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Preface

Anisotropic and inhomogeneous spaces, which are at the core of the present study,
may appear exotic at first. However, the reader should abandon this impression once
they realize how many phenomena in their nearest surroundings can be described
by partial differential equations in Musielak—Orlicz spaces. Even when driving a car
one relies on viscous clutch or dynamical shock absorbers in the suspension system.
Inhabitants of seismic regions, perhaps without realizing it, entrust their safety to
magnetorheological dampers which are filled with a fluid that absorbs the shock
by becoming more viscous when vibrations are detected. Finally the phenomenon
of blood flow in the human body is another example of a process falling into the
mathematical framework presented in the current monograph.

The idea to incorporate inhomogeneity by describing it in the language of variable
exponent spaces or weighted spaces is now a well-established approach. It has been
further extended to double-phase spaces; however, more is needed to describe the
most technically advanced material, which we intend to cover in an Orlicz setting,
allowing also for inhomogeneity. The resulting structure is then referred to as the
Musielak—Orlicz formulation.

The theory of Musielak—Orlicz spaces provides a unified framework for variable
exponent, Orlicz, weighted, and double-phase spaces. Despite the intense research in
each of these directions, exhaustive studies of partial differential equation methods
in Musielak—Orlicz spaces are still in short supply.

The majority of research in this field so far has concentrated on isotropic spaces
where the modular function has a growth comparable with a polynomial or is trapped
between two power-type functions and, hence, where one can use powerful tools
inherited from the classical setting of Lebesgue and Sobolev spaces. However, in the
case of slowly or very rapidly growing modular functions, we encounter analytical
difficulties that substantially restrict good properties of the space, such as separability
or reflexivity.

There is a growing community interested in various aspects of Musielak—Orlicz
spaces. We aim to provide them with a manual for everyday use, but at the same
time, we hope to make the subject accessible to all specialists in PDEs. We stress
that there exist multiple useful methods in the literature, which until now have been
widely dispersed over numerous papers, and hence have not been easily accessible.

vii



viii Preface

Our goal is to give a systematic and careful presentation of the analytical tools
of partial differential equations posed in the Musielak—Orlicz setting, stressing the
importance and challenges resulting from the generality of the growth requirements.
We provide full and detailed proofs, fix the gaps in some existing proofs, provide
proofs of previously announced results, and arrange the material in a way which will
enable those unfamiliar with this branch of mathematics to get a heuristic insight
into the subject.

We start with brief introduction to the subject followed by two extensive chapters
on the foundations of the theory useful in the analysis of PDEs. We provide a
comprehensive study of the problem of density of smooth functions in Musielak—
Orlicz spaces. As a basic application we present existence results for general elliptic
and parabolic problems, which for bounded data will result in weak solutions and
in the case of merely integrable data in a renormalized solutions regime. We also
attempt to view various problems from different perspectives, and draw the reader’s
attention to how the interplay between different properties of function spaces (or
rather structural functions, called N-functions) influence the proof techniques. This
will be presented in the case of weak solutions to elliptic problems. Lastly we
turn more to problems that are inspired by applications in materials science and
concentrate on the theory of homogenization of elliptic systems and well-posedness
of problems arising in fluid dynamics.

Warsaw, Iwona Chlebicka
July 2021 Piotr Gwiazda
Agnieszka Swierczewska-Gwiazda

Aneta Wroblewska-Kaminska
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Part I
Overture



We start by preparing the framework for PDEs in the Musielak—Orlicz setting.

Musielak—Orlicz spaces generalize many different spaces, each featuring non-
standard growth, and shares the difficulties faced by each of them. Even more, the
spaces we want to study simultaneously combine the inhomogeneous, Orlicz and
fully anisotropic properties. Thus, the theory of differential equations within this
setting presents various obstructions from the point of view of functional analysis.

This part is devoted to the careful presentation of the basics of this theory.
We collect and systematize a lot of known results which previously have been
widely distributed over the literature, and we fix the gaps in some available proofs.
Furthermore, there are some results provided here that have only been announced
but not proved before in this generality.

Providing a broad view of the subject, we do not restrict ourselves to the tools
necessary for the applications in Part II. In particular, for instance, we compare
two analytical situations: the growth restrictions imposed on the function defining
the norm and the balance conditions imposed on the asymptotic regularity of this
function. Our aim is to provide a clear parallel between these approaches, stressing
the importance and challenges resulting from relaxing the growth requirements that
will be useful in our analysis of PDEs.
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Chapter 1
Introduction

The classical theory of nonlinear partial differential equations assumes that the in-
volved nonlinear terms are of power-law type, or in other words they satisfy growth
and coercivity conditions of polynomial type. This leads to the well-known frame-
work of Sobolev spaces. Notwithstanding their powerful properties, they sometimes
turn out not to be sufficient to describe some physical phenomena. The studies
undertaken in this book concern the existence of solutions to abstract elliptic and
parabolic equations, as well as systems of equations which come from applications
in the continuum mechanics of non-Newtonian fluids and porous structures.

Our goal is to provide a methodology which allows us to consider such problems
with rather general growth conditions of the highest order term. Namely, when the
leading part of the differential operator is governed by possibly inhomogeneous
(dependent on the spatial variable), fully anisotropic (of different growth in various
directions of a gradient of the unknown) convex function without polynomial growth
restrictions. Such a formulation requires a general framework for the function space
setting. For this reason we consider our PDE problems in Orlicz and Musielak—Orlicz
spaces.

The advantage of using such an approach is twofold. Firstly, it provides a uni-
fied framework for numerous settings that are developed in the literature: classi-
cal Lebesgue spaces, variable exponent spaces, Orlicz spaces, weighted Lebesgue
spaces, double-phase spaces, among others. A setting that allows us to treat all these
approaches is to the benefit of our understanding of the subtleties of various theo-
ries. Secondly, the motivation behind this setting appears in the applied content of
the book. These kinds of spaces, which at first glance may seem too sophisticated,
indeed allow us to include various properties of materials, like anisotropic charac-
ter, space inhomogeneity and rheology, which are more general than of power-law
type. Non-Newtonian fluids are described in Chapter 7. We mention below some
particular examples of materials where such phenomena occur. For instance, there
are colloids in which the formation of chains or column-like structures in the fluid
can be observed as a response to the application of an electric or magnetic field.
The second example corresponds to the homogenization of elliptic boundary value
problems described in Chapter 6.

© Springer Nature Switzerland AG 2021 3
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4 1 Introduction

The recent development of advanced body protection is concerned with so-called
liquid body armor — a solution which provides a flexible and light weight armor which
stiffens under impact. This can be achieved by soaking existing armor materials
with special fluids. We mention two types of fluids used for liquid body armor:
magnetorheological fluids and shear thickening fluids. Their common feature is that
they are both colloids and consequently react strongly in response to a stimulus. Thus
using them, for example, to impregnate kevlar armor means that far fewer layers of
kevlar are necessary, which improves the flexibility and significantly reduces the
weight of the protection. Kevlar material soaked with the described fluids has the
ability to transfer from flexible to completely rigid. The rheological properties of
the fluid, such as its viscosity or shape, change rapidly within ca. 0.02 seconds,
which makes it highly effective. One can easily observe the anisotropic character of
the fluid when the magnetic field is applied. This structure hinders the movement
of the fluid in the direction perpendicular to the magnetic field. Shear thickening
fluid is a liquid with suspended tiny particles which slightly repel each other. The
particles are able to float easily throughout the liquid, but once a high shear stress is
applied the repulsive forces among the particles are overwhelmed and the particles
aggregate, forming so-called hydroclusters. This example corresponds both to the
anisotropic character and exponential growth of an operator used for modeling
the phenomena. Besides the abovementioned application such fluids are widely
used elsewhere: advanced automotive solutions (viscosity clutch, suspension shock
absorbers), seismic protection, and for various medical purposes (the resistance of
materials to needle or knife puncture).

Another example that we want to recall refers to the study of homogenization
for elliptic systems, and captures the process whereby a porous structure is created
by the influence of an electric field. Here the steady-state pore growth occurs in a
situation when the geometrical features of a growing porous film do not depend on
time. Such a process is expected when the applied electric field is constant in time.
An example is the spatially irregular formation of porous structures in oxides of
metals appearing in the process of anodization. Note that the process of anodization
is widely applied, as an oxide film significantly improves resistance to corrosion and
provides better adhesion for various substances than bare metal itself.

To demonstrate the generality of the framework let us recall the definition of
an N-function, which in particular will later determine the behavior of differential
operators and the functional space setting.

Suppose Z ¢ RY is a bounded set. A function M : ZxR? — R, is called an
N-function if it is a Carathéodory function (i.e. measurable with respect to z € Z and
continuous with respect to the last variable), M (z,0) =0, & — M(z,£) is convex and
even for a.e. z € Z, and there exist two convex functions m,m; : [0,00) — [0, 0),
positive on (0,c0), such that m;(0) = 0 = m;(0) and both are superlinear at zero
and at infinity, that for a.a. z € Z allow us to estimate the N-function M as follows

mi(|€]) < M(z,€) < ma(|€]).

This definition comprises various features of an N-function that directly corre-
spond to the characteristics of the above described processes and that we want to
particularly emphasize:
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o Full anisotropy. Namely, an N-function may be dependent on the whole vector ¢
in R4, In particular, it may possess growth which is not a function of the length
of &, nor the sum of one-dimensional functions of each of its coordinates &;.

e Inhomogeneity, i.e. an N-function may depend on the spatial variable z € Z.

e Rapid or slow growth. Namely, the growth of an N-function does not have to
be restricted by any polynomial function, e.g. M can be of type LlogL or have
exponential growth at infinity.

An N-function defines a modular oy, of a measurable function & : Z — R<,
namely

om(€) = /ZM(z,f(Z)) dz.

The set of all measurable functions & : Z — R? such that o (£) is finite is called a
generalized Musielak—Orlicz class, which we denote by £/ (Z;R¢). Note that such a
set may fail to be invariant under multiplication by scalars. The smallest linear space
containing the Musielak—Orlicz class is called a generalized Musielak—Orlicz space
and we denote it by Lys(Z;R¢). The generalized Musielak—Orlicz space equipped
with the Luxemburg norm

€1 Loy ::inf{/l>0:/ZM(z,#) dz < 1}

is a Banach space.

As we have already mentioned, the Musielak—Orlicz space setting captures some
important function spaces, widely studied recently. To emphasize the wide spectrum
of the framework we list examples of function spaces, together with the appropriately
identified N-function, that fall into this regime:

e classical Lebesgue spaces L” (Z;R4) with M (z,&) = |€|P, where p € (1,00),

e classical (homogeneous) Orlicz spaces Ly, (Z;R%), isotropic when M(z,&) =
M(|€]) as well as anisotropic when M(z,&) = M (&) (M is a homogeneous N-
function); e.g. Ly = Llog L when M (&) = |£|log(e+ |é]), or Lps = Lexp, when
M (&) =exp(lg]) —1+[],

e weighted Lebesgue spaces LY, (Z;R?) with M (z,£) = w(z)|€|?, where p € (1, 00)
and w : Z — (0, c0) is measurable,

e generalized Lebesgue spaces with variable exponent L” () (Z;R?) with M (z,¢) =
|£]P2) where p: Z — [p—,p+], 1 < p— < p4 < o0, is measurable,

e double phase spaces Ly (Z;R?) with M(z,&) = |€|” +a(z)|£|9, where a : Z —
[0,00) is measurable and 1 < p < g < o0,

e many others, e.g. Ly (Z;R?) with M(z,&) = |£]P(2) log(1 +|£]), where p : Z —
[1,p+], p+ < o0, is measurable, or weighted Orlicz spaces M (z,&) = w(z) My (£),
where w : Z — (0, 00) is measurable and M|, is a homogeneous N-function.

Studies on PDEs involving an operator exhibiting Orlicz growth go back to
Talenti [307], Donaldson [122], and Gossez [173, 174, 175] with later results due
to Benkirane, Elmahi and Meskine [33, 130, 131], Mustonen and Tienari [263],
Lieberman [235], and Cianchi [90]. The mathematical theory of classical Orlicz
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spaces, important from the point of view of functional analysis and applications in
the theory of partial differential equations, is presented by Adams and Fournier in [5],
see also [220, 281]. The framework of generalized Lebesgue spaces with variable
exponent for problems of functional analysis and the theory of PDEs is studied
in [100] by Cruz-Uribe and Fiorenza and [115] by Diening et al. A broad overview
of results in this framework is available in [194]. The first monograph on Musielak—
Orlicz spaces where the N-functions depend on the spatial variable but are isotropic
was written by Nakano [265], whereas a comprehensive reference for the foundations
of the theory was provided by Musielak [262]. We note that Musielak—Orlicz spaces
provide a natural framework for the so-called (p, g)-growth problems that received
special attention starting from the pioneering works of Marcellini [246, 247] and
for the non-uniformly elliptic problems studied since [226] by Ladyzhenskaya and
Ural’tseva and [210] by Ivanov. On the other hand, the cornerstones for partial
differential equations in fully anisotropic Orlicz spaces were laid by Klimov [219]
and Cianchi [91, 93]. Our aim is not only to capture all the mentioned types of
growth and provide a unified theory, as described in the survey [71], but also to
prepare a toolkit for analysis within the setting which simultaneously combines the
inhomogeneous, Orlicz and fully anisotropic properties.

A substantial part of our investigations concerns the scenario where the growth
of the highest order term cannot be compared with a polynomial function. In other
words, the N-function used to describe the growth and which defines the space setting
does not satisfy the so-called A,-condition. Recall that we say that an N-function
M : ZxR? — [0, c0) satisfies the Ay-condition if there exists a constant ¢ > 0 and a
nonnegative integrable function / : Z — R such that

M (z,28) < cM(z,€) +h(z) forae.z € Z.

This property implies that the corresponding Musielak—Orlicz space is separable. For
further considerations it is meaningful to ask whether the A,-condition is satisfied
not only by M, but also by its conjugate

M*(z,n) := sup {&-n—M(z,é)}.
£eRd

The Musielak—Orlicz space is reflexive provided both M and M* satisfy the A;-
condition. In particular, this implies that M is trapped between two power-type
functions.

Let us now briefly describe the types of problems arising in the mathematical
theory of PDEs which will be influential to us and for which we will attempt
to develop functional analytic methods in the setting of general Musielak—Orlicz
spaces. For an abstract elliptic system one can consider, for an unknown u : Q — R9,
the following equation

—divA(x,Vu)=f (1.1)

with zero Dirichlet boundary condition on the bounded domain Q@ c RY and where f
is a given function having appropriate regularity. The function A : Q x RN — RIXN
is assumed to be a Carathéodory function which satisfies the following growth and
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coercivity condition

A(x, &) &> dy {M(x,dzf) +M*(x,d3A(x,§))} for a.a. x € Q and all £ € RN,

(1.2)
where dy,d>,dsz > 0 and A is monotone, i.e.

(A(x, &) -A(x,&))-(£1-&) >0 foraa. xeQandall £,& e RPN, (1.3)
Let us note that the above conditions may be formulated in more general way

M(X,L'lf) < A(x,f) -&,

) (1.4)
coM”* (x,c3A(x,€)) < M(x,csé)

for some c1,c7,c3,c4 > 0. This relation is discussed in detail in Section 3.8.2. Taking
M(x,&) = %|§|P with p € (1,0), we have M*(x,&) = §|§|P’ with p’ being Holder
conjugate, and the classical form of the growth and coercivity condition for the
Leray—Lions operator in L? spaces is reflected [237, 232].

Problem (1.1) is studied in various directions. Firstly we concentrate on weak
solutions. The analysis is conducted under different assumptions on the N-function.
We emphasize the influence of its properties on the methods used in existence proofs.
Here there are three pathways that we follow: assuming the A,-condition on the N-
function M; assuming the A,-condition on the conjugate N-function M*; and finally,
a continuity-type assumption on the N-function M with respect to the space variable.
For simplicity, the last result is presented for a scalar equation. All these results are
contained in Chapter 4. Then, in Chapter 5, we turn our attention to less regular
data, i.e. merely integrable. Immediately we fall into the regime of renormalized
solutions.

For a parabolic problem we consider the corresponding equation, namely

Ou—div a(t,x,Vu) = f. (1.5)

We focus on the case with only integrable data, which again requires us to study
a special notion of solution. Chapter 5 includes a study of well posedness — exis-
tence and uniqueness — in the class of renormalized solutions. We make use of the
discussion of weak solutions to parabolic problem presented in Chapter 4 in the
consecutive part on renormalized solutions.

The next area of great interest is the homogenization process for families
of strongly nonlinear elliptic systems with homogeneous Dirichlet boundary con-
ditions under very general assumptions on the N-functions. Here the differential
operator takes the form a(Z,Vu) and we investigate the passage to the limit when
g — 0. The growth and the coercivity of the elliptic operator is assumed to be de-
scribed by a condition of type (1.2), related to (1.4). In particular, the homogenization
process changes the underlying function spaces and the nonlinear elliptic operator
at each step, since the governing N-function depends on the spatial variable x.

Further, we consider a large class of problems which arise from the mechanics
of non-Newtonian fluids with non-standard rheology. We want to include the phe-
nomena of viscosity changing under various stimuli like shear rate, or a magnetic
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or electric field. This forces us to use inhomogeneous anisotropic Musielak—Orlicz
spaces. Our investigations are directed towards the existence of weak solutions. The
system of equations describing incompressible non-Newtonian fluid flow may take
the following form

dru+div(u®u) —divS(x,Du) + Vr =f,

. . (1.6)
diva=0 in (0,7)xQ,

where u denotes the velocity field of a fluid; 7 is a pressure; Q is a bounded do-
main in RY with sufficiently smooth boundary; T < oo; f is a given body force; and
Du = %(Vu+VTu) is the symmetric part of the gradient of the velocity field. The
first equation is the momentum equation and the second one is the incompressibil-
ity condition. We assume a no-slip boundary condition (zero Dirichlet boundary
condition).

In order to close the system we have to state a constitutive relation, rheology,
which describes the relation between S8 and Du. In our considerations we do not
want to assume that S has only a polynomial structure, which would not suffice to
describe the nonstandard behavior of the fluid. Motivated by the significant shear
thickening phenomenon we want to investigate the processes where the growth is
faster than polynomial and possibly different in various directions of the shear stress.
Hence an N-function defining a functional space does not satisfy the A,-condition
and is possibly anisotropic. The viscosity of the fluid is not assumed to be constant
and it can depend on density and the full symmetric part of the velocity gradient.
Therefore we formulate the growth conditions of the stress tensor in an analogous
way as in (1.2) or (1.4).

In particular, we investigate, with various degrees of generality of the N-function,
the flow of inhomogeneous heat-conducting fluids, which depends also on density
and temperature. This means that the above system needs to be supplemented with
two equations: balance of mass (the continuity equation) and the heat equation.
Moreover, the stress tensor then also depends on density and temperature. The other
problem we study is the system describing fluid-structure interaction where the
motion of rigid bodies immersed in the fluid is taken into account. Moreover, if
the model allows us to skip the convective term, we are able also to consider shear
thinning fluids, in which case M™* may not satisfy the A,-condition.

Since our considerations on PDE problems concentrate on growth and coercivity
of (1.2) type, we employ Musielak—Orlicz spaces defined by means of an N-function
M. Let us emphasize that we do not want to assume that M satisfies the A,-condition
or that it is sandwiched between two polynomials. Consequently, we lose a wide range
of useful properties of function spaces. The lack of numerous basic properties results
in many subtle but deep difficulties which require significantly more sophisticated
methods than in the classical case.

An important aspect of a Sobolev-type space related to an N-function M which
sets it apart from a classical Sobolev space is the issue of density of regular functions.
The classical theorem of Meyers and Serrin [253] tells us that C* N WP is dense
in WP in the strong topology for 1 < p < co. An extension of this fact to the
classical, i.e. homogenous and isotropic, Orlicz (or rather Orlicz—Sobolev) spaces
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was investigated by Gossez [174]. He proved that the related density result holds,
however not with respect to the strong, but with respect to the so-called modular
topology. An analogous fact in Musielak—Orlicz spaces holds only provided the
asymptotic behavior of the modular function is sufficiently balanced, see Section 3.7.

It is worth pointing out that even some partial information on the behavior of
an N-function enables us to simplify the tools needed for the proofs of existence of
solutions. Knowing that M* satisfies the A,-condition tells us that the weak sequential
stability of a considered PDE problem (i.e. passing from an approximate problem to
the solutions of the original problem) can be proved by means of weak-* convergence.
However, once we want to relax this assumption, an essential tool that comes into
play is an approximation by smooth functions with respect to the modular topology.
To show the density of smooth functions in the modular topology it is necessary to
specify an appropriate balance of asymptotical behavior of M with respect to small
changes of z and big values of |£], relating to the log-Holder continuity of variable
exponent or a closeness condition on powers in double phase spaces.

In the case of parabolic problems additional difficulties appear. One of them is the
lack of an integration by parts formula, cf. [165] and [123]. Such a tool is essential
for testing the equation with a solution and using monotonicity methods. Let us recall
the well-known Newton’s formula in the Bochner space setting. For 0 <79 <t <T
and g € (1,00), ¢’ =q/(qg—1) we set v € L9(0,T;X), &,v € L9 (0,T; X*), where X
is a reflexive, separable Banach space and X* is its dual. Then there exists a Hilbert
space H such that X ¢ H = H* C X" and the following formula holds

gl 1 1
/ @vovxexdi = S 2= S (o) I
f 2 2

To extend this formula to any generalization of classical Orlicz spaces we would
essentially need that C*-functions are dense in Ly, ((0,7) X Q) and that

Ly ((0,T)xQ) = Lpg(0,T5Lps(2)).

Even for classical Orlicz spaces (homogeneous and isotropic) these hold only in
particular cases, e.g. the former only holds if M, M* satisfy the A;-condition. In
order to provide the factorization property we recall the result of [123], which is
stated for classical Orlicz spaces with homogeneous and isotropic M = M (|£|) and
therefore we rather cannot expect a better result for more general N-functions.

Let / be a time interval, Q c R?, M : [0, 00) — [0, c0) an N-function, Lz (1 X Q)
the Orlicz space on I X Q, and Lys(I; Lps(Q)) the vector-valued Orlicz space on 1.
Then

La(IXQ) =Ly (15 Ly ()

if and only if there exist constants kg, k| > 0 such that
koM™ ()M~ (r) < M7 (sr) < ke MY ()M (r) (1.7

for every s > 1/|I] and r > 1/|Q)|.
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One can show that (1.7) means that M must be equivalent to some power p, 1 < p < co.
Hence, if (1.7) should hold, very strong assumptions must be satisfied by M. Surely
they would force Ly ((0,7) X Q) to be separable and reflexive.

Besides the lack of integration by parts formula there are many other obstacles
resulting from the general (Orlicz) type of growth of the modular function. Among
others we mention the Korn inequality, which is a basic tool in continuum mechan-
ics, providing bounds on the full velocity gradient in terms of its symmetric part.
However, in homogenous Orlicz spaces Ly (€2) it holds only if M and M* satisfy
the Aj-condition. In order to overcome this problem for more general growths we
need to construct different types of estimates.

Furthermore, classical results of harmonic analysis are not available in their full
strength. For instance, a tool which has already become standard in fluid mechanics,
however missing in our setting, is the method of Lipschitz truncations [159], which
is widely used to deal with low regularity of gradients of solutions in the convective
term. The only available results where the Lipschitz truncations method is applied
in the Musielak—Orlicz setting are in the isotropic and homogeneous case where M
and M* satisfy the Ay-condition [61] and in variable exponent spaces [116].

A lot of facts which hold in the isotropic case are no longer true in the anisotropic
setting, but this is subtle and hard to capture in a brief summary. One of the
most preeminent examples is that in a fully anisotropic setting, the meaning of
the Sobolev embedding is essentially different than in the isotropic setting. In fact,
the anisotropic energy of a gradient of a function is expected to improve integrabil-
ity of the real-valued function itself. In the case of the anisotropic Sobolev space
WLP(Q), p = (p1,...,pa), besides the obvious embedding W7 (Q) < LPm (Q)
with p,, = min{py,...,pa}, when p,, < N and pj, is a Sobolev conjugate of p,,,
that is py, = Npm /(N — pm), one can use symmetrization techniques to get

WhE(Q) — LPi(Q)

with po being the harmonic mean of p;s, po < N, and p(’; is a Sobolev conjugate
of po. This result turns out to be the optimal embedding into an isotropic Orlicz
target space. Such an embedding is known for fully anisotropic Orlicz spaces [91],
but — due to inhomogeneity — it fails in general Musielak—Orlicz spaces. Let us stress
here that we refrain from using these kinds of techniques, taking care, as much as
possible, to use straightforward formulations of the involved results.

The goal of this monograph is to systematize the methods available for anisotropic
Musielak—Orlicz spaces which are useful in the theory of partial differential equa-
tions. To this end we present in detail the analytical tools, stressing the importance
and challenges resulting from inhomogeneity, anisotropy, and from relaxing the
growth conditions.
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Chapter 2
N-Functions

Several PDE problems with solutions in Musielak—Orlicz spaces are described in
later chapters of this monograph. As our particular concern lies in the anisotropic and
inhomogeneous character of problems, the functional setting needs careful introduc-
tion. We shall also collect properties of spaces which in many cases differ essentially
from standard Lebesgue and Sobolev spaces. The notion of an N-function provides
a foundation to define the function spaces. Its features influence the properties of
Musielak—Orlicz spaces and in turn lead to various proof techniques.

As the concept of an N-function plays such an important role, we devote an entire
chapter to it. Sections 2.1 and 2.2 rapidly recount the most essential facts. These
two sections provide a minimum of knowledge for readers wishing to reach the part
directly treating PDEs as soon as possible.

For the readers interested in studying the more subtle properties of N-functions
and similar classes of convex functions we provide Section 2.3. We collect there
numerous studies on the fine differences between isotropic and anisotropic types of
functions. The comparison with the setting of classical Orlicz spaces is important in
view of the vast literature on the subject. Some of the results presented in that section
do not have a direct application in later chapters of this monograph, but appear to
have a significant value for researchers working on regularity aspects of PDEs or
harmonic analysis.

2.1 Elementary Facts

N-functions are a special class of convex functions, and thus in the first step we
discuss various properties of convex functions that will be useful to us later.
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12 2 N-Functions

2.1.1 Properties of convex functions

Definition 2.1.1 (Convex function). A function f : R? — R is called a convex
function if for every x,y € R? and every 7 € [0, 1] we have

flx+(A=0)y) <tf(x)+A=0)f ().

Moreover, f is strictly convex if for every x,y € R4, such that x # v, and every
t € (0, 1) the above inequality is strict.

The following inequality, although simple, will be one of our most exploited tools.

Lemma 2.1.2 (Discrete Jensen’s inequality) Let f : R¢ — R be a convex function
and a; > 0, where i = 1,...,n with n € N, be such that Z?:lai = 1. Then for any

xiE]Rd,
f (Z am) < aif(x). 2.1)
i=1 i=1

Proof. The proof is by induction with respect to n. For n = 1 the statement is obvious.
To proceed the induction step we first observe

n+l n n
ajX;i=ua X +Zax =q X + Za Z
Z i n+l1tAn+l i n+lAn+l (Z, 1“1

i=

Obviously
iy 20 and Z(z

Convexity of f implies that

n+l
(mel) < @1 f (Xne1) + (Z ) (Z (zr ia)xl)

Using the induction hypothesis on the right-hand side of the above inequality yields

n+l n+l
f (Zaixi) < @it f (nn) + (Z al) Dy ) = Za,ﬂx )
i=1
and the proof is complete. O

Remark 2.1.3. Let U C conv {xy,...,x,},i.e, Vx € U,x = 3" a;x; for ¢; > 0 and
Y =1If f:RY — Ris a convex function, then

sup f(x) < max f(xz)
xeU ie{l,...,

Lemma 2.1.4 A convex function f : R — R is locally Lipschitz continuous, i.e. it
is Lipschitz continuous on every compact subset of RY.
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Proof. To show that f is Lipschitz on every compact subset of R it suffices to show
that it holds on a closed ball B(r) centered at the origin with an arbitrary radius
r>0. Setx,y € B(r), and

z=x+(5—1)(x—y) 2.2)

with

<1. (2.3)

Observe that

1
ol < el + 1L = 1] e =yl = || + 57 =yl < 2r

and thus z € B(2r). Moreover from (2.2) it immediately follows that
z= ﬁx - (ﬁ -1)y
and consequently
x=az+(l-a)y with a € (0,1),
which follows from (2.3). As f is convex we have

f) =flaz+(1-a)y) saf(D)+(1-a)f(y) =f) +a(f(2) - f(). 24

We set
K:= sup f(x)— inf f(x). (2.5)
xeB(2r) X€B(2r)
Suppose first that K is bounded (we will momentarily check that this condition
does indeed hold). Thus for every z,y € B(2r) we have f(z) — f(y) < K. Using this
observation and (2.3) in (2.4) we get the following

F) < FO)+aK = P+ KL < F0) 4 k=,

Thus f(x) - f(y) < %lx —y|. Since the role of x and y is symmetric, we infer that

@)= FOI <~ .6

To complete the proof we only need to show that K defined by (2.5) is bounded.
Observe firstly that for every ball there exist d+ 1 points x;,i = 1,...,d+1 such that the
ball is contained in conv {x,...,xg+1 }. Then by Jensen’s inequality (Lemma 2.1.2)
we obtain that for ¢ € conv {xy,...,xgz+1} we have

d+1 d+1
f(q) =f( wixi) < ;wif(xi) < (d+1)i:1lfl.?,§z+1f(xi) <C,

i=1
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where w; >0,i=1,...,d+1, Z;i;'ll w; = 1. In particular, for every g € B(2r) we
have f(gq) < C and thus sup, gy, f(x) < C. This bound together with a simple
argument using the convexity of f

21(0) < f(x)+ f(=x) = f(0) = f(x) < f(=x) = f(0)
allows us to conclude that

- inf {f(x)-f(O)}= sup {f(0)-f(¥)} =< sup {f(-x)-f(0)}

x€B(2r) xXeB(2r) xe€B(2r)

= sup {f(x)}-f(0).

x€B(2r)

Thus
inf {f(x)}-f(0)=- sup {f(x)}+f(0),

x€B(2r) xeB(2r)

which implies that

xegl(gr) f(x)z —xesggr){f(X)} +2£(0) > —oo,

and the argument is complete. O

For a geometrical interpretation of some properties of convex functions it is useful
to recall the notion of an epigraph.

Definition 2.1.5 (Epigraph). The epigraph of f : R¢ — R is defined as
epif = {(x,a) eRYxR: f(x) <a}.

Using the above definition, one formulates a useful characterization of convexity.
Proposition 2.1.6 A function f : R? — R is convex if and only if its epigraph epi f

is a convex set.

Proof. Assume that f is a convex function and consider two points (x, @), (y,8) €
epi f. We thus want to show that for all ¢ € (0, 1)

t(x,a)+(1-1)(y,B) €epif. 2.7

Since the points belong to the graph, and since f is convex, the following estimates
hold

ta+(1-0)B2tf(x)+(1-0)f(y) = ftx+(1-1)y), (2.8)

which directly gives the conclusion (2.7).
Let us now assume that epi f is a convex set. As the points (x, f(x)) and (y, f(y))
for any x,y € R? obviously belong to epi f, we also have for all ¢ € (0, 1)

1(x, f(x) + (=) (y,f(y)) € epif, (2.9)

or equivalently
(tx+(1=0)y,tf(x)+(1-1)f(y)) cepif. (2.10)
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This means, by definition, that f(tx+(1—1¢)y) <tf(x)+(1—1)f(y) and thus f is
convex. O

Definition 2.1.7 (Lower semi-continuity). A function f : R? — R is said to be lower
semi-continuous at x € R? if for every x,, — x it holds that liminf,_e f(x,) > f(x).
We say that a function is lower semi-continuous if it is lower semi-continuous at
every point of its domain.

Lemma 2.1.8 A function f :R? — R is lower semi-continuous if and only if its
epigraph is closed.

Proof. Suppose f is lower semi-continuous and (x,,y,) € epif is such that
(Xn,¥n) = (%,¥) for n — oo. Then for every n we have y, > f(x,) and

y =liminfy, > liminf f(x,) > f(X).
n—0oo n—o00

Therefore, (X, ) € epi f and epi f is closed.
To prove the converse, assume that epi f is closed. Consider a sequence {x, } en
such that x,, — ¥ and a subsequence {x,, } ke such that

Jim £ (en,) = limin £ (xa).

Then (xp,, f(xn,)) — (i,klim f(xpn,)) for k — oo and since epif is closed, we
conclude that
(%, lim f(xn,) € epi
and, by definition,
f(x) < klim f(xn,) =liminf f(x,),
—00 n—00
which means that f is lower semi-continuous. O

Let us stress an easy, but fundamental fact.

Lemma 2.1.9 Suppose {f,}n is a family of convex functions, f, : R4 — [0,c0).
Moreover, assume that sup,, f,(x) < oo for each x € R%. Then

(i) x — sup,, fu(x) is a convex function,
(ii) x > inf, f,,(x) may fail to be convex.

Proof. The case (i) follows directly from the definition. Indeed, for every x,y € R4
and every 7 € [0,1]

sup fu (tx+ (1 =1)y) < sup(zfu (x) + (1 =1) fu(y))
S tsup f (x) + (1 =1) sup fu(y).

For (ii) it suffices to consider two different linear functions. m|

Definition 2.1.10. By an affine minorant of f : R — R we mean any affine function
g :R? — R such that g(x) < f(x) for every x € R?. We define am( f) — the set of all
affine minorants of f and E(x) := SUPgcam( 1) 8(X).
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Lemma 2.1.11 If f : R — [0,00) is convex, then Ey = f. Moreover, E¢(x) =
MaXgeam(f) 8 ().

Proof. Consider the set C = {(x,a) : f(x) < a} and ¥ € R? such that (%, f(%)) ¢ C.
Continuity of the function f, provided by Lemma 2.1.4, allows us to conclude that
C is an open set. Let v = (=&, —t) be a functional on R%*! given by Theorem 8.30
applied to the set C and the point (X, f (X)) ¢ C. We consider the hyperplane

A={(x,y) eRM : gx+1y=Ex+1f(X)}. (2.11)
In view of this fact, when we take y € R such that (x,y) € C, we have
—&x—ty < =¢éx—tf(X), (2.12)
thus ry > ¢ f(X), which implies that necessarily 7 > 0. As
Ex+ty > Ex+tf(X) (2.13)

holds for all y > f(x) and the graph of f(x) may be approximated by a sequence of
elements from C, it follows that for every x € R4 we have

Ex+tf(x) = Ex+1f(X),
which, since ¢ > 0, may also be written as
fx) = —§x+§x+f(j) =:g(x).

It is immediate to verify that f(X) = g(¥) and g is affine. Since ¥ € R? was chosen
arbitrarily, the proof is complete. O

We are in position to prove Jensen’s inequality involving a probability measure.

Theorem 2.1.12 (Jensen’s inequality, general) Suppose u is a probability mea-
sure on RN, while f : R? — R is convex. If € : RN — R¥ is y-integrable, then

£ [ emau) < [ reonauom.

Proof. Let & = /RN £(y) du(y) € RY. The convexity of f implies that there exists

an affine minorant g : R? — R such that f(&y) = g(&) and g(¢) =n - &+ b for some
n €R9, b e R and for every ¢ € RY, see Lemma 2.1.11. Therefore f (&) >n-&+b for
every £ € R? and f(&) =n-&y+b. Consequently,

([ e ) =s@=n-covs=n- [ emrauss [ auty)

- f (7-£(0) +b) du(y) < / FEO) duly). o
RN RN
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Definition 2.1.13. We define the subdifferential 8 f : RY — 2R of a convex function
f R4 — [0, 00) at a point x as

df(xo) ={yeR?: f(x)-f(xo)=y-(x—xo) forall xeR%}.
Remark 2.1.14. Directly from the definition it follows that 0 € 8 f (x¢) if and only if

S attains a minimum in xg.

Lemma 2.1.15 Let f : RY — R be a convex function. Then  f (xo) is a nonempty,
convex and closed set for every xo € R4,

Proof. First we will prove that @ f (x) is nonempty. With this aim, observe that the
convexity of f implies that there exists an affine minorant g : R — R such that for
all x € R? it holds that f(x) > g(x) and f(xq) = g(xo). Each such affine function can
be written as g(x) = y(x —xg) + f (xo) for some y € R? and thus

J(x) = f(x0) 2 y(x—x0),

hence we have found an element of the set d f (xg).
To infer convexity, observe that for y;,y, € 4 f(xo) and every ¢ € [0, 1] we have

t(f(x) = f(x0)) = ty1(x—x0)
and
(=1 (f(x) = f(x0)) = (= 1)y2(x —x0).

Adding these two inequalities yields

Jx) = f(xo) = (tyr+(1=1)y2) (x —xo0),

which means that ty; + (1 —1)y, € 8 f(xg), and thus 8 f (xg) is convex.
To show that d f (x) is closed we only need to consider a sequence {y, },en such
that y,, — y for n — oo and

J ) = f(x0) 2 yn(x—x0),

where passing to the limit we get that y € d f (xo). O

Lemma 2.1.16 Assume f : R? — R is convex and for {x,}peax € R? it holds that
Xp — X for n — oo. Suppose g, € 8 f(x,) is such that g, — g for n — oo. Then

geaf(x).
Proof. Fix y € R% and notice that by lower semicontinuity of f we have

f(y) = liminf f(x,)+liminf g, - (y—x,,) = f(x)+g- (y —x). O
n—oo n—oo
Lemma 2.1.17 If f : R? — Ris convex, then there exists a uniquely defined d f°(x) €

0 f (x) such that for every g € d f (x) it holds that |0 f°(x)| < |g|.

Proof. Since by Lemma 2.1.15 4 f(x) is a nonempty, convex, and closed set, and
|-|? is strictly convex, we know that there exists a unique solution to the problem

infeear(x) lg|*. m]
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Lemma 2.1.18 If f : R? — R is convex, then 8 f (x) is monotone.

Proof. Let x,y e R¢ and g, € 8 f(x), gy € df(y). By definition of subdifferential
we have

JO)zf)+gx-(y=—x) and f(x) 2 f(y)+gy-(x=y).

When we add these inequalities, we get that

(8y —8x) - (y—x) 20,
which is the desired monotonicity formula. O

Definition 2.1.19. The Moreau—Yosida approximation of a convex function f : R? —
R with an index A > 0 is defined as

Ja(x) = yiggd{ﬁlx—y|2+f(y)}- (2.14)

For any A > 0 and any x € R? by J;(x) we denote the point where the function
y— ﬁ |x —y|?>+ f(y) attains its minimum. Then J, is the resolvent of the maximal
monotone operator 8 f, i.e. Jix = (I+ 19 f) " 'x.

Lemma 2.1.20 Let f : R? — RU {0} be a convex function. Then for any A > 0 the
Moreau—Yosida approximation f) of f satisfies the following properties:

(i) Let us define Ay(x) := /ll(x —Ja(x)). Then A, is Lipschitz continuous with
a Lipschitz constant % and V f1(x) = A (x) for all x e RY.
(ii) The function f is convex.

(iii) If A\ Othen fy /' f.
(iv) For every x € R% it holds that V fi(x) — 8 f°(x) as A — 0, where 8 f°(x) is an
element of minimal norm of the closed convex set d f (x).
Proof. Note that the infimum of y ﬁ |x —y|?+ f(y) is attained at a point ¥ where
1(7-0+3f(3) 0.
Since by the definition ¥ = J,(x), we deduce that

~ L) =x) € (Ta(x)). (2.15)

(i) In order to prove that A, is Lipschitz with Lipschitz constant %, let us take
arbitrary x,y € R4. Then

x=Ja(x) €A0f(Ja(x)) and y—Ja(y) €0 f(Ja(y)).

Our aim now is to show that x — J,(x) is Lipschitz. By Lemma 2.1.18 the subdif-
ferential 4 f is monotone, thus we have that

0= ((¥=72(0)) = (y=Ja()) - al0) = Ja() = 1",
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On the other hand, we have
0< ((x=a0) = (y=La )} - (=2 (@) = (= da(x) ) =: 12

By adding the last two inequalities we get that

0<PP<I'+1’= ((x—h(x)) - (y—h(y))) “(x—y).

Hence
|(x=Ja(x)) = (y=JaW)I < |x =yl (2.16)

and consequently
[Ja(x) = Ja(y)| < 2[x - yl.

Furthermore, by (2.16)
|A2(x) = Aa)] = 15 (x = Ja(x)) = 3 (v =La)| < e =yl (2.17)

which means that A is Lipschitz continuous with Lipschitz constant /ll
To prove that A, (x) = V f(x) it suffices to show that

. ) = fax) = (y—x)-Ax(x)
m =

li 0. (2.18)
y—x |x =l
Since f is convex and we have (2.15), it holds that
FUA) = fUa(x)) 2 F(x=Ja(x)) - (Ja(y) = Ja(x)). (2.19)

Therefore for any x,y € R by definition of J; we have

F10) = £2(6) = F(Ta0) + 514 () =3P = F(Ta(0) = F1a ) —xP
> S (200 =J4(0) - (Fa() = Ja(@) +1a) = P = 1a) = x) . 2.20)
Since
200 = L) (a(y) = Ja(x) = 2(y=2) - (¢ = Ja(x))
+2((a) =) = () =)+ ((a0) =) = (a0 -x))
+2(((0) =) = () =) 6= L)

=2(y—x) - (x =T (x) +| (L) = y) = (Ja(x) =)
—a(y) =y P+ (x) —x P,

we can continue estimating from (2.20) to get

F0) = 1) = 3 (2= (= La (@) +](a() =) = a0 -0
2 3 =2)- (x=Ja(x)) = (y=x) - A (x). 221
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By changing the role of the variables x and y we have that also f;(x) — fa(y) =
%(x —y)-(y—=Ja(y)) and, consequently, we have

L) = fa@) < 3 =2) - (y=Ja().- (222)
On the other hand, by the parallelogram law we note that for any a, b € RV we have
a-(a-b)=1(la*+la-b|*-|b]?). (2.23)

Combining (2.21), (2.22), (2.23) fora =x—y and b = J (y) —J1(x), and (2.16) we
get

0 1)~ 10 = 56 =0=1a() < Lr=0)(y =Ja(y) ~x+J1(x))
= 1 (Iy 5P+ =20 = (= a @) = Wa (@) = a0)P) < Sy =,

from which we infer (2.18).
(i1) As we know that V f(x) = A (x), formula (2.21) implies convexity of f;.

(iii) Let y € @ f(x). Then by the definition of J,(x), we see that %(x —Jax) €
df(Ja(x)). Thus, by monotonicity of d f we infer that for any y € d f(x) we have

(y—L(x=Ja(x))) - (x=Ja(x)) > 0.

Therefore,
H(x=72(0))) - (x=Tax) S y- (x=Ja(x))
and
=T < Iyl lx = Ta(x)].

Then |A,(x)] = |%(x—],1x)| <|y|forany y € @ f(x). In turn, by Lemma 2.1.17, there
exists an element @ °(x) of minimal norm of d f (x), such that

|A2(x)] <18 f°(x)| for any x € RY (2.24)

and thus
Ix = Ja(x)] < 210 £ (x)]. (2.25)

Consequently for any x € R? we have
Ja(x) > xas1—0. (2.26)
We notice that for 1; < A1, we have
() = F(ay (0)) + 5 [x =, ()2
> f(Ja, () + ﬁ e =T, (0
> inf Aror+ s le= 3P = g ).
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Moreover, by definition of f; we see that f(x) < f(x)+ ﬁ |x—x|? = f(x). Therefore,
{fa(x)} . is convergent for A \ 0. By lower semicontinuity of f and (2.26) we have

limint 2(x) = limin {/(/3(x)) + Sl =11}

2 lilln\_l;gff(h(X)) 2 f(x).

(iv) We take {4, }nen such that 2, N\, 0 and by (2.24) we infer that {A,, },en
is a bounded sequence. We choose a subsequence {A Any }ren convergent to some
A* € R?. Moreover, by (2.26) we get that S, (x) = x and Ay, (x) e 0f(J,1nk (x)).
Therefore, Lemma 2.1.16 enables us to deduce that A* € @ f (x). Since (2.24) implies

that [A®| < |8 f°(x)|, by Lemma 2.1.17 we conclude that A~ =8 f9(x). ]

2.1.2 Carathéodory functions

As we intend later to work on inhomogeneous problems, which means that the
considered convex function additionally depends on a variable z € Z ¢ RV, we
introduce the notion of Carathéodory functions.

Definition 2.1.21 (Carathéodory function). Let Z c RV . A function
M : ZxR4 = [0,00)

is called a Carathéodory function if z +— M(z,&) is measurable for every & and
& — M(z,€) is continuous for a.a. z € Z.

Lemma 2.1.22 If M : ZxR4 — [0, ) is a Carathéodory function and & : Z — R¢
is measurable, then the composition z — M(z,£(z)) is measurable.

Proof. Firstly we will prove the assertion for simple functions. Assume thus that &
can be written as follows
m
&= Z vilg,,
k=1

for some m € N and measurable disjoint sets Ex € Z, k = 1,...,m, such that
U',le Er =9, and v € RZ. We notice that for everyt eR

m

{zeZ:M(z,f(z)) >t} :U{zeEk tM(z,vi) >t}.

k=1

The measurability of M (z,vy) for every fixed v implies that the right-hand side is
a measurable set, and hence, so is the left-hand side. Therefore z — M(z,£(z)) is
also measurable.

In order to deal with the case of measurable &, recall that every measurable
function £ can be approximated by simple functions & in the sense that
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M(z,¢k(2)) - M(z,£(z)) foraa. zeZ.

Finally, the right-hand side is measurable as an almost everywhere limit of measur-
able functions. O

Most often we focus on Carathéodory functions which additionally satisfy

M(z,6)=0 &= £=0

. (2.27)
and & M(z,€) iseven and convex fora.a. z € Z.

Such functions share the following properties.

Lemma 2.1.23 Let Z ¢ RN. For a Carathéodory function M : ZxR? — [0, )
satisfying (2.27) the following conditions hold:

(i) For a fixed &€ e R? and & € [0, 1]

M(z,86) < eM(z,£). (2.28)
(ii) For afixed ¢ e R% and a > 1

aM(z,€) < M(z,a€). (2.29)

(iii) If a continuous function m : [0,c0) — [0,00) satisfies (2.27) with M(z,&) =
m(|€]), then m is strictly monotone.

Proof. As M(z,0) =0, the first statement for & € [0, 1] follows immediately from
convexity
M(z,&8) <eM(z,£)+(1-e)M(2,0) =eM(z,8).

In the same manner we show (ii) in the case a > 1
M(z2.¢) < (1—5)M(z,0)+%M(z,a§). (2.30)

In view of (ii) it is easy to verify that (iii) holds. Indeed, let s1, s, € [0, 00) and 51 < s5.
Thus there exists an a > 1 such that s» = as; and

m(sy) <am(sy) <m(as;) =m(sy). O

As a corollary of Theorem 2.1.12 we obtain Jensen’s inequality for inhomoge-
neous functions. By considering a measure absolutely continuous with respect to the
Lebesgue measure and having density o, we get the following version.

Corollary 2.1.24 Suppose Z,U c RN are open bounded sets and M : Z xR —
[0,00) is a Carathéodory function convex with respect to the second variable. Let
0€ L' (U), 0 20, be such that /U,Q(x) dx =1 and let ¢ : RY — RY be integrable
with weight o. Then for a.a. z € Z

M(z, /U £) 0(y) dy) < /U M (2.£(9)) 0() dy.
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In the sequel a typical choice of function o is the standard regularizing kernel,
ie. 0 € C*(RN), suppo cc B(0,1) and /RN o(x)dx =1, o(x) = o(—x).

From Lemma 2.1.2 we conclude a discrete Jensen’s inequality for Carathéodory
functions. The following version has a slightly different formulation, which will
often be used later in many estimates. Comparing it with Lemma 2.1.2 observe that
a; = %, where @; comes from Lemma 2.1.2 and A and A; are the quantities that
appear in the proceeding corollary.

