
Determinization and
Limit-Determinization of
Emerson-Lei Automata

Tobias John(B) , Simon Jantsch(B) , Christel Baier ,
and Sascha Klüppelholz

Technische Universität Dresden, Dresden, Germany
tobiasj@posteo.de,

{simon.jantsch,christel.baier,sascha.klueppelholz}@tu-dresden.de

Abstract. We study the problem of determinizing ω-automata whose
acceptance condition is defined on the transitions using Boolean formu-
las, also known as transition-based Emerson-Lei automata (TELA). The
standard approach to determinize TELA first constructs an equivalent
generalized Büchi automaton (GBA), which is later determinized. We
introduce three new ways of translating TELA to GBA. Furthermore,
we give a new determinization construction which determinizes several
GBA separately and combines them using a product construction. An
experimental evaluation shows that the product approach is compet-
itive when compared with state-of-the-art determinization procedures.
We also study limit-determinization of TELA and show that this can be
done with a single-exponential blow-up, in contrast to the known double-
exponential lower-bound for determinization. Finally, one version of the
limit-determinization procedure yields good-for-MDP automata which
can be used for quantitative probabilistic model checking.

1 Introduction

Automata on infinite words, also called ω-automata, play a fundamental role in
the fields of verification and synthesis of reactive systems [11,32,35,39]. They can
be used both to represent properties of systems and the systems themselves. For
logical specification languages such as linear temporal logic (LTL), many verifica-
tion systems, such as Spin [4] or Prism [25], use logic-to-automata translations
internally to verify a given system against the specification.

A major research question in this area has been, and still is, the question
of whether and how ω-automata can be determinized efficiently [26,31,33,36,
37]. The first single-exponential and asymptotically optimal determinization for
Büchi automata was presented in [36]. Deterministic automata are important

This work was funded by DFG grant 389792660 as part of TRR 248, the Cluster of
Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy), DFG-projects BA-1679/11-1 and BA-1679/12-1, and the Research Training
Group QuantLA (GRK 1763).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 15–31, 2021.
https://doi.org/10.1007/978-3-030-88885-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_2&domain=pdf
http://orcid.org/0000-0001-5855-6632
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0003-1724-2586
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-88885-5_2

16 T. John et al.

from a practical point of view as classical automata-based solutions to reactive
synthesis and probabilistic verification use deterministic automata [32,39].

The high complexity of determinization and most logic-to-automata transla-
tions have raised the question of more succinct representations of ω-automata.
Using generalized acceptance conditions (e.g. generalized Büchi [12] or general-
ized Rabin [8,10]) and transition-based [18], rather than state-based, conditions
are common techniques in this direction. An even more general approach has led
to the HOA-format [1], which represents the acceptance condition as a positive
Boolean formula over standard Büchi (Inf) and co-Büchi (Fin) conditions, also
called Emerson-Lei conditions [16,35]. Together with a vast body of work on
heuristics and dedicated procedures this standardized format has led to practi-
cally usable and mature tools and libraries such as Spot [14] and Owl [24] which
support a wide range of operations on ω-automata. Special classes of nondeter-
ministic automata with some of the desired properties of deterministic automata
have also been studied. The classes of good-for-MDP [20] and good-for-games [23]
automata can be used for quantitative probabilistic model checking of Markov
decision processes [19,38], while limit-deterministic Büchi automata can be used
for qualitative model-checking [11]. Dedicated translations from LTL directly to
deterministic and limit-deterministic automata have been considered in [17].

This paper considers determinization and limit-determinization of TELA. In
contrast to limit-determinization, the theoretical complexity of determinization
is well understood (a tight, double-exponential, bound was given in [35,36]).
However, it has not been studied yet from a practical point of view.

Contribution. We propose three new translations from TELA to GBA (Sect.
3) and give an example in which they perform exponentially better than state-
of-the-art implementations. We introduce a new determinization procedure for
TELA based on a product construction (Sect. 4). Our experiments show that it
often outperforms the approaches based on determinizing a single GBA (Sect. 6).
A simple adaptation of the product construction produces limit-deterministic
TELA of single-exponential size (in contrast to the double-exponential worst-
case complexity of full determinization, Sect. 5.1). We show that deciding
Prmax

M (L(A)) > 0 is NP-complete for limit-deterministic TELA A, and in P
if the acceptance of A is fin-less (Proposition 5.9). Finally, we show how to
limit-determinize TELA based on the breakpoint-construction. A version of
this procedure yields good-for-MDP Büchi automata (Definition 5.6). Thereby
Prmax

M (L(A)) is computable in single-exponential time for arbitrary MDP M
and TELA A (Theorem 5.15).

Related Work. The upper-bound for TELA-determinization [35,36] relies on
a translation to GBA which first transforms the acceptance formula into dis-
junctive normal form (DNF). We build on this idea. Another way of translating
TELA to GBA was described in [13]. Translations from LTL to TELA have
been proposed in [7,27,30], and all of them use product constructions to com-
bine automata for subformulas. The emptiness-check for ω-automata under dif-
ferent types of acceptance conditions has been studied in [2,8,10,15], where [2]
covers the general case of Emerson-Lei conditions and also considers qualitative

Determinization and Limit-Determinization of Emerson-Lei Automata 17

probabilistic model checking using deterministic TELA. The generalized Rabin
condition from [8,10] is equivalent to the special DNF that we use and a special
case of the hyper-Rabin condition for which the emptiness problem is in P [9,16].
Probabilistic model checking for deterministic automata under this condition is
considered in [10], while [8] is concerned with standard emptiness while allow-
ing nondeterminism. A procedure to transform TELA into parity automata is
presented in [34].1

2 Preliminaries

Automata. A transition-based Emerson-Lei automaton (TELA) A is a tuple
(Q,Σ, δ, I, α), where Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q ×
Σ × Q is the transition relation, I ⊆ Q is the set of initial states and α is a
symbolic acceptance condition over δ, which is defined by:

