
Zhe Hou
Vijay Ganesh (Eds.)

LN
CS

 1
29

71

Automated Technology
for Verification and Analysis
19th International Symposium, ATVA 2021
Gold Coast, QLD, Australia, October 18–22, 2021
Proceedings

Lecture Notes in Computer Science 12971

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Zhe Hou • Vijay Ganesh (Eds.)

Automated Technology
for Verification and Analysis
19th International Symposium, ATVA 2021
Gold Coast, QLD, Australia, October 18–22, 2021
Proceedings

123

Editors
Zhe Hou
Griffith University
Brisbane, QLD, Australia

Vijay Ganesh
University of Waterloo
Waterloo, ON, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88884-8 ISBN 978-3-030-88885-5 (eBook)
https://doi.org/10.1007/978-3-030-88885-5

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7164-0580
https://doi.org/10.1007/978-3-030-88885-5

Preface

This volume contains the papers presented at the 19th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2021). The ATVA series
of symposia intends to promote research in theoretical and practical aspects of auto-
mated analysis, verification, and synthesis by providing a forum for interaction between
the regional and international research communities and industry in related areas.

ATVA 2021 was planned to be hosted on the Gold Coast, Australia, in late October
2021. However, due to the COVID-19 pandemic and travel restrictions, the Steering
Committee decided to host the conference virtually during October 18–22, 2021.
ATVA 2021 received 75 submissions covering topics related to the theory of and
applications in automated verification and analysis techniques. Each paper was
reviewed by at least three reviewers, and the Program Committee (PC) accepted 19
regular papers and 4 tool papers, leading to a competitive and attractive scientific
program.

This edition of ATVA was blessed by the presence of four prestigious keynote
speakers. The first keynote was given by Sir Tony Hoare, a Turing Award and Kyoto
Prize laureate. He discussed the link between algebra, geometry, and programming
testing and verification using a unified theory. The second keynote speaker, Andrew
Chi-Chih Yao from the Tsinghua University, is also a Turing Award and Kyoto Prize
laureate. His expertise is in complexity theory and cryptography, and he presented
novel ideas about computing and analysis from these angles. Moshe Vardi from the
Rice University is another widely recognized top computer scientist and a Godel Prize
winner. He talked about linear temporal logic and its applications in analysis and
synthesis. Last, but not least, Jha from the University of Wisconsin presented insightful
views on security, formal methods and adversarial machine learning. The four talks
covered current hot research topics and revealed many new interesting research
directions.

After the success of the workshops of the previous edition, we decided to co-host the
conference with three workshops in related research areas: Security and Reliability of
Machine Learning (SRML 2021), organized by Shiqi Wang, Huan Zhang, Kaidi Xu,
and Suman Jana; the Workshop on Hyperproperties: Advances in Theory and Practice
(HYPER 2021), organized by Daniel Fremont and Hazem Torfah; and the Workshop
on Open Problems in Learning and Verification of Neural Networks 2021, organized
by Anna Lukina, Guy Avni, Mirco Giacobbe, and Christian Schilling. All three
workshops were hosted virtually on October 18, 2021. These workshops brought in
additional participants to ATVA 2021 and helped make it an interesting and successful
event. We thank all the workshop organizers for their hard work.

ATVA 2021 would not have been successful without the contributions and
involvement of the Program Committee members as well as the external reviewers,
who contributed to the review process (with more than 225 reviews) and the selection
of the best contributions. This event would not exist if authors and contributors did not

submit their proposals. We thank every person, reviewer, author, PC member and
organizing committee member involved in the success of ATVA 2021.

The EasyChair system was set up for the management of ATVA 2021 and supported
the submission, review, and volume preparation processes. It proved to be a powerful
framework.

Although ATVA 2021 was hosted virtually, the local host and sponsor Griffith
University provided tremendous help with the registration and online facilities. The
other sponsors, Formal Methods Europe, Springer, and Destination Gold Coast, con-
tributed in different forms to help the conference run smoothly. Many thanks to all the
local organisers and sponsors.

We wish to express our special thanks to the General Chair and Steering Committee
members, particularly Jing Sun, Farn Wang, Jie-Hong Roland Jiang, and Yu-Fang
Chen, for their valuable support.

October 2021 Zhe Hou
Vijay Ganesh

vi Preface

Organization

General Co-chairs

Jin Song Dong National University of Singapore, Singapore
Jing Sun University of Auckland, New Zealand

Program Co-chairs

Zhe Hou Griffith University, Australia
Vijay Ganesh University of Waterloo, Canada

Steering Committee

Teruo Higashino Osaka University, Japan
Jie-Hong Roland Jiang National Taiwan University, Taiwan
Doron A Peled Bar Ilan University, Israel
Yu-Fang Chen Institute of Information Science, Academia Sinica,

Taiwan
Ichiro Hasuo National Institute of Informatics, Japan
Yunja Choi Kyungpook National University, South Korea

Advisory Committee

Insup Lee University of Pennsylvania, USA
Allen Emerson The University of Texas at Austin, USA
Hsu-Chun Yen National Taiwan University, Taiwan
Farn Wang National Taiwan University, Taiwan

Publicity Co-chairs

Giles Reger The University of Manchester, UK
Meng Sun Peking University, China

Workshop Co-chairs

Guy Katz Hebrew University of Jerusalem, Israel
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany

Program Committee

Erika Abraham RWTH Aachen University, Germany
Mohamed Faouzi Atig Uppsala University, Sweden
Christel Baier TU Dresden, Germany
Stanley Bak Stony Brook University, USA
Ezio Bartocci Vienna University of Technology, Austria
Saddek Bensalem VERIMAG, France
Armin Biere Johannes Kepler University Linz, Austria
Nikolaj Bjorner Microsoft, USA
Udi Boker Interdisciplinary Center (IDC) Herzliya, Israel
Borzoo Bonakdarpour Michigan State University, USA
Luca Bortolussi University of Trieste, Italy
Jalil Boudjadar Aarhus University, Denmark
Martin Brain University of Oxford, UK
Franck Cassez ConsenSys and Macquarie University, Australia
Supratik Chakraborty IIT Bombay, India
Krishnendu Chatterjee Institute of Science and Technology (IST), UK
Yu-Fang Chen Academia Sinica, Taiwan
Chih-Hong Cheng Denso Automotive Deutschland GmbH, Germany
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Hung Dang Van Vietnam National University, Vietnam
Tien V. Do Budapest University of Technology and Economics,

Hungary
Alexandre Duret-Lutz LRDE, EPITA, France
Javier Esparza Technical University of Munich, Germany
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Pascal Fontaine Université de Liège, Belgium
Martin Frӓnzle Carl von Ossietzky Universitӓt Oldenburg, Germany
Pierre Ganty IMDEA Software Institute, Spain
Alberto Griggio Fondazione Bruno Kessler, Italy
Dimitar Guelev Bulgarian Academy of Sciences, Bulgaria
Keijo Heljanko University of Helsinki, Finland
Guy Katz The Hebrew University of Jerusalem, Israel
Siau-Cheng Khoo National University of Singapore, Singapore
Xuandong Li Nanjing University, China
Anthony Widjaja Lin TU Kaiserslautern, Germany
Alexander Nadel Intel, Israel
Pham Ngoc Hung Vietnam National University, Vietnam
Aina Niemetz Stanford University, USA
Tobias Nipkow Technical University of Munich, Germany
Doron Peled Bar Ilan University, Israel
Mathias Preiner Stanford University, USA

viii Organization

Markus Rabe Google, USA
Andrew Reynolds University of Iowa, USA
Olli Saarikivi Aalto University, Finland
Indranil Saha Indian Institute of Technology Kanpur, India
Sven Schewe University of Liverpool, UK
Anne-Kathrin Schmuck Max-Planck-Institute for Software Systems, Germany
Daniel Selsam Microsoft Research, USA
Gagandeep Singh VMWare Research and University of Illinois

at Urbana-Champaign, USA
Sadegh Soudjani Newcastle University, UK
Jun Sun Singapore Management University, Singapore
Sofiene Tahar Concordia University, Canada
Michael Tautschnig Queen Mary University of London, UK
Tachio Terauchi Waseda University, Japan
Aditya Thakur University of California, Davis, USA
Cesare Tinelli University of Iowa, USA
Hoang Truong Vietname National University, Vietname
Bow-Yaw Wang Academia Sinica, Taiwan
Zhilin Wu Chinese Academy of Sciences, China

Organization ix

Geometric Theory for Program Testing
(Abstract of a Keynote Talk)

Bernhard Möller1, Tony Hoare2 and Zhe Hou3

1 Universität Augsburg
2 University of Cambridge and Honorary Member of Griffith University

3 Griffith University

Abstract. Formal methods for verification of programs are extended to testing
of programs. Their combination is intended to lead to benefits in reliable pro-
gram development, testing, and evolution. Our geometric theory of testing is
intended to serve as the specification of a testing environment, included as the
last stage of a toolchain that assists professional programmers, amateurs, and
students of Computer Science. The testing environment includes an automated
algorithm which locates errors in a test that has been run, and assists in cor-
recting them. It does this by displaying, on a monitor screen, a stick diagram of
causal chains in the execution of the program under test. The diagram can then
be navigated backwards in the familiar style of a satnav following roads on a
map. This will reveal selections of places at which the program should be
modified to remove the error.

Summary

The relevant formal methods for testing are due to the pioneers who provided the ideas:
Euclid and Descartes for geometry; Carl Adam Petri, whose nets model execution of
programs; Noam Chomsky, whose structured method defines the syntax of many
programming languages. Their pioneering theories are simplified and adapted to meet
current needs of programmers.

A Euclidean diagram is formed by executing a set of constructors, whose feasibility
is postulated by axioms and definitions. The geometric features of the diagram (axes,
coordinates, points, lines, figures, ...) are labelled by identifiers chosen in drawing the
diagram. These identifiers relate the diagram to the proof of a Euclidean proposition, or
the text of a program under test.

As an example, we take a structured programming language, with program exe-
cutions represented by Chomsky’s Abstract Syntax Trees. A multiple simultaneous
assignment labels the leaves of the tree with atomic commands, and constructors label
the branching points. Operators are sequential composition, object class declaration,
and concurrent composition of various kinds. Individual operations of the language are
defined by specifying the properties of a correct interface between their operands.
Errors in arithmetic expressions can be detected by labelling a tree by the value that it
produces. Detection of zero divide is then just a matter of calculation. Other errors (eg.
deadlock) can be defined by defining a pattern (eg. a cyclic chain of arrows).

This makes it easy to define a new language feature separately by a new con-
structor. A new language can be defined as the union of its features. A testing tool
should be automatically extensible to deal with any combination of features.

xii B. Möller et al.

Contents

Invited Paper

Linear Temporal Logic – From Infinite to Finite Horizon. 3
Lucas M. Tabajara and Moshe Y. Vardi

Automata Theory

Determinization and Limit-Determinization of Emerson-Lei Automata 15
Tobias John, Simon Jantsch, Christel Baier, and Sascha Klüppelholz

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 32
Alessandro Cimatti, Alberto Griggio, and Enrico Magnago

Certifying DFA Bounds for Recognition and Separation 48
Orna Kupferman, Nir Lavee, and Salomon Sickert

Machine Learning for Formal Methods

AALpy: An Active Automata Learning Library . 67
Edi Muškardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher,
and Martin Tappler

Learning Linear Temporal Properties from Noisy Data:
A MaxSAT-Based Approach . 74

Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu,
and Zhe Xu

Mining Interpretable Spatio-Temporal Logic Properties for Spatially
Distributed Systems. 91

Sara Mohammadinejad, Jyotirmoy V. Deshmukh, and Laura Nenzi

Theorem Proving and Tools

A Formal Semantics of the GraalVM Intermediate Representation. 111
Brae J. Webb, Mark Utting, and Ian J. Hayes

A Verified Decision Procedure for Orders in Isabelle/HOL. 127
Lukas Stevens and Tobias Nipkow

PJBDD: A BDD Library for Java and Multi-Threading 144
Dirk Beyer, Karlheinz Friedberger, and Stephan Holzner

Model Checking

Live Synthesis . 153
Bernd Finkbeiner, Felix Klein, and Niklas Metzger

Faster Pushdown Reachability Analysis with Applications
in Network Verification . 170

Peter Gjøl Jensen, Stefan Schmid, Morten Konggaard Schou, Jiří Srba,
Juan Vanerio, and Ingo van Duijn

Verifying Verified Code. 187
Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao,
and Arie Gurfinkel

Probabilistic Analysis

Probabilistic Causes in Markov Chains . 205
Christel Baier, Florian Funke, Simon Jantsch, Jakob Piribauer,
and Robin Ziemek

TEMPEST - Synthesis Tool for Reactive Systems and Shields
in Probabilistic Environments . 222

Stefan Pranger, Bettina Könighofer, Lukas Posch, and Roderick Bloem

AQUA: Automated Quantized Inference for Probabilistic Programs 229
Zixin Huang, Saikat Dutta, and Sasa Misailovic

Software and Hardware Verification

Proving SIFA Protection of Masked Redundant Circuits 249
Vedad Hadžić, Robert Primas, and Roderick Bloem

Verification by Gambling on Program Slices . 266
Murad Akhundov, Federico Mora, Nick Feng, Vincent Hui,
and Marsha Chechik

Runtime Enforcement of Hyperproperties . 283
Norine Coenen, Bernd Finkbeiner, Christopher Hahn, Jana Hofmann,
and Yannick Schillo

System Synthesis and Approximation

Compositional Synthesis of Modular Systems . 303
Bernd Finkbeiner and Noemi Passing

xiv Contents

Event-B Refinement for Continuous Behaviours Approximation 320
Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel,
and Neeraj K. Singh

Incorporating Monitors in Reactive Synthesis Without Paying the Price 337
Shaun Azzopardi, Nir Piterman, and Gerardo Schneider

Verification of Machine Learning

pyNeVer: A Framework for Learning and Verification
of Neural Networks . 357

Dario Guidotti, Luca Pulina, and Armando Tacchella

Property-Directed Verification and Robustness Certification of Recurrent
Neural Networks . 364

Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie,
Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad,
Martin Leucker, and Lina Ye

Author Index . 381

Contents xv

Invited Paper

Linear Temporal Logic – From Infinite
to Finite Horizon

Lucas M. Tabajara and Moshe Y. Vardi(B)

Rice University, Houston, USA
vardi@rice.edu

Abstract. Linear Temporal Logic (LTL), proposed by Pnueli in 1977
for reasoning about ongoing programs, was defined over infinite traces.
The motivation for this was the desire to model arbitrarily long compu-
tations. While this approach has been highly successful in the context of
model checking, it has been less successful in the context of reactive syn-
thesis, due to the challenging algorithmics of infinite-horizon temporal
synthesis. In this paper we show that focusing on finite-horizon tempo-
ral synthesis offers enough algorithmic advantages to compensate for the
loss in expressiveness. In fact, finite-horizon reasonings is useful even in
the context of infinite-horizon applications.

1 Reactive Systems and Reactive Synthesis

Reactive systems are widespread in modern society, from our personal comput-
ers to traffic control systems and factory robots, and we can expect them to
become even more ubiquitous with the recent advent of new technologies such
as autonomous vehicles and Internet of Things. A reactive system is any kind of
computer system that operates in a continuous loop interacting with an external
environment. This environment can be the physical world, another component
of a larger system, or other systems connected in a network [25].

Because reactive systems interact with other systems and the real world,
it is especially important to guarantee that such systems operate safely and
correctly, since errors in their operation can have far reaching and often serious
consequences. But designing such systems correctly can be especially challenging,
since they can run for an unbounded amount of time, and their internal state
at any given moment depends on the entire history of inputs received since they
started operation. Therefore, the designer has to make sure that they respond
correctly to a potentially infinite set of possible environment behaviors [25].

This challenge motivates the problem of reactive synthesis [40], which pro-
poses an alternative to the manual design of reactive systems. Instead, reactive
synthesis aims to automatically and algorithmically generate a reactive system
from a specification of its desired behavior. This specification is usually given as

Work supported in part by NSF grants IIS-1527668, CCF-1704883,IIS-1830549, DoD
MURI grant N00014-20-1-2787, and an award from the Maryland Procurement Office.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 3–12, 2021.
https://doi.org/10.1007/978-3-030-88885-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_1

4 L. M. Tabajara and M. Y. Vardi

a formula in some type of temporal logic expressing the set of acceptable execu-
tion traces of the system. A reactive system is said to realize this specification
if every execution trace produced by the system satisfies the formula, regard-
less of the inputs received from the environment. A reactive synthesis algorithm
should be able to determine if the specification is realizable and, if so, synthesize
a system realizing it.

Possibly the most common specification language for reactive synthesis is
Linear Temporal Logic (LTL) [39], an extension of propositional logic with tem-
poral operators such as “next”, “until”, “eventually” and “globally”. The classic
approach for reactive synthesis from an LTL specification is based on reducing
the problem to a game played over a deterministic ω-automaton [42], a class of
automata that accept languages over infinite words. This approach proceeds as
follows:

1. Convert the LTL formula into some type of deterministic ω-automaton, such
as a deterministic Rabin [42,43] or parity [20] automaton, that accepts exactly
the language of traces that satisfy the formula.

2. Use the automaton as the arena for a two-player game between the system
and the environment, where the system wins if it satisfies the acceptance
condition of the automaton [40].

3. Solve the game to find out which player has a winning strategy (such games
are always determined) [24]. If the system wins, the specification is realizable
and the winning strategy can be used as a model for the reactive system.

Over the years, reactive synthesis has been extensively studied in the field of
formal methods. Yet, not much of the progress in the area has translated into
making reactive synthesis significantly more practical for real-world applications
[31]. Techniques like bounded synthesis [19,21–23], symbolic algorithms [7,19]
and on-the-fly game construction [35] have made implementation of synthesis
algorithms more feasible, but tools for reactive synthesis still have limited scal-
ability, which has largely prevented this problem from gaining traction for prac-
tical applications. Furthermore, many generalizations of reactive synthesis that
would be of interest in real-world scenarios, such as quantitative synthesis [1,2]
and synthesis with incomplete information [32], have not been able to be fully
explored in practice so far, since they layer additional complexity on top of a
problem that is already challenging to solve efficiently.

At first glance, it is easy to attribute this lack of practical impact to the worst-
case complexity of reactive synthesis: the problem is 2EXPTIME-complete,
meaning that deciding whether a specification is realizable may take doubly-
exponential time in the size of the formula [41]. But this complexity analysis
can be deceptive. First, it considers only the worst case, which rarely occurs in
practice. In fact, many useful classes of specification can be synthesized in expo-
nential or even polynomial time [4,6,12]. Second, the doubly-exponential upper
bound speaks more of the succinctness of LTL as a specification language than
anything else: some classes of LTL formulas specify properties that can only be
realized by a system of doubly-exponential size [41].

Linear Temporal Logic – From Infinite to Finite Horizon 5

Instead of the worst-case complexity, it might make more sense to attribute
the poor practical performance of reactive-synthesis algorithms to the lack of effi-
cient algorithms for ω-automata. Other applications of such automata in formal
methods, like LTL model checking, tend to use nondeterministic Büchi automata
(NBA) [48]. The classic approach to reactive synthesis, however, requires a deter-
ministic automaton [40], which leads to a number of complications. Unlike NBAs,
deterministic Büchi automata are not expressive enough to represent all LTL for-
mulas [30], forcing determinization to produce an automaton with a more com-
plex acceptance condition, such as a parity automaton. The classic algorithm for
performing this procedure is Safra’s algorithm [38,42,43], which is notoriously
complex and difficult to understand, let alone implement efficiently [3,47]. Fur-
thermore, it is still an open problem whether games over parity automata can
be solved in polynomial time [9], an issue that is compounded by the complexity
of the state space generated by Safra’s construction.

These observations suggest that in order for reactive synthesis to be efficiently
implementable in practice, it is necessary to overcome the algorithmic barriers
imposed by ω-automata. One of the most successful attempts to do this has been
Generalized Reactivity(1) (GR(1)) synthesis [6], which has become maybe the
only variant of reactive synthesis that has achieved widespread use in applica-
tion domains, particularly robotics [29,36]. Despite GR(1) being a more limited
specification format, GR(1) synthesis has a number of advantages over synthesis
from LTL specifications [6]:

• The state space of the game is directly encoded in the GR(1) specification,
thus entirely avoiding having to use automaton construction and determiniza-
tion.

• The winning condition of the game is a GR(1) condition, which is more general
than a Büchi condition, but simpler than a parity condition. Unlike parity
games, games with a GR(1) condition can be solved in polynomial (cubic)
time.

• The game can be naturally represented symbolically, as states correspond to
assignments to Boolean variables and the transition relation can be repre-
sented as a Boolean formula. This enables the use of efficient symbolic algo-
rithms. In contrast, the games produced by Safra’s construction have very
complex state spaces which are not amenable to a symbolic encoding.

The success story of GR(1) demonstrates how, by trying to do less, we can
accomplish more: by imposing limits on what types of problems can be specified
and how, it becomes possible to attain a synthesis procedure that has hopes
of being useful in practice. GR(1) achieves this by entirely avoiding the use
of automata, but a more recently-proposed variant of reactive synthesis brings
to light an alternative option: replacing ω-automata by the simpler and more
tractable automata over finite words.

6 L. M. Tabajara and M. Y. Vardi

2 LTL Synthesis over Finite Traces

Classically, LTL is interpreted over infinite traces, which is consistent with the
idea that a reactive system might operate continuously for an indeterminate
amount of time [25]. Many applications, however, use LTL to specify finite-
horizon behaviors, especially in areas such as robotics and planning in AI, where
systems more often than not have a finite-horizon task to complete [11,26,37].
This has led to the formalization of LTL with finite-trace semantics, or LTLf [16].

Reactive synthesis from LTLf specifications has found promising applications
in planning and robotics, where it is closely related to fully-observable nondeter-
ministic (FOND) planning [10,15]. In this context, LTLf synthesis can be used
to synthesize a policy for an autonomous agent to complete a task within an
unpredictable environment. An example is when a robot needs to complete a
task in the presence of humans, who can both aid and interfere in the comple-
tion of the task [26,49]. Synthesis can be used to generate a policy that considers
all possible behaviors of the humans and other components of the environment
(within a set of assumptions) and chooses how to respond to each in order to
fulfill the task. Using synthesis thus avoids the need for re-planning in the case
of an uncooperative environment [33].

What makes LTLf promising in the context of reactive synthesis is that it
opens up the possibility of algorithms based on automata over finite, rather
than infinite, words. LTLf has the same expressive power as first-order logic
(FOL) over finite sequences [16]. Both are strictly less expressive than monadic
second-order logic (MSO) over finite sequences, which is equivalent to finite
automata [8]. This means that every LTLf formula can be converted into a
deterministic finite automaton (DFA) that accepts exactly those finite traces
that satisfy the formula.

As a consequence, when the specification can be expressed as an LTLf for-
mula, reactive synthesis can be solved using an algorithm based on DFAs instead
than ω-automata: the LTLf formula is converted into an equivalent DFA, and
the system is synthesized by solving a reachability game over this DFA [17].
Although LTLf synthesis has the same 2EXPTIME-complete complexity as LTL
synthesis, this DFA-based algorithm has a number of advantages in relation to
the classic algorithms for LTL synthesis [53]:

1. Determinization of automata over finite words can use the classic subset con-
struction algorithm, which despite still being exponential is much simpler and
more efficient than Safra’s construction, as well as being very amenable to
symbolic representation.

2. DFA minimization is much more viable than for ω-automata. While mini-
mization of ω-automata is NP-complete [44], DFAs have a minimal canonical
form, which can be computed efficiently in time O(n log n) [28].

3. Reachability games are much simpler than parity games, being solvable in
linear time [34].

Linear Temporal Logic – From Infinite to Finite Horizon 7

We have used this theoretical algorithm as the basis for Syft, the first frame-
work for performing LTLf synthesis in practice [53], which takes advantage of
the benefits of DFAs outlined above. Syft works in the following way:

1. The LTLf specification is converted into an equivalent formula in FOL over
finite traces.

2. The FOL formula is given as input to the tool Mona [27], which constructs
the minimal DFA for the language of the formula.

3. The DFA is converted to a compact symbolic representation, using Binary
Decision Diagrams (BDDs) to represent the state sets and the transition
function.

4. A reachability game is solved over this DFA using a symbolic fixpoint algo-
rithm that constructs a BDD representing the set of winning states. If the
game is winning for the system, a winning strategy is constructed using BDDs
as well.

Our empirical results showed that, despite LTLf synthesis having the same
2EXPTIME complexity as LTL synthesis, Syft performed far better in practice
than converting the LTLf specification to an equivalent LTL formula and giving
it as input to existing tools for LTL synthesis [53]. This difference in performance
can be attributed to the benefits of DFAs previously mentioned:

• The reachability game played on the DFA can be solved in linear time, and
the symbolic implementation further improves the performance.

• Thanks to the ease of DFA minimization, Mona is able to output a fully-
minimized DFA, decreasing the state space of the reachability game and mak-
ing it easier to solve.

• Mona furthermore constructs the DFA in stages, minimizing intermediate
DFAs. This leads to better performance in terms of both time and memory
for the DFA construction [51].

Despite the differences between the two approaches, LTLf synthesis is able to
benefit from the same strategy as GR(1) synthesis: by limiting the scope of the
problem (in this case, to finite-horizon tasks) it becomes possible to achieve suc-
cess where classic reactive synthesis failed. The advantages are similar to those
for GR(1): avoiding the expensive determinization of ω-automata, reducing the
problem to a game that can be solved in polynomial time, and producing a sim-
pler and more compact state space that is amenable to a symbolic representation.
LTLf synthesis was able to achieve this by replacing the classic algorithms based
on ω-automata with DFA-based methods, and the initial experiments using Syft
have demonstrated the potential of this approach.

It is only natural to now ask what other doors DFA algorithms have opened
for reactive synthesis. For instance, can DFAs be used also for synthesis over
infinite traces? Can we design better algorithms for constructing and manipu-
lating DFAs in order to improve synthesis performance? And now that DFAs
have allowed us to reach an algorithm with more practical potential, can we
generalize it to extensions of reactive synthesis like synthesis with incomplete
information, which were previously infeasible to explore in practice? These are
some of the questions that our work seeks to answer.

8 L. M. Tabajara and M. Y. Vardi

3 Synthesis Using Finite-Word Automata

Over the last few years we have focused on several research directions on the
topic of DFA-based approaches for reactive synthesis.

One such line of research is exploring how DFA algorithms can be extended
beyond synthesis over finite traces into synthesis of infinite traces, by identifying
classes of specifications involving infinite-trace semantics for which the synthesis
problem can similarly be reduced to a game over a DFA. In this way, the algo-
rithmic benefits of DFAs can be exploited also for these types of specifications.
One such setting is synthesis of Safety LTL [52], a fragment of LTL that can only
express safety properties, meaning properties where every violation occurs in a
finite time. As a consequence, the synthesis problem for this fragment can be
reduced to a safety game, the dual of a reachability game, which likewise can be
solved in linear time. Furthermore, the arena for this game can be constructed as
a DFA for the language of finite prefixes that violate the specification, allowing
us to take advantage of Mona and the efficient algorithms for DFA construction.
Another example is LTLf augmented with infinite-trace assumptions, including
LTL and GR(1) assumptions [13,14,50]. In this line of work, the task the system
has to complete is finite, but its satisfaction might depend on an assumption of
infinite behavior on the part of the environment. This means that the system
might need to wait an unbounded amount of time for the right conditions to
complete its task. Similarly to Safety LTL, this class of specifications can lead
to games that are simpler than parity games, for example, GR(1) games, and
where the arena can also be constructed as a DFA. For both Safety LTL and
infinitary-assumption LTLf , the DFA-based algorithms outperform the use of
tools for LTL synthesis.

Another direction focuses on attempting to improve DFA construction in a
way that can lead to better performance of synthesis algorithms, based on the
fact that early experiments indicated that DFA construction was the bottleneck
of the Syft pipeline [53]. In [46] we presented a solution that avoids the cost
of constructing the full DFA explicitly by instead representing the reachability
game by the implicit product of smaller DFAs. The experimental results showed,
however, that although the construction of this partitioned game is more effi-
cient, it does not compensate for the overhead incurred for solving the game
over this representation. A deeper analysis identified the root cause of the issue
to be the fact that, although the partitioned game is a more compact repre-
sentation, it prevents taking full advantage of DFA minimization, leading to an
enlarged implicit state space that makes the reachability game harder to solve.
The insights obtained from the results and analysis in that work later allowed
the design an improved algorithm that achieves a balance between partitioning
and minimization [5].

Finally, in [45] we investigated how the properties of automata over finite
words affect the performance in practice of LTLf synthesis under partial observ-
ability, a generalization of standard LTLf synthesis where the system must sat-
isfy the specification even in the presence of unobservable inputs [18]. Our work
presented the first practical implementation of synthesis under partial observabil-

Linear Temporal Logic – From Infinite to Finite Horizon 9

ity, making use of Mona and symbolic techniques to integrate two previously-
proposed algorithms for partial observability [18] into the Syft framework. In
addition, a third algorithm was introduced that emerges naturally from the use
of Mona for DFA construction. The empirical evaluation showed that the practi-
cal performance of the algorithms differs significantly from what the theoretical
complexity analysis predicts, due to the absence in practice of the worst-case
exponential gap between deterministic and nondeterministic finite automata.
These results demonstrated that, especially when dealing with finite automata,
worst-case complexity is not necessarily a good predictor of practical perfor-
mance, highlighting the importance of complementing theoretical analysis with
an experimental evaluation.

Each of these three research directions contributes to exploring the full poten-
tial of approaches based on automata over finite words for reactive synthesis. The
results improve on the state of the art and demonstrate the benefits of DFA-
based algorithms, such as the value of state-space minimization for synthesis
performance. The insights obtained from these works will hopefully be useful as
a guide for future research on DFA-based synthesis.

References

1. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM
63(3), 24:1–24:56 (2016). https://doi.org/10.1145/2875421

2. Almagor, S., Kupferman, O.: High-quality synthesis against stochastic environ-
ments. In: Talbot, J., Regnier, L. (eds.) CSL. LIPIcs, vol. 62, pp. 28:1–28:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

3. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of
Büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 262–272. Springer, Heidelberg (2006). https://doi.org/10.1007/
11605157 22

4. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments.
In: IEEE, pp. 291–300. IEEE Computer Society (2001). https://doi.org/10.1109/
LICS.2001.932505

5. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications. In: AAAI, pp. 9766–9774
(2020)

6. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

7. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

8. Büchi, J.R.: Weak second-order arithmetic and finite automata. In: Mac, L.S.,
Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 398–424. Springer,
New York (1990). https://doi.org/10.1007/978-1-4613-8928-6 22

9. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC, pp. 252–263 (2017)

10. Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as
planning. In: ICAPS, pp. 29–38 (2018)

https://doi.org/10.1145/2875421
https://doi.org/10.1007/11605157_22
https://doi.org/10.1007/11605157_22
https://doi.org/10.1109/LICS.2001.932505
https://doi.org/10.1109/LICS.2001.932505
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-1-4613-8928-6_22

10 L. M. Tabajara and M. Y. Vardi

11. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.: Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In: AAAI, pp. 3716–3724 (2017)

12. Cheng, C.-H., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 95–117.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 6

13. De Giacomo, G., Di Stasio, A., Tabajara, L.M., Vardi, M., Zhu, S.: Finite-trace
and generalized-reactivity specifications in temporal synthesis. In: IJCAI (2021)

14. De Giacomo, G., Di Stasio, A., Vardi, M.Y., Zhu, S.: Two-stage technique for LTLf

synthesis under LTL assumptions. In: KR (2020)
15. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of FOND planning

for LTLf/LDLf Goals. In: IJCAI, pp. 4729–4735 (2018)
16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces. In: IJCAI, pp. 854–860 (2013)
17. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:

IJCAI, pp. 1558–1564 (2015)
18. De Giacomo, G., Vardi, M.Y.: LTLf and LDLf synthesis under partial observabil-

ity. In: IJCAI, pp. 1044–1050 (2016)
19. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.

(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

20. Emerson, E., Jutla, C.: On simultaneously determinizing and complementing ω-
automata. In: Proceedings of 4th IEEE Symposium on Logic in Computer Science,
pp. 333–342 (1989)

21. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

22. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

23. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5–6), 519–539 (2013). https://doi.org/10.1007/s10009-012-0228-z

24. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
Lecture Notes in Computer Science, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

25. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K. (ed.)
Logics and Models of Concurrent Systems, NATO Advanced Summer Institutes,
vol. 13, pp. 477–498. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-
642-82453-1 17

26. He, K., Wells, A.M., Kavraki, L.E., Vardi, M.Y.: Efficient symbolic reactive syn-
thesis for finite-horizon tasks. In: ICRA, pp. 8993–8999. IEEE (2019)

27. Henriksen, J.G., et al.: MONA: monadic second-order logic in practice. In: TACAS,
pp. 89–110 (1995)

28. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of machines and computations, pp. 189–196. Elsevier (1971)

29. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Rob. 25(6), 1370–1381 (2009)

https://doi.org/10.1007/978-3-319-41528-4_6
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17

Linear Temporal Logic – From Infinite to Finite Horizon 11

30. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω automata vis-a-vis deter-
ministic Buchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS,
vol. 834, pp. 378–386. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58325-4 202

31. Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27660-6 8

32. Kupferman, O., Vardi, M.: Synthesis with incomplete informatio. In: ICTL, pp.
1044–1050 (1997)

33. Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.:
Iterative temporal planning in uncertain environments with partial satisfaction
guarantees. IEEE Trans. Robot. 32(3), 583–599 (2016)

34. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

35. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

36. Moarref, S., Kress-Gazit, H.: Automated synthesis of decentralized controllers for
robot swarms from high-level temporal logic specifications. Auton. Robot. 44(3–4),
585–600 (2020). https://doi.org/10.1007/s10514-019-09861-4

37. Pešić, M., Bošnački, D., van der Aalst, W.M.P.: Enacting declarative languages
using LTL: avoiding errors and improving performance. In: van de Pol, J., Weber,
M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 146–161. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16164-3 11

38. Piterman, N.: From nondeterministic Büchi and streett automata to deterministic
parity automata. Log. Methods Comput. Sci. 3(3) (2007)

39. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

40. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

41. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, The Weizmann
Institute of Science (1991)

42. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327 (1988)
43. Safra, S.: Exponential determinization for ω-automata with a strong fairness accep-

tance condition. SIAM J. Comput. 36(3), 803–814 (2006)
44. Schewe, S.: Beyond hyper-minimisation–minimising DBAs and DPAs is NP-

complete. In: Proceedings of IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. LIPIcs, vol. 8, pp. 400–411. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2010)

45. Tabajara, L.M., Vardi, M.Y.: LTLf synthesis under partial observability: from
theory to practice. In: Raskin, J., Bresolin, D. (eds.) GandALF. EPTCS, vol. 326,
pp. 1–17 (2020). https://doi.org/10.4204/EPTCS.326.1

46. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLf synthesis. In: IJCAI,
pp. 5599–5606. AAAI Press (2019)

47. TaŞiran, S., Hojati, R., Brayton, R.K.: Language containment of non-deterministic
ω-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol.
987, pp. 261–277. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60385-9 16

https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/s10514-019-09861-4
https://doi.org/10.1007/978-3-642-16164-3_11
https://doi.org/10.4204/EPTCS.326.1
https://doi.org/10.1007/3-540-60385-9_16
https://doi.org/10.1007/3-540-60385-9_16

12 L. M. Tabajara and M. Y. Vardi

48. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1 10

49. Wells, A.M., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: LTLf synthesis on prob-
abilistic systems. In: Raskin, J., Bresolin, D. (eds.) GandALF. EPTCS, vol. 326,
pp. 166–181 (2020). https://doi.org/10.4204/EPTCS.326.11

50. Zhu, S., De Giacomo, G., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and
stability assumptions. In: AAAI, pp. 3088–3095 (2020)

51. Zhu, S., Pu, G., Vardi, M.Y.: First-order vs. second-order encodings for LTLf -to-
automata translation. In: TAMC, pp. 684–705 (2019)

52. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety LTL synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3 10

53. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI, pp. 1362–1369 (2017)

https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.4204/EPTCS.326.11
https://doi.org/10.1007/978-3-319-70389-3_10

Automata Theory

Determinization and
Limit-Determinization of
Emerson-Lei Automata

Tobias John(B) , Simon Jantsch(B) , Christel Baier ,
and Sascha Klüppelholz

Technische Universität Dresden, Dresden, Germany
tobiasj@posteo.de,

{simon.jantsch,christel.baier,sascha.klueppelholz}@tu-dresden.de

Abstract. We study the problem of determinizing ω-automata whose
acceptance condition is defined on the transitions using Boolean formu-
las, also known as transition-based Emerson-Lei automata (TELA). The
standard approach to determinize TELA first constructs an equivalent
generalized Büchi automaton (GBA), which is later determinized. We
introduce three new ways of translating TELA to GBA. Furthermore,
we give a new determinization construction which determinizes several
GBA separately and combines them using a product construction. An
experimental evaluation shows that the product approach is compet-
itive when compared with state-of-the-art determinization procedures.
We also study limit-determinization of TELA and show that this can be
done with a single-exponential blow-up, in contrast to the known double-
exponential lower-bound for determinization. Finally, one version of the
limit-determinization procedure yields good-for-MDP automata which
can be used for quantitative probabilistic model checking.

1 Introduction

Automata on infinite words, also called ω-automata, play a fundamental role in
the fields of verification and synthesis of reactive systems [11,32,35,39]. They can
be used both to represent properties of systems and the systems themselves. For
logical specification languages such as linear temporal logic (LTL), many verifica-
tion systems, such as Spin [4] or Prism [25], use logic-to-automata translations
internally to verify a given system against the specification.

A major research question in this area has been, and still is, the question
of whether and how ω-automata can be determinized efficiently [26,31,33,36,
37]. The first single-exponential and asymptotically optimal determinization for
Büchi automata was presented in [36]. Deterministic automata are important

This work was funded by DFG grant 389792660 as part of TRR 248, the Cluster of
Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy), DFG-projects BA-1679/11-1 and BA-1679/12-1, and the Research Training
Group QuantLA (GRK 1763).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 15–31, 2021.
https://doi.org/10.1007/978-3-030-88885-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_2&domain=pdf
http://orcid.org/0000-0001-5855-6632
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0003-1724-2586
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-88885-5_2

16 T. John et al.

from a practical point of view as classical automata-based solutions to reactive
synthesis and probabilistic verification use deterministic automata [32,39].

The high complexity of determinization and most logic-to-automata transla-
tions have raised the question of more succinct representations of ω-automata.
Using generalized acceptance conditions (e.g. generalized Büchi [12] or general-
ized Rabin [8,10]) and transition-based [18], rather than state-based, conditions
are common techniques in this direction. An even more general approach has led
to the HOA-format [1], which represents the acceptance condition as a positive
Boolean formula over standard Büchi (Inf) and co-Büchi (Fin) conditions, also
called Emerson-Lei conditions [16,35]. Together with a vast body of work on
heuristics and dedicated procedures this standardized format has led to practi-
cally usable and mature tools and libraries such as Spot [14] and Owl [24] which
support a wide range of operations on ω-automata. Special classes of nondeter-
ministic automata with some of the desired properties of deterministic automata
have also been studied. The classes of good-for-MDP [20] and good-for-games [23]
automata can be used for quantitative probabilistic model checking of Markov
decision processes [19,38], while limit-deterministic Büchi automata can be used
for qualitative model-checking [11]. Dedicated translations from LTL directly to
deterministic and limit-deterministic automata have been considered in [17].

This paper considers determinization and limit-determinization of TELA. In
contrast to limit-determinization, the theoretical complexity of determinization
is well understood (a tight, double-exponential, bound was given in [35,36]).
However, it has not been studied yet from a practical point of view.

Contribution. We propose three new translations from TELA to GBA (Sect.
3) and give an example in which they perform exponentially better than state-
of-the-art implementations. We introduce a new determinization procedure for
TELA based on a product construction (Sect. 4). Our experiments show that it
often outperforms the approaches based on determinizing a single GBA (Sect. 6).
A simple adaptation of the product construction produces limit-deterministic
TELA of single-exponential size (in contrast to the double-exponential worst-
case complexity of full determinization, Sect. 5.1). We show that deciding
Prmax

M (L(A)) > 0 is NP-complete for limit-deterministic TELA A, and in P
if the acceptance of A is fin-less (Proposition 5.9). Finally, we show how to
limit-determinize TELA based on the breakpoint-construction. A version of
this procedure yields good-for-MDP Büchi automata (Definition 5.6). Thereby
Prmax

M (L(A)) is computable in single-exponential time for arbitrary MDP M
and TELA A (Theorem 5.15).

Related Work. The upper-bound for TELA-determinization [35,36] relies on
a translation to GBA which first transforms the acceptance formula into dis-
junctive normal form (DNF). We build on this idea. Another way of translating
TELA to GBA was described in [13]. Translations from LTL to TELA have
been proposed in [7,27,30], and all of them use product constructions to com-
bine automata for subformulas. The emptiness-check for ω-automata under dif-
ferent types of acceptance conditions has been studied in [2,8,10,15], where [2]
covers the general case of Emerson-Lei conditions and also considers qualitative

Determinization and Limit-Determinization of Emerson-Lei Automata 17

probabilistic model checking using deterministic TELA. The generalized Rabin
condition from [8,10] is equivalent to the special DNF that we use and a special
case of the hyper-Rabin condition for which the emptiness problem is in P [9,16].
Probabilistic model checking for deterministic automata under this condition is
considered in [10], while [8] is concerned with standard emptiness while allow-
ing nondeterminism. A procedure to transform TELA into parity automata is
presented in [34].1

2 Preliminaries

Automata. A transition-based Emerson-Lei automaton (TELA) A is a tuple
(Q,Σ, δ, I, α), where Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q ×
Σ × Q is the transition relation, I ⊆ Q is the set of initial states and α is a
symbolic acceptance condition over δ, which is defined by:

α:: = tt | ff | Inf(T) | Fin(T) | (α ∨ α) | (α ∧ α), with T ⊆ δ

If α is tt, ff , Inf(T) or Fin(T), then it is called atomic. We denote by |α| the
number of atomic conditions contained in α, where multiple occurrences of the
same atomic condition are counted multiple times. Symbolic acceptance condi-
tions describe sets of transitions T ⊆ δ. Their semantics is defined recursively as
follows:

T |= tt T |= Inf(T ′) iff T ∩ T′ �= ∅ T |= α1 ∨ α2 iff T |= α1 or T |= α2

T �|= ff T |= Fin(T ′) iff T ∩ T′ = ∅ T |= α1 ∧ α2 iff T |= α1 and T |= α2

Two acceptance conditions α and β are δ-equivalent (α ≡δ β) if for all T ⊆ δ we
have T |= α ⇐⇒ T |= β. A run of A for an infinite word u = u0u1 . . . ∈ Σω is
an infinite sequence of transitions ρ = (q0, u0, q1)(q1, u1, q2) . . . ∈ δω that starts
with an initial state q0 ∈ I. The set of transitions that appear infinitely often in ρ
are denoted by inf(ρ). A run ρ is accepting (ρ |= α) iff inf(ρ) |= α. The language
of A, denoted by L(A), is the set of all words for which there exists an accepting
run of A. The sets of infinite words which are the language of some TELA are
called ω-regular. A TELA A is deterministic if the set of initial states contains
exactly one state and the transition relation is a function δ : Q × Σ → Q. It is
complete, if for all (q, a) ∈ Q×Σ: δ ∩{(q, a, q′) | q′ ∈ Q} �= ∅. A Büchi condition
is an acceptance condition of the form Inf(T) and a generalized Büchi condition
is a condition of the form

∧
1≤i≤k Inf(Ti). We call the sets Ti appearing in a

generalized Büchi condition its acceptance sets. Rabin (resp. Street) conditions
are of the form

∨
1≤i≤k(Fin(Fi) ∧ Inf(Ti)) (resp.

∧
1≤i≤k(Fin(Fi) ∨ Inf(Ti))).

Probabilistic Systems. A labeled Markov decision process (MDP) M is a
tuple (S, s0,Act, P,Σ,L) where S is a finite set of states, s0 ∈ S is the initial
state, Act is a finite set of actions, P : S ×Act ×S → [0, 1] defines the transition
probabilities with

∑
s′∈S P (s, α, s′) ∈ {0, 1} for all (s, α) ∈ S × Act and L : S →

1 All proofs are provided in the full version of the paper [21].

18 T. John et al.

Σ is a labeling function of the states into a finite alphabet Σ. Action α ∈ Act
is enabled in s if

∑
s′∈S P (s, α, s′) = 1, and Act(s) = {α | α is enabled in s}.

A path of M is an infinite sequence s0α0s1α1 . . . ∈ (S × Act)ω such that
P (si, αi, si+1) > 0 for all i ≥ 0. The set of all paths of M is denoted by Paths(M)
and Pathsfin(M) denotes the finite paths. Given a path π = s0α0s1α1 . . ., we let
L(π) = L(s0)L(s1) . . . ∈ Σω. A Markov chain is an MDP with |Act(s)| ≤ 1 for
all states s. A scheduler of M is a function S : (S × Act)∗ × S → Act such that
S(s0α0 . . . sn) ∈ Act(sn). It induces a Markov chain MS and thereby a proba-
bility measure over Paths(M). The probability of a set of paths Π starting in
s0 under this measure is PrSM(Π). For an ω-regular property Φ ⊆ Σω we define
Prmax

M (Φ) = supS PrSM({π | π ∈ Paths(M) and L(π) ∈ Φ}). See [3, Chapter 10]
for more details.

3 From TELA to Generalized Büchi Automata

3.1 Operations on Emerson-Lei Automata

The first operator takes a TELA and splits it along the top-level disjuncts
of the acceptance condition. Let A = (Q,Σ, δ, I, α) be a TELA where α =∨

1≤i≤m αi and the αi are arbitrary acceptance conditions. We define split(A) :=
(A1, . . . ,Am) with Ai = (Q,Σ, δ, I, αi) for 1 ≤ i ≤ m, and split(A)[i] := Ai.

Lemma 3.1. It holds that L(A) =
⋃

1≤i≤m L(
split(A)[i]

)
.

The analogous statement does not hold for conjunction and intersection (cf [21,
Fig. 5]). We also need constructions to realize the union of a sequence of
automata. This can either be done using the sum (i.e. disjoint union) or the
disjunctive product of the state spaces. We define a general sum (simply called
sum) operation and one that preserves GBA acceptance (called GBA-specific
sum). The disjunctive product construction for TELA is mentioned in [13] and
similar constructions are used in [27,30]. While the sum operations yield smaller
automata in general, only the product construction preserves determinism.

Definition 3.2. Let Ai = (Qi, Σ, δi, Ii, αi), with i ∈ {0, 1}, be two complete
TELA with disjoint state-spaces. The sum of A0 and A1 is defined as follows:

A0 ⊕ A1 =
(
Q0 ∪ Q1, Σ, δ0 ∪ δ1, I0 ∪ I1, (α0 ∧ Inf(δ0)) ∨ (α1 ∧ Inf(δ1)

)

If αi = Inf(T i
1) ∧ . . . ∧ Inf(T i

k), with i ∈ {0, 1}, (i.e. both automata are GBA),
then we can use the GBA-specific sum:

A0 ⊕GBA A1 =
(
Q0 ∪ Q1, Σ, δ0 ∪ δ1, I0 ∪ I1, (Inf(T 0

1 ∪ T 1
1) ∧ . . . ∧ Inf(T 0

k ∪ T 1
k))

)

The disjunctive product is defined as follows:

A0 ⊗ A1 =
(
Q0 × Q1, Σ, δ⊗, I0 × I1, (↑(α0)∨ ↑(α1))

)

with δ⊗ =
{(

(q0, q1), a, (q′
0, q

′
1)

) ∣
∣ (q0, a, q′

0) ∈ δ0 and (q1, a, q′
1) ∈ δ1

}
and

↑(αi) is constructed by replacing every occurring set of transitions T in αi by{(
(q0, q1), u, (q′

0, q
′
1)

) ∈ δ⊗
∣
∣ (qi, u, q′

i) ∈ T
}
.

Determinization and Limit-Determinization of Emerson-Lei Automata 19

α = Fin(2) ∧ Inf(1) ∧ Inf(3)
)

∨ Fin(1) ∧ Inf(2) ∧ Inf(3)
)

a
1

a
b 2 c3 a ab c

F1

a

11

a

c31

F2
a

b 22 c32

b

b

c

c

a

a

a

a

α′ = Inf(11) ∧ Inf(31)
) ∨ Inf(22) ∧ Inf(32)

)

α′′ = Inf({11,22}) ∧ Inf({31,32})

Fig. 1. Example of applying removeFin and removeFinGBA (Definition 3.4) to the
automaton on the left. The result is the automaton on the right with acceptance α′

(removeFin), respectively α′′ (removeFinGBA).

The additional Inf(δ0) and Inf(δ1) atoms in the acceptance condition of A0⊕
A1 are essential (see [21, Fig. 6]). We can apply the GBA-specific sum to any
two GBA by adding Inf(δi) atoms until the acceptance conditions are of equal
length. Many of our constructions will require the acceptance condition of the
TELA to be in DNF. We will use the following normal form throughout the
paper (also called generalized Rabin in [8,10]).

Definition 3.3 (DNF for TELA). Let A = (Q,Σ, δ, I, α) be a TELA. We
say that A is in DNF if α is of the form α =

∨
1≤i≤m αi, with αi = Fin(T i

0) ∧
∧

1≤j≤ki
Inf(T i

j) and such that all ki ≥ 1.

The reason that a single Fin atom in each disjunct is enough is that Fin(T1)∧
Fin(T2) ≡δ Fin(T1 ∪ T2) for all T1, T2, δ. Taking ki ≥ 1 is also no restriction, as
we can always add ∧ Inf(δ) to any disjunct. Using standard Boolean operations
one can transform a TELA with acceptance β into DNF by just translating the
acceptance formula into a formula α of the above form, with |α| ≤ 2|β|.

Fin-Less Acceptance. To transform a TELA in DNF (see Definition 3.3) into
an equivalent one without Fin-atoms we use the idea of [8,13]: a main copy of
A is connected to one additional copy for each disjunct αi of the acceptance
condition, in which transitions from T i

0 are removed. The acceptance condition
ensures that every accepting run leaves the main copy eventually. Figure 1 shows
an example.

Definition 3.4. Let Fi = (Qi, Σ, δi, Ii, φi), where Qi = {q(i) | q ∈ Q},
δi = {(q(i), a, q′(i)) | (q, a, q′) ∈ δ \ T i

0} and φi =
∧

1≤j≤ki
Inf(U i

j), where
U i

j = {(q(i), a, q′(i)) | (q, a, q′) ∈ T i
j \ T i

0}. Let removeFin(A) = (Q′, Σ, δ′, I, α′)
and removeFinGBA(A) = (Q′, Σ, δ′, I, α′′), where Q′ = Q ∪ ⋃

1≤i≤m Qi and:

20 T. John et al.

αn = Inf(1) ∧ Inf(1′)
) ∨ Inf(2) ∧ Inf(2′)

) ∨ . . . ∨ Inf(n) ∨ Inf(n′)
)

q1 q2 q3
· · ·
· · ·

qn

a

1

b

1′

a

2

b

2′
a,b

a

n

b

n′

Fig. 2. A class of TELA where generating the CNF leads to 2n many conjuncts.

• δ′ = δ ∪ ⋃
1≤i≤m

(
δi ∪ {(q, a, q′(i)) | (q, a, q′) ∈ δ})

• α′ =
∨

1≤i≤m φi

• α′′ =
∧

1≤j≤k Inf(U1
j ∪ . . . ∪ Um

j), with k = maxi ki and U i
j = δi if ki < j ≤ k.

Lemma 3.5. It holds that L(A) = L(removeFin(A)) = L(removeFinGBA(A)).

While removeFin(A) is from [8,13], removeFinGBA(A) is a variant that differs
only in the acceptance and always produces GBA. Both consist of m + 1 copies
of A (with Fin-transitions removed).

3.2 Construction of Generalized Büchi Automata

Construction of Spot. The transformation from TELA to GBA from [13]
is implemented in Spot [14]. It transforms the automaton into DNF and
then applies (an optimized version of) removeFin. The resulting fin-less accep-
tance condition is translated into conjunctive normal form (CNF). As Inf(T1) ∨
Inf(T2) ≡δ Inf(T1 ∪ T2) holds for all δ, one can rewrite any fin-less condition
in CNF into a conjunction of Inf-atoms, which is a generalized Büchi condition.
When starting with a TELA B with acceptance β and N states, one gets a GBA
with N 2O(|β|) states and 2O(|β|) acceptance sets, as the fin-removal may intro-
duce exponentially (in |β|) many copies, and the CNF may also be exponential
in |β|.

Transforming a fin-less automaton into a GBA by computing the CNF has
the advantage of only changing the acceptance condition, and in some cases it
produces simple conditions directly. For example, Spot’s TELA to GBA con-
struction transforms a Rabin into a Büchi automaton, and a Streett automaton
with m acceptance pairs into a GBA with m accepting sets. However, computing
the CNF may also incur an exponential blow-up (Fig. 2 shows such an example).

Copy-Based Approaches. We now describe three approaches (remFin→splitα,
splitα→remFin and remFin→rewriteα), which construct GBA with at most |β|
acceptance sets. On the other hand, they generally produce automata with more
states. They are based on [35] which first translates copies of A (corresponding

Determinization and Limit-Determinization of Emerson-Lei Automata 21

to the disjuncts of the acceptance condition) to GBA, and then takes their sum.
However, it is not specified in [35] how exactly Fin-atoms should be removed
(they were concerned only with the theoretical complexity). We define:

remFin→splitα(A) :=
⊕

1≤i≤m
GBA

split(removeFin(A))[i]

splitα→remFin(A) :=
⊕

1≤i≤m
GBA

removeFin(split(A)[i])

remFin→rewriteα(A) := removeFinGBA(A)

With removeFin as defined in Definition 3.4, the approaches remFin→splitα
and splitα→remFin produce the same automata (after removing non-accepting
SCC’s in remFin→splitα), and all three approaches create O(m) copies of A.
Our implementation uses an optimized variant of removeFin, as provided by
Spot, which leads to different results for all three approaches.

4 Determinization

Determinization via Single GBA. The standard way of determinizing TELA
is to first construct a GBA, which is then determinized. Dedicated determiniza-
tion procedures for GBA with N states and K acceptance sets produce deter-
ministic Rabin automata with 2O(N(log N+log K)) states [37]. For a TELA B with
n states and acceptance β, the above translations yield GBA with N = n 2O(|β|)

and K = 2O(|β|) (Spot’s construction) or N = n 2O(|β|) and K = O(|β|) (copy-
based approaches). We evaluate the effect of the translations to GBA introduced
in the previous chapter in the context of determinization in Sect. 6.

Determinization via a Product Construction. Another way to determinize
a TELA A in DNF is to determinize the automata split(A)[i] one by one and
then combining them with the disjunctive product construction of Definition 3.2:

⊗

1≤i≤m

det
(
removeFin(split(A)[i])

)

where “det” is any GBA-determinization procedure. Let B be a TELA with
acceptance β and n states, and let α be an equivalent condition in DNF
with m disjuncts. Assuming an optimal GBA-determinization procedure, the
product combines m automata with 2O(n(log n+log |β|)) states and hence has
(
2O(n (log n+log |β|)))m = 2O(2|β|·n(log n+log |β|)) states.

5 Limit-Deterministic TELA

Limit-determinism has been studied mainly in the context of Büchi automata [11,
38,39], and we define it here for general TELA.

22 T. John et al.

Definition 5.1. A TELA A = (Q,Σ, δ, I, α) is called limit-deterministic if
there exists a partition QN , QD of Q such that

1. δ ∩ (QD × Σ × QN) = ∅,
2. for all (q, a) ∈ QD × Σ there exists at most one q′ such that (q, a, q′) ∈ δ,
3. every accepting run ρ of A satisfies inf(ρ) ∩ (QN × Σ × QN) = ∅.

This is a semantic definition and as checking emptiness of deterministic TELA
is already coNP-hard, checking whether a TELA is limit-deterministic is also.

Proposition 5.2. Checking limit-determinism for TELA is coNP-complete.

An alternative syntactic definition for TELA in DNF, which implies limit-
determinism, is provided in Definition 5.3.

Definition 5.3. A TELA A = (Q,Σ, δ, {q0}, α) in DNF, with α =
∨

1≤i≤m αi,
αi = Fin(T i

0) ∧ ∧
1≤j≤ki

Inf(T i
j) and ki ≥ 1 for all i, is syntactically limit-

deterministic if there exists a partition QN , QD of Q satisfying 1. and 2. of Def-
inition 5.1 and additionally T i

j ⊆ QD × Σ × QD for all i ≤ m and 1 ≤ j ≤ ki.

5.1 Limit-Determinization

We first observe that replacing the product by a sum in the product-based deter-
minization above yields limit-deterministic automata of single-exponential size
(in contrast to the double-exponential lower-bound for determinization). Let
A be a TELA in DNF with n states and acceptance α =

∨
1≤i≤m αi, where

αi = Fin(T i
0) ∧ ∧

1≤j≤ki
Inf(T i

j) (see Definition 3.3), and let Ai = split(A)[i].

Proposition 5.4.
⊕

1≤i≤m det(removeFin(Ai)) is limit-deterministic and of
size

∑
1≤i≤m |det(Ai)| = m · 2O(n (log n+log k)), where k = max{ki | 1 ≤ i ≤ m}.

If “det” is instantiated by a GBA-determinization that produces Rabin
automata, then the result is in DNF and syntactically limit-deterministic. Indeed,
in this case the only nondeterminism is the choice of the initial state. But “det”
can, in principle, also be replaced by any limit-determinization procedure for
GBA.

We now extend the limit-determinization constructions of [11] (for Büchi
automata) and [5,6,19] (for GBA) to Emerson-Lei conditions in DNF. These con-
structions use an initial component and an accepting breakpoint component [28]
for A, which is deterministic. The following construction differs in two ways:
there is one accepting component per disjunct of the acceptance condition, and
the accepting components are constructed from A without considering the Fin-
transitions of that disjunct. To define the accepting components we use the
subset transition function θ associated with δ: θ(P, a) =

⋃
q∈P {q′ | (q, a, q′) ∈ δ}

for (P, a) ∈ 2Q × Σ, and additionally we define θ|T (P, a) =
⋃

q∈P {q′ | (q, a, q′) ∈
δ ∩ T}. These functions are extended to finite words in the standard way.

Determinization and Limit-Determinization of Emerson-Lei Automata 23

Definition 5.5. Let θi = θ|δ\T i
0
and define BPi = (Qi, Σ, δi, {p0}, Inf(δbreaki))

with: Qi = {(R,B, l) ∈ 2Q × 2Q × {0, . . . , ki} | B ⊆ R}, p0 = (I, ∅, 0) and

δmain
i =

{

((R1, B1, l), a, (R2, B2, l)) | R2 = θi(R1, a),
B2 = θi(B1, a) ∪ θi|T i

l
(R1, a)

}

δbreaki =

⎧
⎨

⎩
((R1, B1, l), a, (R2, ∅, l′) |

((R1, B1, l), a, (R2, B2, l)) ∈ δmain
i ,

R2 = B2,
l′ = (l + 1) mod (ki + 1)

⎫
⎬

⎭

δi =
{
((R1, B1, l), a, (R2, B2, l)) ∈ δmain

i | R2 �= B2

} ∪ δbreaki

In state (R,B, l), intuitively R is the set of states reachable for the prefix word
in A without using transitions from T i

0, while B are the states in R which have
seen a transition in T i

l since the last “breakpoint”. The breakpoint-transitions
are δbreaki , which occur when all states in R have seen an accepting transition
since the last breakpoint (namely if R = B). The breakpoint construction under-
approximates the language of a given GBA, in general.

We define two limit-deterministic Büchi automata (LDBA) GLD
A and GGFM

A
where GGFM

A is additionally good-for-MDP (GFM) [20]. This means that GGFM
A

can be used to solve certain quantitative probabilistic model checking problems
(see Sect. 5.2). Both use the above breakpoint automata as accepting components.
While GLD

A simply uses a copy of A as initial component, GGFM
A uses the determin-

istic subset-automaton of A (it resembles the cut-deterministic automata of [5]).
Furthermore, to ensure the GFM property, there are more transitions between
initial and accepting copies in GGFM

A . The construction of GGFM
A extends the

approach for GBA in [19] (also used for probabilistic model checking) to TELA.
We will distinguish elements from sets Qi for different i from Definition 5.5 by
using subscripts (e.g. (R,P, l)i) and assume that these sets are pairwise disjoint.

Definition 5.6. (GLD
A and GGFM

A). Let Qacc =
⋃

1≤i≤m Qi, δacc =
⋃

1≤i≤m δi

and αacc = Inf(
⋃

1≤i≤m δbreaki). Define

GLD
A = (Q ∪ Qacc, Σ, δLD, I, α′) and GGFM

A = (2Q ∪ Qacc, Σ, δGFM, {I}, α′)

with

δLD = δ ∪ δLDbridge ∪ δacc and δGFM = θ ∪ δGFM
bridge ∪ δacc

δLDbridge =
{(

q, a, ({q′}, ∅, 0)i

) | (q, a, q′) ∈ δ and 1 ≤ i ≤ m
}

δGFM
bridge =

{(
P, a, (P ′, ∅, 0)i

) | P ′ ⊆ θ(P, a) and 1 ≤ i ≤ m
}

As δbreaki ⊆ δacc for all i, both GLD
A and GGFM

A are syntactically limit-
deterministic. The proofs of correctness are similar to ones of the corresponding
constructions for GBA [5, Thm. 7.6]. We show later in Proposition 5.14 that
GGFM

A is GFM.

24 T. John et al.

Theorem 5.7. GLD
A and GGFM

A are syntactically limit-deterministic and satisfy
L(GLD

A) = L(GGFM
A) = L(A). Their number of states is in O(n+3n mk) for GLD

A
and O(2n + 3n mk) = O(|α|2 · 3n) for GGFM

A , where k = max{ki | 1 ≤ i ≤ m}.
Corollary 5.8. Given TELA B (not necessarily in DNF) with acceptance con-
dition β and N states, there exists an equivalent LDBA with 2O(|β|+N) states.

5.2 Probabilistic Model Checking

We now discuss how these constructions can be used for probabilistic model
checking. First, consider the qualitative model checking problem to decide
Prmax

M (L(A)) > 0, under the assumption that A is a limit-deterministic TELA.
While NP-hardness follows from the fact that the problem is already hard for
deterministic TELA [29, Thm. 5.13], we now show that it is also in NP. Fur-
thermore, it is in P for automata with a fin-less acceptance condition. This was
already known for LDBA [11], and our proof uses similar arguments.

Proposition 5.9. Deciding Prmax
M (L(A)) > 0, given an MDP M and a limit-

deterministic TELA A, is NP-complete. If A has a fin-less acceptance condition,
then the problem is in P.

Now we show that GGFM
A is good-for-MDP [20]. In order to define this prop-

erty, we introduce the product of an MDP with a nondeterministic automaton
in which, intuitively, the scheduler is forced to resolve the nondeterminism by
choosing the next state of the automaton (see [20,23]). We assume that the
automaton used to build the product has a single initial state, which holds for
GGFM

A .

Definition 5.10. Given an MDP M = (S, s0,Act, P,Σ,L) and TELA G = (Q,
Σ, δ, {q0}, α) we define the MDP M × G = (S × Q, (s0, q0),Act ×Q,P×, Σ, L×)
with L×((s, q)) = L(s) and

P×(
(s, q), (α, p), (s′, q′)

)
=

{
P (s, α, s′) if p = q′ and (q, L(s), q′) ∈ δ

0 otherwise

We define the accepting paths Πacc of M × G to be:

Πacc = {(s0, q0)α0(s1, q1)α1 . . . ∈ Paths(M × G) | q0, L(s0), q1, L(s1) . . . |= α}
A Büchi automaton G is good-for-MDP (GFM) if Prmax

M (L(G)) = Prmax
M×G(Πacc)

holds for all MDP M [20]. The inequality “≥” holds for all automata [23, Thm. 1],
but the other direction requires, intuitively, that a scheduler on M × G is able
to safely resolve the nondeterminism of the automaton based on the prefix of
the run. This is trivially satisfied by deterministic automata, but good-for-games
automata also have this property [23]. Limit-deterministic Büchi automata are
not GFM in general, for example, GLD

A may not be (see Example 5.12).
We fix an arbitrary MDP M and show that Prmax

M (L(A)) ≤
Prmax

M×GGFM
A

(Πacc). To this end we show that for any finite-memory scheduler

Determinization and Limit-Determinization of Emerson-Lei Automata 25

S on M we find a scheduler S′ on M × GGFM
A such that PrSM(L(A)) ≤

PrS
′

M×GGFM
A

(Πacc). The restriction to finite-memory schedulers is allowed because
the maximal probability to satisfy an ω-regular property is always attained
by such a scheduler [3, Secs. 10.6.3 and 10.6.4]. Let MS × D be the prod-
uct of the induced finite Markov chain MS with D =

⊗
1≤i≤m Di, where

Di = det
(
removeFin(split(A)[i])

)
and “det” is the GBA-determinization proce-

dure from [37], which makes D a deterministic Rabin automaton. The scheduler
S′ is constructed as follows. It stays inside the initial component of M × GGFM

A
and mimics the action chosen by S until the corresponding path in MS × D
reaches an accepting bottom strongly connected component (BSCC) B. This
means that the transitions of D induced by B satisfy one of the Rabin pairs.
The following lemma shows that in this case there exists a state in one of the
breakpoint components to which S′ can safely move.

Lemma 5.11. Let s be a state in an accepting BSCC B of MS × D and π1 be
a finite path that reaches s from the initial state of MS × D. Then, there exists
1 ≤ i ≤ m and Q′ ⊆ θ

(
I, L(π1)

)
such that:

Prs({π | L(π) is accepted from (Q′, ∅, 0) in BPi

}
) = 1

The lemma does not hold if we restrict ourselves to singleton {q} ⊆ θ
(
I, L(π1)

)

(see Example 5.12). Hence, restricting δGFM
bridge to such transitions (as for δLDbridge,

see Definition 5.6) would not guarantee the GFM property.

Example 5.12. Consider the automaton A with states {aibj | i, j ∈ {1, 2}} ∪
{biaj | i, j ∈ {1, 2}}, where aibj has transitions labeled by ai to bja1 and
bja2. Transitions of states biaj are defined analogously, and all states in {aibj |
i, j ∈ {1, 2}} are initial (Fig. 3a shows the transitions of a1b1). All transitions are
accepting for a single Büchi condition, and hence L(A) = ({aibj | i, j ∈ {1, 2}})ω.

Consider the Markov chain M in Fig. 3b (transition probabilities are all 1/2
and omitted in the figure). Clearly, PrM(L(A)) = 1. Figure 3c shows a part of
the product of M with the breakpoint automaton BP for A (Definition 5.5)
starting from

(
a1, ({a1b1}, ∅, 0)

)
. The state

(
b2, ({b1a1, b1a2}, ∅, 0)

)
is a trap

state as b1a1 and b1a2 have no b2-transition. Hence,
(
a1, ({a1b1}, ∅, 0)

)
gener-

ates an accepting path with probability at most 1/2. This is true for all states(
s, (P ′, ∅, 0)

)
of M×BP where P ′ is a singleton. But using δLDbridge to connect ini-

tial and accepting components implies that any accepting path sees such a state.
Hence, using δLDbridge to define GGFM

A would not guarantee the GFM property.

Using Lemma 5.11 we can define S′ such that the probability accepting paths
under S′ in M × GGFM

A is at least as high as that of paths with label in L(A)
in MS. This is the non-trivial direction of the GFM property.

Lemma 5.13. For every finite-memory scheduler S on M, there exists a sched-
uler S′ on M × GGFM

A such that:

PrS
′

M×GGFM
A

(Πacc) ≥ PrSM(L(A))

26 T. John et al.

a1b1

b1a1 b1a2

a1
a1

(a)

a1

a2

b1

b2

(b)

(
a1, ({a1b1}, ∅, 0)

)

(
b1, ({b1a1, b1a2}, ∅, 0)

)

(
b2, ({b1a1, b1a2}, ∅, 0)

)
1/2

1/2

(c)

Fig. 3. Restricting δGFM
bridge to transitions with endpoints of the form (s, ({q}, ∅, 0)) (sim-

ilar to δLD
bridge) would not guarantee the GFM property (see Example 5.12).

Proposition 5.14. The automaton GGFM
A is good-for-MDP.

To compute Prmax
M (L(B)) one can translate B into an equivalent TELA A

in DNF, then construct GGFM
A and finally compute Prmax

M×GGFM
A

(Πacc). The
automaton GGFM

A is single-exponential in the size of B by Theorem 5.7, and
Prmax

M×GGFM
A

(Πacc) can be computed in polynomial time in the size of M ×
GGFM

A [3, Thm. 10.127].

Theorem 5.15. Given a TELA B (not necessarily in DNF) and an MDP M,
the value Prmax

M (L(B)) can be computed in single-exponential time.

6 Experimental Evaluation

The product approach combines a sequence of deterministic automata using the
disjunctive product. We introduce the langcover heuristic: the automata are
“added” to the product one by one, but only if their language is not already sub-
sumed by the automaton constructed so far. This leads to substantially smaller
automata in many cases, but is only efficient if checking inclusion for the con-
sidered automata types is efficient. In our case this holds (the automata are
deterministic with a disjunction of parity conditions as acceptance), but it is not
the case for arbitrary deterministic TELA, or nondeterministic automata.

Implementation. We compare the following implementations of the construc-
tions discussed above.2 Spot uses the TELA to GBA translator of Spot, sim-
plifies (using Spot’s postprocessor with preference Small) and degeneralizes
the result and then determinizes using a version of Safra’s algorithm [14,33].
The removeFin function that is used is an optimized version of Definition 3.4.
In remFin→splitα, splitα→remFin and remFin→rewriteα, the first step
is replaced by the corresponding TELA to GBA construction (using Spot’s

2 The source code and data of all experiments are available at [22].

Determinization and Limit-Determinization of Emerson-Lei Automata 27

Table 1. Evaluation of benchmarks random and DNF. Columns “States”, “Time” and
“Acceptance” refer to the respective median values, where mem-/timeouts are counted
as larger than the rest. Values in brackets refer to the subset of input automata for
which at least one determinization needed more than 0.5 s (447 (182) automata for
benchmark random (DNF)).

Algorithm Timeouts Memouts States Time Acceptance Intermediate GBA

States Acceptance

random Spot 0.5% 9.9% 3,414 (59,525) <1 (1.5) 10 (17) 71 2

remFin→splitα 0.5% 15.2% 8,639 (291,263) <1 (9.7) 14 (24) 109 2

splitα→remFin 0.7% 17.8% 14,037 (522,758) <1 (21.0) 14 (24) 119 2

remFin→rewriteα 1.6% 18.7% 15,859 (1,024,258) <1 (40.2) 14 (26) 116 2

product 1.3% 7.9% 3,069 (43,965) <1 (1.2) 18 (29)

product (no langcover) 0.7% 9.0% 3,857 (109,908) <1 (1.1) 24 (38)

limit-det. 0.0% 0.0% 778 (3,346) <1 (<1) 1 (1)

limit-det. via GBA 1.6% 0.3% 463 (1,556) <1 (1.6) 1 (1)

good-for-MDP 9.3% 13.4% 5,069 (192.558) 2.0 (139.6) 1 (1)

good-for-MDP via GBA 5.5% 44.0% 71,200 (–) 836.9 (–) 1 (–)

DNF Spot 0.4% 6.2% 5,980 (692,059) <1 (18.3) 11 (25) 30 3

product 0.0% 3.8% 2,596 (114,243) <1 (4.6) 13 (24)

removeFin). The product approach (also implemented using the Spot-library) is
called product and product (no langcover) (without the langcover heuristic).
The intermediate GBA are also simplified. The construction GLD

A is implemented
in limit-det., using the Spot-library and parts of Seminator. We compare it
to limit-det. via GBA, which concatenates the TELA to GBA construction of
Spot with the limit-determinization of Seminator. Similarly, good-for-MDP
and good-for-MDP via GBA are the construction GGFM

A applied to A directly,
or to the GBA as constructed by Spot. Both constructions via GBA are in
the worst case double-exponential. No post-processing is applied to any output
automaton.

Experiments. Computations were performed on a computer with two Intel E5-
2680 CPUs with 8 cores each at 2.70 GHz running Linux. Each individual exper-
iment was limited to a single core, 15 GB of memory and 1200 s. We use versions
2.9.4 of Spot (configured to allow 256 acceptance sets) and 2.0 of Seminator.

Our first benchmark set (called random) consists of 1000 TELA with 4 to 50
states and 8 sets of transitions T1, . . . , T8 used to define the acceptance condi-
tions. They are generated using Spot’s procedure random graph() by specifying
probabilities such that: a triple (q, a, q′) ∈ Q × Σ × Q is included in the tran-
sition relation (3/|Q|) and such that a transition t is included in a set Tj (0.2).
We use only transition systems that are nondeterministic. The acceptance con-
dition is generated randomly using Spot’s procedure acc code::random(). We
transform the acceptance condition to DNF and keep those acceptance condi-
tions whose lengths range between 2 and 21 and consist of at least two disjuncts.
To quantify the amount of nondeterminism, we divide the number of pairs of
transitions of the form (q, a, q1), (q, a, q2), with q1 �= q2, of the automaton by its
number of states.

28 T. John et al.

≤ 0.66 > 0.66, ≤ 1.33 > 1.33
0.25

0.5
0.75

1
1.33
2.0

avg. nondeteterminisim

m
ed

ia
n
of

ra
ti
o
(p
r
o
d
u
c
t
/S

p
o
t
) random: product vs. Spot

#states (2 ≤ |α| ≤ 11) #states (12 ≤ |α| ≤ 21)
comp. time (2 ≤ |α| ≤ 11) comp. time (12 ≤ |α| ≤ 21)

|αout| (2 ≤ |α| ≤ 11) |αout| (12 ≤ |α| ≤ 21)

≤ 0.66 > 0.66, ≤ 1.33 > 1.33

0.1

0.25

0.5
0.75

1
1.33

avg. nondeterminism

m
ed

ia
n
of

ra
ti
o
(p
r
o
d
u
c
t
/S

p
o
t
) DNF : product vs. Spot

#states comp. time |αout|

Fig. 4. Comparison of Spot and product, with input automata grouped by the size of
the DNF of their acceptance condition and the amount of nondeterminism.

Table 1 shows that the product produces smallest deterministic automata
overall. Spot produces best results among the algorithms that go via a sin-
gle GBA. One reason for this is that after GBA-simplifications of Spot, the
number of acceptance marks of the intermediate GBA are comparable. Figure 4
(left) compares Spot and product and partitions the input automata according
to acceptance complexity (measured in the size of their DNF) and amount of
nondeterminism. Each subset of input automata is of roughly the same size (159–
180) (see [21, Tab. 2]). The graph depicts the median of the ratio (product/Spot)
for the measured values. For time- or memouts of Spot (product) we define the
ratio as 0 (∞). If both failed, the input is discarded. The number of time- and
memouts grows with the amount of nondeterminism and reaches up to 42%.
The approach product performs better for automata with more nondetermin-
ism and complex acceptance conditions as the results have fewer states and the
computation times are smaller compared to Spot.

The limit-deterministic automata are generally much smaller than the deter-
ministic ones, and limit-det via GBA. performs best in this category. However,
the construction GLD

A (limit-det.) resulted in fewer time- and memouts.
For GFM automata we see that computing GGFM

A directly, rather than first
computing a GBA, yields much better results (good-for-MDP vs. good-for-MDP
via GBA). However, the GFM automata suffer from significantly more time- and
memouts than the other approaches. The automata sizes are comparable on
average with Spot’s determinization (see [21, Fig. 7]). Given their similarity to
the pure limit-determinization constructions, and the fact that their acceptance
condition is much simpler than for the deterministic automata, we believe that
future work on optimizing this construction could make it a competitive alter-
native for probabilistic model checking using TELA.

The second benchmark (called DNF) consists of 500 TELA constructed ran-
domly as above, apart from the acceptance conditions. They are in DNF with 2–3
disjuncts, with 2–3 Inf-atoms and 0–1 Fin-atoms each (all different). Such for-
mulas tend to lead to larger CNF conditions, which benefits the new approaches.
Figure 4 (right) shows the median ratio of automata sizes, computation times

Determinization and Limit-Determinization of Emerson-Lei Automata 29

and acceptance sizes, grouped by the amount of nondeterminism. We do not
consider different lengths of acceptance conditions because the subsets of input
automata are already relatively small (140–193). Again, product performs better
for automata with more nondeterminism.

7 Conclusion

We have introduced several new approaches to determinize and limit-determinize
automata under the Emerson-Lei acceptance condition. The experimental evalu-
ation shows that in particular the product approach performs very well. Further-
more, we have shown that the complexity of limit-determinizing TELA is single-
exponential (in contrast to the double-exponential blow-up for determinization).
One of our constructions produces limit-deterministic good-for-MDP automata,
which can be used for quantitative probabilistic verification.

This work leads to several interesting questions. The presented constructions
would benefit from determinization procedures for GBA which trade a general
acceptance condition (rather than Rabin or parity) for a more compact state-
space of the output. Similarly, translations from LTL to compact, nondeterminis-
tic TELA would allow them to be embedded into (probabilistic) model-checking
tools for LTL (a first step in this direction is made in [27]). It would be interest-
ing to study, in general, what properties can be naturally encoded directly into
nondeterministic TELA. Another open point is to evaluate the good-for-MDP
automata in the context of probabilistic model checking in practice.

Acknowledgments. We thank David Müller for suggesting to us the problem of
determinizing Emerson Lei automata and many discussions on the topic.

References

1. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

2. Baier, C., Blahoudek, F., Duret-Lutz, A., Klein, J., Müller, D., Strejček, J.: Generic
emptiness check for fun and profit. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.)
ATVA 2019. LNCS, vol. 11781, pp. 445–461. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3 26

3. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind
Series, The MIT Press, Cambridge (2008)

4. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, London (2008).
https://doi.org/10.1007/978-1-84628-770-1

5. Blahoudek, F.: Automata for formal methods: little steps towards perfection. Ph.D.
thesis, Masaryk University, Faculty of Informatics (2018)

6. Blahoudek, F., Duret-Lutz, A., Klokocka, M., Kret́ınský, M., Strejcek, J.: Semi-
nator: a tool for semi-determinization of omega-automata. In: International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR).
EPiC Series in Computing (2017)

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-1-84628-770-1

30 T. John et al.

7. Blahoudek, F., Major, J., Strejček, J.: LTL to smaller self-loop alternating
automata and back. In: Hierons, R.M., Mosbah, M. (eds.) ICTAC 2019. LNCS,
vol. 11884, pp. 152–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32505-3 10

8. Bloemen, V., Duret-Lutz, A., van de Pol, J.: Model checking with generalized Rabin
and Fin-less automata. Int. J. Softw. Tools Technol. Transfer 21(3), 307–324 (2019)

9. Boker, U.: Why these automata types? In: Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR). EPiC Series in Computing (2018)

10. Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 37

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

12. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 16

13. Duret-Lutz, A.: Contributions to LTL and ω-automata for model checking. Habil-
itation thesis, Université Pierre et Marie Curie (2017)

14. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C., Legay,
A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46520-3 8

15. Duret-Lutz, A., Poitrenaud, D., Couvreur, J.-M.: On-the-fly emptiness check of
transition-based Streett automata. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009.
LNCS, vol. 5799, pp. 213–227. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04761-9 17

16. Emerson, E.A., Lei, C.L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

17. Esparza, J., Křet́ınský, J., Sickert, S.: One theorem to rule them all: a unified
translation of LTL into ω-automata. In: Logic in Computer Science (LICS). ACM
(2018)

18. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36135-9 20

19. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: Concurrency Theory (CONCUR) (2015)

20. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. In: Biere,
A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078, pp. 306–323. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 17

21. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: Determinization and limit-
determinization of Emerson-Lei automata. arXiv:2106.15892 [cs], June 2021

22. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: Determinization and limit-
determinization of Emerson-Lei automata. Supplementary material (ATVA 2021)
(2021). https://doi.org/10.6084/m9.figshare.14838654.v2

23. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata
good for probabilistic model checking? In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-
Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 453–465.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04921-2 37

https://doi.org/10.1007/978-3-030-32505-3_10
https://doi.org/10.1007/978-3-030-32505-3_10
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-04761-9_17
https://doi.org/10.1007/978-3-642-04761-9_17
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/978-3-030-45190-5_17
http://arxiv.org/abs/2106.15892
https://doi.org/10.6084/m9.figshare.14838654.v2
https://doi.org/10.1007/978-3-319-04921-2_37

Determinization and Limit-Determinization of Emerson-Lei Automata 31

24. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

26. Löding, C., Pirogov, A.: Determinization of Büchi automata: unifying the
approaches of Safra and Muller-Schupp. In: International Colloquium on Automata,
Languages, and Programming (ICALP). LIPIcs (2019)

27. Major, J., Blahoudek, F., Strejček, J., Sasaráková, M., Zbončáková, T.: ltl3tela:
LTL to small deterministic or nondeterministic Emerson-Lei automata. In: Chen,
Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 357–365.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3 21

28. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput.
Sci. 32(3), 321–330 (1984)

29. Müller, D.: Alternative automata-based approaches to probabilistic model checking.
Ph.D. thesis, Technische Universität Dresden, November 2019

30. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Games,
Automata, Logics and Formal Verification (GandALF). EPTCS (2017)

31. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoret. Comput. Sci. 141(1), 69–107 (1995)

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Symposium
on Principles of Programming Languages (POPL). Association for Computing
Machinery (ACM), New York, NY, USA (1989)

33. Redziejowski, R.R.: An improved construction of deterministic omega-automaton
using derivatives. Fund. Inform. 119(3–4), 393–406 (2012)

34. Renkin, F., Duret-Lutz, A., Pommellet, A.: Practical “paritizing” of Emerson-Lei
automata. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp.
127–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 7

35. Safra, S., Vardi, M.Y.: On omega-automata and temporal logic. In: Symposium
on Theory of Computing (STOC). Association for Computing Machinery (ACM),
New York, NY, USA (1989)

36. Safra, S.: Complexity of automata on infinite objects. Ph.D. thesis, Weizmann
Institute of Science, Rehovot, Israel (1989)

37. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 42–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 5

38. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 17

39. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: Symposium on Foundations of Computer Science (SFCS) (1985)

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-31784-3_21
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17

Automatic Discovery of Fair Paths in
Infinite-State Transition Systems

Alessandro Cimatti1 , Alberto Griggio1 , and Enrico Magnago1,2(B)

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,griggio,magnago}@fbk.eu
2 University of Trento, Trento, Italy

Abstract. Proving existential properties of infinite-state systems (e.g.
software non-termination, model checking of hybrid automata) comes
with a key challenge: differently from the finite-state case, witnesses may
not be in form of lasso-shaped fair paths. In this paper we propose an
approach to automatically prove existential properties for infinite state
transition systems, presenting witnesses in an indirect way. The approach
is based on the notion of well-founded funnel, where a ranking function
guarantees that the states in the source set are guaranteed to inevitably
reach the destination set. We show that, under suitable conditions, a
sequence of funnels ensures the existence of a fair path. We propose an
algorithm that, working in an abstract space induced by a set of pred-
icates, identifies candidate funnels, proves their well-foundedness, and
searches for a sequencing order.

An experimental evaluation shows that the approach is effective in
proving existential properties on a wide range of examples taken from
both software and LTL model checking, and outperforms various com-
petitor tools.

Keywords: LTL model checking · LTL falsification · Infinite-state
systems · SMT

1 Introduction

Temporal logic model checking for infinite-state transition systems is a very
important direction in verification. Most of the works have been devoted to
proving universal properties, i.e. properties holding on all the traces. The dual
problem of proving existential properties, used for example for software non-
termination and model checking of hybrid automata, comes with a fundamental
difficulty: differently from the finite-state case, witnesses may not be in form of
lasso-shaped fair paths.

In this paper we propose an approach to automatically prove existential
properties for infinite state transition systems, presenting witnesses in an indi-
rect way. Our approach is based on the notion of well-founded funnel. A (well-
founded) funnel fnl comprises two sets of (source and target) states S and D,
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 32–47, 2021.
https://doi.org/10.1007/978-3-030-88885-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_3&domain=pdf
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-7218-1355
https://doi.org/10.1007/978-3-030-88885-5_3

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 33

an underapproximation of the transition relation, and a ranking function prov-
ing that all paths of fnl from S will eventually reach D. A sequence of funnels
fnl0, . . . , fnln−1 ensures the existence of a fair path if certain conditions are
met. These include that Dn−1 must be contained in the fairness condition, the
destination Di of fnli must be contained in the source Si+1 of the next funnel
for all i > 1, and Dn−1 must be contained in S0.

We propose an algorithm that identifies candidate funnels, proves their well-
foundedness, and searches for the right sequencing order so that the existence
of a corresponding fair path is ensured. The algorithm works in an abstraction
of the infinite-state transition system induced by a set of suitable predicates.
Specifically, it uses a liveness-to-safety construction to generate lasso-shaped
paths in the abstract space. At its core, the proof of well-foundedness of each
funnel is carried out by synthesizing a suitable ranking function.

A key difference with respect to predicate abstraction is that here abstract
traces are not required to have the same number of transitions of their concretiza-
tions – in fact, each abstract state is implicitly associated with an arbitrarily high
(but finite) number of self-transitions in its concretization.

We implemented the approach in a prototype called F3, built on top of the
SMT solvers MathSAT and Z3. We carried out an extensive experimental eval-
uation, on a wide range of examples taken from both software and LTL model
checking, comparing F3 with several competitor systems. The results shows that
the proposed approach has two key advantages: first, it is very general, in that
none of the competitor tools is able to cover all the benchmarks; second, it is
very effective in proving a large number of existential properties.

The paper is structured as follows. In Sect. 2 we present some preliminaries.
Then, in Sect. 3 we define funnels and prove their properties. In Sect. 4 we present
the algorithm, and in Sect. 5 we discuss the related work. In Sect. 6 we briefly
describe some implementation details and then discuss our experimental results.
In Sect. 7 we draw some conclusions and outline the directions for future work.
The proofs of all the theorems are reported in the extended version of this
document1.

2 Background

We work in the setting of SMT, with the theory of quantified real arithmetic. We
assume the standard notions of interpretation, model, satisfiability, validity and
logical consequence. A symbolic fair transition system M is a tuple 〈V, I, T, F 〉,
where V is the set of state variables; I and F are formulae over V , representing
respectively the initial and fair states; T is a formula over V and V ′ representing
the transitions, where V ′ =̇ {v′|v ∈ V } and the primed version of a variable refers
to the next state. We write I(V), F (V) and T (V, V ′) to explicitly state that they
are formulae over the symbols in V (I and F) and V ∪ V ′ (T) respectively.

1 The extended version is available at https://enricomagnago.com/automatic
discovery of fair paths in infinite-state transition systems extended.pdf.

https://enricomagnago.com/automatic_discovery_of_fair_paths_in_infinite-state_transition_systems_extended.pdf
https://enricomagnago.com/automatic_discovery_of_fair_paths_in_infinite-state_transition_systems_extended.pdf

34 A. Cimatti et al.

Fig. 1. Funnels combined into chain forming a funnel-loop.

We denote with v a total assignment over V , i.e. a state. A fair path of M
is an infinite sequence of states, v0,v1, . . ., such that v0 |= I, viv

′
i+1 |= T for all

i, and for each i there exists j > i such that vj |= F . Given a formula φ(V) we
also write φ(v) for the evaluation of φ obtained by replacing every symbol in V
with its corresponding assignment in v. We also assume the standard notions
of trace, reachability, and temporal logic model checking, using the usual defini-
tions of U,G,F for the “until”, “always” and “eventually” temporal operators
(LTL [35]) (Fig. 1).

We overload the |= symbol: when φ and ψ are SMT formulae, then φ |= ψ
stands for entailment in SMT; when M is a fair transition system and ψ is a linear
temporal property, then M |= ψ is to be interpreted with the LTL semantics. If
ψ is a quantifier-free SMT formula and φ is a conjunction of (a subset of) the
atoms of ψ, then φ is an implicant of ψ iff φ |= ψ.

Given a fair transition system M , we are interested in the problem of deter-
mining whether M admits at least one fair path. Notice that the existential
LTL model checking problem, i.e. the problem of determining whether a system
M =̇ 〈V, I, T,�〉 admits at least a path that satisfies a given LTL formula ϕ,
can be reduced to checking for the existence of a fair path in the fair transition
system M × Mϕ =̇ 〈V ∪ Vϕ, I ∧ Iϕ, T ∧ Tϕ, Fϕ〉, where Mϕ =̇ 〈Vϕ, Iϕ, Tϕ, Fϕ〉 is a
symbolic encoding of an automaton accepting the language of ϕ [36], which can
be obtained e.g. with the procedure of [10].

A binary relation ρ ⊆ Q×Q is well-founded if every non-empty subset U ⊆ Q
has a minimal element wrt. ρ, i.e. there is m ∈ U such that no u ∈ U satisfies
ρ(u,m). Given a (transition) relation T over symbols V ∪V ′, a ranking function
Rf(V) is a function from the assignments to the symbols V to some set Q, such
that the relation {〈Rf(v0),Rf(v1)〉 | v0,v′

1 |= T} is well-founded.

3 Funnels and Funnel Loops

We identify fair paths by means of a composition of elements called funnels
that, like actual funnels, take items from a source and constrain them to follow

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 35

a path leading to a destination. Each funnel characterizes a set of finite paths,
each starting from the source region, remaining in it for a bounded number of
steps, and eventually ending in the destination region. Funnels are concatenated
in chains such that the destination region of a funnel is contained in the source
region of the following one. Funnel-loops are chains of funnels in which the
destination region of the last funnel is included in the source region of first one.

We show that under certain conditions the existence of one such funnel-loop
implies the existence of a fair path for a fair transition system M .

Given a set of symbols V , a funnel is a 4-tuple 〈S(V), T (V, V ′),D(V),Rf(V)〉.
S and D are formulae representing respectively the source and destination
regions, T is the transition relation and Rf is a ranking function for S with
respect to the transition relation T . Intuitively, this structure represents a ter-
minating loop over S where D are the end states of the loop. Depending on the
shape of the ranking function, the loop might correspond to a simple loop or to
more complex termination arguments such as nested loops. Each path through
the funnel starts from a state in S, it remains in S by following transition T
while the ranking function Rf remains greater than the minimal element 0 and
finally reaches D when the ranking function becomes 0. If we consider a triv-
ial ranking function that is always equal to the minimal element 0 the 4-tuple
simply asserts that every state in S is mapped into D by a single transition T .

Definition 1 (Funnel). Given a set of symbols V , a funnel is defined as the
4-tuple

Funnel =̇ 〈S(V), T (V, V ′),D(V),Rf(V)〉
where: S and D are SMT formulae that represent abstract states; T is a boolean
formula with symbols in V ∪ V ′ over some combination of SMT-theories rep-
resenting a transition relation; Rf is a function from the assignments to the
symbols in V to some well-founded set with minimal element 0. Every funnel
fnl satisfies the following hypotheses.

F.1. The transition relation is total relative to the source region.

∀V ∃V ′ : S(V) → T (V, V ′)

F.2. Every funnel keeps iterating on the source region as long as its ranking
function is greater than the minimal element.

∀V, V ′ : (S(V) ∧ Rf(V) > 0 ∧ T (V, V ′)) → S(V ′)

F.3. Every step from the source region decreases the ranking function.

∀V, V ′ : (S(V) ∧ Rf(V) > 0 ∧ T (V, V ′)) → Rf(V) > Rf(V ′)

F.4. Once the ranking function is equal to 0 the funnel reaches its destination
region.

∀V, V ′ : (S(V) ∧ Rf(V) = 0 ∧ T (V, V ′)) → D(V ′)

36 A. Cimatti et al.

Given a funnel fnli we write Si, Ti, Di and Rfi to refer to its components. We
define the transition system corresponding to a funnel fnl =̇ 〈S, T,D,Rf〉 over
symbols V as Mfnl =̇ 〈V, S, T,�〉. We refer to the paths through a funnel fnl
with L(fnl) meaning the paths in the language of the corresponding transition
system that end in D and write fnl |= φ meaning that φ holds in every path in
L(fnl). From the definition it easily follows that every funnel fnl satisfies the
following:

fnl |= S U D

We define a funnel-loop as a chain of funnels [fnli]n−1
i=0 such that the desti-

nation region of each funnel is included in the source region of the following one
and the destination region of the last funnel is included in the source region of
the first one.

Definition 2 (Funnel-loop). A sequence of n ≥ 1 of funnels [fnli]n−1
i=0 over

symbols V is a funnel-loop iff the following hold.

FL.1. The destination region of a funnel is included in the source region of the
following funnel.

∀0 ≤ i < n − 1, V : Di(V) → Si+1(V)

FL.2. The destination region of the last funnel Dn−1 is contained in the source
region of the first funnel S0.

∀V : Dn−1(V) → S0(V)

We define the paths through a funnel-loop floop, L(floop), as the infinite
paths obtained by infinite concatenation of the paths of the funnels in the corre-
sponding chain and write floop |= φ meaning that φ holds in all such paths. For
every funnel different from the last one, Hyp. FL.1 ensures that we can extend
every path of such funnel, ending in its destination region, by following the tran-
sition relation of the next funnel. Therefore, every path starting in any source
region will eventually reach the destination region of the last funnel:

floop |= (
n−1∨

i=0

Si) U Dn−1

By Hyp. FL.2 every time we reach the destination region of the last funnel asso-
ciated with floop we are also in the source region of the first funnel. Therefore,
we can extend the execution by appending another finite number of steps: a
finite path starting from S0 and ending in the last destination region Dn−1. We
can do this infinitely many times obtaining infinite paths.

floop |= G((
n−1∨

i=0

Si) U Dn−1)

We propose to identify a non-empty set of fair paths for a transition system
M as a funnel-loop floop; every path through floop must correspond to an

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 37

infinite fair execution of M . The totality of the transition relation of each funnel
(F.1) and their chaining (FL.1, FL.2) ensure that all the paths in L(floop) are
infinite. We need such paths to be fair paths, hence they must visit the fairness
condition infinitely often. By construction of floop we know that every path goes
through each Si and each Di infinitely many times. Since by FL.1 and FL.2 for
every source region Si, there exists a destination region Dj that is contained in
it, it is sufficient to require one of the destination regions to contain only fair
states. Without loss of generality we assume such a region to be the last one.
These conditions ensure that floop represents a set of fair paths of M . However,
such set might be empty or non-reachable in M . Therefore, we finally require
the union of the source regions to contain at least one state reachable in M .
The existence of such state is sufficient to conclude non-emptiness of L(floop)
because the transition relation of each funnel always allows for a successor state
(F.1) and, by induction, this ensures that every region and the language of
floop are not empty. Theorem 1 shows that these requirements are sufficient for
a funnel-loop to prove the existence of a fair path in M .

Theorem 1. Let M =̇ 〈V, IM , TM , FM 〉 be a fair transition system. Let floop be
a funnel-loop of length n over the symbols V and funnels [fnli]n−1

i=0 such that:

FF.1. There is at least one state reachable in M in the union of the source
regions of floop:

M �|= G¬
n−1∨

i=0

Si

FF.2. The destination region of the last funnel must contain only fair states of
M .

∀V : Dn−1(V) → FM (V)

FF.3. Every transition of every funnel underapproximates the transition relation
of M . For every funnel fnli in [fnli]n−1

i=0 :

∀V, V ′ : Si(V) ∧ Ti(V, V ′) → TM (V, V ′)

Then M admits at least one fair path.

4 Automated Synthesis of Funnel Loops

This section describes our approach to automate the synthesis of a funnel loop.
Algorithm 1 describes the main steps of the procedure. We reduce the synthesis
problem to a sequence of SMT queries. In order to reduce the search space, we
only look for deterministic funnel loops by requiring that each transition relation
of each funnel is deterministic. More in detail, Algorithm 1 enumerates candidate
conjunctive fair loops of the fair transition system and, for each loop, it generates
a sequence of parameterised candidate funnel loops. The procedure then tries to
find an assignment to the parameters such that the candidate funnel loop meets
all the hypotheses of Definitions 1 and 2 and of Theorem 1.

38 A. Cimatti et al.

Algorithm 1. search-funnel(M)
1: for 〈v0, abst s, abst t〉 ∈ generate-abstract-loops(M) do
2: for fnl template ∈ generate-templates(v0, abst s, abst t) do
3: ef constrs ← fnl template.ef constraints()
4: 〈found,model〉 ← seach-parameter-assignment(ef constrs)
5: if found == � then
6: return 〈model, fnl template〉
7: end if
8: end for
9: end for

10: return unknown

In the following we consider parametric expressions that are linear combina-
tions of the variables of the system, i.e.

∑
vi∈V λi·vi, where λi are the parameters.

We use a method called new-parametric-expr to generate such linear com-
binations of symbols and parameters, and we refer to the set of all parameters
as P .

The procedure relies on ranking functions to perform 2 different tasks. Algo-
rithm 2 tries to synthesise ranking functions to avoid considering candidate
abstract loops for which we know a ranking function exists. The existence of
the ranking function proves that the loop must eventually terminate, hence it
cannot correspond to an infinite path. Then, ranking function templates are
also used as components for the funnels of the funnel-loop template generated
by Algorithm 3. In both cases as template for the ranking functions we consider
the PR-ranking template described in [31].

We first describe how we represent and enumerate candidate abstract loops
for the transition system M . Then, we describe how a funnel-loop template is
generated from a candidate abstract loop and the search problem associated with
a funnel-loop template. Finally, we describe the approach we adopt to perform
the search.

Given a fair transition system M =̇ 〈V, IM , TM , FM 〉 we describe a candidate
conjunctive fair abstract loop of length n for M as a sequence of abstract states
abst s =̇ [abst si(V)]n−1

i=0 , transitions abst t =̇ [abst ti(V, V ′)]n−2
i=0 and an initial

state v0 such that: (i) v0 |= abst s0(V), (ii) v0 is reachable in M , (iii) one
of the abstract states underapproximates the fair states, and (iv) the abstract
path is an implicant for a path of the same length in M :

∀V0, . . . , Vn−1 : (
n−1∧

i=0

abst si(Vi) ∧
n−2∧

i=0

abst ti(Vi, Vi+1)) →
n−2∧

i=0

TM (Vi, Vi+1)

∃i ∀V : abst si(V) → FM (V).

Both the abstract states and the abstract transitions are built as formulae over
a finite set of predicates. Without loss of generality, and to simplify the presen-
tation, we assume the fair abstract state to be the first one. The enumeration of
abstract loops is performed by Algorithm 2. The procedure is based on Bounded

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 39

Algorithm 2. generate-abstract-loops(M)
1: 〈V, I, T, bad〉 ← encode-BMC-fair-abstract-loop(M)
2: for k ∈ [0, 1, 2, . . .] do
3: query ← I(V0) ∧ ∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk)
4: 〈sat,model〉 ← SMT-solve(query)
5: refs ← []
6: while sat do
7: 〈abst s, abst t〉 ← get-implicant(model, query)
8: 〈is ranked, rf〉 ← rank-loop(abst s, abst t)
9: if is ranked then

10: 〈V, I, T, bad〉 ← remove-ranked-loops(V, I, T, bad, rf)
11: else
12: v0 ← get-loopback-state(model)
13: yield 〈v0, abst s, abst t〉
14: refs.append(¬(

∧
s∈abst s s ∧ ∧

t∈abst t t))
15: end if
16: query ← I(V0) ∧ ∧k−1

i=0 T (Vi, Vi+1) ∧ bad(Vk) ∧ ∧
ref∈refs ref

17: 〈sat,model〉 ← SMT-solve(query)
18: end while
19: end for

Model Checking (BMC) [3], for the enumeration of candidate paths, and on the
computation of an implicant for each path.

Line 1 performs the usual BMC encoding for the search of a fair loop, where
the loop-back state is identified in the abstract space defined by the predicates
in the transition relation and fairness condition of M . The last state and the
loop-back state must agree on the truth assignment of all the predicates in the
transition relation and fairness condition, hence they may not be the very same
assignment. We then rely on a SMT-solver to identify fair lasso paths of increas-
ing length k, as done for the abstract liveness-to-safety algorithm of [14]. Then,
at line 8 we first try to synthesise a ranking function for such abstract loop. The
method rank-loop implements the procedure described in [31] for PR-ranking
templates. If we succeed in identifying a ranking function, we refine our transition
system such that we avoid enumerating other loops ranked by the same func-
tion, as described in [14] (remove-ranked-loops, line 10). Otherwise, from
the path we extract the assignment to the loop-back state and return it together
with the current abstract path. If no abstract loop of length k exists, we clear
the list of refinements and enumerate the candidate loops of length k + 1.

Algorithm 3 shows the procedure we use to generate a funnel-loop template
from a candidate abstract loop. We generate a funnel-loop of the same length
as the abstract loop. Line 1 selects a list of natural numbers to be used to
generate the funnel-loop templates. Each number corresponds to the amount of
parametric inequalities added to each abstract state to define the corresponding
source region of a funnel template (line 6). The higher the number the more
freedom will the template have in shrinking the regions, but in the search problem
we will have more parameters and a larger space to explore. Notice that, since

40 A. Cimatti et al.

Algorithm 3. generate-templates(v0, abst s, abst t)
1: ineqs ← heuristic-pick-num-ineqs(abst s, abst t)
2: for ineq ∈ ineqs do
3: n ← len(abst s)
4: funnels ← []
5: for i ∈ [0..n − 2] do
6: src ← abst s[i] ∧ ∧ineq−1

j=0 new-parametric-expr(V) ≥ 0
7: rf ← new-parametric-expr(V)
8: t ← �
9: for vi+1 ∈ Vi+1 do

10: if vi+1 = f(Vi) ∈ abst t[i] for some function f then
11: t ← t ∧ vi+1 = f(Vi)
12: else
13: t ← t ∧ vi+1 = new-parametric-expr(Vi)
14: end if
15: end for
16: dst(V) ← ∀V0 : src(V0) ∧ rf(V0) = 0 ∧ t(V0, S)
17: funnels.append(Funnel(src, t, rf, dst))
18: end for
19: yield Funnel-loop(funnels, v0)
20: end for

by construction of the abstract loop one of the abst s is fair, then also the
corresponding destination region in the funnel-loop template will be fair. We
create the funnel template corresponding to the ith abstract state abst s[i] and
transition abst t[i] in lines 5–18. We define the transition relation t of the funnel
as a deterministic functional assignment as follows. For each symbol vi+1 ∈ Vi+1,
if abst ti already contains a functional assignment for vi+1, then we use that
(line 11). Otherwise, we generate a functional assignment for vi+1 as a parametric
expression over the symbols in V (line 13). We define the destination region of a
funnel implicitly as the set of states reachable in one step from S(V)∧Rf(V) = 0
(line 16). Finally, the procedure returns the funnel-loop template associated with
the list of parametric funnels and initial state v0.

We now describe the ∃∀ quantified formula that corresponds to the syn-
thesis problem of a funnel-loop template and the procedure we use to solve
it. Every instance of the funnel-loop template must satisfy all hypotheses of
Definitions 1, and 2 and of Theorem 1. In the hypotheses, for every funnel
fnli =̇ 〈Si, Ti,Di,Rfi〉, we replace each destination region Di with the quanti-
fied formula:

∀V0 : Si(V0) ∧ Rfi(V0) = 0 ∧ Ti(V0, V). (1)

Every instance of the funnel-loop template must contain a fair region since
abst s0 is a subset of the fair states and S0, by construction, underapproxi-
mates abst s0. We ensure that Hyp. FF.1 holds by requiring that v0 is in the
source region of the first funnel fnl0 with the constraint:

∃P : S0(v0, P). (2)

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 41

Hyp. F.1 holds by construction since each transition relation Ti of every fun-
nel template fnli is a functional assignment without any circular dependency.
Hyp. F.4 holds since we implicitly defined the destination region of each funnel
fnli as the set of states reachable in one step from Si ∧ Rfi = 0. Then, we
ensure that every instantiation of every funnel template fnli in the funnel-loop
template satisfies hypotheses F.2 and F.3 by requiring that the following hold:

∃P ∀V, V ′ : (Si(V, P) ∧ Rfi(V, P) > 0 ∧ Ti(V, V ′, P)) → Si(V ′, P) (3)
∃P ∀V, V ′ : (Si(V, P) ∧ Rfi(V, P) > 0 ∧ Ti(V, V ′, P)) → Rfi(V, P) > Rfi(V ′, P)

(4)

The funnels must be correctly chained for Hyp. FL.1 to hold. For this reason
we require every two consecutive funnel templates fnli and fnli+1 in the funnel-
loop template to satisfy the following:

∃P ∀V, V ′ : (Si(V, P) ∧ Rfi(V, P) = 0 ∧ Ti(V, V ′, P)) → Si+1(V ′, P) (5)

Similarly, considering the first and last funnels fnl0 and fnln−1, for Hyp. FL.2
we require:

∃P ∀V, V ′ : (Sn−1(V, P) ∧ Rfn−1(V, P) = 0 ∧ Tn−1(V, V ′, P)) → S0(V ′, P)
(6)

This ensures that Dn−1 is a subset of S0. We have observed above that S0

contains only fair states, hence FF.2 holds. Finally, we require each funnel-loop
instance to underapproximate M (Hyp. FF.3) by requiring the following to hold
for every funnel fnl:

∃P ∀V, V ′ : S(V, P) ∧ T (V, V ′, P) → TM (V, V ′). (7)

The final synthesis problem is then given by the conjunction of all the con-
straints (1)–(7). In order to solve it, we apply a combination of the EF-SMT
procedure of [16] and the application of Motzkin’s transposition theorem [33]
to reduce the problem into a purely existentially-quantified one which can then
be solved via standard quantifier-free SMT reasoning: we first try to apply EF-
SMT, and resort to the elimination of universal quantifiers only if this fails to
provide a definite answer.

5 Related Work

Most of the literature in verification of temporal properties of infinite-state tran-
sition systems, hybrid automata and termination analysis focuses on the univer-
sal case, while the existential one has received relatively little attention. The
most closely related work is [6]. The key difference is that the procedure we
presented in [6] is partly interactive, while the approach presented here is fully
automatic. Furthermore, there is a difference at the technical level in the way the
approaches partition the problem. In [6], the idea is to synthesise a partitioned

42 A. Cimatti et al.

structure called R-abstraction out of a set of components, called AG-skeletons.
Each component is obtained by considering only a subset of the symbols of the
system, and is used to describe a set of infinite paths for such symbols. Here,
instead, we act on the monolithic system, but partition the fair path into funnels.

Also related are the works concerned with proving program non-termination.
[21] and [11] are based on the notion of closed recurrence set, that corresponds to
proving the non-termination of a relation. [5] and [30] search for non-terminating
executions via a sequence of safety queries. Other approaches look for specific
classes of programs ([18] and [24] prove the decidability of termination for linear
loops over the integers), or specific non-termination arguments (in [32] non-
termination is seen as the sum of geometric series). However, none of these
works deals with fairness and they rely on the existence of a control flow graph,
whereas we work at the level of transition system.

[13] reduces the verification of the universal fragment of CTL on a infinite-
state transition system to the problem of deciding whether a program always
returns true. The approach can be applied also on LTL properties by relying on
a reduction based on prophecy variables and it relies on some off-the-shelf tool
for the analysis of the program. Therefore, its capability of proving or identify-
ing a counterexample for some property depends on the ones of the considered
underlying tool.

[12] explicitly deals with fairness for infinite-state programs supporting full
CTL*: it is able to deal with existential properties and to provide fair paths
as witnesses. The approach focuses on programs manipulating integer variables,
with an explicit control-flow graph, rather than more general symbolic transition
systems expressed over different theories (including real arithmetic). Another
approach supporting full CTL* is proposed in [25]. The work presents a model
checking algorithm for the verification of CTL* on finite-state systems and a
deductive proof system for CTL* on infinite-state systems. In the first case
they reduce the verification of CTL* properties to the verification of properties
without temporal operators and a single fair path quantifier in front of the
formula. To the best of our knowledge there is no generalisation of this algorithm,
first reported in [26] and then also in [27], to the infinite-state setting. The rules
presented in the second case have been exploited in [2] to implement a procedure
for the verification of CTL properties, while our objective is the falsification of
LTL properties. Moreover, in these settings [12,25] there is no notion of non-
zenoness.

