
Chapter 1
Introduction

The classical theory of nonlinear partial differential equations assumes that the in-
volved nonlinear terms are of power-law type, or in other words they satisfy growth
and coercivity conditions of polynomial type. This leads to the well-known frame-
work of Sobolev spaces. Notwithstanding their powerful properties, they sometimes
turn out not to be sufficient to describe some physical phenomena. The studies
undertaken in this book concern the existence of solutions to abstract elliptic and
parabolic equations, as well as systems of equations which come from applications
in the continuum mechanics of non-Newtonian fluids and porous structures.

Our goal is to provide a methodology which allows us to consider such problems
with rather general growth conditions of the highest order term. Namely, when the
leading part of the differential operator is governed by possibly inhomogeneous
(dependent on the spatial variable), fully anisotropic (of different growth in various
directions of a gradient of the unknown) convex function without polynomial growth
restrictions. Such a formulation requires a general framework for the function space
setting. For this reason we consider our PDE problems in Orlicz and Musielak–Orlicz
spaces.

The advantage of using such an approach is twofold. Firstly, it provides a uni-
fied framework for numerous settings that are developed in the literature: classi-
cal Lebesgue spaces, variable exponent spaces, Orlicz spaces, weighted Lebesgue
spaces, double-phase spaces, among others. A setting that allows us to treat all these
approaches is to the benefit of our understanding of the subtleties of various theo-
ries. Secondly, the motivation behind this setting appears in the applied content of
the book. These kinds of spaces, which at first glance may seem too sophisticated,
indeed allow us to include various properties of materials, like anisotropic charac-
ter, space inhomogeneity and rheology, which are more general than of power-law
type. Non-Newtonian fluids are described in Chapter 7. We mention below some
particular examples of materials where such phenomena occur. For instance, there
are colloids in which the formation of chains or column-like structures in the fluid
can be observed as a response to the application of an electric or magnetic field.
The second example corresponds to the homogenization of elliptic boundary value
problems described in Chapter 6.
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4 1 Introduction

The recent development of advanced body protection is concerned with so-called
liquid body armor – a solution which provides a flexible and light weight armor which
stiffens under impact. This can be achieved by soaking existing armor materials
with special fluids. We mention two types of fluids used for liquid body armor:
magnetorheological fluids and shear thickening fluids. Their common feature is that
they are both colloids and consequently react strongly in response to a stimulus. Thus
using them, for example, to impregnate kevlar armor means that far fewer layers of
kevlar are necessary, which improves the flexibility and significantly reduces the
weight of the protection. Kevlar material soaked with the described fluids has the
ability to transfer from flexible to completely rigid. The rheological properties of
the fluid, such as its viscosity or shape, change rapidly within ca. 0.02 seconds,
which makes it highly effective. One can easily observe the anisotropic character of
the fluid when the magnetic field is applied. This structure hinders the movement
of the fluid in the direction perpendicular to the magnetic field. Shear thickening
fluid is a liquid with suspended tiny particles which slightly repel each other. The
particles are able to float easily throughout the liquid, but once a high shear stress is
applied the repulsive forces among the particles are overwhelmed and the particles
aggregate, forming so-called hydroclusters. This example corresponds both to the
anisotropic character and exponential growth of an operator used for modeling
the phenomena. Besides the abovementioned application such fluids are widely
used elsewhere: advanced automotive solutions (viscosity clutch, suspension shock
absorbers), seismic protection, and for various medical purposes (the resistance of
materials to needle or knife puncture).

Another example that we want to recall refers to the study of homogenization
for elliptic systems, and captures the process whereby a porous structure is created
by the influence of an electric field. Here the steady-state pore growth occurs in a
situation when the geometrical features of a growing porous film do not depend on
time. Such a process is expected when the applied electric field is constant in time.
An example is the spatially irregular formation of porous structures in oxides of
metals appearing in the process of anodization. Note that the process of anodization
is widely applied, as an oxide film significantly improves resistance to corrosion and
provides better adhesion for various substances than bare metal itself.

