factual method shows the modifications of the input sample that are required
to change the classification result from an undesired state (e.g. negative) to a
desired state (e.g. positive). We assume a given classifier in our formulation, and
a pre-trained auto-encoder that can transform the time series into the latent
representation and back to the original feature space. Note that we do not need
to access internal structures of the classifier (e.g. weights); only the prediction
function is required. Let Y defines the set of target class labels, and we consider
a binary classification problem where Y = {‘+’,‘−’}. The formal definition of
the problem is as follows:

Problem 1. Univariate time series counterfactual explanations. Give any
given classifier f(·) and a time series sample x containing t timesteps, such that
the output represents as f(x) = ‘−’ with probability ŷ. In the problem, ŷ is
smaller than the decision boundary threshold τ (i.e. ŷ < τ) as it determines
negative. Our goal is to utilize an auto-encoder composed of an encode function
E(·) and a decode function D(·) to find the generated counterfactual x′ with
desired positive outcome. We want to perturb the encoded latent representation
z = E(x) through a gradient descent optimization iteratively to generate a new
time series sample x′ = D(z) such that the output target f(x′) = ‘+’. Finally,
we aim to minimize the objective function denoting the loss between ŷ and τ .

For example, given a classifier f(·) and an auto-encoder with functions E(·)
and D(·) trained on time series of ECG measurements, we intend to generate
counterfactuals through both E(·) and D(·) functions. An exemplified counter-
factual x′ with the desired prediction f(x′) = ‘+’ (i.e. normal) for a time series
sample x with an undesired prediction f(x) = ‘−’ (i.e. abnormal).
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3 The LatentCF++ Time Series Counterfactuals
Framework

The LatentCF framework was presented as a simple baseline for counterfactual
explanations, which employs an auto-encoder model to directly transform orig-
inal samples into counterfactuals using gradient descent to search in the latent
space [3]. Due to the low efficiency of gradient descent in the original imple-
mentation, it requires an extensive search for the proper learning rate to avoid
getting stuck in a local optimum. As such, LatentCF often fails to generate valid
counterfactuals.

Instead, we propose to improve the counterfactual generation process by inte-
grating an adequate gradient-based optimization algorithm based on adaptive
moment estimation (Adam) [12], making the counterfactual generation more
robust. Adam optimization can be considered a combination of two momentum-
based gradient descent algorithms AdaGrad and RMS-Prop. Employing the
advantages of both allows the algorithm to deal with sparse features and non-
stationary objectives and obtain faster convergence [12]. To further improve the
validity of the counterfactual explanations, we add constraints (see Line 5 in
Algorithm 1) to ensure that the class probability of the generated counterfac-
tual has crossed the decision boundary threshold τ . We call the improved version
of the LatentCF framework, LatentCF++.

Algorithm 1: Counterfactual explanations for time series classification
using LatentCF++

input : A time series sample x, threshold of decision boundary τ , learning
rate α, loss tolerance tol, maximum iteration max iter

output: A generated counterfactual x′ with desired target class y′

1 z ← Encode(x)
2 ypred ← Predict( Decode(z))
3 loss ← MSE(ypred − τ)
4 iter ← 0
5 while loss > tol ∧ ypred < τ ∧ iter < max iter do
6 z ← AdamOptimize(z, loss, α)
7 ypred ← Predict( Decode(z))
8 loss ← MSE( ypred − τ)
9 iter ← iter + 1

10 x′ ← Decode(z)
11 return x′

Given an input of time series sample x, a pre-trained encoder encodes it into
latent representation z, followed by a decoder that reconstructs it back to the
original feature space. Consecutively, a predictor function estimates the class
probability of the reconstructed sample. On Line 5, the constraints are validated
to guarantee that the loss iteratively decreases and that the output probability
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ypred crosses the threshold of decision boundary τ . The loss is measured using
the mean of squared error between ypred and τ . Subsequently, on Line 6 the
AdamOptimize() function is used to update the latent representation z using
Adam. The output counterfactual is the decoded result x′ when the while loop
condition breaks (i.e., either loss is lower than tol, ypred is larger than or equal
to τ , or the while loop reaches the maximum number of allowed iterations).

Finally, as we can observe from the architecture in Algorithm 1, the algorithm
requires two main components: a pre-trained classifier and a pre-trained auto-
encoder which can decompose into an encoder and a decoder.

4 Experimental Evaluation

We conduct our experiments using the UCR time series archive [4]. We mainly
focus on the problem of counterfactuals for binary univariate time classification.
After filtering, a subset of 40 datasets from the UCR archive is selected, con-
taining representations from different data sources. For example, TwoLeadECG
represents ECG measurements in the medical domain and Wafer exemplifies
sensor data in semiconductor manufacturing. In terms of time series length, it
varies from 24 (ItalyPowerDemand) to 2709 timesteps (HandOutlines) in our
chosen subset. For the evaluation, we choose to apply a standard stratified split
of 80% for training and the remainder for testing, for all the datasets. More-
over, to compensate for the imbalanced target classes, we apply an up-sampling
technique that resamples the minority class during training.

4.1 Experiment Setup

There are three main deep neural network architectures that have been adopted
for time series classification tasks in recent years: multi-layer perceptron (MLP),
convolutional neural networks (CNN) and recurrent neural networks (RNN) [6].
In the experiment, we choose to train separate CNN and long short-term mem-
ory (LSTM, a variant of RNN) classification and auto-encoder models, as main
components to apply the LatentCF and LatentCF++ frameworks. Despite the
fact that more recent state-of-the-art architectures have been proposed in the

Table 1. Summary of model components and hyperparameters for each instantiation
in the experiment.

Method Instantiation Auto-encoder Classifier Optimization Threshold

LatentCF++ 1dCNN 1dCNN-AE 1dCNN-CLF Adam 0.5

LSTM LSTM-AE LSTM-CLF Adam 0.5

1dCNN-C 1dCNN-C Adam 0.5

LatentCF 1dCNN 1dCNN-AE 1dCNN-CLF Vanilla GD No

LSTM LSTM-AE LSTM-CLF Vanilla GD No
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Table 2. Summary of architectures and hyperparameters for the deep learning models,
representing different components.

Instan. Components #Layers #Conv #LSTM Norm Pooling Output

1dCNN 1dCNN-AE 5 5 0 No Max Linear

1dCNN-CLF (shallow) 3 1 0 Yes Max Sigmoid

(deep) 4 3 0 Yes Max Sigmoid

LSTM LSTM-AE 5 0 4 No Max Sigmoid

LSTM-CLF (shallow) 2 0 1 Yes None Sigmoid

(deep) 3 0 2 Yes None Sigmoid

1dCNN-C 1dCNN-C 8 6 0 No Max Lin.+Sig.

literature, we opt to use these simpler architectures to highlight the explainable
power of latent space representations.

Thus, we construct two instantiations for both LatentCF and LatentCF++
in our experiment: 1dCNN and LSTM. We show a detailed comparison of dif-
ferent components and hyperparameters for each instantiation in Table 1. For
illustration, the 1dCNN instantiation comprises a 1dCNN-AE auto-encoder and a
1dCNN-CLF classifier, together with an Adam optimization and the probability
threshold of 0.5. Additionally, LatentCF++ is extended with one composite auto-
encoder structure (1dCNN-C) instead of utilizing the two components.

More specifically, to evaluate LatentCF and LatentCF++ for each dataset,
we first train five deep learning models representing different components in the
framework: CNN auto-encoder (1dCNN-AE), CNN classifier (1dCNN-CLF), LSTM
auto-encoder (LSTM-AE), LSTM classifier (LSTM-CLF) and CNN composite auto-
encoder (1dCNN-C). Since our goal is not to assess the performance of classifiers
or auto-encoders, we apply a one-size-fits-all plan to utilize a standard set of
model architectures for all the datasets. Table 2 shows architectures and hyper-
parameters for all different deep learning models. From the table, we can see
that each instantiation comprises two components - an auto-encoder and a clas-
sifier, e.g., 1dCNN consists of 1dCNN-AE and 1dCNN-CLF. Besides, the model exten-
sion 1dCNN-C contains only one component of composite auto-encoder. For each
instantiation, we apply a parameter search for the learning rate between 0.001
and 0.0001, and then report the model metrics with the best validity.

Note that we have two slightly different structures (shallow and deep) for
classifiers 1dCNN-CLF and LSTM-CLF, due to different timestep sizes and varied
amounts of available training data. During the training, either a shallow or a deep
classifier is trained for both CNN and LSTM instantiations. We then evaluate
on each specific dataset using the model with the best performance. Empirically,
this strategy generalizes well for all datasets in our experiment.
CNN Models. For the detailed architecture of 1dCNN-AE, the network contains
four convolutional layers with 64, 32, 32 and 64 filters with kernel size 3 and
activated using ReLU. The network’s output consists of a final convolutional
layer, which is corresponding to the reconstructed output. The first two layers
are followed by a max pooling operation; while the next two layers are followed by
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Fig. 2. Illustration of 1dCNN composite model architecture.

up-sampling transformations of size 2. The deep 1dCNN-CLF model is composed of
three convolutional layers followed by a final dense layer with sigmoid activation.
For each convolutional layer, the number of filters is fixed to 64 and the kernel
size is set to 3, with ReLU activation and batch normalization. Moreover, the
shallow model contains only one convolutional layer compared to three in the
deep model and finally a 128-unit dense layer after the input.
LSTM Models. LSTM-AE consists of four consecutive LSTM layers with respec-
tively 64, 32, 32 and 64 units with tanh activation functions. The final layer is a
dense layer with a sigmoid activation function. The shallow model for LSTM-CLF
contains one 32-unit LSTM layer with tanh activation; while the deep model
comprises two continuous LSTM layers with 64 and 16 units, respectively. Each
LSTM layer is followed by a batch normalization operation. Finally, a dense
layer with sigmoid activation function is fully connected to the previous layer,
where the output represents the probability of the target prediction.
LatentCF++ Extension: Composite Model. In addition to the two instan-
tiations, we intend to evaluate a model extension of LatentCF++ with a CNN
composite auto-encoder 1dCNN-C. The model has a unique architecture com-
pared to the previously described models, which is shown in Fig. 2. It has three
elements: an encoder for encoding the input into the latent space, followed by a
decoder and a classifier. Accordingly, it contains two different output layers in
the architecture: one convolutional layer as the decoder and a sigmoid function
for the classifier. The encoding and decoding components share the same setup
of layers as 1dCNN-AE: the encoding component has two convolutional layers with
64 and 32 filters followed by max pooling; the decoder comprises three convo-
lutional layers with 32, 64 and 1 filters, respectively. While for the component
of classifier, a convolutional layer (16 filters with kernel size 3) followed by a
50-unit dense layer are connected after the shared latent space; a final sigmoid
dense layer is fully connected with the previous layer for output probability of
the target class. In the implementation of LatentCF++, we directly apply the
Predict() function on latent representation z to adjust for the 1dCNN-C model,
instead of using the Decode() function.
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Implementation Details. All deep learning models are implemented in Keras1.
For 1dCNN-AE, LSTM-AE, and 1dCNN-C, we set the training epochs to 50; while
for classification models, the training epochs are set to 150 for both 1dCNN-CLF
and LSTM-CLF. To reduce overfitting and improve the generalizability of our
networks, we employ early stopping during model training. Adam optimizer is
employed for all networks with learning rates ranging from 0.0001 and 0.001 for
different models. The batch size is set to 32 for all of them.

4.2 Baseline Models

We adopt the first baseline model from the original paper, FGD [3], which applies
the LatentCF method with only a classifier 1dCNN-CLF to perturb samples in the
original feature space directly. In addition, we apply two extra baseline methods
from local and global time series tweaking approaches [11] - random shapelet
forest (RSF) and the k-NN counterfactual method (k-NN). Similar to the evalu-
ation of LatentCF and LatentCF++, we apply the same parameter setup across
all datasets for these baseline models. For RSF, we set the number of estimators
to 50 and max depth to 5; while the other parameters are kept at their default
values2. For k-NN, we first train a k-NN classifier with k equals to 5 and the
distance metric set to Euclidean; then the trained classifier is utilized to find
counterfactual samples for further evaluation.

4.3 Evaluation Metrics

To evaluate the performance of our proposed approach in terms of explainability,
we present three metrics: validity, proximity and closeness. Validity is defined
to measure whether the generated counterfactual explanations lead to a valid
transformation of the desired target class [14,17]. More specifically, it reports
the fraction of counterfactuals predicted as the opposite class (i.e. have crossed
the decision boundary τ) according to the standalone classifier. It is defined as:

validity(ycf , τ) =
#(yi ≥ τ, yi ∈ ycf )

#ycf
, (1)

where ycf is the output probability of all the generated counterfactual samples,
and τ is a user-defined threshold of the decision boundary. In our evaluation, we
set the threshold τ to be 0.5.

Proximity is applied to measure the feature-wise distance between gener-
ated counterfactuals and corresponding original samples [14]. Karlsson et al.
[11] reported a similar metric named cost in the evaluation of local and global
time series tweaking approaches. In our case, we define proximity as Euclidean
distance between transformed and original time series samples:

proximity(x, x′) = d(x, x′), (2)
1 https://keras.io.
2 See https://github.com/isaksamsten/wildboar.

https://keras.io
https://github.com/isaksamsten/wildboar
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where d(·) is the Euclidean distance and x and x′ are the original time series
and generated counterfactual sample respectively. We report the average value
of the proximity scores for each dataset.

To measure how close is the predicted probability of a generated counter-
factual compared to the decision boundary, we propose a new metric which we
denote as margin difference. The margin difference captures the amount of infor-
mation that has been altered from the original class and is defined as:

margin diff (ycf , τ) = ycf − τ, (3)

where ycf is the output probability of counterfactual x′, and τ is the target
decision boundary. Note that this metric can be either positive or negative,
indicating whether the counterfactual has crossed the decision boundary or not.
We record both the mean and standard deviation of margin differences for all
generated counterfactuals as metrics for each dataset.

In addition, we show the classification performance of all models report as
the balanced accuracy in the results. Moreover, we report the reconstruction
loss of the auto-encoder models.

4.4 Results

In this section, we first compare the validity of our presented explainable models
from LatentCF and LatentCF++, as well as FGD, RSF and k-NN counterfactual
methods. For a detailed comparison, we choose to report metrics from a subset
of 20 datasets with the sample size larger than 500. Then we report a subset
average for different explainable models; together, we also present the average
score (denoted as Total avg.) across all 40 datasets in the experiment3.

Table 3 shows the validity, which we considered as the main metric for the
evaluation of interpretability. Again, we report the results with the value of
decision boundary τ = 0.5 in Eq. 1. Across three different groups, we found that
the RSF method achieved the best metric of subset average of 1.0000; in contrast,
1dCNN from the LatentCF++ method obtained the highest validity (0.9920) in
terms of the total average, which indicates that an average of 99.20% of the
generated counterfactuals is considered valid. In comparison, 1dCNN from the
LatentCF method and FGD baseline both received validity that was lower than
0.2. This evidence suggests that our proposed LatentCF++ method can ensure a
high fraction of valid counterfactual transformations similar to RSF.

In Table 4, we show a comparison for individual mean scores of margin dif-
ference for the subset of 20 datasets, together with the average score at the
bottom. In addition, we report the average of standard deviations for both the
subset (Subset std.) and the total (Total std.). From the table, we observed
that 1dCNN from LatentCF++ achieved the best metric to both subset average
(0.0333) and total average (0.0168), which indicates that generated counterfac-
tuals are considerably closer to the decision boundary compared to other meth-
ods. In terms of the total average, LSTM models from LatentCF and LatentCF++

3 The full result table is available at our supporting website.
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Table 3. Summary of validity for a subset of 20 different datasets in our experiment.
The best score for each dataset is highlighted in bold.

Dataset LatentCF++ LatentCF Baseline

1dCNN LSTM 1dCNN-C 1dCNN LSTM FGD k-NN RSF

Yoga 0.9973 1.0000 0.9912 0.4347 1.0000 0.4507 1.0000 1.0000

TwoLeadECG 0.9914 0.9052 0.9835 0.3966 1.0000 0.0000 1.0000 1.0000

ItalyPower 1.0000 1.0000 0.9912 0.0000 0.2456 0.0000 1.0000 1.0000

MoteStrain 1.0000 1.0000 0.9918 0.2017 0.0455 0.0000 1.0000 1.0000

Wafer 1.0000 0.8625 0.8117 0.2353 0.1875 0.0588 1.0000 1.0000

FreezerRegular 1.0000 1.0000 0.9666 0.5633 1.0000 0.4967 1.0000 1.0000

PhalangesOutlines 1.0000 1.0000 1.0000 0.3833 0.7048 0.2333 0.8629 1.0000

FreezerSmall 0.9791 1.0000 0.9790 0.6794 1.0000 0.5122 1.0000 1.0000

HandOutlines 0.9091 0.9661 1.0000 0.2727 0.0000 0.0000 0.9359 1.0000

FordA 1.0000 0.0000 0.9838 0.0055 0.0000 0.0000 0.8903 1.0000

FordB 1.0000 1.0000 1.0000 0.0027 1.0000 0.0000 0.9324 1.0000

SonyAIBORobot2 0.9916 0.8560 0.9917 0.0168 1.0000 0.0000 1.0000 1.0000

SemgHandGender 0.8358 1.0000 0.8310 0.5970 1.0000 0.6567 0.6528 1.0000

MiddlePhalanx 1.0000 1.0000 1.0000 0.1111 1.0000 0.0000 0.8431 1.0000

ProximalPhalanx 1.0000 1.0000 1.0000 0.0000 0.1282 0.0000 0.6842 1.0000

ECGFiveDays 0.9773 0.8864 0.9773 0.5114 1.0000 0.0000 1.0000 1.0000

DistalPhalanx 1.0000 1.0000 1.0000 0.0769 0.3036 0.0000 1.0000 1.0000

SonyAIBORobot1 1.0000 1.0000 0.9818 0.0182 1.0000 0.0000 1.0000 1.0000

Computers 1.0000 0.3824 1.0000 0.4839 0.5000 0.3548 0.5593 1.0000

Strawberry 1.0000 1.0000 0.9600 0.4146 0.0000 0.3333 1.0000 1.0000

Subset avg. 0.9841 0.8929 0.9720 0.2703 0.6058 0.1548 0.9180 1.0000

Total avg. 0.9920 0.8256 0.9615 0.1676 0.5779 0.0774 0.9496 0.9802

achieved the second and third best margin difference scores of 0.0520 and 0.0580,
respectively. In comparison, RSF model received a less favourable metric of mar-
gin difference (0.0614) since it does not optimize towards the threshold. Instead,
it tries to minimize the difference between the original samples and counterfactu-
als. 1dCNN-C, FGD and 1dCNN from LatentCF received negative scores according
to total average, which means that they could not constantly guarantee coun-
terfactuals to cross the decision boundary. Nonetheless, 1dCNN-C outperformed
all the other models in 10 out of the 20 individual datasets.

In addition, we observed that the standard deviation for 1dCNN from the
LatentCF++ framework resulted in the lowest of 0.0175 while k-NN achieved
the maximum of 0.1218 in Table 4. Thus, this evidence shows that LatentCF++
can generate counterfactuals that are more stable in terms of margin differ-
ence. In other words, our proposed approach can better guarantee to produce
counterfactuals that can cross the decision boundary and obtain more compact
transformations.

From the previous comparison of validity, we found that several models
received scores lower than 0.2, which means that these models cannot guarantee
the fraction of valid counterfactuals. As our primary evaluation was based on the
validity, we intended to compare the rest of the five best-performed models for
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Table 4. Summary of margin difference for a subset of 20 different datasets in our
experiment. The best score for each dataset is highlighted in bold.

Dataset LatentCF++ LatentCF Baseline

1dCNN LSTM 1dCNN-C 1dCNN LSTM FGD k-NN RSF

Yoga 0.0005 0.1810 –0.0003 –0.0383 0.3115 –0.0531 0.4096 0.0199

TwoLeadECG 0.0005 0.0002 0.0006 –0.0347 0.4941 –0.1854 0.4914 0.1936

ItalyPower 0.0005 0.0005 0.0006 –0.3020 –0.0854 –0.4144 0.5000 0.2077

MoteStrain 0.0005 0.0005 0.0004 –0.0343 -0.0261 –0.3766 0.4704 0.0382

Wafer 0.0005 0.0034 –0.0486 –0.2831 –0.3181 –0.4545 0.5000 0.0334

FreezerRegular 0.0005 0.4995 –0.0028 0.0614 0.4999 0.0016 0.3916 0.1278

PhalangesOutlines 0.0005 0.0005 0.0005 –0.0004 –0.0002 –0.0044 0.2783 0.0573

FreezerSmall 0.4774 0.4636 –0.0081 0.1878 0.4766 0.0156 0.3683 0.1605

HandOutlines –0.0220 0.0061 0.0005 –0.2385 –0.5000 –0.3531 0.4051 0.0379

FordA 0.0005 –0.0382 0.0002 –0.1302 –0.0568 –0.1816 0.2363 0.0196

FordB 0.0005 0.1443 0.0005 –0.2152 0.2182 –0.2709 0.2551 0.0198

SonyAIBORobot2 0.0005 0.0056 0.0005 –0.1871 0.5000 –0.4431 0.3413 0.0311

SemgHandGender 0.2016 0.1822 –0.0416 0.0863 0.1908 0.1640 0.1556 0.0238

MiddlePhalanx 0.0005 0.0005 0.0001 –0.0084 0.0030 –0.0088 0.2255 0.1015

ProximalPhalanx 0.0005 0.0004 0.0005 –0.2328 –0.0026 –0.0963 0.2088 0.1905

ECGFiveDays 0.0005 0.0003 0.0004 0.0018 0.4985 –0.4627 0.4934 0.0786

DistalPhalanx 0.0006 0.0005 0.0004 –0.1098 –0.0009 –0.1899 0.3151 0.0932

SonyAIBORobot1 0.0004 0.0005 0.0004 –0.2647 0.4795 –0.4233 0.4690 0.0425

Computers 0.0005 0.0203 0.0001 –0.0082 0.1415 –0.0772 0.0864 0.0202

Strawberry 0.0005 0.0005 –0.0028 –0.1076 –0.4322 –0.1311 0.4587 0.1245

Subset avg. 0.0333 0.0736 –0.0049 –0.0929 0.1196 –0.1973 0.3530 0.0811

Subset std. 0.0348 0.0246 0.0287 0.2072 0.0453 0.1848 0.1600 0.0623

Total avg. 0.0168 0.0580 –0.0120 –0.0896 0.0520 –0.1435 0.3608 0.0614

Total std. 0.0175 0.0234 0.0310 0.1193 0.0240 0.1081 0.1218 0.0576

further investigation. Namely, we chose to exclude 1dCNN, LSTM from LatentCF
and FGD from baseline models in our comparison of proximity. Similar to the
previous evaluation, we reported metrics from the subset of 20 datasets with
respective subset and total average scores, as in Table 5.