The works on timed automata are less relevant: although the concrete system
may exhibit no lasso-shaped witnesses, due to the divergence of clocks, the prob-
lem is decidable, and lasso-shaped counterexamples exist in finite bi-simulating
abstractions. This view is adopted, for example, in Uppaal [1]. Other tools
directly search for non lasso-shaped counterexamples, but the proposed tech-
niques are specific for the setting of timed automata [7,28] and lack the general-
ity of the method proposed in this paper. Finally, our approach can be applied
also to hybrid systems. However, the implementation relies on an approximation
of the nonlinearities which, from our experiments, appears too coarse for this
context.

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 43

6 Experimental Evaluation

Implementation. We have implemented these procedures in a prototype, called
F32 (for FindFairFunnel), written in Python. F3 uses MathSAT5 [9] and
Z3 [34] as underlying SMT engines, interacting with them through pysmt [19].
F3 takes as input a transition system M and a fairness condition F , and tries
to identify a funnel that proves that M admits at least 1 path that visits F
infinitely-often. We then employ the usual tableau construction to support LTL
specifications via reduction to the previous case. In order to support timed sys-
tems, we use the product construction described in [8] to remove all zeno-paths
of the model. F3 enumerates funnel templates in increasing order of complexity.
By default, F3, considers a minimum of 0 and a maximum of 2 inequalities in the
implementation of heuristic-pick-num-ineqs of Algorithm 3. An important
optimization is that F3 generates ranking function templates (line 6 of Algo-
rithm 3) only when it finds a pair of abstract states that prescribe the same
assignment to the boolean variables of M ; if the abstract states differ in their
boolean variables, rf is simply set to the constant 0. This avoids the intro-
duction of unnecessary parameters for funnels which do not need an explicit
ranking function. Finally, when applying the Motzkin’s transposition theorem
to solve the parameter synthesis problems, F3 replaces non-linear terms with
fresh symbols, in order to obtain a linear system. This simple way of handling
non-linearities has the benefit of being very easy to implement; on the other
hand, however, it can produce very coarse approximations, which can prevent
F3 from finding counterexamples in cases where non-linearities play a significant
role.

Benchmarks. In order to evaluate the effectiveness of our method, we have
evaluated F3 on a wide range of benchmarks coming from different domains,
from software (non)termination to timed automata and infinite-state symbolic
transition systems. More specifically, we considered a total of 455 benchmarks,
divided into 6 categories:

LS consists of 52 nonterminating linear software benchmarks taken from the C
programs of the software termination competition;

NS contains 30 nonlinear software programs, of which 29 have been taken from
[11] and one from [6];

ITS are 70 LTL falsification problems on infinite-state systems; 2 of such prob-
lems are proof obligations generated in the verification of a contract-based
design, 29 come from the scaling to up to 30 processes of a model of the bak-
ery mutual exclusion protocol in which we introduced a bug, other 29 come
from the scaling to up to 30 processes of a semaphore-based synchronisation
protocol, and the last 10 are instances we created;

2 The tool and the benchmarks can be downloaded from https://github.com/
EnricoMagnago/F3.

https://github.com/EnricoMagnago/F3
https://github.com/EnricoMagnago/F3

44 A. Cimatti et al.

TA contains 174 LTL falsification problems on timed automata; we consider
6 different protocols taken from [17] (critical, csma, fddi, fischer, lynch and
train) and scale each of them from 1 to 30 processes;

TTS consists of 120 LTL falsification problems on timed transition systems,
of which 116 come from the scaling from 1 to 30 processes of 4 protocols
(inspired by the csma, fischer, lynch and token ring protocols), and 4 are
handcrafted instances;

HS are 9 LTL falsification problems on hybrid systems (encoded as nonlinear
infinite-state transition systems) taken from [6].

F3 only handles symbolic transition systems, and not software programs;
therefore, we have encoded the software benchmarks as infinite-state transition
systems by introducing an explicit program counter as state variable. Moreover,
since F3 only supports systems with boolean, integer and real variables, we have
not considered programs that involve recursion or dynamic memory allocation.

Competitor Tools. We compare F3 with the following state-of-the-art tools:
Anant [11], AProVe [20], DiVinE3 [22], MITLBMC [29], nuXmv [7], T2 [4],
Ultimate [23] and Uppaal [15]. Most of the other tools are however not able to
handle all the benchmarks we have considered. Therefore, we limit their appli-
cation as follows:

– we ran Anant, AProVe and T2 only on the software nontermination prob-
lems (LS and NS groups);

– we ran DiVinE3, MITLBMC and Uppaal only on the time automata (TA)
benchmarks; moreover, since Uppaal supports only a fragment of LTL which
is not sufficient to express the properties of the fischer and lynch benchmarks,
we could run it only on 116 of the 174 TA instances;

– as Ultimate doesn’t support non-linear arithmetic, we didn’t run it on the
NA family. Moreover, since it supports LTL specifications but works on
programs rather than transition systems, we translated the benchmarks to
LTL verification problems on software programs, using the same approach
described in [14].

– nuXmv is the only other tool (besides F3) that supports all the benchmarks.
Since our focus is falsification of universal properties (or dually verification
of existential ones), we ran nuXmv using only its BMC engine.

Results. We performed our experiments on a machine running Ubuntu 20.04
equipped with an Intel(R) Xeon(R) Gold 6226R 2.90 GHz CPU, using a 1 h
timeout and a memory limit of 30 GB for each benchmark. A summary of the
evaluation results is reported in Table 1. The table shows, for each tool, the
number of solved instances in each benchmark family. When a tool is not appli-
cable to a specific family, this is marked with “-”. From the table, we can see
that F3 not only solved the highest number (by far) of instances overall, but
it is also the tool that solved the highest number of instances in all categories

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 45

Table 1. Summary of experimental results (number of solved instances per benchmark
family).

Benchmark family F3 Anant AProVe DiVinE3 MITLBMC nuXmv T2 Ultimate Uppaal

LS (52) 52 38 43 – – 28 38 49 –

NS (30) 29 25 5 – – 14 2 – –

ITS (70) 57 – – – – 4 – 8 –

TA (174) 137 – – 43 151 90 – 0 103

TTS (120) 55 – – – – 8 – 1 –

HS (9) 0 – – – – 0 – – –

Total (455) 330 63 48 43 151 144 40 58 103

Entries marked with “–” denote that the tool cannot handle the given benchmarks.

with the exception of timed automata. In this category F3 is outperformed only
by MITLBMC, which implements a technique explicitly developed for timed
automata. This demonstrates the generality of our approach, although (unsur-
prisingly) it is possible to define more efficient procedures to target specific
classes of problems. On the software benchmarks (linear and non-linear) F3 fails
to provide an answer in only 1 case (the nonlinear one taken from[6]). There-
fore, while being coarse-grained, the approximation of the nonlinear terms used
by F3 appears to be sufficient in these cases. However, the hybrid benchmarks
highlight the limitations of such approximation. In fact, F3 was unable to pro-
vide an answer in all 9 cases. These instances can be solved successfully with the
approach of [6], which however requires user guidance and is therefore not fully
automatic. In fact, we are not aware of any automatic tool that is able to solve
them. Finally, we should remark that unlike F3 several of the competitor tools
(with the exception of MITLBMC and nuXmv in BMC mode) are also able to
prove that a universal property holds, whereas F3 can only find counterexam-
ples. On the other hand, however, our techniques can be easily integrated with
approaches focusing on proving properties, such as [8,14].

7 Conclusions and Future Work

In this paper we presented an automated approach to the verification of exis-
tential properties for infinite-state systems. We adopt an approach to build an
implicit presentation of fair paths, that may not have a lasso-shape structure,
using an abstract representation of the trace in form of a sequence of funnels.
The approach alternates between finding candidate counterexample skeleta in
the abstract space, and proving whether they admit a concretization.

The experimental evaluation, carried out on a wide set of benchmarks,
demonstrates that the approach is very effective, being able to solve realistic
benchmarks from many different domains, and also general, being competitive
with other specialized tools.

In the future, we plan to integrate the partitioning techniques presented
in [6] in an automated setting, and to explore the possibility of hierarchically
decomposed proofs.

46 A. Cimatti et al.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

2. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 61

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 1–27 (2003)

4. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 22

5. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

6. Cimatti, A., Griggio, A., Magnago, E.: Proving the existence of fair paths in
infinite-state systems. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021.
LNCS, vol. 12597, pp. 104–126. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-67067-2 6

7. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with timed transition systems and timed temporal properties. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 376–386. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 21

8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL properties of hybrid
systems with K-Liveness. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol.
8559, pp. 424–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 28

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Formal Methods Syst. Des. 10(1), 47–71 (1997)

11. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.W.: Disproving termination with over-
approximation. In: FMCAD. IEEE (2014)

12. Cook, B., Khlaaf, H., Piterman, N.: Verifying increasingly expressive temporal
logics for infinite-state systems. J. ACM 64(2), 1–39 (2017)

13. Cook, B., Koskinen, E., Vardi, M.Y.: Temporal property verification as a program
analysis task - extended version. Formal Methods Syst. Des. 41(1), 66–82 (2012)

14. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4 15

15. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)

16. Dutertre, B.: Solving exists/forall problems with yices. In: SMT Workshop (2015)
17. Farkas, R., Bergmann, G.: Towards reliable benchmarks of timed automata. In:

Proceedings of the 25th PhD Mini-Symposium (2018)

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-030-67067-2_6
https://doi.org/10.1007/978-3-030-67067-2_6
https://doi.org/10.1007/978-3-030-25540-4_21
https://doi.org/10.1007/978-3-319-08867-9_28
https://doi.org/10.1007/978-3-319-08867-9_28
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-41528-4_15

Automatic Discovery of Fair Paths in Infinite-State Transition Systems 47

18. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 24

19. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop (2015)

20. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

21. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving
non-termination. In: POPL. ACM (2008)

22. Havĺıček, J.: Untimed LTL model checking of timed automata. Ph.D. thesis,
Masaryk University (2013)

23. Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36742-7 53

24. Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the inte-
gers. In: ICALP. LIPIcs, vol. 132 (2019)

25. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2–3), 397–428 (2005)

26. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal
logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055036

27. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model checking with strong fairness.
Formal Methods Syst. Des. 28(1), 57–84 (2006)

28. Kindermann, R., Junttila, T., Niemelä, I.: Beyond lassos: complete SMT-based
bounded model checking for timed automata. In: Giese, H., Rosu, G. (eds.)
FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 84–100. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30793-5 6

29. Kindermann, R., Junttila, T.A., Niemelä, I.: Bounded model checking of an MITL
fragment for timed automata. In: ACSD. IEEE Computer Society (2013)

30. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

31. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1) (2015)

32. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 16

33. Motzkin, T.S.: Two consequences of the transposition theorem on linear inequali-
ties. Econometrica (pre-1986) 19(2), 184 (1951)

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science. IEEE Computer Society (1977)

36. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/978-3-642-30793-5_6
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-60915-6_6

Certifying DFA Bounds for Recognition
and Separation

Orna Kupferman, Nir Lavee, and Salomon Sickert(B)

School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il, {nir.lavee,salomon.sickert}@mail.huji.ac.il

Abstract. The automation of decision procedures makes certification
essential. We suggest to use determinacy of turn-based two-player games
with regular winning conditions in order to generate certificates for the
number of states that a deterministic finite automaton (DFA) needs in
order to recognize a given language. Given a language L and a bound k,
recognizability of L by a DFA with k states is reduced to a game between
Prover and Refuter. The interaction along the game then serves as a cer-
tificate. Certificates generated by Prover are minimal DFAs. Certificates
generated by Refuter are faulty attempts to define the required DFA. We
compare the length of offline certificates, which are generated with no
interaction between Prover and Refuter, and online certificates, which
are based on such an interaction, and are thus shorter. We show that
our approach is useful also for certification of separability of regular lan-
guages by a DFA of a given size. Unlike DFA minimization, which can be
solved in polynomial time, separation is NP-complete, and thus the cer-
tification approach is essential. In addition, we prove NP-completeness
of a strict version of separation.

1 Introduction

Deterministic finite automata (DFAs) are among the most studied computation
models in theoretical computer science. In addition to serving as an abstract
mathematical concept, they are often the basis for specification and implemen-
tation of finite-state hardware and software designs [22]. In particular, the theory
of DFAs applies also to deterministic automata of infinite words that recognize
safety languages, which are characterized by finite forbidden behaviors [2,14].

A fundamental problem about DFAs is their minimization: For k ≥ 1, we
say that a language L ⊆ Σ∗ is k-DFA-recognizable if there is a k-DFA, namely
a DFA with at most k states, that recognizes L. In the minimization problem,
we are given a DFA A and a bound k ≥ 1, and decide whether L(A), namely
the language of A, is k-DFA-recognizable. DFAs enjoy a clean (and beautiful)
theory of canonicity and minimization, based on a right-congruence relation: A

The full version of this article is available from [13]. Orna Kupferman is supported in
part by the Israel Science Foundation, grant No. 2357/19. Salomon Sickert is supported
by the Deutsche Forschungsgemeinschaft (DFG) under project number 436811179.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 48–64, 2021.
https://doi.org/10.1007/978-3-030-88885-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_4

Certifying DFA Bounds for Recognition and Separation 49

language L ⊆ Σ∗ induces a relation ∼L⊆ Σ∗ × Σ∗, where for every two words
h1, h2 ∈ Σ∗, we have that h1 ∼L h2 iff for all words t ∈ Σ∗, we have that
h1 · t ∈ L iff h2 · t ∈ L. By the Myhill-Nerode Theorem [17,19], the language
L is k-DFA-recognizable iff the number of equivalence classes of ∼L is at most
k. Moreover, a given DFA A can be minimized in polynomial time, by a fixed-
point algorithm that merges states associated with the same equivalence class
of ∼L(A).

Another fundamental problem about DFAs is separation: Given DFAs A1

and A2, and a bound k ≥ 1, decide whether there is a k-DFA A that separates
A1 and A2. That is, L(A1) ⊆ L(A) and L(A) ∩ L(A2) = ∅. Finding a separa-
tor for A1 and A2 is closely related to the DFA identification problem. There,
given sets S1, S2 ⊆ Σ∗ of positive and negative words, and a bound k ≥ 1,
we seek a k-DFA that accepts all words from S1 and no word from S2. DFA
identification is NP-complete [10], with numerous heuristics and applications
[11,25]. NP-hardness of DFA separation can be obtained by a reduction from
DFA identification, but for DFA separation with additional constraints, in par-
ticular strict separation, NP-hardness is open [9]. Studies of separation include
a search for regular separators of general languages [6], as well as separation of
regular languages by weaker classes of languages, e.g., FO-definable languages
[21] or piecewise testable languages [7].

Let us return to the problem of DFA minimization, and assume we want
to certify the minimality of a given DFA. That is, we are given a DFA A and
a bound k ≥ 1, and we seek a proof that L(A) is not k-DFA-recognizable.
The need to accompany results of decision procedures by a certificate is not
new, and includes certification of a “correct” decision of a model checker [15,
23], reachability certificates in complex multi-agent systems [1], and explainable
reactive synthesis [4]. Certifying that L(A) is not k-DFA-recognizable, we can
point to k + 1 words h1, . . . , hk+1 ∈ Σ∗ that belong to different equivalence
classes of the relation ∼L(A), along with an explanation why they indeed belong
to different classes, namely words ti,j ∈ Σ∗, for all 1 ≤ i 	= j ≤ k + 1, such that
hi · ti,j and hj · ti,j do not agree on their membership in L(A).

The above certification process is offline: Refuter (that is, the entity prov-
ing that L(A) is not k-DFA-recognizable) generates and outputs the certificate
without an interaction with Prover (that is, the entity claiming that L(A) is
k-DFA-recognizable). In this work we describe an interactive certification proto-
col:1 Given A and k ≥ 1, Refuter and Prover interact, aiming to convince each
other about the (non-)existence of a k-DFA for L(A). Our approach offers two
advantages over offline certification. First, the length of the certificate is shorter.
Second, the interactive protocol can also be used for efficiently certifying bounds
on the size of DFA separators. In addition, we solve the open problem of the
complexity of deciding strict separation by a k-DFA. We show that it is NP-

1 Note that while our certification protocol is interactive, the setting is different from
that of an interactive proof system in computational complexity theory. In particular,
our Prover and Refuter are both finite-state, they have complementary objectives,
and no probability is involved.

50 O. Kupferman et al.

complete, and so are variants requiring only one side of the separation to be
strict.

The underlying idea behind the interactive certification protocol is simple:
Consider a language L ⊆ Σ∗ and a bound k ≥ 1. We consider a turn-based two-
player game between Refuter and Prover. In each round in the game, Prover
provides a letter from a set [k] = {1, 2, . . . , k} that describes the state space of
a DFA for L that Prover claims to exist, and Refuter responds with a letter in
Σ ∪ {#}, for a special reset letter # 	∈ Σ. Thus, during the interaction, Prover
generates a word y ∈ [k]ω and Refuter generates a word x ∈ (Σ ∪ {#})ω. The
word x describes an infinite sequence of words in Σ∗, separated by #’s, and the
word y aims to describe runs of a k-DFA on the words in the sequence. Prover
wins if the described runs are legal: They all start with the same initial state
and follow some transition function, and are consistent with L: There is a way
to classify the states in [k] to accepting and rejecting such that Prover responds
with an accepting state whenever the word generated by Refuter since the last
is in L. Clearly, if there is a k-DFA for L, then Prover can win by following its
runs. Likewise, a winning strategy for Prover induces a k-DFA for L. The key idea
behind our contribution is that since the above described game is determined
[5], Refuter has a winning strategy iff no k-DFA for L exists. Moreover, since the
game is regular, this winning strategy induces a finite-state transducer, which
we term an (L, k)-refuter, and which generates interactive certificates for L(A)
not being k-DFA-recognizable.

Consider a language L with index N . Recall that the interaction between
Refuter and Prover generates words x ∈ (Σ ∪ {#})ω and y ∈ [k]ω. If k < N ,
Refuter can generate x for which the responses of Prover in y must contain
a violation of legality or agreement with L. Once a violation is detected, the
interaction terminates and it constitutes a certificate: an informative bad prefix
[14] of the safety language of interactions in which Prover’s responses are legal
and agree with L. We show that the length of certificates generated by offline
refuters is at most O(k2 ·N), whereas interaction reduces the length to O(k2+N).
We show that both bounds are tight. For separation, we describe a refuter that
generates certificates of length at most O(k2 · |Σ|+k · (N1 +N2)), where N1 and
N2 are the indices of the separated languages.

Our interactive certification protocol has similarities with the interaction that
takes place in learning of regular languages [3], (see recent survey in [8]). There,
a Learner is tasked to construct a DFA A for an unknown regular set L by
asking a Teacher queries of two types: Membership (“w ∈ L?”) and equivalence
(“L(A) = L?”). In our setting, Refuter also wants to “learn” the k-DFA for L
that Prover claims to possess, but she needs to learn only a fraction of it from
Prover – a fraction that reveals that it does not actually recognize L. This is
done with a single type of query (“what is the next state?”), which may give
Refuter more information than the information gained in the learning setting.

Due to the lack of space, some proofs are omitted and can be found in the
full version [13].

Certifying DFA Bounds for Recognition and Separation 51

2 Preliminaries

Automata. A deterministic automaton on finite words (DFA, for short) is A =
〈Σ,Q, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q×Σ → Q is a partial transition function, and F ⊆ Q is a set of final states.
We sometimes refer to δ as a relation Δ ⊆ Q × Σ × Q, with 〈q, σ, q′〉 ∈ Δ iff
δ(q, σ) = q′. A run of A on a word w = w1 · w2 · · · wm ∈ Σ∗ is the sequence of
states q0, q1, . . . , qm such that qi+1 = δ(qi, wi+1) for all 0 ≤ i < m. The run is
accepting if qm ∈ F . A word w ∈ Σ∗ is accepted by A if the run of A on w is
accepting. The language of A, denoted L(A), is the set of words that A accepts.
We define the size of A, denoted |A|, as the number of states that A has. For
a language L ⊆ Σ∗, we use comp(L) to denote the language complementing L,
thus comp(L) = Σ∗ \ L.

Consider a language L ⊆ Σ∗. For two finite words h1 and h2, we say that h1

and h2 are right L-indistinguishable, denoted h1 ∼L h2, if for every t ∈ Σ∗, we
have that h1 · t ∈ L iff h2 · t ∈ L. Thus, ∼L is the Myhill-Nerode right congruence
used for minimizing DFAs. For h ∈ Σ∗, let [h] denote the equivalence class of h in
∼L and let 〈L〉 denote the set of all equivalence classes. When L is regular, the set
〈L〉 is finite and we use index(L) to denote |〈L〉|. The set 〈L〉 induces the residual
automaton of L, defined by RL = 〈Σ, 〈L〉,ΔL, [ε], F 〉, with 〈[h], a, [h · a]〉 ∈ ΔL

for all [h] ∈ 〈L〉 and a ∈ Σ. Also, F contains all classes [h] with h ∈ L. The DFA
RL is well defined and is the unique minimal DFA for L.

Lemma 1. Consider a regular language L of index N . For every 1 ≤ k ≤ N ,
there is a set Hk = {h1, . . . , hk} of words hi ∈ Σ∗ such that hi 	∼L hj for all
1 ≤ i 	= j ≤ k and |hi| ≤ k − 1 for all 1 ≤ i ≤ k.

Safety Languages. Consider a language L ⊆ Σω of infinite words. Here, the
language complementing L is comp(L) = Σω \ L. A finite word x ∈ Σ∗ is a bad
prefix for L if for every y ∈ Σω, we have that x · y 	∈ L. That is, x is a bad prefix
if all its extensions are words not in L. A language L ⊆ Σω is a safety language
if every word not in L has a bad prefix. A language L is a co-safety language if
comp(L) is safety. Equivalently, every word w ∈ L has a good prefix, namely a
prefix x ∈ Σ∗ such that for every y ∈ Σω, we have that x · y ∈ L.

Transducers and Realizability. Consider two finite alphabets ΣI and ΣO. For
two words x = x1·x2 · · · ∈ Σω

I and y = y1·y2 · · · ∈ Σω
O, we define x⊕y as the word

in (ΣI ×ΣO)ω obtained by merging x and y. Thus, x⊕ y = (x1, y1) · (x2, y2) · · · .
A (ΣI/ΣO)-transducer models a finite-state system that generates letters in

ΣO while interacting with an environment that generates letters in ΣI . Formally,
a (ΣI/ΣO)-transducer is T = 〈ΣI , ΣO, ι, S, s0, ρ, τ〉, where ι ∈ {sys, env} indi-
cates who initiates the interaction – the system or the environment, S is a set
of states, s0 ∈ S is an initial state, ρ : S × ΣI → S is a transition function,
and τ : S → ΣO is a labeling function on the states. Consider an input word
x = x1 ·x2 · · · ∈ Σω

I . The run of T on x is the sequence s0, s1, s2 . . . such that for
all j ≥ 0, we have that sj+1 = ρ(sj , xj+1). The annotation of x by T , denoted
T (x), depends on ι. If ι = sys, then T (x) = τ(s0)·τ(s1)·τ(s2) · · · ∈ Σω

O. Note that

52 O. Kupferman et al.

the first letter in T (x) is the output of T in s0. This reflects the fact that the sys-
tem initiates the interaction. If ι = env , then T (x) = τ(s1)·τ(s2)·τ(s3) · · · ∈ Σω

O.
Note that now, the output in s0 is ignored, reflecting the fact that the environ-
ment initiates the interaction. Then, the computation of T on x is the word
x ⊕ T (x) ∈ (ΣI × ΣO)ω.

We say that a (ΣI/ΣO)-transducer is offline if its behavior is independent
of inputs from the environment. Formally, its transition function ρ satisfies
ρ(s, x) = ρ(s, x′) for all states s ∈ S and input letters x, x′ ∈ ΣI . Note that
an offline transducer has exactly one run, and it annotates all words by the
same lasso-shaped word u · vω, with u ∈ Σ∗

O and v ∈ Σ+
O . We sometimes refer to

general transducers as online transducers, to emphasize they are not offline.
Consider a ω-regular language L ⊆ (ΣI × ΣO)ω. We say that L is (ΣI/ΣO)-

realizable by the system if there exists a (ΣI/ΣO)-transducer T with ι = sys all
whose computations are in L. Thus, for every x ∈ Σω

I , we have that x⊕T (x) ∈ L.
We then say that T (ΣI/ΣO)-realizes L. Then, L is (ΣO/ΣI)-realizable by the
environment if there exists a (ΣO/ΣI)-transducer T with ι = env all whose
computations are in L. When ΣI and ΣO are clear from the context, we omit
them.

When the language L is ω-regular, realizability reduces to deciding a game
with a regular winning condition. Then, by determinacy of games and due to
the existence of finite-memory winning strategies [5], we have the following.

Proposition 1. For every ω-regular language L ⊆ (ΣI × ΣO)ω, exactly one of
the following holds.

1. L is (ΣI/ΣO)-realizable by the system.
2. comp(L) is (ΣO/ΣI)-realizable by the environment.

3 Proving and Refuting Bounds on DFAs

Consider a regular language L ⊆ Σ∗ and a bound k ≥ 1. We view the problem
of deciding whether L can be recognized by a k-DFA as the problem of deciding
a turn-based two-player game between Refuter and Prover. In each round in the
game, Prover provides a letter from a set [k] = {1, 2, . . . , k} that describes the
state space of a DFA for L that Prover claims to exist, and Refuter responds with
a letter in Σ∪{#}, for a special reset letter # 	∈ Σ. Thus, during the interaction,
Prover generates a word y ∈ [k]ω and Refuter generates a word x ∈ (Σ ∪{#})ω.
The word x describes an infinite sequence of words in Σ∗, separated by #’s, and
the word y aims to describe runs of the claimed DFA on them.

Below we formalize this intuition. Let Σ′ = Σ ∪ {#}, for a letter # 	∈ Σ.
Consider a (finite or infinite) word w = x ⊕ y ∈ (Σ′ × [k])∗ ∪ (Σ′ × [k])ω. Let
x = x1 · x2 · · · and y = y1 · y2 · · · . We say that w is legal if the following two
conditions hold:

1. For all 1 ≤ j < |w| with xj = #, we have yj+1 = y1.
2. There exists a function δ : [k] × Σ → [k] such that yj+1 = δ(yj , xj) for all

1 ≤ j < |w| with xj ∈ Σ.

Certifying DFA Bounds for Recognition and Separation 53

The first condition ensures that Prover starts all runs in the same state y1 ∈
[k], which serves as the initial state in her claimed DFA. The second condition
ensures that there exists a deterministic transition relation that Prover follows
in all her transitions.

A word w being legal guarantees that Prover follows some k-DFA. We now
add conditions on w in order to guarantee that this DFA recognizes L. Consider
a position 1 ≤ j < |w|. Let #(j) = max{j′ : (j′ < j and xj′ = #) or j′ = 0}
be the last position before j in which Refuter generates the reset letter # (or
0, if no such position exists). When the interaction is in position j, we examine
the word wj that starts at position #(j) + 1 and ends at position j − 1. Thus,
wj = x#(j)+1 ·x#(j)+2 · · · xj−1 ∈ Σ∗. The run that Prover suggests to wj is then
y#(j)+1, y#(j)+2, . . . , yj , and we say that y maps wj to yj . When y is clear from
the context, we also say that Prover maps wj to yj . Note that if j1 and j2 are
such that wj1 = wj2 , then w being legal ensures that wj1 and wj2 are mapped
to the same state. Now, we say that w = x ⊕ y ∈ (Σ′ × [k])∗ ∪ (Σ′ × [k])ω agrees
with L if there exists a set F ⊆ [k] such that for all 1 ≤ j < |w|, Prover maps
wj to an element in F iff wj ∈ L.

Remark 1. Note that a word w agrees with L iff w agrees with comp(L). Indeed,
our definition of agreement with L only guarantees we can define an acceptance
condition on top of the claimed k-DFA for either L and comp(L). Since these
DFAs dualize each other, they have the same index, and so it makes sense not
to distinguish between them in our study. ��

Example 1. Let Σ = {a, b} and k = 2. An interaction between Prover and
Refuter may generate the prefix of a computation in ({a, b,#} × {1, 2})ω

described in Table 1. Note that while w fixes δ(1, a), δ(2, a), and δ(2, b), it does
not fix δ(1, b). ��

Table 1. x ⊕ y and its analysis.

w = x ⊕ y = (a, 1) (b, 2) (#, 2) (a, 1) (a, 2) (a, 1) (b, 2) (#, 2) (#, 1) (a, 1) (a, 2)

j = 1 2 3 4 5 6 7 8 9 10 11

#(j) = 0 0 0 3 3 3 3 3 8 9 9

wj = ε a ab ε a aa aaa aaab ε ε a

The language DFA(L, k) ⊆ (Σ′ × [k])ω of words with correct annotations
is then DFA(L, k) = {x ⊕ y ∈ (Σ′ × [k])ω : x ⊕ y is legal and agrees with L}.
Then, NoDFA(L, k) is the language of words with incorrect annotations, thus
NoDFA(L, k) = comp(DFA(L, k)).

By Proposition 1, we have the following:

Proposition 2. Consider a language L ⊆ Σ∗. Exactly one of the following
holds:

– L can be recognized by a k-DFA, in which case DFA(L, k) is (Σ′/[k])-realizable
by the system.

54 O. Kupferman et al.

– L cannot be recognized by a k-DFA, in which case NoDFA(L, k) is ([k]/Σ′)-
realizable by the environment.

By Proposition 2, the language DFA(L, k) is (Σ′/[k])-realizable by the sys-
tem whenever k ≥ index(L). Moreover, a (Σ′/[k])-transducer T that realizes
DFA(L, k) induces a k-DFA for L. To see this, consider the word x ∈ (Σ′)∗ =
w1 · # · w2 · · · # · w|Σ|k · # obtained by concatenating all words wi · # ∈ Σk · #
in some order. Since every transition in a k-DFA is reachable by traversing a
word of length at most k − 1, the computation of T on x must commit on all
the transitions in a transition function δ : [k] × Σ → [k], and must also induce a
single classification of the states in [k] to accepting and rejecting. Note also that
if k > index(L), the transducer may induce several different DFAs for L.

By Proposition 2, we also have that the language NoDFA(L, k) is ([k]/Σ′)-
realizable by the environment whenever k < index(L). A ([k]/Σ′)-transducer
that realizes NoDFA(L, k) is termed an (L, k)-refuter.

4 Certifying Bounds on Recognizability

Recall that DFA(L, k) contains exactly all words that are legal and agree with
L. Accordingly, if a word x ⊕ y ∈ (Σ′ × [k])ω is not in DFA(L, k), it contains a
violation of legality or agreement with L, and thus has a bad prefix for DFA(L, k).
Formally, we define the language Violate(L, k) ⊆ (Σ′×[k])∗ of words that include
a violation of legality or agreement with L as follows.

Violate(L, k) = {x ⊕ y : there is j ≥ 1 such that xj = # and yj+1 	= y1, or
there are j1, j2 ≥ 1 such that
yj1 = yj2 , xj1 = xj2 , and yj1+1 	= yj2+1,
or wj1 ∈ L,wj2 /∈ L and yj1 = yj2}.

Note that while all the words in Violate(L, k) are bad prefixes for DFA(L, k),
there are bad prefixes for DFA(L, k) that are not in Violate(L, k). For example,
if L = {a2n : n ≥ 0}, then the word (a, 1) is a bad prefix for DFA(L, 1), as both
(a, 1)(a, 1) and (a, 1)(#, 1), which are the only possible extensions of (a, 1) by
a single letter, are in Violate(L, 1), yet (a, 1) itself is not in Violate(L, 1). For-
mally, using the terminology of [14], the language Violate(L, k) contains all the
informative bad prefixes of DFA(L, k), namely these that contain an explanation
to the prefix being bad. Since every infinite word not in DFA(L, k) has a bad
prefix in Violate(L, k), then restricting attention to bad prefixes in Violate(L, k)
is appropriate in the context of certificates. Also, as we show in the full version
[13], a bad prefix of DFA(L, k) that is not informative can be made informative
by concatenating to it any letter in Σ′ × [k].

Refuting recognizability of L by a k-DFA, we consider two approaches. In the
first, we consider the interaction of Prover with an offline (L, k)-refuter. Such a
refuter has to generate a word x ∈ (Σ′)∗ such that for all y ∈ [k]|x|, we have
that x ⊕ y ∈ Violate(L, k). We call x a universal informative bad prefix (see [16]
for a study of bad prefixes for safety languages in an interactive setting). In the

Certifying DFA Bounds for Recognition and Separation 55

second approach, we consider the interaction of Prover with an online (L, k)-
refuter. There, the goal is to associate every sequence y ∈ [k]ω that is generated
by Prover with a sequence x ∈ (Σ′)ω such that x⊕y has a prefix in Violate(L, k).
In Sects. 4.1 and 4.2 we compare the two approaches in terms of the length of
the certificate (namely the word in Violate(L, k)) that they generate.

4.1 Certification with Offline Refuters

Recall that a word x ∈ (Σ′)∗ is a universal informative bad prefix for DFA(L, k)
if for all y ∈ [k]|x|, we have that x ⊕ y ∈ Violate(L, k).

Theorem 1. Consider a regular language L ⊆ Σ∗ and let N = index(L).
For every k < N , the length of a shortest universal informative bad prefix for
DFA(L, k) is at most O(k2 ·N). This bound is tight: There is a family of regular
languages L1, L2, . . . such that for every n ≥ 1, the length of a shortest universal
informative bad prefix for DFA(Ln, Nn − 1) is Ω(N3

n), where Nn = index(Ln).

Proof. We start with the upper bound and construct, for every k < N , a uni-
versal informative bad prefix for DFA(L, k) of length O(k2 · N).

Let H = {h1, . . . , hk+1} be representatives of k + 1 distinct Myhill-Nerode
classes. Since k < N , such a set H exists. Moreover, by Lemma 1, we can assume
that |hi| ≤ k, for all 1 ≤ i ≤ k+1. For each pair 〈hi, hj〉, there is a distinguishing
tail ti,j of length at most N . Let x be the concatenation of all words of the form
hi · ti,j · # and hj · ti,j · #, for all pairs. There are k · (k + 1) such words, each of
length at most k + N + 1, so |x| ≤ (k + N + 1) · k · (k + 1), which is O(k2 · N).
In the full version [13] we prove that x is a universal informative bad prefix.

For a matching lower bound, we describe a family of regular languages
L1, L2, . . . such that for every n ≥ 1, the length of a shortest universal informa-
tive bad prefix for DFA(Ln, Nn−1) is Ω(N3

n), where Nn = index(Ln). For n ≥ 1,
let Σn = {a, b1, . . . , bn} and consider the language Ln = {anb2i : 1 ≤ i ≤ n}. Let
An be a minimal DFA for Ln. For example, L3 = {aaab1b1, aaab2b2, aaab3b3},
and the DFA A3 for L3 appears in Fig. 1.

It is easy to see that index(Ln) = Nn = 2n + 3, corresponding to (see Fig. 1)
n + 1 states q0, . . . , qn, n states r1, . . . , rn, an accepting state, and a rejecting
sink, which we omit from the figure.

q0 q1 q2 q3

r1

r2

r3

a a a

b1

b2

b3

b1

b2

b3

Fig. 1. A DFA for L3.

56 O. Kupferman et al.

Let k = Nn − 1, and consider some prefix x ∈ (Σ′)∗. For 1 ≤ i 	= j ≤ n, the
words anbi and anbj belong to different Myhill-Nerode classes, corresponding
to the states ri and rj , respectively. The distinguishing tails are bi and bj . In
the full version [13] we prove that if x is a universal informative bad prefix for
DFA(L, k), then for every 1 ≤ i 	= j ≤ n, it contains the subwords anbibj or
anbjbi, which are of length n+2. There are n · (n−1)/2 such subwords and they
are disjoint. Therefore, |x| ≥ (n + 2) · n · (n − 1)/2, which is Ω(N3

n). ��

4.2 Certification with Online Refuters

We now consider refuters that take Prover’s choices into account when out-
putting letters. We show that this capability allows an interactive refuter to win
in fewer rounds than an offline refuter.

Theorem 2. Consider a regular language L ⊆ Σ∗ and let N = index(L).
For every k < N , there exists an (L, k)-refuter that generates a word in
Violate(L, k) within O(k2 + N) rounds. This bound is tight: There is a fam-
ily of regular languages L1, L2, . . . such that for every n ≥ 1, every (L, k)-refuter
needs at least Ω(N2

n) rounds to construct a word in Violate(Ln, Nn − 1), where
Nn = index(Ln).

Proof. We start with the upper bound, by describing a winning strategy. As in
the offline case, let H = {h1, . . . , hk+1} be representatives of distinct Myhill-
Nerode classes, each of length at most k. Unlike the offline case, where Refuter
outputs all pairs of heads and distinguishing tails, here a single pair suffices to
achieve the same effect. Refuter starts the interaction by outputting h1 ·# · · · # ·
hk+1 ·#. By the pigeonhole principle, there are distinct words hi and hj that are
mapped by Prover to the same state. Refuter then outputs hi · ti,j ·# ·hj · ti,j ·#.
If Prover does not violate the conditions of legality, it maps hi · ti,j and hj · ti,j
to the same state. Exactly one of them is in L, so there is no F ⊆ [k] that can
satisfy agreement with L, and so the generated word is in Violate(L, k). We now
analyze its length. Recall that Refuter first outputs k+1 words of length at most
k each, separated by #’s, and then two words of length at most k + N each,
again separated by #. Thus, the length of the prefix is k(k+1)+2(k+N)+k+3,
which is O(k2 + N).

For a matching lower bound, we describe a family of regular languages
L1, L2 . . . such that for every n ≥ 1, every refuter needs at least Ω(N2

n) rounds
to generate a word in Violate(Ln, Nn − 1), where Nn = index(Ln). Consider the
DFA An from the offline lower bound, again with k = Nn − 1. We claim that
Ω(N2

n) rounds are required to generate a word in Violate(Ln, Nn − 1).
Let x ∈ (Σ′)∗ be the word generated by Refuter. Assume there exists 1 ≤

i ≤ n such that the subword anbi does not appear in x. The state corresponding
to anbi is ri. Hence, Prover can follow the DFA obtained by removing the state
ri from An without violating legality or agreement with L. Therefore, in order
to guarantee a generation of a word in Violate(Ln, Nn −1), Refuter must output
all the words anb1, . . . , a

nbn in some order. Each of these n words has length

Certifying DFA Bounds for Recognition and Separation 57

n + 1, and they are disjoint. Their total length is therefore at least n · (n + 1),
which is Ω(N2

n). ��

Remark 2. Fixed alphabet. In the proofs of Theorems 1 and 2, we use lan-
guages Ln over an alphabet Σn that depends on n. By replacing the letters
b1, . . . , bn by words in {a, b}�log n�, one gets languages over the fixed alphabet
Σ = {a, b} that exhibit the claimed lower bounds for both online and offline
refuters. ��

Remark 3. Optimal Survival Strategies for Provers. Assume that L is not
k-DFA recognizable. Then, there is an (L, k)-refuter, and Refuter is going to win
a game against Prover and generate a word in Violate(L, k). Suppose that Prover
aims at prolonging the interaction. It is tempting to think that the following
greedy strategy is optimal for such an objective: Prover follows the transitions
of RL. If k < index(L), then Prover may be forced to deviate from RL and make
a “mistake”, namely choose to output one of the k states that have already been
exposed. Using this strategy, Prover can prolong the game at least until k + 1
different states are exposed. In the full version [13] we describe an example
showing that this strategy is not optimal at prolonging the game as long as
possible (no matter how clever the choice when a “mistake” is forced is). ��

5 Bounds on DFA Separation

Consider three languages L1, L2, L ⊆ Σ∗. We say that L is a separator for
〈L1, L2〉 if L1 ⊆ L and L∩L2 = ∅. Equivalently, L1 ⊆ L ⊆ comp(L2). For k ≥ 1,
we say that a pair of languages 〈L1, L2〉 is k-DFA-separable iff there is a k-DFA
A such that L(A) separates 〈L1, L2〉. We extend the definition to DFAs and say
that two DFAs A1 and A2 are separated by a DFA A, if their languages are
separated by L(A).

In this section we study refuting and certifying bounds on DFA separation.
We first give proofs that deciding (strict and non-strict) k-DFA-separability, is
NP-complete. The problem being NP-hard suggests that there is no clean theory
of equivalence classes that is the base for offline certification. We continue and
describe interactive certification protocol for k-DFA-separability.

5.1 Hardness of Separation

The following Theorem 3 is considered by the literature (e.g., [18]) to be a
consequence of [20]. Since we also investigate the strict-separation case and there
is a progression of techniques, we describe below an alternative and explicit proof.

Theorem 3. Given DFAs A1 and A2, and a bound k ≥ 1, deciding whether
〈A1,A2〉 is k-DFA-separable is NP-complete.

Proof. Membership in NP is easy, as given a candidate separator A of size k,
we can verify that L(A1) ⊆ L(A) and L(A) ∩ L(A2) = ∅ in polynomial time.
Note that if k ≥ index(L(A1)), then 〈A1,A2〉 is k-DFA-separable by A1. Thus,

58 O. Kupferman et al.

we can assume that k < index(L(A1)), and so membership in NP applies also
for the case k is given in binary.

For NP-hardness, we reduce from the DFA identification problem. Recall
that there, given sets S1, S2 ⊆ Σ∗ of positive and negative words, and a bound
k ≥ 1, we seek a k-DFA that accepts all words in S1 and no word in S2. By
[10], DFA identification is NP-complete. Given S1, S2, and k, our reduction
constructs DFAs A1 and A2 such that L(A1) = S1 and L(A2) = S2. Clearly, a
k-DFA solves the DFA identification problem for S1, S2, and k, iff it solves the
k-DFA-separation of A1 and A2.

Constructing a DFA AS such that L(AS) = S, for some finite set S ⊆ Σ∗

can be done in polynomial time, by traversing prefixes of words in S. Formally,
we define AS = 〈Σ,Q, q0, δ, F 〉, where Q = {w : w is a prefix of a word in S},
q0 = ε, and for all w ∈ Q and σ ∈ Σ, we have that δ(w, σ) = w ·σ if w ·σ ∈ S, and
δ(w, σ) is undefined otherwise. Finally, F = S. It is easy to see that L(AS) = S
and that |AS | ≤

∑
w∈S |w|. ��

Consider three languages L1, L2, L ⊆ Σ∗. We say that L is a strict separator
for 〈L1, L2〉 if L1 ⊂ L, L ∩ L2 = ∅, and L ∪ L2 ⊂ Σ∗. Equivalently, L1 ⊂ L ⊂
comp(L2). For k ≥ 1, we say that a pair of languages 〈L1, L2〉 is k-DFA-strictly-
separable iff there is a k-DFA A such that L(A) strictly separates 〈L1, L2〉. Again,
we extend the definition to DFAs.

Theorem 4. Given DFAs A1 and A2, and a bound k ≥ 1, deciding whether
〈A1,A2〉 is k-DFA-strictly-separable is NP-complete.

Proof. We start with membership in NP. As in the proof of Theorem 3, a witness
k-DFA A can be checked in polynomial time. However, if k is given in binary
and greater than index(L(A1)) and index(L(A2)), we cannot base a separator on
A1 or A2. We fill this gap by showing that if a DFA strictly separates 〈A1,A2〉,
then there also exists one that is polynomial in |A1| and |A2|.

Assume that 〈A1,A2〉 are strictly separable. Let T = comp(L(A1) ∪ L(A2)).
Note that 〈A1,A2〉 being strictly separable implies that |T | > 1. Let AT be a
minimal DFA for T . Note that |AT | ≤ |A1| · |A2|. Consider a word w ∈ T that is
accepted along a simple path in AT . Thus, |w| is polynomial in |AT |. Consider
a DFA Aw

1 with L(Aw
1) = L(A1) ∪ {w}. Note that |Aw

1 | is polynomial in |A1|
and |w|. It is not hard to see that Aw

1 is a strict separator for 〈A1,A2〉. Indeed,
L(Aw

1) strictly contains L(A1), it is contained in comp(L(A2)), and as |T | > 1,
the latter containment is strict. Hence, 〈A1,A2〉 are strictly separable by a DFA
that is polynomial in |A1| and |A2|.

For NP-hardness, we describe a reduction from k-DFA-separability, proved to
be NP-hard in Theorem 3. Consider two DFAs A1 and A2 over Σ, and assume
that 0 	∈ Σ. Assume also that L(A1), L(A2) 	= ∅, and that L(A1), L(A2) are
finite, and thus have rejecting sinks. Clearly, k-DFA-separability is NP-hard also
in this case. Let A′

1 and A′
2 be DFAs obtained from A1 and A2 by extending the

alphabet to Σ ∪ {0} and adding a transition labeled 0 from every state to the
rejecting sink. Note that L(A′

1) = L(A1) and comp(L(A′
2)) = (Σ∪{0})∗\L(A2).

Certifying DFA Bounds for Recognition and Separation 59

In the full version [13], we prove that for every k ≥ 1, we have that 〈A1,A2〉 is
k-DFA-separable iff 〈A′

1,A′
2〉 is k-DFA-strictly-separable. ��

The reduction described in the proof of Theorem 4 can be used to prove NP-
completeness also for one-sided strict separation problems. Formally, we have the
following, which generalizes Conjecture 1 from [9] (see proof in the full version
[13]).

Theorem 5. Given DFAs A1 and A2, and a bound k ≥ 1, the problems of decid-
ing whether there exists a k-DFA A such that L(A1) ⊂ L(A) ⊆ comp(L(A2))
and whether there exists a k-DFA A′ such that L(A1) ⊆ L(A′) ⊂ comp(L(A2))
are NP-complete.

5.2 Certifying Bounds on Separation

Consider two regular languages L1, L2 ⊆ Σ∗ and a bound k ≥ 1. Certifying
bounds on separation, we again consider a turn-based two-player game between
Prover and Refuter. This time we are interested in whether L1 and L2 can be
separated by a k-DFA. Consider a word x ⊕ y ∈ (Σ′ × [k])ω. We say that x ⊕ y
agrees with 〈L1, L2〉 if there exists F ⊆ [k] such that for every j ≥ 1, if wj ∈ L1,
then Prover maps wj to F and if wj ∈ L2, then Proven does not map wj to F .

Accordingly, we define the language SepDFA(L1, L2, k) ⊆ (Σ′×[k])ω of words
with correct annotations as follows:

SepDFA(L1, L2, k) = {x ⊕ y : x ⊕ y is legal and agrees with 〈L1, L2〉}.

Then, NoSepDFA(L1, L2, k) = comp(SepDFA(L1, L2, k)) is the language of all
words with incorrect annotations.

Proposition 3. Consider two regular languages L1, L2 ⊆ Σ∗ and k ≥ 1.
Exactly one of the following holds:

– 〈L1, L2〉 is k-DFA-separable, in which case SepDFA(L1, L2, k) is (Σ′/[k])-
realizable by the system.

– 〈L1, L2〉 is not k-DFA-separable, in which case NoSepDFA(L1, L2, k) is
([k]/Σ′)-realizable by the environment.

A transducer that ([k]/Σ′)-realizes NoSepDFA(L, k) is termed an (L1, L2, k)-
refuter, and we seek refuters that generate short certificates. As has been the case
in Sect. 4, such a certificate is an informative bad prefix for SepDFA(L1, L2, k).
Formally, we define the language Violate(L1, L2, k) ⊆ (Σ′ × [k])∗ of words that
include a violation of legality or agreement with L1 and L2 as follows.

Violate(L1, L2, k) = {x ⊕ y : there is j ≥ 1 such that xj = # and yj+1 	= y1, or
there are j1, j2 ≥ 1 such that
yj1 = yj2 , xj1 = xj2 , and yj1+1 	= yj2+1,
or wj1 ∈ L1, w

j2 ∈ L2, and yj1 = yj2}.

Before constructing an (L1, L2, k)-refuter that generates short certificates,
we first need some notations and observations. Let A = 〈Σ,Q, q0, δ, F 〉 and

60 O. Kupferman et al.

A′ = 〈Σ,Q′, q′
0, δ′, F ′〉 be DFAs. We define the set FA,A′ of states of A that

are reachable by traversing a word in L(A′). Formally, q ∈ FA,A′ iff there is
w ∈ L(A′) such that δ∗(q0, w) = q, where δ∗ is the extension of δ to words. Note
that FA,A′ does not depend on the acceptance condition of A.

Lemma 2. For every DFAs A and A′, we have that L(A′) ⊆ L(A) iff FA,A′ ⊆
F , and L(A) ∩ L(A′) = ∅ iff FA,A′ ⊆ Q \ F .

Proof. We start with the first claim. If FA,A′ ⊆ F , then for every word w ∈
L(A′), we have that δ∗(q0, w) ∈ F , and so w ∈ L(A) and L(A′) ⊆ L(A). If
FA,A′ 	⊆ F , then there exists a word w ∈ L(A′) such that δ∗(q0, w) ∈ Q \ F .
Then, w ∈ L(A′) \ L(A), and so L(A′) 	⊆ L(A).

For the second claim, note that L(A) ∩ L(A′) = ∅ iff L(A′) ⊆ comp(L(A)).
Let Ã be A with Q \ F being the set of accepting states. By the first claim, we
have that L(A′) ⊆ L(Ã) iff FÃ,A′ ⊆ Q \ F . Since A and Ã differ only in the
acceptance condition, FÃ,A′ = FA,A′ , and so we are done. ��

Lemma 2 implies the following characterization of separability by a DFA with
a given structure:

Theorem 6. Consider DFAs A1, A2, and A. Let A = 〈Σ,Q, q0, δ, ∅〉. For a set
F ⊆ Q, define AF = 〈Σ,Q, q0, δ, F 〉. Then, FA,A1 ∩ FA,A2 = ∅ iff there exists a
set F ⊆ Q such that AF separates 〈A1,A2〉.

Proof. By Lemma 2, the DFA AF is a separator for 〈A1,A2〉 iff FA,A1 ⊆ F
and FA,A2 ⊆ Q \ F . If FA,A1 ∩ FA,A2 = ∅, then F = FA,A1 satisfies both
containments. In the other direction, if there exists a set F that satisfies both
containments, then FA,A1 ∩ FA,A2 = ∅. ��

Consider a DFA A = 〈Σ,Q, q0, δ, ∅〉. If there is no set F such that AF is a
separator for 〈A1,A2〉, there exists a state q ∈ FA,A1 ∩FA,A2 . That is, there are
words w1 ∈ L(A1) and w2 ∈ L(A2) such that δ∗(q0, w1) = δ∗(q0, w2) = q. Note
that if Prover follows A, then Refuter can cause the interaction to be a word in
Violate(L(A1), L(A2), k) by generating w1 ·# ·w2 ·#. Indeed, then the resulting
prefix cannot agree with L(A1) and L(A2). Accordingly, Refuter’s strategy is to
first force Prover to commit on the transitions of a k-DFA, and then to generate
w1 ·# ·w2 ·#, for the appropriate words w1 and w2. Next, we show how Refuter
can force Prover to commit on the transitions of a k-DFA.

A legal word w = x ⊕ y induces a partial function δw : [k] × Σ → [k], where
for all j ≥ 1, we have that yj+1 = δw(yj , xj). Forcing Prover to commit on the
transitions of a k-DFA amounts to generating a word w for which δw is complete.

Lemma 3. For every k ≥ 1, there is a strategy for Refuter that forces Prover
to commit on the transitions of a k-DFA in O(k2 · |Σ|) rounds.

Proof. Refuter maintains a set S ⊆ [k] of discovered states, and a set Δ ⊆
[k]×Σ × [k] of discovered transitions. Note that for every discovered state q ∈ S,

Certifying DFA Bounds for Recognition and Separation 61

Refuter can construct a word w ∈ Σ∗ that Prover maps to q using transitions in
Δ. Initially, the sets S and Δ are empty. Prover starts the interaction outputting
an initial state q0, and Refuter sets S = {q0}.

Assume that there is an undiscovered transition from one of the discovered
states. That is, there exist q ∈ S and σ ∈ Σ such that 〈q, σ, r〉 /∈ Δ for all r ∈ [k].
Refuter outputs w · σ · #, where w is a word Prover maps to q. Then, Prover
answers with a state q′, and Refuter adds q′ to S, and 〈q, σ, q′〉 to Δ.

Refuter repeats the above process until Δ is complete. Each of the k states
has |Σ| outgoing transitions. Refuter exposes one new transition in at most k+1
rounds: A shortest word w that Prover maps to q has length at most k − 1, then
she outputs the letter σ, and then #. Overall, the number of rounds is at most
k · (k + 1) · |Σ|, which is O(k2 · |Σ|). ��

Theorem 7. Let L1, L2 ⊆ Σ∗ be regular languages, and let N1 = index(L1)
and N2 = index(L2). For every k ≥ 1, if 〈L1, L2〉 is not k-DFA-separable, then
Refuter can generate a word in Violate(L1, L2, k) in O(k2 · |Σ| + k · N1 + k · N2)
rounds.

Proof. As described in Lemma 3, Refuter can force Prover to commit on a k-
DFA A in O(k2 · |Σ|) rounds. Since 〈L1, L2〉 is not k-DFA-separable, there are
words w1 ∈ L1, w2 ∈ L2 such that the runs of A on w1 and on w2 both end in the
same state. In the full version [13] we show that there exist such words satisfying
|w1| ≤ k · N1 and |w2| ≤ k · N2. Refuter maintains a pair of such words for every
k-DFA. After the DFA A is exposed, Refuter outputs the corresponding string
w1 ·# ·w2 ·#, which has length at most k ·N1+k ·N2+2. Overall, the interaction
requires O(k2 · |Σ| + k · N1 + k · N2) rounds. ��

Recall that when L2 = comp(L1), separation coincides with recognizability,
with N1 = N2 = N . Hence, the O(N2) lower bound on the length of certificates
in Theorem 2, applies also for (N − 1)-DFA-separation. Our upper bound for
(N − 1)-DFA-separation in Theorem 7 includes an extra |Σ| factor, as Refuter
first forces Prover to commit on all transitions of the claimed DFA. We conjecture
that Refuter can do better and force Prover to only to commit on a relevant
part of the claimed DFA; namely one in which we can still point to a state
q ∈ FA,A1 ∩FA,A2 that is reachable via two words w1 ∈ L(A1) and w2 ∈ L(A2).
Thus, rather than forcing Prover to commit on all |Σ| successors of each state,
Refuter forces Prover to commit only on transitions that reveal new states or
reveal the required state q. Then, the prefix of the certificate that is generated
in Lemma 3 is only of length O(N2), making the bound tight. Note that such
a lazy exposure of the claimed DFA could be of help also in implementations of
algorithms for the DFA identification problem [11].

6 Discussion and Directions for Future Research

On the Size of Provers and Refuters. Our study of certification focused on
the length of certificates. We did not study the size of the transducers used by
Prover and Refuter in order to generate these certificates. A naive upper bound

62 O. Kupferman et al.

on the size of such transducers follows from the fact that they are winning strate-
gies in a game played on a deterministic looping automaton for Violate(L, k).
Such an automaton has to store in its state space the set of transitions com-
mitted by Prover, and is thus exponential in k. The (L, k)-refuter we used for
generating short certificates is also exponential in k, as it stores in its state space
a mapping from the k+1 words in H to [k] (see Theorem 2). On the other hand,
it is easy to see that Prover can do with a transducer that is polynomial in k,
as she can follow the transitions of RL.

Interestingly, with a slight change in the setting, we can shift the burden of
maintaining the set of transitions committed by Prover from Refuter to Prover.
We do this by requiring Prover to reveal new states in her claimed k-DFA in
an ordered manner: Prover can respond with a state i ∈ [k] only after she
has responded with states {1, . . . , i − 1}. Formally, we say that w = x ⊕ y ∈
(Σ′ × [k])∗ ∪ (Σ′ × [k])ω, with x = x1 · x2 · · · and y = y1 · y2 · · · is ordered iff
for all 1 ≤ j ≤ |w| we have yj ≤ max{yl : 1 ≤ l < j} + 1. Note that if Prover
has a winning strategy in a game on DFA(L, k), she also has a winning strategy
in a game in which DFA(L, k) is restricted to ordered words. In such a game,
however, Refuter can make use of RL and circumvent the maintenance of subsets
of transitions, whereas Prover has to maintain a mapping from the states in RL

to their renaming imposed by the order condition. We leave the analysis of this
setting as well as the study of trade-offs between the size of transducers and the
length of the certificates to future research.

Infinite Words. Our setting considers automata on finite words, and it focuses
on the number of states required for recognizing a regular language. In [12],
we used a similar methodology for refuting the recognizability of ω-regular lan-
guages by automata with limited expressive power. For example, deterministic
Büchi automata (DBAs) are less expressive than their non-deterministic coun-
terpart, and a DBA-refuter generates certificates that a given language cannot
be recognized by a DBA. Thus, the setting in [12] is of automata on infinite
words, and it focuses on expressive power.

Unlike DFAs, which allow polynomial minimization, minimization of DBAs is
NP-complete [24]. Combining our setting here with the one in [12] would enable
the certification and refutation of k-DBA-recognizability, namely recognizability
by a DBA with k states. The NP-hardness of DBA minimization makes this
combination very interesting. In particular, there are interesting connections
between polynomial certificates and possible membership of DBA minimization
in co-NP, as well as connections between size of certificates and succinctness of
the different classes of automata.

References

1. Almagor, S., Lahijanian, M.: Explainable multi agent path finding. In: Proceedings
of 19th AAMAS, pp. 34–42 (2020)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2,
117–126 (1987)

Certifying DFA Bounds for Recognition and Separation 63

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Baumeister, T., Finkbeiner, B., Torfah, H.: Explainable reactive synthesis. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 413–428.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 23

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. AMS 138, 295–311 (1969)

6. Czerwiński, W., Lasota, S., Meyer, R., Muskalla, S., Kumar, K.N., Saivasan, P.:
Regular separability of well-structured transition systems. In: Proceedings of 29th
CONCUR. LIPIcs, vol. 118, pp. 35:1–35:18 (2018)

7. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 150–161. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39212-2 16

8. Fisman, D.: Inferring regular languages and ω-languages. J. Log. Algebraic Meth-
ods Program. 98, 27–49 (2018)

9. Gange, G., Ganty, P., Stuckey, P.J.: Fixing the state budget: approximation of
regular languages with small DFAs. In: D’Souza, D., Narayan Kumar, K. (eds.)
ATVA 2017. LNCS, vol. 10482, pp. 67–83. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68167-2 5

10. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302–320 (1978)

11. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sem-
pere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 7

12. Kupferman, O., Sickert, S.: Certifying inexpressibility. In: FOSSACS 2021. LNCS,
vol. 12650, pp. 385–405. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-71995-1 20

13. Kupferman, O., Lavee, N., Sickert, S.: Certifying DFA bounds for recognition and
separation (2021). Full version archived at arXiv:2107.01566

14. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001)

15. Kupferman, O., Vardi, M.Y.: From complementation to certification. Theoret.
Comput. Sci. 305, 591–606 (2005)

16. Kupferman, O., Weiner, S.: Environment-friendly safety. In: Biere, A., Nahir, A.,
Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 227–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39611-3 22

17. Myhill, J.: Finite automata and the representation of events. Technical report
WADD TR-57-624, pp. 112–137. Wright Patterson AFB, Ohio (1957)

18. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp.
354–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-
6 28

19. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–
544 (1958)

20. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE
Trans. Comput. 22(12), 1099–1102 (1973)

21. T. Place and M. Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci. 12(1) (2016)

22. ESF Network Programme: Automata: from mathematics to applications
(AutoMathA) (2010). http://www.esf.org/index.php?id=1789

https://doi.org/10.1007/978-3-030-59152-6_23
https://doi.org/10.1007/978-3-642-39212-2_16
https://doi.org/10.1007/978-3-319-68167-2_5
https://doi.org/10.1007/978-3-319-68167-2_5
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-030-71995-1_20
https://doi.org/10.1007/978-3-030-71995-1_20
http://arxiv.org/abs/2107.01566
https://doi.org/10.1007/978-3-642-39611-3_22
https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-33386-6_28
http://www.esf.org/index.php?id=1789

64 O. Kupferman et al.

23. Almagor, S., Chistikov, D., Ouaknine, J., Worrell, J.: O-minimal invariants for
linear loops. In: Proceedings of 45th ICALP. LIPIcs, vol. 107, pp. 114:1–114:14
(2018)

24. Schewe, S.: Beyond hyper-minimisation–minimising DBAs and DPAs is NP-
complete. In: Proceedings of 30th FST & TCS. LIPIcs, vol. 8, pp. 400–411 (2010)

25. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata. North Holland, Amsterdam
(1973)

Machine Learning for Formal Methods

AALpy: An Active Automata Learning
Library

Edi Muškardin1,2(B) , Bernhard K. Aichernig2 , Ingo Pill1 ,
Andrea Pferscher2, and Martin Tappler1,2

1 Silicon Austria Labs, TU Graz - SAL DES Lab, Graz, Austria
edi.muskardin@silicon-austria.com

2 Institute of Software Technology, Graz University of Technology, Graz, Austria

Abstract. AALpy is an extensible open-source Python library provid-
ing efficient implementations of active automata learning algorithms for
deterministic, non-deterministic, and stochastic systems. We put a spe-
cial focus on the conformance testing aspect in active automata learning,
as well as on an intuitive and seamlessly integrated interface for learning
automata characterizing real-world reactive systems. In this manuscript,
we present AALpy’s core functionalities, illustrate its usage via exam-
ples, and evaluate its learning performance.

Keywords: Active automata learning · Model inference · Python

1 Introduction

Whenever facing an unknown system, we strive to learn more about its behavior,
which in computer science terms often translates to learning its language. Regular
language inference, a.k.a automata learning or model mining, is thus a well-
studied topic and has been an active field ever since Anguin’s seminal paper [4].
The topic has gained special interest in the context of model checking [12] and
software testing [3] of black-box systems.

Despite the growing interest, there are few libraries or frameworks for
automata learning available. The most notable one is LearnLib [9], an open-
source Java library that is the de-facto standard when it comes to tools. Com-
pared to LearnLib, our AALpy1 extends the scope to learning of deterministic
Moore machines, observable non-deterministic finite-state machines (ONFSMs),
and Markov decision processes (MDPs).

Due to Python’s popularity in software engineering and AI, we chose to
implement AALpy in Python such as to target a wide audience, supported
also by an open-source MIT license. Especially important for learning models
of black-box systems is the fact that Python increasingly serves as interface
language for a wide range of software and systems on chip.
1 Code, documentation, interactive examples, and a comprehensive Wiki can be found

at https://github.com/DES-Lab/AALpy.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 67–73, 2021.
https://doi.org/10.1007/978-3-030-88885-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_5&domain=pdf
http://orcid.org/0000-0001-8089-5024
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0002-8420-6377
http://orcid.org/0000-0002-4193-5609
https://github.com/DES-Lab/AALpy
https://doi.org/10.1007/978-3-030-88885-5_5

68 E. Muškardin et al.

2 AALpy – Intuitive Automata Learning in Python

Key features of our library are its modular design, a seamlessly integrated deploy-
ment process, efficient implementations of state-of-the-art learning algorithms
for deterministic, non-deterministic, and stochastic automata, and efficient con-
formance testing. AALpy accessibility and usability is enhanced via extensive
documentation and multiple demonstrating examples for each of the library’s
functionalities—complemented by visualization and logging capabilities. The lat-
ter may be of special interest for educational purposes.

The query-based automata learning algorithms implemented in AALpy are
based on the minimally adequate teacher framework by Angluin [4]. We par-
ticularly focus on learning models of reactive systems (s.t. their input-output
behavior can be captured by regular languages) via a test-based concept. To this
end, AALpy interfaces the system under learning (SUL) and a selected learning
algorithm via a step-based interface. In an individual step, the input stimulus is
provided to the SUL and then the resulting output is observed. For real-world
SULs, interfacing the SUL and the algorithm may involve some abstraction and
concretization, e.g., implemented via a mapper [1]. When employing AALpy, a
user thus in principle only has to define the functionality for a step, as well as
a proper reset for the SUL (in order to be able to start a query from the initial
state). AALpy implements queries as sequences of steps and resets. If required,
a user can implement queries directly.

When employing AALpy, a user follows a three stage process: (a) define the
SUL interface for the learning engine, (b) select an equivalence oracle, and (c)
select, customize and execute the learning algorithm. In (a), three methods are to
be defined: pre, post, and step (see also Example 1). With pre, we initialize and
setup the SUL, while post shall support a graceful shutdown/memory cleanup.
As informally suggested above, step encapsulates a single step in the query
execution, such that formally some σ ∈ Σ for the input alphabet Σ is mapped
to a concrete input/or action for the SUL, and the SUL’s output is observed
and reported back as a letter γ in some output alphabet Γ . Note that we do not
limit alphabets to integers, characters, or strings. In particular, Σ and Γ can be
lists of hashable objects, or even class methods with appropriate arguments.

Example 1 (Learning a regular expression). Listing 1.1 implements active learn-
ing of a deterministic finite automaton (DFA) conforming to a regular expression.

In Lines 1–14, we show a simple SUL that parses regular expressions. In
Lines 16 and 17, we define a regular expression over a binary alphabet. In Line
19, we select the equivalence oracle used for answering equivalence queries via
conformance testing, and in Line 20 we select the learning algorithm and exe-
cute it. When finished, AALpy prints the learning statistics and visualizes the
automaton as shown in Fig. 1.

Let us now describe the supported learning algorithms, starting with the
support of deterministic learning of DFA, Mealy and Moore machines.
We extended the original L∗ algorithm [4] with two counterexample processing

AALpy: An Active Automata Learning Library 69

Listing 1.1. Learning regural expressions with AALpy

1 c l a s s RegexSUL(SUL) :
2 # System under learning for regular expressions
3 de f i n i t (s e l f , regex : s t r) :
4 super () . i n i t ()
5 s e l f . regex = regex i f regex [−1] == ’ $ ’ e l s e regex + ’ $ ’
6 s e l f . s t r i n g = ””
7 de f pre (s e l f) :
8 s e l f . s t r i n g = ””
9 de f post (s e l f) :

10 pass
11 de f s tep (s e l f , l e t t e r) :
12 i f l e t t e r i s not None :
13 s e l f . s t r i n g += s t r (l e t t e r)
14 re turn True i f re . match (s e l f . regex , s e l f . s t r i n g) e l s e Fa l se \\
15 # complement of Tomita 3 grammar
16 regex = ’ ((0 |1)∗0)∗1 (1 1)∗ (0 (0 |1)∗1)∗0 (0 0)∗ (1 (0 |1)∗)∗ ’
17 a lphabet = [0 , 1]
18 r e g e x su l = RegexSUL(regex)
19 e q o r a c l e = RandomWMethodEqOracle (alphabet , r e g e x su l)
20 learned automaton = run Lstar (alphabet , r eg ex su l , eq o rac l e ,
21 automaton type=’ dfa ’)
22 v i sua l i z e automaton (learned automaton)

techniques [14,15] as well as query caching. The cache reduces the number of SUL
interactions performed for membership queries. It encodes membership query
results as a tree that is updated during learning as well as equivalence checking.

We also support learning of ONFSMs [5] and the more recent abstracted
non-deterministic finite-state machines [13]. These algorithms overcome
the limitation of classical algorithms where deterministic behavior of the SUL
is required. In addition, the latter reduces the state-space of the learned system
via abstraction, resulting in smaller models and faster learning.

AALpy’s support of active learning of stochastic systems draws on
L∗
MDP [16] and formalizes their behavior as MDPs or as stochastic Mealy

machines. While the previously discussed learning approaches rely on member-
ship and equivalence queries, L∗

MDP implements a “stochastic” teacher that is
able to answer complete queries, frequency queries, refine queries and equiva-
lence queries (see [16] for more information on query types). Additionally, we
implemented a slight adaptation of the L∗

MDP algorithm that requires fewer
parameters and is more robust to sparse observations. In practice, users only
have to implement the SUL interface as discussed in Sect. 2.

We address equivalence queries via conformance testing. Equivalence check-
ing in automata learning should try “finding counterexample fast” instead of
“proving equivalence” between SUL and hypothesis [8]. Therefore, we focus on
efficient random-testing heuristics rather than expensive deterministic confor-
mance testing, such as the W-method. AALpy provides ten equivalence oracles
and new ones can be easily added. To this end, AALpy supports the user by
providing a (non-necessarily minimal) characterization set of the hypothesis,
shortest path to each state, and a set of previously observed traces (cache).
Currently, AALpy implements the following equivalence oracles:

70 E. Muškardin et al.

s0 0

s1

1 1

s2

0

s3

1

s4

0

0 1

0

1

Hypothesis 1: 1 states.
Hypothesis 2: 4 states.
Hypothesis 3: 5 states.

Learning Finished.
Learning Rounds: 3
Number of states: 5
Time (in seconds)
Total : 0.01

Learning algorithm : 0.0
Conformance checking : 0.01

Learning Algorithm
Membership Queries : 20
MQ Saved by Caching : 18
Steps : 77

Equivalence Query
Membership Queries : 100
Steps : 1169

Fig. 1. Output of Listing 1.1

– W-Method
– Random Walk
– Cache-Tree Based Exploration
– Fixed Prefix Random Walk
– k-Way Transition Coverage

– Random W-Method
– Random Word
– Transition/Same state Focus
– Breath-First Exploration.
– User Input Oracle

We refer the interested reader to AALpy’s documentation and Wiki for descrip-
tions, suggested use cases, and parameter explanations for each of these oracles.

For an enhanced user experience, AALpy can save learned automata to files
(following community’s syntax [11]), visualize them, and display information
about the learning progress and the observation table. For evaluation, a user
may generate random automata, define them as an SUL and then learn them.
For verification, AALpy provides a translation of MDPs into Prism [10] format.

3 Experimental Evaluation

In order to showcase AALpy’s performance, we conducted several experiments
on a Dell Lattitude 5410 with an Intel Core i7-10610U processor, 8 GB of RAM
running Windows 10 and using PyPy 3.9. In particular, we experienced a per-
formance benefit of using PyPy over CPython.

Deterministic Automata Learning efficiency was evaluated with extensive
experiments on random automata. We conducted two types of experiments, one
in which we increased the number of states of the target automata while keeping
the size of the input alphabet constant, and one where we increased the size of
the input alphabet whilst keeping the size of the target automata constant. Each
experiment was repeated 20 times to obtain average values. Figure 2 shows the
results. We observed that the automaton size affects DFA learning more than
Mealy and Moore machine learning. On the other hand, DFA learning is least

AALpy: An Active Automata Learning Library 71

100 1000 2000 3000 4000 5000
Automaton Size

0.012

0.500

1.000

1.500

1.826
T
im

e
(s
)

DFA
Mealy
Moore

5 25 50 75 100
Alphabet Size

0.072

1.000

2.500

4.000

5.218

T
im

e
(s
)

DFA
Mealy
Moore

Fig. 2. Runtime of the deterministic L∗ with respect to automata size (for an alphabet
of size 10) and alphabet size (for an automaton with 1000 states).

affected by the increase in the input alphabet. Furthermore, we see that the
runtime increases linearly with the number of states and almost linearly with
the size of the alphabet. Results are consistent with LearnLib’s findings [9].

Stochastic Automata Learning was evaluated with the same experiments as
the original Java version of L∗

MDP [16]. Figure 3 shows the average runtime and
the average model-checking errors measured in the experiments. The latter is the
average absolute difference between probabilistic model-checking on a learned
model and the true model. We can see that AALpy and the Java implementation
are generally similarly fast and produce similarly accurate models. Evaluation
differences can be attributed to minor implementation details.

35 state
Grid

72 state
Grid

Shared
Coin

Slot
Machine

0
50

100
150
200
250
300

T
im

e
(s
)

AALpy
Java

35 state
Grid

72 state
Grid

Shared
Coin

Slot
Machine

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

A
ve
ra
ge

er
ro
rs

AALpy
Java

Fig. 3. Runtime measurements and probabilistic model-checking errors on learned
models for the AALpy implementation and the Java implementation of L∗

MDP .

72 E. Muškardin et al.

4 Conclusion

We presented AALpy, an active automata learning library. AALpy efficiently
learns deterministic, non-deterministic, and stochastic systems. AALpy provides
its users a set of equivalence oracles, different configurations of learning algo-
rithms, and the ability to visualize the learning process and results. AALpy is
currently successfully used to learn the protocols of MQTT and Bluetooth. These
learned models serve as a basis for learning-based testing [3] and fuzzing [2].

AALpy is for researchers, educators, and industry alike. Its modular design
provides a solid basis for experimentation with new learning algorithms, equiv-
alence oracles, and counterexample processing. In future, we intend to extend
these functionalities, with SAT-based learning [7] and learning without reset [6].
We hope that the community will recognize AALpy as an attractive foundation
for further research, and welcome suggestions and extensions.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems and by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”.

References

1. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16573-3 14

2. Aichernig, B., Muškardin, E., Pferscher, A.: Learning-based fuzzing of IoT message
brokers. In: ICST (2021)

3. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. El-Fakih, K., Groz, R., Irfan, M.N., Shahbaz, M.: Learning finite state models
of observable nondeterministic systems in a testing context. In: ICTSS 2010, pp.
97–102 (2010)

6. Groz, R., Bremond, N., Simao, A., Oriat, C.: hW-inference: a heuristic approach
to retrieve models through black box testing. JSS 159, 110426 (2020)

7. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sem-
pere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1 7

8. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16558-0 55

9. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

https://doi.org/10.1007/978-3-642-16573-3_14
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-319-21690-4_32

AALpy: An Active Automata Learning Library 73

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

11. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

12. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002)

13. Pferscher, A., Aichernig, B.K.: Learning abstracted non-deterministic finite state
machines. In: Casola, V., De Benedictis, A., Rak, M. (eds.) ICTSS 2020. LNCS,
vol. 12543, pp. 52–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64881-7 4

14. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

15. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

16. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of Markov decision processes. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 651–669. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 38

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38

Learning Linear Temporal Properties
from Noisy Data: A MaxSAT-Based

Approach

Jean-Raphaël Gaglione1, Daniel Neider2, Rajarshi Roy2(B), Ufuk Topcu3,
and Zhe Xu4

1 Ecole Polytechnique, Palaiseau, France
2 Max Planck Institute for Software Systems, Kaiserslautern, Germany

rajarshi@mpi-sws.org
3 University of Texas at Austin, Austin, TX, USA

4 Arizona State University, Tempe, AZ, USA

Abstract. We address the problem of inferring descriptions of system
behavior using Linear Temporal Logic (LTL) from a finite set of posi-
tive and negative examples. Most of the existing approaches for solving
such a task rely on predefined templates for guiding the structure of the
inferred formula. The approaches that can infer arbitrary LTL formu-
las, on the other hand, are not robust to noise in the data. To alleviate
such limitations, we devise two algorithms for inferring concise LTL for-
mulas even in the presence of noise. Our first algorithm infers minimal
LTL formulas by reducing the inference problem to a problem in max-
imum satisfiability and then using off-the-shelf MaxSAT solvers to find
a solution. To the best of our knowledge, we are the first to incorporate
the usage of MaxSAT solvers for inferring formulas in LTL. Our second
learning algorithm relies on the first algorithm to derive a decision tree
over LTL formulas based on a decision tree learning algorithm. We have
implemented both our algorithms and verified that our algorithms are
efficient in extracting concise LTL descriptions even in the presence of
noise.

Keywords: Linear temporal logic · Specification mining · Explainable
AI

1 Introduction

Explaining the behavior of complex systems in a form that is interpretable to
humans has become a central problem in Artificial Intelligence. Applications
where having concise system descriptions are essential include debugging, reverse
engineering, motion planning, specification mining for formal verification, to
name just a few examples.

For inferring descriptions of a system, we rely on a set of positive examples
and a set of negative examples generated from the underlying system. Given
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 74–90, 2021.
https://doi.org/10.1007/978-3-030-88885-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_6

Learning Linear Temporal Properties from Noisy Data 75

such data, the objective is to infer a concise model in a suitable formalism that
is consistent with the data; that is, the model must satisfy the positive examples
and not satisfy the negative ones.

Most of the data representing AI systems consist of sequences since, more
often than not, the properties of these systems evolve over time. For repre-
senting data consisting of sequences, temporal logic has emerged to be a suc-
cessful and popular formalism. Among temporal logics, Linear Temporal Logic
(LTL), developed by Pnueli [16], enjoys being both mathematically rigorous and
human interpretable for describing system properties. Moreover, LTL displays a
resemblance to natural language and simultaneously eliminates the ambiguities
existing in natural language. To this end, LTL uses modal operators such as
F (“eventually”), G (“globally”), U (“until”), and several others to describe
naturally occurring sequences based on their temporal aspect. One can use
these operators to easily describe properties such as “the robot should reach
the goal and not touch a wall or step into the water in the process” using
(¬water ∧ ¬wall)Ugoal or “every request should be followed by a grant even-
tually” using G(request → (Fgrant)).

The task of inferring temporal logic formulas consistent with a given data has
been studied extensively [4,13,20,24]. Most of the existing inference methods,
however, typically impose syntactic restrictions on the inferred formula. In par-
ticular, these methods only derive formulas whose structures are based on certain
handcrafted templates, and this leads to several drawbacks. First, handcrafting
templates by users may not be a straightforward task, since it requires adequate
knowledge about the underlying system. Second, by restricting the structure of
inferred formulas, we potentially increase the size of the inferred formula.

Nevertheless, there are approaches [6,15] that avoid the use of templates.
These works present algorithms that rely on reducing the learning problem to a
Boolean satisfiability problem (SAT) to infer LTL formulas that perfectly classify
the input data. However, such exact algorithms suffer from the limitation that
they are susceptible to failure in the presence of noise which is ubiquitous in
real-world data. Furthermore, trying to infer formulas that perfectly classify a
noisy sample often results in complex formulas, hampering interpretability.

To alleviate the limitation of the earlier approaches, in this paper we present
two novel algorithms for inferring LTL formulas from data provided as a sample
consisting of system traces labeled as positive and negative. The goal of algo-
rithms is to infer concise LTL formulas that achieve a low loss on the sample,
where loss l(S , ϕ) refers to the fraction of examples in the sample S that the
inferred formula ϕ misclassified. Precisely, the problem we solve is the following:
given a sample S and a threshold κ, find a minimal LTL formula ϕ that has
l(S , ϕ) ≤ κ. Our algorithms are built upon the SAT-based learning algorithms
introduced by Neider and Gavran [15]. Our first algorithm tackles this problem
by reducing the search of an LTL formula to a problem in Maximum Satisfiabil-
ity (MaxSAT). Roughly speaking, we construct formulas in propositional logic
with appropriate weights assigned to various clauses. We then search for assign-
ments to the propositional formula that maximize the total weight of the satisfied
clauses. Finally, using an assignment that maximizes the weights of the satis-

76 J.-R. Gaglione et al.

fied clauses, we construct an LTL formula minimizing loss in a straightforward
manner.

Our first algorithm constructs series of monolithic propositional formulas to
tackle the inference problem and is, thus, often inefficient for inferring larger
formulas. Our second algorithm solves the inference problem by dividing the
problem into smaller subproblems based on a decision tree learning algorithm.
Instead of finding LTL formulas that achieve a loss less than κ in one step, for
each decision node in the tree we exploit our first algorithm to infer small LTL
formulas. Neider and Gavran also propose a similar decision tree based learning
algorithm for LTL. However, our algorithm outperforms theirs in two aspects.
First, our algorithm is robust to noise in the data. Second, we incorporate a
systematic search of LTL formulas for each decision node, while theirs rely on
simple heuristics for searching without termination guarantees.

We have implemented a prototype of both of our algorithms, and compared
them to the algorithms by Neider and Gavran. To effectuate the evaluation, we
used benchmarks that model typical LTL patterns used in practice. From our
observations, we conclude that our algorithms outperform that of Neider and
Gavran in terms of running time and formula size, especially in the benchmarks
containing noise.

Related Work. Our approach builds upon that of Neider and Gavran [15] who
exploit a SAT-based inference method. Similar to this is the work of Cama-
cho et al. [6] which uses a SAT-based approach to construct Alternating Finite
Automaton consistent with data and extract an LTL formula from it. Most of
the other works require templates for inferring LTL formulas. Among those, one
prominent work is that of Kim et al. [12] as they infer satisfactory LTL formulas
from noisy data, exploiting the Bayesian inference problem.

For the inference of temporal logic formulas, a number of works also utilize
decision tree learning algorithms. One notable example is the work of Bombara
et al. [4] which infers Signal Temporal Logic (STL) classifiers based on decision
trees. While their work can infer STL formulas with arbitrary misclassification
error on the data, the STL primitives used for the decision nodes in their trees
are derived only from a predefined set. Closely related is the work of Brunello
et al. [5] which infers decision trees over Interval Temporal Logic. The decision
nodes in their trees, as well, are simple formulas; usually consisting of a single
temporal relation with a proposition.

The inference problem of temporal logic, in general, has gained popularity in
the recent years. Apart from LTL, this problem has been looked at for a variety of
logics, including Past Time Linear Temporal Logic (PLTL) [1], Signal Temporal
Logic (STL) [2,10,11,13,20,21], Property Specification Language (PSL) [18] and
several others [22,23,25].

2 Preliminaries

In this section, we introduce the necessary background required for the paper.

Learning Linear Temporal Properties from Noisy Data 77

Propositional Logic. Let Var be a set of propositional variables, which take
Boolean values {0, 1} (0 represents true, 1 represents false). Formulas in propo-
sitional logic—denoted by capital Greek letters—are defined inductively as fol-
lows:

Φ := x ∈ Var | ¬Φ | Φ ∨ Φ

Moreover, we add syntactic sugar and allow the formulas true, false, Φ ∧ Ψ ,
Φ → Ψ and Φ ↔ Ψ which are defined in the standard manner.

A propositional valuation is a mapping v : Var �→ {0, 1}, which maps
propositional variables to Boolean values. We define the semantics of propo-
sitional logic using a valuation function V (v, Φ) that is inductively defined
as follows: V (v, x) = v(x), V (v,¬Ψ) = 1 − V (v, Ψ), and V (v, Ψ ∨ Φ) =
max{V (v, Ψ), V (v, Φ)}. We say that v satisfies Φ if V (v, Φ) = 1, and call v
as a model of Φ. A propositional formula Φ is satisfiable if there exists a model
v of Φ.

The satisfiability problem of propositional formula—abbreviated as SAT—
is the problem of determining whether a propositional formula is satisfiable or
not. For the SAT problem, usually propositional formulas are assumed to be
provided in Conjunctive Normal Form (CNF). Formulas in CNF are represented
as conjunction of clauses Ci, where each clause is a disjunction of literals; a
literal being a propositional variable x or its complement ¬x.

Finite Traces. Formally, a trace over a set P of propositional variables (which
represent interesting system properties) is a finite sequence of symbols u =
a0a1 . . . an, where ai ∈ 2P for i ∈ {0, · · · , n}. For instance, {p, q}{p}{q} is a
trace over the propositional variables P = {p, q}. The empty trace, denoted
by ε, is an empty sequence. The length of a trace is given by |u| (note |ε| = 0).
Moreover, given a trace u and i ∈ N, we use u[i] to denote the symbol at position
i (counting starts from 0). Finally, we denote the set of all traces by (2P)∗.

Linear Temporal Logic. Linear Temporal Logic (LTL) is a logic that enables
reasoning about sequences of events by extending propositional Boolean logic
with temporal modalities. Given a finite set P of propositional variables, formulas
in LTL—denoted by small greek letters—are defined inductively by:

ϕ := p ∈ P | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

As syntactic sugar, we allow the use of additional constants and opera-
tors used in propositional logic. Additionally, we include temporal operators
F (“future”) and G (“globally”) by Fϕ := trueUϕ and Gϕ := ¬F¬ϕ. The
set of all operators is defined as Λ = {¬,∨,∧,→,X,U,F,G} ∪ P (proposi-
tional variables are considered to be nullary operators). We define the size |ϕ|
of an LTL formula ϕ to be the number of its unique subformulas. For instance,
size of formula ϕ = (pUXq) ∨ Xq is 5, since, the distinct subformulas of ϕ are
p, q,Xq, pUXq and (pUXq) ∨ Xq.

78 J.-R. Gaglione et al.

We interpret LTL over finite traces1 as is done in several applications
related to AI [3]. We define the semantics of LTL on finite traces based
on the definition by Giacomo and Vardi [9]. For the semantics, we use
a valuation function V , that maps a formula, a finite trace and a posi-
tion in the trace to a Boolean value. Formally we define V as follows:
V (p, u, i) = 1 if and only if p ∈ u[i], V (¬ϕ, u, i) = 1−V (ϕ, u, i), V (ϕ ∨ ψ, u, i) =
max{V (ϕ, u, i), V (ψ, u, i)} , V (Xϕ, u, i) = min{i < |u|, V (ϕ, u, i + 1)},
V (ϕUψ, u, i) = max i≤j≤|u|{V (ψ, u, j),mini≤k<jV (ϕ, u, k)}. We say that a trace
u ∈ (2P)∗ satisfies a formula ϕ if V (u, ϕ, 0) = 1. For the sake of brevity, we use
V (u, ϕ) to denote V (u, ϕ, 0).

3 Problem Formulation

The input data is provided as a sample S ⊂ (2P)∗ × {0, 1} consisting of labeled
traces. Precisely, sample S is a set of pairs (u, b), where u ∈ (2P)∗ is a trace
and b ∈ {0, 1} is its classification label. The traces labeled 1 are called positive
traces, while the ones labeled 0 are called negative traces. We assume that in
a sample (u, b1) = (u, b2) implies b1 = b2, indicating that no trace can be both
positive and negative. Further, we denote the size of S , that is, the number of
traces in a sample, by |S |.

We define a loss function which assigns a real value to a given sample S
and an LTL formula ϕ. Intuitively, a loss function evaluates how “well” the LTL
formula ϕ classifies a sample. While there are numerous ways of defining loss
functions (e.g., quadratic loss function, regret, etc.), we use the definition:

l(S , ϕ) =
∑

(u,b)∈S

|V (ϕ, u) − b|
|S | ,

which calculates the fraction of traces in S which the LTL formula ϕ misclassified.
Having defined the setting, we now formally describe the problem we solve:

Problem 1. Given a sample S ⊂ (2P)∗ × {0, 1} and threshold κ ∈ [0, 1], find an
LTL formula ϕ such that l(S , ϕ) ≤ κ.

Generally speaking, the above problem is trivial if no constraint is imposed on
the size of the output formula since, one can always find a large LTL formula
with zero loss on a given sample, as indicated by the following remark.

Remark 1. Given sample S , there exists an LTL formula ϕ such that l(S , ϕ) = 0.

To construct such a formula, one needs to perform the following steps: con-
struct formulas ϕu,v for all (u, 1) ∈ S and (v, 0) ∈ S , such that V (ϕu,v, u) = 1
and V (ϕu,v, u) = 0, using a sequence of X-operators and an appropriate
propositional formula to describe the first symbol where u and v differ; now
ϕ =

∨
(u,1)∈S

∧
(v,0)∈S ϕu,v is the desired formula. The formula ϕ, however, is

1 LTL, when interpreted over finite traces, is sometimes referred to as LTLf .

Learning Linear Temporal Properties from Noisy Data 79

large in size (of the order of |S |2 × max (u,b)∈S |u|) and it does not help towards
the goal of inferring a concise description of the data.

Our first algorithm for solving Problem1, in fact, infers an LTL formula that
is minimal among the ones that achieve l(S , ϕ) ≤ κ. We describe the algorithm
in Sect. 4. Our second algorithm, described in Sect. 5, infers a decision tree over
LTL formulas which, however, is not guaranteed to be of minimal size. Never-
theless, decision trees are considered to be structures that provide interpretable
explanations of the underlying system. Further, in the algorithm, we introduce
a tunable parameter which makes it possible to adjust the size of the decision
tree based on user requirements.

4 Learning Minimal LTL Formulas

Our solution to Problem1 relies on MaxSAT solvers which we introduce next.

4.1 MaxSAT

MaxSAT—a variant of the SAT (Boolean satisfiability) problem—is the problem
of finding an assignment that maximizes the number of satisfied clauses in a given
propositional formula provided in CNF. For solving our problem, we use a more
general variant of MaxSAT, known as Partial Weighted MaxSAT. In this variant,
a weight function w : C �→ R∪ {∞} assigns a weight to every clause in the set of
clauses C of a propositional formula. The problem is to then find a valuation v
that maximises ΣCi∈Cw(Ci) · V (v, Ci).

While the MaxSAT problem and its variants can be solved using dedicated
solvers, standard SMT solvers like Z3 [14] are also able to handle such problems.
According to terminology derived from the theory behind such solvers, clauses Ci

for which w(Ci) = ∞ are termed as hard constraints, while clauses Ci for which
w(Ci) < ∞ are termed as soft constraints. Given a propositional formula with
weights assigned to clauses, MaxSAT solvers try to find a valuation that satisfies
all the hard constraints and maximizes the total weight of the soft constraints
that can be satisfied.

4.2 The Learning Algorithm

Given that we are using MaxSAT solvers that possess the capability of han-
dling Partial Weighted MaxSAT problems, we can solve a stronger version of
Problem 1. In this stronger version, the loss based on which we search for LTL
formulas takes the following form:

wl(S , ϕ,Ω) =
∑

(u,b)∈S

Ω(u)|V (ϕ, u) − b|,

where Ω is a function that assigns a positive real-valued weight to each u in
the sample in such a way that

∑
(u,b)∈S Ω(u) = 1. Observe that by considering

80 J.-R. Gaglione et al.

Algorithm 1: MaxSAT-based LTL learning algorithm
Input: A sample S , Ω function, Threshold κ

1 n ← 0
2 repeat
3 n ← n + 1

4 Construct formula ΦS
n = Φstr

n ∧ Φstf
n

5 Assign weights to soft constraints in ΦS
n:

6 w(yu
n,0) = Ω(u) for(u, 1) ∈ S , and w(¬yu

n,0) = Ω(u) for (u, 0) ∈ S
7 Find assignment v using MaxSAT solver

8 until Sum of weights of soft constraints ≥ 1 − κ
9 return ϕv

Ω(u) = 1/|S | for all traces in the sample, we have exactly wl(S , ϕ,Ω) = l(S , ϕ)
which is used in Problem 1. In this section, we will solve the stronger version
since, not only does it enable us to solve Problem1 but also provides us with
a versatile algorithm that we can exploit for learning decision trees over LTL
formulas in Sect. 5.

For solving this problem, we devise an algorithm based on ideas from the
learning algorithm of Neider and Gavran for inferring LTL formulas that per-
fectly classify a sample. Following their algorithm, we translate the problem of
inferring LTL formulas into problems in Partial Weighted MaxSAT and then use
an optimized MaxSAT solver to find a solution. More precisely, we construct a
propositional formula ΦS

n and assign weights to its clauses in such a way that an
assignment v of ΦS

n that satisfies all the hard constraints, satisfies two properties:

1. ΦS
n contains sufficient information to extract an LTL formula ϕv of size n,

and
2. the sum of weights of the soft constraints satisfied by it is equal to 1 −

wl(S , ϕv, Ω).

To obtain a complete algorithm, we increase the value of n (starting from
1) until we find an assignment v of ΦS

n that satisfies the hard constraints and
ensures that sum of weights of the soft constraints is greater than 1 − κ. The
termination of this algorithm is guaranteed by the existence of an LTL formula
with zero loss on the sample (see Remark 1).

∨
U F

p G

q

6

4 5

1 3

2

Fig. 1. Syntax DAG and
identifiers of the formula
(pUGq) ∨ FGq

On a technical level, the formula ΦS
n in Algorithm 1

is the conjunction ΦS
n = Φstr

n ∧Φstf
n , where Φstr

n encodes
the structure of the prospective LTL formula (of size
n) and Φstf

n tracks the satisfaction of the prospective
LTL formula with traces in S . We now explain each
of the conjuncts in greater detail.

Structural Constraints. For designing the formula
Φstr

n , we rely on a canonical syntactic representation
of LTL formulas, which we refer to as syntax DAGs.

Learning Linear Temporal Properties from Noisy Data 81

A syntax DAG is essentially a syntax tree (i.e., the unique tree that arises from
the inductive definition of an LTL formula) in which common subformulas are
shared. As a result, the number of the unique subformulas of an LTL formula
coincides with the number of nodes, which we term as the size of its syntax
DAG.

In a syntax DAG, to uniquely identify the nodes, we assign identifiers 1, . . . , n
in such a way that the root node is always indicated by n and every node has an
identifier larger than that of its children, if it has any. An example of a syntax
DAG is shown in Fig. 1.

To encode the structure of a syntax DAG using propositional logic, we intro-
duce the following propositional variables: xi,λ for i ∈ {1, · · · , n} and λ ∈ Λ,
which encode that Node i is labeled by operator λ (includes propositional vari-
ables); and < ij and ri,j′ , for i ∈ {2, · · · , n} and j, j′ ∈ {1, · · · , i − 1}, which
encode that the left and right child of Node i is Node j and Node j′, respectively.
For instance, we must have variables x6,∧, < 64, and r6,5 to be true in order to
obtain a syntax DAG where Node 6 is labeled with ∧, has the left child to be
Node 4, and the right child to be Node 5 (similar to the syntax DAG in Fig. 1).

We now introduce constraints on the variables to ensure that they encode
a valid syntax DAG. First, we ensure that each node of the syntax DAG has a
unique label using the following constraint:

[∧

1≤i≤n

∨

λ∈Λ

xi,λ

]
∧

[∧

1≤i≤n

∧

λ�=λ′∈Λ

¬xi,λ ∨ ¬xi,λ′
]

(1)

Next, we need constraints to ensure that each node of a syntax DAG has a unique
left and right child, which can be done similar to Formula 1. Moreover, we must
ensure that Node 1 is labeled by a propositional variable; we refer the readers
to an extended version of the paper [8] for the remaining structural constraints.
The overall formula Φstr

n is obtained by taking conjunction of all the structural
constraints discussed above.

Observe that from a valuation v satisfying Φstr
n one can extract an unique

syntax DAG describing an LTL formula ϕv as follows: label Node p of the syntax
DAG with the unique λ for which v(xp,λ) = 1; assign Node n to be the root node;
and assign edges from a node to its children based on the values of lp,q and rp,q.

Semantic Constraints. Towards the definition of the formula Φstf
n , we define

propositional formulas Φn
u for each trace u that tracks the valuation of the LTL

formula encoded by Φstr
n on u. These formulas are built using variables yu

i,τ ,
where i ∈ {1, . . . , n} and τ ∈ {1, . . . , |u| − 1}, that corresponds to the value of
V (ϕi, u, τ) (ϕi is the LTL formula rooted at Node i). Now, to make sure that
these variables have the desired meaning, we impose constraints based on the
semantics of the LTL operators. For instance, for the X-operator, we impose the
following constraint:

∧

1<i≤n, 1≤j<i

[xi,X∧ < ij] →
[∧

0≤τ≤|u|−1

[
yu

i,τ ↔ yu
i,τ+1

]]
, (2)

82 J.-R. Gaglione et al.

This constraint states that if Node i is labeled with X and its left child is Node j,
then the satisfaction of the formula rooted at Node i at time τ (i.e., yu

i,τ) equals
the satisfaction of the subformula rooted at Node j at time τ + 1 (i.e., yu

j,τ+1).
The constraints for the remaining operators can again be found in the extended
version [8]. Formula Φn

u is the conjunction of all such semantic constraints.
We now define Φstf

n to be:

Φstf
n =

∧

(u,b)∈S

Φn
u ∧

∧

(u,1)∈S

yu
n,0 ∧

∧

(u,0)∈S

¬yu
n,0 (3)

Weight Assignment. For assigning weights to the clauses of ΦS
n , we first convert

the formulas Φstr
n and Φstf

n into CNF. Towards this, we simply exploit the Tseitin
transformation [19] which converts a formula into an equivalent formula in CNF
whose size is linear in the size of the original formula.

We now assign weights to constraints starting with the hard constraints as
follows: w(Φstr

n) = ∞,w(Φn
u) = ∞ for all (u, b) ∈ S . Here, w(Φ) = w is a short-

hand to denote w(Ci) = w for all clauses Ci in Φ. The constraint Φstr
n is a hard

one since, it ensures that we obtain a valid syntax DAG of an LTL formula. Φn
u

ensures that the prospective LTL formula is evaluated on the trace u according
to the semantics of LTL and thus, also needs to be a hard constraint.

The soft constraints are the ones that enforce correct classification
and we assign them weights as follows: w(yu

n,0) = Ω(u) for all (u, 1) ∈
S , and w(¬yu

n,0) = Ω(u) for all (u, 0) ∈ S . Recall that Ω refers to the func-
tion assigning weights to the traces.

To prove the correctness of our learning algorithm, we first ensure that the
formula ΦS

n along with the weight assigned to its clauses serves our purpose.

Lemma 1. Let S be a sample, Ω the weight function, n ∈ N \ {0} and ΦS
n the

formula with the associated weights as defined above. Then,

1. the hard constraints of ΦS
n are satisfiable; and

2. if v is an assignment that satisfies the hard constraints of ΦS
n and maximizes

the sum of weight of the satisfied soft constraints of ΦS
n , then ϕv is an LTL

formula of size n that achieves the minimum wl value among all LTL formulas
of size n.

The termination and the correctness of Algorithm1, which is established
using the following theorem, is a consequence of Lemma 1.

Theorem 1. Given a sample S and threshold κ ∈ [0, 1], Algorithm1 computes
an LTL formula ϕ that has wl(ϕ,S , Ω) ≤ κ and is the minimal one among all
LTL formulas that have wl(ϕ,S , Ω) ≤ κ.

5 Learning Decision Trees over LTL Formulas

In this section, we first introduce decision trees over LTL formulas and then
discuss how to infer them from given data.

Learning Linear Temporal Properties from Noisy Data 83

5.1 Decision Trees over LTL Formulas

ϕ1

ϕ2 true

true false

Fig. 2. A decision tree
over LTL formulas

A decision tree over LTL formulas is a tree-like struc-
ture where all nodes of the tree are labeled by LTL
formulas. While the leaf nodes of a decision tree are
labeled by either true or false, the inner nodes are
labeled by (non-trivial) LTL formulas which represent
decisions to predict the class of a trace. Each inner
node leads to two subtrees connected by edges, where
the left edge is represented with a solid edge and the
right edge with a dashed one. Figure 2 depicts a deci-
sion tree over LTL formulas.

A decision tree t over LTL formula corresponds to an LTL formula ϕt :=∨
ρ∈Π

∧
ϕ∈ρ ϕ′, where Π is the set of paths that originate in the root node and

end in a leaf node labeled by true and ϕ′ = ϕ if it appears before a solid edge
in ρ ∈ Π, otherwise ϕ′ = ¬ϕ. For the decision tree in Fig. 2, the equivalent LTL
formula is (ϕ1 ∧ ϕ2) ∨ ¬ϕ1.

For evaluating a decision tree t on a trace u, we use the valuation V (ϕt, u) of
the equivalent LTL formula ϕ on u. We can, in fact, extend the valuation function
and loss function for LTL formulas to decision trees as V (t, u) = V (ϕt, u) and
l(t, ϕ) = l(S , ϕ).

5.2 The Learning Algorithm

Our decision tree learning algorithm shares similarity with the class of deci-
sion tree learning algorithms known as Top-Down Induction of Decision Trees
(TDIDT) [17]. Popular decision tree learning algorithms such as ID3, C4.5,
CART are all part of the TDIDT algorithm family. In such algorithms, deci-
sion trees are constructed in a top-down fashion by finding suitable features
(i.e., predicates over the attributes) of the data to partition it and then applying
the same method inductively to the individual partitions.

Algorithm 2 outlines our approach to infer a decision tree over LTL formulas.
In our algorithm, we first check the stopping criterion (Line 1) that is responsible
for the termination of the algorithm. If the stopping criterion is met, we return
a leaf node. We discuss the exact stopping criterion used in our algorithm in
Sect. 5.4.

If the stopping criterion fails, we search for an appropriate LTL formula ϕ
using Algorithm 1 for the current node of the decision tree. Our search for ϕ is
based on a score function and we infer the minimal one that achieves a score
greater than a user-defined minimum score μ on the sample. The choice of the
score function and parameter μ is a crucial aspect of the algorithm, and we
discuss more about this in Sect. 5.3.

Having inferred formula ϕ, next we split the sample into two sub-samples
S1 and S2 with respect to ϕ as follows: S1 = {(u, b) | V (ϕ, u) = 1}, and S2 =
{(u, b) | V (ϕ, u) = 0}. The final step is to recursively apply the decision tree
learning on each of the resulting sub-samples (Line 6) to obtain trees t1 and t2.
The decision tree returned is a tree with root node ϕ and subtrees t1 and t2.

84 J.-R. Gaglione et al.

Algorithm 2: Decision tree learning algorithm
Input: Sample S , Minimum score value μ, Threshold κ
Parameter : Stopping criterion stop, Score function s

1 if stop(S , κ) then
2 return leaf (S)
3 else
4 Infer minimal formula ϕ with s(S , ϕ) ≥ μ using Algorithm 1
5 Split S into S1, S2 using ϕ
6 Infer trees t1, t2 by recursively applying algorithm to S1 and S2

7 return decision tree with root node ϕ and subtrees t1, t2

5.3 LTL Formulas for Decision Nodes

Ideally, we aim to infer LTL formulas at each decision node, that in addition
to being small, also ensure that the resulting sub-samples after a split is as
“homogenous” as possible. In simpler words, we want the sub-samples obtained
after a split to predominantly consist of traces of one particular class. More
homogenous splits result in early termination of the algorithm resulting in small
decision trees. To achieve this, one can simply infer a minimal LTL formula that
perfectly classifies the sample. While in principle, this solves our problem, in
practice inferring an LTL formula that perfectly classifies a sample is a compu-
tationally expensive process [15]. Moreover, it results in a trivial decision tree
consisting of a single decision node. Thus, to avoid that, we wish to infer concise
LTL formulas that classify most traces correctly on the given sample.

To mechanize the search for concise LTL formulas for the splits, we measure
the quality of an LTL formula using a score function. In our algorithm, we
use this function to infer a minimal LTL formula having score greater than a
user-defined threshold μ. The parameter μ regulates the tradeoff between the
height of the tree and the size of the LTL formulas in the decision nodes of a
tree. While all TDIDT algorithms involve certain metrics (e.g., gini impurity,
entropy) to measure the efficacy of a feature to perform a split, these metrics
are based on non-linear operations on the fraction of examples of each class in
a sample. Searching LTL formulas, however, based on such metrics cannot be
handled using a MaxSAT framework.

One possible choice of score sl(S , ϕ) = 1 − l(S , ϕ), which relies on the loss
function. A formula ϕ with sl(S , ϕ) ≥ μ is a formula with l(S , ϕ) ≤ 1−μ. Thus,
for inferring LTL formulas with score greater than μ, we invoke Algorithm 1
to produce a minimal LTL formula ϕ with l(S , ϕ) ≤ 1 − μ. Note that, for this
score, one must choose the μ to be smaller than 1 − κ, else one will end up with
a trivial decision tree with a single decision node.

While sl as the metric seems to be an obvious choice, it often results in
a problem which we refer to as empty splits. Precisely, the problem of empty
splits occurs when one of the sub-samples, i.e., either S1 or S2 becomes empty.
Empty splits lead to an unbounded recursion branch of the learning algorithm
since, using the best LTL formula (w.r.t. sl) does not produce any meaningful
splits. This problem is more prominent in examples where the sample is skewed

Learning Linear Temporal Properties from Noisy Data 85

towards one class of examples. For instance, consider a sample S = {(u, 1)} ∪
{(v1, 0), (v2, 0), · · · (v99, 0)}; for this sample if one searches for an LTL formula
with μ = 0.9, false is a minimal formula; this formula, however, results in empty
splits, since S1 = ∅.

To address this problem, we use a score that relies on wl with a weight
function Ωr defined as follows:

Ωr(u) =
0.5

|{(u, b)|b = 1}| for (u, 1) ∈ S , Ωr(u) =
0.5

|{(u, b)|b = 0}| for (u, 0) ∈ S

Intuitively, the above Ωr function normalizes the weight provided to traces, based
on the number of examples in its class.

Our final choice of score, based on the above Ωr function, is sr (S , ϕ) =
max{wl(S , ϕ,Ωr), 1 − wl(S , ϕ,Ωr)}. Using such a score, we also avoid having
asymmetric splits. We say a split is asymmetric when the fraction of posi-
tive examples in S1 is greater than or equal 0.5. Choosing the score to be
1 −wl(S , ϕ,Ωr) always leads to asymmetric splits, since ϕ in order to minimize
wl(S , ϕ,Ωr) several positive traces need to end up in S1. Now, for finding an
LTL formula based on sr , we need to invoke Algorithm 1 twice with κ = 1 − μ;
once with the original sample and once with the same sample but with class
labels inverted and then, choosing the one that provides a formula with a better
split.

While any score function that avoids the problem of empty and asymmetric
splits is sufficient for our learning algorithm, we have used sr as a score func-
tion in our experiments. We show that if we infer an LTL formula ϕ such that
sr (S , ϕ) > 0.5, we never encounter empty splits using the following lemma.

Lemma 2. Given a sample S and an LTL formula ϕ, if sr (S , ϕ) > 0.5, there
exists traces u1, u2 in S such that V (u1, ϕ) = 1 and V (u2, ϕ) = 0.

5.4 Stopping Criterion

The stopping criterion is essential for the termination of the algorithm. Towards
the definition of the stopping criterion, we define the following two quantities:
p1(S) = |{(u, b) | b = 1}|/|S | and p2(S) = |{(u, b) | b = 0}|/|S |. We now define
the stopping criterion as follows: stop(S) = true if p1(S) ≤ κ or p2(S) ≤ κ, and
false otherwise. Intuitively, the stopping criterion ensures that the algorithm ter-
minates when the fraction of positive examples or fraction of negative examples
in a resulting sample is less or equal to κ. When the stopping criterion holds, the
algorithm halts and returns a leaf node labeled by leaf (S) where leaf is defined
as leaf (S) = false if p1(S) ≤ κ and true if p2(S) ≤ κ.

The following theorem ensures the correctness and termination of Algo-
rithm 2.

Theorem 2. Given sample S and threshold κ ∈ [0, 1], Algorithm 2 terminates
and returns a decision tree over LTL formula t such that l(S , t) ≤ κ.

86 J.-R. Gaglione et al.

Table 1. Summary of all the tested algorithms – comparison of numbers of timeouts,
running times in seconds, inferred formula sizes

Algorithm Benchmark without noise Benchmark with 5% noise

Timeouts Avg. time Avg. size Timeouts Avg. time Avg. size

SAT-flie 36/148 293.31 3.76 124/148 780.51 5.96

MaxSAT-flie(κ = 0.001) 47/148 357.26 3.47 130/148 801.03 4.89

MaxSAT-flie(κ = 0.05) 27/148 218.46 2.86 87/148 548.65 2.95

MaxSAT-flie(κ = 0.1) 26/148 211.81 2.59 40/148 275.97 2.54

SAT-DT (κ = 0.05) 51/148 342.35 5.92 127/148 786.16 9.62

MaxSAT-DT (κ = 0.05, μ = 0.8) 23/148 174.58 6.77 85/148 543.50 7.05

MaxSAT-DT (κ = 0.05, μ = 0.6) 7/148 74.97 30.91 38/148 281.60 56.55

6 Experimental Evaluation

In this section, we aim to evaluate the performance of our proposed algo-
rithms and compare them to the SAT-based learning algorithms by Neider and
Gavran [15]. We compare the following four algorithms: SAT-flie: the SAT-based
learning algorithms introduced by Neider and Gavran (Algorithm 1 from [15]),
MaxSAT-flie: our MaxSAT-based algorithm (Algorithm 1), SAT-DT : the deci-
sion tree based learning algorithm introduced by Neider and Gavran (Algorithm
2 from [15])2 and MaxSAT-DT : our decision tree learning algorithm (Algorithm
2).