To demonstrate the generality of the framework let us recall the definition of
an 𝑁-function, which in particular will later determine the behavior of differential
operators and the functional space setting.

Suppose 𝑍 ⊂ R𝑁 is a bounded set. A function 𝑀 : 𝑍 ×R𝑑 → R+ is called an
𝑁-function if it is a Carathéodory function (i.e. measurable with respect to 𝑧 ∈ 𝑍 and
continuous with respect to the last variable), 𝑀 (𝑧,0) = 0, 𝜉 ↦→ 𝑀 (𝑧, 𝜉) is convex and
even for a.e. 𝑧 ∈ 𝑍 , and there exist two convex functions 𝑚1,𝑚2 : [0,∞) → [0,∞),
positive on (0,∞), such that 𝑚1 (0) = 0 = 𝑚2 (0) and both are superlinear at zero
and at infinity, that for a.a. 𝑧 ∈ 𝑍 allow us to estimate the 𝑁-function 𝑀 as follows
𝑚1 ( |𝜉 |) ≤ 𝑀 (𝑧, 𝜉) ≤ 𝑚2 ( |𝜉 |).

This definition comprises various features of an 𝑁-function that directly corre-
spond to the characteristics of the above described processes and that we want to
particularly emphasize:
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• Full anisotropy. Namely, an 𝑁-function may be dependent on the whole vector 𝜉
in R𝑑 . In particular, it may possess growth which is not a function of the length
of 𝜉, nor the sum of one-dimensional functions of each of its coordinates 𝜉𝑖 .

• Inhomogeneity, i.e. an 𝑁-function may depend on the spatial variable 𝑧 ∈ 𝑍 .
• Rapid or slow growth. Namely, the growth of an 𝑁-function does not have to

be restricted by any polynomial function, e.g. 𝑀 can be of type 𝐿 log𝐿 or have
exponential growth at infinity.

An 𝑁-function defines a modular 𝜚𝑀 of a measurable function 𝜉 : 𝑍 → R𝑑 ,
namely

𝜚𝑀 (𝜉) :=
∫
𝑍

𝑀 (𝑧, 𝜉 (𝑧)) d𝑧.

The set of all measurable functions 𝜉 : 𝑍 → R𝑑 such that 𝜚𝑀 (𝜉) is finite is called a
generalized Musielak–Orlicz class, which we denote by L𝑀 (𝑍;R𝑑). Note that such a
set may fail to be invariant under multiplication by scalars. The smallest linear space
containing the Musielak–Orlicz class is called a generalized Musielak–Orlicz space
and we denote it by 𝐿𝑀 (𝑍;R𝑑). The generalized Musielak–Orlicz space equipped
with the Luxemburg norm

| |𝜉 | |𝐿𝑀
:= inf

{
𝜆 > 0 :

∫
𝑍

𝑀

(
𝑧,
𝜉 (𝑧)
𝜆

)
d𝑧 ≤ 1

}
is a Banach space.

As we have already mentioned, the Musielak–Orlicz space setting captures some
important function spaces, widely studied recently. To emphasize the wide spectrum
of the framework we list examples of function spaces, together with the appropriately
identified 𝑁-function, that fall into this regime:

• classical Lebesgue spaces 𝐿 𝑝 (𝑍;R𝑑) with 𝑀 (𝑧, 𝜉) = |𝜉 |𝑝 , where 𝑝 ∈ (1,∞),
• classical (homogeneous) Orlicz spaces 𝐿𝑀 (𝑍;R𝑑), isotropic when 𝑀 (𝑧, 𝜉) =