In Table 5, we observed that 1dCNN from our proposed LatentCF++ framework
achieved comparable proximity scores compared to the state-of-the-art method
RSF, with a subset average of 0.3891 in comparison with 0.2873. This evidence
indicates that the generated counterfactuals from 1dCNN are relatively closer to
the original samples. In contrast, LSTM received the worst average proximity of
2.5409 among all. When we checked the individual results, we found that both
1dCNN and 1dCNN-C from LatentCF++ outperformed RSF in 9 out of 20 datasets,
while RSF outperformed the others in 10 datasets. One of our key observations
was that the proximity score was strongly related to the corresponding auto-
encoder performance. Usually, if the 1dCNN-AE model from 1dCNN converged
with a low reconstruction loss, then 1dCNN would outperform the other methods.
However, it was challenging to ensure the performance of the auto-encoder since
we applied a unified structure of 1dCNN-AE for all datasets.
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Table 5. Summary of proximity for a subset of 20 different datasets in our experiment.
The best score for each dataset is highlighted in bold (three methods are excluded from
the comparison due to the low validity†).

LatentCF++ LatentCF Baseline

Dataset 1dCNN LSTM 1dCNN-C 1dCNN† LSTM† FGD† k-NN RSF

Yoga 0.2049 3.6447 0.7221 0.1759 3.6347 0.0277 1.0950 0.5281

TwoLeadECG 0.1447 1.4290 0.1839 0.1659 0.5681 0.0270 0.2655 0.1793

ItalyPower 0.4785 0.3986 0.2588 0.1609 0.3373 0.0066 0.3633 0.2513

MoteStrain 0.3167 0.4798 0.3884 0.2652 0.4798 0.0094 0.4673 0.1503

Wafer 0.2157 0.4416 0.2325 0.1062 0.3642 0.0069 0.5790 0.2547

FreezerRegular 0.2211 1.0497 0.1158 0.1812 0.6700 0.0409 0.0808 0.0569

PhalangesOutlines 0.1449 0.4592 0.2109 0.1060 0.5168 0.0190 0.2272 0.2238

FreezerSmall 1.9710 0.6919 0.1929 0.1978 0.5990 0.0319 0.0887 0.0598

HandOutlines 0.4359 23.9995 3.9276 0.2575 7.9567 0.0087 1.9754 1.1485

FordA 0.5670 2.3575 0.4368 0.2463 2.3087 0.0159 2.0811 0.4820

FordB 0.6099 2.2574 0.4261 0.2176 2.2092 0.0124 2.1105 0.3934

SonyAIBORobot2 0.3234 0.9515 0.3263 0.2293 0.9466 0.0054 0.6357 0.2862

SemgHandGender 0.4159 0.8741 0.2637 0.2676 0.8786 0.0351 0.2999 0.1006

MiddlePhalanx 0.1749 0.6519 0.3936 0.1496 0.6786 0.0000 0.2646 0.2568

ProximalPhalanx 0.2633 0.5222 0.2933 0.1359 0.5314 0.0145 0.1577 0.2539

ECGFiveDays 0.1654 0.9480 0.2829 0.1538 0.8912 0.0057 0.3459 0.1083

DistalPhalanx 0.2258 0.7235 0.1850 0.1450 0.7282 0.0133 0.3674 0.2724

SonyAIBORobot1 0.2719 0.5017 0.2440 0.1882 0.4951 0.0078 0.5752 0.2260

Computers 0.3759 1.3727 0.7971 0.3538 1.3243 0.0236 0.8305 0.1774

Strawberry 0.2545 1.1272 0.2947 0.2242 0.7843 0.0255 0.3734 0.3370

Subset avg. 0.3891 2.2441 0.5088 0.1963 1.3451 0.0169 0.6592 0.2873

Total avg. 0.8926 2.5409 0.9179 0.4415 1.9841 0.0087 1.4613 0.5241

For a detailed comparison, we investigated ECG examples of generated
counterfactuals by 1dCNN, LSTM from LatentCF++, and RSF (see Fig. 3). We
observed that 1dCNN and RSF generated similar counterfactuals for the ECG
sample, although the counterfactual from 1dCNN appeared slightly smoother
in this case. In contrast, LSTM’s counterfactual poorly aligned with the origi-
nal series and diverged in many timesteps. Moreover, we found that different
classification models performed similarly in balanced accuracy. As to the auto-
encoders, LSTM-AE achieved the highest reconstruction loss over most datasets
while 1dCNN-AE received the lowest reconstruction loss. This evidence explains
why LSTM from LatentCF and LatentCF++ attained the worst performance when
comparing proximity. It appeared that the LSTM auto-encoder could not learn a
representative latent space compared to other auto-encoders in the time series
domain.
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(a) 1dCNN (b) LSTM (c) RSF

Fig. 3. Examples of generated counterfactuals by 1dCNN and LSTM instantiations from
LatentCF++, together with RSF in comparison. Illustrated in blue are the original time
series and in red the generated counterfactuals of the opposite class. (Color figure
online)

5 Conclusions

We presented a new counterfactual explanation framework named LatentCF++
for time series counterfactual generation. Our experimental results on the UCR
archive focusing on binary classification showed that LatentCF++ substantially
outperforms instantiations of its predecessor, LatentCF, and other baseline mod-
els. The results also suggest that LatentCF++ can provide robust counterfactuals
that firmly guarantee validity and are considerably closer margin difference to
the decision boundary. Additionally, our proposed approach achieved compa-
rable proximity compared to the state-of-the-art time series tweaking approach
RSF. Furthermore, we found that it was challenging to leverage the power of deep
learning models (both classifiers and auto-encoders) for datasets with the sample
size of less than 500. Hence our one-size-fits-all plan to utilize unified structures
of deep learning models as components for the framework did not address some
specific datasets in the experiment. However, we still showed the generalizability
of our proposed framework using a unified set of model components. For future
work, we plan to extend our work to generalize LatentCF++ to broader counter-
factual problems using other types of data, e.g. multivariate time series, textual
or tabular data. Also, we intend to conduct a qualitative analysis from domain
experts to validate that the produced counterfactuals are meaningful in different
application fields, such as ECG measurements in healthcare or sensor data from
signal processing.
Reproducibility. All our code to reproduce the experiments is publicly avail-
able at our supporting website4.
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Abstract. As network cyber attacks continue to evolve, traditional
intrusion detection systems are no longer able to detect new attacks with
unexpected patterns. Deep learning is currently addressing this problem
by enabling unprecedented breakthroughs to properly detect unexpected
network cyber attacks. However, the lack of decomposability of deep
neural networks into intuitive and understandable components makes
deep learning decisions difficult to interpret. In this paper, we propose
a method for leveraging the visual explanations of deep learning-based
intrusion detection models by making them more transparent and accu-
rate. In particular, we consider a CNN trained on a 2D representation of
historical network traffic data to distinguish between attack and normal
flows. Then, we use the Grad-CAM method to produce coarse localiza-
tion maps that highlight the most important regions of the traffic data
representation to predict the cyber attack. Since decisions made on sam-
ples belonging to the same class are expected to be explained with similar
localization maps, we base the final classification of a new network flow
on the class of the nearest-neighbour historical localization map. Experi-
ments with various benchmark datasets demonstrate the effectiveness of
the proposed method compared to several state-of-the-art methods.

Keywords: Cyber-security · Network intrusion detection · Deep
learning · Explainability · Grad-CAM.

1 Introduction

Intrusion Detection Systems (IDSs) play a crucial role in improving the secu-
rity of the modern network environment by inspecting network traffic for signs
of potential vulnerabilities. In today’s IDSs, deep learning (DL) plays a vital
role thanks to the ability to process historical network traffic data in order
to learn accurate predictive models that can distinguish between attacks and
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normal network flows. At present, various DL neural network architectures—
e.g., autoencoders [2,25], Recurrent Neural Networks [11], Generative Adversar-
ial Networks [27,28], Triplet Networks [5] and Convolutional Neural Networks
(CNNs) [3,4,6,12]—have already enabled unprecedented breakthroughs in var-
ious network intrusion detection tasks. However, their lack of decomposability
into intuitive components makes DL models difficult to interpret [15]. In par-
ticular, the difficulty in interpreting DL models undermines their actual use in
production as the reasons behind their decisions are unknown [22]. Hence, in
order to build confidence in the implementation of DL techniques for network
IDSs, as well as to move towards their meaningful integration into the commer-
cial network line of defence, we need to build transparent DL models that are
able to explain why they predict what they predict.

In this paper, we follow this research direction and focus on dealing with
the transparency issue when training CNNs for network intrusion detection.
This architecture is considered here as various studies [3,4] have recently shown
that it can achieve amazing results in network intrusion detection tasks once
an appropriate 2D representation of network flows is adopted. In particular, we
illustrate a CNN-based intrusion detection methodology, called GRACE (GRad-
CAM-enhAnced Convolution neural nEtwork), which injects transparency into
the CNN-based classification pipeline. To this end, we use the Gradient-weighted
Class Activation Mapping (Grad-CAM) technique [18] that produces visual
explanations for CNN decisions. The Grad-CAM technique exploits the gra-
dients of the “attack” concept flowing into the final convolutional layer of the
classification network, in order to produce a coarse localization map that high-
lights the important regions in the image for the prediction of the concept.

In particular, the main innovation of this study is the combination of the
Grad-CAM explanations with the nearest-neighbour search to improve the accu-
racy of the CNN decisions in a post-hoc way. In particular, we perform a clus-
tering step to group together Grad-CAM explanations. Then, we consider the
cluster centres as explanation of the normal and attack behaviour in the net-
work traffic. In addition, we use the cluster centres in the search for the nearest-
neighbour to limit overfitting phenomena. We investigate the effectiveness of
the presented methodology by exploring the feasibility of the proposed learning
components on various benchmark datasets, as well as the ability of our method-
ology to increase the accuracy of decisions compared to competitive approaches
adopted by recent literature on network intrusion detection.

The rest of this paper is organized as follows. Related works are presented
in Sect. 2, while the proposed methodology is described in Sect. 3. The results of
the evaluation are discussed in Sect. 4. Finally, Sect. 5 refocuses on the purpose
of the research, draws conclusions and illustrates future developments.

2 Related Work

In recent years, DL has been recognized as an effective tool for cyber-security.
However, DL techniques designed for cyber threat detection (e.g., intrusion
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detection, malware discovery, etc.) suffer from some limitations. In particular,
neural networks are difficult to interpret and their decisions are opaque to prac-
titioners. Even simple tasks, such as determining which features of an input
contribute to a prediction, are challenging to solve with neural networks. The
difficulty in interpreting DL models is nowadays a major limitation to overcome
for the effective use of DL in cyber-security, sice black box DL models can be
difficult to control and protect against attacks [23].

Currently, the machine learning community is dedicating increasing efforts to
develop eXplainable Artificial Intelligence (XAI) techniques for interpreting DL
models [7,24]. Various XAI techniques have been tested especially in computer
vision to improve the reliability, transparency and fairness of DL models (see
[10] for a recent survey). These techniques can be mainly categorized into two
explanation strategies: black-box and white-box explanations. Black-box expla-
nation approaches assume no knowledge on the neural network architecture and
its parameters; white-box explanations techniques require that all parameters of
the neural network are known in advance and can be used to extract an explana-
tion. In addition, XAI techniques can be classified according to their explanation
scope as local or global. Local-level explanation techniques (e.g., Activation Max-
imization, Gradient-based Saliency Map, Local Interpretable Model-Agnostic
Explanations) explain the decisions taken on individual data instances. Global-
level explanation techniques (e.g., Global Attribution Mapping, Neural Additive
Model, Concept Activation Vectors) seek to understand the model as a whole
based on groups of data instances. Finally, an explainable technique can be
incorporated into the neural network model or applied as an external algorithm
for explanation. In particular, various model-agnostic post-hoc explanation tech-
niques have been recently tested, in which the XAI technique does not depend
on the model architecture and can be applied to already trained networks [10].
For example, Gradient-weighted Class Activation Mapping (Grad-CAM) [17]
is a post-hoc, model independent, gradient-based explainable method that has
recently emerged in computer vision [18].

Interestingly a recent study [23] has initiated the investigation into XAI tech-
niques to provide explanations for the decisions of a neural network in malware
detection and vulnerability discovery. This compares several XAI techniques with
respect to the accuracy of explanations, as well as security focused aspects, such
as completeness, efficiency, and robustness. Although this study draws the con-
clusion that gradient-based methods can generally be recommended for explain-
ing predictions in security systems, it also highlights that further investigations
are needed in order to fully exploit explanations in cyber-security. Explanations
based on locally faithful decision boundaries are used to complement an intru-
sion detection system in [8] and explain decisions. Local and global explanations
are also studied in [22] to improve the transparency of an intrusion detection
system. In our work we also proceed in the research direction started in [23] by
coupling a XAI technique to a DL-based intrusion detection method. In fact, we
use a gradient-based XAI white-box strategy applied in a post-hoc way to pro-
vide local explanations of neural network decisions. However, our study advances
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Fig. 1. The training stage of GRACE. (1) The training set (T,Y) is converted to
(T2D,Y). (2) The new training set (T2D,Y) is processed to learn a 2D CNN model.
(3) The last convolutional layer of the 2D CNN is used to obtain Grad-CAM heatmaps.
(4) The heatmaps are used to determine the cluster centres and learn G⊕—the set of
the k Grad-CAM centres determined on the normal traffic—and G�—the set of the k
Grad-CAM centres determined on the attacks.

previous studies on XAI in cyber-security as we do not just explain the features
that help recognize network attacks, but we leverage the explanatory information
to improve the final accuracy and robustness of the security system.

3 Proposed Methodology

In this Section, we describe our novel network intrusion detection methodology,
called GRACE, which achieves a combination of CNN, Grad-CAM, k-means and
nearest-neighbour search, in order to learn a reliable predictive model that can
accurately detect new signs of malicious activity in the network traffic. Since
the focus of this study is on a binary classification task, all attack classes are
assigned the same label regardless of the type of attack. In addition, GRACE
is formulated to process flow-based characteristics (e.g., the duration of a flow)
of network traffic, which aggregate information about all the packets in the
network. The methodology fulfilled by GRACE consists of a training stage and a
predictive stage. Both stages are described in more detail below.

3.1 Training Stage

The training stage block diagram of GRACE is shown in Fig. 1. During this stage,
GRACE is fed with a training set (T, Y) that collects the N historical network
flows (training samples) that are spanned on M features of a 1D feature vector
X1D and labelled with a binary target Y labelled “normal” and “attack”. Each
feature Xi of X1D describes a characteristic of a network flow. T is the N × M
matrix representing the training samples on the rows and the features of X1D

on the columns. Y is the N × 1 vector that collects the labels of the training
samples. GRACE learns the intrusion detection function X1D �→ Y from (T, Y)
with a three-step methodology. In particular, this function consists of a CNN and
a collection of CNN Grad-CAMs selected as representative of normal training
samples and attacks, respectively.
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Fig. 2. An example of a 2D grid that assigns traffic characteristics (e.g., Destination
Port (X1), Idle Max (X77) and Fwd IAT Max (X24)) to the pixel frames of the 2D
grid (Fig. 2a), and the image form of a network flow showing the characteristic value
in the assigned pixel (Fig. 2b).

In the first step, GRACE trains a CNN by replicating the CNN-based intrusion
detection pipeline described in [4]. This pipeline is here selected as it able to
train an intrusion detection model by outperforming various, recent, state-of-
art intrusion detection algorithms. It is based on the idea of capturing patterns
of spatial continuity among traffic characteristics and exploiting these patterns
to derive an image form of the network flows. This allows us to approach the
intrusion detection task as an image classification problem. In particular, the
image encoding step transforms each training sample from the 1D feature vector
form X1D with size 1×M to the 2D image form X2D with size m×m (with M ≤
m2). This transformation is done by assigning each feature of X1D to a pixel
frame of X2D (see Fig. 2). A detailed description of how the feature assignment
is performed is reported in [4]. Mathematically, the image transformation step
transforms the training data matrix T of size N × M into the training data
hypercube T2D of size N × m × m. We train a CNN on (T2D,Y) exploiting
convolutions to better discriminate attacks from normal network flows.

In the second step, once the CNN has been trained, its last convolutional
layer is used to obtain heatmaps of class activations on the input images, i.e. 2D
grids of scores, calculated for each pixel in an input image, which indicates how
important each pixel is with respect to a specific output class. To do this, we
use the Grad-CAM method illustrated in [18]. Given an input image obtained as
described above, this technique consists of extracting the output feature maps
of the last convolutional layer and weighting each channel based on the gradient
of the class with respect to that channel. More formally, let yc be the predicted
class, and Ak ∈ R

u×v be the k-th feature map of the last convolutional layer,
where u and v are its width and height, obtained as the typical down-sampling
of a CNN when going deeper. A “summary” of the overall feature maps can be
obtained as a linear combination followed by a ReLU non-linearity:

Grad-CAM = ReLU

(∑
k

αc
kAk

)
,

where ReLU is used because the pixels of interest are the ones that have a
positive influence on the predicted class, while negative pixels are more likely to
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Fig. 3. The predictive stage of GRACE. An example query x1D is mapped as x2D form
(1) and the learned 2D CNN is used to classify the sample (2) and to build the Grad-
CAM heatmap of g2D (3). Finally, the distance is computed between g2D

⊕ and g2D
� :

these distances are processed to predict the class of x (4).

belong to the other class. Since some feature maps may be more important than
others for the final prediction yc, the average pooling of the gradient of yc with
respect to the k-th feature map is used to weight the feature map:

αc
k =

1
uv

u∑
i=1

v∑
j=1

∂yc

∂Ak
i,j

,

where ∂yc

∂Ak
i,j

measures the effect of pixel i, j in the k-th feature map on the
final prediction yc. We recall that the pixel i, j denotes a traffic characteristic
of X ∈ X1D. Therefore, ∂yc

∂Ak
i,j

explains the effect of the characteristic X on the
final prediction yc. The up-sampling of Grad-CAM to the size of the input image
allows us to highlight the regions of the input image that contributed most to
the final classification. In other words, this is a kind of “visual explanation”.

In the third step, we perform the clustering process with the k-means algo-
rithm run on the Grad-CAMs of the normal training network flows and the
Grad-CAMs of the training attacks, separately. The clustering step helps to
limit overfitting as already shown in [3]. As for each clustering run we process
the Grad-CAMs labelled with the same class in the training set, we learn G⊕—
the set of the k Grad-CAM cluster centres of the normal traffic—and G�—the
set of the k Grad-CAM cluster centres of the attack traffic. We note that G⊕
encloses the visual explanation of how to recognize normal traffic, while G�
encloses the visual explanation of how to recognize an attack pattern, respec-
tively.

3.2 Predictive Stage

The block diagram of the predictive stage of GRACE is described in Fig. 3. Let
us consider a query sample x1D as defined on the 1D feature vector X1D. First,
we determine x2D, which is the image form of x1D derived by arranging the 1D
values of x1D on the 2D grid X2D as it has been determined in the training stage.
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We classify x2D with the CNN and visualize the CNN decision using the Grad-
CAM. Let g2D be the Grad-CAM of x2D, we determine both the nearest normal
Grad-CAM cluster centroid neighbour—g2D

⊕ —and the nearest attacking Grad-
CAM cluster centroid neighbour—g2D

� — of g2D. The neighbourhood relation is
evaluated by computing the Euclidean distance. Formally, we compute

g2D
⊕ = arg max

g2D
⊕ ∈G⊕

d(g2D,g2D
⊕ ) and g2D

� = arg max
g2D

� ∈G�
d(g2D,g2D

� ), (1)

where d is the Euclidean distance, i.e., d(g2D,g2D
⊕ ) =

n∑
i=1

m∑
j=1

(g2D[i, j]−

g2D
⊕ [i, j])2 and d(g2D,g2D

� ) =
n∑

i=1

m∑
j=1

(g2D[i, j] − g2D
� [i, j])2. If d(g2D,g2D

⊕ ) <

d(g2D,g2D
� ) then x1D is classified as normal. Otherwise x1D is classified as

attack.
Note that the main intuition of our proposed method is that the knowledge

gathered by the CNN during the supervised learning phase can be used to do
an ex-post identification of the most salient traffic features that characterize the
network flow. In fact, the existence of a one-to-one mapping between the original
feature vectors and their transformation into images allows us to use Grad-CAM
as a way to go up the hierarchy of CNN-induced transformations and identify the
most important features. Therefore, since it can be assumed that new data traffic
samples would be explained with similar explanation maps, their Grad-CAMs
can be compared with those of the training (clustered) samples, to perform a
kind of post-hoc classification, in which the knowledge of the most important
features could be useful in helping GRACE to focus on the most relevant traffic
patterns and thus to obtain higher accuracy than the CNN model alone.

4 Empirical Evaluation

We used three benchmark datasets in our evaluation, described in Sect. 4.1. The
implementation details of the version of GRACE1 used in the evaluation are
illustrated in Sect. 4.2. The evaluation metrics are described in Sect. 4.3, while
the experimental results are discussed in Sect. 4.4.

4.1 Dataset Description

We considered three benchmark intrusion detection datasets, namely KDD-
CUP99,2 NSL-KDD3 and UNSWNB15.4 These datasets have been recently used
1 https://github.com/fpcaforio/grace/.
2 http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html.
3 https://www.unb.ca/cic/datasets/nsl.html.
4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-

Datasets.

https://github.com/fpcaforio/grace/
http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets
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Table 1. Dataset description. For each dataset we report: the number of attributes, the
total number of network flow samples collected in the dataset, the number of normal
network flows, as well as the number of attacking flows.

Dataset

KDDCUP99 NSL-KDD UNSWNB15

Attributes Total 42 42 43

Binary 6 6 2

Categorical 3 3 3

Numerical 32 32 37

Class 1 1 1

Training set Total 494,021 125,973 82,332

Normal flows 97,278 (19.7%) 67,343 (53.5%) 37,000 (44.9%)

Attacking flows 396,743 (80.3%) 58,630 (46.5%) 45,332 (55.1%)

Testing set Total 311,029 22,544 175,341

Normal flows 60,593 (19.5%) 9,711 (43.1%) 56,000 (31.9%)

Attacking flows 250,436 (80.5%) 12,833 (56.9%) 119,341 (68.1%)

in the evaluation of various state-of-the-art competitors also analyzed in Sect. 4.4.
Each dataset includes both a labelled training set and a test set. In our eval-
uation study, we processed 10%KDDCUP99Train for the learning stage, while
we used the entire test set, referred to as KDDCUP99Test, for the evaluation
stage. This experimental scenario is commonly used in the literature. NSL-KDD
was introduced in [19] as a revised version of KDDCUP99, which was obtained
by removing duplicate samples from KDDCUP99. Finally, UNSWNB15 was cre-
ated by the IXIA PerfectStorm tool in the Cyber Range Lab of the Australian
Centre for Cyber Security (ACCS) for generating a hybrid of real modern nor-
mal activities and synthetic contemporary attack behaviours. A summary of the
characteristics of these datasets is presented in Table 1.