We implement all learning algorithms in a Python tool3 using Microsoft Z3
[14]. All experiments were conducted on a Debian machine with Intel Xeon E7-
8857 CPU at 3 GHz using upto 6 GB of RAM.

We generate samples based on common LTL patterns [7] such as: absence
patterns like G(¬p0) and F(p1) → (¬p0Up1), existence patterns like F(p0) and
G(¬p0) ∨ F(p0 ∧ F(p1)), universality patterns like G(p0) and G(p1 → G(p0)),
and several others. In a first benchmark (without noise), we generate 148 samples
with the generation method proposed by Neider and Gavran [15]. The size of
the generated samples ranges between 12 and 1000, consisting of traces of length
up to 15. Furthermore, we derive a second benchmark from the first one, by
introducing 5% noise: for each sample of the benchmark, we invert the labels of
up to 5% of the traces, randomly.

We evaluate the performance of all the algorithms on the two benchmarks
previously defined. We set a timeout of 900s on each run. Table 1 presents the
parameters of the algorithms, as well as their respective performances.

We first compare MaxSAT-flie (proposed in this paper) and SAT-flie (pro-
posed in [15]). Figure 3 presents a comparison of the running time of these two
algorithms, on each sample of the benchmark. With κ = 0.001, MaxSAT-flie
performs worse than SAT-flie. This is largely due to the fact that SAT solvers

2 We adapted SAT-DT to learn decision trees with a similar stopping criteria as ours.
3 https://github.com/cryhot/samples2LTL.

https://github.com/cryhot/samples2LTL

Learning Linear Temporal Properties from Noisy Data 87

100 101 102 103
100

101

102

103

SAT-flie

M
a
xS

A
T
-fl
ie
(κ
)

Running time in s

κ = 0.00
κ = 0.05
κ = 0.10

(a) benchmark without noise

100 101 102 103
100

101

102

103

SAT-flie

M
a
xS

A
T
-fl
ie
(κ
)

Running time in s

κ = 0.00
κ = 0.05
κ = 0.10

(b) benchmark with 5% noise

Fig. 3. Running time comparison of SAT-flie and MaxSAT-flie

10−3 10−2 10−1 100 101

κ = 0.00
κ = 0.05
κ = 0.10

Running time ratio

benchmark without noise

10−3 10−2 10−1 100 101

κ = 0.00
κ = 0.05
κ = 0.10

Running time ratio

benchmark with 5% noise

Fig. 4. Comparison of the ratio of the running time of MaxSAT-flie(κ) over the running
time of SAT-flie for all samples in the benchmarks.

are specifically designed to handle this type of problem. For greater values of κ,
MaxSAT-flie performs better than SAT-flie, especially on the benchmark with
noise (Fig. 3b). To affirm this claim, we calculate the ratio of the running times
of MaxSAT-flie and SAT-flie for each sample of the benchmarks (Fig. 4). For
example, given a sample S , this ratio would be the running time of MaxSAT-flie
on S divided by the running time of SAT-flie on S .

We evaluate the size of the inferred LTL formula by MaxSAT-flie and SAT-
flie on each sample of the benchmark in Fig. 5. The size of the formula inferred
by MaxSAT-flie will by design be less than or equal to the size of the formula
inferred by SAT-flie. As the running time of both algorithms grows exponentially
with the number of iterations, it is lower for MaxSAT-flie when the inferred
formula size is strictly smaller than the size of the formula inferred by SAT-flie.
However, when both inferred formulas have the same size, there is no running
time gain, hence the median running time often being equal to 1 in Fig. 4.

We now compare the two algorithms proposed in this paper: did MaxSAT-DT
perform any better than MaxSAT-flie? To be able to compare learned decision
trees to learned LTL formulas, we measure the size of a tree t in terms of the size
of the formula ϕt this tree encodes. Figure 6 presents a comparison of the run-
ning time ratio as well as the inferred formula size ratio of these two algorithms,

88 J.-R. Gaglione et al.

1 2 3 4 5 6 7 ∅
1
2
3
4
5
6
7
∅

SAT-flie

M
a
xS

A
T
-fl
ie
(κ

=
0.
10

)

Inferred LTLf formula size

(a) benchmark without noise

1 2 3 4 5 6 7 ∅
1
2
3
4
5
6
7
∅

SAT-flie

M
a
xS

A
T
-fl
ie
(κ

=
0.
10

)

Inferred LTLf formula size

(b) benchmark with 5% noise

Fig. 5. Inferred LTL formula size comparison of SAT-flie and MaxSAT-flie with thresh-
old κ = 0.10 on all samples. The surface of a bubble is proportional to the number of
samples it represents. The timed out instances are represented by ∅.

10−410−310−210−1 100 101 102

μ = 0.8

μ = 0.6

Running time ratio

All benchmarks

100 101 102

μ = 0.8

μ = 0.6

Inferred LTL formula size ratio

All benchmarks

Fig. 6. On each sample of the benchmarks, comparison of the ratio of the performances
of MaxSAT-DT (μ) over the performances of MaxSAT-flie, with κ = 0.05 for both
algorithms, and where both algorithms did not time out.

on each sample of the benchmark that did not time out with both algorithms.
We observe that the running time is generally lower for MaxSAT-DT than for
MaxSAT-flie. However, MaxSAT-DT tends to infer larger formulas than formu-
las inferred by MaxSAT-flie. This trade-off between running time and inferred
formula size is more pronounced for lower values of μ.

Regarding SAT-DT (proposed in [15]), we observe a large number of time-
outs, especially when evaluated on the benchmark with 5% noise.

7 Conclusion

We developed two novel algorithms for inferring LTLf formulas from a set of
labeled traces allowing misclassifications. Moreover, we demonstrated that our
algorithms are efficient in inferring formulas, especially from noisy data. As a
part of future work, we like to apply our MaxSAT-based approach for inferring
models in other formalisms that incorporate SAT-based learning (e.g. [18]).

Learning Linear Temporal Properties from Noisy Data 89

Acknowledgements. This work has been supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract no. HR001120C0032, ARL
W911NF2020132, ARL ACC-APG-RTP W911NF, NSF 1646522 and DFG Grant no.
434592664.

References

1. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli,
C.: SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In:
FMCAD, pp. 93–103. IEEE (2020)

2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

3. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artif. Intell. 116(1–2), 123–191 (2000)

4. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree app-
roach to data classification using signal temporal logic. In: Proceedings of Interna-
tional Conference on Hybrid Systems: Computation and Control, pp. 1–10. ACM
(2016)

5. Brunello, A., Sciavicco, G., Stan, I.E.: Interval temporal logic decision tree learning.
In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol.
11468, pp. 778–793. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19570-0 50

6. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7–15. FMSP 1998. Association for Computing
Machinery (1998)

8. Gaglione, J., Neider, D., Roy, R., Topcu, U., Xu, Z.: Learning linear temporal
properties from noisy data: a maxsat approach. CoRR abs/2104.15083 (2021)

9. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. IJCAI/AAAI (2013)

10. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model-based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transf. 20(1), 79–93 (2017). https://doi.org/10.1007/s10009-017-0447-4

11. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
34(11), 1704–1717 (2015)

12. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear
temporal logic specifications for contrastive explanations. In: IJCAI, pp. 5591–
5598. ijcai.org (2019)

13. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-030-19570-0_50
https://doi.org/10.1007/978-3-030-19570-0_50
https://doi.org/10.1007/s10009-017-0447-4
https://doi.org/10.1007/978-3-540-78800-3_24

90 J.-R. Gaglione et al.

15. Neider, D., Gavran, I.: Learning linear temporal properties. In: Bjørner, N.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD
2018, pp. 1–10. IEEE (2018)

16. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual Sym-
posium on Foundations of Computer Science, pp. 46–57 (1977)

17. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986).
https://doi.org/10.1007/BF00116251

18. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAI, pp. 2213–2219. ijcai.org (2020)

19. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation
(Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/
10.1007/978-3-642-81955-1 28

20. Xu, Z., Birtwistle, M., Belta, C., Julius, A.: A temporal logic inference approach
for model discrimination. IEEE Life Sci. Lett. 2(3), 19–22 (2016)

21. Xu, Z., Julius, A.A.: Census signal temporal logic inference for multiagent group
behavior analysis. IEEE Trans. Autom. Sci. Eng. 15(1), 264–277 (2018)

22. Xu, Z., Nettekoven, A.J., Agung Julius, A., Topcu, U.: Graph temporal logic infer-
ence for classification and identification. In: 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 4761–4768 (2019)

23. Xu, Z., Ornik, M., Julius, A.A., Topcu, U.: Information-guided temporal logic
inference with prior knowledge. In: 2019 American Control Conference (ACC), pp.
1891–1897 (2019)

24. Xu, Z., Belta, C., Julius, A.: Temporal logic inference with prior information: an
application to robot arm movements. In: IFAC Conference on Analysis and Design
of Hybrid Systems (ADHS), pp. 141–146 (2015)

25. Xu, Z., Julius, A.A.: Robust temporal logic inference for provably correct fault
detection and privacy preservation of switched systems. IEEE Syst. J. 13(3), 3010–
3021 (2019)

https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

Mining Interpretable Spatio-Temporal
Logic Properties for Spatially Distributed

Systems

Sara Mohammadinejad1(B) , Jyotirmoy V. Deshmukh1 ,
and Laura Nenzi2,3

1
University of Southern California, Los Angeles, USA

{saramoha,jdeshmuk}@usc.edu
2

University of Trieste, Trieste, Italy
lnenzi@units.it

3
TU Wien, Vienna, Austria

Abstract. The Internet-of-Things, complex sensor networks, multi-
agent cyber-physical systems are all examples of spatially distributed
systems that continuously evolve in time. Such systems generate huge
amounts of spatio-temporal data, and system designers are often inter-
ested in analyzing and discovering structure within the data. There
has been considerable interest in learning causal and logical proper-
ties of temporal data using logics such as Signal Temporal Logic (STL);
however, there is limited work on discovering such relations on spatio-
temporal data. We propose the first set of algorithms for unsupervised
learning for spatio-temporal data. Our method does automatic fea-
ture extraction from the spatio-temporal data by projecting it onto the
parameter space of a parametric spatio-temporal reach and escape logic
(PSTREL). We propose an agglomerative hierarchical clustering tech-
nique that guarantees that each cluster satisfies a distinct STREL for-
mula. We show that our method generates STREL formulas of bounded
description complexity using a novel decision-tree approach which gen-
eralizes previous unsupervised learning techniques for Signal Temporal
Logic. We demonstrate the effectiveness of our approach on case studies
from diverse domains such as urban transportation, epidemiology, green
infrastructure, and air quality monitoring.

Keywords: Distributed systems ⋅ Unsupervised learning ⋅
Spatio-temporal data ⋅ Interpretability ⋅ Spatio-temporal reach and
escape logic

1 Introduction

Due to rapid improvements in sensing and communication technologies, embed-
ded systems are now often spatially distributed. Such spatially distributed

J. V. Deshmukh and L. Nenzi—Equal contribution.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 91–107, 2021.
https://doi.org/10.1007/978-3-030-88885-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_7&domain=pdf
http://orcid.org/0000-0002-4986-5553
http://orcid.org/0000-0003-4683-5540
http://orcid.org/0000-0003-2263-9342
https://doi.org/10.1007/978-3-030-88885-5_7

92 S. Mohammadinejad et al.

systems (SDS) consist of heterogeneous components embedded in a specific topo-
logical space, whose time-varying behaviors evolve according to complex mutual
inter-dependence relations [16]. In the formal methods community, tremendous
advances have been achieved for verification and analysis of distributed systems.
However, most formal techniques abstract away the specific spatial aspects of
distributed systems, which can be of crucial importance in certain applications.
For example, consider the problem of developing a bike-sharing system (BSS)
in a “sharing economy.” Here, the system consists of a number of bike stations
that would use sensors to detect the number of bikes present at a station, and
use incentives to let users return bikes to stations that are running low. The
bike stations themselves could be arbitrary locations in a city, and the design
of an effective BSS would require reasoning about the distance to nearby loca-
tions, and the time-varying demand or supply at each location. For instance, the
property “there is always a bike and a slot available at distance d from a bike
station” depends on the distance of the bike station to its nearby stations. Eval-
uating whether the BSS functions correctly is a verification problem where the
specification is a spatio-temporal logic formula. Similarly, consider the problem
of coordinating the movements of multiple mobile robots, or a HVAC controller
that activates heating or cooling in parts of a building based on occupancy.
Given spatio-temporal execution traces of nodes in such systems, we may be
interested in analyzing the data to solve several classical formal methods prob-
lems such as fault localization, debugging, invariant generation or specification
mining. It is increasingly urgent to formulate methods that enable reasoning
about spatially-distributed systems in a way that explicitly incorporates their
spatial topology.

In this paper, we focus on one specific aspect of spatio-temporal reasoning:
mining interpretable logical properties from data in an SDS. We model a SDS
as a directed or undirected graph where individual compute nodes are vertices,
and edges model either the connection topology or spatial proximity. In the past,
analytic models based on partial differential equations (e.g. diffusion equations)
[6] have been used to express the spatio-temporal evolution of these systems.
While such formalisms are incredibly powerful, they are also quite difficult to
interpret. Traditional machine learning (ML) approaches have also been used
to uncover the structure of such spatio-temporal systems, but these techniques
also suffer from the lack of interpretability. Our proposed method draws on
a recently proposed logic known as Spatio-Temporal Reach and Escape Logic
(STREL) [2]. Recent research on STREL has focused on efficient algorithms
for runtime verification and monitoring of STREL specifications [2,3]. However,
there is no existing work on mining STREL specifications.

Mined STREL specifications can be useful in many different contexts in the
design of spatially distributed systems; an incomplete list of usage scenarios
includes the following applications: (1) Mined STREL formulas can serve as
spatio-temporal invariants that are satisfied by the computing nodes, (2) STREL
formulas could be used by developers to characterize the properties of a deployed
spatially distributed system, which can then be used to monitor any subsequent

Mining Spatio-Temporal Logic Formulas 93

updates to the system, (3) Clustering nodes that satisfy similar STREL formulas
can help debug possible bottlenecks and violations in communication protocols
in such distributed systems.

There is considerable amount of recent work on learning temporal logic for-
mulas from data [8,11,14,15]. In particular, the work in this paper is closest to
the work on unsupervised clustering of time-series data using Signal Temporal
Logic [11]. In this work, the authors assume that the user provides a Parametric
Signal Temporal Logic (PSTL) formula, and the procedure projects given tem-
poral data onto the parameter domain of the PSTL formula. The authors use
off-the-shelf clustering techniques to group parameter values and identify STL
formulas corresponding to each cluster. There are a few hurdles in applying such
an approach to spatio-temporal data. First, in [11], the authors assume a mono-
tonic fragment of PSTL: there is no such fragment identified in the literature for
STREL. Second, in [11], the authors assume that clusters in the parameter space
can be separated by axis-aligned hyper-boxes. Third, given spatio-temporal data,
we can have different choices to impose the edge relation on nodes, which can
affect the formula we learn.

To address the shortcomings of previous techniques, we introduce PSTREL,
by treating threshold constants in signal predicates, time bounds in temporal
operators, and distance bounds in spatial operators as parameters. We then iden-
tify a monotonic fragment of PSTREL, and propose a multi-dimensional binary-
search based procedure to infer tight parameter valuations for the given PSTREL
formula. We also explore the space of implied edge relations between spatial
nodes, proposing an algorithm to define the most suitable graph. After defin-
ing a projection operator that maps a given spatio-temporal signal to parame-
ter values of the given PSTREL formula, we use an agglomerative hierarchical
clustering technique to cluster spatial locations into hyperboxes. We improve
the method of [11] by introducing a decision-tree based approach to systemat-
ically split overlapping hyperbox clusters. The result of our method produces
axis-aligned hyperbox clusters that can be compactly described by an STREL
formula that has length proportional to the number of parameters in the given
PSTREL formula (and independent of the number of clusters). Finally, we give
human-interpretable meanings for each cluster. We show the usefulness of our
approach considering four benchmarks: COVID-19 data from LA County, Out-
door air quality data, BSS data and movements of the customer in a Food Court.

Running Example: A Bike Sharing System (BSS). To ease the exposition
of key ideas in the paper, we use an example of a BSS deployed in the city of
Edinburgh, UK. The BSS consists of a number of bike stations, distributed over
a geographic area. Each station has a fixed number of bike slots. Users can pick
up a bike, use it for a while, and then return it to another station in the area.
The data that we analyze are the number of bikes (B) and empty slots (S) at
each time step in each bike station. With the advent of electric bikes, BSS have
become an important aspect in urban mobility, and such systems make use of
embedded devices for diverse purposes such as tracking bike usage, billing, and
displaying information about availability to users over apps. Figure 1b shows the

94 S. Mohammadinejad et al.

Fig. 1. Interpretable clusters automatically identified by our technique.

map of the Edinburgh city with the bike stations. Different colors of the nodes
represent different learned clusters as can be seen in Fig. 1a. For example, using
our approach, we learn that stations in orange cluster have a long wait time,
and stations in red cluster are the most undesirable stations as they have long
wait time and do not have nearby stations with bike availability. If we look at
the actual location of red points in Fig. 1b, they are indeed far away stations.

2 Background

In this section, we introduce the notation and terminology for spatial models
and spatio-temporal traces and we describe Spatio-Temporal Reach and Escape
Logic (STREL).

Definition 1 (Spatial Model). A spatial model S is defined as a pair ⟨L,W ⟩,
where L is a set of nodes or locations and W ⊆ L × R × L is a nonempty
relation associating each distinct pair �1, �2 ∈ L with a label w ∈ R (also denoted
�1

w
−→ �2).

There are many different choices possible for the proximity relation W ; for exam-
ple, W could be defined in a way that the edge-weights indicate spatial proximity,
communication network connectivity etc. Given a set of locations, unless there is
a user-specified W , we note that there are several graphs (and associated edge-
weights) that we can use to express spatial models. We explore these possibilities
in Sect. 3. For the rest of this section, we assume that W is defined using the
notion of (δ, d)-connectivity graph as defined in Definition 2.

Definition 2 ((δ, d)-connectivity spatial model). Given a compact metric
space M with the distance metric d ∶ M ×M → R

≥0, a set of locations L that is
a finite subset of M , and a fixed δ ∈ R, δ > 0, a (δ, d)-connectivity spatial model
is defined as ⟨L,W ⟩, where (�1, w, �2) ∈ W iff d(�1, �2) = w, and w < δ.

Mining Spatio-Temporal Logic Formulas 95

Example 1. In the BSS, each bike station is a node/location in the spatial model,
where locations are assumed to lie on the metric space defined by the 3D spher-
ical manifold of the earth’s surface; each location is defined by its latitude and
longitude, and the distance metric is the Haversine distance1. Figure 2b shows
the δ-connectivity graph of the Edinburgh BSS, with δ = 1 km.

Definition 3 (Route). For a spatial model S = ⟨L,W ⟩, a route τ is an infinite
sequence �0�1⋯�k⋯ such that for any i ≥ 0, �i

wi−−→ �i+1.

For a route τ , τ[i] denotes the i
th node �i in τ , τ[i..] indicates the suffix route

�i�i+1..., and τ(�) denotes min i ∣ τ[i] = �, i.e. the first occurrence of � in τ . Note
that τ(�) = ∞ if ∀iτ[i] ≠ �. We use T(S) to denote the set of routes in S, and
T(S, �) to denote the set of routes in S starting from � ∈ L. We can use routes to
define the route distance between two locations in the spatial model as follows.

Definition 4 (Route Distance and Spatial Model Induced Distance).
Given a route τ , the route distance along τ up to a location � denoted d

τ
S(�) is

defined as ∑
τ(�)
i=0 wi. The spatial model induced distance between locations �1 and

�2 (denoted dS(�1, �2)) is defined as: dS(�1, �2) = minτ∈T(S,�1) d
τ
S(�2).

Note that by the above definition, d
τ
S(�) = 0 if τ[0] = � and ∞ if � is not a part

of the route (i.e. τ(�) = ∞), and dS(�1, �2) = ∞ if there is no route from �1 to
�2.

Spatio-temporal Time-Series. A spatio-temporal trace associates each loca-
tion in a spatial model with a time-series trace. Formally, a time-series trace x is
a mapping from a time domain T to some bounded and non-empty set known as
the value domain V. Given a spatial model S = ⟨L,W ⟩, a spatio-temporal trace
σ is a function from L×T to V. We denote the time-series trace at location � by
σ(�).

Example 2. Consider a spatio-temporal trace σ of the BSS defined such that for
each location � and at any given time t, σ(�, t) is (B(t), S(t)), where B(t) and
S(t) are respectively the number of bikes and empty slots at time t.

2.1 Spatio-temporal Reach and Escape Logic (STREL)

Syntax. STREL is a logic that was introduced in [2] as a formalism for monitor-
ing spatially distributed cyber-physical systems. STREL extends Signal Tempo-
ral Logic [12] with two spatial operators, reach and escape, from which is possible
to derive other three spatial modalities: everywhere, somewhere and surround.
The syntax of STREL is given by:

ϕ ∶∶= true ∣ μ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 RD ϕ2 ∣ ED ϕ.

1
Haversine Formula gives minimum distance between any two points on sphere by
using their latitudes and longitudes.

96 S. Mohammadinejad et al.

Here, μ is an atomic predicate (AP) over the value domain V. Negation ¬ and
conjunction ∧ are the standard Boolean connectives, while UI is the temporal
operator until with I being a non-singular interval over the time-domain T. The
operators RD and ED are spatial operators where D denotes an interval over the
distances induced by the underlying spatial model, i.e., an interval over R

≥0.

Semantics. A STREL formula is evaluated piecewise over each location and
each time appearing in a given spatio-temporal trace. We use the notation
(σ, �) ⊧ ϕ if the formula ϕ holds true at location � for the given spatio-temporal
trace σ. The interpretation of atomic predicates, Boolean operations and tem-
poral operators follows standard semantics for Signal Temporal Logic: E.g., for
a given location � and a given time t, the formula ϕ1UIϕ2 holds at � iff there
is some time t

′ in t ⊕ I where ϕ2 holds, and for all times t
′′ in [t, t

′
), ϕ1 holds.

Here the ⊕ operator defines the interval obtained by adding t to both interval
end-points. We use standard abbreviations FIϕ = trueUIϕ and GIϕ = ¬FIϕ,
for the eventually and globally operators. The reachability (RD) and escape
(ED)operators are spatial operators. The formula ϕ1RDϕ2 holds at a location �
if there is a route τ starting at � that reaches a location �

′ that satisfies ϕ2, with
a route distance d

τ
S(�

′
) that lies in the interval D, and for all preceding locations,

including �, ϕ1 holds true. The escape formula EDϕ holds at a location � if there
exists a location �

′ at a route distance dS(�1, �2) that lies in the interval D and
a route starting at � and reaching �

′ consisting of locations that satisfy ϕ. We
define two other operators for notational convenience: The somewhere operator,
denoted
[0,d]ϕ, is defined as trueR[0,d]ϕ, and the everywhere operator, denoted
⧈[0,d]ϕ is defined as ¬
[0,d] ¬ϕ, where d is a real positive value; their meaning
is described in the next example.

Example 3. In the BSS, we use atomic predicates S > 0 and B > 10, and the
formula G[0,3hours]
[0,1km] (B > 10) is true if always within the next 3 h, at
a location �, there is some location �

′ at most 1 km from � where, the number
of bikes available exceed 10. Similarly, the formula ⧈[0,1km]G[0,30min](S > 0) is
true at a location � if for all locations within 1 km, for the next 30 mins, there
is no empty slot.

3 Constructing a Spatial Model

In this section, we present four approaches to construct a spatial model, and
discuss the pros and cons of each approach.

1. (∞, d)-connectivity spatial model: This spatial model corresponds to the
(δ, d)-connectivity spatial model as presented in Definition 2, where we set
δ = ∞. We note that this gives us a fully connected graph, i.e. where ∣W ∣
is O(∣L∣

2
). We remark that our learning algorithm uses monitoring STREL

formulas as a sub-routine, and from Lemma 2 in Appendix2, we can see that
2
Algorithms and Appendix of the paper are provided in the arXiv version
due to lack of space.

https://arxiv.org/abs/2106.08548

Mining Spatio-Temporal Logic Formulas 97

Fig. 2. Different approaches for constructing the spatial model for the BSS. (a)
shows an (∞, dhvrsn)-connectivity spatial model where dhvrsn is the Haversine distance
between locations. (b) shows a (δ, dhvrsn)-connectivity spatial model where δ = 1 km.
Observe that the spatial model is disconnected. (c) shows an MST-spatial model. (d)
shows an (α, dhvrsn) enhanced MSG spatial model with α = 2. Observe that this spatial
model is sparse compared even to the (δ, dhvrsn)-connectivity spatial model.

as the complexity of monitoring a STREL formula is linear in ∣W ∣, a fully
connected graph is undesirable.

2. (δ, d)-connectivity spatial model: This is the model presented in Defini-
tion 2, where δ is heuristically chosen in an application-dependent fashion.
Typically, the δ we choose is much smaller compared to the distance between
the furthest nodes in the given topological space. This gives us W that is
sparse, and thus with a lower monitoring cost; however, a small δ can lead
to a disconnected spatial model which can affect the accuracy of the learned
STREL formulas. Furthermore, this approach may overestimate the spatial
model induced distance between two nodes (as in Definition 4) that are not
connected by a direct edge. For instance, in Fig. 2b, nodes 1 and 8 are con-
nected through the route 1 → 9 → 8, and sum of the edge-weights along this
route is larger than the actual (metric) distance of 1 and 8.

3. MST-spatial model: To minimize the number of edges in the graph while
keeping the connectivity of the graph, we can use Minimum Spanning Tree
(MST) as illustrated in Fig. 2c. This gives us ∣W ∣ that is O(∣L∣), which makes
monitoring much faster, while resolving the issue of disconnected nodes in
the (δ, d)-spatial model. However, an MST can also lead to an overestimate
of the spatial model induced distance between some nodes in the graph. For
example, in Fig. 2c, the direct distance between nodes 1 and 8 is much smaller
than their route distance (through the route 1 → 2 → 3 → 4 → 5 → 6 → 7 →
8).

4. (α, d)-Enhanced MSG Spatial Model: To address the shortcomings of
previous approaches, we propose constructing a spatial model that we call the
(α, d)-Enhanced Minimum Spanning Graph Spatial model. First, we construct
an MST over the given set of locations and use it to define W and pick α
as some number greater than 1. Then, for each distinct pair of locations
�1, �2, we compute the shortest route distance dS(�1, �2) between them in the
constructed MST, and compare it to their distance d(�1, �2) in the metric
space. If dS(�1, �2) > α ⋅d(�1, �2), then we add an edge (�1, d(�1, �2), �2) to W .

98 S. Mohammadinejad et al.

The resulting spatial model is no longer a tree, but typically is still sparse3.
In our case studies, the cost of building the enhanced MSG spatial model was
insignificant compared to the other steps in the learning procedure4.

4 Learning STREL Formulas from Data

In this section, we first introduce Parametric Spatio-Temporal Reach and Escape
Logic (PSTREL) and the notion of monotonicity for PSTREL formulas. Then,
we introduce a projection function π that maps a spatio-temporal trace to a
valuation in the parameter space of a given PSTREL formula. We then cluster
the trace-projections using Agglomerative Hierarchical Clustering, and finally
learn a compact STREL formula for each cluster using Decision Tree techniques.

Parametric STREL (PSTREL). Parametric STREL (PSTREL) is a logic
obtained by replacing one or more numeric constants appearing in STREL for-
mulas by parameters; parameters appearing in atomic predicates are called mag-
nitude parameters PV, and those appearing in temporal and spatial operators
are called timing PT and spatial parameters PdS respectively. Each parameter in
PV take values from V, those in PT take values from T, and those in PdS take
values from R

≥0 (i.e. the set of values that the dS metric can take for a given
spatial model). We define a valuation function ν that maps all parameters in a
PSTREL formula to their respective values.

Example 4. Consider the PSTREL versions of the STREL formulas introduced
in Example 3 ϕ(pτ ,pd,pc) = G[0,pτ]
[0,pd] (B > pc). The valuation ν:
pτ ↦ 3 h, pd ↦ 1km, and pc ↦ 10 returns the STREL formula introduced
in Example 3.

Definition 5 (Parameter Polarity, Monotonic PSTREL). A polarity
function γ maps a parameter to an element of {+,−}, and is defined as fol-
lows:

γ(p) = +
def= ν

′
(p) > ν(p) ∧ (σ, �) ⊧ ϕ(ν(p)) ⇒ (σ, �) ⊧ ϕ(ν

′
(p))

γ(p) = −
def= ν

′
(p) < ν(p) ∧ (σ, �) ⊧ ϕ(ν(p)) ⇒ (σ, �) ⊧ ϕ(ν

′
(p))

The monotonic fragment of PSTREL consists of PSTREL formulas where all
parameters have either positive or negative polarity.

3
The complete algorithm, Algorithm 1 is provided in the arXiv version. Algorithm 1
is a simple way of constructing an (α, d)-enhanced MSG spatial model, and incurs a
one-time cost of O(∣L∣

2 ⋅(∣L∣+ ∣W ∣ ⋅ log(∣L∣))). We believe that the time complexity
can be further improved using a suitable dynamic programming based approach.

4
The runtimes of our learning approach for different kinds of spatial models on various
case studies is illustrated in Table 1 in the arXiv version.

https://arxiv.org/abs/2106.08548
https://arxiv.org/abs/2106.08548

Mining Spatio-Temporal Logic Formulas 99

In simple terms, the polarity of a parameter p is positive if it is easier to sat-
isfy ϕ as we increase the value of p and is negative if it is easier to satisfy ϕ
as we decrease the value of p. The notion of polarity for PSTL formulas was
introduced in [1], and we extend this to PSTREL and spatial operators. The
polarity for PSTREL formulas ϕ(d1, d2) of the form
[d1,d2]ψ, ψ1R[d1,d2]ψ2, and
E[d1,d2]ψ are γ(d1) = − and γ(d2) = +, i.e. if a spatio-temporal trace satisfies
ϕ(ν(d1), ν(d2)), then it also satisfies any STREL formula over a strictly larger
spatial model induced distance interval, i.e. by decreasing ν(d1) and increas-
ing ν(d2). For a formula ⧈[d1,d2]ψ, γ(d1) = + and γ(d2) = −, i.e. the formula
obtained by strictly shrinking the distance interval. The proofs are simple, and
provided in Appendix for completeness.

Definition 6 (Validity Domain, Boundary). Let P = V∣PV∣ × T
∣PT∣ ×

(R
≥0
)
∣PdS ∣ denote the space of parameter valuations, then the validity domain

V of a PSTREL formula at a location � with respect to a set of spatio-temporal
traces Σ is defined as follows: V (ϕ(p), �, Σ) = {ν(p) ∣ p ∈ P, σ ∈ Σ, (σ, �) ⊧
ϕ(ν(p))} The validity domain boundary ∂V (ϕ(ϕ), �, Σ) is defined as the inter-
section of V (ϕ, �,Σ) with the closure of its complement.

Spatio-temporal Trace Projection. We now explain how a monotonic
PSTREL formula ϕ(p) can be used to automatically extract features from a
spatio-temporal trace. The main idea is to define a total order >P on the param-
eters p (i.e. parameter priorities) that allows us to define a lexicographic projec-
tion of the spatio-temporal trace σ at each location � to a parameter valuation
ν(p) (this is similar to assumptions made in [8,11]). We briefly remark how we
can relax this assumption later. Let νj denote the valuation of the j

th parameter.

Definition 7 (Parameter Space Ordering, Projection). A total order on
parameter indices j1 > . . . > jn imposes a total order ≺lex on the parameter space
defined as:

ν(p) ≺lex ν
′
(p) ⇔ ∃jk s.t. {

γ(pjk
) = + ⇒ νjk

< ν
′
jk

γ(pjk
) = − ⇒ νjk

> ν
′
jk

and ∀m <P k, νm = ν
′
m.

Given above total order, πlex(σ, �) = inf≺lex
{ν(p) ∈ ∂V (ϕ(p), {σ}}.

In simple terms, given a total order on the parameters, the lexicographic projec-
tion maps a spatio-temporal trace to valuations that are least permissive w.r.t.
the parameter with the greatest priority, then among those valuations, to those
that are least permissive w.r.t. the parameter with the next greater priority, and
so on. Finding a lexicographic projection can be done by sequentially performing
binary search on each parameter dimension [11]5. It is easy to show that πlex

returns a valuation on the validity domain boundary.

5
Algorithm 2 is provided in the arXiv version.

https://arxiv.org/abs/2106.08548

100 S. Mohammadinejad et al.

Remark 1. The order of parameters is assumed to be provided by the user and is
important as it affects the unsupervised learning algorithms for clustering that
we apply next. Intuitively, the order corresponds to what the user deems as more
important. For example, consider the formula G[0,3hours]
[0,d] (B > c). Note
that γ(d) = +, and γ(c) = −. Now if the user is more interested in the radius
around each station where the number of bikes exceeds some threshold (possibly
0) within 3 h, then the order is d >P c. If she is more interested in knowing what
is the largest number of bikes available in any radius (possibly ∞) always within
3 h, then c >P d.

Remark 2. Similar to [18], we can compute an approximation of the validity
domain boundary for a given trace, and then apply a clustering algorithm on the
validity domain boundaries. This does not require the user to specify parameter
priorities. In all our case studies, the parameter priorities were clear from the
domain knowledge, and hence we will investigate this extension in the future.

Clustering. The projection operator πlex(σ, �) maps each location to a valuation
in the parameter space. These valuation points serve as features for off-the-shelf
clustering algorithms. In our experiments, we use the Agglomerative Hierarchical
Clustering (AHC) technique [5] to automatically cluster similar valuations. AHC
is a bottom-up approach that starts by assigning each point to a single cluster,
and then merging clusters in a hierarchical manner based on a similarity criteria6.
An important hyperparameter for any clustering algorithm is the number of
clusters to choose. In some case studies, we use domain knowledge to decide the
number of clusters. Where such knowledge is not available, we use the Silhouette
metric to compute the optimal number of clusters. Silhouette is a ML method
to interpret and validate consistency within clusters by measuring how well each
point has been clustered. The silhouette metric ranges from −1 to +1, where a
high silhouette value indicates that the object is well matched to its own cluster
and poorly matched to neighboring clusters [17].

Example 5. Figure 1a shows the results of projecting the spatio-temporal traces
from BSS through the PSTREL formula ϕ(τ, d) shown in Eq. (1).

ϕ(τ, d) = G[0,3](ϕwait(τ) ∨ ϕwalk(d)) (1)

In the above formula, ϕwait(τ) is defined as F[0,τ](B ≥ 1) ∧ (F[0,τ]S ≥ 1), and
ϕwalk(d) is
[0,d](B ≥ 1) ∧
(S ≥ 1). ϕ(τ, d) means that for the next 3 h,
either ϕwait(τ) or ϕwalk(d) is true. Locations with large values of τ have long
wait times or with large d values are typically far from a location with bike/slot
availability (and are thus undesirable). Locations with small τ, d are desirable.
Each point in Fig. 1a shows πlex(σ, �) applied to each location and the result of
applying AHC with 3 clusters.

6
We used complete-linkage criteria which assumes the distance between clusters equals
the distance between those two elements (one in each cluster) that are farthest away
from each other.

Mining Spatio-Temporal Logic Formulas 101

Let numC be the number of clusters obtained after applying AHC to the
parameter valuations. Let C denote the labeling function mapping πlex(σ, �) to
{1, . . . ,numC }. The next step after clustering is to represent each cluster in
terms of an easily interpretable STREL formula. Next, we propose a decision
tree-based approach to learn an interpretable STREL formula from each cluster.

Learning STREL Formulas from Clusters. The main goal of this subsection
is to obtain a compact STREL formula to describe each cluster identified by
AHC. We argue that bounded length formulas tend to be human-interpretable,
and show how we can automatically obtain such formulas using a decision-tree
approach. Decision-trees (DTs) are a non-parametric supervised learning method
used for classification and regression[13]. Given a finite set of points X ⊆ R

m and
a labeling function L that maps each point x ∈ X to some label L(x), the DT
learning algorithm creates a tree whose non-leaf nodes nj are annotated with
constraints φj , and each leaf node is associated with some label in the range
of L. Each path n1, . . . , ni, ni+1 from the root node to a leaf node corresponds
to a conjunction ⋀i

j=1 hj , where hj = ¬φj if hj+1 is the left child of hj and φj

otherwise. Each label thus corresponds to the disjunction over the conjunctions
corresponding to each path from the root node to the leaf node with that label.

Recall that after applying the AHC procedure, we get one valuation πlex(σ, �)
for each location, and its associated cluster label. We apply a DT learning algo-
rithm to each point πlex(σ, �), and each DT node is associated with a φj of the
form pj ≥ vj for some pj ∈ p.

Lemma 1. Any path in the DT corresponds to a STREL formula of length that
is O((∣P∣ + 1) ⋅ ∣ϕ∣).

Proof. Any path in the DT is a conjunction over a number of formulas of the
kind pj ≥ vj or its negation. Because ϕ(p) is monotonic in each of its parameters,
if we are given a conjunction of two conjuncts of the type pj ≥ vj and pj ≥ v

′
j ,

then depending on γ(pj), one inequality implies the other, and we can discard
the weaker inequality. Repeating this procedure, for each parameter, we will be
left with at most 2 inequalities (one specifying a lower limit and the other an
upper limit on pj). Thus, each path in the DT corresponds to an axis-aligned
hyperbox in the parameter space. Due to monotonicity, an axis-aligned hyperbox
in the parameter space can be represented by a formula that is a conjunction of
∣P∣+1 STREL formulas (negations of formulas corresponding to the ∣P∣ vertices
connected to the vertex with the most permissive STREL formula, and the most
permissive formula itself) [11] (see Fig. 3a for an example in a 2D parameter
space). Thus, each path in the DT can be described by a formula of length
O((∣P∣ + 1) ⋅ ∣ϕ∣), where ∣ϕ∣ is the length of ϕ.

Example 6. The result of applying the DT algorithm to the clusters identified
by AHC (shown in dotted lines in Fig. 1a) is shown as the axis-aligned hyper-
boxes. Using the meaning of ϕ(τ, d) as defined in Eq. (1), we learn the formula
¬ϕ(17.09, 2100)∧¬ϕ(50, 1000.98)∧ ϕ(50, 2100) for the red cluster. The last of
these conjuncts is essentially the formula true, as this formula corresponds to

102 S. Mohammadinejad et al.

Fig. 3. Illustration of clustering on the BSS locations

the most permissive formula over the given parameter space. Thus, the formula
we learn is:

ϕred = ¬G[0,3](ϕwait(17.09)∨ϕwalk(2100))∧¬G[0,3](ϕwait(50)∨ϕwalk(1000.98))

The first of these conjuncts is associated with a short wait time and the second is
associated with short walking distance. As both are not satisfied, these locations
are the least desirable.

Pruning the Decision Tree. If the decision tree algorithm produces several
disjuncts for a given label (e.g., see Fig. 4a), then it can significantly increase the
length and complexity of the formula that we learn for a label. This typically
happens when the clusters produced by AHC are not clearly separable using
axis-aligned hyperplanes. We can mitigate this by pruning the decision tree to a
maximum depth, and in the process losing the bijective mapping between cluster
labels and small STREL formulas. We can still recover an STREL formula that
is satisfied by most points in a cluster using a k-fold cross validation approach
(The formal procedure is presented in Algorithm 3 in the arXiv version.) The
idea is to loop over the maximum depth permitted from 1 to N , where N is user
provided, and for each depth performing k-fold cross validation to characterize
the accuracy of classification at that depth. If the accuracy is greater than a
threshold (90% in our experiments), we stop and return the depth as a limit
for the decision tree. Figure 4b illustrates the hyper-boxes obtained using this
approach. For this example, we could decrease the number of hyper-boxes from
11 to 3 by miss-classifying only a few data points (less than 10% of the data).

5 Case Studies

We now present the results of applying the clustering techniques developed on
three benchmarks: (1) COVID-19 data from Los Angeles County, USA, [9] (2)

https://arxiv.org/abs/2106.08548

Mining Spatio-Temporal Logic Formulas 103

Outdoor Air Quality data from California, and (3) BSS data from the city of
Edinburgh [10] (running example)7. A summary of the computational aspects of
the results is provided in Table 1. The numbers indicate that our methods scale
to spatial models containing hundreds of locations, and still learn interpretable
STREL formulas for clusters.

Table 1. Summary of results.

Case ∣L∣ ∣W ∣ Run-time (secs) numC ∣ϕcluster ∣

COVID-19 235 427 813.65 3 3 ⋅ ∣ϕ∣ + 4

BSS 61 91 681.78 3 2 ⋅ ∣ϕ∣ + 4

Air Quality 107 60 136.02 8 5 ⋅ ∣ϕ∣ + 7

Food Court* 20 35 78.24 8 3 ⋅ ∣ϕ∣ + 4

COVID-19 Data from LA County. Understanding the spread pattern of
COVID-19 in different areas is vital to stop the spread of the disease. While this
example is not related to a software system, it is nevertheless a useful example
to show the versatility of our approach to spatio-temporal data. The PSTREL
formula ϕ(c, d) =
[0,d]{F[0,τ](x > c) allows us to number of cases exceeding a
threshold c within τ = 10 days in a neighborhood of size d for a given location8.
Locations with small value of d and large value of c are unsafe as there is a large
number of new positive cases within a small radius around them.

We illustrate the clustering results in Fig. 4. Each location in Fig. 4a is asso-
ciated with a geographic region in LA county (shown in Fig. 4c), and the red
cluster corresponds to hot spots (small d and large c). Applying the DT classi-
fier on the learned clusters (shown in Fig. 4a) produces 11 hyperboxes, some of
which contain only a few points. Hence we apply our DT pruning procedure to
obtain the largest cluster that gives us at least 90% accuracy. Figure 4b shows
the results after pruning the Decision Tree. We learn the following formula:

ϕred =
[0,4691.29](F[0,10](x > 3180)) ∨
[0,15000](F[0,10](x > 5611.5)),

7
We provide results on a fourth benchmark consisting of a synthetic dataset for track-
ing movements of people in a food court building and detailed descriptions for each
benchmark in the Appenidx. All experiments were performed on an Intel Core-i7
Macbook Pro with 2.7 GHz processor and 16 GB RAM. We use an existing monitor-
ing tool MoonLight [3] in Matlab for computing the robustness of STREL formu-
las. For Agglomerative Hierarchical Clustering and Decision Tree techniques we use
scikit-learn library in Python and the Statistics and Machine Learning Toolbox in
Matlab.

8
We fix τ to 10 days and focus on learning the values of c and d for each location.

104 S. Mohammadinejad et al.

This formula means that within 4691.29 m from any red location, within 10
days, the number of new positive cases exceeds 3180. The COVID-19 data that
we used is for September 20209.

Outdoor Air Quality Data from California. We next consider Air Qual-
ity data from California gathered by the US Environmental Protection Agency
(EPA). Among reported pollutants we focus on PM2.5 contaminant, and try to
learn the patterns in the amount of PM2.5 in the air using STREL formulas.
Consider a mobile sensing network consisting of UAVs to monitor pollution, such
a STREL formula could be used to characterize locations that need increased
monitoring.

We use the PSTREL formula ϕ(c, d) = G[0,10](E[d,16000](PM2.5 < c)) and
project each location in California to the parameter space of c, d. A location �
satisfies this property if it is always true within the next 10 days, that there exists
a location �

′ at a distance more than d, and a route τ starting from � and reaching
�
′ such that all the locations in the route satisfy the property PM2.5 < c. Hence,

it might be possible to escape to a location at a distance greater than d always
satisfying property PM2.5 < c. The results are shown in Fig. 5a. Cluster 8 is
the best cluster as it has a small value of c and large value of d which means
that there exists a long route from the locations in cluster 8 with low density of
PM2.5. Cluster 3 is the worst as it has a large value of c and a small value of
d. The formula for cluster 3 is ϕ3 = ϕ(500, 0)∧¬ϕ(500, 2500)∧¬ϕ(216, 0). ϕ3

holds in locations where, in the next 10 days, PM2.5 is always less than 500,
but at least in 1 day PM2.5 reaches 216 and there is no safe route (i.e. locations
along the route have PM2.5 < 500) of length at least 2500.

Fig. 4. Procedure to learn STREL formulas from COVID-19 data

9
In Fig. 6 in the appendix of the arXiv version, we show the results of STREL cluster-
ing for 3 different months in 2020, which confirms the rapid spread of the COVID-19
virus in LA county from April 2020 to September 2020. Furthermore, we can clearly
see spread of the virus around the hot spots during the time, a further validation of
our approach.

https://arxiv.org/abs/2106.08548

Mining Spatio-Temporal Logic Formulas 105

Fig. 5. Clustering experiments on the California Air Quality Data

6 Related Work and Conclusion

Traditional ML Approaches for Time-Series Clustering. Time-series
clustering is a popular area in the domain of machine learning and data min-
ing. Some techniques for time-series clustering combine clustering methods such
as KMeans [7], Hierarchical Clustering, agglomerative clustering [4] and etc.,
with similarity metrics between time-series data such as the Euclidean distance,
dynamic time-warping (DTW) distance, and statistical measures (such as mean,
median, correlation, etc.). Some recent works such as the works on shapelets
automatically identify distinguishing shapes in the time-series data [19]. Such
shapelets serve as features for ML tasks. All these approaches are based on
shape-similarity which might be useful in some applications; however, for appli-
cations that the user is interested in mining temporal information from data,
dissimilar traces might be clustered in the same group [11]. Furthermore, such
approaches may lack interpretability as we showed in BSS case study.

STL-Based Clustering of Time-Series Data. There is considerable amount
of recent work on learning temporal logic formulas from time-series data using
logics such as Signal Temporal Logic (STL) [8,11,14,15]; however, there is no
work on discovering such relations on spatio-temporal data. In particular, the
work in [11] which addresses unsupervised clustering of time-series data using
Signal Temporal Logic is closest to our work. There are a few hurdles in applying
such an approach to spatio-temporal data as explained in Sect. 1. We address
all the hurdles in the current work.

Monitoring Spatio-temporal Properties. There is considerable amount of
recent work such as [2,3] on monitoring spatio-temporal properties. Particularly,
MoonLight [3] is a recent tool for monitoring of STREL properties, and in our
current work, we use MoonLight for computing the robustness of spatio-temporal
data with respect to STREL formulas. MoonLight uses (δ, d)-connectivity app-
roach for creating a spatial model, which has several issues, including dis-
connectivity and distance overestimation. We resolve these issues by proposing
our new method for creating the spatial graph, which we call Enhanced MSG.

106 S. Mohammadinejad et al.

While there are many works on monitoring of spatio-temporal logic, to the best
of our knowledge, there is no work on automatically inferring spatio-temporal
logic formulas from data that we address in this work.

Conclusion. In this work, we proposed a technique to learn interpretable
STREL formulas from spatio-temporal time-series data for Spatially Distributed
Systems. First, we introduced the notion of monotonicity for a PSTREL formula,
proving the monotonicity of each spatial operator. We proposed a new method
for creating a spatial model with a restrict number of edges that preserves con-
nectivity of the spatial model. We leveraged quantitative semantics of STREL
combined with multi-dimensional bisection search to extract features for spatio-
temporal time-series clustering. We applied Agglomerative Hierarchical cluster-
ing on the extracted features followed by a Decision Tree based approach to
learn an interpretable STREL formula for each cluster. We then illustrated with
a number of benchmarks how this technique could be used and the kinds of
insights it can develop. The results show that while our method performs slower
than traditional ML approaches, it is more interpretable and provides a better
insight into the data. For future work, we will study extensions of this approach
to supervised and active learning.

Acknowledgments. We thank the anonymous reviewers for their comments. The
authors also gratefully acknowledge the support by the National Science Foundation
under the Career Award SHF-2048094, the NSF FMitF award CCF-1837131, the Aus-
trian FWF projects ZK-35, and a grant from Toyota R&D North America.

References

1. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

2. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of MEMOCODE (2017)

3. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L., Silvetti, S.: MoonLight: a
lightweight tool for monitoring spatio-temporal properties. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 417–428. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60508-7 23

4. Cobo, G., Garćıa-Solórzano, D., Santamaŕıa, E., Morán, J.A., Melenchón, J.,
Monzo, C.: Modeling students’ activity in online discussion forums: a strategy
based on time series and agglomerative hierarchical clustering. In: Educational
Data Mining (2010)

5. Day, W.H., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical
clustering methods. J. Classif. 1(1), 7–24 (1984)

6. Fiedler, B., Scheel, A.: Spatio-temporal dynamics of reaction-diffusion patterns. In:
Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear
Analysis, pp. 23–152. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
662-05281-5 2

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-030-60508-7_23
https://doi.org/10.1007/978-3-662-05281-5_2
https://doi.org/10.1007/978-3-662-05281-5_2

Mining Spatio-Temporal Logic Formulas 107

7. Huang, X., Ye, Y., Xiong, L., Lau, R.Y., Jiang, N., Wang, S.: Time series k-means:
a new k-means type smooth subspace clustering for time series data. Inf. Sci. 367,
1–13 (2016)

8. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. CAD 34(11), 1704–1717 (2015)

9. Kiamari, M., Ramachandran, G., Nguyen, Q., Pereira, E., Holm, J., Krishna-
machari, B.: Covid-19 risk estimation using a time-varying sir-model. In: Pro-
ceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19, pp. 36–42 (2020)

10. Kreikemeyer, J.N., Hillston, J., Uhrmacher, A.: Probing the performance of the
Edinburgh bike sharing system using SSTL. In: Proceedings of the 2020 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 141–152
(2020)

11. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering
and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 305–325. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 15

12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

13. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
14. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G.: Mining environment

assumptions for cyber-physical system models. In: Proceedings of ICCPS (2020)
15. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,

Donzé, A.: Interpretable classification of time-series data using efficient enumera-
tive techniques. In: Proceedings of HSCC (2020)

16. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. LMCS 14(4)
(2018)

17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

18. Vazquez-Chanlatte, M., Ghosh, S., Deshmukh, J.V., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Time-series learning using monotonic logical properties. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 389–405. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7 22

19. Zakaria, J., Mueen, A., Keogh, E.: Clustering time series using unsupervised-
shapelets. In: 2012 IEEE 12th International Conference on Data Mining, pp. 785–
794. IEEE (2012)

https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-03769-7_22

Theorem Proving and Tools

A Formal Semantics of the GraalVM
Intermediate Representation

Brae J. Webb(B) , Mark Utting , and Ian J. Hayes

The University of Queensland, Brisbane, Australia
{B.Webb,M.Utting,Ian.Hayes}@uq.edu.au

Abstract. The optimization phase of a compiler is responsible for trans-
forming an intermediate representation (IR) of a program into a more
efficient form. Modern optimizers, such as that used in the GraalVM com-
piler, use an IR consisting of a sophisticated graph data structure that
combines data flow and control flow into the one structure. As part of a
wider project on the verification of optimization passes of GraalVM, this
paper describes a semantics for its IR within Isabelle/HOL. The seman-
tics consists of a big-step operational semantics for data nodes (which
are represented in a graph-based static single assignment (SSA) form)
and a small-step operational semantics for handling control flow includ-
ing heap-based reads and writes, exceptions, and method calls. We have
proved a suite of canonicalization optimizations and conditional elimina-
tion optimizations with respect to the semantics.

1 Introduction

Compilers are an essential ingredient of the computing base. Software developers
need to be able to trust their compilers because an error in a compiler can manifest
as erroneous generated code for any of the myriad of programs it compiles.

This paper forms the first steps of a wider project that focuses on the verifi-
cation of compiler optimization passes, a common source of compiler errors. The
project does not cover initial parsing, type checking and intermediate representa-
tion (IR) construction passes, nor the final machine-dependent code generation
pass.

The multi-pass structure of a compiler affords verification on a pass-by-pass
basis. An optimization pass transforms a program represented in the IR. The
verification of a pass involves proving that, for every IR input program, the
transformation implemented by the pass preserves the semantics of the program.
This task can be partitioned into:

– defining a formal semantics for the IR,
– defining the optimizations as transformations of the IR, and
– verifying that the transformations are semantics preserving.

In this paper, we embark on the process of verifying the optimization passes
of an existing production compiler, GraalVM [14], using Isabelle/HOL [13].
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 111–126, 2021.
https://doi.org/10.1007/978-3-030-88885-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_8&domain=pdf
http://orcid.org/0000-0003-3579-0244
http://orcid.org/0000-0003-3134-6306
http://orcid.org/0000-0003-3649-392X
https://doi.org/10.1007/978-3-030-88885-5_8

112 B. J. Webb et al.

We present a formalization of the IR used by the GraalVM compiler (Sects.
3, 4, 5 and 6). We briefly describe the validation of this semantics against the
existing compiler implementation (Sect. 7), then show the effectiveness of the
semantics by proving two kinds of local optimizations (Sect. 8).

The main contribution of this paper is to devise a formal semantics of the
GraalVM IR in Isabelle/HOL [13]. The IR combines control flow and data flow
into a single ‘sea-of-nodes’ graph structure [3], rather than a more conventional
control-flow graph with basic blocks representing sequential flow. Section 2 gives
further details of the GraalVM Compiler. As far as we are aware, this is the first
formal semantics of a sea-of-nodes IR that covers method calls, with exceptions,
as well as object reads and writes. The semantics of the IR consists of the
following components:

– the graph representation corresponding to the GraalVM IR (Sect. 3),
– data-flow semantics that handles expression evaluation using a big-step oper-

ational semantics (Sect. 4),
– local control-flow semantics that handles control flow within a single method

using a small-step operational semantics (Sect. 5),
– global control-flow semantics that handles method invocation and return,

exceptions handling, and promotes the local control-flow semantics to a small-
step operational semantics (Sect. 6).

Each stage builds on the previous. Note that expression evaluation within the
GraalVM IR is side-effect-free and terminating, so it is appropriate to use a big-
step semantics that just returns the result, whereas for the control-flow semantics
we use a small-step operational semantics to account for non-terminating pro-
grams and to accurately model the order of all side-effects, including object reads
and writes, method calls, etc.

2 GraalVM IR

The GraalVM Intermediate Representation (IR) is a sophisticated graph struc-
ture that is designed to support implementation of efficient code optimizing
transformations (see Fig. 6b for an example graph). A side-effect-free expres-
sion is represented by a data-flow subgraph that is acyclic (i.e. it is a DAG), so
that common subexpressions are represented by shared subgraphs (instead of by
value numbering in traditional SSA form). This has the advantage that data-
flow dependencies are explicitly represented in the graph [6]. Expressions with
potentially observable side-effects, such as method invocations or field accesses,
are incorporated into the control-flow graph.

The IR combines both data-flow and control-flow aspects of a program within
a single graph structure. This graphical representation allows efficient implemen-
tation of optimizations equivalent to global value numbering and global code
motion optimization strategies [2].

The GraalVM IR graph consists of many different kinds of nodes (over 200)
with two main kinds of edges:

A Formal Semantics of the GraalVM IR 113

Listing 1.1. A simplified AddNode class definition in GraalVM

c l a s s AddNode extends Node {
@Input ValueNode x ;
@Input ValueNode y ;

}

– input edges that specify the data inputs of a node;
– successor edges that specify the control-flow successors of a node.

Nodes of the GraalVM IR are implemented in Java as a collection of Java
classes which inherit from a base Node class. Each subclass of Node can specify
their possible edge connections, either input or successor edges, by annotating
fields that store references to other Node subclasses. Listing 1.1 shows a simplified
example of one such Node subclass for an addition expression. AddNode has two
input edges x and y but it has no successors because it is a pure data-flow node.

3 Graph Model in Isabelle/HOL

Our Isabelle/HOL model of the GraalVM IR graph has a close correspondence
with the Java Node subclasses but still supports efficient reasoning and pattern
matching in Isabelle. We use natural numbers1 to identify nodes of the graph, and
define an Isabelle datatype IRNode (see Fig. 1) to model the concrete subclasses
of the Java Node class. We developed a tool that uses Java reflection to traverse
the GraalVM Node subclasses and generate the IRNode datatype, including
within each branch of the datatype the input edges, successor edges, and selected
data attributes of each node, using the same names as in the Java source code
but prefixed with “ir ” to avoid name clashes (field names are global functions
in Isabelle). We currently translate 45 of the concrete subclasses of the Java
Node class into Isabelle, which corresponds to over 85% of the nodes used to
compile the Dacapo Java benchmark2 and is enough to handle simple example
programs. For the 60+ interface classes and abstract Java subclasses of Node,
such as BinaryArithmeticNode, we also generate a corresponding Isabelle boolean
function3 over the IRNode type, such as:

Figure 1 gives the Isabelle representation of the graph nodes.4 ConstantNode
corresponds to a Java constant, so has a value constant as its only field, with

1 A more abstract representation would be better but using natural numbers allows
us to utilise Isabelle code generation facilities.

2 https://github.com/dacapobench/dacapobench.
3 In Isabelle/HOL “S ⇒ T” is the type of a function from S to T .
4 All theories are available at https://github.com/uqcyber/veriopt-releases/tree/

atva2021.

https://github.com/dacapobench/dacapobench
https://github.com/uqcyber/veriopt-releases/tree/atva2021
https://github.com/uqcyber/veriopt-releases/tree/atva2021

114 B. J. Webb et al.

Fig. 1. An extract of the Isabelle datatype definition of the IR graph nodes (some node
types and fields are omitted or abbreviated to save space).

no input or successor edges. Similarly, ParameterNode has a single natural
number field that is an index into the list of parameter values of the current
method. Binary expression nodes (like AddNode) have two input expression
edges, named ir x and ir y. The data-flow aspects of merging multiple control-
flow paths are handled by a φ-node (abbreviating V aluePhiNode) for each value
that is dependent on the path used to reach an associated merge node (e.g.
MergeNode). The semantics of φ-nodes is explained more fully in Sect. 5, but

A Formal Semantics of the GraalVM IR 115

note that a φ-node has a pseudo-input edge called ir merge that references
the merge node associated with the φ-node, and a list of input edges ir values
that is in one-to-one correspondence with the control-flow edges into that merge
node. To illustrate how the structure of a node influences its semantics, consider
an IfNode. An IfNode has one input edge for its boolean condition, and two
successor edges, one to take when the condition evaluates to true and the other
successor edge to take when it evaluates to false.

In addition to explicit (named) input and successor fields, the Java Node
classes use annotations and meta-data in each subclass to provide generic access
functions for accessing the list of all inputs of an arbitrary subclass, and similarly
for all successors. Such generic access is helpful for implementing visitor patterns
that walk the graph, etc. In Isabelle, we provide the equivalent functionality
by defining two functions over IRNode, inputs-of and successors-of , in the
following style, in which “·” represents list cons.

We model an IR graph for a single method as a partial map (⇀) from node
IDs to IRNodes with a finite domain.

A finite domain is a requisite property for code generation used by validation
efforts (see Sect. 7), however, we have found reasoning to be more straightforward
with total functions and hence we introduce the kind function, denoted g〈〈nid〉〉,
that is a total function that performs lookup on the underlying partial function,
g, resulting in NoNode for identifiers with no mapping. In addition, we lift
the domain function to the function ids and introduce functions inputs, succ,
usages, and predecessors that, given a graph and a node identifier, produce the
sets of input, successor, usage, and predecessor node ids, respectively.

There are several conditions that a graph g should satisfy to be well-formed,
such as being closed, i.e. all inputs and successors identify nodes within the graph
(that is, within ids g). The key invariants that we have needed so far are shown
in Fig. 2, and include the edge-closure properties, as well as the requirement that
node zero should be the StartNode for the method represented by the graph,
and that all the nodes in the graph are proper nodes, rather than NoNode.
Additionally, end nodes need to have at least one usage which is treated as the
pseudo-successor edge for an end node. The input edges of a merge node are used
by φ nodes to determine the value for a φ node, the number of input edges of
any φ node must match the number of input edges of its associated merge node
to ensure correct execution. We expect to add further invariants in the future as
we prove deeper properties of the graph. Indeed, one of the expected benefits of

116 B. J. Webb et al.

this project is to discover important IR invariants that are currently implicit in
the way that the GraalVM compiler constructs and uses the graph, and to:

– prove that those invariants are preserved by the graph transformations that
represent optimizations;

– document those invariants explicitly and implement them in the Java code
base so that they can be checked at runtime during test runs of the compiler.

Fig. 2. Isabelle well-formedness graph invariants.

An IRGraph represents a single method. In the GraalVM compiler, to
uniquely identify a method, one needs not only its name but the class in which
it is defined and the types of its parameters to handle method overloading (as in
Java [11]). Together these form the method’s signature, which is represented by
the type Signature. Programs are represented as a partial function from method
signatures to their IRGraph.

4 Data-Flow Semantics

In a programming language like Java, expression evaluation may involve side
effects, such as calling a method. The GraalVM, and hence our semantics, treats
nodes that may have a side effect differently. These nodes are included in the
control-flow graph so that they are evaluated as part of the control-flow semantics
(see Sect. 5) and hence the order of their evaluation is preserved. When one of
these nodes (with node identifier nid, say) is evaluated as part of the control
flow semantics, the calculated value is saved under the node identifier nid in
a mapping m from node identifiers to values, which we refer to as the method
state.

A Formal Semantics of the GraalVM IR 117

The data-flow semantics handles the evaluation of side-effect-free expressions,
which are represented by a directed acyclic (sub-)graph (DAG), in which inter-
nal nodes are operators (with input arguments that are graph node ids) and leaf
nodes are either constant nodes, parameter nodes, or control-flow nodes rep-
resenting expressions that may have had side effects, e.g. a method invocation
node. These control-flow nodes have their current value stored in the method
state m under their node identifier, with m nid giving the current value asso-
ciated with (leaf) node nid. The values of the parameters are given by a list of
values p, with p[i] giving the value of the ith parameter.

Fig. 3. Data-flow semantics for a subset of nodes

For a graph g, method state m, and list of parameter values p, in our big-step
operational semantics for expressions, an evaluation of a node n to a value v is
represented as

[g, m, p] � n �→ v.

A sample of the 27 evaluation rules for data nodes is given in Fig. 3. Note that
for the AddNode, the + is overloaded to use the Isabelle/HOL WORD library
to add two fixed-size integers, so that integer arithmetic follows Java’s twos-
complement semantics with wrapping upon overflow.

Each parameter node contains the index i of its parameter in the for-
mal parameter list, with p[i] giving the parameter’s value. Control-flow
nodes for expressions with side effects (such as V aluePhiNode, InvokeNode,
NewInstanceNode, LoadFieldNode) extract the current value of the node from
the method state m. Each of these node types also has a rule in the control-
flow semantics that triggers their evaluation and updates m with the result
(see Sect. 5). The control-flow semantics requires the ability to evaluate a list of
expressions, nids, to a list of values, vs, written,

[g, m, p] � nids �−→ vs,

(note the longer arrow), which is the obvious lifting of evaluation of a single
expression to evaluate each expression in the list (not detailed for space reasons).

118 B. J. Webb et al.

5 Local Control-Flow Semantics

To support object orientation, the semantics requires a heap to store objects.
We define a heap in the form of a function h that for an object reference r and
a field name f gives the value of that field for that object, h r f [1]. Note that
while the heap is always finite, its size is unbounded. Figure 4 defines our heap
representation. Heap is a type that maps object references and field names to
values. DynamicHeap expands Heap to track the next free object reference5 in
the heap, Free, each time a new object is instantiated the next free object refer-
ence is incremented and the current free object reference is used. The supporting
definitions, h-load-field, h-store-field, and h-new-inst, are used by the semantics
of the load (5.5) and store (5.6) field nodes in Fig. 5.

Fig. 4. Isabelle model of a heap and supporting definitions

The control-flow semantics local to a method is given by a small-step opera-
tional semantics. A configuration consists of a triple of the current node id, nid,
the method state, m, as used in expression evaluation, and the heap, h. The
transition

[g, p] � (nid, m, h) → (nid′, m′, h′),

can be read as, within the context of graph, g, and list of parameter values, p,
an execution step can transition from configuration (nid,m, h) to configuration
(nid′,m′, h′). The node id acts as a program counter for the graph representation
of the method. For a configuration, (nid,m, h), to be valid, nid must be a control
flow node within g, p must give values for all parameters to the current method,
and m gives the values for all control-flow nodes that represent expressions with
side effects that have been reached in the current invocation of the method.

5 The operation for allocating a new object could nondeterministically choose any
unused object reference, but we have made it a deterministic function that allocates
the next location to facilitate the use of Isabelle code generation facilities.

A Formal Semantics of the GraalVM IR 119

Fig. 5. Control node semantics

Figure 5 shows most of the rules for the local control-flow semantics—to save
space we omit the load and store rules for static fields, where the object pointer is
None rather than (Some obj). A number of nodes have a control-flow behaviour
of a no-op; we group them together as sequential nodes. Their semantics (5.1)
is a transition from the current node to the node attached to the only successor
edge. An IfNode (5.2) chooses to transition to the first (tb) or second (fb)
successor edge based on the evaluation of the condition expression.

Our approach to handling φ nodes is similar to that used by Demange et
al. for their formalization of reasoning about the sea of nodes in Coq [4]. End
nodes (5.3) represent the end of a basic block in SSA terminology. Each end
node forms an input to a merge node and each merge node has an associated
set of φ nodes, each of which represents a value that is dependent on which
path was taken to reach the end node, and hence the merge node. When an
end node is reached, the method state m of each associated φ node is updated
with the value of its associated expression DAG in the current state, m. This
process is best explained via the example in Fig. 6b, in which nodes 3, 10 and 19
are constant nodes, node 20 is an AddNode, node 18 is a MulNode, node 11 is a
IntegerLessThanNode, φ-node 8 represents the value of the local variable result,
and node 1 corresponds to the parameter n, which provides the initial value of
φ-node 7, which represents the variable n within the loop. The ProxyNode 15

120 B. J. Webb et al.

Fig. 6. Example factorial program transformed into a GraalVM IR graph

is the value of the φ-node 8 (i.e. result) but has an additional dependency on
the LoopExitNode 14 to ensure the value is that after loop exit. Note that the
value of AddNode 20 is calculated using the inputs constant -1 and the φ-node
7, representing the previous value of n, to give the new value of the φ-node 7
(hence the double-headed arrow between nodes 7 and 20). Given

– merge, the id of the merge node LoopBegin 6 ,
– usage φ nodes of merge, phis = [φ1 7 , φ2 8]
– input end nodes of merge, ends = [End 5 , LoopEnd 21]
– inputs of φ1 7 excluding merge, [ParameterNode P(0) 1 , AddNode + 20]
– inputs of φ2 8 excl. merge, [ConstantNode C(1) 3 , MultiplyNode * 18]

when

– End 5 is reached
1. evaluate the first input edge to all phis in the original method state, m,

i.e. for 1 , [g,m, p] � P (0) �→ r1 and for 3 [g,m, p] � C(1) �→ 1.
2. update m to map the values of the evaluated expressions to each φ node,

i.e. m′(φ1) = r1 and m′(φ2) = 1.
– LoopEnd 21 is reached

1. evaluate the second input edge to all phis in the original method state,
m, i.e. for 20 [g,m, p] � AddNode(7 , 19) �→ r1 and for 18 [g,m, p] �
MulNode(8 , 7) �→ r2. Note that when the evaluation reaches a φ node,
it refers to the (previous) value of the φ node in m, i.e. m(φ).

2. update m to map the values of the evaluated expressions to each φ node,
i.e. m′(φ1) = r1 and m′(φ2) = r2.

A Formal Semantics of the GraalVM IR 121

More generally, a merge node may have a list of input end nodes, ns, and
any number of associated φ nodes, each of which has a list of input expressions,
each of which is of the same length as ns. When the merge node is reached via
its ith input end node, the value of each associated φ node is updated within m
to the value of the (i + 1)th input expression of the φ node using method state
m (the i + 1 offset is because input edge zero of a φ node is used to connect to
its merge node).

When a NewInstanceNode is reached in the control flow (5.4), space is
allocated in the heap for a new object ref using the function h-new-inst function
(Fig. 4). The value associated with the NewInstanceNode is updated in m′ to
the new object reference ref so that subsequent data-flow evaluations of the
NewInstanceNode evaluate to ref .

A LoadFieldNode (5.5) contains a field name f and an optional input edge
to a node that must evaluate to an object reference, obj. The h-load-field func-
tion (Fig. 4) reads the value from the heap based on the object reference and
field name. The resulting value, v, is then stored in m′ under the node id of
LoadFieldNode so that subsequent data-flow evaluations of the LoadFieldNode
result in v.

Similar to the LoadFieldNode, the StoreF ieldNode (5.6) contains a field
identifier, f , and an optional input edge to a node which must evaluate to an
object reference, obj. A StoreF ieldNode also has an input edge to a node,
newval, that is evaluated to a value, val and stored in the heap. The h-store-
field function (Fig. 4) stores val in the updated heap, h′, corresponding to the
field f and object reference, obj. Note that null pointer dereferences are checked
by a separate (dominating) GuardNode (not covered in this paper) and hence
null pointer dereferences are not an issue for load and store field. To save space,
we omit load and store for static fields—these do not evaluate an object reference.

6 Global Control-Flow Semantics

The semantics in Sect. 5 only handles control flow within a single method. To
handle method calls and returns, we lift the semantics to a richer global con-
figuration that consists of a pair, (stk, h), containing a stack, stk, of local con-
figurations for each called but not yet returned method and a global heap, h.
The stack contains tuples of the form (g, nid,m, p), in which g represents the
method’s graph, nid is a node id (the program counter) within g, m is the method
state, and p is the list of of parameter values, as for the data-flow semantics.
The IRGraph of the method with signature s in program P (of type Program)
is given by P s.

Figure 7 gives a small-step semantics for global control flow. Given a program
P , a transition of the form P � (stk, h) −→ (stk′, h′) represents a step from a
configuration stack stk and heap h to a new stack stk′ and heap h′. Stacks are
represented as lists, so (g, nid,m, p)·stk represents a stack with top as the local
configuration (g, nid,m, p) and remainder of the stack, stk.

122 B. J. Webb et al.

Fig. 7. Interprocedural semantics

Local control-flow transitions are promoted to global control-flow transitions
in which the top of stack is updated according to the local transition step (7.1).

For an InvokeNode (7.2), its list of actual parameter expressions,
arguments, is evaluated to give the list of parameter values, p′. The method
state m′ for the invoked method is initially empty (new map state). The method
being invoked is determined by the MethodCallTargetNode, which is attached
via an input edge to an InvokeNode. The MethodCallTargetNode contains the
signature, targetMethod, of the invoked method. A new local configuration con-
sisting of the graph of the invoked method, targetGraph, a method start node
id of zero, the method state m′, and the list of parameter values p′ is pushed
onto the stack.

For a ReturnNode (7.3), the return expression is optional. Here we only
consider the case in which there is some return expression. The return value,
v, is calculated using the top-of-stack graph g, method state m and parameters
p (i.e. the called method). The second stack element is a local configuration
containing the graph of the calling method, cg, id of the invocation node, cnid,
the method state at the point of call, cm, and the parameters of the calling
method, cp. The top two elements of the stack are replaced by a single local
configuration consisting of the calling method’s graph cg, the successor cnid′

of invocation node cnid, a new method state cm′ that updates cm to map the
invocation node cnid to the returned value, v, and the parameters to the calling
method, cp.

Certain methods can result in exceptions rather than regular returned val-
ues. Calls to these methods are made using the InvokeWithExceptionNode. The
invocation of these methods is handled with the same semantics as InvokeNode.
An UnwindNode (7.4) indicates that an exception has been thrown. The control-
flow path when an UnwindNode is reached is determined by the exEdge succes-

A Formal Semantics of the GraalVM IR 123

sor of the calling InvokeWithExceptionNode. The InvokeWithExceptionNode
is the node on the second top of the stack when an UnwindNode is reached.
The top two elements of the stack are replaced by a single local configura-
tion consisting of the graph of the calling method, cg, the exEdge successor of
the InvokeWithExceptionNode, and the method state cm updated so that the
InvokeWithExceptionNode maps to the object reference e of the exception that
was thrown.

7 Validation of Execution Semantics

The GraalVM compiler contains thousands of unit test cases, and many of these
define a standalone method. Each test checks that its unoptimized and optimized
execution give the same result. We have added code to intercept such tests
and translate the unoptimized IR graph, the input parameter values, and the
expected result into our Isabelle IR graph notation. We can then use Isabelle’s
code generation mechanism to execute the Isabelle IR graph of the method with
the given input parameters, and check if the result matches.

We have translated and executed over 1400 of these unit tests so far, and
after fixing a minor boolean-to-integer conversion issue and adding support for
initializing static fields before the method is called, they all return the expected
result. This gives us some initial confidence that our execution semantics cor-
responds to the GraalVM IR semantics. Any remaining differences will become
apparent during the correctness proofs of optimizations.

8 Proving Optimizations

The GraalVM compiler contains a comprehensive canonicalization phase. Sub-
sequent optimization phases rely on the canonicalization phase to minimize the
forms which an IR can take. The majority of the canonicalization optimizations
do not rely on additional static analysis processes, so are good case studies for
the process of proving local optimizations. A canonicalization of a data-flow node
within a graph g1, replaces a data-flow node in g1 at nid with a new node and
may introduce additional new nodes with fresh node ids to form a new graph g2.
The replacement must maintain the property that the subgraph is acyclic. While
the new node at nid may no longer reference some node ids that the original
node at that position did, the unreferenced nodes are left in the graph because
there may be other references to those nodes elsewhere in graph. To show the
correctness of these forms of canonicalization optimizations, noting that expres-
sion evaluation has been shown to be deterministic, it is sufficient to show that
for all method states m, evaluating the new node at nid gives the same value as
evaluating the old node at nid, i.e.

∀m, p . ([g1, m, p] � g1〈〈nid〉〉 �→ v) −→ ([g2, m, p] � g2〈〈nid〉〉 �→ v).

For example, we have completed proofs of correctness of optimizations of condi-
tional expressions (Java’s (c ? v1 : v2)).

124 B. J. Webb et al.

As an example of a canonicalization of the control-flow graph, we define a set
of optimizations for the IfNode in Fig. 8. We show the optimization where an
IfNode with a constant condition is replaced by a RefNode to either the true
or false branch, where a RefNode is a sequential node that just transitions to its
successor. In addition, we give the optimization where both successor edges of
the IfNode are equal, replacing with a RefNode to one of the (equal) branches.
Note that these optimizations bypass the condition evaluation but as that is side
effect free, it is of no consequence.

Fig. 8. Canonicalization rules for an IfNode

We prove that the canonicalization rules are correct by showing that, given:

– a node, before, where g〈〈nid〉〉 = before;
– that before can be canonicalized to the node after;
– a graph, g′, where the node at nid has been replaced by after;

then we can prove that g′ has the same behaviour as g starting from node nid
in both graphs.

Thus far, we have encoded and proved exploratory components of the canoni-
calization phase and the entirety of the conditional elimination phase allowed by
our subset of nodes. The techniques used for the requisite static analysis during
the conditional elimination phase are to be the subject of future papers.

9 Related Work

The closest research to that presented here is the work of Demange et al. [4]
who provide the semantics of an abstract sea-of-nodes representation in Coq,
which focuses on the semantics of φ nodes and regions. The semantics is used
to prove a semantic property and a simple optimization transformation. Their
formalization allows properties of the abstract sea-of-nodes representation to be
proven in isolation. We offer a variant of this semantics that matches the concrete
implementation of a production compiler, and we extend the approach to handle
interprocedural calls and a heap-based object model.

Two notable verified compiler projects are CompCert [9], for a subset of C
verified in Coq, and CakeML [7], for a subset of ML verified in HOL4. These

A Formal Semantics of the GraalVM IR 125

are both substantial projects verifying end-to-end correctness of their respective
compilers from source code to generated machine code. Unlike these projects, this
project targets only the optimization phase of the compiler, a common source of
issues, rather than full end-to-end verification.

JinjaThreads [12] is a substantial formalization effort of the Java language
semantics in Isabelle/HOL. Unlike our project, JinjaThreads focuses on directly
formalizing the language semantics, rather than a language-agnostic IR. As the
GraalVM IR is implemented in Java, one plausible approach to our project
would be to use the JinjaThreads formalization to prove optimizations correct.
However, such proofs would have been undoubtedly laborious, so we have instead
chosen to introduce a semantics to capture the IR semantics directly and allow
optimizations to be more easily expressed and proved.

VeLLVM [15] formalizes the LLVM [8] IR semantics using the Coq proof
assistant. While the approach is similar, the target IR is substantially different.
LLVM shares some common properties such as being in SSA form, but the
GraalVM IR is a sea-of-nodes graph structure that unifies a program’s control-
flow and data-flow, while the LLVM IR is in traditional basic block SSA form.

K-LLVM [10] is another formalization effort for the LLVM IR that does not
directly expand on VeLLVM but expands the formalized feature set by offering
a separate formalization implemented in K. K is a framework designed for for-
malizing language semantics, which can produce language interpreters as well as
export to Isabelle/HOL to allow proofs based on the specification.

10 Conclusions

We have described an Isabelle model and execution semantics for the sophisti-
cated sea-of-nodes graph structure [3] that is used as the internal representation
in the GraalVM optimizing compiler [5]. Additionally, we have proved several
suites of local optimizations correct according to the semantics.

In future work, we plan to tackle more global optimizations that transform
the input graph in more complex ways. In the longer term, we also want to
explore expressing optimizations in a high-level notation that can more easily
be transformed into Isabelle (for correctness proof purposes) as well as into
Java code that implements the graph transformation, in order to have a tight
connection between the Java and Isabelle graph transformations.

Acknowledgements. Mark Utting’s position and Brae Webb’s scholarship are both
funded in part by a gift from Oracle Labs. Thanks especially to Cristina Cifuentes,
Paddy Krishnan and Andrew Craik from Oracle Labs Brisbane for their helpful feed-
back, and to the Oracle GraalVM compiler team for answering questions. Thanks
to Chris Seaton for helping us extend the SeaFoam IR visualization tool to output
the graph in Isabelle syntax. Thanks also to Kristian Thomassen for his work on the
semantics of φ-nodes and Sadra Bayat Tork who investigated IR graph invariants in
the GraalVM compiler.

126 B. J. Webb et al.

References

1. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for automated
provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 177–191. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22438-6 15

2. Click, C.: Global code motion/global value numbering. In: PLDI 1995, pp. 246–257.
ACM Press (1995). https://doi.org/10.1145/207110.207154

3. Click, C., Cooper, K.D.: Combining analyses, combining optimizations. TOPLAS
17(2), 181–196 (1995). https://doi.org/10.1145/201059.201061

4. Demange, D., Fernández de Retana, Y., Pichardie, D.: Semantic reasoning about
the sea of nodes. In: CC 2018, pp. 163–173. ACM, New York (2018). https://doi.
org/10.1145/3178372.3179503

5. Duboscq, G., et al.: An intermediate representation for speculative optimizations
in a dynamic compiler. In: VMIL 2013, pp. 1–10 (2013)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM TOPLAS 9(3), 319–349 (1987). https://doi.org/10.
1145/24039.24041

7. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014, pp. 179–191. ACM Press, January 2014. https://
doi.org/10.1145/2535838.2535841

8. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: CGO 2004, pp. 75–86. IEEE Computer Society (2004)

9. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: ERTS 2016. SEE, Toulouse,
January 2016. https://hal.inria.fr/hal-01238879

10. Li, L., Gunter, E.L.: K-LLVM: a relatively complete semantics of LLVM IR. In:
Hirschfeld, R., Pape, T. (eds.) ECOOP 2020, vol. 166, pp. 7:1–7:29. Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.7

11. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java virtual machine spec-
ification, February 2013. https://docs.oracle.com/javase/specs/jvms/se7/html/
jvms-4.html. Chapter 4. The class File Format

12. Lochbihler, A.: Mechanising a type-safe model of multithreaded Java with a verified
compiler. J. Autom. Reason. 63(1), 243–332 (2018)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

14. Oracle: GraalVM: Run programs faster anywhere (2020). https://github.com/
oracle/graal

15. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing the LLVM
intermediate representation for verified program transformations. In: POPL 2012,
pp. 427–440. ACM, New York (2012). https://doi.org/10.1145/2103656.2103709

https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1145/207110.207154
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/3178372.3179503
https://doi.org/10.1145/3178372.3179503
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://hal.inria.fr/hal-01238879
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://github.com/oracle/graal
https://github.com/oracle/graal
https://doi.org/10.1145/2103656.2103709

A Verified Decision Procedure for Orders
in Isabelle/HOL

Lukas Stevens(B) and Tobias Nipkow

Fakultät für Informatik, Technische Universität München, Munich, Germany
lukas.stevens@in.tum.de

Abstract. We present the first verified implementation of a decision
procedure for the quantifier-free theory of partial and linear orders. We
formalise the procedure in Isabelle/HOL and provide a specification that
is made executable using Isabelle’s code generator. The procedure is
already part of the development version of Isabelle as a sub-procedure
of the simplifier.

1 Introduction

Powerful proof automation facilities, e.g. auto in Isabelle, are crucial to make
an interactive theorem prover practical. These tools fill in the logical steps that
are trivial to humans and thus enable the users of interactive theorem provers
to write formal proofs that resemble the less formal pen-and-paper proofs. Their
efficacy in an interactive environment is judged by their completeness (“How
many problems do they solve?”) and their performance (“How fast do they solve
the problems?”). Many of theses problems are undecidable in general; hence,
incomplete heuristics, which are fast in practice, are used to tackle them. In
decidable theories we can do better since they admit decision procedures, i.e.
methods that always prove or disprove the goal at hand. Nevertheless, theorem
provers sometimes still employ heuristics even for decidable theories. Isabelle in
particular uses an unverified and incomplete ML procedure1, which interprets a
given set of (in)equalities as a graph, to decide partial and linear orders. As an
example, the procedure fails to prove the goal

lemma assumes ¬ x < y and x = y and ¬ x ≤ y shows False

where ≤ is a partial order. Note that ¬ x < y is equivalent to x �= y ∨ x ≤ y
for partial orders ≤. With that in mind, we investigate partial and linear order
relations and develop decision procedures for them, which we prove to be sound
and complete.

1.1 Related Work

The decidability of the first-order theory of linear orders was posed as a problem
in a article by Janiczak [5] that was posthumously published. In a review of
1 File path of the procedure in the Isabelle2021 distribution: src/Provers/order.ML.
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 127–143, 2021.
https://doi.org/10.1007/978-3-030-88885-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_9&domain=pdf
http://orcid.org/0000-0003-0222-6858
http://orcid.org/0000-0003-0730-515X
https://doi.org/10.1007/978-3-030-88885-5_9

128 L. Stevens and T. Nipkow

the article from 1954, Kreisel [6] answers the question by reducing the theory of
linear order to first-order monadic predicate calculus assuming no limit points
in the order. Janiczak had died in 1951, though, and Kreisel’s proof apparently
went unnoticed in the literature. Subsequently, Ehrenfeucht [3] submitted an
abstract that proposed a proof using model-theoretic methods; however, the
result was never published. The problem was settled by Läuchli and Leonard [7],
who proved decidability by showing both the set of valid and refutable sentences
to be recursively enumerable.

More recently, Negri et al. [8] performed a proof-theoretical analysis of order
relations in terms of a contraction-free sequent calculus. Their analysis showed
that the quantifier-free theory of partial orders has the subterm property. Due
to the nature of the calculus, it follows that the proof search is terminating thus
yielding a decision procedure. The result also extends to linear orders.

1.2 Contributions

In this paper, we develop decision procedures for the quantifier-free the-
ory of partial and linear orders and provide an executable specification in
Isabelle/HOL [10], i.e. we can generate code from the specification using the
code generator of Isabelle. More specifically, our procedure determines whether
the conjunction

∧n
i=1 Li is contradictory where each literal Li is an (potentially

negated) atom of the form x = y, x ≤ y or x < y. Note that it is possible to
generalise this to arbitrary propositional formulas φ by taking their disjunctive
normal form (DNF) and applying the procedure to each clause: the formula φ is
a contradiction if and only if all clauses of the DNF lead to a contradiction. The
restriction to a single clause is reasonable because we integrated the procedure
as a sub-procedure of the simplifier and by extension of the classical reasoning
tactics of Isabelle. As they eliminate disjunctions by performing case distinctions,
an explicit conversion to DNF is not necessary.

Unlike Negri et al. [8], whose proof-theoretic procedure is too far removed
from an actual implementation to give an accurate bound on the running time,
we provide an implementation of the decision procedure and state its complexity.
We also define a proof system that provides us with a framework to certify
any contradiction that the procedure finds. Soundness and completeness of the
executable specification is fully verified in Isabelle/HOL.

The paper is structured as follows: we start by giving a formal semantics
for order (in)equalities in Sect. 2. To determine whether a set of (in)equalities
is contradictory, we present abstract decision procedures for partial and linear
orders in Sect. 3 and 4, respectively. The executable specification presented in
Sect. 6 uses the proof terms introduced in Sect. 5 to certify contradictions. The
final Sect. 7 gives an overview of how the exported code obtained from the exe-
cutable specification is used to implement a tactic that can be applied to proof
goals in Isabelle.

A copy of the formalisation is available online [12].

A Verified Decision Procedure for Orders in Isabelle/HOL 129

1.3 Notation

Isabelle/HOL conforms to everyday mathematical notation for the most part.
For the benefit of the reader that is unfamiliar with Isabelle/HOL, we establish
notation and in particular some essential datatypes together with their primitive
operations that are specific to Isabelle/HOL. We write t :: 'a to specify that
the term t has the type 'a and 'a ⇒ 'b for the type of a total function from
'a to 'b. The types for booleans, natural numbers, and in integers are bool,
nat, and int, respectively. Sets with elements of type 'a have the type 'a set.
Analogously, we use 'a list to describe lists, which are constructed as the
empty list [] or with the infix constructor #, and are appended with the infix
operator @. The function set converts a list into a set. For optional values,
Isabelle/HOL offers the type option where a term opt :: 'a option is either
None or Some a with a :: 'a. Finally, we remark that iff is equivalent to =
on type bool and ≡ is definitional equality of the meta-logic of Isabelle/HOL,
which is called Isabelle/Pure.

2 A Semantics for Orders

Since we only deal with a single conjunction
∧n

i=1 Li of order literals, it is conve-
nient to represent it in clause form, i.e. just as a set of literals. A literal consists of
a boolean polarity and an order atom. If the boolean is True, they are called pos-
itive; conversely, when the boolean is False, we call them negative. Altogether
we define the type of order atoms and literals as follows:

type_synonym var = int

datatype order_atom = var ≤ var | var < var | var = var

type_synonym order_literal = bool × order_atom

The boldface symbols ≤, <, and = are ordinary constructors of the datatype
chosen to resemble the (in)equalities they represent. Depending on context, we
will abuse the notation for literals, e.g. we use x ≤ y to mean (True, x ≤ y)
and x ≮ y to mean (False, x < y). We arbitrarily chose to represent vari-
ables with int for straightforward code generation but any linearly ordered type
would do.

Semantically, a given order literal corresponds to a proposition that the
(in)equality holds. To this end, we assign each variable x a value v x :: 'a
and interpret the literals relative to a relation r :: 'a rel where 'a rel is
a synonym for ('a × 'a) set. This allows us to apply the semantics in the
context of any order relation by suitably constraining r. For example, we would
demand that r is reflexive, transitive, and antisymmetric in the context of partial
orders. We call a pair (r, v) a model of a literal a if (r, v) �o a, as defined
below, holds. If r is constrained to a specific kind of order relation, say a partial
order, we will speak of a partial order model (r, v). The same notation is used
for sets of literals A where (r, v) �o A is equivalent to ∀a ∈ A. (r, v) �o a.

130 L. Stevens and T. Nipkow

fun �o :: 'a rel × (var ⇒ 'a) ⇒ order_literal ⇒ bool where
(r, v) �o (p, x ≤ y) = (p ←→ (v x, v y) ∈ r)

| (r, v) �o (p, x < y) = (p ←→ (v x, v y) ∈ r ∧ v x �= v y)
| (r, v) �o (p, x = y) = (p ←→ v x = v y)

3 Deciding Partial Orders

In this section, we will derive an abstract specification for a procedure that
decides the theory of partial orders. For the time being, we assume that the
set of (in)equalities A does not contain any strict inequalities and instead deal
with them later in Sect. 5.2. In order to satisfy the (in)equalities, we need to
come up with a partial order r and a variable assignment v that are a model of
A, i.e. (r, v) �o A. We build a syntactic model where the variable assignment
maps every variable to itself, i.e. we set v = (λx. x). To find the accompanying
relation, we first define a relation leq1 A that contains all pairs that are directly
given by the set of (in)equalities; for example, we add (x, y) if x ≤ y ∈ A. A
partial order has to be reflexive and transitive so we define leq A as the smallest
reflexive and transitive relation that contains leq1 A.

definition leq1 A ≡ {(x, y). x ≤ y ∈ A ∨ x = y ∈ A ∨ y = x ∈ A}
definition leq A ≡ (leq1 A)*

Since we chose v to be the identity, we can directly read off all inequalities
that must hold from leq A. Furthermore, we can use the same inequalities to
derive all equalities that must hold by antisymmetry: the equality x = y must
hold if both (x, y) ∈ leq A and (y, x) ∈ leq A. Bossert and Suzumura [2]
call this subset of a relation the symmetric factor.

definition sym_factor r ≡ r ∩ r-1

The symmetric factor is clearly a symmetric relation. Considering that reflex-
ivity and transitivity is invariant under inversion and intersection, we conclude
that sym_factor r is an equivalence relation for any relation r that is reflexive
and transitive. The symmetric factor of leq A, called eq A, is thus an equivalence
relation.

abbreviation eq A ≡ sym_factor (leq A)

Equipped with the relations leq A and eq A, we are ready to define the abstract
decision procedure. It uses these relations, which are derived from the positive
literals in A, and checks for consistency with the negative literals in A.

definition contr :: order_literal set ⇒ bool where
contr A ←→ (∃ x y. x � y ∈ A ∧ (x, y) ∈ leq A) ∨

(∃ x y. x �= y ∈ A ∧ (x, y) ∈ eq A)

We claim that contr is a decision procedure for the theory of partial orders.
To verify this claim, we have to prove soundness and completeness of contr
with respect to our semantics �o. More precisely, we have to show that contr A

A Verified Decision Procedure for Orders in Isabelle/HOL 131

evaluates to True if and only if A is contradictory, i.e. there exists no partial order
model (r, v) of A. We prove both directions in contrapositive form, starting with
soundness.

theorem contr_sound:
assumes refl r and trans r and antisym r and (r, v) �o A
shows ¬ contr A

The soundness proof, which is sketched below, uses the following lemma.
lemma assumes (x, y) ∈ leq A and (r, v) �o A shows (v x, v y) ∈ r*

Proof (Soundness). We assume contr A and therefore must show False. It holds
by definition of contr A that a negative literal in A contradicts with either leq A
or eq A.

We first consider the case where x � y ∈ A and (x, y) ∈ leq A for some x and
y. Using the assumption (r, v) �o A, we can apply the above lemma to conclude
that (v x, v y) ∈ r*. Moreover, we have that r* = r because we assumed that r is
reflexive and transitive. But this is a contradiction to the assumption (r, v) �o A
which requires (r, v) �o (x � y) ←→ (v x, v y) /∈ r to hold.

In the remaining case we have x �= y ∈ A and (x, y) ∈ eq A. Remem-
ber that we defined eq A as the symmetric factor of leq A which implies
that (x, y) ∈ leq A and (y, x) ∈ leq A. With the same argument as above
it follows that (v x, v y) ∈ r and (v y, v x) ∈ r, and, by antisymmetry,
v x = v y; however, this contradicts the assumption (r, v) �o A which entails
(r, v) �o (x �= y) ←→ v x �= v y. ��

For completeness, on the other hand, we have to show that there exists a
partial order model (r, v) for A if ¬ contr A. A tempting candidate for r
would be leq A but then again leq A is only a preorder: it is not antisymmetric
because it captures the relation between distinct variables, not their values. This
means that v must map distinct variables x and y to the same value v x = v y
if (x, y) ∈ leq A and (y, x) ∈ leq A. In other words, we have to take the
quotient set of leq A with respect to the equivalence relation eq A.

Viewing leq A more abstractly as a preorder r on some set C, we have to map
each variable x to its equivalence class in the equivalence relation sym_factor r.
Lifting r to the quotient set C // sym_factor r, where // is Isabelle notation
for the quotient, yields an antisymmetric relation and therefore a partial order.

definition sym_class r x ≡ {y | (x, y) ∈ sym_factor r}
definition sym_class_rel r ≡ {(sym_class r x, sym_class r y) |

(x, y) ∈ r}

We confirm that the lifting works as intended with the following lemma.

lemma assumes preorder_on C r
shows (x, y) ∈ r ←→

(sym_class r x, sym_class r y) ∈ sym_class_rel r

132 L. Stevens and T. Nipkow

Now, we apply these ideas to the relation leq A to obtain the partial order
Leq A. Additionally, we take the reflexive closure of Leq A to obtain a partial
order on the whole universe UNIV of the type var set.

abbreviation Eq :: (bool × atom) set ⇒ var ⇒ var set
where Eq A x ≡ sym_class (leq A) x

abbreviation Leq :: (bool × atom) set ⇒ var rel
where Leq A ≡ sym_class_rel (leq A)

abbreviation Leq_refl ≡ (Leq A)=

We show that, if ¬ contr A, then the interpretation (Leq_refl A, Eq A)
is a model of A thus proving completeness of contr.

theorem contr_complete:
assumes ¬ contr A shows (Leq_refl A, Eq A) �o A

Proof. We show that for any a ∈ A it holds that (Leq_refl A, Eq A) �o a.
By case distinction on a, we prove that the statement holds for any kind of
literal a. The proofs of the different cases are similar so we only present the
case a = x � y for some x and y. Considering the definition of contr it fol-
lows from the assumption ¬ contr A that (x, y) /∈ leq A. This means that
x �= y because leq A is reflexive. Moreover, we apply the above lemma to obtain
(Eq A x, Eq A y) /∈ Leq A. Again, Leq A is reflexive on UNIV // eq A so we
have Eq A x �= Eq A y. Since Leq_refl A only adds reflexive pairs to Leq A,
we can conclude that (Eq A x, Eq A y) /∈ Leq_refl A. This gives us our goal
(Leq_refl A, Eq A) �o x ≤ y ←→ (Eq A x, Eq A y) /∈ Leq_refl A. ��

4 Deciding Linear Orders

We now show that the procedure contr can be modified to decide linear orders.
Recall that the soundness of contr assumes that the underlying relation r is a
partial order. This means that the soundness of contr for linear orders is trivial
as every linear order is a partial order. Again, completeness is more involved
since we have to construct a linear order model for A if ¬ contr A holds. Thus,
we cannot reuse Leq_refl A because it is only a partial order. All is not lost,
though: we can appeal to a classical result from order theory, namely Szpilrajn’s
extension theorem [13]. The original theorem states that every relation that
is transitive and asymmetric, i.e. is a strict partial order, can be extended to
a relation that is also total. A more general version of the theorem, which in
particular applies to non-strict partial orders, was formalised in Isabelle/HOL
by Zeller and Stevens in an AFP entry [14]. Using this result, we can prove that
every partial order can be extended to a linear order.

theorem partial_order_extension:
assumes partial_order r shows ∃ R. linear_order R ∧ r ⊆ R

A Verified Decision Procedure for Orders in Isabelle/HOL 133

We use Hilbert’s ε-operator in the form of SOME to obtain an arbitrary exten-
sion Leq_ext A of the partial order Leq_refl A.

definition Leq_ext A ≡ (SOME r. linear_order r ∧ Leq_refl A ⊆ r)

Theorem partial_order_extension guarantees that such an extension exists
so Leq_ext A is well-defined.

theorem linear_order (Leq_ext A) and Leq_refl A ⊆ Leq_ext A

Both Leq_refl A and Leq_ext A are reflexive and antisymmetric, which
means that for any x, y with Eq A x = Eq A y we have

(Eq A x, Eq A y) ∈ Leq_refl A ←→ (Eq A x, Eq A y) ∈ Leq_ext A.

Therefore, Leq_ext A is consistent with negative literals of the form x �= y ∈ A.
The other case, that is to say literals of the form x � y ∈ A, is not so easy:
how can we ensure that the extension from Leq_refl A to Leq_ext A does
not introduce (Eq A x, Eq A y) ∈ Leq_ext? Fortunately, we can sidestep the
problem by exploiting the properties of linear orders: for any linear order r it
holds that

(r, v) �o (x � y) ←→ (v x, v y) /∈ r
←→ v x �= v y ∧ (v y, v x) ∈ r
←→ (r, v) �o x �= y, y ≤ x.

In other words, we can replace all literals of the form x � y by the two literals
x �= y and y ≤ x while maintaining the completeness of contr. Employing this
preprocessing step, we obtain a sound and complete decision procedure for linear
orders.

5 Certification with Proof Terms

We aim to generate an executable specification of the decision procedure in order
to automatically generate code from it; however, we do not want to trust the
code generation facilities of Isabelle. Instead, the executable specification has
to certify any contradiction it finds with a proof term, which is then replayed
through Isabelle’s inference kernel to obtain a theorem.

5.1 Basic Proof System for Partial Orders

The proof system we define is very limited as the only kind of provable proposi-
tions are order literals. Since we chose to define order literals without an explicit
constructor representing the boolean value False but ultimately want to deduce
a contradiction, we define False in terms of the order literal 0 �= 0, that is
Fls ≡ 0 �= 0. With this, we define the proof system �P for partial orders (see
Fig. 1), where A �P p : l means that the proof term p proves the proposition
l under the set of assumptions A. For now, we will pretend that proof terms are
defined as a datatype with one constructor for each rule as shown below. We
will discuss the actual definition of proof terms in Sect. 5.

134 L. Stevens and T. Nipkow

Fig. 1. The proof system �P for partial orders

datatype prf_trm = AssmP order_literal | ReflP order_literal |
TransP prf_trm prf_trm | AntisymP prf_trm prf_trm |
EQE1P order_literal | EQE2P order_literal |
Contr order_literal prf_trm | ...

Every proof rule corresponds to a step the procedure contr takes:

– The relation leq1 A contains those pairs (x, y) for which we can prove
A �P p : x ≤ y directly by assumption using one of Assm, EqE1, or
EqE2.

– We obtain leq A from leq1 A by taking the reflexive transitive closure. Put
another way, (x, y) ∈ leq A holds if and only if A �P p : x ≤ y can be
proved by repeatedly applying the rules Refl and Trans.

– Since eq A is the symmetric factor of leq A, it contains exactly those pairs
(x, y) for which A �P p : x = y is provable by the rule Antisym.

– Finally, we check if the negative literals are consistent with the relations leq A
and eq A. Any inconsistency can be certified by the rule Contr.

Due to this close correspondence it is not surprising that we can prove the
following lemmas.

lemma (x, y) ∈ leq A ←→ ∃ p. A �P p : x ≤ y
lemma (x, y) ∈ eq A ←→ ∃ p. A �P p : x = y

Using these lemmas, the soundness and completeness of the proof system
relative to contr—and by extension to �o—follow easily.

theorem �P _sound: assumes A �P p : Fls shows contr A
theorem �P _complete: assumes contr A shows ∃ p. A �P p : Fls

A Verified Decision Procedure for Orders in Isabelle/HOL 135

5.2 Dealing with Strict Literals Through Rewriting

Until now, we assumed that the set of literals A does not contain any strict
literals, i.e. literals of the form x < y or x ≮ y. For the case of linear orders
r, dealing with those literals is just a matter of replacing them by equivalent,
non-strict literals:

– (r, v) �o (x < y) ←→ (v x, v y) ∈ r ∧ v x �= v y
←→ (r, v) �o x ≤ y, x �= y

– (r, v) �o (x ≮ y) ←→ (v x, v y) /∈ r ∨ v x = v y
←→ (v y, v x) ∈ r ∨ v x = v y
←→ (r, v) �o (y ≤ x)

Now, if r is a partial order, the same holds for the former case but in the lat-
ter case we are stuck after the first step: (v x, v y) /∈ r ↔ (v y, v x) ∈ r
does not hold. A possible solution is that we (recursively) check whether both
contr ({x � y} ∪ A - {x ≮ y}) and contr ({x = y} ∪ A - {x ≮ y})
hold. This was the first approach we tried but we ultimately found that the
matching proof rule made reasoning about the proof terms tedious. Following
Nipkow [9], we took a more general approach and introduced a type of proposi-
tional formulae with order literals as propositional atoms. Both replacement of
literals and conversion to DNF are represented as rewrite rules on formulae. The
semantics of order literals naturally generalises to formulae but, for brevity, we
forgo discussing how we proved the soundness of the rewrite rules with respect
to the semantics. A formula is either an atom or one of the logical connectives
conjunction, disjunction, or negation:

datatype 'a fm = Atom 'a |
And ('a fm) ('a fm) | Or ('a fm) ('a fm) | Neg ('a fm)

Motivated by the need to replace the order literals in the formula by other
literals respectively formulae, we define amapfm which allows us to apply a replace-
ment function to all atoms of a formula.

fun amapfm :: ('a ⇒ 'b fm) ⇒ 'a fm ⇒ 'b fm where
amapfm f (Atom a) = f a

| amapfm f (And φ1 φ2) = And (amapfm f φ1) (amapfm f φ2)
| amapfm f (Or φ1 φ2) = Or (amapfm f φ1) (amapfm f φ2)
| amapfm f (Neg φ) = Neg (amapfm f φ)

We now define a function deless for partial orders that transforms a strict
literal into a formula without strict literals.

fun deless :: order_literal ⇒ order_literal fm where
deless (x < y) = And (Atom (x ≤ y)) (Atom (x �= y))

| deless (x ≮ y) = Or (Atom (x � y)) (Atom (x = y))
| deless a = Atom a

136 L. Stevens and T. Nipkow

We use the rules of the proof systems in Fig. 2 to certify the rewrite steps that
amapfm deless performs. The proof system for formulae ≡fm is parametrised by
a proof system for atoms ≡a. Again, you may imagine that the datatype of proof
terms has a constructor for each rule of the proof systems.

Fig. 2. Proof system ≡fm for conversions of formulae

We use the above rules to define functions that produce a proof term for
amapfm deless.

fun amapfm_prf :: ('a ⇒ prf_trm) ⇒ 'a fm ⇒ prf_trm where
amapfm_prf ap (Atom a) = AtomConv (ap a)

| amapfm_prf ap (And φ1 φ2) =
BinopConv (amapfm_prf ap φ1) (amapfm_prf ap φ2)

| amapfm_prf ap (Or φ1 φ2) =
BinopConv (amapfm_prf ap φ1) (amapfm_prf ap φ2)

| amapfm_prf ap (Neg φ) = ArgConv (amapfm_prf ap φ)

fun deless_prf :: order_literal ⇒ prf_trm where
deless (x < y) = LessLe

| deless (x ≮ y) = NlessLe
| deless_prf _ = AllConv

We can show that φ ≡fm amapfm deless φ : amapfm_prf deless_prf φ
by a simple inductive proof. After this conversion, the resulting formula may
contain disjunctions but our decision procedure can only deal with conjunctions;
thus, we first have to compute the DNF of ψ and apply the procedure to each
clause. Certifying the conversion to DNF follows a similar approach to amapfm
so we refer to the formalisation for the details. This conversion also eliminates
negations in the formula by pushing them into the atoms. Now assume that
we are given a formula φ in DNF without negations, we still need to apply the
decision procedure to each clause of the formula. As conversions alone are not
sufficient, we build a proof system for propositional logic on top of conversions.

A Verified Decision Procedure for Orders in Isabelle/HOL 137

Similarly to the system ≡fm, the proof system � in Fig. 3 is parametrised by a
proof system for atoms �a (with the same type as �P).

Fig. 3. Propositional proof system for formulae.

A clause C of a formula in DNF consists of nested applications of the
constructor And with Atom constructors as leaves. We first define a function
conj_list that computes the atoms of C. Along with it, we define a function
from_conj_prf that uses the rule ConjE to convert the proof p that assumes
every atom in from_conj C into a proof that just assumes C.

fun conj_list :: 'a fm ⇒ 'a list where
conj_list (And ϕ1 ϕ2) = conj_list ϕ1 @ conj_list ϕ2

| conj_list (Atom a) = [a]

fun from_conj_prf :: prf_trm ⇒ 'a fm ⇒ prf_trm where
from_conj_prf p (And a b) =

ConjE a b (from_conj_prf (from_conj_prf p b) a)
| from_conj_prf p (Atom a) = p

Let contr_prfa :: 'a list ⇒ prf_trm option be a function that tries to
derive a contradiction from a list of atoms. We will define an instance contr_list
of contr_prfa that refines the abstract procedure contr in the upcoming section.
In order to prove that φ is contradictory, we first recurse down to its clauses
and apply contr_prfa to each clause. Then, if each clause is contradictory, we
combine those inductively with the rule DisjE to obtain a proof for the whole
formula.

fun contr_fm_prf :: 'a fm ⇒ prf_trm option where
contr_fm_prf (Or c d) = case (contr_fm_prf c, contr_fm_prf d) of

(Some p1, Some p2) ⇒ Some (DisjE c d p1 p2) | _ ⇒ None
| contr_fm_prf (And a b) = case contr_prfa (conj_list (And a b)) of

Some p ⇒ Some (from_conj_prf p (And a b)) | None ⇒ None
| contr_fm_prf (Atom a) = contr_prfa [a]

To summarise, we now have the tools to preprocess a conjunction of partial
order literals such that we can apply the decision procedure contr to the clauses
of the resulting formula. By introducing appropriate proof terms, the same tools
can be applied to linear orders where it is not necessary to convert to DNF.

138 L. Stevens and T. Nipkow

The functions as defined above are amenable to code generation; thus, the only
missing part is an executable specification for contr, which is the topic of the
next section.

6 Refinement to Executable Specification

The executable specification utilises the abstract datatype ('a, 'b) mapping,
which is a partial map 'a ⇒ 'b option from keys to values. Isabelle’s library
conveniently provides a refinement of mapping to red-black trees, thereby making
mapping executable [4]. We will need the following operations on this datatype:

– Mapping.keys m give us all keys of the map m that have an associated value.
– Mapping.entries m gives us the entries of the map m, i.e. all key-value pairs.
– Mapping.of_alist as converts the association list as into a map.

The prefix Mapping will be dropped in what follows.
Remember that, at its core, the decision procedure computes the rela-

tion leq A where for each (x, y) ∈ leq A, there exists a proof p such that
A �P p : x ≤ y. Computing leq A boils down to computing the transitive
closure of the finite relation leq1 A while keeping track of the corresponding
proof terms. Note that we only assume finiteness for the sake of executability; the
abstract decision procedure does not make this assumption. This in turn allows
us to only consider a finite number of terms of (leq1 A)+ =

⋃∞
i=0 (leq1 A)i+1.