𝑀 ( |𝜉 |) as well as anisotropic when 𝑀 (𝑧, 𝜉) = 𝑀 (𝜉) (𝑀 is a homogeneous 𝑁-
function); e.g. 𝐿𝑀 = 𝐿 log𝐿 when 𝑀 (𝜉) = |𝜉 | log(e + |𝜉 |), or 𝐿𝑀 = 𝐿exp when
𝑀 (𝜉) = exp( |𝜉 |) −1+ |𝜉 |,

• weighted Lebesgue spaces 𝐿 𝑝
𝜔 (𝑍;R𝑑) with 𝑀 (𝑧, 𝜉) =𝜔(𝑧) |𝜉 |𝑝 , where 𝑝 ∈ (1,∞)

and 𝜔 : 𝑍 → (0,∞) is measurable,
• generalized Lebesgue spaces with variable exponent 𝐿 𝑝 ( ·) (𝑍;R𝑑) with 𝑀 (𝑧, 𝜉) =

|𝜉 |𝑝 (𝑧) , where 𝑝 : 𝑍 → [𝑝−, 𝑝+], 1 < 𝑝− ≤ 𝑝+ <∞, is measurable,
• double phase spaces 𝐿𝑀 (𝑍;R𝑑) with 𝑀 (𝑧, 𝜉) = |𝜉 |𝑝 + 𝑎(𝑧) |𝜉 |𝑞 , where 𝑎 : 𝑍 →

[0,∞) is measurable and 1 < 𝑝 < 𝑞 <∞,
• many others, e.g. 𝐿𝑀 (𝑍;R𝑑) with 𝑀 (𝑧, 𝜉) = |𝜉 |𝑝 (𝑧) log(1+ |𝜉 |), where 𝑝 : 𝑍 →

[1, 𝑝+], 𝑝+ <∞, is measurable, or weighted Orlicz spaces 𝑀 (𝑧, 𝜉) = 𝜔(𝑧)𝑀0 (𝜉),
where 𝜔 : 𝑍 → (0,∞) is measurable and 𝑀0 is a homogeneous 𝑁-function.

Studies on PDEs involving an operator exhibiting Orlicz growth go back to
Talenti [307], Donaldson [122], and Gossez [173, 174, 175] with later results due
to Benkirane, Elmahi and Meskine [33, 130, 131], Mustonen and Tienari [263],
Lieberman [235], and Cianchi [90]. The mathematical theory of classical Orlicz
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spaces, important from the point of view of functional analysis and applications in
the theory of partial differential equations, is presented by Adams and Fournier in [5],
see also [220, 281]. The framework of generalized Lebesgue spaces with variable
exponent for problems of functional analysis and the theory of PDEs is studied
in [100] by Cruz-Uribe and Fiorenza and [115] by Diening et al. A broad overview
of results in this framework is available in [194]. The first monograph on Musielak–
Orlicz spaces where the 𝑁-functions depend on the spatial variable but are isotropic
was written by Nakano [265], whereas a comprehensive reference for the foundations
of the theory was provided by Musielak [262]. We note that Musielak–Orlicz spaces
provide a natural framework for the so-called (𝑝, 𝑞)-growth problems that received
special attention starting from the pioneering works of Marcellini [246, 247] and
for the non-uniformly elliptic problems studied since [226] by Ladyzhenskaya and
Ural’tseva and [210] by Ivanov. On the other hand, the cornerstones for partial
differential equations in fully anisotropic Orlicz spaces were laid by Klimov [219]
and Cianchi [91, 93]. Our aim is not only to capture all the mentioned types of
growth and provide a unified theory, as described in the survey [71], but also to
prepare a toolkit for analysis within the setting which simultaneously combines the
inhomogeneous, Orlicz and fully anisotropic properties.

A substantial part of our investigations concerns the scenario where the growth
of the highest order term cannot be compared with a polynomial function. In other
words, the 𝑁-function used to describe the growth and which defines the space setting
does not satisfy the so-called Δ2-condition. Recall that we say that an 𝑁-function
𝑀 : 𝑍 ×R𝑑 → [0,∞) satisfies the Δ2-condition if there exists a constant 𝑐 > 0 and a
nonnegative integrable function ℎ : 𝑍 → R such that

𝑀 (𝑧,2𝜉) ≤ 𝑐𝑀 (𝑧, 𝜉) + ℎ(𝑧) for a.e. 𝑧 ∈ 𝑍.