α:: = tt | ff | Inf(T) | Fin(T) | (α ∨ α) | (α ∧ α), with T ⊆ δ

If α is tt, ff , Inf(T) or Fin(T), then it is called atomic. We denote by |α| the
number of atomic conditions contained in α, where multiple occurrences of the
same atomic condition are counted multiple times. Symbolic acceptance condi-
tions describe sets of transitions T ⊆ δ. Their semantics is defined recursively as
follows:

T |= tt T |= Inf(T ′) iff T ∩ T′ �= ∅ T |= α1 ∨ α2 iff T |= α1 or T |= α2

T �|= ff T |= Fin(T ′) iff T ∩ T′ = ∅ T |= α1 ∧ α2 iff T |= α1 and T |= α2

Two acceptance conditions α and β are δ-equivalent (α ≡δ β) if for all T ⊆ δ we
have T |= α ⇐⇒ T |= β. A run of A for an infinite word u = u0u1 . . . ∈ Σω is
an infinite sequence of transitions ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω that starts
with an initial state q0 ∈ I. The set of transitions that appear infinitely often in ρ
are denoted by inf(ρ). A run ρ is accepting (ρ |= α) iff inf(ρ) |= α. The language
of A, denoted by L(A), is the set of all words for which there exists an accepting
run of A. The sets of infinite words which are the language of some TELA are
called ω-regular. A TELA A is deterministic if the set of initial states contains
exactly one state and the transition relation is a function δ : Q × Σ → Q. It is
complete, if for all (q, a) ∈ Q×Σ: δ ∩{(q, a, q′) | q′ ∈ Q} �= ∅. A Büchi condition
is an acceptance condition of the form Inf(T) and a generalized Büchi condition
is a condition of the form

∧
1≤i≤k Inf(Ti). We call the sets Ti appearing in a

generalized Büchi condition its acceptance sets. Rabin (resp. Street) conditions
are of the form

∨
1≤i≤k(Fin(Fi) ∧ Inf(Ti)) (resp.

∧
1≤i≤k(Fin(Fi) ∨ Inf(Ti))).

Probabilistic Systems. A labeled Markov decision process (MDP) M is a
tuple (S, s0,Act, P,Σ,L) where S is a finite set of states, s0 ∈ S is the initial
state, Act is a finite set of actions, P : S ×Act ×S → [0, 1] defines the transition
probabilities with

∑
s′∈S P (s, α, s′) ∈ {0, 1} for all (s, α) ∈ S × Act and L : S →

1 All proofs are provided in the full version of the paper [21].

18 T. John et al.

Σ is a labeling function of the states into a finite alphabet Σ. Action α ∈ Act
is enabled in s if

∑
s′∈S P (s, α, s′) = 1, and Act(s) = {α | α is enabled in s}.

A path of M is an infinite sequence s0α0s1α1 . . . ∈ (S × Act)ω such that
P (si, αi, si+1) > 0 for all i ≥ 0. The set of all paths of M is denoted by Paths(M)
and Pathsfin(M) denotes the finite paths. Given a path π = s0α0s1α1 . . ., we let
L(π) = L(s0)L(s1) . . . ∈ Σω. A Markov chain is an MDP with |Act(s)| ≤ 1 for
all states s. A scheduler of M is a function S : (S × Act)∗ × S → Act such that
S(s0α0 . . . sn) ∈ Act(sn). It induces a Markov chain MS and thereby a proba-
bility measure over Paths(M). The probability of a set of paths Π starting in
s0 under this measure is PrSM(Π). For an ω-regular property Φ ⊆ Σω we define
Prmax

M (Φ) = supS PrSM({π | π ∈ Paths(M) and L(π) ∈ Φ}). See [3, Chapter 10]
for more details.

3 From TELA to Generalized Büchi Automata

3.1 Operations on Emerson-Lei Automata

The first operator takes a TELA and splits it along the top-level disjuncts
of the acceptance condition. Let A = (Q,Σ, δ, I, α) be a TELA where α =∨

1≤i≤m αi and the αi are arbitrary acceptance conditions. We define split(A) :=
(A1, . . . ,Am) with Ai = (Q,Σ, δ, I, αi) for 1 ≤ i ≤ m, and split(A)[i] := Ai.

Lemma 3.1. It holds that L(A) =
⋃

1≤i≤m L(
split(A)[i]

)
.

The analogous statement does not hold for conjunction and intersection (cf [21,
Fig. 5]). We also need constructions to realize the union of a sequence of
automata. This can either be done using the sum (i.e. disjoint union) or the
disjunctive product of the state spaces. We define a general sum (simply called
sum) operation and one that preserves GBA acceptance (called GBA-specific
sum). The disjunctive product construction for TELA is mentioned in [13] and
similar constructions are used in [27,30]. While the sum operations yield smaller
automata in general, only the product construction preserves determinism.

Definition 3.2. Let Ai = (Qi, Σ, δi, Ii, αi), with i ∈ {0, 1}, be two complete
TELA with disjoint state-spaces. The sum of A0 and A1 is defined as follows:

A0 ⊕ A1 =
(
Q0 ∪ Q1, Σ, δ0 ∪ δ1, I0 ∪ I1, (α0 ∧ Inf(δ0)) ∨ (α1 ∧ Inf(δ1)

)

If αi = Inf(T i
1) ∧ . . . ∧ Inf(T i

k), with i ∈ {0, 1}, (i.e. both automata are GBA),
then we can use the GBA-specific sum:

A0 ⊕GBA A1 =
(
Q0 ∪ Q1, Σ, δ0 ∪ δ1, I0 ∪ I1, (Inf(T 0

1 ∪ T 1
1) ∧ . . . ∧ Inf(T 0

k ∪ T 1
k))

)

The disjunctive product is defined as follows:

A0 ⊗ A1 =
(
Q0 × Q1, Σ, δ⊗, I0 × I1, (↑(α0)∨ ↑(α1))

)

with δ⊗ =
{(

(q0, q1), a, (q′
0, q

′
1)

) ∣
∣ (q0, a, q′

0) ∈ δ0 and (q1, a, q′
1) ∈ δ1

}
and

↑(αi) is constructed by replacing every occurring set of transitions T in αi by{(
(q0, q1), u, (q′

0, q
′
1)

) ∈ δ⊗
∣
∣ (qi, u, q′

i) ∈ T
}
.