Corollary 2.1.25 Suppose Z RN is an open bounded set and M : ZxR¢ — [0, c0)
is a Carathéodory function convex with respect to the second variable. Let a vector
& e R4 be decomposed as

&= anﬂ,fi and A= Zn]/li
i=1 i=1

with some & € R¢ and A; > 0 for everyi=1,...,n, and n € N. Then for a.a. z€ Z
n .
M(z,%) < Z%M(z,.f’).
i=1

For Carthéodory functions M : Z xR4 — [0, o) which are convex with respect
to the second variable we shall employ subdifferentials with respect to this second
variable, freezing the dependence on the first variable. To highlight this, a notation
analogous to partial derivatives with lower index £ is used. We thus define a subdif-
ferential 8 : M : RY — 2R of a Carathéodory function in the same way as for convex
functions, here for a.a. z € Z as a subdifferential of a function & — M(z,£), i.e.

OeM(z.60) = {neR?:  M(z,6)-M(z,é0) 2n-(-é) forall £ eRY}.
(2.31)
In the next lemma we use the notion of Moreau—Yosida approximation introduced
by Definition 2.1.19. Here, in the context of Carathéodory functions, the Moreau—
Yosida approximation is only with respect to the second variable, i.e.

Ma(z.6) = inf {571¢ —nl*+M (z.m)}. (2.32)

The properties prescribed in Lemma 2.1.20 also hold for a.a. z € Z for a function
& M(z,€) and thus we will not repeat them here. The only fact that we want to
pay attention to, and that is used later, is the issue of measurability.

Lemma 2.1.26 Suppose Z c RY is an open bounded set and M : Z x R? — [0, )
is a Carathéodory function convex with respect to the second variable. For any 1 > 0
by M, we mean the Moreau—Yosida approximation of M. Then z — M (z,&) and
72+ Ve My(z2,€) are measurable functions for all £ € R4,

Proof. In the first step we will show that z — M, (z,¢) is measurable. Observe that

Ma(z,€) = inf {L]E-nl*+M(z,n)} = inf {55|€-nl*+M(z,n)}.
neRd neQd
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The result is now clear, since an infimum of a countable family of measurable
functions is also measurable.

Observe that z — VM, (z,&) is measurable if and only if z — %Mﬂ(z,f) is
measurable for all i € {1,...,d}. For M, we have

Ma(z,&+he;) — Ma(z,€)
Y .

o Ma(2.6) = lim

M, (z,&+hei)-Ma(z, )
h

Moreover, z

surable functions is measurable, z (%M 1(z,&) is measurable and the proof is
complete. ‘ O

is measurable. As the pointwise limit of mea-

Lemma 2.1.27 Let Z ¢ RN be an open bounded set, & : Z — R be measurable and
M : ZxR? — R be a Carathéodory convex function. Then 7 +—> ¢9§M0(z,§(z)) is
measurable, where 8§M0(z,§(z)) is an element of minimal norm of 8 ¢ M (z,£(2)).

Proof. Recall again that the notation M is used for the Moreau—Yosida approxima-
tion, see (2.32). By Lemma 2.1.26 we know that z — VM (z,£) is a measurable
function for all &€ € R4, and Lemma 2.1.20 yields that £ — V £M,(z,&) is continuous.
Thus z +— V¢M,(z,£(z)) is measurable as a composition of a measurable function
and a Carathéodory function, see Lemma 2.1.22. Since, again by Lemma 2.1.20,
VeMa(z,6(2) — 6§M0(z,§(z)) a.e. as 1 — 0, it follows that z — 6§M0(z,§(z))
is also measurable. O

2.1.3 The conjugate function

The fundamental role in the analysis of the Musielak—Orlicz setting is played by
the conjugate function, often also called the complementary function, the Young
conjugate function, or the Legendre transform.

Definition 2.1.28 (Conjugate function). The conjugate function M* : Z xR —
R U {0} to a Carathéodory function M : ZxR? — R is defined by

M*(z,n) := sup (¢ -n—M(z,£)), forneR% and a.a. z € Z.
£eR4

Remark 2.1.29. If M (z,0) =0 for a.a. z € Z, then M* : ZxR4 > [0, 0]. Indeed,
M*(z,m) =supgega(§-n—-M(z,6)) 2 {n-0-M(z,0)} =0.

In most of the considerations in this section, as well as in the overall setting, we
assume that a Carathéodory function is superlinear at infinity, see Definition 8.17.
This assumption is particularly useful when talking about conjugate functions due
to the following fact.

Lemma 2.1.30 Let M : ZxR? — R be a Carathéodory function. If € — M(z,£) is
for a.a. z € Z superlinear at infinity and M (z,0) =0 for a.a. z € Z, then the function
& (E-n—M(z,8)) attains its maximum and, consequently, M* is finite-valued.
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Proof. Observe that

The right-hand side tends to —co as |£] tends to co. Thus these two properties:

continuity of & - (£-7—M(z,£)) and | l‘im (6-1—M(z,£)) = —o0 together with
&>

Remark 2.1.29 imply that the function +— sup {£-n—M(z,£)} attains its maximum

£eRd
and thus M* is finite-valued. 0O

Remark 2.1.31. If & — M(z,£) is convex and superlinear at infinity, then & +—
(=& -n+M(z,€)) is also convex and & — (£-n1—M(z,£)) is concave. Note that in
analogy to Remark 2.1.14 it holds that § € argmax; cga (£ -1 — M(z,&)) whenever
0€ds(=&p-n+M(z,&)), which is equivalent to 17 € 0 M (z,&p). Recall that d ¢
denotes the subdifferential with respect to the variable ¢ defined in (2.31).

Lemma 2.1.32 (Fenchel-Young inequality) If M is a Carathéodory function and
M* its conjugate, the following inequality holds

En<M(z,6)+M* (z,n)  forallé,neRY anda.a. z € Z. (2.33)

Proof. Directly from the definition of the conjugate function (Definition 2.1.28) we
get

En=M(z,6)+&n—M(z2,&) < M(z,6) + sup ({-n—M(z,{))
L eR4

=M(z,&)+M*(z,7). O

Remark 2.1.33. Suppose & — M(z,£) is convex and superlinear at infinity. Then,
by the arguments of Remark 2.1.31, the equality in (2.33) holds for any 7 belonging
to the subdifferential 9 ¢ M (z, &o). If additionally & — M (z,¢) is differentiable, then
the subdifferential 8 s M is single-valued and equal to {V M} — the set consisting of
a gradient with respect to the variable £. Consequently, the equality in (2.33) holds
for n =VgM(z,&), that is

E0-VeM(z,60) = M(z,60) +M™(2,VeM (&)  forall & e RY.

Lemma 2.1.34 Let M : ZxR? — [0,00) be a Carathéodory function such that
& M(z,€) is superlinear at infinity for a.a. z € Z. Then the conjugate function to
M is convex with respect to the second variable, i.e. M*(z,-) is convex for a.a. 7 € Z.

Proof. Let s € [0,1]. Observe that

M*(z,sn1+(1=s)n2) = sup {(sn1+(1=s)m2) - { = (s+1-5)M(2,{)}
L eR4

= sup {sn1-{—sM(z,{)+(1=s)m-{—(1-5)M(z2,{)}
£ eRd

< sM*(zom) + (1 -5)M™(z,1m2). -
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Lemma 2.1.35 Let M : ZxR? — [0,00) be a Carathéodory function such that
& M(z,8) is superlinear at infinity for a.a. z € Z. Then the conjugate function
to M is also a Carathéodory function.

Proof. The definition of M* directly implies M*(z,0) =0 for a.a. z € Z. First observe
that z — (& —M(z,€)) is measurable. Furthermore, by the density argument,
M*(z,1) = Supgcqa (17-€ = M(z,£)). Hence, as a supremum of a countable family
of measurable functions, z — M*(z,n) is also measurable. Since M* is finite-valued
due to Remark 2.1.30 and M*(z,-) is convex for a.a. z € Z due to Lemma 2.1.34,
the function  — M*(z,n) is locally Lipschitz for a.a. z € Z (see Lemma 2.1.4), and
hence continuous. O

Lemma 2.1.36 Let M : ZxR? — [0,00) be a Carathéodory function such that
& M(z,€) is superlinear at infinity for a.a. 7 € Z and which is even with respect
to the second variable. Then the conjugate function to M is also even with respect to
the second variable for a.a. z € Z, i.e. M*(z,n) = M*(z,-n) fora.a. z € Z.

Proof. We have

M*(z,n) = sup {-n-{-M(z,-{)}
£ eRd

= sup {(-n)-{ =M (z,0)} = M"(z,-1). o
{ER‘I

Lemma 2.1.37 Let My, M5 : ZxR% — [0, c0) be Carathéodory functions for which
& M (z,€) and € — M;(z,€) are superlinear at infinity for a.a. z € Z. If for a.a.
z € Z and all ¢ € R¢ we have

Ml (Z’f) < MZ(va)’ (234)

then
M;(z,n) < M7 (z,1) (2.35)

foreveryn e R and a.a. 7 € Z.

Proof. If My(z,€) < M»(z,€), then for every 7 € R4

&-n—M(z,6) <&-n—M(2,).
We take the supremum on the both sides to get the assertion. O

Remark 2.1.38. Suppose & — M (z,£) is convex and superlinear at infinity. Then for
every & € R? andn € 8 M (z,&) we have

M*(z,n) <éo-n

and
M*(z,n) < 2M(z,20).

Indeed, when we fix 7 € 8 : M (z, &), by the Remarks 2.1.31,2.1.33 and Lemma 2.1.32
we get
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M*(z,n)=n-&o—M(z,&) <n-& < M(Z,2§O)+M*(Za%ﬂ)
< M(z2,260) + 3M*(z,n),

where the last inequality is justified by Jensen’s inequality. Now it suffices to rearrange
terms to get the claim.

2.1.4 The second conjugate function

Let us now consider the second conjugate of a Carathéodory function M
M™(z,6) = (M"(z,€))", (2.36)
so the conjugate of the conjugate of M.

Lemma 2.1.39 For any Carathéodory function M : Z xR — R the second conju-
gate function M** is convex with respect to & and we have

M*(2,€) < M(z,&) forallé eR and a.a. 7€ Z.

Proof. The first conjugate M* is already convex with respect to the second variable
as a supremum of affine functions. Therefore, the second conjugate is convex as well.
Moreover, we have for a.a. z € Z that

M*(z,&) =sup, {&-n—M"(z,n)}
=SUp,,crd, qer 1€ 11— a, such that a > M*(z,n)}
=SUP, cpd, qer (€N —a, suchthat a > sup, (- -M(z.0))}
=SUP, epd, 4ep (€ M —a, suchthat a > n-L-M(z,{) V{eR?}
< SUP,crd, qep (€1 —a, such that &-n—a < M(z,€)}
< M(z,¢).
Hence, M** is a convex minorant of M. O

We give below a trivial corollary of the convexity of the second conjugate and
the lack of convexity of the infimum of convex functions, which however seems to
be a surprisingly frequent mistake in the literature.

Corollary 2.1.40 When M is convex with respect to the second variable, then due
to Lemma 2.1.9, we infer that

(1) essinf,czM(z,£) in general is not convex and Jensen’s inequality does not
apply; .
(ii) &> (essinfezM(z,€))" is convex and Jensen’s inequality can be applied.
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Theorem 2.1.41 (Fenchel-Moreau) If a Carathéodory function M : Z x R¢ —
[0,0) is convex with respect to the second variable, then

M*(z,€) = M(z,€).

Note that we assume here that M takes only nonnegative values purely for the
simplicity of the presentation and because this is the most general form of the result
we shall need later on.

Proof. Having Lemma 2.1.39 it suffices to prove that M**(z,£) > M(z,¢). Take an
arbitrary affine minorant of £ — M, (&) = M(z,£), namely an affine function f, (&) =
n-&+b, such that f,(&) < M, (&) for all £ € RY. By definition 17-& — M, (¢) < —b.
Then M7 (1) =supg(n-& - M (§)) < —band forall € R4

n-E=M;(n) 2n-é+b= f(§).

Hence, M*(£) = (M?)"(§) =sup,,(n-£—M; (1)) > f:(§). By Lemma 2.1.11 a con-
vex and lower semicontinuous function is equal to a supremum over its affine mino-
rants, so we conclude that M**(z,&) > M (z,&) and the proof is complete. O

Corollary 2.1.42 For any Carathéodory function M : Z xR¢ — R the second con-
Jugate function M** is its greatest convex minorant.

Proof. By Lemma 2.1.39 we know that M** is a convex minorant of M. We prove
that it is the greatest one by contradiction. We suppose that there exists a convex
function M # M**, for which

M*™(z,6) < M(z,&) < M(z,&) forae. z€Z.
Due to Lemma 2.1.37, for every fixed z we have

M*(z,€) < (M(z,€))" < (M*(2,£))" = M*(z,€),

where we used Theorem 2.1.41. Consequently, M* = M*. Again by Theorem 2.1.41
we infer
M™(2,6) =M(2,6) =M™ (2,¢).

This, however, contradicts with the choice of M and, consequently, M** has to be
the greatest convex function smaller than or equal to M. O

2.2 Definition of an N-Function

Having introduced convex functions, our main exposition now focuses on inhomo-
geneous and anisotropic functions, which are at the foundation of the definition of
function spaces. To introduce them we first define a Young function.

Definition 2.2.1 (Young function). A function m : [0, 00) — [0, o0) is called a Young
function if it satisfies the following conditions:
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1.m(s)=0 < s=0.
2. m is convex.
3. m is superlinear at zero and at infinity, i.e.

lim m(s) =0 and lim m(s) =00

s—0t § s—00 8

Even though most texts call such a mapping an N-function, we reserve this name
for a z-dependent and anisotropic function, which is the most important object for
the presented theory. The definition presented above agrees with many textbooks, see
e.g. [221, 244], we are however aware that the name Young function is sometimes
used in the literature for a more general notion than the one here, see the definition
and the bibliographical note in [281, Section 1.3], where, following Young’s original
works, it is understood as a convex function m : [0,00) — [0, c0) satisfying m(0) =0
and Yli_)rilom(s) = o0.

We are now ready to define an N-function.

Definition 2.2.2 (N-function). Suppose Z c R" is abounded connected set. A func-
tion M : ZxR? — [0, 0) is called an N-function if it satisfies the following condi-
tions:

1. M is a Carathéodory function (i.e. measurable with respect to z and continuous
with respect to the second variable);

2. M(z,0) =0 and & — M(z,£) is a convex function for a.a. z € Z;

3. M(z,&) = M(z,—¢) fora.a. z € Z and all € € RY,;

4. there exist two Young functions my,m; : [0,00) — [0, c0) such that for a.a. z€ Z

my(|€]) < M(z,€) < ma(|€]). (2.37)

We say that a Carathéodory function M : Z xR¢ — [0, c0) is inhomogeneous and
anisotropic, where

e inhomogeneity means dependence on the spatial variable z € Z,
e anisotropy means dependence on &, not necessarily via |£|.

Remark 2.2.3 (Notation). Note that if an N-function is homogeneous (independent
of z) and isotropic, then the above definition reduces to the definition of a Young
function (Definition 2.2.1). In order to stress the difference, we shall denote Young
functions by lower case letters (e.g. m,m;,m) and upper case letters for general
N-functions. Nonetheless, we sometimes allow some ambiguity and call both m and
M an N-function, even though they are defined on different domains.

Lemma 2.2.4 If M is an N-function, then the conjugate function M* is also an
N-function.

Proof. Since M is an N-function, M (z,0) =0 for a.a. z € Z and M is a Carathéodory
function, then the definition of the conjugate M™* (Definition 2.1.28) directly implies
M*(z,0) =0 for a.a. z € Z. The fact that M* is a Carathéodory function is motivated
in Lemma 2.1.35. Symmetry is provided in Lemma 2.1.36, convexity of M™ is
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justified by Lemma 2.1.34. Finally, Lemma 2.1.37 ensures that the conjugate is
trapped between m} and m3. O

An important characteristic of an N-function is its rate of growth. If this growth is
moderate, a significant part of the analytical background presented in the next chapter
is a rather straightforward extension of structures well-known for L? spaces. This
growth is prescribed by the so-called A,-condition, which indeed comprises the core
for various useful properties of function spaces and operators. For the PDE problems
considered in this monograph an overall impediment will be that the A,-condition is
not assumed.

Definition 2.2.5 (A;-condition). We say that an N-function M : Z X R4 — [0, c0)
satisfies the Ay-condition (denoted M € A;) if there exists a constant ca, > 0 and a
nonnegative integrable function 4 : Z — R such that

M(z,2¢) < ca,M(2,€) +h(2) fora.a. z € Z and all £ e RY. (2.38)

Remark 2.2.6. One also finds for an N-function M the so-called A,-condition far
from the origin (denoted M € AS’), which means that there exists a cg > 0 such
that (2.38) holds for all &£ € R? with |£| > ¢o. However if Z is a bounded set, this
condition is equivalent to the Aj;-condition. Indeed, for |£| < ¢y we can estimate
M (z,2&) < m»(2co) and thus the function 4 can be modified i(z) = h(z) +m2(2c¢o).
Notice that / is also an integrable function.

Sometimes the Aj-condition is understood to mean (2.38) with & = 0 to distinguish
it from A.

2.3 Refined Properties of N-Functions

This section provides a deeper insight into properties of N-functions and collects
numerous examples which illustrate them. Particular attention is paid here to delicate
differences between isotropic and anisotropic functions.

2.3.1 Examples of N-functions

Let us present some examples of N-functions with links to subsections of Sec-
tion 3.8.1 briefly describing their applications to PDEs and the calculus of variations.
The main model function captured by Definition 2.2.2 is

MO(Z’é:) = |§|17’ I< p <oo.

Then the simplest choice of 7| and m, is m| (|€]) = Mo(z,&) = ma(|€]) for all € e RY.
It will be explained in further chapters that the Musielak—Orlicz space generated
by My and its Sobolev-type version are the classical Lebesgue spaces L”(Z) and
Sobolev space W!-7(Z), respectively. See Section 3.8.1 for more details on the fact
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that an example of an operator whose growth is governed by M is the classical
p-Laplacian. One can consider the so-called Zygmund functions

Mi(z,8) = 1&|7 log® (1 +£1),

where
I<p<ooand ¢ €eR or p=1 and a>0,

when again taking m;(|¢|) = M (z,&) = my(]€|) is allowed. For more information
on the Orlicz and Orlicz—Sobolev spaces generated by such functions and related
differential operators, see Section 3.8.1.5.

2.3.1.1 Inhomogeneity

Since by inhomogeneity we mean z-dependence of M, the basic inhomogeneous
example is
May(z.6)=[€1PP, 1<p-<p()<pe <o,

where p : Z — [1,c0) is a measurable function. As a supremum of convex functions
is always convex, it is allowed to take m;(|£|) = sup, ., M>(z,£) (unless it blows up
for a finite argument). It is possible to take

|€|P+ if || <1, €17~ if €l <1
m (€)= {ma(€) if n<lél<n, and m(eh=1° 0
e i gl it 11> 1,
€]P if || > 12,
(2.39)

where t;,1, and an affine function m, are chosen to ensure that m; is convex and
m1(]€]) < min{|&|P-,|&|P+}. In fact, one can take

l [ ——
( 1 )ﬁ (p+_1)p_p_/<p-—1>]p’+p'
=

p_+ (p_—])p+P+/(P+—1)

and
1 p+-1
1 \p—1 [(p+ —1)p_p-/r-=D ] pe-p-
Hh=|—
p- (p_—])p+P+/(P+—l)

An affine function m,, crossing points (¢{,#7*) and (, té’ ") is given by a formula

mq(t) =t
1 —1 h—1 2 2

Then m, (t) < min{|&|P-,|&|P+} and m defined in (2.39) is convex.
Some studies concern the related function of variable exponent type

1

M3(Z’§) = p(Z)

(141D =1), 1<p-<p)<pe<os,
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which is also an N-function according to Definition 2.2.2 and leads to analysis in the
same functional space as M;. For more information on the variable exponent case,
see Section 3.8.1.3.

Mixing the above ideas of logarithmically perturbed growth and varying the first
variable leads us to investigate the following N-function

My (z,€) = [£]P @ 1og™ @ (1+]4]), 1<p_<p()<ps<oo, 0<a()eL™(2),

where p, a are measurable and scalar functions. The functions m; and m, can be
found in a similar way as in (2.39). We give more information on the space generated
by M, in Section 3.8.1.6.

Another important function falling into the realm of Definition 2.2.2 is

Ms(z,6) =P +a(2)[€]7, 1<p<g<eo, 0<a()eLl™(Z).

In this case one can take mj(|&]) = |£]|P and my(|€]) = |€]P + ||al|L~|€]9. Proper-
ties of M5 and related N-functions are described in Section 3.8.1.4 together with
applications.

As Definition 2.2.2 does not restrict our attention to functions growing more
slowly than a polynomial, we can consider

Mo(z.8) = 1€](e€1" = 1),  where 1 < p(-) € L™(Z).

For more information on this setting, see Section 3.8.1.6.

2.3.1.2 Anisotropy

The examples provided in the previous section illustrate what we understand by
inhomogeneity of an N-function. Here we explain what anisotropy means. Let us
recall that we say M (x,&) is anisotropic if it is a function of ¢ but not necessarily of
|£]. In the isotropic setting (namely when M (z,&) = M (z,]&|)) we have the following
integral representation

M(z,s) = / CM* (o) dr (2.40)
0

with a nondecreasing function M*® : Z X [0,00) — [0, 0) called the density of M.
The basic example of an inhomogeneous and anisotropic function satisfying (2.27)
is

d
M(z€) = ) E17E, 1< p_<pi() < pr <o for i€ {l,....d}.
i=1

However, an anisotropic function is not necessarily described by its behavior in each
direction separately. A function M which admits a decomposition

d
M(z,f)zZMi(z,fi), E=(E",.. 9 eRY, M ZxR — [0,00), (2.41)
i=1
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is called orthotropic. If M fails to admit such a decomposition, we call it fully
anisotropic. The classical two-dimensional example of a fully anisotropic function
provided by Trudinger in [316] is

M(z,€) = €' -+ Plog? (c+1€']), a.p21,

where 6 e Rif 8> 1, 0r ¢ > 0if g =1, with ¢ > 1 large enough to ensure convexity.
It should be strongly emphasized here that the family of fully anisotropic functions
is far more robust. The strong property of monotonicity of a form

it £=(£...,&Y, n="....n"), and |£'] < |n'],
then M (z,&) < M(z,n) (2.42)

fails in general. In fact, it suffices to take M : ZxR? — [0, c0) given by
M(2.8) = |7 +]E2P +1¢" = £ P exp(jé" - £2)).
Indeed, for (2,0), (3,3) € R? we have
M(z,(2,0)) =4(1+exp(2)) > 20> 18 =M(z,(3,3)).

In [83] there is an example of a function between |£]” and |£]” log® (1 +|€]) (p > 1,
a > 0), for which after any linear and invertible change of variables the orthotropic
decomposition is impossible even up to equivalence.

Remark 2.3.1. The decomposition (2.41) and the strong property of monotonic-
ity (2.42) are useful tools, which are not available in general, and which significantly
simplify proofs, e.g. of the density of simple functions in the space (cf. Theo-
rem 3.4.11 and Theorem 3.4.16). As a matter of fact, the proofs already simplify
when the function M admits an even more general decomposition than (2.41).
Suppose L; : R4 — R? are linear functions for j = 1,...,D, D > d, such that
lin{Im L j}f: | = RZ. Then an example of such a decomposition holds provided
M; : Zx[0,00) — [0, 00) for every j and

D
M(z,€) = > M;j(z,|L;€). (2.43)
j=1

As observed above, this type of function does not necessarily satisfy (2.42).

Note that (2.43) captures the situation when M admits a decomposition in di-
rections other than cardinal. Namely, consider an arbitrary basis of R4, denoted
(é1,...,8q), write & = (€1, ...,&4) in the coordinates of this basis, and let M admit
the decomposition M (z,&) = Zl‘.’:] M;(z,|€)).

2.3.1.3 N-functions satisfying growth conditions

In the available literature, a significant part of research in the Musielak—Orlicz
setting so far has been conducted for doubling M, i.e. when the Aj-condition (see
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Definition 2.2.5) is imposed both on M and on M*. This is sometimes denoted by
M ({M,M"}) < .

This condition implies that both M and M* are sandwiched between inhomogeneous
power-type functions even in the anisotropic case. We want to stress that it is possible
that M € A,, but M* ¢ A,. Indeed,

M(z,8) = (1+|&])og(1+£]) - |€] € Ay,

but
M*(z,n) =exp(In]) = nl—1 ¢ As.

Let us present some examples of inhomogeneous and possibly anisotropic mod-
ular functions.

Example 2.3.2 (Doubling N-functions).

o M(z,|¢]) =1€]P@), where 1 < p_ < p(+) < p, < o0; covering the variable exponent
case with possibly non-regular exponent;

o M(z,|¢]) = 1€]P@ 1og?@ (e +£]), where 1 < p_ < p(-) < p+ <o and @ > 0, or
1<p_<p()<py<ooanda() > a_ >0,

o M(z.€)=3;a;i(2)|€'|P"®), where 1 < (p;)- < pi(+) < (pi)+ < o, the weight func-
tions a; () = (a;)- > 0 are bounded in Z; this case covers the anisotropic weighted
variable exponent case with possibly non-regular exponent;

* Mi(z,1£]) = 1§17 +a(2)[£]7 or My (z,1£]) = |£]P +a(2)[£]P log(e +[£]), where 1 <
p < g < oo and a weight function a : Z — [0, o) is bounded and possibly touching
zero; covering the case of the double-phase space;

o Mi(z,[€]) = €7@ +a(2)[€]9) or Ma(z, |€]) = |£1PP +a(2)[€]7?) log(e + |£)),
where 1 < p_ < p(*) < ¢q(-) < g+ < o and a weight function a : Z — [0, )
is bounded and possibly touching zero; covering the case of variable exponent
double-phase space;

o M(2,6)=Mo(£)+ 1, ai(2)M;(é), k €N, or M(z,£) = Mo(€) + 2, ai () My (£7),
where the Orlicz modular functions M;, M} € Ay, while the weight functions
a; : Z — [0, 00) are bounded and possibly touching zero; covering the anisotropic
weighted Orlicz case under the most common nonstandard growth conditions.

Example 2.3.3 (Non-doubling N-functions).

o M(z,¢) =a(z) (exp(|£]) — 1+1£]) with a bounded weight a : Z — (¢, ), ¢ > 0;

e M(z,¢) =a(z)|é|log(e+|€]) +b(z)|€|P with 1 < p < co and nonnegative weights
a,b € L*(Z), where b vanishes on a subset of positive measure, but there is no
subset of Z of positive measure where both a, b disappear;

o M(z,&) = M (€) +a(z) M (€) with bounded and possibly touching zero weight
a: Z — [0,00) relating to the double phase space, but with M; ¢ A, fori =1 or
i =2. Recall that M ¢ A, can be trapped between two power-type functions;

o M(z,¢) =a(z)(exp(J€!]) — 1) +1&2] - |£P2), £ = (£1,...,€9) with a bounded and
possibly touching zero weight a : Z — [0, c0) and variable exponent 1 < p_ <
p(-) < ps < co. This is an example of an anisotropic modular function;
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o M(2.6) =a(2)[¢" 7@ (1+[log(1+|£D]) +exp(|€*7>() 1, when (¢'.£%) € R?
and p; : Z — [1,00]. This is also an example of an anisotropic modular function;

e See the example in Remark 2.3.4 of a non-doubling N-function between |£|” and
|€]9 forany 1 < p < g < oco.

The following example shows that comparison with two power-type functions
is not enough for the A;-condition. The following construction comes from [78],
another one can be found in [49].

Example 2.3.4. For arbitrary 1 < p < g < oo, there exists a continuous, increasing,
and convex function m : [0,00) — [0,00) which is trapped between power type
functions ¢ - ¥ and ¢ — ¢ and does not satisfy the A,-condition, nor (2.54).

We shall construct {a; };en and {b; };cy so that the desired function is given by
the following formula
_ affine ¢ € (a;, b;),
m() = {t” otherwise.

To describe {a;};en let us introduce yet another sequence {k;};ex and fix a; = 2K
for every i € N. Let k; € N be large enough to satisfy both

ki—1 ﬁ _
ky >2P and — ] <297P, (2.44)
q

Define
m(r) =2Pk 42Dk (g 1)1 =25 for  te(ar,by),
where b > ay is an intersection point of the chord
filr) =20 42070 (k= 1) (e - 2%)
and ¢t — tP. Note that (2.44), ensures that
Pkt o (P=Dki (g _ 1) 2R+l _okty = g okt 5 (k)P

so in particular 261*! < by and m(2K1*1) = k12PK1 . On the other hand, (2.44), implies
that the slope of the line given by f; equals 2(P~V*%1 (k; — 1) and is smaller than the
derivative of ¢ — t9 in a;. Combining it with #7|,, < 19|, we get that B(z) < ¢4
on (al, bl).

Let k, be the smallest natural number such that a, = 2%2 > b; and set m(t) =
t? on (by,a;). We repeat the construction of the chord. Note that since k, > k,
the condition (2.44) with k; substituted with k, is satisfied. Thus, the chord is
between ¢ - tP and ¢ +— 9. Further iterating the construction we obviously obtain
a continuous, increasing, and convex function, whose graph lies between the same
power-type functions. Moreover, we also get the sequences {a;};, {b;};, and {k;};
such that k; — o0, 2a; < b; < ajy1 and

m(a;) = af and m(2a;) = k,-a{7 =k;m(a;),
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which contradicts the Ap-condition. Moreover, taking {y; };en with y; € (a;,b;) one
can check that ig < 1, which violates (2.54).

2.3.2 Conjugation and degeneracy

The real aim of this section is to systematize various conditions formulated in the
literature dedicated to inhomogeneous problems. We want to equip the reader with
a useful set of tools which will enable them to compare various formulations and
better understand the relations among different results.

We concentrate on the relations between nondegeneracy and limit conditions
imposed on anisotropic and inhomogeneous functions M and M*, when they are
convex with respect to the second variable. We assemble the following conditions:

(i) nondegeneracy at the origin given by
Jrg>0 Vr<rg Jc(r) >0 VE: |£|=r essinf,ezM(2,€) > c(r); (2.45)
(i) nondegeneracy at infinity reading

ARy >0 VR> Ry AC(R) >0 V&: |£|=R esssup,ezM(z,€) < C(R);

(2.46)
(iii) the limit at the origin
. M(z,)
lim esssup, =0; 2.47
1150 Pzez 2l ( )
(iv) the limit at infinity
M [l
lim essint,ez L€ — o (2.48)
€00 €

Remark 2.3.5. Note that esssup,ezM(z,£) is a convex function, therefore due to
Remark 2.1.3, condition (ii) is equivalent to

VEeRY esssup,ezM(z,€) < 0.

The interplay between conditions (i)—(iv) imposed on M and M* is described by
the following series of lemmas.

Lemma 2.3.6 Suppose M : ZxR? — [0,00) is a Carathéodory function satisfy-
ing (2.46), such that M (z,0) =0 and & — M (z,£) is a convex function for a.a. 7 € Z.
Then M* satisfies (2.48).

Proof. We prove the claim by contradiction, that is we suppose that (2.48) fails for
M* and get that M cannot be finite-valued in the sense of (2.46).

If (2.48) is false, then there exists a ¢o > 0, a sequence of vectors from the unit
sphere {¢i}renw € S971(0,1), a sequence of positive numbers {ay }ren satisfying
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ay /" oo as k — oo and a sequence of sets {Ay }xen of positive measure, such that
M*(z,arly) < colax &kl = coar  forall z € Ag. (2.49)

By the compactness of the unit sphere, we can assume without relabeling that a
subsequence of {{y }xen converges to £ € S971(0,1). Then of course

li L =1.
fim g g

We fix an arbitrary R > c¢¢. Since M is convex with respect to the second variable,
due to the Fenchel-Moreau theorem (Theorem 2.1.41), for a.a. z € A; we can write

M(z,R{) =M™ (z,R{) = sup (R{-n—M"(z,n)) 2 RS- (axl) — M (z,ard).
neRd

This can be estimated further from below due to (2.49) and the fact that R > c¢(. We
obtain for a.a. z € Ax

C(R) > M(z,R¢) = ar(R¢ - Lk —co) = cay  with some ¢ = ¢(R,cqo) >0,
but ax " oo, which yields the desired contradiction. O

Lemma 2.3.7 If M : ZxR% — [0, ) is a Carathéodory function, M(z,0) = 0 and
& M(z,€) is convex for a.a. 7 € Z and (2.45) holds for M, then M* satisfies (2.47).

Proof. Let us note that for fixed ¢ e R? and t > 0

M(z,t€)
|t

Therefore, as an infimum of nondecreasing functions

is nondecreasing.

. . M(z,t€) . .
d(t)= inf essinf,ey;————= is nondecreasin,
0=, T e £
and by (2.45) also
t
(1) > CT) > 0.

Then for a.a. z € Z and all & € R¢ we have M(z,&) > d(|£]). We shall consider
M*(z,17)/|n| for small 5. For n,& € R¥ such that || < d(R) and |£| > R we have

n-&=M(z,§) < d(R)|g] - d(|€)1&] = 1€](d(R) —d(|£])) < 0.

Therefore, for 7 with |n| < d(R) it holds that

M (z) _ sup (S-l—M(Z’g)) = sup £ -L<R
&g

|71 gera \ Il 7] Jel<r” Iml
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If d := limy—,o+ d(s) = 0, then d(R) — 0 if and only if R — 0 and the proof is
complete. If d > 0, then for  with || < d we have M*(z,£) =0, so (2.47) for M*
holds. O

Lemma 2.3.8 If M : ZxR? — [0,c0) is a Carathéodory function, M(z,0) = 0 and
& M(z,€) is convex for a.a. 7 € Z and (2.48) holds for M, then M* satisfies (2.46).

Proof. Using the definition and the Cauchy—Schwarz inequality we get that

M*(z,n) = sup (é-n—M(z.&)) < sup (I&|In]-M(z,€))

£eRd £eRd
_ _ M(z,f)])
s ('5' ['”' e )

From (2.48) we get that for every n € R? there exists an R > 0 such that

M(z,&)
€]

and, consequently, for those & the expression in the last square brackets above is
negative. Therefore, the supremum has to be achieved within the range of ¢ such that
|€] < R. Continuing the above estimations we get

essinf,cz >2|p| for |£] >R

Mz,
M*(zm) < sup (|§|[|n|—ﬁ)s sup [éllnl <Rl <o, O
£ 1€|<R €] £ 1€|<R

Lemma 2.3.9 If M : ZxR% — [0, ) is a Carathéodory function, M(z,0) = 0 and
& M(z,€) is convex for a.a. 7 € Z and (2.47) holds for M, then M* satisfies (2.45).

Proof. We choose a sequence of positive numbers {by }ren such that by N\ 0 as
k — oo. By definition of the conjugate and fixing arbitrary R we take any & with
|€] = R and we can find ko(R) large enough such that for all k > ko(R) we have

M (z,bié)
|bié|

M(bi)\ | bic o

M*(Z’f)Zbk|§|(|§|_ W =5

) > bR (I§| —esssupez
O

Any N-function M satisfies nondegeneracy conditions (2.45), (2.46), (2.47),
and (2.48), due to properties of the minorant m; and majorant m, (see Defini-
tion 2.2.2). To state the converse let us note that every even convex Carthéodory
function M : ZxR4 — [0, ) is trapped between two homogeneous and isotropic
convex functions

my(s)=( inf essinfzezM(z,r]))** and mo(s)= sup esssup,.,M(z,7).
7= 7 Inl=s

Moreover, we have the following fact.
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Proposition 2.3.10 Suppose M : ZxR¢ — [0, ) is an even Carathéodory function,
M(z,0) =0and & — M(z,€) is convex for a.a. z € Z, then there exist nondecreasing
convex functions my,my : [0,00) — [0, 00], such that m1(0) =0 =m;(0) and for a.a.
z € Z and every ¢ € R4

mi([€]) < M(z,€) < ma(|€]).

If we assume additionally that M satisfies (2.45), (2.46), (2.47) and (2.48) then each
m; is an increasing and finite-valued function satisfying
0 and m ™Yo ieqa),

§—00 Ky

lim m;(s)
S

s—0
which means that M is an N-function.

Proof. Letus define m (s) =inf,;.|;|=s essinf,cz M (z,n). Then m;(s) = (m )™ (s).
Moreover, Lemma 2.1.37 implies that there exist nondecreasing convex functions
my 5, My & [0,00) = [0, 00] such that m; . (0) =0 =m; ,(0) and for a.a. z € Z and
every £ e R?

m1([€]) < M*(2,8) < ma.(I€]),

because it suffices to take m1 . = m; and my . = m].
Since M satisfies (2.45), we have my(s) > m;(s) = 0 for every s > 0. Notice
that since M satisfies (2.46), the functions m; and mg are finite-valued. Hence, by

m—lims om”(‘ =0and

limg_—9 —~— =limg_,g = 0. Directly by (2.45) we have m;(s) > 0 whenever
s>0.To prove the same property for m; we also use (2.45). In fact, by the argument
of the proof of Lemma 2.3.7 we deduce that if m(s) = inf,,.|,,=s essinf cz M (z,7),
then the function s — m(s) /s is nondecreasing. The degeneracy can occur only close
to the origin. For fixed rg > ¢ > s/2 > 0 we have that

invoking Lemma 2.3.6 we can conclude that lim;_,(

I(S) My, (s)

(1) > ﬂ(ﬁ) >c(35)>0
4 2
Then s i
m(t) >tm(§) > (t—§)+@ 0,
2 2

5 m(3)

so by taking 7 = s we get m(s) > m($) > 0. Since 7 — (1— ‘5)+m£ is an affine
2

(and thus convex) minorant of m, whereas (m)** is its greatest convex minorant
(Corollary 2.1.42), we infer that m, (s) = (m)**(s) > m(5) > 0.

As a consequence of (2.47) and Lemma 2.3.9 we get that M* satisfies (2.45). By
the same reasoning as above we conclude that m ., m» , are increasing and each
of them vanishes at zero only. Further, Lemma 2.3.7 gives that lims_,0 =~ mz“) =0=

11m3_>0 ml(S)
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Having (2.48) imposed on M, Lemma 2.3.8 implies that M* does not degenerate

atinfinity in the sense of (2.46). Then m . = m} and my . = m] are finite-valued and

1
Lemma 2.3.6 yields that lim_,e, 218 ’”ZS(“') = 00, O

=00 and limg_,

2.3.3 Remarks on isotropic functions

An important isotropic relation between M and M* is given below. This result shows
a way of comparing our growth and coercivity assumption with the assumptions
which appear in the literature, see the comments in Section 3.8.2. Moreover, it is
extensively used in the regularity theory, see e.g. [22, 95, 72, 77, 114, 191, 235].

Lemma 2.3.11 (Isotropic case) Let M : Z x[0,00) — [0, c0) be an N-function (Def-
inition 2.2.2) and let M* be the conjugate function to M (Definition 2.1.28). Then
for a.a. z € Z and every r > 0 we have

M* (z, M) <M(z,r) <M* (z,

: Mzr) (r“) ) .

Proof. Note that for almost every z € Z and every r > 0 Definition 2.1.28 of the
conjugate function implies

M (ZM) :Sup{(M(z,r) ) M(Z,s))s}
r §>0

r s
M(z,r) M(z,s)
= sup {( - N (2.50)
s€(0,r] r s
M
< sup {ﬂs} =M(z,r).
s€(0,r] r
On the other hand
M M
M* (z,2ﬂ) =sup {Zﬂs - M(z,s)} ,
r s>0 r

where we can estimate the supremum from below by its value at s = r, getting

M* (z,ZM) >2M(z,r)—M(z,r) =M(z,r). O

The above lemma has the following significant direct consequence in the isotropic
Orlicz setting. Note how it justifies calling the conjugate function ‘complementary’.

Corollary 2.3.12 (Isotropic Orlicz case) Forevery N-functionm : [0, c0) — [0, 00)

we have
m* (@) <m(t) <m" (2@) ,

equivalently
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t<(m) N Om™ (1) < 2.

Sometimes it would be useful to treat & + essinf,cz M (z,£) as a convex function.
In the isotropic case this function is close to convex, which is illustrated by the fol-
lowing lemma. This fact can be used to skip Proposition 3.7.5 in an alternative proof
of Theorem 3.7.8 as an isotropic version of Theorem 3.7.7, see Remark 3.7.12 for
an explanation. Notice, however, that this fact is essentially false if M is anisotropic.

Lemma 2.3.13 (Isotropic case) Suppose M : Z x[0,00) — [0, o) is an N-function,
u is a probability measure on Z, and f is u-integrable over Z, then

1
essinf,ez M (z, E/fd#) < /essinfzezM(z,f) du. (2.51)
z z

Proof. We define M(s) =essinf .czM(z,s) and notice that as an infimum of non-
decreasing functions ¢t +— M (+,t)/t is nondecreasing, so

Yit>s.

Then o o
M(t) = EM(s) Vi>s

which is equivalent to
M(t)-M(s) > (L=1) M(s) Yi>s.

Hence
M(t) > (% - I)M(s),

which holds true also for ¢+ < s as the term in the bracket becomes nonpositive
and M takes only nonnegative values. Note that ¢ — (§ —1) M(s) is an affine, and

hence convex, minorant of M (1). On the other hand, (M)**(¢) is the greatest convex
minorant of M(t) (Corollary 2.1.42), thus

(M)™(1) = (L=1)M(s) Vi>s.
When we choose ¢t = 2s > s, we obtain

(M) (25) 2 (2 = 1) M(s) = M(s).

Since (M)** is already convex, we may apply Jensen’s inequality (Theorem 2.1.12)
in the following way

M(% /Z fdﬂ) < (71" ( /Z fdu) < /Z (Y™ (f) du < /Z M) dp,

which ends the proof. |
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Remark 2.3.14. There is no anisotropic analogue of Lemma 2.3.13. This results
from the fact that inf,cz M (z,£) can be arbitrarily far from its second conjugate
(inf,ez M (z,£))**. This is visible already in the orthotropic case, see (2.41). To
verify this, it suffices to consider a function M defined for & = (£;,&,) € R? that at
two points z1, 2> have different asymptotics in the cardinal directions, i.e. for £; — oo
and & — oo.

According to Lemma 2.3.11, we have the following consequence.

Corollary 2.3.15 (Isotropic case) Suppose M : Zx[0,00) — [0, 0) is an N-function
such that M,M* € Ay, both with h =0, and € > 0 is arbitrary, then there exists a
c=c(g,M) such that

M(z,t)% <eM(z,t)+cM(z,s).

2.3.4 Consequences of the Ay-condition

It is known that a doubling, homogeneous and isotropic N-function is trapped be-
tween two power functions with powers called Simonenko’s indexes, [294]. We
prove an inhomogeneous and anisotropic version of this fact provided & — M (z,¢)
is C'(R9) for a.a. z € Z and indicate the powers. We consider the following gener-
alization of Simonenko’s indexes ij; and sjs, defined as follows

(@) = llifnllinfg el and sm(z) = limsupwf—n/l(z’f)

- , (2.52
—00 M(Z’f) | &> M(Z,f) ( )

where V £ denotes the gradient with respect to the second variable. See [294, 153] and
[281, Chapter II] for more details on the indexes in the homogeneous and isotropic
case, and [21] for the same in the homogeneous but anisotropic case. Such indices
in the homogeneous case find application in the regularity theory in the construction
of auxiliary functions, cf. e.g. [22, 72, 85].

Lemma 2.3.16 Suppose M is an N-function, Z is bounded in RN, and iy, sy are
given by (2.52). Then

(1) M € Ay ifand only if spr(-) < 54 for some s, < oo;
(i) M* e Ay ifand only ifip (-) > i for somei_ > 1.

Proof. The proof follows the ideas of [21].
We fix £ € R4\ {0} and for ¢ > 0 we define

Az (1) = M(z,10).

Notice that A, € C'[0, ) and AL(t) =¢-VeM(z,t0). In fact, due to the nonde-
generacy conditions imposed on M, A] is a nonnegative and strictly increasing
function.
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(i)

If sp7(2) < 54 < o0, then for every & > 0 it holds that

§-VeM(z,8)
M(z,€)

<sp(z)+e.

For  and ¢ > 1 we have

AL(1) B t{-VeM(z,t0) - sm(2)+e
A(t)y  tM(ztl) T t

and consequently A_(r) < r*™(+2A_(1). Picking f = 2 we get
M(Z, 2§) S ZAYM (Z)+EM(Z’ é«)

and, since sy is separated from infinity, we get that M satisfies the A-condition.
Suppose now that M € A,, that is, that there exist ¢ > 0 and 0 < 1 € L' (Z) such
that M (z,2¢) < cM(z,&) + h(z). Let us restrict ourselves to the full-measure
subset of Z where £ is finite-valued. Since A’ is anonnegative and nondecreasing
function, for all £ € R4 we have

2 2
M(z,2{)=Az(2):/ A;(t)dtzf AL(t)dt > AL(1) =¢-VeM(z,10).
0 1
Due to the A,-condition, we have

cM(z,0)+h(z) 2 {-VeM(z,10).

After dividing by M (z,{) and taking limsup over || — oo on both sides, we
obtain

h
c+1|i?l1_sg) M((zz,)g) > sp(2).

Note that the additional term disappears as h(z) < co.

Assume ip;(z) = i- > 1. Then for every € € (0,ips(z)) there exists an R, > 0
such that for all £ it holds that

&-VeM(z,€)
M(z,€)

>in(z)—e> 1.

Therefore, for t > 1

AL in(z)-e

d A ) >m@-ey (]
Az(l‘) 2 " an z()— z( )

and we can estimate
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M*(z,2{) = sup {2 -n—M(z,1)}

neRd
< sup {2¢ - F =DM (2, D))
nerd
= sup {200 -n -1 D7 M (z,m)}
neRd
= im(2)-¢ sup {Zl‘lfiM(Z)wé' n=M(zm}.

neRd
1
Take t = 2im@-1-= and observe that
ip (2)-1
M*(Z, 2§) S ZiM(z)—l—g M* (Z, Z)

Since (ips — 1) is separated from zero, we get that M* satisfies the A;-condition.

Now we consider the case M* € A, with a constant 2/k. Instead of 4(z) we may
take

h(z)= sup M*(z,{)+h(z)
£ I4I<R

and treat M* as A, everywhere. Then using the Fenchel-Moreau theorem (The-
orem 2.1.41) we have for all sufficiently large &

2kM(z,€) <2k sup {£-n— ﬁM*(z,Zn)+f_z}

neRrRd
= sup {2k&é-n—M*(z,2n)}+h = M(z, k&) + h(2)}.

neRrRd
Then M (z, zf) < 2kM( ,28)+ 5= h(Z) and due to convexity we arrive at
o)1) £ (s )
< M (2,26 + 52+ LM (2,28) = CM (2,26) + 52,

whereC—T1> 1.

Notice that
1 2 _
/ AL(1)dr=M(z,0) < %M(z,zg)ﬂi(z) = %/ AL(1)dr+1(z),
0 0

2
/ AL dt < AL(2) = VeM(2.20).
1

Therefore,
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/OZA;(l)dtz/OIA;(t)dt+/12A;(t)dt

2
< '/ A;(t)dt+ﬁ(z)+§~V§M(z,2§)
0

c

and finally,

1 2h(z)  20-VeM(z,20)
I< 2(1 ) *MG20 T M2

Taking liminf over |2{| — oo, the first term on the rightmost side vanishes and
we get that indeed 1 <i_ <ip(+). O

Passing to the isotropic case we have the following direct consequences of the
above fact and Lemmas 2.1.37 and 2.3.11.

Lemma 2.3.17 (Isotropic case) If M : Z X [0,00) — [0,00) is an N-function such
that M,M* € A, and the Holder conjugate exponents to ip; and sy are denoted by

*/

= M ro_ SM_ ;
IM = oy and sy, = T respectively, then for a.e. z € Z

M(Z s) M(Z s)
S = is nondecreaszng, S > s I’lOi’lll’lC?’é’aSll’lg,
(2.53)
M M*
Nlad M is nondecreasmg, N d M is nomncreasmg
K M s M

We infer the following anisotropic consequence of the doubling conditions.