More specifically, if leq1 A contains n pairs, then it is sufficient to only consider
the first n terms. We implement this naively by iterating over n while accumu-
lating the n-fold relational composition. We claim (without formal proof) that
this yields a running time of O(n4 log(n)) where the logarithmic component
is due to the implementation being based on red-black trees. Using the Floyd-
Warshall-Algorithm and arrays instead of red-black trees, the running time could
be improved to O(v3) ⊆ O(n3) where v is the number of distinct variables in
the set of (in)equalities A. This optimisation, however, is unlikely to pay off since
the goals tend to be small: throughout the whole basic library of Isabelle/HOL
the number of order literals never exceeds 13. Although computing the transitive
closure dominates the running time of the procedure, it must be noted that case
analyses on literals of the form x ≮ y incur an exponential number of calls to
the procedure. Altogether we obtain a function trancl_mapping that computes
the transitive closure.

lemma assumes finite (keys m)
shows keys (trancl_mapping m) = trancl (keys m)

and keeps track of the proof terms:
lemma assumes finite (keys m)

and ∀((x, y), p) ∈ entries m. A �P p : x ≤ y
shows ∀((x, y), p) ∈ entries (trancl_mapping m). A �P p : x ≤ y

A Verified Decision Procedure for Orders in Isabelle/HOL 139

As explained above we assume the set of order literals to be finite so we repre-
sent it as list. This makes defining an executable refinement for leq1 straightfor-
ward. Here, computing the intermediate leq1_list is done strictly to simplify
the proofs as one could use a fold over the mapping to obtain leq1_mapping
directly.

fun leq1_member_list :: order_literal
⇒ ((var × var) × prf_trm) list where

leq1_member_list (x ≤ y) = [((x, y), AssmP (x ≤ y))]
| leq1_member_list (x = y) =

[((x, y), EQE1P (x = y)), ((y, x), EQE2P (x = y))]
| leq1_member_list _ = []

definition leq1_list A ≡ concat (map leq1_member_list A)
definition leq1_mapping A ≡ of_alist (leq1_list A)

Equipped with the above functions, we can compute the transitive closure
trancl_mapping (leq1_mapping A); thus, we are only missing the reflexive clo-
sure to have a refinement of leq. The reflexive closure for an infinite carrier type,
however, would yield an infinite set. Therefore, we only represent the set implic-
itly with the predicate is_in_leq that, for a given pair (x, y), returns some
proof A �P p : x ≤ y if and only if (x, y) ∈ leq A. Similarly, we define
is_in_eq by combining the proofs we get from is_in_leq with the rule Anti-
sym. We pass around trancl_mapping (leq1_mapping A) as the argument
leqm to avoid recomputing it.

definition is_in_leq leqm (x, y) ≡
if x = y then Some (ReflP x) else lookup leqm l

definition is_in_eq leqm (x, y) ≡
case (is_in_leq leqm (x, y), is_in_leq leqm (y, x)) of

(Some p1, Some p2) ⇒ Some (AntisymP p1 p2) | _ ⇒ None

Putting things together, we try to find the first negative literal in A that
stands in contradiction to either is_in_leq or is_in_eq. In case we find one,
we produce a proof of contradiction by mapping Contr over the value with
map_option :: ('a ⇒ 'b) ⇒ 'a option ⇒ 'b option.

fun contr1_list :: ((var × var), prf_trm) mapping ⇒ order_literal
⇒ prf_trm option where

contr1_list leqm (x ≤ y) =
map_option (ContrP (x ≤ y)) (is_in_leq leqm (x, y))

| contr1_list leqm (x �= y) =
map_option (ContrP (x �= y)) (is_in_eq leqm (x, y))

| contr1_list _ _ = None

fun contr_list_aux where
contr_list_aux leqm [] = None

| contr_list_aux leqm (l#ls) = case contr1_list leqm l of
Some p ⇒ Some p | None ⇒ contr_list_aux leqm ls

140 L. Stevens and T. Nipkow

definition contr_list A ≡
contr_list_aux (trancl_mapping (leq1_mapping A)) A

The executable specification contr_list refines contr.

theorem contr (set A) ←→ (∃ p. contr_list A = Some p)

7 From Exported Code to Integrated Proof Tactic

In the previous sections, we demonstrated how to refine the abstract decision
procedure down to an executable specification. We can now generate Standard
ML code from it that, assuming the code generator to be correct, implements the
specification. Nevertheless, the procedure only works on a simple term language
of propositional formulas with order literals as their atoms. To integrate the
procedure back into Isabelle as a full-blown tactic, we have to convert a goal
given in the higher-order term language of Isabelle into our simple term language
on the one hand and replay the proof terms produced by the procedure through
Isabelle’s inference kernel on the other hand. The first aspect is taken care of by
some hand-written ML code that

– brings the goal into a form where we have to prove False,
– extracts those assumptions that are order literals,
– converts the literals into our simple representation, e.g. for the term s ≤ t

it replaces ≤ by the constructor ≤ and s and t by integer variables,
– and builds conjunction from the converted literals using And.

Passing the conjunction of literals to the exported code produces a proof term
in the format that we sketched in Sect. 5. There, we pretended that each rule of
the proof system has a designated proof term constructor, which would require
replay code for every constructor. In reality we use a more general format for the
proof terms, namely a simplified version of Isabelle’s proof terms as introduced
by Berghofer and Nipkow [1]. Both terms and proof terms are less expressive in
our representation. First, terms only consist of constants, function application,
and variables, where each variable stands for an Isabelle term as explained above.
In particular, there is no function abstraction.

datatype trm = Const String.literal | App trm trm | Var var

As for the proof terms, they are less expressive as well: we have proof con-
stants, proof variables bound by an enclosing proof abstraction, proof application,
proof abstraction, term application, and conversions but no term abstractions
and no instantiation of proof constants. In contrast to Isabelle’s proof terms,
we refer to bound proofs by their proposition, i.e. with a term, instead of using
variables. This is to avoid dealing with bound variable indices, which simplifies
reasoning about proof terms. Conversion proofs are strictly for convenience as
the other constructors would be sufficient to represent equational proofs.

A Verified Decision Procedure for Orders in Isabelle/HOL 141

datatype prf_trm = PThm String.literal | Bound trm
| AppP prf_trm prf_trm | AbsP trm prf_trm
| Appt prf_trm trm | Conv trm prf_trm prf_trm

In Fig. 4, we define a proof system where we write Γ � p : φ to mean that,
in the context Γ, the proof term p proves the proposition φ. The context Γ
contains propositions and conversions but no terms because we omitted term
abstractions. Quoting bound proof variables in Γ by their term requires us to
convert the simple terms to Isabelle terms. For this, we use the function dr that
maps constants to Isabelle constants and variables back to their corresponding
Isabelle terms. Proof constants PThm c are interpreted by the environment Σ(c),
which maps them to the corresponding propositions. Finally, we use the function
rpc(cp) to convert a conversion proof into an Isabelle conversion.

Fig. 4. Proof system for proof terms

The rules for proof abstraction AbsP and for proof application AppP cor-
respond to introduction respectively elimination of Isabelle’s meta-implication
=⇒. Similarly, applying a term to a proof with Appt is equivalent to elimi-
nation of the universal meta-quantification ∧. Those rules are modelled after
primitives of the Isabelle’s inference kernel so they are straightforward to replay.
The remaining rules, on the other hand, require retrieving information from the
context Γ, which is implemented as follows: mapping from theorem and con-
version constants PThm c to the respective theorems and conversions is realised
with association lists. Likewise, we save the bound proof terms in a map from
terms to theorems, recursively extending the map with assumptions introduced
by AbsP while replaying the proof term. The function rpc that constructs a
conversion from proof applications and conversion constants is straightforward
to implement. Applying the resulting conversion to the specified bound proof
term and adding the new theorem to the context completes the implementation
of Conv.

The procedure is already part of the development version of Isabelle2 where
it is registered to the simplifier as a so-called solver. As such, the procedure is
2 Introduced in commit https://isabelle-dev.sketis.net/rISABELLEa3cc9fa129.

https://isabelle-dev.sketis.net/rISABELLEa3cc9fa129

142 L. Stevens and T. Nipkow

called whenever the simplifier is out of applicable rewrite rules. This is helpful
when, for example, the simplifier wants to apply a conditional rewrite rule whose
premises talk about set inclusion (which is a partial order). Since our procedure
is more powerful than the old one, more rewrite rules apply which resulted in
some broken proofs that had to be fixed. There were no significant changes in
performance in comparison to the old procedure.

8 Conclusion

We provided the first verified implementation of a decision procedure for the
quantifier-free theory of partial and linear orders. Although we closely followed
the Isabelle/HOL formalisation in our presentation, the findings are not specific
to Isabelle: any reasonably powerful theorem prover could use the code exported
from the specification and replay the proof terms that it produces. In future
work, we plan to apply the methodology presented here to the quantifier-free
theory of (reflexive) transitive closure. Another direction is to replace our terms
and proof terms by those from the formalisation of Isabelle’s meta-logic [11],
allowing us to reason about higher-order terms directly instead of translating
between them and our simple terms.

Acknowledgements. We thank Kevin Kappelmann and the anonymous reviewers
for their comments.

References

1. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In:
Aagaard, M., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 38–52.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44659-1 3

2. Bossert, W., Suzumura, K.: Consistency, Choice, and Rationality. Harvard Univer-
sity Press, Cambridge (2010)

3. Ehrenfeucht, A.: Decidability of the theory of linear order. Not. Am. Math. Soc. 6,
268–269 (1959)

4. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39634-2 10

5. Janiczak, A.: Undecidability of some simple formalized theories. Fundam. Math.
40, 131–139 (1953)

6. Kreisel, G.: Review of “Undecidability of some simple formalized theories”. Math.
Rev. 15, 669–670 (1954)

7. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundam. Math.
59, 109–116 (1966)

8. Negri, S., Von Plato, J., Coquand, T.: Proof-theoretical analysis of order relations.
Arch. Math. Logic 43(3), 297–309 (2004)

9. Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P.,
Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 18–33. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-71070-7 3

https://doi.org/10.1007/3-540-44659-1_3
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-540-71070-7_3

A Verified Decision Procedure for Orders in Isabelle/HOL 143

10. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL–A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

11. Nipkow, T., Roßkopf, S.: Isabelle’s metalogic: Formalization and proof checker
(2021). https://arxiv.org/abs/2104.12224

12. Stevens, L., Nipkow, T.: A verified decision procedure for orders. https://www21.
in.tum.de/team/stevensl/assets/atva-2021-artifact.zip. Formal proof development

13. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Math. 1(16), 386–389
(1930)

14. Zeller, P., Stevens, L.: Order extension and Szpilrajn’s theorem. Archive of For-
mal Proofs (2021). https://devel.isa-afp.org/entries/Szpilrajn.html. Formal proof
development

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://arxiv.org/abs/2104.12224
https://www21.in.tum.de/team/stevensl/assets/atva-2021-artifact.zip
https://www21.in.tum.de/team/stevensl/assets/atva-2021-artifact.zip
https://devel.isa-afp.org/entries/Szpilrajn.html

PJBDD:
A BDD Library for Java and Multi-Threading

Dirk Beyer , Karlheinz Friedberger , and Stephan Holzner

LMU Munich, Munich, Germany

Abstract. pjbdd is a flexible and modular Java library for binary
decision diagrams (BDD), which are a well-known data structure for
performing efficient operations on compressed sets and relations. BDDs
have practical applications in composing and analyzing boolean functions,
e.g., for computer-aided verification. Despite its importance, there are
only a few BDD libraries available. pjbdd is based on a slim object-
oriented design, supports multi-threaded execution of the BDD operations
(internal) as well as thread-safe access to the operations from applications
(external). Itprovidesautomatic referencecountingandgarbagecollection.
The modular design of the library allows us to provide a uniform API
for binary decision diagrams, zero-suppressed decision diagrams, and also
chained decision diagrams. This paper includes a compact evaluation of
pjbdd, to demonstrate that concurrent operations on large BDDs scale
well and parallelize nicely on multi-core CPUs.

Keywords: BDD · Java Library · Concurrency · Multi-threaded Application

1 Introduction

Binary Decision Diagrams (BDDs) [1,8] enabled a major break-through in apply-
ing model checking to large hardware models [9]. In our own previous work, we
applied BDDs to model checking of timed automata [2] and C programs [5]. Most
of the existing, state-of-the-art BDD libraries are not designed in thread-safe
manner (CuDD [15],BuDDy [10], and JDD [16]), do not support multi-threaded
execution of the BDD operations (BeeDeeDee [14]), or require effort to manually
update reference counters for BDD nodes (Sylvan [11]). Therefore, application
developers of, e. g., verification tools based on BDDs, have to implement code
for cleaning up unused nodes or cannot directly use multi-threaded verification
algorithms with BDDs in a thread-safe manner.

PJBDD contributes to closing this gap and offers a full-fledged BDD library
with support for convenient usage from Java applications. Table 1 lists the pro-
gramming and BDD features that we identified as important in our development
work on the verification framework CPAchecker, which uses BDDs as a central
data structure. For our work it is more important to have a convenient and
thread-safe development environment with an easy-to-read code basis, than to

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 144–149, 2021.
https://doi.org/10.1007/978-3-030-88885-5_10

https://doi.org/10.5281/zenodo.5070156
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_10&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7624-654X
https://github.com/ivmai/cudd
http://buddy.sourceforge.net/manual/main.html
https://bitbucket.org/vahidi/jdd/src
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan
https://doi.org/10.1007/978-3-030-88885-5_10

PJBDD: A BDD Library for Java and Multi-Threading 145

Table 1. Different BDD libraries and their features

last thread- parallel automatic dynamic further

main- safe operations reference variable supported

tained access counting reordering diagrams

BuDDy [10] 2014 - - ✓ ✓ -

CuDD [15] (2016) - - - ✓ ADD, ZBDD, CBDD

PJBDD 2021 ✓ ✓ ✓ - ZBDD, CBDD

JDD [16] 2019 - - - - ZBDD

Sylvan [11] 2020 (✓) ✓ - - ADD, LDD, TBDD

BeeDeeDee [14] 2018 ✓ - - - -

leverage the maximal possible performance. This makes the library easier to
maintain and extend for us and our students. PJBDD is also an interesting
choice for teaching. PJBDD is the only available BDD library (Table 1) that

• is actively maintained by the developers,
• ensures thread-safe concurrent calls from user applications in Java,
• supports multi-threaded execution of BDD operations,
• provides automatic reference counting, and
• supports zero-suppressed BDDs (ZBDD) and chained BDDs (CBDD).

RelatedWork. BDDs are practically relevant since the seminal paper by Bryant
in 1986 [7]. Several highly tuned BDD libraries became available since that time,
written in different programming languages.Well-known examples are theC/C++
libraries BuDDy [10], CuDD [15], and Sylvan [11], as well as the Java libraries
BeeDeeDee [14], and JDD [16].

The performance of a BDD library depends on several low-level design choices,
which makes it difficult for researchers to develop new design approaches in
existing highly optimized code. Furthermore, existing libraries often lack support
for multi-threaded algorithms, concurrent access, or automatic reference count-
ing. The Java-based implementation BeeDeeDee allows to perform thread-safe
parallel operations. The library Sylvan [11] achieved great speed-up in large-scale
scenarios with multi-threaded execution of BDD operations. However, due to a
bug in the Java wrapper, thread-safe access from Java is not possible (An issue
was reported at https://github.com/utwente-fmt/jsylvan/issues/3). While sev-
eral tools support automated garbage collection, BuDDy and PJBDD are the
only tools that support automated reference counting. The last date of official
maintenance of CuDD is unknown, because the official FTP server is offline (The
mirror at https://github.com/ivmai/cudd does not show activity since 2016.)

The implementation of ZBDDs is only available in the oldest (and thus most
advanced) implementations; and unfortunately missing in newer libraries like
BeeDeeDee and Sylvan. PJBDD closes this gap by providing all of the features
described above in a well-known platform-independent programming language.

http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://bitbucket.org/vahidi/jdd/src
https://github.com/trolando/sylvan
https://github.com/JuliaSoft/BeeDeeDee
http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://github.com/trolando/sylvan
https://github.com/JuliaSoft/BeeDeeDee
https://bitbucket.org/vahidi/jdd/src
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan
https://github.com/utwente-fmt/jsylvan/issues/3
http://buddy.sourceforge.net/manual/main.html
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://github.com/JuliaSoft/BeeDeeDee
https://github.com/trolando/sylvan

146 D. Beyer, K. Friedberger and S. Holzner

2 Design and Implementation Details

This section gives a compact overview of PJBDD’s design and implementation.

Shared Graph Representation. In an application, there is not only one single
BDD, but there are multiple of them. For overall efficiency, it is required that
all common sub-graphs are shared in one central data structure, i.e., in a large
hash table. In our BDD library, this shared data structure, called UniqueTable, is
usable from multiple threads in concurrent manner, and we took care of minimal
synchronization overhead. Therefore, read and write accesses are implemented as
atomic compare-and-swap operations (CAS). Our hash tables use a prime-hashing
function, which is a common choice for BDD libraries.

Operations Cache. For efficient BDD manipulation, a cache for computed
operation results is necessary. Since the cache heavily reduces workload and
achieves huge speed up, we implemented one central caching instance which all
worker threads share. To enable thread-safe accesses we use atomic CAS accesses.

Concurrent BDD Operations. For concurrent operations, we use a fork-join
parallelism. The Shannon expansion in the BDD applies its operations such that
the two recursive calls run in parallel. We keep the implementation as simple as
possible and use the Java-native fork-join framework to avoid overthreading and
respect the execution order (the two recursive calls have to finish before returning).

MemoryManagement.Automatic memory management relieves the developer
from the error-prone and tedious job of manually allocating and deallocating
memory, which is one of the advantages of high-level programming languages
like Java. An automatic garbage collection clears all memory objects that are
no longer reachable from the user application. However, one problem remains
that is crucial for long-running applications: The application can leak memory if
the user forgets to remove object references in a central data structure. PJBDD
offers automated cleaning of unused nodes. We chose to use WeakReferences and
ReferenceQueues as provided by the JDK for fine-grained, but automatic and
efficient memory control.

3 Architecture of the Library

Our library is written in Java. In comparison to other BDD libraries, PJBDD
does not work with integer indices as internal BDD representations, but with
Java objects. This allows us to use the object-oriented approach, but at the price
of slightly heavier memory consumption. More implementation details and results
of preliminary experiments are available in the Master’s thesis by Holzner [13].

Design Criteria. Instead of developing another Java clone of an existing
C library, we started from scratch and thoroughly considered the design criteria.
Our development of a new BDD library is motivated by several requirements
that are not addressed by existing BDD libraries.

PJBDD: A BDD Library for Java and Multi-Threading 147

Application

API

Operation

Data

CPAchecker n-Queens ...

BDDCreator ZBDDCreator

BDDAlgorithm CBDDAlgorithm ZBDDAlgorithm

UniqueTable OperationCache

PJBDD

Fig. 1. Overview of the components of PJBDD

First, we desire a simple to use API and an easy-to-read code basis, such
that future developers (including students) can experiment with and extend the
existing code without requiring expert knowledge about optimizations, such as
low-level bit-operations and reference counting. Of course, memory management
is important for a highly optimized library. However, memory management by
the user of a library is error prone and modern programming languages tend to
already include automatic garbage collection. We decided for the standard Java
garbage collector and do not provide an explicit way for the user to remove BDD
nodes from the cache. Second, to minimize development time and maintenance
costs, we used components from the Java standard API, such as the default
fork-join framework for efficient multi-threaded computations.

Overview. Our library offers two distinct APIs: one for working with BDDs and
one for ZBDDs. Due to their theoretical different nature, it is not possible to
directly combine those types of decision diagrams. The API for BDDs provides
typical boolean operations, such as conjunction, implication, or negation. Our
library supports to configure chaining [6] with the same interface. The API for
ZBDD has typical operations on ZBDDs, such as union and intersection.

Both APIs access the same kind of data structures: An operation layer, a
node implementation, and a central cache. Figure 1 gives an overview of the
layers and used components. The operation layer contains the basic algorithms
on BDDs, and their implementation is optimized for multi-threaded computation.
A BDD node itself represents an independent subtree and its implementation is
as slim as possible to minimize memory consumption. A BDD node references
its variable, the end of its chain in case of CBDD, and its two child nodes along
the high and low edge. The central components of a BDD library are the node
caches, which are divided into the global UniqueTable for node references given
to the user, and the operation cache that is utilized in all internal algorithms.
The operation cache is a crucial ingredient for BDD operations and responsible
for the overall performance of the library.

With our modular approach, we can exchange several components to analyze
the effect of different implementations without changing the user’s application
that is built on top of our library. For example, we can select from different cache
and UniqueTable implementations or enable BDD chaining. For the experiment,
we have set the currently best choices as default to evaluate the impact of
concurrent computation on a scaling application.

148 D. Beyer, K. Friedberger and S. Holzner

Table 2. Solving the n-queens problem with a limited number of threads and a
given number of CPU cores (wall time in seconds, memory consumption in MB)

10-queens 11-queens 12-queens 13-queens

cores (s) (MB) (s) (MB) (s) (MB) (s) (MB)

1 3.5 200 15 480 93 2 200 620 12 000

2 3.3 400 10 1 200 54 4 700 490 13 000

4 2.3 430 6.3 1 800 32 5 100 220 13 000

8 1.7 400 4.5 1 600 19 5 800 140 12 000

4 Experimental Evaluation

Our evaluation was executed with PJBDD, version v1.0.9 on an Intel Xeon E3-
1230 CPU with 8 processing units. To guarantee reproducibility we isolated the
benchmark runs withBenchExec [4], restricted the memory to 15 GB and set the
maximal Java heap size to 12 GB. The n-queens problem is a typical satisfiability
problem, which can be represented as BDD. To correctly solve the problem,
one needs to place n chess queens on a chess board of size n × n, such that no
queen can be beaten by others (according to chess rules). BDDs can represent
all the problem’s different possible solutions in one BDD. To evaluate whether
PJBDD scales well on multiple CPU cores, we analyzed the n-queens problem
and measured the consumed memory and response time, when PJBDD uses a
given number of CPU cores. The results in Table 2 show a significant impact
of the parallelization. PJBDD’s memory usage increased with multi-threaded
computations (up to four times for N = 11). In terms of response time, our
library can achieve a speed-up of up to five times for this application.

5 Conclusion

The abundance of multi-core environments makes it meaningful to invest in multi-
threaded verification algorithms. This, however, requires the availability of thread-
safe and multi-threaded data-structure libraries. The advent of Sylvan showed
that this is possible and can lead to a considerable speed-up. Our motivation is
to provide a Java implementation of a BDD library that guarantees thread-safe
operation and supports multi-threaded execution of the BDD operations. PJBDD
is such a BDD package. We use the n-queens problem as a load test and showed
that the parallelization works well, as the work nicely distributes over the cores.

There are lots of additional features that can be implemented in the future.
Due to the modular implementation, slim and flexible ZBDD and CBDD im-
plementations are included already. This design could be used to support more
different types of decision diagrams, such as CZBDDs [6] or tagged BDDs [12].
Improvements in performance or memory consumption without introducing
additional code complexity is also a major goal of the developers.

Data Availability Statement. PJBDD is licensed under Apache 2.0 and
available on GitLab: https://gitlab.com/sosy-lab/software/paralleljbdd. The

https://gitlab.com/sosy-lab/software/paralleljbdd/-/tree/v1.0.9
https://github.com/trolando/sylvan
https://gitlab.com/sosy-lab/software/paralleljbdd

PJBDD: A BDD Library for Java and Multi-Threading 149

repository contains examples and instructions how to install and use the tool. A re-
production package for the n-queens experiment and some software-verification
experiments is available on Zenodo [3].

Funding. This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) – 378803395 (ConVeY).

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516
(1978). https://doi.org/10.1109/TC.1978.1675141

2. Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In:
Proc. FME. pp. 318–343. LNCS 2021, Springer (2001). https://doi.org/10.1007/3-
540-45251-6 18

3. Beyer, D., Friedberger, K., Holzner, S.: Reproduction package for article ‘PJBDD:
A BDD library for Java and multi-threading’ in Proc. ATVA 2021. Zenodo (2021).
https://doi.org/10.5281/zenodo.5070156

4. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

5. Beyer, D., Stahlbauer, A.: BDD-based software model checking with
CPAchecker. In: Proc. MEMICS. pp. 1–11. LNCS 7721, Springer (2013).
https://doi.org/10.1007/978-3-642-36046-6 1

6. Bryant, R.E.: Chain reduction for binary and zero-suppressed decision diagrams.
J.Autom.Reasoning64(7), 1361–1391 (2020). https://doi.org/10.1007/s10817-020-
09569-6

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans.Computers35(8),677–691(1986).https://doi.org/10.1109/TC.1986.1676819

8. Bryant, R.E.: Binary decision diagrams. In: Handbook of Model Checking, pp.
191–217. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 7

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 1020 states and beyond. In: Proc. LICS. pp. 428–439. IEEE (1990).
https://doi.org/10.1109/LICS.1990.113767

10. Cohen, H., Whaley, J., Wildt, J., Gorogiannis, N.: BuDDy: A BDD package.
http://sourceforge.net/p/buddy/

11. van Dijk, T.: Sylvan: Multi-core decision diagrams. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2016)

12. van Dijk, T., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules from
different decision diagram types. In: Proc. FMCAD. pp. 108–115. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102248

13. Holzner, S.: Design und Implementierung einer parallelen BDD-Bibliothek. Master’s
Thesis, LMU Munich, Software Systems Lab (2019)

14. Lovato, A., Macedonio, D., Spoto, F.: A thread-safe library for binary de-
cision diagrams. In: Proc. SEFM. pp. 35–49. LNCS 8702, Springer (2014).
https://doi.org/10.1007/978-3-319-10431-7 4

15. Somenzi, F.: Colorado University decision diagram package (1998)
16. Vahidi, A.: JDD: A pure Java BDD and Z-BDD library. https://bitbucket.org/

vahidi/jdd (2003)

https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1007/3-540-45251-6_18
https://doi.org/10.1007/3-540-45251-6_18
https://doi.org/10.5281/zenodo.5070156
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-36046-6_1
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1007/s10817-020-09569-6
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1109/LICS.1990.113767
http://sourceforge.net/p/buddy/
https://doi.org/10.23919/FMCAD.2017.8102248
https://doi.org/10.1007/978-3-319-10431-7_4
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd

Model Checking

Live Synthesis

Bernd Finkbeiner, Felix Klein, and Niklas Metzger(B)

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner,felix.klein,niklas.metzger}@cispa.de

Abstract. Synthesis automatically constructs an implementation that
satisfies a given logical specification. In this paper, we study the live syn-
thesis problem, where the synthesized implementation replaces an already
running system. In addition to satisfying its own specification, the synthe-
sized implementation must guarantee a sound transition from the previ-
ous implementation. This version of the synthesis problem is highly rel-
evant in “always-on” applications, where updates happen while the sys-
tem is running. To specify the correct handover between the old and new
implementation, we introduce an extension of linear-time temporal logic
(LTL) called LiveLTL. A LiveLTL specification defines separate require-
ments on the two implementations and ensures that the new implemen-
tation satisfies, in addition to its own requirements, any obligations left
unfinished by the old implementation. For specifications in LiveLTL, we
show that the live synthesis problem can be solved within the same com-
plexity bound as standard reactive synthesis, i.e., in 2EXPTIME. Our
experiments show the necessity of live synthesis for LiveLTL specifications
created from benchmarks of SYNTCOMP and robot control.

1 Introduction

The past decade has brought remarkable progress in the automatic synthesis of
reactive systems from temporal specifications [5,13,17]. Traditionally, synthesis
is seen as a one-off method: the generated implementation is guaranteed, by
construction, to satisfy the specification. If the specification changes, the process
is repeated from the start. For systems that are always-on, like banking systems,
or controllers in power plants, this may, however, not be an option: when the
requirements change, the system must be updated while it is still running, and
the control must transition to the new version without disrupting the safety or
functionality of the running system. While such live updates are a well-studied
concern in operating systems research (cf. [9]), they are, somewhat surprisingly,
still a novelty in formal methods.

An extended version of this paper is available at [6].
This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), by the European Research Council (ERC) Grant OSARES
(No. 683300), and by the German Israeli Foundation (GIF) Grant “Knowledge-based
Synthesis” (No. I-1513-407./2019).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 153–169, 2021.
https://doi.org/10.1007/978-3-030-88885-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_11

154 B. Finkbeiner et al.

In this paper, we define a live system as sequence of implementations, each
with a corresponding specification. The last element in the sequence is the cur-
rently executed system. Performing a live update terminates the currently active
system and extends the sequence with a new implementation. The key challenge
of live updates is that any obligations imposed by the specification of the termi-
nated system that are not yet satisfied at the time of the update must be taken
care of by the newly active system. This transfer of obligations is important to
make the update transparent from the user’s perspective. Consider, for example,
an arbiter specified as the LTL formula (request → grant), which requires
that every request is eventually followed by a grant . If the update occurs after
some request , but before the corresponding grant , then the new implementation
must still guarantee the occurrence of the grant .

The problem of model checking live updates is to check whether a given
new implementation will result in a correct live update; the synthesis problem
is to automatically find such an implementation. To specify the correct han-
dover between the old and new implementation, we introduce an extension of
linear-time temporal logic (LTL) called LiveLTL. A LiveLTL specification defines
requirements on the two implementations and ensures that the new implementa-
tion satisfies, in addition to its own requirements, any obligations left unfinished
by the old implementation. We consider two variants of the model checking and
synthesis problems. In finite-trace live updates, we only require the update to
be correct in a specific situation, i.e., after a specific execution of the previous
implementation. In universal updates, we require that the update can occur at
any time. We show that model checking live updates is PSPACE-complete in
the initial and update specification. Synthesis is 2EXPTIME-complete in the
combination of the specifications for both update variants.

We report on experience with a prototype implementation of our approach on
a range of benchmarks, including examples taken from the synthesis competition
and a robotic case study. In our experiments, live synthesis is used to construct
live updates built on reasonable pairs of specifications. The results show the
necessity of verifying live updates with the adapted semantics of LiveLTL and
that every considered specification states obligations for the update.

2 Running Example – Relay Station

Consider the following setup: a satellite has been positioned in the orbit of Mars
in combination with multiple base stations on the planet. The base stations take
samples from the extraterrestrial environment, analyze them and submit their
findings to the satellite. After the data has been sent by a station, it waits for
instructions from the satellite: whether the sample must be further analysed, or
whether it can be discarded and a new sample must be taken. The satellite, on
the other hand, provides the stations with the corresponding instructions and
collects the data of all stations for relaying it back to earth. To this end, the
satellite takes care that always some data of all base stations has been collected
to be present in the report for earth.

Live Synthesis 155

Fig. 1. Synthesized LTS for the satellite specification.

We formalize this behavior of the satellite in LTL. On the input side, the
satellite receives n measurements mj of every base station, where 0 ≤ j < n
ranges over the n deployed base stations on the planet. On the output side, the
satellite outputs instructions ij and can create a report r to be sent back to
earth. The behavior is formalized using the following guarantees: First of all,
every measurement mi must be responded to eventually and instructions are
only sent in response to received measurements.

ϕ1 :=
n∧

j=0

mj → ij ϕ2 :=
n∧

j=0

¬mj → ¬ij

Furthermore, a report is generated as long as every base station submits a mea-
surement regularly, while no report needs to be generated as long as some mea-
surements are still missing.

ϕ3 := (
n∧

j=0

mj) → r ϕ4 := (
n∨

j=0

¬mj) → ¬r

All guarantees ϕj must be satisfied at every point in time. We obtain the overall
specification ϕ :=

∧4
j=1 ϕj . The specification is realizable, as witnessed by the

synthesized labeled transition system (LTS) for two base stations in Fig. 1. We
follow the transition system for ϕ1. Starting in the initial state, if m0 and m1

is received, we stay in the same state and m0 as well as m1 is satisfied.
The transition system follows the ¬m0 edge to the state labeled with i1 to
satisfy the subformula i1. Note that m1 → i1 would be directly satisfied
in the initial state since the Moore semantics evaluates the formula based on
the current state and next edge label. The states at the top right and bottom
left ensure that ϕ2 is satisfied, i.e., it waits for inputs before the corresponding
output is set. Corresponding to ϕ4, the top left and bottom right states control
the output r which is only allowed to be true as long as all measurements are
received. Consider a situation, where one of the base stations fails. The satellite
controller must be updated, since the satellite would wait indefinitely for the
data of the broken base station otherwise. The report generation would also
be broken. However, we cannot just eliminate the broken base station from the
original specification, synthesize again and restart the satellite with the new
result. The reason is that there still may be an outstanding instruction of the

156 B. Finkbeiner et al.

satellite for one of the remaining base stations, for which this base station is
actively waiting. Therefore, the updated specification still needs to take this
obligation of the old implementation into account.

We consider the necessary changes to the synthesis procedure that are
required for a correct update of the specification and synthesized implementa-
tion. An adapted verification framework is introduced that enables the validation
of live systems. We present a logic that avoids the break of the base stations and
satellite due to the disregarded obligations of the old system during update.

3 Preliminaries

Linear Temporal Logic. Linear temporal logic (LTL) [19] is a logic for specifying
correctness of linear-time systems. The syntax is a combination of state and
path operators over a set of atomic propositions (AP) that define behavior over
infinite time. Formulas in LTL are built according to the grammar ϕ ::= � |
⊥ | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ | ϕ1 U ϕ2 where a ∈ AP . Temporal operators are
next and until U , all other operators are boolean connectives. We assume
every LTL formula to be in release positive normal form (PNF) where negations
are only allowed in front of atomic propositions. For readability, implication
→ and equivalence ↔ as well as the common abbreviations eventually a for
� U a and globally a for ¬ ¬a are used throughout this paper. Defining the
LTL semantics, the operator � evaluates infinite traces σ and explicit index i
against LTL formulas ϕ where traces are words over letters σ ∈ (2AP)ω. For
example, σ satisfies a if in the next step a holds in σ and aU b if a holds
until b holds. A trace σ = A0A1A2 . . . with Ai ∈ 2AP is an infinite sequence
of sets of atomic propositions. We use the infix notation σ[n,m] to crop the
trace to the sub-trace from position n to m, σ[n,m] = AnAn+1 . . . Am−1, where
Ai ∈ 2AP , and concatenate the finite trace σ1 with the possibly infinite trace
σ2 with σ1 · σ2. The semantic operator � builds a language of a specification ϕ
with Words(ϕ) = {σ ∈ (2AP)ω | σ, 0 � ϕ}. A trace σ that is terminated at an
arbitrary position m, i.e., σ[0,m], is a finite trace and denoted by η. The function
expand : LTL → LTL uses the standard LTL expansion rules to unroll the
given formula, expandn repeats expand n times. For example, expand1(aUb) =
b∨ (a∧ (aU b)). The function after : LTL× 2AP → LTL evaluates the formula
on a given atomic proposition assignment and returns the remaining formula,
e.g. after(aU b, {a}) = aU b and after(aU b, {b}) = �. after(ϕ, σ[0, n]) is defined
as after(after(ϕ, σ0), σ[1, n]) with after(ϕ, ε) = ϕ. Explicit definitions of expand
and after can be found in [6].

Transition Systems. The reactive model for LTL are transition systems where
state labels correspond to the output of systems and transition labels correspond
to the input of the environment. Given a finite set of directions Υ and a finite
set of labels Σ, a Σ-labeled Υ -transition system is a tuple TS = (T, t0, τ, o),
consisting of a finite set of states T , an initial state t0 ∈ T , a transition function
τ : T × Υ → T , and a labeling function o : T → Σ. Given AP and partition
AP = O ∪ I for output and input atomic propositions, implementations for
LTL specifications are 2O-labeled 2I -transition systems (TS). The paths of a

Live Synthesis 157

transition system start in t0 and follow the transition function τ collecting input
and output labels with the output function o. The traces of a transition system
Traces(TS) omit the state information of paths. We assume transition systems
without terminal states and a deterministic transition function.

Model Checking and Synthesis. Model checking a transition system TS against
a specification ϕ checks the relation Traces(TS) ⊆ Words(ϕ). The problem of
automatically constructing a transition system that satisfies the model checking
property is referred to as synthesis. In the course of this paper, we refer to the
algorithms of LTL model checking and synthesis as black box algorithms. Similar
to Traces(TS), we denote the set of finite traces of TS by FinTraces(TS).

4 Live Updates

Common formalisms for verification agree on the following assumption: different
system versions are analyzed in isolation, i.e., everything that happened before
the initial state of the new implementation is irrelevant for its correctness. For
updates at runtime, this assumption is infeasible. The update system has to
satisfy obligations that were stated during the execution of the previous system
to be correct. In this section, we set the foundations for a specification language
that is able to express correctness of a live update by defining the structure of two
live update problems. We identify the factors affecting the update process and
formalize the interplay of the components. The definitions are independent of
specific temporal logics and can be adapted to various logics and system models.

Proving the correctness of systems either by model checking or synthesis
assumes the existence of a starting point that is handled as the initial state.
For live updates, the starting point of verification is not the initial state of the
update system, but the initial state of the system running beforehand. Running
systems create obligations that cannot be discarded when updated live, other-
wise, for example, an observer would starve waiting for its response. The recent
development of live systems enforces the sensibility of correctness algorithms to
validate systems w.r.t. the context they are started in. For linear-time systems
given as transition systems, we define the context as the finite execution of the
previous system combined with its specification. The finite execution implicitly
changes the state of the formula which we refer to as active formula. We capture
this change to the formula with a function Ψ , which, given a finite trace and
a specification, returns a specification that captures the obligations needed for
the satisfaction of the update system. With defining Ψ , one is able to vary the
impact of the initial system to the update system. Verifying an update system
with standard LTL, one implicitly defines Ψ to be � for every input, enforcing
no obligations on the update system.

Definition 1 (Finite Trace Live Update). Let TSI be an initial system,
TSU be an update system, ϕ be an initial specification, ψ be an update specifi-
cation, and η be a finite trace of TSI . TSU is considered correct if it is correct
w.r.t. ψ and the result of Ψ(η, ϕ) for the function Ψ : (2AP)∗ × LTL → LTL
defining the obligation.

158 B. Finkbeiner et al.

Fig. 2. The finite trace live update with ϕ as the initial specification, ψ as the update
specification, and Ψ as the function computing the obligation for TSU .

The finite trace live update handles the context of the update as white-
box: the finite execution of the previous system is fully known. For this explicit
execution, the obligation is computed and, together with the specification of
the update system, verified against the update. Figure 2 shows the dependencies
built by the finite trace live update where n is the number of discrete time-steps
of the finite execution. However, the explicit finite execution of the initial system
is not always available. Therefore, Definition 2 introduces update correctness for
all possible finite paths of the initial system.

Definition 2 (Universal Live Update). Let TSI be an initial system, TSU be
an update system, ϕ be an initial specification, and ψ be an update specification.
TSU is considered correct if it is correct w.r.t. ψ and Ψ(η, ϕ) for all possible
finite traces η of TSI .

The context of the update is handled as black-box in the universal case. The
explicit execution and the system’s state of the update is unknown. Neverthe-
less, if all possible obligations are satisfied by the update system, the update is
guaranteed to be correct. Definition 2 increases the number of possibilities to be
verified, since arguing over an infinite set of finite traces cannot be performed
directly. In comparison to the explicit live update, the length n is kept arbitrary
since every finite trace may enforce its particular obligation.

Since we consider reactive systems, it is natural to aim for an update system
that reacts to the update context, i.e., for each result of Ψ(η, ϕ) the update sys-
tem starts differently. This problem is covered by the finite trace live update if
the number of different contexts is finite. One can solve the update problem for
each context and combine the resulting update systems accordingly. In general,
multiple other meaningful models of update correctness can be designed, e.g.,
enforcing the existence of an update point in the initial system’s future. Never-
theless, finite trace and universal live updates suffice for the course of this paper
and build a justifiable framework for live updates.

5 A Temporal Language for Live Updates

With the two live update problems defined, we introduce LiveLTL to state and
verify the correctness of live updates. LiveLTL is an extension to LTL and spec-
ifies live update properties that automatically enforce the obligations of the
previous execution on the update system. The syntax and semantics of LiveLTL
as well as the language equivalence to LTL are shown. Moreover, we identify the
class of obligations that can be stated by LiveLTL specifications.

Live Synthesis 159

5.1 LiveLTL

LiveLTL is designed according to three aspects: (1) the initial system is not able
to enforce new obligations after termination, (2) all obligations stated before
termination are satisfied by the update system, and (3) obligations are satis-
fiable in finite time. This guideline is a trade-off between independence of the
previous system and incurring obligations from the initial specification to the
update system. The definition of LiveLTL follows the finite trace update struc-
ture and builds the language for inputs as a combination of a finite and an
infinite trace evaluation. The syntax is taken from LTL and we assume the set
of atomic proposition for the initial system to be a subset of the atomic propo-
sitions of the update system. As extension to the semantic operator � of LTL,
the operators �|η|,I and �|η|,U form the language for the initial system and the
update system respectively. �|η|,U performs an index shift from time-step 0 to
the update position and evaluates the changed formula with the LTL operator
and is defined as σ, i �|η|,U ϕ iff σ, i + |η| � ϕ. Since the update specification
is only relevant for the update system, the shift of size |η| enables the correct
evaluation of the update system’s part of the trace. �|η|,I inserts |η| as upper
bound for recurrent formulas, i.e., formulas with the release operator:

σ, i �|η|,I � σ, i �|η|,I ⊥
σ, i �|η|,I a iff Ai � a, i.e. a ∈ Ai

σ, i �|η|,I ¬a iff Ai � a, i.e. a /∈ Ai

σ, i �|η|,I ϕ1 ∧ ϕ2 iff σ, i �|η|,I ϕ1 and σ, i �|η|,I ϕ2

σ, i �|η|,I ϕ1 ∨ ϕ2 iff σ, i �|η|,I ϕ1 or σ, i �|η|,I ϕ2

σ, i �|η|,I ϕ iff σ, i + 1 �|η|,I ϕ

σ, i �|η|,I ϕ1 U ϕ2 iff ∃j, j ≥ i. σ, j �|η|,I ϕ2 and ∀k, i ≤ k < j. σ, k �|η|,I ϕ1

σ, i �|η|,I ϕ1 Rϕ2 iff ∀j, |η| > j ≥ i. σ, j �|η|,I ϕ2 or
∃k, |η| > k ≥ i. (σ, k �|η|,I ϕ1 ∧ ∀l, i ≤ l ≤ k. σ, l �|η|,I ϕ2)

Informally, ϕ1 R ϕ2 opens the obligation ϕ2 in every execution step which con-
tradicts (1) if evaluated after the update. As standard LTL semantics enables the
specification to infinitely open new obligations, �|η|,I is built to limit this behav-
ior to the actual finite execution of the initial system. The definition of �|η|,I
mostly follows the definition of �, except for the evaluation of release formulas.
For all indices greater or equal to the length of the trace, ϕ1 R ϕ2 is immediately
satisfied, thus imposing the end of newly created obligations from the initial
implementation. Therefore, the initial operator permits the transfer of finitely
satisfiable obligations to the update system (2), but forbids the impact of the
initial system after its termination (1). Note that for LTL formulas in PNF, all
operators except release only specify finite behavior and all open obligations are
satisfiable in finite time (3). The two operators define the language of LiveLTL.

Definition 3 (Language of LiveLTL). Let ϕ,ψ be LTL formulas and let η ∈
(2AP)∗. The linear time property induced by ϕ,ψ, and η is

Words(ϕ,ψ, η) = {η · σ ∈ (2AP)ω | η · σ, 0 �|η|,I ϕ ∧ η · σ, 0 �|η|,U ψ}.

160 B. Finkbeiner et al.

The language is dependent on the initial specification, the update specifica-
tion, and the finite trace. Evaluating the inclusion of an infinite trace with the
first |η| elements being fixed consists of a combination of the operators �|η|,I and
�|η|,U . The initial LiveLTL operator is defined on the syntactic structure of the
initial formula and is insensitive with respect to syntactic tautologies. Providing
formulas without syntactic ambiguity that cannot be dissolved in |η| time steps
is left to the specifier. The following theorem relates LiveLTL and LTL.

Theorem 1. LiveLTL and LTL are equally expressive.

The proof is a reduction via encoding the initial trace into the LTL formula
and is presented in the full version [6]. While being equally expressive, LiveLTL
enables the direct evaluation of the newly introduced live update problems on
a given context. Correctness for finite trace live updates follows from standard
language inclusion.

Definition 4 (Finite Trace LiveLTL Update). Let TSU be an update sys-
tem, ϕ be an initial specificaiton, ψ be an update specification, and η be a
finite trace. TSU is correct w.r.t. finite trace LiveLTL if η · Traces(TSU) ⊆
Words(ϕ,ψ, η).

Example 1. Interpreting the running example as finite trace LiveLTL update,
we can obtain the finite trace η = {m1, i0, i1, r}, {i1}, {m0,m1} as execution of
the relay station. Evaluating η with �|η|,I shows that i0, i1, and r need
to be satisfied by the update system, since both measurements are unanswered
and no report was given after both base stations sent their measurements. Note
that changing the last trace element to {m0} eliminates the obligations for the
base station i1 and the report r.

The finite trace update directly translates to the definition of LiveLTL, whereas
the universal live update adds a level of quantification.

Definition 5 (Universal Live LTL Update). Let TSI be an initial system,
TSU be an update system, ϕ be an initial specification, and ψ be an update
specification. TSU is correct w.r.t. universal LiveLTL if

∀η ∈ FinTraces(TSI) : η · Traces(TSU) ⊆
⋃

η∈FinTraces(TSI)

Words(ϕ,ψ, η).

To satisfy the universal update condition, the update system needs to be
robust against every possible obligation of the initial system. We explore the
model checking and synthesis problems of LiveLTL in Sect. 6.

5.2 Obligations

The impact of the initial system on the update system is declared by the operator
�|η|,I and forms a class of temporal properties. We investigate this class and build
a monitor that traces the open obligations during the execution of a system. In

Live Synthesis 161

Fig. 3. The obligation monitor for ϕ1 with one base station.

practice, the explicit update to be performed is unknown during the design of the
initial system. Therefore, one approach to face live updates is keeping track of
open obligations while the system is executed. To obtain the expressivity of the
obligations possibly enforced by LiveLTL, we introduce the obligation property.

Definition 6 (Obligation Property). A linear time property Pobl over AP is
called an obligation property if for all words σ ∈ Pobl there exists a good prefix,
i.e., for every σ ∈ Pobl there exists a word σ[0,m] s.t. ∀x.x ∈ (2AP)ω : σ[0,m] ·
x ∈ Pobl. Obligation properties coincide with the class of co-safety properties.

Obligations and co-safety properties describing the same language is a natu-
ral outcome of the LiveLTL semantics. To obtain the open obligations with
constant cost during runtime, the construction of a monitor tracking the obliga-
tions provides a space bounded solution. The monitor is meant to be constructed
simultaneously to the initial system.

Definition 7 (Obligation Monitor). Let strip : LTL → LTL be a function
syntactically substituting every R by �. A deterministic obligation monitor for
an LTL formula ϕ is the tuple OMϕ = (T, t0, Υ, after, o), where T = {ϕ′ | ω ∈
(2AP)∗ : ϕ′ = after(ϕ, ω)} is the set of states, t0 = strip(ϕ) is the initial state,
Υ = 2AP is the set of directions, after is the transition function defined over T
and Υ , and o(t) = strip(t) is the labeling function.

Since the state space of OMϕ corresponds to the state exploration of ϕ, convert-
ing the formulas to obligations is achieved by strip and stored in the labeling
function. This can be interpreted as the obligations that have to be satisfied by
the update system if an update is initiated in this state. The obligation monitor
only tracks states and does not guarantee that every reachable state corresponds
to a reachable state of a correct implementation of ϕ. We justify this property
by assuming TSI is correct.

Example 2. Figure 3 displays the obligation monitor for ϕ1 = (m1 → i1) of
our running example with one base station. The monitor starts in an obligation
free state corresponding to the state before the system is started and contains one

162 B. Finkbeiner et al.

direction for every element of 2AP . Note that we denote directions symbolically.
Whenever m1 is received on an edge, the obligation i1 is raised. From the

i1 state, we differentiate between m1 and ¬m1 leading to another raise of
the i1 obligation together with i1 or only i1 respectively. Returning to
the obligation � is only possible if i1 is set to � and m1 is ⊥ in the same step.

Note that an offset between initial system and obligation monitor is created.
While transitions of the initial system consider environment inputs and states
correspond to system outputs, elements of the state space of the obligation moni-
tor are formulas and the transitions are defined by inputs and outputs combined.
Residing in a state in the obligation monitor can be interpreted as taking a transi-
tion in the system and not yet reaching the next state. Figure 3 shows a monitor
for a specification, where the implementation is unknown during construction
and the obligation monitor over-approximates the reachable states of the imple-
mentation. One can limit the reachable states of the monitor to the paths in the
transition system. Indeed, in regard of completeness, unreachable obligations
need to be eliminated from the obligation monitor during verification.

6 Model Checking and Synthesis

In this section we solve the problems of model checking live updates and synthesis
of live updates, i.e., live synthesis. We explore finite trace and universal updates
for the problems and show the complexity of each result and multiple parameters.

6.1 Model Checking Live Updates

Model checking a transition system TS against an LTL formula ϕ corresponds
to answering the question if TS satisfies ϕ, i.e., TS � ϕ. For live systems, the
evaluation of the update transition system starts with the initial finite execution
and switches to the update system afterwards. Model checking the update system
is therefore a language inclusion check of the traces of the transition system
combined with η against the LiveLTL semantics.

Definition 8 (Model Checking Finite Trace Live Updates). Let TSU be
an update system, ϕ be an initial specification, ψ be an update specification, and
η be a finite trace. The problem of model checking finite trace live updates is
defined as η · Traces(TSU) ⊆ Words(ϕ,ψ, η).

The model checking problem can be split into two separate parts, directly iden-
tifying the newly introduced conditions for live systems with the operators �|η|,I
and �|η|,U . In addition to that, TSU combined with η needs to satisfy the update
semantics of LiveLTL. Since both tasks can possibly be performed in isolation of
each other, the overhead given by the live update semantics under the assump-
tion of an update system already verified with LTL is an interesting topic but
left open for future work. The complexity of the problem is stated w.r.t. the
length of the trace and the combination of initial and update formula:

Live Synthesis 163

Theorem 2 (Complexity in ϕ, ψ, and η). The model checking problem for
finite trace live updates is PSPACE-complete in |ϕ|+ |ψ| and in NL in η ·TSU .

The proof is based on model checking the combination of η and TSU and can be
found in [6]. The universal live update is verified independently of specific initial
traces. The condition is stronger than for finite trace updates, and the number
of compatible initial and update systems is smaller. Given that the context is
unknown, the executions starting in the initial state of TSU need to satisfy
every possible open obligation. Universal updates are relevant if neither the
trace nor the obligation monitor are stored and computed respectively. Given
the initial system, model checking universal update compatibility obtains the
same complexity as finite trace updates.

Definition 9 (Model Checking Universal Live Updates). Let TSI be an
initial system, TSU be an update system, ϕ be an initial specification, and ψ be
an update specification. The problem of model checking universal live updates is
defined as ∀η ∈ FinTraces(TSI) : η · Traces(TS) ⊆ Words(ϕ,ψ, η).

The implicit update points in TSI allow for the connection of both transition
systems and model checking with a linearly increased formula.

Theorem 3 (Complexity in ϕ + ψ, and TSI · TSU). The model checking
problem for universal live updates is PSPACE-complete in |ϕ| + |ψ| and NL in
TSI · TSU .

The complexity results from encoding the live update in the combined transition
system TSI ·TSU and an adapted formula. Based on the model checking results
we introduce live synthesis, the major contribution of this paper.

6.2 Live Synthesis

In this section, we introduce the problem of live synthesis and show the com-
plexity of synthezising live systems. Synthesis of live updates during the runtime
of the initial system promises correct-by-definition updates that can substitute
the executed system instantaneously. In contrast to model checking, the synthe-
sis procedure returns an implementation or unrealizable, proving that the finite
trace or initial system and initial specification are incompatible with the update
specification. We begin with live updates for an explicit finite trace of the ini-
tial system – the update system needs to react to the explicit context and open
obligation. The definition follows the model checking problem, but searches for
a transition system satisfying the live update.

Definition 10 (Finite Trace Live Synthesis). Let ϕ be an initial spec-
ification, ψ be an update specification, and η be a finite trace. The finite
trace live synthesis problem is the computation of a transition system TS s.t.
η · Traces(TS) ⊆ Words(ϕ,ψ, η).

We additionally call a live update realizable if there exists a transition system
that satisfies the finite trace live update. The complexity of the update synthesis
is expressed w.r.t. ϕ and ψ and aligns to existing LTL synthesis bounds.

164 B. Finkbeiner et al.

Theorem 4 (Complexity in ϕ and ψ). The finite trace live synthesis problem
is 2EXPTIME-complete in |ϕ| and |ψ|.
The proof is subsumed by the proof of Theorem 5. The universal update is again
of interest if the context of the live update is unknown. Synthesizing a transition
system that satisfies the universal live update enables the user to plug-in the
new system at any time-step without further analysis.

Definition 11 (Universal Live Synthesis). Let ϕ be an initial specifica-
tion, TSI be an initial system, and ψ be an update specification. The univer-
sal live synthesis problem is the computation of a transition system TS s.t.
∀η ∈ FinTraces(TSI) : η · Traces(TS) ⊆ Words(ϕ,ψ, η).

Again, we call the problem of the existence of a solution realizability. In general,
the universal update obtains a conjunction of double exponentially many con-
juncted obligations. To avoid the expansion of the update system, we combine
the parity games of the initial and update system. Again, the initial formula
conducts the impact on the update system and provides the complexity results.

Theorem 5 (Complexity in ϕ and ψ). The universal update synthesis prob-
lem is 2EXPTIME-complete in |ϕ| and |ψ|.
Hardness follows from Theorem 1, the completeness proof is a reduction from
LiveLTL to LTL. Therefore, a parity game is built for the combination of the
formulas, where the environment controls all edges before the update, thereby
choosing the update context. The full proof is given in [6].

7 Case Study

We explore the live update problems on benchmarks from the reactive synthesis
competition [13] and robot control communities [16]. Our goal is a qualitative
analysis of pairs of specifications that can be updated live according to the finite
trace live update and the universal live update. In more detail, we aim to answer
the following questions: For specifications that can potentially be updated to
each other, does the LiveLTL semantics state universally updatable obligations?
And if not, in how many obligation states is a finite trace update possible?

A prototype for the live synthesis procedure is implemented on top of
BoSy [5], a tool that synthesizes implementations for LTL formulas1. We use
Spot [3] for LTL formula manipulation and implemented the obligation moni-
tor construction for arbitrary LTL formulas. For our experiments, the following
structure is used: BoSy synthesizes a system for the initial specification which is
used to build the obligation monitor. Therefore, the result of the synthesis query,
i.e., a transition system satisfying the formula, is parsed and cut with the obli-
gation monitor to eliminate unreachable states. Since the result of BoSy may

1 The prototype and experiments are available online at https://github.com/reactive-
systems/LiveSynthesisArtifact.

https://github.com/reactive-systems/LiveSynthesisArtifact
https://github.com/reactive-systems/LiveSynthesisArtifact

Live Synthesis 165

differ per execution, we may obtain different sizes of the obligation monitor for
different benchmark runs. Based on the obligation monitor, we perform explicit
trace live synthesis for every monitor state label and universal live synthesis for
all monitor states combined. Therefore, we build the conjunction of obligation
formula and update formula and execute BoSy to check realizability.

For the benchmarks in Sect. 7.1, Table 1 shows multiple results: The number
of obligation monitor states built by the initial system and specification, the
number of finite trace updates that are realizable, and the result of the universal
update. Despite the finite trace live update stating updates from every possible
finite execution of the initial system, we use the state representation of the
obligation monitor to symbolically represent every execution. The runtime in
seconds for the update specification without update constraints and the universal
update conclude the table. All experiments were executed on an Intel i7 processor
with 2,8 GHz and 16 GB RAM.

7.1 Benchmark Families

The upper part of Table 1 shows the results for live updates from specification
patterns introduced by Menghi et al. [16], where Reactivity implements addi-
tional interaction with the environment. The specifications define the behavior
of a robot that is able to travel between n different locations and needs to sat-
isfy different specifications on the way. Our second set of benchmarks is taken
from the annual synthesis competition SYNTCOMP [13]. The results for live
updates in the reactive synthesis setting are shown in the lower part of Table 1.

– Visit, Seq. Visit, and Patrolling enforce the robot to visit every location
once, in a sequence, and infinitely often respectively.

– Reactivity. The reactivity specification forces the robot to react to an event
after two steps at latest by driving to a delineated location, e.g., for refueling.
The Reactivity specification can be added to arbitrary specifications.

– Relay Station. The running example of this paper. The relay station com-
municates with n satellites and forwards the message if clients acknowledged.

– Arbiter. An arbiter controls the access of multiple clients to a shared
resource. It ensures that every request to the resource is eventually granted.
We consider three variants of arbiter, a simple arbiter (s) only iterating over
grants, a full arbiter (f) only granting access if requested beforehand, and a
prioritized arbiter (p) that prioritizes the requests of client 0.

– ABP. The alternating bit protocol consists of a receiver ABPReceiver and
a transmitter ABPTransmitter specifying the data link layer in the OSI
communication network.

– Load Balancer. The load balancer distributes workload over n worker.

In addition to the specifications, we denote updates with an increased parameter
with n → n+1. This property is of interest if the parameter may change during
the execution, e.g., increasing the number of clients of an arbiter.

166 B. Finkbeiner et al.

Table 1. Results of live updates for robot and SYNTCOMP specifications.

Robot specification patterns

Ben. Update #OM-states #Fin. trace Universal Time ψ Time univ.

Visit Seq. visit 4 4 real. 0.75 0.75

Patrolling 6 6 real. 0.68 0.68

Seq. patrolling 6 6 real. 0.64 0.72

Reactivity 7 7 real. 0.49 0.49

Seq. visit Patrolling 14 14 real. 0.56 0.59

Seq. patrolling 16 16 real. 0.57 0.59

Reactivity 5 5 real. 0.44 0.44

Patrolling Ord. visit 6 6 real. 0.61 0.67

Reactivity 7 7 real. 0.49 0.52

SYNTCOMP

Relay station 1 → 2 4 4 real. 16.26 17.23

2 → 1 19 19 real. 0.61 0.61

Arbiter 2f → 3f 11 6 unreal. 5.30 –

2s → 2f 4 2 unreal. 0.56 –

2s → 4s 4 4 real. 0.69 0.79

2s → 2p 13 13 real. 0.46 0.48

2f → 2p 10 10 real. 0.45 0.52

2p → 3p 6 6 real. 0.65 0.74

ABPReceiver 1 → 2 5 4 unreal. 0.55 –

2 → 3 9 3 unreal. 0.43 –

ABPTransmitter 1 → 2 5 5 real. 2.70 2.82

Load balancer 2 → 4 7 7 real. 0.72 0.75

7.2 Observations

Throughout all experiments, the minor runtime overhead of the universal update
synthesis shows that the additional cost for live update correctness is feasible.
The robot specifications provide insight of obligations raised during execution.
Since most of the benchmarks obtain the same structural behavior, i.e., the robot
visits the locations under some restrictions, the universal live updates are realiz-
able. Even when adding requests, e.g., the robot has to refuel in two steps after
requested, the live update is realizable by satisfying the open obligations after
the update. Changes to the visiting sequence or infinitely often reaching a loca-
tion with patrolling increases the size of the obligation monitor (#OM-States)
but does not lead to unrealizability. Nevertheless, the sizes of the obligation mon-
itors indicate that tracking the behavior of the system is necessary to obtain the
correct obligation. Altogether, our results show that although robot specifica-
tions raise obligations, synthesizing correct live updates is often feasible due to
the absence of conflicts between the specifications. Most interestingly for the
reactive systems benchmarks are arbiter live updates. Changing a specification
to a simple arbiter is realizable since the arbiter does not additionally restrict
the behavior. However, live updates to full arbiter are only possible from some
obligation monitor states, shown by the difference of #OM-States and #finite

Live Synthesis 167

trace updates. Unrealizability follows from obligation states forcing a grant - an
unrequested grant of the update system would be spurious. Since the prioritized
arbiter does not include non-spuriousness, a live update from and to this arbiter
is realizable. The relay station can be universally updated to the one more and
one less base stations. Once computed, the obligations can be satisfied in finite
time-steps and synthesizing a solution that reacts to all obligations is possible.

The experiments answer the questions stated at the beginning of this section:
Specifications that are meaningful live updates state obligations for the update
system, shown by the large number of states of the obligation monitors. Realiz-
ability of the update system depends on the restrictiveness of the specification,
even if the universal update is unrealizable, our results show that in all bench-
marks some finite trace live updates are realizable.

8 Related Work

The necessity of live updates in always-on systems is long known and was intro-
duced as [4,7]. Dynamic updates for programming languages, e.g., in C++ [12]
and Java [10], enable developers to update dynamic classes during runtime and
are called dynamic software updates (DSU). The proposed frameworks imple-
ment functionality and are unable to ensure temporal correctness of the updates.
Live kernel patches received huge attention in the operating system community
[1,9], where bug-fixes and features of the kernel can be deployed without reboot.
Recent work in live updates for operating systems achieved real-life implemen-
tations, e.g. for Linux [14] and Android [2] kernels. Implementations of dynamic
updates raised the need for verification: Following the idea of observability by
the user, Hayden et al. [11] introduce client-oriented specifications (CO-specs) to
define and verify against client-visible behavior. Closest to our work are dynamic
updates in controller verification and synthesis. Ghezzi et al. [8] introduce a
controller synthesis approach based on Modal Sequence Diagrams (MSD). The
update is a synthesized MSD that takes over the execution when a safe state is
reached. While reaching a safe state is also necessary in [15], the authors omit
the obligations of the previous system. Where [8] also relies on the existence of
a safe state for the live update, [18] also proves the reachability of the update
state. Therefore, the condition of the handover between the systems is defined as
LTL specification. The main difference is stating the correctness as LTL formula
and not observing the update condition semantically from the initial formula.

9 Conclusion

We introduced live synthesis, a synthesis framework for dynamic updates in
reactive systems. We identified obligations of a running system as the currently
open co-safety formulas and defined LiveLTL to specify the correct handover
between two systems. The presented obligation monitor enables tracking of obli-
gations during system execution and continuously shows the open obligations.
We explored synthesis and model-checking for two update problems, finite trace

168 B. Finkbeiner et al.

live updates and universal update, which consider full information and zero infor-
mation of the currently open obligations respectively. Our case study on robot
specifications and reactive synthesis benchmarks show that it is necessary to
verify live updates in always-on systems and live synthesis is able to automati-
cally generate correct update systems if realizable. We believe that live updates
play a crucial role in high-availability system verification and can benefit from
existing techniques for reactive systems.

References

1. Baumann, A., et al.: Providing dynamic update in an operating system. In:
USENIX (2005)

2. Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel
live patching. In: Kirda, E., Ristenpart, T. (eds.) USENIX Security 2017 (2017)

3. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

4. Fabry, R.S.: How to design a system in which modules can be changed on the fly.
In: ICSE 1976. IEEE Computer Society (1976)

5. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

6. Finkbeiner, B., Klein, F., Metzger, N.: Live synthesis (full version) (2021). http://
arxiv.org/abs/2107.01136

7. Frieder, O., Segal, M.E.: On dynamically updating a computer program: from
concept to prototype. JSS 14, 111–128 (1991). https://doi.org/10.1016/0164-
1212(91)90096-O

8. Ghezzi, C., Greenyer, J., Manna, V.P.L.: Synthesizing dynamically updating con-
trollers from changes in scenario-based specifications. In: SEAMS 2012. IEEE Com-
puter Society (2012). https://doi.org/10.1109/SEAMS.2012.6224401

9. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Safe and automatic live update for
operating systems. SIGPLAN Not. 48, 279–292 (2013). https://doi.org/10.1145/
2499368.2451147

10. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of java applications - balancing
change flexibility vs programming transparency. JSWM 21, 81–112 (2009). https://
doi.org/10.1002/smr.406

11. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verify-
ing the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski,
A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27705-4 22

12. Hjalmtysson, G., Gray, R.: Dynamic C++ classes - a lightweight mechanism to
update code in a running program. In: USENIX 1998. USENIX Association (1998)

13. Jacobs, S., et al.: SYNTCOMP 2017. In: SYNT@CAV 2017 (2017). https://doi.
org/10.4204/EPTCS.260.10

14. Makris, K., Ryu, K.D.: Dynamic and adaptive updates of non-quiescent subsystems
in commodity operating system kernels. In: EuroSys 2007. ACM (2007). https://
doi.org/10.1145/1272996.1273031

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
http://arxiv.org/abs/2107.01136
http://arxiv.org/abs/2107.01136
https://doi.org/10.1016/0164-1212(91)90096-O
https://doi.org/10.1016/0164-1212(91)90096-O
https://doi.org/10.1109/SEAMS.2012.6224401
https://doi.org/10.1145/2499368.2451147
https://doi.org/10.1145/2499368.2451147
https://doi.org/10.1002/smr.406
https://doi.org/10.1002/smr.406
https://doi.org/10.1007/978-3-642-27705-4_22
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.1145/1272996.1273031
https://doi.org/10.1145/1272996.1273031

Live Synthesis 169

15. Manna, V.P.L., Greenyer, J., Ghezzi, C., Brenner, C.: Formalizing correctness cri-
teria of dynamic updates derived from specification changes. In: SEAMS 2013.
IEEE Computer Society (2013). https://doi.org/10.1109/SEAMS.2013.6595493

16. Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P., Ghezzi, C.: Property speci-
fication patterns for robotic missions. In: ICSE 2018. ACM (2018)

17. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

18. Nahabedian, L., et al.: Assured and correct dynamic update of controllers. In:
SEAMS@ICSE 2016. ACM (2016). https://doi.org/10.1145/2897053.2897056

19. Pnueli, A.: The temporal logic of programs. In: SFCS 1977, October 1977. https://
doi.org/10.1109/SFCS.1977.32

https://doi.org/10.1109/SEAMS.2013.6595493
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1145/2897053.2897056
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

Faster Pushdown Reachability Analysis
with Applications in Network Verification

Peter Gjøl Jensen1, Stefan Schmid2, Morten Konggaard Schou1, Jǐŕı Srba1(B),
Juan Vanerio2, and Ingo van Duijn1

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
srba@cs.aau.dk

2 Faculty of Computer Science, University of Vienna, Vienna, Austria

Abstract. Reachability analysis of pushdown systems is a fundamental
problem in model checking that comes with a wide range of applica-
tions. We study performance improvements of pushdown reachability
analysis and as a case study, we consider the verification of the policy-
compliance of MPLS (Multiprotocol Label Switching) networks, an appli-
cation domain that has recently received much attention. Our main con-
tribution are three techniques that allow us to speed up the state-of-the-
art pushdown reachability tools by an order of magnitude. These tech-
niques include the combination of classic pre∗ and post∗ saturation algo-
rithms into a dual-search algorithm, an on-the-fly technique for detecting
the possibility of early termination, as well as a counter-example guided
abstraction refinement technique that improves the performance in par-
ticular for the negative instances where the early termination technique
is not applicable. As a second contribution, we describe an improved
translation of MPLS networks to pushdown systems and demonstrate
on an extensive set of benchmarks of real internet wide-area networks
the efficiency of our approach.

1 Introduction

Pushdown systems are a widely-used formalism with applications in, e.g., inter-
procedural control-flow analysis of recursive programs [7,10] and model check-
ing [3,11,19,20]. Pushdown systems have recently also received attention in
the context of communication networks. Modern communication networks rely
on increasingly complex router configurations which are difficult to manage by
human administrators. Indeed, over the last years, several major network outages
were due to human errors [1,2,8,15], and researchers are hence developing more
automated and formal approaches to ensure policy compliance in networks. In
particular, pushdown systems have been shown to enable fast automated what-if
analysis of the policy compliance of an important and widely-deployed type of
network, namely Multiprotocol Label Switching (MPLS) networks [17].

Research supported by the Vienna Science and Technology Fund (WWTF), ICT19-045
(WHATIF), and the DFF project QASNET.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 170–186, 2021.
https://doi.org/10.1007/978-3-030-88885-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_12

Faster Pushdown Reachability 171

We are motivated by the objective to improve the performance of reachabil-
ity analysis in pushdown systems, which typically relies on automata-theoretic
approach for computing the pre∗ and post∗ of a regular set of pushdown con-
figurations [18]. Time is the most critical performance aspect of reachability
analysis in general, and in particular, in the context of the increasingly large
communication networks that need to be frequently reconfigured.

Our Contributions. We show that there is a significant potential to improve the
state-of-the-art in reachability analysis of pushdown systems. In particular, we
propose a fast on-the-fly early termination technique as well as an algorithm that
provides a novel combination of the classic pre∗ and post∗ algorithms in order
to harvest the benefits of both methods. We also suggest a specialization of
the counter-example guided abstraction refinement (CEGAR) [5] technique that
leverages equivalence classes on stack symbols as well as control states in order
to improve the reachability analysis of MPLS networks that contain significant
redundancy in the IP prefixes and produce a large number of MPLS labels
(modeled as stack symbols). All techniques are general and apply to arbitrary
pushdown systems, and are hence of interest in a wide range of applications.
Finally, we also suggest a novel encoding approach of an MPLS communication
network into a pushdown system that not only renders the pushdown analysis
faster but also simpler compared to the recent approaches [13,14,17]. We report
on our C++ prototype implementation and our empirical evaluation showing
that the techniques can reduce the runtime by almost an order of magnitude
compared to the state-of-the-art tools AalWiNes [14] and Moped [19].

Background and Related Work. We are motivated by the application of push-
down systems in order to perform automated what-if analysis of communication
networks. In a nutshell, we consider a communication network interconnecting
a set of routers which forward packets. The forwarding behavior of each router
is defined by its pre-installed routing table which consists of a set of forwarding
rules. To provide a dependable service, the network needs to fulfill a number of
properties, such as reachability or loop-freedom, even under link failures.

Schmid and Srba recently showed in [17] that policy compliance of the widely-
deployed MPLS networks can be verified in polynomial time, when overapproxi-
mating the possible link failures. Their approach leverages the fact that routing
in MPLS networks is based on label stacks: packets contain stacks of labels which
can be pushed and popped, and routers forward packets based on the top-of-
stack label. Accordingly, these networks can be modelled as pushdown systems.
In [13], the tool P-Rex was presented which implements the approach from [17].
P-Rex is implemented in Python, relies on the Moped model checker, and allows
to verify complex network queries on network topologies with 20–30 routers in a
matter of hours. The AalWiNes tool [14] is a follow-up work that improves the
performance by an order of magnitude compared to P-Rex and replaces Moped
with a tailored reachability engine written in C++.

In this paper, we show how to improve the performance by another order of
magnitude compared to AalWiNes, by using three novel reachability techniques,

172 P. G. Jensen et al.

including an early termination algorithm, a combined dual computation of pre∗

and post∗, and a CEGAR approach. The CEGAR [5] technique was investigated
in the context of symbolic pushdown systems before by Esparza et al. [9] who
consider sequential (recursive) programs whose statements are given as binary
decision diagrams (BDDs). However, the CEGAR application is not used to
speed up the reachability analysis but to refine the abstractions of the programs.
Moped [18] is a model checker for linear-time logic on pushdown systems and has
been adapted to many use cases. For instance, jMoped [20] models java byte-code
as symbolic pushdown systems allowing automated analysis and verification of
invariant properties with Moped.

2 Preliminaries

A Labelled Transition System (LTS) is a triple (S,Σ,→) where S is the set of
states, Σ is the set of labels and → ⊆ S × Σ × S is a transition relation. If
(s, a, s′) ∈ → then we write s

a−→ s′. We also write s −→ s′ if there is an a ∈ Σ

such that s
a−→ s′ and let −→∗ be the reflexive and transitive closure of −→. The

relation −→∗ can be annotated by the sequence of labels w ∈ Σ∗ as follows: s
ε−→∗ s

for any s ∈ S where ε is the empty word, and s
aw−−→∗ s′ for a ∈ Σ and w ∈ Σ∗

if s
a−→ s′′ and s′′ w−→∗ s′ for some s′′ ∈ S.

Definition 1. A Nondeterministic Finite Automaton (NFA) is a tuple N =
(Q,Σ,→, I, F) where Q is a finite set of states, Σ is a finite input alphabet,
→ ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of accepting states.

An NFA N accepts a word w ∈ Σ∗ if the LTS (Q,Σ,→) satisfies q0
w−→∗ qf

for an initial state q0 ∈ I and an accepting state qf ∈ F . The language Lang(N)
is the set of all words that N accepts.

Definition 2. A Pushdown System (PDS) is a tuple P = (P, Γ,Δ), where P is
a finite set of control locations (states), Γ is a stack alphabet, and the set of
rules Δ is a finite subset of (P × Γ) × (P × Γ ∗). If ((p, γ), (p′, w)) ∈ Δ then we
write 〈p, γ〉 ↪→P 〈p′, w〉.

A configuration of a pushdown system is a pair 〈p,w〉 where p ∈ P and
w ∈ Γ ∗. The set of all configurations is denoted Conf (P). The semantics of
a pushdown system P is given by the LTS TP = (Conf (P),Δ,⇒P) where
〈p, γw′〉 r⇒P 〈p′, ww′〉 for all w′ ∈ Γ ∗ whenever there is r = ((p, γ), (p′, w)) ∈ Δ.
If P is clear from the context, we may omit it from ↪→P and ⇒P . We only con-
sider normalized PDS in which all rules 〈p, γ〉 ↪→ 〈p′, w〉 satisfy |w| ≤ 2. Note
that any PDS can be normalized by adding at most O(|P |) auxiliary states [18].

Definition 3. Let P = (P, Γ,Δ) be a PDS. A P-automaton is an NFA A =
(Q,Γ,→, P, F) with the stack symbols of P as its input alphabet and with the
initial states being the control locations of P.

Faster Pushdown Reachability 173

A P-automaton accepts a pushdown configuration 〈p,w〉 of P if p
w−→∗ q for

some q ∈ F . The set of all configurations accepted by A is denoted by Lang(A).
A set of configurations is called regular if it is accepted by some P-automaton.

Problem 1 (Pushdown Reachability Problem). For a PDS P and two regular
sets of configurations C and C ′, is there c ∈ C and c′ ∈ C ′ such that c

σ=⇒∗
P c′ for

some sequence of rules σ? In the affirmative case return a witness trace (c, σ).

Given a PDS P and a set of configurations C ⊆ Conf (P) the predecessors
are defined as pre∗(C) = {c | ∃c′ ∈ C, c ⇒∗ c′} and the successors as post∗(C) =
{c | ∃c′ ∈ C, c′ ⇒∗ c}. If C is a regular set of configurations, then both pre∗(C)
and post∗(C) are also regular sets of configurations [4].

Construction of pre∗. Given a P-automaton A = (Q,Γ,→0, P, F), we construct a
P-automaton Apre∗ = (Q,Γ,→, P, F) where → is obtained by repeatedly adding
transitions to →0 according to the following saturation rule: if 〈p, γ〉 ↪→ 〈p′, w〉
and p′ w−→ q in the current automaton, add a transition p

γ−→ q.

Theorem 1 ([3,12,18]). An automaton Apre∗ that satisfies Lang(Apre∗) =
pre∗(Lang(A)) can be built in O(|Q|2 · |Δ|) time and O(|Q| · |Δ| + |→0|) space.

There is a slightly more complicated saturation procedure for Apost∗ .

Theorem 2 ([3,12,18]). An automaton Apost∗ that satisfies Lang(Apost∗) =
post∗(Lang(A)) can be built in O(|P | · |Δ| · (n1 +n2)+ |P | · |→0|) time and space,
where n1 = |Q \ P | and n2 is the number of different pairs (p, γ) such that there
is a rule of the form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 in Δ.

Problem 1 can now be solved in polynomial time using either the pre∗ or
post∗ algorithm by computing e.g. pre∗(C ′) and checking if C ∩ pre∗(C ′) �= ∅,
similarly for post∗, relying on the fact that regular languages are closed under
intersection. A witness trace σ can be computed by storing metadata during the
saturation procedures (see e.g. [18] for details).

3 Formal Model of MPLS Networks

An MPLS network consists of a topology and forwarding rules.

Definition 4. A network topology is a directed multigraph (V,E, s, t) where V
is a set of routers, E is a set of links between routers, s : E → V assigns the
source router to each link, and t : E → V assigns the target router.

We assume that links in the network can fail. This is modelled by a set F ⊆ E
of failed links. A link is active if it belongs to E \ F .

For a nonempty set of MPLS labels L, we define the set of MPLS operations
on packet headers as Op(L) = {swap() | 	 ∈ L}∪{push() | 	 ∈ L}∪{pop}. We
define the semantics of MPLS operations [·] : Op(L) → (L → L∗) by [pop]() = ε,
[swap(′)]() = 	′ and [push(′)]() = 	′	 for all 	, 	′ ∈ L.

174 P. G. Jensen et al.

The forwarding of a packet in an MPLS network depends on the interface
(link) that the packet arrives on, which determines the forwarding table used,
and the top MPLS label in the packet header, which is used for lookup in the
forwarding table. When a packet enters the MPLS domain, it does not yet have
any MPLS label, and the forwarding depends only on the link that it arrives on
as well as the type of the protocol that is used for the packet forwarding (this is
abstracted away by the use of nondeterminism).

Definition 5. An MPLS network is a tuple N = (V,E, s, t, L, τ) where
(V,E, s, t) is a network topology, L is a finite set of MPLS labels, and τ :
E ∪ (E × L) →

(
2E×Op(L)+

)∗
is the routing table.

For every link e ∈ E and for every link-label pair (e,) ∈ E × L, the routing
table returns a sequence of traffic engineering groups O1O2 . . . On where each
group is a set of the form {(e1, ω1), . . . , (em, ωm)} where ej is the outgoing link
such that t(e) = s(ej) and ωj ∈ Op(L)+ is a nonempty sequence of MPLS
operations to be performed on the packet header. Figure 1a gives an example
of an MPLS network with its routing table in Fig. 1b. Here the priority column
refers to the index of the corresponding traffic engineering group.

The semantics of a traffic engineering group is that any pair of active link
and operation sequence in the group can be nondeterministically chosen, hence
abstracting away from various specific routing policies that allow e.g. splitting
a flow along multiple paths. The group Oi has a higher priority than Oi+1, and
during forwarding the router always selects the traffic engineering group with
the highest priority and at least one active link.

For a traffic engineering group O = {(e1, ω1), (e2, ω2), . . . , (em, ωm)} let
E(O) = {e1, e2, . . . , em} denote the set of outgoing links in the group.

Definition 6. For a set of failed links F ⊆ E we define the active routing table
τF : E ∪ (E × L) → 2E×Op(L)+ as τF (u) = {(e′, ω) ∈ AF (τ(u)) | e′ ∈ E \ F},
where u = e or u = (e,) and AF is the active traffic engineering group defined
as AF (O1O2 . . . On) = Oj if j is the lowest index such that E(Oj) \ F �= ∅, or
A(O1O2 . . . On) = ∅ if no such j exists.

Definition 7. The semantics of MPLS operations is a partial header rewrite
function H : L∗ × Op(L)∗ ⇀ L∗, where ω, ω′ ∈ Op(L)∗, h ∈ L∗ and ε is the
empty sequence of operations:

H(h, ω) =

⎧
⎪⎨

⎪⎩

h if ω = ε

H([op](�) ◦ h′, ω′) if ω = op ◦ ω′ and h = � ◦ h′ with � ∈ L, h′ ∈ L∗

undefined otherwise .

Using the example from Fig. 1, the operation sequence swap(12) ◦ push(20)
applied to the header 10◦30 yields H(10◦30, swap(12)◦push(20)) = 20◦12◦30.

Faster Pushdown Reachability 175

Fig. 1. Example of a small network and its encoding into a pushdown system

Definition 8. A trace in a network N = (V,E, s, t, L, τ), given a set of failed
links F ⊆ E, is any finite sequence (e1, h1)(e2, h2) . . . (en, hn) ∈

(
(E\F)×L∗)∗ of

link-header pairs where for all i, 1 ≤ i < n, hi+1 = H(hi, ω) for some (ei+1, ω) ∈
τF (u), where either u = ei or u = (ei, head(hi)), where head(hi) is the top (left-
most) label of hi. If hi = ε then head(hi) is undefined.

In Fig. 1c we can see a trace σ1 in the network without any failed links, while
for the failure set F = {e1} we notice that σ1 is not a trace, while σ2 is.

176 P. G. Jensen et al.

3.1 MPLS Network Verification

Similar to prior work [13,14], we present a powerful query language that allows
us to specify regular trace properties, both regarding the initial and final label-
stacks as well as the sequence of links in the trace.

Definition 9. A reachability query for an MPLS network N = (V,E, s, t, L, τ)
is of the form 〈a〉 b 〈c〉 k where a and c are regular expressions over the set of
labels L, b is a regular expression over the set of links E, and k ≥ 0 specifies the
maximum number of failures to be considered.

We assume here a standard syntax for regular expressions and by Lang(a),
Lang(b) and Lang(c) we understand the regular language defined by the expres-
sions a, b and c, respectively. Intuitively, the query 〈a〉 b 〈c〉 k asks if there is a
network trace such that the initial header (stack of labels) belongs to Lang(a),
the sequence of visited links belongs to Lang(b) and at the end of the trace the
final header belongs to Lang(c).

We further use the following notation for specifying links in the network.
If v and u are routers, then [v#u] matches any link e from v to u such that
s(e) = v and t(e) = u. The dot-syntax is used to denote any link or label in the
network and it is extended to match also any router so that [v#·] =

⋃
u∈V [v#u]

and [·#u] =
⋃

v∈V [v#u].

Problem 2 (Query Satisfiability Problem). Given an MPLS network N and a
query ϕ = 〈a〉 b 〈c〉 k, decide if there exists a trace σ = (e1, h1) . . . (en, hn) in the
network N for some set of failed links F such that |F | ≤ k where h1 ∈ Lang(a),
e1 . . . en ∈ Lang(b), and hn ∈ Lang(c). If this is the case, the query ϕ is satisfied
and we call σ a witness trace.

In Fig. 1c the query ϕ asks if a packet with the top most label 10 can be
forwarded from the link e0 to e5, while just leaving the label 30 on the label-
stack. This query is satisfied and the trace σ2 serves as a witness trace. On the
other hand, the query 〈 ·∗〉 [·#v1] ·∗ e3 〈 ·∗〉 0 is not satisfied as it asks if a packet
(with any header) arriving on some link to the router v1 (note that e0 is the
only such link) can reach the link e3 if no links fail. Such a trace exists only if
we allow for at least one failed link.

3.2 From Query Satisfiability to Pushdown Reachability

We now solve the query satisfiability problem by translation to the pushdown
reachability problem. This is an over-approximation, so in a few cases a positive
result cannot be transfered back to the query satisfiability problem. Notice that
our construction is different from the one in [13]. In particular, we model the
initial and final headers directly as NFA rather than simulating them with PDSs,
which makes the reduction simpler and more efficient at the same time.

The behavior of the network for a fixed set of failed links F is given by the
active routing table τF , however to represent the possible behavior for any set
of failed links F with |F | ≤ k, we use the following definition.

Faster Pushdown Reachability 177

Definition 10. For a network N = (V,E, s, t, L, τ) and number k, we define the
overapproximating routing table τk(u) =

⋃i
j=1 Oj, where τ(u) = O1O2 . . . On

and i is the smallest index such that |
⋃i

j=1 E(Oj)| > k.

The routing table τk overapproximates all possible routing table entries if up to
k links fail at any router.

Given a network N = (V,E, s, t, L, τ) and a query ϕ = 〈a〉 b 〈c〉 k, let Na =
(Sa, L,→a, {sa}, Fa), Nb = (Sb, E,→b, {sb}, Fb) and Nc = (Sc, L,→c, {sc}, Fc)
be the NFAs corresponding to the regular expressions a, b and c. Let L⊥ =
L ∪ {⊥} where ⊥ is used to represent the bottom of the stack. We construct a
PDS P = (P,L⊥,Δ) where P = E ×Ops ×Sb and Ops is the set of all operation
sequences and suffixes hereof occurring in τk. The set of rules Δ is defined by:

a) 〈(e, ε, s), 	〉 ↪→ 〈(e′, ω, s′), [op]()〉 if s
e′
−→∗

b s′ and (e′, op ◦ ω) ∈ τk(u) where
either (i) u = (e,), or (ii) u = e, 	 ∈ L, or (iii) u = e, 	 = ⊥, op = push(′).

b) 〈(e, op ◦ω, s), 	〉 ↪→ 〈(e, ω, s), [op]()〉 for 	 ∈ L and for 	 = ⊥ if op = push(′).

Finally, we define the initial states Pi = {(e, ε, s) | e ∈ E, s ∈ Sb, sb
e−→∗

b s},
and the final states Pf = {(e, ε, sf) | e ∈ E, sf ∈ Fb}. Let N⊥ be an NFA such
that Lang(N⊥) = {⊥}. Let Ni = Na ◦ N⊥ and Nf = Nc ◦ N⊥ where ◦ is the
standard NFA concatenation operator. For the running example this is shown in
Fig. 1e. Now the query satisfiability problem is reduced to the problem of finding
configurations c ∈ Pi × Lang(Ni) and c′ ∈ Pf × Lang(Nf) such that c

σ=⇒∗
P c′,

and in the positive case outputing the trace (c, σ).

Optimizations. To reduce the size of the PDS we use the following optimiza-
tions. We merge control locations (e, ω, s) and (e′, ω, s) for which t(e) = t(e′),
τ(e) = τ(e′) and τ(e,) = τ(e′,) for all 	 ∈ L, i.e. the lookup is independent
of which interface on the router the packet arrives on, which is often the case
in many existing networks. We only construct control states that are reachable
from Pi. If a rule 〈p, 	〉 ↪→ 〈p′, [op]()〉 is added for all 	 ∈ L⊥, we represent it
succinctly as 〈p, ∗〉 ↪→ 〈p′, [op](∗)〉 where ∗ is a wildcard representing any label.
The wildcard can be handled efficiently by our post∗ algorithm, while for pre∗

it needs to be unfolded. In Fig. 1d we can see the generated pushdown system
for our running example and in Fig. 1f we show an execution of the pushdown
system corresponding to the network trace σ2.

We can now show that if there is a network trace satisfying a given query then
the constructed pushdown system provides a positive answer in the reachability
analysis.

Theorem 3. Given a network N and a query ϕ, if there exists a witness trace in
the network satisfying ϕ, then there exist c ∈ Pi ×Lang(Ni), c′ ∈ Pf ×Lang(Nf)
and σ ∈ Δ∗ such that c

σ=⇒∗
P c′.

Proof (Sketch). By induction on the length of the witness trace we construct the
corresponding pushdown execution following the construction of the pushdown

178 P. G. Jensen et al.

rules Δ. One step in the network trace can be simulated by a sequence of push-
down transitions as the rules of type b) apply the MPLS operations sequentially
one by one. ��

For the other direction, we have to first make sure that the trace obtained
from the execution in the pushdown system is indeed a valid network trace (since
the pushdown system overapproximates the set of all valid traces as it assumes
that at any router, up to k links can fail).

Reconstruction of Network Traces. The reachability analysis for the pushdown
system P returns (in the affirmative case) a trace 〈p0, w0〉 r1⇒P . . .

rm⇒P 〈pm, wm〉.
We extract (e, h) for every i such that pi = (e, ω, s) and wi = h◦⊥ where ω = ε,
producing a network trace (e0, h0) . . . (en, hn). For each rule r of type a) that
was added due to (e′, ω) ∈ τk(u), we define F τ (r) =

⋃i−1
j=1 E(Oj) where τ(u) =

O1O2 . . . and i is the smallest index such that (e′, ω) ∈ Oi. Let F =
⋃n

i=1 F τ (ri)
be the set of failed links in order to enable the execution of the trace. Now we
have to check that {e0, . . . , en} ∩ F = ∅ and |F | ≤ k in order to guarantee that
the corresponding network trace is executable; otherwise the overapproximation
returns an inconclusive answer.

Theorem 4. Given a network N and a query ϕ, if in the constructed pushdown
system there exist c ∈ Pi×Lang(Ni), c′ ∈ Pf ×Lang(Nf) and σ ∈ Δ∗ s.t. c

σ=⇒∗
P c′

from which a valid network trace σ′ can be reconstructed, then σ′ satisfies ϕ.

Proof (Sketch). From the construction of the pushdown system and the encoding
of MPLS operations by a series of pushdown transitions, we can see that if the
reconstructed trace only uses active links, i.e. {e0, . . . , en} ∩ F = ∅, then it
corresponds to a correct network trace for the routing table τk. However, as τk

allows for up to k link failures at any router along the trace, the total number
of failed links along the reconstructed trace may exceed the bound k. This is
detected in the trace reconstruction procedure. ��

4 Improving Pushdown System Reachability Analysis

We now describe our improvements to the pushdown reachability analysis.

4.1 Early Termination of Reachability Algorithms

In Sect. 2 we showed that for a given PDS P = (P, Γ,Δ) and P-automaton A that
represents a set of configurations in P, we can construct the Apost∗ and Apre∗

automata by iteratively adding additional transitions to the existing automaton
A. During this saturation procedure, the language of the current P-automaton
A can only increase (w.r.t. subset inclusion). Hence if at any point the current
P-automaton has a nonempty intersection with some set of target configura-
tions, it will have the nonempty intersection also after the saturation procedure

Faster Pushdown Reachability 179

Algorithm 1. On-the-fly computation of product automaton
Input: P-automata A1 = (Q1, Γ, →1, P, F1) and A2 = (Q2, Γ, →2, P, F2)

1: Initialize R ⊆ Q1 × Q2 to ∅
2: Let A∩ ← (Q1 × Q2, Γ, →, {(p, p) | p ∈ P}, F1 × F2) where → initially does not

contain any transitions

3: function AddState(q1, q2)
4: if (q1, q2) /∈ R then
5: R ← R ∪ (q1, q2)
6: if q1 ∈ F1 and q2 ∈ F2 then exit and return true

7: for all q′
1 ∈ Q1, q

′
2 ∈ Q2, γ ∈ Γ s.t. q1

γ−→1 q′
1 and q2

γ−→2 q′
2 do

8: add (q1, q2)
γ−→ (q′

1, q
′
2) to A∩

9: AddState(q′
1, q′

2)

10: function AddTransition(qi
γ−→i q′

i) � with i ∈ {1, 2}
11: add qi

γ−→i q′
i to Ai

12: for all q3−i, q
′
3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i

γ−→3−i q′
3−i do

13: add (q1, q2)
γ−→ (q′

1, q
′
2) to A∩

14: AddState(q′
1, q′

2)

terminates. We can hence allow for an early termination as we can return a
witness trace before completing the saturation procedure.

We further generalize this idea by considering P-automata A1 =
(Q1, Γ,→1, P, F1) and A2 = (Q2, Γ,→2, P, F2) that can be step-by-step satu-
rated by calling (in arbitrary order) the functions AddTransition(q1

γ−→1 q′
1)

and AddTransition(q2
γ−→2 q′

2), respectively. Each such call will add the cor-
responding transition in its argument to the automaton A1 resp. A2 and at the
same time compute the reachable part (stored in the nondecreasing set R of
pairs of states in A1 and A2) of the product automaton A∩ representing the
current intersection of A1 and A2. The function call AddTransition(qi

γ−→i q′
i)

where i ∈ {1, 2} relies on the function AddState(q1, q2) given in Algorithm
1 and before any calls to AddTransition are made, it is assumed that the
product automaton is initialized by calling AddState(p, p) for all states p ∈ P .
The algorithm exits (early terminates) and returns true as soon as the product
automaton accepts at least one string.

Proposition 1. Let A1 and A2 be two initial P-automata and let A′
1 and A′

2

be the resulting P-automata after an arbitrary number of calls to the function
AddTransition given in Algorithm 1. Then Lang(A∩) = Lang(A′

1)∩Lang(A′
2)

and as soon as Lang(A∩) �= ∅, the algorithm returns true.

This on-the-fly detection of nonemptiness of the intersection between two
P-automata can be used to allow for early termination when deciding the reach-
ability in pushdown systems using the pre∗ and post∗ approach described in
Sect. 2. Here only one of the two P-automata is saturated while the other

180 P. G. Jensen et al.

Algorithm 2. Dual search
Input: P-automata A and A′

1: for p in P do AddState(p, p)

2: Initialize pre∗ algorithm for A′ and post∗ for A (incl. worksets of transitions)
3: while worksetpre∗ 	= ∅ and worksetpost∗ 	= ∅ do
4: pop t from worksetpre∗

5: execute one step of pre∗ using t
6: for t′ newly added to worksetpre∗ do AddTransition(t′) (can return true)

7: pop t from worksetpost∗

8: execute one step of post∗ using t
9: for t′ newly added to worksetpost∗ do AddTransition(t′) (can return true)

10: return false

automaton remains unchanged. We now show that this on-the-fly detection of
nonemptiness can be applied, with significant performance improvements, also
when both approaches are combined.

4.2 Combining Forward and Backward Search

Our experiments show that none of the two approaches, pre∗ and post∗, is supe-
rior to the other one. Our aim is to further improve the reachability analysis of
pushdown systems by combining these two methods into dual∗ algorithm. We
first observe the following facts.

Proposition 2. Given a PDS P = (P, Γ,Δ) and regular sets C and C ′ of its
configurations, the following statements are equivalent: a) c ⇒∗ c′ for some
c ∈ C and c′ ∈ C ′, b) C ∩pre∗(C ′) �= ∅, c) post∗(C)∩C ′ �= ∅, and d) post∗(C)∩
pre∗(C ′) �= ∅.

Let the P-automata A and A′ represent the sets of configurations C and
C ′, respectively. The classical approach to the reachability problem, formulated
in Proposition 2a, either uses the equivalent formulation in b) and iteratively
constructs A′

pre∗ while checking whether its language has a nonempty intersec-
tion with the set C, or it uses part c) and constructs Apost∗ while checking for
nonempty intersection with C ′.

We suggest a novel combination of these two methods while relying on Propo-
sition 2d. In Algorithm 2, we (sequentially) interleave the executions of the post∗

saturation procedure on A and the pre∗ procedure on A′. The intersection of
the two automata is computed on-the-fly using Algorithm 1 where each of the
saturation procedures calls its respective AddTransition function and Algo-
rithm 2 terminates with true as soon as the intersection becomes nonempty.
Once one of the saturation algorithms completes its execution, the algorithm
returns false. Notice that this approach is different from running pre∗ and post∗

independently in parallel since our algorithm allows the two search directions
to ‘meet in the middle’. In Sect. 5 we document a gain of almost an order of
magnitude compared to saturating exclusively A or A′.

Faster Pushdown Reachability 181

4.3 Abstraction Refinement for Pushdown System Reachability

We now explore an abstraction technique [6] in order to reduce the size of the
verified PDS. We suggest (in a heuristic way) an initial abstraction by collaps-
ing selected stack symbols and control states and use counter-example guided
abstraction refinement [5] in case we obtain spurious traces.

Abstraction of Pushdown Model of MPLS Network. As described in Sect. 3.2,
we consider a network N = (V,E, s, t, L, τ), NFAs that originate from the
given query Na = (Sa, L,→a, sa, Fa), Nb = (Sb, E,→b, sb, Fb) and Nc =
(Sc, L,→c, sc, Fc), and the overapproximating routing table τk.

Let L and E be the sets of abstract labels resp. edges that are possibly
smaller than the sets L and E. A network abstraction is a surjective function
α : L ∪ E → L ∪ E such that α() ∈ L for all 	 ∈ L and α(e) ∈ E for all e ∈ E.

Example 1. Let L = {•} and E = {�} such that α() = • for 	 ∈ L and α(e) = �
for e ∈ E. This is the coarsest abstraction that does not distinguish between any
labels nor edges. On the other hand, if L = L and E = E then the abstraction
α(x) = x for x ∈ L ∪ E is the most fine-grained one.

We extend α in a straightforward way to apply to headers and sequences
of MPLS operations. We now construct an α-abstracted PDS P = (P,L⊥,Δ)
similar to Sect. 3.2 such that P = E×Ops × Sb where Ops = {α(ω) | ω ∈ Ops}
and Δ is defined as above except that rule of type a) now uses the abstraction:

a) 〈(α(e), ε, s), α()〉 ↪→ 〈(α(e′), α(ω), s′), [α(op)](α())〉 if (e′, op ◦ ω) ∈ τk(u)

and s
e′
−→∗

b s′ where either (i) u = (e,), or (ii) u = e and 	 ∈ L, or (iii)
op = push(′), u = e and 	 = ⊥.

We also define α-abstracted initial states Pi = {(α(e), ε, s) | e ∈ E, s ∈
Sb, sb

e−→ ∗
b s} and final states Pf = {(α(e), ε, sf) | e ∈ E, sf ∈ Fb}.

Finally, we define an abstraction of an NFA N = (S,L,→, {s0}, F) as α(N) =

(S,L,→α, {s0}, F) where s
α(�)−−−→α s′ in α(N) iff s

�−→ s′ in N . Using this, let
Ni = α(Na) ◦ N⊥ and Nf = α(Nc) ◦ N⊥. Theorem 3 can now be shown to hold
also for this α-abstracted PDS.

We now show how to reconstruct a concrete network trace from the α-
abstracted pushdown trace. The reconstruction may finish with a success (a
concrete network trace is found) or it suggests a refinement of the abstraction
function α and the whole verification process is repeated (CEGAR).

Reconstruction of Network Traces. Given a trace 〈p0, w0〉 r1⇒P . . .
rm⇒P 〈pm, wm〉

in the α-abstracted PDS, we take the subsequence of rules in the trace of type
a), and for each such rule ri define Ti as the set of forwarding rules (u, e′, ω)
such that ri was added due to (e′, ω) ∈ τk(u).

For each set Ti, define [Ti] as a mapping between sets of link-header pairs:
[Ti](C) =

⋃
(e,h)∈C{(e′, h′) | (u, e′, ω) ∈ Ti, H(h, ω) = h′, and u = e or u =

182 P. G. Jensen et al.

(e, head(h))}. If C ′ = [Ti](C) then we write C =⇒
Ti

C ′. The initial set of link-

header pairs is C0 = {(e, h) ∈ E × L∗ | p0 = (α(e), ε, s), sb
e−→ ∗

b s, w0 =
α(h) ◦ ⊥, h ∈ Lang(Na)}. The set of reachable link-header pairs is now found
by C0 =⇒

T1
C1 =⇒

T2
. . . =⇒

Tn

Cn. If Cn �= ∅ and there exists (e, h) ∈ Cn such that

h ∈ Lang(Nc), then we have a concrete network trace, where we finally compute
and check the set of failed links against the trace as in Sect. 3.2. Otherwise the
PDS trace is a spurious counter-example that will guide the refinement of the
abstraction α.

Refinement From Pushdown System Rules. If Cn = ∅ then we compute the
refinement based on the rules of the pushdown system: let i be such that Ci �= ∅
and Ci+1 = ∅, and we must have some (e, h) ∈ Ci and (u, e′′, ω) ∈ Ti+1 such
that u = (e′, 	′) and head(h) = 	 where (α(e), α()) = (α(e′), α(′)) but (e,) �=
(e′, 	′), or that u = e′ where α(e) = α(e′) but e �= e′. In the refined abstraction α′

we ensure that for all such (e,) �= (e′, 	′) we have (α′(e), α′()) �= (α′(e′), α′(′)),
and similarly for such e �= e′ we have α′(e) �= α′(e′). The refined abstraction α′

should preferably be as coarse as possible. In the appendix, we present a greedy
algorithm (used in our experiments) for computing one such suitable refinement.

Refinement From Final Headers. If Cn �= ∅ but for all (e, h) ∈ Cn we have
h /∈ Lang(Nc) then we compute the refinement based on the transitions in the
NFA encoding the final headers: for all pairs (e, h) ∈ Cn we must have α(h) ∈
Lang(α(Nc)) but h /∈ Lang(Nc). That is we have in α(Nc): sc

α(�1)−−−→α s1
α(�2)−−−→α

. . .
α(�n)−−−→α sn with h = 	1	2 . . . 	n, but in Nc: sc

�1−→ s1
�2−→ . . .

�i−→ si � �i+1−−−→, for
some i with i < n. Now there must be another label 	′ such that α(i+1) = α(′)

and si
�′
−→ si+1, but 	i+1 �= 	′. In the refined abstraction α′ we ensure that for

all such 	′ we have α′(i+1) �= α′(′) and we do this for all relevant h.

Heuristics for Initial Abstraction. We use a heuristic to construct the initial
abstraction. We group labels based on their next-hop links, i.e. L ⊆ 2E and
α() = {e′ | (e′, ω) ∈ τk(e,) for some e}. We group links based on their
explicit mention in the path expression of the query, i.e. E ⊆ 2Sb×Sb and
α(e) = {(s, s′) | s

e−→b s′}.

5 Implementation and Experiments

We implemented the translation of MPLS networks to pushdown automata as
well as the three improvements to the reachability analysis in our prototype
tool written in C++. In our experimental evaluation, we use real-world network
topologies from the Internet Topology Zoo [16]. We implemented a Python tool
that for a given network topology distributes the MPLS labels and configures the
forwarding tables by following the commonly used Label Distribution Protocol
(LDP), the Resource Reservation Protocol with Traffic Engineering extensions

Faster Pushdown Reachability 183

Fig. 2. Comparison of solvers; all 60,800 instances (x-axis) are for each solver indepen-
dently sorted by the verification time (y-axis, note the logarithmic scale).

(RSVP-TE), as well as the industry-standard MPLS VPN services. We generate
the forwarding tables using four different parameter settings for the ten largest
topologies from [16] (ranging from 100 nodes up to 700 nodes). This results in
40 MPLS data planes, each with 1,520 queries that are randomly instantiated
from a set of query templates describing reachability, waypointing, loop-freedom,
service-chaining and transparency [13], with the maximum number of failures
k ∈ {0, 1, 2, 3}. We balance the benchmark in order to obtain an even distribution
between positive and negative queries. The whole benchmark consists of 60,800
queries that are verified by each of the solvers, in particular our algorithms
referred to as post∗, pre∗ and dual∗ (all without CEGAR), compared to the state-
of-the-art pushdown reachability algorithms implemented in Moped [19] (Moped-
pre∗ and Moped-post∗) and in AalWiNes [14] (AalWiNes-pre∗ and AalWiNes-
post∗). The experiments were run on a cluster with AMD EPYC 7551 processors
at 2.55 GHz (boost disabled) with 32 GB memory limit and 100 s timeout. Time
spent on parsing files is excluded. The source code, experimential benchmark and
all data are available at https://doi.org/10.5281/zenodo.5005893.

The results are presented in Fig. 2 in terms of performance plots where all
instances for the competing approaches are independently sorted by their run-
ning times and plotted on the x-axis while the y-axis contains (on logarithmic
scale) the respective running times in seconds.

The performance curve for AalWiNes-pre∗ and Moped-pre∗ are significantly
slower than the other methods, including Moped-post∗ and AalWines-post∗,
which are comparable. Our new improved pre∗ and post∗ methods are compa-

https://doi.org/10.5281/zenodo.5005893

184 P. G. Jensen et al.

Fig. 3. The queries that perform relatively best for CEGAR (time in seconds)

rable performance-wise and already more than two times faster (on the median
instance) compared to AalWiNes-post∗. This is mainly due to our early termi-
nation improvement and a more efficient encoding of the network.

The introduction of our dual∗ approach significantly improves the perfor-
mance of both pre∗ and post∗, and on the median instance the dual∗ solver
is more than 6 times faster than the previous state-of-the-art AalWiNes-post∗

approach, while the curves further open with the increasing complexity of the
reachability problems. On the instance number 49,629 (the largest instance that
Moped-post∗ solved) dual∗ is already 11 times faster than Moped-post∗. With the
harder instances dual∗ performs increasingly better than both pre∗ and post∗.

The performance of the CEGAR approach is incomparable with dual∗ as
on 27% of all instances CEGAR is faster (sometimes even by two orders of
magnitude) but on the remaining instances it can be significantly slower. We
noticed that the CEGAR approach is considerably better performing on negative
queries (without any trace) where it is faster on 47% cases. The best cases for
CEGAR with two orders of magnitude speedup are listed in Fig. 3 and we remark
that CEGAR solved 249 queries where dual∗ timed out. The number of CEGAR
iterations where the method is faster than dual∗ ranges between 1 to 61 but
typically less than 10 iterations are required to get a conclusive answer. As dual∗

and CEGAR are incomparable, we use the pragmatic approach where we can run
both of them in parallel and terminate as soon as one of the methods provides an
answer. This is depicted by the curve min{dual∗, CEGAR} that further improves
the performance by additional 20–30%. In particular this combined method is
7.5 times faster than AalWiNes-post∗ on the median case and 17 times faster
than Moped-post∗ on the instance number 49,629.

Finally, as both the network encoding in AalWiNes [14] as well as in our
paper overapproximate the set of network traces, they can provide inconclu-
sive answers. On our benchmark, AalWiNes-post∗ returned 2,024 inconclusive
answers, whereas our encoding approach reported only 7 inconclusive answers
for dual∗ and 6 inconclusive answers for dual∗ combined with CEGAR.

6 Conclusion

While more automated approaches to verify and operate communication net-
works can significantly improve their dependability, this requires efficient algo-
rithms which can deal with the large scale and complexity of today’s networks.

Faster Pushdown Reachability 185

We presented an efficient translation from MPLS routing tables into pushdown
systems. We also revisited the problem of fast reachability analysis of push-
down systems and presented three techniques improving the performance over
the state-of-the-art solution by an order of magnitude. In the future work we
plan to study fast algorithms for verifying quantitative reachability properties
(related to latency or network congestion) via weighted pushdown automata.

Acknowledgements. We thank to Bernhard Schrenk for updating the AalWiNes
online demo at https://demo.aalwines.cs.aau.dk with the improved verification engine
described in this paper.

References

1. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. In: POPL
2014, pp. 113–126. ACM (2014)

2. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Don’t mind the
gap: bridging network-wide objectives and device-level configurations. In: ACM
SIGCOMM 2016, pp. 328–341. ACM (2016)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

4. Büchi, J.R.: Regular canonical systems. Archiv für mathematische Logik und
Grundlagenforschung 6(3–4), 91–111 (1964)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Prog. Lang. Syst. 16(5), 1512–1542 (1994)

7. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 45

8. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Network-wide configuration
synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
261–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 14

9. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. J. Satisf. Boolean Model. Comput. 5(1–4),
27–56 (2009)

10. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 14–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49019-1 2

11. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 30

12. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. In: INFINITY 1997. ENTCS, vol. 9, pp. 27–37. Elsevier (1997)

https://demo.aalwines.cs.aau.dk
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/11513988_45
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/3-540-49019-1_2
https://doi.org/10.1007/3-540-44585-4_30

186 P. G. Jensen et al.

13. Jensen, J.S., Krøgh, T.B., Madsen, J.S., Schmid, S., Srba, J., Thorgersen, M.T.: P-
Rex: fast verification of MPLS networks with multiple link failures. In: CoNEXT,
pp. 217–227. ACM (2018)

14. Jensen, P.G., Kristiansen, D., Schmid, S., Schou, M.K., Schrenk, B.C., Srba, J.:
AalWiNes: a fast and quantitative what-if analysis tool for MPLS networks. In:
CoNEXT 2020, pp. 474–481. ACM (2020)

15. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: Proceedings of the NSDI, pp. 113–126 (2012)

16. Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M.: The internet topol-
ogy Zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

17. Schmid, S., Srba, J.: Polynomial-time what-if analysis for prefix-manipulating
MPLS networks. In: IEEE INFOCOM 2018, pp. 1799–1807. IEEE (2018)

18. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technische Univer-
sität München (2002)

19. Schwoon, S.: Moped (2002). http://www2.informatik.uni-stuttgart.de/fmi/szs/
tools/moped/

20. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: a java bytecode checker
based on moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 541–545. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 35

http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1007/978-3-540-31980-1_35
https://doi.org/10.1007/978-3-540-31980-1_35

Verifying Verified Code

Siddharth Priya1(B), Xiang Zhou1, Yusen Su1, Yakir Vizel2, Yuyan Bao1,
and Arie Gurfinkel1

1 University of Waterloo, Waterloo, Canada
s2priya@uwaterloo.ca

2 The Technion, Haifa, Israel

Abstract. A recent case study from AWS by Chong et al. proposes an
effective methodology for Bounded Model Checking in industry. In this
paper, we report on a followup case study that explores the methodology
from the perspective of three research questions: (a) can proof artifacts
be used across verification tools; (b) are there bugs in verified code;
and (c) can specifications be improved. To study these questions, we
port the verification tasks for aws-c-common library to SeaHorn and
KLEE. We show the benefits of using compiler semantics and cross-
checking specifications with different verification techniques, and call for
standardizing proof library extensions to increase specification reuse. The
verification tasks discussed are publicly available online.