Determinization and Limit-Determinization of Emerson-Lei Automata 19

α = Fin(2) ∧ Inf(1) ∧ Inf(3)
)

∨ Fin(1) ∧ Inf(2) ∧ Inf(3)
)

a
1

a
b 2 c3 a ab c

F1

a

11

a

c31

F2
a

b 22 c32

b

b

c

c

a

a

a

a

α′ = Inf(11) ∧ Inf(31)
) ∨ Inf(22) ∧ Inf(32)

)

α′′ = Inf({11,22}) ∧ Inf({31,32})

Fig. 1. Example of applying removeFin and removeFinGBA (Definition 3.4) to the
automaton on the left. The result is the automaton on the right with acceptance α′

(removeFin), respectively α′′ (removeFinGBA).

The additional Inf(δ0) and Inf(δ1) atoms in the acceptance condition of A0⊕
A1 are essential (see [21, Fig. 6]). We can apply the GBA-specific sum to any
two GBA by adding Inf(δi) atoms until the acceptance conditions are of equal
length. Many of our constructions will require the acceptance condition of the
TELA to be in DNF. We will use the following normal form throughout the
paper (also called generalized Rabin in [8,10]).

Definition 3.3 (DNF for TELA). Let A = (Q,Σ, δ, I, α) be a TELA. We
say that A is in DNF if α is of the form α =

∨
1≤i≤m αi, with αi = Fin(T i

0) ∧
∧

1≤j≤ki
Inf(T i

j) and such that all ki ≥ 1.

The reason that a single Fin atom in each disjunct is enough is that Fin(T1)∧
Fin(T2) ≡δ Fin(T1 ∪ T2) for all T1, T2, δ. Taking ki ≥ 1 is also no restriction, as
we can always add ∧ Inf(δ) to any disjunct. Using standard Boolean operations
one can transform a TELA with acceptance β into DNF by just translating the
acceptance formula into a formula α of the above form, with |α| ≤ 2|β|.

Fin-Less Acceptance. To transform a TELA in DNF (see Definition 3.3) into
an equivalent one without Fin-atoms we use the idea of [8,13]: a main copy of
A is connected to one additional copy for each disjunct αi of the acceptance
condition, in which transitions from T i

0 are removed. The acceptance condition
ensures that every accepting run leaves the main copy eventually. Figure 1 shows
an example.

Definition 3.4. Let Fi = (Qi, Σ, δi, Ii, φi), where Qi = {q(i) | q ∈ Q},
δi = {(q(i), a, q′(i)) | (q, a, q′) ∈ δ \ T i

0} and φi =
∧

1≤j≤ki
Inf(U i

j), where
U i

j = {(q(i), a, q′(i)) | (q, a, q′) ∈ T i
j \ T i

0}. Let removeFin(A) = (Q′, Σ, δ′, I, α′)
and removeFinGBA(A) = (Q′, Σ, δ′, I, α′′), where Q′ = Q ∪ ⋃

1≤i≤m Qi and:

20 T. John et al.

αn = Inf(1) ∧ Inf(1′)
) ∨ Inf(2) ∧ Inf(2′)

) ∨ . . . ∨ Inf(n) ∨ Inf(n′)
)

q1 q2 q3
· · ·
· · ·

qn

a

1

b

1′

a

2

b

2′
a,b

a

n

b

n′

Fig. 2. A class of TELA where generating the CNF leads to 2n many conjuncts.

• δ′ = δ ∪ ⋃
1≤i≤m

(
δi ∪ {(q, a, q′(i)) | (q, a, q′) ∈ δ})

• α′ =
∨

1≤i≤m φi

• α′′ =
∧

1≤j≤k Inf(U1
j ∪ . . . ∪ Um

j), with k = maxi ki and U i
j = δi if ki < j ≤ k.

Lemma 3.5. It holds that L(A) = L(removeFin(A)) = L(removeFinGBA(A)).

While removeFin(A) is from [8,13], removeFinGBA(A) is a variant that differs
only in the acceptance and always produces GBA. Both consist of m + 1 copies
of A (with Fin-transitions removed).

3.2 Construction of Generalized Büchi Automata

Construction of Spot. The transformation from TELA to GBA from [13]
is implemented in Spot [14]. It transforms the automaton into DNF and
then applies (an optimized version of) removeFin. The resulting fin-less accep-
tance condition is translated into conjunctive normal form (CNF). As Inf(T1) ∨
Inf(T2) ≡δ Inf(T1 ∪ T2) holds for all δ, one can rewrite any fin-less condition
in CNF into a conjunction of Inf-atoms, which is a generalized Büchi condition.
When starting with a TELA B with acceptance β and N states, one gets a GBA
with N 2O(|β|) states and 2O(|β|) acceptance sets, as the fin-removal may intro-
duce exponentially (in |β|) many copies, and the CNF may also be exponential
in |β|.

Transforming a fin-less automaton into a GBA by computing the CNF has
the advantage of only changing the acceptance condition, and in some cases it
produces simple conditions directly. For example, Spot’s TELA to GBA con-
struction transforms a Rabin into a Büchi automaton, and a Streett automaton
with m acceptance pairs into a GBA with m accepting sets. However, computing
the CNF may also incur an exponential blow-up (Fig. 2 shows such an example).

Copy-Based Approaches. We now describe three approaches (remFin→splitα,
splitα→remFin and remFin→rewriteα), which construct GBA with at most |β|
acceptance sets. On the other hand, they generally produce automata with more
states. They are based on [35] which first translates copies of A (corresponding

Determinization and Limit-Determinization of Emerson-Lei Automata 21

to the disjuncts of the acceptance condition) to GBA, and then takes their sum.
However, it is not specified in [35] how exactly Fin-atoms should be removed
(they were concerned only with the theoretical complexity). We define:

remFin→splitα(A) :=
⊕

1≤i≤m
GBA

split(removeFin(A))[i]

splitα→remFin(A) :=
⊕

1≤i≤m
GBA

removeFin(split(A)[i])

remFin→rewriteα(A) := removeFinGBA(A)

With removeFin as defined in Definition 3.4, the approaches remFin→splitα
and splitα→remFin produce the same automata (after removing non-accepting
SCC’s in remFin→splitα), and all three approaches create O(m) copies of A.
Our implementation uses an optimized variant of removeFin, as provided by
Spot, which leads to different results for all three approaches.