Corollary 2.3.18 Any N-function M : ZxR% — [0,00) such that M,M* € A, is
between two isotropic N-functions of power type.

Lemma 2.3.19 (Isotropic case) If M : Z x [0,00) — [0,0) is an N-function such
that M,M* € A,, then up to c1,cy depending only on ipy, sy we have

ciM™ (2, M'(z2,1€])) < M(z,|€]) < oM™ (2, M'(z.1£])).

where ' stands for the right derivative acting on the second variable.

Note that Corollary 2.3.18 states that the growth of a modular function satisfy-
ing the Aj-condition, whose conjugate also satisfies the Aj-condition, is between
inhomogeneous power-type functions. Let us concentrate for a moment on the ho-
mogeneous and isotropic case with M (z,&) =m(|£]). We point out that the condition

1<iy= 1nf (t) <sup tm (1)
>0 m(t) ~ ;59 m(?)

=S8y, <00 (2.54)

is not equivalent to comparison with power-type functions. The assumption (2.54)
is equivalent to Ay ({m,m*}) < oo; it requires regularity of the growth and restricts
its rate at the same time.
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Chapter 3
Musielak—-Orlicz Spaces

Now that the key properties of N-functions have been established, we are equipped
with a basic toolkit for identifying related Musielak—Orlicz and Musielak—Orlicz—
Sobolev spaces. Here we present a study of their properties.

3.1 Definitions and Fundamental Properties

In the sequel Z ¢ RY is a bounded set.

Definition 3.1.1 (Modular). By a modular we mean a functional p, defined on the
set of measurable functions & : Z — R¢ given by the following formula

(&) = /Z M(z.6(2)) dz.

where M is an N-function.

According to this definition we shall always be interested in the theory for mea-
surable functions. Therefore, throughout this section we assume that

En,:Z—> R4 are measurable.

Lemma 3.1.2 Suppose M is an N-function. Let {1, }nen be a decreasing sequence
converging to Ao and & : Z — R? be measurable. Moreover, suppose there exists a

¢ > 0 such that for alln e N
/M(z, f(z)) dz<ec.
z An

./ZM(Z’%E)) dz<c
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Proof. Consider a nonnegative sequence a,(z) =M (z, %j)), where {1, }nen 1S a

decreasing sequence converging to Ag. To show that a, (z) < a,+1(z) for alln e N
and a.a. z € Z observe that using the simple properties shown in Lemma 2.1.23 we
conclude that

an(2) =M(z,%f>) <Ay (Z%f)) < M(Z, dn %) =M(Z,%) =du41(2).

An+l An+l n

Since M is a Carathéodory function, which implies the almost everywhere conver-
gence of a,, we conclude from the Monotone Convergence theorem that

LM(Z, §/§§)) dz = lim M(z,%f)) dz 3.1

n—oo |~

and thus the assertion holds. O

Definition 3.1.3 (Classes of functions). Let M : Z xR? — [0, o0) be an N-function
and Z ¢ RN be bounded. We shall deal with the following classes of functions.

(i) Lar(Z;R4) — the generalized Musielak—Orlicz class is the set of all measurable
functions & : Z — R¥ such that pj; (&) < oo,
(i) Lp(Z;RY) — the generalized Musielak—Orlicz space is the smallest linear
space containing Lz (Z;RY),
(i) Ep(Z ‘R4 ) — the largest linear space contained in L (Z ;Rd).

Remark 3.1.4. The convexity of M implies that £, (Z;R¢) is a convex set.

Remark 3.1.5. If d = 1, then we omit the target space and write Ly (Z) := Ly (Z;R).
When defining a norm we often just write Lj, in the index, as in (3.4), however when
necessary, for the sake of clarity, we may include information on the domain, possibly
omitting the target space.

Remark 3.1.6. Directly from the definition it follows that
Erv(Z:RY) € Ly (Z:RY) € Ly (Z;RY).

Remark 3.1.7. Changing M on a set of measure zero does not change the considered
space. Indeed, this follows from the integral form of a modular (Definition 3.1.1)
and its fundamental meaning in defining Musielak—Orlicz spaces.

The spaces Lys (Q;R?) and Ej; (Q;R?) given by Definition 3.1.3 can be charac-
terized in an equivalent way, which is presented in the following lemma.

Lemma 3.1.8 Let M : ZxR¢ — [0, 00) be an N-function.

(i) The space Ly (Z;R9) is equal to the set of all measurable functions & : Z — R4
such that

/M(Z,@) dz—0 as 1 —> oo. (3.2)
7 A
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(ii) The space Epr(Z;R%) is equal to the set of all measurable functions & : Z — R4
such that

/M (z, é%) dz < oo forall 1>0. (3.3)

z

Proof. (i) Let & € Ly (Z,R?). Observe that the linear space is the smallest linear
space containing some set, so that every element of the space can be represented

as a linear combination of elements of this set. In this case it means that for all £ €
L (Z,R?) there exist n =n(&) e N, Ay,...,A, €Rand {4,...{ € Ly (Z;RY)

such that .
&= Z Aid;.
i=1

From the convexity of £ (Z;R?) it follows that

n

& _ A d
T Z DT (i€ Ly (Z;RY),

i=1

which means that
“/mﬂl(z,-ﬁéiif) dZ < 00,
=17

V4
However
: E@Y 401 £(2) L1 ( f(z))_
o, ZM(Z’ &) dz=lim ZM(Z’zz:;Ai)dZSEIE,/ZM “ypa) =0
t>1 t>1

and thus ¢ satisfies (3.2).
To show the opposite direction, let & be a measurable function satisfying (3.2).

Then there exists a Ao > 0 such that fZM (z, §(Z)) dz < oo. Note that then

Ao
%j) € Ly (Z;RY) and, hence, e Ly (Z;R9).

(i) If € € Epr(Z,R?), then for all 1 > 0 we have % € Ly (Z;RY), which means that
& satisfies (3.3).
To prove the opposite direction, consider the set

X;:{g;/ZM(z,¥) dz<ooforall/l>0}.

Obviously Eyy c X € Ly (Z ;Rd). Once we show that X is a linear space, then
— since Ej is the largest linear space contained in £ (Z;R?) — these two must
coincide. Indeed, if £1,&, € X and v € R, then

/M(Z, §1+}§2) dz=/M(z, 2(51;/17_52)) dz
z Z

1 1
S—/M(z,z/li) dz+—/M(z,zyT§2) dz<oo. O
2Jz 2J)z
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Lemma 3.1.9 (Luxemburg norm) Suppose M is an N-function, then the mapping
- lzas = Ly (ZsR?) — [0, 00) given by

€1 Las :=inf:/l >0: /M(z#) dz < 1} (3.4)
z

defines a norm. We call it the Luxemburg norm, see [241].

Remark 3.1.10. Observe that the Luxemburg norm is the so-called Minkowski func-
tional generated by a convex, absorbing and balanced set

A:{f:Z—)Rd measurable :/M(z,f(z))dzﬁ 1}.
z

Proof (of Lemma 3.1.9). The first observation is that for all & € Lys(Z;R?) we have
[[€lL,, < 0, which follows directly from (3.2).

Next we divide the proof into three steps showing that the usual axioms of a norm
are satisfied.

1° |éllLy, =0 & &é=0ae.in Z.
Since M is an N-function, M(z,£) =0 & ¢ =0.If £ =0, then for all 2 > 0 we

have fZ M (z, %) dz =0. An infimum over such A’s is obviously equal to zero, and
thus ||£]|,, =0.
If [|€]l,, =0, then /ZM (z, %) dz < 1forall 2 > 0. But since A € (0, 1], we have

by (2.29)
/M(z,/l dz> /M(z &) dz
z

and thus the right-hand side needs to vanish (otherwise it becomes infinite when A
tends to zero), which holds true for M (z,£(z)) =0 for a.a. z € Z, and this implies
that £ = 0.

2° Ny, =lalliglly,, @ €R.
Using that M (z,&) = M (z,—¢) for a.a z € Z and all &£ € R? we notice that

||a§||LM:inf{4>o: / (- 2£2) dzsl}
Z
=inf |a|Z>O:/M 7, 5% dz<1}
{ [ m(e557)

lalint{1>0: [ 112 £2) gz < 1| lal el

3°. Triangle inequality [|&1 +&2llL,, < €112, + 16211 Ly, -
By the definition of the Luxemburg norm and by Lemma 3.1.2

£(2)
/ZM(z, ||z,-'||LM) dz<1 (3.5)
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holds. Consider &1,&5 such that ||&1]|z,,, |€2]l2,, < o. Then according to Jensen’s
inequality we obtain

£1(2)+&(2)
/ZM (Z’ Ta i, + &, ) dz

_ &1 llLy, & (z) 12|y, &(z) )
—/ZM(Z’ TETea 160y Tl ¥ T& Mg 1Ty, Moy ) 92

I&le,, ( m)) I&allny, ( -fz(z))
S—nflmmn,&nLM/ZM S ey, ) Y2 e 8T, [, M\& Tal,, ) 92

Therefore, using (3.5), we conclude that

_&@rH@)
/ZM (Z’ & iy, 12201y, ) dz <1

and directly from the definition of the Luxemburg norm

11 +& 1Ly, S NE1llLy, +IE20ILy, - u|

Remark 3.1.11. If for some positive constant ¢ > 0 and for a measurable function
&:Z — RY it holds that [|€]|z,, < c, then & € Ly (Z;R9). Indeed, we then have

|I§!_LM < 1 and by (3.5) and (2.28)

/M(z@) dz=/M(z,%) dz < ”gHLM/M(z,%) dz<1.
z z s lkm c z s lkm

Thus since & € Ly (Z;R?), it follows from (3.2) that € € Ly (Z;R?).

Lemma 3.1.12 (Orlicz norm) Suppose M is an N-function, then the mapping
Iz ¢ Laz(Z;RY) — [0,00) given by

lelle,, = sup{ / nEdz: / M*(z.n) dz < 1} (3.6)
Z Z

defines a norm. We call it the Orlicz norm.

Proof. As in the case of the Luxemburg norm we check the three norm axioms. We
will not concentrate now on showing that the Orlicz norm is bounded for all elements
of Ly (Z ;Rd), since it will immediately become clear in the next lemma, see (3.8)
and the proof that follows afterwards.
1°. Obviously, if ¢ =0 a.e in Z, then er] -¢ dz =0 and thus |||¢]l|z,, =0.

Assume now that [|£][|z,, = 0. Note that

/ZM*(Z%) dzs‘/zm”{(l) dz < |Z|mj(1).

If |Z|m7(1) < 1, then using the definition of the Orlicz norm, we can estimate

el > [ &-edz= [ 1eles
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and thus & =0 a.e. If | Z|m](1) > 1 we estimate as follows

g PR - S o, £
/ZM (Z’ \Zlmt(l)lfl) dz < [ZTm (1) /ZM (z, |§|) dz<1

and then
Vel > [ b€ o= 12imi 1) [ 161 gz

which again allows us to conclude that £ =0 a.e.
2°. Observe first that since M*(z,n7) = M*(z,-n), we have

sup{/zf-ndz:/Z.M(ZJ])dzs1}=sup{L|§.n|dz:/Z.M(z,n)dZS1}‘

This observation tells us that, for a scalar @ € R,
lla€llL,, = sup {|a| [metaz: [ as 1}
Z z

=|alsup{/n'§dz: /M*(z,n) sz1}=Ia|III§IIILM-
Z Z

3°. It may happen that there is no element realizing the supremum, but at worst for
every € > 0 there exists an 1. such that fz M*(z,n¢)dz <1 and

g+ 2l < /Z (€+0)-ne dzte. 3.7)

By definition of the norm we estimate further

/Z@m e dz= /Z§~ng dZ+/Z§'ns Az < 11Ell Ly, + 1< 1L

and conclude that
€+ ZMeay < MNENLy + NN Ly, +&-

As the above holds for any € > 0, we have

W&+ Mear < MEMLr, + MM L - o

Lemma 3.1.13 (Equivalence of Luxemburg and Orlicz norms) Suppose Z c RN
is an open bounded set and M : Z xR? — [0,0) is an N-function. Then for all
& € Ly (Z;R?) it holds that

€0 zar < MM Lar < 208 Las -

Proof. First we observe that ||£z,, < 2l|€]|L,,- Indeed, using the Fenchel-Young
inequality we have
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&N, = SUP{||§||LM‘/ dz: /M (z,p) dz < 1}
||§||LM

<“%MM4/M&m“ﬂ/ (MM)M]/M&WM<%

< 2[l€l Ly -

Next we will show that

€1 zar < ME MLy - (3.8)

Assume first that [||£]l|z,, = 1. To obtain estimate (3.8) it is crucial to prove that

/M(z,f(z)) dz<1 (3.9)
Z

and then ||£||z,, < 1. Then (3.8) will follow directly from the definition of the

Luxemburg norm. We justify this as follows: ||£||.,, = inf{1 >0, fZ Mz, %) dz<1}

implies that ||£]|z,, < A for all such A and also for 2 = 1, if condition (3.9) holds.
We concentrate on showing (3.9). By Lemma 2.1.27 the function

Zl—>n(z)=6§M0(z,§(z)) (3.10)

is measurable. Recall that 6§M0(z,§(z)) is the element of minimal norm of

0:M(z,£(2)).

To prove (3.9) assume first that the condition
/M*(z,n(z)) dz<1 (3.11)
z

is satisfied for 1 defined by (3.10). Recall that for 7(z) =8 s M°(z,£(z))

£(2) -n(z) = M(z2,é(2)) + M (z,n(2)). (3.12)

From the condition /Z M*(z,n(z)) dz < 1 and the definition of the Orlicz norm we
conclude directly that

Lawmmmsmmw (3.13)

Collecting (3.11)—(3.13) we estimate
/M(z,g(z)) dzs/M(z,g(z)) dz+/M*(z,n(z))dz
z z z

=éaamm&smmMﬂ,

which completes the proof of (3.9). In the remaining part we concentrate on showing
that (3.11) holds for n7 given by (3.10).
Let us introduce a truncation of ¢ in the usual way

£(z) if [£(2)| < n,
fn(){ it 1E(2)] > 1. (3.14)
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Obviously
WEnlza, < MENMLy, -

Consider now 6§MO(Z,§) and introduce the notation 7,,(z) := agMO(z,fn), ie.

d:MO(z,6,) if |€(2)| < n,

nn(2) = { if 1E(2)] > n, (3.15)

There are a couple of simple observations about the sequence {1, },en, Which we
list below. Firstly, cf. Remark 2.1.38,

/M*(z,nn(z)) dz < 2/ M(z,2&,)dz <2|Z|ma(2n) <0 ¥YneN. (3.16)
z z

Secondly, as {M*(z,n,(2)) }nen is an increasing sequence of nonnegative functions,
by the Monotone Convergence Theorem

n—oo

lim [ M (z.mn(2)) dz = / M (z1(2)) dz.
Z Z
Thus once we show that
/M*(z,nn(z)) dz<1 VneN, (3.17)
Z

then immediately

/M*(z,n(z)) dz <1, (3.18)
Z

which is the remaining property. With this aim, assume the opposite to (3.17), namely

1</M*(Z,77n(z)) dz. (3.19)
z

By (2.28) and (3.16)

17n(2) —
‘/ZM (Z’ fZM*(; nn(z))dz) dz< f M*(z, nn(z)) dz/M (& fn(2) dz=1.

Thus
/,

/Ifn(Z)-nn(Z)l dz < /M*(z,nn(z)) dz < . (3.20)
Z zZ

17 (2)

6@ ey iz | S Ménllla <1
Z »fin

and finally by (3.16)

Recall that here the Fenchel-Young inequality is satisfied as an equality

En(2) Tn(2) = M(2,0(2)) + M*(2,70(2)) = 0
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for a.a. z € Z and by (3.20) we have

/ZM(z,fn(Z)) dZ+/ZM*(ZJ]n(Z))dZ:/Z|§n(Z)‘7]n(Z)|dz
S/ZM (2,11 (z)) dz < c0.

Since fZ M (z,£,(2)) dz = 0 the above estimate implies that fZ M(z,&,(2)) dz =0,
and consequently &,,(z) =0 for a.a. z € Z. However then also 77,,(z) =0 a.e. in Z and
consequently fZ M*(z,1n,(z)) dz = 0, which contradicts (3.19) and so we conclude
that

/ M (zn(2)) dz < 1
Z

and (3.11) holds. To complete the proof we only need to include the case when the
norm [||€]||.,, > O is not necessarily equal to 1. Then, however, |||Lm =1 and
M MEMep 1y,
using the first part of the proof
£ & —
” [ HLM = m M&Ma; mLM =1,

which implies that
€N s < NEN Ly - O

Lemma 3.1.14 (Lys vs. Las) Let M be an N-function.
() If¢é € Lyy(Z;RY) and ||€||1,, < 1, then

[ M@ dz < el
(i) If€ € Layg(Z;R9) and ||&]|1,, > 1, then
[ e dz> lell,.
Proof. (i) Recall that due to (3.5)
LM(Z, %) dz<1
and that if ||£||z,, < 1, then by virtue of (2.29)

/ZM(Z’ﬁ) dz 2 m/ZM(z,f(z)) dz.

(i) If ||€]lz,, > 1, then for € > O sufficiently small also ||&||z,, —& > 1 and by the
definition of the Luxemburg norm

£(2)
/ZM (Z’ ||§—\|LM—5) dz> 1.



56 3 Musielak—Orlicz Spaces

By (2.28)

1 £(z)
HfHLM*S/ZM(Z’é‘:(Z)) dZZ‘/ZM(Z, ”f”LM*S) dZ,

and since € was arbitrary, the claim follows. O

Lemma 3.1.15 (Generalized Holder inequality) Ler M be an N-function. Suppose
£e Ly (Z;RY) and i € Lpg+(Z;RY). Then

e

Proof. We apply the Young inequality to € := &/||¢]|1,, and 77 :=1/||n|,,. , Obtaining

e

< 20El Ly Il Ly - (3.21)

< /Z M(z2.() dz+ /Z M*(2.7(2)) dz
- / M(z.&/lllL,) dz+ / M* G/l dz.
Z Z

which by the definition of the norm (3.4) is less than or equal to 2. Multiplying both
sides by [|€]z,, - Inllz,,- We obtain (3.21). O

As a direct consequence of Lemmas 3.1.13 and 3.1.15 we infer another version
of the generalized Holder inequality.

Corollary 3.1.16 Suppose & € Ly (Z;R?) and 5 € Lyg(Z;RY). Then for an abso-
lute constant C > 0 one has

fen
fe

Theorem 3.1.17 (Lj, is a Banach space) Suppose Z is bounded in RN and M is
an N-function, then Ly (Z;R?) equipped with the Orlicz norm || -||1,, is @ Banach
space, i.e. each Cauchy sequence contained in Ly (Z;R?) converges in the norm
- llz,, and the limit is an element of Ly;(Z;R9) .

< ClEM L N7l Ly

as well as

< CliéN gl zy,

Proof. Since [|€]|z,, < o for all & € Ly(Z;RY) and ||| - |z,, is a norm, thus
(L, I - My, ) is @ normed space, cf. Lemma 3.1.12

We shall concentrate on proving the completeness of Lys (Z;R%). Let {&x } ken be
a Cauchy sequence in Lys(Z;R?) equipped with the Orlicz norm, i.e. such that for
every € > 0 there exists an N such that for all /,m > N we have
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Sup{/n-(fl—fm) dz: /M*(z,n) dz < 1}<8. (3.22)
z z
It suffices to show that it is convergent in the norm topology to some element of

L (Z;RY).
Consider 7 € L®(Z;R4) with ||n||.~ < 1 and observe that

/ M*(zm) dz < / ()] dz <12]-m (Inlze).
Z Z

Then for |Z|-m7 (1) < 1 it holds that

/ﬁu%an@»dzsL
Z

If |Z|-mj(1) > 1, then

* (z) 1 *
LM (z, |Zf,é(l)) dz < |Z"m’f(‘)/ZM (z,m(2))dz < 1.

Thus choosing

1 &1(2)=ém(2) .
Ly~ ) AT o—mta] I Em# &0
" (z) .
0 otherwise

with 4 =max{1,[Z]-m] (1)} and taking into account above estimates we conclude
that

/M*(z,n”m(z)) dz< 1.
zZ
Since |||l .~ < 1, condition (3.22) implies that for all /,m > N, we have
/ |€1(2) —€m(2)| dz < eA.
V4

Hence {&x}xen is a Cauchy sequence in L'(Z;R9). We denote its L'-limit by &.
Then by Fatou’s Lemma

/ (6(2) = Em(2)) ()] dz = / tim |(61(2) ~ £ (2)) ()] 2
Z Z —00
< timint [ 1610~ (2) (2
< il limint /Z 61(2)~En(0] de < Ted =e.

Therefore for every € > 0 and k € N sufficiently large

g =512y, <&

thus
k
MLy < METN Ly, +& < 0.
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By equivalence of the Luxemburg and Orlicz norms, cf. Lemma 3.1.13,

€N Ly < 00

and using Remark 3.1.11 we conclude that & € Ly;(Z;R4). This ends the proof of
completeness. ]

Corollary 3.1.18 Since the Orlicz norm and Luxemburg norm are equivalent, see
Lemma 3.1.13, Las(Z;R?) with the Luxemburg norm is also a Banach space.

Lemma 3.1.19 Suppose M is an N-function and {&, c Ly(Z;RY), ¢ €

Ly (Z;R?). Then

(o)
n=1

I6n —&llLyy —0 & lim [ M (Z, én(2) £

n—oo

)dz=0 forall 1> 0.

Proof. Without loss of generality we may assume that ¢ = 0. Otherwise we consider
{‘7 n=&n—§.

Let {£,}, € Ly (Z;R?) be such that [|£,]|L,, — O as n — co. Then for any
£

=T — 0 and thus there exists an 7, such that for all n > n,
Ly

A > 0 obviously also

£n
2

< 1. Lemma 3.1.14 (i) then ensures that

Ly
/ZM (z, fn/gz)) dz <

for any A > 0 and since the right-hand side converges to 0 as n — oo, the claim
follows.
To prove the reverse implication, assume that

&
Pl

Ly

lim/M(z,M) dz=0 forallA>0.
z

n—oo A

Then there exists an n, such that for all n > n,

/ZM(Z, §n§Z)) dz <1,

which implies, by the definition of the Luxemburg norm, that [|£,|z,, < 4, i.e.

VA>0 3ng Vazng |él, <A,

which completes the proof. |

Lemma 3.1.20 Suppose M is an N-function. Then the space Ey (Z;R?) is a closed
subspace of Ly (Z;R?), and consequently Ep;(Z;R?) is complete.

Proof. Consider a sequence {&,}) | C Ep(Z;R?) such that ||&, —&]|z,, — O as
n — co. Observe that for all 2 > 0
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‘f _‘f_fn fn
M=ot

The convexity of M yields that

/ZM(Z,%) sz%/ZM(Z,%) dz+§%/ZM(z,%) dz.

Lemma 3.1.19 ensures that the first term vanishes since ||£,, —&||1,, — 0, whereas
the second term is bounded. Thus for all 1 > 0,

‘/M(Z,%) dz < o0,
z

and consequently, by Lemma 3.1.8 (ii), we conclude that ¢ € Epy(Z ;Rd). O

Lemma 3.1.21 Suppose M is an N-function. Then the space Ey;(Z;R?) is the
closure of L°(Z;R?) in the Luxemburg norm.

Proof. Since Epr(Z;R%) is a closed space, we only need to show the density of the
space L®(Z;R?) in Ep(Z;R?). Let &, € L*(Z;R%) for all n € N be defined as

£(z) if|E(2) <n,
&n(2) = . (3.23)
0 if |£(z)| > n.
Then for all 2 > 0
0<M (Z, .En(z)/{.f(z)) <M(z %)
and
/M(z,%) dz < o0.
z
Moreover, (&, —&) — 0 almost everywhere as n — co. Thus
M(z, fn(z)/l—-f(z)) <m ( \fn(z)/l—f(z)l) 50 ae.inZ.
By the Lebesgue Dominated Convergence theorem
lim M(Z’M) dz=0
n—oo Z
holds for all 2 > 0 and consequently, by Lemma 3.1.19,
I€n =€l Ly, — 0. m

Remark 3.1.22. If Z is unbounded then Es (Z;R?) is defined as the closure in the
Lys-norm of the set of essentially bounded and compactly supported functions [5].
Note that in the sequel, we will study only the case of bounded Z.
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3.2 Embeddings Ly, C Ly, and Ly, C Eyy,

When a modular function dominates another one in a certain sense, we have some
easy results on embeddings. Recall Z is assumed to be bounded here. We say that
L, (Z;R9) is continuously embedded in Ly, (Z;RY) and write

L, (Z;RY) € Ly, (Z;RY)

when for every & € Ly, (Z;R9) it holds that € € Ly, (Z;R?) and there exists a
constant C independent of ¢ such that

1€l zar, < CllEN L, (3.24)

Lemma 3.2.1 (Embedding Ly, C Lyg,) If Z is a bounded open domain and
My, M, : ZxR? — [0,c0) are N-functions, then the following conditions are equiv-
alent.

(1) There exist a,b > 0 for which M»(z,a&¢) < bM|(z,&) + h(z) with some nonneg-
ative h € L' (Z), for a.a. z € Z and all ¢ € R4,
(ii) The embedding Ly, (Z;R?) C Lpy,(Z;R?) is continuous.

Proof. We will later only be interested in the implication from (i) to (ii), which we
therefore prove with great care, whereas for the converse we only provide a sketch
of the proof. For more details, see [262].
(i) = (ii) The proof of this part is divided into two steps.
Step 1. For an N-function M we introduce the notation M“(z,¢) := M(z,a&). We
will show that

Ly (ZRY) = Lyga (Z:RY)  foralla > 0, (3.25)

and
laéllLy, = I€llLye  foralla > 0. (3.26)

If ¢ € Ly (Z;RY), then equivalently £ can be written as a linear combination of
elements of Lys(Z;RY), ie. & = er.l:"cl ;€ for 1; € R and & € L(Z;RY), which
is equivalent to & = Z?fl /liag with 4; € R and % € Lya(Z;R?). The latter is
equivalent to the fact that & € Ly« (Z;R?) and thus (3.25) is proved. To prove (3.26)
observe that

||§||LMa=inf:/l>0:‘/ZM(z,§) dzsl}zinf{ai>0:/zM(Z,%) dZSl}
I £ _
—1nf:/l>0./M(Z,/I) dZSI}—a“f”LM
z

Step 2. By the first step of the proof, it is sufficient to show that if there exists a
b > 0 for which M, (z,&) < bM;(z,&) + h(z) with some nonnegative h € L'(Z), for
a.a.z € Z and all € € R?, then (ii) holds. To show that inequality (3.24) holds assume
first that & is such that ||§||LM1 = 1. Notice that
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/Z My (2.6(2)) dz < b /Z My (2,(2) dz+ /Z h(z) dz
< BllEllLy, +ll ) < clENLy,

with a constant ¢y = 1+b +||h||11(z). Since c1||§||LM1 > 1, with the help of
Lemma 2.1.23 (i) and the above estimate,

£(z)
) d = d
/ZMZ(Z clufuLMl) = clufnLMl/ M2 (z.£(z)) dz

iy, =1,
E I

Directly from the definition of the Luxemburg norm ||&|| Ly, it follows that
1€y, < crllél Ly, -

In the general case, when ||£]| Ly, # 1, by considering E:= e 5” , we obtain

e e
e lean, < 1|7 HLMl

and thus (3.24) also follows.

(il)) = (i) We observe that it suffices to prove that there exists an ng such that for
every n > nog we have

hn(2) 1= sup (Mg(Z,Z‘"f)—Z"Ml (z,g)) cLY(2). (3.27)
£eRd

Indeed, since {h,},.,, is a nonincreasing sequence and given arbitrary ng, we can

choose @ =270, b =2", h(z) = hy,(z) € L' (Z). Notice that

h(z) = sup (Mz(z,af)—le(Z,f))
£eR4

and (i) follows. We prove (3.27) by contradiction. In fact, we assume that if (3.27)
fails, then there exists a function { € Lyy, such that { ¢ Lyy,, which contradicts the
assumption that Ly, (Z) C Ly, (Z).

Fix a family of simple vector-valued functions

£9,i(2) =017, (2),

where @ € R and {Z;} ;1 is a partition of Z, i.e. Z = | J;¢; Z;, into pairwise disjoint
sets. Then we show that

(@)= sup (Ma(2.2769.4(2) 2" Mi(2.60.4(2))) for z€Z.
9eQd

Let us fix z and identify 7 such that z € Z;. We consider {n; }xen € Q¢ for which
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M (2,27" i) = 2" My (2,mx) = ha(2) =25
Then there exists {9 }xen € Q7 such that
{MZ(Z,Z‘”ﬁk) > Ma(z,27"my) - 27K,
My (z,9%) < My(z,mi) #2775,
Therefore, for any i and k we get

Ms(2,27"¢9.:(2)) =2"M(2,€9.:(2)) = Ma (2,2 i (2)) =27F
—2"M, (z,mi(2)) - 27%
> h,(z)-3-27K,

which due to the arbitrariness of k implies that

I (2) = sup (Ma (.27 61(2) = 2" M1 (21(2))) for 2€ 2,

where {&;};en is an arbitrarily relabelled sequence {£ ; }ieny With &1 = (0,...,0) and
in turn A, is measurable. Let us define another measurable function

bmn(z) = max. (Mz(z,Z‘"é‘z(Z)) -2"M, (z,fz(Z)))

and notice that since &; = (0,...,0), by, is nonnegative almost everywhere in Z.
Moreover, it is nondecreasing in m. Since we are in the case when (3.27) fails, the
function 4, is not integrable. Thus for every n there exists an m,, such that we have
fZ by,n dz > 2", Setting b, = b, n We get

/ b,dz >2" for every n e N.
Z

Let us define

Bpi={z€Z: My(2,27"¢)) - 2"M(2,£1(2)) = bu(2) },
By=2Z\|_JBu,
=1
&= gl]an,l\Ulflll 8., ()

We have _ _
bn(z) = M3(2,27"€,(2)) =2"M1(2,£,(2)) 20

and
‘/ZMZ(Z’z_"gn(Z))dZ=/ZZ"M1(Z,gn(Z)) dZ+/an(Z) dzZLbn(z) dz > 2",

Then there exists a partition {A} jej of Z such that for {n;} ;e; we have
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/ Mz(z,2_"g,1,.(z)) dz=1.
Aj ’

We define .
(@)=Y &, (D14, (2)
j=1

and notice that

[ e a- lez ( / M2 () - /

szlz-"f /A Ma(52"E, () dz < 1.
= J

b(z) dz)

J

On the other hand, if 4 > [[{||,,, then there exists an n such that

[l o)

=), | Ma(2.27"6,(2) dz=co.
=174y

This gives the expected contradiction, because we assumed that Ly, (Z;R9)
L, (Z;RY), but £ € Ly, (Z;RY) and £ ¢ Ly, (Z;RY). m|

If we need to use tools available in the homogeneous and isotropic setting we
have the following corollary of the above proof.

Corollary 3.2.2 If Z is a bounded open domain, M is an N-function and my < M <
my are as in Definition 2.2.2, then

Ly (Z;RY) € Lpg(Z;RY) € Ly, (Z;RY).

To get the embedding of the space Ly, into another Musielak—Orlicz space where
the bounded functions are dense in norm i.e. into Ejy,, the function M, is assumed
to grow significantly faster than M.

Definition 3.2.3. Let M, M, : ZxR? — [0,00) be N-functions. We say that M,
grows significantly faster than M if for every ¢ > 0 it holds that

M (z,ct
lim | inf essinfzeZM =
1— \n:[y=1 My (z,tn)

Proposition 3.2.4 (Embedding Ly, C En,) If Z is a bounded open domain and
My, M, : ZxR? — R< are N-functions such that M, grows significantly faster than
My, then

L, (Z:RY) C Epy, (Z:RY). (3.28)

Proof. Since M, grows significantly faster than M, for every ¢ > 0 there exists a t,.
such that for every ¢ > t., every vector £ € dB(0,1) c R?, and almost every z € Z
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we have
My (z,t{) < Ma(z,ctd).

We fix an arbitrary & € Ly, (Z;R9) and an arbitrary 8 > 0 such that

/Mz(z,ﬁf) dz < oo.
Z

Our aim is to show that

/ M (z,A¢) dz < > for every 4> 0,
z

which in view of Lemma 3.1.8, (ii) is enough to have & € Epy, (Z;R9).
Let us fix an arbitrary A > 0 and set ¢ = /1. For this ¢, we have chosen ... Define

A={z: (@) > 1.}
On this set we have

£(2)
[€(2)]

£(2)
[£(2)]

M (z,A£(2)) = My (z,/lli(Z)l ) <M, (z,cﬂlf(Z)I ) = M>(z,cAé(z))

and thus
/Ml(z,/lf(z)) dzS/Mz(z,c/lf(z))dz=/M2(Z,,3§(Z)) dz.
A A A

Since A is arbitrary we have £1 4 € Epy, (Z;R?). On the other hand, since L (Z;R9) ¢
Ewm, (Z;R?) the definition of A ensures thatalso 12\ 4 € Ep, (Z;R9). Recalling that
Em (2 :R9) is a linear space, we conclude the proof. O

3.3 Function Spaces in View of the A;-Condition

Let us emphasize that if M € A, (Definition 2.2.5) then we are equipped with much
stronger tools. In particular, certain functional inequalities have a simpler form or at
least a simpler proof, see Chapter 9. However, for various properties of Musielak—
Orlicz spaces it is enough to consider growth conditions. Recall that Z is always
assumed to be bounded. Indeed, if M € A,, then

En(Z:RY) = Ly (Z:RY) = Ly (Z;:RY) (329)
and so Ly (Z;R?) is separable.

Lemma 3.3.1 Let Z be bounded and M be an N-function. Then Ly (Z;R%) is
a linear space if and only if M € A;.

Proof. Let M satisfy the A-condition. We will check below that L£,(Z;R9) is
invariant under pointwise addition and scalar multiplication. Since M (z,£) is a
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convex function of & and &, 7 € Las(Z;R9),

[me@ene o= [u(:257) o

1 1
S—/M(Z,Zf)dz+—/M(z,2n)dz
2/, 2/,

<2 sup /M(z,{)dz+2/h(z)dz
Z Z

{: 1L 1=co

k
+_(/ M(z,€) dZ+/ M(z,n)dz)<oo.
2 \Vizezi1£() 1500 (zeZ:In(2) > c0)

Let n € N be such that || < 2", then

/ M(2,06(2)) dz < / Mz, (sgnd)2"¢) dz
Z Z

< sup /M(z,{) dz+k"/ M(z,f)dz+n/h(z)dz<m.
$id|=c0dZ {z€Z:|&(2)|>co} z

Next let us assume that M does not satisfy the A,-condition. With no loss of generality
we can assume co > 1. Then there exists a sequence {¢;} jew of measurable functions
&;:Z — R such that

M(2,26(2)) 22/ M(z,£j(z)) foraa. z€Z and |€j| 2 co>0 and jeN.

Then let us construct a partition {Z;} jen of the set Z such that

/M(z,fj(z))dz=2_j sup /M(z,é’)dz.
Zj z

Z:lg1=co
Defining
£(x) =) £1(2)1z,
=1

we deduce that

,/ZM(Z’zf(Z)) dzzsz(Zﬁsz:;fj(Z)]lZ,) dz=;/sz(z,2§j(z)) dz
Zng/ZfM(Z,fj(Z)) dz=i sup LM(Z,{) dz.

=141 =0
We note that the right-hand side is infinite, so 2& ¢ £, (Z;R?). O
Theorem 3.3.2 Let Z be bounded and M be an N-function. Then

MeA, _ Enm(Z;RY) = Ly (Z;RY).
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Proof. ‘<" 1f ¢ € Ly (Z;R9), then also 2¢ € Ly (Z;R?). Therefore, denoting
M (z,2¢) by M(z,£), we get

Ly (Z;RY) c Lz (Z;RY).

Thus, due to the definition of the Luxemburg norm and Proposition 3.2.1, we notice
that M dominates M in the sense that

M(Z,f) <cM(z,€)+h(z) for all &

with some ¢, cp > 0 and nonnegative locally integrable A.
Summing up, we get M € A,. Indeed,

M(2,28) = M(z2,&) < cM(z2,€) +h(z2).

‘=" We fix & € Ly;(Z;R9). Then there exists a A > 0 such that

/M(z,f/ﬁ) dz < oo.
Q

Using Lemma 3.1.8 we shall show that under the A,-condition the above quantity is
finite for every u € (0, o) in the place of A.

From convexity and local integrability we get that close to the origin M(z,-) can
be estimated from above by a linear function. Then

/M(Zaf)dZS61+/ M(z,€) dz.
z {l&1>co}

For every u > 0 there exists an m € N such that ¢ > 1/2™. The convexity of M
and the A,-condition ensure that

/M(z,s‘f/ﬂ) dz
z
A 2m
1+T M( é:) dZ
2" J (&> co) 1
<Cl+_[ / (Z, ) dZ+(CA2 +1)||h|IL1(Z) < 00,
{I&1>co}

Therefore, Lemma 3.1.8 gives the claim. O

Remark 3.3.3. If both M, M* € A,, then L,, is reflexive. Indeed, reflexivity results
from

M* e Meh,

Ly =Ly~ = (Ep)” (Ly+)" =(Epm)™ === (Lm)"".

The first equality holds due to Theorem 2.1.41, the second and the fourth due to
Theorem 3.5.3, while the third and the fifth follow from Theorem 3.3.2.
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3.4 Topologies

There are several types of different topologies that can be used with various aims.
Since Ljs need not be dual to L+, nor vice versa, we shall distinguish the topology
0 (Lpy, Lpg+) from the weak-* topology in Ly, namely o-(Lyys, Epg+). The fact that
it satisfies the classical definition of weak-* topology follows from Theorem 3.5.3.

We say that {&,, }hen C Lag is 0 (Lpy, Lpg+)-convergent to & € Ly, if for any n € Ly«

/fn'ﬂdz—>/§-ndz. (3.30)

We say that {&, }nen C Ly is weakly-+ convergent (i.e. o (Lyy, Epg+)-convergent)
to & € Ly if for any i € Epy-

/fn-ndz—>/§-ndz. (3.31)
Z n—o00 Z

We say that {&,, },,en is norm-convergent to & (strongly) in Ly, if
1€n =&y ——0. (3.32)

Obviously strong convergence (3.32) implies both convergences (3.30) and (3.31).

Remark 3.4.1. Before discussing the topologies in Musielak—Orlicz spaces we stress
that it is important for the reader to understand that o-(Lys, Lys+) is not a weak
topology, which results from the fact that Ly« € (Lps)* as long as the Ap-condition
is not satisfied. Indeed, notice that then Ej; C Lys and Ejps is a proper closed
subspace, so a bounded linear functional £ € (Ey;)* = Lps- can be extended by the
Hahn—Banach theorem (Theorem 8.29) to a functional £ € (Ly)* and this extension
is not unique.

Besides the strong (norm) and weak-type topologies in the theory of Orlicz
and Musielak—Orlicz spaces we can consider more relevant topology, namely — the
modular topology.

3.4.1 The modular topology and uniform integrability

For the definitions of convergence in measure and uniform integrability, see Defini-
tions 8.16 and 8.18, respectively, in Chapter 8.
Let us present an anisotropic version of the classical de la Vallée Poussin theorem.
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Lemma 3.4.2 Suppose M is an N-function and let {£,}, | be a sequence of mea-
surable functions &, : Z — R satisfying

sup /Z M (2.60(2)) dz < o0,

neN
Then the sequence {£,,}_, is uniformly integrable in L' (Z;R%).

Proof. By the definition of an N-function M there exists a function m; : [0,00) —
[0, o0) satisfying

sup/ my(|€,(2)]) dz < sgg/ZM(z,fn(z)) dz <c. (3.33)

neNJZ

Recall that by Lemma 2.1.23 part (iii) the continuous function m; is increasing.
Moreover, due to the definition m(s)/s — oo as s — oo, and thus (3.33) implies
that condition (ii) of Lemma 8.19 is satisfied, which is equivalent to the uniform
integrability of {&,})" . O

Definition 3.4.3 (Modular convergence). Suppose M is an N-function. We say that

a sequence {&,} | converges modularly to & in Ly (Z :RY), written

M
gn é é‘:’
n—oo

if there exists a A > 0 such that

/‘M(Z,gn_g) dz — 0, when n— oo.
7 A

Norm convergence always implies modular convergence. In view of Lemma 3.1.19
and Theorem 3.3.2, modular convergence implies norm convergence if and only if
MeA,.

Theorem 3.4.4 (Generalized Vitali’s convergence theorem) Suppose M is an N-
function and let {¢,} | be a sequence of measurable functions such that &, : Z —
RY. The following conditions are equivalent:

(o]
n=1

() the sequence {&,}*_, converges modularly to & in Ly (Z;RY);

(i) the sequence {&,}; | converges in measure and there exists a A > 0 such that
E\NT . . o
M|z, ) is uniformly integrable in L' (Z).
n=1

Proof.

i)=ii) Let A; > 0 be the constant from the definition of modular convergence
(Definition 3.4.3) and m; be a minorant of M from the definition of an N-function
(Definition 2.2.2). We observe that using Lemma 2.1.23 part (iii) and the Chebyshev
inequality (Theorem 8.28) we have
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ez m (6N, ()

1 |§n_§|
= mi (8//11) {zEZ: ml(“f’/‘lzﬂ)>ml(i)}ml ( /ll ) dZ

1
<1 M( £n = “f) az
my (/1) Jizez: |g-215¢) A

Sm](s/m/ (Z’ )dz’

where the integral from the last line tends to zero as n — oo and thus &, —— £ in
—00
measure. "
For an arbitrary measurable set Z’ C Z Jensen’s inequality implies

s
Ao 2o [ 5]

and choosing A = 21| we obtain

//M( é:")dz<2 /M(,fnﬁlg)dz+‘/Z/M( fl)dz] (3.34)

Let € > 0 be arbitrary. For all n > ng with ny chosen large enough, in view of the
modular convergence, we conclude that

‘fn_f
LM(Z,T) dZ<8.

The term M (z, /li) is independent of n and thus uniformly integrable. Hence there

HzeZ: |6,(2) —€(2)| > e}| =

1
exists a 6 > 0 such that for all Z’ such that |Z’| < §, we have

/,M( fl) dz <e.
én
sup M|z,~—|dz<e.
n>ng ’ /ll

As a supremum over a finite family of functions is always uniformly integrable, we

immediately conclude that
sup/ M(Z,f—n) dz<e,
neNJz’ A1

which completes this part of the proof.

Therefore (3.34) yields
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(i1) = (i) We want to show that there exists a A; > 0 such that for all £ > O there
exists an ng such that for all n > ng

/M (z, £ _f) dz < &. (3.35)
z A1
Note that if &, —— & in measure, then obviously |&, —&| —— 0 in measure, and
n—oo n—oo

for any A, > 0 also my (lg’;l—fl) —— 0 in measure, where m; : [0,00) — [0, 0) is
a function given by (2.37). Then, also from (2.37), one concludes that

M (z, (f"/l—_g) —— 0 in measure for all 1, > 0. (3.36)

2 n—o00

We use the notation A, :={z€Z: M (z, ‘f’il—f) < &} Thus simply by (3.36)

VE>0 V6>0 TngeN Vn>ny |Z\Ax <o (3.37)

for any A, > 0. For the moment we know that there exists a 4 > 0 such that the
sequence {M (z, %)} is uniformly integrable, however we need to establish the

n=1
uniform integrability of {M (z, g,zg )} . for some A;. By convexity we have
n=

f n— ‘f 1 f n 5
M|z,- <= |Mlz,=|+M|z,=]|].
(Z 24 )27\ “2
The first term on the right-hand side is uniformly integrable by the assumption and

the second term is independent of n and thus obviously also uniformly integrable,
which means that the left-hand side is uniformly integrable, i.e.

fn_g
21

Vé>0 36>0 suchthat/M(z, )dz<é VZ' cZ, |Z'| <6. (3.38)

We will use this information to estimate

OSli'injogp‘/ZM(z,gr;;g) dz

fn _f) / ( ‘fn _é:)
< su M|z,=—=| dz+ su M|z, dz.
n>rlz) /A',, ( 22 n>£) Z\A, 24

Firstly in (3.37) we choose & = ﬁ and A, = 21 to provide a simple estimate

fn_é:) / & &€
su M|z,=—/—= ] dz < —dz==. 3.40
by /A ( 21 L2217 2 (3.40)

To estimate the second term in (3.39) we choose & = § and 6 = 5 in (3.37) to obtain
(3.35) with A; =24 and complete the proof. O

(3.39)




3.4 Topologies 71

Remark 3.4.5. Note that the above proof still holds for M (x,&) = |£| even though it
is not an N-function anymore. For M (x,&) = |£|P, 1 < p < oo, Theorem 3.4.4 in fact
retrieves the classical Vitali’s convergence theorem (Theorem 8.23).

Lemma 3.4.6 Let M be an N-function, {£,}°., C Ly (Z;RY), and {n,}, C

n=1

Ly-(Z;R%). Suppose &, M, & in Ly (Z;RY) and 1, M, n in Ly+(Z;R%).
n—oo n—oo

Then
/fn'nndz—>/§-ndz.
Z n—oe Jz

Proof. Theorem 3.4.4 ensures that modular convergence of the sequences {&,}),
and {n,} >, implies that they converge in measure. Obviously the sequence of
products {&, - n, },_, also converges in measure. In the next step we concentrate on
showing uniform integrability of {£, -1, },,_,, which is however equivalent to the
uniform integrability of the sequence

bn |
A n=1

with arbitrary 4, A» > 0. Again using Theorem 3.4.4, from the modular convergence
we also infer the uniform integrability of the sequences

fn « * n .
LG L L CE )

for some 11,4, > 0. Keeping the same constants we estimate with the help of the
Fenchel-Young inequality

&n M
A A

< M(Z’}%)"'M* (z,z—;’).

As the right-hand is uniformly integrable, so is the left-hand side. Finally, we com-
plete the proof using the classical Vitali convergence theorem (Theorem 8.23). O

Corollary 3.4.7 Let M be an N-function and {£,}.,, & € Ly (Z;RY). If&, —— ¢
n—oo

modularly in Ly (Z;R?) then, up to a subsequence, &, —s & in o (Lg, Lpg+).
n—oo

Lemma 3.4.8 Suppose o is a regularizing kernel (i.e. a nonnegative measurable
Sfunction such that /Rg(s) ds = 1) and define o’ (s) = jo(js) for j € N. Let (t,x) €
Qr =(0,T)xQwith Q c RY and let M be an N-function independent of the variable
t, namely M (t,x,&) = M(x,&) : QxR? — [0, ). Denoting the convolution in the
variable t by *, for j — oo we have

() for any ¢ € LY (Qr;R?) the sequence (o7 #y)(t,x) — y(t,x) in measure;
(i) for any ¥ € Ly ((Qr;RY) the sequence {M(x, o’ * W)} jen is uniformly inte-
grable.

Proof. Observe that for a.e. x € Qthe function (-, x) isin L' (0,7) and p/ s/ (-,x) —
¥ (-,x) in L'(0,T). Therefore p/ i — y in measure on the set Q7 as j — oo, which
proves (i).



72 3 Musielak—Orlicz Spaces
In order to show (ii) we make use of the characterization of uniform integrability

given by (8.1) in Chapter 8, that is, we show that for every & > 0 there exists an R > 0
for which

sup/ (M(x,p’ «y)—R), dxdt <e.
JENJ (0,T)xQ

We extend by O for ¢ ¢ (0,T). Since & — (M(+,€) — R), is a convex function, by
Jensen’s inequality we have

((r.p! 50)=R), < [ MG (0=5.0) =R,/ (5) s

and, consequently,
T .
// (M (x,p’ *(//)—R)+ dr dx
QJo

s/Q/R(/RM(x,lp(t—s,x))pf(s)—R)+ ds dr dx.