This property implies that the corresponding Musielak–Orlicz space is separable. For
further considerations it is meaningful to ask whether the Δ2-condition is satisfied
not only by 𝑀 , but also by its conjugate

𝑀∗ (𝑧,𝜂) := sup
𝜉 ∈R𝑑

{𝜉 · 𝜂−𝑀 (𝑧, 𝜉)}.

The Musielak–Orlicz space is reflexive provided both 𝑀 and 𝑀∗ satisfy the Δ2-
condition. In particular, this implies that 𝑀 is trapped between two power-type
functions.

Let us now briefly describe the types of problems arising in the mathematical
theory of PDEs which will be influential to us and for which we will attempt
to develop functional analytic methods in the setting of general Musielak–Orlicz
spaces. For an abstract elliptic system one can consider, for an unknown 𝑢 : Ω→R𝑑 ,
the following equation

−div A(𝑥,∇𝑢) = f (1.1)

with zero Dirichlet boundary condition on the bounded domain Ω ⊂ R𝑁 and where f
is a given function having appropriate regularity. The function A :Ω×R𝑑×𝑁 →R𝑑×𝑁
is assumed to be a Carathéodory function which satisfies the following growth and
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coercivity condition

A(𝑥, 𝜉) · 𝜉 ≥ 𝑑1

{
𝑀 (𝑥, 𝑑2𝜉) +𝑀∗ (𝑥, 𝑑3A(𝑥, 𝜉)

)}
for a.a. 𝑥 ∈ Ω and all 𝜉 ∈ R𝑑×𝑁 ,

(1.2)
where 𝑑1, 𝑑2, 𝑑3 > 0 and A is monotone, i.e.

(A(𝑥, 𝜉1) −A(𝑥, 𝜉2)) · (𝜉1 − 𝜉2) ≥ 0 for a.a. 𝑥 ∈ Ω and all 𝜉1, 𝜉2 ∈ R𝑑×𝑁 . (1.3)

Let us note that the above conditions may be formulated in more general way

𝑀 (𝑥, 𝑐1𝜉) ≤ A(𝑥, 𝜉) · 𝜉,
𝑐2𝑀

∗ (𝑥, 𝑐3A(𝑥, 𝜉)) ≤ 𝑀 (𝑥, 𝑐4𝜉)
(1.4)

for some 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0. This relation is discussed in detail in Section 3.8.2. Taking
𝑀 (𝑥, 𝜉) = 1

𝑝
|𝜉 |𝑝 with 𝑝 ∈ (1,∞), we have 𝑀∗ (𝑥, 𝜉) = 1

𝑝′ |𝜉 |
𝑝′ with 𝑝′ being Hölder

conjugate, and the classical form of the growth and coercivity condition for the
Leray–Lions operator in 𝐿 𝑝 spaces is reflected [237, 232].

Problem (1.1) is studied in various directions. Firstly we concentrate on weak
solutions. The analysis is conducted under different assumptions on the 𝑁-function.
We emphasize the influence of its properties on the methods used in existence proofs.
Here there are three pathways that we follow: assuming the Δ2-condition on the 𝑁-
function 𝑀; assuming the Δ2-condition on the conjugate 𝑁-function 𝑀∗; and finally,
a continuity-type assumption on the 𝑁-function 𝑀 with respect to the space variable.
For simplicity, the last result is presented for a scalar equation. All these results are
contained in Chapter 4. Then, in Chapter 5, we turn our attention to less regular
data, i.e. merely integrable. Immediately we fall into the regime of renormalized
solutions.