4 Determinization

Determinization via Single GBA. The standard way of determinizing TELA
is to first construct a GBA, which is then determinized. Dedicated determiniza-
tion procedures for GBA with N states and K acceptance sets produce deter-
ministic Rabin automata with 2O(N(log N+log K)) states [37]. For a TELA B with
n states and acceptance β, the above translations yield GBA with N = n 2O(|β|)

and K = 2O(|β|) (Spot’s construction) or N = n 2O(|β|) and K = O(|β|) (copy-
based approaches). We evaluate the effect of the translations to GBA introduced
in the previous chapter in the context of determinization in Sect. 6.

Determinization via a Product Construction. Another way to determinize
a TELA A in DNF is to determinize the automata split(A)[i] one by one and
then combining them with the disjunctive product construction of Definition 3.2:

⊗

1≤i≤m

det
(
removeFin(split(A)[i])

)

where “det” is any GBA-determinization procedure. Let B be a TELA with
acceptance β and n states, and let α be an equivalent condition in DNF
with m disjuncts. Assuming an optimal GBA-determinization procedure, the
product combines m automata with 2O(n(log n+log |β|)) states and hence has
(
2O(n (log n+log |β|)))m = 2O(2|β|·n(log n+log |β|)) states.

5 Limit-Deterministic TELA

Limit-determinism has been studied mainly in the context of Büchi automata [11,
38,39], and we define it here for general TELA.

22 T. John et al.

Definition 5.1. A TELA A = (Q,Σ, δ, I, α) is called limit-deterministic if
there exists a partition QN , QD of Q such that

1. δ ∩ (QD × Σ × QN) = ∅,
2. for all (q, a) ∈ QD × Σ there exists at most one q′ such that (q, a, q′) ∈ δ,
3. every accepting run ρ of A satisfies inf(ρ) ∩ (QN × Σ × QN) = ∅.

This is a semantic definition and as checking emptiness of deterministic TELA
is already coNP-hard, checking whether a TELA is limit-deterministic is also.

Proposition 5.2. Checking limit-determinism for TELA is coNP-complete.

An alternative syntactic definition for TELA in DNF, which implies limit-
determinism, is provided in Definition 5.3.

Definition 5.3. A TELA A = (Q,Σ, δ, {q0}, α) in DNF, with α =
∨

1≤i≤m αi,
αi = Fin(T i

0) ∧ ∧
1≤j≤ki

Inf(T i
j) and ki ≥ 1 for all i, is syntactically limit-

deterministic if there exists a partition QN , QD of Q satisfying 1. and 2. of Def-
inition 5.1 and additionally T i

j ⊆ QD × Σ × QD for all i ≤ m and 1 ≤ j ≤ ki.

5.1 Limit-Determinization

We first observe that replacing the product by a sum in the product-based deter-
minization above yields limit-deterministic automata of single-exponential size
(in contrast to the double-exponential lower-bound for determinization). Let
A be a TELA in DNF with n states and acceptance α =

∨
1≤i≤m αi, where

αi = Fin(T i
0) ∧ ∧

1≤j≤ki
Inf(T i

j) (see Definition 3.3), and let Ai = split(A)[i].

Proposition 5.4.
⊕

1≤i≤m det(removeFin(Ai)) is limit-deterministic and of
size

∑
1≤i≤m |det(Ai)| = m · 2O(n (log n+log k)), where k = max{ki | 1 ≤ i ≤ m}.

If “det” is instantiated by a GBA-determinization that produces Rabin
automata, then the result is in DNF and syntactically limit-deterministic. Indeed,
in this case the only nondeterminism is the choice of the initial state. But “det”
can, in principle, also be replaced by any limit-determinization procedure for
GBA.

We now extend the limit-determinization constructions of [11] (for Büchi
automata) and [5,6,19] (for GBA) to Emerson-Lei conditions in DNF. These con-
structions use an initial component and an accepting breakpoint component [28]
for A, which is deterministic. The following construction differs in two ways:
there is one accepting component per disjunct of the acceptance condition, and
the accepting components are constructed from A without considering the Fin-
transitions of that disjunct. To define the accepting components we use the
subset transition function θ associated with δ: θ(P, a) =

⋃
q∈P {q′ | (q, a, q′) ∈ δ}

for (P, a) ∈ 2Q × Σ, and additionally we define θ|T (P, a) =
⋃

q∈P {q′ | (q, a, q′) ∈
δ ∩ T}. These functions are extended to finite words in the standard way.

Determinization and Limit-Determinization of Emerson-Lei Automata 23

Definition 5.5. Let θi = θ|δ\T i
0
and define BPi = (Qi, Σ, δi, {p0}, Inf(δbreaki))

with: Qi = {(R,B, l) ∈ 2Q × 2Q × {0, . . . , ki} | B ⊆ R}, p0 = (I, ∅, 0) and

δmain
i =

{

((R1, B1, l), a, (R2, B2, l)) | R2 = θi(R1, a),
B2 = θi(B1, a) ∪ θi|T i

l
(R1, a)

}

δbreaki =

⎧
⎨

⎩
((R1, B1, l), a, (R2, ∅, l′) |

((R1, B1, l), a, (R2, B2, l)) ∈ δmain
i ,

R2 = B2,
l′ = (l + 1) mod (ki + 1)

⎫
⎬

⎭

δi =
{
((R1, B1, l), a, (R2, B2, l)) ∈ δmain

i | R2 �= B2

} ∪ δbreaki

In state (R,B, l), intuitively R is the set of states reachable for the prefix word
in A without using transitions from T i

0, while B are the states in R which have
seen a transition in T i

l since the last “breakpoint”. The breakpoint-transitions
are δbreaki , which occur when all states in R have seen an accepting transition
since the last breakpoint (namely if R = B). The breakpoint construction under-
approximates the language of a given GBA, in general.