1 Introduction

Bounded Model Checking (BMC) is an effective static analysis technique that
reduces program analysis to propositional satisfiability (SAT) or Satisfiability
Modulo Theories (SMT). It works directly on the source code. It is very precise,
e.g., accounting for semantics of the programming language, memory models,
and machine arithmetic. There is a vibrant ecosystem of tools from academia
(e.g., SMACK [24], CPAChecker [4], ESBMC [12]), industrial research labs (e.g.,
Corral [19], F-SOFT [15]), and industry (e.g., CBMC [9], Crux [13], QPR [5]).
There is an annual software verification competition, SV-COMP [3], with many
participants. However, with a few exceptions, BMC is not actively used in soft-
ware industry. Especially, when compared to dynamic analysis techniques such
as fuzzing [25], or light-weight formal methods such as static analysis [2].

Transitioning research tools into practice requires case-studies, methodol-
ogy, and best-practices to show how the tools are best applied. Until recently,
there was no publicly available industrial case study on successful application of
BMC for continuous verification1 of C code. This has changed with [7] – a case
study from the Automated Reasoning Group (ARG) at Amazon Web Services

1 By continuous verification, we mean verification that is integrated with continuous
integration (CI) and is checked during every commit.

This research was supported by grants from WHJIL and NSERC CRDPJ 543583-19.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 187–202, 2021.
https://doi.org/10.1007/978-3-030-88885-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_13

188 S. Priya et al.

(AWS) on the use of CBMC for proving memory safety (and other properties)
of several AWS C libraries. This case study proposes a verification methodol-
ogy with two core principles: (a) verification tasks structured around units of
functionality (i.e., around a single function, as in a unit test), and (b) the use
of code to express specifications (i.e., pre-, post-conditions, and other contex-
tual assumptions). We refer to these as unit proofs, and Code as Specification
(CaS), respectively. The methodology is efficient because small verification tasks
help alleviate scalability issues inherent in BMC. More significantly, developers
adopt, own, extend and even use specifications (as code) in other contexts, e.g.,
unit tests. Admirably, AWS has released all of the verification artifacts (code,
specifications and verification libraries)2. Moreover, these are maintained and
integrated into Continuous Integration (CI). This gave us a unique opportunity
to study, validate, and refine the methodology of [7]. In this paper, we report on
our experience on adapting the verification tasks of [7] to two new verification
tools: a Bounded Model Checking engine of SeaHorn, and the symbolic exe-
cution tool KLEE. We present our experience as a case study that is organized
around three Research Questions (RQ):

RQ1: Does CaS Empower Multiple Tools for a Common Verification Task? Code
is the lingua franca among developers, compilers, and verification tools. Thus,
CaS makes specifications understandable by multiple verification tools. To val-
idate effectiveness of this hypothesis, we adapted the unit proofs from AWS to
different tools, and report on the experience in Sect. 3.1. While giving a positive
answer to RQ1, we highlight the importance of the semantics used to interpret
CaS, and that effectiveness of each tool depends on specification styles.

RQ2: Are there Bugs in Verified Code? Specifications written by humans may
have errors. Do such errors hide bugs in verified implementations? What sanity
checks are helpful to find bugs in implementations and specifications? The public
availability of [7] is a unique opportunity to study this question. In contrast to [7],
we found no new bugs in the library being verified (aws-c-common). However, we
have found multiple errors in specifications! Reporting them to AWS triggered a
massive review of existing unit proofs with many similar issues found and fixed.
We report the bugs, and techniques that helped us discover them, in Sect. 3.2.

RQ3: Can Specifications be Improved While Maintaining CaS Philosophy? Some
mistakes in specifications can be prevented by improvements to the specification
language. We propose a series of improvements that significantly reduce speci-
fication burden. They are mostly in the form of built-in functions, thus, famil-
iar to developers. In particular, we show how to make the verification of the
linked list data structure in aws-c-common significantly more efficient, while
making the proofs unbounded (i.e., correct for linked list of any size).

In our case study, we used the BMC engine of SeaHorn [14] and symbolic
execution tool KLEE [6]. We have chosen SeaHorn because it is conceptually

2 https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc.

https://github.com/awslabs/aws-c-common/tree/main/verification/cbmc

Verifying Verified Code 189

similar to CBMC that was used in [7]. Thus, it was reasonable to assume that
all verification tasks can be ported to it. We are also intimately familiar with
SeaHorn. Thus, we did not only port verification tasks, but proposed improve-
ments to SeaHorn to facilitate the process. We have chosen KLEE because it
is a well-known representative of symbolic execution – an approach that is the
closest alternative to Bounded Model Checking.

Overall, we have ported all of the 169 unit proofs of aws-c-common to Sea-
Horn, and 153 to KLEE. The case study represents a year of effort. The time
was divided between porting verification tasks, improving SeaHorn to allow for
a better comparison, and, many manual and semi-automated sanity checks to
increase confidence in specifications. Additionally, we have experimented with
using unit proofs as fuzz targets using LLVM fuzzing library libFuzzer [25] and
adapted 146 of the unit proofs to libFuzzer.

We make all results of our work publicly available and reproducible at
https://github.com/seahorn/verify-c-common. In addition to what is reported
in this paper, we have developed an extensive CMake build system that sim-
plifies integration of additional tools. The case study is live in the sense that it
is integrated in CI and is automatically re-run nightly. Thus, it is synchronized
both with the tools we use and the AWS library we verify.

We hope that our study inspires researchers to adapt their tools to industrial
code, and inspires industry to release verification efforts to study.

Caveats and Non-goals. We focus on the issues of methodology and sharing
verification tasks between different tools. The tools that we use have differ-
ent strengths and weaknesses. While they all validate user-supplied assertions,
they check for different built-in properties (e.g., numeric overflow, undefined
behaviours, memory safety). The goal is not to compare the tools head-to-head,
or to find the best tool for a given task. We have not attempted to account
for the differences between the tools. Nor have we tried to completely cover all
verification tasks by all tools. Our goal was to preserve the unit proofs of [7] as
much as possible to allow for a better comparison. For that reason, while we do
report on performance results for the different tools, we do not describe them in
detail. An interested reader is encouraged to look at the detailed data we make
available on GitHub. Furthermore, while we have applied fuzzing to the unit
proofs, we do not focus on effectiveness and applicability of static vs dynamic
verification but only on the issues of methodology.

To summarize, we make the following contributions: (a) we validate that CaS
can be used to share specifications between multiple tools, especially tools that
share the same techniques (i.e., BMC), or tools with related techniques (i.e.,
BMC and Symbolic Execution); (b) we describe in details bugs that are found
in verified code (more specifically, in specifications), some are quite surprising;
(c) we suggest a direction to improve CaS with additional built-in functions that
simplify common specification; and (d) we make our system publicly available
allowing other researches to integrate their tools, use it as a benchmark, and to
validate new verification approaches on industrial code.

The rest of the paper is structured as follows. Section 2 recalls the methodol-
ogy of unit proof and CaS. And Sect. 3 presents the architecture of the case study

https://github.com/seahorn/verify-c-common

190 S. Priya et al.

Fig. 1. The unit proof of aws array list get at ptr from [7].

and answers the three research questions. We discuss related work in Sect. 4 and
offer concluding remarks in Sect. 5.

2 Unit Proofs with Code-as-Specification

In [7], a methodology for program verification is proposed that allows devel-
opers to write specifications and proofs using the C programming language.
The core of the methodology are unit proof 3 and Code as Specification (CaS).
A unit proof is similar to a unit test in that it is a piece of a code (usu-
ally a method) that invokes another piece of code (under test) and checks
its correctness [23]. Figure 1 shows an example of a unit proof for the method
aws_array_list_get_at_ptr, from aws-c-common library. It has three parts: (1)
the specification of aws_array_list_get_at_ptr, i.e., pre- (line 8) and post-
conditions (lines 10–11); (2) a call to the function under verification (line 9);
and (3) the specification of the program context that the method is called
from (lines 2–7). Note that all specifications are written directly in C. We
call this specification style – CaS. Assumptions (or pre-conditions) correspond
to __CPROVER_assume, and assertions (or post-conditions) correspond to assert.
Specifications are factored into functions. For example, aws_array_list_is_valid
specifies a representation invariant of the array list. In this unit proof, the con-
text is restricted to a list of bounded size but with unconstrained elements and
an index with (intentionally) unspecified value of type size_t. Even without
expanding the code further, its meaning is clear to any C developer familiar
with the library.

The unit proof is verified with CBMC [9]. CBMC uses a custom
SMT solver to check that there are no executions that satisfy the pre-
conditions and violate at least one of the assertions (i.e., a counterexam-
ple). Together with the explicit assertions, CBMC checks built-in properties:
memory safety and integer overflow.

According to [7], CaS and unit proofs are a practical and productive verifi-
cation methodology. It has been used successfully to verify memory safety (and
other properties) of multiple AWS projects, including the aws-c-common library
that we use in our case study. The library provides cross platform configuration,

3 In [7], these are called proof harnesses.

Verifying Verified Code 191

Fig. 2. Verification results for CBMC, SeaHorn and KLEE.

Fig. 3. Architecture of the case study.

data structures, and error handling support to a range of other AWS C libraries
and SDKs. It is the foundation of many security related libraries, such as the
AWS Encryption SDK for C [7]. It contains 13 data structures, 169 unit proofs
that verify over 20K lines of code (LOC). Figure 2 shows the LOC and running
time for each data structure.

3 Case Study

The architecture of our case study is shown in Fig. 3. To compare with CBMC,
we use two tools based on the LLVM framework [20]: SeaHorn and KLEE.
SeaHorn [14] is a verification framework. We used the bit- and memory-precise
BMC developed during the case study. Its techniques are closest to CBMC.
KLEE [6] is a well-known symbolic execution tool. It is an alternative to BMC
for bounded exhaustive verification. In addition, we have experimented with
libFuzzer – a coverage-guided random testing framework. It does no symbolic

192 S. Priya et al.

reasoning, and, together with address sanitizer, is known to be effective at dis-
covering memory errors. Fuzzing results are available online.4

The rest of the section describes the research questions and our findings.

3.1 RQ1: Does CaS Empower Multiple Tools?

Hypothetically, CaS methodology enables sharing the same formal specification
among multiple, potentially distinct, tools and techniques. For example, seman-
tic analyses of IDEs and compilers can catch simple semantics bugs and incon-
sistencies in specifications. Fuzzers can validate specifications through testing.
Symbolic execution can supplement BMC by capitalizing on a different balance
in performance versus precision. Static analysis tools can be used to compute
inductive invariants. However, is the hypothesis true in practice?

To validate the hypothesis, we adapted the unit proofs from aws-c-common

to two distinct verification techniques: BMC with SeaHorn and symbolic exe-
cution with KLEE. We have also attempted to use unit proofs as fuzz targets
for libFuzzer. While our experience supports the hypothesis, we encountered
two major challenges: semantics and effectiveness of specifications.

Semantics. Code without semantics is meaningless. Developers understand code
without being versed in formal semantics, however, many technical details and
“corner cases” are often debated. This is especially true for C – “the semantics of
C has been a vexed question for much of the last 40 years” [21]. Clear semantics
are crucial when code (and CaS) are used with multiple tools.

The unit proofs in [7] do not follow the C semantics. For example, consider
the proof in Fig. 1. According to C, it has no meaning as both list (line 2)
and index (line 7) are used uninitialized. CBMC treats uninitialized variables
as non-deterministic. So it is well-defined for CBMC, but not for other tools.

What is a good choice of semantics for CaS? In [21], two semantics are
described – the ISO C Standard and the de facto semantics of compilers. Devel-
opers understand (and use) the de facto semantics. For example, comparison of
arbitrary pointers is undefined according to ISO C, but defined consistently in
mainstream compilers (and used in aws-c-common!). Therefore, we argue that
CaS must use the de facto semantics. Furthermore, unit proofs must be compil-
able and, therefore, executable, so developers can execute them not just in their
heads (like with [7]). Note that de facto semantics is not complete with regards
to C semantics, but is a commonly agreed upon subset. What de facto semantics
does not cover is compiler dependent semantics.

In our experience, using CaS with the de facto semantics is not hard. For
example, to adapt Fig. 1, we introduced memhavoc and nd_size_t, shown as com-
ments, that fills a memory region at a given address with non-deterministic bytes,
and returns a non-deterministic value of type size_t, respectively.

4 https://seahorn.github.io/verify-c-common/fuzzing coverage/index.html.

https://seahorn.github.io/verify-c-common/fuzzing_coverage/index.html

Verifying Verified Code 193

Fig. 4. Tool-specific implementations for initialize_byte_buf.

Effectiveness of Specifications. We used three different tools on the same unit
proof. Each tool requires slightly different styles of specifications to be effective.
We believe that these stylistic differences between specifications can be captured
by traditional code refactoring techniques (i.e., functions, macros, etc.). However,
this is not easy whenever the specifications have not been written with multiple
tools (and with their strengths and weaknesses) in mind. A significant part of
our work has been in refactoring unit proofs from [7] to be more modular.

We illustrate this with the pre-condition for the byte_buf data-structure.
In [7], data structures are assumed to be initially non-deterministic, and various
assumptions throughout the unit proof are used to restrict it (e.g., lines 2–5
in Fig. 1). This impedes specification re-use since different tools work well with
different styles of pre-conditions. For example, symbolic execution and fuzzing
require memory to be explicitly allocated, and all tools that use de-facto seman-
tics require all memory be initialized before use.

For byte_buf, we factored out its pre-conditions into a function
init_byte_buf.5 Its implementations for SeaHorn, KLEE, and libFuzzer are
shown in Fig. 4. It takes buf structure as input, and initializes its fields to be
consistent with the representation invariant of byte_buf.

SeaHorn initialization is closest to the original of [7]. Fields are initialized
via calls to external functions (nd_<type>) that are assumed to return arbitrary
values. Representation invariants (i.e., length is less or equal to capacity), as well
as any upper bounds on buffer size are specified with assumptions. Note that
can_fail_malloc internally initializes allocated memory via a call to memhavoc,
ensuring that reading buf->buffer is well-defined.

KLEE initialization is similar to SeaHorn, but special care must be taken
about the placement of assumptions, and implementation of can_fail_malloc.
In particular, KLEE prefers that memory allocation functions are given explicit
size, otherwise, it picks a concrete size non-deterministically. Special cases, like
buf->buffer being NULL, are split in the initialization to aid KLEE during sym-
bolic execution. Similar changes can be done for SeaHorn, but are not as effec-
tive. For that reason, we chose to keep SeaHorn initialization as close to [7] as
possible, but adjusted the one for KLEE to be most effective.

5 Similarly, we introduced init_array_list to replace lines 2–5 in Fig. 1.

194 S. Priya et al.

libFuzzer initialization is the most different since non-determinisim must be
replaced by randomness. In this case, nd_<type> functions are implemented using
the random inputs generated by libFuzzer. Assumptions are implemented by
aborting the current fuzzing run if the condition evaluates to false. Of course,
this limits fuzzing effectiveness since the fuzzer must randomly guess inputs to
pass all of the assumptions. For that reason, as many assumptions as possible are
modeled by an explicit initialization. For example, in line 3 of Fig. 4c, cap is re-
assigned to the modulo of MAX_BUFFER if libFuzzer generated a value exceeding
MAX_BUFFER. This way, code after line 3 always executes regardless of the return
value of nd_size_t() in line 2.

Overall, our results indicate that CaS empowers multiple verification tools
to share specifications among them. Common refactoring techniques make spec-
ifications sharing effective. Specifications are easiest to share among tools that
use similar techniques.

Discussion. We conclude this section with a discussion of our experience in
using de facto semantics. First, the code of aws-c-common is written with de
facto semantics in mind. We found that in [7] it had to be extended with many
conditional compilation flags to provide alternative implementations that are
compatible with CBMC or that instruct CBMC to ignore some seemingly unde-
fined behavior. However, we have not changed any lines of aws-c-common. We
analyze the code exactly how it is given to the compiler – improving coverage.
Second, a compiler may generate different target code for different architectures.
By using the compiler as front-end, we check that the code is correct as compiled
on different platforms. This is another advantage of CaS. Third, compilers may
provide additional safety checks. For example, aws-c-common uses GCC/Clang
built-in functions for overflow-aware arithmetic. By using de facto semantics, all
the tools used in the case study were able to deal with this in both CaS and
code seamlessly. Fourth, aws-c-common uses inline assembly to deal with spec-
ulative execution-based vulnerabilities [17]. While inline assembly is not part
of the ISO C standard, it is supported by compilers. Thus, it is not a problem
for libFuzzer. We developed techniques to handle inline asm in SeaHorn. For
KLEE, we had to ignore such unit proofs.

3.2 Are There Bugs in Verified Code?

Specifications may have errors as they are just programs: “Writing specifications
can be as error-prone as writing programs”. [22] Although [7] suggests to use
code coverage and code review to increase the confidence in specifications, we
still found non-trivial bugs. We summarize three most interesting ones below.

Bug 1. Figure 5a shows the definition of byte buffer that is a length delimited
byte string. Its data representation should be either the buffer (buf) is NULL or
its capacity (cap) is 0 (not the len as defined in BB_is_ok). We found this bug by
a combination of sanity checks in SeaHorn and our model of the memory allo-
cator (i.e., malloc). The bug did not manifest in [7] because other pre-conditions

Verifying Verified Code 195

Fig. 5. Simplified code for specification bugs.

ensured that buf is always allocated. Our report of this bug to AWS triggered a
massive code auditing effort in aws-c-common and related libraries where many
related issues were found.6

Bug 2. Figure 5b shows a verification pattern where a property (line 5) is checked
on the program path (from lines 1 to 5). As the condition at lines 2 and 3 can
never be true, the property cannot be checked either. Our vacuity detection
(discussed later) found the bugs occurring in this pattern. Note that the bug
was missed by the code coverage detection used by CBMC, thus, may have
been present for several years.

Bug 3. To make verification scalable, the verification of method A that calls
another method B may use a specification stub that approximates the func-
tionality of B. AWS adopts this methodology when verifying the iterator of a
hash table. The iterator calls a function ht_del to remove an element in a hash
table. During verification ht_del is approximated by a specification stub shown
in Fig. 5c. However, the approximation does not decrement entry_count, i.e.,
line 3 should be added to the spec for correct behavior. In [7], the use of the
buggy stub hides an error in the specification.

Discussion. Code coverage of a unit proof is, at best, a sanity check for CaS.
It reports which source lines of the specification and code under verification
are covered under execution. However, because source lines can remain uncov-
ered for legitimate reasons e.g., dead code, interpreting a coverage report is not
straightforward. There is no obvious pass/fail criterion. Thus, we found that
code coverage may be insufficient to detect bugs in CaS reliably. In fact, bugs
exist for multiple years even after code coverage failures. To help find bugs in
CaS with SeaHorn, we adapted vacuity detection [18] to detect unreachable
post-conditions. Vacuity detection checks that every assert statement is reach-
able. We encountered engineering challenges when developing vacuity detection.
For example, we received spurious warnings due to code duplication. We silenced
such warnings by only reporting a warning if all duplicate asserts reported a vacu-
ity failure. In addition, due to CaS, an unreachable assertions may be removed
by compiler’s dead code elimination. This is not desirable for vacuity detection.

6 An example is https://github.com/awslabs/aws-c-common/pull/686/commits.

https://github.com/awslabs/aws-c-common/pull/686/commits

196 S. Priya et al.

Fig. 6. Simplified code for differing CaS specifications.

Fig. 7. Two styles of specifications for a read only buffer operation.

To mitigate this issue, we report when dead code is eliminated. However, since
many eliminations are unrelated to specs, there is noise in the report which
makes it un-actionable. Interaction between dead code removal by the compiler
and vacuity detection remains an open challenge for us.

We have found bugs in specifications, but we do not know what bugs remain.
As shown in this section, the bugs were found with a combination of manual
auditing and tools. However, these techniques are far from complete.

3.3 Can Specifications Be Improved While Maintaining the CaS
Philosophy?

There are many alternative ways to express a specification in CaS. In this section,
we illustrate how to make proofs more efficient and make specs more readable.
For example, a unit proof can fully instantiate a data structure (as in a unit
test), or minimally constrain it (as in [7]). In this section, we illustrate this by
describing our experience in making linked_list unit proofs unbounded (and
more efficient). Furthermore, we believe that extending the specification lan-
guage with additional verifier-supported built-in functions simplifies specs while
making them easier to verify. We illustrate this with the built-ins developed for
SeaHorn to specify absence of side-effects.

Linked List. A common pattern in unit proofs is to assume the representation
invariant of a data structure, and to assert it after invocation of the function
under verification along with other properties that must be maintained by the

Verifying Verified Code 197

function. For example, a simplified version of its unit proof from [7] is shown in
Fig. 6a. The pre-conditions are specified by (explicitly) creating a list in lines 4–7
using a loop. The post-condition is checked by completely traversing the list in
lines 12–14. This specification is simple since it closely follows the style of unit
tests. However, it is inefficient for BMC: (a) unrolling the loops in the pre- and
post-conditions blows up the symbolic search space; (b) it makes verification of
the loop-free function list_front bounded, i.e., verification appears to depend
on the size of the list in the pre-conditions.

Our alternative formulation is to construct a partially defined linked list stub
as shown in Fig. 8a. This stub can be used to verify list_front since it is expected
that only the first node after head is accessed. The resulting CaS is shown in
Fig. 6b. The next field of n points to a potentially invalid address (returned
by nd_voidp). Either list_front never touches n->next or has a memory fault.
Finally, the assert on line 7 in Fig. 6b checks that list_front did not modify
the head of the list either. If there is no memory fault, then list_front did
not modify the linked list after the node n. Our specification is not inductive.
It uses the insight that the given linked list API only ever accesses a single
element. It, therefore, avoids loops in both the pre- and post-conditions and
verifies list_front for linked lists of any size.

Unfortunately, our new spec in Fig. 7b is difficult to understand by non-
experts because it relies on the interplay between nd_voidp and memory safety
checking. To make the spec accessible, we hide the details behind a helper API.
Figure 9 shows the unit proof for aws_linked_list_front with this API. The func-
tion sea_nd_init_aws_linked_list_from_head constructs partial aws_linked_list
instances with non-deterministic length (as shown in Fig. 8a). The function
aws_linked_list_save_to_tail saves concrete linked list nodes from the par-
tial aws_linked_list. Finally, the function is_aws_list_unchanged_to_tail is
used in post-conditions to check that linked list nodes are not modified. The
unit proof for aws_linked_list_front is not only more efficient than the orig-
inal CBMC proof, but it is also a stronger specification. For example, if
aws_linked_list_front removes or modifies a linked list node, our unit proof
catches this as a violation, while the original proof only checks whether the
returned value is valid and whether the linked list is well formed. The API we
devised is generalized to work with all linked list operations in aws-c-common. For
operations which access the node before the tail we construct a partially defined
stub as shown in Fig. 8b while Fig. 8c is constructed for operations which access
the list from both ends. We provide corresponding versions of the above API to
save and check immutability of linked list nodes for each kind of stub.

Increasing CaS Expressiveness. Verification tools should provide built-ins to aid
in concise specifications. Moreover, such built-ins enable specifications that are
not otherwise expressible in CaS. For example, Fig. 7b uses a SeaHorn built-in,
is_mod, to specify that read_only_op does not change the buffer. This built-in
returns true if memory pointed by its argument is modified since the last call to
tracking_on. In contrast, the original specification for CBMC in Fig. 7a is tricky.
It saves a byte from some position in the buffer (lines 3–5), and checks that it is

198 S. Priya et al.

Fig. 8. Linked list stubs for proofs.

Fig. 9. SeaHorn unit proof for aws_linked_list_front.

not changed (line 7). This example illustrates that built-ins make specifications
simpler and more direct. They ease specification writing for users and might
be exploited efficiently by verification tools. As another example, SeaHorn
provides a built-in is_deref to check that a memory access is within bounds,
which is not (easily) expressible in C.

Discussion. CaS enables concise specifications and efficient proofs. As advanced
verification techniques may not generalize, a standard extension is needed, such
as verification-specific built-in functions. The semantics of these can be provided
by a run-time library, validated by fuzzing and supported by multiple verification
tools. Additional case studies are needed to identify a good set of built-ins. A
standard extension can increase specification reuse and make verification more
productive and effective.

Verifying Verified Code 199

4 Related Work

To our knowledge, [7] is the first significant, publicly available, example of an
application of BMC on industrial code that is actively maintained with the code.
Thus, our work is the first exploration of potential issues with software verified
in this way. The closest verification case studies are coreutils with KLEE [6]
and busybox ls with CBMC [16]. However, those focus on the scalability of a
specific verification technology, while we focus on methodology, reuse, and what
bugs might be hidden in the verification effort.

As we mentioned in the introduction, the Software Verification Competition
(SV-COMP) [3] provides a large collection of benchmarks, and, an annual eval-
uation of many verification tools. However, it is focused on performance and
soundness of the tools. The benchmarks are pre-processed to fit the competition
format. At that stage, it is impossible to identify and evaluate the specifications,
or to modify the benchmarks to increase efficiency of any particular tool. We
hope that our case study can serve as an alternative benchmark to evaluate
suitability of verification tools for industrial transition.

In addition to [7], there has been number of other recent applications of BMC
at AWS, including [8,10,11]. However, they are either not publicly available, too
specialized, or not as extensive as the case study in [7].

Using code as specification has a long history in verification tools, one promi-
nent example is Code Contracts introduced in Spec� [1]. One important difference
is that in our case CaS is used to share specifications between completely differ-
ent tools that only share the semantics of the underlying programming language,
and the language itself is used to adapt specifications to the tools.

5 Conclusion

This case study would not have been possible without artifacts released by AWS
in [7]. To our knowledge, it is the first publicly available application of BMC (to
software) in industry. Related case studies on verification are those on coreutils

with KLEE [6] and on busybox ls with CBMC [16]. SV-COMP is a large
repository of benchmarks, but its goals are different from an actively maintained
industrial project. The availability of both methodology and artifacts has given
us a unique opportunity to study how verification is applied in industry and
to improve verification methodology. We encourage industry to release more
benchmarks to enable further studies by the research community.

In addition to answering the research questions, we are contributing a com-
plete working system that might be of interest to other researchers. We have
implemented a custom build system using CMake that simplifies integrating
new tools. We provide Docker containers to reproduce all of the results. We cre-
ated continuous integration (CI) on GitHub that nightly re-runs all the tools on
the current version of aws-c-common. Since we use standard tools, the project
integrates seamlessly into IDEs and refactoring tools. The CI runs are done in
parallel by CTest. Running SeaHorn takes under 8 min!

200 S. Priya et al.

While comparing different tools on performance is not our primary concern,
in Fig. 2, we show the running time for all of the verification tools, collected on the
same machine. For libFuzzer, we make the detailed coverage report available
online. We stress that while the tools check the same explicit assertions, they
check different built-in properties. Thus, running time comparison must be taken
with a grain of salt.

Our main conclusion is in agreement with [7], and we strengthen the evidence
for it. CaS is a practical and scalable approach for specifications that is easy to
understand and empowers many tools. We argue that using de facto compiler
semantics in CaS is key for enabling many verification tools, each with its own
characteristic, to be used on the same verification problem. We find that speci-
fications can be written in different ways and specification writer must account
for both verification efficiency and developer readability. We suggest that a set of
common built-ins be shared by different verification tools. Such built-ins improve
the expressive power of CaS while retaining portability across verification tools.
With built-ins defined in a specification library, software developers will be able
to write unit proofs in a way no difference than programming with libraries
provided by some framework.

Today, formal verification is not the primary means of building confidence in
software quality. Our hope is that case studies like this one are useful to both
software engineering researchers and practitioners who want to make formal
methods an integral part of software development. To further this agenda, we
plan to continue applying the CaS methodology to larger and more complex
code bases (and languages) in the future.

References

1. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

2. Bessey, A., et al.: A few billion lines of code later: using static analysis to find bugs
in the real world. Commun. ACM 53(2), 66–75 (2010). https://doi.org/10.1145/
1646353.1646374

3. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In:
TACAS 2020. LNCS, vol. 12079, pp. 347–367. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45237-7 21

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

5. Kleine Büning, M., Sinz, C., Faragó, D.: QPR verify: a static analysis tool
for embedded software based on bounded model checking. In: Christakis, M.,
Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) NSV/VSTTE -2020. LNCS,
vol. 12549, pp. 21–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
63618-0 2

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-63618-0_2
https://doi.org/10.1007/978-3-030-63618-0_2

Verifying Verified Code 201

6. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008, 8–10 December
2008, San Diego, California, USA, Proceedings, pp. 209–224. USENIX Association
(2008)

7. Chong, N., et al.: Code-level model checking in the software development work-
flow. In: ICSE-SEIP 2020: 42nd International Conference on Software Engineering,
Software Engineering in Practice, Seoul, South Korea, 27 June–19 July 2020, pp.
11–20. ACM (2020)

8. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 26

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. Cook, B., et al.: Using model checking tools to triage the severity of security bugs in
the Xen hypervisor. In: 2020 Formal Methods in Computer Aided Design, FMCAD
2020, Haifa, Israel, 21–24 September 2020, pp. 185–193. IEEE (2020). https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6 26

11. Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 467–486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 28

12. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3–7 September 2018, pp. 888–891. ACM (2018)

13. Galois: Crux: A Tool for Improving the Assurance of Software Using Symbolic
Testing. https://crux.galois.com/

14. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

15. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
software verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005). https://doi.org/10.
1007/11513988 31

16. Kim, Y., Kim, M.: SAT-based bounded software model checking for embedded soft-
ware: a case study. In: 21st Asia-Pacific Software Engineering Conference, APSEC
2014, Jeju, South Korea, 1–4 December 2014. Volume 1: Research Papers, pp.
55–62. IEEE Computer Society (2014)

17. Kocher, P., et al.: Spectre attacks: exploiting speculative execution (2018). http://
meltdownattack.com/

18. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817949 3

19. Lal, A., Qadeer, S.: Powering the static driver verifier using Corral. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014, pp. 202–212.
ACM (2014)

https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
https://doi.org/10.1007/978-3-319-96142-2_28
https://crux.galois.com/
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/11513988_31
https://doi.org/10.1007/11513988_31
http://meltdownattack.com/
http://meltdownattack.com/
https://doi.org/10.1007/11817949_3

202 S. Priya et al.

20. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20–24 March 2004, San Jose, CA, USA,
pp. 75–88. IEEE Computer Society (2004)

21. Memarian, K., et al.: Into the depths of C: elaborating the de facto standards. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, 13–17 June
2016, pp. 1–15. ACM (2016)

22. Moy, Y., Wallenburg, A.: Tokeneer: beyond formal program verification. Embed.
Real Time Softw. Syst. 24 (2010)

23. Osherove, R.: The Art of Unit Testing: With Examples in .Net. Manning Publica-
tions Co., Shelter Island (2009)

24. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 7

25. Serebryany, K.: libFuzzer: a library for coverage-guided fuzz testing. https://llvm.
org/docs/LibFuzzer.html

https://doi.org/10.1007/978-3-319-08867-9_7
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

Probabilistic Analysis

Probabilistic Causes in Markov Chains

Christel Baier , Florian Funke , Simon Jantsch , Jakob Piribauer ,
and Robin Ziemek(B)

Technische Universität Dresden, Dresden, Germany
{christel.baier,florian.funke,simon.jantsch,jakob.piribauer,

robin.ziemek}@tu-dresden.de

Abstract. The paper studies a probabilistic notion of causes in Markov
chains that relies on the counterfactuality principle and the probability-
raising property. This notion is motivated by the use of causes for moni-
toring purposes where the aim is to detect faulty or undesired behaviours
before they actually occur. A cause is a set of finite executions of the sys-
tem after which the probability of the effect exceeds a given threshold.
We introduce multiple types of costs that capture the consump-tion of
resources from different perspectives, and study the complexity of com-
puting cost-minimal causes.

1 Introduction

The study of cause-effect relationships in formal systems has received consider-
able attention over the past 25 years. Notions of causality have been proposed
within various models, including structural equation models [26,27,37], tempo-
ral logics in Kripke structures [4,11] and Markov chains [34,35], and application
areas have been identified in abundance, ranging from finance [32] to medicine
[33] to aeronautics [30]. These approaches form an increasingly powerful toolkit
aimed at explaining why an observable phenomenon (the effect) has happened,
and which previous events (the causes) are logically linked to its occurrence. As
such, causality plays a fundamental building block in determining moral respon-
sibility [6,10] or legal accountability [20], and ultimately fosters user acceptance
through an increased level of transparency [36].

Despite the variety of models, application areas, and involved disciplines,
all approaches essentially rely on (one of) two central paradigms that dictate
how causes are linked to their effects: the counterfactuality principle and the
probability-raising property. Counterfactual reasoning prescribes that an effect
would not have happened if the cause had not occurred. Probability-raising
states that the probability of the effect is higher whenever the cause has been
observed.

This work was funded by DFG grant 389792660 as part of TRR 248, the Cluster of
Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
Strategy), DFG-projects BA-1679/11-1 and BA-1679/12-1, and the Research Training
Group QuantLA (GRK 1763).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 205–221, 2021.
https://doi.org/10.1007/978-3-030-88885-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_14&domain=pdf
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-7301-1550
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0003-4829-0476
http://orcid.org/0000-0002-8490-1433
https://doi.org/10.1007/978-3-030-88885-5_14

206 C. Baier et al.

Fig. 1. Summary of complexity results for different kinds of cost.

The contribution of this paper is twofold: First, we define a novel notion of
cause for ω-regular properties in stochastic operational models. Second, we study
the complexity of computing optimal causes for cost mechanisms motivated by
monitoring applications.

The causes presented in this paper combine the two prevailing causality
paradigms mentioned above into a single concept. More specifically, a p-cause
for an ω-regular property L in a discrete-time Markov chain is a set of finite exe-
cutions π of the system such that the probability that L occurs after executing
π is at least p, where p is typically larger than the overall probability of L. The
counterfactuality principle is invoked through the additional requirement that
almost every execution exhibiting the event L contains a finite prefix which is
a member of the p-cause. This condition makes our approach amenable to the
needs of monitoring a system at runtime.

Imagine a critical event that the system should avoid (e.g., a fully auto-
mated drone crashing onto the ground), and assume that a p-cause for this
event is known (e.g., physical specifications foreshadowing a crash). Typically,
the probability threshold p – which can be thought of as the sensitivity of the
monitor – should be lower if the criticality of the event is higher. As the system
is running, as soon as the execution seen so far is part of the p-cause, the monitor
can trigger an alarm and suitable countermeasures can be taken (e.g., manual
control instead of automated behavior). As such, our approach can be preventive
in nature.

The monitoring application outlined above suggests computing a p-cause
from the model before the system is put to use. However, multiple p-causes
may exist for the same property, which raises the question which one to choose.
Cyber-physical systems consume time, energy and other resources, which are
often subject to budget restrictions. Furthermore, the intended countermeasures
may incur different costs depending on the system state. Such costs can be
modelled using state weights in the Markov chain, which induce weight functions
on the finite executions either in an accumulative (total resource consumption)
or instantaneous (current consumption intensity) fashion. On top of this model,
we present three cost mechanisms for causes: (1) The expected cost measures the
expected resource consumption until the monitor triggers an alarm or reaches a

Probabilistic Causes in Markov Chains 207

safe state, (2) the partial expected cost measures the expected consumption where
executions reaching a safe state do not incur any cost, and (3) the maximal cost
measures the maximal consumption that can occur until an alarm is triggered.

Figure 1 summarizes our results regarding the complexity of computing cost-
minimal p-causes for the different combinations of weight type and cost mecha-
nism. To obtain these results we utilize a web of connections to the rich landscape
of computational problems for discrete-time Markovian models. More precisely,
the results for the expected cost rely on connections to the stochastic shortest
path problem (SSP) studied in [5]. The pseudo-polynomial algorithm for partial
expected costs on non-negative, accumulated weights uses partial expectations
in Markov decision processes [38]. The PP-hardness result is proved by reduction
from the cost problem for acyclic Markov chains stated in [24]. The pseudo-
polynomial algorithm for the maximal cost on arbitrary, accumulated weights
applies insights from total-payoff games [7,9].

Full proofs missing in the main document can be found in the appendix.

Related Work. The structural model approach to actual causality [27] has
sparked notions of causality in formal verification [4,11]. The complexity of com-
puting actual causes has been studied in [16,17]. A probabilistic extension of
this framework has been proposed in [21]. Recent work on checking and infer-
ring actual causes is given in [29], and an application-oriented framework for it
is presented in [30]. The work [34] builds a framework for actual causality in
Markov chains and applies it to infer causal relationships in data sets. It was
later extended to continuous time data [32] and to token causality [35] and has
been refined using new measures for the significance of actual and token causes
[28,44].

A logic for probabilistic causal reasoning is given in [1] in combination with
logical programming. The work [43] compares this approach to Pearl’s theory
of causality involving Bayesian networks [37]. The CP-logic of [1] is close to the
representation of causal mechanisms of [14]. The probability-raising principle
goes back to Reichenbach [39]. It has been identified as a key ingredient to
causality in various philosophical accounts, see e.g. [15].

Monitoring ω-regular properties in stochastic systems modeled as Hidden
Markov Chains (HMCs) was studied in [23,40] and has recently been revived
[18]. The trade-off between accuracy and overhead in runtime verification has
been studied in [3,31,41]. In particular [3] uses HMCs to estimate how likely each
monitor instance is to violate a temporal property. Monitoring the evolution of
finite executions has also been investigated in the context of statistical model
checking of LTL properties [13]. How randomization can improve monitors for
non-probabilistic systems has been examined in [8]. The safety level of [19] mea-
sures which portion of a language admits bad prefixes, in the sense classically
used for safety languages.

208 C. Baier et al.

2 Preliminaries

Markov Chains. A discrete-time Markov chain (DTMC) M is a tuple
(S, s0,P), where S is a finite set of states, s0 ∈ S is the initial state, and
P : S × S → [0, 1] is the transition probability function where we require∑

s′∈S P(s, s′) = 1 for all s ∈ S. For algorithmic problems all transition
probabilities are assumed to be rational. A finite path π̂ in M is a sequence
s0s1 . . . sn of states such that P(si, si+1) > 0 for all 0 ≤ i ≤ n − 1. Let
last(s0 . . . sn) = sn. Similarly one defines the notion of an infinite path π. Let
Pathsfin(M) and Paths(M) be the set of finite and infinite paths. The set of
prefixes of a path π is denoted by Pref(π). The cylinder set of a finite path
π̂ is Cyl(π̂) = {π ∈ Paths(M) | π̂ ∈ Pref(π)}. We consider Paths(M) as a
probability space whose σ-algebra is generated by such cylinder sets and whose
probability measure is induced by Pr(Cyl(s0 . . . sn)) = P(s0, s1) · . . . ·P(sn−1, sn)
(see [2, Chapter 10] for more details).

For an ω-regular language L ⊆ Sω let PathsM (L) = Paths(M) ∩ L. The
probability of L in M is defined as PrM (L) = Pr(PathsM (L)). Given a state
s ∈ S, let PrM,s(L) = PrMs

(L), where Ms is the DTMC obtained from M by
replacing the initial state s0 with s. If M is clear from the context, we omit the
subscript. For a finite path π̂ ∈ Pathsfin(M), define the conditional probability

PrM (L | π̂) =
PrM (PathsM (L) ∩ Cyl(π̂))

PrM (Cyl(π̂))
.

Given E ⊆ S, let ♦E = {s0s1 . . . ∈ Paths(M) | ∃i ≥ 0. si ∈ E}. For
such reachability properties we have PrM (♦E | s0 . . . sn) = PrM,sn

(♦E) for any
s0 . . . sn ∈ Pathsfin(M). We assume Prs0(♦s) > 0 all states s ∈ S. Furthermore,
define a weight function on M as a map c : S → Q. We typically use it to
induce a weight function c : Pathsfin(M) → Q (denoted by the same letter) by
accumulation, i.e., c(s0 · · · sn) =

∑n
i=0 c(si). Finally, a set Π ⊆ Pathsfin(M) is

called prefix-free if for every π̂ ∈ Π we have Π ∩ Pref(π̂) = {π̂}.

Markov Decision Processes. A Markov decision process (MDP) M is a tuple
(S,Act, s0,P), where S is a finite set of states, Act is a finite set of actions, s0 is
the initial state, and P : S ×Act ×S → [0, 1] is the transition probability function
such that for all states s ∈ S and actions α ∈ Act we have

∑
s′∈S P(s, α, s′) ∈

{0, 1}. An action α is enabled in state s ∈ S if
∑

s′∈S P(s, α, s′) = 1 and we
define Act(s) = {α | α is enabled in s}. We require Act(s) 	= ∅ for all states
s ∈ S.

An infinite path in M is an infinite sequence π = s0α1s1α2s2 · · · ∈ (S×Act)ω

such that for all i ≥ 0 we have P(si, αi+1, si+1) > 0. Any finite prefix of π
that ends in a state is a finite path. A scheduler S is a function that maps a
finite path s0α1s1 . . . sn to an enabled action α ∈ Act(sn). Therefore it resolves
the nondeterminism of the MDP and induces a (potentially infinite) Markov
chain MS. If the chosen action only depends on the last state of the path, i.e.,
S(s0α1s1 . . . sn) = S(sn), then the scheduler is called memoryless and naturally
induces a finite DTMC. For more details on DTMCs and MDPs we refer to [2].

Probabilistic Causes in Markov Chains 209

Fig. 2. Example DTMC M Fig. 3. Infinite and non-regular 1/2-
causes

3 Causes

This section introduces a notion of cause for ω-regular properties in Markov
chains. For the rest of this section we fix a DTMC M with state space S, an
ω-regular language L over the alphabet S and a threshold p ∈ (0, 1].

Definition 3.1 (p-critical prefix). A finite path π̂ is a p-critical prefix for L
if Pr(L | π̂) ≥ p.

Definition 3.2 (p-cause). A p-cause for L in M is a prefix-free set of finite
paths Π ⊆ Pathsfin(M) such that

(1) almost every π ∈ PathsM (L) has a prefix π̂ ∈ Π, and
(2) every π̂ ∈ Π is a p-critical prefix for L.

Note that condition (1) and (2) are in the spirit of completeness and sound-
ness as used in [12]. The first condition is our invocation of the counterfactuality
principle: Almost every occurrence of the effect (for example, reaching a target
set) is preceded by an element in the cause. If the threshold is chosen such that
p > Prs0(L), then the second condition reflects the probability-raising principle
in that seeing an element of Π implies that the probability of the effect L has
increased over the course of the execution. For monitoring purposes as described
in the introduction it would be misleading to choose p below Prs0(L) as this
could instantly trigger an alarm before the system is put to use. Also p should
not be too close to 1 as this may result in an alarm being triggered too late.

If L coincides with a reachability property one could equivalently remove
the almost from (1) of Definition 3.2. In general, however, ignoring paths with
probability zero is necessary to guarantee the existence of p-causes for all p.

Example 3.3. Consider the DTMC M depicted in Fig. 2. For p = 3/4, a possible
p-cause for L = ♦error in M is given by the set Π1 = {st, su} since both t and u
reach error with probability greater or equal than p. The sets Θ1 = {st, su, stu}
and Θ2 = {sterror , su} are not p-causes: Θ1 is not prefix-free and for Θ2 the
path stuerror has no prefix in Θ2. Another p-cause is Π2 = {sterror , su, stu}.

Example 3.4. It can happen that there does not exist any finite p-cause. Con-
sider Fig. 3 and p = 1/2. Since Prs(♦error) < p, the singleton {s} is not a

210 C. Baier et al.

p-cause. Thus, for every n ≥ 0 either snt or snterror is contained in any p-cause,
which must therefore be infinite. There may also exist non-regular p-causes (as
languages of finite words over S). For example, for A = {n ∈ N | n prime} the
p-cause ΠA = {sn

0 t | n ∈ A} ∪ {sm
0 terror | m /∈ A} is non-regular.

Remark 3.5 (Reduction to reachability properties). Let A be a deterministic
Rabin automaton for L and consider the product Markov chain M ⊗ A as in [2,
Section 10.3]. For any finite path π̂ = s0 . . . sn ∈ Pathsfin(M) there is a unique
path a(π̂) = (s0, q1)(s1, q2) . . . (sn, qn+1) ∈ Pathsfin(M ⊗ A) whose projection
onto the first factor is π̂. Under this correspondence, a bottom strongly con-
nected component (BSCC) of M ⊗ A is either accepting or rejecting, meaning
that for every finite path reaching this BSCC the corresponding path π̂ in M
satisfies PrM (L | π̂) = 1, or respectively, PrM (L | π̂) = 0 [2, Section 10.3]. This
readily implies that almost every π ∈ PathsM (L) has a 1-critical prefix and that,
therefore, p-causes exist for any p.

Moreover, if U is the union of all accepting BSCCs in M ⊗ A, then

PrM (L | π̂) = PrM⊗A
(
♦U | a(π̂)

)
(1)

holds for all finite paths π̂ of M [2, Theorem 10.56]. Hence every p-cause Π1 for
L in M induces a p-cause Π2 for ♦U in M ⊗A by taking Π2 = {a(π̂) | π̂ ∈ Π1}.
Vice versa, given a p-cause Π2 for ♦U in M ⊗ A, then the set of projections of
paths in Π2 onto their first component is a p-cause for L in M . In summary, the
reduction of ω-regular properties on M to reachability properties on the product
M ⊗ A also induces a reduction on the level of causes.

Remark 3.5 motivates us to focus on reachability properties henceforth. To
apply the algorithms presented in Sect. 4 to specifications given in richer for-
malisms such as LTL, one would first have to apply the reduction to reachability
given above, which increases the worst-case complexity exponentially.

In order to align the exposition with the monitoring application we are tar-
geting, we will consider the target set as representing an erroneous behavior that
is to be avoided. After collapsing the target set, we may assume that there is
a unique state error ∈ S, so L = ♦error is the language we are interested in.
Further, we collapse all states from which error is not reachable to a unique
state safe ∈ S with the property Prsafe(♦error) = 0. After this pre-processing,
we have Prs0(♦{error , safe}) = 1. Define the set

Sp := {s ∈ S | Prs(♦error) ≥ p}

of all acceptable final states for p-critical prefixes. This set is never empty as
error ∈ Sp for all p ∈ (0, 1].

There is a partial order on the set of p-causes defined as follows: Π Φ if and
only if for all φ ∈ Φ there exists π ∈ Π such that π ∈ Pref(φ). The reflexivity
and transitivity are straightforward, and the antisymmetry follows from the fact
that p-causes are prefix-free. However, this order itself has no influence on the
probability. In fact for two p-causes Π,Φ with Π Φ it can happen that for

Probabilistic Causes in Markov Chains 211

π ∈ Π,φ ∈ Φ we have Pr(♦error | π) ≥ Pr(♦error | φ). This partial order
admits a minimal element which is a regular language over S and which plays a
crucial role for finding optimal causes in Sect. 4.

Proposition 3.6 (Canonical p-cause). Let

Θ =
{
s0 · · · sn ∈ Pathsfin(M)

∣
∣ sn ∈ Sp and for all i < n: si /∈ Sp

}
.

Then Θ is a regular p-cause (henceforth called the canonical p-cause) and for all
p-causes Π we have Θ Π.

We now introduce an MDP associated with M whose schedulers correspond
to the p-causes of M . This is useful both to represent p-causes and for algorithmic
questions we consider later.

Definition 3.7 (p-causal MDP). For the DTMC M = (S, s0,P) define the
p-causal MDP Cp(M) = (S, {continue, pick}, s0,P′) associated with M , where
P′ is defined as follows:

P′(s, continue, s′) = P(s, s′) for all s, s′ ∈ S

P′(s, pick, error) =

{
1 if s ∈ Sp

0 otherwise

Given a weight function c on M , we consider c also as weight function on Cp(M).

Example 3.8. Figure 4 demonstrates the p-causal MDP construction of Cp(M).
The black edges are transitions of M , probabilities are omitted. Let us assume
Sp\{error} = {s1, s3, s4}. To construct Cp(M) one adds transitions for the action
pick, as shown by red edges.

Fig. 4. Illustration of the p-causal MDP construction (Color figure online)

Technically, schedulers are defined on all finite paths of an MDP M. However,
under any scheduler, there are usually paths that cannot be obtained under the
scheduler. Thus we define an equivalence relation ≡ on the set of schedulers of
M by setting S ≡ S′ if Paths(MS) = Paths(MS′). Note that two schedulers
equivalent under ≡ behave identically.

212 C. Baier et al.

Lemma 3.9. There is a one-to-one correspondence between equivalence classes
of schedulers in Cp(M) w.r.t. ≡ and p-causes in M for ♦error.

Proof. Given a p-cause Π for ♦error in M , we construct the equivalence class
of scheduler [SΠ] by defining SΠ(π̂) = pick if π̂ ∈ Π, and otherwise SΠ(π̂) =
continue. Vice versa, given an equivalence class [S] of schedulers, we define the
p-cause

ΠS =

{

π̂ ∈ Pathsfin(M)
∣
∣
S(π̂) = pick or π̂ ends in error and
S does not choose pick on any prefix of π̂

}

Since pick can only be chosen once on every path in Paths(MS), it is easy to see
that S ≡ S′ implies ΠS = ΠS′ . Note that every π̂ ∈ ΠS is a p-critical prefix
since it ends in Sp and every path in ♦error is covered since either pick is chosen
or π̂ ends in error . Furthermore, the second condition makes Π prefix-free. ��

3.1 Types of p-causes and Induced Monitors

We now introduce two classes of p-causes which have a comparatively simple
representation, and we explain what classes of schedulers they correspond to in
the p-causal MDP and how monitors can be derived for them.

Definition 3.10 (State-based p-cause). A p-cause Π is state-based if there
exists a set of states Q ⊆ Sp such that Π = {s0 . . . sn ∈ Pathsfin(M) | sn ∈
Q and ∀i < n : si /∈ Q}.
State-based p-causes correspond to memoryless schedulers of Cp(M) which
choose pick exactly for paths ending in Q. For DTMCs equipped with a weight
function we introduce threshold-based p-causes:

Definition 3.11 (Threshold-based p-cause). A p-cause Π is threshold-
based if there exists a map T : Sp → Q ∪ {∞} such that

Π =

{

s0 · · · sn ∈ Pathsfin(M)
∣
∣

s0 · · · sn ∈ pick(T) and
s0 · · · si /∈ pick(T) for i < n

}

where pick(T) = {s0 . . . sn ∈ Pathsfin(M) | sn ∈ Sp and c(s0 . . . sn) < T (sn)}.
Threshold-based p-causes correspond to a simple class of weight-based schedulers
of the p-causal MDP, which base their decision in a state only on whether the
current weight exceeds the threshold or not. Intuitively, threshold-based p-causes
are useful if triggering an alarm causes costs while reaching a safe state does not
(see Sect. 4.2): The idea is that cheap paths (satisfying c(s0 . . . sn) < T (sn)) are
picked for the p-cause, while expensive paths are continued in order to realize
the chance (with probability ≤ 1−p) that a safe state is reached and therefore
the high cost that has already been accumulated is avoided.

Probabilistic Causes in Markov Chains 213

The concept of p-causes can be used as a basis for monitors that raise an
alarm as soon as a state sequence in the p-cause has been observed. State-
based p-causes have the advantage that they are realizable by “memoryless”
monitors that only need the information on the current state of the Markov
chain. Threshold-based monitors additionally need to track the weight that has
been accumulated so far until the threshold value of the current state is exceeded.
So, the memory requirements of monitors realizing a threshold-based p-cause are
given by the logarithmic length of the largest threshold value for Sp-states. All
algorithms proposed in Sect. 4 for computing cost-minimal p-causes will return p-
causes that are either state-based or threshold-based with polynomially bounded
memory requirements.

3.2 Comparison to Prima Facie Causes

The work [34] presents the notion of prima facie causes in DTMCs where both
causes and events are formalized as PCTL state formulae. In our setting we can
equivalently consider a state error ∈ S as the effect and a state subset C ⊆ S
constituting the cause. We then reformulate [34, Definition 4.1] to our setting.

Definition 3.12 (cf. [34]). A set C ⊆ S is a p-prima facie cause of ♦error if
the following three conditions hold:

(1) The set C is reachable from the initial state and error /∈ C.
(2) ∀s ∈ C : Prs(♦error) ≥ p
(3) Prs0(♦error) < p

The condition p > Prs0(♦error) we discussed for p-causes is hard-coded
here as (3). In [34] the value p is implicitly existentially quantified and thus
conditions (2) and (3) can be combined to Prs(♦error) > Prs0(♦error) for all
s ∈ C. This encapsulates the probability-raising property. However, error may
be reached while avoiding the cause C, so p-prima facie causes do not entail the
counterfactuality principle. Definition 3.2 can be seen as an extension of p-prima
facie causes by virtue of the following lemma:

Lemma 3.13. For p > Prs0(♦error) every p-prima facie cause induces a state-
based p-cause.

Proof. Let C ⊆ S be a p-prima facie cause. By condition (1) and (2) of Defi-
nition 3.12 we have C ⊆ Sp\{error}. Since every path reaching error trivially
visits a state in Q := C ∪ {error} ⊆ Sp, the set Π = {s0 . . . sn ∈ Pathsfin(M) |
sn ∈ Q and ∀i < n : si /∈ Q} is a state-based p-cause. ��

4 Costs of p-causes

In this section we fix a DTMC M with state space S, unique initial state s0,
unique target and safe state error , safe ∈ S and a threshold p ∈ (0, 1]. As
motivated in the introduction, we equip the DTMC of our model with a weight
function c : S → Q on states and consider the induced accumulated weight
function c : Pathsfin(M) → Q. These weights typically represent resources spent,
e.g., energy, time, material, etc.

214 C. Baier et al.

4.1 Expected Cost of a p-cause

Definition 4.1 (Expected cost). Given a p-cause Π for ♦error in M consider
the random variable X : Paths(M) → Q with

X (π) = c(π̂) for

{
π̂ ∈ Π ∩ Pref(π) if such π̂ exists
π̂ ∈ Pref(π) minimal with last(π̂) = safe otherwise.

Since Prs0(♦{error , safe}) = 1, paths not falling under the two cases above have
measure 0. Then the expected cost expcost(Π) of Π is the expected value of X .

The expected cost is a means by which the efficiency of causes for monitoring
purposes can be estimated. Assume a p-cause Π is used to monitor critical
scenarios of a probabilistic system. This means that at some point either a
critical scenario is predicted by the monitor (i.e., the execution seen so far lies
in Π), or the monitor reports that no critical scenario will arise (i.e., safe has
been reached) and can therefore be turned off. If the weight function on the
state space is chosen such that it models the cost of monitoring the respective
states, then expcost(Π) estimates the average total resource consumption of the
monitor.

We say that a p-cause Π is expcost-minimal if for all p-causes Φ we have
expcost(Π) ≤ expcost(Φ). By expcostmin, we denote the value expcost(Π) of
any expcost-minimal p-cause Π.

Theorem 4.2. (1) Given a non-negative weight function c : S → Q≥0, the
canonical p-cause Θ from Proposition 3.6 is expcost-minimal.

(2) For an arbitrary weight function c : S → Q, an expcost-minimal and state-
based p-cause Π and expcostmin can be computed in polynomial time.

Proof sketch. The statement (1) follows from the fact that if Π Φ holds for
two p-causes, then we have expcost(Π) ≤ expcost(Φ), which is shown in the
appendix. The value expcostmin = expcost(Θ) can then be computed in polyno-
mial time using methods for expected rewards in Markov chains [2, Section 10.5].

To show (2), we reduce our problem to the stochastic shortest path problem
(SSP) [5] from s0 to {error , safe}. By Lemma 3.9 equivalence classes of sched-
ulers in Cp(M) are in one-to-one correspondence with p-causes in M . Let ΠS

be a p-cause associated with a representative scheduler S. One can show that
expcost(ΠS) is equal to the expected accumulated weight of paths under sched-
uler S in Cp(M) upon reaching {error , safe}. A scheduler S∗ minimizing this
value can be computed in polynomial time by solving the SSP in Cp(M) [5],
and the algorithm returns a memoryless such S∗. It follows that ΠS∗ is an
expcost-minimal and state-based p-cause. ��

4.2 Partial Expected Cost of a p-cause

In this section we study a variant of the expected cost where paths with no
prefix in the p-cause are attributed zero costs. A use case for this cost mecha-
nism arises if the costs are not incurred by monitoring the system, but by the

Probabilistic Causes in Markov Chains 215

countermeasures taken upon triggering the alarm. For example, an alarm might
be followed by a downtime of the system, and the cost of this may depend on
the current state and history of the execution. In such cases there are no costs
incurred if no alarm is triggered.

Definition 4.3 (Partial expected cost). For a p-cause Π for ♦error in M
consider the random variable X : Paths(M) → Q with

X (π) =

{
c(π̂) for π̂ ∈ Π ∩ Pref(π) if such π̂ exists
0 otherwise.

The partial expected cost pexpcost(Π) of Π is the expected value of X .

The analogous statement to Theorem 4.2 (1) does not hold for partial expected
costs, as the following example shows.

Fig. 5. An example showing that the partial expected cost is not monotonous on p-
causes when c is non-negative.

Example 4.4. Consider the Markov chain depicted in Fig. 5. For p = 1/2 and
♦error we have Sp = {t, u, error}. The canonical p-cause is Θ = {sk

0t | k ≥ 1}
with pexpcost(Θ) =

∑
k≥1(1/4)k ·k = 4/9. Now let Π be any p-cause for ♦error .

If the path s�
0t belongs to Π, then it contributes (1/4)� · 	 to pexpcost(Π). If

instead the paths s�
0terror and s�

0tuerror belong to Π, they contribute (1/4)� ·
1/2 · 	+(1/4)� · 1/2 · 3/4 · (+w). So, the latter case provides a smaller pexpcost
if l > 3w, and the pexpcost-minimal p-cause is therefore

Π = {sk
0t | 1 ≤ k ≤ 3w} ∪ {sk

0terror , sk
0tu | 3w < k}.

For w = 1, the expected cost of this p-cause is 511/1152 = 4/9 − 1/1152. So, it
is indeed smaller than pexpcost(Θ).

Theorem 4.5. Given a non-negative weight function c : S → Q≥0, a pexpcost-
minimal and threshold-based p-cause Π, and the value pexpcostmin, can be com-
puted in pseudo-polynomial time. Π has a polynomially bounded representation.

216 C. Baier et al.

Proof sketch. For the pseudo-polynomial time bound we apply the techniques
from [38] to optimize the partial expected cost in MDPs to the p-causal MDP
Cp(M). It is shown in [38] that there is an optimal scheduler whose decision
depends only on the current state and accumulated weight and that such a
scheduler and its partial expectation can be computed in pseudo-polynomial
time. It is further shown that a rational number K can be computed in poly-
nomial time such that for accumulated weights above K, an optimal scheduler
has to minimize the probability to reach error . In our case, this means choosing
the action continue. Due to the special structure of Cp(M), we can further show
that there is indeed a threshold T (s) for each state s such that action pick is
optimal after a path π̂ ending in s if and only if c(π̂) < T (s). So, a threshold-
based pexpcost-minimal p-cause can be computed in pseudo-polynomial time.
Furthermore, we have T (s) < K for each state s and as K has a polynomially
bounded representation the same applies to the values T (s) for all states s. ��

Since the causal MDP Cp(M) has a comparatively simple form, one could
expect that one can do better than the pseudo-polynomial algorithm obtained
by reduction to [38]. Nevertheless, in the remainder of this section we argue that
computing a pexpcost-minimal p-cause is computationally hard, in contrast to
expcost (cf. Theorem 4.2). For this we recall that the complexity class PP [22] is
characterized as the class of languages L that have a probabilistic polynomial-
time bounded Turing machine ML such that for all words τ one has τ ∈ L
if and only if ML accepts τ with probability at least 1/2 (cf. [25]). We will
use polynomial Turing reductions, which, in contrast to many-one reductions,
allow querying an oracle that solves the problem we reduce to a polynomial
number of times. A polynomial time algorithm for a problem that is PP-hard
under polynomial Turing reductions would imply that the polynomial hierarchy
collapses [42]. We reduce the PP-complete cost-problem stated in [24, Theorem
3] to the problem of computing pexpcostmin.

Fig. 6. The DTMCs Ni for i = 0, 1

Theorem 4.6. Given an acyclic DTMC M , a weight function c : S → N and
a rational ϑ ∈ Q, deciding whether pexpcostmin ≤ ϑ is PP-hard under Turing
reductions.

Probabilistic Causes in Markov Chains 217

Proof sketch. We sketch a Turing reduction from the following problem which
is shown to be PP-hard in [24]: Given an acyclic DTMC M over state space S
with initial state s, absorbing state t such that Prs(♦t) = 1, weight function
c : S → N and natural number R ∈ N, decide whether

PrM ({π ∈ Paths(M) | c(π) ≤ R}) ≥ 1/2.

In an acyclic Markov chain M the values of pexpcost have a polynomially
bounded binary representation as shown in the appendix. This allows for a binary
search to compute pexpcostmin with polynomially many calls to the correspond-
ing threshold problem. We use this procedure in a polynomial-time Turing reduc-
tion.

Let now M be a Markov chain as in [24, Theorem 3] and let R be a natural
number. We construct two Markov chains N0 and N1 depicted in Fig. 6. The
pexpcost-minimal p-cause in both Markov chains consists of all paths reach-
ing c with weight ≤ R and all paths reaching error that do not have a prefix
reaching c with weight ≤ R. The difference between the values pexpcostmin

in the two Markov chains depends only on the probability of paths in the
minimal p-cause collecting the additional weight +1 in N1. This probability is
1
6PrM ({π ∈ Paths(M) | c(π) ≤ R}). By repeatedly using the threshold problem
to compute pexpcostmin in N0 and N1 as described above, we can hence decide
the problem from [24, Theorem 3]. More details can be found in the appendix.

��

4.3 Maximal Cost of a p-cause

In practice, the weight function on the Markov chain potentially models resources
for which the available consumption has a tight upper bound. For example, the
amount of energy a drone can consume from its battery is naturally limited.
Instead of just knowing that on average the consumption will lie below a given
bound, it is therefore often desirable to find monitors whose costs are guaranteed
to lie below this limit for (almost) any evolution of the system.

Definition 4.7 (Maximal cost). Let Π be a p-cause for ♦error in M . We
define the maximal cost of Π to be

maxcost(Π) = sup{c(π̂) | π̂ ∈ Π}.

The maximal cost of a p-cause is a measure for the worst-case resource con-
sumption among executions of the system. Therefore, by knowing the minimal
value maxcostmin for p-causes one can ensure that there will be no critical sce-
nario arising from resource management.

Theorem 4.8. (1) Given a non-negative weight function c : S → Q≥0, the
canonical p-cause Θ is maxcost-minimal and maxcostmin can be computed
in time polynomial in the size of M .

(2) For an arbitrary weight function c : S → Q a maxcost-minimal and state-
based p-cause Π and maxcostmin can be computed in pseudo-polynomial time.

(3) Given a rational ϑ ∈ Q, deciding whether maxcostmin ≤ ϑ is in NP ∩ coNP.

218 C. Baier et al.

Proof sketch. To show (1) it suffices to note that for non-negative weight func-
tions maxcost is monotonous with respect to the partial order on p-causes.
Therefore Θ is maxcost-minimal. For (2) we reduce the problem to a max-cost
reachability game as defined in [7]. The algorithm from [7] computes the lowest
maximal cost and has a pseudo-polynomial time bound. By virtue of the fact
that the minimizing player has a memoryless strategy we can compute a set of
states Q ⊆ Sp on which a maxcost-minimal p-cause Π is based upon. In order
to show (3) we reduce the max-cost reachability game from (2) further to mean-
payoff games, as seen in [9]. Mean-payoff games are known to lie in NP ∩ coNP
[9]. ��

4.4 Instantaneous Cost

The given weight function c on states can also induce an instantaneous weight
function cinst : Pathsfin(M) → Q which just takes the weight of the state vis-
ited last, i.e., cinst(s0 · · · sn) = c(sn). This yields an alternative cost mechanism
intended to model the situation where the cost of repairing or rebooting only
depends on the current state, e.g., the altitude an automated drone has reached.

We add the subscript ‘inst’ to the three cost variants, where the accumulative
weight function c has been replaced with the instantaneous weight function cinst,
the error state is replaced by an error set E and the safe state is replaced by a
set of terminal safe states F . Thus we optimize p-causes for ♦E in M .

Theorem 4.9. For expcostinst, pexpcostinst, and maxcostinst a cost-minimal p-
cause Π and the value of the minimal cost can be computed in time polynomial
in M . In all cases Π can be chosen to be a state-based p-cause.

Proof sketch. We first note that pexpcostinst can be reduced to expcostinst by set-
ting the weight of all states in F to 0. We then construct an MDP (different from
Cp(M)) which emulates the instantaneous weight function using an accumulat-
ing weight function. Thus, finding an expcostinst-minimal p-cause Π reduces to
the SSP from [5], which can be solved in polynomial time. The solution admits
a memoryless scheduler and thus Π is state-based in this case.

For maxcostinst we order the states in Sp by their cost and then start itera-
tively removing the states with lowest cost until E is not reachable anymore. The
set Q of states which where removed induce a state-based maxcostinst-minimal
p-cause Π. This gives us a polynomial time procedure to compute maxcostmin

inst

and Π. ��

5 Conclusion

We combined the counterfactuality principle and the probability-raising property
into the notion of p-causes in DTMCs. In order to find suitable p-causes we
defined different cost models and gave algorithms to compute corresponding
cost-minimal causes.

Probabilistic Causes in Markov Chains 219

Cyber-physical systems are often not fully probabilistic, but involve a cer-
tain amount of control in form of decisions depending on the system state. Such
systems can be modeled by MDPs, to which we intend to generalize the causal-
ity framework presented here. Our approach also assumes that the probabilistic
system described by the Markov chain is fully observable. By observing execu-
tion traces instead of paths of the system, generalizing the notion of p-causes
to hidden Markov models is straightforward. However, the corresponding com-
putational problems exhibit additional difficulties which we address in future
work.

References

1. CP-logic: A language of causal probabilistic events and its relation to logic pro-
gramming 9

2. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

3. Bartocci, E., et al.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.)
RV 2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-35632-2 18

4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

5. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems,
16(3), 580–595 (1991)

6. Braham, M., van Hees, M.: An anatomy of moral responsibility. Mind 121(483),
601–634 (2012)

7. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: To reach or not to reach?
efficient algorithms for total-payoff games. In: Proceedings of the 26th International
Conference on Concurrency Theory (CONCUR’15). LIPIcs, vol. 42, pp. 297–310
(2015)

8. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors, 56(5) (2009)

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: The cost of exactness in quantita-
tive reachability. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A.,
Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp.
367–381. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 18

10. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Int. Res. 22(1), 93–115 (2004)

11. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Trans. Comput. Logic 9(3), 20:1–20:26 (2008)

12. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 581–595. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 54

13. Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 7

https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-319-63121-9_18
https://doi.org/10.1007/978-3-662-46681-0_54
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-662-49674-9_7

220 C. Baier et al.

14. Dash, D., Voortman, M., De Jongh, M.: Sequences of mechanisms for causal rea-
soning in artificial intelligence. In: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, IJCAI ’13, pp. 839–845. AAAI Press (2013)

15. Eells, E.: Probabilistic Causality. Cambridge Studies in Probability, Induction and
Decision Theory. Cambridge University Press, Cambridge (1991)

16. Eiter, T., Lukasiewicz, T.: Complexity results for explanations in the structural-
model approach. Artif. Intell. 154(1–2), 145–198 (2004)

17. Eiter, T., Lukasiewicz, T.: Causes and explanations in the structural-model app-
roach: tractable cases. Artif. Intell. 170(6–7), 542–580 (2006)

18. Esparza, J., Kiefer, S., Kretinsky, J., Weininger, M.: Online monitoring ω-regular
properties in unknown Markov chains. Arxiv preprint, arXiv:2010.08347 (2020)

19. Faran, R., Kupferman, O.: Spanning the spectrum from safety to liveness. Acta
Informatica 55(8), 703–732 (2018). https://doi.org/10.1007/s00236-017-0307-4

20. Feigenbaum, J., Hendler, J.A., Jaggard, A.D., Weitzner, D.J., Wright, R.N.:
Accountability and deterrence in online life. ACM, New York (2011)

21. Fenton-Glynn, L.: A proposed probabilistic extension of the halpern and pearl
definition of ‘actual cause’. Br. J. Philos. Sci. 68(4), 1061–1124 (2016)

22. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

23. Gondi, K., Patel, Y., Sistla, A.P.: Monitoring the full range of w -regular properties
of stochastic systems. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 105–119. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-93900-9 12

24. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–
246. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 19

25. Haase, C., Kiefer, S.: The complexity of the kth largest subset problem and related
problems, 116(2) (2016)

26. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Pro-
ceedings of IJCAI’15, pp. 3022–3033. AAAI Press (2015)

27. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach:
part 1: causes. In: Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence (UAI), pp. 194–202 (2001)

28. Huang, Y., Kleinberg, S.: Fast and accurate causal inference from time series data.
In: Proceedings of FLAIRS 2015, pp. 49–54. AAAI Press (2015)

29. Ibrahim, A., Pretschner, A.: From checking to inference: actual causality compu-
tations as optimization problems. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020.
LNCS, vol. 12302, pp. 343–359. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59152-6 19

30. Ibrahim, A., Pretschner, A., Klesel, T., Zibaei, E., Kacianka, S., Pretschner, A.:
Actual causality canvas: a general framework for explanation-based socio-technical
constructs. In: Proceedings of ECAI’20, pp. 2978–2985. IOS Press Ebooks (2020)

31. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 9

32. Kleinberg, S.: A logic for causal inference in time series with discrete and continuous
variables. In: Proceedings of IJCAI’11, pp. 943–950 (2011)

33. Kleinberg, S., Hripcsak, G.: A review of causal inference for biomedical informatics.
J. Biomed. Inform. 44(6), 1102–12 (2011)

http://arxiv.org/abs/2010.08347
https://doi.org/10.1007/s00236-017-0307-4
https://doi.org/10.1007/978-3-540-93900-9_12
https://doi.org/10.1007/978-3-540-93900-9_12
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1007/978-3-030-59152-6_19
https://doi.org/10.1007/978-3-030-59152-6_19
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9

Probabilistic Causes in Markov Chains 221

34. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI), pp.
303–312 (2009)

35. Kleinberg, S., Mishra, B.: The temporal logic of token causes. In: Proceedings of
KR’10, pp. 575–577. AAAI Press (2010)

36. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2017)

37. Pearl, J.: Causality, 2nd edn. Cambridge University Press, Cambridge (2009)
38. Piribauer, J., Baier, C.: Partial and conditional expectations in Markov decision

processes with integer weights. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS
2019. LNCS, vol. 11425, pp. 436–452. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17127-8 25

39. Reichenbach, H.: The Direction of Time. Dover Publications, Mineola (1956)
40. Sistla, A.P., Srinivas, A.R.: Monitoring temporal properties of stochastic systems.

In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp.
294–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-
9 25

41. Stoller, S.D.: Runtime verification with state estimation. In: Khurshid, S., Sen,
K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

42. Toda, S.: PP is as hard as the polynomial-time hierarchy, 20, 865–877 (1991)
43. Vennekens, J., Bruynooghe, M., Denecker, M.: Embracing events in causal mod-

elling: interventions and counterfactuals in CP-logic. In: Janhunen, T., Niemelä,
I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 313–325. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15675-5 27

44. Zheng, M., Kleinberg, S.: A method for automating token causal explanation and
discovery. In: Proceedings of FLAIRS’17 (2017)

https://doi.org/10.1007/978-3-030-17127-8_25
https://doi.org/10.1007/978-3-030-17127-8_25
https://doi.org/10.1007/978-3-540-78163-9_25
https://doi.org/10.1007/978-3-540-78163-9_25
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-15675-5_27

TEMPEST - Synthesis Tool for Reactive
Systems and Shields in Probabilistic

Environments

Stefan Pranger1(B), Bettina Könighofer1,2, Lukas Posch1,
and Roderick Bloem1,2

1 Institute IAIK, Graz University of Technology, Graz, Austria
stefan.pranger@student.tugraz.at, bettina.koenighofer@iaik.tugraz.at

2 Silicon Austria Labs, TU Graz SAL-DES Lab, Graz, Austria

Abstract. We present Tempest, a synthesis tool to automatically cre-
ate correct-by-construction reactive systems and shields from qualitative
or quantitative specifications in probabilistic environments. A shield is
a special type of reactive system used for run-time enforcement; i.e.,
a shield enforces a given qualitative or quantitative specification of a
running system while interfering with its operation as little as possi-
ble. Shields that enforce a qualitative or quantitative specification are
called safety-shields or optimal-shields, respectively. Safety-shields can be
implemented as pre-shields or as post-shields, optimal-shields are imple-
mented as post-shields. Pre-shields are placed before the system and
restrict the choices of the system. Post-shields are implemented after the
system and are able to overwrite the system’s output. Tempest is based
on the probabilistic model checker Storm, adding model checking algo-
rithms for stochastic games with safety and mean-payoff objectives. To
the best of our knowledge, Tempest is the only synthesis tool able to
solve 21/2-player games with mean-payoff objectives without restrictions
on the state space. Furthermore, Tempest adds the functionality to syn-
thesize safe and optimal strategies that implement reactive systems and
shields.

1 Introduction

Reactive synthesis aims to automatically construct correct and efficient systems
w.r.t. a formal specification and has been increasingly used in a wide range of
safety-critical applications. A natural model for reactive synthesis is to model
some inputs from the environment probabilistically and some adversarially. For
adversarial inputs, the synthesized system assumes the worst case, for probabilis-
tic inputs the average case. The corresponding synthesis problem is mapped to
solving a competitive stochastic turn-based game, i.e., a 21/2-player game. Quali-
tative specifications specify the functional requirements of reactive systems. With

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement N◦ 956123 - FOCETA.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 222–228, 2021.
https://doi.org/10.1007/978-3-030-88885-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_15

TEMPEST - Synthesis Tool for Reactive Systems and Shields 223

Fig. 1. Left: Pre-shielding. Right: Post-shielding.

a quantitative specification such as mean-payoff objectives, we can measure how
well a system satisfies the specification.

Shield synthesis defines a synthesis framework to construct run-time enforce-
ment modules called shields to guarantee the correctness of running systems. The
concept of shielding is very general. Shields that enforce qualitative objectives are
so-called safety-shields [1], which we distinguish between pre- and post-shielding
as depicted in Fig. 1. In pre-shielding, the shield is implemented before the system
and restricts the choices for the system to a set of correct actions. Pre-shielding
is becoming increasingly important in the setting of safe reinforcement learn-
ing [8]. In post-shielding, the shield monitors the actions selected by the system
and corrects them if the chosen action could lead to a specification violation.
Shields that enforce quantitative measures are called optimal-shields [2] and are
implemented as post-shields. Tempest is able to synthesize optimal-shields that
enforce a mean-payoff objective. Optimal-shields that enforce multiple quantita-
tive objectives can be obtained via a linear combination to give an approximate
solution of a single mean-payoff objective. For instance, the decision whether an
optimal-shield should interfere could be based on first, a performance objective
to be minimized by the shield, and second, an interference cost for changing
the output of the system. An optimal-shield can then be computed by minimiz-
ing a single mean-payoff objective obtained by combining both measures, thus
guaranteeing maximal performance with minimal interference.

Tempest Capabilities. The core functionality of Tempest is the synthesis of
reactive systems and shields in environments that incorporate uncertainty. To
the best of our knowledge, Tempest is the only tool able to solve 21/2-player
games with mean-payoff objectives and qualitative objectives given in proba-
bilistic temporal logics, without any restrictions on the state space. Furthermore,
Tempest is designed as a synthesis tool. Therefore, the computed strategies can
intuitively be used as the synthesized system, which is not the case for many
game-solving tools. Tempest is the first tool available for the synthesis of shields
and is able to synthesize pre-safety and post-safety-shields, and optimal-shields.

Implementation and Availability. The tool is written in C++ and is built on
top of the code-base of the model checker Storm [7], extending existing features
to provide the capability of solving stochastic games. Tempest is available under

224 S. Pranger et al.

the GPL-3 open source license. The tool and its source code, along with a docker
image and several examples, are available from the Tempest web page1.

Connections to Other Tools. Probabilistic model checking tools like PRISM [9]
and Storm [7] provide verification of quantitative reward-based properties and
qualitative properties in probabilistic temporal logics. Many synthesis tools
based on games are available and widely used, for example, GIST [3] solves
qualitative stochastic games and QUASY [4] solves mean-payoff 2-player games.
PRISM-games 3.0 [6] is able to solve turn-based stochastic multi-player games
under a variety of properties including long-run average [5]. However, for solving
long-run average objectives, PRISM-games needs the game to be a controllable
multi-chain, i.e., one of the players needs to be able to reach every end-component
from any state with probability one. This is a strong assumption on the struc-
ture of the game graph, which many models used in synthesis do not fulfill. In
contrast, Tempest does not rely on any assumptions on the structure of the game
graph.

2 Model and Property Specification

Tempest Model Specification. Tempest supports turn-based stochastic multi-
player games (SMGs) and uses PRISM-games’ modelling language to describe
the game [6]. The players are divided in two competing coalitions, where the first
team is working together to satisfy or optimize a property given in rPATL [5].
In each state, one player chooses an available distribution to determine the next
state. A strategy for a player determines the choices made by the player.

Tempest Property Specification. For the synthesis of reactive systems,
Tempest uses the property specification language of PRISM-games to express
properties in rPATL [5]. We give a few examples that can be used in Tempest:

– 〈〈1, 2〉〉Pmax=?[F target]: Using the operator Pmax=?, Tempest computes a
strategy for the player coalition of player 1 and 2 that guarantees to reach
target with the largest probability.

– 〈〈1, 2〉〉Rr
max=?[S]: Using the operators R and S, Tempest synthesizes a strat-

egy that maximizes the expected averaged reward r in the long-run.

Synthesis of Safety-Shields. Let the safety-value of an action in a certain state
be the maximal probability to stay safe within the next k steps when executing
this action. A safety-shield decides whether an action is blocked in a certain
state based on either an absolute threshold γ, or a relative threshold λ. A shield
using an absolute threshold blocks all actions with a safety-value smaller than
γ. Using a relative threshold λ, actions are blocked with a safety-value smaller
than the best safety-value achievable in the current state times λ. The syntax
for safety-shielding requires to specify the type of shielding using the keywords
PreSafety and PostSafety, and to define the used threshold. Following, we
demonstrate how Tempest extends the PRISM’s property specification language.
1 https://tempest-synthesis.org.

https://tempest-synthesis.org

TEMPEST - Synthesis Tool for Reactive Systems and Shields 225

– 〈PreSafety, γ = 0.9〉〈〈shield〉〉Pmax=?[G<=14 !crash]: By using this property,
Tempest synthesizes a pre-safety-shield that allows all actions that do not
cause a crash with a maximal probability of 0.9 within the next 14 time
steps.

– 〈PostSafety,λ = 0.95〉〈〈shield〉〉Pmax=?[G<=14 !crash]: Tempest synthesizes
a post-safety-shield that blocks all actions using the relative threshold λ.

Synthesis of Optimal-Shields. The property starts with the keyword Optimal
followed by the expression used to compute the long run average. For example:

– 〈Optimal〉〈〈shield〉〉Rr
min=?[S]: Tempest computes an optimal shield that

guarantees the long-run average reward of r.

3 Tempest Synthesis of Strategies

Tempest computes a memoryless deterministic strategy, implementing a reactive
system or a shield, under which the specified property can be guaranteed. The
strategy is computed using value iteration to solve the coalition game. Figure 2
shows sample outputs of the strategies of the first experiment given in Sect. 4,
implementing pre-safety and post-safety-shields. In the pre-shielding case, the
strategy provides for any state a list of allowed actions with its corresponding
safety-value. The strategy for post-shielding defines for every state and available
action, the action to be forwarded by the shield.

Fig. 2. Synthesized strategies implementing a pre-safety-shield (top) and a post-safety-
shield (bottom).

4 Tempest in Action

High-Level Planning in Robotics. A classical application of reactive syn-
thesis is the domain of automated high-level planning in robotics. We consider

226 S. Pranger et al.

Fig. 3. Left: Warehouse floor plan with 6 × 3 shelves. Right: Synthesis-times for
controller synthesis, safety-shield synthesis and optimal-shield synthesis.

Fig. 4. Left: Synthesis times for safety-shield synthesis. Right: Comparison of synthesis
times for optimal-shields: Tempest vs Avni et al.’s implementation [2].

a warehouse floor plan with several shelves, see Fig. 3 (left). To parametrise the
experiment, we consider floor plans with n × 3 shelves with 2 ≤ n ≤ 20. A
robot operates together among other robots within the warehouse. Tempest can
be used in this setting to synthesize controllers for the robot that perform cer-
tain tasks, as well as shields used to ensure safe operation of the robot, or to
guarantee performance. Controller synthesis: Using Tempest, we synthesize
a controller for the robot that repeatedly picks up packages from one of the
entrances and delivers them to the exits. We use the mean-payoff criterion to
specify that the stochastic shortest paths should be taken. Safety-shield syn-
thesis: A safety-shield can be synthesized to enforce collision avoidance with
other robots. In the experiments, we used a finite horizon of 14 steps and a
relative threshold of λ = 0.9. Optimal-shield synthesis: During operation, a
corridor may be blocked. A robot should not unnecessarily wait for the corridor
to be traversable when alternative paths exist. We synthesize an optimal-shield
that penalizes ‘waiting’ and is able to enforce a detour when waiting gets too
expensive. Results. The models, parameters, and properties used for all exper-
iments can be found on the Tempest website(see footnote 3). The results for
the synthesis-times are depicted in Fig. 3 (right). The sizes of state space of the
game graphs range from 5184 states for n = 2 to 186.624 states for n = 20. The

TEMPEST - Synthesis Tool for Reactive Systems and Shields 227

results for optimal-shields use the axis on the right hand-side. The times for cre-
ating pre-safety and post-safety-shields are identical. To compare our results, we
tried to compute a strategy for the optimal controller in PRISM-games 3.0 which
resulted in an error. By proper modelling, we were able to synthesize safe con-
trollers comparable to the safety-shield using PRISM-games, resulting in better
synthesis-times for Tempest.

Optimal-Shielding in Urban Traffic Control. Avni et al. [2] synthesize
optimal-shields that overwrite the commands of a traffic-light controller modeled
in the traffic simulator SUMO. The optimal-shield needs to balance the number of
waiting cars per incoming road with the cost for interfering with the traffic light
controller. The example is parametrised with the cut-off parameter k that defines
the maximal modelled number of waiting cars per road. The comparison of the
synthesis-times from Avni et.al.’s implementation and Tempest are shown in
Fig. 4 (right), showing a difference by orders of magnitudes in favor of Tempest.

5 Conclusion and Future Work

We have introduced Tempest, a tool for the synthesis of reactive systems and
shields with properties given in rPATL capturing qualitative and quantitative
objectives with probabilities. Currently, Tempest supports perfect-information
SMGs. In future work, we will investigate in efficient techniques to deal with
partial information. Furthermore, we will extend Tempest to support strategies
with finite memory with deterministic and stochastic-updates.

Acknowledgements. We thank both Tim Quatmann and Joost-Pieter Katoen for
their continuous help on getting acquainted with the source code of Storm.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, 2–
7 February 2018, pp. 2669–2678. AAAI Press (2018)

2. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

3. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: a solver for
probabilistic games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 665–669. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 57

4. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: QUASY: quantitative
synthesis tool. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol.
6605, pp. 267–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19835-9 24

https://doi.org/10.1007/978-3-030-25540-4_36
https://doi.org/10.1007/978-3-642-14295-6_57
https://doi.org/10.1007/978-3-642-14295-6_57
https://doi.org/10.1007/978-3-642-19835-9_24
https://doi.org/10.1007/978-3-642-19835-9_24

228 S. Pranger et al.

5. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic ver-
ification of competitive stochastic systems. Formal Methods Syst. Des. 1, 61–92
(2013)

6. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 31

8. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: 31st International Confer-
ence on Concurrency Theory, CONCUR 2020, 1–4 September 2020, Vienna, Austria
(Virtual Conference), LIPIcs, pp. 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2020)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22110-1 47

https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

AQUA: Automated Quantized Inference
for Probabilistic Programs

Zixin Huang(B), Saikat Dutta, and Sasa Misailovic

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{zixinh2,saikatd2,misailo}@illinois.edu

Abstract. We present AQUA, a new probabilistic inference algorithm
that operates on probabilistic programs with continuous posterior dis-
tributions. AQUA approximates programs via an efficient quantization
of the continuous distributions. It represents the distributions of random
variables using quantized value intervals (Interval Cube) and correspond-
ing probability densities (Density Cube). AQUA’s analysis transforms
Interval and Density Cubes to compute the posterior distribution with
bounded error. We also present an adaptive algorithm for selecting the
size and the granularity of the Interval and Density Cubes.

We evaluate AQUA on 24 programs from the literature. AQUA solved
all of 24 benchmarks in less than 43 s (median 1.35 s) with a high-level
of accuracy. We show that AQUA is more accurate than state-of-the-art
approximate algorithms (Stan’s NUTS and ADVI) and supports pro-
grams that are out of reach of exact inference tools, such as PSI and
SPPL.

1 Introduction

Many modern applications (e.g., in machine learning, robotics, autonomous driv-
ing, medical diagnostics, and financial forecasting) need to make decisions under
uncertainty. Probabilistic programming languages (PPLs) offer an intuitive way
to model uncertainty by representing complex probabilistic models as simple pro-
grams [5]. They expose randomness and Bayesian inference as first-class abstrac-
tions by extending standard languages with statements for sampling from proba-
bility distributions and probabilistic conditioning. The underlying programming
system then automates the intricate details of the probabilistic inference.

Probabilistic inference is a computationally hard problem. Most current
approaches that emerged from the statistics and machine learning communities
applied aggressive numeric approximations, such as Markov Chain Monte Carlo
sampling (MCMC) or Variational Inference (VI). However, these approaches
often cannot obtain the level of accuracy that is required in applications such
as algorithmic fairness [2], security/privacy [22], sensitivity analysis [1,13], or
software testing [8].

Symbolic techniques for inference have been resurging as a more accurate
alternative. They use a symbolic representation of the model’s state (e.g., ele-
mentary functions, piecewise-linear functions, or hypercubes), and compute the
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 229–246, 2021.
https://doi.org/10.1007/978-3-030-88885-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_16

230 Z. Huang et al.

posterior distribution algebraically [8,16,19] or closely approximate programs
using volume computation [2,20,22]. However, these approaches are often lim-
ited by the classes of programs they can solve. For instance, continuous programs
pose a major challenge for these approaches due to integrals in posterior cal-
culation. State-of-the-art symbolic solvers cannot solve many integrals exactly
(often, the integrals do not have a closed form). Similarly, volume computa-
tion approaches have a limited support for continuous distributions (e.g., do
not allow for conditioning on continuous random variables) and/or compute the
probability of a single event, not the entire posterior distribution. An intriguing
research question is how to approximate multi-dimensional continuous distribu-
tions in a principled manner that allows for more expressive programs and can
solve programs that are out of reach of existing tools for exact inference.

AQUA. We present AQUA, a novel system for symbolic inference that uses
quantization of probability density function for delivering scalable and precise
solutions for a broad range of probabilistic programs. AQUA’s inference algo-
rithm approximates the original continuous program via an efficient quantization
of the continuous distributions by using multi-dimensional tensor representations
that we call Interval Cube and Density Cube. The Interval Cube stores the quan-
tized value ranges of variables in the probabilistic program. The Density Cube
approximates the joint posterior distribution by recording the probability of each
hypercube contained in the interval cube.

AQUA’s analysis transforms the symbolic state to compute quantized
approximate posterior distribution. We derive the bounds for the approxima-
tion error (due to the quantization and integration) and show that our inference
converges in distribution to the true posterior. We also present an adaptive
algorithm for automatically selecting the granularity of the Interval and Density
Cubes.

Fig. 1. Example

Example. Figure 1 presents a probabilistic program
that represents the distribution of two random vari-
ables. In the program, we have two random vari-
ables a and b, each having uniform prior distribu-
tion (Lines 3–4). We then condition the model on 40
data points Y, assuming that each point is normally
distributed with the mean a+b (Lines 5–6). We finally
query for the joint posterior distribution (i.e., the dis-
tribution of latent variables a and b after observing the
data on Line 6).

Figure 2 presents AQUA’s results: (a) shows the prior of the two variables,
(b) shows the likelihood (observation) on a single data point, and (c) shows the
posterior distribution. On each plot, the X-axis and Y-axis represent a and b
values, and the Z-axis values are the probability densities computed by AQUA.
AQUA computes the result in 0.76 s, whereas an MCMC based inference algo-
rithm (NUTS) produces a less accurate posterior within the same amount of
time (Fig. 2(d)).

AQUA: Automated Quantized Inference for Probabilistic Programs 231

Fig. 2. AQUA estimated probabilistic density and NUTS histogram

Evaluation. We evaluate our implementation of AQUA on a set of 24 proba-
bilistic programs from the literature. We compare AQUA with exact inference –
PSI [8] and SPPL [19] – and approximate inference – MCMC and VI implemeta-
tions in Stan [5]. We show that AQUA can solve programs that are out of reach
for PSI and SPPL. Our results show AQUA solved all benchmarks in less than
43 s (median 1.35 s). It is significantly more accurate than VI for all programs
(for the Kolmogorov-Smirnov metric). AQUA is substantially more accurate
than MCMC for 10 programs, even when MCMC is given substantially more
time to complete. We also present a case study that shows AQUA can precisely
capture the tails of the distribution of robust models.

Contributions. This paper makes the following contributions:

– Inference Algorithm: We present AQUA, a novel inference algorithm that
works on general, real-world probabilistic programs with continuous distribu-
tions based on quantization and symbolic computation.

– Quantization with Interval and Density Cubes: Our analysis defines
symbolic transformers on the abstract state consisting of the Interval and
Density Cubes. We also present theoretical bounds on the quality of approx-
imation.

– Inference Algorithm Optimizations: We present algorithm extensions
that automatically refine the size/granularity of the analysis to satisfy a given
precision threshold and aggressively reduce the analysis overhead of local
variables.

– Evaluation: Our experiments show that AQUA is more accurate than
approximate inference algorithms (Stan’s MCMC/VI) and supports programs
with conditioning on continuous distributions that are out of reach of exact
inference tools (PSI and SPPL).

2 Preliminaries

Language Syntax and Semantics. Figure 3 describes the syntax of a prob-
abilistic program using an imperative, first-order intermediate representation,
drawing from Storm-IR [6,7]. It has statements for sampling from distributions1

and conditioning on data with factor and observe.
1 We support common continuous distributions including Normal, Uniform, Exponen-

tial, Beta, Gamma, Student-T, Laplace, Triangular, and any mixture of the above
distributions.

232 Z. Huang et al.

Fig. 3. Syntax of AQUA’s language

The language semantics are standard, inspired by those presented by Gori-
nova et al. [11] (We present the detailed semantics rules in the Appendix, avail-
able in the full version of the paper). In summary, a probabilistic program eval-
uates the posterior probability density function. Our operational semantics for
a program defines its effect on the program state, σ, which maps variables to
values. A value V can either be a constant c or an array of values [c1, c2, ...].
The notations σ(x) and σ(x �→ V) denote accessing and updating a variable x
respectively. We refer to the return variables of the program as the global vari-
ables, and the others as local variables. We allow local variables to have discrete
distributions (e.g. Bernoulli), as long as the density of the global variables are
Lipschitz continuous. We define a special variable L ∈ R

+ which tracks the
unnormalized posterior density of the probabilistic program. We initialize σ(L)
to 1.0 at the start of the program.

Probability Density. We review several basic terms from the probability
theory. Let x be the set of variables with values in V , and D be the set
of observed data points. Then, the posterior probability density function is
p(x|D) : V → R, such that

∫
x∈V

p(x|D)dx = 1. The distribution p(x|D) can be
calculated from the unnormalized probability density function f(x,D) : V → R,
by p(x|D) = 1

z f(x,D), where z is the normalizing constant: z =
∫

f(x,D)dx. If
x−i contains all the variables in x excluding xi, we define the marginal proba-
bility density function of xi as p(xi|D) =

∫
p(x|D) dx−i. Hereon, we omit data

symbol D to write p(x) and f(x) when clear from the context. In the semantics,
f(x) is represented by σ(L).

3 AQUA’s Probabilistic Inference Using Density Cubes

3.1 Notations and Basic Definitions

We represent the closed, bounded set {x ∈ R|a ≤ x ≤ b} with its lower-bound
a ∈ R and upper-bound b ∈ R. We denote this abstraction as an interval I =
[a, b] ∈ R

2. We refer to the lower and upper bound of I as I and I, respectively
(I, I ∈ R).

A probabilistic program lifts a normal program operating on single values to
a distribution over values. Hence, a probabilistic program represents a joint dis-
tribution over its variables. For our symbolic analysis, to represent the quantized
values of variables, we define tensors of intervals which we will refer to as Inter-
val Cube. We also assign a probability density to each interval in the Interval
Cube. We will refer to this assignment of densities as Density Cube. If there are
N variables in the program, the Density Cube will be an N -dimensional tensor.

AQUA: Automated Quantized Inference for Probabilistic Programs 233

Table 1. Correspondence of symbolic analysis and concrete analysis

cilobmySetercnoC

Value σ(x) Interval Cube σ#(x)
Density σ(L) Density Cube σ#(P)
State : (P(Vars �→ Value) �→ [0, 1]) Astate : (P(Vars �→ Interval Cube) �→ Density Cube)
�E� : State �→Value �E�# : Astate �→Interval Cube
�S� : State �→State �S�# : Astate �→Astate

Definition 1 (Interval Cube). We represent the value of a variable x with Inter-
val Cube, Ix

M1,M2,...,MN
where [M1,M2, . . . ,MN] represents the shape of the

Interval Cube and each Mi ∈ N is the number of intervals (splits) along the i-th
dimension. Each element of Ix

M1,M2,...,MN
is a single interval. We let I be the

set of all Interval Cubes. For a constant c, we denote its Interval Cube as [c],
meaning a singleton interval with both lower and upper bounds being c.

To simplify the notation, we hereon denote the shape of the hypercube as
M = [M1,M2, . . . ,MN] and each index in the hypercube is m ∈ M, M =
{[m1, . . . ,mN]| mi ∈ [1, . . . , Mi], i ∈ {1, . . . , N}}. We write K = M1 � M2

as the element-wise product (Hadamard product) of two shape vectors, namely
Ki = M1i × M2i, i ∈ {1, . . . , N}. We use m1 to denote the index of a Interval
Cube with shape M1, m1 = [m1, . . . ,mN], mi ∈ {1, . . . , M1i}, and similarly we
use m2 for index in M2, and k for index in K.

Definition 2 (Density Cube). For a given probabilistic program Prog with N

variables, we define the Density Cube with shape M as PProg
M , where

PProg
M (m) = pm , for each index m ∈ M,

and pm denotes the value of the unnormalized probability density function at
the lower bound of the corresponding interval in the Interval Cube. The densities
at the lower bound of intervals will help us do numerical integration for posterior
calculation. Further, PProg

M ∈ R
M , and pm ∈ R.

Definition 3 (Symbolic Domain). Our symbolic state has two components, a
map from variables to Interval Cubes, and a Density Cube representing the joint
density approximation. Let Var denote the set of variables, and P be the power
set, the domain of the symbolic state is Σ = P(Var �→ I)×R

M a symbolic state
σ# ∈ Σ will have the form

σ# =
〈
{x1 �→ Ix1

M 1
, x2 �→ Ix2

M 2
, . . . , xi �→ Ixi

M i
, . . .}, P �→ PProg

M

〉
.

The symbolic domain expresses a piecewise constant interpolation of the joint
probability density at a program point. Hereon, we refer to the set of all the
variables in the state σ# as x = {x1, x2, . . . , xN}.

234 Z. Huang et al.

Fig. 4. Analysis of Expressions

3.2 Analysis

We approximate the posterior density function of variables in our symbolic
states. Table 1 presents the correspondence of the objects in concrete semantics
to symbolic states. While a concrete state has a single valuation of variables and
evaluates to a single density value, our symbolic state stores all possible variable
values in Interval Cube and corresponding probability densities in Density Cube.
As the concrete semantics for a expression maps state to values, the symbolic
semantics map symbolic state to Interval Cube; and as the concrete semantics
for a statement map state to state, our symbolic semantics map symbolic state
to symbolic state.

Analysis of Expressions. The symbolic transformer �E�# on an expression
E takes a symbolic state σ# : Astate as input, and outputs an Interval Cube.
Figure 4 presents the rules. We explain two important cases in detail:

• �E1 op E2�
#: For the arithmetic/boolean operation on two Interval Cubes,

which may not always have the same shape, the resulting Interval Cube needs
to contain all possible value combinations. Specifically, for IE1

M 1
with shape

M1 = [M11, . . . ,M1N] and IE2
M 2

with shape M2 = [M21, . . . ,M2N], the result
IE1 op E2
K has shape K = [K1, . . . ,KN] with Ki = M1i × M2i to capture

all the combinations of elements from IE1
M 1

and IE2
M 2

. If M1 and M2 are
not of the same length, we reshape both IE1

M 1
and IE2

M 2
to have the same

dimension, by letting some M1i or M2i to have value 1. We let the arithmetic
or boolean operation on the interval pairs be IE1

M 1
(m1) op IE2

M 2
(m2) :=

[IE1
M 1

(m1) op IE2
M 2

(m2), IE1
M 1

(m1) op IE2
M 2

(m2)]. We handle the case with
multiple intervals analogously. This operation on multiple Interval Cubes can
be implemented efficiently with the broadcast function in tensor libraries.

• �d(E1, . . . , En−1).pdf(En)�: Similar to arithmetic operator, we apply the
mathematical density d pdf() of the distribution d whose parameters (e.g.,

AQUA: Automated Quantized Inference for Probabilistic Programs 235

Fig. 5. Analysis of Statements

mean, location, shape or variance) are intervals obtained by evaluating
E1, . . . , En−1, and it takes the intervals of En for which we seek the density.
We denote the shape of the result Interval Cube as K, which is computed
from the shape of the input Interval Cubes.

Analysis of Statements. Figure 5 presents the transformers �S�# on state-
ments S, which takes an abstract state σ# : Astate as input, and outputs an
abstract state. We explain two important rules where we modify Density Cube
(the remaining statements are standard or rely on these two rules):

• �x ∼ d(E1, . . . , En)�#, �factor(E)�#: We first evaluate d.pdf() of E into
Interval Cube, and multiply the current Density Cube with the lower bound of
intervals from the Interval Cube. Then at the lower bound of each interval, the
density is the same as the one from concrete semantics (Lemma 7). Intuitively,
we discretize the density function and use the density at the lower bound to
represent each interval. For convenience, our discretization uses the density
at the lower bound. Using the density at the upper bound or the midpoint is
also possible, and our accuracy guarantee (Theorem 10) still holds.

• �if(E) then {S1} else {S2}�#: We first solve the result from two branches one
conditioning on E and the other on 1 − E. The true boolean expressions
evaluate to 1 and false to 0 in our analysis, and we get the interval cubes for
E and 1−E from expression rules (Fig. 4). We then Join the result states by
adding up the Density Cubes from both branches.

236 Z. Huang et al.

Definition 4 (Joins). Join (�) adds the Density Cubes from two states. For-
mally, σ#

1 �σ#
2 = σ#

1 (P �→ PProg
M1,M2,...,MN

), where each element in PProg
M1,M2,...,MN

at location m is σ#
1 (P)(m) + σ#

1 (P)(m), with m = [m1,m2, . . . ,mN], mi ∈
{1, . . . , Mi}. Since we already initialized the global variables with their Interval
Cube, σ#

1 and σ#
2 should have the same variables and Interval Cubes. Then

the joint probability density P is changed to the sum of the densities from
both states. Similarly, we can define Meet () by product of σ#

1 (P)(m) and
σ#
1 (P)(m).

Algorithm. Algorithm 1 takes as input a probabilistic program Prog, the shape
vector M where each element Mi is the number of intervals for variable xi, and
the interval bounds C (optional). In Sect. 4, we describe an adaptive scheme to
automatically search for a proper C for the analysis.

First, it initializes the probability density variable P with the single interval
[1.0] (Line 2). Then, it splits the value domain for each xi in SampledVars, which
are variables sampled from a prior distribution xi ∼ d(E1, . . . , En) and not from
deterministic assignments, into Mi equi-length intervals in Ci (in the function
GetInitIntervals, Line 3–5). Mi is the i-th element in M , and Ci is the i-th
element in C.

The algorithm follows the analysis rules to get the state at the end of the
program (Line 6). Then it computes the joint probability density estimation f̂ ,
as a piecewise function of σ#(P) (Line 7).

The result f̂(x) is an approximation of the true unnormalized probability
density function f(x). In the concrete domain, the posterior probabilistic density
function is calculated as p(x) = 1

z f(x), but the integration z =
∫

f(x)dx is often
intractable. We compute our approximation ẑ using integration on the piecewise
function:

Definition 5 (Integration for Normalizing Constant). Suppose there are N

sampled variables x in the program, and let C =
⊗N

i=1[ai, bi] ⊂ R
N for

each xi ∈ [ai, bi] ⊂ R be the bounded domain used in the analysis (
⊗

rep-
resents the Cartesian Product on intervals on R). We initialize σ#[x] = C in
the analysis. Then z =

∫
C

f(x) dx is approximated with ẑ =
∫

σ#[x]
f̂(x) dx

=
∑

m∈M
(
∏N

i=1(I
xi

Mi
(m) −Ixi

Mi
(m)) · P P

M (m)).

The algorithm finally computes the posterior and the marginals for every variable
(Lines 8–11). When the program has N variables, and each variable has the same
number of intervals M , Algorithm 1 has the time complexity O(N · MN) and
space complexity O(MN).

AQUA: Automated Quantized Inference for Probabilistic Programs 237

Algorithm 1. Posterior Interval Analysis Algorithm
1: procedure PosteriorAnalysis(Prog, M , C)
2: σ#

init ← {P �→ [1]} � Initialize with probability 1
3: for xi ∈ SampledVars(Prog) do
4: σ#

init[xi] ← GetInitIntervals(xi, Mi, Ci)
5: end for
6: σ# ← �Prog�σ#

init � Apply analysis rules
7: f̂(x) ← PiecewiseFunc(σ#(P))
8: ẑ ← ∫

σ#[x]
f̂(x) dx; p̂(x) ← 1

ẑ
f̂(x) � Normalize the Posterior

9: for xi ∈ SampledVars(Prog) do
10: Marginal[xi] ← 1

z

∫
σ#[x−i]

p̂(x) dx−i � Marginalize

11: end for
12: return (p̂, Marginal)
13: end procedure

3.3 Formal Guarantee of Accuracy

In this section we formally derive how well the symbolic state σ# approximates
the joint unnormalized density function f and the posterior density function p.

Definition 6 (Concretization of Symbolic States). Define γ as the con-
cretization function, s.t. γ(σ#) = f̂ , where f̂(x) = σ#(P)(m) if x ∈
⊗N

i=1[I
xi

Mi
(m), Ixi

Mi
(m)) ⊂ R

N for any m, and 0 otherwise.

Lemma 7 shows that at any program point, the error is bounded if we use the
analysis result γ(σ#) = f̂ as an approximation of joint density function f , and
the error will reduce by the more number of intervals. To simplify the presenta-
tion, we use x(m) = [Ix1

M1
(m), . . . , IxN

MN
(m)] for all variables, and analogously

for x(m).

Lemma 7 (Discretization Error). The error of discretization is |f̂(x)−f(x)| ≤
μ · maxm ‖x(m) − x(m)‖ if x �= x(m), and if x = x(m) the error is 0.

Proof Sketch. We show that at any program point, (1) σ#(P)(m) = f(x) when
x = x(m), meaning the abstract transformers are exact at the lower bounds,
and (2) f is μ-Lipschitz continuous. By definition of μ-Lipschitz continuous,
|f(x1) − f(x2)| ≤ μ · ‖x1 − x2‖, we can prove the Lemma. The proof is by
structural induction: we first show at initialization of the program, σ# satisfies
(1) and (2) because f(x) = 1.0 and σ#(P)(m) = [1.0]. Then for each statement,
we show if the pre-state satisfies (1), the post-state has σ#(P)(m) = f(x(m));
and if the pre-state satisfies (2), f is Lipschitz continuous. We present the full
proof in the Appendix. 	�
The error of AQUA’s approximation to the normalizing constant z is also
bounded:

238 Z. Huang et al.

Lemma 8 (Integration Error). Let U =
∏N

i=1 (bi − ai) be the volume of C. For
all the probability distributions supported in our language, the error is |z − ẑ| ≤
Uμmaxm ‖x(m) − x(m)‖. If we use M equal-length intervals for each variable,
|z − ẑ| ≤ Uμ 1

M (
∑N

i=1(bi − ai)2)
1
2 . Then |z − ẑ| → 0 as M → ∞.

Proof Sketch. Recall, all posteriors f in our language (Sect. 2) are Lipschitz con-
tinuous. We derive the error bound by applying the Lipschitz continuous prop-
erty of f and the triangle inequality. We present the full proof in the Appendix.

	�
Moreover, the integration error bound above will decrease when we decrease
the interval length, or increase the number of intervals. Then at the end of the
analysis, we approximate the posterior probability density function p(x) on C as:

Definition 9 (Posterior Probability Density Approximation). Define p̂(x) =
1
ẑ f̂(x) as the approximation of p(x).

Now we show the end-to-end error of the analysis. As Theorem 10 states, by
applying sufficiently many intervals, the random variables following AQUA’s
posterior estimation in C will converge in distribution to the true posterior in
C. Without loss of generality, suppose we apply at least M equal-length intervals
for each variable in its domain [ai, bi], i.e. M = min{M1,M2, . . . ,MN}. And we
refer p̂M (x) as AQUA’s approximation of p(x) by applying at least M equal-
length intervals for each variable.

Theorem 10 (Convergence of Posterior Density Approximation). Define
FC (x) = 1

z

∫ x

−∞ 1[u∈C]· · p(u)du as the true cumulative distribution function
(CDF) on C, where z =

∫
C

p(x)dx, and F̂C ,M (x) =
∫ x

−∞ p̂M (u)du as the
approximate CDF. Then

lim
M→∞

F̂C ,M (x) = FC (x).

Proof Sketch. By combining the error bounds in Lemma 7 and Lemma 8 and
applying triangle inequality, we can show the end-to-end error is bounded by
|F̂C ,t(x) − FC (x)| ≤ 1

M ·ẑz (θμz + UμFC (x)), where θ = ‖x − a‖ is the distance
from x to a = [a1, a2, . . . , aN]. Recall C =

⊗N
i=1[ai, bi], so a is the lower bound

of C. Then θ, μ (Lipschitz constant of f), z (normalizing constant), U (volume
of C), and FC (x) are all constants regarding M , and ẑ → z > 0 as M → ∞.
Hence |F̂C ,t(x) − FC (x)| → 0 as M → ∞. 	�

We allow a user to provide a bounded domain C, or infer it with auto-
matically with a heuristic (Sect. 4). Although AQUA’s formal guarantee is in a
bounded domain, it can give runtime warnings when any prior or likelihood has
probability greater than a given threshold on the rest of the domain R

N −C. If
AQUA does not give any warning, the final error caused by truncating infinite
domain into C will be smaller than the threshold.

AQUA: Automated Quantized Inference for Probabilistic Programs 239

Algorithm 2. Posterior Interval Analysis with Adaptive Interval
1: procedure PosteriorAdaptiveAnalysis(Prog,M ,t0,tdist)
2: C ← GetInitBounds(Prog,t0) � C = [C1, C2, . . . , CN]
3: changed ← True
4: while changed do � Stop if C no longer changes
5: (p̂,Marginal) ← PosteriorAnalysis(Prog,M ,C) � Apply analysis on C
6: changed ← False
7: for xi ∈ SampledVars(Prog) do � Adapt Ci for each variable
8: p̂i(xi) ← Marginal[xi]
9: if ∃xi ∈ Ci, p̂i(xi) < tdist then

10: Ci ← [inf{xi|p̂i(xi) > tdist}, sup{xi|p̂i(xi) > tdist}]
11: changed ← True
12: end if
13: end for
14: end while
15: return (p̂, Marginal)
16: end procedure

4 AQUA Analysis Optimizations

Adaptive Intervals. To find the suitable bounded intervals C =
[C1, C2, . . . , CN] that cover most probability, we design a adaptive algorithm
(Algorithm 2) to adjust C the based on the result from last run. Algorithm 2
takes as inputs the program, the vector of number of intervals, and two thresh-
olds t0 and tdist for deciding the interval bounds C. Increasing Ci or increasing
the number of intervals in Ci will help reduce the approximation error.