Therefore, by Fubini’s theorem and the Young convolution inequality (Lemma 8.26)
the following holds for all R > 0

/ (M(x,p’ xy)—R), dxdt
Q

T S/Q/OT(/RM(x,zﬁ(t—s,x))pj(s)ds—R)+dtdx
S‘/Q/R(/R(M(x,z,b(t—s,x))—R)+pj(s)ds) dxdr

= [N =R gy
< /Q ol s /R (M(x.0(1.x) ~ R), dr dx
=/ (M(x,0(1,%)) - R), dxdr.

(0, T)xQ

Since ¢ € L ((0,T) xQ), the term on the left-hand side of the above is bounded.
Hence taking the supremum over j € N, the term on the right-hand side is arbitrarily
small when R > 0 is chosen sufficiently large. This finishes the proof. O

3.4.2 Modular density of simple functions and separability of E ys+

Let us present the basic results concerning modular density.

Definition 3.4.9 (Simple function). A function f : R? — R is called a simple func-
tion if the image of f is finite.
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Before discussing the issues of density with respect to the modular topology, it
may be useful to pause and make sure that a diagonal argument, widely used in
metric spaces, that is used hereafter in the context of the modular topology, is indeed
valid in this setting.

Lemma 3.4.10 (Diagonal argument for modular convergence) Suppose a family
{éxidriaw © Ly (ZiRY), a sequence {€r}1an € Ly (Z;RY), and & € Ly (Z;RY)
satisfy the following conditions

()
/ZM(Z@) dzIH—OO>O

with « independent of [,
(i)

/M(z,f’ )dz—>0
z [—o00

Then there exists a sequence {€(;).1}1ew such that

k=€

Proof. Observe that

Ga—E& &1.k—& &i—
e ) e (e s+ ki) o

1 E1,k— &l 1 &-¢&
= 2 M malxlixl (i}) dZ+§ / M (Z’ maxl{/l,a}) dz
Z z
S% M -flk -fl dz+1 /M<Z, )dz
Z Z
(341
Choosing [ such that /Z M (z, #) dz < & and then k := k(/) such that
/M<Z, ‘fl,k((lt)—fl) dz<e
A
&€
we conclude that fZ % Imax [ Lal dz <e. O

Theorem 3.4.11 (Modular density of simple functions) Suppose M is an N-func-
tion. Then the set of measurable simple functions with range in Q% is dense in
L (Z;RY) with respect to the modular topology.

Proof. Let us fix an arbitrary & € Ly;(Z;R?). For any [ € N we define
Zi={zeZ: |§(x)| <1}

By the Chebyshev inequality (Theorem 8.28) we obtain



74 3 Musielak—Orlicz Spaces

1Z\Zi| < 111l L1 (ziray /1.

Defining & = €1z, we notice that for almost every z € Z it holds that |£;(z)| < |£(2)|
and M(z,£;(z)) < M(z,£(z)). Then for every A > 1 and « > ||£]|,, /2 we have

a-&\ . _ &
‘/ZM (Z’ 2Aa ) dz= /Z\Z, M (Z’ 2/1&) dz

1
By S~
AJz\z a 1—c0

The function & is measurable and therefore defined almost everywhere. We
choose its representant &;, which is defined everywhere in Z.

Fix arbitrary [, k € N and let Q = [-/,1]¢. We split Q into {Q hioy
N (k) cubes Qk of dlameter . We construct them using the dyadic decomposmon of

Q, distributing the boundary parts so that the obtained cubes Qk are pairwise disjoint,
N (k) Qk

(3.42)

N K g family of

not necessarily open or closed, but obviously Borel sets and such that O = J,_,
We define

EF=£1(05).

Then we have Z = Uf\:’gk) E¥. Since O is Borel and & is measurable, the set EX is
measurable as well. Note that the family {E {‘}fiik)
disjoint measurable sets.

For any i, k,l we choose an arbitrary

is a division of Z into pairwise

51,k k
& e,
with rational coordinates. Note that this is possible because inth.‘ # 0. We set
N (k)

zl,k
k= Z . ]lE'.k'
i=1

For every z € EX we have & ¢ (z) = £ and then

12 ~Z(2)] < diam QF < 1

In turn, we have & x (z) — £1(z) as k — oo for almost every z € Z. On the other hand,
for every z € EX we have

_ 51,k
M(Z’é‘ul,k(z)):M(Z,g"_)sz(wi |)§m2(£),
a @ @ @

where m; is given in the definition of an N-function. Then due to Jensen’s inequality
we have
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=& 1 IR AT &
M(, 2w )SEM(Z’7)+§M(Z’_)
<1m i +1M ¢
=2\ )2\ )

where on the right-hand side we have a sum of functions integrable over Z. Then
since M is continuous with respect to the second variable the Lebesgue dominated
convergence theorem implies

/ M (z, Sk & ) dz 0. (3.43)
7 2a k—co

Since {&;};en is a bounded sequence, it also satisfies condition (ii) of Lemma 3.4.10
with A = 2« and thus the diagonal argument completes the proof. O

Corollary 3.4.12 The set of measurable simple functions in Z is dense in

() Ea(Z;R?) with respect to the norm (strong) topology,
(ii) Las(Z;RY) with respect to the modular topology.

Proof. Note that (ii) is a rephrasing of Theorem 3.4.11. To obtain (i) from it we make
use of the characterization of Ej; from Lemma 3.1.8 and the condition equivalent
to the norm convergence from Lemma 3.1.19. O

Lemma 3.4.13 There exists a countable set of simple functions S such that every
measurable simple function & : Z — Q% can be approximated in the modular topology
by elements of S.

Proof. Since we can choose a countable family of open sets which generate the o-
algebra of Borel sets, a simple function can be approximated in measure by functions
from a countable set. O

Theorem 3.4.14 (Strong separability of E\;) Let Z be a bounded subset of R? and
let M be an N-function. The space Ey(Z;R?) is separable with respect to the strong

topology.

Proof. By Corollary 3.4.12 the space Ej;(Z;R?) contains a dense set, which has a
countable dense subset due to Lemma 3.4.13. O

Corollary 3.4.12 together with Lemma 3.4.13 also give us the following.

Corollary 3.4.15 (Modular separability of Ly;) Let Z be a bounded subset of R?
and let M be an N-function. The space Ly (Z;R%) is separable with respect to the
modular topology.

Let us note that in some cases the proof of Theorem 3.4.11 can be much simpler.
We prove the following result under the condition of anisotropy, which can be
expressed by decomposition, describing each of the directions separately, including
the isotropic case. Note that in case the decomposition from Remark 2.3.1 holds the
proof is essentially the same.
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Theorem 3.4.16 (Modular density of simple functions — orthotropic case)
Suppose M : ZxR? — [0, o) is an N-function that admits the representation (2.41),
ie fora.a.z€Zandall € =(£',...,6%) eRY,

d
M(z8) =) Mi(zé),
i=1

where M; : Z X [0,00) — [0,00),i=1,...,d, are isotropic N-functions. Then the set
of measurable simple functions integrable on Z is dense in Ly (Z;R?) with respect
to the modular topology.

Proof. We denote the set of simple functions integrable on Z by LS. By Lemma
3.1.21 weinfer that LS ¢ Ej; (Z;R?). We shall proceed with the directions separately.
Fix an arbitrary i € {1,...,d}. Let a nonzero &' € Ly, (Z;R) and A > 0 be such that
M; (z2,€(z)/2) € L' (Z). Suppose for a moment that for every z we have ¢'(z) €
[0, c0). Take a sequence

{'fi,(Z)}neN c LS such that 0 < §£, (z) /& (z) when n — oo

for almost every z € Z and each coordinate i = 1,...,d. Then

M, (Z’ E(z)—E(2)

71 ) — 0 foraa.zeZ

and due to Jensen’s inequality

E(2)=¢'(2)) 1
M; (Z, T)

IA
|

ol 5)onf 22

M; (Z,m),

IN

A

which is integrable. Hence, the Lebesgue dominated convergence theorem gives the
desired convergence. To dispense with the assumption & (z) € [0, o) we decompose
each of the coordinates into positive and negative parts which belong to Ly, (Z;R).

O

Remark 3.4.17. Let us note that the above proof cannot be directly used in order
to solve the issue in the fully anisotropic case, since the fact that £/, < &' for every
i=1,...,d does not imply that M (z,&,) < M(z,£).

3.5 Duality (E)* = Ly~

This section is devoted to the issue of duality. For a study of the isotropic Orlicz
case we refer to [5, Section 8] and for related results in anisotropic Musielak—Orlicz
spaces we refer to [326, Section 2].
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Lemma 3.5.1 Whenever nj € Ly+(Z;R9), the linear functional F,, given by

Fy(6) = /Z £2)n(2) dz (3.44)

is well defined for all £ € Epr(Z;R?) and belongs to (Ea(Z;R%))*. Moreover, its
norm in this space, which is defined by

IFyll(Erg) = sUp{IFp ()] : &€ Ep(Z;RY), €llLy, < 1}, (3.45)

satisfies
1EyllErny = 11l Ly - (3.46)

Proof. Recall that by Lemma 3.1.14 (i) for all & € Ly;(Z;RY)

N€llL, <1 = /M(z,g) dz < 1. (3.47)
Z

The definition of the Luxemburg norm implies that the converse implication also
holds, thus we infer that

/M(z,.f) dz<1l = ||€|lL,, < 1. (3.48)
z

This observation allows us to rewrite the definition of an Orlicz norm in L+ (Z;RY)
as follows

ll7llz,,. = sup {/Zf(Z) () dz: € € Lu(Z:R), €Iy, < 1}, (3.49)

which implies that
7l Lyre = NF ol (Epr)-

To show the opposite inequality we define for & € Ly (Z;R?) a sequence

otherwise.

&n(z) = {g(z) if |£,(2)| < n,

Obviously ||z, < €]lL,, for each n € N. Lemma 3.1.21 implies that {&,, } ey C

Ey (Z;Rd). If n — oo, then .f,,ﬁ)f in LM(Z;Rd). Consequently, by Lemma 3.4.6,
the convergence

/n(Z)'fn(z) dz—>/n(z)-§(z) dz
Z Z

holds and thus
7l 2, = sup {/26(2) (z)dz: € € Ey(Z;RY), |I€llL,, < 1}, (3.50)

whereas the right-hand side is equal to || F;,||(g,,)+, which completes the proof. O
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Corollary 3.5.2 From Lemma 3.1.13 and Lemma 3.5.1 we infer that

7Ly < IFyllErs < 20y, - (3.51)

The fundamental structural theorem on the predual space to the Musielak—Orlicz
space reads as follows. Its proof is based on the ideas of [5, 326].

Theorem 3.5.3 (Duality (Ep)* =Ly+) IfZ C R4 is a bounded set and M is an N-
function, then the generalized Musielak—Orlicz space Lys-(Z;R?) is the dual space
to Ep(Z;R%).

Proof. We already noticed in (3.44)—(3.51) that any 5 € Lp+(Z;R9) defines a
bounded linear functional F,, on Ey(Z :R?). We start with the observation that
inequality (3.51) shows that F' cannot be represented by a function from a broader
space than Ly (Z;R?). It suffices to show that every bounded linear functional on
E(Z;RY) has the form Fy, from (3.44) for a certain n € L+ (Z;RY).

Letus fix F € (Ep (Z;Rd))* and define a vector-valued measure u = (i, ..., Uq)
on the measurable subsets Y of Z by setting

ui(Y)=e;-u(Y)=F(e;ly).

We start by showing that y; for i = 1,...,d is indeed a signed Borel measure,
i : B(Z) — R, where by B(Z) we mean the smallest o-algebra that contains the
open sets of Z. We need to check that the following conditions hold:

1° 4 (0) =0,

2°if {Y; }ien € B(Z) such that Y; NY; = 0 for i # j, then

Hi []Yj = iﬂi(YJ‘)
j=1 =

holds foralli=1,...,d.
The first condition immediately follows from the definition of y;. To prove the
second one consider first the finite sums. Indeed,

Jj=1 J=1

n n n
Hi UY]' =F(eilyr y)=F Zeiﬂyj ZZM(Y]’)-
J=1

Consider next the positive and negative part of y;, where |u;| = (i) — (ui)-. We
distinguish the sets where y; is positive and negative

Y=

{Yj if ,Ll,(Yj)ZO, Yo =
J

Yj if /.l[(Yj)<0,
0 if ,u,(Y,) <0, J

0 if ui(¥;)>0.
Then for all n € N it holds that

n

n
Z(ﬂi(yj))+ =i ny < ||F||(EM)*||ei]lU;]:l Yj+||EM SNF ey lleilzllEy, -
= e
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In the same manner
n n
=D ) == [ Y7 | < IF Ny lleii, v-llw < IF Nl ey ledzlgy,-
Jj=1 j=1
Finally

n

Dl (V)] < 201F Ny lleilizl gy, < 00
J=1

and thus the series converges and

(eS8} n n (o]
wil Y5 |= Jim | ()Y | = lim D i) = 37 (v,
J=1 Jj=1 Jj=1 j=1

In order to apply the Radon—Nikodym theorem in the next step we will show that
the measure is absolutely continuous with respect to Lebesgue measure. Let ¥ be
an arbitrary Borel subset of Z. In the estimates we will use m, : [0,00) — [0, 00) —
a majorant of M from the definition of an N-function. We notice that

1 1
1:/—dz=/m20m_1(—) dz
y 17| Y 2\l
z/M(z,m;1(1/|Y|)ei) dzZ/M(z,mgl(l/lYl)ei) dz
Z Y
= [ ez (17 Derty) az
Z
and therefore, due to the definition of the Luxemburg norm we infer that

> |lejLyllz,,-

m;' (1/]Y])
Hence
IF Il (Epp
lei - u(Y)| = |F(eily)| < IFll(gp- leilylly, <€ ——r
my (1/]Y])
and IFI
(Ep)*
i) <lej-u(¥)| < ————r.
m;'(1/]Y])

Since the right-hand side tends to zero when |Y| — 0, the measure y; is absolutely
continuous with respect to Lebesgue measure. Hence the Radon—Nikodym theorem
(Theorem 8.14) implies that y; has the form

i (Y) =/Y77(Z) dz
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for some 7 € L'(Z;R?). Then obviously

F(&) = /Z £(2n(2) dz

for every measurable simple function £.
In the remaining part of the proof we show that n € Lys-. By Corollary 3.4.12

for any & € Ep(Z;R?) we can find a sequence of measurable, simple functions

{&,}nen converging to & in the norm topology of Ep;(Z;R). Therefore there exists

a subsequence such that &, converges a.e. in Z. Let us define a sequence {1 }xen as

follows

kl—Zl for |n| > k,

n for|y| < k. (3.52)

nk(2) ={

Due to the Lebesgue dominated convergence theorem we obtain
[e@ meaz=tim [ a0 me e
7 n—o00 7

snlijgo/an(z)]l{fn<z>-n<z>20}(z)"7(1) dz

nli_f&||§n]1{§,,.7720}||EM||F||(EM)*

IA

IA

Jim 1€l 11l 20
€N Eas 1F 0y

With the help of (3.50) we get that [[n«|lz,,. < [IFll(g,):- Lemma 3.1.13 then
implies that ||nxl|z,,. < ||F|l(Ey,)*- From the definition of the Luxemburg norm, for

all k e N
* Uk—(Z)
/zM (IIFH(EW*) dz<1.

IA

By Fatou’s lemma

7k (2)
/M Z, HFII EM) dz<11m1nf/M & T ey )*) dz < 1.

We know that the functional F,,, with n € Ly« (Z ;Rd), given by (3.44) is bounded
on Ep(Z;RY). Since F, » and F achieve the same values on the set of measurable
simple functions and, due to Theorem 3.4.11, this set is dense in E»;(Z;RY), we
infer that F;, = F on Em(Z;RY). O

Remark 3.5.4. In view of Holder’s inequality (Lemma 3.1.15), the spaces Lys (Z;R4)
and Ly (zrae) are sometimes called associate spaces [34]. This means that
(€)= [,€-ndzis well defined for & € Ly (Z;R?) and 77 € Ly-(Z;R?). Ob-
serve that (Ep+(Z;R9))* = Ly (Z;RY)) € (La+(Z;RY))* since Ep-(Z;R?) is a
closed subspace of Lys-(Z;R4). Later, in Theorem 3.5.3, we prove that Ly, (Z;R?)
is in general not a dual space to Ly (Z;R?) and vice versa.
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Corollary 3.5.5 Ifip and sy given by (2.52) satisfy

1 <i_<ip <sp <54 <00,
then the space equipped with the modular function M is reflexive.

Proof. Inequality 1 <i_ <ip < sp < sy < oo implies that M, M* € A,. Then Re-
mark 3.3.3 gives the claim. O

3.6 Function Spaces in PDEs

In applications of Musielak—Orlicz spaces to the theory of partial differential equa-
tions we frequently face the situation that a gradient of a function is an element
of a Musielak—Orlicz class or space. For this purpose we introduce the so-called
Musielak—Orlicz—Sobolev spaces. Below we divide the description into different
types of domains that correspond to PDE problems studied in further chapters.

Q — open and bounded set. Similarly as in the case of Musielak—Orlicz spaces, we
distinguish among different objects in a manner which is analogous to the way we
defined the spaces Ejp (;RY) and Ly, (Q;R?). Thus, we introduce the following
notation

-l
WiEm (QRY) = CO(QR) Woim@,

with Q c RV, where we endow the spaces with the norm ||v/| W Lo (@) = IVVIlLy (-
The fact that it is indeed a norm is a direct consequence of the Poincaré inequality
inwhl(Q).

Next, we introduce the weak-* closures of compactly supported smooth functions,
ie.,

Wy Ly (R :={ue W(;’] (Q:RY) : Vu e Ly (RDN)
and F{u"}>, c CZ(QRY): Vu" 5 Vuin Ly (Q; RN, (3.53)

The above spaces are referred to as the Musielak—Orlicz—Sobolev spaces. Notice that
when a gradient is considered in the anisotropic space, the function itself can be
assumed to belong to various different isotropic spaces. In the anisotropic Orlicz—
Sobolev case we can use symmetrization techniques to get an optimal Sobolev
embedding [93], but in anisotropic and inhomogeneous Musielak—Orlicz—Sobolev
spaces there is no such result.

Thus, as we will see in further chapters, the spaces prescribed by (3.53) may
be too small in principle and therefore we introduce a different class of Musielak—
Orlicz—Sobolev spaces by

VM (Q) = {v e WM (QRY): Vye LM(Q;RM)} .
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These spaces will be again equipped with the norms ||v|| VM (@) = IVVIlL,, (@), Which
makes them Banach spaces. Whether the considered functions are scalar- or vector-
valued (d =1 or d > 1) will be clear from the context and this ambiguity does not
affect the clarity of presentation.

For some purposes we will need to employ classical Orlicz—Sobolev spaces
generated by an isotropic homogeneous N-function m : [0, 00) — [0, c0) defined as

WL (Q) = {ueWhH(Q): u,|Vu| € L, (Q)}, (3.54)

where the Orlicz space L,, is defined as Lj; in Definition 3.1.3 with m = M, which
is equipped with Luxemburg norm from (3.4). On the other hand, for a function
u € W'L,,(Q) we define the norm

lullwir,, @) = lullL,, @ +VullL,, -

On substituting L, (Q) with E,,(Q) or L,,(Q) in (3.54), we can define spaces
W!'E,,(Q) and W' £,,,(Q), respectively. In the case of doubling m, i.e. when m, m* €
A, all of them coincide, so we use the notation W' (Q) :=W'E,,,(Q) = W' £,,(Q) =
W!L,,(Q). The space W)L, (Q) is defined as the weak-+ closure of C(Q) in
W'L,,(Q).

Space-time cylinder Q7 := (0,7 x Q. For parabolic problems, we employ the fol-
lowing spaces

VM(Q) :={ue L' (0,T;W, " (Q)) : VueLy(QrRY)},
Vo (Q) = {u € L™(0,T; L* () N L (0,7 W, () : Vu € Ly (QrsRY)}
=V (QNL®(0.T;L*(Q)).

which are Banach spaces according to the same arguments.

Periodic case. Let Y = (0,1)?. For the purpose of the last chapter we recall the
definition of the Sobolev space of periodic functions

1111

Wi (ViRY) = {ve C3,, (ViRY) : /v =0}
Y

Due to the Poincaré inequality, we always choose an equivalent norm on W};elr as
[[v]l1.1 :=||VV]|1. Further, we define the corresponding spaces in the periodic setting

Ia—
W,l,e,EM(Y) = {VGC;,OW(Y;R‘I)Z/V=O} ,
Y

where we endow the spaces with the norm ||v||W11WLM(Y) =||VVllL,, (v). Again we

introduce the weak-* closures of smooth periodic functions
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W, Ly (V;RY) = {ueW!! (Y;RY): Vue Ly (Y;R*N)

per per

and F{u"}>, c C,,. (Y;R?) such that /u” =0
Y

per
and Vu" = Vuin Ly (Y;RN)).
and their larger analogues

VI (Y) = {ve W)L (Y;RY) : Vve Ly (Y;RPN)}

equipped with the norm ||v|| VM, (v) = =||Vv||L,, (v), which makes them Banach spaces.

Divergence-free functions. We define the spaces of mappings having zero diver-
gence, both in a bounded set and in a periodic setting, as

: —|| Il (Q)
Ejy (RPN = {Cq, (RON)y T
[-lzp, (v)
E%/llvper (s RdXN) - {Cper div (Y;RdXN)} " ’

and
LGy (RPN :={T € Ly (URPN) : HT"}5y, € Egy (RDY)
such that T" T in Ly (Q;RPN)},
LEer Wy RONY = (T e L (VRPN - (T}, € ERm ™ (v, RN
such that T" > T in Ly (Y;RN)},

which are again Banach spaces.

Truncations. In many cases, the solutions to considered PDE problems do not be-
long to the spaces defined above, but their truncations do. The symmetric truncation
Ty at level k is defined as follows

_ f(S) I ()l <k,

We may naturally expect a solution to an elliptic isotropic problem to belong to

TVéVI () ={u is measurable in Q :
Ti(u) € Wy (Q), VTi(u) € Ly (RN for every k > 0}.
Since for every u € W'-1(Q), there exist a unique measurable function Z,, : Q — RN

such that
V(T; () = L{juj<1Zy ae.inQ, forevery t > 0, (3.56)
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see [31, Lemma 2.1]. Thus, in the sequel we call Z,, the generalized gradient of u
and, abusing the notation, for u in the space of truncations, we write simply Vu
instead of Z,,.

This will be particularly important when we compare renormalized or entropy
solutions to SOLA. Indeed, the notion of SOLA takes into account only u € Wll(;l (Q),
which in the case of equations involving the p-Laplace operator requires us to restrict

to p >2—1/N. See Section 5.1.1 for more information on this topic.

3.7 Density and Approximation

One of the important features of inhomogeneous settings that play a significant role
in the analysis of PDEs posed in Musielak—Orlicz spaces are problems involving
the density of smooth functions. This is closely related to the so-called Lavrentiev
phenomenon, cf. [229, 336, 337], which originally described the situation when
the infimum of the variational problem over the regular functions (e.g. smooth or
Lipschitz) is strictly greater than the infimum taken over the set of all functions
satisfying the same boundary conditions. Naturally, the Lavrentiev phenomenon
was generalized to the situation where functions from a certain space cannot be
approximated by regular ones. The key issue is therefore to choose an appropriate
topology that will be useful. Recall that Section 3.4 explains various possible choices
of topologies, whereas the modular convergence is defined in Definition 3.4.3. In
view of the gap between Ej; and Lj; (Definition 3.1.3) and the fact that simple
functions are dense in Ljs only in the modular topology (Theorem 3.4.11), this
notion of topology, rather than the norm topology, is expected to be relevant in the
further analysis.

In general, smooth functions are not dense in the norm topology, even in the
reflexive Musielak—Orlicz spaces. It is known that the variable exponent spaces (with
M, (x,&) = |£]P™®)) can exhibit the Lavrentiev phenomenon if p(-) is not regular
enough (see e.g. [337, Example 3.2], where p is a step function). The canonical
assumption ensuring density of smooth functions in the norm topology in the variable
exponent spaces is the log-Holder continuity of the exponent p(-). The double-phase
spaces (with Mg, (x,€) = |£|P +a(x)|é]¢ or mild transition Mapmila(x,&) = |€]P (1 +
a(x)log(e+|£&])) can also support the Lavrentiev phenomenon. See [137, 136], where
the authors provide the result that a closeness condition for the exponents sufficient
for density is governed by regularity of the weight. There are also examples of
exponents and functions that cannot be approximated [337, 16, 137, 155]. In the
case of Mgp, when a € C%a gp easy proof from [137] shows that smooth functions
are dense provided g/p < 1+a/N. Due to [24] in the case of Mgy.miq it suffices to
deal with log-Holder continuous a. The mentioned cases are fully covered by our
conditions. However the present studies show that for p < N the result from [137]
was not optimal. The optimal range is ¢ < p+«, see [62]. Another formalism that
also captures them all is described in [191], but unlike in our analysis the growth of
the modular function there is always assumed to be comparable with a doubling one
and isotropic.
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Summing up, in the Musielak—Orlicz setting, even in the already mentioned
examples of reflexive spaces, equipped with the not sufficiently regular modular
function, there exist functions that cannot be approximated in the strong norm
topology by smooth functions. In such a case the strong closure of the smooth
functions coincides with the modular closure, but in general this is not true. In the
nonreflexive spaces (when the modular function is an N-function of arbitrary growth)
the relevant topology to be considered for weak gradients is not the norm topology,
but the modular topology. See Section 3.4 for its basic properties. In his seminal
paper [175] Gossez proves that the classical theorem due to Meyers and Serrin on
the strong density of smooth functions in Sobolev spaces [253] can be proved in
Orlicz—Sobolev spaces too, but the density has to be considered with respect to the
modular topology. This result has been extended to the isotropic Musielak—Orlicz
setting in [7], under restrictions on the modular function, with sharp results in the
special cases of variable exponent and double-phase spaces. Its fully anisotropic
counterparts are provided in [179] and [52] under various balance conditions.

For an open and bounded domain Q c R we consider approximation of scalar
functions u : Q — R with Vu € Ly (Q;RY) where we deal with an N-function
(Definitions 2.2.2)

M: QxRN — [0, 00).

A key assumption describes the interplay between the asymptotic behavior with
respect to each of the variables separately that ensures the modular density of smooth
functions, namely it balances the behavior of M = M (x, Vu) for large |Vu| and small
changes of the first variable x. Note that because of the nature of the condition in the
pure Orlicz case, i.e. when

M(x,&) =M($),

where the fully anisotropic case is included, the balance conditions do not carry
any information and can be skipped. Therefore, the results on approximation we
present hold in general in anisotropic Orlicz spaces without any growth restrictions
of doubling type.

We study the approximation properties of the Sobolev-type spaces

VO (Q) = {ue Wy (Q) : Vue Ly (RY)}.
For this we need to study the local behavior of M : QX RN - [0,0), so we consider

My (&) :=essinfyep(x,e)naM (¥, ) (3.57)

for € > 0 and x € Q and recall that (M, )™ stands for the second conjugate,
see (2.36). Recall that the second conjugate of a function is its greatest convex
minorant (Corollary 2.1.42).
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3.7.1 Condition I (general growth)

We will present the approximation results and proofs first in the anisotropic setting
and then their significantly simplified form in the isotropic setting. The phenomenon
of anisotropy is discussed in Section 2.3.1.2.

Let us start with the formulations of the conditions and examples.

Anisotropic case
For an N-function M : QxRN — [0, c0) we study the following condition.

(Me) Assume that there exists a function © : [0, c0)> — [0, c0) such that ©(-, s) and
O(x, -) are nondecreasing functions and for all x,y € Q and £ such that |£| > 1,
and a constant ¢ > 0,

M(y,€) < O(x = yl, |€)) (M, o)™ (£) with limsup®(&,ce™) < oo,
e—0*

where (M, ¢)* is the second conjugate to M ., which by Corollary 2.1.42
coincides with its greatest convex minorant.

Isotropic case
For an N-function M : QX [0,00) — [0, 00) we study the following condition.

(Me') Assume that there exists a function ©' : [0, 0)> — [0, o) such that Qi(,,s)
and ©! (x,-) are nondecreasing functions and for all x,y € Q, s > 1, and a
constant ¢ > 0,

M(y,s) <O (|x—y|,s)M(x,s) with limsup® (g,ce ™) < co.

-0t

We point out that this balance condition does not entail continuity of an N-
function.

Remark 3.7.1. Observe in particular that
O(t,s) > 1 forall (t,s) € [0,1/2] X [0, c0).

Note that in general the function M satisfying (Me') is not continuous with respect
to its first variable. Actually, only if

lim O(g,s) =1
e—0*

for all s > 0, then the mapping x — M (x, s) is a continuous function on Q.

Example 3.7.2. We have the following examples of pairs M and © satisfying (Me)
or (Me'), which are therefore admissible in our results on the density of smooth
functions.

1. Orlicz. If M (x,&) = M (&) is independent of x, then it obviously satisfies (Me) by
choosing
O(r,s)=1.
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The fully anisotropic case is included.

2. Variable exponent. Suppose that M, (x,s) = |s|P™), 1 < p_ < p(-) < py < o0,
satisfies (Me') with
O(t,s) = max{s®(™ s~} (3.58)

where w(7) = ¢/(log(1/7)) is the modulus of continuity of p. This is ensured

when p is log-Holder continuous, i.e. when there exists a ¢ > 0 such that

¢ for | | < !
—_—— x—y| < =.
log(lx - yl) 2

For comments on the sharpness, see [100] or [115].

lp(x)-p(y)I <

3. Borderline double-phase. When Mg, mia(x,s) = [s|P +a(x)|s|” log(e + |s]|)
(cf. [24]), condition (Mé') is satisfied with

O(7,5) = 1+w,(1)log(e+s), (3.59)

where w, (1) is the modulus of continuity of a. For this it is enough to deal with
log-Holder continuous a.

4. Orlicz double-phase. Suppose M (x,&) = M (€) +a(x)M, (&), where M, M,
are (possibly anisotropic) homogeneous N-functions (without prescribed growth)
such that

M (&) <cMy(é)  for &€ eRYN suchthat |¢] > 1 and some ¢ > 0,

the function a : Q — [0, c0) is bounded and has a modulus of continuity denoted
by w,. Then one can consider

— My (s)

O(7,5) = 1+wa(0) 375> (3.60)

where M (s) :=inf¢.|z)=s M1(£) and Ms(s) := SUP. |£|=s M2(§). The function
M satisfies (Me) if ‘

My(s7™N)
M, (67N)

limsupwg (6)
5—0

< 00.

5. Musielak-Orlicz. The function M (x,¢) = Zfil ki (x)M;(|€])+My(x, |€]) satisfies
(Mé') if foralli = 1,---, K there exist functions k; : Q — [0, ) and ©' satisfying

ki(x) <@ (Jx—yDk;(y)  with lim 0(g) < oo,
e—0*
whereas My (x, &) satisfies (Me') with ®¢. Then, we can take
K
O(t,s) = Z@i(r, s).
i=0

Similar examples of orthotropic M satisfying (Me) are provided by M (x,¢) =
B ki () M (€9 + Mo (x, €).
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Proof.

1. This case is a direct consequence of (Me), which in the homogeneous case does
not carry any information (there is nothing to balance).
2. We have

M, (x,s)

= sP ()P
My (y,s)

thus (Me) is satisfied with
O(r,s) =5 if s>1 and O(r,s)=s7 if s<1,

where o : [0,00) — [0, 00) with limsup,_,qo(g) =0.
3. If Mgp—mia(x,s) = sP(1+a(x)log(e+s)), we have

Mgp-mia(x,5) _ 1+a(x)log(e+s)
Mgp-miia(y,s) — 1+a(y)log(e+s)
_1+a(y)log(e+s)+(a(x)—a(y))log(e+s)
1+a(y)log(e+s)
a(x)—a(y)

=1+ T+a(y) ——— " log(e+s) < l+wy(|x—y|)log(e+s).

4. We compute
M(x,s) _ SR ki (X) My (5) + Mo(x, s)
M(y.s) Zfzokj(y)Mf(S)+Mo(y,S)
K Oi(lx = yDki (y)Mi(s) N My(x,s)

K ok ()M (s) Mo(y,s)
L ki (y) M (s)
s;&(u—ynm+@0(|x-y|,|s|)
k
ICNCE |)% ®o(lx =yl Is))

~.
I
—_

©;(Ix=yD+06o(lx—yl.|s])
1

=0O(|x—yl,|s])- O

~
]

3.7.2 Condition II (at least power-type growth)

When the modular function has at least power-type growth, i.e. if

M(x,s) = c|s|P? with some p > 1and ¢ >0, (3.61)
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we can relax (Me), resp. (Me'), to cover the known range of the double-phase spaces,
where the Lavrentiev phenomenon is absent (according to [137, Theorem 3]). Note
that the difference with the case of arbitrary growth (i.e. (Me) or (Me')) lays in the
rate of balance of ®, resp. ®'. Let us recall that M, . is defined in (3.57).

Anisotropic case
For an N-function M : QxRN — [0, c0) we study the following condition.

(Me),, Assume that M satisfies (3.61) and there exists a function @ : [0, 00)2 -
[0, c0) such that ©(,s) and ©(x,-) are nondecreasing functions and for all
x,y € Q, & such that |£] > 1, and for a constant ¢ > 0,

M(y,£) < O(|x = y|, [€)) (My.£)* (£) with hmsogp@(s,ce*%) < oo,

Isotropic case
For an N-function M : QX [0,00) — [0, 00) we study the following condition.

(Mei)p Assume that M satisfies (3.61) and there exists a function ©' : [0,00)2 —
[0, c0) such that ®/(-,s) and ©'(x,-) are nondecreasing functions and for
all x,y € Q, s > 1, and for a constant ¢ > 0,

M(y,s) <O (]x—y|,s)M(x,s) with limsqu)i(s,cs_%) < 0o,
£—0*
Example 3.7.3. We have the following isotropic examples of pairs M and © satis-
fying (Me),,, which are therefore admissible in our results on the density of smooth
functions.

1. Double phase. Consider 1 < p < g and anonnegative a € CIO(;Z (Q) witha € (0,1],
then Mg, (s) = sP +a(x)s? satisfies (Me'),, with

@' (7,5) = Caqr 5|77 +1 (3.62)

with a proper limit whenever

;1—7 <l+4, (3.63)
this being the sharp range for regularity of minimizers due to [98].

2. Variable exponent double phase. Consider 1 < p_ < p(-) < ¢(+) < g+ < oo and
a nonnegative a € CIO(;ZE(Q) with @ € (0,1], then My_gp(x,s) = sP +a(x)s9™)
satisfies (Mei)p with

Qi(1,s) = max{s“’l’(T),s_“’P(T)}

3.64
+max{swd(7)’s—wq(T)} (Ca‘r“|s|supx€9 (CI(X)—P(X)) + 1) ( )

whenever

p.q are log-Holder continuous  and  sup (g(x) — p(x)) < “=.
xeQ



90 3 Musielak—Orlicz Spaces

In the constant exponent case (i.e. when p, g are constant functions) this condition
is equivalent to (3.63).

3. Orlicz double phase. Suppose M (x,&) = M{(€) +a(x)My (&), where My, M,
are (possibly anisotropic) homogeneous N-functions (without prescribed growth)
such that

|£]P < e/ My (€) < caMy (&) for & € RY such that |¢] > 1 and ¢1,¢5 > 0,

the function a : Q — [0, o0) is bounded and has a modulus of continuity denoted
by w,. Then we can take © as in (3.60) and M satisfies (Me), if

My (57N/P)

lim sgpwa ((5) m < 00,

56—

where M, (s) :=inf. | =s M1 (&) and Ms(s) = SUP .| ¢|=s M2 (). This condition
is essentially less restrictive than the related one from Example 3.7.2.

3.7.3 Between isotropic and anisotropic conditions

In this section we show how isotropic conditions imply anisotropic conditions. Later
we shall restrict ourselves to analysis in the anisotropic setting, since the isotropic
case follows from these results.

Theorem 3.7.4 Isotropic conditions are sufficient to get their anisotropic versions.
Namely, for M : QxRN — [0, ) we have

() if M satisfies (Me'), then M satisfies (Me);
(il) if M satisfies (Mei)p, then M satisfies (Me)p.

The above theorem is a direct consequence of the following geometrical observa-
tion.

Proposition 3.7.5 Let Q be an open subset of RN, M . be defined by (3.57), and
an N-function M satisfy (Me') or (Mei),,. Let € > 0 be an arbitrary (small) number.
Then, for all x, y € Q such that y € B(x,&/2) we have

M(yas) i 2
m <4(0'(g,s))". (3.65)

Proof. From (Mé') (resp. (Mei),,), for all x,y € Q such that [x — y| < % one has
M(x,s) <O (|x—y|,5)M(y,s), (3.66)
with limsup . O(g,ce™™) < oo (resp. limsup,_,- O(&,ce™NV/P) < c0).

Moreover, M is locally Lipschitz with respect to s, so by virtue of (Me') (resp.
(Mé'),,), we have
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sup  M(y,R) <O (g,R)M(x,R).
yeB(x,g/2)

Therefore, we obtain
M(x,R)

Sup |33M(y,s)|5®[(1/23R) :
y€B(x,&g/2),s<R R

Thus, both M and M, . are continuous in s. When we fix an arbitrary y € B(x,&/2),
we may estimate
A M09

i 2
= m <4(0'(g,s))". (3.67)

Let us start by writing

_M@.s) M e(5)

A Mo(s) M) (5)

=Ai-As

and noting that for any fixed s # 0 there is a sequence {y?},,en C B(x,&/2) such that
for every n > n(s) we have

1
Mx,s(s) 2 M(Y?,S) - ;
If necessary taking larger n, we can further estimate

Maols) 2 M(05) (.68

Therefore, for a.e. y € B(x,s/Z) we have

_MG.s) _, M(Gys)
My (s) — M(§.s) ~

A 20 (ly—y",5) <20 (&,s), (3.69)

due to (3.66), (3.68) and the monotonicity of ®'. As for A, let us remark that if
M, . is convex in s, then by the Fenchel-Moreau theorem (Theorem 2.1.41) we have
M, = (M, )" and then Ay = 1. Otherwise there exist s; < 52 such that for every
s € (s1,52) we have My o(s) > (Mx £)™(s) and My o(s;) = (Mx &)™ (s:), i = 1,2.
Then for every ¢ € [0, 1] we have

(M, o)™ (ts1+ (1 =1)s2) = tMx o (s51) + (1 =) My £(s2).
Let us consider {y§ }nen, {5, }nen defined similarly to {y{},en and estimate
kk 1
(Mye)™ (514 (1=1)52) 2 tM (y5,,51) + (1= )M (¥, 82) = .
We can assume without loss of generality that

M(y5,,s1) < M(y5,,s1)



92 3 Musielak—Orlicz Spaces

because otherwise we arrive at M < (M)**, that is A, = 1. Hence,

M,y c(ts1+(1-1)s2)
(M, e)**(ts1+(1=1)s2)
- M (Y5, ts1+(1-1)s2)
tM (Y5, s1)+ (1 =) My £ (¥5,,52) — 5,
tM(y5,,s1) + (1 =) M (y5,,52)
My s)+ (1M (Y, 52) - 1

Ay =

=: h(1).

For ¢ € (0,1) we see that

(M (Y5, s1) =M (Y5 ,s1)M(y5,,52)
(t(M(y§,,51) =M (Y5, 52)) + M(y5,,52))?
.\ (M(y5,,52) = M(y%5,,51))
n(t(M(y§,51) = M(¥5,,52)) + M(y%,,52))?

Hence the maximum of 4 is attained at ¢ = 1, which implies

M(y%,,s1)
72— .
M(ys,s1) =5

n(t)=

We can restrict ourselves to n sufficiently large so that

My, s1)
M(yS]9 ) _

Note that here we applied (3.66). Combining (3.69) with (3.70) gives (3.67). O

A

IA

@)’(lys2 Vs, 1,51) < 20 (g,51) <20 (g, ). (3.70)

Remark 3.7.6. There is no analogue of Proposition 3.7.5 for anisotropic N-func-
tions. This is because inf,cz M (z,&) can be arbitrarily far from its second conjugate
(inf,ez M(z,£))*, cf. Remark 2.3.14. For more information on anisotropy, see
Section 2.3.1.2.

3.7.4 Density results

We are in position to prove the main result on elliptic smooth approximation of
functions from

TVé” (Q) ={u is measurable in Q :
Ti(u) € Wy (Q), VTi(u) € Ly (Q) for every k > 0}.

Let us recall that the symmetric truncation at level k is defined by (3.55), (Me) in
Section 3.7.1, and (Me), in Section 3.7.2.
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Theorem 3.7.7 (Approximation) Suppose Q is a bounded Lipschitz domain and
an N-function M satisfies (Me) or (Me),. Then for every u € TVéW (Q), there exist
a sequence of functions us € C°(Q) such that for 6 — 0 we have

us—u in L'(Q) and Vug M Vu in Ly (Q;RM).
Moreover, there exists a ¢ = c(L2) such that ||us|| =) < cllullL=(q).

By the virtue of Theorem 3.7.4, the above result has an isotropic version with
more intuitive assumptions.

Theorem 3.7.8 (Approximation — Isotropic case) Suppose Q is a bounded Lip-
schitz domain and an N-function M satisfies (Me') or (Mei)p. Then for every
ueTJ Vé” (Q), there exist a sequence of functions {us}s=o C C2(Q) such that
for § — 0 we have

us—u in L'(Q) and Vug M Vu in Ly (Q;RM).
Moreover, there exists a c = c(L2) such that ||us|| =) < cllullL=(q).

We do not need to restrict our attention to TVé"’ in the above theorems. Due to
the following fact, Theorems 3.7.7 and 3.7.8 hold true for u € V({V’ () as well.

Lemma 3.7.9 If M is an N-function, u € Wé’l (Q) and Vu € Ly (QRN), then for

k — oo we have Tu — u in WH1(Q) and VTiu M, Vuin Ly (Q;RY).

Proof. Obviously for k — oo we have VTu — Vu in measure. Moreover, there
holds a pointwise estimate M (-, VTxu) = M (-, Vu) 1y <x < M(-,Vu) a.e. in Q and
M(-,Vu) € L'(Q). Therefore, {M (-, VTju)} x>0 is a uniformly integrable sequence
and the Vitali convergence theorem (Theorem 3.4.4) gives the claim. O

We need to prepare a framework for proving the approximation results. We con-
struct an approximate sequence based on the convolution, then we provide a uniform
estimate on a star-shaped domain and we conclude the proof of Theorem 3.7.7. Let

Kks=1-22 (3.71)
For a measurable function ¢ : RY — RY with supp¢ c Q, we define
£s5(x) = /Qpa(x—y)f(f—&) dy, (3.72)

where ps(x) = p(x/6) /8" is a standard regularizing kernel on R (i.e. p € C*(RY),
suppp cc B(0,1) and /Qp(x) dx =1, p(x) = p(—=x)), such that 0 < p < 1. Notice
that £5 € C°(RY;RY) and that this transformation preserves the L® norm. Recall
the isotropic and homogeneous N-functions m;| and m, sandwiching M that come
from definition of an N-function.
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Proposition 3.7.10 Suppose M is an N-function satisfying condition (Me) or (Me),,,
and Q is a bounded star-shaped domain with respect to a ball Bg with radius R > 0.
For a measurable function £ : RN — RN with supp& C Q let £ 5 be given by (3.72).
Then there exist constants C,01 > 0 independent of § such that for all 6 < 6,

[megsenars [ (i) de+C [ Mg ar (73)
Q {mi (1€ <1} Q
for all € € Ly (QRN) and my,m> being a minorant and majorant, respectively, of

an N-function, see Definition 2.2.2.

Proof. We present the proof only in the case when  is a star-shaped domain with
respect to a ball centered at the origin. For the general case one should change
variables moving the center of Bgr to the origin, then proceed with the proof as
below, and then reverse the change of variables.

Fix & € Ly (Q;R"Y) and note that without loss of generality it can be assumed
that

1011 @mny < - (3.74)

On the other hand, if (Me),, is in power, we may assume that [|€||.» e~y < € With
absolute constant ¢ > 0 (we will choose it soon). Notice that

/ M(x.£5(x)) dr < / M(x.£5(x)) dx
Q {M(-,&s5(-))<1}

+ / M(x.£5(x)) dr
{M(-,&5(0)=1}

< / ma(1€5(x)]) dx
{m(|&s () ) <1}

+ / M(x.£5(x)) dr
{M(-,&5()=1}

=:ls+Js.

To deal with Is we notice that {m(|Ss&(+)|) < 1} = {ma(|Ss&()]) < ¢} for ¢ =
my o ml‘1 (1) and we have the following pointwise estimate

ma(1€s ()DL g, (1es(y <13 () S c.

Hence, by Lebesgue’s dominated convergence theorem,

limsupls = limsup / ma(|€s(x)]) dx = / ma(1€(0]) d.
\,0 SN0 J{m(|&s()) <1} {mi(|&€())<1}

Thus, we concentrate now on Js. For every § € (0, R/2) it holds that

ksQ+0B(0,1) C Q. (3.75)
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Indeed, since  is star-shaped with respect to B(0, R), if we take arbitrary x € Q and
y € B(0,1), then ksx+ (1 —ks)Ry = ksx +26y € Q. Therefore, for § € (0,R/4) we
have &5 € C2°(Q).

We cons1der a family of N-dimensional cubes covering the set Q. Namely, a
family {Q } i consisting of closed cubes with edges of length 28, such that

Ns
intQ?ﬂintQ? =0 for i#j and QcC UQ?.
Jj=1
Moreover, for each cube Q}S we define the cube é }5 centered at the same point g

and with parallel corresponding edges of length 46.
According to condition (Me) or (Me),,, the relation between M (x,&) and

M? (§) :=essinf, é}mM(x,g) (3.76)

is as follows

M6

(M5)**(§) <0O(6,|&|) forae. er‘S and allfeRN such that |£] > 1, (3.77)

where by (Mjfs )Y (€) = ((M;S (£))")* we denote the second conjugate, which accord-

ing to Corollary 2.1.42 coincides with the greatest convex minorant of M]‘.s.
We have

Js _Z /Q M (3, £5()) dx

ON{M(,&5()) 21}

M(x,E5(X)) 6
= ————— (M dx.
Z/%{Mc,g&(-)m} M2 (g i) )

(3.78)

Let us fix an arbitrary cube and take x € Q;.S. Our aim now is to show the following
uniform bound
M(x,£5(x))

(M) (€5(x)) ~
for sufficiently small 6 > 0, x € Q;.s N Q, with C independent of 6,x,j and &. For
sufficiently small ¢, due to (3.77), we obtain

M(x,E5(x))
(M?)(£5(x))

(3.79)

< 0(0,[65(x)]). (3.80)

To estimate the right-hand side of (3.80) we recall the definition of &5 given
in (3.72). For all x € Q and each 6 > 0 we have ps(x —y) < 1/6V. Having (3.74),
we observe that
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2

K

1 _
el < 5 [ leGiko)l dy < 5 <7, (381)
oY Jo 0
Note that in the case of (Me),, we just estimate |€5(x)| < 6~V /P using the Holder
inequality. Indeed,
p-t

1 p >
51 1 _
€5(x)] < ( [rewiar dy)” ( [ dy) < =7 I€lr @ < 6

N
p 2

where we chose ¢ for the second inequality to hold. The last estimate is true, as we
used ¢ as the normalization constant.
We combine this with (3.80), (3.81), and by recalling (Me) (resp. (Me),) to get

MOEs() oo omy o
MO (Es) ~ ’

<0(5,6 NPy < C

resp, M Es(0)
(MP)" (€5(x)

for all 6 < §; with some §; > 0. Thus, we obtain a uniform bound of (3.79).
Now, starting from (3.78), noting (3.79) and the fact that on {M (-,£5(-)) > 1} we
have (MJ‘.S )**(£) > 0, we observe that

X M(x,é5(x))
s dx = e ovi 6 ok dx
Juesten 2 /Qfﬂ{M(~,§a<~)>zl} M2 (g ) )

Ns
<cy. [ (MP)" (€5(x)) dr =: I},
SJosnm.gs(n=)

We will carefully estimate the right-hand side above changing an indicator of a cube

J <C§:/ (M) (/ pa(y)f(u) dy)ll sno(x) dx
*T Hlogea B(0,6) Ko gjnQ
Ns
O #% X—=Yy
SC;/RN (M) (/B(O’(s)pa(y)«f(K—é)nQ}sm(x) dy)dx

<c§/ (Mé)**/ M2 150 (=) dy | de=: 2
B /RN / RNpéy Ks opne e e

The function (M%)** is convex, so by applying Jensen’s inequality the right-hand
side above can be estimated by the following quantity

J2<C§/ / pé(y)(MfS)**(f(u)llzs (x—y))dydx
° Jj=1 RN JRN / Ks gjne
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Ns
Bt Z
SCHP&HU(B(O,&);RN)ZAN (M?) (f(g)]léfng(z)) dz (3.82)
j=1
N .
<€ 3, fona 0" [£[i5))
jz::‘ 0onQ / d Ks
3 z z
<C / M(—, (—))dz:ﬁ,
JZ_:‘ osnQ Ks ¢ Ks

where we applied Young’s convolution inequality (Lemma 8.26), uniform bounded-
ness of ||psll L1 (B(0,s):mN)» the fact that (Mjfs)**(f) =0 if and only if &£ = 0 and that

(Mf )** is (the greatest convex) minorant of Ml‘? (Corollary 2.1.42). To estimate it
further we substitute x := z/k s and observe that

ksQf C Q5° (3.83)
for co =4(1+diamQ/R). Indeed, since ¢ is the center of éf we have

K5§}S={(X1,...,XN)€RNZ |xi = (q;)i/ksl SZ% foreveryi=1,...,N}.