For a parabolic problem we consider the corresponding equation, namely

𝜕𝑡𝑢−div a(𝑡, 𝑥,∇𝑢) = 𝑓 . (1.5)

We focus on the case with only integrable data, which again requires us to study
a special notion of solution. Chapter 5 includes a study of well posedness – exis-
tence and uniqueness – in the class of renormalized solutions. We make use of the
discussion of weak solutions to parabolic problem presented in Chapter 4 in the
consecutive part on renormalized solutions.

The next area of great interest is the homogenization process for families
of strongly nonlinear elliptic systems with homogeneous Dirichlet boundary con-
ditions under very general assumptions on the 𝑁-functions. Here the differential
operator takes the form a( 𝑥

𝜀
,∇𝑢) and we investigate the passage to the limit when

𝜀 → 0. The growth and the coercivity of the elliptic operator is assumed to be de-
scribed by a condition of type (1.2), related to (1.4). In particular, the homogenization
process changes the underlying function spaces and the nonlinear elliptic operator
at each step, since the governing 𝑁-function depends on the spatial variable 𝑥.

Further, we consider a large class of problems which arise from the mechanics
of non-Newtonian fluids with non-standard rheology. We want to include the phe-
nomena of viscosity changing under various stimuli like shear rate, or a magnetic
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or electric field. This forces us to use inhomogeneous anisotropic Musielak–Orlicz
spaces. Our investigations are directed towards the existence of weak solutions. The
system of equations describing incompressible non-Newtonian fluid flow may take
the following form

𝜕𝑡u+div (u⊗ u) −divSSS(𝑥,DDDu) +∇𝜋 = f,
divu = 0 in (0,𝑇) ×Ω,

(1.6)

where u denotes the velocity field of a fluid; 𝜋 is a pressure; Ω is a bounded do-
main in R𝑁 with sufficiently smooth boundary; 𝑇 <∞; f is a given body force; and
DDDu = 1

2 (∇u+∇𝑇u) is the symmetric part of the gradient of the velocity field. The
first equation is the momentum equation and the second one is the incompressibil-
ity condition. We assume a no-slip boundary condition (zero Dirichlet boundary
condition).

In order to close the system we have to state a constitutive relation, rheology,
which describes the relation between SSS and DDDu. In our considerations we do not
want to assume that SSS has only a polynomial structure, which would not suffice to
describe the nonstandard behavior of the fluid. Motivated by the significant shear
thickening phenomenon we want to investigate the processes where the growth is
faster than polynomial and possibly different in various directions of the shear stress.
Hence an 𝑁-function defining a functional space does not satisfy the Δ2-condition
and is possibly anisotropic. The viscosity of the fluid is not assumed to be constant
and it can depend on density and the full symmetric part of the velocity gradient.
Therefore we formulate the growth conditions of the stress tensor in an analogous
way as in (1.2) or (1.4).

In particular, we investigate, with various degrees of generality of the 𝑁-function,
the flow of inhomogeneous heat-conducting fluids, which depends also on density
and temperature. This means that the above system needs to be supplemented with
two equations: balance of mass (the continuity equation) and the heat equation.
Moreover, the stress tensor then also depends on density and temperature. The other
problem we study is the system describing fluid-structure interaction where the
motion of rigid bodies immersed in the fluid is taken into account. Moreover, if
the model allows us to skip the convective term, we are able also to consider shear
thinning fluids, in which case 𝑀∗ may not satisfy the Δ2-condition.

Since our considerations on PDE problems concentrate on growth and coercivity
of (1.2) type, we employ Musielak–Orlicz spaces defined by means of an 𝑁-function
𝑀 . Let us emphasize that we do not want to assume that 𝑀 satisfies the Δ2-condition
or that it is sandwiched between two polynomials. Consequently, we lose a wide range
of useful properties of function spaces. The lack of numerous basic properties results
in many subtle but deep difficulties which require significantly more sophisticated
methods than in the classical case.