We define two limit-deterministic Büchi automata (LDBA) GLD
A and GGFM

A
where GGFM

A is additionally good-for-MDP (GFM) [20]. This means that GGFM
A

can be used to solve certain quantitative probabilistic model checking problems
(see Sect. 5.2). Both use the above breakpoint automata as accepting components.
While GLD

A simply uses a copy of A as initial component, GGFM
A uses the determin-

istic subset-automaton of A (it resembles the cut-deterministic automata of [5]).
Furthermore, to ensure the GFM property, there are more transitions between
initial and accepting copies in GGFM

A . The construction of GGFM
A extends the

approach for GBA in [19] (also used for probabilistic model checking) to TELA.
We will distinguish elements from sets Qi for different i from Definition 5.5 by
using subscripts (e.g. (R,P, l)i) and assume that these sets are pairwise disjoint.

Definition 5.6. (GLD
A and GGFM

A). Let Qacc =
⋃

1≤i≤m Qi, δacc =
⋃

1≤i≤m δi

and αacc = Inf(
⋃

1≤i≤m δbreaki). Define

GLD
A = (Q ∪ Qacc, Σ, δLD, I, α′) and GGFM

A = (2Q ∪ Qacc, Σ, δGFM, {I}, α′)

with

δLD = δ ∪ δLDbridge ∪ δacc and δGFM = θ ∪ δGFM
bridge ∪ δacc

δLDbridge =
{(

q, a, ({q′}, ∅, 0)i

) | (q, a, q′) ∈ δ and 1 ≤ i ≤ m
}

δGFM
bridge =

{(
P, a, (P ′, ∅, 0)i

) | P ′ ⊆ θ(P, a) and 1 ≤ i ≤ m
}

As δbreaki ⊆ δacc for all i, both GLD
A and GGFM

A are syntactically limit-
deterministic. The proofs of correctness are similar to ones of the corresponding
constructions for GBA [5, Thm. 7.6]. We show later in Proposition 5.14 that
GGFM

A is GFM.

24 T. John et al.

Theorem 5.7. GLD
A and GGFM

A are syntactically limit-deterministic and satisfy
L(GLD

A) = L(GGFM
A) = L(A). Their number of states is in O(n+3n mk) for GLD

A
and O(2n + 3n mk) = O(|α|2 · 3n) for GGFM

A , where k = max{ki | 1 ≤ i ≤ m}.
Corollary 5.8. Given TELA B (not necessarily in DNF) with acceptance con-
dition β and N states, there exists an equivalent LDBA with 2O(|β|+N) states.

5.2 Probabilistic Model Checking

We now discuss how these constructions can be used for probabilistic model
checking. First, consider the qualitative model checking problem to decide
Prmax

M (L(A)) > 0, under the assumption that A is a limit-deterministic TELA.
While NP-hardness follows from the fact that the problem is already hard for
deterministic TELA [29, Thm. 5.13], we now show that it is also in NP. Fur-
thermore, it is in P for automata with a fin-less acceptance condition. This was
already known for LDBA [11], and our proof uses similar arguments.

Proposition 5.9. Deciding Prmax
M (L(A)) > 0, given an MDP M and a limit-

deterministic TELA A, is NP-complete. If A has a fin-less acceptance condition,
then the problem is in P.

Now we show that GGFM
A is good-for-MDP [20]. In order to define this prop-

erty, we introduce the product of an MDP with a nondeterministic automaton
in which, intuitively, the scheduler is forced to resolve the nondeterminism by
choosing the next state of the automaton (see [20,23]). We assume that the
automaton used to build the product has a single initial state, which holds for
GGFM

A .

Definition 5.10. Given an MDP M = (S, s0,Act, P,Σ,L) and TELA G = (Q,
Σ, δ, {q0}, α) we define the MDP M × G = (S × Q, (s0, q0),Act ×Q,P×, Σ, L×)
with L×((s, q)) = L(s) and

P×(
(s, q), (α, p), (s′, q′)

)
=

{
P (s, α, s′) if p = q′ and (q, L(s), q′) ∈ δ

0 otherwise

We define the accepting paths Πacc of M × G to be:

Πacc = {(s0, q0)α0(s1, q1)α1 . . . ∈ Paths(M × G) | q0, L(s0), q1, L(s1) . . . |= α}
A Büchi automaton G is good-for-MDP (GFM) if Prmax

M (L(G)) = Prmax
M×G(Πacc)

holds for all MDP M [20]. The inequality “≥” holds for all automata [23, Thm. 1],
but the other direction requires, intuitively, that a scheduler on M × G is able
to safely resolve the nondeterminism of the automaton based on the prefix of
the run. This is trivially satisfied by deterministic automata, but good-for-games
automata also have this property [23]. Limit-deterministic Büchi automata are
not GFM in general, for example, GLD

A may not be (see Example 5.12).
We fix an arbitrary MDP M and show that Prmax

M (L(A)) ≤
Prmax

M×GGFM
A

(Πacc). To this end we show that for any finite-memory scheduler

Determinization and Limit-Determinization of Emerson-Lei Automata 25

S on M we find a scheduler S′ on M × GGFM
A such that PrSM(L(A)) ≤

PrS
′

M×GGFM
A

(Πacc). The restriction to finite-memory schedulers is allowed because
the maximal probability to satisfy an ω-regular property is always attained
by such a scheduler [3, Secs. 10.6.3 and 10.6.4]. Let MS × D be the prod-
uct of the induced finite Markov chain MS with D =

⊗
1≤i≤m Di, where

Di = det
(
removeFin(split(A)[i])

)
and “det” is the GBA-determinization proce-

dure from [37], which makes D a deterministic Rabin automaton. The scheduler
S′ is constructed as follows. It stays inside the initial component of M × GGFM

A
and mimics the action chosen by S until the corresponding path in MS × D
reaches an accepting bottom strongly connected component (BSCC) B. This
means that the transitions of D induced by B satisfy one of the Rabin pairs.
The following lemma shows that in this case there exists a state in one of the
breakpoint components to which S′ can safely move.