4.2 Implementation Details

The proposed method was implemented in Python (version 3.7.10), using the
Keras library (version 2.4.3) with TensorFlow as back-end, and the Scikit-learn
library (version 0.22.2). In the pre-processing step, the categorical input features
were mapped into numerical features using the one-hot-encoder strategy and
then the numerical features have been scaled using the min-max normalization.
The CNN architecture was designed according to the implementation described
in [4] performing automatic optimization of batch size, learning rate, dropout
and kernel size. This hyper-parameter optimization was conducted using the
tree-structured Parzen estimation algorithm and considering 20% of the entire
training data as a validation set to automatically choose the hyper-parameter
configuration that achieves the best validation loss. To decide the m × m size
of the network flow image transformation, we processed the image transforma-
tions built with the size m ∈ [

√
M,

√
M + 1,

√
M + 2] (where M is the number
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Table 2. Ablation study configurations.

CNN Grad-CAM k-means Nearest-Neighbour search

CNN ×
CNN+Grad-CAM+NN × × ×
GRACE × × × ×

of features generated in the pre-processing step). For the Grad-CAM step, we
automatically selected the image transformation that achieved the highest vali-
dation accuracy. The image transformation size selected with this procedure is
13 × 13 for KDDCUP99, 12 × 12 for NSL-KDD and 15 × 15 for UNSWNB15.
The Grad-CAM algorithm has been implemented to work on the final convolu-
tional layer of the 2D CNN. Finally, the k-means algorithm was run with the
default parameter configuration (mini-batch size equals to 100 and number of
iterations equals to 100). We set the number of clusters to 1000 in the baseline
configuration.

4.3 Evaluation Metrics

The overall accuracy performance of the proposed methodology has been mea-
sured by analyzing the F1-score – F1 – (i.e., the harmonic mean of precision
and recall) and accuracy – A – (i.e., the ratio of correctly labelled flows across
all tested flows) of the learned intrusion detection models. The efficiency perfor-
mance has been evaluated with the computation time (in minutes) – T – spent
training the intrusion detection models. The experiments were run on Google
Colab taking advantage of the GPU runtime.

4.4 Results

Ablation Study. The experimental study begun by performing an ablation
study to investigate how the proposed methodology could benefit from coupling
the decision made via the CNN to the nearest-neighbour search performed on
the visual explanations of the CNN decisions constructed with Grad-CAM. In
addition, we explored the effect of k-means in the nearest-neighbour step. To do
this, we compared the performance of three configurations defined in Table 2.
For the accuracy performance analysis, we report both F1 (Figs. 4a–4c) and
A (Figs. 4d–4f) measured on predictions made on the test samples. For the effi-
ciency analysis, we report the computation T spent completing the training stage
(Figs. 4g–4i). The results show that GRACE is more accurate than its baselines,
although the gain in accuracy comes at the expense of more time spent com-
pleting the training stage. GRACE also takes advantage of the clustering step,
especially in NLS-KDD and UNSWNB15. This confirms that clustering miti-
gates overfitting when explaining CNN decisions and improves the accuracy of
the final predictions made on the basis of these explanations.
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Fig. 4. Ablation analysis: F1 (Figs. 4a–4c), A (Figs. 4d–4f) and T (Figs. 4g–4i) of CNN,
CNN+Grad-CAM+NN and GRACE on KDDCUP99, NSL-KDD and UNSWNB15.

Sensitivity Study. We proceeded with the analysis by studying how the per-
formance of GRACE depends on the number of clusters discovered in the k-means
step. We varied k between 500, 1000, 5000 and 10000. As a baseline for this inves-
tigation, we also considered the configuration of GRACE without the clustering
step (CNN+Grad-CAM+NN), where the nearest-neighbour search is performed
considering all the training explanation samples as candidate neighbours. Again,
for the accuracy performance analysis, we report both F1 (see Figs. 4a–4c) and A
(Figs. 4d–4f) measured on the predictions made on the test samples. For the effi-
ciency analysis, we report the computation T spent completing the training stage
(Figs. 4g–4i). The results shown provide further empirical evidence that cluster-
ing does not decrease the accuracy performance; on the contrary, it achieves an
increase in accuracy in all datasets mitigating possible overfitting in the nearest-
neighbour search. Also, the smaller the number of clusters, the less the time it
takes to complete the training stage. In all datasets, the default configuration
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Fig. 5. Sensitivity analysis: F1 (Figs. 5a–5c), A (Figs. 5d–5f) and T (Figs. 5g–5i) of
GRACE varying k between 500, 1000, 5000 and 10000 on KDDCUP99, NSL-KDD and
UNSWNB15. The baseline is CNN+Grad-CAM+NN.

with k = 1000 achieves the highest accuracy (or the runner-up accuracy as in
NSL-KDD where the top-ranked accuracy is obtained with k = 500).

Comparison with State-of-the-Art. We also compared the accuracy perfor-
mance of GRACE with that of several DL-based competitors selected from recent
literature. For all methods compared, we collected the accuracy A and F1-score
F1, as these metrics are commonly provided in the reference studies. The results,
reported in Table 3 for all datasets, show that GRACE generally outperforms its
competitors which set aside any explanation of the decisions. A few exceptions
occur. The method described in [5] performs better than GRACE in NSL-KDD,
but worse in KDDCUP99 and UNSWNB15. The methods described in [3] and
[6] perform better than GRACE in UNSWNB15, but worse in both KDDCUP99
and NSL-KDD. Overall, the explanations can actually help build a more robust
intrusion detection model.
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Table 3. Competitor analysis. “-” denotes that no value is reported in the reference
paper.

Dataset Algorithm Description A F1

KDDCUP99 GRACE CNN+Grad-CAM 94.0 96.1

[1] CNN 92.9 95.4

[3] CNN 93.5 95.9

[5] Triplet 93.5 95.8

[6] CNN 92.4 95.1

[9] GAN – 90.0

[11] LSTM – 93.2

[11] RNN – 91.8

[12] CNN 92.4 –

[21] DNN 93.0 95.5

[27] GAN 93.7

[28] GAN – 88.6

[28] GAN – 95.0

NLS-KDD GRACE CNN+Grad-CAM 85.7 86.8

[1] CNN 80.9 80.5

[3] CNN 78.7 77.5

[5] Triplet 86.6 87.0

[6] CNN 79.6 79.0

[14] LSTM 82.7 83.3

[20] CNN 80.7 –

[26] RNN 83.2 –

UNSWNB15 GRACE CNN+Grad-CAM 92.9 94.9

[1] CNN 92.4 94.7

[3] CNN 93.5 95.4

[5] Triplet 89.2 91.4

[6] CNN 93.4 95.2

[13] CNN 80.0 84.0

[13] CNN 83.0 86.5

[16] CNN 89.8 91.3

[16] DNN 86.6 88.9

[21] DNN 76.5 90.1

[25] DNN 91.2 –

[25] MLP 86.7 –

[25] Autoencoder 88.2 –
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Grad-CAM Analysis. At the end of this study, we describe some explanations
produced by GRACE on NSL-KDD. Figure 6 shows separately the Grad-CAMs
associated with the cluster centres computed on the Grad-CAMs of the nor-
mal training samples and the Grad-CAMs of the attack training samples. For
this analysis, we consider the clusters discovered in the baseline configuration
(k = 1000). We rank the clusters in descending order based on their cardinality
and we analyze the top-2 clusters for each class. Figures 6a and 6b show the Grad-
CAMs computed as the centres of the top-2 attacking clusters, while Figures 6c
and 6d show the Grad-CAMs computed as the centres of the top-2 normal clus-
ters. In each centre, we highlight the top-3 characteristics that the Grad-CAM
explains as the most relevant for the CNN classification (i.e., the traffic character-
istics for which the highest gradient is measured). Note that this analysis reveals
that the traffic characteristics most relevant to recognizing an attack are different
from the characteristics most relevant to recognizing a normal sample. Interest-
ingly, the explanation for the attack class indicates that Dst host rerror rate
(% of connections to current host and specified service having an S0 error) and
Same srv rate (% of connections to the same service) are very relevant for both
the top-2 attack clusters. On the other hand, Dst host same src port rate (% of
connections to current host with same src port) appears very relevant in both
the top-2 normal clusters.

Fig. 6. Grad-CAM centres of the top-2 clusters computed by k-means (k = 1000) on
the Grad-CAMs built on the normal and attacking training traffic of NSL-KDD. The
characteristics with the highest gradient are marked in the plot.
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5 Conclusion

The machine learning community has recently seen a growing interest and con-
cern in making the decisions made by DL models more explainable. This is true in
several critical domains, but especially in cyber-security, as lack of transparency
can impact security systems and make them more vulnerable to ever-changing
attacks. To contribute to this research effort, in this paper we have proposed
a novel IDS based on DL and XAI. The system relies on visual explanations
provided by a CNN trained on historical normal and attack traffic data to bet-
ter focus on the most important traffic characteristics that discriminate between
the two classes. This knowledge is leveraged to perform a post-hoc classification
that proves more accurate versus using a single “unexplained” learning model.
Hence, XAI techniques are not only used to explain decisions to human experts,
but to guide the system towards learning a better model. Although our work
has shown that we can achieve a more robust classification of attacks by lever-
aging explanations in DL-based intrusion detection models, some open issues
require further research. For example, a research direction is studying a strategy
to take advantage of the explanatory information to identify the features that
are most robust to adversarial attacks. Another direction is to explore the use
of explanations to classify the attack category (e.g., Dos, DDoS, Port Scan).
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Abstract. Explaining predictions of classifiers is a fundamental prob-
lem in eXplainable Artificial Intelligence (XAI). LIME (for Local Inter-
pretable Model-agnostic Explanations) is a recently proposed XAI tech-
nique able to explain any classifier by providing an interpretable model
which approximates the black-box locally to the instance under consid-
eration. In order to build interpretable local models, LIME requires the
user to explicitly define a space of interpretable components, also called
artefacts, associated with the input instance. To reconstruct local black-
box behaviour, the instance neighbourhood is explored by generating
instance neighbours as random subsets of the provided artefacts. In this
work we note that the above depicted strategy has two main flaws: first,
it requires user intervention in the definition of the interpretable space
and, second, the local explanation is limited to be expressed in terms
the user-provided artefacts. To overcome these two limitations, in this
work we propose S-LIME, a variant of the basic LIME method exploit-
ing unsupervised learning to replace user-provided interpretable compo-
nents with self-generated semantic features. This characteristics enables
our approach to sample instance neighbours in a more semantic-driven
fashion and to greatly reduce the bias associated with explanations. We
demonstrate the applicability and effectiveness of our proposal in the text
classification domain. Comparison with the baseline highlights superior
quality of the explanations provided adopting our strategy.

Keywords: Explainable machine learning · Local interpretable
explanations · Adversarial autoencoders

1 Introduction

Explaining predictions of classifiers is a fundamental problem in eXplainable
Artificial Intelligence (XAI). Approaches to address this problem can be sum-
marized in different families [6]. Gradient based methods are characterized by
the use of gradient information of the model to explain. Layer-wise relevance
propagation methods exploit the model knowledge to explain its outcome, these
methods apply only to neural networks since exploit explicitly their structure.
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On the other side, there are two families that need no knowledge of the model,
which can be regarded as a black-box. Occlusion analysis methods exploit the
effect obtained from small perturbations of the sample to explain. Finally, inter-
pretable local surrogates methods return an explainable decision function that
intends to mimic the decision of the black-box locally [1,5].

Among them LIME (for Local Interpretable Model-agnostic Explanations),
is a recently proposed XAI technique able to explain any classifier by providing
an interpretable model which approximates the black-box locally to the instance
under consideration. LIME has some limitations and drawbacks and for this
reason in literature there are some works that propose variants of this algorithm
in order to solve some of its issues or to extend it [9,11,12].

In this work we note that the above depicted strategy has two main flaws:
first, it requires user intervention in the definition of the interpretable space
and this task is not always easy, second, the local explanation is limited to be
expressed in terms of the artefacts associated with the instance x to be explained
and this could not be able to capture complex patterns.

As a matter of fact, any interpretable representation returned by LIME is
always a subset of the artefacts extracted from x. As an example, consider
the textual domain, since artefacts are represented by terms occurring into the
phrase x, this means that the explanation is always limited to an excerpt from
the sentence x.

This means that synonyms or terms not occurring into the phrase cannot be
part of the explanation, this makes this method unable to capture some types
of pattern during the explanation of the black-box model. Moreover, the same
consideration holds for the terms that if they occurred in the sentence would
change its meaning as they are combined with other terms already present.

To overcome these two limitations, in this work we propose S-LIME, a variant
of the basic LIME method exploiting unsupervised learning to replace user-
provided interpretable components with self-generated semantic features.

This characteristic enables our approach to sample instance neighbours in
a more semantic-driven fashion and to greatly reduce the bias associated with
explanations.

We demonstrate the applicability and effectiveness of our proposal in the text
classification domain. Comparison with the baseline highlights superior quality
of the explanations provided adopting our strategy.

The rest of the work is organized as follows. Section 2 introduces prelimi-
nary notions, Sect. 3 describes the technique S-LIME and presents its innovative
points, Sect. 4 depicts the experiments conducted to show the behavior of the
algorithm and the comparison with LIME.

2 Preliminaries

Let X ⊂ R
d denote an instance domain. A model f is either a binary indica-

tor, that is a function mapping each instance x ∈ X to one of two pre-defined
classes identified as 0 (the negative class) and 1 (the positive class), or a function
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returning the probability for x to belong to the positive class (while 1 − f(x) is
the probability to belong to the negative class), we refer to binary case for sake
of simplicity. X is also referred to as the original space or original domain and
each x ∈ X is an instance in its original representation.

Since f uses in general complex and incomprehensible features, a very impor-
tant problem is to explain f , namely to make its output humanly understand-
able. More specifically, the aim here is to explain why the model f classifies a
given instance x as f(x). To accomplish this a possible approach, proposed in
[4] and here employed, is to learn a humanly understandable model which can
approximate the behaviour of the model f in the proximity of x.

Thus, the explanation can be defined as a model g ∈ G, where G is the set
of interpretable models, like linear models or decision trees.

Given two instances x ∈ X and y ∈ X, a proximity function π(x, y) : X2 → R

is a function measuring the proximity between x and y, used to define the around
of an instance x.

Given, an instance x, a model f , an explanation g and a proximity function
π, a fidelity function F is a function returning a measure of how good is g in
approximating f in the neighbourhood of x. Thus, formally given an instance x
and a model f , LIME aims to find an explanation g such that the following loss
function is minimized

ξ(x) = F(x, f, g, π) + Ω(g), (1)

where Ω(g) : G → R is a function returning the complexity of the model g,
acting as a regularization term guiding the search towards simpler models.

There are, then, two main problems to be addressed, that are the choice of
the model g and the way to compute the neighbourhood of x, which also depends
on the data domain.

Authors of [4] propose to tackle these problems as follows. As for the model
g, they propose to make it working on a different space X ′, also called space
of the interpretable components or interpretable space, and, in particular, to use
linear regression as interpretable model.

The proposed fidelity function, used in LIME objective function reported in
the equation, (1), is

F(x, f, g, π) =
∑

y∈X

π(x, y) · (f(y) − g(y′))2 , (2)

where y′ is the mapping of y to X ′. Thus, the model g should be such that,
the probability to belong to a certain class assigned by f to an instance y is
approximately the same that g assigns to the image y′ of y in the interpretable
space.

As for the neighbourhood of x, the proposal of [4] is to identify a set of d′

artefacts and consider the space X ′ = {0, 1}d′
, where each component i asserts

if a certain instance contains the i-th artefact. Then, a neighbour y of x is
generated by mapping x to an instance x′ ∈ X ′ and by changing some random
components of x from 1 to 0. As for the function π, an exponential kernel with
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weight σ equipped with a suited distance D can be used, namely

π(x, y) = e
−D2(x,y)

σ2 . (3)

3 The S-LIME Algorithm

In this section, the technique Semantic-LIME, or S-LIME for short, is presented.
In the rest of the paper, for the sake of simplicity, we assume as reference domain
the textual one, though the proposed approach is generally applicable to other
domains.

LIME maps the instance x to be explained to the space X ′ = {0, 1}d′
of the

artefacts (where each feature identifies the presence or the absence of a given
artefact if it evaluates to 1 or 0, respectively), e.g., the terms occurring in the
sentence x. Specifically the image x′ of x contains all the artefacts of X ′ and the
neighbours y′ of x′ are then generated as subsets of x′.

It is clear from the above strategy that these neighbours y′ can be in general
not realistic and, more importantly, that they are constrained to be excerpt
from the reference statement. This may affect the quality of the provided local
explanation due to the reduced expressiveness of the considered neighborhood.

Our approach replaces the above syntactic neighborhood of x with a more
expressive semantic neighborhood, a task which is accomplished by mapping each
original instance x of X to a and instance x′ belonging to a space of features
semantically related to the classification problem at hand.

With this aim we exploit unsupervised learning in order to learn both the
mapping between the original space and a latent feature space and the cor-
responding reverse mapping. Intuitively, since the semantic of features in the
original space can be hidden and, then, the instance x is not explainable based
on these features, the idea is to map x in a “semantic” latent space Z where
features carry information about the classification of x performed by f . This
strategy has the advantage to allow to sample more realistic and richer neigh-
bours of the instance to be explained.

From the operational point of view, the idea is pursued by keeping the neigh-
bourhood of x as detailed next:

1. mapping the instance x to an instance z of semantic latent space Z ⊂ R
�

characterized by � relevant features,
2. computing the neighbours of z in Z by randomly sampling points in the

hyper-sphere centered in z and having radius ρ,
3. considering the neighbours of x obtained by mapping back the sampled points

of Z to X.

The latent space Z is obtained through a task-dependent learning phase so to
alleviate the user from the choice of semantic features. In terms of artefacts, the
neighbours of x can now be characterized both by having some artefacts that
are not in x and by not having some artefacts that are in x.

So, assume that there exist two mapping functions, encode : X → Z which
maps an instance x to its latent representation z, and decode : Z → X
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which maps a point in the latent space z to an instance x, such that x ≈
decode(encode(x)).

Mapping Functions. Due to the characteristics of the latent space needed by
the technique, we use a Denoising Adversarial Autoencoder (DAAE) [8], that
is an extension of Adversarial Autoencoders (AAEs) [3] that, differently from
Variational Autoencoders (VAEs) [2], maintains a strong coupling between the
encoder and the decoder, ensuring that the decoder does not ignore the sentence
representation produced by the encoder. This problem, also know in the liter-
ature as posterior collapse, is indeed a very frequent problem in textual data.
Furthermore, this architecture encourages to map similar sentences to similar
latent representation and obtain a good trade-off between generation and recon-
struction quality.

Explanation Model. According to the technique proposed in [4], the explana-
tion is a humanly understandable model g. In particular, in this work we adopt
a decision tree. Note that a rule-based classifier is suited and easy to understand
since, in the considered domain, the instances constituting the local around of
the instance to explain are encoded in a space whose features, representing the
presence/absence of terms belonging to a common dictionary, can be exploited
as interpretable components. To guarantee interpretability, the maximum depth
of the tree is limited to 3.

As for the fidelity function, used to compute objective function (1), its expres-
sion is adapted to work in the original space as

F(x, f, g, π) =
∑

y∈X

π(x, y) · (f(y) − g(y))2 , (4)

since g is able to classify instances of the original space. Concerning the function
π depicted in Eq. (3), as distance D, the measure

D(x, y) =
∑

xi=1

|xi − yi|.

is employed. Note that this is an asymmetric distance that highlights the agree-
ment of x and y on the features characterizing x, namely where x has value 1.

In order to highlight peculiarities of S-LIME, consider the sentence x: “the
grounds are beautiful as well” which is classified as positive in the context of a
review data set collected from YELP (please refer to the experimental section
for the details).

As for the output of LIME, it returns that words important for classifica-
tion are “beautiful”, “well”, “grounds” and “are”. Despite LIME returns these
four words as relevant, we can note that “beautiful” and “well” should have a
positive impact, while “are” and “grounds” do not seem to be relevant for the
classification.

As far as the output of S-LIME is concerned, it is reported in Fig. 1. S-LIME
returns the words “beautiful”, “well” and “not”, with “beautiful” and “well”
belonging to the input sentence x and “not” not belonging to x. Thus, the two
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Fig. 1. S-LIME output example.

words semantically significant returned by LIME are returned also by S-LIME,
while the words not relevant for the black-box model are ignored by S-LIME.
Valuably, S-LIME returns also the word “not” which enriches the knowledge
associated with the explanation. Indeed, Fig. 1 asserts, for explaining x, that

if the sentence contains ‘‘beautiful’’ then it is positive;
if the sentence does not contain ‘‘beautiful’’ and contains
‘‘well’’ is positive unless contains also ‘‘not’’.

Note that according to the above explanation, it emerges that the sentences
containing “beautiful” are classified as positive by the black-box f independently
from the word “not”. This is due to the hidden characteristics of the model f .
Indeed, the local explanation produced by S-LIME suggests that in the dataset
there are no sentences containing both “beautiful” and “not”. To validate this
suspicion, we obtained the prediction of f on the artificial sentence “the grounds
are not beautiful”. The suspicion was real; f assigned to the above sentence an
high probability, namely about 0.825, of belonging to the positive class! This
provides an example of the superior expressiveness of explanations provided by
S-LIME, which allowed us to highlight a vulnerability of the black-box model.

Algorithm. S-LIME receives as input the instance x to explain, the black-box
model f , parameters n and ρ needed to sample neighbours, a trained auto-
encoder model φ providing encoding and decoding functions, the kernel width
σ. Initially, the instance x is mapped to the latent space Z associated with the
auto-encoder φ and such mapped point is called z(0). Neighbours of x are then
provided through sampling n points z(i) in the hyper-sphere centered in z(0) and
having radius ρ using a uniform distribution.

Then, each of these points z(i) is mapped to the point y(i) in the original
space and the model f is used to get the corresponding classification λi The
neighbours of x are weighted through an exponential kernel having width σ,
Using points in y(i), labels λi and weights wi, a decision tree as model, locally
approximating f is built.

Interpretable Representations. LIME provides an explanation also in terms
of an interpretable representation, that intuitively is composed by the K inter-
pretable components characterizing mostly x. These are computed by exploiting
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regression as interpretable model and specifically K-Lasso [10] is used to obtain
the K features associated with the K largest weights and then linear regression
is perform to obtain feature weights.

To provide a similar information and also to compare the quality of our expla-
nations with that returned by LIME, we also define our interpretable represen-
tation. Specifically, it is given by the features employed by the decision tree to
split the neighbours. Moreover, we associate with each interpretable component
two attributes: an instance-attribute and a class-attribute. The instance-attribute
of an interpretable component is said to be positive (negative, resp.) if the term
occurs in x (does not occur in x, resp.), The class-attribute of an interpretable
component is said to be positive (negative, resp.) if the term is mostly associated
with the positive (negative, resp.) class, that is to say if the majority of the
neighbours of x having that term belongs to the positive (negative, resp.) class.

We can, hence, better characterize the interpretable components by means
of the above pair instance-attribute–class-attribute. We have thus four types of
intepretable components: positive–positive (pp for short), positive–negative (pn
for short) negative–positive (np for short), and negative–negative (nn for short).

4 Experiments

In this section, the experiments conducted with S-LIME are presented.
Two families of experiments have been considered. Firstly, the significance of

the explanations found by the S-LIME method and by LIME has been separately
computed. Secondly, a semantic comparison between explanations is presented.