An important aspect of a Sobolev-type space related to an 𝑁-function 𝑀 which
sets it apart from a classical Sobolev space is the issue of density of regular functions.
The classical theorem of Meyers and Serrin [253] tells us that 𝐶∞∩𝑊𝑚,𝑝 is dense
in 𝑊𝑚,𝑝 in the strong topology for 1 ≤ 𝑝 < ∞. An extension of this fact to the
classical, i.e. homogenous and isotropic, Orlicz (or rather Orlicz–Sobolev) spaces
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was investigated by Gossez [174]. He proved that the related density result holds,
however not with respect to the strong, but with respect to the so-called modular
topology. An analogous fact in Musielak–Orlicz spaces holds only provided the
asymptotic behavior of the modular function is sufficiently balanced, see Section 3.7.

It is worth pointing out that even some partial information on the behavior of
an 𝑁-function enables us to simplify the tools needed for the proofs of existence of
solutions. Knowing that 𝑀∗ satisfies theΔ2-condition tells us that the weak sequential
stability of a considered PDE problem (i.e. passing from an approximate problem to
the solutions of the original problem) can be proved by means of weak-∗ convergence.
However, once we want to relax this assumption, an essential tool that comes into
play is an approximation by smooth functions with respect to the modular topology.
To show the density of smooth functions in the modular topology it is necessary to
specify an appropriate balance of asymptotical behavior of 𝑀 with respect to small
changes of 𝑧 and big values of |𝜉 |, relating to the log-Hölder continuity of variable
exponent or a closeness condition on powers in double phase spaces.

In the case of parabolic problems additional difficulties appear. One of them is the
lack of an integration by parts formula, cf. [165] and [123]. Such a tool is essential
for testing the equation with a solution and using monotonicity methods. Let us recall
the well-known Newton’s formula in the Bochner space setting. For 0 ≤ 𝑡0 < 𝑡1 ≤ 𝑇

and 𝑞 ∈ (1,∞), 𝑞′ = 𝑞/(𝑞−1) we set 𝑣 ∈ 𝐿𝑞 (0,𝑇 ;𝑋), 𝜕𝑡𝑣 ∈ 𝐿𝑞′ (0,𝑇 ;𝑋∗), where 𝑋

is a reflexive, separable Banach space and 𝑋∗ is its dual. Then there exists a Hilbert
space 𝐻 such that 𝑋 ⊂ 𝐻 = 𝐻∗ ⊂ 𝑋∗ and the following formula holds∫ 𝑡1

𝑡0

⟨𝜕𝑡𝑣, 𝑣⟩𝑋∗ ,𝑋 d𝑡 =
1
2
∥𝑣(𝑡1)∥2

𝑋 − 1
2
∥𝑣(𝑡0)∥2

𝑋 .

To extend this formula to any generalization of classical Orlicz spaces we would
essentially need that 𝐶∞-functions are dense in 𝐿𝑀 ((0,𝑇) ×Ω) and that

𝐿𝑀 ((0,𝑇) ×Ω) = 𝐿𝑀 (0,𝑇 ;𝐿𝑀 (Ω)).

Even for classical Orlicz spaces (homogeneous and isotropic) these hold only in
particular cases, e.g. the former only holds if 𝑀,𝑀∗ satisfy the Δ2-condition. In
order to provide the factorization property we recall the result of [123], which is
stated for classical Orlicz spaces with homogeneous and isotropic 𝑀 = 𝑀 ( |𝜉 |) and
therefore we rather cannot expect a better result for more general 𝑁-functions.