Lemma 5.11. Let s be a state in an accepting BSCC B of MS × D and π1 be
a finite path that reaches s from the initial state of MS × D. Then, there exists
1 ≤ i ≤ m and Q′ ⊆ θ

(
I, L(π1)

)
such that:

Prs({π | L(π) is accepted from (Q′, ∅, 0) in BPi

}
) = 1

The lemma does not hold if we restrict ourselves to singleton {q} ⊆ θ
(
I, L(π1)

)

(see Example 5.12). Hence, restricting δGFM
bridge to such transitions (as for δLDbridge,

see Definition 5.6) would not guarantee the GFM property.

Example 5.12. Consider the automaton A with states {aibj | i, j ∈ {1, 2}} ∪
{biaj | i, j ∈ {1, 2}}, where aibj has transitions labeled by ai to bja1 and
bja2. Transitions of states biaj are defined analogously, and all states in {aibj |
i, j ∈ {1, 2}} are initial (Fig. 3a shows the transitions of a1b1). All transitions are
accepting for a single Büchi condition, and hence L(A) = ({aibj | i, j ∈ {1, 2}})ω.

Consider the Markov chain M in Fig. 3b (transition probabilities are all 1/2
and omitted in the figure). Clearly, PrM(L(A)) = 1. Figure 3c shows a part of
the product of M with the breakpoint automaton BP for A (Definition 5.5)
starting from

(
a1, ({a1b1}, ∅, 0)

)
. The state

(
b2, ({b1a1, b1a2}, ∅, 0)

)
is a trap

state as b1a1 and b1a2 have no b2-transition. Hence,
(
a1, ({a1b1}, ∅, 0)

)
gener-

ates an accepting path with probability at most 1/2. This is true for all states(
s, (P ′, ∅, 0)

)
of M×BP where P ′ is a singleton. But using δLDbridge to connect ini-

tial and accepting components implies that any accepting path sees such a state.
Hence, using δLDbridge to define GGFM

A would not guarantee the GFM property.

Using Lemma 5.11 we can define S′ such that the probability accepting paths
under S′ in M × GGFM

A is at least as high as that of paths with label in L(A)
in MS. This is the non-trivial direction of the GFM property.

Lemma 5.13. For every finite-memory scheduler S on M, there exists a sched-
uler S′ on M × GGFM

A such that:

PrS
′

M×GGFM
A

(Πacc) ≥ PrSM(L(A))

26 T. John et al.

a1b1

b1a1 b1a2

a1
a1

(a)

a1

a2

b1

b2

(b)

(
a1, ({a1b1}, ∅, 0)

)

(
b1, ({b1a1, b1a2}, ∅, 0)

)

(
b2, ({b1a1, b1a2}, ∅, 0)

)
1/2

1/2

(c)

Fig. 3. Restricting δGFM
bridge to transitions with endpoints of the form (s, ({q}, ∅, 0)) (sim-

ilar to δLD
bridge) would not guarantee the GFM property (see Example 5.12).

Proposition 5.14. The automaton GGFM
A is good-for-MDP.

To compute Prmax
M (L(B)) one can translate B into an equivalent TELA A

in DNF, then construct GGFM
A and finally compute Prmax

M×GGFM
A

(Πacc). The
automaton GGFM

A is single-exponential in the size of B by Theorem 5.7, and
Prmax

M×GGFM
A

(Πacc) can be computed in polynomial time in the size of M ×
GGFM

A [3, Thm. 10.127].

Theorem 5.15. Given a TELA B (not necessarily in DNF) and an MDP M,
the value Prmax

M (L(B)) can be computed in single-exponential time.

6 Experimental Evaluation

The product approach combines a sequence of deterministic automata using the
disjunctive product. We introduce the langcover heuristic: the automata are
“added” to the product one by one, but only if their language is not already sub-
sumed by the automaton constructed so far. This leads to substantially smaller
automata in many cases, but is only efficient if checking inclusion for the con-
sidered automata types is efficient. In our case this holds (the automata are
deterministic with a disjunction of parity conditions as acceptance), but it is not
the case for arbitrary deterministic TELA, or nondeterministic automata.

Implementation. We compare the following implementations of the construc-
tions discussed above.2 Spot uses the TELA to GBA translator of Spot, sim-
plifies (using Spot’s postprocessor with preference Small) and degeneralizes
the result and then determinizes using a version of Safra’s algorithm [14,33].
The removeFin function that is used is an optimized version of Definition 3.4.
In remFin→splitα, splitα→remFin and remFin→rewriteα, the first step
is replaced by the corresponding TELA to GBA construction (using Spot’s

2 The source code and data of all experiments are available at [22].

Determinization and Limit-Determinization of Emerson-Lei Automata 27

Table 1. Evaluation of benchmarks random and DNF. Columns “States”, “Time” and
“Acceptance” refer to the respective median values, where mem-/timeouts are counted
as larger than the rest. Values in brackets refer to the subset of input automata for
which at least one determinization needed more than 0.5 s (447 (182) automata for
benchmark random (DNF)).