The dataset we consider in this work, named YELP, is taken from [7] and
contains a subset of the Yelp Dataset, a collection of review taken from the
homonym site, samples selected to form the subset of data are sentences with
less then 16 words. A further subset of 2000 sentences is used for classification,
the class of each sample represents the sentences sentiment, classes have a perfect
balance so we have 1000 samples for each class. The black-box model employed
here is a three-layered dense neural network.

The value of the parameters have been determined in the following way: ρ
has been set in order to ensure the presence of an adequate number of samples
of the opposite class (ρ = 25); σ has been set to obtain a good trade-off between
adherence, that is the fidelity in mimicking the black-box model’s behavior,
and stability in explanation results in different runs (σ = 5); the number n of
samples generated in order to produce the explanation has been set to n = 400
as a trade-off between approximation quality and computational cost.

To understand the quality of the terms returned by the methods, we intro-
duce here a score intending to measure the usefulness of the term in discriminat-
ing between the two classes. Let n denote the number of examples (sentences)
composing the training set which contain the term t and let k be the number
of sentences of the most frequent class associated with these n sentences (thus
k ≥ n/2). A trivial significance score would be represented by the ratio k/n,
representing the relative frequency of the term in its majority class. However,
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since the statistical validity of this ratio is related to the number n of sentences,
we use the following corrected version of the ratio n/k, also referred to as sig-
nificance (where we assume that n is increased by 2 and k is increased by 1 to
apply a correction dealing with the case k = n):

significance(t) =

{
0, if k

n − s ≤ n−k
n + s with s =

√
k
n2

(
1 − k

n

)
;

2
(

k
n − s − 1

2

)
, otherwise.

(5)

In the formula above, the value p = k/n corresponds to the (relative) expected
value E[B]/n = np/n of a binomial random variable B having probability of
success p, while the value s =

√
np(1 − p)/n corresponds to the (relative) stan-

dard deviation of B. Hence, if the probability of success p is within two standard
deviations from the probability of failure 1 − p we assume the ability of the
term to discriminate between the two classes is low and set the significance to
0. Otherwise, we take the corrected value k/n − s, which is greater than 1/2 by
construction, and linearly scale it between 0 and 1.

Significance of Explanations. In order to evaluate the significance of the
explanations, by fixing a number n of features, the set of n most relevant features
returned by LIME and the set of features used by a decision tree forced to use no
more than n nodes are considered. Since for textual data set features are words,
the significance of a set of features is related to the significance of a word. In
order to measure the significance of the word, its capability in discriminating
between classes is considered. In particular, given a word w, consider the set
Sw of data set sentences containing w and partition this set in Sc0

w and Sc1
w ,

where Sci
w is the subset containing sentences belonging to class ci. Thus, the

significance of w is that defined in Eq. (5) and given a set of words representing
an explanation e, the significance of e is the mean significance of the words in e.

Figure 2(a) reports the significance of the words selected for explanations. In
particular, for each method m and for each sentence s the mean significance of
words selected by m to explain s is considered. Such plot shows how the proposed
method is able to detect more significant words with respect to LIME.

In order to compare the differences between sets of words provided as expla-
nations by the two methods, for each sentence s let el

s be the set of words asso-
ciated with the explanation provided by LIME and let eL

s be the set of words
associated with the explanation provided by S-LIME, the set el

s \ eL
s of words in

el
s and not in eL

s and the set eL
s \ el

s of words in eL
s and not in el

s are considered
and the significance of the words there contained is taken into account.

Figure 2(b) reports, separately, the mean significance of the words selected
for explaining sentences belonging to the three different sets, el

s \ eL
s , el

s ∩ eL
s

and eL
s \ el

s. Such plot highlights how the words detected by LIME and not
detected by the proposed technique are very less important than those detected
by LIME and also by the proposed technique, while there is a large set of words
detected by the proposed technique and not detected by LIME whose significance
is comparable to that of words detected by both methods.
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Fig. 2. Mean significance of explanations and comparison.

Fig. 3. Importance of single explanations and comparison.

Differences Between Explanations of a Sentence. Fig. 3 reports a more
detailed view about performance of the two methods on each sentence of the
set. In particular, for each sentence s the significance of s is computed as the
mean significance of its words. Figure 3(a) reports for each sentence the mean
significance of the words in the explanations provided by the two methods and
the significance of the sentence. Note that in all cases the set detected by S-LIME
is important independently from the significance of the sentence words. This does
not hold for LIME whose explanations strictly depend on the significance of
the sentence. Moreover, the explanations provided by S-LIME are meanly more
important than that detected by LIME and the two methods become comparable
only if the sentence contains a large number of important words.

Figure 3(b) reports for each sentence s on the x axis the significance is of
s and on the y axis the values ieL

is and iel

is where ieL is the significance of the
explanation of s provided by S-LIME and iel is the significance of the explanation
of s provided by LIME. The plot highlights how the proposed method is able
to select a set of important words even if the sentence has few relevant words,
while this is the case for LIME which meanly select subsets of words slightly
more important than the set of words composing the sentence.
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5 Conclusions

In this work, the classifier prediction explanation problem has been considered.
We presented a technique based on approximating the black-box locally to the
instance under consideration. The approach, called S-LIME, extends the basic
LIME method exploiting unsupervised learning to replace user-provided inter-
pretable components with self-generated semantic features. This characteristics
enables our approach to sample instance neighbours in a more semantic-driven
fashion and to greatly reduce the bias associated with explanations. We demon-
strate the applicability and effectiveness of our proposal in the text classification
domain. Comparison with the baseline on Yelp textual dataset, highlights supe-
rior quality of the explanations provided adopting our strategy. As future work,
we intend enlarge the experimental campaign by considering other datasets and
also different data domains, to provide procedures for semi-automatic param-
eters setting, to consider also multi-class problems and to extend the concept
of significance to group of terms in order improve quality comparison among
explanations, especially when single terms hardly characterize classes.
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Abstract. In the modern Internet era the usage of social media such as
Twitter and Facebook is constantly increasing. These social media are
accumulating a lot of textual data, because individuals often use them
for sharing their experiences and personal facts writing text messages.
These data hide individual psychological aspects that might represent a
valuable alternative source with respect to the classical clinical texts. In
many studies, text messages are used to extract individuals psychomet-
ric profiles that help in analysing the psychological behaviour of users.
Unfortunately, both text messages and psychometric profiles may reveal
personal and sensitive information about users, leading to privacy vio-
lations. Therefore, in this paper, we propose a study of privacy risk for
psychometric profiles: we empirically analyse the privacy risk of differ-
ent aspects of the psychometric profiles, identifying which psychological
facts expose users to an identity disclosure.

Keywords: Privacy risk assessment · Textual data · Psychometric
profile

1 Introduction

In the digital era textual data is the main component of human digital communi-
cations. People write in different social media, such as Facebook and Twitter, for
sharing (personal) information, emotions; write emails for business; write posts
in online platforms assuring anonymity, such as Reddit, an online platform for
sharing personal thinking and their experience and for helping other people.

The great availability of this type of data is important for many researchers
because allows for interesting studies on opinion diffusion [15], on fake news dif-
fusion [21] on sentiment analysis [5], on the relationship between mental health
and language [4,20,23]. These studies, especially those aiming at capturing senti-
ments and emotions [5] and the psychological behaviour of users, base their study
on the opportunity to extract a psychometric profile from users text messages
by using tools like LIWC (Language Inquiry and Word Count)[13].

However, textual data may carry sensitive personal information and the psy-
chometric profile might capture very specific cognitive and emotional aspects
c© Springer Nature Switzerland AG 2021
C. Soares and L. Torgo (Eds.): DS 2021, LNAI 12986, pp. 411–421, 2021.
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about the writer to make her identifiable. This re-identification may lead to the
disclosure of very sensitive information and the violation of fundamental right
to privacy: many research works proved that the psychometric profiles can help
in detecting mental disorders [4,20,23] and it is clear that an inference like that
on individuals may mean an invasion of their private sphere. Therefore, before
using these profiles it would be opportune to empirically assess the real privacy
risk and identify the suitable privacy mitigation. In recent years, privacy has
been studied in several contexts, from location based services [24] to GPS tra-
jectories [1], from mobile phone data [16] to retail data [10], from social networks
[14] to text data [2]. Privacy risks in text data have been studied under different
perspectives. Some techniques aims at protecting private information of the indi-
viduals mentioned in text documents [2,19]; while others aim at protecting the
authorship disclosure [9]. Some methods focus on detecting (quasi-)identifying
information, suppress disclosive items or replace them with general name entity
values (like “person”, “date”). An approach typically used for text protection is
generalization [3,6,19].

In this paper we are not interested in protecting text data but we focus on
quantitatively measuring the privacy risk of the user’s psychometric profile. To
the best of our knowledge, no work in the literature has studied this aspect. The
most important works about privacy risk assessment is the Linddun methodology
[7], a privacy-aware framework, useful for modeling privacy threats in software-
based systems, and PRUDEnce [18] a framework enabling a systematic evaluation
of privacy risk in different contexts (e.g., mobility, purchases) and for data with
different nature (e.g., tabular data, sequential data, spatio-temporal data).

In this paper, starting from PRUDEnce [18], we define a privacy attack on
psychometric profiles and we study how empirical privacy risk distributes over
the population. Simulating the privacy attack on the emails of Enron corpus [8]
we found out that different aspects of the psychometric profile lead to diverse
privacy risk distribution. In particular, we found that some features describing
the affective and social aspects lead to lower privacy risk with respect to linguistic
and cognitive dimensions.

2 Individual Psychometric Profile

Given the set of text messages written by a user Mu = mu
1 , . . . ,m

u
t , where

each mu
i might be an email, a Facebook post, etc., we extract her psychometric

profile using LIWC [13], a dictionary-based approach able to capture the users’
language habits. LIWC, is widely used in computational linguistics as a source
of features for psychological and psycholinguistic analysis.

LIWC Dictionary contains both style words (function words, articles, pro-
nouns, auxiliary verbs, etc.) and content words (conveying the content of com-
munication). These two types of words have a different role, but both are inter-
esting from a psychological point of view because it is important not only what
people say but also how their communication is structured. The built-in dic-
tionary was created from 100, 000 text files containing over 250 million words,
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that result into a dictionary of almost 6, 400 words, word stems and emoticons.
LIWC processes the text in input, word by word, to obtain the final vector rep-
resentation P , composed of 93 variables, i.e., P = p1, . . . , p93. The first feature
p1 represents the word count, i.e., the number of words in a text message. Fea-
tures p2, . . . p8 represent 7 variables summarizing aspects such as the emotional
tone, the authenticity, etc. Features p9, . . . p81 represent different aspects: Lin-
guistic Dimensions and Grammar aspects, Psychological Processes (e.g., Affec-
tive, Social, Perceptual, Cognitive process, etc.). These variables have a percent-
age value associated, i.e., the percentage of words in the text that belong to the
corresponding LIWC category. The last set of features p82, . . . , p93 corresponds
to variables counting the punctuation marks in the text. Given Mu, i.e., the list
of text messages of a user u, we extract from each message mu

i ∈ Mu the LIWC
features composing the psychometric profile derived from mu

i , Pmu
i . Thus, given

a user u and other messages Mu we derive a set of |Mu| psychometric profiles.
i.e., Pu = {P (mu

1 ), P (mu
2 ), . . . , P (mu

t )}. In the following we denote with p
(mu

i )
j the

j-th LIWC feature we extracted from the text message mu
i of written by the

user u.

3 Privacy Risk Assessment

In this paper, we consider the work proposed in [18] which presents PRUDEnce
, a framework able to assess the privacy risk of human data. In this setting, a
Service Developer (SD) asks a Data Provider (DP) to deliver data to perform an
analysis or develop a service. The DP must assess the privacy risk of the individ-
uals who generated the data being analysed before the data sharing. This task
is mandatory to guarantee the right to privacy of individuals. Once assessed
the privacy risk, the DP can choose how to protect the data before sharing
them, selecting the most appropriate privacy-preserving technology. PRUDEnce
considers the privacy risk of an individual as her maximum probability of re-
identification in a dataset with respect to a set of attacks. An attack assumes
that an adversary gets access to a dataset, then, using some previously obtained
background knowledge (bk ), (i.e. the knowledge of a portion of an individual’s
data) the adversary tries to re-identify all the records in the dataset regarding
that individual. An attack is defined by a matching function, which represents
the process with which an adversary exploits the bk to find the corresponding
individual in the data. For the attack definition, PRUDEnce exploits the notions
of background knowledge category, configuration and instance. The first one
denotes the type of information known by the adversary about a specific set of
dimensions of an individual’s data, e.g. the time in which she wrote an email
(temporal dimension), an idiom of that person (linguistic dimension). The num-
ber of the elements known by the adversary is called background knowledge
configuration BK = {BK1, BK2, ..., BKh} in which each subset contains the
background knowledge of a specific length. If the background knowledge con-
figuration is a psychometric information about the user, BK2 contains all the
possible background knowledge with 2 psychometric information about the indi-
vidual under analysis. Finally, an instance of background knowledge b ∈ BKh
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is defined as the specific information known by the adversary, such as the exact
value of a feature. Consider a text written by a user u. On it, we can aggregate
and extract several information about the psychometric profile of u, obtaining a
record P (mu) = {p1, p2, p3, p4}, a list of variables. On P (mu) the DP can generate
all the possible instances of background knowledge an adversary may use to re-
identify the whole record P (mu). If the adversary knows 2 variables’ values, we
have BK2 = {(p1, p2), (p2, p3), (p3, p4), (p1, p3), (p1, p4), (p2, p4)}. The adversary
may know b = (p1, p3) ∈ BK2 and tries to detect all the other values’ variables of
u to reconstruct the whole P (mu). Let D be a database, D a dataset derived from
D (e.g., an aggregated data structure depending on psychometric variables), the
probability of re-identification is defined as follows.

Definition 1. Given an attack, a function matching(d, b) indicating whether
or not a record d ∈ D matches the background knowledge b, and a function
M(D, b) = {d ∈ D|matching(d,b) = True}, we define the probability of re-
identification of an individual u in dataset D as: PRD(d = u|b) = |M(Du,b)|

|M(D,b)| .
It is the probability to associate record d ∈ D to individual u, given background
knowledge b. Here, Du denotes the set of records that represent the data of the
user u ∈ D.

Note that PRD(d = u|b) = 0 if the user u is not in D. Since each background
knowledge b has its own probability of re-identification, we define the risk of
re-identification of an individual as the maximum probability of re-identification
over the set of possible background knowledge:

Definition 2. The risk of re-identification (or privacy risk) of an individual
u given a set of background knowledge BKh is her maximum probability of re-
identification Riskh(u,D) = maxPRD(d = u|b) for b ∈ BKh. It has the lower
bound |Du|

|D| (a random choice in D), and Riskh(u,D) = 0 if u /∈ D.

An individual is hence associated with several privacy risks, each for every
background knowledge of an attack.

3.1 Privacy Risk Assessment for Psychometric Profiles

PRUDEnce is a general framework, in which, depending on the human data under
analysis, the privacy attack to simulate varies. PRUDEnce has been used for
studying the privacy risk evaluation on mobility datasets [11,11,18], on pur-
chase datasets [10,12] and also on multi-dimensional data [17]. To the best of
our knowledge, there is no study analysing the privacy risk of the psychomet-
ric profiles derivable from message text written by users. In the literature there
are many data-driven studies based on textual data where documents are pre-
processed to extract psychometric features useful for data mining and ML tools.
The analysis of how privacy risk distributes over the population in this context
is important because often these profiles are good proxy of sensitive inferences as
mental disorders [4,20,23]. We define a privacy attack on psychometric features
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extracted from textual data. This attack exploits apriori knowledge on these
features to understand whether they can lead to a re-identification of users.

We consider a DP that maintains a database D constituted of unstructured
textual data and a SP that wants to use (a subset of) these data to deliver a
data-driven service based on some features derived from D . The database D
taken into account is composed of a set of users U = {u1, . . . , un}. Each user
u ∈ U owns a corpus of t unstructured text documents Mu = {mu

1 , . . . ,m
u
t },

therefore we have that D =
⋃

u∈U

Mu. Given a text document mu
i ∈ D, the DP

extracts a set of features describing some property of the text and the user style.
We call these set of features document features, and we denote it as Pmu

i ={
p
(mu

i )
1 , . . . , p

(mu
i )

h

}
. Note that the features can be numerical or not, depending

on the context and the type of use of these data. Hence, for each user u ∈ U we
have a set of document features, one for each document in the corpus of that user;
mathematically: Pu = {P (mu

1 ), P (mu
2 ), . . . P (mu

n)}. We denote by D =
⋃

u∈U

Pu the

dataset of psychometric profiles of users U .
We consider the scenario in which the attacker knows that an unknown user

û ∈ U is associated to l feature values b = {pb1 , . . . , pbl} with l ≤ h, where
b belongs to a psychometric profile extracted from a text message mû

i . The
attacker wants to identify û exploiting the records in D that have features corre-
sponding to the ones in b. We subdivide all the possible background knowledge
configurations with respect to the number of attributes: BKj is the set of all
the possible feature sets in D with j attributes, and we denote the set of all
the background knowledge configurations BK = {BK1, . . . , BKh}. In order to
model the probability of re-identification (Definition 1) for this attack we define
the matching function for d = Pmu

k and b = {pb1 , . . . , pbh} ∈ BKh in a dataset
D as:

matching(d, b) =

{
True, p

(mu
k)

1 = pb1 ∧ p
(mu

k)
2 = pb2 ∧ . . . ∧ p

(mu
k)

h = pbh
False, otherwise

(1)

We recall that, based on this function definition, we can compute the probability
of re-identification (Definition 1) as well as the privacy risk of each user (Defini-
tion 2). Intuitively, a certain user u is more easily re-identified if in D there are
a low number of profiles compatible with the background knowledge b.

4 Experiments

In this section we present the results of the simulation of the attack presented
in Sect. 31. We analyse two settings. (1) We perform the simulation assuming

1 The implementation of these attacks, written in Python 3.7, is available on Github
https://github.com/karjudev/text-privacy. For conducting the experiments we used
a server with 16x Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz (64 bits), 63 gb
RAM.

https://github.com/karjudev/text-privacy
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Table 1. List of LIWC features divided into 13 categories

Feature category Category name Features

Affective processes affective affect, posemo, negemo, anx, anger, sad

Biological process biological bio, body, health, sexual, ingest

Cognitive processes cognitive cogproc, insight, cause, discrep, tentat, certain, differ

Drives drives drives, affiliation, achieve, power, reward, risk

Perceptual processes perceptual percept, see, hear, feel

Social processes social social, family, friend, female, male

Language language WC, Analytic, Clout, Authentic, Tone, Sixltr, Dic, WPS

Time time focuspresent, focuspast, focusfuture

Grammar grammar verb, adj, compare, interrog, number, quant

Personal concerns personal work, leisure, home, money, relig, death

Informal informal informal, swear, netspeak, assent, nonflu, filler

Linguistic linguistic function, pronoun, ppron, i, we, you, shehe, they, ipron, article, prep,

auxverb, adverb, conj, negate

Punctuation punctuation AllPunc, Period, Comma, Colon, SemiC, QMark, Exclam, Dash,

Quote, Apostro, Parenth, OtherP

an adversary that may know any combination of h LIWC features belonging to
a user profile. In this case we consider 10 sets of background knowledge con-
figuration BKh, ranging from h = [1, 10]. (2) We perform an analysis aiming
to understand how the risk distribution varies over the categories of LIWC fea-
tures. In this case we identify 13 categories of features to be analyzed. For each
category we simulate the attack assuming an adversary that knows a combina-
tion of LIWC features in that category. We varied the background knowledge
configuration size h from 1 to the total number of features in that category. We
report the 13 LIWC categories in Table 1.

Dataset and Pre-processing. The data used to test the privacy risk assessment
tool is a pre-processed version the Enron corpus [8]2 The original version was
subject to a massive pre-processing, consisting of:

1. Removal of the email header : Enron corpus contains plain text email mes-
sages, with email addresses. We extract only the unstructured body from the
original texts.

2. Redundant string removal : emails can be original messages, replies to other
emails or forwards of a message. In the two latter cases, a string separates an
optional new text from the original message, that we remove.

3. Removal of non-contributing messages : We restrict our analysis only to mes-
sages longer than 2 characters3. We drop the duplicate messages4. We restrict
the dataset only to e-mail addresses in the enron.com domain5. We exclude
the records with a value of Word Count (WC) less than 16.

2 Composed of 517, 401 messages from 158 different authors.
3 482,117 messages from 20,192 authors.
4 230,571 messages from 20,192 authors.
5 176,243 messages from 6,410 authors.
6 176,207 messages from 6,410 authors.
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Fig. 1. Cumulative distribution of risk in the dataset. For each risk value (on the x-
axis) is reported the number of users that have at least such risk (on the y-axis). Note
that we report only BK = [1, 5] and BK = 10 as from BK = 5 onwards the behaviour
is similar: increasing the knowledge of the attacker, we reach a plateau (visible in
BK = 5, 10).

After this pre-processing, the resulting dataset D consists in 176, 207 email
messages from 6, 410 unique email addresses. On D we use LIWC to extract the
psychometric profile from each email to get the dataset D. This profile consists
of 93 features that are discretized into k = 18 equal frequency buckets7. After
the computation of the psychometric profiles, we perform a correlation analysis
on these features, using the Pearson correlation coefficient, observing that the
features Tone, affect, ppron, focuspresent are highly correlated (more than
80%) with other features, so we removed them.

Experimental Results. The first experiment simulates the attack where an adver-
sary knows any combinations of h features of a psychometric profile (ranging
from h = [1, 10]). Figure 1 shows the results of this simulation, depicting the
cumulative distribution, where for each risk value (on x-axis) we reported how
many users have at least such risk (on y-axis).
We observe that the risk distribution for the users behaves as already observed
for retail [12] and mobility [11,18] data: low risk values for a small background
knowledge size, increasing until a stabilisation point, where the (high) risk for
background knowledge sizes from 4 to 10 is approximately the same.

After finding typical privacy risk behaviour in this setting, we deepen our
analysis by studying the risk among the different categories of LWIC features. In
the second experiment we considered 13 categories of LIWC features, reported
in Table 1. In this case, for the simulation of the attacks we assume that the
adversary only knows some values’ features belonging to a specific category.
Hence, for each category we compute the attack detailed in Sect. 3, considering
a background knowledge size h from 1 to the total number of features for that
category. Interestingly, varying the category considered, the privacy attack may
be more or less effective. In Fig. 2 we observe how some kind of psychometric

7 The number is obtained using the Sturges formula [22].
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Fig. 2. LIWC categories exposing the user to low risk

features do not expose the user to a high risk. It is interesting to note that
we have very different categories in this group. We find social and informal
that focus mainly on the presence of colloquial terms or names8. For them,
we were expecting a very high risk of privacy as we are analysing a dataset
of business emails, where this kind of terms should have a low probability of
use for every user. However, since the population’s behavior is very similar in
the dataset, the number of re-identified users is very low. We have a similar
effect also for the personal concerns category, that considers the usage of
references to work, money, etc. In this case we have very common words in
this type of data and hence the users have similar values. Instead, it is peculiar
the case of affective, biological and perceptual. Some of these are part of
the psychological analysis of the text, such as perceptual, which analyses the
presence of phrases related to what one feels and understands, or biological,
which analyses references about health. Thus, despite referring to information
that may appear very personal, these categories do not expose the user to a high
privacy risk. Different, instead, is the case of time: there are only two features,
so the bk of the adversary is very limited. In this case, we can say that the
privacy risk is lower for dimensionality reasons.