We note that for every i = 1,..., N we have
Ixi = (g )il <lxi=(q;)i/ks|+|(q;)i(1=1/ks)| < 26(é+%diam9) <cqf,

where we used (3.71) and the fact that ks > 1/2, which is true for § < R/4. There-
fore (3.83) is justified and we infer that

Ns
3
Jj < c;/Q;géM(x,g(x)) dx < C(N)/QM (x.£(x)) dx.

The last inequality comes from the computation of a sum, taking into account the
measure of repeating parts of cubes. We get (3.73) by summing the above estimates.
O

Now we are in a position to prove an approximation result.

Proof (of Theorem 3.7.7). Since Q is a bounded Lipschitz domain in R™, by
Lemma 8.2 the set Q can be covered by a finite family of sets {G;};e; such that
each

Q; =QNG;

is a star-shaped domain with respect to the balls {B};;, respectively. Then
Q={Jo.
iel

Let us introduce a partition of unity 6;, i.e.
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0<6;, <1, 6;€C>(Gy), Zei(x)zl for x€Q,
iel

which exists due to Lemma 8.3. Fix an arbitrary ¢ € TVé"’ (L2). We are going to show
that there exists a constant A4 > 0 such that
( Vigs) -V )
X, —
A

lim | M
5-0* Jo

dx =0,

where ¢ — ¢ is defined in (3.72). We note that ¢ € TVéVI () and for each i € I we
have
V(i) = ¢V0;+6;Vp € Ly (RY).

Furthermore, }};c; V(6;¢) = V. Since

V(ps) - Vo Al V(0ip)s —V(6;p)
/QM(x,f)deZT/QiM(x, - dx

i
i€l A

for some A; > 0 such that 4 = }; A’ and there is finite number of Q;s, it suffices to
prove convergence to zero of each integral from the right-hand side.

Let us consider a family of measurable sets {E,, },en such that |, i E, = €; and
a simple vector-valued function

E"(x) := Z 1g, (x)n;(x),
=0

where {r]j};?zo is a family of vectors such that {E"}, cn converges modularly to

V(0;¢) with A3 (cf. Definition 3.4.3) whose existence is ensured by Theorem 3.4.11.
Note that

V(0ip)s =V (0ip) = (V(0ip)s = (E")5) + (E")s — E™) + (E" = V(0i¢)).

By Jensen’s inequality we get that

/ M (x, V(0ip)s - V(0ip) ) dr
Q Al

A V(0i9)s — (E" A EM)s— EM
AL O] K[ )
A Jo, A4 A Jo, 2 (3.84)
A E"—V(6;
Ny (Y b /L8 [P
A Jg, :

_.no n,o n,o
—.L1 +L2 +L3 s

where A/ = 3.:1 A%, A% > 0. We have A} fixed already. Let us take A = 25.
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Al E" -V (6;¢)
ﬂ%J/MxL——;— dx.
1 9’

A J, A s

Due to Proposition 3.7.10 the mapping 6;¢ — (6;¢)s is uniformly bounded from
Ly (Qi;RY) to Lps(€;;RY) and we can estimate

0<L!< / . my
{ml(m —Zlgem\)sl}

+C/M
Q;

where lim,_,. K" = 0. Consequently, lim,,_,o, lims_,o+ L’l“s =0 as well.
Let us concentrate on the convergence of mollified step functions to a step function
E™, that is on Lg"s. Jensen’s inequality and then Fubini’s theorem lead to

/li
7L?6:/.M.x
/12 Q;
1
=/ M%r7/ 0s(y):
Q A5 JB(0.6)

> [nE,.(xmj(x)—]lE,. (x‘y )nj(x‘y )] dy|dx  (3.85)
j=0

1
< 0s() M|x,—-
B(0,5) Q A,
N x-y\ (x-y
O 01, (2 oy (2] | e |
. Ks Ks
J=0
Since the shift operator in L' is continuous, we have pointwise convergence

Z[nmx)n,-(x)—n@ (’“'y)nj(x'y)] 0.
L "\ ks Ks

Moreover, when we fix arbitrary /13 > 0 we have

Note that

E" -V (6;
£ -9 ( so)l)dx
/ll

E"-V
X,TQO dx =: Kn,

1

b}

E") = (Es())
Z

n

Mx,/%iz

2 =0

e, (0, ()~ 1, (x‘y)nj (x‘y)]

Ks Ks

2 n
< s M|x= D lnglleed | < o
ZERN: | |=1 455
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Therefore, by the Lebesgue dominated convergence theorem the right-hand side
of (3.85) converges to zero.

Thus all terms in (3.84) are arbitrarily small and, hence, we get modular conver-
gence of the approximate sequence. The modular convergence of gradients implies
their strong L'-convergence and the Poincaré inequality gives the claim. O

Proof (of Theorem 3.7.8). Due to Theorem 3.7.4 we get that growth conditions from
Theorem 3.7.8 imply growth conditions required by Theorem 3.7.7. O

Let us comment on possible modifications of the proofs of Theorems 3.7.7 and
3.7.8.

Remark 3.7.11 (Extending the range of admissible modular functions I). Using
ideas of [63], see also [62], one can prove approximation result of Theorems 3.7.7
and 3.7.8 under a less restrictive condition than (Me) from Section 3.7.1 (resp. (Me),
from Section 3.7.2), namely

(Me)* Assume that there exists a function © : [0,c0) — [0, oo) such that ©(-,s)
and O(x,-) are nondecreasing functions and for all x,y € Q and ¢ such that
|£] > 1, and a constant ¢ > 0,

M (y,€) <O(x =y, €N (My )™ (&) with  limsup®(s,ce™') < oo,

-0t
where (M, .)** is the second conjugate to M, ..

With this purpose one should modify Proposition 3.7.10 using the idea of [63,
Lemma 2.5] to mollify not any function £ € £ (Q;R"), but specifically a gradient
of a truncation of a fixed function VT (1) € Las(€;RY) with some added bounded
function ¢. Namely, one should consider

e = (VTi(u) +9)e,

where the subscript € always means convolution with a regularizing kernel p. (see
(3.72) with ¢ = €). The key point of the reasoning is to notice that, because of the
properties of the convolution, instead of (3.81), for sufficiently small & one can

estimate k41l
CK+||@]|L>
|€c| < c[(T(u) el [Vpel+|pe| < —————.

Consequently, (3.79) can be achieved under condition (Me)*. Condition (Me)* is less
restrictive than (Me) and (Me),, in the case when p < N and N > 1. Indeed, the
essential point is finiteness of the appropriate limit, which in the case of (Me) is

limsup®(e,ce™) < o,

-0t
for (Me),
N
limsup®(e,ce P ) < oo,
0+

while for (Me)*
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limsupO(e, ce™) < .
e—0t
To observe how these different conditions (Me) or (Me),, and condition (Me)* behave
in particular examples, consider the case of a double-phase function. Condition (Me)*
for M (x,s) = sP +a(x)s9, a € C*® implies that assuming ¢ < p +a is sufficient for
the density of smooth functions.

Remark 3.7.12 (Alternative proof in the isotropic case). Let us note that the proof
of Theorem 3.7.8 in the isotropic case can be modified by the use of Lemma 2.3.13
instead of Theorem 3.7.4, which has a more complicated proof. In fact, in the
isotropic case Lemma 2.3.13 ensures that

M? (&)= essinfxeé;stM(X,f),

despite not being convex, supports Jensen’s inequality with the intrinsic constant
1/2. Therefore, in (3.78) one can directly divide and multiply by M]‘.S (¢) instead

of (Mj‘.s )**(&) and proceed with all the above steps, only taking into account minor
modifications due to the appearance of the intrinsic constant. Indeed, in such a
situation for proving a counterpart of (3.79) we notice that

Mx.§) _ sup (M(x,f)
M?(£) " yeding M(y,$)

) < O(diam Q7. |£]).

Remark 3.7.13 (Extending the range of admissible modular functions II). In the
fully anisotropic setting (M, ¢)**(£) can be a priori arbitrarily far from M, (&) no
matter how small ¢ is, see Remarks 2.3.14. To have better control on the anisotropy
one can use ideas of [52] and assume condition

(B) there exists a constant Cy; > 1 such that for every ball B ¢ Q with |B| < 1, x € B,
and for all &€ € RN such that [£] > 1 and M (x,Cp&) € [1, ﬁ],

sup M(y,&) < M(x,Cué).
yeB

Before applying this assumption one can estimate M by its supremum over a small
ball, which is convex, already in the first line of (3.78) and the rest of the proof
becomes significantly simplified. Note that this condition is a general growth and
anisotropic version of a commonly used assumption (A2) from [191]. As shown
in [52], (B) embraces a far broader class of admissible spaces than (Me) or (Me),,
in terms of admissible growth, local properties, and anisotropy.

3.8 Operators and Related Musielak—Orlicz Spaces

Let us give an overview of the functional settings and comment on the expected
growth conditions to be imposed on the operators.
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3.8.1 Special instances

In order to explain the use of the unconventional functional framework in PDEs, we
shall refer to nonlinear gradient-driven diffusion equations of the form

W(x.0) = s (3.86)

{a,u —diva(t,x,Vu) =0,
witha: [0,7) x QxRN — R exhibiting growth described by means of more clas-
sical or more innovative cases of fully anisotropic and inhomogeneous N-functions.
It would be useful to keep in mind the example of a certain substance spreading from
ariver towards its banks, where we aim to model its diffusion throughout media like
sand or clay having various seepage properties.

PDEs with the leading part of the operator having a power-type growth like the
p-Laplace operator A, u = div(|Vu|P ~2Vu) have received deep attention for decades
already, and they also arise in the modelling of classical, fast or slow diffusion (p =2,
1 <p<2,0or2<p < oo, respectively). The analysis in the Sobolev space setting
is very well understood. The polynomial growth case has been developed in a wide
range of directions, including the variable exponent, anisotropic, convex, weighted,
and double-phase approaches , which make it possible to describe increasingly more
complicated processes and materials. The Musielak—Orlicz spaces unify all of the
mentioned types of spaces. We refer to the recent survey [71] for a brief presentation
of the subsettings together with the difficulties each of them carries in the analysis
of PDEs, as well to the very recent survey [256] concentrating on the calculus of
variations within this setting. Here, we present a very concise overview of the spaces
included in the Musielak—Orlicz framework in connection with the PDEs described
in this monograph.

3.8.1.1 Sobolev and weighted Sobolev spaces

It is already classical to involve the Laplace or p-Laplace operator
Apu = div(|Vu|P~2Vu)

in the modeling of various processes of diffusion-type (which also have interpreta-
tions in the life or social sciences). The classical Sobolev spaces provide a natural
setting to study solutions to elliptic and parabolic partial differential equations in-
volving these operators. For this we refer to any lecture notes or book on partial
differential equations, cf. [223, 227]. In the example of our river we expect p > 2
as the sand plays the role of a porous medium and the diffusion is made slower. In
order to study processes inhomogeneous in space, e.g. when our medium is not the
same in the whole space, one idea is to consider the weighted w-p-Laplacian

AYu= div(w(x)|Vu|P > Vu)
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involving various types of singularities of the weight function w. In turn, the
appropriate setting is provided by the weighted Sobolev spaces equipped with
M (x,Vu) = w(x)|Vu|?, see [143, 201, 317].

To ensure basic reasonable properties of the weighted Lebesgue space LY, we
shall specify the appropriate classes of weight functions w. According to Kufner and
Opic [222], the weight should satisfy the B,-condition, i.e. be a positive a.e., Borel
measurable, real function such that 0’ = w™1/P~D (x) € Llloc (Q).Ifw € B, (Q), then
the weighted space L%, (Q) is continuously embedded in L lloc (€2), and consequently
functions from the related weighted space of a Sobolev type have well-defined dis-
tributional derivatives. Note that the condition B, is weaker than the A ,-condition,
cf. [258]. One can consider weighted Sobolev spaces with different weights, e.g. for
wo,w1 €B p (Q)

WL @ = {few!

(wo,w1) loc

(@: feLl, (@, VfeLl, (R)],

but one-weighted spaces (when w; = w;) are studied more often.

Turesson’s book [317] consists of a comprehensive study on the case of A-
weights. It provides weighted analogues of multiple results from the theory of non-
weighted Sobolev spaces applied to PDEs and from non-weighted potential theory,
which are not addressed here, but should not be ignored. PDEs in the weighted
setting are considered e.g. in [50, 51, 66, 86, 141, 142, 151, 255].

3.8.1.2 Anisotropic Sobolev spaces

The phenomenon of anisotropy is described in Section 2.3.1.2. Briefly one should
think about it as the situation when the energy density is not the same in distinguished
directions. We refer, for example, to the process of diffusion which is expected to be
more intense, or lower, in some directions due to some forces.

To describe anisotropy one can use different exponents in various directions by
involving the anisotropic p-Laplacian

N
Apu =div (Z |uxi|”"_2uxi) with  p=(p1,...,pN)
i=1

and thus, the relevant space for solutions is equipped with M (x, Vu) = 3;; |uy, |P* and
it is given by

WP (@) = {few)!

loc

(Q): feLP(Q), fr, € LP(Q), for i= 1,...,N},
where py is a harmonic mean of py,...,py. See [314, 91] for the embedding result.

One can consider anisotropic weighted Sobolev spaces equipped with weights
associated to distinct coordinates directions, i.e. for wy, ..., wy € B, (L), we define

WP Q) := {f eWEL(Q): fe L (Q), fi € LT(Q)), for i=1,. N} .
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However, it is more common to consider one-weighted spaces (wg =+ = wn).

In the anisotropic setting a fundamental role is played by the powerful tool of
symmetrization, an idea which started with the seminal papers [250, 306, 323] and
was developed further in the Orlicz setting. For some regularity, existence, and
nonexistence results we refer to e.g. [9, 53, 54, 83, 104, 156, 157, 236, 301, 318],
while for other estimates on solutions we refer to [10, 319]. Very weak solutions to
anisotropic PDEs with irregular data are studied starting from [45].

3.8.1.3 Variable exponent Sobolev spaces

To describe the setting in which the energy density is inhomogeneous in the space
variable, one can consider the operators

Apou =div(|VulP@72Vu)  or  A,yu=div(p(x)|VulP P 2Vu).

Therefore, the relevant setting is described with the use of M (x, Vu) = |Vu|?™¥) . In
turn, the solutions to problems involving such operators are in the variable exponent
Sobolev space given by

whrO Q) ={few)!

loc

(Q): f,VfleLPO(Q))}.

The settings of the variable exponent Lebesgue and Sobolev spaces have been
deeply examined. They are well described from the theoretical point of view in the
books by Cruz-Uribe and Fiorenza [100] and by Diening, Harjulehto, Hésto, and
Ruzicka [115]. Typical applications of variable exponent equations include models of
electrorheological fluids [3, 279, 287], image restoration processing [70], elasticity
equations [338], and the thermistor model [339].

Since the setting has been exhaustively explored, it will not be the focus of our
considerations. Let us mention only a few articles on the basic properties of solution
or minimizers to variational problems such as existence [119, 145, 240, 254, 276],
regularity results [1, 2, 76, 105, 305], uniqueness of solutions [147], nonexistence [4,
128], as well as a qualitative analysis of eigenvalue problems [277]. The existence
to problems with data below duality are studied in isotropic spaces in [30, 324]
and in anisotropic spaces in [28, 29]. Seminal work on homogenization in this
setting [336] have lately found multi-valued counterparts [270]. Finally, let us refer
to the survey [194] which summarizes developments in the theory of PDEs within
this setting, comprehensively covering the issues of existence and regularity.

Provided 1 < p_ < p(+) £ p;+ < o, the variable exponent Lebesgue spaces are
reflexive, which implies that the modular and the norm topologies coincide. Inho-
mogeneity of the variable exponent spaces implies though that the density of smooth
functions depends on the regularity of the modular function. Namely, when the ex-
ponent is not regular enough, there exist functions that cannot be approximated by
smooth functions. Thus, we meet the so-called Lavrentiev phenomenon, which plays
a prominent role in the calculus of variations, see [337, 340] and also the beginning
of Section 3.7. Typically to ensure density of smooth functions the assumption im-
posed on the exponent is log-Holder continuity. Therefore, PDEs considered in this
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setting are usually formulated with at least log-Holder exponents, which excludes
dramatic changes of the energy density. In the river example we can allow for diffu-
sion through media of completely different saturation like sand, soil or clay, as long
as the transition between them is smooth enough.

3.8.1.4 Double-phase spaces

The investigation of problems with the growth trapped between two power-type func-
tions was initiated by Marcellini [246, 247]. A particular case of such an approach
involves operators of the form

div((|Vu|P_2+a(x)|Vu|‘1_2)Vu) or div((l+a(x)1og(e+|Vu|))|vu|P—2Vu)

with 1 < p,g < oo and a weight function a : Q — [0,00) which can vanish. Such
operators can be used in the description of diffusion-type processes in a space, where
certain subdomains are distinguished from others. For instance, one might use this
structure to describe a composite material having on {x € Q : a(x) = 0} an energy
density with p-growth, but on {x € Q: a(x) > 0} a growth of order g. The problem
should be posed in a space equipped with the modular function

M(x,s)=|s|P +a(x)|s|]? or M(x,s)=|s|P(1+a(x)log(e+]|s|?), respectively.

This case is related to the variable exponent spaces with an exponent which is
a step function rather than the weighted Sobolev spaces. The key feature of this
setting is that the regularity of the weight function a dictates the coercivity of
the energy density, saying how far apart the exponents g > p have to be ensure
modular approximation. This case is more closely related to variable exponent than
to weighted spaces. Again, in the river example we imagine sand with energy density
p and soil with energy density g with a modulating weight a whose regularity governs
the transition between the phases.

The double-phase spaces originally appeared in the context of homogenization
and the Lavrentiev phenomenon (see Zhikov’s pioneering work [337] and the more
recent [340]). Recently the regularity theory of minimizers to variational functionals
has received interest, starting from [137, 98,97, 24, 25]. See also [23, 75, 106, 107]. In
this context the optimal approximation in the modular topology is strictly connected
to the regularity results [256]. Lately, attention has focussed on problems exhibiting
a variable exponent modification of double-phase energy [68, 257, 12, 278] or an
Orlicz modification [65, 17].

Let us note that the double phase spaces with bounded a > 0 and 1 < p,g < oo are
reflexive no matter if the interplay of the parameters is uncontrolled or how irregular
the weight is. Thus, for all possible choices of parameters the modular and the norm
topologies coincide.
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3.8.1.5 Isotropic and anisotropic Orlicz spaces

The power-type growth conditions of the classical Lebesgue or Sobolev case can be
generalized in another direction by considering an operator of the form

div(%%t)

with a convex function m satisfying a doubling condition. This idea goes back to
Talenti [306, 307] and with general growth to Donaldson [122, 123] and Gossez [173,
174, 175]. Let us refer to later results of Benkirane, Elmahi and Meskine [33, 131]
and Lieberman [235]. For a comprehensive existence theory for data in the dual
space we refer to [263] by Mustonen and Tienari concerning elliptic existence and
to [130] by Elmahi and Meskine for the corresponding parabolic results.

For the basics of the isotropic Orlicz spaces and a geometric introduction to this
setting we refer to the short book by Krasnosel’skii and Rutickii [220]. The classical,
very comprehensive book of Rao and Ren [281] systematises the framework, while
the book [5] highlights clearly the crucial points of the theory relevant to differential
equations. The applied motivation for the Orlicz setting include the modeling of
non-Newtonian fluids [55] and of elastodynamics [268]. A good example here is
wet sand on a low river bank or sea shore, which is shear-thickening. Under these
conditions, a runner will leave dry footprints on the wet surface that dissolve slowly,
and one can consider the diffusion process there.

For recent results on existence, potential theory, and regularity we refer e.g.
to [22, 26, 56, 77, 85, 72,74, 78, 90, 95, 114, 199], while for nonexistence to [213].
For the embedding results the classical reference is [315] by Trudinger, while the
optimal embeddings are provided by Cianchi in [89] for the isotropic and in [91] for
the anisotropic case. See [90] for a broad and deep overview of embedding results.

We recall again that Section 2.3.1.2 describes anisotropy. For the foundations
of research on the anisotropic Orlicz results we refer to the fundamental works on
symmetrization theory [91, 93] and existence and uniqueness of PDEs in this setting
to [9, 83, 182].

3.8.1.6 The general Musielak-Orlicz setting

All the above mentioned challenges are faced while examining problems involving
operators of the form
div(MVu),
[Vul?

when M is an inhomogeneous and fully anisotropic N-function from Definition 2.2.2.

The investigation of the general isotropic approach started with the pioneer-
ing monograph of Nakano [265] and articles by Skaff [296, 297], Hudzik and
Kamiriska [206, 207, 208, 214, 215]. The monograph of Musielak [262] describes
the prominent role played by the functional analysis of Musielak—Orlicz spaces.
See the newest monographs on the topic [191, 251]. The cornerstones of the the-
ory of PDEs in this setting come from the Russian school [226, 210], where they
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are called non-uniformly elliptic problems. The applications to modeling start from
Ball’s classic paper [19] on elasticity. For more recent results we refer to [218] on
thermo-visco-elasticity and [180, 181, 183, 184, 326, 328] on the theory of non-
Newtonian fluids. Nowadays the most intensively investigated fields also include
potential theory [190, 87], harmonic analysis [35, 113, 198, 197], regularity the-
ory [26, 82,112,192, 195, 196, 199], the variational approach to PDEs [252], and ho-
mogenization [59, 60]. We want to stress the available embeddings of [99, 144, 243].
Excluding Lavrentiev’s phenomenon is elaborated on in [7, 52]. Weak solutions to
parabolic problems in spaces changing with time are studied in [304, 80, 63]. Exis-
tence for measure data problems in reflexive spaces is studied in [73]. Renormalized
solutions to L'-data problems in nonreflexive anisotropic Musielak-Orlicz spaces
are considered in the elliptic setting in [109, 179, 186, 187, 233] and in the parabolic
setting in [79, 81, 188]. For more, see the surveys [71, 256, 248].

3.8.2 The meaning of the growth and coercivity conditions

We want to study operators which have a more relaxed growth than those presented
in Sections 3.8.1.1-3.8.1.6, while keeping the functional setting for the solution. Let
us describe what type of nonstandard growth and coercivity conditions can be found
in the literature and what they imply.

Let us concentrate on a vector field a : Zx R? — R? which is a Carathéodory
function and is monotone in the sense that for all £,7 € R¢ and a.a. x € Q we have

(a(x,&)—a(x,n)-(£-n) = 0. (3.87)
We assume further that

(i) there exist ¢y, c2,c3,c4 > 0 such that

M(x,ci€) <a(x,é)-¢, (3.88)
oM (x,c3a(x,&)) < M(x,c4€) (3.89)

OR
(>ii) there exist d; € (0,1) and d,, d3 > 0 such that
4 (M(x,dzf) +M*(x,d3a(x,§))) <a(x,é) ¢ (3.90)
Proposition 3.8.1 If M is an N-function, then (ii) implies (i).
Proof. Suppose that (3.90) holds. By Jensen’s inequality
M(x,d1d>§) < diM(x,d28),

so (3.88) is satisfied with ¢ = dd,. Let us take any ¢4 > 1/(d1d3) > 1/d3 and notice
that
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dy (M (x,do) + M* (x. dsa(x.)) ) < (La(x.8) - (ca¢)

< M(xcf) + M (v Lra(e.)

> cyqd-

< M(x,c4é) + == M* (x,d3a(x,£)),

C4d3

where that last inequality holds due to Jensen’s inequality. By rearranging terms in
the last display we infer that

(dl N C41d3)M* (x’d3a(x’f)) < M(X,C4.f),

By fixing ¢, = d| - L_ and ¢3 = d3 we get (3.89). O

cads

The aim of imposing assumptions on the growth and coercivity of the operator
is to place the solution in the controlled functional regime so that its gradient lives
in the Musielak—Orlicz space Ljs. Then the operator evaluated in the gradient is
expected to live in the associate space L,s-. Recall however that Ly, and L+ are
dual to each other only provided M, M* € A,, cf. Remark 3.3.3.

Lemma 3.8.2 Suppose M is an N-function and a : ZxR¢ — R? is a Carathéodory
Sfunction satisfying (3.88)—(3.89), monotone in the sense of (3.87), and a(-,{)-{ €
L' (Q). Then there exists a C > 0 dependent only on the parameters from (3.88),
(3.89) and ||a(+, &) - ¢l 11 (q) such that

la(, Oz, @ <C.

Proof. The duality (Eps)* = Ly~ is proved in Theorem 3.5.3, thus we can equip Ly
with the norm
(3.91)

1
71l (Ern) = zsup{/gn-f de: (€L, < /l}

for some A > 0 comparable to the Luxemburg norm given by (3.4), cf. Lemma 3.1.12.
Our aim is to find a bound on ||a(x, {) | (£y,)"-

First we observe that due to the monotonicity of the operator for any & € Ej; we
have that

a(x’ {) é: < a(xvg) ' g_a(x’g) : ([_é:)
On the other hand, by the coercivity condition (3.88) and the assumption

/ M(x,e10) dx < / a(x.0) ¢ dr = [a(.0) .
Q Q

We estimate

[ (5
—/Qa(x,f)'(é'—f) dx = /96301 (e3a(x.£)) (2/61) .

< 2 M (x,63a(x,§))+M(x,ﬂ) dx
c3cr Ja 2/c
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< 2 iM(x,c4§)+M(x,61§)+M(x,Cl§:) dx
C3C1 Jq C2
2 1

SE (C—z+1)/9M(x,max{c1,c4}§)+||a(x,§).§||L1(Q) )

Here we used the Fenchel-Young inequality (Lemma (2.1.32)), (3.89), and convexity.
Note that by Lemma 3.1.14 if 57 € Ly (Z;R9) with ||5]|1,, < 1, then it satisfies
om () < 7ll,, - Thus, provided max{cy,c4}l|éllz,,. < 1, we can actually estimate

/a(x,g)-fdxs/a<x,4>~4—a<x,f>-(4—§> dx
Q Q

2 1
<lla(x.9) -l +— [(—H) €1 Ly, max{er,ca} +lax, 0) - llLi(a)
Cc3Cq (&)

Let us consider 7 = a(x,¢) and A = max{cy,c4} in (3.91) to get

1
laCe.Oll gy < —sup{ /g a(.0) & dr: |lmax{erca)éllz,,. < 1}

~ max{cy,c4}
2

1
S S +1 . +—+1
S amaxiaon ((6361 Max, )<l g o )

which completes the proof. O

Remark 3.8.3. In the current monograph we have decided to restrict to the case
when a is a function, however a lot of facts could be presented for multi-valued
mappings. We list a few examples of such results:

e existence of renormalized solutions to elliptic problems, see [109],
o existence of weak solutions to parabolic problems, see [304, 303],
e existence of weak solutions to the non-Newtonian fluid model, see [61].

In the classical LP-setting both conditions (i) and (ii) are equivalent to the classical
growth and coercivity conditions of Leray and Lions [232] ensuring pseudomono-
tonicity of the involved operator. Note that in the case when M = ¢{|&|? the coercivity
condition (3.88) as well as (3.90) directly imply

cl €17 < a(x,£) - €. (3.92)
Moreover, (3.89) yields |a(x,&)[P/(P~D) < ¢|£|P, leading further to the condition
la(x, )] < cF1éP7 (3.93)

The reverse implication follows trivially. On the other hand, to get (3.93) from (3.90)
it suffices to use Young’s inequality in the following way

di(|daé1” +|dsa(x, )PPV <a(x.6) ¢

<d (|(2/d2)§|1’ + |(d3/2)a(x,§)|17/(p—1)).
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After absorbing one term and then dropping the other nonnegative one on the left-
hand side, we get an inequality of the form (3.89). We have already seen that this
is sufficient for (3.93). Of course, the converse is also true, that is, if the classical
conditions (3.92) and (3.93) hold true, then we have (i) as well as (ii). For comments
on conditions (3.92) and (3.93), see also [264].

Conditions of the form (i) are considered in the classical Orlicz setting with-
out growth restrictions, when M (x,&) = m(|&|) is homogeneous and isotropic by
e.g. [175, 173, 263, 132, 9, 78]. In the classical Orlicz case when m,m* € A, the
mentioned growth and coercivity conditions can also be expressed in the following
way

m(l§) <a(x.§)-&  and  Ja(x,&)| < em’(|€)), (3.94)

where m’ is the left-derivative of m, cf. [95]. Sometimes when m,m* € A, in these
conditions one uses m(s)/s instead of m’(s), but note that m’(s) =~ m(s)/s, see
Lemma 2.3.16. Inhomogeneity does not present any obstacles in this type of formu-
lation. For instance, the assumptions

M (x[¢)) <a(x,§)-&  and  a(x,é) <M (x,|€]) /1€

with M, M* € A, are employed in [82, 73]. Following [226, 210] and the recent [256,
248] we call problems under conditions related to the above non-uniformly elliptic.
Thatis, if f : QxRY — R is smooth and one investigates the operator —diva(x, Du) =
D¢ f(x,£), then the ellipticity condition reads Dégf(x,g)g ¢ >0for &, eRN,
Provided the growth of f is governed by the same doubling function m from below
and from above, we are back in the regime of (3.94). If m depends on x, one is
deprived of uniform control over ellipticity. For detailed comments, see the recent
survey [256].
Notice that when m,m* € A,, Lemma 2.3.19 yields

m*(m’(s)) < cm(s). (3.95)

This is equivalent to
m’(s) < (m*) ™ (cm(s)).

Note that (3.95) does not hold in the case when both m,m* ¢ A, e.g. for m(s) =
slog(1+s) or m(s) = sexp(s). In fact, outside the doubling case it is commonly
assumed that

m(lg) <a(x,&)-¢ and  |a(@xé)| <ci(m) (cam(l€]),

as is done in [130, 175, 173, 263], rather than (3.94).
In order to involve anisotropic structure it is more relevant to consider

m(¢) <a(x,&)-&  and  m*(cia(x,€)) < com(é),

related to (i) (see [9]), or to hide them both in one assumption

c(m@+m' (a(x.6)) <a(x.6) ¢
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related to (ii) (see [186, 179]). We show that the condition (ii) implies (i), but the
reverse is not true in general.



Part 11
PDEs



This part is devoted to the application of Musielak—Orlicz spaces to partial dif-
ferential equations. Although the inhomogeneity and anisotropy of the underlying
space deprives us of many classical tools, we provide a deep study of nonlinear
PDEs under very general conditions. We concentrate on weak solutions to elliptic
and parabolic problems with bounded data, renormalized solutions to elliptic and
parabolic problems with L! data, homogenization of elliptic problems, as well as the
theory of non-Newtonian fluids.

Chapter 4 is devoted to the existence of weak solutions. There are two alternative
fundamental tools used in existence proofs, based either on weak-* convergence or
on modular convergence. Each of them directly depends on the properties of an N-
function. We will see that there are definite advantages to using assumptions on its
growth (A,-condition), however this information can be replaced by continuity-type
assumptions on an N-function.

Chapter 5 concerns elliptic and parabolic partial differential equations of a simple
structure as in Chapter 4, but with merely integrable data. Consequently, weak
solutions are not well-defined and we are forced to understand them in a very weak
sense by employing the notion of renormalized solutions. The proof of existence in
the parabolic case is particularly delicate because the modular function is allowed to
be inhomogeneous both in the time and in the space variable.

In Chapter 6 we study the theory of homogenization for families of strongly
nonlinear elliptic problems. The growth and the coercivity of an elliptic operator
is again assumed to be prescribed by an inhomogeneous anisotropic N-function.
The overall impediment is the dependence of an N-function on a spatial variable,
as consequently in each step of the homogenization process the underlying function
spaces change. For that reason the presented approach is far from just being a simple
extension of an analogous problem in the standard L?-spaces. We characterize the
notion of weak-* and strong two-scale convergence in the setting of Musielak—Orlicz
spaces, which is here the method for proving the convergence of the homogenization
process.

Chapter 7 concerns a large class of problems arising from the mechanics of
incompressible non-Newtonian fluids with nonstandard rheology. We concentrate
there on the phenomenon of viscosity changing under various stimuli like shear rate,
and magnetic or electric fields. We study the case when the relation between the
viscous stress tensor and shear stress may be anisotropic, inhomogeneous and not
necessarily of polynomial type.
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Chapter 4
Weak Solutions

4.1 Elliptic Equations

This section gathers different results on the existence of weak solutions to elliptic
problems. In the first subsection we formulate assumptions on the operator, however
in various considered cases the assumptions on an N-function will differ, which
prevents the possibility of a universal approach to all the problems. Let Q be a
bounded Lipschitz domain in RV, N > 1. Given a function f : @ — R?, we consider
the following system

{ —divA(x,Vu) =f in Q, @1

u(x)=0 on 0Q,

where u: Q — R4 and the operator A : Q x RN — RN s controlled by an
anisotropic and inhomogeneous modular function M. The considerations in Sec-
tions 4.1.4 and 4.2 are, only for simplicity, restricted to the case of scalar equations,
i.e.,d =1 and thus u : Q — R. In this way we avoid proving the existence of approxi-
mate solutions in Section 4.1.4, and we may use the result for scalar equations [263].
However the method is not restricted to the scalar case and the proof could be easily
rewritten for a system of equations. In those sections we will switch to the lower case
notation a for an operator instead of A to highlight it and to be consistent with the
notational convention used in this book. Function spaces in which we consider our
solutions are defined and discussed in Section 3.6.

4.1.1 Assumptions on the operator

Let us recall that an N-function M is defined in Definition 2.2.2, while its conjugate
M* in Definition 2.1.28. We assume that A satisfies the following conditions.

(Ale) A : QxRN — RI*N i5 a Carathéodory function;
(A2¢) Growth and coercivity. There exist an N-function M : QxRN — [0, c0)
and constants ci,c3,c3,c4 > 0, such that for a.a. x € Q and all ¢ € RIXN we
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have

M(x,c1é) < A(x,€) €, 4.2)
oM™ (x,c3A(x,£)) < M(x,c4€). 4.3)

(A3e) Monotonicity. For all £,7 € RN and a.a. x € Q we have

(A(x,6)—A(x,n)- (6-n) 2 0.

Growth and coercivity conditions were discussed in more detail in Section 3.8.2.
The proof of the first presented existence result is carried out under condition (A2e),
which is more general than condition (3.90), which often appears in the literature.
For the sake of clarity of presentation, in further chapters, as well as in further parts
of this chapter, conditions (4.2)—(4.3) are simplified to just one constant c,.

(A2e)* There exist an N-function M : QxRN — [0, o0) and a constant c5 > 0 such
that for a.a. x € Q and all £ € R we have

caM™ (x,a(x,£)) < M(x,€) and M(x,€) <a(x,&)E. (4.4)

In (4.4) we intentionally used notation appropriate later for the scalar equation,
not a system, because in such a framework these conditions shall be used, see
Theorem 4.1.5.

Monotonicity may not be sufficient to show uniqueness of solutions and in some
cases even to show existence of solutions. Thus, assumption (A3e) in this case is
substituted with a more rigorous condition

(A3e*) Strict monotonicity. For all £,7 € RN and a.a. x € Q we have

(A(x,&) = A(x,m)) - (£=m) > 0.

The above set of assumptions is not complete. In particular, until now all we
know about M is that it is an anisotropic inhomogeneous N-function. However such
a generic condition is not sufficient and further properties either on

(i) the growth in the second variable,
or
(ii) continuity in the first variable

shall be prescribed. These two options build the structure of the current chapter.
After a short section on the monotonicity trick, which can be proved independently
of assumptions on an N-function, the next two sections are devoted to these cases.
Section 4.1.3 concerns the situation when information is given on the growth of an
N-function or on its conjugate. This allows us to justify using weak-* convergence
techniques in the proof. Section 4.1.4 solves the problem of existence in the case
when some kind of continuity of an N-function in the first variable is assumed. We
will see that this is an assumption in the spirit of a log-Holder continuity condition.
The core of that proof is built by approximation and the modular density techniques
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investigated in Section 3.7. Throughout these two sections we present two different
approximation techniques for problem (4.1) that can be applied in existence proofs:
the Galerkin method in Section 4.1.3 and through adding a regularizing term in
Section 4.1.4. Note that neither of these two cases demands great care in the choice
of approximation method, indeed any of the presented methods could be used.

4.1.2 The monotonicity trick in the elliptic case

When considering PDEs with the operators described above, the obstruction, which
we will encounter, is that weak-* convergence is badly behaved with respect to
nonlinearities, and even if such convergence is improved to modular convergence,
strong convergence still may not be achieved. However, the property of monotonicity
allows us to identify limits of nonlinear terms using the following technique, often
called the monotonicity trick, e.g. in [178, 179, 186, 326].

Theorem 4.1.1 (Monotonicity trick in the elliptic case) Suppose A : QxRN —
RN satisfies conditions (Ale)—(A2e) with an N-function M : Qx RPN — [0, c0).
Assume further that there exist

A€ Ly (URPNY  and £ € Ly (QRDN)
such that

'/Q (A-Axm)-(E-n)dx >0 forallpeRP>N, 4.5)

Then
Ax,é&)=A a.e.in Q.

Proof. Let us define
Qg ={xeQ: |£(x)| <K} forany K eN.
Fix arbitrary 0 < j <i and notice that Q; C Q;. We apply (4.5) with
n=§&1g, +hzlg,,

where /1 € (0,1) and z € L*(Q;R¥*N), giving
‘/g;(ﬂ —A(x,£1g, +]’lZ]lgj)) (E-€1g, - hZ]le) dx > 0.
Notice that this is equivalent to
/ (ﬂ—A(x,O))-fdx+h/ (A(x,€+hz)-A)-2dx > 0. (4.6)
Q\Q; Q;

The first expression above tends to zero when i — oco. Indeed, (A2e) implies
A(x,0) =0, moreover A € Ly (QRPN) and & € Ly (QR4N), and the Holder
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inequality (3.21) gives A -£ € L' (Q). Then we take into account shrinking the do-
main of integration to get the desired convergence to 0. In particular, we can drop
these expressions in (4.6) and divide the remaining expression by / > 0, to obtain

/(A(X,§+h2)—$)~zdx20.
Qj
Note that

A(X,f"'hz)nA(x,f) ae.in Q.

Due to (A2e¢), we have

¢y sup M (x,c3A (x,€+h2z)) dx < sup /M(x,C4(§+hz)) dx.
he(0,1) JQ; he(0,1) JQ;

The right-hand side is bounded, because {£ + 12} ,¢(o,1) is uniformly bounded in
L¥(Q;:RN) € Ly (QRPN).

Indeed, on Q; by definition |£| < j. Hence, Theorem 3.4.2 gives the uniform inte-
grability of the family {A(x,£ +h2)},¢ (g 1)- Since |[Q;| < co, we can apply the Vitali
convergence theorem (Theorem 8.23) to get

A(.X,f'i‘hz) T‘?A(}C,f) in LI(Q]’RdXN)
h—

Thus
/gj(A(x,f+hz)—5‘()~zdx;_)—0> /QJ(A(x,f)—.?l)-zdx.

Consequently,

/ (A(x,&)-A)-zdx >0,

Qj

for any z € L*(Q;R¥*N). The choice of

[ ASER i Ag)-A 0,
0 if A(x,&)-A=0,

leads to

/ |[A(x,&)-A|dx <0.
Q)

Hence
Ax,&)=A ae in Q.

Since j is arbitrary, we have the equality a.e. in Q and (4.68) is satisfied. O
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4.1.3 Elliptic problems in cases M € Ay or M* € A;

In this section we concentrate on the case when no information on the regularity
of an N-function with respect to x is given. This possible irregularity needs to
be compensated somehow as it closes the possibility of using arguments based on
modular convergence, and indeed this tool is replaced by weak-* compactness. This
argumentation holds once we have information on the growth of an N-function M or
its conjugate M*, particularly that one of them satisfies the A,-condition. As these
two cases are not analogous, they are considered separately.

We start with the case of the assumption of the A;-condition on the conjugate
M*. The existence result is formulated in the following theorem.

Theorem 4.1.2 Let N > 1, Q c RY be a bounded Lipschitz domain. Assume that an
operator A satisfies (Ale)—(A3e) and M : Q x RN — [0, c0) is an N-function such
that M* satisfies the As-condition. Assume that f = divF and F € Epp- (Q;RN).
Then there exists a weak solution to problem (4.1), which is a function

u e Wy La (QRY)

such that

/A(x,Vu(x))-Vgo(x) dx:/F(x)~V¢p(x) dx 4.7
Q Q

is satisfied for all ¢ € W(%LM (QRN). Ifin addition (A3e*) is satisfied, then the weak
solution is unique.

Proof. The proof of existence of solutions uses the Galerkin method. Firstly, we
construct solutions of finite-dimensional approximations to (4.1) and then pass to the
limit. Consider a set of smooth linearly independent functions {w’ }32,> which may,
for example, be the set of eigenfunctions of the —A operator with Dirichlet boundary
condition and project the original problem to the space spanned by {w’ }f.‘:l for some
fixed k € N.

Let us then define u* = Z[’.‘zl afwi for k € N, where a{‘ € R solve the system

/A(x,Vuk)-ijdx:/F-ijdx (4.8)
Q Q

forall j=1,... k.

Existence of solutions to the approximate problem. The existence of @ =
(af,....af) € R* satisfying (4.8) follows from Lemma 8.53. To show that the as-
sumptions of the lemma are satisfied for j = 1,..., k, we define amapping s : Rk — R

as ‘
si(@) = / Alx, ) akvw
Q i=1

Let us define w(@) := Zf:l a'fwi . To show that s is continuous we choose a
sequence {@"}”  such thate” — @ in RX. Then

-Vw/ —F-Vw/ dx. 4.9)
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Isj(@")—sj(a)| = ‘/Q (A (x,Vo(a@")) - A (x,Vo(a))) - VW’ dx

forall j=1,..., k. We define
= (A (x,Vw(a")) -A (x, Vo (a))) - Vw’.

Obviously, we have for almost all x € Q that h’]‘ — 0 as n — oo. Condition (A2e¢)
implies ‘

oM™ (x,c3A(x,Vw(a™)) < M(x,c4Vw(a™)) (4.10)
and

k

k,n
M(x,c4sVw(a™)) < Z %

L

/M(x,C4|a"|Vwi) dx

<k _max /M x,cql@™| VW) dx
which is finite as {@"},  is bounded. From these estimates one deduces the uni-
form integrability of A (-, Vw(a")). As A(-,Vw(a)) € L'(QR>N) and Vw €
L~ (Q;RdXN ), we conclude that h;l is uniformly integrable and thus the Vitali the-
orem provides that s is continuous, indeed

|s(a")—s(a)|<k max |h"|dx—>0asn—>oo

.....

Now, we show that s satisfies (8.6) — the assumption of Lemma 8.53. Employing
(A2e), the Fenchel-Young inequality and Lemma 3.1.14 (ii) we deduce

s(a)~a=/QA(x,Vw(a))-Vw(a)—F-Va)(a)dx

1\

%/QM(x,clvw(a)) dx—M*( ,CIF) dx @.11)

\%

%(Cl||Vw(a)||LM(sz)—1)—/QM* (x%F) dx.

Let us show that
IVw(@)llL,, ) — o as |@| — . (4.12)

We observe that @ — ||Vw(a)l|z,, @) is a continuous function, in particular it is
continuous on the unit sphere S| in RX, which is compact. Thus the minimum of
IVw(@)||L,, (@) on S is attained at some B € S;. We intend to show that

IVoB) i @ >0, (4.13)

and to this end we first assume the contrary that |[Vw(B)||z,, @) = 0. This as-
sumption also implies that HZ -1 /S’ vw! H L@ = =0 and by the Poincaré inequality

[| Zi:llBi w ||L1(Q) 0. Hence necessarily Zk 1,Bkw =0 a.e. in Q, which implies,
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since {w"}{.‘=1 are linearly independent, that ,Bf.‘ =0foreachi=1,...,k, whichis a
contradiction and thus (4.13) holds. We have

V@l @ =lal|[Vo (1)] = leliVo®)i, e

luvie

and thus (4.12) follows easily. For R large enough we obtain that s(a) -a@ > 0 for
la| = R. Consequently, by Lemma 8.53 there is an @ € R¥ satisfying (4.8).

Uniform estimates. We show uniform estimates for {u*}?  and {A (x,Vu*)}2 .
Multiplying (4.8) by ¥ and summing overi = 1,...,k yields
/A(x,Vuk)-Vukdx:/F-Vuk dx. (4.14)
Q Q
Using (A2e) we obtain an estimate
%/M(x,unk)dxs %/A(x,Vuk)-Vuk dx. (4.15)
Q Q
Lemma 2.1.23 (i) and the Fenchel-Young inequality allow us to infer that
/ AF. 9vuk d < /M(x,%Vu") dx+/M* (v 2F) dx
@ @ @ (4.16)

< i‘/QM(x,CIVuk) dx+/QM* (x. £ F) ax.

And thus

%'/QM()C,unk) dx+%/QA(x,Vuk)-Vukdxs/QM*(x,CiIF) dx.

Since the right-hand side of the latter inequality is finite as F € Ep- (Q;RTN), we
infer the existence of u € WéL m (Q:RN) such that

Vuk 5 Vuin Ly, (Q; RPN, (4.17)

as k — oo. Lemma 3.8.2 provides that A(-, Vu¥) is bounded in Ly« (;R4N) and
since M* satisfies the A,-condition it holds that there exists an A € Ej;-(€;RPN)
such that

A, VUM 2 A in Epp- (Q; RPN, (4.18)

Characterization of the limit. We identify the limit function A. Again the assump-
tions on the right-hand side (i) and (ii) require a twofold argumentation. Firstly
employing the convergence (4.18) in (4.8) we have

/A~Vw"dx=/F-Vw“dx (4.19)
Q Q
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foreachi=1,...,k. Multiplying by a{‘ and summing overi =1,...,k we get
/A-Vukdx=/F~Vuk dx. (4.20)
Q Q

Since A € E - (Q;RPN), we obtain using the convergences (4.17) and (4.18)

/A.Vudxsz.Vudx. 421
Q Q

Moreover, the application of (4.17) in (4.14) yields

lim A(x,Vuk)~Vukdx: / F-Vudx. (4.22)
Q Q

k—o0

Let us choose an arbitrary W € L*(Q;R%N). The monotonicity of A combined
with (4.14) yields

()s/Q(A(x,Vuk)—A(x,W)).(Vu"—W)dx
=‘/QF-Vuk—A(x,Vuk)-W—A(x,W)-(Vu"’k—W) dx.