The function GetInitBounds (Line 2) takes the prior distribution of each xi

as a rough estimate of the distribution to determine an initial interval split. If the
domain of the prior distribution is bounded in [ai, bi] where −∞ < ai < bi < ∞,
e.g. xi ∼ uniform(a, b), AQUA divides [ai, bi] into Mi equi-length intervals, each
with length (bi − ai)/Mi, where Mi is given in M by the user. If the distribu-
tion is not bounded, e.g. xi ∼ normal(0, 1), the user can specify a threshold t0
for AQUA to infer Cis such that values from the prior being out of Cis has
probability smaller than t0. Otherwise by default we set t0 = 4 · 10−32.

In each iteration, the algorithm applies the analysis on the current C (line 5)
and check if we need to adapt C. We adapt C when any variable xi has density
value p̂i(xi) being almost about 0 - smaller than the user provided threshold
tdist (e.g. 10−8) (line 8–10). We shrink Ci to focus on the smallest area with
density greater than a given threshold tdist. With the same number of intervals
Mi, the smaller Ci will produce thiner intervals and result in more accurate
results. Practically, this adaptive algorithm is as accurate but is much more
efficient than naively increasing the number of intervals Mi on the whole initial
domain Ci. Suppose the program takes A adaptive iterations, and it has N
variables and each variable has the same number of intervals M , Algorithm 2

240 Z. Huang et al.

has the time complexity O(A · N · MN) and the space complexity O(MN). In
our experiments, A is usually less than 5.

Improving Inference for Many Local Variables. In this optimization we
change the analysis of statements in Sect. 3 to marginalize the local variables as
soon as possible. Local variables are those defined and only used in local blocks
(e.g. in for-loop and if-then-else from Fig. 5).

By marginalizing out the local variables, we avoid repeatedly computing the
joint density on the unused variables. For example, in a robust model one may
naively calculate the joint density via f̂(x) =

∏D
i=1 d pdf(x,wi), where wis

are local variables defined in each loop body. This requires keeping a (D+1)-
dimensional density cube to capture all the variables x and wis. Instead, our opti-
mization divides the above product into calculating the individual d pdf(x,wi),
when wi leaves its scope, so we do not carry the current wi to the next iteration.
In each iteration we only operate on a 2-dimensional Density Cube for variables
x and a single wi. If out of N variables in the program D are local variables we
will have a time complexity O(N · MN−D) for Algorithm 1 (while the original
is O(N · MN)).

5 Methodology

We evaluate AQUA on 24 probabilistic programs collected from existing litera-
ture. We compare the execution time of AQUA on these programs with other
probabilistic programming languages: Stan [5], PSI [8], and SPPL [19]. We imple-
ment AQUA in Java using ND4J library for tensor computation, and run all
experiments on Intel Xeon 3.6 GHz machine with 6 cores and 32 GB RAM. For
numerical stability, we use log probability/density (instead of original probabil-
ity/density) for Density Cube.

Benchmarks. Table 2 presents the benchmarks obtained from the literature.
Column Description summarizes the task of each program. Column Distribu-
tions shows the distributions of observable and latent variables. For example,
the distributions in program “prior mix” are one Bernoulli (B), one Mixture of
two Normals (N+N), and 10 Student-T distributions (T 10). All posterior dis-
tributions are continuous. Column #D shows the number of data observations,
#N shows the number of random variables in the program.

Comparing Posterior Distributions. The Kolmogorov-Smirnov (KS) statis-
tic measures the distance between two probability distributions. We use the KS
statistic for the accuracy evaluation in the analysis. Let Ftruth and F̂ denote the
posterior distributions of the variable x from the original input data and the noisy
data respectively, the KS statistic is defined as KS = supx

∣
∣
∣Ftruth(x) − F̂ (x)

∣
∣
∣,

namely, the maximum difference in the cumulative distribution functions. The
KS statistic takes a value between 0 (most close distributions) and 1 (most
different distributions). Therefore, smaller KS statistic implies better accuracy.

AQUA: Automated Quantized Inference for Probabilistic Programs 241

Table 2. Program description and characteristics

Description Distributions #D#N

prior mix Mixture model [9] B × (N + N) × T10 10 1

zeroone Bayesian neural network [3] U2 × M20 20 2

tug Causal cognition model [10] U2 × (N + N)2 × B40 40 2

altermu Model with param symmetry [18] N3 × N40 40 3

altermu2 Model with param symmetry [18] U2 × N40 40 2

neural Bayesian neural network [17] U2 × (B × M)39 39 2

normal mixture Mixture model with mixing rate [21] N2 × Be × (B × (N + N))63 63 3

mix asym prior Mixture model with scale params [21] N2 × G2 × (B × (N + N))40 40 4

logistic Logistic regression [21] U2 × (B × M)100 100 2

logistic RW Reweighted logistic regression [21,24] U2 × Be100 × (B × M)100 100 102

anova Linear regression [21] U2 × N40 40 2

anova RP Localized linear regression [21,23] U2 × G40 × N40 40 42

anova RW Reweighted linear regression [21,24] U2 × Be40 × N40 40 42

lightspeed Linear regression [21] N × U × N66 66 2

lightspeed RP Localized linear regression [21,23] N × U × G66 × N66 66 68

lightspeed RW Reweighted linear regression [21,24] N × U × Be66 × N66 66 68

unemployment Linear regression [21] N2 × U × N40 40 3

unemployment RP Localized linear regression [21,23] N2 × U × G40 × N40 40 43

unemployment RWReweighted linear regression [21,24] N2 × U × Be40 × N40 40 43

timeseries Timeseries analysis [21] U3 × N39 39 3

gammaTransform Transformed param [19] G 0 3

GPA Hybrid continuous & discrete distr. [14]B × (B × (A + U) + B × (A + U))1 3

radar query1 Bayesian network in robotics [8] B × (A + B) × U × N × (Tr + Tr) 2 6

radar query2 Bayesian network in robotics [8] B × (A + B) × U2 × N × Tr 1 6

Distributions: A: Atomic, B: Bernoulli, Be: Beta, G: Gamma, M: Softmax, N: Normal, T: Student-T, Tr:

Triangular, U: Uniform. ‘+’ represents the mixture of two distributions, and ‘×’ represents the product

of the individual density functions in the joint probability density function.

Experimental Setup. We manually derived the ground truth posterior dis-
tributions for all the programs. We run AQUA with the adaptive algorithm
described in Sect. 4. We use the equal number of M = max{60, �40000(1/N)�}
intervals for each variable, where N is the number of sampled variables, so that
the total number intervals MN ≥ 40000. Rounding up the total number of inter-
vals to 40000 does not significantly affect time but will guarantee more accurate
results. We test Stan on its two major inference algorithms, NUTS (a variant
of MCMC) and ADVI (a variant of variational inference). For fair comparison,
we allow running VI/NUTS until it reaches the same accuracy level (in KS dis-
tance) as AQUA and report the average time, or until it reaches the maximum
iterations (fixed at 400000 for both VI and NUTS). We set the timeout to be
20 min for all the inference tools.

6 Evaluation

6.1 Runtime and Accuracy Comparison

Table 3 presents the runtime and accuracy comparison of AQUA with Stan, PSI,
and SPPL. Column Program shows the name of the probabilistic program.

242 Z. Huang et al.

Table 3. Runtime Comparison for AQUA, Stan, PSI, and SPPL. Stan column shows
time needed reach AQUA’s accuracy.

Program AQUA Stan VI Stan NUTS PSI SPPL
Time(s) Error Time(s) Error Time(s) Error Time (s) Time (s)

prior mix 4.77 0.02 0.53 0.31 5.67 0.19 inte �
zeroone 0.98 0.00 0.44 0.21 630.73 0.21 91.16 �
tug 0.83 0.01 1.20 0.25 519.94 0.06 inte �
altermu 1.35 0.00 0.96 0.31 29.46 0.03 inte �
altermu2 0.76 0.00 0.75 0.34 25.98 0.07 inte �
neural 0.85 0.01 0.82 0.03 5.10 0.01 t.o. �
normal mixture 1.19 0.02 1.02 0.12 25.67 0.04 t.o. �
mix asym prior 24.63 0.02 1.04 0.09 16.41 0.03 t.o. �
logistic 0.99 0.02 0.74 0.07 17.31 0.02 t.o. �
logistic RW 1.87 0.01 15.37 0.09 72.45 0.02 t.o. �
anova 0.90 0.01 0.75 0.07 6.72 0.02 inte �
anova RP 1.55 0.01 6.89 0.07 77.48 0.02 t.o. �
anova RW 1.40 0.01 6.93 0.06 24.67 0.02 t.o. �
lightspeed 0.74 0.00 0.71 0.04 3.56 0.00 inte �
lightspeed RP 1.37 0.01 6.18 0.06 61.37 0.02 t.o. �
lightspeed RW 1.09 0.02 6.19 0.05 61.37 0.05 t.o. �
unemployment 1.44 0.02 0.64 0.21 5.07 0.01 inte �
unemployment RP 42.34 0.01 6.78 0.25 12.46 0.01 t.o. �
unemployment RW 27.41 0.02 7.07 0.23 2.53 0.01 t.o. �
timeseries 1.55 0.01 0.87 0.23 12.66 0.01 inte �
gammaTransform 0.72 0.00 0.62 0.05 3.01 0.01 inte 1.30
GPA 0.46 0.02 � � � � 0.12 0.05
radar query1 0.87 0.01 � � � � inte �
radar query2 1.82 0.02 � � � � inte �
Avg 5.08 0.01 3.17 0.15 77.12 0.04 � �
Median 1.35 0.01 0.99 0.10 20.99 0.02 � �
[time] : VI or NUTS takes more time than AQUA, or AQUA take more time than VI and NUTS.
[error] Has the error (in terms of a KS distance) larger than 0.01 from the best solution.

“�”: the PPL cannot work on the program. “t.o.”: timeout, “inte”: evaluates to unsolved integrals.

Columns Time (s) show the execution time (in seconds) of each tool, averaged
across 5 runs. We report the total time for computing joint density and marginals
for all sampled variables. Columns Error show the error (KS distance, Sect. 5)
of each tool vs. the ground truth when run for the same time, averaged across 5
runs.

Overall, AQUA (Column 2–3) solves the probabilistic programs with average
time 5.08 s, median time 1.35 s. For 20 out of 24 programs, it takes less than two
seconds to compute the results. AQUA results in average error 0.01, median error
0.01, and maximum error 0.02. With our optimization on local variables (Sect. 4),
we are able to handle the 7 robust programs which have 42–102 variables, which
might timeout with a naive approach.

Stan VI (Column 4–5) finishes fast but results in significantly larger error
than AQUA or Stan NUTS. The average error from VI is 0.15, minimum error
is 0.03 and maximum error is 0.34. For all cases, VI cannot reach the same
accuracy level as AQUA. While VI often fits the posterior means correctly but

AQUA: Automated Quantized Inference for Probabilistic Programs 243

Fig. 6. Programs handled by AQUA for which Stan NUTS is imprecise.

it is not able to capture the joint distribution shape especially when it is non-
Gaussian (it is a well known characteristic of VI). Stan NUTS (Column 6–7)
takes more time than AQUA to reach the same level of accuracy of AQUA,
although in theory NUTS will converge to the true distribution with enough
iterations. AQUA provides the similar (with difference <0.01) or even better
accuracy (with smaller KS distance) in all cases for NUTS and NUTS fails to
reach the same accuracy level by the maximum number of iterations in 12 cases.

PSI (Column 8) and SPPL (Column 9) are not able to give result in many
cases. PSI does not finish running within 20 min in 11 cases, or evaluates to
unsolved integrals in 11 cases, since the exact integration in posterior calcula-
tion is often intractable. SPPL does not allow transformed variables in factor
statements, which is essential to specify the likelihood of the variables given
observed data, and thus is inapplicable to most of the programs.

Figure 6 presents the posterior densities from six programs where Stan NUTS
was not able to reach the same accuracy level of AQUA, within maximum iter-
ations. X-axis shows the value of a variable in the program, Y-axis shows the
posterior probability density of the variable. A solid blue line shows the ground
truth, a dashed red line shows the density function computed from AQUA, the
gray histogram shows the density estimated with samples from Stan NUTS after
running for the same time as AQUA. For each program we present the poste-
rior from one variable (the first one in alphabetical order); the posteriors from
other variables show a similar pattern. These examples show that AQUA is able
to closely track the density of mixture models with large difference in densities
(prior mix), non-differentiable distributions (zeroone and tug), models with
variable symmetries (in altermu and altermu2 such symmetries can cause
non-identifiability of variables from data), and some robust models with strong
correlation between variables that can form complicated posterior geometries
(anova RP).

244 Z. Huang et al.

Fig. 7. Capturing tails by AQUA and Stan NUTS

6.2 Estimating the Tails of Posterior Distribution

We illustrate AQUA’s ability to capture tails on several robust models. The dis-
tribution for robust models are often more spread-out than the original model, as
they are designed to capture outliers in the data. We consider two different robust
models: (1) Reparameterized-Localization (RP) [23], which assumes that each
data point is from its distribution with a local variance variable; (2) Reweight-
ing (RW) [24], which down-weights potential outliers in the data. We show the
results from AQUA and NUTS running for the same amount of time, together
with the ground truth. We omit VI since its accuracy is significantly worse.

Figure 7 presents the comparison of AQUA and NUTS. Plots (a),(e) are the
full posterior distributions of original distribution. We highlight the left tail
[μ − 4σ, μ − 2σ], where μ is the posterior mean of and σ its standard deviation.
Plots (b),(f) show the magnified tails from original distribution, plots (c),(g)
show the tails from the RP transformation, and (d),(h) show the tails from RW
transformation. AQUA is able to capture the tails precisely for both original and
robust models, while Stan NUTS is less precise on the robust models (e.g., its
KS metric is 0.05 compared to AQUA’s 0.02).

7 Related Work

Symbolic Inference. Researchers have proposed several symbolic inference
techniques in recent years [8,12,16,19]. Each of these techniques have limita-
tions which AQUA improves upon. DICE [12] only supports discrete distribu-
tions. Hakaru [16] and PSI [8], which do exact inference using computer algebra,
often cannot solve integrals for complicated probabilistic programs with contin-
uous distributions (as our evaluation also shows for PSI). SPPL [19] does not
allow users to specify the likelihood on transformed variables with continuous
distributions. QCoral [4] and SYMPAIS [15] combine symbolic execution with
sampling to solve the satisfaction probability of constraints, but they do not

AQUA: Automated Quantized Inference for Probabilistic Programs 245

output the whole posterior. In contrast, AQUA supports a wide range of proba-
bilistic models with continuous distribution, involving transformed or correlated
random variables, and provides scalable, exact (or near exact), and interpretable
solutions.

Volume Computation. Several works use volume computation methods
to make a precise approximation of probabilistic inference [2,20,22]. These
approaches have constraints on the form of programs they support, regarding
conditioning and continuous distributions. For instance, Sweet et al. [22] support
only discrete and FairSquare [2] approximates Gaussians with only five intervals;
FairSquare [2] and Sankaranarayanan et al. [20] compute only the probability of
an event, not the entire posterior. None of these systems can support condition-
ing on continuous variables, and thus we have not used them in our evaluation.

8 Conclusion

AQUA is a new inference algorithm which works on general, real-world proba-
bilistic programs with continuous distributions. By using quantization with sym-
bolic inference, AQUA solved all benchmarks in less than 43 s (median 1.35 s).
Our evaluation shows that AQUA is more accurate than approximate algorithms
and supports programs that are out of reach of state-of-the-art exact inference
tools.

Acknowledgements. This research was supported in part by NSF Grants No. CCF-
1846354, CCF-1956374, CCF-2008883, and Facebook PhD Fellowship.

References

1. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J.P., Matheja, C.: A
pre-expectation calculus for probabilistic sensitivity. POPL (2021)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairsquare: probabilistic ver-
ification of program fairness. OOPSLA (2017)

3. Bissiri, P., Holmes, C., Walker, S.: A general framework for updating belief distri-
butions. J. R. Stat. Soc. Ser. B Stat. Methodol. 78(5), 1103 (2016)

4. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional
solution space quantification for probabilistic software analysis. PLDI (2014)

5. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., et al.: Stan: a probabilistic
programming language. JSTATSOFT 20(2) (2016)

6. Dutta, S., Legunsen, O., Huang, Z., Misailovic, S.: Testing probabilistic program-
ming systems. In: FSE (2018)

7. Dutta, S., Zhang, W., Huang, Z., Misailovic, S.: Storm: program reduction for
testing and debugging probabilistic programming systems. In: FSE (2019)

8. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 4

9. Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B.:
Bayesian Data Analysis. Chapman and Hall/CRC (2013)

https://doi.org/10.1007/978-3-319-41528-4_4

246 Z. Huang et al.

10. Goodman, N., Tenenbaum, J.: Probabilistic Models of Cognition. http://
probmods.org/

11. Gorinova, M.I., Gordon, A.D., Sutton, C.: Probabilistic programming with densi-
ties in SlicStan: efficient, flexible, and deterministic. POPL (2019)

12. Holtzen, S., Van den Broeck, G., Millstein, T.: Scaling exact inference for discrete
probabilistic programs. OOPSLA (2020)

13. Huang, Z., Wang, Z., Misailovic, S.: PSense: automatic sensitivity analysis for
probabilistic programs. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 387–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 23

14. Laurel, J., Misailovic, S.: Continualization of probabilistic programs with correc-
tion. ESOP (2020)

15. Luo, Y., Filieri, A., Zhou, Y.: SYMPAIS: symbolic parallel adaptive impor-
tance sampling for probabilistic program analysis. arXiv preprint arXiv:2010.05050
(2020)

16. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 5

17. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (2012)
18. Nishihara, R., Minka, T., Tarlow, D.: Detecting parameter symmetries in proba-

bilistic models. arXiv preprint arXiv:1312.5386 (2013)
19. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: a probabilistic programming

system with exact and scalable symbolic inference. PLDI (2021)
20. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic

programs: Inferring whole program properties from finitely many paths. PLDI
(2013)

21. (2018). https://github.com/stan-dev/example-models
22. Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: What’s the over/under?

probabilistic bounds on information leakage. POST (2018)
23. Wang, C., Blei, D.M.: A general method for robust Bayesian modeling. Bayesian

Anal. 13(4), 1159–1187 (2018)
24. Wang, Y., Kucukelbir, A., Blei, D.M.: Robust probabilistic modeling with Bayesian

data reweighting. ICML (2017)

http://probmods.org/
http://probmods.org/
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-030-01090-4_23
http://arxiv.org/abs/2010.05050
https://doi.org/10.1007/978-3-319-29604-3_5
http://arxiv.org/abs/1312.5386
https://github.com/stan-dev/example-models

Software and Hardware Verification

Proving SIFA Protection of Masked
Redundant Circuits

Vedad Hadžić(B), Robert Primas, and Roderick Bloem

Graz University of Technology, Graz, Austria
{vedad.hadzic,robert.primas,roderick.bloem}@iaik.tugraz.at

https://www.iaik.tugraz.at/

Abstract. Implementation attacks like side-channel and fault attacks
pose a considerable threat to cryptographic devices that are physically
accessible by an attacker. As a consequence, devices like smart cards
implement corresponding countermeasures like redundant computation
and masking. Recently, statistically ineffective fault attacks (SIFA) were
shown to be able to circumvent these classical countermeasure tech-
niques. We present a new approach for verifying the SIFA protection
of arbitrary masked implementations in both hardware and software.
The proposed method uses Boolean dependency analysis, factorization,
and known properties of masked computations to show whether the fault
detection mechanism of redundant masked circuits can leak information
about the processed secret values. We implemented this new method in a
tool called Danira, which can show the SIFA resistance of cryptographic
implementations like AES S-Boxes within minutes.

1 Introduction

Cryptographic primitives are primarily designed to withstand mathematical
attacks in a black-box setting. However, when these primitives are deployed
in the real world, they find themselves in a grey-box setting in which an attacker
may try to force faulty computations or observe additional physical side-channel
information, such as instantaneous power consumption. This improved attacker
capability simplifies the extraction of secrets like cryptographic keys.

Active implementation attacks, such as fault analysis [7,9], and passive side-
channel attacks, like power or electromagnetic (EM) analysis [26,27], are among
the most serious threats for implementations of cryptographic algorithms. A
common algorithmic countermeasure strategy against these attacks is the com-
bination of masking against power analysis with redundant computation against
fault attacks. Masking is a secret-sharing technique where one splits a crypto-
graphic computation into d + 1 random shares. This technique ensures that the

This work was supported by the Austrian Research Promotion Agency (FFG) via the
FERMION project (grant number 867542, ICT of the Future), and the K-project
DeSSnet (funded in the context of COMET). We refer to the online appendix [22] for
the formal proofs of the presented lemmas and theorems.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 249–265, 2021.
https://doi.org/10.1007/978-3-030-88885-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_17

250 V. Hadžić et al.

observation of up to d intermediate values of that masked computation does not
reveal any information about native (unmasked) values [6,15,20,21,24]. Redun-
dant computation tries to prevent the release of faulty cryptographic computa-
tions caused by environmental influences or malicious tampering such as voltage
glitches, lasers, or rapid temperature variations. Without this countermeasure,
an attacker with access to faulty computations can learn information about the
used cryptographic key in many different ways [3,16,23].

Researchers long believed that the combination of redundancy and masking
could adequately deal with active and passive implementation attacks. However,
it was recently shown that when using statistical ineffective fault attacks (SIFA),
even such protected cryptographic implementations are vulnerable to rather
straightforward implementation attacks [12–14]. The key observation behind
SIFA attacks is that a cryptographic key may correlate with the suppression
of a faulted cryptographic computation. Thus, the attacker can obtain informa-
tion about this key by observing whether the output of a faulted cryptographic
computation is suppressed by a redundancy countermeasure or not.

For example, if a 1-bit signal carries a secret value, and the attacker can
force this signal to zero, they can learn the secret value by observing whether
or not this fault is detected. While this simplified example is obvious, SIFA is
interesting because it works even if the fault injection targets just one share of
a masked secret. In fact, SIFA is exploitable even if the attacker does not know
the exact effect of a fault injection on the faulted value [12].

Most proposed mitigation techniques against SIFA so far use error correc-
tion, which is however costly when combined with masking [11,29]. Another
recently proposed SIFA mitigation tries to solve this issue with a careful com-
bination of redundancy, masking, and reversible computing [10], achieving pro-
tection against SIFA without significant overheads. The authors give detailed
circuit descriptions of protected cipher components that can be mapped into
concrete software or hardware implementations. However, even minor modifica-
tions of the circuit description due to human error, compilers, or synthesis tools,
although preserving functional equivalence, may make the circuit vulnerable to
SIFA. Consequently, there is a high demand for tooling that can support design-
ers in building efficient cryptographic implementations resistant against power
analysis and fault attacks, including SIFA.

1.1 Related Work

The empirical and formal verification of power analysis and fault attack coun-
termeasures is an already well established topic in the cryptographic research
community [1,4,8,17–19,25]. On a conceptual level, the verification of masking
countermeasures—ensuring that individual computations are unrelated to any
cryptographic secret—does perform statistical independence checks that could
also be adapted for verifying SIFA protection, i.e., that cryptographic secrets
do not correlate with the suppression of a faulted cryptographic computation.
However, in the following we argue that such existing tools either cannot be

Proving SIFA Protection of Masked Redundant Circuits 251

easily adapted for SIFA verification, or would come with performance overheads
that make them unattractive for practical use.

Tools like Rebecca [8] and its successor Coco [19] use correlation track-
ing to show statistical independence in (sequential) masked hardware circuits.
Although their method ignores the strength and sign of correlations for per-
formance reasons, the remaining information is still sufficient to show standard
probing resistance of masked circuits. However, these approximations are not
applicable for SIFA verification. Since Rebecca and Coco do not track the
sign of correlations, there is no way to distinguish the correlation sets of a
negated value from a non-negated value. Due to the nature of bit-flip faults, this
method leads to falsely reported leaks due to the structure of the fault-detection
mechanism. Similarly, tools like maskVerif [4] rely on security proofs for a gate’s
input signals to prove the gate’s security. According to our investigation, since
the fault-detection mechanism combines the shares in its sub-formulas, a leakage
report is triggered even though the value cannot be observed.

Exact methods like SILVER [25] use some form of model counting to
track exact probability distributions of values within masked circuits and check
whether the correlation strength is zero for all secret values. These methods
could be adopted for SIFA verification, e.g., by using a strategy as outlined in
Fig. 1 but will lead to verification runtimes significantly higher compared to the
approach that we will present in this paper.

Besides masking verification tools, there also exists VerFI [2], a verification
tool dedicated to fault attacks that, amongst others, does have the capability
to verify SIFA protection of a given circuit in certain scenarios. More precisely,
VerFI can detect SIFA vulnerability of a given circuits using an empirical and
simulation-based approach that essentially checks if either (1) all fault injections
are being corrected through error correction methods, or (2) all fault injections
are being detected via redundancy methods. This empirical approach can be
used for error-correction-based SIFA countermeasures, however, VerFI is not
suited for the verification of, e.g., the more efficient SIFA countermeasure design
by Daemen et al. [10] that does not need be able to correct any possible fault
injection.

1.2 Contribution

The contribution of this paper is threefold and consists of a method and its
implementation, its evaluation, and resulting SIFA-resistant circuit artifacts.

Method. We present a formal verification approach to determine whether a
masked redundant cipher implementation is SIFA resistant within a well-defined
attacker model. Our verification approach checks whether the output of the
fault-detection mechanism correlates with secrets used in the computation. We
present three properties and their respective checking methods that serve as
sufficient conditions for SIFA protection. (Incompleteness): If a function δ does
not functionally depend on all shares of a secret s, it cannot leak the secret.
(Hiding): If a function δ can be written as m ⊕ δ′, where m is a uniformly

252 V. Hadžić et al.

distributed random variable and δ′ is functionally independent of m, δ does
not leak information about any secrets. (Inferred independence): For a function
δ =

∨
i δi, if all linear combinations of its partial functions δi are statistically

independent of a secret s, δ cannot leak the secret s. We present an algorithm
that uses these sufficient but not necessary conditions to prove the security of
circuits. Our tool Danira implements this algorithm and is, to our knowledge, the
first tool for formal verification of SIFA resistance of masked redundant circuits.

Evaluation. We provide an experimental evaluation of our method. Because the
sufficient conditions may not be able to prove SIFA resistance, we show in our
experimental section that the approach gives precise results for a representative
range of secure circuits. If Danira cannot prove resistance, it provides fault
locations that might leak information about the secrets. We show that Danira
can accurately prove security or find bugs in S-Boxes, the non-linear parts of
cryptographic implementations, in minutes or even seconds. With respect to
SIFA verification, masked linear layers do not need any further analysis as fault
injections in these components are not exploitable with SIFA. Ultimately, we
give practical examples illustrating that, even when a design is secure against
SIFA on paper, vulnerabilities may arise as a result of simple compiler/synthesis
optimizations, which can then however be identified with Danira.

Artifacts. As a direct result of this work, we present the first SIFA-resistant
Verilog implementations of Daemen et al. [10] designs for a masked AES S-Box,
the Keccak χ3 S-Box, and all classes of quadratic 4-bit S-Boxes.

2 Preliminaries

Masking is an algorithmic countermeasure that, while primarily intended to
prevent power analysis attacks, also plays an essential role in SIFA attacks. In
a masked cipher implementation, each input, output, and intermediate variable
is split into d + 1 shares so that their Xor is equal to the original native vari-
able [24]. In Boolean masking, a native variable s is split random shares s0 . . . sd

that satisfy s = s0 ⊕ . . . ⊕ sd. As long as an attacker cannot observe a set of
values statistically dependent on all d + 1 shares of a native value, the compu-
tation is secure against classical power analysis techniques. Dealing with linear
functions is trivial as they can be computed on each share individually. However,
implementing masking for non-linear functions (S-Boxes) requires computations
on all shares, which is more challenging to implement securely and correctly, and
thus the main interest in the literature.

Redundant computation is an implementation-level fault attack counter-
measure for cryptographic computations. The main idea is to perform the same
computation several times and release a result only if the redundant computa-
tions match. This check prevents cases where an attacker forces faults in the
computation, leading to incorrect results that correlate with native secrets [3].
Figure 1 shows the structure of a fault detection mechanism for redundant com-
putations. If an attacker introduces a fault and the outputs do not match, output
δ signals the faults and prevents the release of the result.

Proving SIFA Protection of Masked Redundant Circuits 253

Fig. 1. A redundant computation with inputs x0, . . . , xm, which are passed to both
computation instances F 0 and F 1. The disjunction of differences δ0, . . . , δn is used to
determine whether there was a fault in one of the computation instances.

Statistical ineffective fault attacks (SIFA), first presented at CHES
2018 by Dobraunig et al., is a relatively new type of fault attack technique
capable of circumventing common fault/power analysis countermeasures, while
being applicable to a wide variety of block ciphers or AEAD schemes [12–14,28].
When performing SIFA, an attacker calls a cryptographic operation (e.g. block
cipher) with varying inputs, injects a fault during each of the computations, and
only collects outputs in cases where the fault injection did not cause a faulty
computation result (i.e. the output is not suppressed). This filtered set of outputs
can then be used to perform a key recovery attack on a block cipher as follows.

A typical block cipher design of an iterated round function, consisting of a lin-
ear and non-linear layer, that mixes the current state with the cryptographic key
such that in the end, each bit of the block cipher output is uniformly distributed.
If we now consider, e.g., an AND computation that occurs in the non-linear layer
of a (later) round function, one can observe that a fault-induced difference in
one operand only propagates to the AND output if the other operand is ‘1’.
Hence, if an attacker repeatedly calls a block cipher with varying inputs, while
injecting the same difference in each computation, and only collecting outputs
that are correct (not suppressed), a certain intermediate value should show a
bias towards ‘0’. Given such a set of faulted but correct block cipher outputs, an
attacker can now make a partial key guess of the last round key and calculate
back to the faulted operation for each collected output (ciphertext). If the partial
key guess was correct, the observed distribution of an intermediate value at that
location should be biased. Otherwise, if the observed distribution is uniform,
the key guess was wrong. For a more complete attack description targeting the
AES-128 block cipher we refer to the description in [12].

254 V. Hadžić et al.

Fig. 2. Simplified example of SIFA against masked χ3 using two shares. The induced
difference cancels out, and the attacker learns b0 ∨ b1 ∨ c1.

If we now additionally consider masked implementations where each inter-
mediate value is split into multiple random shares, filtering outputs based on the
operand of one AND gate is not sufficient anymore. In fact, for SIFA to work in
masked scenarios, the attacker needs to work with fault inductions that cause a
difference that propagates into multiple AND gates that use the shares of one
native value as other operands. We show this with a small example inspired by
Daemen et al. [10].

Example 1. Consider a masked S-Box implementation that operates on shared
inputs and outputs. For simplicity, assume that we repeatedly call this S-Box
with uniformly distributed inputs and observe the corresponding outputs. Since
an S-Box is a bijective function, uniformly distributed inputs should give uni-
formly distributed outputs. Figure 2 shows a reduced depiction of a masked χ3

S-Box, the smaller version of χ5, which is used in Keccak (SHA-3). The S-
Box takes a 3-bit input, represented by bits a, b and c. Therefore a first-order
masked version of χ3 takes the bits a0, a1, b0, b1, c0, c1 as input, with a = a0⊕a1,
etc. If we assume a fault targeting a0 at the specified location, the induced bit-
difference propagates into three And-gates that take the bits b0, b1, and c1 as
the other inputs. In this case, the bit-difference cancels out and produces a value
δ = b0 ∨ b1 ∨ c1. When a fault is not detected, an attacker knows that b0, b1, and
c1 are all zero, and therefore, b is zero as well. In this concrete case, the attacker
uses a fault injection to filter out computations where the distribution of b is
biased, and uses them to recover the key

Efficient SIFA countermeasures were presented at CHES 2020 [10].
Their SIFA mitigation strategy has almost no overhead and builds upon a care-
ful combination of masking, redundant computation, and reversible computing.
They show that, by building non-linear operations from incomplete and invert-
ible building blocks, they achieve implementations where a single fault in the
computation is either (1) not exploitable by SIFA, or (2) detectable via redun-
dant computations. This approach is comparably easy to implement for small
S-Boxes and can also be extended to larger S-Boxes such as the AES S-Box.

Boolean formulas are a symbolic composition of Boolean variables using
logic operators. For a propositional boolean formula f , we write Var(f) to refer
to the variables that occur in f . When clear from context, we write V to denote

Proving SIFA Protection of Masked Redundant Circuits 255

a superset of all used variables, i.e., Var(f) ⊆ V . The partial evaluation of f ,
where a variable q is assigned a value p ∈ B is written as f [q ← p]. Given a set
of variables Q and an assignment α : Q → B, we write f [α] to denote the partial
evaluation of f where each variable in Q is assigned according to α.

We say that a formula f is functionally dependent on a variable x if and only
if the concrete value of x ∈ B has an influence on the value of f ∈ B. Henceforth,
for a given formula f , we write D(f) ⊆ Var(f) to denote the set of variables
that f functionally depends on. That is, x ∈ D(f) if and only if there exists
α : Var(f) \ {x} → B, such that f [α] [x ← ⊥] ⊕ f [α] [x ←] = 	. The above
property can be checked by a SAT solver.

To discuss information leakage caused by a fault, we first define what it
means for a formula f to contain information about another formula g. We
define the weight of a Boolean function as #V (f) = |{α : V → B | f [α] = 	}|.
Formulas f and g are statistically dependent if and only if #V (f ∧g) ·#V (¬f) �=
#V (¬f ∧g)·#V (f). That is, regardless of the observed value of f , the proportion
of assignments α for which g [α] = 	 is constant.

Example 2. Let V = {a, b, c} be a set of variables. Let f = a ∧ b, g = ¬a ∨ c,
and h = b⊕c be Boolean formulas. Formulas f and g are statistically dependent
because #V (f ∧ g) · #V (¬f) = 6 and #V (¬f ∧ g) · #V (f) = 10. Indeed, if
f [α] = 	, then probably g [α] = ⊥, whereas if f [α] = ⊥, then g [α] = 	 is
just as likely as g [α] = ⊥. The formulas f and h are statistically independent
because #V (f ∧ h) · #V (¬f) = 6 and #V (¬f ∧ h) · #V (f) = 6.

We say that a Boolean formula f is balanced if and only if #V (f) =
#V (¬f) = 2|V |−1. A Boolean variable x, interpreted as a formula, is inherently
balanced for any variable set x ∈ V as there are 2|V |−1 assignments α : V → B

with α(x) = 	. Lemma 1 states that this can be extended to functions of the
form f = x ⊕ g.

Lemma 1. Let f = x ⊕ g be a Boolean formula with x /∈ Var(g). We have that
f is balanced.

We measure the Boolean distance of two formulas f and g as the number of
assignments where their values are different. This is equivalent to the weight of
their difference #V (f ⊕ g). Lemma 2 states the connection between statistical
independence and Boolean distance.

Lemma 2. Let f and g be Boolean formulas and let f be balanced. Formulas f
and g are statistically independent if and only if their difference is balanced.

3 Verification Method

In this section, we introduce a method for verifying resistance against SIFA.
That is, we show how to verify whether the fault-detection mechanism could
give away information about native secrets processed by a software computation
or hardware circuit. Our method focuses on proving the statistical independence

256 V. Hadžić et al.

of the fault-detection value δ and any of the secrets s ∈ S. We do not show this
directly and instead try to prove the statistical independence using the incom-
pleteness, hiding, and inferred statistical independence properties we introduce
in this section. However, we first define the exact attack model considered in this
verification approach.

3.1 Attack Model

Formally proving resistance against SIFA requires a definition of the attacker’s
capabilities and the exact information they observe. We use an attack model that
is very similar to the one introduced by Daemen et al. [10]. We consider redun-
dant masked implementations of S-Boxes that the attacker can query. Figure 1
shows a diagram of such an implementation, where the outputs of the two com-
putation units are used to compute the fault-detection value δ. With SIFA, the
value of δ is the only information the attacker receives from the computation.
The goal of an attacker is to learn information about the native secret values
processed by the computation. The inputs of the computation are categorized
as masks and secret shares. In the rest of the section, we say that M is the
set of mask variables, and S is the set of formulas representing the secrets. We,
therefore, have the set of input variables V = M ∪ ⋃

s∈S Var(s).
As SIFA is a fault attack, the attacker has the technical capabilities to intro-

duce the fault that changes the value of an intermediate computation. If we
represent δ as a computational circuit, a fault modifies the output of precisely
one logic gate used during the computation. In our attack model, we consider
faults that can negate the value of the gate by causing a bit-flip, which also cap-
tures many other fault models such as stuck-at faults for masked circuits [10].
The attacker’s goal is to find a fault location that would cause a statistical
dependency between δ and one of the formulas s ∈ S. Our verification does not
currently take into account the possible effects of “glitchy” fault injections, i.e.,
faults with specific timing behavior that causes the output of gates to change
(glitch) several times before reaching a stable logic state While it has been shown
that such effects need to be taken into account for implementing masking cor-
rectly in hardware, it is currently not clear if, or to what extend, they are relevant
for SIFA attacks in realistic attacker settings.

Proposition 1. A computation with a fault-detection value δ is SIFA resistant
against a fault-inducing attacker if δ is statistically independent of all native
secrets s ∈ S.

3.2 Incompleteness

First, we prove that a fault-detection formula δ that does not functionally depend
on all shares of a secret s, cannot be statistically dependent on s. A syntactic
version of this property is known as non-interference in the literature [4,5]. Intu-
itively, if one of the shares is absent from the formula δ, then an attacker cannot
infer anything about s without this missing piece of information. Definition 1

Proving SIFA Protection of Masked Redundant Circuits 257

formally states this intuition of incomplete secrets. Lemma 3 states that incom-
pleteness is sufficient for statistical independence.

Definition 1. Let f be a formula, and s be a secret represented by the formula
s0⊕. . .⊕sd, where the shares si are variables. We say that a secret s is incomplete
in formula f whenever D(s) �⊆ D(f).

Lemma 3. Let secret s = s0 ⊕ . . . ⊕ sd be incomplete in the fault-detection
formula δ. Then δ and s are statistically independent.

3.3 Hiding

Assume that the formula δ is functionally dependent on all shares of a secret
s = s0 ⊕ . . . ⊕ sd, i.e., D(s) ⊆ D(δ). Incompleteness, as defined in Definition 1,
is thus not fulfilled. However, δ and s could still be statistically independent.
Intuitively, if δ is balanced and masked by some uniformly random value, it
cannot statistically correlate with any secret s ∈ S.

Definition 2. A uniformly random variable x hides a secret s ∈ S in the error-
detection formula δ whenever δ = x ⊕ f , with x /∈ D(s) ∪ D(f).

Not all variables can hide secrets. Masks hide secrets because they are uni-
formly random by definition. Although individual shares si of a secret s ∈ S are
guaranteed to be uniformly random, their corresponding native secrets are not.
Consequently, when investigating the hiding property from Definition 2, we only
consider masks and shares of incomplete secrets in δ, as stated in Lemma 4.

Lemma 4. Let δ be a formula, S′ be the set of secrets that are incomplete in δ,
i.e., S′ = {s ∈ S | D(s)∩D(δ) �= ∅}, M be the uniformly random mask variables,
and X be the union X = M ∪ ⋃

s∈S′ D(s). If there exists an x ∈ X that hides a
secret s ∈ S, then δ and s are statistically independent.

Lemma 5 presents a method that tests whether the factorization needed for
the hiding property is possible. The method uses a SAT solver and is similar to
the method that checks functional dependencies.

Lemma 5. Let f be a Boolean formula and x ∈ Var(f) be a variable. Then
f = x ⊕ f [x ← ⊥] if and only if f [x ← ⊥] ⊕ f [x ←] = 	.

It is enough to find one uniformly random variable x to show that δ is sta-
tistically independent of all secrets s ∈ S. As discussed earlier, not all variables
in Var(δ) are eligible for the hiding property. Thus, our verification method only
checks the hiding property after determining incomplete secrets first.

258 V. Hadžić et al.

3.4 Inferred Statistical Independence

Although incompleteness and hiding are enough in most cases, the structure
of δ can make them inapplicable. Therefore, it is possible that δ functionally
depends on some secret s, and no uniformly random value hides s in δ. Example 3
illustrates this situation.

Example 3. Let δ be the fault-detection formula with δ = δ0∨δ1, δ0 = x⊕s0 and
δ1 = y ⊕ s1 be its sub-formulas, M = {x, y} be the masks, and s = s0 ⊕ s1 be a
secret. Formula δ is functionally dependent on both s0 and s1, since there are no
assignments α : Var(δ) \ {si} → B such that δ[α] [si ← ⊥] ⊕ δ[α] [si ←] = 	.
Similarly, δ cannot be factorized into either δ = x⊕δ [x ← ⊥] or δ = y⊕δ [y ← ⊥],
so neither x nor y hide s. However δ is indeed statistically independent of s
because #Var(δ)(δ ∧ s) · #Var(δ)(¬δ) = #Var(δ)(¬δ ∧ s) · #Var(δ)(δ) = 24.

Therefore, because of the structure of the fault-detection formula δ, there is
a real possibility that the incompleteness and hiding checks are not sufficient
to show that δ does not statistically depend on any secrets. However, this can
be mitigated by inferring whether δ is statistically independent of s by looking
at its sub-formulas δi instead. Lemma 6 introduces a method for inferring the
statistical independence of two Boolean formulas f and g, where one has the
topmost operation Or, just like δ, and the other is a balanced function, just like a
secret. This property is inspired by correlation propagation used in Rebecca [8].

Lemma 6. Let f = a ∨ b and g be Boolean formulas with the variable sets
Var(f) ⊆ V and Var(g) ⊆ V . If ⊥, a, b, and a ⊕ b are statistically independent
of g, then f is also statistically independent of g.

Therefore, at least in the case where δ = δ0 ∨ δ1, we can infer that δ is
statistically independent of a secret s, as long as δ0, δ1, and s fulfill the conditions
of Lemma 6. Example 4 illustrates this.

Example 4. Let δ, δ0, δ1 and s be as in Example 3. By Lemma 1, s is balanced.
The hiding property applies for δ0, δ1 and δ0 ⊕ δ1, where x, y, and x ⊕ y can be
factorized out respectively. According to Lemma 2, all of the prerequisites for
Lemma 6 are met, so we are able to show that δ is indeed statistically indepen-
dent of s, without testing the statistical independence definition explicitly.

However, in general, δ will be a formula of the form δ =
∨n

i=1 δi. Although
it is possible to apply Lemma 6 recursively, it is not ideal because we run into
the same problem we demonstrated in Example 3, just one recursive applica-
tion later. Luckily, Lemma 6 can be generalized to Or operations with multiple
arguments, as shown in Theorem 1.

Theorem 1. Let Φ = {φ1, . . . , φn} be a set of Boolean formulas, f =
∨n

i=1 φi be
their disjunction, g be another Boolean formula, and Var(f) ⊆ V and Var(g) ⊆ V
be their variables. If for all Ψ ∈ P(Φ), where P(·) is the power-set operation,
f ′ =

⊕
ψ∈Ψ ψ is statistically independent of g, then so is f .

Proving SIFA Protection of Masked Redundant Circuits 259

Theorem 1 suggests that if we prove that all linear combinations of the error
lines δi are statistically independent of a secret s, then we have indirectly shown
that their disjunction δ is also statistically independent of s. Additionally, the
condition of Theorem 1 can be further simplified because some of the linear
combinations produced by X ∈ P(Φ) could be equivalent. Instead of considering
Φ, we could instead consider the maximal linearly independent subset of Φ.

Lemma 7. Let Φ and g be as in Theorem 1. Let Φ′ ⊆ Φ be a linearly independent
subset of Φ, i.e., ∀φ ∈ Φ′. ∀Ψ ⊆ Φ′ \ {φ}. φ �= ⊕

ψ∈Ψ ψ, and let Φ′ be maximal,
i.e., ∀φ ∈ Φ\Φ′. ∃Ψ ⊆ Φ′. φ =

⊕
ψ∈Ψ ψ. If for all Ψ ⊆ Φ′,

⊕
ψ∈Ψ ψ is statistically

independent of g, then the same holds for all Ψ ⊆ Φ.

As stated in Lemma 7, instead of considering all linear combinations in Φ, it
is sufficient to consider only linear combinations of its maximally linearly inde-
pendent subset Φ′ when applying Theorem 1. In many cases, this substantially
reduces the number of checks our verification method performed.

3.5 Approximating Statistical Independence

Theorem 1, together with the optimized condition from Lemma 7, is powerful
enough to show that, given the mentioned conditions for δi, δ is statistically
independent of a secret s. The statistical independence of the linear combinations
of δi can be shown using the incompleteness and hiding properties discussed
in Sects. 3.2 and 3.3. However, issuing exponentially many satisfiability queries
required by Theorem 1 is still undesirable. Therefore, we introduce an over-
approximation which only calls the SAT solver to perform factorization and
functional dependency tests for each relevant δi with all variables in Var(δi). We
then use the gathered data to over-approximate the incompleteness and hiding
properties for all linear combinations of δi.

In general a Boolean formula f can be rewritten as an equivalent formula
f = g⊕h. Here g =

⊕
x∈X x is the linear sub-formula where X ⊆ Var(f) is a set

of variable symbols for which Lemma 5 applies, i.e., f [x ← ⊥]⊕ f [x ←] = 	.
Consequently, h is the remaining sub-formula of f , i.e., h = f [α] where α :
X �→ ⊥ assigns ⊥ to all variables in X. Henceforth, we write C(f) to denote
the maximal set of variables that can be factorized out of f via Lemma 5,
i.e., C(f) = {x | x ∈ Var(f), f [x ← ⊥] ⊕ f [x ←] = 	}. Furthermore, call f =
f lin ⊕ fnl the maximal factorization, where f lin =

⊕
x∈C(f) x, fnl = f [α] and

α : C(f) �→ ⊥. Knowing both C(f) and D(f) allows us to perform easy hiding and
incompleteness checks for f against some linear formula f ′. Additionally, C(·) and
D(·) allow us to approximate the maximal factorization for linear combinations
f =

⊕n
i=1 φi, where φi themselves are also formulas.

Lemma 8. Let f =
⊕n

i=1 φi be a formula with sub-formulas φi. The variable set
Ĉ(f) = �n

i=1C(φi) \ ⋃n
i=1 D(φi

nl) is an under-approximation of C(f). Similarly,
the set D̂(f) = �n

i=1C(φi) ∪ ⋃n
i=1 D(φi

nl) is an over-approximation of D(f).1

1 Operator � signifies symmetric difference: A�B = (A ∪ B) \ (A ∩ B).

260 V. Hadžić et al.

Algorithm 1: Danira algorithm for verifying SIFA resistance
Input : fault detection formulas {δ1, . . . , δn}, δ :=

∨n
i=1 δi

masks M , secrets S =
{
s1, . . . , sd

}

Output: secure or unknown
1 R := M ; // variables that hide

2 K := ∅ ; // complete secrets

3 for s ∈ S do
4 if D(s) ⊆ D(δ) then K := K ∪ {s}; // mark as complete

5 if D(s) 	⊆ D(δ) then R := R ∪ (D(s) ∩ D(δ)); // shares can hide

6 if K = ∅ or R ∩ C(δ) 	= ∅ then return secure; // incomplete or hidden

7 G := ∅ ; // basis of δi formulas

8 for i ∈ {1, . . . , n} do
9 if ∀G′ ⊆ G. δi 	= ⊕

g∈G′ g then G := G ∪ {δi}; // include δi in basis G

10 for G′ ⊆ G do
11 φ =

⊕
g∈G′ g ; // comb. of sub-formulas

12 if ∀s ∈ K.D(s) 	⊆ D̂(φ) then continue; // no secrets complete

13 if R ∩ Ĉ(φ) 	= ∅ then continue; // secrets are hidden

14 return unknown ; // φ maybe dependent

15 return secure ; // all φ independent

These two approximations are much easier to compute than the real variable
sets C(δ) and D(δ). Ideally, we first compute D(δi) and C(δi) for each of the
fault-detection values δi using a SAT solver. Afterward, when checking all their
linear combinations, we only use fast set computation operations from Lemma 8.
Since D̂(·) is an over-approximation, it must contain all functional dependencies
and possibly some spurious ones. If we show the incompleteness of a secret s with
D̂(·), we would have gotten the same result with D(·). Similarly, Ĉ(·) contains
a subset of the variables that can be factorized out of the formula. It is still a
factorization, although it is not guaranteed to be maximal like C(·). Therefore,
if we show that a secret is hidden by some uniformly random variable using Ĉ(·),
it is guaranteed to be hidden.

3.6 Verification Algorithm

In this section, we summarize how the verification algorithm works. In particular,
we focus on the order of checks performed by the algorithm and show how they
correspond to the previous exposition. As described in Sect. 3.1, the attacker can
introduce a fault in any sub-formula φ of δ. The verification method summarized
in Algorithm 1 is given the faulted δ and its sub-formulas δi, the set of masks
M , and the set of formulas S representing each secret as a linear combination of
its shares. The show algorithm considers only one fault at a time, and our tool
Danira runs it separately for each possible fault location.

First, the algorithm computes the set K of complete secrets, i.e., secrets for
which δ functionally depends on all its shares. Simultaneously, the algorithm

Proving SIFA Protection of Masked Redundant Circuits 261

Procedure Chi3: Implementation of a masked Keccak χ3 S-Box [10]
Input : {a0, a1}, {b0, b1}, {c0, c1}, M = {mr, mt}
Output: {r0, r1}, {s0, s1}, {t0, t1}

1 ms := mr ⊕ mt;
2 x0 := ¬b0 ∧ c1;
3 x2 := a1 ∧ b1;
4 x1 := ¬b0 ∧ c0;
5 x3 := a1 ∧ b0;
6 r0 := x0 ⊕ mr;
7 t1 := x2 ⊕ mt;
8 r0 := r0 ⊕ x1;

9 t1 := t1 ⊕ x3;
10 x0 := ¬c0 ∧ a1;
11 x2 := b1 ∧ c1;
12 x1 := ¬c0 ∧ a0;
13 x3 := b1 ∧ c0;
14 s0 := x0 ⊕ ms;
15 r1 := x2 ⊕ mr;
16 s0 := s0 ⊕ x1;

17 r1 := r1 ⊕ x3;
18 x0 := ¬a0 ∧ b1;
19 x2 := c1 ∧ a1;
20 x1 := ¬a0 ∧ b0;
21 x3 := c1 ∧ a0;
22 t0 := x0 ⊕ mt;
23 s1 := x2 ⊕ ms;
24 t0 := t0 ⊕ x1;

25 s1 := s1 ⊕ x3;
26 r0 := r0 ⊕ a0;
27 t1 := t1 ⊕ c1;
28 s0 := s0 ⊕ b0;
29 r1 := r1 ⊕ a1;
30 t0 := t0 ⊕ c0;
31 s1 := s1 ⊕ b1;

computes the set R of uniformly random values that contains all masks M and
shares of incomplete secrets s /∈ K. In the rest of the algorithm, only values in
R can hide secrets. If there are no complete secrets in K or a uniformly random
variable from R can be factorized out of δ and hides all secrets in K, we know
that δ is statistically independent of the secrets S.

Next, the algorithm computes a maximal linearly independent subset G of
fault-detection values δi. As discussed previously in Lemma 6, it is sufficient
to apply Theorem 1 to this subset when proving statistical independence. The
algorithm computes the approximations D̂(φ) and Ĉ(φ) for all possible linear
combinations φ from G. It uses the approximations to check whether any of the
secrets in K are complete in D̂(φ), and if they are, whether any of the random
values from R appear in Ĉ(φ) and hide them. If we were able to show statistical
independence of secrets for all φ, Algorithm 1 declares the computation secure
for the given fault.

Theorem 2. Algorithm 1 is sound: if it returns secure, the analyzed fault in
the attack model from Sect. 3.1 is not exploitable via SIFA. ��

4 Case Studies

This section evaluates our new verification approach against the secured imple-
mentations presented by Daemen et al. [10]. Danira2 uses the netlist of a combi-
natorial circuit as the input. It interprets the inputs as variables and the inter-
mediate computations as Boolean formulas. From a theoretical standpoint, it
does not matter whether the analyzed circuit has a state or not because we only
consider the outputs after the computation finishes.

In the rest of this section, we consider the SIFA-resistant masked imple-
mentations of Keccak χ3, all classes of quadratic 4-bit S-Boxes, and an AES
S-Box [10]. We argue that without a sophisticated verification method, it is
extremely easy to introduce bugs that produce correct computations but break
the theoretical SIFA-resistance guarantees.
2 Danira’s code is available at https://extgit.iaik.tugraz.at/scos/danira.

https://extgit.iaik.tugraz.at/scos/danira

262 V. Hadžić et al.

Finally, we summarize the performance of Danira on several versions of the
same designs.

4.1 Masked Keccak χ3

The Keccak permutation χ3 is a simple circuit with three inputs and three
outputs used in many lightweight ciphers. Implementing a masked version is
straightforward because of its low polynomial degree. Chi3 shows the masked
computation of χ3 proposed by Daemen et al. [10]. The secrets processed by
the circuit are a = a0 ⊕ a1, b = b0 ⊕ b1 and c = c0 ⊕ c1, whereas mr and
mt are used as uniformly random masks. The results of the computation r, s,
and t are also split into two shares, respectively. The circuit was designed in
such a way that the outputs are used for fault detection. Given two redundant
computations of Chi3 with outputs {r0, r1, s0, s1, t0, t1} and {r′

0, r
′
1, s

′
0, s

′
1, t

′
0, t

′
1},

the fault-detection values are defined as δ1 = r0 ⊕ r′
0, . . . , δ6 = t1 ⊕ t′1.

Each line of Chi3 is a possible fault location according to our attack model in
Sect. 3.1. Introducing a bit-flip fault means negating the result of one such line
in one of the redundant computations. Our verification method goes through
each of the fault locations, negates the result at that point in the computation,
and generates the fault-detection formulas δ1, . . . , δ6. We specify S = {a, b, c}
and M = {mr,mt}, and run Algorithm 1 to see if the considered fault could
leak information about the secrets.

We implemented the netlist for Chi3 manually, and Danira was able to verify
that the design proposed in [10] was indeed SIFA resistant. However, when we
synthesized an equivalent RTL design with Yosys, Danira reported that it could
not prove SIFA resistance. In the synthesized netlist, Yosys introduced a tempo-
rary gate v0 = ¬b0 which it used to simplify Line 2 to x0 := v0 ∧ c1 and Line 4
to x1 := v0 ∧ c0. Although this makes sense from an optimization perspective
because it effectively reduces the size of the circuit by one gate, it breaks the
SIFA resistance. A fault at this new gate v0 in the synthesized design is the same
as two faults at Lines 2 and 4. As a result, δ becomes statistically dependent on
c, which the attacker can exploit. Unfortunately, this demonstrates that (1) an
analysis on the gate level is unavoidable and (2) they must be implemented man-
ually, as synthesis tools or compilers break SIFA resistance while maintaining
functional correctness.

4.2 Masked AES S-Box

Compared to χ3, the AES S-Box is a significantly more complex circuit of high
polynomial degree. The authors of the CHES paper [10] propose a high-level
sketch of a SIFA-resistant masked AES S-Box. There are many ways to imple-
ment this high-level description and achieving SIFA resistance is not trivial.
After several failed attempts, we managed to implement a protected version of
the proposed AES S-Box with the help of our new verification tool. We are con-
vinced that correctly protecting a circuit as large as an AES S-Box is infeasible
without the help of an automated verification method such as Danira.

Proving SIFA Protection of Masked Redundant Circuits 263

Table 1. Performance of Danira (D) and a modified version of SILVER [25] (S) for
different masked designs. Correct (incorrect) designs are denoted by � (�). In all cases,
the reused gate was the exploitable fault location.

Design Gates (∧) (⊕) Result D (s) S (s)

Keccak χ3, full Chi3 37 12 25 � 0.06 0.24

Keccak χ3, reuse ¬b0 36 12 24 � 0.05 0.07

Keccak χ3, reuse ¬c0 36 12 24 � 0.06 0.12

Keccak χ3, reuse ¬a0 36 12 24 � 0.06 0.18

4-bit perm. Q4
4 [10] 10 4 6 � 0.03 0.10

4-bit perm. Q4
12 [10] 20 8 12 � 0.05 0.16

4-bit perm. Q4
293 [10] 30 12 18 � 0.05 0.23

4-bit perm. Q4
294 [10] 30 12 18 � 0.04 0.21

4-bit perm. Q4
299 [10] 50 20 30 � 0.07 0.41

4-bit perm. Q4
300 [10] 36 12 24 � 0.06 0.26

AES S-Box, reuse g104 631 144 487 � 14.67 551.1

AES S-Box, reuse g240 631 144 487 � 83.28 1336.7

AES S-Box, reuse g360 631 144 487 � 135.04 1941.7

AES S-Box, full [10] 634 144 490 � 184.39 3297.4

4.3 Performance Evaluation

This section gives a breakdown of Danira’s performance on correctly (and incor-
rectly) protected implementations. We performed all experiments on a notebook
with an eight-core Intel i7-8550U 1.8GHz CPU and 16 GiB of memory.

As shown in Table 1, Danira instantly verified (or falsified) all tested Keccak
χ3 and quadratic 4-bit S-Box designs. We also demonstrate that for Keccak χ3

and the AES S-Box, even one re-used gate leads to vulnerabilities. Danira verifies
the SIFA resistance of our implementation in about three minutes. For the AES
S-Boxes, Danira performs significantly better than a version SILVER [25] which
we extended to verify SIFA resistance. However, although this shows Danira’s
potential, our extension of SILVER with construct as shown in Fig. 1 is not
perfect and could be further improved by its authors.

In summary, the results of our experiments in Table 1 indicate that: (1) the
over-approximation we introduce in this paper is strong enough to prove SIFA
resistance for secure designs, and (2) our verification method applied by Danira
is fast enough for complex masked implementations.

5 Conclusion

Protecting masked implementations against SIFA is not straightforward. Design-
ers can make mistakes when implementing a specification that is supposed to be
secure. Additionally, compilers and synthesis tools can introduce simplifications

264 V. Hadžić et al.

that break the SIFA-resistance guarantees. Danira solves these problems using
simple yet effective properties of redundant masked implementations to show
whether they are SIFA resistant. As demonstrated by our case studies, Danira
is able to verify designs that may be used in actual embedded systems. In cases
where Danira cannot prove the security of a design, it gives a developer detailed
debugging information about a problematic fault location.

References

1. Arribas, V., Nikova, S., Rijmen, V.: VerMI: verification tool for masked implemen-
tations. In: ICECS (2018)

2. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis
using VerFI. IACR Cryptology ePrint Archive (2019)

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2) (2006)

4. Barthe, G., Beläıd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., Standaert, F.-X.:
maskVerif: automated verification of higher-order masking in presence of physical
defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS,
vol. 11735, pp. 300–318. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29959-0 15

5. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

6. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

8. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–
353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 11

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

10. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.:
Protecting against statistical ineffective fault attacks. TCHES (2020)

11. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security
against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006,
pp. 35–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3 3

12. Dobraunig, C., Eichlseder, M., Gross, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 315–342.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 11

https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-030-40186-3_3
https://doi.org/10.1007/978-3-030-03329-3_11

Proving SIFA Protection of Masked Redundant Circuits 265

13. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. TCHES
(2018)

14. Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based
authenticated encryption: application to Keyak and Ketje. In: Cid, C., Jacobson,
M., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp. 257–277. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-10970-7 12

15. Faust, S., Grosso, V., Merino Del Pozo, S., Paglialonga, C., Standaert, F.-X.: Com-
posable masking schemes in the presence of physical defaults & the robust probing
model. TCHES (2018)

16. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: FDTC (2013)

17. Gao, P., Xie, H., Zhang, J., Song, F., Chen, T.: Quantitative verification of masked
arithmetic programs against side-channel attacks. In: TACAS (2019)

18. Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-channel
resistance of masked software implementations. TOSEM 28(3) (2019)

19. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: COCO: co-design and
co-verification of masked software implementations on CPUs. In: USENIX (2021)

20. Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2018)

21. Gross, H., Mangard, S.: Reconciling d + 1 masking in hardware and software.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 6

22. Hadzic, V., Primas, R., Bloem, R.: Proving SIFA protection of masked redundant
circuits. CoRR, abs/2107 (2021)

23. Hutter, M., Schmidt, J.-M.: The temperature side channel and heating fault
attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
219–235. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 15

24. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

25. Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence and leak-
age verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12491, pp. 787–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 26

26. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

27. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

28. Ramezanpour, K., Ampadu, P., Diehl, W.: A statistical fault analysis methodology
for the ascon authenticated cipher. In: HOST (2019)

29. Saha, S., Jap, D., Roy, D.B., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.: A
framework to counter statistical ineffective fault analysis of block ciphers using
domain transformation and error correction. TIFS (2020)

https://doi.org/10.1007/978-3-030-10970-7_12
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17

Verification by Gambling on Program
Slices

Murad Akhundov1(B), Federico Mora2, Nick Feng1, Vincent Hui1,
and Marsha Chechik1

1 University of Toronto, Toronto, Canada
{murad,fengnick,vhui,chechik}@cs.toronto.edu

2 University of California, Berkeley, Berkeley, USA
fmora@cs.berkeley.edu

Abstract. Automated software verification is a computationally hard
problem that is often exasperated by irrelevant context. Existing ver-
ification engines address this problem with slicing techniques that are
either too cautious, producing large verification condition queries, or too
aggressive, sacrificing soundness. In this paper, we present a novel tech-
nique, called Qicc, that is aggressive, sound, and “a little risky.” Specifi-
cally, we use procedure extraction to generate a small set of verification
queries that we check with existing verification engines. If any query in
the set passes verification, then the original program will pass verifica-
tion. However, there is no guarantee that such a query will exist, so Qicc
may waste time searching. We study the effectiveness of Qicc when it is
combined with two different verification engines, finding that Qicc’s extra
cost is small while the rewards it brings to the analysis are significant.
We evaluated Qicc on a case study—the verification of a cryptographic
function in BusyBox—and found that Qicc succeeds when paired with
two different verifiers, while both verifiers are unsuccessful on their own.

1 Introduction

Automated software verification tools take as input an implementation anno-
tated with specifications and aim to return a correctness proof, or a counterex-
ample. Over the years, a wide range of automated verification techniques have
been proposed, including those based on bounded model checking, k-induction,
and predicate abstraction [3,6,9,11]. These techniques differ substantially and
succeed on different kinds of verification tasks; however, they all have one thing
in common: a better encoded problem leads to better engine performance [21].

One technique for improving problem encodings is program slicing [4,23].
Program slicing techniques take a program and a slicing criterion, and return a
subset of the input program based on that criterion. In the realm of verification,
these techniques have been used as sound pre-processing steps that eliminate
irrelevant context and focus the underlying verification engine on the properties
in question. For example, verification engines usually eliminate lines of code that
cannot affect assertions. When verification problems are too large, recent work
has suggested using slicing as an unsound pre-processing step, the idea being
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 266–282, 2021.
https://doi.org/10.1007/978-3-030-88885-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_18

Verification by Gambling on Program Slices 267

Fig. 1. Interprocedural region hierarchies of curve25519. Every node is a region. White
nodes are functions, and blue nodes are parts of functions labeled by corresponding start
and end lines of code. Arrows denote region containment. For example, the function
curve25519 calls the function fe_select inside a region at lines 416–436.

that an approximate answer is better than no answer at all [7]. In this paper, we
seek to retain the soundness of the former use, while achieving the reductions of
the latter use. We do this with a novel application of a classic program slicing
technique called procedure extraction [16]. Procedure extraction takes a program
and a set of program locations, and returns a minimal procedure that captures
the behaviour of these locations. Traditionally, procedure extraction has been
applied to program refactoring by automatically grouping features into func-
tions [16]. The main challenge in applying it to verification is in deciding which
program locations to extract. If we extract too many locations, the slice will
remain large; if we extract too few, the slice may miss some important context.

In this paper, we propose an approach that “gambles” on a few well-thought-
out slices. The cost of each gamble is small, but the reward is potentially big,
often allowing us to solve previously non-terminating cases. To get an intuition
for our approach, consider the example in Fig. 1 which shows the interprocedural
region hierarchies of the curve25519 function inside BusyBox’s TLS library. We
formally define regions in Sect. 2. For now, consider regions to be contiguous
portions of the control-flow graph of a program with a single entry location
and a single exit location. Regions can be nested, and Fig. 1 shows this nesting
for curve25519. curve25519 is a Diffie-Hellman function that takes a private key
and returns a corresponding public key using elliptic curve cryptography, and our
goal is to check whether its assertions hold. We highlight one of these assertions
with a red “assert” in Fig. 1. When given the entire program as input, existing
verification engines, e.g., CBMC [5] and UltimateAutomizer [14], struggle to
prove this assertion (and the other assertions in the program) because they are
overwhelmed by the size of the problem. However, as we discuss in more detail
in Sect. 4.5, the part of the program inside the red rectangle is sufficient to
prove that this assertion always holds, and focusing verifiers on this part of the
program is sufficient to have them succeed. Our approach searches the regions
of a program until it finds such a sufficient part of the program. When there

268 M. Akhundov et al.

are multiple assertions and their candidate sufficient regions do not overlap,
assertions can be checked independently and in parallel.

Contributions. Specifically, this paper makes the following contributions. 1. We
develop a verification approach, Qicc, that searches for regions of a control-flow
graph sufficient to prove assertions and checks these regions in parallel. 2. We
implement a prototype of Qicc that handles a significant subset of C, and allows
concurrent verification with existing verification engines as a parameter. 3. We
empirically evaluate our prototype on a comprehensive case study.

Organization. The rest of this paper is organized as follows. Section 2 gives the
necessary formal background. Section 3 describes our approach and proves its
correctness. Section 4.1 reports on the implementation. Section 4 evaluates the
performance of Qicc when paired with different verification engines. Section 5
surveys related approaches. We conclude in Sect. 6.

2 Background

This section provides a brief overview of control-flow automata (CFA) which
we use to model programs and specifications; regions which are the isolated
components of CFAs that can be verified in isolation; and cyclic region bodies
which are a special case of regions that Qicc identifies and attempts to verify.

Control Flow Automata. We represent programs using control flow automata
(CFA) borrowed from Beyer et al. [2]. Formally, a CFA (L, li, Lf , V,G) has a
finite set of program locations L, an initial location li, a set of final locations
Lf , a finite set of program variables V , and a finite set of control-flow edges G ∈
L×O×L. The set O of program operations contains assignment and assumption
operations. Assignments are denoted by v ← t, where v is a program variable in
V and t is a term of the same type as v. Assumptions are denoted by [b], where
b is a boolean term. Terms are defined inductively: constants and variables are
terms, and a function application f(t1, t2...tn) of function f : D1,D2...Dn → Dr

over input terms t1, t2...tn of type D1,D2...Dn yields a term of type Dr. A state
of a CFA is a valuation for all variables in V together with a location.

A control-flow edge l o−→ l′ represents the transfer of control from location
l to l′ after successfully executing an operation o. An assignment v ← t is
successfully executed on edge l v←t−−−→ l′ if the value of v at state s′ = {σ′, l′}
is the same as the value of t at state s = {σ, l}. An assumption is successfully
executed on edge l [b]−→ l′ if b evaluates to � at state s = {σ, l}. A program path
l1

o1−→ l2
o2−→ ... on−→ ln is a sequence of edges representing a transition from the

source location l1 to the target location ln. The path is feasible if every operation
on the path can be successfully executed in sequence. The path is complete if
the source location is li and the target location is some lf ∈ Lf .

Verification by Gambling on Program Slices 269

Fig. 2. An illustration of a region r (highlighted in red) in a CFA (based on the
motivating example of Feng et al. [10]). The region has 3 as the initial location, and 3
and lerr as its final locations. A path from 1 to any location in the region must have a
local suffix in r, e.g., the path 12345 has a local suffix 345. (Color figure online)

Program Safety and Assertions. We express safety properties with assertions in
the program. Intuitively, an assertion takes a predicate p as input, and checks
whether p evaluates to � while executing the program. We capture this intuition
formally in CFAs, by representing assertions as control-flow edges l [¬p]−−→ lerr,
where the target location lerr is a special final location representing assertion
violation, and p is the asserted predicate. We require lerr to be reachable only
through assertion edges. We say a path is an error path if it ends in lerr. An
error path is complete if it starts from li, and feasible if every operation on the
path is successfully executed.

Definition 1 (Program Safety). A program is safe with respect to program
assertions if and only if its CFA has no complete and feasible error path. In this
case, we say that the program satisfies the assertion or property. If a program is
not safe, then we say that the program violates the assertion or property.

Sub-CFA and Region. f ′ = (L′, l′i, L
′
f , V,G′) is a sub-CFA of f = (L, li, Lf , V,G),

where L′ ⊆ L, lerr ∈ L′
f and G′ ⊆ G. A region r is a special sub-CFA that further

requires that every path that starts at li and ends at some location l′ ∈ L′ \ lerr
must contain a local suffix which starts at l′i and contains locations and edges
exclusively from L′ and G′, respectively. This requirement allows r to be treated
as a standalone CFA. Figure 2 illustrates an example of r (highlighted in red) in
a CFA. Since lerr appears in both f and r, we have the following property:

Theorem 1 (Error Suffix). Suppose r = (L′, l′i, L
′
f , V,G′) is a region of CFA

f = (L, li, Lf , V,G), and r contains an edge l o−→ lerr. If f has a complete error
path p that ends with l o−→ lerr, then there exists a complete error path p′ in r,
and |p| ≥ |p′|. Moreover, if path p is feasible, then p′ is also feasible.

270 M. Akhundov et al.

Proof. Since the edge l o−→ lerr is in G′, and l ∈ L′, by the requirement of region,
every error path p that reaches l must have a local suffix that starts at l′i and
contains locations and edges exclusively from L′ and G′, respectively. Therefore,
the suffix is the complete error path p′ in r, and |p| ≥ |p′|. If the complete error
path p is feasible, then the suffix p′ is also feasible. �	

Theorem 1 shows that if an assertion cannot be violated in a region r, then
it also cannot be violated in the original CFA. In the example in Fig. 2, if there
are no complete and feasible error paths in the highlighted region that reaches
lerr through edge 5 [c<0]−−−→ lerr, then there is no complete and feasible error path
in the original CFA reaching lerr through the same edge. In other words, if every
assertion is contained in some safe region, then the original CFA is also safe.
Therefore, a region is a sound program slice for assertion verification.

Domination, Backedge, Reducibility, and Strongly Connected Components. Let
f be a CFA (L, li, Lf , V,G). A location i ∈ L dominates a location j ∈ L if every
path from li to j passes through i. An edge j op−→ i is a backedge if i dominates j.
Graph G is reducible if it becomes acyclic after removing all of its backedges. A
strongly connected component (SCC) S of f is the maximal sub-graph of G with
the property that there is a path from every location in S to every other location
in S. A node i is an entry point of S if i ∈ S and there exists a location n /∈ S
and an edge n → i. Our definition of reducible is equivalent to the following: a
CFA is reducible if every strongly connected sub-CFA has a single entry [13].

Cyclic Regions and Cyclic Region Bodies. Let f be a CFA (L, li, Lf , V,G), and e
be a backedge j op−→ i ∈ G. The cyclic region of e is defined to be the smallest set
of locations L′ and edges G′ such that: (1) i, j ∈ L′, e ∈ G′, (2) if some location
a
= i is in L′ then its predecessors location b (∃ edge b op−→ a ∈ G) is also in
L′, and (3) G′ is a strongly connected component. We call i the head of the
cyclic region. A cyclic region can be also seen as a region r = (L′, i, L′

f , V,G′),
where L′

f is the set of final locations in Lf or locations with external edges
e′
ext ∈ G \ G′. The inclusion of predecessors up to i in condition (2) ensures

that every complete path to some location l ∈ L′ must have a local suffix that
starts with i. In the example in Fig. 2, the highlighted region is a cyclic region
of backedge 7 j←j+1−−−−→ 3 with region head 3.

The body of a cyclic region r is b = (L′, i, L′
f , V,G′′), where the graph G′′

is constructed from G′ by removing all the backedges to the region head i. The
body of a cyclic region r is also a region: for every local suffix p in r there exists a
local suffix of p which does not contain the removed backedges of G′′, by taking
the suffix from the last appearance of the region head in p. For the example in
Fig. 2, we obtain the highlighted region r by excluding the backedge 7 j←j+1−−−−→ 3
from r’s graph. The path 34567345 in r has a local suffix 345 in the cyclic region.

3 Qicc

The goal of Qicc is to expedite verification of assertions by trying to remove
irrelevant context. Qicc is aggressive, in that it attempts to solve the problem

Verification by Gambling on Program Slices 271

Fig. 3. Qicc architecture

with the least amount of context possible and then gradually adds context until
it is sufficient. It would be too expensive to attempt every possible region, so
Qicc prioritizes those that are easy to identify, quick to check, and likely to
work. Specifically, Qicc prioritizes cyclic region bodies, as defined in Sect. 2. This
heuristic is good because cycles can be very expensive to handle—especially with
techniques like Bounded Model Checking [3]. For the example in Fig. 4a, Qicc
starts by trying to verify the green region in isolation, and if that context is
insufficient, it attempts a larger region (green and red). If that context is still
insufficient, Qicc will attempt the entire CFA for the complete context.

In this section, we describe how Qicc works. We begin with cyclic region
identification (front-end step in Fig. 3) and show why checking region bodies is
sound. We then describe the verification step that gambles on program slices
and calls an external verifier X. We refer to the combination as Qicc+X.

3.1 Cyclic Region Identification

Algorithm 1: RNT Gen
Data: Reducible CFA, f
Result: Region Nesting Tree T

1 σ ← new Stack()
/* T is an association map */

2 T .addChild(ROOT, f)
3 σ ← push(σ, f)
4 while ¬isEmpty(σ) do
5 γ ← pop(σ)
6 IRs← InnerFinder(γ, T)
7 σ ← pushAll(σ, IRs)
8 return T

Algorithm 2: InnerFinder
Data: Region γ
Mutate: Region Nesting Tree T
Result: Set of regions inside γ

1 components ← Tarjan(γ)
2 InnerRegions ← set()
3 for S ← components do
4 if size(S) > 1 then
5 Sbody ← RegionBody(S)
6 T .addChild(γ, Sbody)
7 InnerRegions.add(Sbody)
8 return InnerRegions

The first step of our approach is to identify all cyclic regions in the input pro-
gram’s CFA. Suppose r1 = (L1, i1, Lf1, V,G1) and r2 = (L2, i2, Lf2, V,G2) are
two cyclic regions in a CFA f . We say that r1 is an inner region of r2 if L1 ⊆ L2,
G1 ⊆ G2, and r2’s head i2 dominates r1’s head i1. A Region Nesting Tree (RNT)
T for the CFA f is a tree of cyclic region bodies based on the nesting relation-
ship. The root of T is f and its children are the bodies of cyclic regions that are
not nested in other cyclic regions. If r1 is nested in r2, then r1’s body b1 is a
descendent of r2’s body b2. b1 is a direct child of b2 if b2 is the unique immediate

272 M. Akhundov et al.

Fig. 4. (a) An illustration of a CFA f with nested cyclic regions. Region r1 (green) of
backedge 6 op6−−→ 4 has locations 4,5,6 and lerr. Region r2 (green and red) of backedge
7 op8−−→ 3 has locations 3,4,5,6,7 and lerr. r1 is an inner region of r2 since r2’s head 3
dominates r1’s head 4, and r1 is a sub-CFA of r2. (b) The region nesting tree (RNT)
of f where b1 and b2 are the body of regions of r1 and r2, respectively.

ancestor of b1. Figure 4b shows the RNT T of the CFA f in Fig. 4a. The root of
T is f . r2’s body b2 is a direct child f . r1’s body b1 is a direct child of b2, which
is also the leaf of T .

The identification algorithm is described in Algorithm 1. It takes as input a
reducible CFA f and returns all cyclic regions, organized in an RNT T . Algo-
rithm 1 first makes f to be the root of T (line 2), and pushes f into a stack
σ (line 3), which is the set of sub-CFAs that may have inner cyclic regions.
Algorithm 1 pops a sub-CFA γ from σ, and identifies the inner regions in γ by
calling InnerFinder (Algorithm 2). Algorithm 2 first identifies all Strongly Con-
nected Components (SCCs) in γ using Tarjan’s Algorithm [22] (line 1). Since f
is assumed to be reducible, every SCC S in γ is a cyclic region. Therefore, S’s
body Sbody is added as a child of γ in T (line 6). Notice that Sbody is not an SCC
because the backedge to the entry is removed. Therefore, we push every identified
Sbody onto σ (line 7 in Algorithm 1) to find inner cyclic regions. The algorithm
continues popping sub-CFAs from σ until it becomes empty, and finally returns
T .

In the example in Fig. 4a, Algorithm 1 first identified r2 as the SCC of f , and
added r2’s body b2 (backedge 7 op8−−→ 3 is removed) as a child of f in T . Then
the algorithm searched on b2 for SCC, and identified r1. r1’s body b1 (backedge
6 op6−−→ 4 is removed) is added as b2’s child. Finally, the algorithm failed to find
SCC in b2, and returned T .

Theorem 2 (RNT Gen Correctness). Every node in the RNT T returned
by Algorithm 1 is either f or the body of some cyclic region in f .

Proof. Every node is added to T by finding an SCC of a sub-CFA of f , treating
S as a cyclic region, and adding the body of S to T (line 6 of InnerFinder).

Verification by Gambling on Program Slices 273

Fig. 5. The concurrent Gambling algorithm.

Therefore, it is sufficient to show that for every SCC S explored by InnerFinder,
S is indeed a cyclic region of f .

In the first iteration, InnerFinder explores f . By the definition of SCCs,
the components at line 6 of InnerFinder are all sub-CFAs of f , and are all
cyclic (every node can reach every other node). Since f is reducible, every SCC
including the members of components will have a single entry point and will
be reducible (since sub-CFAs cannot introduce new edges into existing cycles).
Let Si be the ith SCC of components and let i be its single entry point. There
must be a backedge e to i or else i would not be in the SCC. Therefore, by the
definition of cyclic regions, the cyclic region of e is exactly Si, as desired. In
subsequent iterations the same argument is repeated, but with a new reducible
CFA given to InnerFinder. �	

Theorem 2 together with Theorem 1 ensure that every node in the RNT is
a sound program slice to be verified against assertions. This is important for
establishing the correctness of Qicc’s verification process.

3.2 Gambling

The RNT T returned by Algorithm 1 is a tree of possible regions that Qicc
can verify to establish safety for the input CFA f . For every assertion edge
e = l assert−−−−→ lerr in f , Qicc identifies the initial region b ∈ T where no descendent
of b contains the edge e. Qicc then verifies the assertion e in b by calling a
verifier. If verification succeeds, then e is marked safe, and Qicc moves to the
next assertion. If verification fails, then Qicc verifies the parent of b, and repeats
the verification process by climbing up T until the root f is verified. Qicc returns
“safe” if and only if every assertion is marked safe. Qicc returns an assertion
violation if and only if some assertion is violated in T ’s root, f . For an input
f in Fig. 4a and the RNT in Fig. 4b, Qicc identifies b1 as the initial region that
contains the assertion edge e = 5 assert−−−−→ lerr, and verifies it against e. If the
verification fails, then b1’s parent b2 is checked. If the verification on b2 still fails,
then the entire CFA f is verified with the complete context. Qicc returns “safe”

274 M. Akhundov et al.

if e cannot be violated in one of b1, b2 or f , and returns “unsafe” if e is violated
in f .

Theorem 3 (Partial Correctness of Qicc). If Qicc terminates on an input
CFA f , then Qicc returns “safe” if and only if f is safe.

Proof. =⇒: If Qicc returns “safe”, then f is indeed safe: By Theorem 2, we know
that every node in the RNT T returned by Algorithm 1 is a region. For each
assertion, if there exists a region r ∈ T such that the assertion cannot be violated
in r (safe region), then the assertion cannot be violated in f (Theorem 1). Since
Qicc returns “safe” when it finds a safe region for every assertion, no assertion
can be violated in f , and f is safe.

⇐=: If f is safe, then Qicc returns “safe”: Suppose f is “safe”, then f is a
safe region where no assertion is violated. Since f is a node in the RNT T , Qicc
eventually verifies f against all assertions inside, and returns “safe”.

Optimizations: Batch Verification and Concurrent Verification. We highlight two
key optimizations of Qicc, batch verification and concurrent verification. Instead
of checking every assertion separately in a region b, batch verification allows all
assertions to be verified in b at the same time. If verification is successful, then
all assertions in b are marked safe. If verification is unsuccessful, the violated
assertion is disabled in b, and b is verified again with the rest of assertions until
every assertion is either safe or disabled in b. When batch verification is enabled,
concurrent verification allows two regions r1 and r2 in the RNT T to be verified
concurrently if they contain different assertions, Fig. 5 displays the logic that
can be done concurrently. If two regions have some shared assertions, then the
verification result is shared and propagated from one to the other. We evaluate
the impact of these optimizations in the next section.

4 Evaluation

In this section, we describe a prototype implementation of Qicc, report on the
results of a systematic evaluation, and present a case-study.

4.1 Implementation

We implemented the Qicc front-end region identification and the RNT genera-
tion algorithms in OCaml as CIL plugins [20]. We used TypeScript to implement
the gambling algorithm to interface with the underlying solvers. Our implemen-
tation is limited to a subset of C without recursion, and focuses on a restricted
version of cyclic regions which corresponds to the intuitive notion of loops. In
addition, our implementation only supports regions with a single entry and where
the backedge is not a goto statement. Our gambling algorithm does not support
mutual recursion, as it would form a cycle in the verification task tree, but
lack of support for regular recursion and regions described are implementation-
based. Qicc can be parametrized by different verifiers – the current implemen-
tation interfaces with CBMC and Ultimate Automizer [5,14]. We refer to these

Verification by Gambling on Program Slices 275

instances as Qicc+CBMC and Qicc+UA, respectively. Qicc interacts with the
verifiers by extracting each selected region as a function, and the verifier is pro-
vided with an entry function for each step in the gambling algorithm. Please
refer to supplementary material for the tool source and usage instructions1.

4.2 Experimental Design

In this section, we evaluate Qicc’s performance as a slicer for program verification
techniques and report the performance advantage Qicc provides when coupled
with different verifiers; we first study its effect on bounded-model-checking [3]
(i.e., Qicc+CBMC) before extending the study to other techniques. Since Qicc
was designed to take advantage of cases where region bodies are sufficient to
prove the assertion, we say that Qicc hits when that is the case and misses
otherwise. We aim, in particular, to answer the following research questions:

RQ1: What is the benefit of Qicc+CBMC when it hits? What is the cost of
Qicc+CBMC when it misses?
RQ2: Does the performance benefit of Qicc extend to other verifiers?
RQ3: Can Qicc scale to large, real-world, programs?

To answer these questions, we first present a thorough systematic comparison
of Qicc+CBMC with CBMC, to assess benefits of a hit and costs of a miss in
different scenarios. Second, we present a smaller systematic study using Ultimate
Automizer (UA) [14] (i.e., Qicc+UA vs. UA) that shows how our technique has
potential beyond BMCs. Third, we show how Qicc+CBMC and Qicc+UA were
able to quickly prove that array bounds are respected in a real-world program
while neither CBMC nor UA were able to terminate on this example. All exper-
iments were conducted on Ubuntu 18.04 with 8GB of memory, and a quad-core
Intel Core i7 processor at 1.8Ghz.

4.3 RQ1: Bounded Model Checking Systematic Analysis

Since Qicc’s main goal is to reduce the performance penalty caused by cycles, we
compared Qicc+CBMC and CBMC on 33 different configurations of synthetic
loops and the benchmark as-is (baseline case).

Fig. 6. An program with an
assertion inside a loop

Loop Bounds. We first categorize loops by
their bound type: small static bounds vs. large
static bounds, and arbitrary/unbounded. The
bound type estimates the difficulty of verifica-
tion for a bounded model checker (BMC): loops
with small static bounds are cheap for a BMC to
unroll, and only a small number of unrollings is
necessary to convert these into equivalent loop-
free programs. Loops with large static bounds are usually expensive to unroll
1 https://github.com/MuradAkh/Qicc.

https://github.com/MuradAkh/Qicc

276 M. Akhundov et al.

Fig. 7. Loop structures used to generate synthetic cases for the systematic study

and solve: the complexity of the loop body and degree of internal nesting both
increase its difficulty. Lastly, loops with arbitrary or nondeterministic bounds
cannot be verified successfully with a BMC because BMC cannot statically deter-
mine the number of necessary loop unrollings. For the purpose of our evaluation,
we used 10 and 200 as small and large loop bounds, respectively.

Loop Structure Scenarios. We create six general categories of relationships
between loops and assertions to perform our analysis. We illustrate these rela-
tionships in Fig. 7, where assert denotes the location of the assertion, and fact
denotes the location of the furthest fact required to guarantee the assertion
always holds. For example, in Fig. 6, to prove that x == 1 on line 5, we need
to know that x was initialised to 1 on line 2. In scenarios Single 2 and Double
3, Qicc is guaranteed to miss, as a required fact is outside of the loop. In the
baseline scenario, Qicc is expected to perform as well as the underlying tool (plus
a small baseline overhead). In Double 1 and Single 1, Qicc is guaranteed to hit,
as all the necessary information lies within the inner loop. Finally, in Double
2, Qicc is guaranteed to miss once and then hit, as the furthest fact is between
two loops. Figure 6 falls into Single 2 scenario. In each of these scenarios, we will
vary the loop bounds to create cases.

Experiments. Every valid combination of loop structure and bound type yields
34 scenarios - one baseline scenario, 3 loop bounds for both of the single loop
scenarios, and 9 permutations of loop bounds for all three of the double loop sce-
narios. We used 14 existing benchmarks adapted from SV-COMP [1] to generate
476 (14 * 34) synthetic scenarios. This process involved adding synthetic loops;
loops that were already present in the SV-COMP benchmark were left as-is. For
all runs, we enabled the unwinding-assertions command-line option and set
the unrolling limit to 200. When the unwinding assertions option is disabled,
unbounded loops are considered to have the unrolling limit n as the bound. We
ran all experiments with a 600 s timeout.

Verification by Gambling on Program Slices 277

Table 1. Instances solved by CBMC and Qicc+CBMC.

Bounds/Structures Solved instances, CBMC/Qicc+CBMC
Single 1 Single 2 Double 1 Double 2 Double 3

Small 13/13 13/13 8/13 13/13 13/13
Large 7/13 13/13 4/13 7/13 13/13
Arbitrary 0/13 0/0 0/13 0/0 0/0
Small/large 6/13 13/13 13/13
Small/arbitrary 0/13 0/0 0/0
Large/small 6/13 7/13 13/13
Large/arbitrary 0/13 0/0 0/0
Arbitrary/small 0/13 0/13 0/0
Arbitrary/large 0/13 0/13 0/0

Fig. 8. Systematic study runtimes,
CBMC vs Qicc+CBMC

Fig. 9. Systematic study runtimes, UA
vs Qicc+UA

Results and Analysis. Table 1 displays the number of solved instances. The
columns represent different loop structures introduced earlier, and the rows rep-
resent possible bounds for loops in those structures. Qicc+CBMC is always able
to solve instances that CBMC solves; in addition, Qicc is able to handle other
instances where it hits, specifically in Double 1, Double 2, and Single 1 categories.

Figure 8 plots the runtime of CBMC vs. Qicc+CBMC on all generated cases.
The figure shows that in scenarios where Qicc was guaranteed to hit (Single 1
and Double 1), the performance benefit of Qicc+CBMC was very substantial,
and Qicc+CBMC was able to solve 19 (out of 39 in this category) and 93 (out
of 126) more cases than CBMC, respectively. For cases where Qicc was guaran-
teed to miss (Double 3 and Single 2), the overhead was very manageable, and
Qicc+CBMC was able to solve the same number of instances as CBMC within
the time bound. In the case of Double 2, where Qicc missed once and hit once,

278 M. Akhundov et al.

Table 2. The number of solved instances in the systematic study, by loop structure

Bounds/Structures Number of solved instances
Baseline Single 1 Single 2 Double 1 Double 2 Double 3

UA 9 8 8 6 6 8
Qicc+UA 9 9 9 9 9 8

the timing benefit was still significant, and Qicc+CBMC was able to solve 89
(out of 126) more cases than CBMC. We can also see that our technique is most
helpful with large loops, although in Double 1 scenario Qicc is able to solve more
cases even with only small loops. In the baseline case (with no synthetic loops
and no opportunity for Qicc to hit), both configurations solve 13/14 instances.

Answer to RQ1: When Qicc hits, its potential performance benefit is significant,
and can make the difference between CBMC terminating and not terminating.
The cost of the miss is at worst proportional to the depth of the program,
and is generally low. The misses are proportionally more impactful on simpler
examples, where the verification cost is small anyway.

4.4 RQ2: Evaluation with Automata Verifier

We perform a similar systematic analysis to the one described in Sect. 4.3 but
replacing CBMC with Ultimate Automizer (UA) [14] as the underlying veri-
fier. We chose the state-of-the-art automata-based model checker UA to show
that Qicc generalizes beyond bounded-model-checking techniques, and because
of UA’s top-tier performance at SV-COMP [1]. We used the same loop structure
scenarios as in the BMC evaluation. Unlike in the BMC evaluation, the loop
bound was not varied as we found that it had no direct impact on UA’s per-
formance. Table 2 shows the number of instances solved by UA and Qicc+UA.
Qicc+UA was able to solve 8 more cases than UA, particularly when loops were
doubly nested (Double 1), and even in scenarios where Qicc missed once and hit
once (Double 2). Figure 9 shows runtime for all the runs. As in case of CBMC,
the overhead of a miss is minor, as no points are significantly below the diagonal
apart from cheap cases. We can see hits can yield substantial performance ben-
efit as a number of cases are significantly above the diagonal. Because of UA’s
inherent randomness, Qicc+UA sometimes outperformed UA in cases where this
was not expected, and vice-versa; the linear cases above the diagonal in Fig. 9
are clear examples of the former. In order to show that the number of successful
solves was not affected by randomness, we reran cases where Qicc+UA or UA
did not terminate, but no further cases terminated after the re-run.

Answer to RQ2: Qicc shows potential when combined with an automata-based
model checking technique. Just like with CBMC, the cost of a miss is low. The
benefit of a hit is not as consistent as with CBMC, but Qicc+UA outperforms
UA in some cases.

Verification by Gambling on Program Slices 279

4.5 RQ3: Case Study

We now aim to show that Qicc can be effectively applied to real programs. To do
this, we verify static array bounds in a larger (400-line) file from busybox (see
networking/tls_fe.c in the busybox repository). The only modification made
to the file was the encoding of arrays with pointers, as our implementation does
not fully support C array syntax. As part of the study, we added assertions to
check bounds of all instances of references to array elements.

Results and Analysis. Neither CBMC nor UA were able to prove the assertions
without Qicc. CBMC was unable to complete the unrolling process without
running out of memory. The unrolling limit was set to 253, same as the largest
loop bound in the program. UA did not run out of memory but did not terminate
within 2 h. Qicc+UA terminated in 55s in sequential mode and 35s in concurrent,
meanwhile Qicc+CBMC terminated in 13s and 11s for sequential and concurrent
modes respectively.

Qicc+UA saw a 20-second performance boost when proving the assertions
concurrently (one thread per assertion). The performance benefit was more sig-
nificant for Qicc+UA as UA has a larger baseline runtime overhead. Our case
study contained 13 assertions and our machine had 4 cores, so not all threads
were able to run in parallel. Because of this, we expect a significant performance
boost on machines with more cores.

Answer to RQ3: Qicc improves the performance of both UA and CBMC on a
real example. Furthermore, verifying assertions concurrently yields a substantial
performance boost.

4.6 Threats to Validity

We have identified two threats to validity of our evaluation. Our case study was
limited to verifying array bounds on a single program, and it may not scale
well on other verification tasks, where the fact is further away from an assertion.
However, our systematic analysis used a variety of verification tasks with different
types of loops, showing that the cost of a miss is often negligible.

Second, we have not investigated the frequency of hits or misses in real-world
programs. However, our results show that the cost of a miss is likely far smaller
than the benefit of a hit. The cost of a miss can be further reduced using multiple
processor cores, allowing a child and a parent region to be executed concurrently.

5 Related Work

In this section, we describe tools and techniques most relevant to our approach.
We include problem reduction techniques that either have similar goals, or make
similar simplifications to Qicc’s region identification and isolation.

Program Slicing. Program slicing, proposed by Weiser et al. [23], is a family of
strategies that look for the minimal section of a program relevant to preserving

280 M. Akhundov et al.

a specific behavior. Slicing complements safety verification techniques in that it
scopes down the potential region [8] impacting an assertion; a more specifically
scoped region makes verification more tractable. For example, Cook et al. proto-
typed a CBMC slicer based on approximating the cone-of-influence of program
variables [7]. Qicc is a program slicer based on assuming locality of assertions—
that proving assertions is made easier by using and isolating nearby context.
Qicc uses regions as the program slice for speeding up verification.

Program Transformations for Verification. The problem of exploiting relevant
context for program verification was previously explored by Lai et al. [19] and
Wei et al. [12] in the context of mixed semantics. They outlined a program
transformation that lifts out assertions from procedure calls using the fact that
execution returns to the caller only when contained assertions are safe. As a side-
effect, their transformation also ensures that neighboring context is prioritized
to prove an assertion. Their alternative approach starts with information from
the outermost context (i.e., the region where an assertion is moved out to) first
in contrast to Qicc, which starts from the innermost inlined context.

Differential Program Verifiers. SymDiff [17] and 2Clever [10] are differential pro-
gram verifiers that reason about a program’s semantic differences after a change.
Both techniques exploit a similar loop transformation to Qicc. SymDiff encodes
each loop iteration as an inlined tail-recursive procedure [18]. 2Clever, which
specifically targets changes made relative to an unchanging context, applies a
variation of our procedure extraction-based transformation. SymDiff and 2Clever
differ from Qicc as they target differential verification (and, in particular, do not
target program safety (error reachability)), and they do not reason about seg-
ments in isolation.

Checking Array Properties. To check properties in large arrays, Jana et al. [15]
removed loop head and in-lined the body, assigning non-deterministic values
to loop variables. Unlike Qicc, their approach still performs verification on the
entire program rather than on an isolated segment. However, this approach may
be effective in cases where Qicc fails to achieve convergence.

6 Conclusion

Large, complicated programs challenge verification engines which need to dis-
cover relevant context in a large space. We implemented a prototype of Qicc,
instantiated it with two existing verifiers, CBMC and UA, and evaluated both
instantiations, Qicc+CBMC and Qicc+UA, on 476 and 84 systematically gen-
erated test cases, respectively. We found that Qicc+CBMC solved 312 cases
compared to 162 cases solved by CBMC alone; and Qicc+UA solved 53 cases
compared to 45 cases solved by UA alone. We then evaluated both pairs on a
case study, verification of a cryptographic function in BusyBox. Qicc+CBMC
and Qicc+UA both succeeded in the verification task whereby both CBMC and
UA failed. Qicc’s overhead is reasonable, while its benefits are large.

Verification by Gambling on Program Slices 281

To further improve performance, in the future we plan to add a mechanism to
reuse information from previously attempted proofs and insert additional facts
into loop bodies as assumptions. We also intend to insert additional facts such
as constant variables that can be identified using static analysis. We expect that
these improvements will greatly expand the number of cases where Qicc is able
to improve performance of the underlying verification tool.

Acknowledgments. This work was supported in part by NSF grants CNS-1739816
and CCF-1837132, by the DARPA LOGiCS project under contract FA8750-20-C-0156,
by the iCyPhy center, by gifts from Intel, Amazon, and Microsoft, and by NSERC and
General Motors.

References

1. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Biere,
A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12079, pp. 347–367. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45237-7_21

2. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow
analysis. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 493–540. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_16

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded Model
Checking. Adv. Comput. 58(11), 117–148 (2003)

4. Chalupa, M., Strejček, J.: Evaluation of program slicing in software verification. In:
Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 101–119.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4_6

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-
C programs using SAT. Formal Methods Syst. Des. 25(2–3), 105–127 (2004)

7. Cook, B., et al.: Using model checking tools to triage the severity of security bugs
in the Xen hypervisor. In: Proceedings of FMCAD 2020 (2020)

8. DeMillo, R.A., Pan, H., Spafford, E.H.: Critical slicing for software fault localiza-
tion. ACM SIGSOFT Softw. Eng. Notes 21(3), 121–134 (1996)

9. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7_26

10. Feng, N., Hui, V., Mora, F., Chechik, M.: Scaling client-specific equivalence check-
ing via impact boundary search. In: Proceedings of ASE 2020. ACM (2020)

11. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

12. Gurfinkel, A., Wei, O., Chechik, M.: Model checking recursive programs with exact
predicate abstraction. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan,
M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 95–110. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88387-6_9

13. Hecht, M.S., Ullman, J.D.: Characterizations of reducible flow graphs. J. ACM
21(3), 367–375 (1974)

https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-540-88387-6_9

282 M. Akhundov et al.

14. Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36742-7_53

15. Jana, A., Khedker, U.P., Datar, A., Venkatesh, R., Niyas, C.: Scaling bounded
model checking by transforming programs with arrays. In: Hermenegildo, M.V.,
Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 275–292. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_16

16. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: Pro-
ceedings of POPL 2000, pp. 155–169 (2000)

17. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7_54

18. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of ESEC/FSE 2013, pp. 345–355. ACM (2013)

19. Lai, A., Qadeer, S.: A program transformation for faster goal-directed search. In:
Proceedings of FMCAD 2014, pp. 147–154. IEEE (2014)

20. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5_16

21. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based
formal verification. Int. J. Softw. Tools Technol. Transfer 7(2), 156–173 (2005)

22. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

23. Weiser, M.: Program slicing. In: Proceedings of ICSE 1981, pp. 439–449. IEEE
Press (1981)

https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-63139-4_16
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16

Runtime Enforcement of Hyperproperties

Norine Coenen1, Bernd Finkbeiner1, Christopher Hahn1(B), Jana Hofmann1,
and Yannick Schillo2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{norine.coenen,finkbeiner,christopher.hahn,jana.hofmann}@cispa.de

2 Saarland University, Saarbrücken, Germany
s8yaschi@stud.uni-saarland.de

Abstract. An enforcement mechanism monitors a reactive system for
undesired behavior at runtime and corrects the system’s output in case
it violates the given specification. In this paper, we study the enforce-
ment problem for hyperproperties, i.e., properties that relate multiple
computation traces to each other. We elaborate the notion of sound and
transparent enforcement mechanisms for hyperproperties in two trace
input models: 1) the parallel trace input model, where the number of
traces is known a-priori and all traces are produced and processed in
parallel and 2) the sequential trace input model, where traces are pro-
cessed sequentially and no a-priori bound on the number of traces is
known. For both models, we study enforcement algorithms for specifica-
tions given as formulas in universally quantified HyperLTL, a temporal
logic for hyperproperties. For the parallel model, we describe an enforce-
ment mechanism based on parity games. For the sequential model, we
show that enforcement is in general undecidable and present algorithms
for reasonable simplifications of the problem (partial guarantees or the
restriction to safety properties). Furthermore, we report on experimental
results of our prototype implementation for the parallel model.

1 Introduction

Runtime enforcement combines the strengths of dynamic and static verification
by monitoring the output of a running system and also correcting it in case it
violates a given specification. Enforcement mechanisms thus provide formal guar-
antees for settings in which a system needs to be kept alive while also fulfilling
critical properties. Privacy policies, for example, cannot be ensured by shutting
down the system to prevent a leakage: an attacker could gain information just
from the fact that the execution stopped.

Runtime enforcement has been successfully applied in settings where speci-
fications are given as trace properties [14,16]. Not every system behavior, how-
ever, can be specified as a trace property. Many security and privacy policies are

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660) and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 283–299, 2021.
https://doi.org/10.1007/978-3-030-88885-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_19

284 N. Coenen et al.

Fig. 1. Runtime enforcement for a reactive system. In case the input-output-relation
would violate the specification S, the enforcer corrects the output.

hyperproperties [6], which generalize trace properties by relating multiple exe-
cution traces to each other. Examples are noninterference [30,37], observational
determinism [41], and the detection of out-of-the-ordinary values in multiple
data streams [27]. Previous work on runtime enforcement of hyperproperties
either abstractly studied the class of enforceable hyperproperties [32] or security
policies [38], or provided solutions for specific security policies like noninterfer-
ence [12,28,38]. Our contribution is two-fold.

First, conceptually, we show that hyperproperty enforcement of reactive sys-
tems needs to solve challenging variants of the synthesis problem and that the
concrete formulation depends on the given trace input model. We distinguish two
input models 1) the parallel trace input model, where the number of traces is
known a-priori and all traces are produced and processed in parallel and 2) the
sequential trace input model, where traces are processed sequentially and no
a-priori bound on the number of traces is known. Figure 1 depicts the general
setting in these input models. In the parallel trace input model, the enforce-
ment mechanism observes n traces at the same time. This is, for example, the
natural model if a system runs in secure multi-execution [10]. In the sequential
trace input model, system runs are observed in sessions, i.e., one at a time. An
additional input indicates that a new session (i.e., trace) starts. Instances of this
model naturally appear, for example, in web-based applications.

Second, algorithmically, we describe enforcement mechanisms for a concrete
specification language. The best-studied temporal logic for hyperproperties is
HyperLTL [7]. It extends LTL with trace variables and explicit trace quantifica-
tion to relate multiple computation traces to each other. HyperLTL can express
many standard information flow policies [7]. In particular, it is flexible enough to
state different application-tailored specifications. We focus on universally quan-
tified formulas, a fragment in which most of the enforceable hyperproperties
naturally reside. For both trace input models, we develop enforcement mech-
anisms based on parity game solving. For the sequential model, we show that
the problem is undecidable in general but provide algorithms for the simpler

Runtime Enforcement of Hyperproperties 285

case that the enforcer only guarantees a correct continuation for the rest of the
current session. Furthermore, we describe an algorithm for the case that the
specification describes a safety property. Our algorithms monitor for losing pre-
fixes, i.e., so-far observed traces for which the system has no winning strategy
against an adversarial environment. We ensure that our enforcement mechan-
sims are sound by detecting losing prefixes at the earliest possible point in time.
Furthermore, they are transparent, i.e., non-losing prefixes are not altered.

We accompany our findings with a prototype implementation for the par-
allel model and conduct two experiments: 1) we enforce symmetry in mutual
exclusion algorithms and 2) we enforce the information flow policy observational
determinism. We will see that enforcing such complex HyperLTL specifications
can scale to large traces once the initial parity game solving succeeds.

Related Work. HyperLTL has been studied extensively, for example, its expres-
siveness [5,8] as well as its verification [7,9,21,22], synthesis [18], and monitoring
problem [4,19,20,24,39]. Especially relevant is the work on realizability moni-
toring for LTL [11] using parity games. Existing work on runtime enforcement
includes algorithms for safety properties [3,40], real-time properties [17,36], con-
current software specifications [29], and concrete security policies [12,28,38]. For
a tutorial on variants of runtime enforcement see [14]. Close related work is [32],
which also studies the enforcement of general hyperproperties but independently
of a concrete specification language (in contrast to our work). Systems are also
assumed to be reactive and black-box, but there is no distinction between differ-
ent trace input models. While we employ parity game solving, their enforcement
mechanism executes several copies of the system to obtain executions that are
related by the specification.

2 Preliminaries

Let Σ be an alphabet of atomic propositions. We assume that Σ can be parti-
tioned into inputs and outputs, i.e., Σ = I ∪̇ O. A finite sequence t ∈ (2Σ)∗ is a
finite trace, an infinite sequence t ∈ (2Σ)ω is an infinite trace. We write t[i] for
the (i+1)-th position of a trace, t[0..i] for its prefix of length i+1, and t[i,∞] for
the suffix from position i. A hyperproperty H is a set of sets of infinite traces.

HyperLTL. HyperLTL [7] is a linear temporal hyperlogic that extends LTL [35]
with prenex trace quantification. The syntax of HyperLTL is given with respect
to an alphabet Σ and a set V of trace variables.

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ

ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ

where a ∈ Σ and π ∈ V. The atomic proposition a is indexed with the trace
variable π it refers to. We assume that formulas contain no free trace variables.

286 N. Coenen et al.

HyperLTL formulas are evaluated on a set T ⊆ (2Σ)ω of infinite traces and a
trace assignment function Π : V → T . We use Π[π
→ t] for the assignment that
returns Π(π′) for π′ �= π and t otherwise. Furthermore, let Π[i,∞] be defined
as Π[i,∞](π) = Π(π)[i,∞]. The semantics of HyperLTL is defined as follows:

T, Π |= aπ iff a ∈ Π(π)[0]

T, Π |= ¬ψ iff T, Π �|= ψ

T, Π |= ψ1 ∨ ψ2 iff T, Π |= ψ1 or T, Π |= ψ2

T, Π |= ψ iff T, Π[1, ∞] |= ψ

T, Π |= ψ1 U ψ2 iff ∃i ≥ 0. T, Π[i, ∞] |= ψ2 and ∀0 ≤ j < i. T, Π[j, ∞] |= ψ1

T, Π |= ∃π. ϕ iff ∃t ∈ T. T, Π[π
→ t] |= ϕ

T, Π |= ∀π. ϕ iff ∀t ∈ T. T, Π[π
→ t] |= ϕ

We also use the derived boolean connectives ∧,→,↔ as well as the derived
temporal operators ϕ ≡ true U ϕ, ϕ ≡ ¬(¬ϕ), and ϕ W ψ ≡ (ϕ U ψ)∨ ϕ.
A trace set T satisfies a HyperLTL formula ϕ if T, ∅ |= ϕ, where ∅ denotes the
empty trace assignment.

Parity Games. A parity game G is a two-player game on a directed graph arena,
where the states V = V0 ∪̇ V1 are partitioned among the two players P0 and P1.
States belonging to P0 and P1 are required to alternate along every path. States
are labeled with a coloring function c : V → N. Player P0 wins the game if they
have a strategy to enforce that the highest color occurring infinitely often in a
run starting in the initial state is even. The winning region of a parity game is the
set of states from which player P0 has a winning strategy. A given LTL formula ϕ
can be translated to a parity game Gϕ in doubly-exponential time [13]. Formula ϕ
is realizable iff player P0 wins the game Gϕ. Its winning strategy σ0 induces the
reactive strategy σ representing a system implementation that satisfies ϕ.

3 Hyperproperty Enforcement

In this section, we develop a formal definition of hyperproperty enforcement
mechanisms for reactive systems modeled with the parallel and the sequential
trace input model. To this end, we first formally describe reactive systems under
the two trace input models by the prefixes they can produce. Next, we develop
the two basic requirements on enforcement mechanisms, soundness and trans-
parency [14,15], for our settings. Soundness is traditionally formulated as the
enforced system should be correct w.r.t. the specification.
Transparency (also known as precision [32]) states that

the behavior of the system is modified in a minimal way, i.e., the longest
correct prefix should be preserved by the enforcement mechanism.

Runtime Enforcement of Hyperproperties 287

Fig. 2. Visualization of prefixes in trace input models.

In the context of reactive systems, formal definitions for soundness and trans-
parency need to be formulated in terms of strategies that describe how the
enforcement mechanism reacts to the inputs from the environment and outputs
produced by the system. We therefore define soundness and transparency based
on the notion of losing prefixes (i.e. prefixes for that no winning strategy exists)
inspired by work on monitoring reactive systems [11]. We will see that the defi-
nition of losing prefixes depends heavily on the chosen trace input model. Espe-
cially the sequential model defines an interesting new kind of synthesis problem,
which varies significantly from the known HyperLTL synthesis problem.