In Fig. 3, we report other categories of psychometric features that expose
the user to a higher risk. The categories language and linguistic are the
most dangerous ones in our context as they expose the users to a higher privacy
risk: with a bk of 5, almost the entirety of the users can be re-identified. These
categories analyse the way in which a user writes: the language used, such as the
emotional tone, the authoritarian tone; number of words used; and the linguistic

8 Colloquial terms are: “mom” or “dad” and “mate” or “buddy”.
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Fig. 3. LIWC categories exposing the user to high risk

style, such as the use of pronouns, articles and prepositions. Thus, it is noticeable
that the way in which a user writes characterises her even in a professional
context like that under analysis. Another interesting aspect regards cognitive
and drives: they are the only psychological category among the ones at high
risk. cognitive analyses the presence of words about insight, causation and
discrepancy9. drives, instead, is more focused on the concepts of achievement,
reward and risk. We observe that, even if the risk overall the dataset is not high,
as the case of language and linguistic, for these psychological categories we
can see that starting from a bk of length 4 the privacy risk increases considerably,
meaning that they tend to distinguish better different users.

5 Conclusions

We defined and analysed a privacy risk attack for psychometric profiles. Psycho-
metric profiles are used in many data mining and ML applications, hence it is
crucially important to evaluate the real privacy risk the authors of such data are
facing. We defined a privacy risk attack considering a corpus of documents for
each user. For each document, we extracted a psychometric profile. The attack
assumes that there is an adversary who obtains some psychometric information
about an individual. Given the dataset containing the all psychometric profiles,
the adversary tries to re-identify all the records in the dataset belonging to that
individual. The experimental results show that the privacy risk in this context
depends on the kind of psychometric features the adversary knows: there are
categories that expose users to an extremely high privacy risk, namely grammar,
language, punctuation, linguistic, drives and cognitive.

Our future research agenda includes the simulation of this privacy risk on
textual data with different characterisation and the application of some privacy
protection strategies.

9 Words like “think”, “know”, “always”, “never” and “should”.
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Abstract. The detection and removal of misinformation from social
media during high impact events, e.g., COVID-19 pandemic, is a sen-
sitive application since the agency in charge of this process must ensure
that no unwarranted actions are taken. This suggests that any auto-
mated system used for this process must display both high prediction
accuracy as well as high explainability. Although Deep Learning meth-
ods have shown remarkable prediction accuracy, accessing the contextual
information that Deep Learning-based representations carry is a signifi-
cant challenge. In this paper, we propose a data-driven solution that is
based on a popular latent variable model called Independent Component
Analysis (ICA), where a slight loss in accuracy with respect to a BERT
model is compensated by interpretable contextual representations. Our
proposed solution provides direct interpretability without affecting the
computational complexity of the model and without designing a sepa-
rate system. We carry this study on a novel labeled COVID-19 Twit-
ter dataset that is based on socio-linguistic criteria and show that our
model’s explanations highly correlate with humans’ reasoning.

Keywords: Misinformation detection · Knowledge discovery ·
Independent Component Analysis · Explainability

1 Introduction

With the evolution of social media, there has been a fundamental change in
how misinformation is propagated especially during high impact events. A recent
example of a high impact event is the COVID-19 disease where misinformation is
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dangerously spreading and includes conspiracy theories, harmful health advises,
racism, among many others.

Recent machine learning advances have shown significant promise for the
detection of misinformation. Examples include approaches based on hand-crafted
features and approaches based on deep learning. Although approaches based on
hand-crafted features provide at a certain level interpretable results [9], in most
cases the selection of the features is tied to the particular application affecting the
generalization ability of the model. On the other hand, approaches based on deep
learning effectively learn the latent representations and have shown great promise
in terms of prediction performance [12]. However, the connections between high
level features and low representation space are usually accessed by using or
designing a separate system resulting in high computational or construction
overhead [10]. In this study, we present a computationally efficient data-driven
solution that is based on a latent variable model called independent component
analysis (ICA) such that detection of misinformation and knowledge discovery
can be achieved jointly. Our method achieves a prediction performance close to
that of deep learning while at the same time offering the kind of interpretability
that deep learning, even with the help of a separate explainability system, cannot
achieve.

This work makes several contributions. First, it proposes a new method for
misinformation detection based on ICA. Second, it demonstrates how to high-
light the connections between the low dimensional representation space and the
high level features. Finally, it makes available a new labeled and annotated
COVID-19 Twitter dataset1 as well as a set of rules for label generation based
on socio-linguistic criteria.

2 Development of Labeled Twitter COVID-19 Dataset

In constructing our labeled Twitter dataset we initially randomly collected a
sample of 282,201 Twitter users from Canada2 by using the Conditional Inde-
pendence Coupling (CIC) method [20]. CIC matches the prior distribution of
the population, in this case the Canadian general population, ensuring that the
sample is balanced for gender, race and age. All tweets posted by these 282,201
people from January 1, 2020 to March 13, 2020 were collected and a random
subset of 1,600 tweets was further analyzed to create a manageable and bal-
anced dataset of both real tweets and tweets that contain misinformation. Note
here that we follow current literature that defines misinformation as an umbrella
term to include all false or inaccurate information that is spread in social media.
This is a useful heuristic because, on a social media platform where any user can
publish anything, it is otherwise difficult to determine whether a piece of misin-
formation is deliberately created or not [21]. To eliminate data bias two subject

1 Dataset is available at https://zoisboukouvalas.github.io/Code.html.
2 We thank Dr. Kenton White, Chief Scientist at Advanced Symbolics Inc, for pro-

viding the initial Twitter dataset.

https://zoisboukouvalas.github.io/Code.html
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Table 1. 17 linguistic characteristics identified on the 560 Twitter dataset

Linguistic attribute Example from dataset

Hyperbolic, intensified, superlative, or emphatic

language [2,16]

e.g., ‘blame’, ‘accuse’, ‘refuse’, ‘catastrophe’,

‘chaos’, ‘evil’

Greater use of punctuation and/or special characters

[2,15]

e.g., ‘YA THINK!!?!!?!’, ‘Can we PLEASE

stop spreading the lie that Coronavirus is

super super super contagious? It’s not. It

has a contagious rating of TWO’

Strongly emotional or subjective language [2,16] e.g., ‘fight’, ‘danger’, ‘hysteria’, ‘panic’,

‘paranoia’, ‘laugh’, ‘stupidity’ or other

words indicating fear, surprise, alarm,

anger, and so forth

Greater use of verbs of perception and/or opinion [15] e.g., ‘hear’, ‘see’, ‘feel’, ‘suppose’, ‘perceive’,

‘look’, ‘appear’, ‘suggest’, ‘believe’, ‘pretend’

Language related to death and/or war [8] e.g., ‘martial law’, ‘kill’, ‘die’, ‘weapon’,

‘weaponizing’

Greater use of proper nouns [11] e.g., ‘USSR lied about Chernobyl. Japan

lied about Fukushima. China has lied about

Coronavirus. Countries lie. Ego, global’

Shorter and/or simpler, language [11] e.g., ‘#Iran just killed 57 of our citizens.

The #coronavirus is spreading for

Canadians Our economy needs support.’

Hate speech [8] and/or use of racist or stereotypical

language

e.g., ‘foreigners’, ‘Wuhan virus’, reference to

Chinese people eating cats and dogs

First and second person pronouns [15,16] e.g., ‘I’, ‘me’, ‘my’, ‘mine’, ‘you’, ‘your’,

‘we’, ‘our’

Direct falsity claim and/or a truth claim [2] e.g., ‘propaganda’, ‘fake news’, ‘conspiracy’,

‘claim’, ‘misleading’, ‘hoax’

Direct health claim e.g., ‘cure’, ‘breakthrough’, posting infection

statistics

Repetitive words or phrases [11] e.g., ‘Communist China is lying about true

extent of Coronavirus outbreak - If

Communist China doesn’t come clean’

Mild or strong expletives, curses, slurs, or other

offensive terms

e.g., ‘bitch’, ‘WTF’, ‘dogbreath’, ‘Zombie

homeless junkies’, ‘hell’, ‘screwed’

Language related to religion e.g., ‘secular’, ‘Bible’

Politically biased terms e.g., ‘MAGA’, ‘MAGAt’, ‘Chinese regime’,

‘deep state’, ‘Communist China’

Language related to financial or economic impact e.g., ‘THE STOCK MARKET ISN’T REAL

THE ECONOMY ISN’T REAL THE

CORONAVIRUS ISN’T REAL FAKE

NEWS REEEEEEEEEEEEEEEEE’

Language related to the Trump presidential election,

campaign, impeachment, base, and rallies

e.g., ‘What you are watching with the

CoronaVirus has been planned and

orchestrated. ’

matter experts from our group, Dr. Boukouvalas and Dr. Mallinson, indepen-
dently reviewed each tweet to determine whether or not a post should be labeled
as real or misinformation.

Tweets were labeled as misinformation if they included content that pro-
motes political bias, conspiracy, propaganda, anger, or racism and thus such
tweets could affect decision making and create social and political unrest during
COVID-19. Tweets that were not labeled as misinformation by both experts
were kept for a second review and finally marked as misinformation if both
experts agreed on their decision. To obtain a balanced dataset we randomly
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down-sampled the real class and also manually checked this class for consistency
and validity with respect to reliability. The final dataset consists of 280 real and
280 misinformation tweets.

The set of tweets that contains misinformation was further analyzed for the
presence of linguistic attributes that might indicate unreliability and provide a
set of linguistic rules of potential use to label further data sets and to assess the
interpretation ability of our model. This was done by reviewing each tweet for,
first, the presence of linguistic characteristics previously identified in the litera-
ture as being indicative of or associated with misinformation, bias, and/or less
reliable sources in news media; and second, for the presence of any additional
distinguishing linguistic characteristics that appeared to be indicative of misin-
formation in this dataset. A list of 17 linguistic characteristics was developed
and is presented in Table 1 along with instances of each characteristics drawn
from the dataset.

3 Tweet Representations Generation

3.1 Transformer Language Models

For comparison to state-of-the-art deep learning methods, we compare our results
against a suite of Transformer language models. Specifically, we evaluate “base”
and “large” variants of Bidirectional Encoder Representations from Transform-
ers (BERT) [7], Robustly Optimized BERT Pretraining Approach (RoBERTA)
[14], and Efficiently Learning an Encoder that Classifies Token Replacements
Accurately (ELECTRA) [6].

The bidirectional aspect of BERT comes from using a masked language model
(MLM) pre-training objective, which allows the model to incorporate informa-
tion from both the left and right contexts [7]. RoBERTA and ELECTRA repre-
sent subsequent improvements of these state-of-the-art results through further
investigation of improved pre-training methods [6,14]. To facilitate reproducibil-
ity, we use the pre-trained HuggingFace PyTorch implementation of each of these
models. The base version of each model contains 12 encoder layers, 768 hidden
units, and 12 attention heads (for a total of over 110M parameters), while the
large version of each model contains 24 encoder layers, 1024 hidden units, and
16 attention heads (for a total of over 330M parameters).

The classification model takes as input the Transformer output encoding;
for each tweet, we obtain a vector of length equal to the dimension of the final
hidden layer of the model (i.e., 768 for base models and 1024 for large models).
Aggregate representations for the input sequence (in our experiments, a tweet)
can be generated by taking the output vector of a [CLS] token prepended to the
input sequence. However, we found that taking the mean across the vectors for
all of a segment’s tokens provided a better classification performance, mirroring
results from other research into BERT-based sequence representations [17]. As
such, our sequence representations are generated through taking the mean across
all of a segment’s token vectors.
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3.2 Independent Component Analysis

We formulate the problem of tweet representation generation in the following
way. Let X ∈ R

d×V be the observation matrix which denotes the word-word
co-occurrence matrix and incorporates contextual information from the raw
tweet text data. The model is given by X = AS, where A ∈ R

d×N is the mixing
matrix and S ∈ R

N×V are the latent variables. Since in our study d > N , we
reduce to the case where d = N using principal component analysis (PCA).
The most popular way to estimate the latent variables is by using ICA [1]. The
assumption of independence of the sources not only enables a unique decompo-
sition under minimal model assumptions but also results in interpretable con-
textual representations through their linear mixing coefficients. For more infor-
mation about the mathematical formulation of ICA we refer the reader to [5].

The estimated columns of the mixing matrix A denote the weight features
that will be used for the construction of the tweet representations. An estimate of
A is computed as Â = (F)†(W)−1, where (F)† denotes the pseudo-inverse of the
matrix that is formed by the eigen-vectors with the first N highest eigenvalues
of X and W is the estimated demixing matrix resulted from ICA. In this work,
we used the entropy bound minimization (ICA-EBM) algorithm [13], due to the
fact that it has shown superior performance in a wide range of applications. To
construct the individual tweet representations, we average over the estimated
rows of A for the words in each tweet to obtain a single N -dimensional vector
representation for each tweet. For our study we have selected N = 250.

4 Results and Discussion

4.1 Prediction Performance

We evaluate the same classification algorithm, Support Vector Machines (SVM)
using a linear kernel3. In addition to the BERT versions and ICA tweet rep-
resentations, we consider three other popular latent variable methods: Non-
negative matrix factorization (NMF) [3], Dictionary Learning (DL) [19], and
Latent Dirichlet allocation (LDA) [4]. To construct tweet representations using
NMF, DL, and LDA we followed a similar procedure as we did with ICA. To
measure performance, we employed the standard suite of evaluation metrics,
i.e., accuracy, F1 score, precision, and recall. We report the macro-averaged ver-
sions of these scores. For all of the experiments, hyper-parameter optimization
and model training and testing is done using a nested five fold cross validation
scheme.

From Table 2, we see that prediction accuracy using RoBERTa-Large word
representations performs the best in terms of accuracy and F1 score. However,
the ICA method is able to achieve very similar performance to that of RoBERTa-
Large and in some cases better than other BERT versions such as ELECTRA-
Base and ELECTRA-Large. Performance using tweet representations derived
3 It is worth mentioning that for all methods similar results were obtained with the

sigmoid and and the rbf kernel.
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Table 2. Prediction performance

Method Accuracy Recall Precision F1

LDA 0.754 0.868 0.712 0.777

ICA 0.862 0.931 0.820 0.871

DL 0.779 0.740 0.799 0.767

NMF 0.832 0.872 0.810 0.838

BERT-Base-Uncased 0.868 0.883 0.858 0.869

BERT-Base-Cased 0.866 0.889 0.855 0.870

BERT-Large-Uncased 0.880 0.888 0.877 0.881

BERT-Large-Cased 0.875 0.895 0.863 0.876

ELECTRA-Base 0.848 0.837 0.861 0.847

ELECTRA-Large 0.832 0.838 0.828 0.832

RoBERTa-Base 0.873 0.862 0.888 0.873

RoBERTa-Large 0.886 0.891 0.883 0.886

from DL and LDA was significantly lower than that of ICA and BERT across
all metrics.

4.2 Explainability

ICA has the advantage over Deep Learning techniques of being able to provide
contextual interpretations through the estimated mixing matrix Â. It does so by
first ordering the ICA features by magnitude for a given tweet vector represen-
tation. For each tweet, the most important features, which may be considered
as topics, are then extracted. From the matrix Â, we then select the columns
corresponding to the most important topics for the chosen tweet, and for each
column we sort the rows, corresponding to vocabulary words, by magnitude.
This allows us to obtain the most important words in each topic for the most
important topics in each tweet.

The results of this extraction are shown at the bottom of Figs. 1 and 2. Fea-
ture 1 and Feature 2 represent the dominant words belonging to the highest two
features extracted by ICA on 2 real and 2 misinformation tweets that were all
classified correctly by the ICA-based method. From Fig. 1 and Fig. 2 we see that
the words listed in the main features of the two real cases (Cases 1 and 2) do not
match the rules extracted in Table 1, except for one: hyperbolic language (“apoc-
alyptic”). This suggests that the two main features extracted in each of these
two real cases support the classifier’s decision, since the words most strongly
associated with the features that caused that decision do not trigger many rules
believed to represent language used in misinformation. On the other hand, in
the two misinformation cases (Cases 3 and 4), many rules are triggered includ-
ing hate speech, hyperbolic language, and strongly emotional language. This
suggests that the two main features extracted in each of these misinformation
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cases support the classifier’s decision, since the words most strongly associated
with the features that caused that decision do trigger many rules believed to
represent language used in misinformation. Furthermore, the fact that the two
closely related misinformation tweets of Cases 3 and 4 triggered the same two
features shows the consistency of our approach. Figure 3, (Case 5), shows the
explainability results for the case where the ICA-based method did not classify
the tweet correctly. In this case, we see that the second main feature is the same
as the one that was picked by the two misinformation tweets enabling a user to
understand why the ICA-based method predicted this tweet as misinformation.

Fig. 1. Top: Local explanations by LIME for both BERT and ICA. Orange bars cor-
respond to the ICA-based approach and the blue bars correspond to the BERT-based
approach. Furthermore, 0 is neutral whereas positive values are misinformation and
negative values real; Bottom: Feature 1 and Feature 2 represent the dominant words
belonging to the highest two features extracted by ICA on two real tweets that ICA-
based method correctly classified; Tweets: Case 1 (predicted as real by ICA and
by BERT): BREAKING: Possibility Tokyo Olympics postponed to prevent spread
of COVID-19; Case 2 (predicted as real by ICA and as misinformation by
BERT): From a man to his family. Then to a neighbor. Then to friends. How coron-
avirus spread in New York in 48 h. (Color figure online)

While, as just discussed, the context in which a decision is made can easily be
extracted from the ICA-based method, in recent years, efforts have been made
to extract information from opaque classifiers. One such effort is the popular
local interpretable model-agnostic explanations (LIME) system [18] which pro-
duces local explanations for classifier decisions. This technique, however, comes



The Case for Latent Variable Vs Deep Learning Methods 429

at a cost since, for example, LIME took, on average, 6,400.1 s to process a single
tweet explanation for the BERT and SVM pipeline and 70.3 s for the ICA and
SVM pipeline whereas the extraction of ICA’s main features was instantaneous.
In addition to the cost, we argue that LIME does not consistently outfit the
BERT-based method (or the ICA-based method for that matter) with a satis-
fying explainability. In particular, looking at the top graphs in Fig. 1 and Fig. 2,
we notice inconsistencies in LIME’s explanations. In these graphs, the orange
bars correspond to the ICA-based approach and the blue bars correspond to the
BERT-based approach. Furthermore, 0 is neutral whereas positive values are
misinformation and negative values real. In Case 1, BERT issued the correct
classification. However, LIME’s explanation for this classification is that Covid
and 19 were reliable words, whereas irrelevant stop words such as “Of” and “to”
gave the system indication that it was misinformation. In case 2 that BERT
wrongly classified as misinformation, that unreliability is given by the irrelevant

Fig. 2. Top: Local explanations by LIME for both BERT and ICA. Orange bars cor-
respond to the ICA-based approach and the blue bars correspond to the BERT-based
approach. Furthermore, 0 is neutral whereas positive values are misinformation and
negative values real; Bottom: Feature 1 and Feature 2 represent the dominant words
belonging to the highest two features extracted by ICA on two misinformation tweets
that ICA-based method correctly classified; Tweets: Case 3 (predicted as misinfor-
mation by ICA and by BERT): @Drizz061 Have you even tried bat soup? Coron-
avirus is totally worth it; Case 4 (predicted as misinformation by ICA and as
real by BERT): Chinese People Eating Bat Soup Linked to the Coronavirus-Video.
(Color figure online)
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words “man”, “Coronavirus”, “spread” etc. This does not inspire confidence
in LIME the way ICA’s features did for the ICA-based explainability method.
Furthermore, unlike the features extracted by ICA, LIME does not associate
the words of a tweet with words associated in other tweets (local explanations).
This makes knowledge discovery and explainability a real challenge, since there
is no direct way to associate the linguistic attributes of Table 1 with the words
contained in a given misinformation tweet. On the other hand, ICA can simulta-
neously use the context for classification and make it explicit in its explanations.
To illustrate this idea, let‘s take the example of the expression “bat soup”. If
the expression was used only in the context of sentences such as “Did you know
that in some countries bat soup is a delicacy?” in the corpus, then the context,
would yield a classification of “real” as well as ICA features that do not trigger
any misinformation rules from Table 1, whereas in the context of this corpus, the
expression “bat soup” triggers many of these rules as mentioned when discussing
the ICA results of Figure 2. Furthermore, in the two misinformation cases (Cases
3 and 4), the lack of confidence in BERT is, in fact, supported by the fact that
the two closely related tweets which elicited the same main features and classifi-
cation by ICA received opposite classifications by BERT (correct misinformation
for Case 3 and incorrect real for Case 4) and seemed to have decided on mis-
information in Case 3 based on the unknown reference: “@Drizz061”, which, in
passing, ICA did not give much credence to.

Case 5 in Fig. 3, which ICA wrongly classified as misinformation was correctly
classified by BERT, but no good reason emerges from the LIME graphs, except
for the fact that the values it associated with the words hover over 0, whereas in
the case of ICA, LIME picked up on the words “Fake” and “arrested” which is

Fig. 3. Left: Local explanations by LIME for both BERT and ICA. Orange bars cor-
respond to the ICA-based approach and the blue bars correspond to the BERT-based
approach. Furthermore, 0 is neutral whereas positive values are misinformation and
negative values real; Right: Feature 1 and Feature 2 represent the dominant words
belonging to the highest two features extracted by ICA on one real tweet that ICA
classified incorrectly; Tweet: Case 5 (predicted as misinformation by ICA and as
real by BERT): Five arrested in Malaysia for spreading fake news about coronavirus.
(Color figure online)
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different from the explanation given by the feature and, in some way, does make
sense according to Table 1 rules: Direct falsity claim (“Fake”) and Language
related to Death and/or War (“arrested”), which suggests that ICA features
together with LIME give a relatively full picture of ICA’s mechanism, but that
LIME, which is the only category of tools that can be used in Deep learning
settings does not provide the user with a clear window into its decision making
approach.

5 Conclusion

Although Deep Learning recently became the approach of choice for practical
NLP tasks such as the detection and removal of misinformation from social
media, this study argues that latent variable decomposition methods can be
quite competitive and come with added advantages: simplicity, efficiency, and
most importantly, built-in explainability. After presenting a new Covid-19 misin-
formation data set, we demonstrate that an ICA- based classification approach
is almost as accurate as a BERT-based approaches while efficiently extracting
features bearing more resemblance to the socio-linguistic rules used to build the
data set than the information extracted by LIME, a state-of-the-art explainabil-
ity tool.
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Abstract. In this paper, we present a novel approach for local excep-
tionality detection on time series data. This method provides the abil-
ity to discover interpretable patterns in the data, which can be used
to understand and predict the progression of a time series. As an
exploratory approach, the results can be used to generate hypotheses
about the relationships between the variables describing a specific pro-
cess and its dynamics. We detail our approach in a concrete instantia-
tion and exemplary implementation, specifically in the field of teamwork
research. Using a real-world dataset of team interactions we discuss the
results and showcase the presented novel analysis options. In addition,
we outline possible implications of the results in terms of understanding
teamwork.