We employ (4.17) and (4.18) to perform the limit passage k — oo in the latter
inequality and use (4.21) to obtain

()s/(A—A(x,W))-(Vu—W) dx. (4.23)
Q

The proof is completed using the monotonicity trick described in Section 4.1.2.

Uniqueness of solutions. We show the uniqueness of a weak solution. Supposing
that u;,up are weak solutions satisfying (4.7), we subtract the weak formulations
corresponding to u; and u, to obtain

/ (A(x,u1) —A(x,m)) - Vo dx = 0 Ve € Wy LM (Q;R™). (4.24)
Q
As we have u; —up € Wy LM (Q;R"), we set ¢ :=u; —uy in (4.24) to get

/S;(A(x,ul) —A(x,llz)) . (Vll1 —Vllz) dx =0.

Then (A3e*) implies V(u; —uy) =0 a.e. in Q. Regarding the zero trace of u; —u,
on AQ we conclude u; = up a.e. in Q. O

The second statement concerns the case when M satisfies the Ap-condition. A
naive idea to show existence of solutions in this case would be to follow the lines
of the proof of Theorem 4.1.2. This however breaks down at the limit passage from
(4.20) to (4.21). We only know that A(-, Vu) € Ly (RPN), and Ly (Q;R*N)
is not the predual space to Ly (Q;RdXN ) anymore. Therefore we cannot use weak-x
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convergence arguments in L, (€2). For that reason the approach is different here
— first a weak solution of the dual problem to (4.28) will be found, and then we
deduce the existence of a weak solution to the original problem. Before starting
this procedure we need to specify how the dual problem is understood here. For the
construction we will use an inverse operator to A, which we shall denote by B, i.e.

A(x,B(¢)) =& foraax e Qandall £ e RN,

Indeed, as A is strictly monotone, it is a homeomorphism on R4*N therefore the
inverse operator exists and is also strictly monotone. Before passing to the existence
theorem let us concentrate on the growth conditions for B that follow from (A2e).
Choosing & = B(n) for an arbitrary n € RN we immediately obtain

M (x,cB(x,n)) <B(x,n) -7, (4.25)
caM* (x,c3n) < M(x,c4B(1)). (4.26)

Again, the overall impediment lies in the possibly that ¢ # c4. We can however
manage in a simpler way here than in the case of the operator A. In particular there
is no need to formulate an analogue to Lemma 3.8.2, as having the advantage of the
Aj-condition for M we can proceed with a simple argument.

As we understand well the behavior of an inverse operator B, we may now
formulate an existence theorem in the case when M satisfies the A,-condition. Note
that the statement here is not fully analogous, in particular solutions are elements of
a larger space, i.e. W&LM (RY) c VOM (Q)

Theorem 4.1.3 Let N > 1, Q ¢ RN be a bounded Lipschitz domain. Assume that
an operator A satisfies (Ale), (A2e), (A3e*) and M : Q x RPN — [0,00) is an
N-function such that it satisfies the Ay-condition. Assume that f = divF and F €
Epn- (RN, Then there exists a unique weak solution to problem (4.1), which is

a function
ue VY (Q) 4.27)

such that
/A(x,Vu(x))-Vgo(x) dx:/F(x)~V¢p(x) dx (4.28)
Q Q
is satisfied for all ¢ € V(;V’ (Q).

Proof. We use the above defined inverse operator B to formulate the dual problem
to (4.28), i.e. we will search for a function T € L4l (Q;R?*N) satisfying

/ B(x,T(x) +F(x)) - (x) dx = 0 for all y € ESY (Q; R*N), (4.29)
Q

Still before concentrating on (4.29), we will discuss why the solvability of (4.29)
directly implies the statement of the lemma. We want to conclude that once we know
that (4.29) holds, then there exists a u € Vé"’ (Q) such that Vu = B(:,T+F) and u
satisfies (4.28). We define an extension
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B(x,T(x)+F(x)) xeQ
0

B(x) ::{ xeRM\Q.

Then (4.29) can be equivalently written as
/ B(x) -y(x)dx=0 (4.30)
RN

for all ¢ € C° (RN ;R¥*N) with divyy =0 in RV,
The de Rham theorem (see Theorem 8.45) yields the existence of a distribution
P such that
B=Vp.

Then Vp = 0 outside of Q, thus p is equal to some constant p in R™ \ Q. We consider
then u := p—p and observe that obviously Vu = Vp, and thus
Vae L'(Q) and u=0 in RV \Q.

These two conditions imply that u = 0 on dQ in the sense of trace. And thus we can
use the Poincaré inequality

lallzi @) < cllVullLiq) = clBllLi q)- (4.31)

The above inequality allows us to conclude that u € W(;’I(Q) and as B e
Ep (QRDN), thus also Va € Ep (QRTN), ie., ue V)M (Q). By the definition
of B we obtain

/A(x,Vu)-Vgodx:/A(x,B(T+F))-Vgadx:/(T+F)~V¢pdx
Q Q Q

forall p € Vé"’ . Once we show that for all such ¢

/T-Vgo:(),
Q

it immediately follows that u satisfies (4.28). Indeed as T € LY. (Q;RYN), it can
be approximated in the weak-* topology by a sequence of divergence-free smooth
functions. And since V¢ is an element of L, (Q;RdXN ), which is a separable space
as M satisfies the Ay-condition, then the weak-* convergence argument is justified.
Hence, let us focus on (4.29). We observe that the space Eg/ilv* (Q;RdXN ) is sepa-
rable since it is a closed subspace of the separable space E - (Q;RdXN ). Thus there

is a linearly independent subset {W'}>, of S (Q;R?*N) such that
span{Wi};.’il II ”LM — E?\,l;i (Q,RdXN)

and the W! are smooth, divergence-free functions for all i € N.
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Existence of solutions to the approximate problem. We will construct Galerkin
approximations to (4.29). Define TX := Zl’.‘:] a{‘Wi for k € N, where a{‘ €R are
chosen in such a way that

/B (x,Tk+F) W/ dx =0 (4.32)
Q
forall j=1,... k.

Let us show the existence of @ = (a’l‘, e, a’lz) e Rk satisfying (4.32). We want to
apply Lemma 8.53 on a mapping s : R¥ — R defined as

sj(@) :/B(x,Tk+F)-Wf dx, j=1,...,k.
Q
First, we show that s is continuous. We define ‘W(a) := Zk { akW’ Let us suppose
that @" — @ in R¥. We observe that for
= (B(x,W(a")+F)-B(x, W(a)+F)) - W’

we have A" — 0 as n — oo a.e. in Q. From (4.40) one concludes the uniform
integrability of B (x, W (a")). We also have

B(x,W(a)+F)eL' (Q;RdXN) and W/ e [® (Q;Rde)

and therefore |h;‘| is uniformly integrable. Consequently, s is continuous since by
the Vitali convergence theorem (Theorem 8.23) we get

Is(@™) —s(a)| < k max Ih” | dx — 0asn — oo.

,,,,,

Next, we verify that s satisfies (8.6) — the assumption of Lemma 8.53. We show that
W (@) +FllL,,. @ — o as |@] — co. (4.33)

We observe that min|q |- [|W(@)l|,,. (@) > 0, which follows from the fact that

{Wi}X | are linearly independent. Since F € Ep- (;RYN), we find Ry > 0 such
F

that ! :lgf” < %minw.:] ||(W.(ﬁ)||LM.* (@ foralla € R¥ with |@| > Ry. Considering

such @ we get by the triangle inequality

W(a)+FlL,. @ 2 IW@)lL,. @ — IFllLy,- @

=1l (Hw(|a|) - ”F”L—M(m)

Lo (Q) ||

1
Elal min [ WALy (-

Hence (4.33) follows. By (4.25) and the Fenchel-Young inequality we have
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s(a)~a=/QB(x,(\/V(a)+F)-’W(a)dx
=/QB(x,’W(a)+F)-(W(a)+F)dx—/QB(x,’W(a)+F)~Fdx
z/QM(x,clB(x,fW(a)m))dx—%/QM(x,clB(x,(W(a)m))dx
- /Q M*(x, F) dx

=%/QM(x,c1B(x,fW(a)+F) dx—/gM*(x,%F)dxz: I

Since M satisfies the A,-condition,

M(x,c1B(x, W(@)+F)) 2 =M (x,2¢1B(x, W(@) +F)) - o -h(x)
for some constant ca, > 0 and integrable function /. Let us now choose k € N

sufficiently large such that
2kc1 > ¢4 (4.34)

and observe that then

C

M(x,c1B(x, W(a)+F)) (%z)kM(x,ch]B(x,’W(a)+F))—Zk: (i)ih(x).
i=1

(4.35)
Using (4.34)—(4.35), Lemma 2.1.23 (ii) and (4.26) we continue the estimate

k .
1 1 Ly
I Zz(Tz)k/QM(x,C4B(x,W(a)+F)dx_/QZI:(@) h(x) dx

(4.36)

The last inequality follows from Lemma 3.1.14 (ii). Then using (4.33) we find R > Ry
such that s(@) -@ > 0 for all @ such that |@| = R. Thus according to Lemma 8.53 we
have the existence of @ satisfying (4.32).
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Uniform estimates. Multiplying (4.32) by aj? and summing over j = 1,..., k yields
/ B(x, T +F) - T dx =0. (4.37)
Q
Applying (4.25) and (4.37) we obtain an estimate
/ M(x,c1B(x, TF +F)) < /B (x,Tk +F) (TF+F) dx
Q Q

=/QB(x,Tk+F)-Fdx,

whereas the right-hand side can be estimated with the help of Lemma 2.1.23 (i) and
the Fenchel-Young inequality

/C—Z‘B(x,Tk+F)-%Fdx
Q

S/Q%M(x,clB(x,Tk+F)) dx+/QM* (x. 2F) ax.

(4.38)

(4.39)

And thus

%/QM(x,clB(x,Tk+F)) de/QM* (v 2F) ax, (4.40)

where the right-hand side is bounded since F € E ;- (Q; RPN,

Hereafter we follow estimates (4.35) and (4.36), again observing here the utility
of the A-condition assumed for M. Thereby, with the same notation as above, we
infer that

s [ M (reea(1 ) dr < /Qi () b awe [ 28) o
4.41)

Since the right-hand sides of ineq_ualities (4.40) and (4.41) are finite, we infer the
existence of T € L%ﬁ,"* (;RN) and B € Ej (Q;R¥N) such that (note here that for
(4.42), we use the fact that M satisfies the A,-condition)

T* +FST+F in Ly (QRON),

- (4.42)
B(-.-T*+F)=B  in Ep (Q;RDN).
Employing the convergence (4.42), in (4.37) we have for all i € N
/ B-W'dx=0. (4.43)
Q

Consequently, since {W'}?, forms a basis we also have for all W € E. (Q;R¥*N)
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/]_S-dezo. 4.44)
Q

Thus to prove (4.29), it remains to identify W.
Multiplying the i-th equation in (4.43) by af‘ and summing the result over i =

1,...,k yields
/B-(Tk+F)dx=/B-Fdx.
Q Q

We apply the convergence (4.42);, which is possible since B € Ly, (Q;R¥>*N) =
Ey (Q;RdXN ) as M is assumed to satisfy the A-condition, to obtain

/1§~de=0. (4.45)
Q

Let us identify B with the help of the variant of Minty’s trick for nonseparable and
nonreflexive function spaces. First, using the monotonicity of B and (4.37) we get

0s/Q(B(x,TMF)—B(x,W))-(Tk+F—W)dx
=/B(x,Tk+F)-(F—W)—B(x,W)-(Tk+F—W)dx
Q

for an arbitrary but fixed W € L*(Q;R?*N). Then performing the limit passage
k — co in the latter inequality and using (4.42) and (4.45) we arrive at

Os/B~(F—W)—B(x,W)-(T+F—W)dx:/(B—B(x,W))-(T+F—W)dx,
Q Q

(4.46)

which corresponds to (4.5) in Theorem 4.1.1. Therefore B = B(T+F) a.e. in Q.
Step 6: One easily obtains uniqueness of a weak solution. Supposing that u;, u,
are different weak solutions of (4.28), we get after testing the difference of weak

formulations for u; and u, by the difference u; —u,, which is a proper test function
in (4.28) as uj,wy € V' (Q), that

/ (A(x,Vuy) —A(x,Vuy)) - (Vu; = Vup) dx =0.

Q

Since A is strictly monotone, we have V(u; —up) =0 a.e. in Q and the zero trace of
u; —up on 9Q implies u; =uy a.e. in Q. 0O
4.1.4 Elliptic problems via the modular density approach

This section presents the method of showing the existence of weak solutions in the
case when there is no information on the growth of an N-function or its conjugate
in the second variable, but under control on an N-function implying that the smooth
functions are dense in the modular topology in the space where the solution is
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expected. Density in the Sobolev-type space is elaborated in Section 3.7 under
conditions (Me) or (Me),, that prescribe balance of the modulus of continuity of M
with respect to the first variable with its growth with respect to the second one. To
provide the existence of weak solutions in this case, we use the result of [263] based
on the ideas of Gossez [173], as is done in [178] — via a regularized problem. The
result of [263] provides the existence to a problem in the isotropic Orlicz—Sobolev
setting (with the modular function depending on the norm of the gradient of solution
only). To avoid introducing overwhelming notation, we recall here only a direct
consequence of results of [263, Section 5] important for the case considered here.

Corollary 4.1.4 Let Q be a bounded open domain in RN and m : [0, 00) — [0, c0)
be a homogeneous and isotropic N-function. We consider a Carathéodory function
a: QxRN S RN which is strictly monotone, i.e.

(a(x,fl) —a(x,§2)) (£1-&)>0 foraa.xeQandall & #& eRY

and satisfies growth and coercivity conditions: for some Cy,C1,Cy > 0, a.a. x € Q,
and all € e RN

Com(lé) <a(x.é)-&  and  |a(x,&)| < Ci() ™ (M(CED).  (4.47)

Then the problem

{—diva(x, Vv)=g e L®(Q) inQ, (4.48)

v(x)=0 on 0Q,

has at least one weak solution v € W(} L#(Q).

Proof. To apply [263, Theorem 5.1], one has to ensure that the operator is pseu-
domonotone, which we get via [263, Theorem 4.3]. It suffices to verify the assump-
tions [263, (A) — (A3)] therein. Note that [263, (A )] requires a to be a Carathéodory
function, [263, (A»)] coincides precisely with (4.47), whereas [263, (A3)] is just the
monotonicity. |

The following theorem, only for simplicity, is formulated in the scalar case and
under assumption (A2¢)*. These various simplifications in formulation, that seem
not to be optimal, on one hand improve readability. But on the other hand, they serve
to present the existence result for a problem with bounded data in such a way that
is useful in the next chapter on renormalized solutions as an approximation for a
problem with merely integrable data.

Theorem 4.1.5 Suppose a: QxRN — RN satisfies assumptions (Ale), (A2¢)* and
(A3e) with an N-function M : QxRN — [0, 00), and g € L*(Q). Moreover, assume
that M satisfies assumption (Me) or (Me),. Then there exists a weak solution to the
problem

—diva(x,Vu)=¢ in Q,
u(x)=0 on 0Q,

Namely, there exists a u € W(;’l (Q) such that Vu € Ly (Q;RN), for which the fol-
lowing formulation
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/a(x,Vu)~V<p dx =/g<p dx (4.49)
Q Q

holds for all ¢ € C2(Q). Moreover, a(-,Vu) € Ly (;RN).

The proof is given at the end of this section.

Remark 4.1.6. The proof heavily relies on density results from Section 3.7. Thus,
following Remark 3.7.11 in that section, we also notice here that instead of assuming
(Me) or (Me),,, we could assume (Me)*, which is less restrictive in the case p < N
and N > 1, see Remark 3.7.11 for detailed formulation.

Remark 4.1.7. In fact, Theorem 4.1.5 can be formulated under the assumption that
there exists an F : Q — RN such that g = divF and F € E;+(Q), which is less
restrictive than assuming that g € L*(Q). Indeed, observe that if Q is bounded, then
g € L*(Q) implies that g € L”(Q) for some p > N. Assume for the moment that
fg g dx =0. Then by Lemma 8.57 there exists an F such that

IFllwrr @) < cllglliLr @

and div F = g. Since W7 (Q) c L*(Q), then F € L*(Q) and thus also F € E ;- (Q).
Notice that if /Q g dx # 0 then we can rewrite the problem as follows

divF =g—-ga+ga
with go = [ g(x) dx and then divide it into solving two problems
divFi=g-go and divF,=gqo

with F = F| + F,. For the first one we apply the procedure previously described,
as the integral of the right-hand side already vanishes. The second problem can be
solved immediately. Since gq is a constant, then F(x) = gox; is an example of a
solution.

To prove Theorem 4.1.5 we consider the regularized problem posed in an isotropic
space. Let m : RV — R be an isotropic function, i.e. m (&) = m(|£|) with some

m : [0,00) — [0, 00),

that grows significantly faster than M (see Definition 3.2.3). Note that since 2 has
finite measure and m grows significantly faster than M, by Proposition 3.2.4 we have
that

Lin(Q) C Ep(L).

Recall that we use the notation V for a gradient with respect to the spatial variable.
Let us also introduce the notation V¢ := V. Using it

Vem(§) =Vem(|§]) = m’ (16)/1€].

Observe that due to Remark 2.1.33 this gives equality in the Fenchel-Young inequal-
ity in the following way
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Vem(§)-& =m(§]) +m* (IVem(8)]). (4.50)

Taking an arbitrary N-function m (&) = m(|£|) which grows significantly faster than
M we observe that m is strictly monotone as a gradient of a strictly convex function,
i.e. for all £,7 € R it holds that

(Vem (&) =Vem(n)-(§—n) > 0. (4.51)

The following proposition yields the existence of solutions to a regularized problem.
Note that the constructed solution is in a classical isotropic Orlicz space W' L;(Q),
see (3.54).

Proposition 4.1.8 Assume a vector field a: QxRN — RN satisfies assumptions
(Ale), (A2e)* and (A3e) with an N-function M : QxRN — [0, ), andm : [0, 00) —
[0,00) is an isotropic N-function such that m(&) = m(|¢]), where m € C'(RN)
satisfies (4.51) and grows significantly faster than M. Moreover, let

M(x,&) <m(|€])  forevery £ eRN and a.a. x € Q,
and g € L*(Q). We define a regularized operator as
ag(x,&) :==a(x,&)+0Vem(&) fora.a.x €Q andall &€ eRYN. (4.52)

Then for every 6 € (0, 1] there exists a weak solution to the problem

—divag(x,Vu?) = g inQ,
{ u?(x)=0 on 0Q. (4.53)
Namely, there exists a u® € W(;’l (Q) NW!Liz(Q) such that
/ag(x,Vug) Vo dx = /ggo dx forall g e C2(Q). (4.54)
Q Q

Proof. We apply Corollary 4.1.4. By the comments before the statement, it suffices
to derive (4.47) from (A2e)*. Indeed, we will show

2
=€

jag (x.6)] < 2 (")~ (m( )) (4.55)

Using the Fenchel-Young inequality (2.33), the convexity of m", and since c,,0 €
(0,1], we have

ag(r.8)-¢ <7 (| 2€)) +7 (| Sa0(x.8))
< m(|l§|) + ¢t (|%ag(x,§)|) .

On the other hand, Lemma 2.1.37 implies that " (x,&) < M*(|¢]) for every &€ € RV
and a.a. x € Q. Therefore, when we take into account (A2e), (4.50), the convexity of
m”, and drop positive terms we obtain
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ag(r,6) £ 2 M (x.6)+Vem(£) €
> caM* (x,a(x,&)) +6m (|]) +0m" (|Vzm(£)])
> 2cq (371" (la(x. ) + 57" (|0Vem(©)]) )
> D¢, (% |ag(x,§)|).

Merging both of the above observations, we get
L= 1 — (|2
caln (5 |a9(x,§)|) <m (|:§\) .

By convexity of m" we get (4.55) and therefore due to Corollary 4.1.4 we arrive at
the claim. O

Below we prove Theorem 4.1.5. The general idea to get the existence of weak
solutions to the problem with bounded data (4.49) is to apply Proposition 4.1.8 and
let & — 0.

Proof (of Theorem 4.1.5). We prove a priori estimates, interpret them as inferring
certain types of convergence, and conclude the proof using the monotonicity argu-
ment.

A priori estimates. We fix ¢ € Wé L7#(Q). According to the classical isotropic
version of the approximation theorem due to Gossez (Theorem 8.35) we consider an
approximate sequence {¢s}s C C2°(£2) such that

0s ;—m—()—) ¢ modularly in the isotropic Orlicz space W' L(Q).

Using the estimates on the growth of ag, (4.54), and Lemma 3.4.7 we get
/ag(x,Vug)-V¢dx= lim/ag(x,Vug)-V¢5 dx = lim/ggo(g dx:/g<p dx.
O -0,/ -0,/ Q

Thus, we can use u? € Wé L7#(€) as a test function in the weak formulation (4.54)
to obtain

/(a(x,Vu9)+«9V§m(Vu9))-Vuedxzfgue dx. (4.56)
Q Q

By (A2¢) and (4.50) we get

/M(x,Vu9)+/0m(Vu0)+9m*(V§m(Vu9))dxS/guedx. (4.57)
Q Q Q

To estimate the right-hand side we are going to apply the Fenchel-Young in-
equality (2.33) and the modular Poincaré inequality (Theorem 9.3) with constants

ch,c%, > 0. For this let us consider an N-function p : [0,00) — [0, 0) given by

P(s) = shmi(s)
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with m; being a minorant of M from the definition of an N-function. Then on the
right-hand side of (4.57) we have

/qu‘)dxdtsfg (il)dx+/p(c},|u9|)dx

SLP*('%')M+C§/p<|vu0|)dx

s/g (i}D ) dx+ = /M(x Vu?) dx.

Consequently, we infer that (4.57) implies

.c

1 . *
3 [ meTuy+ [ om(Tug) som’ (Vem(Vulh) ax < 0y (lglln /) =€
Q Q

Note that the right-hand side above is bounded since g € L*(£2). This observation
implies the following a priori estimates

1
—fM(x,Vue)deC s
2 Ja

(4.58)
/Gm*(ng(Wugl)) dx < C.
Q
Moreover, according to (A2e)* we have
Ca / M*(x,a(x,Vu?)) dx < C,. (4.59)
Q

Existence of weak limits. The Banach—Alaoglu Theorem (Theorem 8.31) states
that {VMH}QE(()’]) is weakly-* compact in L,;. The Dunford—Pettis Theorem (The-
orem 8.21), and the fact that M is an N-function (Definition 2.2.2) imply that
{ue}ge(oyl) is equiintegrable in Wé ‘1(Q). Therefore, there exists a subsequence of
6 — 0, such that
u?—=u  weaklyin W"'(Q), (4.60)
Vu® 5 Vi weakly-+in Ly (QRN), (4.61)
with some u € W(%’I(Q) with Vu € Ly (Q;RY) and, due to (4.59), there exists an
@ € Ly (S;RYN) such that

a(-,Vu?) “a weakly-+ in Ly (Q;RN). (4.62)
Identification of the limit . To use the monotonicity trick, we need to show that

1imsup/a(x,vu")-vu9dx < /a~Vu dx. (4.63)
6—0 Q Q
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Recall the weak formulation of the regularized problem (4.54). We will motivate
that on the left-hand side the term corresponding to the second part of ay, see (4.52),
vanishes. Namely we will show that

0|V em(Vu?)| —0 in LY(Q) (4.64)

by the Vitali convergence theorem (Theorem 8.23). For its application we need to
infer uniform integrability and convergence in measure to 0.

Since m* is an N-function, for 6 € (0,1) we have m*(8s) < 6m*(s). This to-
gether with the L'(€)-bound (4.58) for Qm*(me(Vug)), which is uniform with
respect to 6, we get an L'(Q)-bound for {m*(6V ¢m(Vu?))}gc(o.1). Therefore, de
la Vallée Poussin’s theorem (Theorem 3.4.2) implies the uniform integrability of
{0V em(Vu?)}geo.n)-

To show convergence in measure to 0 in (4.64), we suppose the opposite, i.e. that
there exist y1,7y2 > 0 such that

liminf | {x : 0|V em(Vu?)| > y1}| > 72.
On the set {x: 0|Vem(Vu?)| >y} we have
Om* (%) < Om” (|V§m(Vu0)|).

Note however that since m™ is an N-function we have

* (Y1
L1y mt (%)
om (?) N (4.65)
On the other hand,
729m*(%) g/em*(mm(vu@ﬂ) dx < C,. (4.66)
Q

where the last inequality is a consequence of (4.58). The convergence (4.65) con-
tradicts the estimate (4.66) and, in turn, we can apply Vitali’s convergence theorem
(Theorem 8.23) to justify the convergence in (4.64).

Therefore, we can pass to the limit in the weak formulation of the regularized
problem (4.54). Because of (4.62) we obtain

/a~V<,0dx:/ggodx. 4.67)
Q Q

When we get rid of the nonnegative term /QQV em(Vu?)-Vu? dx in (4.56) and then
pass to the limit as 6 \, 0, we get (4.63).

To prove
a(x,Vu) =a ae. in Q, (4.68)

we notice that (4.67), monotonicity assumption (A3e), and (4.63) imply
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/(a(x,n) —a)-(n—Vu)dx >0. (4.69)
Q

Therefore, we are in a position to apply the monotonicity trick (Theorem 4.1.1) with
A =a and &€ = Vu to get (4.68).

Conclusion. We pass to the limit in the weak formulation of the bounded regularized
problem (4.54) due to (4.60), (4.61), (4.62), and (4.68), obtaining the existence
ofu e Vé"’ (L) and satisfying (4.49), which ends the proof. O

4.2 Parabolic equation

We study the problem

Ou—diva(t,x,Vu) = g(t,x) inQg,
u(t,x)=0 on 0Q, (4.70)
u(0,x) = up(x) in Q,

where [0,7) is a finite interval, Q is a bounded Lipschitz domain in RN, Qp =
(0,T)xQ, N> 1, g€ L(Qr), ug € L°(Q), and a: [0,7) x QxRN — RV is
controlled by an anisotropic modular function M inhomogeneous in space and time,
that is

M :[0,T) x QxRN — [0, 0).

The function spaces where the solutions are expected are defined and discussed in
Section 3.6. Let us recall only
VM (Q) :={ueL'(0,T;W,"' () : Vue Ly (Qr:RV)},
VR(Q) = {u € L= (0,T; L2 () N L' (0,73 W, (Q)) : Vu € Ly (QrsRY)}
=VM(Q)NLY(0,T; L*(Q)).

The problem is considered in spaces where the modular function M is regular enough
so that the Lavrentiev phenomenon does not occur.

4.2.1 Assumptions on the operator

We consider (4.70) with a having growth and coercivity described by means of an N-
function M : [0,T) x QxRN — [0, o). An N-function is defined in Definition 2.2.2,
while its conjugate M™ in Definition 2.1.28. We assume that a satisfies the following
conditions.

(Alp) a:QrxRN RN isa Carathéodory function;
(A2p) There exists an N-function M : [0,7) x @ xR — [0,00) and a constant
ca € (0,1] such that for all £ € RN we have
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caM™ (t,x,a(t,x,&)) < M(t,x,£) and M(t,x,&) <a(t,x,£)-&;

(A3p) Forall £,n € RN and a.a. (,x) € Qr we have

(a(t’x’é:) —a(t,x,n)) . (f—n) > 0.

Remark 4.2.1. Conditions (Alp)—(A3p) correspond to the assumptions for the el-
liptic problem (Ale)—(A3e) in Section 4.1.1 and their meaning can be discussed in
precisely the same way. We stress that they extend classical growth and coerciv-
ity conditions and keep anisotropy. Recall that the meaning of condition (A2e) is
discussed in detail in relation to other conditions appearing in the literature in Sec-
tion 3.8.2. For clarity of presentation we provide the analysis with one constant c,
only, but by the ideas of Lemma 3.8.2 one can carry out the analysis under parabolic
counterparts of (3.88) and (3.89) with arbitrary c,c3,c3,c4 > 0.

4.2.2 Approximation in space

In this section we concentrate on the first approximation result, called here ‘Ap-
proximation in space’ to distinguish it from the more delicate goal of Section 5.3.2,
which will be needed for the existence of renormalized solutions. As in the elliptic
case, we study spaces equipped with M with general growth and later with at least a
power-type growth. To describe its local behavior we make use of

My,0(€) :=essinfrernpo,r) M (t,x,) (4.71)
erﬂ§

defined for some interval I C [0, o) and cube Q c R" and recall that (M 1,0)" (€)=
((M1,0(€))")* stands for the second conjugate, see (2.36). Recall that the second
conjugate of a function is its greatest convex minorant (Corollary 2.1.42). This part
is a refinement of approximation results of [80] applied therein as well as in [81].

In correspondence to related assumptions provided in Sections 3.7.1 and 3.7.2 in
order to study elliptic problems, we investigate parabolic problems under condition
(Mp) or (Mp),, defined below.

4.2.2.1 Parabolic condition I (general growth)

Anisotropic case
For an N-function M : [0,7) x QxRN — [0, c0) we consider the following assump-
tion.

(Mp) There exists a function © : [0,00)> — [0, o) nondecreasing with respect to
each of the variables, such that
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limsup©(8,6™V) < oo, 4.72)
6—0t

which expresses the relation between M (t,x,£) and My o(€). Namely, we
assume that there exists a 5o > 0, such that for every interval / C R such that
|I| < 8 < &, and every cube Q c RN with diamQ < 46VN

M(t,x,£)
—(MI,Q)**({?) <0(9,[¢]) (4.73)

forae. r€l,ae.x€QNQ, and for all £ e RN : |¢| > 1, where (M/,0)** is
the second conjugate to the infimum from (4.71), which by Corollary 2.1.42
coincides with its greatest convex minorant.

Isotropic case
For an N-function M : [0,T) x QX [0,c0) — [0, c0) we consider the following as-
sumption.

(Mp') There exists a function ©' : [0,00)2 — [0, 00) nondecreasing with respect to
each of the variables, such that

limsup®(6,6™) < oo, (4.74)
o0—0*

and for a.a. t,7 € [0,T] and x,y € Q we have

M(t,x,s) :
Mirys) <O (t—rl+csplx—yl.s). (4.75)
Let us pass to a wide range of examples within our setting. Their proofs follow
the same lines as in Example 4.2.2.

Example 4.2.2. We have the following examples of pairs M and O satisfying (Mp)
and thus being admissible in our results on the density of smooth functions which
will appear later.

o Orlicz. If M (t,x,&) = M (&), i.e. it is independent of 7 and x, then it satisfies (Mp)
with @(,s) = 1. The fully anisotropic case is included.

e Variable exponent. Suppose that M, (,x,s) = [s|?"Y, 1 < p_ < p(-) < p.(-) <
p. < oo, satisfies (Mp) with O(t,s) = max{s®(?,s D} where w(r) =
c¢/(log(1/7)) is the modulus of continuity of p, see (3.58). This is ensured when
p is log-Holder continuous.

e Borderline double-phase. When M = |£|P +a(t,x)|&|P log(e+]|&]) with1 < p < o0
and possibly touching zero weight a : Qr — [0,00), we can take © as in (3.59).
Then (Mp) is satisfied for a log-Holder continuous a, cf. [191, 24].

e Orlicz double-phase. Suppose M (t,x,&) = M (€) +a(t,x) M, (€) where M, M,
are (possibly anisotropic) homogeneous N-functions (without prescribed growth)
such that M, (&) < M, (&) for £ e RN with |£] > 1, the function a : Q7 — [0, ) is
bounded and has a modulus of continuity denoted by w,. Then we can consider ®
as in (3.60) and (Mp) is satisfied if
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My(s7N)

limsupwu(é) m

60—0

< 00,

where M, (s) :=infs. | |=s M1 (£) and My(s) := SUP . |£)=s M2 ().
e Musielak—Orlicz. If M has the form

K
M(t,x%,8) = ) k()M () + Mo(.x, €D, K €N,
J=1

where M, satisfies (Mpi), all M; for j=1,...,K are N-functions and all k;

are positive and satisfy ’,:jg;c; <CiO;(|t=s|+csplx—y|) with C; >0 and ©; :

[0,00) — [0,00) and ®; € L™ for j =1,...,K, then we can choose

K
O(r,s) = Z O;(r)+0(r,s) with litl;ns(;lp®(6,67N) < 0o,
J=1 -0

4.2.2.2 Parabolic condition II (at least power-type growth)

We concentrate here on modular functions dependent on the time and space variables
that have at least power-type growth, i.e. if

M(t,x,s) = c|s|? with p>1land ¢ > 0.
Let us recall that M; o is defined in (4.71). We consider the following balance
conditions.

Anisotropic case
For an N-function M : [0,T7) x QxRN — [0, c0) we consider the following assump-
tion.

(Mp),, For & € RN such that |£] > 1,
M(t,x,&) = cgr|é]P with  p>1land cg >0 (4.76)

and there exists a function ®, : [0, c><>)2 — [0, c0) nondecreasing with respect
to each of the variables, such that (4.73) holds with

limsup®, (5,67 ) < co. 4.77)
o0—0*

Isotropic case
For an N-function M : [0,T) X QX [0,00) — [0, c0) we consider the following as-
sumption.

(Mp'),, There exists a function G)i, - [0,00)% = [0, 0), nondecreasing with respect
to each of the variables, satisfying
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limsup®', (8,6 N/7) < oo, (4.78)
6—0*

such that for all s > 1 and for a.a. ¢, € [0,T] and x,y € Q,

M (t,x,s) “4.79)

Moy < @i, (It=rl+csplx=yl,s).

{M(t,x,s) > cgr P with p > 1land cg >0,

Let us pass to a wide range of examples within our setting.

Example 4.2.3. We have the following examples of M satisfying (Mp), and thus
being admissible in our results on the density of smooth functions.

e Double phase. Suppose M = |£|P +a(t,x)|€|9 with 1 < p,g < oo and a function
a:Qr — [0,00) is such that a € C%?(Q7) and possibly touching zero. We can
take © as in (3.62) and (Mp),, is satisfied if ¢/p < 1+«/N.

The range of parameters is sharp for regularity of minimizers [98].

e Variable exponent double phase. Suppose M (z,x,&) = |£|P %) +a(t,x)|£]9¢)
with p,q : Qr — (1,00) such that 1 < p_ < p(t,x) < q(t,x) < g+ < oo and a
function a : Q7 — [0, 00) is such that a € C%(Qr) and possibly touching zero.
We can take O as in (3.64) and (Mp),, is satisfied if

ap-
sup (q(t,x)—p(t,x))s—N .
(t,x)EQT

e Orlicz double phase. Suppose M (¢,x,&) = M{(€) +a(t,x)M»(€), where My, M,
are (possibly anisotropic) homogeneous N-functions (without prescribed growth)
such that |£|P < M (£) < M, (&) for & such that || > 1, and moreover the function
a: Qr — [0, 0) is bounded and has a modulus of continuity denoted by w,. Then
we can take © as in (3.60) and (Mp),, is satisfied if

My(6~N/P
1imsupwa(5)2(—N) <
6—0 M](a_ /p)

>

where M (s) :=inf¢. | ¢=s M1 (&) and Ms(s) = SUP&. | £]=s M2(§).

4.2.2.3 Between isotropic and anisotropic conditions in the parabolic case

Exactly the same method as in the proof of the elliptic analogue (Theorem 3.7.4)
leads to the simplification of anisotropic condition (Mp) (resp. (Mp),) to its isotropic
counterpart, namely (Mp') (tresp. (Mp'),,).

Theorem 4.2.4 Isotropic conditions are sufficient to get their anisotropic versions.
That is, if M satisfies (Mp'), then M satisfies (Mp); and if M satisfies (Mp') p» then
M satisfies (Mp) .
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This theorem is a direct consequence of the following geometrical observation,
which can be proved by the same arguments as Proposition 3.7.5. Note that the
corresponding statement for anisotropic M is false in general, cf. Remark 3.7.6.

Proposition 4.2.5 Let Q be an open subset of RN, M 1,0 be defined by (4.71), and
an N-function M satisfy (Mp®) or (Mpi)p. Let &€ > 0 be an arbitrary (small) number.
Then, for a.a. t,r € [0,T] and a.a. x,y € Q, such that |t —r| +csp|x—y|N <e&/2we
have

M(ﬁ)’»s) i 2
—(MI,Q)**(S) <4(0'(g,s5))". (4.80)

4.2.2.4 Approximation in space

The approximation in space follows the scheme of [79] modified by ideas of [7].
Unlike [304] we do not require M* to satisfy a balance condition of the type (Mp) or
(Mp),,. Recall that (Mp) is given in Section4.2.2.1, whereas (Mp) , in Section4.2.2.2.

Theorem 4.2.6 (Approximation in space) Suppose Q is a bounded Lipschitz do-
main in RN and an N-function M : [0,T) X Q — [0, c0) satisfies condition (Mp)
or (Mp),,. Then for any ¢ € V;VI’W(Q) there exists a sequence

{es}s50 € L¥(0,T;C (),

such that for 6 — 0

s — ¢ strongly in L'(Qr) and Vs M, Vo modularly in Ly (Qr;RN).

Moreover, there exists a ¢ = c(L2) > 0, such that ||¢sl|L~(q) < cll@llL~(Q)-
By virtue of Theorem 4.2.4, the above result has a simple isotropic version.

Theorem 4.2.7 (Approximation in space — Isotropic case) Let Q be a bounded
Lipschitz domain in RN and an N-function M : [0,T) x Q — [0, c0) satisfy con-
dition (Mp') or (Mp'),,. Then for any ¢ € V%V[’OO (Q) there exists a sequence

{¢s}s>0 C L¥(0,T;C2 ()

such that for 6 — 0

s — ¢ strongly in L'(Qr) and Vs M, Vo modularly in Ly (Qr;RN).

Moreover, there exists a ¢ = c(Q) > 0 such that ||¢s|l =) < cllollL=()-

To deal with the approximation in space we construct an approximate sequence
based on the convolution, then we provide a uniform estimate on a star-shaped
domain to be in a position to prove Theorem 4.2.6.

Set ks :=1—26/R as before in (3.71). For a measurable function

£:[0,T)xRY - RV, such that suppé € [0,T] xQ,
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let us define

Soé(tx) = /Q ps(x=yE(t.y/ks) dy, @381

where ps(x) = p(x/6) /6" is a standard regularizing kernel on R (i.e. p € C®(RV),
suppp cC B(0,1) and fgp(x)dx =1, p(x) = p(—x)), such that 0 < p < 1. For suffi-
ciently small § > 0 of course Ss¢ € C2°(RY;RY). By the very definition S 5 preserves
the L*-norm.

Proposition 4.2.8 Suppose M : [0,T) xQ — [0, c0) is an N-function satisfying con-
dition (Mp) or (Mp)p, and Q is a bounded star-shaped domain with respect to a
ball Bg for some R > 0. If Ss is given by (4.81), then there exist constants C,51 > 0
independent of § such that for all 6 < 6y and all € € Ly (Qr;RN) we have

M(t,x,Ss&(1,x)) dx dt s/ ma (1€ (2,x)]) dxdt

Qr {mi(1£) <1}

+C/ M(t,x,£(t,x)) dx dt, (4.82)
Qr

where m,my are the minorant and majorant, respectively, of an N-function (see
Definition 2.2.2).

Proof. We present the proof only in the case when Q is a star-shaped domain with
respect to a ball centered at the origin. For the general case one should change
variables moving the center of Bg to the origin, then proceed with the proof as
below, and then reverse the change of variables.

Fix an arbitrary € € L v (Qr;RN). We note that under assumption (Mp) without
loss of generality it can be assumed that

€1l 0,721 @) < 37 (4.83)

On the other hand, if (Mp), is in power, we may assume that ||&|| =0, 7.7 () < €
with absolute constant ¢ > 0 (we will choose it soon). We notice that

M (t,x,Ss&(t,x)) dxdt < / M(t,x,Ss&(t,x)) dxdt

Qr {M(-..5s8)<1}

+/ M (t,x,Ss&(t,x)) dxdt

(M(-,S5€)21)

< / ma (1S 5€(1.)]) dudr
(i (ISs£() <1}

+/ M(t,x,Ss&(t,x)) dxde
(M, Ss£() 21}

= ls+Js.

To deal with |s we notice that {m(|Ss&(+)]) < 1} = {ma(|Ssé()]) < ¢} for ¢ =
my o ml‘1 (1) and we have the following pointwise estimate

ma(1SsEC) DL (m, (155 (<13 (1) S c.
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Hence, by Lebesgue’s dominated convergence theorem we have

lim sup 5 = lim sup / ma(1Ss&(1,x)]) ddr
S\0 SN0 JS{m(|Ss&1) <1}

- / my(|£(2.2)]) dxdr. (4.84)
{mi(1&£) <1}

Thus, we concentrate now on Js. For 0 < § < R/2 it holds that
ksQ+6B(0,1) Cc Q,

see (3.75). Further we consider only ¢ sufficiently small that Ss¢ € L*(0,T; C2° (£2)).

We split the domain Q into small cubes and the time interval into small pieces
with uniformly controlled size. Then we will use assumption (Mp) (or (Mp),) on
each small time-space cube separately. We fix 0 < § < R/4 and define families of
sets {Q?}jy:“l and {/ f}f\g having the following properties. By {If}fg we denote a
finite family of closed subintervals Il.‘S C [0,T] of length not greater than ¢, such that

i 1°7i+]

N§
19 =[t5,19 and  [0,T]= Ulf.
i=1

Let {Q;.S}j.vjl be a family of N-dimensional cubes covering the set Q, having edges
of length 26, and such that

Ns
intQ;-sﬂinthz(D fori#j and QC UQ?.
=1

With each cube Q¢ we associate the cube Q 9 centered at the same point ¢ j and with
parallel corresponding edges of length 46.
By condition (Mp) or (Mp),,, the relation between M (¢,x,¢) and

M{;(8) = essinf, s cgonM (13,6 (4.85)
can be expressed as
M
% <06, [4D), (4.86)
(M7 (&)

holding for a.e. (¢,x) € Il.‘s X Q;.S and all £ € RN with |£| > 1, where by (Ml.‘?j)** &)=
((Ml.‘? ; (£))")* we denote the second conjugate of Mf Iz Recall that by Corollary 2.1.42
it coincides with the greatest convex minorant of M l.‘f .

We split the domain into small pieces and, since M(t,x,&s5(t,x)) > 0 in
{M(-,-,&5) = 1}, we may multiply and divide by (Ml.‘fj)** to write the left-hand
side of (4.82) in the following way
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T
Ns Ns

do= 2 [ ] M SN L gy dedr
i=1 j=1 /17 Jojna

NI N
LI M(t,x,Sa(f(t,x))) S dxd
E M?. S > 1 »Es) 2 :

i=1 j=1 /If/;smsz (Mi(?j)**(sé(f(t,x)))( z,]) (SsE@X)NL (M., 521} d

(4.87)

We shall now show that

M(t,x,S(;(f(t,x)))
(M) (Ss(£(t,x)))

(4.88)

for sufficiently small § > 0, x € Q? NQ, t e Il.‘s N [0,T], with C independent of
d,t,x,i,j and £. To get it we fix an arbitrary cube and subinterval and take (z,x) €
19 Q? . For sufficiently small 6, due to (4.86), we obtain

M(t,x,S(g(f(t,x)))
<0(,|S , . 4.89
12 (Ss(e ey 0o (459

To estimate the right-hand side of (4.89) we make use of the definition of Ss given
in (4.81). In fact, for any (z,x) € Q and each § > 0 we have ps(x —y) < 1/6V.
Having (4.83), we observe that

1 Ky ~
1850101 < 57 [ (03 /ka)] dy < SR Elmo ey <07, (490

Note that in the case of (Mp),, we just estimate |Ss&(f,x)| < 6~N/P using the Holder
inequality. Indeed,

1 » p-l
P o 1
p p-l —_— o .
[Ss&(t,x)] < (‘/QE(I,)’/KSN dy) (/ng dY) < =SN/p €N L= 0,717 ()
_N
<é P,

where we chose ¢ for the second inequality to hold. The last estimate is true, as we
used ¢ as the normalization constant.

We apply these estimates in (4.89). When we recall (4.72) (resp. (4.77) in the case
of (4.76)), we obtain for all 6 < §; with some §; > O the estimates

M(t,x,55(£(1,x))) <00, Vy<cC
M) (Sa(eon ~ ’

M(t.x.85(£(1.%))
(M) (S5(£(1.x)))

which completes the proof of (4.88).

<056 NPy <,

resp
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Let us go back to (4.87). We apply (4.88) to obtain
Js =

NI N
M(t,x,S85(£(t,x))) 5 yre(g 1 dxd
lel/15-/Q.5r1$2(Mi(,sj)**(sé(f([,)«?)))(Ml,]) (Ss(E@ N (.. £5)21) dudr

NY N

<cy >, (M )™ (S (£t X)L (01 )21} dxdr =2 .
=1 1°J0%nQ /

J=1

In order to apply Jensen’s inequality we carefully change the domain of integration
by writing an indicator of relevant cubes. Let us recall that Q}S is an expansion of

the cube Q;.s with the same center. We have

BB 8, L ([ el 2] gt

lljl

CZZ/ " (M?) (/0 )Pé()’)f(t’xk;;)]lgfng(x) dy)dxdt

tljl

<CZZ/ﬁ RN( i) (‘/RNP(S(Y)S(f,XK;;)]lQ}sm(x—y) dy) dxdr

l]_/l

= 5.

Further, the right-hand side above can be estimated with the use of Jensen’s inequality
by the following quantity

Ni N
G233 [ [ [ o0 (e 52 1gpmate-n) avarar

i=1 j=1

(sN&

<C”p6“L'(B(06)RN)ZZ// (M(S **( ( ) QémQ(Z)) dzde

i=1 j=1

<Ci§/6/ (M?)) *( (,é))dzdt::.%.

i=1 j=1

We applied above Young’s convolution inequality (Lemma 8.26), the uniform bound-
edness of ps, and once again the fact that (Mi‘sj)** (¢) =0if and only if £ = 0. Since

(Mi‘fj)** is the (greatest convex) minorant of ij (see Corollary 2.1.42), we know
that for every ¢ € Il.‘s, w e Qf N, and every vector & € RY it holds that

(M) (&) < MP () < M(1,w,&).
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Thus we can estimate

T
Ns Ns

B<c / M.‘S-( (z,i))dzdt
° ZZ 12 Josna i (& Ks

i=1 j=1"1i

3 r Z Z
SCZ/ [ M(r,—,g(:,—))dzdtz:ﬁ,
SJo Joine Ks Ks

where we used that (Mj‘.s)** is (the greatest convex) minorant of M¢ (Corol-
lary 2.1.42). To estimate it further we substitute x := z/ks and observe that as
in (3.83) we have

~J 9
K&Q‘/ c Qjﬂ ’

for cg =4(1+diamQ/R) since § < R/4. Therefore we infer that

Ns T
J < C,Zf/o ‘/Q;Q(sM(t,x,f(t,x)) dxdr < C(N)/QTM(t,x,f(t,x)) dxdr.

The last inequality above takes into account the measure of a finite number of re-
peating parts of cubes. Summing up the estimates we conclude (4.82). O

Now we are in a position to prove the approximation-in-space result.

Proof (of Theorem 4.2.6). Since Q is a bounded Lipschitz domain in RN, then by
Lemma 8.2 the set Q can be covered by a finite family of sets {G; };<; such that each

Q; =QNG;

is a star-shaped domain with respect to the balls { B}y, respectively. Then
o={Ja.
i€l

Let us introduce a partition of unity 6;, i.e.

0<6;<1, 6;€CT(G), Y 6i(x)=1 for xeQ,

iel

which exists due to Lemma 8.3.
We fix an arbitrary ¢ € V;VI " (Q). We will prove that there exists a constant A > 0

such that
VSs(p) — Ve
A

lim M (t,x, dxdr =0,

6—-0" Jo,
for S5 given by (4.81). Let
A; = (O,T) X €.
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Since

\% -V i \% -V
/M(I,X’M) dxdlSZ/l—‘/ M(t,x,w dx dr
or P A Ja, A

iel

for some A; > 0 such that A = Zi/li , and there is a finite number of A;s on the
right-hand side, we prove the convergence to zero of each of them.