Let 𝐼 be a time interval, Ω ⊂ R𝑑 , 𝑀 : [0,∞) → [0,∞) an 𝑁-function, 𝐿𝑀 (𝐼 ×Ω)
the Orlicz space on 𝐼 ×Ω, and 𝐿𝑀 (𝐼;𝐿𝑀 (Ω)) the vector-valued Orlicz space on 𝐼.
Then

𝐿𝑀 (𝐼 ×Ω) = 𝐿𝑀 (𝐼;𝐿𝑀 (Ω))

if and only if there exist constants 𝑘0, 𝑘1 > 0 such that

𝑘0𝑀
−1 (𝑠)𝑀−1 (𝑟) ≤ 𝑀−1 (𝑠𝑟) ≤ 𝑘1𝑀

−1 (𝑠)𝑀−1 (𝑟) (1.7)

for every 𝑠 ≥ 1/|𝐼 | and 𝑟 ≥ 1/|Ω|.
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One can show that (1.7) means that 𝑀 must be equivalent to some power 𝑝, 1< 𝑝 <∞.
Hence, if (1.7) should hold, very strong assumptions must be satisfied by 𝑀 . Surely
they would force 𝐿𝑀 ((0,𝑇) ×Ω) to be separable and reflexive.

Besides the lack of integration by parts formula there are many other obstacles
resulting from the general (Orlicz) type of growth of the modular function. Among
others we mention the Korn inequality, which is a basic tool in continuum mechan-
ics, providing bounds on the full velocity gradient in terms of its symmetric part.
However, in homogenous Orlicz spaces 𝐿𝑀 (Ω) it holds only if 𝑀 and 𝑀∗ satisfy
the Δ2-condition. In order to overcome this problem for more general growths we
need to construct different types of estimates.

Furthermore, classical results of harmonic analysis are not available in their full
strength. For instance, a tool which has already become standard in fluid mechanics,
however missing in our setting, is the method of Lipschitz truncations [159], which
is widely used to deal with low regularity of gradients of solutions in the convective
term. The only available results where the Lipschitz truncations method is applied
in the Musielak–Orlicz setting are in the isotropic and homogeneous case where 𝑀

and 𝑀∗ satisfy the Δ2-condition [61] and in variable exponent spaces [116].
A lot of facts which hold in the isotropic case are no longer true in the anisotropic

setting, but this is subtle and hard to capture in a brief summary. One of the
most preeminent examples is that in a fully anisotropic setting, the meaning of
the Sobolev embedding is essentially different than in the isotropic setting. In fact,
the anisotropic energy of a gradient of a function is expected to improve integrabil-
ity of the real-valued function itself. In the case of the anisotropic Sobolev space
𝑊1, ®𝑝 (Ω), ®𝑝 = (𝑝1, . . . , 𝑝𝑑), besides the obvious embedding 𝑊1, ®𝑝 (Ω) ↩→ 𝐿 𝑝∗

𝑚 (Ω)
with 𝑝𝑚 = min{𝑝1, . . . , 𝑝𝑑}, when 𝑝𝑚 < 𝑁 and 𝑝∗𝑚 is a Sobolev conjugate of 𝑝𝑚,
that is 𝑝∗𝑚 = 𝑁𝑝𝑚/(𝑁 − 𝑝𝑚), one can use symmetrization techniques to get

𝑊1, ®𝑝 (Ω) ↩→ 𝐿 𝑝∗
0 (Ω)

with 𝑝0 being the harmonic mean of 𝑝𝑖𝑠, 𝑝0 < 𝑁 , and 𝑝∗0 is a Sobolev conjugate
of 𝑝0. This result turns out to be the optimal embedding into an isotropic Orlicz
target space. Such an embedding is known for fully anisotropic Orlicz spaces [91],
but – due to inhomogeneity – it fails in general Musielak–Orlicz spaces. Let us stress
here that we refrain from using these kinds of techniques, taking care, as much as
possible, to use straightforward formulations of the involved results.

The goal of this monograph is to systematize the methods available for anisotropic
Musielak–Orlicz spaces which are useful in the theory of partial differential equa-
tions. To this end we present in detail the analytical tools, stressing the importance
and challenges resulting from inhomogeneity, anisotropy, and from relaxing the
growth conditions.
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