Keywords: Subgroup discovery · Exceptional model mining · Time
series · Teamwork research · Multimodal analysis.

1 Introduction

Methods for local exceptionality detection such as subgroup discovery [2] and its
variant exceptional model mining (EMM) [8] are established knowledge discov-
ery techniques for finding interpretable patterns. Basically, they identify patterns
relating different attributes of a dataset that are interesting according to some
target model, thus providing explicit and interpretable rules to associate descrip-
tive properties found in the data instances. Considering time series and/or event
data, the investigation of subgroup discovery has been limited, mainly focusing
on aggregating/averaging time overall [14] or by considering aggregates on sets
of discrete-valued events [17], compared to continuous-valued time series which
we consider in this work.
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In this paper, we present a novel approach for performing subgroup discovery
and EMM on time series. We propose an extensible approach, in particular
relating to feature and target construction on dynamic time series data.

Time series exceptionality analysis is a vast field, e. g., [1,12]. Here, for exam-
ple, methods for change detection [1], anomaly detection also including symbolic
representations [5,9,15] and time series classification are relevant, where typi-
cally global approaches are addressed, in contrast to local exceptionality detec-
tion which we focus on in this work. An approach based for compressing event
logs based on the minimum description length (MDL) principle was presented by
[11], making it possible to detect local patterns in temporal data, however with-
out focusing on exceptionality. Compared to this work, which focuses on event
sequences as inputs, our approach aims to find meaningful representations of
(potentially complex) continuous-valued time series, and assesses the discovered
patterns by reference to a target variable rather than compression.

In order to demonstrate our approach, we exemplify its application on a case
study conducted in the area of social sensing, wherein team interactions are
examined through a multimodal, sensor-based approach. In general, the study
of teamwork looks at how groups of multiple individuals work toward a com-
mon goal [19] through collaborative team processes [10]. Recent work [18,20]
has emphasised the need to understand dynamics within team processes, by
embracing methodologies that record teams over time. For example, body move-
ment, along with dynamics of speaking and turn-taking, are well understood to
be important social signals used in cooperation and teamwork [16,25]. Although
they can be quantified from video and audio recordings, it is difficult to estab-
lish the important relationships between these social signals in an empirical way
when using multiple time-varying modalities.

Since it is not obvious how to start analysing these time-varying signals, the
application of exploratory analysis methods such as subgroup discovery is well
suited for such an analysis, to provide first insights and to support hypothesis
generation. Our approach leads to interpretable rules which are plausible due to
the use of expert knowledge in feature selection (described further in Sect. 3).
We therefore choose this case study to showcase our method and to discuss the
respective results, using a real-world dataset of 27 video and audio recordings of
teams performing a collaborative task, taken from the ELEA corpus [21].
Our contributions are summarised as follows:

1. We present a novel methodological approach as an iterative human-guided
process that makes it possible to use subgroup discovery on time series data.
We discuss according feature extraction and target construction, e. g., using
different time lags, for making the results predictive at different timescales.

2. We showcase our approach through a study in the context of team research.
For this analysis, we also introduce a new quality function, adapting the
concept of dynamic complexity from team research. In addition, we present
a novel subgroup visualisation for multi-dimensional parameter analysis, i. e.,
the subgroup radar plot, also enabling user-guided subgroup assessment.
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3. In our case study, we search for relationships between multimodal data, i. e.,
body movement and speech in time series. As evaluated by a domain special-
ist, this gives rise to several meaningful hypotheses that can be investigated
in future work in the field of teamwork study.

2 Method

Below, we present our process model for local exceptionality detection in time
series, and then we discuss the individual steps of our approach in detail.

Overview. Our proposed approach is visualised in Fig. 1 as a linear workflow,
which can be executed in multiple iterations: First, the time series is split into
slices, i.e., non-overlapping subsequences of equal length, so that it is possible
to investigate moments when a time-varying target variable reaches an extreme
value. For each slice, we extract a set of descriptive features. These are (option-
ally) discretised, e. g., the value of each feature can be converted into ‘low’,
‘medium’ and ‘high’ based on tercile boundaries across the slices. The choice of
the appropriate length for a slice should be driven by the application, i. e., to
include enough time points to allow a variety of features to be extracted, such as
frequency components and estimates of entropy; also, it should be small enough
that dynamics of the time series are not likely to change multiple times within
a slice. Then, the target variable is prepared. We also propose to investigate
the relationship between attributes of the time slices to the target variable at
different lags, which necessitates performing the analysis with multiple copies
of the dataset (with the lag applied). With a lag of zero, our process discovers
subgroups that are informative about how various attributes covary with the
target, e. g., for investigating how a system-level process is reflected in multiple
variables. With higher lags, the process has a more predictive focus, relating to
especially high/low target value at a later point.

Fig. 1. The workflow of our methodological process to perform subgroup discovery on
time series data. With a human-in-the-loop, the workflow can be iteratively applied.

Time Series Feature Extraction. We convert time series into ‘slices’ which
can then individually be summarised with static rather than time-varying
attributes. To obtain the necessary features, we use the TSFresh package in
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Python [6], which computes a large number of features specifically to summarise
time series. Examples of features computed by TSFresh are, e. g.,: (a) mean value,
(b) absolute energy, (c) autocorrelation at different lags, (d) Fourier coefficients,
(e) binned entropy, (f) sample entropy, (g) root mean square, etc. This approach
makes it possible to perform subgroup discovery on the features extracted for
each slice, while still retaining some of the variation that is observed as the
original time series progresses (since different slices will correspond to different
points in time in the original series).

Subgroup Discovery for Local Exceptionality Detection. Subgroup dis-
covery aims at finding a combination of selectors or selection expressions, in
a form similar to rules (e. g., PropertyA = True or PropertyB > 1.5), which
function as membership criteria for a subgroup: any data points that satisfy the
criteria are part of the subgroup. A subgroup description (or pattern) combines
selectors into a Boolean formula. For a typical conjunctive description language,
a pattern P = {sel1, . . . , selk} is defined out of a set S of selectors sel j ∈ S,
which are interpreted as a conjunction, i.e. p = sel1 ∧ . . . ∧ selk. A subgroup
corresponding to a pattern then contains all instances d of a database D , i. e.,
d ∈ D for which the respective formula for the pattern evaluates to true. Speci-
fying subgroups in this way is useful because the rules are easy to interpret and
relate directly to known properties of the data points – also called instances.

The key question is determining which subgroups are interesting, e. g.,
because they have a particularly high average target value compared to the
population mean, as observed for the whole dataset. The interestingness of a
pattern is determined by a quality function q : 2S → R . It maps every pattern
in the search space to a real number that reflects the interestingness of a pat-
tern (or the extension of the pattern, respectively). Many quality functions for
a single target feature, e. g., in the binary or numerical case, trade off the size
n = |ext(P)| of a subgroup and the deviation tP − t0, where tP is the average
value in the subgroup identified by the pattern P and t0 the average value of the
target feature in the general population. Thus, standard quality functions are of
the form

qa(P) = na · (tP − t0), a ∈ [0; 1] .

For binary target concepts, this includes, e. g., a simplified binomial function
q0.5 for a = 0.5, or the Piatetsky-Shapiro quality function q1 with a = 1, cf. [2].
Recently, [4] described the use of quality functions which also include a term to
quantify the dispersion of the target feature within the subgroup, which increases
the consistency within subgroups with respect to the target feature.

3 Results: Case Study on Team Interaction Data

Below, we discuss a case study applying our approach in the context of inter-
active team cognition [7]. We investigate the ‘dynamic complexity’ of speech
amongst team members (described in detail in Sect. 3), which is a method to
quantify interaction dynamics that is also sensitive to moments of transition
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where the dynamics are changing. These moments are potentially to the benefit
or the detriment of the team (we provide further discussion in [24]). Subgroup
discovery provides interpretable patterns of interesting situations/events, where
the dynamic complexity shows exceptional local deviations, indicating interest-
ing points in the respective team interaction.

Dataset. The data used in this case study comes from the Emergent Leadership
(ELEA) corpus [21], which contains recordings of groups of individuals who have
been tasked to work together to rank a list of items given a disaster scenario.
In particular, the task was to rank the importance of items such as ‘chocolate’
and ‘newspapers’ for the situation in which the group has been stranded in a
freezing-cold winter environment. The corpus includes audio recordings from
a single microphone in the centre of the room, and video recordings from web-
cams facing the participants. Both types of recording are available for 27 groups,
each consisting of 3–4 participants. Via the video recordings, we quantify body
movement during the team task. See [13] for a detailed discussion on how to
quantify body movement in this context. Intuitively, we relate the body move-
ment modality to the modality of speech, using the audio recordings to quantify
speech dynamics. As a target we use dynamic complexity, cf. Sect. 3 (below), to
estimate speech dynamics.

Feature Selection. TSFresh is not domain-specific, and therefore extracts
generic features from time series. An important step in our process is to iden-
tify which features are potentially relevant and interpretable for the application
being considered. We selected a subset of 91 from the 300+ features extracted
by TSFresh. At a high level, these features can be categorised as follows:

(a) Descriptive statistics (mean, variance, quantiles, standard deviations); (b)
Average and variance of the changes between successive time points; (c) Mea-
sures of complexity, such as Lempel-Ziv complexity, as well as multiple forms of
entropy; (d) ‘Matrix profile’ statistics, which can be informative about repetitive
or anomalous sub-sequences of the time slices; (e) Measures based on the number
of peaks or extreme points; (f) Strength of different frequency components in
the signal; (g) Measures based on autocorrelation at different lags; (h) Measures
based on how well the data fits a certain (e. g., linear) model.

Features were selected based on potential relevance to body movement in
social interactions, through discussion with an expert in interactive team cog-
nition. For example, when considering coefficients of the Fourier transform, we
included the magnitude since a large degree of movement at a specific frequency
is something that can be visibly interpreted from the video recordings of body
movement, but excluded the angle (or phase at the start of the time slice) since
this is hard to visually comprehend (without performing further analysis to look
for, e.g., synchrony) and therefore seems unlikely to be a usable social signal.

Target Modeling – Dynamic Complexity. As the target variable for sub-
group discovery, we focused on the dynamic complexity of the speech recordings.
The dynamic complexity measure is used to quantify how complex the behaviour
of a system is, and provides us with a way to characterise the dynamics of speech,
in a manner which could potentially be useful for (e.g.) detecting moments when
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a phase transition between patterns of behaviour is likely [22]. It is calculated
over a moving window by combining two components, called the fluctuation
and distribution, which respectively correspond to: the degree to which frequent
and large oscillations are observed in the window, and, the degree to which the
observed values refuse to favour a particular region of the measurement scale
(instead being distributed equally across the possible range of values). The prod-
uct of fluctuation and distribution gives the dynamic complexity of the window.
For a detailed discussion we refer to [22,24]. We convert the audio data, which
is sampled 40,000 Hz, to a more coarse-grained dataset by computing the energy
of each second of audio, which allows us to calculate dynamic complexity on a
scale appropriate to interaction behaviour (a timescale of seconds to minutes).

We evaluated two variations of dynamic complexity, captured as a target
attribute, which we constructed in the spirit of EMM. First, we model the
dynamic complexity as a Gaussian distribution of values, and use the z-score
normalised mean as the target variable to determine which subgroups are most
interesting. Second, we perform a linear regression of the dynamic complexity
against time as a target model, and use the resulting slope as the target attribute.
In both cases, the quality function we use to rank subgroups is the simple bino-
mial quality function (q0.5, see above), which tends to favour smaller subgroups
with a more extreme target value. To balance this, we set the minimum subgroup
size to 20 so that they do not become too small to be meaningful.

Results. As stated earlier, we are able to perform subgroup discovery at dif-
ferent time lags, making the task predictive when using lags greater than zero,
or an exploration of the relationships between variables at lag zero. First, we
discuss the 0-lag results, with slices of 1 min. A selection of five subgroups is pre-
sented in Table 1. The subgroups are also visualised as subgroup radar plots in
Figs. 2(a), indicating the most important quality parameters, and 3(a), addition-
ally showing how the subgroups differ according to 5 key selector variables. In
general, these presented novel subgroup visualisations (Figs. 2, 3) allow a seam-
less overview–zoom–detail cycle, according to the Information Seeking Mantra
by Shneiderman [23]: Overview first (macroscopic view), browsing and zooming

Table 1. A selection of subgroups discovered using the SD-Map algorithm [3] at a lag
of 0 min: subgroup pattern, a textual description, size (S) and mean z-score (∅).

Pattern Description |S| ∅

1 mean change quantiles f agg "mean"

isabs False qh 0.6 ql 0.2=low, AND

mean longest strike below mean=high,

AND mean quantile q 0.8=low

The value of changes around the mean (after values

have been restricted to remain between the 0.2 and

0.6 quantiles) is low across the team. Team

members tend to have at least one long sequence of

values below the mean. The 0.8 quantile also tends

to be low.

21 1.137

2 mean lempel ziv complexity

bins 100=low, AND

mean longest strike below mean=high,

AND mean quantile q 0.8=low

The Lempel-Ziv measure of complexity is neither

high nor low across the team. Team members tend

to have at least one long sequence of values below

the mean. The 0.8 quantile also tends to be low.

25 1.026

3 mean longest strike below mean=high,

AND mean mean=low

Team members tend to have at least one long

sequence of values below the mean. The average

value of movement is generally low across the team.

38 0.81
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(mesoscopic analysis), and details on demand (microscopic focus) – from basic
quality parameters to subgroup description and its combination. This allows a
human-in-the-loop approach, which proved beneficial for our domain specialist
when inspecting the results of our knowledge discovery methodology.

Fig. 2. Visualisations of how subgroups differ according to quality, mean z-score, and
size. The results are shown at: (a) a lag of 0min, and (b) a lag of 1 min.

Overall, our results show that it is possible to discover relatively small sub-
groups (size 20–40 compared to a population size of 327) whose dynamic com-
plexity has on average a z-score of around 1, as the mean, averaged across
members of the subgroup. Since the outputs are interpretable, it is possible to
speculate about what they mean in the context of body movement and speech
dynamics. Many of the subgroups, such as those shown in Table 1, suggest that
low amounts of movement might be indicative of complex speech dynamics, par-
ticularly if there is a long sequence of low values. This perhaps suggests that
while speech dynamics are becoming chaotic, the team members become more
still – for example moving less as they focus more on the discussion. This is a
hypothesis generated from the data which further work could seek to verify. In
order to consider the impact of the window size, we also performed subgroup dis-
covery using 30-second slices of the time series. This uncovered subgroups which
often used the same rules, e.g., stating that the change around the mean between
the 0.2 and 0.6 quantiles be low across the team, and, that the mean and various
quantiles should also be low. There were some differences, especially that these
subgroups incorporated more rules concerning variability between team mem-
bers with respect to their number of values below the mean/above the mean and
their Lempel-Ziv complexity, suggesting that certain types of imbalance in the
teams may also help to identify moments of high dynamic complexity in speech.
Overall, changing the window size in this way did not have a large impact on
the discovered subgroups.

Next, we discuss results when applying a lag of 1 min, discovering ways to
predict high complexity in speech dynamics from the body movement signals
a minute earlier. A selection of subgroups are presented in Table 2, Fig. 2(b),
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Fig. 3. Visualisations of how subgroups differ according to the mean z-score, the size,
and 5 key selector variables – with (a) a lag of 0 min, and (b) a lag of 1min.

and Fig. 3(b), to give an idea of how exceptional the subgroups are compared
to the population overall. Like with the 0-lag results, it appears to be possible
to discover subgroups of around 20–40 members which have an average z-score
of close to 1. The features used to define subgroups, however, are different.
Some of the subgroups, such as the first two listed in Table 2, suggest that the
team members might have similar, low values for the low-frequency movement
components during the minute preceding a period of high dynamic complexity.
Features based on ‘matrix profile’ statistics are used to define many subgroups.
Looking at these features, it seems that high dynamic complexity can be expected
following a period when the body movement signal does not have clear repetitions
in its structure. This could indicate that complexity and a lack of pattern in
body movement is predictive of chaotic speech dynamics shortly thereafter. This
is another example of a data-driven hypothesis that future confirmatory work
could verify.

Furthermore, besides the mean dynamic complexity of speech, we performed
the analysis with two related target concepts. Specifically, we considered (1) the
slope when conducting a linear regression of the dynamic complexity against
time, and (2) the change between successive windows. The results in this case
would be informative about periods when the complexity of speech dynamics
is increasing. Many of these subgroups included rules that complexity of body
movement (measured through Lempel-Ziv, Fourier entropy and binned entropy)
is generally high across the team, and some subgroups also indicated that a
large number of peaks in the slices of body movement was related to increasing
dynamic complexity in speech. This could indicate that complexity in speech
increases fastest while movement is already complex. From this analysis, the
subgroups also suggested a relationship between increasing speech complexity
and a medium-strength frequency component in body movement at 0.5–0.75 Hz,
and also medium values for the mean and various quantiles. Results when using
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Table 2. A selection of subgroups discovered using the SD-Map algorithm [3] at a lag
of 1 min: subgroup pattern, a textual description, size (S) and mean z-score (∅).

Pattern Description |S| ∅

1 mean augmented dickey fuller

attr "teststat" autolag "AIC"=medium, AND

mean spkt welch density coeff 2 =low, AND

std 0.0 to 0.25 Hz=low

The signal is neither relatively well-modelled

nor relatively poorly-modelled by a process

with a unit root, according to the

Augmented Dickey-Fuller test. The strength

of the frequency component at 0.234Hz is

low, and there is low variability of the

strength of frequency components between

0.0Hz and 0.25Hz among team members.

21 1.062

2 mean matrix profile feature "25"

threshold 0.98=high, AND

mean spkt welch density coeff 2=low, AND

std root mean square=low

The 0.25 quantile of the similarity of

subwindows within the signal to other

subwindows within the signal is low,

suggesting that a reasonable proportion of

subsequences (of the time series) are

unusual (not repeating). The strength of the

frequency component at 0.234Hz is low.

How well the time slices can be modelled by

a linear progression is not varied across the

team members.

20 0.964

3 mean matrix profile feature "median"

threshold 0.98=high, AND

std change quantiles f agg "var"

isabs True qh 0.6 ql 0.4=low, AND

std quantile q 0.9=low

The median similarity of subwindows within

the signal to other subwindows within the

signal is low, suggesting that subsequences

(of the time series) tend to be relatively

unusual (not repeating). The absolute value

of changes around the mean (after values

have been restricted to remain between the

0.4 and 0.6 quantiles) is consistent across

the team. The 0.9 quantile also has low

variability.

30 0.811

the change between successive as a target variable also suggest that the frequency
components at 0.0–0.25 Hz should be low. The reliability and significance of these
frequency components as indicators of increasing speech complexity could be
investigated through future work.

4 Conclusions

In conclusion, we have presented a novel approach for local exceptionality detec-
tion in time series using subgroup discovery – as a workflow that can be applied
in multiple iterations for modeling features and the target, respectively. With
these, it is possible to identify features which are strongly associated with or
highly predictive of a target variable. We demonstrated the approach via a case
study of analysing team interaction data, matching body movement information
to a measure of the dynamics of speech. Among other things, this showcased the
hypothesis-generating capabilities of our approach. Future research could con-
sider possible refinements, e. g., by considering to extract features from overlap-
ping windows at different offsets as an alternative to non-overlapping windows.
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Abstract. Causal structure discovery in complex dynamical systems is
an important challenge for many scientific domains. Although data from
(interventional) experiments is usually limited, large amounts of obser-
vational time series data sets are usually available. Current methods that
learn causal structure from time series often assume linear relationships.
Hence, they may fail in realistic settings that contain nonlinear relations
between the variables. We propose Neural Additive Vector Autoregres-
sion (NAVAR) models, a neural approach to causal structure learning
that can discover nonlinear relationships. We train deep neural networks
that extract the (additive) Granger causal influences from the time evo-
lution in multi-variate time series. The method achieves state-of-the-art
results on various benchmark data sets for causal discovery, while pro-
viding clear interpretations of the mapped causal relations.

Keywords: Causal discovery · Time series · Deep learning

1 Introduction

Discovering mechanisms and causal structures is an important challenge for
many scientific domains. Randomized control trials may not always be feasi-
ble, practical or ethical, such as in the domain of climate sciences and genetics.
Therefore, when no interventional data is available, we are forced to rely on
observational data only.

In dynamical systems, the arrow of time simplifies the analysis of possible
causal interactions in the sense that we can assume that only preceding signals
are a potential cause of the current observations. A common approach is to test
time-lagged causal associations in the framework of Granger causality [10]. These
methods often model the time-dependence via linear causal relationships, with
Vector AutoRegression (VAR) models as the most common approach.

Even though there is extensive literature on nonlinear causal discovery (e.g.
[17,31]) relatively few others (e.g. [14,32]) have harnessed the power of deep
learning for causal discovery in time series. These methods operate within the
Granger causality framework and use deep neural networks to model the time
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dependencies and interactions between the variables. In principle, deep learning
approaches make it possible to model causal relationships, even when they are
nonlinear. While these methods have a high degree of expressiveness, this flexi-
bility comes at a cost: interpretation of the causal relations learned by black-box
methods is hindered, while this is essentially the goal of causal structure learn-
ing. To overcome this, these methods learn to set certain input weights to zero,
which they interpret as an absence of Granger Causality.

In this work, we propose the Neural Additive Vector Autoregression
(NAVAR) model to resolve this problem. NAVAR assumes an additive struc-
ture, where the predictions depend linearly on independent nonlinear functions
of the individual input variables. We model these nonlinear functions using neu-
ral networks. In comparison to other works using Granger causality for causal
discovery in time series, our work differs in the following ways:

1. Compared to common linear methods, our method can easily capture (highly)
nonlinear relations.

2. While being able to model nonlinear relations, NAVAR maintains a clear
interpretation of the causal dependencies between pairs of variables. In con-
trast to other deep learning methods that resort to feature importance meth-
ods, NAVAR uses the interpretational power of additive models to discover
Granger causal relationships.

3. By using an additive model of learned transformations of the input variables,
our model allows not only for the discovery of causal relationships between
pairs of time series but also inspection of the functional form of these causal
dependencies. Thanks to the additive structure, we can inspect the direct
contribution of every input variable to every output variable.

4. The additive structure allows us to score and rank causal relations. Since we
can compute the direct contribution of each input variable to each output
variable independently, the variability of these contributions can be used as
evidence for the existence of a causal link.

The rest of this paper is structured as follows: Sect. 2 introduces the Granger
causality framework and VAR models. In Sect. 3 we generalize this notion to
the additive nonlinear case and introduce NAVAR models that can estimate
Granger causality using neural networks. In Sect. 4 we evaluate the performance
of NAVAR on various benchmarks and compare it to existing methods. Finally, in
Sect. 5 we discuss related work and in Sect. 6 we conclude and discuss directions
for future work.