Let us choose a family of measurable sets {E, }, ew such that |, En = A; and
a simple vector-valued function

E"(t,x) = Z]lE_, (t.x)7 4.91)
=0

where {1; };?:0 is afamily of vectors, such that { E”*},,cy converges modularly in Ly to

V(0;¢) with /lg (cf. Definition 3.4.3) whose existence is ensured by Theorem 3.4.11.
Since

VSs5(0i¢) =V (0ip) = (VS5(0i¢0) = SsE") +(SsE" —E")+ (E" =V (0,¢9)),

by Jensen’s inequality we can estimate

/M(t,x, VS&(QiSD)fV(9i90)) drdr
A;

/ll

Al VS5(0;0)—SsE" Al SsE"—E"

L M|tz 2(0ig) = So dxdt+—2./ M|tx, 222 = | dxdr
A4, A

< — -
A' Ja, /l‘l

A E"-V(6;
+—3./ M t,x,w dxdr
A0 Az

.6 ¥
= L? + L;’ +L%,
(4.92)

where A’ = Z:;:l /l’j /lj. > 0. We have /lg fixed already. We take /l’i = /lg and leave /l;
to be chosen in a moment.

We recall that ¢ € V;V’ " (Q), so for each i € I we have
0;-¢ € L™(A;) NL¥(0,T; L*(Q;)) N L' (0, T: W, (2;))

and
V(i) = ¢V0;+6;Vp € Ly (Qr;RY).

Furthermore,

ZV(HM) =Vop.

i€l
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Al E"-V(6;
ot f M((#)) et
A;

1

Since

Proposition 4.2.8 implies that we can estimate

|E" =V (6ip)|
A

0$L7’55'/{m1(|En_:§gm)Sl}mg )dxdt

1

En-V
+C/ M| tx, =——22| dxdr = K",
A A5

where lim,,_,., K" = 0. Consequently,

lim lim L}*® =0.

[—00 60t
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It suffices to prove the convergence of L;” ® Letusrecall that E" is given by (4.91).

By Jensen’s inequality and Fubini’s theorem we get that

Ai n,o
FLZ =/ M
2 Ai
1
= M t’x’_l- Q5(y)
A; A5 JB(0,0)

z xX— x—
. Z []IEJ. (t,x)n;(t,x) = 1E, (t, —y)nj (t,—y)] dy | dx dt
= Ks Ks

1
< 0s5(y) Mt,x,—-
B(0,6) A; A,

E"(t,x)—SsE"(t,x)

t,x, ;
/lz

) dxdt

= xX— x—
-Z[]lEj(t,x)nj(t,x)—]lEj (t,—y)nj(t,—y)] dx | dy dz.
= Ks Ks

As the shift operator is continuous in L', we have pointwise convergence

X — X — 6—0
]lEj(trx)nj(t»x) _]lEj (ts y)n] (t’ K_j)] — O

n

2,

7=0 ke

Moreover, for arbitrary fixed /13 > 0 we have

(4.93)
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1 v xX—y xX—y
M t,x’gjzz(:) ]lEj(t,x)Uj(t,x)_]lEj (ﬁ?)ﬂ] (t’w

2 n
< sup Mo Y gl g€ | < .
SERN: |¢]=1 A4 j=0

The Lebesgue dominated convergence theorem justifies convergence to zero of the
right-hand side of (4.93) for any /1; > 0.

Altogether we have proved that the right-hand side of (4.92) vanishes in the limit,
which completes the proof of modular convergence of the approximate sequence.
The modular convergence of gradients implies their strong L'-convergence and the
Poincaré inequality gives the claim. O

Remark 4.2.9. To avoid decomposition into star-shaped domains, in the isotropic
setting one can apply the shrinking approach. For this one should consider a mapping
that shrinks the area near the boundary into the interior of the domain. Its construction
for a bounded domain with C2-boundary is presented in [304]. Note that this mapping
and the inferred further approximation theorem are applied therein in the proof of
existence of weak solutions to a bounded data problem in a space changing with
time via the Galerkin method.

4.2.3 Integration by parts formula

In the classical setting one is equipped with a factorization of the norm resulting
from the fact that
LP([0,T) xQ) = LP([0,T); L (Q)),

which in our case is excluded. The Musielak—Orlicz version of the right-hand side,
when M depends on time, has no meaning. Actually already the general growth of
M makes this Bochner-type factorization of the norm impossible, see the comments
in the Introduction. To bypass the typical use of such a factorization, we shall need to
prove the so-called integration by parts formula. We prove it under assumptions (Mp)
from Section 4.2.2.1 or (Mp),, from Section 4.2.2.2. Note that the proof involves
various approximation results. The proof also holds, with minor modifications, in
the case when M does not depend on r and M, M* € A,, using approximation coming
from Mazur’s lemma.

Theorem 4.2.10 (Integration by parts formula) Suppose M : Qr xRN — [0, c0)
is an N-function satisfying (Mp) or (Mp), and that u : Qr — R is a measurable
function such that for every k >0, Ty(u) € V#”(Q), u(t,x) € L=([0,T]; LY(Q)).
Assume that there exist A € Ly (Qr;RN), F e LY(Qy), and ug € L' (Q) such that
uo(x) :=u(0,x), with which for all ¢ € CZ([0,T) X Q) it holds that

—/ (u—u0)6t¢dxdt+/ ﬂ-Vgodxdtz/ F ¢ dxdt. (4.94)
Qr Qr Qr



4.2 Parabolic equation 149

Then

—/Q (‘/uuh((r)d(r)[)tf dxdt+/Q A -V (h(u)é) dxdt:/g Fh(u)é dxdt

holds for all h € W (R) such that supp (h’) is compact and all £ € V;‘/I’W(Q) such
that 6,;¢ € L™ (Qr) and suppé&(-,x) C [0,T) for a.e. x € Q.
In particular, the formula holds for & € C2([0,T) X Q).

Proof. Fix an arbitrary h € W (R) such that supp(h’) is compact. Let us recall
that (-)4, (+)- denote the positive and negative parts of the argument, respectively.
Note that A1, h; : R — R given by

(1) = f (W)(s)ds and ha(r) = / (W)_(s)ds

00 00

are compactly supported Lipschitz continuous functions. Furthermore, %; is non-
decreasing, &, is non-increasing, and & = h + h,. Since there exists a k > 0 such that
supp(h’) C [—k, k], we can write

h(u) = h(T(u)) = h (T () + ho (Tic ().
Of course, h (Ti (u)), ho (T (u)) € L (Qr) and
V(i (Te())), V (ha(Te () € Lag (Qr;RY).

By Theorem 4.2.6 there exists a modularly converging sequence {V (7% (#)) ¢} . Then
due to modular convergence and Theorem 3.4.4 we get the uniform integrability of

{M(x hy (T (1)) )V (Tie(u)
: pl

)} for some A4 > 0.

We start with the proof for nonnegative £, which we extend in the following way

&(-t,x), t <0,
E(t,x) =4 &(t,x), te[0,T], (4.95)
0, t>T.

Further we extend u(z,x) = ug(x) for t < 0 and we fix d > 0. We set
& =h1(T(u))é (4.96)

and its right and left Steklov averages {y, Za(t,x): Qr - R given by

t+d
La(t,x) :=$/ l(o,x) do,
y 4.97)

t

~ 1
La(t,x) = d{(O',x) do.
i
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Note that due to the same reasoning as for i(u), also
P M ,c0
Ca>8a(t,x) €V 7 (Q).
Furthermore, 6t§d,('),zd(t,x) € L=(Qr). Then ¢4(T,x) = Zd(O,x) =0 for all x €

Q and d > 0. By Theorem 4.2.6 we have approximate sequences {4} e, {Za}e €
C2(0,T;C2(£2)) that can be used as test functions in (4.94) to get

Ao dxde~ [ F(ea). dvar
o o (4.98)
- [ ) - a((E),) drr.
Qr
Since modular convergence entails weak convergence and

{(Z4) &} & 1s uniformly bounded in L™,

Lebesgue’s dominated convergence theorem enables us to pass to the limit as € — 0.
If we set £(z,x) =0 for t > T, we obtain

AV, dxdt—/ F¢ydeds

Qr Qr

=/Q (u(t,x)—uo(x))%({(r+d,x)—§(t,x)) dxdr (4.99)

1
=E(11+J2+13),

where
T T
Ji :=/ /{(r+d,x)u(t,x)dxdt=/ /{(t,x)u(t—d,x) dxdt,
0 Ja d Ja
T
Jy = —/ /g’(l,x)u(t,x) dxdt, (4.100)
OT Q .
Js = —/ /g(r+d,x)u0(x)dxdt+/ /((t,X)uo(X)dxdt
0 Ja 0o Ja

d
= / /g’(t,x)u(t—d,x) dxdz. (4.101)
0o Ja
Using (4.100) and (4.101) in (4.99) we get

.ﬂ-ngdxdt—/ F¢gdxde

Qr Qr

1 (4.102)
=/ —{(t,x) (u(t—d,x) —u(t,x)) dxdr.
ord

Since for any 51,5, € R it holds that
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/ i (Ti(o)) do 2 hy (Te(s1)) (52— 51), (4.103)

s1

we infer that

1 Z(t,x) (u(t—d,x) —u(t,x)) dxdr
dJa,

1 u(t—d,x)
< —/ §(t,x)/ hi(Tk(o))do dxdt.
d Qr u(t,x)

Applying this in (4.102), by the same reasoning as in (4.101), we get

A-Vi4 dxdt—/ F¢y dede

Qr Qr

u(t—d,x)
< é £(1,x) (/ hl(Tk(O'))do') dxdr (4.104)
.Q.T u

(t.x)

u(t—d,x)
= %/QT(f(md,x)—f(t,x))(/u h](Tk(o'))dg-) dx dr.

(0,x)

Taking into account the definition of {; (4.97) and passing to a subsequence if
necessary, we have

La ZZJ &hy (Ty (1)) weakly-+ in L™ (Q7).

Since Vey = (V&) hi (T () 4+ (€V (h (Te(w))) , and

(V&) (T () g = (VEhI (Tiw)) - weakly-s in L™ (Qr:EY),

by Jensen’s inequality in (4.97) we get
Ve dl\()» V(&R (Te (1))  modularly in La(Qr,RY).
Since additionally we have
fa € (Ti(w) - weakly-s in L¥(Qp),

we can pass to the limit in (4.104) and get

AV (T (w)é) drdr - / F(hi (T (w)¢) dedr
QT QT

u(t,x)
s/ a,_g/ hi(Ti(0)) do dxdr.  (4.105)
QT U,

0

Since Ty (up) € L= (L), it can be approximated by a sequence {ufj}, C C°(2)
such that
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Ty (ug) —— Ty (ug)  strongly in L'(Q) and a.e. in Q.
n—o0

Let us recall that for r < 0 and all x € Q we put u(t,x) = up(x), we con-
sider nonnegative ¢ € C2°([0,7) x Q) extended as in (4.95), and the sequence
{(Za)e} C C>([0,T) x Q) of smooth functions approximates Za (given by (4.97)) in
the modular topology, i.e.

(Za)e % Za-

Therefore, (Zd)s can be used as a test function in (4.94) and using the arguments as
in (4.98), we pass to the limit as € — 0, inferring

AV, dxdt—/ Fly dxdt

Qr Qr

= / é (£(t.x) = £(t—d.x)) (u(t,x) —ug(x)) dxds
Qr

1
:3(K1+K2+K3),

where
T T+d
K ::/ /g’(t,x)u(t,x)dxdt:/ /{(r—d,x)u(t—d,x)dxdt,
0o Ja d Q
T
K> = —/ /{(t—d,x)u(t,x)dxdt, (4.106)
0 Ja
T T
K; = —/ /g(r,x)uo(x)dxdt+/ /{(t—d,x)uo(x) dxdr
0 Ja 0 Jo
d
= / /{(t—d,x)uo(x)dxdt. (4.107)
0 Jo
Summing this up, by (4.106) and (4.107), we have
A-Via dxdt—/ Flq dde=l(L1+L2), (4.108)
Qr Qr d

with
T
L ;=/d /Qg(t—d,x)(u(t—d,x)—M(f,x))dXd”
d
L, :='/0 ‘/th(Tk(ug))f(u(t—d,x)—u(t,x)) dxdr

d
" /0 /Q (i (T (10)) — Iy (Tic U)Eu(t — dox) — u(r,)) drdr

for sufficiently small d, because &(-,x) has a compact support in [0,7) almost
everywhere in Q. Having (4.103), we infer that for a.e. (t,x) € (d,T) X Q,
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u(t,x)
/( )—(hl(Tk((T))) do < —(u(t,x) —u(t = d,x)) h (T (u(t — d,x))), (4.109)
u(t-d,x
and a.e. in (¢,x) € (0,d) X & we have
u(t,x)
/( ., )_(hl(Tk(O'))) do < —(u(t,x) —uo) h1 (T (uo)). (4.110)
u(t—d,x
Combining (4.108), (4.109), and (4.110), we get
A-Viy dxdt—/ Flqdxdt

Qr

1 u(t—d,x)
>— [ &(t,x) (/ hl(Tk(O'))dO') dxdr
d QT u

(t,x)

Qr

d
+ /0 /Q (1 (Ti (10)) — I (Te (W) tp — (1,)) dxdi

a _ u(t-d,x)
L [ £u=dD) ¢t (/ h](Tk(o'))da_) dxds

Qr d (t,%)

_L|hl(Tk(“8))_hl(Tk(MO))||§|(|”0|+|”(Z’x)|) dxdr.

We pass to the limit as d ™\, 0 and then n — oo on the left-hand side above, as
in (4.105) by the Lebesgue dominated convergence theorem. We obtain

/ AV (hy (T ()é) drdr - / F (i (Te(u))é) dedr
Qr Qr

u(t,x) “4.111)
Z/QTﬁtfl hi(Ty (o)) do dxdz.

0

Using estimates from above (4.105) and from below (4.111) we infer that

AV (T (w)¢) drdr - / F(hy (T (w)¢) dedr
QT QT
4.112)

u(t,x)
2/ 6;6/ hi(Tx (o)) do- dxdt
QT U

0
holds for all nondecreasing and Lipschitz /#; : R — R and for all nonnegative &.
We can replace hy(Tx(u)) by —hy(Tx(u)) in (4.112) and in turn we can also
replace it by h(Ty (1)) = h(u). We have £ =&, +&_, where &,,&_ € V;"I"”(Q), which
leads to the desired conclusion. O
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4.2.4 The monotonicity trick in the parabolic case

In order to identify some limits we shall use the following parabolic monotonicity
trick used in several variants in [79, 81, 183, 188, 303, 326].

Theorem 4.2.11 (Monotonicity trick in the parabolic case) Suppose that Q is a
bounded open domain in RN, [0,T] is a bounded interval, and a satisfies conditions
(Alp)—~(A2p) with an N-function M : QxRN — [0,0). Assume further that there
exist
A€ Ly-(Qr;RY)  and &€ Ly (Qr;RY),
such that
(A-a(t,x,n)) - (£-n)dxdt >0 forallneRY.
Qr
Then
a(t,x,£) =A a.e. in Qr.

Proof. The proof follows precisely the same lines as the proof of its elliptic version,
namely Theorem 4.1.1. Indeed, time-dependence either of the operator, or the mod-
ular function, does not interfere with the method. It suffices to use now (Alp)—(A2p)
instead of the earlier (Ale)—(A2e). m|

4.2.5 Bounded-data parabolic problems

We apply the result of [130] providing the existence of a solution to a problem in the
isotropic Orlicz—Sobolev setting (with the modular function depending on the norm
of the gradient of the solution only). To avoid introducing overwhelming notation,
we give here only a direct simplification of [130, Theorem 2] to our situation. It
reads as follows.

Corollary 4.2.12 Let Q be a bounded open domain in RN andm : [0, 00) — [0, o).
We consider a Carathéodory function a: [0,T) x QxRN — RN, which is strictly
monotone, i.e. for a.a. (t,x) € Qr and all & # & € RN

(attx.é)-a(x.8) - (€1 -&) > 0.

Moreover, we assume that a satisfies the following growth and coercivity conditions:
for some cq,c1,c2 > 0, for a.a. x € Q, and for all € € RN we have

com(l¢]) <a(t,x,€)-¢€  and  |a(t,x,&)| < ci(m) (m(calé])).  (4.113)

Then the problem

ov—diva(t,x,Vv) =g € L®(Qr) in Q7,
v(t,x)=0 on (0,T) X 0Q, 4.114)
v(0,-) =vo(-) € L*(Q) in Q
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has at least one weak solution v € W' L;z(Q7) N C([0,T]; L*(Q)).
Moreover, the energy equality

I 2ge L 2 , _
2/Q(v(‘z',x)) dx 2‘/Q(v()()c)) dx+/QTa(t,x,Vv) Vv dxdr / gv dxdr

T @115)
is satisfied for all T € [0,T].

The application of the above result gives the following proposition yielding the
existence of solutions to a regularized problem. For this we will employ

m: RN — [0,00) such that m(&) =m(|€]). (4.116)

Recall that we use the notation V to denote the gradient with respect to the spatial
variable x, while to denote the gradient with respect to & we write V£. Using this
notation

Vem(|g]) =ém'(1€])/1¢].

According to Remark 2.1.33 this gives equality in the Fenchel-Young inequality in
the following way

Vem(§)-& =m(|g]) +m* (IVem(£)]). (4.117)

Since we take an N-function m which grows significantly faster than M we observe
that m is strictly monotone as a gradient of a strictly convex function, i.e.

(Vem(£)=Vem(n))-(€-n) >0 forall &,neRN, (4.118)

We have the following result on the family of regularized problems.

Proposition 4.2.13 Let an N-function M : [0,T) x QxRN — [0, o) satisfy assump-
tion (Mp) or (Mp),, and a function a satisfy assumptions (Alp)—(A3p). Assume that
m : RN — [0,00) is an isotropic N-function such that m € C'(RN) and it grows
significantly faster than M (see Definition 3.2.3) and

M(&) <m(&)  forall £ RN, (4.119)
We consider a regularized operator given by
ag(1,x,€) = a(t,x,&) +0Vem(¢) forall (x,t) € Qr, & e RV, (4.120)

Let f € L*(Qr) and ug € L>(Q). Then for every 0 € (0,1] there exists a weak
solution to the problem

ou? —divag(t,x,Vu®) = f in Qr,
u?(t,x)=0 on (0,7) X 09, (4.121)
1?(0,) = uo() in Q.

Namely, there exists a u? € C([0,T];L*(Q)) ﬁLl(O,T;Wé’l(Q)) with Vu? e
L (Qr;RN), such that
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—/ u96t¢dxdt+/u9(T)cp(T) dx—/ug(O)np(O) dx
Qr Q Q

+/ ag(t,x,Vu?) Vo dxdr= | feodxdr (4.122)
QT s-ZT

holds for ¢ € C*([0,T];C2(R2)).
Furthermore,
o the family {ug}g is uniformly bounded in L*(0,T;L*(Q)),
o the family {Vue}a is uniformly integrable in Ly (Qr;RN),
o the family {a(t,x,Vue)}g is uniformly bounded in Ly (Qr;RN),

o the family {Hm*(V§m(|VM9|)}9 is uniformly bounded in L' (Qr).

Moreover, the following energy equality

l/(u“’(r,x))2 dx—l/(uo(x))z dx+/ ag(t,x,Vu?)-vu? dx dr
2 Q 2 Q Q
=/ fuf dedr  (4.123)
QT

is satisfied for all T € [0,T].

Proof. To get existence we apply Corollary 4.2.12, whereas a priori estimates re-
sult from the analysis of the structure of regularization. Recall that m (&) = m(|¢]),
see (4.116).

Existence. To apply Corollary 4.2.12 we shall show (4.113). The coercivity
condition results directly from (A2p). The bound on growth follows from the Fenchel—-
Young inequality (2.33), (4.117), and (A3p)

e’ (Llag(r0)) <7 (| 2¢

and further, by convexity of m”,
lag (v, )| < 267) ™ (L (| 24l)) < 2 )~ (| 24))
Therefore, by Corollary 4.2.12 (coming from [130, Theorem 2]) it suffices to show

m*(|crag(t,x,&)]) <m(|c2é]),

which follows from equality (4.117) in the Fenchel-Young inequality (2.33) and
(A3p) where c,,0 € (0,1]. We have
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ag(r,x.6)-& <7 (| 2€]) 47" (S0 (15,0

B

but on the other hand
a9 (1,%,€) £ = M (1,x,) +6m (|&]) +6m" ([Vem(£)])
> caM” (t,x,a(t,x,&)) +0+0m" (|Vem(€)))
> 2y [y (|a(t,x,6)]) +3m° (|0Vem()]) |
> 2c (a0 (3,8)1),

where we used Jensen’s inequality and (4.120).

Therefore, we get cam” (% lag(t,x,¢&) |) <m (| C%§|) Then by the strict monotonic-

)

and Corollary 4.2.12 gives the claim, i.e. the existence of a solution

ity of m", the estimate

s 2 ({2

u? e C([0,T);L2(Q)NL' (0. T:W, ' (Q))  with  Vu? € L,,,(QrsRV).

Now, we shall show uniform boundedness of {1} .

A priori estimates. By the energy equality (4.123), (A2p), and (4.117) we get
1
—/ (u?(1))? dx+/ M (t,x,Vu?) dxdt
2J)o Q.

+/ Om(Vu?) +60m*(Vem(Vu?)) dxde (4.124)
Q.

s/ fuedxdt+%/(uo)2dx
Q, Q

We estimate further the right-hand side using the Fenchel-Young inequality (2.33)
and the modular Poincaré inequality (Theorem 9.3). For this let us consider any
homogeneous and isotropic N-function b : [0, c0) — [0, o) such that

b(s) <3 m1(S)

where m; is the minorant of M from the definition of an N-function, ci, is the
constant from the modular Poincaré inequality for . Then on the right-hand side
of (4.124) we have
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/qu"dxdtg/ b*(||f||Lm(g)/cf)dxdt+/ b(cPu?|) dxdt

T Qr

<1015 (I /el 43 [ b(Ta) axa
1
Sc(Q,T,f,N)+§/ M(t,x,Vu?) dx dr.
Qr
Consequently, we infer from (4.124) that
1 0 2 1 0
= [ (u”(1))" dx+ —M(t,x,Vu”) dxdt
2Jo Q. 2
+/ Om(Vu?) +60m*(V em(Vu?)) dxdt
Q-
1 _
<c(@T.f.N)+ 5 lluollz @) = c(QT. f.N,uo) = C.

When we take into account that 7 is arbitrary, this observation leads to a priori
estimates

SUPrefo,T] ||”6(T)||iz(9) <C, (4.125)
/QTM(t,x,Vue) dedt <2C, (4.126)
Jo, Om* (Vem(Vu?)) dxdr < C. (4.127)

Moreover, (A2p) implies then

ca | M*(t,x,a(t,x,Vu?)) dxdr < 2C. (4.128)
Qr

And thus, the uniform boundednesses of the claim follow. O

Let us prepare some easy observations that will turn out to be instrumental in
letting & — 0 in (4.122).

Lemma 4.2.14 Under assumptions of Proposition 4.2.13, for any ¢ : Qr — R such
that ¢ € L™ (Qr;R%), we have

lim [ 6Vem(Vu?)pdxdr=0.
9—)0 QT

Proof. We motivate it by the Vitali convergence theorem (Theorem 8.23). For its
application we need to infer uniform integrability and convergence in measure to 0.
We point out that since m* is an N-function, for 8 € (0, 1) we have m*(6-) < 0m™ ().
This together with the L' (Q7)-bound (4.127) for 6m*(V fm(Vue)), which is uniform
with respect to 6, we get an L!(Q7)-bound for {m*(6Vem(Vu?))}y. Therefore,
Theorem 3.4.2 implies the uniform integrability of {§V¢m(Vu?)}q. In order to
show convergence in measure to 0 in (4.136), we suppose the opposite, i.e. that there
exist ¢, cy > 0 such that
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i%f|{(t,x) L 0|V em(Vu?)| > c1}] > ca.
In fact, on the set {(#,x) : 8|Vem(Vu?)| > ci} we have
. (C1 — 0
om (g) < 6m (|V§m(Vu )|).
By the fact that m™ is an N-function we also have

e
o ()= 3)
g

o ——— ™.
7 0—0

On the other hand,
cm* (ﬂ) < / Om* (ng(Vue)) dxdr < C,
0 Qr )

where the last inequality is a consequence of the a priori estimate (4.127). Since the
last two displays yield a contradiction, we can apply the Vitali convergence theorem
(Theorem 8.23) to justify the convergence in the claim. O

The next result deals with the time derivative of #u? and will be used to deduce the
pointwise convergence.

Lemma 4.2.15 Under the assumptions of Proposition 4.2.13, for every 6 > 0, we
have d,u® € (W'E,,(Qr))" and for every ¢ € W'E,,(Qr) we have the following
inequality

du’ ¢ dxdr < Cllellwiz,, @) (4.129)
Qr

where the constant C is independent of 6.

Proof. First, let ¢ € C°((0,T) X Q). By the weak formulation of (4.121) we have
—/ uf(1,x)0,0(t,x)dt dx+/ a(t,x,Vu?) - Vo(t,x)dr dx
97' Q’l‘

+/ 9V§m(|Vu0|)~Vgadtdx:/ F(t,x)p(t,x)dr dx.
Qr Qr

We can estimate the left-hand side using Holder’s inequality (Lemma 3.1.15) to get

< 2atrx. VU], a0 7

‘/Q u?(t,x),¢(t,x)dr dx Loy (QrRN)
T

+29“V§Wl(|vu0|)HLm*(QT;]RN) HV‘P”L,,, (QriRN)
+21Qr|m” (|| flle0) ||90“Lm(QT;RN)'

Since M (t,x,&) < m(&) by (4.119), Lemma 2.1.37 implies that m*(£¢) < M*(¢,x,£)
and hence we have

laCe.x, Vu®[|, o an) < laGx,Vu®)|, q pn)-
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Therefore, we can use uniform estimates from Proposition 4.2.13 and the modular
Poincaré inequality (Theorem 9.3) to get (4.129) for ¢ € C;°((0,7) X Q). The general
case follows by the density of C;°((0,7) X Q) in W& E..(Qr), cf. [175]. O

Lemma 4.2.16 Under assumptions of Proposition 4.2.13, the sequence {I/lg}ge((),l]
is relatively compact in L'(0,T;L"(Q)). In particular, it has a subsequence con-
verging a.e. in Qr.

Proof. We apply the Aubin—Lions lemma (Theorem 8.50) with
Xo = Wé’l (Q), X=L"(Q), and X, =W 2" (Q) for some r > N.

Then Wg’r(Q) is continuously embedded in C!(Q), cf. [171, Corollary 7.11]. By
the Rellich—Kondrachov theorem (Theorem 8.48), X is compactly embedded in X.
If f € L'(Q) and p € W) (Q), then

e

for some constant C > 0, therefore X is continuously embedded in Xj.
By Proposition 4.2.13 the sequence {u®}g is uniformly bounded in
L*®(0,T;L*(Q)) and {Vu?} is uniformly bounded in L« (Q7). In particular,

<Iflicliells < Cllflilielwer,

{”9}06(0,1] is uniformly bounded in L' (0,7 W&’l(Q)) and L*(0,T; L' (Q)).

Let € L*(0,T; W, () with |||, O.1wpr (ay) < 1- Notice that {[d,u” 1} is
bounded in L' uniformly with respect to ¢ and 6 € (0, 1]. Indeed, by the choice of

r, there exists a constant C > 0 such that |<p| < C and |V<p| < C, so in particular,
pE W(} E,,(Qr) and if suffices to apply Lemma 4.2.15. This shows that

{6,u”} , is uniformly bounded in L' (0,T; W27 (€)),

thus the Aubin—Lions lemma (Theorem 8.50) implies that

0
{” }06[0,1)
is relatively compact in L'(0,7; L' (Q)). O

We prove the existence of a weak solution for a non-regularized problem with
bounded data by passing to the limit as § — 0 in the regularized problem (4.121).
Note that to get weak solutions, we exploit the integration by parts formula from
Theorem 4.2.10.

Theorem 4.2.17 (Existence of weak solutions to a parabolic problem) Suppose
[0,7) is a finite interval, Q is a bounded Lipschitz domain inRN, N > 1, g € L®(Qr),
ug € L*(Q), and the function a satisfies assumptions (Alp)—(A3p) with an N-
function M : [0,T) x QxRN — [0, ). Assume further that M satisfies the condition
(Mp) or (Mp),. Then there exists a weak solution to the problem
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Ou—diva(t,x,Vu) =g in Qp,
u(t,x)=0 on (0,7) x0Q, (4.130)
u(0,-) =uo(+) in Q.

Namely, there exists a u € V}VI () such that for any ¢ € C2([0,T) X Q)

—/ uo"’tgodxdt—/u(O)tp(O) dx+/ a(t,x,Vu) -V dxdr
Qr Q Qr
=/ godxdr. (4.131)
Qr

Proof. We provide the proof in the case of M satisfying the condition (Mp) or (Mp),,
via an approximation coming from Theorem 4.2.6 and Proposition 5.3.9.

We apply Proposition 4.2.13 and let & — 0. Uniform estimates provided therein
imply that there exist a subsequence of  — 0 and a function u? € V¥ (Q) such that

u’ S u weakly-xin L¥(0,T;L*(Q)), (4.132)
vu? 5 Vi weakly-+in Ly (Qr;RN), (4.133)

with some u € V;YI "°(Q) and there exists an @ € Ly (Q7;RY) such that

a(Vu’) S weakly-s in Ly (Qr;RY). (4.134)

Identification of the limit . Uniform estimates. We need to show

limsup/ a(t,x,Vu?) - vu? dxdts/ @-Vu dxdr. (4.135)
9—0 QT QT

The aim now is to pass to the limit as 6 \, O in the regularized problem (4.122)
and (4.123). In the first term on the left-hand side therein, due to Lemma 4.2.16, up
to a subsequence we have

lim [ u%b dxdtz/ ud, ¢ dxds.
60 Jo, t ¢ o, i1’

Moreover, we need to motivate that on the left-hand side one of the terms vanishes.
Note that by Lemma 4.2.14

IV em(Vu?)| ﬁo in L'(Qy). (4.136)

Hence, we can pass to the limit in the weak formulation of the regularized
problem (4.122). By (4.134) we infer

—/ u6,¢dxdt—/uo<p(0)dx+/ a~V<pdx:/ gy dxdr (4.137)
Qr Q Qr Qr

forall p € CZ2([0;T) x Q).



162 4 Weak Solutions

We apply the integration by parts formula from Theorem 4.2.10 applied to (4.137)
with A=, F =g, and h(-) =Ty (-), i.e. we have

u(t,x)
_/QT (/ Tk(a')dO')(%fdxdtz—/s;Ta.V(Tk(u)f)dxdt+/QTng(u)§dxdt,

uo

forevery ¢ € C°([0,T) x Q). Let the two-parameter family of functions 97" : R — R
be defined by
ITT(1) == (wr xLjo,7)) (1),

where w, is a standard regularizing kernel, that is w, € C2°(R), suppw, C (-r,r).
Note that supp@™" = [-r,7+r). In particular, for every 7 there exists an r, such
that for all » < r, we have 97" € C2([0,T)). By taking &(¢,x) = 97" (¢) in the
integration by parts formula above, we get

u(t,x)
—/ (/ T (o) dO') 0, 97" dxdt
QT uo

(4.138)
_— / @ - V(T ()™ dxdr+ / oTi ()97 dxdr.
Qr Qr

On the right-hand side we integrate by parts obtaining

u(t,x) u(t,x)
—/ (/ Ty (o) do-) 097" dxdt = / 0y (/ Ty (o) do-) 97" dxde.
Qr uo Qr uo

Then we pass to the limit as » — 0, apply Fubini’s theorem, and integrate over the
time variable

u(t,x) u(t,x)
lim Oy (/ T (o) dcr) 907 dxdt = / Oy (/ T (o) do-) dxdr
r—0 Qr Q.

ug ug

:L(/M()M(T’X)Tk(a)da) dx.

Passing to the limit as » — 0 in (4.138) and using the content of the last display we
get the following for a.e. T € [0,T)

‘/Q(./OM(T’X) Tk(a')dO'—/OruO(X) Tk(O')dO') dx

2—/ a~VTk(u)dxdt+/ 8Ty (u) dxdt.
Q Qr

By applying the Lebesgue monotone convergence theorem for k — co we obtain

1 1
N2, = = lluoll? =—/ ar-Vudxdt+/ gu dxdr.
2 L2Q " 3 L2(Q) a 0

T
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Notice that by considering the energy equality (4.123) in the first term on the left-hand
side, taking into account the weak lower semi-continuity of the L2%-norm, and (4.132)
we see that

1 T
0 ) ETIN 2] 2
[|u (T)||L2(Q) —llg})e/;e ||zt (S)HLZ(Q)dS
N 2 2
> lim | / I g3 = (I g

After dropping the nonnegative term fQTQng(Vu") -Vu? dxdt in (4.123), the
passage to the limit as 6 N\ O is justified, so we get

1 2 1 2 : 0 0
31 )~ 0l g +limsup | ae.x.9u) -9 avas

T

S/ gu dxdt. (4.139)
Qr

Thus, (4.135) follows.

Identification of the limit @. Conclusion by the monotonicity trick. Let us
concentrate on proving that

a(t,x,Vu)=a  ae. in Q. (4.140)
Since a is monotone by (A3p), we have that
(a(t,x,Vu®)—a(t,x,n)) - (Vu? —n) >0

a.e. in Qp, and for any n € L*(Qr;RN) ¢ Ep(Qr;RN). By (A2p) we see that
a(-,-,n) € Ep-(Qr,RN). Moreover, having (4.133), (4.134), and (4.135) we pass to
the limit as 6 ~\, O to conclude that

(@—-a(t,x,n)) - (Vu—n) dxdr > 0. (4.141)
Qr

Then Theorem 4.2.11 with
A=a and E=Vu

implies (4.140).

Conclusion of the proof of Theorem 4.2.17. We can pass to the limit in the
weak formulation of the bounded regularized problem (4.122), because of (4.132),
(4.133), (4.134), and (4.140). In turn we get the existence of u € V%W (Q) satisfying

—/ uﬁ,(pdxdt—/u(0)¢(0)dx+/ a(t,x,Vu)-Vgodxdt:/ gy dxdt
Qr Q Qr Qr

for all ¢ € C2([0;T) xQ), i.e. (4.131), which ends the proof of existence. O
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Remark 4.2.18. The result presented in Theorem 4.2.17 has been generalized in two
directions:

(1) It is possible to avoid mollification of a test function in time, inasmuch as the
equation itself can provide information on the regularity of the time derivative
Us, 1.e. Uy € Ll(O,T;X) with X being some negative Sobolev space. There are
definite advantages of this approach, as the assumption of regularity of an N-
function with respect to time is not needed anymore.

(i1) Similarly as in the elliptic case, see Remark 3.7.11, we can change the exponent
under the arguments of the function © in conditions (M p) and (M p),. Again in
the case when p < N and N > 1 such a condition is less restrictive.

For both of these generalizations of Theorem 4.2.17 we refer to Theorem 1.23 in [63],
where conditions (M p) and (Mp), are replaced with the following condition.

(M p)* There exists a function © : (0,7) X [0,1] X [0,00) — [0, 0) which is non-
decreasing with respect to the second and the third variable, and moreover
there exist & € R and 6y > 0 such that for every cube Q c R¢ with edge
6 €(0,80) and all ¢ € R? with |£] > &) we have

M(t,x,&)

where M g is the second convex conjugate to M.

The corresponding isotropic conditions (M p") and (M p'),, are replaced with the
following condition.

(M p')* There exists a function ® : (0,T) x [0, 1] x [0, 00) — [0, c0) which is nonde-
creasing with respect to the second and third variable such that

limsup®(z,8,C6~") is bounded uniformly in time 7 € (0,7)  (4.143)
6—0*

and
M(t,x,r)

———— <0, |x—y|,r).
Mty = (t.]x=yl.r)

Remark 4.2.19. Similarly as in case of elliptic problems, weak solutions to parabolic
equations have been considered under assumption M* € A, and M independent of
time, see Lemma 4.3 in [188].
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Chapter 5
Renormalized Solutions

5.1 Problems With Irregular Data

We concentrate here on second-order elliptic and parabolic partial differential equa-
tions of a simple structure, but with merely integrable data. Irregular data influence
the choice of notion of solution, whereas the general growth of the operator compli-
cates the approximate procedure used in order to obtain the solution.

5.1.1 Consequences of mere integrability of data

Suppose a has growth described by the use of an N-function as in Section 3.8.2 and
applied as in the study of weak solutions in Chapter 4. To study the problem

—diva(x,Vu) = fe L'(Q) and du—diva(r,x,Vu) = f e L' (Qr), (5.1)

a special notion of solution has to be employed. To explain why, let us consider the
classical Poisson equation on bounded Q c RY, namely

{—Au =f inQ, 52)

u=0 on 0Q.

If the boundary 9Q is smooth enough, a solution to the above problem can be
expressed by means of the Green function G via the formula

u(x) = /Q FO)G(x.y) dy. (5.3)

When the problem is posed on the unit ball and N > 2, i.e. Q = B(0, 1), we make use
of the fundamental solution
T(2)=c(N)[z|*N

and get that the Green function is given by
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G(x,y) =Ty =x) =T (Ixl (v - 122)).

so apparently u obtained by (5.3) solves (5.2) in the distributional sense, but it does
not belong to the natural energy space W'->(Q), when f is merely integrable. Thus,
it is not a weak solution and there is no weak solution to this problem. To admit
arbitrary f € L'(Q) one needs to consider a generalized notion of solution. The
easy way would be to analyze distributional solutions, but they can be deprived
of basic good properties. In particular, we cannot ensure uniqueness. The classical
example of non-uniqueness of distributional solutions comes from Serrin [292]. He
shows that a linear homogeneous equation of the type div(A(x)Du) = 0 defined
on a ball, with a strongly elliptic and bounded, measurable matrix A(x), has (at
least) two distributional solutions. One of them belongs to the natural energy space
W12(B(0, 1)), whereas the second one does not and is called a pathological solution.

The point is then to distinguish the solutions having a proper interpretation and
exclude the wild ones. An interesting special notion of solution, besides its existence,
is that it has to satisfy reasonable, say physical, conditions that ensure uniqueness.
To relax the classical requirement for a solution to (5.2) to belong to W2(Q), we
will expect to control the energy of our solutions by conditions of the form

/ [Vu|?> dx — 0.
{I<|u|<I+1} [—-00

The problem with uniqueness appearing in the linear equation is obviously shared
by the p-harmonic problem

~Apu=felLll(Q),

as well as its anisotropic, Orlicz, and Musielak—Orlicz generalizations described in
Section 3.8. Indeed, when on the right-hand side the data is merely integrable, the
weak formulations of (5.1)y, i.e.

/Qa(x,Vu)-Vgodx:/Qfgodx,

cannot be expected to hold for every
eV (Q) ={peW, (Q): Ve Ly(@RY)},

and in the parabolic case, the weak formulation of (5.1), reads

- (u—ug)orp dxdt+/ a(t,x,Vu) -V dxdt = fodxdt,
Qr Qr Qr

which cannot hold for every
e eV (@) ={geL'(0.T:W; ' (Q): V¢ €Ly (Qr:RM)}.

Instead, we expect control on radiation of energy
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/ a(x,Vu)-Vu dx — 0 (5.4)
{I<|u|<l+1} l—>00
or
/ a(t,x,Vu)-Vu dxdt — 0. (5.9)
{I<|u|<l+1} [—=c0

5.1.2 Various notions of solutions

We can study weak solutions to (5.1), when the datum f belongs to the dual space
which we expect the solution to belong to. There are a few already classical notions
of solutions introduced in order to consider less regular data. DiPerna and Lions
introduced the notion of renormalized solutions in [120] in their investigation on
the Boltzmann equation. For further foundations of the theory we refer to Boccardo,
Giachetti, Diaz, and Murat [47] and Murat [260]. Other seminal ideas for problems
with data below duality come from Boccardo and Gallouét [43, 44], where the so-
called solutions obtained as a limit of approximation, SOLA for short, are considered.
Finally, the entropy solutions are considered starting from cornerstones laid by
Benilan, Boccardo, Gallouét, Gariepy, Pierre, and Vazquéz [31], Boccardo, Gallouét,
and Orsina [46], and Dall’Aglio [103].

Recently attention has been paid to the notion of approximable solutions, some-
how merging the ideas of SOLA and entropy solutions, see [95] and also [9, 78, 85,
84]. Some of the mentioned results are relevant also in the context of measure data
problems. Let us refer to e.g. [44, 46, 102, 101, 124, 132, 261, 73, 78, 77, 85, 84] for
elliptic results and e.g. [39, 58, 273, 274] for parabolic results. The uniqueness in
the case of arbitrary measure data is a long-standing open problem. Namely, sharp
conditions for a measure to ensure uniqueness are not known. Nevertheless, below
we restrict ourselves to the L'-data equations avoiding this challenge.

An interesting feature is that the mentioned, distinct kinds of notion of solu-
tions can coincide. See [216] for a result for elliptic problems involving nonnegative
measure datum and the p-Laplace operator, [127] for the equivalence between en-
tropy and renormalized solutions to parabolic problems with polynomial growth,
[334, 335] for the corresponding results in the variable exponent and the Orlicz
settings, [73] for the equivalence between SOLA and renormalized solutions in the
reflexive Musielak—Orlicz case, and [233] for the equivalence between entropy and
renormalized solutions to L'-data problems in the non-reflexive Musielak-Orlicz
spaces. It would be interesting to find the regime where the notions of solutions do
not coincide.

Renormalized solutions. In the elliptic setting the foundations of the study of
renormalized solutions, providing results for operators with polynomial growth, were
laid by [47, 103, 260]. In the parabolic setting, renormalized solutions were studied
first in [36, 37, 40, 41, 42] and further in [38, 126, 127, 273, 274]. These studies
were continued under weaker assumptions on the data [39, 58, 102].
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For recent existence results for elliptic problems we refer to [6, 8, 27, 32, 125,
146, 186, 187, 193, 230, 239, 78]. In [146, 193, 239, 73] isotropic, separable and
reflexive Musielak—Orlicz spaces are employed, [27] concerns anisotropic variable
exponent spaces, [125] studies separable, but not reflexive Musielak—Orlicz spaces,
while [230] anisotropic, but separable and reflexive Orlicz spaces. Renormalized
solutions to elliptic problems in Orlicz spaces are explored in [6, 8, 32], while in
Musielak—Orlicz spaces in [179, 186, 187, 109, 73, 233].

As for parabolic problems in the variable exponent setting we refer to [30, 234,
334] and for the model of thermoviscoelasticity to [69]. For very recent results on
entropy and renormalized solutions, we refer also to [69, 154, 242, 335]. This issue
in parabolic problems in non-reflexive Orlicz—Sobolev spaces is studied in [189, 242,
282, 335], while in the inhomogeneous and non-reflexive Musielak—Orlicz spaces
in [188] under certain growth conditions on the modular function and in [79, 81]
under regularity restrictions.

5.1.3 Comments on the scheme of the proof of existence

We want to present the analysis on (5.1), developing the study of [179, 81]. In
fact, we provide the existence and uniqueness of renormalized solutions to (5.1)
under assumptions described in Section 3.8.2, but when no growth restrictions of
doubling type are imposed on the anisotropic modular function M and when the
operator a is weakly monotone. Notice that our research includes the fully anisotropic
Orlicz setting under no growth conditions of doubling type, since then the regularity
assumption is trivially satisfied. What is more, in order to obtain existence, this
assumption can be simply skipped not only in the Orlicz case, but also in reflexive
spaces, that is, among others, in variable exponent, weighted Sobolev and double
phase spaces, no matter how irregular the exponent or the weights are. The lack
of precise control on the growth of the leading part of the operator, together with
the low integrability of the right-hand side triggers noticeable difficulties in the
study of convergence of approximation. An additional consequence of resigning
from imposing the A,-condition on the conjugate of the modular function is that
it complicates the meaning of the dual pairing, see Chapter 4. Since (Lps)* # Lps+
(see Theorem 3.5.3), we need the modular approximation result of Theorem 3.7.7
(for the elliptic case) or Theorems 4.2.6 and 5.3.12 (for the parabolic case) from the
very beginning — in order to get a priori estimates.

Let us summarize briefly the scheme of the proof of existence, which is the same
in the elliptic and the parabolic case. Initially we show the existence of weak solutions
to the regularized problem with bounded data and then, using the Browder—Minty
monotonicity trick, the existence of weak solutions to problems involving the original
(non-regularized) operator, still with bounded data. Passing to L'-data problems we
establish a priori estimates and the radiation control condition relating to (5.4)—(5.5)
(see later (R3e), resp. (R3p)), but for u; — solutions to problems with truncated data.
From these results we infer certain types of convergence of symmetric truncations
of a solution to problems with truncated data, i.e. {T} (us)}s>0- The next step is to
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identify a(x,VTy(u)) as the weak-+ limit in Ly« of {a(x, VT (uy))}s>0 and use
the monotonicity trick. Finally we conclude the proof of existence of renormalized
solutions motivating the weak L'-convergence of {a(x, VT (us)) - VTk (us) }s>0 Via
the Young measures. In the end we provide uniqueness as a result of the method of
test functions.

Besides obvious technical complications, the main difference between the elliptic
and the parabolic approach is that in the parabolic case we exploit the notion of a
renormalized solution to get the existence of a weak solution to a regularized problem
with truncated data.

No density property is necessary in the reflexive spaces. The proofs are formulated
in the case when the modular function is regular enough to ensure the absence of
Lavrentiev’s phenomenon. Nonetheless, in the elliptic case as well as in the parabolic
case when M = M (x, &), for existence we can simply bypass this restriction provided
are dealing with reflexive spaces, i.e. whenever both M, M* € A,. This is justified
since the method keeps all of the limits in the strong closure of the smooth functions
and Mazur’s lemma (Theorem 8.32) ensures the existence of a strongly converging
finite affine combination of the weakly converging sequence. Note that all spaces
Ly equipped with doubling M from Example 2.3.2 are reflexive, including variable
exponent spaces without regularity assumptions and double-phase spaces without a
closeness condition.

Let us notice further that the regularity condition is necessary only in the approx-
imation. The entire proof of existence and uniqueness in the elliptic case as well
as in the parabolic case when M = M (x,&) works assuming only that M is an N-
function. For full generality in our study of parabolic problems, when M = M (¢,x,&),
we employ a far more delicate approximation which holds under the same balance
condition.

5.2 Renormalized Solutions to Elliptic Problems

5.2.1 Formulation of the problem

Recall that the truncation Ty is defined in (3.55).

Definition 5.2.1 (Renormalized solutions to an elliptic equation). We call a func-
tion u a renormalized solution to (4.1) if it satisfies the following conditions.

(Rle) u:€Q — R is measurable and for each k > 0
Te(u) eV (Q)  and  a(x,VTk(w)) € Ly (RY).

(R2e) For every compactly supported 2 € W (R) and all ¢ € Vé"I(Q) NL*(Q) we
have

/a(x,Vu)-V(h(u)go) dx:/fh(u)go dx.
Q Q
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(R3e) f{l<‘ul<l+l}a(x,Vu)~Vu dx -0 as [ — co.

Remark 5.2.2. Let us note that condition (R3e) restricts the energy of admissible
solutions to those having the expected meaning as described in Section 5.1.1. This
condition will be a key tool to obtain uniqueness of renormalized solutions to L'-data
problems.

We prove the existence of renormalized solutions to the general elliptic equa-
tion (4.1) with merely integrable data. Recall that assumptions on the operator
(Ale)—(A3e) are given in Section 4.1.1 (their generalization is discussed in Sec-
tion 3.8.2), moreover for modular density of smooth functions via Theorem 3.7.7 we
need (Me) given in Section 3.7.1 or (Me),, from Section 3.7.2.