As is common in the study of runtime techniques for reactive systems, we
make the following reasonable assumptions. First, reactive systems are treated
as black boxes, i.e., two reactive systems with the same observable input-output
behavior are considered to be equal. Thus, enforcement mechanisms cannot base
their decisions on implementation details. Second, w.l.o.g. and to simplify pre-
sentation, we assume execution traces to have infinite length. Finite traces can
always be interpreted as infinite traces, e.g., by adding endω. To reason about
finite traces, on the other hand, definitions like the semantics of HyperLTL would
need to accommodate many special cases like traces of different lengths. Lastly,
we assume that control stays with the enforcer after a violation occurred instead
of only correcting the error and handing control back to the system afterwards.
Since we aim to provide formal guarantees, these two problems are equivalent:
if only the error was corrected, the enforcement mechanism would still need to
ensure that the correction does not make the specification unrealizable in the
future, i.e., it would need to provide a strategy how to react to all future inputs.

3.1 Trace Input Models

We distinguish two trace input models [19], the parallel and the sequential model.
The trace input models describe how a reactive system is employed and how its
traces are obtained (see Fig. 1). We formally define the input models by the
prefixes they can produce. The definitions are visualized in Fig. 2. In the parallel
model, a fixed number of n systems are executed in parallel, producing n events
at a time.

Definition 1 (Prefix in the Parallel Model). An n-tuple of finite traces
U = (u1, . . . un) ∈ ((2Σ)∗)n is a prefix of V = (v1, . . . vn) ∈ ((2Σ)∗/ω)n (written
U � V) in the parallel model with n traces iff each ui is a prefix of vi (also
denoted by ui � vi).

288 N. Coenen et al.

The prefix definition models the allowed executions of a system under the
parallel trace input model: If the system produces U and after a few more steps
produces V , then U � V . Note that the prefix definition is transitive: U can be
a prefix of another prefix (then the traces in V are of finite length) or a prefix
of infinite-length traces.

In the sequential model, the traces are produced one by one and there is no
a-priori known bound on the number of traces.

Definition 2 (Prefix in the Sequential Model). Let U = (u1, . . . , un) ∈
((2Σ)ω)∗ be a sequence of traces and u ∈ (2Σ)∗ be a finite trace. Let furthermore
V = (v1, . . . , vn, . . .) be a (possibly infinite) sequence of traces with vi ∈ (2Σ)ω,
and v ∈ (2Σ)∗ be a finite trace. We call (U, u) a prefix of (V, v) (written (U, u) �
(V, v)) iff either 1) U = V and u � v or 2) V = u1, . . . , un, vn+1, . . . and
u � vn+1.

We additionally say that (U, u) � V if (U, u) � (V, ε), where ε is the empty trace.
To continue an existing prefix (U, u), the system either extends the started trace
u or finishes u and continues with additional traces. Traces in U are of infinite
length and describe finished sessions. This means that they cannot be modified
after the start of a new session. Again, prefixes in this model are transitive and
are also defined for infinite sets.

Remark 1. We defined prefixes tailored to the trace input models to precisely
capture the influence of the models on the enforcement problem. Usually, a set
of traces T is defined as prefix of a set of traces T ′ if and only if ∀t ∈ T. ∃t′ ∈
T ′. t � t′ [6]. A prefix in the sequential model, however, cannot be captured by
the traditional prefix definition, as it does not admit infinite traces in a prefix.

3.2 Losing Prefixes for Hyperproperties

Losing prefixes describe when an enforcer has to intervene based on possible
strategies for future inputs. As we will see, the definition of losing prefixes, and
thus the definition of the enforcement problem, differs significantly for both input
models. For the rest of this section, let H denote an arbitrary hyperproperty.

We first define strategies for the parallel model with n parallel sessions. In the
enforcement setting, a strategy receives a previously recorded prefix. Depending
on that prefix, the enforcer’s strategy might react differently to future inputs.
We therefore define a prefixed strategy as a higher-order function σ : ((2Σ)∗)n →
((2I)∗)n → (2O)n over Σ = I ∪̇ O. The strategy first receives a prefix (produced
by the system), then a sequence of inputs on all n traces, and reacts with an
output for all traces. We define a losing prefix as follows.

Definition 3 (Losing Prefix in the Parallel Model). A strategy σ(U) is
losing for H with U = (u1, . . . , un) ∈ ((2Σ)∗)n if there are input sequences
(v1, . . . , vn) ∈ ((2I)ω)n such that the following set is not in H:

⋃

1≤i≤n

{ui · (vi[0] ∪ σU (ε)(i)) · (vi[1] ∪ σU (vi[0])(i)) · (vi[2] ∪ σU (vi[0]vi[1])(i)) . . .},

where σU = σ(U) and σU (·)(i) denotes the i-th output that σ produces.

Runtime Enforcement of Hyperproperties 289

We say that σ(U) is winning if it is not losing. A prefix U is winning if there is
a strategy σ such that σ(U) is winning. Lastly, σ is winning if σ(ε) is winning
and for all non-empty winning prefixes U , σ(U) is winning.

Similar to the parallel model, a prefixed strategy in the sequential model is
a function σ : ((2Σ)ω)∗ × (2Σ)∗ → (2I)∗ → 2O over Σ = I ∪̇ O. The definition
of a losing prefix is the following.

Definition 4 (Losing Prefix in the Sequential Model). In the sequential
model, a strategy σ is losing with a prefix (U, u) for H, if there are input sequences
V = (v0, v1, . . .) with vi ∈ (2I)ω, such that the set U ∪ {t0, t1, . . .} is not in H,
where t0, t1, . . . are defined as follows.

t0 := u · (v0[0] ∪ σ(U, u)(ε)) · (v0[1] ∪ σ(U, u)(v0[0])) · . . .

t1 := (v1[0] ∪ σ(U ∪ {t0}, ε)(ε)) · (v1[1] ∪ σ(U ∪ {t0}, ε)(v1[0])) · . . .

t2 := (v2[0] ∪ σ(U ∪ {t0, t1}, ε)(ε)) · (v2[1] ∪ σ(U ∪ {t0, t1}, ε)(v2[0])) · . . .

Winning prefixes and strategies are defined analogously to the parallel model.

Remark 2. The above definitions illustrate that enforcing hyperproperties in the
sequential model defines an intriguing but complex problem. Strategies react to
inputs based on the observed prefix. The same input sequence can therefore
be answered differently in the first session and, say, in the third session. The
enforcement problem thus not simply combines monitoring and synthesis but
formulates a different kind of problem.

3.3 Enforcement Mechanisms

With the definitions of the previous sections, we adapt the notions of sound and
transparent enforcement mechanisms to hyperproperties under the two trace
input models. We define an enforcement mechanism enf for a hyperproperty H
to be a computable function which transforms a black-box reactive system S with
trace input model M into a reactive system enf (S) with the same input model.

Definition 5 (Soundness). enf is sound if for all reactive systems S and all
input sequences in model M, the set of traces produced by enf (S) is in H.

Definition 6 (Transparency). enf is transparent if the following holds: Let
U be a prefix producible by S with input sequence sI . If U is winning, then for
any prefix V producible by enf (S) with input sequence s′

I where sI � s′
I , it holds

that U � V .

We now have everything in place to define when a hyperproperty is enforce-
able for a given input model.

Definition 7 (Enforceable Hyperproperties). A hyperproperty H is enfo-
rceable if there is a sound and transparent enforcement mechanism.

290 N. Coenen et al.

It is now straightforward to see that in order to obtain a sound and trans-
parent enforcement mechanism, we need to construct a winning strategy for H.

Proposition 1. Let H be a hyperproperty and M be an input model. Assume
that it is decidable whether a prefix U is losing in model M for H. Then there
exists a sound and transparent enforcement mechanism enf for H iff there exists
a winning strategy in M for H.

The above proposition describes how to construct enforcement algorithms:
We need to solve the synthesis problem posed by the respective trace input
model. However, we have to restrict ourselves to properties that can be moni-
tored for losing prefixes. This is only natural: for example, the property expressed
by the HyperLTL formula ∃π. aπ can in general not be enforced since it con-
tains a hyperliveness [6] aspect: There is always the possibility for the required
trace π to occur in a future session (c.f. monitorable hyperproperties in [1,19]).
We therefore describe algorithms for HyperLTL specifications from the universal
fragment ∀π1. . . . ∀πk. ϕ of HyperLTL. Additionally, we assume that the specifi-
cation describes a property whose counterexamples have losing prefixes.

Before jumping to concrete algorithms, we describe two example scenarios of
hyperproperty enforcement with different trace input models.

Example 1 (Fairness in Contract Signing). Contract signing protocols let mul-
tiple parties negotiate a contract. In this setting, fairness requires that in every
situation where Bob can obtain Alice’s signature, Alice must also be able to
obtain Bob’s signature. Due to the asymmetric nature of contract signing proto-
cols (one party has to commit first), fairness is difficult to achieve (see, e.g., [33]).
Many protocols rely on a trusted third party (TTP) to guarantee fairness. The
TTP may negotiate multiple contracts in parallel sessions. The natural trace
input model is therefore the parallel model. Fairness forbids the existence of two
traces π and π′ that have the same prefix of inputs, followed in π by Bob request-
ing (RB) and receiving the signed contract (SB), and in π′ by Alice requesting
(RA), but not receiving the signed contract (¬SA):

∀π.∀π′.¬((
∧

i∈I

(iπ ↔ iπ′)) U (RB
π ∧ RA

π′ ∧ (SB
π ∧ ¬SA

π′)))

Example 2 (Privacy in Fitness Trackers). Wearables track a wide range of
extremely private health data which can leak an astonishing amount of insight
into your health. For instance, it has been found that observing out-of-the-
ordinary heart rate values correlates with diseases like the common cold or
even Lyme disease [27]. Consider the following setting. A fitness tracker con-
tinuously collects data that is stored locally on the user’s device. Additionally,
the data is synced with an external cloud. While locally stored data should be
left untouched, uploaded data has to be enforced to comply with information
flow policies. Each day, a new stream of data is uploaded, hence the sequential
trace input model would be appropriate. Comparing newer streams with older

Runtime Enforcement of Hyperproperties 291

streams allows for the detection of anomalies. We formalize an exemplary prop-
erty of this scenario in HyperLTL. Let HR be the set of possible heart rates.
Let furthermore active denote whether the user is currently exercising. Then the
following property ensures that unusually high heart rate values are not reported
to the cloud:

∀π.∀π′. ((activeπ ↔ activeπ′) →
∧

r∈HR

(rπ ↔ rπ′))

4 Enforcement Algorithms for HyperLTL Specifications

For both trace input models, we present sound and transparent enforcement
algorithms for universal HyperLTL formulas defining hyperproperties with los-
ing prefixes. First, we construct an algorithm for the parallel input model based
on parity game solving. For the sequential trace input model, we first show that
the problem is undecidable in the general case. Next, we provide an algorithm
that only finishes the remainder of the current session. This simplifies the prob-
lem because the existence of a correct future session is not guaranteed. For this
setting, we then present a simpler algorithm that is restricted to safety specifi-
cations.

4.1 Parallel Trace Input Model

In short, we proceed as follows: First, since we know the number of traces, we can
translate the HyperLTL formula to an equivalent LTL formula. For that formula,
we construct a realizability monitor based on the LTL monitor described in [11].
The monitor is a parity game, which we use to detect minimal losing prefixes
and to provide a valid continuation for the original HyperLTL formula.

Assume that the input model contains n traces. Let a HyperLTL formula
∀π1 . . . ∀πk. ϕ over Σ = I ∪̇ O be given, where ϕ is quantifier free. We construct
an LTL formula ϕn

LTL over Σ′ = {ai | a ∈ Σ, 1 ≤ i ≤ n} as follows:

ϕn
LTL :=

∧

i1,...,ik∈[1,n]

ϕ[∀a ∈ AP : aπ1
→ ai1 , . . . , aπk

→ aik]

The formula ϕn
LTL enumerates all possible combinations to choose k traces – one

for each quantifier – from the set of n traces in the model. We use the notation
ϕ[∀a ∈ AP : aπ1
→ ai1 , . . . , aπk

→ aik] to indicate that in ϕ, atomic propositions
with trace variables are replaced by atomic propositions indexed with one of the
n traces. We define I ′ = {ai | a ∈ I, 1 ≤ i ≤ n} and O′ analogously. Since n is
known upfront, we only write ϕLTL.

Our algorithm exploits that for every LTL formula ϕ, there exists an equiv-
alent parity game Gϕ such that ϕ is realizable iff player P0 is winning in the
initial state with strategy σ0 [13]. For a finite trace u, ϕ is realizable with pre-
fix u iff the play induced by u ends in a state q that is in the winning region of

292 N. Coenen et al.

Algorithm 1. HyperLTL enforcement algorithm for the parallel input model.

1: procedure Initialize(ψ, n)
2: ϕLTL := toLTL(ψ, n);
3: (game, q0) := toParity(ϕLTL);
4: winR := SolveParity(game);
5: if q0 /∈ winR then
6: raise error;

7: return(game, winR, q0);

8: procedure Enforce(game, lastq)
9: sig := GetStrat(game, lastq);

10: while true do
11: o := sig(lastq);
12: lastq := Move(game, lastq, o);
13: output(o);
14: i := getNextInput();
15: iLTL := toLTL(i);
16: lastq := Move(game, lastq, iLTL);

17: procedureMonitor(game, winR, q)
18: lastq := q;
19: while true do
20: o := getNextOutput();
21: oLTL := toLTL(o);
22: q := Move(game, lastq, oLTL);
23: if q /∈ winR then
24: return(game, lastq);

25: i := getNextInput();
26: iLTL := toLTL(i);
27: q := Move(game, q, iLTL);
28: lastq := q;

player P0. The algorithm to enforce the HyperLTL formula calls the following
three procedures – depicted in Algorithm 1 – in the appropriate order.

Initialize: Construct ϕLTL and the induced parity game Gϕ. Solve the game Gϕ,
i.e. compute the winning region for player P0. If the initial state q0 ∈ V0 is losing,
raise an error. Otherwise start monitoring in the initial state.

Monitor: Assume the game is currently in state q ∈ V0. Get the next outputs
(o1, . . . , on) ∈ On produced by the n traces of the system and translate them
to oLTL ⊆ O′ by subscripting them as described for formula ϕLTL. Move with
oLTL to the next state. This state is in V1. Check if the reached state is still in
the winning region. If not, it is a losing state, so we do not approve the system’s
output but let the enforcer take over and call Enforce on the last state. If
the state is still in the winning region, we process the next inputs (i1, . . . , in),
translate them to iLTL, and move with iLTL to the next state in the game, again
in V0. While the game does not leave the winning region, the property is still
realizable and the enforcer does not need to intervene.

Enforce: By construction, we start with a state q ∈ V0 that is in the winning
region, i.e., there is a positional winning strategy σ : V0 → 2O′

for player P0.
Using this strategy, we output σ(q) and continue with the next incoming input
iLTL to the next state in V0. Continue with this strategy for any incoming input.

Correctness and Complexity. By construction, since we never leave the winning
region, the enforced system fulfills the specification and the enforcer is sound.
It is also transparent: As long as the prefix produced by the system is not
losing, the enforcer does not intervene. The algorithm has triple exponential
complexity in the number of traces n: The size of ϕLTL is exponential in n

Runtime Enforcement of Hyperproperties 293

and constructing the parity game is doubly exponential in the size of ϕLTL [13].
Solving the parity game only requires quasi-polynomial time [34]. Note, however,
that all of the above steps are part of the initialization. At runtime, the algorithm
only follows the game arena. If the enforcer is only supposed to correct a single
output and afterwards hand back control to the system, the algorithm could be
easily adapted accordingly.

4.2 Sequential Trace Input Model

Deciding whether a prefix is losing in the sequential model is harder than in the
parallel model. In the sequential model, strategies are defined w.r.t. the traces
seen so far – they incrementally upgrade their knowledge with every new trace. In
general, the question whether there exists a sound and transparent enforcement
mechanism for universal HyperLTL specifications is undecidable.

Theorem 1. In the sequential model, it is undecidable whether a HyperLTL
formula ϕ from the universal fragment is enforceable.

Proof. We encode the classic realizability problem of universal HyperLTL, which
is undecidable [18], into the sequential model enforcement problem for universal
HyperLTL. HyperLTL realizability asks if there exists a strategy σ : (2I)∗ → 2O

such that the set of traces constructed from every possible input sequence satis-
fies the formula ϕ, i.e. whether {(w[0]∪σ(ε)) ·(w[1]∪σ(w[0])) ·(w[2]∪σ(w[0..1])) ·
. . . | w ∈ (2I)ω}, ∅ |= ϕ. Let a universal HyperLTL formula ϕ over Σ = I ∪̇ O
be given. We construct ψ := ϕ ∧ ∀π.∀π′. (

∧
o∈O oπ ↔ oπ′) W (

∨
i∈I iπ �↔ iπ′).

The universal HyperLTL formula ψ requires the strategy to choose the same
outputs as long as the inputs are the same. The choice of the strategy must
therefore be independent of earlier sessions, i.e., σ(U, ε)(sI) = σ(U ′, ε)(sI) for
all sets of traces U,U ′ and input sequences sI . Any trace set that fulfills ψ can
therefore be arranged in a traditional HyperLTL strategy tree branching on the
inputs and labeling the nodes with the outputs. Assume the enforcer has to take
over control after the first event when enforcing ψ. Thus, there is a sound and
transparent enforcement mechanism for ψ iff ϕ is realizable. ��

Finishing the Current Session. As the general problem is undecidable, we study
the problem where the enforcer takes over control only for the rest of the cur-
rent session. For the next session, the existence of a solution is not guaranteed.
This approach is especially reasonable if we are confident that errors occur only
sporadically. We adapt the algorithm presented for the parallel model. Let a
HyperLTL formula ∀π1. . . . ∀πk. ϕ over Σ = I ∪̇O be given, where ϕ is quantifier
free. As for the parallel model, we translate the formula into an LTL formula
ϕn

LTL. We first do so for the first session with n = 1. We construct and solve the
parity game for that formula, and use it to monitor the incoming events and to
enforce the rest of the session if necessary. For the next session, we construct
ϕn

LTL for n = 2 and add an additional conjunct encoding the observed trace t1.
The resulting formula induces a parity game that monitors and enforces the sec-
ond trace. Like this, we can always enforce the current trace in relation to all

294 N. Coenen et al.

Algorithm 2. HyperLTL enforcement algorithm for the sequential trace input
model.
1: procedure EnforceSequential(ψ)
2: n := 1;
3: ϕtraces := true;
4: while true do
5: ψcurr := toLTL(ψ, n) ∧ ϕtraces;
6: (game, winR, q0) := Initialize’(ψcurr);
7: res := Monitor’(game, winR, q0);
8: if res == (‘ok’, t) then
9: ϕtraces := ϕtraces ∧ toLTL(t);

10: else if res = (‘losing’, t, (game, lastq)) then
11: t’ := Enforce’(game, lastq);
12: ϕtraces := ϕtraces ∧ toLTL(t · t’);

13: n++;

traces seen so far. Algorithm 2 depicts the algorithm calling similar procedures
as in Algorithm 1 (for which we therefore do not give any pseudo code). Ini-
tialize’ is already given an LTL formula and, therefore, does not translate its
input to LTL. Monitor’ returns a tuple including the reason for its termina-
tion (‘ok’ when the trace finished and ‘losing’ when a losing prefix was detected).
Additionally, the monitor returns the trace seen so far (not including the event
that led to a losing prefix), which will be added to ϕtraces. Enforce’ enforces
the rest of the session and afterwards returns the produced trace, which is then
encoded in the LTL formula (toLTL(t)).

Correctness and Complexity. Soundness and transparency follow from the fact
that for the n-th session, the algorithm reduces the problem to the parallel
setting with n traces, with the first n − 1 traces being fixed and encoded into
the LTL formula ϕn

LTL. We construct a new parity game from ϕn
LTL after each

finished session. The algorithm is thus of non-elementary complexity.

Safety Specifications. If we restrict ourselves to formulas ψ = ∀π1 . . . ∀πk. ϕ,
where ϕ is a safety formula, we can improve the complexity of the algorithm.
Note, however, that not every property with losing prefixes is a safety property:
for the formula ∀π. (oπ → iπ) with o ∈ O and i ∈ I, any prefix with o
set at some point is losing. However, the formula does not belong to the safety
fragment. Given a safety formula ϕ, we can translate it to a safety game [25]
instead of a parity game. The LTL formula we create with every new trace is
built incrementally, i.e., with every finished trace we only ever add new conjuncts.
With safety games, we can thus recycle the winning region from the game of the
previous trace. The algorithm proceeds as follows. 1) Translate ϕ into an LTL
formula ϕn

LTL for n = 1. 2) Build the safety game G1
ϕLTL

for ϕ1
LTL and solve it.

Monitor the incoming events of trace t1 as before. Enforce the rest of the trace if
necessary. 3) Once the session is terminated, generate the LTL formula ϕ2

LTL =
ϕ1

LTL∧ϕ2
diff. As ϕ2

LTL is a conjunction of the old formula and a new conjunct ϕ2
diff,

Runtime Enforcement of Hyperproperties 295

we only need to generate the safety game G2
diff and then build the product of G2

diff

with the winning region of G1
ϕLTL

. We solve the resulting game and monitor (and
potentially enforce) as before. The algorithm incrementally refines the safety
game and enforces the rest of a session if needed. The construction recycles
parts of the game computed for the previous session. We thus avoid the costly
translation to a parity game for every new session. While constructing the safety
game from the LTL specification has still doubly exponential complexity [25],
solving safety games can be done in linear time [2].

5 Experimental Evaluation

We implemented the algorithm for the parallel trace input model in our proto-
type tool REHyper1, which is written in Rust. We use Strix [31] for the gener-
ation of the parity game. We determine the winning region and the positional
strategies of the game with PGSolver [23]. All experiments ran on an Intel Xeon
CPU E3-1240 v5 3.50 GHz, with 8 GB memory running Debian 10.6. We eval-
uate our prototype with two experiments. In the first, we enforce a non-trivial
formulation of fairness in a mutual exclusion protocol. In the second, we enforce
the information flow policy observational determinism on randomly generated
traces.

5.1 Enforcing Symmetry in Mutual Exclusion Algorithms

Mutual exclusion algorithms like Lamport’s bakery protocol ensure that multiple
threads can safely access a shared resource. To ensure fair access to the resource,
we want the protocol to be symmetric, i.e., for any two traces where the roles
of the two processes are swapped, the grants are swapped accordingly. Since
symmetry requires the comparison of two traces, it is a hyperproperty.

For our experiment, we used a Verilog implementation of the Bakery
protocol [26], which has been proven to violate the following symmetry
formulation [22]:

∀π.∀π′.(pc(0)π = pc(1)π′ ∧ pc(1)π = pc(0)π′)W ¬ (pauseπ = pauseπ′ ∧
sym(selπ, selπ′) ∧ sym(breakπ, breakπ′) ∧ selπ < 3 ∧ selπ′ < 3) .

The specification states that for any two traces, the program counters need
to be symmetrical in the two processes as long as the processes are scheduled
(select) and ties are broken (break) symmetrically. Both pause and sel < 3 handle
further implementation details. The AIGER translation [22] of the protocol has
5 inputs and 46 outputs. To enforce the above formula, only 10 of the outputs
are relevant. We enforced symmetry of the bakery protocol on simulated pairs
of traces produced by the protocol. Table 1 shows our results for different trace
lengths and trace generation techniques. We report the average runtime over
10 runs as well as minimal and maximal times along with the number of times
1 REHyper is available at https://github.com/reactive-systems/REHyper.

https://github.com/reactive-systems/REHyper

296 N. Coenen et al.

Table 1. Enforcing symmetry in the Bakery protocol on pairs of traces. Times are
given in seconds.

Random traces Symmetric traces

|t| avg min max #enforced avg min max #enforced

500 0.003 0.003 0.003 0 0.013 0.008 0.020 10

1000 0.005 0.005 0.005 0 0.024 0.015 0.039 10

5.000 0.026 0.024 0.045 0 0.078 0.065 0.097 10

10.000 0.049 0.047 0.064 0 0.153 0.129 0.178 10

the enforcer needed to intervene. The symmetry assumptions are fairly specific
and are unlikely to be reproduced by random input simulation. In a second
experiment, we therefore generated pairs of symmetric traces. Here, the enforcer
had to intervene every time, which produced only a small overhead.

The required game was constructed and solved in 313 seconds. For sets of
more than two traces, the construction of the parity game did not return within
two hours. The case study shows that the tool performs without significant
overhead at runtime and can easily handle very long traces. The bottleneck is
the initial parity game construction and solving.

5.2 Enforcing Observational Determinism

In our second experiment, we enforced observational determinism, given as the
HyperLTL formula ∀π.∀π′. (oπ ↔ oπ′)W(iπ � iπ′). The formula states that
for any two execution traces, the observable outputs have to agree as long
as the observable inputs agree. Observational determinism is a prototypical
information-flow policy used in many experiments and case studies for Hyper-
LTL (e.g. [4,18,22]). We generated traces using the following scalable generation
scheme: At each position, each input and output bit is flipped with a certain
probability (0.5% or 1%). This results in instances where observational deter-
minism randomly breaks. Table 2 shows our results. Each line corresponds to
100 randomly generated instances of the given size (number of inputs/outputs
and traces, and length of the sessions). We report the initialization time that
is needed to generate and solve the parity game. Furthermore, we report aver-
age, minimal, and maximal enforcement time as well as the number of instances
where the enforcer intervened. All times are reported in seconds. The bottleneck
is again the time needed to construct and solve the parity game. At runtime,
which is the crucial aspect, the enforcer performs efficiently. The higher bit flip
probability did not lead to more enforcements: For traces of length 10000, the
probability that the enforcer intervenes is relatively high already at a bit flip
probability of 0.5%.

Runtime Enforcement of Hyperproperties 297

Table 2. Enforcing observational determinism. Times are given in seconds.

Benchmark size Init time 0.5% bit flip probability 1% bit flip probability

i # o # t |t| avg min max #enf’ed avg min max #enf’ed

1 1 3 10000 0.517 0.014 0.013 0.017 60 0.013 0.013 0.015 60

8 10000 65.67 0.524 0.517 0.625 99 0.524 0.517 0.588 97

2 2 4 10000 0.869 0.025 0.024 0.030 73 0.032 0.031 0.043 77

5 10000 21.189 0.038 0.037 0.041 90 0.038 0.037 0.042 86

3 3 2 10000 0.633 0.019 0.018 0.022 47 0.023 0.023 0.025 54

4 5000 0.022 0.021 0.026 77 0.021 0.021 0.021 71
132.849

4 10000 0.038 0.036 0.056 77 0.037 0.037 0.042 77

4 4 3 1000 0.010 0.008 0.015 71 0.009 0.008 0.018 68

3 5000 43.885 0.023 0.021 0.033 72 0.022 0.021 0.025 78

3 10000 0.038 0.037 0.050 76 0.038 0.037 0.041 75

6 Conclusion

We studied the runtime enforcement problem for hyperproperties. Depending
on the trace input model, we showed that the enforcement problem boils down
to detecting losing prefixes and solving a custom synthesis problem. For both
input models, we provided enforcement algorithms for specifications given in the
universally quantified fragment of the temporal hyperlogic HyperLTL. While the
problem for the sequential trace input model is in general undecidable, we showed
that enforcing HyperLTL specifications becomes decidable under the reasonable
restriction to only finish the current session. For the parallel model, we provided
an enforcement mechanism based on parity game solving. Our prototype tool
implements this algorithm for the parallel model. We conducted experiments on
two case studies enforcing complex HyperLTL specifications for reactive systems
with the parallel model. Our results show that once the initial parity game
solving succeeds, our approach has only little overhead at runtime and scales to
long traces.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: CSF 2016 (2016)

2. Beeri, C.: On the membership problem for functional and multivalued dependencies
in relational databases. ACM Trans. Database Syst. 5(3), 241–259 (1980)

3. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime
enforcement for reactive systems. CoRR abs/1501.02573 (2015)

4. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: CSF 2018 (2018)

5. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal
logics. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 167–182. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 11

https://doi.org/10.1007/978-3-662-46678-0_11

298 N. Coenen et al.

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF 2008 (2008)
7. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,

C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

8. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019 (2019)

9. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

10. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: S&P
2010 (2010)

11. Ehlers, R., Finkbeiner, B.: Monitoring realizability. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 427–441. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29860-8 34

12. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: NSPW 1999 (1999)

13. Esparza, Javier, Křet́ınský, Jan, Raskin, Jean-François., Sickert, Salomon: From
LTL and limit-deterministic Büchi automata to deterministic parity automata. In:
Legay, Axel, Margaria, Tiziana (eds.) TACAS 2017. LNCS, vol. 10205, pp. 426–442.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 25

14. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16612-9 9

15. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https://doi.org/
10.1007/s10009-011-0196-8

16. Falcone, Y., Mounier, L., Fernandez, J.C., Richier, J.L.: Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities. Form. Methods Syst. Des.
38, 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4

17. Falcone, Y., Pinisetty, S.: On the runtime enforcement of timed properties. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 48–69. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 4

18. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

19. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Form. Methods Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/s10703-
019-00334-z

20. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

21. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

22. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-642-29860-8_34
https://doi.org/10.1007/978-3-642-29860-8_34
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/978-3-030-32079-9_4
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3

Runtime Enforcement of Hyperproperties 299

23. Friedmann, O., Lange, M.: The PGSolver Collection of Parity Game Solvers Ver-
sion 3 (2010)

24. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

25. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 17

26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

27. Li, X., et al.: Digital health: tracking physiomes and activity using wearable biosen-
sors reveals useful health-related information. PLoS Biol. 15, e2001402 (2017)

28. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 1–41 (2009)

29. Luo, Q., Roundefinedu, G.: EnforceMOP: a runtime property enforcement system
for multithreaded programs. In: ISSTA 2013 (2013)

30. McLean, J.: Proving noninterference and functional correctness using traces. J.
Comput. Secur. 1(1), 37–58 (1992)

31. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

32. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of security
policies on black box reactive programs. In: POPL 2015 (2015)

33. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. J. Comput.
Secur. 14(6), 561–589 (2006)

34. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: MFCS
2019 (2019)

35. Pnueli, A.: The temporal logic of programs. In: SFCS 1977 (1977)
36. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement

of (timed) properties with uncontrollable events. In: MSCS 2019 (2019)
37. Roscoe, A.W.: CSP and determinism in security modelling. In: S&P 1995 (1995)
38. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3,

30–50 (2000)
39. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of

hyperproperties. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 406–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 25

40. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties
under burst error. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 65–81. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40648-0 6

41. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: CSFW-16 (2003)

https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-319-40648-0_6
https://doi.org/10.1007/978-3-319-40648-0_6

System Synthesis and Approximation

Compositional Synthesis of Modular
Systems

Bernd Finkbeiner and Noemi Passing(B)

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{finkbeiner,noemi.passing}@cispa.de

Abstract. Given the advances in reactive synthesis, it is a natural next
step to consider more complex multi-process systems. Distributed syn-
thesis, however, is not yet scalable. Compositional approaches can be a
game changer. Here, the challenge is to decompose a given specification
of the global system behavior into requirements on the individual pro-
cesses. In this paper, we introduce a compositional synthesis algorithm
that, for each process, constructs, in addition to the implementation, a
certificate that captures the necessary interface between the processes.
The certificates then allow for constructing separate requirements for the
individual processes. By bounding the size of the certificates, we can bias
the synthesis procedure towards solutions that are desirable in the sense
that the assumptions between the processes are small. Our experimental
results show that our approach is much faster than standard methods
for distributed synthesis as long as reasonably small certificates exist.

1 Introduction

In the last decade, there have been breakthroughs in terms of realistic applica-
tions and practical tools for reactive synthesis, demonstrating that concentrating
on what a system should do instead of how it should be done is feasible. A natural
next step is to consider complex multi-process systems. For distributed systems,
though, there are no scalable tools that are capable of automatically synthesizing
strategies from formal specifications for arbitrary system architectures.

For the scalability of verification algorithms, compositionality, i.e., breaking
down the verification of a complex system into several smaller tasks over individ-
ual components, has proven to be a key technique [21]. For synthesis, however,
developing compositional approaches is much more challenging: In practice, an
individual process can rarely guarantee the satisfaction of the specification alone.
Typically, there exist input sequences that prevent a process from satisfying the
specification. The other processes in the system then ensure that these sequences
are not produced. Thus, a process needs information about the strategies of the

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 303–319, 2021.
https://doi.org/10.1007/978-3-030-88885-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_20&domain=pdf
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0001-7781-043X
https://doi.org/10.1007/978-3-030-88885-5_20

304 B. Finkbeiner and N. Passing

other processes to be able to satisfy the specification. Hence, distributed synthe-
sis cannot easily be broken down into tasks over the individual processes.

In this paper, we introduce a compositional synthesis algorithm addressing
this problem by synthesizing additional guarantees on the behavior of every pro-
cess. These guarantees, the so-called certificates, then provide essential informa-
tion for the individual synthesis tasks: A strategy is only required to satisfy the
specification if the other processes do not deviate from their guaranteed behavior.
This allows for considering a process independent of the other processes’ strate-
gies. Our algorithm is an extension of bounded synthesis [14] that incorporates
the search for certificates into the synthesis task for the strategies.

The benefits of synthesizing additional certificates are threefold. First, it
guides the synthesis procedure: Bounded synthesis searches for strategies up to a
given size. Beyond that, our algorithm introduces a bound on the size of the cer-
tificates. Hence, it bounds the size of the interface between the processes and thus
the size of the assumptions made by them. By starting with small bounds and
by only increasing them if the specification is unrealizable for the given bounds,
the algorithm restricts synthesis to search for solutions with small interfaces.

Second, the certificates increase the understandability of the synthesized solu-
tion: It is challenging to recognize the interconnections in a distributed system.
The certificates capture which information a process needs about the behavior of
the other processes to be able to satisfy the specification, immediately encapsu-
lating the system’s interconnections. Furthermore, the certificates abstract from
behavior that is irrelevant for the satisfaction of the specification. This allows for
analyzing the strategies locally without considering the whole system’s behavior.

Third, synthesizing certificates enables modularity of the system: The strate-
gies only depend on the certificates of the other processes, not on their particular
strategies. As long as the processes do not deviate from their certificates, the
parallel composition of the strategies satisfies the specification. Hence, the cer-
tificates form a contract between the processes. After defining the contract, the
strategies can be exchanged safely with other ones that respect the contract.
Thus, strategies can be adapted flexibly without synthesizing a solution for the
whole system again if requirements that do not affect the contract change.

We introduce two representations of certificates, as LTL formulas and as
labeled transition systems. We show soundness and completeness of our certify-
ing synthesis algorithm for both of them. Furthermore, we present a technique
for determining relevant processes for each process. This allows us to reduce the
number of certificates that a process has to consider to satisfy the specification
while maintaining soundness and completeness. Focusing on the representation
of certificates as transition systems, we present an algorithm for synthesizing
certificates that is based on a reduction to a SAT constraint system.

We implemented the algorithm and compared it to an extension [2] of the syn-
thesis tool BoSy [9] to distributed systems and to a compositional synthesis
algorithm based on dominant strategies [7]. The results clearly demonstrate the
advantage of synthesizing certificates: If solutions with a small interface between
the processes exist, our algorithm outperforms the other synthesis tools signifi-
cantly. Otherwise, the overhead of synthesizing additional guarantees is small.

Compositional Synthesis of Modular Systems 305

Further details and all proofs are available in the full version of this paper [13].

Related Work: There are several approaches to compositional synthesis for
monolithic systems [10–12,16,17]. As we are considering distributed systems,
we focus on distributed synthesis algorithms. Assume-guarantee synthesis [5] is
closest to our approach. There, each process provides a guarantee on its own
behavior and makes an assumption on the behavior of the other processes. If
there is a strategy for each process that satisfies the specification under the
hypothesis that the other processes respect the assumption, and if its guarantee
implies the assumptions of the other processes, a solution for the whole system
is found. In contrast to our approach, most assume-guarantee synthesis algo-
rithms [1,3–5] either rely on the user to provide the assumptions or require that
a strategy profile on which the strategies can synchronize is constructed prior to
synthesis.

A recent extension of assume-guarantee synthesis [19] algorithmically synthe-
sizes assume-guarantee contracts for each process. In contrast to our approach,
the guarantees do not necessarily imply the assumptions of the other processes.
Thus, the algorithm needs to iteratively refine assumptions and guarantees until
a valid contract is found. This iteration is circumvented in our algorithm since
only assumptions that are guaranteed by the other processes are used.

Using a weaker winning condition for synthesis, remorse-free dominance [6],
avoids the explicit construction of assumptions and guarantees [7]. The assump-
tions are implicit, but they do not always suffice. Thus, although a dependency
analysis of the specification allows for solutions for further, more interconnected
systems and specifications [12], compositional solutions do not always exist.

2 Running Example

In many modern factories, autonomous robots are a crucial component in the
production line. The correctness of their implementation is essential and there-
fore they are a natural target for synthesis. Consider a factory with two robots
that carry production parts from one machine to another. In the factory, there is
a crossing that is used by both robots. The robots are required to prevent a crash:
ϕsafe := ¬((at crossing1 ∧ go1)∧ (at crossing2 ∧ go2)), where at crossing i

is an input variable denoting that robot ri arrived at the crossing, and goi is
an output variable of robot ri denoting that ri moves ahead. Moreover, both
robots need to cross the intersection at some point in time after arriving there:
ϕcrossi := (at crossing i → goi). In addition to these requirements, both
robots have further objectives ϕaddi

that are specific to their area of application.
For instance, they may capture which machines have to be approached.

None of the robots can satisfy ϕsafe ∧ ϕcrossi alone: The crossing needs to
be entered eventually by ri but no matter when it is entered, rj might enter it
at the same time. Thus, strategies cannot be synthesized individually without
information on the other robot’s behavior. Due to ϕaddi

, the parallel composition
of the strategies can be large and complex. Hence, understanding why the overall
specification is met and recognizing the individual strategies is challenging.

306 B. Finkbeiner and N. Passing

If both robots commit to their behavior at crossings, a robot ri can satisfy
ϕsafe ∧ϕcrossi individually since it is allowed to assume that the other robot does
not deviate from its guaranteed behavior, the so-called certificate. For instance,
if r2 commits to always giving priority to r1, entering the crossing regardless
of r2 satisfies ϕsafe ∧ϕcross1 for r1. If r1 guarantees to not block crossings, r2 can
satisfy ϕsafe ∧ ϕcross2 as well. Hence, if both robots can satisfy the whole part
of the specification that affects them, i.e., ϕi = ϕsafe ∧ ϕcrossi ∧ ϕaddi , under
the assumption that the other robot sticks to its certificate, then the parallel
composition of their strategies satisfies the whole specification. Furthermore, we
then know that the robots do not interfere in any other situation. Thus, the
certificates provide insight in the required communication of the robots.

Moreover, when analyzing the strategy si of ri, only taking rj ’s certificate
into account abstracts away rj ’s behavior aside from crossings. This allows us
to focus on the relevant aspects of rj ’s behavior for ri, making it significantly
easier to understand why ri’s strategy satisfies ϕi. Lastly, the certificates form
a contract of safe behavior at crossings: If ri’s additional objectives change, it
suffices to synthesize a new strategy for ri. Provided ri does not change its
behavior at crossings, rj ’s strategy can be left unchanged.

3 Preliminaries

Notation. In the following, we denote the prefix of length t of an infinite word
σ = σ1σ2 · · · ∈ (2V)ω by σ..t := σ1 . . . σt. Moreover, for a set X and an infinite
word σ = σ1σ2 · · · ∈ (2V)ω, we define σ ∩ X = (σ1 ∩ X)(σ2 ∩ X) · · · ∈ (2X)ω.

LTL. Linear-time temporal logic (LTL) [20] is a specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The
syntax of LTL is given by ϕ,ψ:: = a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕ U ψ. We
define ϕ = true U ϕ, and ϕ = ¬ ¬ϕ and use the standard semantics.
The language L(ϕ) of a formula ϕ is the set of infinite words that satisfy ϕ.
The atomic propositions in ϕ are denoted by prop(ϕ). We represent a formula
ϕ = ξ1 ∧ · · · ∧ ξk also by the set of its conjuncts, i.e., ϕ = {ξ1, . . . , ξk}.

Automata. A universal co-Büchi automaton A = (Q, q0, δ, F) over a finite alpha-
bet Σ consists of a finite set of states Q, an initial state q0 ∈ Q, a transition
relation δ : Q × 2Σ × Q, and a set F ⊆ Q of rejecting states. For an infinite
word σ = σ0σ1 · · · ∈ (2Σ)ω, a run of σ on A is an infinite sequence q0q1 · · · ∈ Qω

of states with (qi, σi, qi+1) ∈ δ for all i ≥ 0. A run is accepting if it contains
only finitely many visits to rejecting states. A accepts a word σ if all runs of σ
on A are accepting. The language L(A) of A is the set of all accepted words.
An LTL specification ϕ can be translated into an equivalent universal co-Büchi
automaton Aϕ, i.e., with L(ϕ) = L(Aϕ), with a single exponential blow up [18].

Architectures. An architecture is a tuple A = (P, V, I,O), where P is a set
of processes consisting of the environment process env and a set of n system
processes P− = P \ {env}, V is a set of variables, I = 〈I1, . . . , In〉 assigns a set

Compositional Synthesis of Modular Systems 307

Ij ⊆ V of input variables to each system process pj , and O = 〈Oenv , O1, . . . On〉
assigns a set Oj ⊆ V of output variables to each process pj . For all pj , pk ∈ P−

with j �= k, we have Ij ∩Oj = ∅ and Oj ∩Ok = ∅. The variables Vj of pj ∈ P− are
its inputs and outputs, i.e., Vj = Ij ∪Oj . The variables V of the whole system are
defined by V =

⋃
pj∈P−Vj . We define inp =

⋃
pj∈P−Ij and out =

⋃
pj∈P−Oj .

An architecture is called distributed if |P−| ≥ 2 and monolithic otherwise. In the
remainder of this paper, we assume that a distributed architecture is given.

Transition Systems. Given sets I and O of input and output variables, a Moore
transition system (TS) T = (T, t0, τ, o) consists of a finite set of states T , an
initial state t0, a transition function τ : T × 2I → T , and a labeling function
o : T → 2O. For an input sequence γ = γ0γ1 . . . ∈ (2I)ω, T produces a path
π = (t0, γ0 ∪ o(t0))(t1, γ1 ∪ o(t1)) . . . ∈ (T × 2I∪O)ω, where (tj , γj , tj+1) ∈ τ . The
projection of a path to the variables is called trace. The parallel composition of
two TS T1 = (T1, t

1
0, τ1, o1), T2 = (T2, t

2
0, τ2, o2), is given by T1||T2 = (T, t0, τ, o),

with T = T1 × T2, t0 = (t10, t
2
0), τ((t, t′), i) = (τ1(t, i1 ∩ I1), τ2(t′, i2 ∩ I2)), and

o((t, t′)) = o1(t) ∪ o2(t′). A TS T1 = (T1, t
1
0, τ1, o1) over I and O1 simulates

T2 = (T2, t
2
0, τ2, o2) over I and O2 with O1 ⊆ O2, denoted T2 � T1, if there is a

simulation relation R : T2×T1 with (t20, t
1
0) ∈ R, ∀(t2, t1) ∈ R. o(t2)∩O1 = o(t1),

and ∀t′2 ∈ T2.∀i ∈ 2I . (τ2(t2, i) = t′2) → (∃t′1 ∈ T1. τ1(t1, i) = t′1 ∧ (t′2, t
′
1) ∈ R).

Strategies. We model a strategy si of pi ∈ P− as a Moore transition system Ti

over Ii and Oi. The trace produced by Ti on γ ∈ (2Ii)ω is called the computation
of si on γ, denoted comp(si, γ). For an LTL formula ϕ over V , si satisfies ϕ,
denoted si |= ϕ, if comp(s, γ) ∪ γ′ |= ϕ holds for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω.

Synthesis. For a specification ϕ, synthesis derives strategies s1, . . . , sn for the sys-
tem processes such that s1|| . . . ||sn |= ϕ holds. If such strategies exist, ϕ is real-
izable in the architecture. Bounded synthesis [14] additionally bounds the size of
the strategies. The search for strategies is encoded into a constraint system that
is satisfiable if, and only if, ϕ is realizable for the bound. There are SMT, SAT,
QBF, and DQBF encodings for monolithic [8] and distributed [2] architectures.

4 Compositional Synthesis with Certificates

In this section, we describe a sound and complete compositional synthesis algo-
rithm for distributed systems. The main idea is to synthesize strategies for the
system processes individually. Hence, in contrast to classical distributed synthe-
sis, where strategies s1, . . . , sn are synthesized such that s1|| . . . ||sn |= ϕ holds,
we require that si |= ϕi holds for all system processes pi ∈ P−. Here, ϕi is a
subformula of ϕ that, intuitively, captures the part of ϕ that affects pi. As long
as ϕi contains all parts of ϕ that restrict the behavior of si, the satisfaction of ϕ
by the parallel composition of all strategies is guaranteed. Computing specifica-
tion decompositions is not the main focus of this paper; in fact, our algorithm
can be used with any decomposition that fulfills the above requirement. There
is work on obtaining small subspecifications, e.g., [11], we, however, use an easy
decomposition algorithm in the remainder of this paper for simplicity:

308 B. Finkbeiner and N. Passing

Definition 1 (Specification Decomposition). Let ϕ = ξ1 ∧ · · · ∧ ξk be an
LTL formula. The decomposition of ϕ is a vector 〈ϕ1, . . . , ϕn〉 of LTL formulas
with ϕi = {ξj | ξj ∈ ϕ ∧ (prop(ξj) ∩ Oi �= ∅ ∨ prop(ξj) ∩ out = ∅)}.

Intuitively, the subspecification ϕi contains all conjuncts of ϕ that contain
outputs of pi as well as all input-only conjuncts. In the remainder of this paper,
we assume that both prop(ϕ) ⊆ V and L(ϕ) ∈ (2V)ω hold for all specifications ϕ.
Then, every atomic proposition occurring in a formula ϕ is an input or output
of at least one system process and thus

∧
pi∈P−ϕi = ϕ holds.

Although we decompose the specification, a process pi usually cannot guaran-
tee the satisfaction of ϕi alone; rather, it depends on the cooperation of the other
processes. For instance, robot r1 from Sect. 2 cannot guarantee that no crash will
occur when entering the crossing since r2 can enter it at the same point in time.
Thus, we additionally synthesize a guarantee on the behavior of each process,
the so-called certificate. The certificates then provide essential information to the
processes: If pi commits to a certificate, the other processes can rely on pi’s strat-
egy to not deviate from this behavior. In particular, the strategies only need to
satisfy the specification as long as the other processes stick to their certificates.
Thus, a process is not required to react to all behaviors of the other processes
but only to those that truly occur when the processes interact.

In this section, we represent the certificate of pi ∈ P− by an LTL formula ψi.
For instance, robot r2 may guarantee to always give priority to r1 at crossings,
yielding the certificate ψ2 = ((at crossing1∧at crossing2) → ¬go2). Since r1
can assume that r2 does not deviate from its certificate ψ2, a strategy for r1 that
enters crossings regardless of r2 satisfies ϕsafe ∧ ϕcross1 .

To ensure that pi does not deviate from its own certificate, we require its
strategy si to satisfy the LTL formula ψi describing it. To model that si only has
to satisfy its specification if the other processes stick to their certificates, it has
to satisfy Ψi → ϕi, where Ψi = {ψj | pj ∈ P−\{pi}}, i.e., Ψi is the conjunction of
the certificates of the other processes. Using this, we define certifying synthesis:

Definition 2 (Certifying Synthesis). Let ϕ be an LTL formula with decom-
position 〈ϕ1, . . . , ϕn〉. Certifying synthesis derives strategies s1, . . . , sn and LTL
certificates ψ1, . . . , ψn for the system processes such that si |= ψi ∧ (Ψi → ϕi)
holds for all pi ∈ P−, where Ψi = {ψj | pj ∈ P−\ {pi}}.

Classical distributed synthesis algorithms reason globally about the satisfac-
tion of the full specification by the parallel composition of the synthesized strate-
gies. Certifying synthesis, in contrast, reasons locally about the satisfaction of
the subspecifications for the individual processes, i.e., without considering the
parallel composition of the strategies. This greatly improves the understandabil-
ity of the correctness of synthesized solutions since we are able to consider the
strategies separately. Furthermore, local reasoning is still sound and complete:

Theorem 1 (Soundness and Completeness). Let ϕ be an LTL formula
and let S = 〈s1, . . . , sn〉 be a vector of strategies for the system processes. There
exists a vector Ψ = 〈ψ1, . . . , ψn〉 of LTL certificates such that (S, Ψ) is a solution
of certifying synthesis for ϕ if, and only if s1|| . . . ||sn |= ϕ holds.

Compositional Synthesis of Modular Systems 309

Soundness of certifying synthesis follows from the fact that every system pro-
cess is required to satisfy its own certificate. Completeness is obtained since every
strategy can serve as its own certificate: Intuitively, if s1|| . . . ||sn |= ϕ, then LTL
certificates that capture the exact behavior of the corresponding strategy satisfy
the requirements of certifying synthesis. The proof is given in [13].

Thus, certifying synthesis enables local reasoning and therefore better under-
standability of the solution as well as modularity of the system, while ensuring to
find correct solutions for all specifications that are realizable in the architecture.
Furthermore, the parallel composition of the strategies obtained with certifying
synthesis for a specification ϕ is a solution for the whole system.

5 Certifying Synthesis with Deterministic Certificates

There are several quality measures for certificates, for instance their size. We,
however, focus on certificates that are easy to synthesize: To determine whether a
strategy sticks to its own certificate, a check for language containment has to be
performed. Yet, efficient algorithms only exist for deterministic properties [23].
While certificates represented by LTL formulas are easily human-readable, they
can be nondeterministic. Thus, the ω-automaton representing the LTL certificate
needs to be determinized, yielding an exponential blowup in its size [22].

In this section, we introduce a representation of certificates that ensures
determinism to avoid the blowup. Note that while enforcing determinism might
yield larger certificates, it does not rule out any strategy that can be found
with nondeterministic certificates: Since strategies are per se deterministic, there
exists at least one deterministic certificate for them: The strategy itself.

We model the guaranteed behavior gi of a system process pi as a labeled
transition system T G

i , called guarantee transition system (GTS), over inputs Ii

and guarantee output variables OG
i ⊆ Oi. Only considering a subset of Oi as

output variables allows the certificate to abstract from outputs of pi whose valu-
ation is irrelevant for all other system processes. In the following, we assume the
guarantee output variables of pi to be both an output of pi and an input of some
other system process, i.e., OG

i := Oi ∩ inp. Intuitively, a variable v ∈ Oi \ OG
i

cannot be observed by any other process. Thus, a guarantee on its behavior
does not influence any other system process and hence it can be omitted. The
variables V G

i of the GTS of pi ∈ P− are then given by V G
i := Ii ∪ OG

i .
In certifying synthesis, it is essential that a strategy only needs to satisfy the

specification if the other processes do not deviate from their certificates. In the
previous section, we used an implication in the local objective to model this.
When representing certificates as transition systems, we use valid histories to
determine whether a sequence matches the certificates of the other processes.

Definition 3 (Valid History). Let Gi be a set of guarantee transition systems.
A valid history of length t with respect to Gi is a finite sequence σ ∈ (2V)∗ of
length t, where for all gj ∈ Gi, σk ∩ OG

j = comp(gj , σ̂ ∩ Ij)k ∩ OG
j holds for all

points in time k with 1 ≤ k ≤ t and all infinite extensions σ̂ of σ. The set of all
valid histories of length t with respect to Gi is denoted by Ht

Gi
.

310 B. Finkbeiner and N. Passing

Fig. 1. Strategy and GTS for robots r1 and r2 from Sect. 2, respectively. The labels of
the states denote the output of the TS in the respective state.

Intuitively, a valid history respecting a set Gi of guarantee transition systems
is a finite sequence that is a prefix of a computation of all GTS in Gi. Thus, a valid
history can be produced by the parallel composition of the GTS. Note that since
strategies cannot look into the future, a finite word satisfies the requirements of
a valid history either for all of its infinite extensions or for none of them.

As an example for valid histories, consider the manufacturing robots again.
Assume that r2 guarantees to always give priority to r1 at crossings and to
move forward if r1 is not at the crossing. A GTS g2 for r2 is depicted in Fig. 1a.
Since r2 never outputs go2 if r1 is at the crossing (left state), the finite sequence
{at crossing1}{go2} is no valid history respecting g2. Since r2 outputs go2 oth-
erwise (right state), e.g., {at crossing2}{go2} is a valid history respecting g2.

We use valid histories to determine whether the other processes stick to their
certificates. Thus, intuitively, a strategy is required to satisfy the specification if
its computation is a valid history respecting the GTS of the other processes:

Definition 4 (Local Satisfaction). Let Gi be a set of guarantee transition
systems. A strategy si for pi ∈ P− locally satisfies an LTL formula ϕi with
respect to Gi, denoted si |=Gi

ϕi, if comp(si, γ)∪γ′ |= ϕi holds for all γ ∈ (2Ii)ω,
γ′ ∈ (2V \Vi)ω with comp(si, γ)..t ∪ γ′

..t ∈ Ht
Gi

for all points in time t.

If r2, for instance, sticks to its guaranteed behavior g2 depicted in Fig. 1a,
then r1 can enter crossings regardless of r2. Such a strategy s1 for r1 is shown
in Fig. 1b. Since neither σ := {at crossing1}{go2} nor any finite sequence con-
taining σ is a valid history respecting g2, no transition for input go2 has to
be considered for local satisfaction when r1 is at the crossing (left state of s1).
Therefore, these transitions are depicted in gray. Analogously, no transition for
¬go2 has to be considered when r1 is not at the crossing (right state). The other
transitions match valid histories and thus they are taken into account. Since no
crash occurs when considering the black transitions only, s1 |={g2} ϕsafe holds.

Using local satisfaction, we now define certifying synthesis in the setting
where certificates are represented by labeled transition systems: Given an archi-
tecture A and a specification ϕ, certifying synthesis for ϕ derives strategies
s1, . . . , sn and guarantee transition systems g1, . . . , gn for the system processes.

Compositional Synthesis of Modular Systems 311

For all pi ∈ P−, we require si to locally satisfy its specification with respect to
the guarantee transition systems of the other processes, i.e., si |=Gi

ϕi, where
Gi = {gj | pj ∈ P−\ {pi}}. To ensure that a strategy does not deviate from its
own certificate, gi is required to simulate si, i.e., si � gi needs to hold.

In the following, we show that solutions of certifying synthesis with LTL
certificates can be translated into solutions with GTS and vice versa. Given
a solution of certifying synthesis with GTS, the main idea is to construct LTL
certificates that capture the exact behavior of the GTS. For the formal certificate
translation and its proof of correctness, we refer to [13].

Lemma 1. Let ϕ be an LTL formula. Let S and G be vectors of strategies and
guarantee transition systems, respectively, for the system processes. If (S,G) is
a solution of certifying synthesis for ϕ, then there exists a vector Ψ of LTL cer-
tificates such that (S, Ψ) is a solution for certifying synthesis for ϕ as well.

Given a solution of certifying synthesis with LTL certificates, we can con-
struct GTS that match the strategies of the given solution. Then, these strate-
gies as well as the GTS form a solution of certifying synthesis with GTS. The
full construction and its proof of correctness is given in [13].

Lemma 2. Let ϕ be an LTL formula. Let S and Ψ be vectors of strategies and
LTL certificates, respectively, for the system processes. If (S, Ψ) is a solution of
certifying synthesis for ϕ, then there exists a vector G of guarantee transition
system such that (S,G) is a solution for certifying synthesis for ϕ as well.

Hence, we can translate solutions of certifying synthesis with LTL formulas
and with GTS into each other. Thus, we can reuse the results from Sect. 4,
in particular Theorem 1, and then soundness and completeness of certifying
synthesis with guarantee transition systems follows with Lemmas 1 and 2:

Theorem 2 (Soundness and Completeness with GTS). Let ϕ be an LTL
formula. Let S = 〈s1, . . . , sn〉 be a vector of strategies for the system processes.
Then, there exists a vector G of guarantee transition systems such that (S,G) is
a solution of certifying synthesis for ϕ if, and only if, s1|| . . . ||sn |= ϕ holds.

Thus, similar to LTL certificates, certifying synthesis with GTS allows for
local reasoning and thus enables modularity of the system while it still ensures
that correct solutions for all realizable specifications are found. In particular,
enforcing deterministic certificates does not rule out strategies that can be
obtained with either nondeterministic certificates or with classical distributed
synthesis.

As an example of the whole synthesis procedure of a distributed system with
certifying synthesis and GTS, consider the manufacturing robots from Sect. 2.
For simplicity, suppose that the robots do not have individual additional require-
ments ϕaddi

. Hence, the full specification is given by ϕsafe ∧ ϕcross1 ∧ ϕcross2 .
Since goi is an output variable of robot ri, we obtain the subspecifications
ϕi = ϕsafe ∧ ϕcrossi . A solution of certifying synthesis is then given by the
strategies and GTS depicted in Figs. 1 and 2. Note that s2 only locally satisfies
ϕcross2 with respect to g1 when assuming that r1 is not immediately again at

312 B. Finkbeiner and N. Passing

Fig. 2. GTS and strategy for robots r1 and r2 from Sect. 2, respectively. The labels of
the states denote the output of the TS in the respective state.

the intersection after crossing it. However, there are solutions with slightly more
complicated certificates that do not need this assumption. The parallel compo-
sition of s1 and s2 yields a strategy that allows r1 to move forwards if it is at
the crossing and that allows r2 to move forwards otherwise.

6 Computing Relevant Processes

Both representations of certificates introduced in the last two sections consider
the certificates of all other system processes in the local objective of every system
process pi. This is not always necessary since in some cases ϕi is satisfiable by a
strategy for pi even if another process deviates from its guaranteed behavior.

In this section, we present an optimization of certifying synthesis that reduces
the number of considered certificates. We compute a set of relevant processes
Ri ⊆ P− \ {pi} for every pi ∈ P−. Certifying synthesis then only considers
the certificates of the relevant processes: For LTL certificates, it requires that
si |= ψi ∧ (ΨR

i → ϕi) holds, where ΨR
i = {ψj ∈ Ψ | pj ∈ Ri}. For GTS,

both si � gi and si |=GR
i

ϕi need to hold, where GR
i = {gj ∈ G | pj ∈ Ri}. Such

solutions of certifying synthesis are denoted by (S, Ψ)R and (S,G)R, respectively.
The construction of the relevant processes Ri has to ensure that certifying

synthesis is still sound and complete. In the following, we introduce a definition
of relevant processes that does so. It excludes processes from pi’s set of relevant
processes Ri whose output variables do not occur in the subspecification ϕi:

Definition 5 (Relevant Processes). Let ϕ be an LTL formula with decom-
position 〈ϕ1, . . . , ϕn〉. The relevant processes Ri ⊆ P−\ {pi} of system process
pi ∈ P− are given by Ri = {pj ∈ P−\ {pi} | Oj ∩ prop(ϕi) �= ∅}.

Intuitively, since Oj ∩ prop(ϕi) = ∅ holds for a process pj ∈ P− \ Ri with
i �= j, the subspecification ϕi does not restrict the satisfying valuations of the
output variables of pj . Thus, in particular, if a sequence satisfies ϕi, then it does
so for any valuations of the variables in Oj . Hence, the guaranteed behavior of pj

does not influence the satisfiability of ϕi and thus pi does not need to consider
it. The proof of the following theorem stating this property is given in [13].

Compositional Synthesis of Modular Systems 313

Theorem 3 (Correctness of Relevant Processes). Let ϕ be an LTL for-
mula. Let S = 〈s1, . . . , sn〉 be a vector of strategies for the system processes.

1. Let Ψ be a vector of LTL certificates. If (S, Ψ)R is a solution of certifying
synthesis for ϕ, then s1|| . . . ||sn |= ϕ holds. If s1|| . . . ||sn |= ϕ holds, then
there exists a vector Ψ ′ of LTL certificates and a vector S ′ of strategies such
that (S ′, Ψ ′)R is a solution of certifying synthesis for ϕ.

2. Let G be a vector of guarantee transition systems. If (S,G)R is a solution of
certifying synthesis for ϕ, then s1|| . . . ||sn |= ϕ. If s1|| . . . ||sn |= ϕ holds,
then there exists a vector G′ of guarantee transition systems and a vector S ′

of strategies such that (S ′,G′)R is a solution of certifying synthesis for ϕ.

Note that for certifying synthesis with relevant processes, we can only guar-
antee that for every vector of strategies 〈s1, . . . , sn〉 whose parallel composition
satisfies the specification, there exist some strategies that are a solution of certi-
fying synthesis. These strategies are not necessarily s1, . . . , sn: A strategy si may
make use of the certificate of a process pj outside of Ri. That is, it may violate
its specification ϕi on an input sequence that does not stick to gj although ϕi is
satisfiable for this input. Strategy si is not required to satisfy ϕi on this input,
a strategy that may only consider the certificates of the relevant processes, how-
ever, is. As long as the definition of relevant processes allows for finding some
solution of certifying synthesis, like the one introduced in this section does as a
result of Theorem 3, certifying synthesis is nevertheless sound and complete.

7 Synthesizing Certificates

In this section, we describe an algorithm for practically synthesizing strategies
and deterministic certificates represented by GTS. Our approach is based on
bounded synthesis [14] and bounds the size of the strategies and of the certificates.
This allows for producing size-optimal solutions in either terms of strategies or
certificates. Like for monolithic bounded synthesis [8,14], we encode the search
for a solution of certifying synthesis of a certain size into a SAT constraint
system. We reuse parts of the constraint system for monolithic systems.

An essential part of bounded synthesis is to determine whether a strategy
satisfies an LTL formula ϕi. To do so, we first construct the equivalent univer-
sal co-Büchi automaton Ai with L(Ai) = L(ϕi). Then, we check whether Ai

accepts comp(si, γ) ∪ γ′ for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω, i.e., whether all runs
of Ai induced by comp(si, γ) ∪ γ′ contain only finitely many visits to rejecting
states. So far, we used local satisfaction to formalize that in compositional syn-
thesis with GTS a strategy only needs to satisfy its specification as long as the
other processes stick to their guarantees. That is, we changed the satisfaction
condition. To reuse existing algorithms for bounded synthesis and, in particular,
for checking whether a strategy is winning, however, we incorporate this prop-
erty of certifying synthesis into the labeled transition system representing the
strategy instead. In fact, we utilize the following observation: A finite run of a
universal co-Büchi automaton can never visit a rejecting state infinitely often.

314 B. Finkbeiner and N. Passing

Hence, by ensuring that the automaton produces finite runs on all sequences that
deviate from a guarantee, checking whether a strategy satisfies a specification
can still be done by checking whether the runs of the corresponding automaton
induced by the computations of the strategy visit a rejecting state only finitely
often.

Therefore, we represent strategies by incomplete transition systems in the
following. The domain of definition of their transition function is defined such
that the computation of a strategy is infinite if, and only if, the other processes
stick to their guarantees. To formalize this, we utilize valid histories:

Definition 6 (Local Strategy). A local strategy si for process pi ∈ P− with
respect to a set Gi of GTS is represented by a TS Ti = (T, t0, τ, o) with a partial
transition function τ : T ×2Ii ⇀ T . The domain of definition of τ is defined such
that comp(si, γ) is infinite for γ ∈ (2Ii)ω if, and only if, there exists γ′ ∈ (2V \Vi)ω

such that comp(si, γ)..t ∪ γ′
..t ∈ Ht

Gi
holds for all points in time t.

As an example, consider strategy s1 for robot r1 and guarantee transition
system g2 for robot r2, both depicted in Fig. 1, again. From s1, we can construct
a local strategy s′

1 for r1 with respect to g2 by eliminating the gray transitions.
We now define certifying synthesis with local strategies: Given a specifica-

tion ϕ, certifying synthesis derives GTS g1, . . . , gn and local strategies s1, . . . , sn

respecting these guarantees, such that for all pi ∈ P−, si � gi holds and all runs
of Ai induced by comp(si, γ) ∪ γ′ contain finitely many visits to rejecting states
for all γ ∈ (2Ii)ω, γ′ ∈ (2V \Vi)ω, where Ai is a universal co-Büchi automaton
with L(Ai) = L(ϕi). Thus, we can reuse existing algorithms for checking satis-
faction of a formula in our certifying synthesis algorithm when synthesizing local
strategies instead of complete ones. Similar to monolithic bounded synthesis, we
construct a constraint system encoding the search for local strategies and GTS:

Theorem 4. Let A be an architecture, let ϕ be an LTL formula, and let B be
the size bounds. There is a SAT constraint system CA,ϕ,B such that (1) if CA,ϕ,B
is satisfiable, then ϕ is realizable in A, (2) if ϕ is realizable in A for the bounds B
and additionally prop(ϕi) ⊆ Vi holds for all pi ∈ P−, then CA,ϕ,B is satisfiable.

Intuitively, the constraint system CA,ϕ,B consists of n slightly adapted copies
of the SAT constraint system for monolithic systems [8,14] as well as additional
constraints that ensure that the synthesized local strategies correspond to the
synthesized guarantees and that they indeed fulfill the conditions of certifying
synthesis. The constraint system CA,ϕ,B is presented in [13].

Note that we build a single constraint system for the whole certifying synthe-
sis task. That is, the strategies and certificates of the individual processes are not
synthesized completely independently. This is one of the main differences of our
approach to the negotiation-based assume-guarantee synthesis algorithm [19].
While this prevents separate synthesis tasks and thus parallelizability, it elimi-
nates the need for a negotiation between the processes. Moreover, it allows for
completeness of the synthesis algorithm. Although the synthesis tasks are not
fully separated, the constraint system CA,ϕ,B is in most cases still significantly
smaller and easier to solve than the one of classical distributed synthesis.

Compositional Synthesis of Modular Systems 315

As indicated in Theorem 4, certifying synthesis with local strategies is not
complete in general: We can only ensure completeness if the satisfaction of each
subspecification solely depends on the variables that the corresponding process
can observe. This incompleteness is due to a slight difference in the satisfaction
of a specification with local strategies and local satisfaction with complete strate-
gies: The latter requires a strategy si to satisfy ϕi if all processes stick to their
guarantees. The former, in contrast, requires si to satisfy ϕi if all processes pro-
ducing observable outputs stick to their guarantees. Hence, if pi cannot observe
whether pj sticks to its guarantee, satisfaction with local strategies requires si

to satisfy ϕi even if pj deviates, while local satisfaction does not.
This slight change in definition is needed in order to incorporate the require-

ments of certifying synthesis into the transition system representing the strategy
and thus to be able to reuse existing bounded synthesis frameworks. Although
this advantage is at general completenesses expanse, we experienced that in prac-
tice many distributed systems, at least after rewriting the specification, indeed
satisfy the condition that is needed for completeness in our approximation of
certifying synthesis. In fact, all benchmarks described in Sect. 8 satisfy it.

8 Experimental Results

We have implemented certifying synthesis with local strategies and guarantee
transition systems. It expects an LTL formula and its decomposition as well as
the system architecture, and bounds on the sizes of the strategies and certificates
as input. Specification decomposition can easily be automated by, e.g., imple-
menting Definition 1. The implementation extends the synthesis tool BoSy [9] for
monolithic systems to certifying synthesis for distributed systems. In particular,
we extend and adapt BoSy’s SAT encoding [8] as described in [13].

We compare our implementation to two extensions of BoSy: One for dis-
tributed systems [2] and one for synthesizing individual dominant strategies,
implementing the compositional synthesis algorithm presented in [7]. The results
are shown in Table 1. We used the SMT encoding of distributed BoSy since the
other ones either cause memory errors on almost all benchmarks (SAT), or do
not support most of our architectures (QBF). Since the running times of the
underlying SMT solver vary immensely, we report on the average running time
of 10 runs. Synthesizing individual dominant strategies is incomplete and hence
we can only report on results for half of our benchmarks. We could not compare
our implementation to the iterative assume-guarantee synthesis tool Agnes [19],
since it currently does not support most of our architectures or specifications.

The first four benchmarks stem from the synthesis competition [15]. The latch
is parameterized in the number of bits, the generalized buffer in the number of
senders, the load balancer in the number of servers, and the shift benchmark
in the number of inputs. The fourth benchmark is a ripple-carry adder that is
parameterized in the number of bits and the last benchmark describes the man-
ufacturing robots from Sect. 2 and is parameterized in the size of the objectives
ϕaddi of the robots. The system architectures are given in [13].

316 B. Finkbeiner and N. Passing

Table 1. Experimental results on scalable benchmarks. Reported is the parameter and
the running time in seconds. We used a machine with a 3.1 GHz Dual-Core Intel Core
i5 processor and 16 GB of RAM, and a timeout of 60 min. For dist. BoSy, we use the
SMT encoding and give the average runtime of 10 runs.

Benchmark Param. Cert. Synth. Dist. BoSy Dom. Strat.

n-ary Latch 2 0.89 41.26 4.75

3 0.91 TO 6.40

.

6 12.26 TO 13.89

7 105.69 TO 15.06

Generalized Buffer 1 1.20 6.59 5.23

2 2.72 3012.51 10.53

3 122.09 TO 961.60

Load Balancer 1 0.98 1.89 2.18

2 1.64 2.39 –

Shift 2 1.10 1.99 4.76

3 1.13 4.16 7.04

4 1.14 TO 11.13

.

7 9.01 TO 16.08

8 71.89 TO 19.38

Ripple-Carry Adder 1 0.878 1.83 –

2 2.09 36.84 –

3 106.45 TO –

Manufacturing Robots 2 1.10 2.45 –

4 1.18 2.43 –

6 1.67 3.20 –

8 2.88 5.67 –

10 48.83 221.16 –

12 1.44 TO –

.

42 373.90 TO –

For the latch, the generalized buffer, the ripple-carry adder, and the shift,
certifying synthesis clearly outperforms distributed BoSy. For many parameters,
BoSy does not terminate within 60min, while certifying synthesis solves the tasks
in less than 13 s. For these benchmarks, a process does not need to know the
full behavior of the other processes. Hence, the certificates are notably smaller
than the strategies. A process of the ripple-carry adder, for instance, only needs
information about the carry bit of the previous process, the sum bit is irrelevant.

Compositional Synthesis of Modular Systems 317

For the load balancer, in contrast, the certificates need to contain the full
behavior of the processes. Hence, the benefit of the compositional approach lies
solely in the specification decomposition. This advantage suffices to produce a
solution faster than distributed BoSy. Yet, for other benchmarks with full certifi-
cates, the overhead of synthesizing certificates dominates the benefit of specifi-
cation decomposition for larger parameters, showcasing that certifying synthesis
is particularly beneficial if a small interface between the processes exists.

The manufacturing robot benchmark is designed such that the interface
between the processes stays small for all parameters. Hence, it demonstrates the
advantage of abstracting from irrelevant behavior. Certifying synthesis clearly
outperforms distributed BoSy on all instances. The parameter corresponds to
the minimal solution size with distributed BoSy which does not directly corre-
spond to the solution size with certifying synthesis. Thus, the running times do
not grow in parallel. For more details on this benchmark we refer to [13].

Thus, certifying synthesis is extremely beneficial for specifications where
small certificates exist. This directly corresponds to the existence of a small
interface between the processes of the system. Hence, bounding the size of the
certificates indeed guides the synthesis procedure in finding solutions fast.

When synthesizing dominant strategies, the weaker winning condition poses
implicit assumptions on the behavior of the other processes. These assumptions
do not always suffice: There are no independent dominant strategies for the load
balancer, the ripple-carry adder, and the robots. While certifying synthesis per-
forms better for the generalized buffer, the slight overhead of synthesizing explicit
certificates becomes clear for the latch and the shift: For larger parameters, syn-
thesizing dominant strategies outperforms certifying synthesis. Yet, the implicit
assumptions do not encapsulate the required interface between the processes and
thus they do not increase the understandability of the system’s interconnections.

9 Conclusions

We have presented a synthesis algorithm that reduces the complexity of dis-
tributed synthesis by decomposing the synthesis task into smaller ones for the
individual processes. To ensure completeness, the algorithm synthesizes addi-
tional certificates that capture a certain behavior a process commits to. A pro-
cess then makes use of the certificates of the other processes by only requiring
its strategy to satisfy the specification if the other processes do not deviate
from their certificates. Synthesizing additional certificates increases the under-
standability of the system and the solution since the certificates capture the
interconnections of the processes and which agreements they have to establish.
Moreover, the certificates form a contract between the processes: The synthe-
sized strategies can be substituted as long as the new strategy still complies with
the contract, i.e., as long as it does not deviate from the guaranteed behavior,
enabling modularity.

We have introduced two representations of the certificates, as LTL formulas
and as labeled transition systems. Both ensure soundness and completeness of

318 B. Finkbeiner and N. Passing

the compositional certifying synthesis algorithm. For the latter representation,
we presented an encoding of the search for strategies and certificates into a SAT
constraint solving problem. Moreover, we have introduced a technique for reduc-
ing the number of certificates that a process needs to consider by determining
relevant processes. We have implemented the certifying synthesis algorithm and
compared it to two extensions of the synthesis tool BoSy to distributed systems.
The results clearly show the advantage of compositional approaches as well as
of guiding the synthesis procedure by bounding the size of the certificates: For
benchmarks where small interfaces between the processes exist, certifying synthe-
sis outperforms the other distributed synthesis tools significantly. If no solution
with small interfaces exist, the overhead of certifying synthesis is small.

References

1. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501–516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 49

2. Baumeister, J.E.: Encodings of bounded synthesis for distributed systems. Bache-
lor’s thesis, Saarland University (2017)

3. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis
for concurrent reactive programs with partial information. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 517–532. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 50

4. Brenguier, R., Raskin, J.-F., Sankur, O.: Assume-admissible synthesis. Acta Infor-
matica 54(1), 41–83 (2016). https://doi.org/10.1007/s00236-016-0273-2

5. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

6. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model?
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 4

7. Damm, W., Finkbeiner, B.: Automatic compositional synthesis of distributed sys-
tems. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
179–193. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 13

8. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

9. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

10. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 10

https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-642-21437-0_4
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-642-15643-4_10

Compositional Synthesis of Modular Systems 319

11. Finkbeiner, B., Geier, G., Passing, N.: Specification decomposition for reactive
synthesis. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 113–130. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-76384-8 8

12. Finkbeiner, B., Passing, N.: Dependency-based compositional synthesis. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 447–463. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 25

13. Finkbeiner, B., Passing, N.: Compositional synthesis of modular systems (Full
Version). CoRR abs/2106.14783 (2021)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Trans-
fer 15(5), 519–539 (2012). https://doi.org/10.1007/s10009-012-0228-z

15. Jacobs, S., et al.: The 5th reactive synthesis competition (SYNTCOMP 2018):
benchmarks, participants & results. CoRR abs/1904.07736 (2019)

16. Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live
sequence chart specifications. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00768-2 9

17. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 6

18. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)
19. Majumdar, R., Mallik, K., Schmuck, A., Zufferey, D.: Assume-guarantee dis-

tributed synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39,
3215–3226 (2020)

20. Pnueli, A.: The temporal logic of programs. In: FOCS (1977)
21. de Roever, W.P., Langmaack, H., Pnueli, A. (eds.): Compositionality: The Signif-

icant Difference, COMPOS (1998)
22. Safra, S.: On the complexity of omega-automata. In: FOCS (1988)
23. Touati, H.J., Brayton, R.K., Kurshan, R.P.: Testing language containment for

omega-automata using BDD’s. Inf. Comput. 118, 101–109 (1995)

https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/11817963_6

Event-B Refinement for Continuous
Behaviours Approximation

Guillaume Dupont(B), Yamine Aı̈t-Ameur, Marc Pantel, and Neeraj K. Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract. Hybrid systems are systems that integrate both discrete and
continuous behaviours. The hybrid nature of such systems renders them
difficult to model and verify in a single formal method. One of the
key point when modelling these continuous features is the richness of
the behaviours they may exhibit. In practice, continuous dynamics are
expressed using complex differential equations, and are often difficult to
handle during the implementation and validation process. To overcome
this issue, controller designers use approximation allowing to substitute
dynamics that have a close behaviour. Despite that it is based on sound,
exact mathematics, this operation is rarely rigorous, and is performed
prior to controller design, making it implicit in the resulting system.

In this paper, we propose a general formalised approach to approxi-
mation. It relies on the definition of a Galois connection, and refinement
is used to embed it, explicitly, into a high-level development operation,
associated to particular correctness constraints and useful properties.
Two types of usage for approximation are presented and discussed in the
light of existing cases studies, as to showcase their particularities on the
modelling and proving sides.

Keywords: Hybrid systems · Approximation · Event-B · Refinement ·
Proof

1 Introduction

Computers have quickly found a place in modern applications, where they inter-
act with “real-world”, physical elements, such as motors, pistons or other actua-
tors, thanks to advances in the domains of miniaturisation, real-time and embed-
ded systems in general. Such systems, that integrate discrete behaviours (com-
puters, controllers) together with continuous behaviours (actuators, plants) are
called hybrid systems [14].

This hybrid nature poses an important challenge when it comes to modelling
and verifying this kind of systems: formal methods in general are adapted to
discrete behaviours (e.g. with state-based semantics and discrete steps), while
continuous features are better handled using control theory, including continuous
mathematics and differential equations. The difficulty is thus to integrate both
these aspects at the same level during the modelling and verification process
c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 320–336, 2021.
https://doi.org/10.1007/978-3-030-88885-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_21

Event-B Refinement for Continuous Behaviours Approximation 321

for such systems, and to enable close collaboration between them, so that the
constraints of one influence the design of the other, and vice versa.

A good example of such a high level of integration is approximation.

Approximation. Approximation is overall a common operation in control theory.
The idea is that the equations describing a system are generally complex, due
to an important number of variables (dimensions) and parameters to take into
account, together with a large variety of phenomena that interact in numer-
ous ways with each other. However, this level of detail is hardly relevant when
designing the actual controller: factorisation, omission and other kinds of sim-
plification may be used in order to derive simpler dynamics, with a somewhat
similar behaviour as the complex one. Although it is based on sound mathe-
matics, this operation is rarely explicitly formalised ; it relies mainly on “known
recipes”, numerical simulations and a substantial amount of tweaking. Besides,
approximation is usually performed upstream of program design, meaning it
does not appear in the verification process, although system’s dynamics funda-
mentally dictates the behaviour of its controller.

This traditional approach to approximation is a concern of system design: it
renders maintenance and adaptation of the system to new constraints difficult
without system re-designing, and enables the appearance of magic numbers and
other ad hoc rules, hard to track down and to handle in a proper way.

Previous Work. We have proposed a generic approach for handling hybrid sys-
tems using the Event-B formal method [1], under the form of a formal framework
[7,9]. This framework proposes 1) a number of extensions to Event-B’s language,
allowing to define and handle continuous dynamics within a model and 2) a set
of formal design patterns to guide hybrid system design, using high-level devel-
opment operations. In particular, in [8], we sketched a possible formalisation of
approximation in Event-B, as a refinement-based development operation, and
its use on a case study borrowed from the literature. Additionally, we explored
another possible use of approximation in [7], where it is used to support the
linearisation of a complex differential equation.

Objective of the Paper. The first goal of this paper is to formalise the approaches
previously proposed in order to present a general formal setting for approxima-
tion. In particular, we define approximation as a high-level development oper-
ation that is bounded by specific constraints to ensure correctness, as well as
powerful properties that can be used during the verification process.

To this extent, we define approximation as a Galois connection, and support it
with refinement. This enables the use of such an operation as a powerful proving
and modelling technique: a (concrete) model approximating another (abstract)
model inherits its properties “for free”, provided these properties hold on the
abstract model and the approximation has been proven correct.

Expressing approximation this way allows to expose two distinct uses for it:

– Downward approximation, where a complex, accurate system is refined into
a simpler one, usually for implementation purposes;

322 G. Dupont et al.

– Upward approximation, where a simpler system, with easier verification, is
refined into a more complex and accurate one.

In this paper, we investigate both of these scenarios and provide concrete
examples of their application in real-world cases studies.

Organisation of the Paper. Next section gives an overview of the Event-B method
used for our formal developments. Section 3 presents the framework we have
proposed to handle the modelling of hybrid systems. In Sect. 4, the mathematical
theory of approximation together with relevant definitions are introduced. The
core contribution is presented in Sect. 5 with the formalisation of downward and
upward approximation in Event-B. Related work is discussed in Sect. 6. Last,
Sect. 7 concludes and identifies some future research perspectives.

2 Event-B

As mentioned previously, the central idea of this paper is to use refinement as a
means of providing support for approximation. This feature encourages the use
of Event-B, as refinement is a built-in operation. In this Section, we review the
fundamental concepts of Event-B, particularly its refinement relation. We also
present the theories extension mechanism which is extensively used throughout
our work.

Table 1. Event-B Model structure: contexts and machines

Context Machine Refinement
CONTEXT Ctx MACHINE MA MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS J(xA, xC) ∧ IC(xC)

THEOREMS Tctx THEOREMS Tmch(x
A) ...

END VARIANT V (xA) EVENTS
EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY αA ANY αC

WHERE GA(xA, αA) WHERE GC(xC , αC)

THEN WITH

xA :| BAPA(αA, xA, xA′
) xA′, αA: W (αA, αC , xA, xA′, xC , xC′

)

END THEN

... xC :| BAPC(αC , xC , xC′
)

END
...

(a) (b) (c)

Event-B is a correct-by-construction, formal method for system design [1].
An Event-B model consists of a set of components linked together. Contexts
(Table 1.a) collect the static parts of the model: constants, sets/types and gen-
eral properties (axioms and theorems). Machines (Table 1.b) hold the dynamic
parts of the model, expressed in the form of an abstract state (a set of vari-
ables) together with guarded events, which encode transformations of this state

Event-B Refinement for Continuous Behaviours Approximation 323

(defining a guarded state-transitions system). A machine is associated with vari-
ous invariants and theorems, which are properties on the state that must always
hold. A variant may also be defined, and used to prove convergence properties
on the set of events. Generated proof obligations, when discharged, ensure that
these properties hold.

Each event is defined by its guard (WHERE clause) that states when the event
may be triggered, and its action (THEN clause), in the form of a Before-After
Predicate (BAP), denoted by the “becomes-such-that” operator (:|), and that
links the current value of the variable (x) with its “new” value, after the event
is effectively executed (x′). An EVENT may also define different parameters using
the ANY clause. These parameters serve as quantification of the event.

Refinement. Refinement is a relation between machines that can be used as a
development operation. It defines a simulation relationship between the state
transitions of a machine an its refinement. The core idea of refinement is to
constraint or specify a model as to enrich it step by step while preserving its
properties: if the abstract machine verifies a certain property, and if refinement
is correct, then the resulting concrete machine also verifies this property, without
the need to prove it again.

On the modelling side, refinement is indicated by the REFINES clause in the
machine header and for each event (Table 1.c). Refinement allows, concretely, to
add or substitute variables and event parameters, add invariants, add or modify
events, and strengthen guards, all while ensuring that it is proven correct.

Verification. Any Event-B model is associated with proof obligations (POs) that
are generated mechanically using substitution calculus. These obligations must
be discharged (proved) in order to establish correctness of the model.

Regarding refinement, correctness is established if 1) concrete events may
not be triggered when abstract events cannot (guard strengthening) and 2) con-
crete action is allowed by abstract action (simulation). In order to prove this
correctness, especially in the case of substituting variables and parameters, it
is generally necessary to express the relationship between the abstract and the
concrete variables and/or parameters, in the form of a gluing invariant and
witnesses (WITH clause).

Extension Mechanism. Event-B’s expression language is based on set theory and
first-order logic, making it mathematically low-level, and thus highly expressive.
However, this language can be cumbersome when dealing with higher-level or
complex constructs. For this reason, an extension to this language has been pro-
posed, using theories [5]. Formally, a theory is a set of type-generic data-types
together with constructive and/or axiomatic operators and properties, encapsu-
lated in a special component that can then be referenced in Event-B models.

Tooling Support. Event-B is associated to the Rodin IDE1, equipped with various
modelling and proof tools for designing and validating Event-B models. Rodin
also supports the design of theories, thanks to the theory plug-in.
1 http://www.event-b.org/index.html.

http://www.event-b.org/index.html

324 G. Dupont et al.

3 Hybrid Systems in Event-B

Event-B is tailored to discrete systems by virtue of its semantics. However,
because its expression language is based on pure set theory and first-order logic,
it is possible to embed the basic building blocks required to handle continuous
behaviours in this method.

In our previous work [9], we proposed a method for expressing continuous
dynamics in Event-B models using continuous variables (functions of time), and
continuous before-after predicates.

3.1 Continuous Variables

As previously stated, a continuous variable xp is defined as a (partial) function of
time, valued in some set S, usually a real vector space (i.e., S = R

n, n ∈ N). The
function is partial (and we write xp ∈ R

+ �→S) because it is not defined for every
instant: if we take 0 as the origin of time and denote with t the current time (or
“present”), then xp is at least defined on time interval [0, t]: [0, t] ⊆ dom(xp).

Because continuous variables are functions, it is difficult to describe their
behaviour using discrete assignment (e.g. one cannot write xp := 5). As a result,
we adapted the concept of discrete assignment and proposed a way to describe
continuous assignments, using continuous before-after predicates (CBAP).

Definition 1 (Continuous Before-After Predicate). Let t, t′ ∈ R
+ two

time points with t′ > t. Let xp ∈ R
+ �→S a continuous state variable. Finally, let

P ⊆ (R+ �→S)× (R+ �→S) a predicate on the before and after values of the state
variable and H ⊆ S an evolution domain constraining the evolution of xp. The
continuous before-after predicate modelling the change of xp on time inter-
val [t, t′] following predicate P and constrained by evolution domain H, denoted
xp :|t→t′ P & H, is defined as so:

xp :|t→t′ P(xp, x
′
p) & H ≡ [0, t[�x′

p = [0, t[�xp (PP)

∧ P([0, t] � xp, [t, t′] � x′
p) (PR)

∧ ∀t∗ ∈ [t, t′], xp(t∗) ∈ H (LI)

Informally, the expression xp :|t→t′ P(xp, x
′
p) & H denotes that variable xp

becomes such that: 1) it remains unchanged on the interval [0, t[(past preserva-
tion PP), 2) its “new” value on interval [t, t′] ([t, t′] � x′

p) is linked to its value
on [0, t] ([0, t] � x′

p) through predicate P (predicate PR), and 3) its value on the
interval [t, t′] remains in the evolution domain H (local invariant LI).

3.2 Continuous Refinement

Event-B allows to refine a system by introducing new behaviours and constraints,
while ensuring that the new features do not violate the system’s properties (see
Sect. 2). Formally, there are two types of refinement: behavioural refinement,
in which the system’s behaviour is extended or constrained (e.g. adding events,

Event-B Refinement for Continuous Behaviours Approximation 325

refining events guards and actions while preserving simulation relationship), and
data refinement, in which we replace the expression of the state of the system
by another (substituting variables and parameters).

In the context of continuous dynamics, we cannot really “add behaviour”:
while it is true that a new (discrete instantaneous) event may occur between two
events, it is not possible to imagine a new continuous section woven inside an
existing one, i.e. “add” of a new part of function on [t1, t2].

If we reintroduce the notion of refinement as similarity of observational
behaviour, we can formulate a general form of refinement for continuous vari-
ables.

Definition 2 (Continuous Refinement). Let xA
p ∈ R

+ �→ SA (resp. xC
p ∈

R
+ �→ SC) be an abstract (resp. concrete) continuous state variable, and O ∈

SC ↔ SA an observation relation between the state spaces of these variables.
xA

p is continuously refined by xC
p on time interval [0, t] if: xA

p ∈[0,t] O ◦ xC
p ,

or, in expanded form: ∀t∗ ∈ [0, t], xA
p (t∗) ∈ O[{xC

p (t∗)}].

This predicate, which glues continuous states xA
p and xC

p , is known as a
gluing invariant. When writing models, it is given as a system invariant, and
must therefore be proven to hold for every event.

3.3 Embedding Continuous Features Using Theories

We use Event-B’s theory extension (see Sect. 2) to encode the definitions pre-
viously given as well as various useful continuous features for using them in
Event-B models and proofs. Figure 1 gives an excerpt of the resulting theories.

Fig. 1. Continuous feature theory extract

One of the interest of the theory is to define the DE(F) data-type to represent
differential equations. This type is associated with several constructors (e.g.
ode) that allows to define various nature of differential equations (e.g. ordinary
differential equations).

Additionally, this type is associated to operators for handling it in models
and proofs. The solutionOf predicate characterise that a given function (η) is
solution of the given equation (E) on the given domain (D). Similarly, Solvable
allows characterising an equation that admits a solution on interval D.

Note that we also formalise the continuous evolution operators of Sect. 3.1.

326 G. Dupont et al.

4 A Theory of Approximation

In a process similar to our achievements for continuous features, we envision
to incorporate, in Event-B, the general and useful concept of approximation,
together with related properties and constraints.

In this Section, we present a formalisation of approximation that ends up
being a Galois connection. Such a formalisation enables the use of the constructs
and properties related to approximation with refinement, and thus to define the
notion of approximate refinement.

4.1 Foundational Constructs

In the following, we consider a metric space (E, d) where d is a distance. It is a
reasonable assumption since continuous state variables usually evolve in normed
vector spaces S = R

n, n ∈ N
∗, which are complete metric spaces.

Approximation Operator. The idea of approximation is to relax equality. Instead
of stating that two points are identical, we characterise the fact that they are
“close enough” from each other, by a constant δ as formalised by Definition 3.

Definition 3 (Approximation). Let δ ∈ R, δ ≥ 0 and x, y ∈ E. x is approx-
imately equal to y by δ (x is a δ-approximation of y), noted x ≈δ y if:
x ≈δ y ≡ d(x, y) ≤ δ.

For convenience, we provide a “lifted” version of this operator for functions
on a given domain.

Definition 4 (Function Approximation). Let δ ∈ R, δ ≥ 0, D be a set and
X ⊆ D. Let f, g ∈ D �→ E with X ⊆ dom(f) and X ⊆ dom(g). f is a δ-
approximation of g if: f ≈δ

X g ≡ ∀x ∈ X, f(x) ≈δ g(x).

Expansion and Shrinking. This form of “relaxed equality”, by itself, is not suffi-
cient to be used in a refinement. Its purpose is to define two important operations,
which are essentially relaxed and strengthened versions of inclusion.

Definition 5 (δ-Expansion). Let δ ∈ R, δ ≥ 0 and S ⊆ E. The δ-expansion
of S, denoted Eδ(S), is defined by: Eδ(S) = {y ∈ E | ∃x ∈ S, x ≈δ y} = {y ∈ E |
∃x ∈ S, d(x, y) ≤ δ}.

Intuitively, given a set S, the δ-expansion of S, Eδ(S) includes S, such that
any of its points is at most δ away from a point of S. It consists of S with some
“headroom” (see Fig. 2a).

Definition 6 (δ-Shrinking). Let δ ∈ R, δ ≥ 0 and S ⊆ E. The δ-shrinking of
S, denoted Sδ(S), is defined by: Sδ(S) = {x ∈ S | infy∈E\S d(x, y) > δ} = {x ∈
S | ∀y ∈ E \ S, d(x, y) > δ}.

Intuitively, given a set S, the δ-shrinking of S, Sδ(S) is included in S, such
that any of its points 1) is included in S and 2) at least δ away from the border
of S (See Fig. 2b).

Event-B Refinement for Continuous Behaviours Approximation 327

Fig. 2. Graphical representation of the expansion and shrinking operators

Approximated Predicates. Shrinking and expansion sets, used for approximation,
are formalised as predicates (useful for automatic provers) by introducing a
relaxed version of set membership.

Definition 7 (δ-Membership). Let δ ∈ R, δ ≥ 0, x ∈ E and S ⊆ E. x is a
δ-member of S, noted x ∈δ S, if: x ∈δ S ≡ x ∈ Eδ(S) ≡ ∃y ∈ S, d(x, y) ≤ δ.

Similarly to the lifted version of approximation, we define a convenient exten-
sion to δ-membership, for functions that yield a set (also called multi-valued
functions). This extension is particularly useful to define gluing invariant involv-
ing approximation (see Sect. 5.1).

Definition 8 (Multi-Valued Functions Extension). Let δ ∈ R, δ ≥ 0, f ∈
D �→ E and Σ ∈ D �→ P(E). Let X ⊆ D with X ⊆ dom(f) and X ⊆ dom(Σ).
We define f ∈δ

X Σ by: f ∈δ
X Σ ≡ ∀x ∈ X, f(x) ∈δ Σ(x).

4.2 Properties of Approximation

Approximation constructs are accompanied by a number of useful properties
exploited during the modelling and proving process in approximate refinement.

Shrinking and Closed Balls. For a set S, shrinking has the interesting property
that any point that is at most δ away from a point of S(S) belongs to S. More
formally, this property is captured by Theorem 1.

Theorem 1 (δ-Shrinking and Closed Ball Inclusion). Let δ ∈ R, δ ≥ 0,
S ⊆ E. For any x ∈ Sδ(S), B̄(x, δ) ⊆ S.

We recall that a closed ball B̄(x, δ) of centre x and radius δ (for the given
distance d) is the set of points that are not farther than δ from x.
Formally: B̄(x, δ) = {y ∈ E | d(x, y) ≤ δ}

Predicate Strengthening. The use of predicates with approximation disallows
using interesting substitution properties (e.g. when x = y, substitution of an
occurrence of x by y is allowed). Fortunately, approximation is accompanied with
a weaker form of substitution, useful for refinement-related proof obligations,
often based on predicate strengthening, i.e. of the form . . . ∧ PC ⇒ PA.

328 G. Dupont et al.

Theorem 2 (Sufficient Conditions for Predicate Strengthening). Let
O ∈ SC ↔ SA a relation on SC and SA and xA ∈ SA and xC ∈ SC two
variables such that xA ∈δ O[{xC}]. Let PC ⊆ SC and PA ⊆ SA two subsets
(representing predicates), with xC ∈ PC .
Then, a sufficient condition for proving xA ∈ PA is: O[PC] ⊆ Sδ(PA); or,
dually: Eδ(O[PC]) ⊆ PA.

Note that we superpose the notions of predicates and sets. This is possible
in set theory thanks to the axiom of comprehension: if P (x) is a predicate on
x, then it can be represented by the set {x̂ | P (x̂)} of elements that satisfy this
predicate. Again, such predicates are useful for the proof tools that rewrites sets
as first order logic predicate (e.g. to use SMT solvers).

Galois Connection. Expansion and shrinking are related by a particular link,
informally stated as “nearly the opposite operation” of the other. In fact, expan-
sion and shrinking are adjoints, they form a Galois connection.

Let us consider expansion and shrinking as functions on the partially ordered
set (P(E),⊆). Then, Theorem 3 states important properties.

Theorem 3 (Expansion–Shrinking Galois Connection). Let δ ∈ R, δ ≥ 0.
(Eδ,Sδ) is a Galois connection on the partially ordered set (P(E),⊆) (to itself).

This theorem entails the following properties.

1. ∀ T, S ⊆ E with T ⊆ S then Eδ(T) ⊆ Eδ(S) and Sδ(T) ⊆ Sδ(S) (Eδ and Sδ

are monotone)
2. ∀S ⊆ E, then Eδ(Sδ(S)) ⊆ S and S ⊆ Sδ(Eδ(S))

Note that these properties are central for data refinement in the approxi-
mate refinement we introduce. They are helpful to define the gluing invariants
guaranteeing refinement correctness.

0-Approximation. We note that, when δ = 0, approximated operators become
exact operators: 0-approximation is equality, 0-membership is exact set mem-
bership, and 0-shrinking and 0-expansion are exact set inclusion.

4.3 Encoding Approximation in Event-B Using Theories

In the same way as for continuous features, approximation is not available as a
built-in operator in the Event-B method. Therefore, we have encoded it with an
algebraic theory as a set of explicit operators of an Event-B theory, so that it
can be used in models (see Fig. 3).

The proposed approximation Event-B theory defines explicitly the various
approximation operators, which are the core building blocks of approximation
as a development operation. It also defines expansion and shrinking, and their
various properties, in particular a formalisation of Theorem 2 (SPS and EPS).

The complete theory is accessible at https://www.irit.fr/∼Guillaume.
Dupont/models.php.

https://www.irit.fr/~Guillaume.Dupont/models.php
https://www.irit.fr/~Guillaume.Dupont/models.php

Event-B Refinement for Continuous Behaviours Approximation 329

Fig. 3. Approximation theory extract

5 Approximation and Refinement: Two Scenarios of Use

The approximation link between variables xA and xC , sets SA and SC or func-
tions fA and fC presented in the previous section allows to glue these con-
cepts in two models relying on the defined Galois connection. This relationship,
formalised in Event-B, enables the definition of gluing invariants in so-called
approximate refinement. This operation may be carried out in two directions:

– Downward approximation in a refinement of an abstract exact system
with a concrete approximate system. For instance, starting with complex exact
dynamics and linearising it for implementation.

– Upward approximation where an abstract approximated system is refined
with a concrete exact system. For instance starting with simple dynamics
on which proof is easier and introducing the actual, richer behaviour while
preserving its properties.

5.1 Approximate Gluing Invariant

Definition 2 presented a general form for continuous refinement, based on (exact)
set membership. The concepts presented in Sect. 4 allow to relax this set mem-
bership predicate by introducing ∈δ, and thus to define approximate (continuous)
refinement of data as follows.

Definition 9 (Approximate Continuous Refinement). With the same
notations as for Definition 2 and given δ ∈ R, δ ≥ 0, xA

p is δ-approximately

(continuously) refined by xC
p on time interval [0, t] if: xA

p ∈δ
[0,t] O ◦ xC

p .

This predicate uses approximated set-membership; it is a relaxed version
of the continuous gluing invariant presented in Sect. 3.2, and is referred to as
approximate gluing invariant in the rest of this paper.

Informally, the idea of this approximate gluing invariant is to map the
abstract value not only to some concrete values, but also to an area of radius δ
around these concrete values, to give some headroom.

330 G. Dupont et al.

5.2 Downward Approximation Scenario

In the case of downward approximation, an abstract machine models the exact
dynamics of the studied hybrid system, which is usually physically accurate
but not adapted to implementation due to its complexity. The designer man-
ages to prove properties on the “real-world” system, and then must perform
an approximation operation, based on shrinking, to derive a system closer to
implementation, while maintaining its properties using refinement.

A typical downward approximation scenario is the case of linearisation. For
instance, consider a hybrid system with dynamics characterised by a complex,
non-linear differential equation, not easy to handle at implementation. The devel-
opment strategy is to establish safety on the complex, abstract system, and then
linearise it with a correct approximate refinement to obtain a concrete system.
The challenge in this case is to find sufficient constraints on the concrete system
so that the approximation holds, and thus that safety is ensured while deviations
allowed by the approximation are taken into account.

The general form of this scenario is given in listing of Fig. 4, where machine
M exact with continuous state xA

p ∈ R �→ SA and featuring event EventA, is
refined by machine M approx with continuous state xC

p ∈ R �→ SC and featuring
event EventC, refining event EventA.

Machine M exact is associated to a safety invariant on xA
p , synthesised as a

set IA ⊆ SA (safA). This invariant is updated in M approx, yielding safC.

Fig. 4. Downward approximation general scenario

Related Proof Obligations. This application of approximation revolves around
the use of the approximate gluing invariant (inv3), which is also used as witness
(WITH clause) for the refining event ensuring its preservation.

The other key point in this scenario is the proposed predicate strengthen-
ing: shrinking Sδ is used to strengthen the abstract guard (WHERE clause) and
evolution domain (& operator), so that the system remains within bounds, even
with the slight headroom given by δ.

Note that the guard strengthening proof obligation in this case is as follows:
O[{xC

p (t)}] ⊆ Sδ(GA) ∧ xA
p ∈δ

[0,t] O ◦ xC
p ⇒ xA

p (t) ∈ GA.

Event-B Refinement for Continuous Behaviours Approximation 331

It is trivially proven using Theorem 2, with PC = {xC
p (t)} and PA = GA,

and by remarking that xC
p (t) ∈ {xC

p (t)}.
A similar reasoning is applied to invariant preservation as it is an another

case of predicate strengthening. It follows that, in this general form, approximate
refinement is correct by construction; i.e. given any guard GA, invariant IA

and evolution domain HA of the abstract machine, it is possible to derive the
updated guard, invariant and evolution domain of the concrete machine, so that
approximation is correct.

In practice when giving the concrete machine, it is possible to obtain a correct
approximation with any predicate that is stricter than the one given in Fig. 4.
In particular, if the guard of the concrete event is of the form xC

p (t) ∈ GC then
it is sufficient to have O[GC] ⊆ Sδ(GA) (again using Theorem 2), and similarly
for invariant and evolution domain.

A Case Study. Downward approximation has been used to address the well-
known inverted pendulum case study [7]. In this setup, physics and trigonometry
are used to derive a first differential equation that is non-linear (because of the
term sin(θ) and cos(θ)). When θ is below a given bound, it is possible to linearise
this equation, replacing sin(θ) by θL and cos(θ) by 1, thanks to approximation.

{
θ̈ + ω2

0 sin(θ) = u cos(θ)
|θ| < θmax

=⇒
{

θ̈L + ω2
0θL = uL

|θL| < θmax − δ
with θ ≈δ θL (1)

As shown in Eq. 1, the resulting differential equation is linear, and its solu-
tions approximate the original, non-linear one. More details can be found in [7]
and the complete Event-B models can be accessed from https://www.irit.fr/
∼Guillaume.Dupont/models.php.

5.3 Upward Approximation Scenario

In the case of upward approximation, the abstract machine presents simpler
dynamics than the hybrid system to design, for which formal verification is
easier, but not accurate with regard to the actual behaviour of the system.
In this first model, the designer sets a target safe evolution domain and then
performs formal verification on an expansion of this evolution domain. Then,
a safe approximation (in a refinement) is explicitly provided, that removes the
expansion while ensuring that the properties are maintained.

This type of situation can be encountered when the verification and proving of
the properties of the actual system is hard. In this case, approximation is actually
performed a priori : the entry point of the refinement chain is the approximated
system, in contrast with downward approximation where the entry point is
the “raw”, non-approximated system. In this case, approximation is merely a
proving technique; approximate refinement allows to eliminate approximation,
and to obtain an exact system fulfilling the required properties, in particular the
properties preserved by refinement.

https://www.irit.fr/~Guillaume.Dupont/models.php
https://www.irit.fr/~Guillaume.Dupont/models.php

332 G. Dupont et al.

The general form for this scenario is given in Fig. 5. The abstract model
corresponding to machine M approx is the approximate one. It consists of a
continuous variable xA

p ∈ R �→ SA and an event EventA. This model is refined
by the exact machine M approx consisting of continuous variable xC

p ∈ R �→ SC

and event EventC, refining EventA.

Fig. 5. Upward approximation general scenario

Compared to the other scenario, the approximation is carried out using the
same approximate gluing invariant (inv3), also used as a witness (WITH) for the
refining event, as to ensure its preservation.

However the major key point for this usage of approximation is that the
provided safety invariant for the abstract machine (safA) is obtained from the
concrete safety invariant (safC). In other words, safC is the “target” (required)
safety evolution domain, and safA is an expansion of this domain. Observe that,
as expected, this usage of approximate refinement eliminates approximation (i.e.
removes the expansion Eδ introduced in the abstract model) while preserving the
useful properties established on the abstract, approximated system.

Related Proof Obligations. In this particular case, the guard strengthening proof
obligation is of the form: xC

p (t) ∈ GC ∧ xA
p ∈δ

[0,t] O ◦ xC
p ⇒ xA

p (t) ∈ Eδ(O[GC]).
This is again trivially proven using Theorem 2, with PC = GC and PA =

Eδ(O[GC]), and by observing that Eδ(O[GC]) ⊆ Eδ(O[GC]).
This reasoning can be used for invariant preservation, so the proposed approx-

imate refinement for this general form is correct by construction. Given the target
guard GC , invariant IC and evolution domain HC , it is possible to derive the
updated guard, invariant and evolution domain of the abstract machine, so that
approximation is correct.

Similarly to the downward scenario, it is possible, in practice, to establish a
correct approximation for any predicate that is stricter than the one given in
Fig. 5. Formally, if the guard of the abstract event is of the form xA

p (t) ∈ GA, then
it is sufficient to prove that Eδ(O[GC]) ⊆ Sδ(GA) to establish guard strengthening
(using Theorem 2), and similarly for invariant and evolution domain.

Event-B Refinement for Continuous Behaviours Approximation 333

A Case Study. Upward approximation is demonstrated on the case study of
a robot visiting targets [8], borrowed from the work of [11]. The robot is
described by complex dynamics (pC , vC position and speed) and control com-
mand (uC , wC), that model the physical properties of its actuators. These com-
plex dynamics can be approximated with simpler ones (pA and control uA), on
which formal verification is easier, with pA ≈δ pC approximation (see Eq. 2).

The strategy is, first, to model the simpler (approximated) system, per-
form formal verification on it, and then use approximate refinement to correctly
approximate it to obtain the concrete (exact) system.

{
pA = uA

d(pA,0) ≤ A + δ
=⇒

⎧⎨
⎩

v̇C = 1
2uC − K(pC − wC) − vC

ṗC = vC , ẇC = uC

d(pC ,0) ≤ A
with pA ≈δ pC

(2)
More details can be found in [8] and the complete Event-B models can be

accessed from https://www.irit.fr/∼Guillaume.Dupont/models.php.

6 Related Work and Assessment

A number of solutions have been proposed to handle formal modelling of hybrid
systems using various formal methods. In many cases, the main idea consists in
incorporating continuous features in existing (discrete) formalisms, and to design
means to reason on these features, through the use of theorems, proof rules or
even entire proof systems. Below, we focus on the use of approximation.

Controller Annotation. In this kind of bottom-up approach, a controller program
usually written in C language is annotated with control information (e.g. differ-
ential equations), for example using Frama-C [4] or ACSL [13]. Proof obligations
are generated and discharged using Coq or Isabelle/HOL (respectively), together
with advanced libraries dealing with continuous features. In this context, approx-
imations are carried out implicitly: floating point numbers are projected to reals,
and the behaviour found in the controller is generally an integrated, discretised
version of the differential equation given in the annotation.

Built-in Approximation. Hybrid model-checkers are widely used to analyse
hybrid system behaviours, and in particular reachability. In practice, the hybrid
system is modelled as a hybrid automaton [2], and the verification proce-
dure is generally undecidable for non-linear systems [12]. As this latter point
is extremely constraining, hybrid model-checkers for non-linear dynamics use
approximation and bounded exploration. For instance, tools such as d/dt [3],
SpaceEx [10] and Flow∗ [6] use flowpipe over-approximation within the decision
procedure.

Preliminary Approximation. The problem of having approximation as part of
the algorithm is that it is generally difficult to control. To overcome this issue,

https://www.irit.fr/~Guillaume.Dupont/models.php

334 G. Dupont et al.

one may perform approximation before applying model-checking techniques on
the model. In the work of Girard et al. [11], the authors propose the concept
of approximate bi-simulation to characterise the notion of close observational
behaviour between two systems. In the case studies they address, the authors
manage to establish such a relationship between a complex system and a linear
one, and perform model-checking on this latter. Then, by virtue of the properties
of approximate bi-simulation, they deduce the required properties for the original
complex system.

It is to be noted that approximate bi-simulation is rigorously proven on paper,
and is presented as a verification technique (rather than an explicit, formalised
development operation).

Assessment. Compared to our approach, the formal approaches for dealing with
hybrid systems reviewed above generally lack high-level development operations,
often because they are thought to be used after the design process. The direct
consequence is that, in many cases, approximation is implicit (part of the model),
or even carried out outside of the verification process (rigorous paper proof).

Our main contribution in this regard is the integration of approximation in
the underlying formal method as a formalised, tool-supported, refinement-based
development operation, so that it is made explicit and overall part of the model.
It is seen as complementary to the previously reviewed approaches.