2 Granger Causality and the VAR Model

Let X1:T = {X
(1)
1:T ,X

(2)
1:T , ..,X

(N)
1:T } be a multivariate time series with N variables

and T time steps. Our goal is to discover the causal relations between this set
of time series. (Pairwise) Granger causality is one of the classical frameworks to
discover causal relationships between time series. In this framework, we model
the time series as:

X
(i)
t = gi(X(1)

<t , ...,X
(N)
<t ) + ηi

t (1)
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where X
(i)
<t = X

(i)
1:t−1 denotes the past of X(i), and ηt is an independent noise

vector. A variable X(i) is said to Granger cause another variable X(j) if the past
of the set of all (input) variables {X

(1)
<t , ...,X

(i)
<t , ...,X

(N)
<t } allows for better pre-

dictions for X
(j)
t compared to the same set where the past of X(i) is not included:

{X
(1)
<t , ...,X

(i−1)
<t ,X

(i+1)
<t , ...,X

(N)
<t }. Granger causality approaches assume causal

sufficiency. We refer to the directed graph with the variables X(i) as vertices,
and links representing Granger causality between two variables as the Granger
causal graph.

In the VAR framework, the time series X
(j)
t is assumed to be a linear com-

bination of all past values (up to some maximum lag K) and independent noise
term. This means that every value X

(j)
t can be modeled as:

X
(j)
t = βj +

N∑

i=1

K∑

k=1

[Ak]ijX(i)
t−k + ηj

t (2)

Where Ak is a N × N time-invariant matrix which identifies the interaction
between the variables, β is a N -dimensional bias vector, and ηt is an independent
noise vector with zero mean. A common approach to infer which pairs of variables
are not Granger causal is to identify i and j for which [Ak]ij = 0 for all time
lags k = 1, ...,K.

3 NAVAR: Neural Additive Vector AutoRegression

The idea underlying the linear VAR model is simple and it can be surprisingly
effective. For instance, in the NeurIPS 2019 Causality for Climate competition,
the winners used four variations based on the standard linear VAR model [34].
However, a limitation of the VAR model is that it can only model linear interac-
tions. Guided by the success and reliability of VAR models for Granger-causal
discovery, in this work, we generalize the VAR model to allow for nonlinear
additive relationships between variables:

X
(j)
t = βj +

N∑

i=1

f ij(X(i)
t−K:t−1) + ηj

t (3)

Here, f ij is a nonlinear function describing the relationship between the past
K values of X(i) on the current value of X(j). Note that the VAR model is
the special case where f ij is linear. We can identify Granger causality in the
following way: if variable X(i) is not a Granger cause of another variable X(j)

then f ij is invariant to the values of X
(i)
t−K:t−1. In other words, if f ij is a constant

function of all values X
(i)
t−K:t−1, then X(i) is not a Granger cause of X(j).

The choice of this additive model is built on the following assumption. In
many practical applications, the functional dependence of a variable X

(i)
t on

the history of a variable X
(i)
<t is complex, with e.g. nonlinear functions across

multiple time lags. However, dependencies on multiple time series can usually
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be well approximated by additive models. Therefore, we introduce an additive
structure for the contributions stemming from the different variables, but do not
impose an additive restriction to contributions from different time lags.

We choose to use deep neural networks (DNN) to model the nonlinear
function f ij . In our method, dubbed Neural Additive Vector AutoRegression
(NAVAR), we train separate models on the past of each variable to predict its
contribution to the value of all variables at the next time step. In particular, at
every time step t, we pass the past values of a variable X(i) to a neural network
f with N output nodes to compute its contribution to all other variables X(j):

ci→j
t = [fθi

(X(i)
t−K:t−1)]

j (4)

The function [fθi
]j is the jth output of the neural network f with parameters θi.

A graphical overview of the method can be found in Fig. 1. In principle, one can
choose a wide variety of neural networks for f , e.g. Multi-Layered Perceptrons
(MLP), Recurrent Neural Networks (RNN), and Convolutional Neural Networks
(CNN). In our experiments, we consider MLPs and LSTMs [9] to demonstrate
the concept, since the additive structure is key to its success. In the LSTM ver-
sion of our model, single time steps of a variable are sequentially passed to the
networks, and thus the networks predict the contributions based only on Xt−1

and its recurrent hidden states (in contrast to K inputs to the MLP). Therefore,
the size of the LSTM network does not increase for larger lags and is thus par-
ticularly scalable to longer lags. Although these backbones already outperform

Fig. 1. Graphical representation of the NAVAR model with MLPs. For every time step
t and every variable X(i), we compute a nonlinear combination of its past X

(i)
t−K:t−1

(with a maximum time lag K) as the contribution to every other variable. To compute

the estimate of X
(j)
t , all contributions ci→j

t are summed.
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the state of the art, we envision that more complex backbone architectures for
f could potentially further increase performance.

The resulting prediction for X(j) at time t is the sum of all its incoming
contributions:

X̂
(j)
t = βj +

N∑

i=1

ci→j
t (5)

We choose this additive structure of neural networks as it is a natural exten-
sion of the VAR framework with nonlinearities (see Eq. 3) and it allows us to
uncover the causal links from X(i) to X(j) by inspecting the direct contributions
ci→j
t . Granger causality requires us to estimate the predictions for X

(j)
t when

the past of X(i) is not included, which in our framework can be directly obtained
by ignoring the corresponding contribution ci→j

t in Eq. (5). This is a key feature
of our method that allows it to be scalable: we avoid the necessity to perform
multiple fits of a neural network, such as a fit including and excluding the past of
variable X(i), when testing the predictive power due to X(i) (see the discussion
in Related Work).

The regression networks are trained using the MSE loss function. We intro-
duce an l1 penalty to the contributions ci→j

t in order to promote sparsity in the
resulting causal link structure. Assuming that large causal networks will have a
similar number of causes per variable compared to smaller networks, we choose
to penalize the sum of the absolute value of received contributions per variable
instead of the mean contribution size. This results in the following loss function
for the predictions at a time step t:

Lt(β, θ) =
1
N

N∑

j=1

(
βj +

N∑

i=1

[fθi
(X(i)

t−K:t−1)]
j − X

(j)
t

)2

+
λ

N

N∑

i,j=1

∣∣∣[fθi
(X(i)

t−K:t−1)]
j
∣∣∣

(6)

Furthermore, we add a weight decay term to the loss with coefficient μ.
In order to make the contributions comparable, every individual time series

is normalized such that it has mean zero and standard deviation one before
training. After training the networks, we deduce the causal links from the vari-
ability of the contributions in Eq. (4). The rationale to reconstruct the Granger
causal graph is that if a certain variable has a large causal influence on another
variable, then it will send a large variety of contributions over the course of time.
However, if a variable X(i) is not a Granger cause of another variable X(j) then
f ij is a constant function, because X(j) is invariant to the values of X

(i)
t−K:t−1.

To score a potential causal link X(i) → X(j) with the trained neural network,
we therefore compute the standard deviation of the set of contributions ci→j

t for
all t ∈ {K + 1, T}:

score(i → j) = σ({ci→j
K+1, c

i→j
K+2, ..., c

i→j
T }) (7)
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In all of our experiments, we use the ReLU activation function and the Adam
optimizer [15] to train our networks. Our implementation of NAVAR and code to
reproduce the experiments can be found at: https://github.com/bartbussmann/
NAVAR.

4 Experiments

4.1 Interpretable Contributions

First, we investigate the ability of our model to learn interpretable nonlinear
causal dependencies on a toy dataset. We construct the dataset with three vari-
ables (N = 3) and 4000 time steps (T = 4000) based on the following SCM:

X
(1)
t = cos(X(2)

t−1) + tanh(X(3)
t−1) + η1

t

X
(2)
t = 0.35 · X

(2)
t−1 + X

(3)
t−1 + η2

t

X
(3)
t =

∣∣∣0.5 · X
(1)
t−1

∣∣∣ + sin(2X(2)
t−1) + η3

t

where ηi
t ∼ N (0, 1) for i = 1, 2, 3.

We train a NAVAR (MLP) model on this dataset and investigate the learned
contributions between pairs of variables. In Fig. 2 we find that the model has
learned contributions that are similar to the ground truth causal relationship.
Furthermore, we find that for the pairs of variables that are not Granger causal,
the learned contribution function has very little variability. This illustrates that
our rationale for using the standard deviation of the learned contributions as
measure for Granger causal influence is appropriate.

Next, we investigate how to interpret the contributions when the underlying
data contains nonlinear interactions across multiple time lags. To this end, we

Fig. 2. The learned contributions between pairs of variables in our synthetic dataset.
The learned contribution functions closely reflect the true causal influence, showing the
power of NAVAR models in both Granger causal discovery and interpretability. The
causality score from Eq. (7) is given for each potential link. The scores of true causal
relationships are presented in boldface.

https://github.com/bartbussmann/NAVAR
https://github.com/bartbussmann/NAVAR
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Fig. 3. Left Panel: NAVAR discovers coupled nonlinearities within time series across
multiple lags. Contributions are shown for different K to study the time lag (by masking
the input of the fitted model at higher lags). The diagonal represents learned contribu-
tions that perfectly predict the target variable. At lags with true causal relationships,
the standard deviation of the contribution increases and the mean squared error (dis-
tance to the diagonal) decreases. Right panel: change in causal score from Eq. (7) when
including K lags, with respect to the case of including K−1 lags. For cY →X , we observe
a high causal score contribution at K = 3, 4, 5, while for cX→Y we observe high scores
at K = 2, 4, both in agreement with the underlying SCM in Eq. (8).

construct a second synthetic dataset with two variables (N = 2) and 4000 time
steps (T = 4000) based on the following structural causal model:

Xt = cos(Yt−3 + Yt−4 + Yt−5) + η1
t

Yt = Xt−2 · Xt−4 + η2
t (8)

where ηi
t ∼ N (0, 0.1) for i = 1, 2

We train a NAVAR (MLP) model with a maximum lag K = 8. Although
we do not enforce interpretable additive contributions of individual time lags
and thus cannot extract the isolated causal influence of individual time lags,
we can still investigate the effect of leaving time lags out. Therefore, we mask
the input of the fitted model from a certain maximum time lag. In Fig. 3 three
observations can be made: (1) after adding a lag with a true causal link the
standard deviation of the contribution increases significantly, which motivated
the use of our score function; (2) for time lags with a true causal link the mean
squared error decreases; (3) for time lags without a true causal relationship
neither of these change significantly, showing that the model did not pick up on
spurious contributions (i.e. correlations). We point out that the above analysis
is made feasible due to the additive structure which allows us to study pairs
of variables in isolation from other contributions, and the sparsity penalty that
forces the model to consider mostly direct causes.

4.2 CauseMe - Earth Sciences Data

We evaluate our algorithm on various datasets on the CauseMe platform [18].
The CauseMe platform provides benchmark datasets to assess and compare the
performance of causal discovery methods. The available benchmarks contain
both datasets generated from synthetic models mimicking real challenges, as
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well as real-world data sets in the earth sciences where the causal structure
is known with high confidence. The datasets vary in dimensionality, complex-
ity, and sophistication, and come with various challenges that are common in
real datasets, such as autocorrelation, nonlinearities, chaotic dynamics, extreme
events, nonstationarity, and measurement errors [28]. On the platform, users
have registered over 80 methods for Granger cause discovery.

We compare our methods with four baseline methods implemented by the
platform, namely: VAR [30], Adaptive LASSO [36], PCMCI [27], and FullCI
[29]. The VAR and Adaptive Lasso methods are both linear regression methods,
where the latter consists of computing several Lasso regressions with iterative
feature re-weighting. PCMCI and FullCI are constraint-based methods and per-
form conditional independence tests. Both of these algorithms come with three
different independence tests, namely the linear ParCorr test and the nonlinear
GPDC and CMI tests. For these methods, we report the results of the best scor-
ing independence test. Furthermore, we compare NAVAR with SLARAC and
SELVAR [34], the two algorithms that won the NeurIPS 2019 Causality for Cli-
mate competition. SLARAC fits a VAR model on bootstrap samples of the data,
each time choosing a random number of lags to include, whereas SELVAR selects
edges employing a hill-climbing procedure based on the leave-one-out residual
sum of squares of a VAR model.

Every experiment (e.g. Climate, with N = 40, T = 250) consists of 200
datasets. For every experiment, we tune our hyperparameters (hidden units,
batch size, learning rate, contribution penalty coefficient λ, and weight decay μ)
on the first five datasets, of which we use the first 80% for training and the final
20% for validation. The optimal hyperparameters are tabulated in Appendix
A1. We set the maximum lag parameter K based on information provided by

Table 1. Average AUROC on various datasets of the CauseMe platform. Performance
of the baseline methods Adaptive LASSO, PCMCI, and FullCI are not available for
the hybrid and real-world datasets. For each dataset, we provide the total number of
time steps T and the number of variables N . Datasets with purely linear dynamics are
indicated by an asterisk. Models with the highest AUROC are indicated in boldface.

Nonlinear VAR Climate* Weather River

N = 3 N = 5 N = 10 N = 20 N = 40 N = 10 N = 12

T = 300 T = 300 T = 300 T = 300 T = 250 T = 2000 T = 4600

NAVAR (MLP) 0.86 0.86 0.89 0.89 0.80 0.89 0.94

NAVAR (LSTM) 0.85 0.84 0.84 0.81 0.80 0.89 0.94

SELVAR 0.88 0.86 0.86 0.85 0.81 0.90 0.87

SLARAC 0.74 0.76 0.78 0.78 0.95 0.95 0.93

VAR 0.72 0.69 0.68 0.66 0.80 0.79 0.71

Ad. LASSO 0.82 0.79 0.79 0.78 – – –

PCMCI 0.85 0.82 0.83 0.82 – – –

FullCI 0.83 0.81 0.81 0.82 – – –

1 Appendices and code can be found at https://github.com/bartbussmann/NAVAR.

https://github.com/bartbussmann/NAVAR
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CauseMe, and train on every dataset for 5000 epochs. The AUROC scores are
calculated by the CauseMe platform, where self-links are ignored.

We run our method on the synthetic nonlinear VAR dataset, the hybrid cli-
mate and weather dataset, and the real-world river run-off dataset. The results
in Table 1 show that NAVAR (MLP) models outperform the other methods on
most of the nonlinear VAR datasets. Interestingly, where the performance of
most methods declines as the number of variables N increases, the performance
of NAVAR (MLP) does not decrease. Noting the relative poor performance of
SLARAC on the nonlinear VAR dataset compared to its performance on the
linear climate dataset, we conclude that this algorithm is very well suited for dis-
covering exactly linear relationships. Although NAVAR models might be slightly
too flexible for linear datasets, it outperforms the other methods on the real-
world river run-off dataset. This strengthens our intuition that many real-world
processes can be modeled by an additive combination of nonlinear functions.

4.3 DREAM3 - Gene Expression Data

Next, we evaluate our algorithm on the DREAM3 dataset, a simulated gene
expression dataset [26]. The benchmark consists of five different datasets of
E.Coli and yeast gene networks, each consisting of N = 100 variables. For every
dataset, 46 time series are available, but every time series consists of only T = 21
time steps. We compare NAVAR to other neural approaches to Granger causality,
namely componentwise-MLP (cMLP) and componentwise-LSTM (cLSTM) [32],
Temporal Causal Discovery Framework (TCDF) [19], and (economy) Statistical
Recurrent Units ((e)SRU) [14] (see Related Work).

Similar to the models in [14], we assume a maximum lag of 2 for the MLP
models and use 10 hidden units per layer. We calculate the AUROC by increasing
a threshold over the causal score, where self-links are ignored in the calculation.

Table 2. Average AUROC on the DREAM3 gene expression dataset. Neural methods
are indicated with an asterisk, and their scores are obtained from [14]. Models with
the highest AUROC are indicated in boldface.

Model E.Coli 1 E.Coli 2 Yeast 1 Yeast 2 Yeast 3

NAVAR (MLP)* 0.696 0.649 0.681 0.601 0.594

NAVAR (LSTM)* 0.715 0.682 0.695 0.599 0.597

cMLP* 0.644 0.568 0.585 0.506 0.528

cLSTM* 0.629 0.609 0.579 0.519 0.555

TCDF* 0.614 0.647 0.581 0.556 0.557

SRU* 0.657 0.666 0.617 0.575 0.550

eSRU* 0.660 0.629 0.627 0.557 0.550

SELVAR 0.551 0.536 0.556 0.516 0.534

SLARAC 0.580 0.509 0.526 0.503 0.494
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The hyperparameters are tuned using a 80/20% training/validation split, where
we train on the first 80% of timesteps, and select the hyperparameters with lowest
mean squared error on the final 20% time steps. The selected hyperparameters
are reported in Appendix A. The hyperparameters of the other neural models
are tuned in tantamount manner and can be found in [14, Appendix G]. We
report the average AUROC over 100 different runs of the NAVAR model.

The results in Table 2 show that using deep learning to extract causal struc-
ture in time series is a non-trivial task. Our method, however, obtains the best
result on all datasets. Since both the MLP and LSTM backbone outperform the
other methods, we believe this is due to the imposed structure of our architecture,
where the direct contributions of a variable form a more reliable indicator for
causality than the methods that rely entirely on induced sparseness in the weight
matrices, such as in cMLP, cLSTM, and (e)SRU. Furthermore, using permuta-
tion importance with neural networks, as in the TCDF model, is known to gen-
erate misleading conclusions [11]. The large difference in performance between
NAVAR (MLP) and NAVAR (LSTM) on the E.Coli datasets, demonstrate the
benefits of exploring different backbones for different applications.

The linear methods are consistently outperformed by all neural methods on
this dataset, which clearly indicates the importance of nonlinearity in causal
structure discovery. On top of that, we also immediately obtain interpretable
predictions, as shown in Fig. 4, where we show an example of the learned causal
contributions in the E.Coli 1 gene network. The model captures that the mNRA
levels of gene 0 are mostly influenced by the past mNRA levels of this gene
itself. However, at the end of the time series, as the levels of gene 0 go down,
the influence from gene 1 and 14 pushes the gene 0 levels further down.

Fig. 4. Example of three learned contributions to gene 0 of E.Coli 1 of the DREAM3
dataset. The original data (blue) are normalized. The final prediction is computed by
summing the contributions from all genes. (Color figure online)
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5 Related Work

5.1 Neural Methods to Causal Structure Learning

Recently, there has been a rise in interest in applying deep learning to causal
structure learning, especially within the framework of Structural Causal Models
(SCM) [21,24]. Research in larger graphs was limited due to a combinatorially
intractable search space of possible causal graphs. A key ingredient to the solu-
tion was presented by Zheng et al. [35], who formulated structure learning as
a continuous optimization problem. One of the key advantages of using neural
networks is that one can combine the structure learning objective and the pre-
diction objective into a single optimization problem. Other methods that explore
this avenue are [16], which extends the [35] method to nonlinear functions mod-
eled by neural networks, while still imposing acyclicity in the causal network.
Here, causal links are approximated by neural network paths. Bengio et al. [4]
and Ke et al. [13] use a meta-learning transfer objective to identify causal struc-
tures from interventional data. The structural learning objective is optimized
by varying mask variables that represent the presence/missing of a causal link.
Kalainathan et al. [12] explore the use of generative models and adversarial
learning to reconstruct the causal graph.

5.2 Causal Structure Learning for Time Series Data

Since there is a direct connection between differential equations and structural
causal models [5], the functioning of many complex dynamical systems can be
understood in terms of causal relationships. Therefore, there has been consid-
erable research devoted to discovering causal relationships in time series. Dis-
covering causal relationships in these temporal settings is more straightforward
than in iid data, in the sense that we can use the time-order to establish the
directionality of a causal relationship. Approaches that leverage this assump-
tion exist in many variations, such as non-parametric [3,7], model-based [17,22],
constraint-based [29], and information theoretic [20] approaches.

Despite the broad range of research in Granger causality in time series,
only limited research has applied the representational power of deep learning
to this task. A possible reason for this is that the main challenge in causal struc-
ture learning is that the final product is the interpretation of the dependencies
between the variables, which are directly related to the causal connections. How-
ever, interpretation is known to be the Achilles heel of black-box tools such as
deep learning.

Other works that do use neural networks, such as [1,8,33], first focused on a
brute force approach to estimate feature importance, where the Granger causal
link i → j is estimated by the predictive power of a model for X

(j)
t that includes

the past of all variables, compared to a similar model where the past of the
variable X(i) is excluded from the input. However, such an approach is not
scalable when the number of variables increases.
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The Temporal Causal Discovery Framework (TCDF) [19] uses a attention-
based (causal) convolutional neural network. They consider attention scores and
introduce permutation importance to identify causal links in an additional causal
validation step. Most similar to our work, Tank et al. [32] proposed a neu-
ral Granger causal model by using sparse component-wise MLPs (cMLP) and
LSTMs (cLSTM). This approach induces sparsity on the causal links by using
a hierarchical group regularization. Khanna and Tan [14] use (economical) Sta-
tistical Recurrent Units to model the Granger causal dependencies, in a similar
vein to the cLSTMs of [32]. Both methods use proximal gradient descent with
line search to obtain interpretable results. Proximal optimization is necessary to
induce exact zeros in the weight matrices of the first layer. Exact zeros are then
interpreted as a missing Granger causal link.

In contrast, we do not limit the input features of our model, but instead,
enforce interpretability directly into the architecture of our neural network by
restricting the function class to produce additive features. This helps in extract-
ing the correct causal relationships between variables, as we can directly regular-
ize the causal summary graph instead of individual input features. Since every
prediction is a sum of scalar contributions from the other variables, disentan-
gling the effect of the different inputs becomes trivial and causal influence can
be deduced intuitively.

5.3 Neural Networks as Generalised Additive Models

In this work, we restrict the structure of the network in order to find the Granger
causes of each time series. In particular, our model can be viewed as a Generalized
Additive Model (GAM). In the general case, a GAM takes the form:

g(E[y]) = β + f1(x1) + f2(x2) + .. + fn(xn) (9)

One of the main advantages of using GAMs is that the models are consid-
erably more interpretable than many black-box methods since the individual
contributions are disentangled and evident. The benefit of assuming additive
models was studied in [6,23], but not in the context of neural networks or time
series.

The use of deep learning to represent the functions fi in Eq. (9) was
first explored in [25] under the name Generalized Additive Neural Networks
(GANNs). For a long time after, this avenue has not been explored further.
Interestingly, however, in parallel to this work Agarwal et al. [2] explored the
power of Neural Additive Models (NAM) as a predictive model for tabular data
with mixed data types. Agarwal et al. [2] introduced exp-centered hidden units
(ExU) to allow neural networks to easily approximate ‘jumpy functions’, which
is necessary when considering tabular data.

6 Discussion

We presented a neural additive extension to the autoregression framework for
(Granger) causal discovery in time series, which we call NAVAR models. The
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choice of this architecture was guided by the success of VAR models in this
context as well as by generalised additive methods as a natural extension to
linear methods. We showed that neural additive models have the power to dis-
cover nonlinear relationships between time series, while they can still provide an
intuitive interpretation of the learned causal interactions. Despite the fact that
NAVAR does not account for higher-order interaction terms, benchmarks over
a variety of datasets show that NAVAR models are more reliable than existing
methods in uncovering the causal structure.