Algorithm Timeouts Memouts States Time Acceptance Intermediate GBA

States Acceptance

random Spot 0.5% 9.9% 3,414 (59,525) <1 (1.5) 10 (17) 71 2

remFin→splitα 0.5% 15.2% 8,639 (291,263) <1 (9.7) 14 (24) 109 2

splitα→remFin 0.7% 17.8% 14,037 (522,758) <1 (21.0) 14 (24) 119 2

remFin→rewriteα 1.6% 18.7% 15,859 (1,024,258) <1 (40.2) 14 (26) 116 2

product 1.3% 7.9% 3,069 (43,965) <1 (1.2) 18 (29)

product (no langcover) 0.7% 9.0% 3,857 (109,908) <1 (1.1) 24 (38)

limit-det. 0.0% 0.0% 778 (3,346) <1 (<1) 1 (1)

limit-det. via GBA 1.6% 0.3% 463 (1,556) <1 (1.6) 1 (1)

good-for-MDP 9.3% 13.4% 5,069 (192.558) 2.0 (139.6) 1 (1)

good-for-MDP via GBA 5.5% 44.0% 71,200 (–) 836.9 (–) 1 (–)

DNF Spot 0.4% 6.2% 5,980 (692,059) <1 (18.3) 11 (25) 30 3

product 0.0% 3.8% 2,596 (114,243) <1 (4.6) 13 (24)

removeFin). The product approach (also implemented using the Spot-library) is
called product and product (no langcover) (without the langcover heuristic).
The intermediate GBA are also simplified. The construction GLD

A is implemented
in limit-det., using the Spot-library and parts of Seminator. We compare it
to limit-det. via GBA, which concatenates the TELA to GBA construction of
Spot with the limit-determinization of Seminator. Similarly, good-for-MDP
and good-for-MDP via GBA are the construction GGFM

A applied to A directly,
or to the GBA as constructed by Spot. Both constructions via GBA are in
the worst case double-exponential. No post-processing is applied to any output
automaton.

Experiments. Computations were performed on a computer with two Intel E5-
2680 CPUs with 8 cores each at 2.70 GHz running Linux. Each individual exper-
iment was limited to a single core, 15 GB of memory and 1200 s. We use versions
2.9.4 of Spot (configured to allow 256 acceptance sets) and 2.0 of Seminator.

Our first benchmark set (called random) consists of 1000 TELA with 4 to 50
states and 8 sets of transitions T1, . . . , T8 used to define the acceptance condi-
tions. They are generated using Spot’s procedure random graph() by specifying
probabilities such that: a triple (q, a, q′) ∈ Q × Σ × Q is included in the tran-
sition relation (3/|Q|) and such that a transition t is included in a set Tj (0.2).
We use only transition systems that are nondeterministic. The acceptance con-
dition is generated randomly using Spot’s procedure acc code::random(). We
transform the acceptance condition to DNF and keep those acceptance condi-
tions whose lengths range between 2 and 21 and consist of at least two disjuncts.
To quantify the amount of nondeterminism, we divide the number of pairs of
transitions of the form (q, a, q1), (q, a, q2), with q1 �= q2, of the automaton by its
number of states.

28 T. John et al.

≤ 0.66 > 0.66, ≤ 1.33 > 1.33
0.25

0.5
0.75

1
1.33
2.0

avg. nondeteterminisim

m
ed

ia
n
of

ra
ti
o
(p
r
o
d
u
c
t
/S

p
o
t
) random: product vs. Spot

#states (2 ≤ |α| ≤ 11) #states (12 ≤ |α| ≤ 21)
comp. time (2 ≤ |α| ≤ 11) comp. time (12 ≤ |α| ≤ 21)

|αout| (2 ≤ |α| ≤ 11) |αout| (12 ≤ |α| ≤ 21)

≤ 0.66 > 0.66, ≤ 1.33 > 1.33

0.1

0.25

0.5
0.75

1
1.33

avg. nondeterminism

m
ed

ia
n
of

ra
ti
o
(p
r
o
d
u
c
t
/S

p
o
t
) DNF : product vs. Spot

#states comp. time |αout|

Fig. 4. Comparison of Spot and product, with input automata grouped by the size of
the DNF of their acceptance condition and the amount of nondeterminism.

Table 1 shows that the product produces smallest deterministic automata
overall. Spot produces best results among the algorithms that go via a sin-
gle GBA. One reason for this is that after GBA-simplifications of Spot, the
number of acceptance marks of the intermediate GBA are comparable. Figure 4
(left) compares Spot and product and partitions the input automata according
to acceptance complexity (measured in the size of their DNF) and amount of
nondeterminism. Each subset of input automata is of roughly the same size (159–
180) (see [21, Tab. 2]). The graph depicts the median of the ratio (product/Spot)
for the measured values. For time- or memouts of Spot (product) we define the
ratio as 0 (∞). If both failed, the input is discarded. The number of time- and
memouts grows with the amount of nondeterminism and reaches up to 42%.
The approach product performs better for automata with more nondetermin-
ism and complex acceptance conditions as the results have fewer states and the
computation times are smaller compared to Spot.

The limit-deterministic automata are generally much smaller than the deter-
ministic ones, and limit-det via GBA. performs best in this category. However,
the construction GLD

A (limit-det.) resulted in fewer time- and memouts.
For GFM automata we see that computing GGFM

A directly, rather than first
computing a GBA, yields much better results (good-for-MDP vs. good-for-MDP
via GBA). However, the GFM automata suffer from significantly more time- and
memouts than the other approaches. The automata sizes are comparable on
average with Spot’s determinization (see [21, Fig. 7]). Given their similarity to
the pure limit-determinization constructions, and the fact that their acceptance
condition is much simpler than for the deterministic automata, we believe that
future work on optimizing this construction could make it a competitive alter-
native for probabilistic model checking using TELA.

The second benchmark (called DNF) consists of 500 TELA constructed ran-
domly as above, apart from the acceptance conditions. They are in DNF with 2–3
disjuncts, with 2–3 Inf-atoms and 0–1 Fin-atoms each (all different). Such for-
mulas tend to lead to larger CNF conditions, which benefits the new approaches.
Figure 4 (right) shows the median ratio of automata sizes, computation times

Determinization and Limit-Determinization of Emerson-Lei Automata 29

and acceptance sizes, grouped by the amount of nondeterminism. We do not
consider different lengths of acceptance conditions because the subsets of input
automata are already relatively small (140–193). Again, product performs better
for automata with more nondeterminism.

7 Conclusion

We have introduced several new approaches to determinize and limit-determinize
automata under the Emerson-Lei acceptance condition. The experimental evalu-
ation shows that in particular the product approach performs very well. Further-
more, we have shown that the complexity of limit-determinizing TELA is single-
exponential (in contrast to the double-exponential blow-up for determinization).
One of our constructions produces limit-deterministic good-for-MDP automata,
which can be used for quantitative probabilistic verification.