7 Conclusion

The work presented in this paper is twofold. On the one hand, it presents an
algebraic theory of approximation of reals, which allows to extend Event-B with
an approximation relation and the associated operators. This approximation
relation defines a Galois connection connecting dynamics and their approxima-
tion. On the other hand, it demonstrates how classical refinement can be used
rigorously to link a model and its approximate model of a hybrid system.

This refinement operation may be used in two ways. The first (downward
approximation) enables the refinement of a hybrid system characterised by a
non-linear differential equation into a linear system by approximating it. The
second method is dual (upward approximation), it allows to refine a linear sys-
tem approximating a non-linear system. It is worth noting that the introduced
approximation relation is 1) explicit since it is formalised in an algebraic theory,
allowing for the characterisation of its properties and the proof of theorems,
and 2) used in both directions of the adjunct functions of the Galois connection
it defines, i.e. from exact to approximate and vice versa. This capability is of
primary importance as traditional approaches either do not formalise the approx-
imation (although rigorously defined) or embed it implicitly in the verification
tools.

Last, the Event-B method, particularly refinement, and the Rodin IDE
proved capable of expressing the evolution of hybrid systems in the presence
of approximation. The defined approximation has been used in two case studies

Event-B Refinement for Continuous Behaviours Approximation 335

presented in this paper. This operation is part of the framework we established
in our previous work [7].

The work presented in this paper lays important theoretical foundations for
new directions of research. First, approximation, as defined in this paper, is
general; it may be refined into specific types of approximation (e.g., polynomial
approximation, linearisation, interpolation...). Moreover, it may be used as a
base for other operations of a similar nature, and in particular discretisation.

From a more theoretic point of view, this formalisation of approximation
exhibits a type of continuous refinement that differs significantly from discrete
refinement. Another direction is to investigate other types of continuous refine-
ment and their properties, and how they can be integrated into a formal method
like Event-B as high-level development operation.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995). Hybrid Systems

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 30

4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

5. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: An Event-B based generic
framework for hybrid systems formal modelling. In: Dongol, B., Troubitsyna, E.
(eds.) IFM 2020. LNCS, vol. 12546, pp. 82–102. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63461-2 5

8. Dupont, G., Aı̈t-Ameur, Y., Singh, N.K., Ishikawa, F., Kobayashi, T., Pantel, M.:
Embedding approximation in Event-B: safe hybrid system design using proof and
refinement. In: Lin, S.-W., Hou, Z., Mahony, B. (eds.) ICFEM 2020. LNCS, vol.
12531, pp. 251–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
63406-3 15

9. Dupont, G., Aı̈t-Ameur, Y., Singh, N.K., Pantel, M.: Event-B hybridation: a
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst. 20(4) (2021, to appear)

10. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

https://doi.org/10.1007/3-540-45657-0_30
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63406-3_15
https://doi.org/10.1007/978-3-030-63406-3_15
https://doi.org/10.1007/978-3-642-22110-1_30

336 G. Dupont et al.

11. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discret. Event Dyn. Syst. 18(2), 163–179 (2008)

12. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

13. Herencia-Zapana, H., et al.: PVS linear algebra libraries for verification of control
software algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012.
LNCS, vol. 7226, pp. 147–161. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28891-3 15

14. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium ISORC, pp. 363–369. IEEE Computer Society (2008)

https://doi.org/10.1007/978-3-642-28891-3_15
https://doi.org/10.1007/978-3-642-28891-3_15

Incorporating Monitors in Reactive
Synthesis Without Paying the Price

Shaun Azzopardi(B) , Nir Piterman , and Gerardo Schneider

University of Gothenburg, Gothenburg, Sweden
{shaun.azzopardi,nir.piterman,gerardo.schneider}@gu.se

Abstract. Temporal synthesis attempts to construct reactive programs
that satisfy a given declarative (LTL) formula. Practitioners have found
it challenging to work exclusively with declarative specifications, and
have found languages that combine modelling with declarative specifi-
cations more useful. Synthesised controllers may also need to work with
pre-existing or manually constructed programs. In this paper we explore
an approach that combines synthesis of declarative specifications in the
presence of an existing behaviour model as a monitor, with the benefit
of not having to reason about the state space of the monitor. We suggest
a formal language with automata monitors as non-repeating and repeat-
ing triggers for LTL formulas. We use symbolic automata with memory
as triggers, resulting in a strictly more expressive and succinct language
than existing regular expression triggers. We give a compositional synthe-
sis procedure for this language, where reasoning about the monitor state
space is minimal. To show the advantages of our approach we apply it
to specifications requiring counting and constraints over arbitrarily long
sequence of events, where we can also see the power of parametrisation,
easily handled in our approach. We provide a tool to construct controllers
(in the form of symbolic automata) for our language.

Keywords: Synthesis · Temporal logic · Symbolic automata ·
Monitoring

1 Introduction

Synthesis of programs from declarative specifications is an attractive prospect.
Although thought prohibitive due to the theoretical hardness of LTL synthesis,
recent improvements have made it a more reasonable endeavour, e.g. the iden-
tification of GR(1) [24], for which synthesis is easier, and development of tools
such as Strix [20,22] whose decomposition method allows for practical synthesis
of full LTL. Limitations remain in the context of LTL, due to the inherent hard-
ness of the problem. Beyond LTL there are also directions where the practicality
of synthesis is not clear.

This research is funded by the ERC consolidator grant D-SynMA under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No.
772459).

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 337–353, 2021.
https://doi.org/10.1007/978-3-030-88885-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_22&domain=pdf
http://orcid.org/0000-0002-2165-3698
http://orcid.org/0000-0002-8242-5357
http://orcid.org/0000-0003-0629-6853
https://doi.org/10.1007/978-3-030-88885-5_22

338 S. Azzopardi et al.

In addition to these algorithmic challenges, there are additional methodologi-
cal challenges. Practitioners have identified that it is sometimes very challenging
to write declarative specifications, and suggested to use additional modelling
[15,21]. Furthermore, synthesised parts need to work alongside pre-existing or
manually constructed parts (cf. [19]). This, however, further exacerbates the
algorithmic challenge as the state-space of the additional parts needs to be rea-
soned about by the synthesis algorithm.

We argue that modelling could also be a practical way of dealing with some
of the algorithmic challenges and advocate a partial use of synthesis, leaving
parts that are impractical for synthesis to be manually modelled. This leaves the
question of how to combine the two parts.

We suggest to compose automata with synthesised controllers by transfer of
control rather than co-operation. We define a specification language with repeat-
ing and non-repeating trigger properties (cf. [2,17]). Triggers are defined as envi-
ronment observing automata/monitors, which transfer control to LTL formulas.
Both aspects – control transfer and triggers – are familiar to practitioners and
would be easy to use: control transfer is natural for software; and triggers are
heavily used in industrial verification languages (cf. [2]).

We aim at triggers that are rich, succinct and easy to write. Thus, we use
monitors extracted from symbolic executable automata inspired by DATEs [9].
Expressiveness of automata is increased by having variables that are updated
by guarded transitions, which means that automata can be infinite-state (but
the benefits remain if they are restricted to finite-state). This choice of monitors
allows to push multiple other interesting concerns that are difficult for LTL
synthesis to the monitor side. Experience of using such monitors in the runtime
verification community suggests that they are indeed easy to write [13].

Our contributions are as follows. We formally define our specification lan-
guage “monitor-triggered temporal logic”. We show that the way we combine
monitors with LTL indeed bypasses the need to reason about the state-space
of monitors. Thus, avoiding some of the algorithmic challenges of synthesis.
We briefly present our synthesis tool. We give examples highlighting the bene-
fits of using monitors, focusing on counting (with appropriate counter variables
updated by monitor transitions) and parametrisation (with unspecified param-
eter variables that can be instantiated to any required value). Full proofs of the
propositions and theorems claimed can be found in [4].

Related Work. In the literature we find several approaches that use monitors
in the context of synthesis. Ulus and Belta use monitors with reactive control
for robotic system navigation, with monitors used for lower-level control (e.g.
to identify the next goal locations), and controllers used for high-level control
to avoid conflicts between different robots [28]. Wenchao et al. consider human-
in-the-loop systems, where occasionally the input of a human is required. The
controller monitors the environment for any possible violations, and invokes the

Incorporating Monitors in Reactive Synthesis Without Paying the Price 339

human operator when necessary [18].1 The use of monitors in these approaches is
ad hoc, a more general approach is that of the Spectra language [21]. Essentially,
Spectra monitors have an initial state, and several safety transition rules of the
form p → q, where p is a proposition on some low-level variables, and q defines
the next value of the monitor variable. This monitor variable can be used in
the higher-level controller specification. The approach here is more general than
ours in a sense, since we limit ourselves to using monitors as triggers, however
our monitors are more succinct and expressive.

The notion of triggers in temporal logic is not new, with regular expressions
being used as triggers for LTL formulas in different languages [2,11,14,27]. Com-
plexity wise, Kupferman et al. show how the synthesis of these trigger properties
is 2EXPTIME-complete [17]. However, in order to support such logics algorithms
would have to incorporate the entire state-space of the automata induced by the
regular expression triggers. We are not aware of implementations supporting syn-
thesis from such extensions of LTL. Using automata directly within the language,
as we do, may be more succinct and convenient. We also include a repetition of
trigger formulas in a way that is different from these extensions. However, the
main difference is in avoiding the need to reason about the triggering parts.

Our combination of monitors and LTL formulas can be seen as a control-flow
composition [19]. Lustig and Vardi discuss how to synthesise a control-flow com-
position that satisfies an LTL formula given an existing library of components.
They consider all components to be given and synthesise the composition itself.
Differently, we assume the composition to be given and synthesise a controller
for the LTL part. Other work given a global specification reduces it according
to that of the existing components, resulting in a specification for the required
missing component [26]. This is at a higher level than our work, since we start
with specifications for each component.

2 Preliminaries

We write σ for infinite traces over an event alphabet Σ. We use the notation σi,j ,
where i, j ∈ N and i ≤ j, to refer to the sub-trace of σ starting from position i,
ending at (including) position j. We write σi for σi,i, and σi,∞ for the suffix of
σ starting at i.

Linear Temporal Logic (LTL). General LTL (φ) and co-safety LTL (ϕ) are
defined over a set of propositions P respectively as follows, where e ∈ P:

φ
def= tt | ff | e | ¬e | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Gφ

ϕ
def= tt | ff | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

We also define and use Fφ
def= ttUφ and φWφ′ def= (φUφ′) ∨ Gφ. We write σ � φ

for σ0,∞ � φ. We omit the standard semantics of LTL [23].

1 We can think of our approach as dual, where the monitor invokes the synthesised
controller when necessary.

340 S. Azzopardi et al.

Mealy Machines. A Mealy machine is a tuple C = 〈S, s0, Σin, Σout,→, F 〉,
where S is the set of states, s0 the initial state, Σin the set of input events, Σout

the set of output events, →: S × Σin
→ Σout × S the complete deterministic
transition function, and F ⊆ S a set of accepting states. For (s, I,O, s′) ∈→ we

write s
I/O−−→ s′.

Notice that by definition for every state s ∈ S and every I ∈ Σin there

is O ∈ Σout and s′ such that s
I/O−−→ s′. A run of the Mealy machine C is

r = s0, s1, . . . such that for every i ≥ 0 we have si
Ii/Oi−−−→ si+1 for some Ii and

Oi. A run r produces the word w = σ0, σ1, . . ., where σi = Ii ∪Oi. We say that C
produces the word w if there exists a run r producing w. We say that C accepts
a prefix u of w if s|u| ∈ F .

Realisability. An LTL formula ϕ over set of events P = Pin ∪Pout is realisable
if there exists a Mealy machine C over input events 2Pin and output events 2Pout

such that for all words w produced by C we have w � ϕ. We say C realises ϕ.

Theorem 1 ([25]). Given an LTL formula ϕ it is decidable in 2EXPTIME
whether ϕ is realisable. If ϕ is realisable the same algorithm can be used to
construct a Mealy machine Cϕ realising ϕ.

2.1 Flagging Monitors

We introduce our own simplified version of DATEs [3,9], flagging monitors, as a
formalism for defining runtime monitors. Flagging monitors (monitors, for short)
are different from DATEs in that they work in discrete time, and events are in the
form of sets. Monitors are designed such that once they flag (accept) they never
flag again. This is modeled by having flagging states, which are used to signal
that monitoring has ended successfully. We also use sink states, from which it is
assured the monitor cannot flag in the future. We ensure that the monitor flags
only upon determining a matching sub-trace, and thus a monitor upon reaching
a flagging state can never flag again.

Monitor. A monitor is a tuple D = 〈Σ,V, Θ,Q, θ0, q0, F,⊥,→〉, where Σ is the
event alphabet, V is a set of typed variables, Θ is the set of possible valuations of
V, Q is a finite set of states, θ0 ∈ Θ is the initial variable valuation, q0 ∈ Q is the
initial state, F ⊆ (Q \ {q0}) is the set of flagging states (we often use qF ∈ F),
⊥∈ Q is a sink state, and →∈ Q� ×(Σ×Θ
→ {true, false})×(Σ×Θ
→ Θ)
→ Q

is the deterministic transition function, from Q�
def= Q\{⊥}, activated if a guard

holds on the input event and the current variable valuation, while it may perform
some action to transform the valuation.

For (q, g, a, q′) ∈→ we write q
g �→a−−−→ q′, and we will be using E as the input

event parameter for both g and a. We omit g when it is the true guard, and a
when it is the null action. We use D〈∗〉 for the monitor that accepts on every

event, i.e. 〈Σ,V,Θ, {q0, qF ,⊥}, θ0, q0, {qF },⊥, {q0
true �→null−−−−−−−→ qF }〉.

Incorporating Monitors in Reactive Synthesis Without Paying the Price 341

Fig. 1. Monitor that counts the number of knocks, and flags after n knocks.

For example, the monitor in Fig. 1 keeps a counter that counts the number
of knock events, and flags when the number of knocks is exactly n.

We give an operational semantics to monitors, with configurations as pairs of
states and valuations, with transitions between configurations tagged by events.

Monitor Semantics. The semantics of flagging monitors [3] is given over con-
figurations of type Q × Θ, with transitions labeled by Σ, and the transition →
defined by the following rules: (1) A transition from a non-flagging and non-sink
configuration is taken when the guard holds on the event and valuation, and
then the latter is updated according to the transition’s action; (2) If there is
no available transition whose guard holds true on the current valuation then
transition to the same configuration (stutter); (3) A sink configuration cannot
be left; and (4) A flag configuration always transitions to the sink configuration.
We use ⇒ for the transitive closure of →.2

Flagging Trace. A finite trace is said to be flagging if it reaches a flagging
state. σi,j � D

def= ∃qF , θ′ · (q0, θ0)
σi,j⇒ (qF , θ′).

The semantics ensures that every extension of a flagging trace is non-flagging.

Proposition 1. ∀σ ∈ Σω · ∀n ∈ N · σi,j � D ∧ n > 0 =⇒ σi,j+n �� D.

We can also easily show that D〈∗〉 accepts all traces of length one.

Proposition 2. ∀σ ∈ Σω and ∀i ∈ N · σi,i � D〈∗〉.

3 Monitors as Triggers for LTL Formulas

We suggest a simple kind of interaction between monitors and LTL, where mon-
itors are used as triggers for LTL. Previous work has considered the use of a
trigger operator that activates the checking of an LTL expression when a cer-
tain regular expression matches [2]. Our approach here is similar, except that we
maintain a stricter separation between the monitored and temporal logic parts.

Our language combining monitors with LTL has three operators: (i) monitors
as a trigger for an LTL formula; (ii) repetition of the trigger formula (when the
LTL formula is co-safety); and (iii) assumptions in the form of LTL formulas.
2 See [4] for full formal semantics.

342 S. Azzopardi et al.

Definition 1 (Monitor-Triggered Temporal Logic). Monitor-triggered
temporal logic extends LTL with three operators:

π′ = D:φ | (D;ϕ)∗

π = φ → π′

Formula D:φ denotes the triggering of an LTL formula φ by a monitor D. We
call formulas of this form simple-trigger LTL. Formula (D;ϕ)∗ repeats infinitely
the triggering of a co-safety LTL formula ϕ by a monitor D. We call formulas
of this form repeating-trigger LTL. Finally, φ → π′ models a specification with
an LTL assumption φ. LTL formulas are defined over a set of propositions P =
Pin ∪ Pout and monitors over the alphabet Σ = 2Pin .

In formulas of the form D:φ if D flags then the suffix must satisfy φ. In
formulas of the form (D;ϕ)∗, the monitor restarts after satisfaction of the co-
safety formula ϕ. For example, if D is the monitor in Fig. 1 and ϕ = (open ∧
X(greet ∧ Xclose))), then D:ϕ would accept every trace that waits for knocks,
and at the nth knock opens the door, then greets, and then closes the door. On
the other hand, (D;ϕ)∗ requires the trace to arbitrarily repeat this behaviour.

To support repeating triggers, we define the notion of tight satisfaction.

Definition 2 (Tight Co-safety LTL Satisfaction). A finite trace is said to
tightly satisfy a co-safety LTL formula if it satisfies the formula and no strict
prefix satisfies the formula: σi,j � ϕ

def= σi,j � ϕ ∧ (∀k · i ≤ k < j =⇒ σi,k �� ϕ).
We also call such a trace a tight witness for the LTL formula.

Note that here a tight witness is not necessarily a minimal witness (in the
sense that all of its extensions satisfy the LTL formula). For example, for every
set of propositions P , a trace 〈P 〉 is a minimal witness for Xtt [6]. However it
is not a tight witness in our sense, since 〈P 〉 �� Xtt. On the other hand 〈P, P 〉 is
a tight witness since 〈P, P 〉 � Xtt and every prefix of it does not satisfy Xtt.

Notice that it would not be simple to just use finite trace semantics for full
LTL [5,6,11,12,16]. Consider for example, the trace 〈{a}〉, which satisfies Ga. It
is not clear how to define tight satisfaction in order to start the monitor again.
For example, 〈{a}〉 can be extended to 〈{a}, {a}〉 and still satisfy Ga. Hence
formulas of the form (D;ϕ)∗ are restricted to co-safety LTL, where satisfaction
over finite traces is well-defined and accepted.

We now define the trace semantics of the trigger and repetition operators.

Definition 3 (Monitor-Trigger Temporal Logic Semantics).

1. An infinite trace satisfies a simple-trigger LTL formula if when a prefix of
it causes the monitor to flag then the corresponding suffix (including the last
element of the prefix) satisfies the LTL formula:

σi,∞ � D:φ def= ∃j · i ≤ j ∧ (σi,j � D =⇒ σj,∞ � φ) where i ∈ N.

Incorporating Monitors in Reactive Synthesis Without Paying the Price 343

2. A finite trace satisfies one step of a repeating-trigger LTL formula if a prefix
of it causes the monitor to flag and the corresponding suffix (including the
last element of the prefix) tightly satisfies the co-safety LTL formula:

σi,k � D;ϕ def= ∃j · i ≤ j ≤ k ∧ (σi,j � D ∧ σj,k � ϕ) where i, k ∈ N.

3. An infinite trace satisfies a repeating-trigger LTL formula if when a prefix of
it matches the monitor then the corresponding infinite suffix matches the LTL
formula:

σ � (D;ϕ)∗ def= ∀i ·σ0,i � D =⇒ ∃j · j ≥ i ∧ σ0,j � D;ϕ ∧ σj+1,∞ � (D;ϕ)∗.

4. An infinite trace satisfies a specification π′ with an assumption φ when if it
satisfies φ it also satisfies π′:

σ � φ → π′ def= σ � φ =⇒ σ � π′.

An interesting aspect of this semantics is that in a formula D;ϕ, D and ϕ share
an event, and the same for D:φ. This is a choice we make to allow for message-
passing between the two later on. Here it does not limit us, since not sharing
a time step can be simulated by adding a further transition with a true guard
before flagging, or by simply transforming φ into Xφ.

This semantics ensures that given an infinite trace, when a finite sub-trace
satisfies D;ϕ, extensions of the sub-trace do not also satisfy it.

Proposition 3. σi,j � D;ϕ =⇒ ∀k > j · σi,k �� D;ϕ.

We can prove that a trace σ satisfies an LTL formula φ iff it also satisfies the
formula where φ is triggered by the empty monitor.

Proposition 4. σ � φ ⇐⇒ σ � D〈∗〉:φ.

Moreover, we can show that adding these monitors as triggers for LTL for-
mulas results in a language that is more powerful than LTL.

Theorem 2. Our language is strictly more expressive than LTL.

Proof. Proposition 4 shows that every LTL formula φ can be written in our
language as D〈∗〉;φ. LTL cannot express the property that each even time step
must have p be true [29] (regardless of what is true at odd steps). In our language
(D〈∗〉; p ∧ Xtt)∗ specifies that p is true in every even time step, and (D〈∗〉;Xp)∗

specifies that p is true in every odd time step. ��
Our logic is even more expressive, for example Fig. 2 shows a monitor that

flags upon the average occurrence of an event falling below a certain level. We
note that, in general, we have not restricted the types of variables of a monitor
to range over finite domains. Thus, a monitor could also identify context-free or
context-sensitive languages or, indeed, be Turing powerful. However, Theorem 2
holds even if we consider only monitors whose variables have finite domains, or
even monitors without variables.

344 S. Azzopardi et al.

Fig. 2. Monitor that keeps track of the number of time steps, and the number of
occurrences of e, while flagging is the average occurrence of e goes below n.

4 Synthesising Monitor-Triggered Controllers

We have so far discussed our language from a satisfaction viewpoint. However
we are interested in synthesising systems that enforce the specifications in our
language. In this section we present our synthesis approach, which relies on the
synthesis of controllers for LTL formulas.

Consider a specification π = γ → π′, where π′ is either of the form D:φ or
(D;ϕ)∗. We focus on specifications where the assumption γ is restricted to con-
junctions of simple invariants, transition invariants, and recurrence properties.
Formally, we have the following:

α
def= tt | ff | a | ¬α | α ∧ α | α ∨ α

β
def= α | Xα | β ∧ β | β ∨ β

γ
def= Gβ | GFα | γ ∧ γ

That is, α are Boolean combinations of propositions, β allows next operators
without nesting them, and γ is a conjunction of invariants of Boolean formu-
las, Boolean formulas that include next, or recurrence of Boolean formulas. We
discuss below the case of general assumptions.

Let π = γ → (D:φ). Then t(π) is the formula γ → φ. Let π = γ → (D;ϕ)∗.
Then t(π) is the formula γ → ϕ. That is, t(π) is the specification obtained by
considering the implication of the assumption γ and the LTL formula.

4.1 Tight Synthesis for Co-safety Implication Formulas

Let π contain a repeating trigger and let t(π) = γ → ϕ, where ϕ is a co-
safety formula. Suppose that t(π) is realisable and let Ct(π) be a Mealy machine
realising t(π).

Definition 4. A Mealy machine C tightly realises a formula of the form γ → ϕ,
where ϕ is a co-safety formula, if it realises γ → ϕ and in addition for every
word w produced by C such that w � γ there exists a prefix u of w such that C
accepts u, u0,|u| � ϕ, and for every u′ < u we have C does not accept u.

Incorporating Monitors in Reactive Synthesis Without Paying the Price 345

That is, when the antecedent γ holds, the Mealy machine accepts the tight
witness for satisfaction of ϕ.

Theorem 3. The formula t(π) = γ → ϕ is tightly realisable iff it is realisable.
A Mealy machine tightly realising t(π) can be constructed from Ct(π) with the
same complexity.

Proof (sketch). We can construct a deterministic finite automaton that is at
most doubly exponential in φ, that accepts all finite prefixes that satisfy φ. Its
product with Ct(π) results in a Mealy machine that accepts all prefixes that
satisfy t(π), in particular the shortest prefix, as required for realisability.

Note that in the case of tight realisability we can give a controller with a set
of accepting states that enable us to accept upon observing tight witnesses. In
the case where we are only concerned about non-tight realisability we assume
the controller does not have any accepting states.

4.2 Monitor-Triggered Synthesis

We are now ready to handle synthesis for monitor-triggered LTL.

Definition 5. A monitor-triggered LTL formula π over set of events Pin and
Pout is realisable if there exists a Mealy machine C over input events 2Pin and
output events 2Pout such that for all words w produced by C we have w � π. We
say that C realises π.

In the case of simple triggers, we combine the monitor with a Mealy machine
realising t(π). In the case of repeating triggers, we combine the monitor with a
Mealy machine tightly realising t(π). In what follows we define the behaviour of
the combination of a monitor and a Mealy machine.

Consider a specification π = γ → π′, where π′ is either M :φ or (M ;ϕ)∗.

Theorem 4. Let Ct(π) be a Mealy machine realising t(π) when π′ is a simple-
trigger LTL, and tightly realising t(π) when π′ is a repeating-trigger LTL. Then
there is a Mealy machine M � Ct(π) that realises π.

Proof (sketch). M � Ct(π) can be constructed over states that correspond to
a tuple of M states, valuations, and Ct(π) states. Monitor transitions can be
unfolded into Mealy machine transitions with no outputs, according to their
semantics. Transitions to a flagging state can be composed with transitions from
the initial state of Ct(π). For the repeating case, transitions to final states of
Ct(π) are made instead to point back to the initial configuration (initial state
and valuation of M , and initial state of Ct(π)). Execution happens only in one
machine at a time, except for the shared transition in the repeating case. We
can show by induction the correctness of this construction.

346 S. Azzopardi et al.

The opposite of Theorem 4 is, however, not true. If π is realisable then it does
not necessarily mean that t(π) is also realisable. Consider a specification with a
monitor that never flags, and which thus any Mealy machine realises. Another
example is with a monitor that only flags upon seeing the event set {a}, and
an LTL formula of the form (b =⇒ ff) ∧ (a =⇒ c) (where a and b are input
events, and c an output event). The LTL formula is clearly unrealisable given
the first conjunct, however the combination of the monitor with a controller
for LTL’s second conjunct would realise the corresponding specification. Thus
the construction in Theorem 4 is only sound but not complete, i.e., we have a
procedure to produce controllers for our language only when the underlying LTL
formula (modulo the assumption) is realisable, or when the monitor cannot flag.

Corollary 1. If M cannot flag, or t(π) is realisable, then π is realisable.

We recall that we have restricted the assumptions to a combination of invari-
ants, transition invariants, and recurrence properties. Such assumptions are
“state-less”. That is, identifying whether a word satisfies an assumption does
not require to follow the state of the assumption. Thus, in our synthesis pro-
cedure it is enough for the controller to check whether the assumption holds
without worrying about what happened during the run of the monitor that trig-
gered it. In particular, if (safety) assumptions are violated only during the run of
monitors, our Mealy machine will still enforce satisfaction of the implied formula.
In order to treat more general assumptions, we would have to either analyse the
structure of the monitor in order to identify in which “assumption states” the
controller could be started or give a precondition for synthesis by requiring that
the controller could start from an arbitrary “assumption state”, which we leave
for future work. Similarly, understanding the conditions the monitor enforces
and using them as assumptions would allow us to get closer to completeness of
Theorem 4. One coarse abstraction is simply the disjunction of the monitor’s
flagging transitions’ guards as initial assumptions for the LTL formula.

5 Tool Support

We created a proof-of-concept automated tool3 to support the theory presented
in this paper. Implemented in Python, this tool currently accepts as input a
monitor written in a syntax inspired by that of LARVA [3,10], and an LTL
specification, while it outputs a symbolic representation of the Mealy machine
constructed in the proof of Theorem 4, in the form of a monitor with outputs.

The proof of Theorem 3 is constructive and provides an optimal algorithm to
synthesise tight controllers using standard automata techniques. For this tool we
have instead opted to re-use an existing synthesis tool, Strix [20,22] due to its
efficiency. To force Strix to synthesise a tight controller (for repeating triggers),
the tool performs a transformation to the co-safety guarantees to output a new
event that is only output once a tight witness is detected. This transformation

3 https://github.com/dSynMa/syMTri.

https://github.com/dSynMa/syMTri

Incorporating Monitors in Reactive Synthesis Without Paying the Price 347

Fig. 3. Flagging monitor that checks that the room has been in use for n time steps,
after which when there is a period of m time steps where the room is empty it flags.

works well on our case studies, but is exponential in the worst-case. This is due to
the need for disambiguating disjunctions. For example, given ψ1 ∨ ψ2 we cannot
in general easily be sure which disjunct the controller will decide to enforce;
instead we disambiguate it to (ψ1 ∧ ¬ψ2) ∨ (¬ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ2) (cf. [8]).

6 Case Studies

We have applied our monitor approach mainly in the setting of conditions on the
sequence of environment events, for which synthesis techniques can be particu-
larly inefficient. We will consider a case study involving such conditions, where
several events need to be observed before a robot can start cleaning a room.
Furthermore we consider a problem from SYNTCOMP 2020 on which all tools
timed out due to exponential blowup as the parameter values increase, relating
to observing two event buses. We show how our approach using monitors avoids
the pitfalls of existing approaches with regards to these kinds of specifications.

6.1 Event Counting

Fig. 4. Tight controller for cleaning robot, with rightmost state as accepting state. (1
(0) in position i means event i (not) occurs, and - when we do not care).

Consider a break room that is used by people intermittently during the day,
and that needs to be cleaned periodically by a cleaning robot. We do not want
to activate the robot every time the room is unclean to not disturb people on
their break. Instead our procedure involves checking that the room is in use for
a certain amount n of time steps. We also do not want the cleaning robot to

348 S. Azzopardi et al.

be too eager or to activate immediately upon an empty room. Thus we further
want to constrain the robot’s activation on the room being empty for a number
of m time steps and reset the counting whenever the room is not empty. We can
represent these conditions using the monitor in Fig. 3.

Given a set of assumptions on the environment (e.g. cleaning an unclean
locked room eventually results in a clean room), we wish the controller to satisfy
that eventually the room will be clean, after which the robot leaves the room and
opens the door to the public: F (isClean & (XF !inRoom) & (XF !doorLocked)).4

Our tool synthesises Fig. 4 as a tight controller for this.
Representing the first monitor condition in LTL is not difficult (¬pW (p ∧

X(¬pWp∧ ...))), where proposition p corresponds to inRoom and W is the weak
until operator. The second condition is different, given the possible resetting of
the count, but still easily representable in LTL ((

∨m−1
i=0 Xip)W (

∧m−1
i=0 Xi¬p)).

Setting n,m = 2, and ϕ to be what we require out of the cleaning robot in one
step, then a step of our specification (without repetition) in LTL is:

ψ = ¬pW (p ∧ X(¬pW (p ∧ X((p ∨ Xp)W (¬p ∧ X(¬p ∧ ϕ)))))).

In fact Strix confirms this to be realisable, and produces an appropriate
Mealy Machine with eighty transitions, the size of which increases with each
increase in any of the parameters.

However, using our approach all we require is Fig. 3 and Fig. 4. By repre-
senting the counting part of the specification using a monitor we can create a
specification much more succinct than the LTL one, while its representation is
of the same size for each value of the parameter. Moreover in LTL it is not clear
how to reproduce our repeating triggers.

The difference is that the traditional approaches explicitly enumerate every
possible behaviour and state of the controller at runtime, which can get very
large. In our approach we are instead doing this symbolically, and allowing the
particular behaviour of the environment at runtime to drive our symbolic mon-
itor. The extra cost associated with this is the semantics of guard evaluation
and maintaining variable states. For this example, the cost of the variable states
(only two variables) is much smaller than the cost of the Strix generated machine,
while guards simply check for membership and use basic arithmetic operations.

6.2 Sequences of Events

We consider a benchmark from SYNTCOMP 2020 [1]5, that generates formulas
of the form, e.g. for n = 2, F (p0∧F (p1))∧F (q0∧F (q1)) ⇐⇒ GFacc. Strix [20],
the best-performing tool in the LTL tracks of the competition, was successful
when the bus size was small, however timed out for n = m = 12 (and above). The
issue here is that the generated strategy must take into account every possible
interleaving of the two sequences, which quickly causes a state space explosion.

4 The full specification is available with our tool.
5 The considered benchmark corresponds to files of the form ltl2dba beta <n>.tlsf.

Incorporating Monitors in Reactive Synthesis Without Paying the Price 349

Fig. 5. Event ordering in two buses.

With our approach we can represent the left-hand side in constant-size for
any n and m, as illustrated in Fig. 5, where maxInSeqX is a function that returns
the maximal j such that ∀k ∈ [xCount, j] · xk ∈ E. The benefits apply however
complex the right-hand side.

To replicate the whole LTL formula we can use M :GFacc, where M is the
monitor in Fig. 5. This is somewhat different from the original specification,
where a necessary and sufficient relation was specified. One would be tempted
to specify this as (for n = 1) (M ; (Facc))∗, however the monitor is not active
while the controller is activated, thus p1 and q1 may occur in tandem with acc
but be missed by the monitor. Although this is not of consequence towards
the satisfaction of the formula here (p1 should occur infinitely often), this is
not generally the case. On the other hand M :GFacc captures that upon the
first activation of M there is no need to monitor the environment’s behaviour
anymore, and thus is equivalent to the original specification for control.

7 Discussion

The case studies we considered in the previous section focused on counting and
waiting for sequence of events. We expect other useful applications of monitors
as triggers, given they can be used to specify more sophisticated quantitative
properties out of reach for LTL, e.g. see Fig. 2 [10].

We have highlighted how our approach extends the scope of use of reactive
synthesis. It is clear that we can gain in scalability and expressiveness, but there
is a price to pay: the “trigger” part. In general, to avoid lack of guarantees one can
avoid working directly with automata, and instead use regular expressions or co-
safety LTL formulas (under our notion of tight satisfaction) as triggers. Standard
inexpensive monitor synthesis [7] could then be used to generate a monitor. In
the case of more expressive manually-written monitors, which is standard for
runtime verification (e.g. [9]), in practice one can easily apply model checking to
the monitor to ensure it satisfies specific properties (e.g. no infinite loops).

There are certain benefits to using a symbolic representation, including suc-
cinct representation, and easy parametrisation. The Mealy machine construction
we give in the proof of Theorem 4 is in fact not carried out by our tool, but
instead it produces a symbolic monitor with outputs that essentially performs
the construction on-the-fly. The cost of unfolding is then only paid for the trace

350 S. Azzopardi et al.

at runtime, rather than for all possible traces. Moreover, a symbolic representa-
tion allows for specification of parametrised specifications, when parametrisation
can be pushed to the monitor side. This can be done by adding any required
parameter to the variables of the monitor, and instantiating its value in the ini-
tial variable valuation of the monitor appropriately. Note that our results are
agnostic of the initial valuation, and thus hold regardless of the parameter values.

We have not yet discussed conjunction of trigger formulas, e.g. (M1;ψ1)∗ ∧
(M2;ψ2)∗. Conjunction is easy when the output events of ψ1 and ψ2 respectively
talk about are independent from each other. Our controller construction can be
used independently for each. Similarly, when the properties are safety proper-
ties there is no difficulty. However, when, e.g., ψ1 is a liveness property with at
least one output event correlated with an output event of ψ2, then conjunction
is more difficult, due to possible interaction between the two possibly concur-
rent controllers. We are investigating a solution for this issue of concurrency of
controllers by identifying appropriate assumptions about the monitor.

Theorem 2 compares our expressive power to that of LTL. We also mention
that we do not restrict the variables used by monitors. Thus, even when com-
paring with languages that include regular expressions or automata [2,11,17]
our language would be more expressive. If we were to restrict monitors to be
finite state, then, as these languages can express all ω-regular languages, it is
clear that they would be able to express our specifications. We note, however,
that the repeating trigger operator is not directly expressible in these languages.
Thus, the translation involves a conversion of our specification to an automaton
and embedding this automaton in “their” specification. The conversion of our
specification to an automaton includes both the enumeration of the states of the
monitor and the exponential translation of LTL to (tight) automata.

8 Conclusions

We have explored synthesis for specifications that combine modelling and declar-
ative aspects, in the form of symbolic monitors triggers for LTL formulas. We
have shown how this extends the scope of synthesis by allowing parts of a spec-
ification that are hard for synthesis to be instead handled in the monitor part.
The synthesis algorithm we give synthesises the LTL part without requiring the
need to reason about the monitor. Moreover, we have implemented this app-
roach and applied it to several case studies involving counting and monitoring
multiple sequences of events that can be impossible or hard for LTL synthesis.
We showed how by exploiting the symbolic nature of the monitors we can create
fixed-size parameterised controllers for some parameterised specifications.

Future Work. Our work opens the door to a number of interesting research
avenues, both by using richer monitor triggers and by exploring different inter-
actions between triggers and controllers. We discuss below just a few such pos-
sibilities. In all the cases below the challenges lie not only in providing a new
language to capture the extension but rather in the theoretical framework with
a proof that the integration is sound.

Incorporating Monitors in Reactive Synthesis Without Paying the Price 351

A first intuitive extension is to add real-time to the monitors, to express prop-
erties like “compute the average use of a certain resource every week and activate
the controller to act differently depending on whether the average is bigger (or
smaller) than a certain amount”. While extending the monitor with real-time is
quite straightforward (our monitors are restricted versions of DATEs [9] which
already contain timers and stopwatches), the challenge will be to combine it with
the controller in a suitable manner. Having real-time monitors running in paral-
lel with controllers would enable for instance the possibility to add timeouts to
activities performed by the controllers.

Currently we have a strict alternation between the execution of the monitor
and the controller: we would like to explore under which conditions the two can
instead run in parallel. This would allow the controller to react to the monitor
only when certain complex condition hold while the controller is active doing
other things (e.g., the monitor might send an interruption request to the con-
troller when a certain sequence of events happens within a certain amount of
time, while the controller is busy ensuring a fairness property).

We could also have many triggers that run in parallel activating different
controllers, or even some meta-monitor that acts as an orchestrator to enable
and disable controllers depending on certain conditions. This might require to
extend/modify the semantics since the interaction might be done asynchronously.

We would like to address the limitation of controller synthesis concerning
what to do when the assumptions are not satisfied. It is well-known that in
order to be able to automatically synthesise a controller very often one must
have strong assumptions, and nothing is said in case the assumptions are not
satisfied. We would like to explore the use of monitors to monitor the violation of
assumptions and interact with the controller in order to coordinate how to handle
those situations (we can for instance envisage a procedure that automatically
extends the controller with transitions that takes the controller to a recovery
state if the assumptions are violated).

References

1. Syntcomp 2020. http://www.syntcomp.org/syntcomp-2020-results/
2. Armoni, R., et al.: The ForSpec temporal logic: a new temporal property-

specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 296–311. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46002-0 21

3. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring smart contracts: ContractLarva
and open challenges beyond. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS,
vol. 11237, pp. 113–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03769-7 8

4. Azzopardi, S., Piterman, N., Schneider, G.: Incorporating monitors in reactive
synthesis without paying the price. arXiv e-prints arXiv:2107.00929, July 2021

5. Bartocci, E., Bloem, R., Nickovic, D., Roeck, F.: A counting semantics for mon-
itoring LTL specifications over finite traces. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 547–564. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 29

http://www.syntcomp.org/syntcomp-2020-results/
https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/978-3-030-03769-7_8
https://doi.org/10.1007/978-3-030-03769-7_8
http://arxiv.org/abs/2107.00929
https://doi.org/10.1007/978-3-319-96145-3_29
https://doi.org/10.1007/978-3-319-96145-3_29

352 S. Azzopardi et al.

6. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011)

8. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 3

9. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

10. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring of real-time
Java programs. In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)

11. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI 2013, pp. 854–860. AAAI Press (2013)

12. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

13. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

14. Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic. Inf. Comput.
253, 237–256 (2017). https://doi.org/10.1016/j.ic.2016.07.009

15. Filippidis, I., Murray, R.M., Holzmann, G.J.: A multi-paradigm language for reac-
tive synthesis. In: SYNT 2015, pp. 73–97 (2015)

16. Fisman, D., Kugler, H.: Temporal reasoning on incomplete paths. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 28–52. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03421-4 3

17. Kupferman, O., Vardi, M.Y.: Synthesis of trigger properties. In: Clarke, E.M.,
Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 312–331. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 18

18. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop con-
trol systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 470–484. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 40

19. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1 28

20. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Inform. 2, 3–36 (2019). https://
doi.org/10.1007/s00236-019-00349-3

21. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems
(2019)

22. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1016/j.ic.2016.07.009
https://doi.org/10.1007/978-3-030-03421-4_3
https://doi.org/10.1007/978-3-642-17511-4_18
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/978-3-642-00596-1_28
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31

Incorporating Monitors in Reactive Synthesis Without Paying the Price 353

23. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
27–73. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 2

24. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

26. Raclet, J.: Residual for component specifications. Electron. Notes Theor. Comput.
Sci. 215, 93–110 (2008). https://doi.org/10.1016/j.entcs.2008.06.023

27. Sistla, A.P., Wolfson, O.: Temporal triggers in active databases. IEEE Trans.
Knowl. Data Eng. 7(3), 471–486 (1995)

28. Ulus, D., Belta, C.: Reactive control meets runtime verification: a case study of
navigation. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
368–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 21

29. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99
(1983)

https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/11609773_24
https://doi.org/10.1016/j.entcs.2008.06.023
https://doi.org/10.1007/978-3-030-32079-9_21

Verification of Machine Learning

pyNeVer: A Framework for Learning
and Verification of Neural Networks

Dario Guidotti1, Luca Pulina2, and Armando Tacchella1(B)

1 University of Genoa, Genoa, Italy
dario.guidotti@edu.unige.it, armando.tacchella@unige.it

2 University of Sassari, Sassari, Italy
lpulina@uniss.it

1 Summary

Automated verification of neural networks (NNs) was first proposed in [1] and it
is an established research topic with several contributions to date—see, e.g., [2].
The taxonomy proposed in [2] suggests a division among verification tools pro-
viding deterministic guarantees, e.g., Marabou [3], and those providing sound
approximations, e.g., ERAN [4] and NNV [5]. pyNeVer borrows basic tech-
niques from [5] and casts them into an abstraction approach inspired by [4]; like
ERAN and NNV, it features complete verification methods, but it features a
distinctive abstraction mechanism. Networks comprising layers of affine trans-
formations and layers of activation functions such as Rectified Linear Units
(ReLUs) and sigmoids are abstracted to mappings between polytopes repre-
sented as generalized star sets [6]; the main novelty is that the abstraction level
of each layer can be controlled down to a single neuron to support various refine-
ment policies. Additionally, pyNeVer can also load popular datasets and NN
models in ONNX [7] and PyTorch [8] formats, and supports training of NNs
carried out transparently through PyTorch. Additionally, NNs can be manipu-
lated through network slimming and weight pruning to ease verification—see [9].
Here we focus on verification with pyNeVer and provide a brief experimental
account. pyNeVer sources, documentation and examples are accessible at

https://github.com/NeVerTools/pyNeVer

In the remainder of this section, we briefly introduce some basic definitions and
notation used in the paper.

Star Sets. To represent polytopes and define abstract computations we consider
a subclass of generalized star sets, introduced in [6] and defined as follows—
the notation is adapted from [10]. Given a basis matrix V ∈ R

n×m obtained
arranging a set of m basis vectors {v1, . . . , vm} in columns, a point c ∈ R

n

called center and a predicate R : Rm → {�,⊥}, a generalized star set is a tuple
Θ = (c, V,R) yielding the set of points:

[[Θ]] ≡ {z ∈ R
n | z = V x + c such that R(x1, . . . , xm) = �}. (1)

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 357–363, 2021.
https://doi.org/10.1007/978-3-030-88885-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_23&domain=pdf
https://github.com/NeVerTools/pyNeVer
https://doi.org/10.1007/978-3-030-88885-5_23

358 D. Guidotti et al.

In the following we denote [[Θ]] also as Θ. We consider only star sets such that
R(x) := Cx ≤ d, where C ∈ R

p×m and d ∈ R
p for p ≥ 1, i.e., R is a conjunction

of p linear constraints; we further require that the set Y = {y ∈ R
m | Cy ≤ d}

is bounded. We refer to generalized star sets obeying our restrictions simply as
stars, and it is easy to show that such sets are polytopes in R

n whose set we
represent as 〈Rn〉. Given a star Θ = (c, V,R) and an affine mapping f : Rn → Rm

with f = Ax + b, the affine mapping of the star is defined as f(Θ) = (ĉ, V̂ , R)
where ĉ = Ac+ b and V̂ = AV . Notice that, if Θ ∈ 〈Rn〉 then also f(Θ) ∈ 〈Rm〉,
i.e., the affine transformation of a polytope is still a polytope.

Neural networks. Given a finite number p of functions f1 : Rn → R
n1 , . . . , fp :

R
np−1 → R

m—also called layers—we define a feed forward neural network as
a function ν : Rn → R

m obtained through the compositions of the layers, i.e.,
ν(x) = fp(fp−1(. . . f1(x) . . .)). The layer f1 is called input layer, the layer fp

is called output layer, and the remaining layers are called hidden. Given x ∈
R

n, we consider two types of layers: the mapping f(x) = Ax + b with A ∈
R

m×n and b ∈ R
m is an affine layer implementing the linear mapping f :

R
n → R

m; the mapping f(x) = (σ1(x1), . . . , σn(xn)) is a functional layer f :
R

n → R
n consisting of n activation functions—also called neurons; usually

σi = σ for all i ∈ [1, n], i.e., the function σ is applied to each component of
the vector x. We consider two kinds of activation functions σ : R → R that
find widespread adoption: the ReLU function defined as σ(r) = max(0, r), and
the logistic function—of the family of sigmoids—defined as σ(r) = 1

1+e−r . For
a neural network f : Rn → R

n, the task of classification is about assigning to
every input vector x ∈ R

n one out of m labels: an input x is assigned to a class
k when ν(x)k > ν(x)j for all j ∈ [1,m] and j �= k; the task of regression is about
approximating a functional mapping from R

n to R
m.

2 Abstraction Algorithms

In Algorithm 1 we detail the abstract mapping of a ReLU node—abstraction of
sigmoid nodes and affine transformations are also implemented. Let us assume
that the concrete functional layer contains n activation functions. The function
compute layer takes as input an indexed list of N stars Θ1, . . . , ΘN repre-
senting an abstraction of the input and an indexed list of n positive integers
called refinement levels. For each neuron, the refinement level tunes the grain
of the abstraction: level 0 corresponds to the coarsest abstraction that we con-
sider and the greater the level, the finer the abstraction grain becomes. In the
case of ReLUs, all non-zero levels map to the same (precise) refinement, i.e.,
a piece-wise affine mapping. Notice that, since each neuron features its own
refinement level, Algorithm 1 controls abstraction down to the single neuron as
expected, enabling the computation of layers with mixed degrees of abstraction.
The output of function compute layer is still an indexed list of stars, that
can be obtained by independently processing the stars in the input list. For
this reason, the for loop starting at line 3 is parallelized in the actual imple-
mentation. Given a single input star Θi ∈ 〈Rn〉, each of the n dimensions is

pyNeVer: A Framework for Learning and Verification of Neural Networks 359

Algorithm 1. Abstraction of the ReLU activation function.
1: function compute layer(input = [Θ1, . . . , ΘN], refine = [r1, . . . , rn])
2: output = []
3: for i = 1 : N do
4: stars = [Θi]
5: for j = 1 : n do stars = compute relu(stars, j, refine[j], n)

6: append(output, stars)

7: return output

8: function compute relu(input = [Γ1, . . . , ΓK], j, level, n)
9: output = []
10: for k = 1 : K do
11: (lb, ub) = get bounds(input[k], j)
12: M = [e1 ... ej−1 0n ej+1 ... en]
13: if lb ≥ 0 then S = input[k]
14: else if ub ≤ 0 then S = M * input[k]
15: else
16: if level > 0 then
17: Θlow = input[k] ∧ zj < 0; Θupp = input[k] ∧ zj ≥ 0
18: S = [M * Θlow, Θupp]
19: else
20: (c, V, Cx ≤ d) = input[k]

21: C1 = [0 0 ... − 1] ∈ R
1×m+1, d1 = 0

22: C2 = [Vj − 1] ∈ R
1×m+1, d2 = −cj

23: C3 = [−ub
ub−lbVj − 1] ∈ R

1×m+1, d3 = ub
ub−lb (cj − lb)

24: C0 = [C 0m×1], d0 = d

25: Ĉ = [C0; C1; C2; C3], d̂ = [d0; d1; d2; d3]

26: V̂ = MV , V̂ = [V̂ ej]

27: S = (Mc, V̂ , Ĉx̂ ≤ d̂)

28: append(output, S)

29: return output

processed in turn by the for loop starting at line 5 and involving the function
compute relu. Notice that the stars obtained processing the j-th dimension
are fed again to compute relu in order to process the j +1-th dimension. The
function append(p1, p2) (line 6) takes an indexed list p1 and either an element
or another indexed list p2 and appends it to p1. For each star given as input, the
function compute relu first computes the lower and upper bounds of the star
along the j-th dimension by solving a linear-programming problem—function
get bounds at line 11. Independently from the abstraction level, if lb ≥ 0 then
the ReLU acts as an identity function (line 13), whereas if ub ≤ 0 then the j-th
dimension is zeroed (line 14). The “asterisk” operator (*) takes a matrix M , a
star Γ = (c, V,R) and returns the star (Mc,MV,R). In this case, M is composed
of the standard orthonormal basis in R

n arranged in columns, with the excep-
tion of the j-th dimension which is zeroed. When lb < 0 and ub > 0 we must
consider the refinement level. For any non-zero level, the input star is “split”
into two stars, one considering all the points z < 0 (Θlow) and the other consid-
ering points z ≥ 0 (Θupp) along dimension j. Both Θlow and Θupp are obtained
by adding to the input star input [k] the appropriate constraints. Notice that,
if the analysis at lines 17–18 is applied throughout the network, and the input
abstraction is precise, then the abstract output range will also be precise, i.e., it
will coincide with the concrete one: we call complete the analysis of pyNeVer

360 D. Guidotti et al.

Table 1. Performances of pyNeVer on a subset of ACAS XU networks. Columns
property and net report the property and the network considered, respectively.
The other columns report the verification time (time) and the result of verification
(verified) for complete, mixed and over-approximate analyses, respectively.

property net complete mixed overapprox

time verified time verified time verified

3 1 1 460 T 25 T 2 F

1 3 83 T 11 T 3 F

2 3 33 T 9 T 2 F

4 3 319 T 31 T 3 F

5 1 44 T 10 T 2 F

4 1 1 143 T 11 F 3 F

1 3 96 T 16 F 3 F

3 2 67 T 20 T 3 F

4 2 177 T 15 T 3 F

in this case. Currently, pyNeVer does not attempt to merge stars. Therefore,
in the complete analysis, the number of stars is worst-case exponential—see [5].
If the refinement level is 0, then the ReLU is abstracPted using the tightest
polyhedral abstraction available, i.e. a triangle with vertices in (lb, 0), (0, 0) and
(ub, ub). The computation of the resulting star is carried out from line 21 to line
25. Intuitively, given the predicates of the input star Cx ≤ d, the matrix C and
the vector d are modified to constrain the output star within the points inside the
triangle defining the abstraction, given the points of the input star. If the analy-
sis at lines 21–25 is carried out throughout the network, assuming that the input
star contains all potential input points, then the output star will be a (sound)
over-approximation of the concrete output range: we call over-approximate the
analysis of pyNeVer in this case. As we mentioned before, we can mix different
levels of abstraction, down to the single neuron: we call mixed an analysis that
adopts different levels of abstraction.

3 Experimental Evaluation

In this section, we provide some empirical results about pyNeVer1. Our
experiments are focused on the verification task, i.e., given a neural network
ν : Rn → R

m we wish to verify algorithmically that it complies to stated post-
conditions on the output as long as it satisfies pre-conditions on the input. In
the first experiment, we compare the three different verification methodologies
available in pyNeVer, namely complete, mixed and over-approximate analy-
sis. In this experiment, the mixed strategy is implemented by refining a fixed
1 All experiments ran on a laptop equipped with an Intel i7-8565 CPU (8 core at 1.8

GHz) and 16 GB of memory with Ubuntu 20 operating system.

pyNeVer: A Framework for Learning and Verification of Neural Networks 361

Table 2. Performances of a pool of state-of-the-art tools on a subset of ACAS XU
networks. The table is organized similarly to Table 1. In the results, “<1” indicates
that the CPU time spent was less than 1 s, while a dash (“–”) denotes that the tool
exhausted the available memory.

p net erancp erancz eranop eranoz marabou nnvc nnvo

time ver time ver time ver time ver time ver time ver time ver

3 1 1 139 T 73 T 105 F 65 F 7073 T 329 T 1 F

1 3 9 T – – 9 T 36 F 3451 T 37 T <1 F

2 3 4 T 3 T 4 T 2 T 966 T 17 T <1 F

4 3 4 T 4 T 4 T 5 T 1452 T 112 T <1 F

5 1 7 T 3 T 8 T 4 T 763 T 17 T <1 F

4 1 1 11 T 6 T 11 T 7 T 2401 T 141 T 1 F

1 3 8 T 3 T 8 T 3 T 756 T 41 T <1 F

3 2 4 T 3 T 5 T 2 T 63 T 21 T <1 F

4 2 4 T 2 T 4 T 2 T 44 T 59 T <1 F

amount of neurons in each layer. The results that we present are obtained refin-
ing at most a single neuron for each layer. Clearly, different refinement heuristics
may yield different results, but a thorough experimentation of such heuristics is
beyond the scope of this paper. Here, we just wish to show how combining con-
crete and over-approximate analysis, even with a very straightforward approach,
may yield improvements in the overall verification time. For the comparison, we
consider networks and properties from the ACAS Xu evaluation [11]. ACAS
Xu is an airborne collision avoidance system based on NNs whose purpose is
to issue advisory commands to an autonomous vehicle (ownship) about evasive
maneuvers to be performed in case another vehicle (intruder) comes too close. In
particular, we selected Property 3 and 4 since they can be easily expressed as a
single verification query in our tool. In the words of [11], these safety properties
“deal with situations where the intruder is directly ahead of the ownship, and
state that the NN will never issue a COC (clear of conflict) advisory”. Consid-
ering the analysis in [11], each property can be assessed on 42 different networks
depending on the choice of two parameters. Among the 84 networks available,
we selected those for which our over-approximate analysis was not able to find
a definitive answer, ending with a total of 9 networks. Notice that Property 3
and Property 4 are always satisfied in these networks. Table 1 shows the results
of this experiment. Looking at the table, we can see that the complete analysis
of pyNeVer is able to answer all the queries, whereas the over-approximate
analysis does not succeed on any of them. Considering the results of the mixed
analysis, we see that pyNeVer is able to answer all but two queries and the
total amount of CPU time spent is noticeably less than the complete analysis
and uniformly closer to the one reported for the over-approximate one. Arguably,
the mixed methodology provides a good trade-off between precision and speed.

Our second experiment aims to compare pyNeVer to a pool of state-of-
the-art tools. In particular, we consider four versions of ERAN [12,13], i.e.

362 D. Guidotti et al.

the ones resulting from the combination of complete (c) and over-approximate
(o) methodologies, using either polytopes (p) or zonotopes (z); we consider
also Marabou [3], and two versions of NNV [10] featuring both complete and
over-approximate methodologies (NNVc and NNVo, respectively). We report
the results in Table 2, where we denote ERAN versions with ERANxy, where
x ∈ {c, o} indicates the analysis, while y ∈ {p, z} denotes the polyhedron type.
Focusing on complete analyses, i.e., the results of ERANcp, ERANcz, Marabou
and NNVc, and comparing them with the related results of pyNeVer reported
in Table 1, we can see that the complete analysis of pyNeVer is in the same
ballpark as all but one of the other tools—ERANcz exhausts available memory
in one query. The same comparison, but focusing on over-approximation tech-
niques, yields a different result: ERAN seems to strike a better balance between
speed and precision since it is able to verify the properties even when using
over-approximation. On the other hand, the performances of pyNeVer are on
the same page with the ones reported for NNVo. Finally, looking at Table 1 and
focusing on the results related to the mixed analysis, we can see that it out-
performs NNVo and it is close to ERANop and ERANoz in terms of verified
properties.

References

1. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

2. Huang, X., et al.: Safety and trustworthiness of deep neural networks: A survey.
arXiv preprint arXiv:1812.08342 (2018)

3. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

4. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification
of neural networks. In: Proceedings of the ICLR 2019 (2019)

5. Tran, H., et al.: NNV: the neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. CoRR, abs/2004.05519 (2020)

6. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

7. Open Neural Network Exchange the open standard for machine learning interop-
erability. https://onnx.ai/

8. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Proceedings of the NIPS 2019, pp. 8024–8035 (2019)

9. Guidotti, D., Leofante, F., Pulina, L., Tacchella, A.: Verification of neural networks:
enhancing scalability through pruning. In: Proceedings of the ECAI 2020, volume
325 of Frontiers in Artificial Intelligence and Applications, pp. 2505–2512. IOS
Press (2020)

10. Tran, H.D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
http://arxiv.org/abs/1812.08342
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-63387-9_20
https://onnx.ai/
https://doi.org/10.1007/978-3-030-30942-8_39

pyNeVer: A Framework for Learning and Verification of Neural Networks 363

11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

12. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Proceedings of the NIPS 2018, pp. 10825–10836 (2018)

13. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL):41:1–41:30 (2019)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

Property-Directed Verification
and Robustness Certification
of Recurrent Neural Networks

Igor Khmelnitsky1,2, Daniel Neider3, Rajarshi Roy3(B), Xuan Xie3,
Benôıt Barbot4, Benedikt Bollig1, Alain Finkel1,7, Serge Haddad1,2,

Martin Leucker5, and Lina Ye1,2,6

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
2 Inria, Paris, France

3 Max Planck Institute for Software Systems, Kaiserslautern, Germany
rajarshi@mpi-sws.org

4 Université Paris-Est Créteil, Créteil, France
5 Institute for Software Engineering and Programming Languages,

Universität zu Lübeck, Lübeck, Germany
6 CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

7 Institut Universitaire de France, Paris, France

Abstract. This paper presents a property-directed approach to verify-
ing recurrent neural networks (RNNs). To this end, we learn a deter-
ministic finite automaton as a surrogate model from a given RNN using
active automata learning. This model may then be analyzed using model
checking as a verification technique. The term property-directed reflects
the idea that our procedure is guided and controlled by the given prop-
erty rather than performing the two steps separately. We show that this
not only allows us to discover small counterexamples fast, but also to
generalize them by pumping towards faulty flows hinting at the under-
lying error in the RNN. We also show that our method can be efficiently
used for adversarial robustness certification of RNNs.

1 Introduction

Recurrent neural networks (RNNs) are a state-of-the-art tool to represent and
learn sequence-based models. They have applications in time-series prediction,
sentiment analysis, and many more. In particular, they are increasingly used in
safety-critical applications and act, for example, as controllers in cyber-physical
systems [1]. Thus, there is a growing need for formal verification. However,
research in this domain is only at the beginning. While formal-methods based

The first four authors contributed equally, the remaining authors are ordered alpha-
betically. This work was partly supported by the PHC PROCOPE 2020 project
LeaRNNify (number 44707TK), funded by DAAD and Campus France and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant num-
ber 434592664.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 364–380, 2021.
https://doi.org/10.1007/978-3-030-88885-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-88885-5_24

Property-Directed Verification and Robustness Certification 365

techniques such as model checking [4] have been successfully used in practice and
reached a certain level of industrial acceptance, a transfer to machine-learning
algorithms has yet to take place. We apply it on machine-learning artifacts rather
than on the algorithm.

An emerging research stream aims at extracting, from RNNs, state-based
formalisms such as finite automata [3,16,17,20,21,25]. Finite automata turned
out to be useful for understanding and analyzing all kinds of systems using test-
ing or model checking. In the field of formal verification, it has proven to be
beneficial to run the extraction and verification process simultaneously. More-
over, the state space of RNNs tends to be prohibitively large, or even infinite,
and so do incremental abstractions thereof. Motivated by these facts, we propose
an intertwined approach to verifying RNNs, where, in an incremental fashion,
grammatical inference and model checking go hand-in-hand. Our approach is
inspired by black-box checking [22], which exploits the property to be verified
during the verification process. Our procedure can be used to find misclassified
examples or to verify a system that the given RNN controls.

Property-Directed Verification. Let us give a glimpse of our method. We consider
an RNN R as a binary classifier of finite sequences over a finite alphabet Σ. In
other words, R represents the set of strings that are classified as positive. We
denote this set by L(R) and call it the language of R. Note that L(R) ⊆ Σ∗. We
would like to know whether R is compatible with a given specification A, written
R |= A. Here, we assume that A is given as a (deterministic) finite automaton.
Finite automata are algorithmically feasible, albeit having a reasonable expres-
sive power: many abstract specification languages such as temporal logics or
regular expressions can be compiled into finite automata [10].

But what does R |= A actually mean? In fact, there are various options. If
A provides a complete characterization of the sequences that are to be classified
as positive, then |= refers to language equivalence, i.e., L(R) = L(A). Note that
this would imply that L(R) is supposed to be a regular language, which may
rarely be the case in practice. Therefore, we will focus on checking inclusion
L(R) ⊆ L(A), which is more versatile as we explain next.

Suppose N is a finite automaton representing a negative specification, i.e., R
must classify words in L(N) as negative at any cost. In other words, R does not
produce false positives. This amounts to checking that L(R) ⊆ L(N) where N
is the “complement automaton” of N . For instance, assume that R is supposed
to recognize valid XML documents over a finite predefined set of tags. Seen as a
set of strings, this is not a regular language. However, we can still check whether
L(R) only contains words where every opening tag <tag-name> is eventually
followed by a closing tag </tag-name> (while the number of opening and the
number of closing tags may differ). As negative specification, we can then take
an automaton N accepting the corresponding regular set of strings. For example,
<book><author></author><author></book> ∈ L(N), since the second occur-
rence of <author> is not followed by some </author> anymore. On the other
hand, we have <book><author><author></author></book> ∈ L(N), as <book>
and <author> are always eventually followed by their closing counterpart.

366 I. Khmelnitsky et al.

Symmetrically, suppose P is a finite automaton representing a positive speci-
fication so that we can find false negative classifications: If P represents the words
that R must classify as positive, we would like to know whether L(P) ⊆ L(R).
Our procedure can be run using the complement of P as specification and invert-
ing the outputs of R, i.e., we check, equivalently, L(R) ⊆ L(P).

An important instance of this setting is adversarial robustness certification,
which measures a neural network’s resilience against adversarial examples. Given
a (regular) set of words L classified as positive by the given RNN, the RNN is
robust wrt. L if slight modifications in a word from L do not alter the RNN’s
judgement. This notion actually relies on a distance function. Then, P is the set
of words whose distance to a word in L is bounded by a predefined threshold,
which is regular for several popular distances such as the Hamming or Lev-
enshtein distance. Similarly, we can also check whether the neighborhood of a
regular set of words preserves a negative classification.

So, in all these cases, we are faced with the question of whether the language
of an RNN R is contained in the (regular) language of a finite automaton A.
Our approach to this problem relies on black-box checking [22], which has been
designed as a combination of model checking and testing in order to verify finite-
state systems and is based on Angluin’s L∗ learning algorithm [2]. L∗ produces
a sequel of hypothesis automata based on queries to R. Every such hypothesis
H may already share some structural properties with R. So, instead of checking
conformance of H with R, it is worthwhile to first check L(H) ⊆ L(A) using
classical model-checking algorithms. If the answer is affirmative, we apply sta-
tistical model checking to check L(R) ⊆ L(H) to confirm the result. Otherwise,
a counterexample is exploited to refine H, starting a new cycle in L∗. Just like
in black-box checking, our experimental results suggest that the process of inter-
weaving automata learning and model checking is beneficial in the verification
of RNNs and offers advantages over more obvious approaches such as (pure)
statistical model checking or running automata extraction and model checking
in sequence. A further key advantage of our approach is that, unlike in statistical
model checking, we often find a family of counterexamples, in terms of loops in
the hypothesis automaton, which testify conceptual problems of the given RNN.

Note that, though we only cover the case of binary classifiers, our framework
is in principle applicable to multiple labels using one-vs-all classification.

Related Work. Mayr and Yovine describe an adaptation of the PAC variant
of Angluin’s L* algorithm that can be applied to neural networks [17]. As L*
is not guaranteed to terminate when facing non-regular languages, the authors
impose a bound on the number of states of the hypotheses and on the length
of the words for membership queries. In [16,18], Mayr et al. propose on-the-fly
property checking where one learns an automaton approximating the intersection
of the RNN language and the complement of the property to be verified. Like
the RNN, the property is considered as a black box, only decidability of the
word problem is required. Therefore, the approach is suitable for non-regular
specifications.

Property-Directed Verification and Robustness Certification 367

Weiss et al. introduce a different technique to extract finite automata from
RNNs [25]. It also relies on Angluin’s L* but, moreover, uses an orthogonal
abstraction of the given RNN to perform equivalence checks between them.

The paper [1] studies formal verification of systems where an RNN-based
agent interacts with a linearly definable environment. The verification proce-
dure proceeds by a reduction to feed-forward neural networks (FFNNs). It is
complete and fully automatic. This is at the expense of the expressive power of
the specification language, which is restricted to properties that only depend on
bounded prefixes of the system’s executions. In our approach, we do not restrict
the kind of regular property to verify. The work [13] also reduces the verification
of RNNs to FFNN verification. To do so, the authors calculate inductive invari-
ants, thereby avoiding a blowup in the network size. The effectiveness of their
approach is demonstrated on audio signal systems. Like in [1], a time interval is
imposed in which a given property is verified.

For adversarial robustness certification, Ryou et al. [23] compute a convex
relaxation of the non-linear operations found in the recurrent cells for certifying
the robustness of RNNs. The authors show the effectiveness of their approach
in speech recognition. Besides, MARBLE [8] builds a probabilistic model to
quantize the robustness of RNNs. However, these approaches are white-box based
and demand the full structure and information of neural networks. Instead, our
approach is based on learning with black-box checking.

Elboher et al. present a counter-example guided verification framework whose
workflow shares similarities with our property-guided verification [9]. However,
their approach addresses FFNNs rather than RNNs. For recent progress in the
area of safety and robustness verification of deep neural networks, see [15].

Outline. In Sect. 2, we recall basic notions such as RNNs and finite automata.
Section 3 describes two basic algorithms for the verification of RNNs, before
we present property-directed verification in Sect. 4. How to handle adversarial
robustness certification is discussed in Sect. 5. The experimental evaluation and
a thorough discussion can be found in Sect. 6.

2 Preliminaries

In this section, we provide definitions of basic concepts such as languages, recur-
rent neural networks, finite automata, and Angluin’s L* algorithm.

Words and Languages. Let Σ be an alphabet, i.e., a nonempty finite set, whose
elements are called letters. A (finite) word w over Σ is a sequence a1 . . . an of
letters ai ∈ Σ. The length of w is defined as |w| = n. The unique word of length
0 is called the empty word and denoted by λ. We let Σ∗ refer to the set of all
words over Σ. Any set L ⊆ Σ∗ is called a language (over Σ). Its complement is
L = {w ∈ Σ∗ | w �∈ L}. For two languages L1, L2 ⊆ Σ∗, we let L1\L2 = L1∩L2.
The symmetric difference of L1 and L2 is defined as L1⊕L2 = (L1\L2)∪(L2\L1).

368 I. Khmelnitsky et al.

Probability Distributions. In order to sample words over Σ, we assume a prob-
ability distribution (pa)a∈Σ on Σ (by default, we pick the uniform distribu-
tion) and a “termination” probability p ∈ (0, 1]. Together, they determine
a natural probability distribution on Σ∗ given, for w = a1 . . . an ∈ Σ∗, by
Pr(w) = pa1 · . . . · pan

· (1 − p)n · p. According to the geometric distribution,
the expected length of a word is (1/p) − 1, with a variance of (1 − p)/p2. Let
0 < ε < 1 be an error parameter and L1, L2 ⊆ Σ∗ be languages. We call L1

ε-approximately correct wrt. L2 if Pr(L1 \ L2) =
∑

w∈L1\L2
Pr(w) < ε.

Finite Automata and Recurrent Neural Networks. We employ two kinds of lan-
guage acceptors: finite automata and recurrent neural networks.

Recurrent neural networks (RNNs) are a generic term for artificial neural net-
works that process sequential data. They are particularly suitable for classifying
sequences of varying length, which is essential in domains such as natural lan-
guage processing (NLP) or time-series prediction. For the purposes of this paper,
it is sufficient to think of an RNN R as an effective function R : Σ∗ → {0, 1},
which determines its language as L(R) = {w ∈ Σ∗ | R(w) = 1}. Its complement
R is defined by R(w) = 1−R(w) for all w ∈ Σ∗. There are several ways to effec-
tively represent R. Among the most popular architectures are (simple) Elman
RNNs, long short-term memory (LSTM) [11], and GRUs [6]. Their expressive
power depends on the exact architecture, but generally goes beyond the power
of finite automata, i.e., the class of regular languages.

A deterministic finite automaton (DFA) over Σ is a tuple A = (Q, δ, q0, F)
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ : Q×Σ → Q is the transition function. We assume familiarity
with basic automata theory and leave it at mentioning that the language L(A)
of A is defined as the set of words from Σ∗ that δ guides into a final state when
starting in q0. That is, for the complement DFA A = (Q, δ, q0, Q \ F), we get
L(A) = L(A) = Σ∗ \ L(A). It is well-known that high-level specifications such
as LTL formulas over finite words [10] or regular expressions can be compiled
into corresponding DFAs.

We sometimes use RNNs and DFAs synonymous for their respective lan-
guages. For example, we say that R is ε-approximately correct wrt. A if L(R) is
ε-approximately correct wrt. L(A).

Angluin’s Algorithm. Angluin introduced L∗, a classical instance of a learning
algorithm in the presence of a minimally adequate teacher (MAT) [2]. We do not
detail the algorithm here but only define the interfaces that we need to embed
L∗ into our framework. Given any regular language L ⊆ Σ∗, the algorithm L∗

eventually outputs the unique minimal DFA H such that L(H) = L. The crux is
that, while Σ is given, L is a priori unknown and can only be accessed through
membership queries (MQ) and equivalence queries (EQ):

(MQ) w
?∈ L for a given word w ∈ Σ∗. Thus, the answer is either yes or no.

(EQ) L(H) ?= L for a given DFA H. Again, the answer is either yes or no. If
the answer is no, one also gets a counterexample word from the symmetric
difference L(H) ⊕ L.

Property-Directed Verification and Robustness Certification 369

Algorithm 1: SMC
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 for i = 1, . . . , log(2/γ)/(2ε2) do

2 w ← sampleWord()
3 if w ∈ L(R) \ L(A) then

4 return “Counterexample w”
5

6 end
7 return “Property satisfied”

Algorithm 2: AAMC
Input: RNN R and DFA A

1 AR ← Approximation(R)
2 if ∃w ∈ L(AR) \ L(A) then
3 return “Counterexample w”

4 else return “Property satisfied”

Algorithm 3: PDV
Input: RNN R, DFA A, ε, γ ∈ (0, 1)

1 Initialize L∗

2 while true do

3 H ← hypothesis provided by L∗
4 Check L(H) ⊆ L(A)

5 if L(H) ⊆ L(A) then
6 Check L(R) ⊆ L(H) using Alg. 1

7 if L(R) ⊆ L(H) then
8 return “Property satisfied”

9 else Feed counterexample to L∗

10 else

11 Let w ∈ L(H) \ L(A)

12 if w ∈ L(R) then

13 return “Counterexample w”

14 else Feed counterexample w to L∗

15 end

16 end

Essentially, L∗ asks MQs until it considers that it has a consistent data set
to come up with a hypothesis DFA H, which then undergoes an EQ. If the latter
succeeds, then the algorithm stops. Otherwise, the counterexample and possi-
bly more membership queries are used to refine the hypothesis. The algorithm
provides the following guarantee: If MQs and EQs are answered according to
a given regular language L ⊆ Σ∗, then the algorithm eventually outputs, after
polynomially1 many steps, the unique minimal DFA H such that L(H) = L.

3 Verification Approaches

Before we present (in Sect. 4) our method of verifying RNNs, we here describe
two simple approaches. The experiments will later compare all three algorithms
wrt. their performance.

Statistical Model Checking (SMC). One obvious approach for checking whether
the RNN under test R satisfies a given specification A, i.e., to check whether
L(R) ⊆ L(A), is by a form of random testing. The idea is to generate a finite
test suite T ⊂ Σ∗ and to check, for each w ∈ T , whether for w ∈ L(R) also
w ∈ L(A) holds. If not, each such w is a counterexample. On the other hand, if
none of the words turns out to be a counterexample, the property holds on R
with a certain error probability. The algorithm is sketched as Algorithm1

Note that the test suite is sampled according to a probability distribution on
Σ∗. Recall that our choice depends on two parameters: a probability distribution
on Σ and a “termination” probability, both are described in Sect. 2.
1 In the index of the right congruence associated with L and in the size of the longest

counterexample obtained as a reply to an EQ.

370 I. Khmelnitsky et al.

Theorem 1. (Correctness of SMC). If Algorithm1, with ε, γ ∈ (0, 1), termi-
nates with “Counterexample w”, then w is mistakenly classified by R as positive.
If it terminates with “Property satisfied”, then R is ε-approximately correct wrt.
A with probability at least 1 − γ.

While the approach works in principle, it has several drawbacks for its prac-
tical application. The size of the test suite may be quite huge and it may take a
while both finding a counterexample or proving correctness.

Moreover, the correctness result and the algorithm assume that the words to
be tested are chosen according to a random distribution that somehow also has
to take into account the RNN as well as the property automaton.

It has been reported that this method does not work well in practice [25] and
our experiments support these findings.

Automaton Abstraction and Model Checking (AAMC). As model checking is
mainly working for finite-state systems, a straightforward idea would be to (a)
approximate the RNN R by a finite automaton AR such that L(R) ≈ L(AR)
and (b) to check whether L(AR) ⊆ L(A) using model checking. The algorithmic
schema is depicted in Algorithm 2.

Here, we can instantiate Approximation() by the DFA-extraction algorithms
from [17] or [25]. In fact, for approximating an RNN by a finite-state system,
several approaches have been studied in the literature, which can be, roughly,
divided into two approaches: (a) abstraction and (b) automata learning. In the
first approach, the state space of the RNN is mapped to equivalence classes
according to certain predicates. The second approach uses automata-learning
techniques such as Angluin’s L∗. The approach [25] is an intertwined version
combining both ideas.

Therefore, there are different instances of AAMC, varying in the approxi-
mation approach. Note that, for verification as language inclusion, as consid-
ered here, it actually suffices to learn an over-approximation AR such that
L(R) ⊂∼ L(AR).

While the approach seems promising at first hand, its correctness has two
glitches. First, the result “Property satisfied” depends on the quality of the
approximation. Second, any returned counterexample w may be spurious: w is a
counterexample with respect to AR satisfying A but may not be a counterexam-
ple for R satisfying A. If w ∈ L(R), then it is indeed a counterexample, but if not,
it is spurious—an indication that the approximation needs to be refined. If the
automaton is obtained using abstraction techniques (such as predicate abstrac-
tion) that guarantee over-approximations, well-known principles like CEGAR
[7] may be used to refine it. In the automata-learning setting, w may be used
as a counterexample for the learning algorithm to improve the approximation.
Repeating the latter idea suggests an interplay between automata learning and
verification—and this is the idea that we follow in this paper. However, rather
than starting from some approximation with a certain quality that is later refined
according to the RNN and the property, we perform a direct, property-directed
approach.

Property-Directed Verification and Robustness Certification 371

4 Property-Directed Verification of RNNs

We are now ready to present our algorithm for property-directed verification
(PDV). The underlying idea is to replace the EQ in Angluin’s L∗ algorithm with
a combination of classical model checking and statistical model checking, which
are used as an alternative to EQs. This approach, which we call property-directed
verification of RNNs, is outlined as Algorithm3 and works as follows.

After initialization of L∗ and the corresponding data structure, L∗ automat-
ically generates and asks MQs to the given RNN R until it comes up with a first
hypothesis DFA H (Line 3). In particular, the language L(H) is consistent with
the MQs asked so far.

At an early stage of the algorithm, H is generally small. However, it already
shares some characteristics with R. So it is worth checking, using standard
automata algorithms, whether there is no mismatch yet between H and A, i.e.,
whether L(H) ⊆ L(A) holds (Line 4). Because otherwise (Line 10), a counterex-
ample word w ∈ L(H) \ L(A) is already a candidate for being a misclassified
input for R. If indeed w ∈ L(R), w is mistakenly considered positive by R so
that R violates the specification A. The algorithm then outputs “Counterexam-
ple w” (Line 13). If, on the other hand, R happens to agree with A on a negative
classification of w, then there is a mismatch between R and the hypothesis H
(Line 14). In that case, w is fed back to L∗ to refine H.

Now, let us consider the case that L(H) ⊆ L(A) holds (Line 5). If, in addition,
we can establish L(R) ⊆ L(H), we conclude that L(R) ⊆ L(A) and output
“Property satisfied” (Line 8). This inclusion test (Line 6) relies on statistical
model checking using given parameters ε, γ > 0 (cf. Algorithm 1). If the test
passes, we have some statistical guarantee of correctness of R (cf. Theorem 1).
Otherwise, we obtain a word w ∈ L(R)\L(H) witnessing a discrepancy between
R and H that will be exploited to refine H (Line 9).

Overall, in the event that the algorithm terminates, we have the following
theorem (with proof in the appendix) that assures the soundness of a returned
counterexample and provides the statistical guarantees on the property satisfac-
tion, depending on the result of the algorithm:

Theorem 2. (Correctness of PDV). Suppose Algorithm 3 terminates, using
SMC for inclusion checking with parameters ε and γ. If it outputs “Counterex-
ample w”, then w is mistakenly classified by R as positive. If it outputs “Property
satisfied”, then R is ε-approximately correct wrt. A with probability at least 1−γ.

Although we cannot hope that Algorithm 3 will always terminate, we demon-
strate empirically that it is an effective way for the verification of RNNs.

5 Adversarial Robustness Certification

Our method can especially be used for adversarial robustness certification, which
is parameterized by a distance function dist : Σ∗ × Σ∗ → [0,∞] satisfying, for
all words w1, w2, w3 ∈ Σ∗: (i) dist(w1, w2) = 0 iff w1 = w2, (ii) dist(w1, w2) =
dist(w2, w1), and (iii) dist(w1, w3) ≤ dist(w1, w2) + dist(w2, w3). Popular

372 I. Khmelnitsky et al.

distance functions are Hamming distance and Levenshtein distance. The Ham-
ming distance between w1, w2 ∈ Σ∗ is the number of positions in which w1 differs
from w2, provided |w1| = |w2| (otherwise, the distance is ∞). The Levenshtein
distance (edit distance) between w1 and w2 is the minimal number of operations
among substitution, insertion, and deletion that are required to transform w1

into w2. For L ⊆ Σ∗ and r ∈ N, we let Nr(L) = {w′ ∈ Σ∗ | dist(w,w′) ≤ r for
some w ∈ L} be the r-neighborhood of L. If L is regular and dist is the Ham-
ming or Levenshtein distance, then Nr(L) is regular (for efficient constructions
of Levenshtein automata when L is a singleton, see [24]).

Let R be an RNN, L ⊆ Σ∗ be a regular language such that L ⊆ L(R), r ∈ N,
and 0 < ε < 1. We call R ε-adversarially robust (wrt. L and r) if Pr(Nr(L) \
L(R)) < ε. Accordingly, every word from Nr(L)\L(R) is an adversarial example.
Thus, checking adversarial robustness amounts to checking the inclusion L(R) ⊆
Nr(L) through one of the above-mentioned algorithms.

Note that, even when L is a finite set, Nr(L) can be too large for exhaustive
exploration so that PDV, in combination with SMC, is particularly promising,
as we demonstrate in our experimental evaluation.

From the definitions and Theorem 2, we get:

Lemma 1. Suppose Algorithm 3, for input R and a DFA A recognizing Nr(L),
terminates, using SMC for inclusion checking with parameters ε and γ. If it
outputs “Counterexample w”, then w is an adversarial example. Otherwise, R
is ε-adversarially robust (wrt. L and r) with probability at least 1 − γ.

Similarly, we can handle the case where L ∩ L(R) = ∅. Then, R is ε-
adversarially robust if Pr(L(R)∩Nr(L)) < ε, and every word in L(R)∩Nr(L) is
an adversarial example. Overall, this case amounts to checking L(R) ⊆ Nr(L).

6 Experimental Evaluation

We now present an experimental evaluation of the three algorithms SMC,
AAMC, and PDV, and provide a comparison of their performance on LSTM
networks [11] (a variant of RNNs using LSTM units). The algorithms have
been implemented2 in Python 3.6 using PyTorch 19.09 and Numpy library. The
experiments of adversarial robustness certification were run on Macbook Pro 13
with the macOS. The other experiments were run on NVIDIA DGX-2 with an
Ubuntu OS.

Optimization For Equivalence Queries. In [17], the authors implement AAMC
but with an optimization that was originally shown in [2]. This optimiza-
tion concerns the number of samples required for checking the equivalence
between the hypothesis and the taught language. This number depends on
ε, γ and the number of previous equivalence queries n and is calculated by
1
ε

(
log 1

γ + log(2)(n + 1)
)
. We adopt this optimization in AAMC and PDV as

well (Algorithm 2 in Line 1 and Algorithm 3 in Line 6).
2 Available at https://github.com/LeaRNNify/Property-directed-verification.

https://github.com/LeaRNNify/Property-directed-verification

Property-Directed Verification and Robustness Certification 373

Table 1. Experimental results

Type Avg time (s) Avg len #Mistakes Avg MQs

SMC 92 111 122 286063

AAMC 444 7 30 3701916

PDV 21 11 109 28318

6.1 Evaluation on Randomly Generated DFAs

Synthetic Benchmarks. To compare the algorithms, we implemented the follow-
ing procedure, which generates a random DFA Arand, an RNN R that learned
L(Arand), and a finite set of specification DFAs: (1) choose a random DFA
Arand = (Q, δ, q0, F), with |Q| ≤ 30, over an alphabet Σ with |Σ| = 5; (2)
randomly sample words from Σ∗ as described in Sect. 2 in order to create a
training set and a test set; (3) train an RNN R with hidden dimension 20|Q|
and 1 + |Q|/10 layers—if the accuracy of R on the training set is larger than
95%, continue, otherwise restart the procedure; (4) choose randomly up to five
sets Fi ⊆ Q \ F to define specification DFAs Ai = (Q, δ, q0, F ∪ Fi). Using this
procedure, we created 30 DFAs/RNNs and 138 specifications.

Experimental Results. Given an RNN R and a specification DFA A, we checked
whether R satisfies A using Algorithms 1–3, i.e., SMC, AAMC, and PDV, with
ε, γ = 5 · 10−4.

Table 1 summarizes the executions of the three algorithms on our 138 random
instances. The columns of the table are as follows: (i) Avg time was counted in
seconds and all the algorithms were timed out after 10 min; (ii) Avg len is the
average length of the found counterexamples (if one was found); (iii) #Mistakes
is the number of random instances for which a mistake was found; (iv) Avg MQs
is the average number of membership queries asked to the RNN.

Note that not only is PDV faster and finds more errors than AAMC, the
average number of states of the final DFA is also much smaller: 26 states with
PDV and 319 with AAMC. Furthermore, it asked more than 10 times less MQs
to the RNN. Comparing PDV to SMC, it is 4.5 times faster and the average
length of counterexamples it found is 10 times smaller, even though with a little
fewer mistakes discovered.

Faulty Flows. One of the advantages of extracting DFAs in order to detect mis-
takes in a given RNN is the possibility to find not only one mistake but a “faulty
flow”. For example, Fig. 1 shows one hypothesis DFA extracted with PDV, based
on which we found a mistake in the corresponding RNN. The counterexample
we found was abcee. One can see that the word abce is a loop in the DFA.
Hence, we can suspect that this could be a “faulty flow”. Checking the words
wn = (abce)ne for n ∈ {1, . . . , 100}, we observed that, for any n ∈ {1, . . . , 100},
the word wn was in the RNN language but not in the specification.

374 I. Khmelnitsky et al.

Fig. 1. Faulty Flow in DFA extracted through PDV

To automate the reasoning above, we did the following: Given an RNN R,
a specification A, the extracted DFA H, and the counterexample w: (1) build
the cross product DFA H × A; (2) for every prefix w1 of the counterexample
w = w1w2, denote by sw1 the state to which the prefix w1 leads in H × A—for
any loop � starting from sw1 , check if wn = w1�

nw2 is a counterexample for
n ∈ {1, . . . , 100}; (3) if wn is a counterexample for more than 20 times, declare
a “faulty flow”. Using this procedure, we managed to find faulty flows in 81/109
of the counterexamples that were found by PDV.

6.2 Adversarial Robustness Certification

We also examined PDV for adversarial robustness certification, following the
ideas explained in Sect. 5, both on synthetic as well as real-world examples.

Synthetic Benchmarks. For a given DFA (representing one of the languages
described below), we randomly sampled words from Σ∗ by using the DFA and
created a training set and a test set. For RNN training, we proceeded like in
step (3) for the benchmarks in Sect. 6.1. Moreover, for certification, we randomly
sampled 100 positive words and 100 negative words from the test set. For a given
word w, we then let L = {w} and considered Nr(L) where r = 1, . . . , 5.

Given an RNN R, we checked whether R satisfies adversarial robustness
using the certification methods PDV, SMC, and neighborhood-automata gener-
ation SMC (NAG-SMC), with ε, γ = 0.01. In SMC, we randomly modified the
input word within a certain distance to generate words in the neighborhood. In
NAG-SMC, on the other hand, we first generated a neighborhood automaton of
the input word, and sampled words that are accepted by the automaton. Here,
we followed the algorithm by Bernardi and Giménez [5], who introduce a method
for generating a uniformly random word of length n in a given regular language
with mean time bit-complexity O(n).

Figure 2, which is a set of scatter plots, shows the results of the average time
of executing the algorithms on the languages that we describe below. The x-
axis and y-axis are both time in seconds, and each data point represents one
adversarial robustness certification procedure. The length of words are from 50
to 500 and follow the normal distribution.

Property-Directed Verification and Robustness Certification 375

Fig. 2. Comparison of three algorithms on the regular languages

Simple Regular Ranguages. As a sanity check of our approach, we considered the
following two regular languages and distance functions: L1 = ((a + b)(a + b))∗

(also called modulo-2 language) with Hamming distance; L2 = c(a + b)∗c with
distance function dist such that dist(w1, w2) is the Hamming distance if w1, w2 ∈
L2 and |w1| = |w2|, and dist(w1, w2) = ∞ otherwise. The size of the Hamming
neighbourhood will exponentially grow with the distance.

The accuracies of the trained RNNs reached 100%. All three approaches
successfully reported “adversarially robust” for the certified RNNs.

The first two diagrams on the first row of Fig. 2 compare the runtimes of
PDV and SMC on the two regular-language datasets, resp., whereas the first
two diagrams on the second row compare the runtimes of PDV and NAG-SMC.
We make two main observations. First, on average, the running time of PDV
(avg. 15.70 s) is faster than SMC (avg. 24.04 s) and NAG-SMC (avg. 32.5 s),
which shows clearly that combining symbolically checking robustness on the
extracted model and statistical approximation checking is more efficient than
pure statistical approaches. Second, although SMC and NAG-SMC are able to
certify short words (whose length is smaller than 30) faster, when the length of
words is greater, they have to spend more time (which is more than 60 s) for
certification. This is because, for short words, statistical approaches can easily

376 I. Khmelnitsky et al.

Fig. 3. Automaton for ABP Fig. 4. Temporal Network for
contact between 4 people

explore the whole neighborhood, but when the neighborhood becomes larger and
larger, this becomes infeasible.

The first two diagrams on the third row of Fig. 2 compare the running time
of SMC and NAG-SMC, respectively. In general, SMC is faster than NAG-SMC,
this is mainly because, for sampling random words from the neighborhood, using
the algorithm proposed by Bernardi et al. [5] is slower than combining the ran-
dom.choice function in the Python library and the corresponding modification.

Real-World Dataset. We used two real-world examples considered by Mayr and
Yovine [17]. The first one is the alternating-bit protocol (ABP) shown in Fig. 3.
However, we add a special letter dummy in the alphabet and a self-loop transition
labeled with dummy on every state. We use the number of insertions of the
letter dummy as the distance function. The second example is a variant of an
example from the E-commerce website [19]. There are seven letters in the original
automaton. Similarly, we also add dummy and self-loop transition in every state
(omitted in the figure for simplicity). Again, we use the number of insertions of
dummy as the distance function.

The accuracies of the trained RNNs also reach 100%. For certification, the
three approaches can certify the adversarial robustness for the RNNs as well.

The last two diagrams on the first (resp. second) row of Fig. 2 compare the
runtime of PDV and SMC (resp. PDV and NAG-SMC) on the ABP and the
E-commerce dataset. The data points in the first and second row have a vertical
shape. The reason is that the running time of PDV is usually relatively stable
(10–20 s), while the running time of SMC and NAG-SMC increases linearly with
the word length.

The last two diagrams on the third row of Fig. 2 compare the runtimes of
SMC and NAG-SMC on the two datasets. Here, the data points have a diagonal
shape, but for NAG-SMC, when the word length is long (more than 300), it
usually spends more time than SMC. This is mainly because it is inefficient
to construct the neighborhood automaton and sample random words from the
neighborhood.

Property-Directed Verification and Robustness Certification 377

6.3 RNNs Identifying Contact Sequences

Contact tracing [14] has proven to be increasingly effective in curbing the spread
of infectious diseases. In particular, analyzing contact sequences—sequences of
individuals who have been in close contact in a certain order—can be crucial
in identifying individuals who might be at risk during an epidemic. We, thus,
look at RNNs which can potentially aid contact tracing by identifying possible
contact sequences. However, in order to deploy such RNNs in practice, one would
require them to be verified adequately. One does not want to alert individuals
unnecessarily even if they are safe or overlook individuals who could be at risk.

In a real-world setting, one would obtain contact sequences from contact-
tracing information available from, for instance, contact-tracing apps. However,
such data is often difficult to procure due to privacy issues. Thus, in order
to mimic a real life scenario, we use data available from www.sociopatterns.
org, which contains information about interaction of humans in public places
(hospitals, schools, etc.) presented as temporal networks.

Formally, a temporal network G = (V,E) [12] is a graph structure consisting
of a set of vertices V and a set of labeled edges E, where the labels represent
the timestamp during which the edge was active. Figure 4 is a simple temporal
network, which can be perceived as contact graph of four workers in an office
where edge labels represent the time of meeting between them. A time-respecting
path π ∈ V ∗—a sequence of vertices such that there exists a sequence of edges
with increasing time labels—depicts a contact sequence in such a network. In
the above example, CDAB is a time-respecting path while ABCD is not.

Benchmarks. For our experiment, given a temporal network G, we generated an
RNN R recognizing contact sequences as follows:

1. We created training and test data for the RNN by generating (i) valid time-
respecting paths (of lengths between 5 and 15) using labeled edges from G,
and (ii) invalid time-respecting paths, by considering a valid path and ran-
domly introducing breaks in the path. The number of time-respecting paths
in the training set is twice the size of the number of labeled edges in G, while
the test set is one-fifth the size of the training set.

2. We trained RNN R with hidden dimension |V | (minimum 100) as well as
�2 + |V |/100� layers on the training data. We considered only those RNNs
that could be trained within 5 h with high accuracy (avg. 99%) on the test
data.

3. We used a DFA that accepts all possible paths (disregarding the time labels)
in the network as the specification, which would allow us to check whether
the RNN learned unwanted edges between vertices.

Using this process, from the seven temporal networks, we generated seven RNNs
and seven specification DFAs. We ran SMC, PDV, and AAMC on the generated
RNNs, using the same parameters as used for the random instances.

www.sociopatterns.org
www.sociopatterns.org

378 I. Khmelnitsky et al.

Table 2. Results of model-checking algorithm on RNN identifying contact sequences

Results. Table 2 notes the length of counterexample, the extracted DFA size
(only for PDV and AAMC), and the running time of the algorithms. We
make three main observations. First, the counterexamples obtained by PDV
and AAMC (avg. length 2), are much more succinct than those by SMC (avg.
length 13.1). Small counterexamples help in identifying the underlying error in
the RNN, while long and random counterexamples provide much less insight.
For example, from the counterexamples obtained from PDV and AAMC, we
learned that the RNN overlooked certain edges or identified wrong edges. This
result highlights the demerit of SMC, which has also been observed by [25]. Sec-
ond, the running time of SMC and PDV (avg. 0.48 s and 0.41 s) is comparable,
while that of AAMC is prohibitively large (avg. 655.68 s), indicating that model
checking on small and rough abstractions of the RNN produces superior results.
Third, the extracted DFA size, in case of AAMC (avg. size 124.14), is always
larger compared to PDV (avg. size 2), indicating that RNNs are quite difficult
to be approximated by small DFAs and this slows down the model-checking
process as well. Again, our experiments confirm that PDV produces succinct
counterexamples reasonably fast.

7 Conclusion

We proposed property-directed verification (PDV) as a new verification method
for formally verifying RNNs with respect to regular specifications, with adver-
sarial robustness certification as one important application. It is straightforward
to extend our ideas to the setting of Moore/Mealy machines supporting the set-
ting of richer classes of RNN classifiers, but this is left as part of future work.
Another future work is to investigate the applicability of our approach for RNNs
representing more expressive languages, such as context-free ones. Finally, we
plan to extend the PDV algorithm for the formal verification of RNN-based
agent environment systems, and to compare it with the existing results.

Property-Directed Verification and Robustness Certification 379

References

1. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-
based neural agent-environment systems. In: Proceedings of AAAI 2019, pp. 6006–
6013. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016006

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data
using weighted automata. In: Proceedings of ICGI 2018, Proceedings of Machine
Learning Research, vol. 93, pp. 81–103. PMLR (2018)

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from reg-

ular languages. Algorithmica 62(1–2), 130–145 (2012)
6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for

statistical machine translation. In: Proceedings of the EMNLP, pp. 1724–1734.
ACL (2014)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

8. Du, X., Li, Y., Xie, X., Ma, L., Liu, Y., Zhao, J.: Marble: model-based robustness
analysis of stateful deep learning systems. In: ASE 2020, pp. 423–435. IEEE (2020)

9. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

10. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
Proceedings of IJCAI 2015, pp. 1558–1564. AAAI Press (2015)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Holme, P.: Temporal networks. In: Encyclopedia of Social Network Analysis and
Mining, pp. 2119–2129. Springer, Heidelberg (2014)

13. Jacoby, Y., Barrett, C.W., Katz, G.: Verifying recurrent neural networks using
invariant inference. CoRR abs/2004.02462 (2020)

14. Keck, C.: Principles of Public Health Practice. Cengage Learning (2002)
15. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable

guarantees (Invited Paper). In: Proceedings of CONCUR 2019. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

16. Mayr, F., Visca, R., Yovine, S.: On-the-fly black-box probably approximately cor-
rect checking of recurrent neural networks. In: Holzinger, A., Kieseberg, P., Tjoa,
A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 343–363. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57321-8 19

17. Mayr, F., Yovine, S.: Regular inference on artificial neural networks. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 350–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99740-7 25

18. Mayr, F., Yovine, S., Visca, R.: Property checking with interpretable error charac-
terization for recurrent neural networks. Mach. Learn. Knowl. Extr. 3(1), 205–227
(2021)

https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-57321-8_19
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-319-99740-7_25

380 I. Khmelnitsky et al.

19. Merten, M.: Active automata learning for real life applications. Ph.D. thesis, Dort-
mund University of Technology (2013)

20. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction
from recurrent neural networks via regression on state spaces. In: Proceedings of
AAAI 2020, pp. 5306–5314. AAAI Press (2020)

21. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neural
networks. Neural Netw. 9(1), 41–52 (1996)

22. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002)

23. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A.M., Vechev, M.T.:
Fast and effective robustness certification for recurrent neural networks. CoRR
abs/2005.13300 (2020)

24. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int. J.
Document Anal. Recogn. 5(1), 67–85 (2002)

25. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Proceedings of ICML 2018. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 5244–5253. PMLR (2018)

Author Index

Aichernig, Bernhard K. 67
Aït-Ameur, Yamine 320
Akhundov, Murad 266
Azzopardi, Shaun 337

Baier, Christel 15, 205
Bao, Yuyan 187
Barbot, Benoît 364
Beyer, Dirk 144
Bloem, Roderick 222, 249
Bollig, Benedikt 364

Chechik, Marsha 266
Cimatti, Alessandro 32
Coenen, Norine 283

Deshmukh, Jyotirmoy V. 91
Duijn, Ingo van 170
Dupont, Guillaume 320
Dutta, Saikat 229

Feng, Nick 266
Finkbeiner, Bernd 153, 283, 303
Finkel, Alain 364
Friedberger, Karlheinz 144
Funke, Florian 205

Gaglione, Jean-Raphaël 74
Griggio, Alberto 32
Guidotti, Dario 357
Gurfinkel, Arie 187

Haddad, Serge 364
Hadžić, Vedad 249
Hahn, Christopher 283
Hayes, Ian J. 111
Hofmann, Jana 283
Holzner, Stephan 144
Huang, Zixin 229
Hui, Vincent 266

Jantsch, Simon 15, 205
Jensen, Peter Gjøl 170
John, Tobias 15

Khmelnitsky, Igor 364
Klein, Felix 153
Klüppelholz, Sascha 15
Könighofer, Bettina 222
Kupferman, Orna 48

Lavee, Nir 48
Leucker, Martin 364

Magnago, Enrico 32
Metzger, Niklas 153
Misailovic, Sasa 229
Mohammadinejad, Sara 91
Mora, Federico 266
Muškardin, Edi 67

Neider, Daniel 74, 364
Nenzi, Laura 91
Nipkow, Tobias 127

Pantel, Marc 320
Passing, Noemi 303
Pferscher, Andrea 67
Pill, Ingo 67
Piribauer, Jakob 205
Piterman, Nir 337
Posch, Lukas 222
Pranger, Stefan 222
Primas, Robert 249
Priya, Siddharth 187
Pulina, Luca 357

Roy, Rajarshi 74, 364

Schillo, Yannick 283
Schmid, Stefan 170
Schneider, Gerardo 337
Schou, Morten Konggaard 170
Sickert, Salomon 48
Singh, Neeraj K. 320
Srba, Jiří 170
Stevens, Lukas 127
Su, Yusen 187

Tabajara, Lucas M. 3
Tacchella, Armando 357
Tappler, Martin 67
Topcu, Ufuk 74

Utting, Mark 111

Vanerio, Juan 170
Vardi, Moshe Y. 3
Vizel, Yakir 187

Webb, Brae J. 111

Xie, Xuan 364
Xu, Zhe 74

Ye, Lina 364

Zhou, Xiang 187
Ziemek, Robin 205

382 Author Index

	Preface
	Organization
	Geometric Theory for Program Testing (Abstract of a Keynote Talk)
	Contents
	Invited Paper
	Linear Temporal Logic – From Infinite to Finite Horizon
	1 Reactive Systems and Reactive Synthesis
	2 LTL Synthesis over Finite Traces
	3 Synthesis Using Finite-Word Automata
	References

	Automata Theory
	Determinization and Limit-Determinization of Emerson-Lei Automata
	1 Introduction
	2 Preliminaries
	3 From TELA to Generalized Büchi Automata
	3.1 Operations on Emerson-Lei Automata
	3.2 Construction of Generalized Büchi Automata

	4 Determinization
	5 Limit-Deterministic TELA
	5.1 Limit-Determinization
	5.2 Probabilistic Model Checking

	6 Experimental Evaluation
	7 Conclusion
	References

	Automatic Discovery of Fair Paths in Infinite-State Transition Systems
	1 Introduction
	2 Background
	3 Funnels and Funnel Loops
	4 Automated Synthesis of Funnel Loops
	5 Related Work
	6 Experimental Evaluation
	7 Conclusions and Future Work
	References

	Certifying DFA Bounds for Recognition and Separation
	1 Introduction
	2 Preliminaries
	3 Proving and Refuting Bounds on DFAs
	4 Certifying Bounds on Recognizability
	4.1 Certification with Offline Refuters
	4.2 Certification with Online Refuters

	5 Bounds on DFA Separation
	5.1 Hardness of Separation
	5.2 Certifying Bounds on Separation

	6 Discussion and Directions for Future Research
	References

	Machine Learning for Formal Methods
	AALpy: An Active Automata Learning Library
	1 Introduction
	2 AALpy – Intuitive Automata Learning in Python
	3 Experimental Evaluation
	4 Conclusion
	References

	Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Learning Minimal LTL Formulas
	4.1 MaxSAT
	4.2 The Learning Algorithm

	5 Learning Decision Trees over LTL Formulas
	5.1 Decision Trees over LTL Formulas
	5.2 The Learning Algorithm
	5.3 LTL Formulas for Decision Nodes
	5.4 Stopping Criterion

	6 Experimental Evaluation
	7 Conclusion
	References

	Mining Interpretable Spatio-Temporal Logic Properties for Spatially Distributed Systems
	1 Introduction
	2 Background
	2.1 Spatio-temporal Reach and Escape Logic (STREL)

	3 Constructing a Spatial Model
	4 Learning STREL Formulas from Data
	5 Case Studies
	6 Related Work and Conclusion
	References

	Theorem Proving and Tools
	A Formal Semantics of the GraalVM Intermediate Representation
	1 Introduction
	2 GraalVM IR
	3 Graph Model in Isabelle/HOL
	4 Data-Flow Semantics
	5 Local Control-Flow Semantics
	6 Global Control-Flow Semantics
	7 Validation of Execution Semantics
	8 Proving Optimizations
	9 Related Work
	10 Conclusions
	References

	A Verified Decision Procedure for Orders in Isabelle/HOL
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Notation

	2 A Semantics for Orders
	3 Deciding Partial Orders
	4 Deciding Linear Orders
	5 Certification with Proof Terms
	5.1 Basic Proof System for Partial Orders
	5.2 Dealing with Strict Literals Through Rewriting

	6 Refinement to Executable Specification
	7 From Exported Code to Integrated Proof Tactic
	8 Conclusion
	References

	PJBDD: A BDD Library for Java and Multi-Threading
	1 Introduction
	2 Design and Implementation Details
	3 Architecture of the Library
	4 Experimental Evaluation
	5 Conclusion
	References

	Model Checking
	Live Synthesis
	1 Introduction
	2 Running Example – Relay Station
	3 Preliminaries
	4 Live Updates
	5 A Temporal Language for Live Updates
	5.1 LiveLTL
	5.2 Obligations

	6 Model Checking and Synthesis
	6.1 Model Checking Live Updates
	6.2 Live Synthesis

	7 Case Study
	7.1 Benchmark Families
	7.2 Observations

	8 Related Work
	9 Conclusion
	References

	Faster Pushdown Reachability Analysis with Applications in Network Verification
	1 Introduction
	2 Preliminaries
	3 Formal Model of MPLS Networks
	3.1 MPLS Network Verification
	3.2 From Query Satisfiability to Pushdown Reachability

	4 Improving Pushdown System Reachability Analysis
	4.1 Early Termination of Reachability Algorithms
	4.2 Combining Forward and Backward Search
	4.3 Abstraction Refinement for Pushdown System Reachability

	5 Implementation and Experiments
	6 Conclusion
	References

	Verifying Verified Code
	1 Introduction
	2 Unit Proofs with Code-as-Specification
	3 Case Study
	3.1 RQ1: Does CaS Empower Multiple Tools?
	3.2 Are There Bugs in Verified Code?
	3.3 Can Specifications Be Improved While Maintaining the CaS Philosophy?

	4 Related Work
	5 Conclusion
	References

	Probabilistic Analysis
	Probabilistic Causes in Markov Chains
	1 Introduction
	2 Preliminaries
	3 Causes
	3.1 Types of p-causes and Induced Monitors
	3.2 Comparison to Prima Facie Causes

	4 Costs of p-causes
	4.1 Expected Cost of a p-cause
	4.2 Partial Expected Cost of a p-cause
	4.3 Maximal Cost of a p-cause
	4.4 Instantaneous Cost

	5 Conclusion
	References

	TEMPEST - Synthesis Tool for Reactive Systems and Shields in Probabilistic Environments
	1 Introduction
	2 Model and Property Specification
	3 Tempest Synthesis of Strategies
	4 Tempest in Action
	5 Conclusion and Future Work
	References

	AQUA: Automated Quantized Inference for Probabilistic Programs
	1 Introduction
	2 Preliminaries
	3 AQUA's Probabilistic Inference Using Density Cubes
	3.1 Notations and Basic Definitions
	3.2 Analysis
	3.3 Formal Guarantee of Accuracy

	4 AQUA Analysis Optimizations
	5 Methodology
	6 Evaluation
	6.1 Runtime and Accuracy Comparison
	6.2 Estimating the Tails of Posterior Distribution

	7 Related Work
	8 Conclusion
	References

	Software and Hardware Verification
	Proving SIFA Protection of Masked Redundant Circuits
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Verification Method
	3.1 Attack Model
	3.2 Incompleteness
	3.3 Hiding
	3.4 Inferred Statistical Independence
	3.5 Approximating Statistical Independence
	3.6 Verification Algorithm

	4 Case Studies
	4.1 Masked Keccak 3
	4.2 Masked AES S-Box
	4.3 Performance Evaluation

	5 Conclusion
	References

	Verification by Gambling on Program Slices
	1 Introduction
	2 Background
	3 Qicc
	3.1 Cyclic Region Identification
	3.2 Gambling

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Design
	4.3 RQ1: Bounded Model Checking Systematic Analysis
	4.4 RQ2: Evaluation with Automata Verifier
	4.5 RQ3: Case Study
	4.6 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Runtime Enforcement of Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Hyperproperty Enforcement
	3.1 Trace Input Models
	3.2 Losing Prefixes for Hyperproperties
	3.3 Enforcement Mechanisms

	4 Enforcement Algorithms for HyperLTL Specifications
	4.1 Parallel Trace Input Model
	4.2 Sequential Trace Input Model

	5 Experimental Evaluation
	5.1 Enforcing Symmetry in Mutual Exclusion Algorithms
	5.2 Enforcing Observational Determinism

	6 Conclusion
	References

	System Synthesis and Approximation
	Compositional Synthesis of Modular Systems
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Compositional Synthesis with Certificates
	5 Certifying Synthesis with Deterministic Certificates
	6 Computing Relevant Processes
	7 Synthesizing Certificates
	8 Experimental Results
	9 Conclusions
	References

	Event-B Refinement for Continuous Behaviours Approximation
	1 Introduction
	2 Event-B
	3 Hybrid Systems in Event-B
	3.1 Continuous Variables
	3.2 Continuous Refinement
	3.3 Embedding Continuous Features Using Theories

	4 A Theory of Approximation
	4.1 Foundational Constructs
	4.2 Properties of Approximation
	4.3 Encoding Approximation in Event-B Using Theories

	5 Approximation and Refinement: Two Scenarios of Use
	5.1 Approximate Gluing Invariant
	5.2 Downward Approximation Scenario
	5.3 Upward Approximation Scenario

	6 Related Work and Assessment
	7 Conclusion
	References

	Incorporating Monitors in Reactive Synthesis Without Paying the Price
	1 Introduction
	2 Preliminaries
	2.1 Flagging Monitors

	3 Monitors as Triggers for LTL Formulas
	4 Synthesising Monitor-Triggered Controllers
	4.1 Tight Synthesis for Co-safety Implication Formulas
	4.2 Monitor-Triggered Synthesis

	5 Tool Support
	6 Case Studies
	6.1 Event Counting
	6.2 Sequences of Events

	7 Discussion
	8 Conclusions
	References

	Verification of Machine Learning
	pyNeVer: A Framework for Learning and Verification of Neural Networks
	1 Summary
	2 Abstraction Algorithms
	3 Experimental Evaluation
	References

	Property-Directed Verification and Robustness Certification of Recurrent Neural Networks
	1 Introduction
	2 Preliminaries
	3 Verification Approaches
	4 Property-Directed Verification of RNNs
	5 Adversarial Robustness Certification
	6 Experimental Evaluation
	6.1 Evaluation on Randomly Generated DFAs
	6.2 Adversarial Robustness Certification
	6.3 RNNs Identifying Contact Sequences

	7 Conclusion
	References

	Author Index