There are many interesting directions for future research. We have shown
that NAVAR models already work with MLPs and LSTMs as backbone, but
we can easily imagine more complex architectures, such as (dilated) CNNs and
Transformers. Furthermore, it could be interesting to investigate bayesian neu-
ral networks in order to evaluate the uncertainty of a found causal model.
Finally, important future work could be improvements to the model that explic-
itly account for unobserved confounders, non-stationarity, and contemporaneous
causes.
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Abstract. The huge amount of data generated by sensor networks
enables many potential analyses. However, one important limiting factor
for the analyses of sensor data is the possible presence of anomalies, which
may affect the validity of any conclusion we could draw. This aspect moti-
vates the adoption of a preliminary anomaly detection method. Existing
methods usually do not consider the spatial nature of data generated by
sensor networks. Properly modeling the spatial nature of the data, by
explicitly considering spatial autocorrelation phenomena, has the poten-
tial to highlight the degree of agreement or disagreement of multiple sen-
sor measurements located in different geographical positions. The intu-
ition is that one could improve anomaly detection performance by con-
sidering the spatial context. In this paper, we propose a spatially-aware
anomaly detection method based on a stacked auto-encoder architec-
ture. Specifically, the proposed architecture includes a specific encoding
stage that models the spatial autocorrelation in data observed at differ-
ent locations. Finally, a distance-based approach leverages the embed-
ding features returned by the auto-encoder to identify possible anoma-
lies. Our experimental evaluation on real-world geo-distributed data col-
lected from renewable energy plants shows the effectiveness of the pro-
posed method, also when compared to state-of-the-art anomaly detection
methods.

Keywords: Anomaly detection · Auto-encoders · Geo-distributed data

1 Introduction

The increasing adoption of sensor networks leads to the generation of a large
amount of data, that could fruitfully be analyzed to support decision-making pro-
cesses in multiple real-world sectors. Machine learning and data mining methods
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for the analysis of data generated by sensor networks have been adopted in mul-
tiple application domains. However, it is noteworthy that data collected through
sensor networks are inherently affected by anomalies. This is due to the nature
of the sensors, which operate in an external environment, and to the nature of
the network (grid), which can be subject to communication issues. Therefore,
directly using raw sensor data to solve the task at hand may result in a degraded
accuracy of the models [10]. For this reason, incorporating preliminary anomaly
detection phases in the data analysis workflow appears fundamental. Recently,
this thread has attracted increasing interest, with emerging approaches tailored
for specific representations and for the detection of specific anomalies [19].

Sensor networks also open to the possibility to collect observations for a set
of properties of interest in multiple geographical locations. In the literature, sta-
tistical techniques have been investigated to analyze geo-distributed sensor data
in a combined manner, trying to improve the performance of the learning mod-
els. For instance, the incorporation of statistical indicators of spatio-temporal
autocorrelation in classical machine learning algorithms has been successfully
investigated in [8,17]. However, this opportunity has been often disregarded by
recent anomaly detection approaches, often based on deep neural network archi-
tectures [19]. The goal of this paper is to fill this gap. Specifically, we propose
a method to solve unsupervised anomaly detection tasks, where the considered
anomalies are contextual [9,10]. More in detail, anomalies are detected on a single
geographic position on the basis of the multi-dimensional sensor data observed
at that location and its neighboring locations (diffused context [9,10]).

Methodologically, we propose a neural network architecture, based on stacked
auto-encoders, that incorporates a specific spatial encoding component to cap-
ture spatial autocorrelation phenomena. We argue that capturing the agreement
(or disagreement) of the measurement of the same physical property, at the same
time point, in multiple locations may boost the anomaly detection accuracy of
the model. The adoption of stacked auto-encoders in our method is motivated
by their ability to learn non-linear representations that effectively incorporate
salient features [7]. The hidden layers of the model architecture are usually chosen
to have a reduced number of neurons, compared to the input layer, representing
data with a reduced dimensionality.

Auto-encoders have already been exploited to solve anomaly detection tasks
in [3,20], mainly leveraging the reconstruction error. A popular approach is to
train the auto-encoder on background data, which is assumed to belong to the
normal class (i.e., without anomalies). After the training stage, new instances fed
to the model are expected to exhibit a low reconstruction error if they belong
to the normal class. On the contrary, anomalies are expected to show a high
reconstruction error, due to the fact that they belong to a different distribution.

Although this approach appears relatively intuitive, i) it does not take into
account the spatial dimension in the data for the identification of the anomalies
and ii) it might be susceptible to noise introduced in the data. Both these aspects
are typical of data generated by sensor networks and the analysis of such type of
data requires to overcome them. As for i), we explicitly consider spatial autocor-
relation in the learning phase and, as for ii) we propose to identify anomalies in
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the embedding space rather than in the original feature space, to be more robust
to the presence of noise in the data. For this purpose, we propose to leverage
the feature extraction capability of the model and perform anomaly detection
by analyzing the embedding bottleneck features of the stacked auto-encoder.

In summary, the contributions of this paper are the following: i) we propose
a stacked auto-encoder architecture which incorporates a spatial encoding stage
in its architecture, to explicitly model spatial autocorrelation in geo-distributed
multi-variate sensor data; ii) we devise a distance-based anomaly detection tech-
nique that leverages the distance among data observations, represented according
to an embedding space learned by the stacked auto-encoder; iii) we evaluate the
proposed approach on real-world datasets related to the renewable energy field.

2 Background

Data anomalies can usually be classified in three categories: point, contextual,
and collective anomalies [9]. In this paper we address the detection of contextual
anomalies, where the context is represented by the spatial dimension of a data
observation [12,16]. For instance, a contextual anomaly could be represented by
an abrupt temperature value measurement at one geographical location.

In general, the identification of contextual anomalies can be carried out with
supervised, semi-supervised or unsupervised machine learning approaches [9].

Although there are several machine learning based methods, unsupervised
ones are better suited for domains characterized by a scarce availability (or by
the total absence) of labeled data, which is the case in many real-world scenarios.

Among existing methods, it is worth mentioning One-Class SVM (OCSVM)
[15], that learns a separating hyperplane in a high-dimensional space [15]. Once
the model is learned, OCSVM can classify a new data observation as similar (i.e.,
normal) or different (i.e., anomaly) with respect to the training data distribution,
according to its position within the decision boundary. In this line of research,
OCSVM models have also been adopted in ensemble settings [1,18].

Isolation Forests [13] exploit a combination of tree-based models, through
which calculate an isolation score for each data observation. Specifically, the
score of an observation is computed as the average path length from the root of
the tree to the node containing the single observation. A short path indicates
that an observation is easy to isolate from the others due to significantly different
attribute values compared to the training data points.

In this scenario, methods based on auto-encoders and stacked auto-encoders
[20] have demonstrated superior performance. This behavior is theoretically
motivated by their ability to construct representations, with a low reconstruction
error, based on non-linear combinations of the input features [4].

Although auto-encoders have seen particular interest for anomaly detection
from images [20], in this work we adopt such models and investigate their effec-
tiveness for the detection of abrupt changes in multivariate time-series data.
Moreover, we introduce a novel component in the architecture to explicitly model
spatial autocorrelation phenomena.
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3 Method

The method proposed in this paper is able to analyze multi-variate sensor data
(related, for example, to temperature, wind speed, pressure, etc.) collected from
multiple geo-distributed locations. Specifically, considering a discrete timeline
and a set of locations L, let xt,l be the vector of measurements at time t and
location l ∈ L. The multi-variate data coming from sensors can be represented
as an unbounded sequence (i.e., a stream) of sets:

D = 〈{x1,1, . . . , x1,|L|}, {x2,1, . . . , x2,|L|}, . . . , {xt,1, . . . , xt,|L|}〉

We learn a stacked auto-encoder using D as input data representation to sub-
sequently carry out the anomaly detection task. The adoption of stacked auto-
encoders is motivated by their ability to extract layer-wise representations, at
increasing levels of abstraction. In general, the first layer of a stacked auto-
encoder learns simple features (e.g., edges, in the image domain), whereas deeper
layers learn features at increasing levels of complexity and summarization (e.g.,
co-occurring edges that form corners). This characteristic allows to model com-
plex properties of background data in the embedding space, that may in turn lead
to an increased ability to discriminate between normal and anomalous instances.

In the following subsection, we describe the proposed strategy to explicitly
consider spatial autocorrelation phenomena in the auto-encoder architecture.

3.1 Spatial Encoding Stage

The proposed auto-encoder architecture features a spatial encoding stage which
is based on LISA (Local Indicators of Spatial Autocorrelation) [2], that simul-
taneously exploits data available at every location.

In order to describe how the spatial encoding stage works, we introduce how
the computation of LISA is performed. The spatial neighborhood of the sensor
network is expressed as a matrix, and for each location and data observation at
a time point t, LISA is computed using such a matrix. Specifically, the first step
is to define a neighborhood matrix Λ ∈ R

|L|×|L|, such that:

Λ[i, j] = 1 − dist(li, lj)/maxDist (1)

where li ∈ L and lj ∈ L are two locations, dist(li, lj) is the spatial distance (in
kilometers) between the two locations li and lj , and maxDist is the maximum
pairwise spatial distance observed in the sensor network.

A subsequent step computes the deviation of each data feature with respect
to the mean, leveraging z-score normalization. Intuitively, in our approach we are
interested in identifying the contribution of the neighboring locations for each
feature observed at each time point. Therefore, given Dt = {xt,1, . . . , xt,|L|} ∈ D,
the subset of all data observations for all the locations at a specific time t, the

z-scores for a location l ∈ L are calculated as: z
(f)
t,l =

(
x
(f)
t,l − D

(f)
t

)
/σ

D
(f)
t

,

where f is a generic feature measured by a sensor (that is, a generic element



Spatially-Aware Autoencoders for Detecting Contextual Anomalies 465

Fig. 1. A graphical representation of our spatially-aware auto-encoder architecture.

of the vector xt,l); D
(f)
t represents the average value of the feature f in all the

locations; σ
D

(f)
t

represents the standard deviation of the feature f in all the

locations. Leveraging z
(f)
t,l , it is possible to compute LISA for the variable f of

the location li for time t (according to [2]) as follows:

I
(f)
li,t

= z
(f)
t,li

·
∑

lj∈L,i �=j

Λ[i, j] · z
(f)
t,lj

(2)

Following the aforementioned process, for each time point t, the spatial encoding
stage extracts a new representation St as follows:

St = {[I(f1)l1,t
, . . . , I

(fn)
l1,t

], [I(f1)l2,t
, . . . , I

(fn)
l2,t

], . . . , [I(f1)|L|,t, . . . , I
(fn)
|L|,t]} (3)

3.2 Encoding and Decoding Stage

The subsequent encoding stages extract new representations with a lower dimen-
sionality than the input data, similarly to the typical auto-encoder architecture.
In our model, we perform two encoding stages after the spatial encoding stage
(see Fig. 1), with 1/2 and 1/4 of the input features, respectively. The architecture
is trained end-to-end leveraging historical data which represent normal behavior
conditions. We assume that historical data contains no anomalies (or a negligible
amount), and use the trained model for anomaly detection purposes.

Starting from the dataset D, the stacked auto-encoder aims at learning the
encoding function e : X → F and the decoding function d : F → X , such that:

〈e(·), d(·)〉 = argmin
〈e(·),d(·)〉

‖D − d(e(D))‖2, (4)

where X is the input space of D, and F is the learned embedding space.



466 R. Corizzo et al.

The functions e(·) and d(·) should be parametric and differentiable according
to a distance function. Consequently, the parameters of the encoding and decod-
ing functions defined above are optimized by minimizing the reconstruction loss.

3.3 Embedding-Based Anomaly Detection

To detect anomalies, we propose a k-Nearest Neighbors approach that lever-
ages the encoded data representation. Once the auto-encoder is trained with the
available historical data, we compute the average Euclidean distance between
each data observation and its nearest k observations in the embedding space.
Coherently, when a new observation is available, we encode it in the embedding
space, and compute its average distance w.r.t. the nearest k observations. If the
distance is greater than a given threshold, then the observation is considered as
an anomaly. In this work, we do not adopt a manual threshold, but estimate it
from the data distribution. Specifically, we use [d + 3 · σ], where d is the aver-
age pairwise distance observed between each training data observation and its
nearest observations, while σ is the standard deviation of the observed distances.

Note that the identification of the k nearest neighbors in our method is based
on the Hybrid Spill Tree (HSP) [14], a distributed data structure (variant of
metric trees) for high-dimensional indexing, that allows to retrieve the k nearest
neighbors of an observation in O(log|D|).

4 Experiments

4.1 Datasets

The datasets considered in our experiment consist of weather variables (such as
temperature, humidity, etc.) monitored at hourly granularity by sensors placed
on renewable energy plants, located in different geographical areas. In particular,
we considered the following datasets analyzed also in previous studies [11]:

– PV Italy. The dataset consists of data collected every 15 min (from 2:00 AM
to 8.00 PM, every day) by sensors located on 17 photovoltaic power plants
located in Italy. The time period spans from January 1st, 2012 to May 4th,
2014. More details about data preprocessing steps can be found in [6].

– Wind NREL. This dataset (www.nrel.gov/wind) was modeled using the
Weather Research & Forecasting model. Five plants with the highest produc-
tion have been selected, obtaining the time series of wind speed and produc-
tion observed every 10 min, for a time period of two years (from January 1st,
2005 to December 31st, 2006). Hourly aggregation was performed.

For both datasets, we consider the following features: latitude and longitude of
each plant; day and hour; altitude and azimuth; weather conditions, i.e., ambi-
ent temperature, irradiance, pressure, wind speed, wind bearing, humidity, dew
point, cloud cover, and a descriptive weather summary. Weather conditions are
either measured (training phase) or forecasted (detection phase). In particular,

www.nrel.gov/wind
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all the weather data were extracted from Forecast.io, except for the expected
altitude and azimuth, that were extracted from SunPosition (www.susdesign.
com/sunposition), and the expected irradiance (PV Italy dataset only), that
was extracted from PVGIS (re.jrc.ec.europa.eu/pvg tools/en/#MR).

For each dataset, we build the testing set by selecting all the instances (mea-
surements at hourly granularity, observed at all the plants) belonging to 10
randomly selected days. We analyze the anomaly detection capabilities of the
method, considering three different training window sizes: 30, 60 and 90 days.
This means that, for each day in the testing set, we train the model using histor-
ical data belonging to 30, 60 or 90 days, respectively, preceding the considered
testing day, with the goal of identifying anomalies for all the measurements
belonging to the considered day of the testing set. For evaluation purposes,
anomalies are artificially introduced by perturbating the correct attribute val-
ues. This is done on 25% of instances on 50% of the features.

4.2 Competitor Systems and Experimental Setup

In line with the discussion of existing works reported in Sect. 2, in our
experiments we considered, as possible competitors, the most suitable class of
approaches to address the task of interest in our study, that are mainly based
one-class classification. Indeed, they offer the flexibility to learn a model from an
initial (regular) data distribution and are able to flag data that significantly differ
from the learned distribution. In particular, we considered three state-of-the-art
competitor methods falling in this class, namely One-Class SVM (OCSVM)
[15], Isolation Forest [13], and an Auto-encoder architecture that bases the
detection of anomalies on the reconstruction error [3,20]. These approaches are
widely adopted, and generally provide highly accurate detections.

Their parameters were set to the values suggested in their respective papers.
In particular, for One-Class SVM, we choose a Radial Basis Function (RBF) ker-
nel and select the best value for the γ parameter in the set γ ∈ {0.1, scale, auto}).
The auto configuration corresponds to γ = 1

n features , whereas the scale con-
figuration corresponds to γ = 1

n features·var(X) , where var(X) represents the
variance of the training data. For Isolation Forest, we set: the number of base
estimators in the ensemble n estimators ∈ {10, 25, 50}; the number of features
to draw at random for each base estimator equal to the number of the whole
set of features. For the auto-encoder, we followed the heuristics proposed by
[5]: we initially experimented with different configurations for learning rate
(negative powers of 10, starting from a default value of 0.01) and batch size
(powers of 2) using a 20% validation set. Preliminary results suggested that
the different configurations did not affect performance metrics significantly. For
this reason, the experiments were performed with the following parameters:
epochs=500, learning rate=0.0001, batch size=32. Moreover, we experimented
with two different values of its parameter p, i.e., p ∈ {1.5, 3} (if the reconstruc-
tion error deviates more than p · σ from the one observed on the training set,
the instance is marked as an anomaly).

www.susdesign.com/sunposition
www.susdesign.com/sunposition
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As regards our method, we report the results with different values of k,
namely k ∈ {50, 100, 150}. Finally, in order to specifically evaluate the contribu-
tion provided by the spatial embedding component, we also report the results
obtained by a simplified version of the proposed architecture, that does not
exploit the spatial embedding step. We call this variant Without SE.

All the results were collected in terms of Precision, Recall and F-Score.

4.3 Results and Discussion

In Table 1 we report all the results obtained in our experiments. First, we can
observe that our approach generally obtains the best results among all the con-
sidered methods. Looking specifically at the results on PV Italy, we can observe
that the best F-Score results are obtained with a time window of 30 days. This
means that the kNN-based approach that we propose achieves optimal results
even with a limited view on historical data. Looking at Precision and Recall, it is
clear that our approach is sensitive to anomalies, but robust to false detections:
the results in terms of precision (∼98–99%) indicate that the false positive rate
is around 1–2%, while the Recall results indicate a good rate of detected anoma-
lies, i.e., around 75%. Such results are not obtained by competitor systems, that
show a significantly lower Precision (∼85% in the best case, obtained by the
Auto-encoder, σ = 1.5), and recall, especially in the case of Isolation Forest.

Looking at the simpler version of our method (Without SE), we can observe
comparable, but lower results than those achieved by the full variant of our
method. This behavior confirms that the proposed architecture, based on kNN
on the embedded instances, is generally effective and is further supported by the
spatial encoding step that takes into account spatial autocorrelation phenomena.

A closer look at the results obtained on the Wind NREL dataset reveals a
similar situation. In this case, we can only observe one case (i.e., window size =
90 days and k = 150) in which the best results are achieved by the variant of our
method that does not exploit the spatial embedding component. However, the
difference with the full version of our method is negligible, and it may be possibly
due to the fact that, in this dataset, less features are correlated to the spatial
dimension, with respect to the photovoltaic power plants in PV Italy (see, e.g.,
the irradiance feature). Nevertheless, a contribution of the spatial encoding step
can still be observed when the time window is limited to 30 or 60 days.

Focusing on the best F-score results achieved by the considered methods,
measured over all the values of their parameters, we can easily observe that
the proposed method always outperforms all the other competitors. We can also
observe a slightly higher Recall exhibited by the auto-encoder, but at the price of
a significantly lower Precision. However, our method generally leads to a 7%-9%
improvement in terms of F-score in all the cases with respect to the auto-encoder.



Spatially-Aware Autoencoders for Detecting Contextual Anomalies 469

Table 1. Anomaly detection results obtained considering varying training sliding win-
dow sizes. Best F-Score results for each Window size configuration are marked in bold.

PV Italy 30 days 60 days 90 days

Our method Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

k=50 0.9853 0.7433 0.8472 0.9801 0.7437 0.8444 0.9764 0.7412 0.8419

k=100 0.9896 0.7452 0.8500 0.9853 0.7455 0.8478 0.9787 0.7430 0.8436

k=150 0.9925 0.7464 0.8519 0.9871 0.7458 0.8488 0.9814 0.7433 0.8451

Without SE Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

k=50 0.9248 0.7729 0.8250 0.9161 0.7948 0.8344 0.9118 0.7965 0.8337

k=100 0.9517 0.7528 0.8261 0.9323 0.7687 0.8260 0.9228 0.7711 0.8236

k=150 0.9651 0.7427 0.8277 0.9451 0.7553 0.8246 0.9349 0.7600 0.8229

Auto-encoder Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

p = 1.5 0.8516 0.8179 0.7836 0.8502 0.8145 0.7774 0.8467 0.8132 0.7771

p = 3 0.7880 0.7703 0.7055 0.7877 0.7698 0.7049 0.7892 0.7722 0.7087

OCSVM Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

0.7880 0.7386 0.7305 0.7880 0.7386 0.7305 0.7880 0.7386 0.7305

Isolation forest Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

n estimators=10 0.6277 0.4409 0.4033 0.6277 0.4409 0.4033 0.6277 0.4409 0.4033

n estimators=25 0.6799 0.5092 0.5007 0.6799 0.5092 0.5007 0.6799 0.5092 0.5007

n estimators=50 0.6879 0.5406 0.5450 0.6879 0.5406 0.5450 0.6879 0.5406 0.5450

Wind NREL 30 days 60 days 90 days

Our method Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score

k=50 0.9871 0.7558 0.8523 0.9726 0.7675 0.8490 0.9636 0.7675 0.8453

k=100 0.9992 0.7508 0.8569 0.9887 0.7567 0.8530 0.9837 0.7533 0.8494

k=150 0.9992 0.7508 0.8569 0.9938 0.7542 0.8553 0.9915 0.7533 0.8534

Without SE Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score

k=50 0.9768 0.7586 0.8478 0.9585 0.7664 0.8421 0.9590 0.7700 0.8439

k=100 0.9930 0.7547 0.8548 0.9781 0.7559 0.8474 0.9772 0.7647 0.8503

k=150 0.9970 0.7526 0.8564 0.9874 0.7529 0.8511 0.9884 0.7581 0.8537

Auto-encoder Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

p = 1.5 0.8371 0.8344 0.7907 0.8704 0.8408 0.7997 0.8652 0.8384 0.7971

p = 3 0.7159 0.7880 0.7068 0.7164 0.7888 0.7085 0.6924 0.7888 0.7083

OCSVM Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

0.8341 0.8040 0.8050 0.8341 0.8040 0.8050 0.8341 0.8040 0.8050

Isolation forest Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

n estimators=10 0.7045 0.3792 0.3198 0.7045 0.3792 0.3198 0.7045 0.3792 0.3198

n estimators=25 0.8076 0.4128 0.3585 0.8076 0.4128 0.3585 0.8076 0.4128 0.3585

n estimators=50 0.8181 0.4272 0.3729 0.8181 0.4272 0.3729 0.8181 0.4272 0.3729

5 Conclusion

In this paper we presented a novel anomaly detection method based on an auto-
encoder architecture that features a spatial encoding stage to model spatial auto-
correlation. The proposed architecture is unsupervised, and the model is trained
using historical data. The anomaly detection task is carried out by comparing the
projection of new observations in the embedding space to their nearest neighbors.
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This strategy allows us to detect anomalies using a distance-based approach that
exploits a threshold automatically estimated from training embedded data.

The experimental evaluation performed on two datasets, related to real-world
sensor networks of power plants, showed significant improvements in terms of
F-Score, that reaches 9.18% compared to auto-encoders based on reconstruction
error. A direct comparison with a variant of the proposed method, that does not
exploit the spatial encoding component, also revealed the positive contribution
coming from the explicit consideration of the spatial information.

As future work we will investigate other approaches to model spatio-temporal
autocorrelation, as part of the neural network architecture. Moreover, we will
conduct an extensive experimental evaluation involving datasets related to other
domains, and affected by different amounts and types of anomalies.
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