This work leads to several interesting questions. The presented constructions
would benefit from determinization procedures for GBA which trade a general
acceptance condition (rather than Rabin or parity) for a more compact state-
space of the output. Similarly, translations from LTL to compact, nondeterminis-
tic TELA would allow them to be embedded into (probabilistic) model-checking
tools for LTL (a first step in this direction is made in [27]). It would be interest-
ing to study, in general, what properties can be naturally encoded directly into
nondeterministic TELA. Another open point is to evaluate the good-for-MDP
automata in the context of probabilistic model checking in practice.

Acknowledgments. We thank David Müller for suggesting to us the problem of
determinizing Emerson Lei automata and many discussions on the topic.

References

1. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

2. Baier, C., Blahoudek, F., Duret-Lutz, A., Klein, J., Müller, D., Strejček, J.: Generic
emptiness check for fun and profit. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.)
ATVA 2019. LNCS, vol. 11781, pp. 445–461. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3 26

3. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind
Series, The MIT Press, Cambridge (2008)

4. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, London (2008).
https://doi.org/10.1007/978-1-84628-770-1

5. Blahoudek, F.: Automata for formal methods: little steps towards perfection. Ph.D.
thesis, Masaryk University, Faculty of Informatics (2018)

6. Blahoudek, F., Duret-Lutz, A., Klokocka, M., Kret́ınský, M., Strejcek, J.: Semi-
nator: a tool for semi-determinization of omega-automata. In: International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR).
EPiC Series in Computing (2017)

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-1-84628-770-1

30 T. John et al.

7. Blahoudek, F., Major, J., Strejček, J.: LTL to smaller self-loop alternating
automata and back. In: Hierons, R.M., Mosbah, M. (eds.) ICTAC 2019. LNCS,
vol. 11884, pp. 152–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32505-3 10

8. Bloemen, V., Duret-Lutz, A., van de Pol, J.: Model checking with generalized Rabin
and Fin-less automata. Int. J. Softw. Tools Technol. Transfer 21(3), 307–324 (2019)

9. Boker, U.: Why these automata types? In: Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR). EPiC Series in Computing (2018)

10. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 37

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

12. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 16

13. Duret-Lutz, A.: Contributions to LTL and ω-automata for model checking. Habil-
itation thesis, Université Pierre et Marie Curie (2017)

14. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C., Legay,
A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46520-3 8

15. Duret-Lutz, A., Poitrenaud, D., Couvreur, J.-M.: On-the-fly emptiness check of
transition-based Streett automata. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009.
LNCS, vol. 5799, pp. 213–227. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04761-9 17

16. Emerson, E.A., Lei, C.L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

17. Esparza, J., Křet́ınský, J., Sickert, S.: One theorem to rule them all: a unified
translation of LTL into ω-automata. In: Logic in Computer Science (LICS). ACM
(2018)

18. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9 20

19. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: Concurrency Theory (CONCUR) (2015)

20. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. In: Biere,
A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078, pp. 306–323. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 17

21. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: Determinization and limit-
determinization of Emerson-Lei automata. arXiv:2106.15892 [cs], June 2021

22. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: Determinization and limit-
determinization of Emerson-Lei automata. Supplementary material (ATVA 2021)
(2021). https://doi.org/10.6084/m9.figshare.14838654.v2

23. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata
good for probabilistic model checking? In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-
Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 453–465.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04921-2 37

https://doi.org/10.1007/978-3-030-32505-3_10
https://doi.org/10.1007/978-3-030-32505-3_10
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-04761-9_17
https://doi.org/10.1007/978-3-642-04761-9_17
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/978-3-030-45190-5_17
http://arxiv.org/abs/2106.15892
https://doi.org/10.6084/m9.figshare.14838654.v2
https://doi.org/10.1007/978-3-319-04921-2_37

Determinization and Limit-Determinization of Emerson-Lei Automata 31

24. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

26. Löding, C., Pirogov, A.: Determinization of Büchi automata: unifying the
approaches of Safra and Muller-Schupp. In: International Colloquium on Automata,
Languages, and Programming (ICALP). LIPIcs (2019)

27. Major, J., Blahoudek, F., Strejček, J., Sasaráková, M., Zbončáková, T.: ltl3tela:
LTL to small deterministic or nondeterministic Emerson-Lei automata. In: Chen,
Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 357–365.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3 21

28. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32(3), 321–330 (1984)

29. Müller, D.: Alternative automata-based approaches to probabilistic model checking.
Ph.D. thesis, Technische Universität Dresden, November 2019

30. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Games,
Automata, Logics and Formal Verification (GandALF). EPTCS (2017)

31. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoret. Comput. Sci. 141(1), 69–107 (1995)

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Symposium
on Principles of Programming Languages (POPL). Association for Computing
Machinery (ACM), New York, NY, USA (1989)

33. Redziejowski, R.R.: An improved construction of deterministic omega-automaton
using derivatives. Fund. Inform. 119(3–4), 393–406 (2012)

34. Renkin, F., Duret-Lutz, A., Pommellet, A.: Practical “paritizing” of Emerson-Lei
automata. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp.
127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 7

35. Safra, S., Vardi, M.Y.: On omega-automata and temporal logic. In: Symposium
on Theory of Computing (STOC). Association for Computing Machinery (ACM),
New York, NY, USA (1989)

36. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann
Institute of Science, Rehovot, Israel (1989)

37. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 42–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 5

38. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 17

39. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Symposium on Foundations of Computer Science (SFCS) (1985)

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-31784-3_21
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17

	Determinization and Limit-Determinization of Emerson-Lei Automata
	1 Introduction
	2 Preliminaries
	3 From TELA to Generalized Büchi Automata
	3.1 Operations on Emerson-Lei Automata
	3.2 Construction of Generalized Büchi Automata

	4 Determinization
	5 Limit-Deterministic TELA
	5.1 Limit-Determinization
	5.2 Probabilistic Model Checking

	6 Experimental Evaluation
	7 Conclusion
	References