Theorem 5.2.3 (Existence of renormalized solutions) Suppose Q C RN, N> 1,
f e LY (Q), and a function a: QxRN — RN satisfy assumptions (Ale)—(A3e) with
an N-function M : QxRN — [0, ). Assume further that at least one of the following
assumptions holds:

(i) M satisfies the condition (Me) or (Me);
(i) M,M* € As.

Then there exists a renormalized weak solution to the problem (4.1), i.e. a function
u satisfying (Rle)—(R3e) of Definition 5.2.1.

Remark 5.2.4. Similarly as in the case of weak solutions, renormalized solutions to
elliptic equations have been considered under the assumption M* € A,, see Theorem
2.6 in [109].

Remark 5.2.5 (Uniqueness of renormalized solutions). We show also that in the
case of (i), if the operator is strictly monotone then the renormalized solution from
Theorem 5.2.3 is unique. Uniqueness holds true also for the case (ii) among the
solutions obtained as a limit of the approximation we construct.

The proofis presented only for M satisfying (i). As explained in the introduction to
this chapter, for existence no regularity of M is necessary for modular approximation
in our proof in the reflexive spaces (like all variable exponent spaces with 1 < p_ <
p(+) < p; < oo, double-phase spaces with 1 < p,g < oo and bounded weight, mixed
spaces, involving more phases, milder or rapid transition between them etc.), as well
as in the general classical Orlicz setting, including fully anisotropic spaces.

Remark 5.2.6 (SKkipping (Me) / (Me),, — reflexive case). Theorem 5.2.3 provides
existence results when M, M* € A,, that is, for example, in the following cases.

e When M (x,£) = |€]|P, with 1 < p < o0, in classical Sobolev spaces for the p-Laplace
problem —A,u = f € L'(Q), as well as for

~div(a(x)|Vu|P™2Vu) = f(x) e L'Y(Q)

with measurable a such that 0 < a_ < a(-) < a; < .
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e When M(x,&) = |£|P™), with 1 < p_ < p < p, < o in variable exponent spaces;
for
~div(a(x)|Vu[P2Vu) = f(x) € L'(Q)

with measurable a such that 0 <a_ <a(-) <ay <oand 1 < p_ < p < p; < o0,

e When M(x,£) = |€|P +a(t,x)|€]9, with 1 < p,q < co and a : Q7 — [0, 0) being
abounded and measurable function possibly touching zero (no matter how irregular
it is) in double phase spaces; for

—div(b(x)(|vu|P-2vu+a(x)|vu|q-2vu)) - f(x) e LY(Q)

with measurable b such that 0 < b_ < b(+) < by < co.

e When M(x,&) = [£]P™) +a(x)|£]93), with 1 < ¢ < p(x),q(x) < ¢5 < o0 and
the function a € L* (L) nonnegative a.e. in Q in variable exponent double-phase
spaces; for

—diV(b(x)(|Vu|p<X)_2Vu+a(x)|Vu|q(x)_2Vu)) - f(x) e LN Q)

with measurable b such that 0 < b_ < b(-) < by < co.

e When M (x,¢) = M1 (&) +a(x)M> (&), where My, M, are (possibly anisotropic) ho-
mogeneous N-functions, such that M, My, M T, M; € A,, and moreover the func-
tion a € L™ (L) is nonnegative a.e. in  in Orlicz double phase spaces; for

_div (b(x)(AT‘V(LZ?) Vu+a(x) M2 -Vu)) - f(x) e LY (Q)

with measurable b such that 0 < b_ < b(+) < by < .

Remark 5.2.7 (Skipping (Me) / (Me),, — Orlicz case). In the pure Orlicz case, i.e.
when

M(x,8) = M(£),

the balance conditions do not carry any information. Therefore, as a direct conse-
quence of Theorem 5.2.3 we get the existence of unique renormalized solutions to the
elliptic problem (4.1) under conditions therein in an anisotropic Orlicz space without
growth restrictions of doubling type. This includes the case of Llog® L-spaces for
a >0, when M (x,¢) = |€]log®(1+]€£]) and

—div(a(x)logql(%#Vu) - f(x) e L'(Q)

with measurable a such that 0 < a_ < a(-) < a4 < co. Note that in this case M grows
essentially slower than a power function of any power larger that 1.

To give examples in nonreflexive Musielak—Orlicz spaces we shall relax the
growth restrictions. According to Examples 3.7.2 and 3.7.3 we infer the existence of
renormalized solutions in the following cases.

Example 5.2.8 (Orlicz double phase space). When M (x,&) = M (&) +a(x) M, (£),
where My, M, are (possibly anisotropic) homogeneous N-functions (without pre-
scribed growth) such that M| (&) < M, (¢) for & such that |£] > 1, and moreover
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the function a : Q — [0, 00) is bounded and has a modulus of continuity denoted by
wgq, we infer existence and uniqueness for solutions to the problem

—div (b(x)(‘”llv(uvlg” Vu+a(x) 2o -Vu)) - f(x) e LY(Q)

with measurable b such that 0 < b_ < b(+) < by < oo, provided

My(s7™) < oo

limsupwa(é)Ml(é,N) )

5—0

where M (s) :=inf .|z M1 (£) and Ms(s) = SUP.| ¢ |=s M2(€), or — when M) has
at least power p growth — provided

My(57N/P)

limsupwg (6) M (5NTP) < -

d—0

One can easily modify this example to get its variable exponent-type version or to
involve more than two phases. Also other choices of M coming from Examples 3.7.2
and 3.7.3 generate a wide range of examples.

5.2.2 Existence and uniqueness

From now on in order to ensure approximation properties of our space by Theo-
rem 3.7.7 we assume that M satisfies either (Me) (see Section 3.7.1) or (Me),, (see
Section 3.7.2), as it is explained in Section 5.1.3 how to construct, in the reflexive
case, an approximation to our solution that has the same properties. We are now in
position to present the proof of existence and uniqueness.

Proof (of Theorem 5.2.3). We start with the existence of a solution to a regularized
problem, then we show a priori estimates, the radiation-control condition for the
solutions to the regularized problem, and finally we concentrate on the most chal-
lenging part — passing to the limit. Lastly, we describe the comparison principle
which implies the uniqueness of solutions.

Step 1. Problems with truncated data
The existence of a solution to the problem with truncated data

{—diva(x,Vus)=Ts(f) in Q, (5.6)

us(x)=0 on 0Q,

for s > 0 is a direct consequence of Theorem 4.1.5 with g = T(f), where T stands
for the symmetric truncation at the level s which is defined in (3.55).

Step 2. A priori estimates

In order to get uniform integrability of the sequences {a(x, VT (us))}s>0 and
{VT (us)}s>0 we need to obtain the following a priori estimates. For a weak solution
us to (5.6), s > 0 and f € L'(Q), we have the following estimates for any k > 0
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‘/M(x,VTk(us)) dx < 2k||f||L1(Q), 5.7
Q

/QM*(x,a(x,VTk(us))) dx < %Hflly(g). (5.8)

Indeed, observe that due to assumption (A2¢) we have
ca/M*(x,a(x,VTk(us))) dx < /M(x,VTk(uS)) dx
Q Q
< /a(x,VTk(us)) VT (uy) dx.
Q

Let us consider {(Tx (us))s}s € C2°(L2) — a sequence approximating Ty (uy) in the
modular topology from Theorem 3.7.7. Then we have

/a(x,VTk(us)) VT (ug) dx = lim / a(x,VTk(uS)) -V (Ti (ug))s dx
Q -0 Jo
= tim [ L@t dx= [ AT ax

Combining these observations we infer

ca /Q - (x.a(x. VT(u) ) dr < /Q M (x, VT (uy)) dx < 2] fll 1 (o

and thus (5.7) and (5.8) follow.

Step 3. Controlled radiation

In this step we show that for any weak solution u; to (5.6) (s > 0O and f € LY(Q)),
there exists a y : [0,00) — [0, 00) independent of /, s such that lim,_,¢y(r) = 0 and
for every [ > 0

/ a(x,Vuy) -Vugdx <vy (m) for some ¢; =c¢;(Q) >0. (5.9)
{I<|us|<I+1} e
Recall that m is the minorant of M from the definition of an N-function.

We notice that the meaning of truncations (see (3.55) for the definition) implies
I (x,Vuy) - Vity de = 86, Vi1 () - Vi (1) d
{l<|us|<l+1} {l<|us|<l+1}
= [ a9 9 (Th ) ~Tiu) .
Q
(5.10)
We cannot directly use the weak formulation here, because (7}, (us) — T;(uy)) is

not admissible as a test function. We have to consider {(Tl+1 (uy) — Tl(us))(g}(S -
a sequence of smooth functions approximating the function (7j.1(uys) —T;(uy)) in
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the modular topology, which exists due to Theorem 3.7.7. Using elements of this
approximate sequence as test functions in (5.6) we get

/Q a(x, Viey) - V(T (1t5) = Ty (1)) dx
- lim /Q a(x,Vitg) -V (Tiar (15) = Ti (1)) 5
- lim /g Ty (f) (Tror (ts) ~ Ti (1)) 5 dx 5.11)

_ /Q Ty (f) (T (1t5) = Ty (1)) dx

[ e
{lus |21}

Our aim is now to estimate the right-hand side above. With this aim we firstly find
control over the size of a domain of integration. We note that for m; we have

{lus| 2 13 = {ITi (us)| = 1} = {ITi (us)| 2 13| = {mi (e1|Ti(us)]) 2 mi(eiD)}.

Moreover, for [ > 0 we apply the Chebyshev inequality (Theorem 8.28) and the
Poincaré inequality (Theorem 9.3) involving m| — a convex minorant of M from the
definition of an N-function, to get

my (c1|Ty(us)|)
|{|us|zl}|S/Qde (5.12)

(&)
< mfgmmvmmn dr.

Since m is a minorant of M and using the a priori estimate (5.7) we continue the
above estimates as follows

2

l
sl 1 2 [ MG T 00) 0 < O8N f 10y

GUR
(5.13)

The right-hand side above vanishes when [ — oo, because m is assumed to be
superlinear at infinity. Consequently, there exists a y : [0,00) — [0, o0) independent
of 1, s, for which lim, ¢y (r) =0 and

my(cil)

/ 1] dr < y(E]).
E

In particular, due to (5.12) and (5.13) we may write

l
dv < ~ 5.14
/{lus|>l}|f| <y(m1(cll)) (5.14)

Altogether we conclude (5.9), because due to (5.10), (5.11), and (5.14) we have
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!
/ a(x, Vug) - Vug de/ |f|dJCSJ’(—)
(<lus <141} (s |21} my(c1l)

Step 4. Convergence of truncations
We characterize various limits involving u and its gradient. The aim of this step
is to show that some subsequence of {u,}¢~0 has a limit u : Q — R in the sense that

Uy ——u a.e.in Q, (5.15)
§—00

such that T (u) € Vé\’l (Q) for every k > 0 and it holds that

[{ul > 1} ——> 0, (5.16)

and such that for each k e N and s — oo

Ty (us) — Tic (1) strongly in L' (Q), (5.17)

VT (ug) — VT (1) weakly in L'(Q), (5.18)

VT (ug) — VT () weakly-  in Ly (Q;RN), (5.19)

a(x, VT (ug)) = a(x, VTx (1)) weakly-  in Ly (Q;RV). (5.20)

Fix an arbitrary k£ € N. The proved a priori estimate (5.7) reads

/Q M (x, VT () dx < kIl

and the Banach—Alaoglu theorem (Theorem 8.31) implies further that {7y (u5)}s>0
is weakly-* compact in L. The Dunford—Pettis theorem (Theorem 8.21) and the
fact that M is an N-function (according to Definition 2.2.2) imply that for each k

the sequence {Tx(us)}s>0 is bounded in WS’I(Q).

Since Q is bounded, for fixed k € N convergence in (5.17) results from uniform
integrability in L'(Q) of bounded functions T (1) obtained due to the Rellich—
Kondrachov theorem (Theorem 8.48) for W!-!(Q). Hence, there exists a function u
such that

Ti(ug) — Ti(u)  strongly in L'(Q),
§—00

VTi(us) — VTi(u) weakly in L' (Q;RN).

Consequently, up to a subsequence, we have u; — u in measure and (5.15). By the
recalled a priori estimate and the Dunford—Pettis theorem (Theorem 8.21) we infer
that, up to a subsequence, we have

VT (uy) ?i: VT (u)  weakly-+ in Ly (Q;RY),
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in particular implying (5.18) and (5.19). Meanwhile, since the last term on the right-
hand side of (5.13) converges to zero (because m is superlinear at infinity) and
ug — u in measure, we deduce (5.16).

Let us concentrate on (5.20). For every k we define

‘ﬂs,k = a(x’ VT (us ()C)))

By the same arguments as above, from the second a priori estimate (5.8) we deduce
that up to a subsequence there exists an Ay € Lys- (Q;RY) such that

Ao — A, weakly-# in Ly (QRN). (5.21)

Identification of the limit of a(x, VT (us(x))). Our aim is now to show that
in (5.21) the limit has the form

Ar(x) =a(x, VT (u)) a.e.in Q. (5.22)

In order to apply the monotonicity trick in the identification of the limit, we need to
show that

[ (Au=ae)- (V) =) de >0 (523)
The main step to get it is to prove that
limsup/.ﬂ;,k - VT (ug) dx = /.?lk -VTi(u) dx. (5.24)
s—00  JQ Q

We take an auxiliary function ; : R — [0, 1] given by
Yi(r) = min{ (141 |r);, 1) (5.25)
and an approximate sequence {V (7 (u))s}s of smooth functions such that
V(Te(u))s % VTi(u) modularly in Ly (Q:RY),
which exists due to Theorem 3.7.7. We shall show first that
hm hmsup/ﬂs k- VT (us)— (Tr(u))s] dx=0. (5.26)

§—00

Notice that due to (A2e¢) one has that a(x,0) = 0, therefore for [ > k we have
[ Ak 1) = (Ta)s1 )
Q
= [ A ) = Ti)s]

+ / a(x.0)-V [0~ (Te(u))s] (W1(us) — 1) dr
{lus|>1}
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= [ Ak T i) - (Tala)s]
Q

and thus (5.26) is equivalent to

lim lim llmsup'/ﬂsk VITi(ug) — (Tr (1)) s ¢ (ug) dx =0. 5.27)

[500 650 500

Actually, it suffices to show that

lim hmhmsup/.?l‘m V[ Ti(us) — (T (u)) s i (us) dx = 0. (5.28)

50650 g0

Indeed, having (5.28) and a(x,0) = 0, the equality (5.27) will be proved when the
following expression is shown to tend to 0 as s — oo and § — 0 (still k£ <)

1= /Q (At = Ay 1) -V [T ty) = (T () o] () dr
- /Q (A 11— a(6,0)) - V(T (1)) 5 ey 1ty) dlx
=/Qﬂs,l+1 V(T () 61 (k< puy 31 (us) dx.

We need to justify that

lim limsup|/7] < lim llmsup/ | A 11T k< 191 () |V (T (1)) | dx

§—00 §—00

< tim [ 1l 1T () do (5.29)
= [ 1Al (09T 0] 3 =
Q

For the limit as s — oo we will use Lemma 8.22 with

w* = | A 11l [V(Tr (1)) s p—— [Ape1] - IV(Ti (u))s] =w in L'(Q)

and v* = 1 ;<. |}- The convergence w® — w in L' (Q) is a consequence of (5.21),
whereas Lemma 8.24 implies that v — v = 1}, a.e. in Q. The limit as 6 —
0 results from the modular convergence in (5.29). By modular convergence and
Theorem 3.4.4, the sequence

{M (x, M) } s is uniformly bounded in L' () for some A

and, consequently, by Theorem 3.4.2 the sequence {V (7% (u))s}s is uniformly in-
tegrable. By the Vitali convergence theorem (Theorem 3.4.4) we can pass to the
limit as in (5.29). The last equality therein follows from the definition of truncation,
because

Tie ()L k< )y = 0.
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Thus we get (5.29) and, consequently, (5.27) and (5.26) hold.
To get (5.28) we test (5.6) by ¢ 5, approximating modularly

@ = (us) (T (us) = (Tr(u)) 5)

(cf. Theorem 3.7.7), where y; is given by (5.25) and passing to the limit as § — 0
we get

[T 9 W 0 T ) = (T 0]
= [T Tl = (T d. (530
We observe that the right-hand side of (5.30) tends to zero, that is

lim lim lim QTs(f)‘//l(us)(Tk(”s) —(Ti(u))s) dx =0.

[—00 650 5—00

Indeed, the convergence a.e. is ensured by (5.15) and to apply the Lebesgue domi-
nated convergence theorem we note that

6—0s—00

lim lim ‘ /Q T (001 (ty) (T (1) = (T (1)) 5) dx‘
< tim tim [ 70 100(0) - [Tk (0) ~Tw)]
605> Jo
+ lim lim/ITs(f)Ilﬁz(us)-ITk(u)—(Tk(u))5|dx
O0—0s—00 Q
< lim lim | 2k|f| dx+ lim lim/|f|-|Tk(u)—(Tk(u))5|dx
O0—0s—00 Q O0—05s— Q
=20l + lim [ 11170 = (i)l
-0.Jg
where according to Theorem 3.7.7 we have |(Ty (u))s| < ck and thus
Tk (1) — (T (u)) 5] < (1+0)k. (5.31)

Let us now concentrate on the left-hand side of (5.30) and write

/Q a6, Vity) -V [0 () (T (1) — (T () 5)]

/Qa(x,Vus) Vi (us) [T (us) — (Tr(u)) s] dx (5.32)

+ / a6, Vitg) -V [Te(uy) — (Te())o] v (1) dx
Q

ZI] +12.

By the Cauchy—Schwarz inequality and (5.31) we can estimate
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llim ((liim limsup |/} |)

-0 5500

[—00 -0 50

< lim (lim limsup/ |a(x, Vug) - Vug | |Ti (ug) — (Tr (1)) s dx)
{l<|us|<l+1}

<ck lim (lim limsup/ la(x, Vuy) - Vug]| dx)
{l<|us|<l+1}

[50\ 650 00

=ck lim (limsup/ a(x,Vuy) - Vuyg dx)
l {I<|us |<l+1}

=X\ s—oo0
: [ —
<ok () -0

where the last line follows due to (5.9). To complete the argument justifying the
convergence of the left-hand side of (5.30), we notice that for I, from (5.32) it holds
that

lim lim limsup /I,

[=006-0 500

= lim lim 1imsup/ga(x,Vus) -V [Tr(ug) — (Tr (1)) 5] i (ug) dx = 0.

50650 00

(5.33)

Then taking into account the above limits, (5.33) is equivalent to (5.28). Therefore,
(5.27) follows and, consequently, we have also (5.26). Due to (5.21), for fixed 6,

Slim A i V(Ti(u))s dx = /.ﬂk V(T (u))s dx. (5.34)
Then (5.26) together with (5.34) imply

limsup/.ﬂs,k~VTk(us)dx: lim/.ﬂk~V(Tk(u))5dx
§—00 Q 6—0 Jo

(5.35)
_ / Ay VT (u) dx,
Q

where the last equality is obtained in the same way as (5.29). Finally, (5.24) also
follows.

We are about to complete the proof of identification of the limit of {Aj 1 }s~0 by
the monotonicity trick of Theorem 4.1.1. By the monotonicity of a from (A3e) we
have

/ FAgyon drt / a(e.n) - (VT (s) 1) dx < / Ay Vi (1) dx
Q Q Q

for any n € RV. Taking the upper limit as s — co above (due to (5.24), (5.21),
and (5.19)) we infer that

/.?lk~n dx+/a(x,n)~(VTk(u)—n)dxS/.ﬂk-VTk(u) dx,
Q Q Q
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which is equivalent to (5.23). We are in a position to apply Theorem 4.1.1 with
A=A and &=V (Tr(u))

to conclude (5.22).

Step 5. Renormalized solutions

The aim of this step is to complete the proof of Theorem 5.2.3, that is, the existence
of renormalized solutions. More precisely, we show that u obtained as a limit in the
previous step is in fact a renormalized solution according to Definition 5.2.1.

Condition (Rle).
Note that (5.19) and (5.20) imply that u satisfies (Rle).

Condition (R2e).
Since Ty (u) € Vé"’ () N L= (L), Theorem 3.7.7 ensures that there exists a sequence
{ur}r>0 € C2(Q) indexed by r — oo, such that

Ur—u a.e.in Q,
VTi(uy) = VT (1) weakly-xin Ly (Q;RN),
Vh(u,)— Vh(u)  weakly in Ly (Q;RY),

with arbitrary i € C!(R). We fix such h. Then we test (5.6) by ; (us)h(u, )¢ with a
hat function i; defined in (5.25) and ¢ € Wé 2 (Q). We get

Loysi= /Q a0k, Vitg) -V [W1 1ty (1) 9] dx = /Q Ty () () dx =: Ry .

Let us justify passing to the limit on both sides of the last display. Due to the Lebesgue
dominated convergence theorem it holds that

lim lim limsupR; ,; = / fh(u)¢ dx.

[—>oor—o0 ¢ oo

Let us concentrate on the left-hand side by writing

Ls,r,l:/a(x’vus)'Vl/’l(us)h(ur)Qbdx'*'/g;a(x’vus)'V[h(’/‘rﬂb]'ﬂl("‘s)dx
=L, +L}

s,r,l°

where

lim lim 11msup|L il

[—>oor—oo

< ||h||L°°(Q)||¢“L°°(Sz) llm lim (SUP/ A 141 (x) - VT4 () dx
{l<|us|<l+1}

r—00 s

=0
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due to the radiation control condition (5.9). As for Lz ,; We notice that, up to
a subsequence, it holds that

A 151 — a(x, VI (1))  weakly in L' (Q).

Indeed, the a priori estimate (5.8) and Theorem 3.4.2 give uniform integrability.
Then, taking into account weak-* convergence (5.20), the Dunford—Pettis theorem
(Theorem 8.21) ensures weak L'-convergence up to a subsequence. Moreover, since

i (us)| <1,
V(h(u,)¢) € L= (RN)

and for s — oo
Wi(ug)— yi(u) ae. inQ,

the sequence

{a(x, Vus)wl(us)V[h(urM]} . is uniformly integrable in L'(Q).
5>
As a consequence of Chacon’s biting lemma (Theorem 8.38) we notice that

limsuplimsup /Q A o1 V() (ug) dx = /Q a(x, VT () -V [A(u) g1y (u) d.

r—00 §—00

Since supp h(u) C [-K, K] for some K € N and we can consider only [ > K + 1, we
infer that

2

lim limsuplimsup L , ,

 Jim [ a(x, V711 0) - VG061 )
—00 Q
- [[atev0)- Vhe] dx.
Q
and our solution u satisfies condition (R2e).

Condition (R3e).
We have to show that

/ a(x,Vu)-Vudx = a(x,VTy(u)) - VT (u) dx — 0.
{I<|u|<l+1} {I<|u|<l+1} I—00

We start by showing that

A 141 VT4 (ug) a(x, VI () - VT4 (u)  weakly in L'(Q).  (5.36)

§—00

We will apply Chacon’s biting lemma (Theorem 8.38) and the Young measures
(Theorem 8.41). First we observe that the sequence
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{(Asnr =20 T2 ) - (Vi1 () = V1 () |

§>

is uniformly bounded in L!(Q). Indeed, we might write
/Q (A1~ VT2 (0)) - (Vi1 (13) = Vi () dx < IV, #1V2 + 1V 4 1V,
where
IV, = /Qﬂs,m VT4 (us) dx,
1V, I=/Q~7ls,1+1 V1141 (u) dx,
V= [ 2 VT (1) Vi () i,
Wi [ a0 9111 0) - FThs )

where each of the terms can be estimated with the use of the Fenchel-Young in-
equality (Lemma 2.1.32) and the a priori estimate (5.7) in the following way

v, < / M (3,805, Vi1 (05))) + M (x, V101 (1))
Q
<2(L+ DS Nlpr ) (1+1/ca),

which yields uniform boundedness in s. In turn, IV| + IV, + IV3 + [V is uniformly
bounded. Then the monotonicity of a(x,-) and Chacon’s biting lemma (Theo-
rem 8.38) give, up to a subsequence, convergence in the sense of biting (Defini-
tion 8.36) of the product

0 < (A1 =208, V1 () ) - (Vi (45) = Vit ()
(5.37)

S§—00

b
s [ (a2 a6 VT () - (1= Vi1 () dva (D),
R
where v, denotes the Young measure generated by the sequence {V7j1 (1) }s>0-

Since due to (5.18) we have weak convergence V7T},(u5) = VT4 (1) in L'(Q)
for s — oo, we have that

/ Advy () = VT4 (u) fora.e. x € Q.
RN

Then
/ A1 (A= VT (0)) dvy(2) =0
RN

and the limit in (5.37) is equal for a.e. x € Q to
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[ (a0 (e 1 ) - (2= Fh1 00) 1)
RN (5.38)

=/ a(x,/l)-/ldvx(/l)—/ a(x,A) - VT (n) dve(Q).
RN RN

Uniform boundedness of the sequence {A i+1 - VT141(t5) }s>0 in L'(Q) resulting
from (5.9) enables us to apply once again the Chacon’s biting lemma (Theorem 8.38)
to obtain

b
Asi i () = [ ale.2)- 20w,
§—00 R

Moreover, assumption (A2e) implies A j+1 - V141 (us) = 0. Therefore, due to (5.38)
and (5.37), we have

limsup a(x, VT4 (us)) - VT4 (us) = / a(x, 1) - Advy ().
RN

§—00

Taking into account that in (5.35) we characterize the above limit, we can put

A =a(e V1) = [ aGe. ()

and the above expression implies

VT4 (u) /RN a(x,)dvy (1) > /RN a(x,1)-Advy(Q).

When we apply this together with (5.38), we infer that the limit in (5.37) is non-
positive and

(Aot =80 VL1 )] - (Vi (1) = Vi () == 0.

Since a(x, VTj, (1)) € Ly (;RY), we can choose an ascending family of shrinking
sets Ej.“, i.e. such that

|Ei.+l—>0 for j— oo

and
a(x, Vi1 () € LW(Q\Ej.“).

From (5.19) we have VT, (us) — VT4 (1) weakly in Ly, (,RY) as s — oo. There-
fore, we get

808, VT3t (1)) - (V1 () = Vi1 (1)) —— 0

and similarly we conclude that

b
ﬂs,1+1 VT (1) ?;—(: a(x, VT (u)) - VTia1 ().
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Summing it up we get
b
As i1 VT (us) —— a(x, V11 () - VT (w).

In the end, Chacon’s biting lemma (Theorem 8.38) together with (5.35) and (5.20)
results in (5.36). We have now the main ingredient of the proof of (R3e).
Note that by (3.56) for any / € N we have

Vuy=0 ae.in {xeQ: |us|e{l,l+1}}.

Then (5.9) implies

lim limsup/ a(x,Vuy)-Vug dx =0.
{l-1<ug|<I+2}

=00 500
For the function g; : R — R defined by
1 if [<|r|<I+1,
g1(r)=40 if [rl<l-=1or]|r|>1+2,

is affine otherwise,

we have
/ a(x, Vi) - Vu dr < / ¢1(1)a(r. Vo () - VIia (1) dx.  (5.39)
{l-1<u|<I+2} Q

Let us recall that condition (A2¢) implies that a(x,&) - & > 0. Thus, due to (5.39), we
may write

0 < lim a(x,Vu)-Vu dx

I=00 J - 1<|u|<l+2}

< llim /gl(u) a(x, VTo(u)) - VT (u) dx =2 V.
—o Jo

By (5.36) we have that

a(x, Vi1 (u5)) - Vi1 (us) —— alx, VT1a1 () - Vi1 (u) weakly in LY(Q),

whereas g; is a continuous and bounded function, so
V=tim [ g1 ax. Vi) Viua(a) d
—00 Q
[—00 §—00

=lim lim gl(”) a(x9VTl+2(us)) ' VTI+2(”S) dx
Q

< lim limsup/ a(x,Vuy) - Vuy dx,
{l-1<us|<I+2}

™0 §—00
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where the last line is a direct consequence of the definition of g;. As declared in
(5.9), there exists a function y independent of / and s such that lim, _,., y(r) =0 and

a(x,Vuy) - Vug dx<7(m )
/{l<usl<l+1} 1(c1l)

Here ¢ = ¢ () and m is a superlinear function being a minorant of M (from the
definition of an N-function). Therefore, we get that

§—00

OSVslimsup/ a(x, Vi) - Vuy dv <y (5 ) = 0.
{l<|us|<l+1} e [—o0

When we let s,/ — oo, the integral in the last display vanishes. Hence, u satisfies
condition (R3e).

Summing up, u is a renormalized solution.

Uniqueness. Now we consider renormalized solutions vi,i=1,2, to (4.1) with a
strictly monotone operator constructed as above for the same datum f € L' (Q). We
show that then v! =v? a.e. in Q.

In both renormalized formulations, for v! and v? the choice of & = y; defined
in (5.25) is admissible. Moreover, we can take ¢ = Ty (T;+1v1 — Tj+1v2), because by
Theorem 3.7.7 (requiring (Me) or (Me),,), we simply have ¢ € L*(Q) N Vé"[ (Q).
Testing the renormalized formulations for v! and v? against this choice of & and ¢
and then subtracting the second of them from the first one we obtain

11—12+]3+I4—[5 216,

where
5 2=/Q'ﬁll(vl)(a(x’vvl)'VTI+1V1)TI<(T1+1V1—Tl+1V2) dx,
L= /Q ¥, (V) (ax, Vv2) - VT v?) T (Tiv' = Trnv?) d,
I = /Q (a(e. Vv") ~a(x, V) - VI (Tirv! ~Tior?) di,
Iy = /g2 (1=01(%) e, Vv2) - VT (Tiv! ~Tyuv?) d,
Is = /Q (1=g1(v1)) a(e, 9v') - VI (Tiov! = Tion?) di,
Io = /g LGN = P T Ty = Tin?) di.

We want to pass to the limit as / — co. On the right-hand side we have an integrable
function integrated over a shrinking set, so the Lebesgue dominated convergence
theorem implies that lim;_,« Is = 0. On the left-hand side, we pass to the limit in /;
and I, using the radiation control condition (R3e). Clearly,
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|11|§k/ a(x,Vvl)'Vvldx,
{I<p|<i+1}

by (R3e) and from the fact that the measure of the sets {/ < |v!| <[+ 1} tends to zero
as | — oo, we infer lim;_,, |I1| = 0. By the same arguments lim;,« |I2| = 0.

Now we pass to the limit in I4 and /5. As the argument is similar for both terms
we show it only for 7,. We have

[14] S/ |a(x,Vv2)~VTl+1v]+a(x,Vv2)-VTl+1v2 dx
{Iv2121, 0<|T1v! =T141 v <k}
S/ a(x, Vv?) - VT v? dx
{I<|v?|<l+k+1}

+ / la(x, Vv?) - VT v!| dx.
{I<V2|<l+k+1, I-k<|v!|<l+1}

The first integral in the last display tends to zero by (R3e), whereas to deal with the
second one we observe that

/ la(x, Vv?) - VT v dx
{I<V2|<l+k+1, I-k<|v!|<l+1}

S/ M*(x,a(x,sz))dx+/ M(x,Vv') dx
{I<V?|<l+k+1} {l-k<v!|<l+1}

1
< — a(x, Vv?) - vy? dx+/ a(x, Vv')- vyl dx,
Ca J{I<|v?|<l+k+1} {I-k<|v!|<i+1}

and all terms on the rightmost-side converge to zero either by (R3e). We deal with

I5. Let us fix an arbitrary [y > 0 and consider [+ 1 > [y. The following holds

I3 =/ (a(x, Vv!) —a(x, Vv?)) - V(T v! = Tv?) dx
{0<| Ty v! =Ty v? | <k}

>

/ (a(x, Vo)) —a(x, V2)) - V(Tirv' = Tran?) d
{0<| Ty v -Trav2|<k, |V <y, [V2|<lo}

=/ (a(x, Vv —a(x, Vv?)) - V(T v! = T1v?) dx.
{0<v!=v2|<k, V<D, [v2I<lo}

As we know that lim;_,, /3 = 0 it follows that
o=/ (a(x, Vv —a(x,Vv?)) - V(v' =v?) dx,
{0<v1=v2|<k, |v|<ly, |V2|<lh}
which means, by the strict monotonicity of a,
o< =2l <k W1 <o, 11 Do} =0,

As k and I are arbitrary, we deduce that v! =v? a.e. in Q. O
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Let us recall that the condition M, M* € A, is equivalent to reflexivity of the
involved Musielak—Orlicz space, see Remark 3.3.3. In this case we can bypass the
balance assumptions (Me) and (Me),,.

Remark 5.2.9 (Uniqueness in the reflexive case). When both M, M* € A,, we can
get the same conclusion on uniqueness, but for those solutions that are obtained by the
construction. As above in both renormalized formulations, for v! and v the choice of
h =y defined in (5.25) is admissible. Moreover, we can take ¢ = Ty (Tj+1v1 —T1+1v2),
because we assume that v! and v? are obtained as the modular limits of solutions
to approximate problems, and of course the gradients of their truncations on level
k are uniformly bounded in Lj;(€;R") (and the weak-* topology of Lj;(Q;RY)
on bounded sets is metrizable as this space has a separable predual space). We can
use the diagonal argument to obtain a sequence of functions belonging to W (Q)
which converges to Ty (Ty41v! — Tj+1v?). The remaining arguments do not need any
modification.

5.2.3 Exercises

There are various directions in which the problem treated in Theorem 5.2.3 can be
developed.

e To cover more general conditions ensuring the density of the smooth functions,
one can refine the result of Theorem 3.7.7. The possible ways are indicated in
Remarks 3.7.11 and 3.7.13.

e One can relax the requirement on the growth condition. In [186] the existence of
renormalized solutions is provided under the restriction M* € Ay, but not M € A;.
One may think about the continuation of ideas of Theorem 4.1.3 to prove the
existence of renormalized solutions imposing M € A, but not M* € A;.

e Other notions of very weak solutions can be studied under various regimes. In
particular it would be interesting to verify under what assumptions the notions of
SOLA, entropy solutions, renormalized solutions or generalized superharmonic
functions essentially differ from each other.

o One can study what kind of lower-order terms can be incorporated into the equation
or what kind of structural conditions need to be imposed on the operator if a =
a(x,u,Vu), see [186, 78, 47]. Since the related problem for differential inclusions
is also likely to attract attention [109], these modifications can also be considered
there.

e The question of how to consider more general data is open, see e.g. [73, 83, 9]. In
particular, there is an open problem for measure data equations involving nonlinear
operators (even of power growth), namely what is the optimal assumption on a
measure datum ensuring uniqueness of a very weak solution?

e Precise regularity of solutions to measure data nonstandard growth elliptic equa-
tions and their gradients is known only in some special cases [9, 45, 95, 72, 74,
45, 77].
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5.3 Renormalized Solutions to Parabolic Problems

5.3.1 Formulation of the problem

Definition 5.3.1 (Renormalized solutions to a parabolic equation). We call a
function u a renormalized solution to (4.70) if it satisfies the following conditions.

(RIp) u: Q7 — Ris a measurable function and for each k > 0
Ti(u)eVM(Q)  and  a(.,-,VTx(u)) € La-(Qr;RY).

(R2p) For every compactly supported 2 € W (R) and all ¢ € V;w " () such that
0, € L*(Qr) and ¢(-,x) has a compact support in [0,7) for a.e. x € Q, we
have

u(t,x)
_/Qr (/u h(O’)dO') e dxdt+/ ‘a(t,x,Vu)-V(h(u)tp) dds

0(x) Qr

=/ fh(u)p dxd:.
Qr

(R3p) a(t,x,Vu)-Vu dxdt —» 0 as [ — oo,
{l<|u|<l+1}

Remark 5.3.2. Condition (R3p) is the one ensuring the comparison principle and,
consequently, also uniqueness.

We prove the existence of unique renormalized solutions to the general ellip-
tic equation (4.70) under the assumptions (Alp)—(A3p) on the operator from Sec-
tion 4.2.1. Note that (Mp) or (Mp), are given in Sections 4.2.2.1 and 4.2.2.2,
respectively. They ensure approximation properties of the space via theorems of
Section 4.2.2.

Theorem 5.3.3 (Existence and uniqueness of renormalized solutions) Suppose
that [0,T] is a finite interval, Q is a bounded Lipschitz domain in RN, N > 1,
f e LY(Qr), ug € L'(Q), and a function a satisfy assumptions (Alp)—(A3p) with
an N-function M : [0,T] x QxRN — [0, 0) satisfying (Mp) or (Mp),. Then there
exists a unique renormalized solution to the problem (4.70). Namely, there exists a
unique function u which satisfies (R1p)—(R3p) of Definition 5.3.1.

Remark 5.3.4. Similarly as in the case of weak solutions, the renormalized solutions
to parabolic equations have been considered under the assumption that M* € A, and
M is independent of time, see Theorem 1.1 in [188].

Note that in the general classical Orlicz setting (including fully anisotropic spaces)
we can skip assumption (Mp) / (Mp),.

Remark 5.3.5 (Skipping (Mp) / (Mp), — Orlicz case). In the pure Orlicz case, i.e.
when
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M(t,x,8) =M (&),

the balance conditions do not carry any information. Therefore, as a direct con-
sequence of Theorem 5.2.3 we get the existence of renormalized solutions to
the parabolic problem (4.70) under conditions therein in an anisotropic Orlicz
space without growth restrictions. Namely, whenever Q c RV, N > 1, T < oo,
f e LY(Qr), up € L'(Q), and the function a satisfies assumptions (Alp)—(A3p)
with a homogeneous N-function M. This analysis covers the classical power-growth
problems, i.e. when M (x,&¢) = |£]P with 1 < p < co in Sobolev spaces (when
VueL! (O,T;W(;”’(Q)) for the p-Laplace problem 0;u — A u = f, we study

Apu—div(b(t,x)|VulP72Vu) = f(1,x) € L' (Qr)

with bounded b : Q7 — [0,00) such that 0 < b_ < b(+) < b, < 0. On the other
hand, it also covers the case of M (x,&) = |£[log® (1 +|£]), @ = 0, and consequently
problems posed in Llog® L spaces, e.g.

Syu —div(b(t,x)Wvu) = f(1,x) € L'(Qr)

with bounded and measurable b : Q7 — [0,00) such that 0 < b_ < b(-) < b, < oo.
We infer the existence of renormalized solutions in the following cases.

Example 5.3.6 (Problems under condition (Mp)).
e When M (x,&) = |£]”*) in variable exponent spaces with log-Holder continuous
p:Qr — (1,00) such that 1 < p_ < p(+) < py < o0, we study
Opu—div(b(t,x)|VulP " 72Vu) = f(1,x) € LY(Qr)

with bounded and measurable b : Q7 — [0,00) such that 0 < b_ < b(-) < b, < o0,

e When M (x,&) = |€]P +a(t,x)|&|P log(e + |£]) in double phase spaces with mild
transition, with 1 < p < oo and with a log-Holder and possibly touching zero
weight a : Qr — [0, ), we study

yu —div(b(t,x)(l +a(t,x)log(e + |Vu|))|vu|P—2w) = f(t,x) € L'(Qr)
where b : Qr — [0,00) is bounded, measurable, and such that 0 < b_ < b(-) <
by < .

Example 5.3.7 (Problems under condition (Mp)).

e When M (x,¢) = |£]P +a(t,x)|&€|9 in double phase spaces, with 1 < p,g < co and
a function a : Q7 — [0, c0) being such that a € C%(Q7) and possibly touching
zero; we study

By —diV(b(t,x)(|Vu|p’2Vu+a(t,x)(|Vu|q’2Vu)) = f(1,x) € L'(Qp),

where b : Qr — [0,00) is bounded, measurable, and such that 0 < b_ < b(:) <
b+<ooand%s 1+
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e When M (1,x,&) = |£]P%) +a(t,x)|£]2%) in variable exponent double-phase
spaces with log-Holder p,q : Q7 — (1,00) such that 1 < p_ < p(t,x) < g(t,x) <
¢ < co and a function a : Q7 — [0, c0) being such that a € C%?(Q7) and possibly
touching zero; we study

O —div(b(t,x)(|Vu|”(”x)_2Vu+a(t,x)(|Vu|q(”x)_2Vu)) = f(t,x) e L'(Qr),

where b : Qr — [0, 00) is bounded, measurable, and such that 0 < b_ < b(-) <
by < 09 SUP(y 120 (4(1,0) — p(1.5) < a .

Example 5.3.8 (Orlicz double phase space). When

M(t’x"f) =M (f) +a(t,x)M2(§),

where M|, M, are (possibly anisotropic) homogeneous N-functions without pre-
scribed growth such that M (&) < M,(¢) for & such that |£] > 1, and moreover
the function a : Qr — [0, 0) is bounded and has a modulus of continuity denoted
by w,, we infer existence and uniqueness for solutions to the problem

u; —div (b(x)(”f‘v(bz;’) -Vu+a(x) A/fzv(uvl? -Vu)) = f(x) € L'Y(Qr)

with measurable b such that 0 < b_ < b(+) < b, < oo, provided

My(67N)

limsupwg () M5

6—0

< 00,

where M, (s) :=inf¢.|£=5 M7 (&) and Ms(s) = SUP . |¢|=s M2(€), or — when M| has
at least power growth — provided

My (57N/P)

lim sgpwa (6)m

d—
One can easily modify this example to get its variable exponent-type version or to
involve more than two phases. Other choices of M coming from Examples 4.2.2
and 4.2.3 generate a wide range of examples.

5.3.2 Approximation in time

Unlike the proof of existence of weak solutions, we need two more subtle ap-
proximation results, which are called ‘Approximation in time’ to distinguish from
‘Approximation in space’ from Section 3.7. The first one in fact states that under
our regime right and left Steklov averages of a function converge modularly to this
function. This part was not needed in [79], due to the lack of time-dependence of
M . Indeed, therein the following approximation result follows directly from Jensen’s
inequality. Here we need to carefully examine the uniform estimate and convergence.
Recall that (Mp) is given in Section 4.2.2.1, whereas (Mp),, in Section 4.2.2.2.
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Proposition 5.3.9 (Approximation in time I) Suppose Q is a bounded Lipschitz
domaininRN, N > 1, an N-function M : [0, T] x QxRN — [0, o) satisfies condition
(Mp) or (Mp)p, and ¢ € V}VI"”(Q). Consider linear mappings ¢ +— ¢4 and ¢ +— @,
given by

1 t+d _ 1 t
ea(t,x) = —/ o(o,x)do and @a(t,x) = —/ o(o,x)do. (5.40)
dJ; dJi-a

Ford — 0, both o4 — ¢ and ¢4 — ¢ converge strongly in whi (Q). Moreover,

loc

V(ea) — Vo and V(gy) — Vo modularly in Ly (Qr;RN).

Furthermore, ||@allL=@p) < l¢llL>(@r) and |@allL= () < ll¢llLe(@p)-
Before the proof, we need to provide the following uniform estimate.

Lemma 5.3.10 Suppose an N-function M satisfies assumptions (Mp) or (Mp),.
Consider the linear mapping ¢ — @4 given by (5.40). Then, there exists a constant
C > 0, independent of d, such that for all sufficiently small d > 0 and every n €
VM-®(Q) it holds that

M(t,%,7a(t,)) de df < / ma (In(1,) ) dxd
{mi(In(-,-)) <1}

+C/ M (t,x,n(t,x))) dx dt. 541
Qr

Qr

Proof. Fix arbitrary 5 € V;M () and small d > 0. The proof is similar to that of
Proposition 3.7.10. First we notice that

/ M(t,x,7a(t,%)) dedi
Qr

S/ M (t,x,m4(t,x)) dxdt+/ M(t,x,n4(t,x)) dxdt

{M(-,-,na)<1} {M(-,-.n7q) 21}

< / ma (7 (1,)]) drdr+ / M (1,2, 7 (1,5)) dxde
{mi(|n7al)<1} {M(-,-,7a)21}

= lg+Jdqg.

To deal with |; we notice that {m;(|74(-)|) < 1} = {ma2(|74(-)]) < c} for c =my o
ml‘1 (1) and we have the following pointwise estimate

mo (72 (DL gm, (7, <13 () < c.

Hence, by Lebesgue’s dominated convergence theorem,

limsupldzlimsup/ m2(|77d(x)|)dxdt=/ my(|n]) dxdt.
d\o0 dN\O  J{mi(|nal) <1} {mi(Inl) <1}

(5.42)
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Thus, we concentrate now on Jg. In order to make use of balance condition (Mp)

or (Mp),, we need to find a proper division of the interval [0,7] such that we are

able to estimate the infimum of M over a small sub-interval by an infimum over a

cylinder. Within this proof we understand that M is extended by 0 outside [0,77].
We define intervals Il.d = [tfl’tflu)’ fori=1,... ,Ng, such that |I;l| < d and

14 =1 -d, 2 )N [0,T]. (5.43)
Of course _
119] < 21| < 2d.

We employ
M; q(x,&) = inf M(t,x,¢)
teld
and its second conjugate (M; 4)** (x,&) = ((M;,4(x,£))")*. Recall also the notation
for the infimum over a cylinder Mi‘sj introduced in (4.85). For y > 0 we denote by [y]

the smallest natural number larger than or equal to y. Since foreveryi=1,..., Ng it
holds that

7d ~ 72d

17 < Iijas

fora.e.xeé?,jz l,...,Ng,andi=1,...,N¥, we have

My j(€) < Mia(x.6).

IZd

Therefore, for a.a. (¢,x) in /2]

X Q;? we have

M(t,x,&) < M(t,x,&)

(Mi,d)**(xvg) B (M%ld/z‘l’j)**(f) .

The right-hand side above can be further estimated by the use of our balance as-
sumption. We get

M58
——————— < 0(2d, . 5.44
(i) = 0D o4y

We have n € Vﬁ/[ *(Q), small d > 0, and 775 given by (5.40). Our goal is to
obtain (5.41). Let us notice that when we split the time interval we may write

ng
Jd:z M(t,x,ﬁd(t,x))]l{M(.,ﬁd)Zl}dtdx
im Jedi

NT _
M(t,x,14(1,x)) v~
= ~ M X, t’x ]l .17 dt dx.

;L I,-d (Mi,d)**(xJ]d(t,x))( l,d) ( Ud( )) {M(-,n7q)=1}

(5.45)

We used above that M(z,x,&) = 0 whenever ¢ = 0. Now we need to estimate the
fraction in the last integral. For any x € Q we choose Q;.l including x. Then, by (5.44)
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we infer that for arbitrary ¢ € Il.d,

M(t,x,74(t,x))
(M, q)* (x,14(t,x)) ~

Our aim now is to estimate the quantity from (5.46) by a constant independent of
x,t,i,j, and d. Since without loss of generality it can be assumed that

< 0(2d.[74(t,x)]). (5.46)

7l = 0,7;2= () < 1,

we have
~ 1 [
a0l <5 [ InGo.nlds < 90l S6@). 647
.

By monotonicity of ®, we have
0(2d, [74(t,x)]) < ©(2d,c(Q)),

which by assumption (Mp) (or (Mp),,) can be estimated further by a uniform constant
c. Thus, the right-hand side of (5.46) can be estimated by the same c¢. By applying
it in (5.45) we get that

JdSCZ/‘/]‘(Mld) ( / ]l[gd)(O')n(t—O'x)dO')dtdx—Jd.

By extending the domain of integration, we notice that

Jd—czd://(M,d)**( / gd)((r)]lld(t)n(t o'x)dO')dtdx
<CZ//(M“1)**( / Od)(O')]lld(t—a')n(t—O'x)do-) dtdx—Jz.

Continuing the estimates with the use of Jensen’s inequality and the fact that the
second conjugate is the greatest convex minorant (Corollary 2.1.42), we get

Ni
< 1
2 < ///—]1 M; )" (x, 15a (2 - t— do dr dx
722, |, J Jo o @0 (%, 1 (1 = (1= ) der
NF |
SCZ;J/Q/I;!/REﬂlo’d)(o-)M(t_o-’x’n(t_a’x)) do dr dx =: J‘Z’l.

We can compute the sum above and apply Young’s convolution inequality (Lemma
8.26) to obtain
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1
Jz < C/Q/R/RZ]l[g,d)(O')M(t—o-,x,n(t—o:x)) do dr dx

1
< [ 210 Ol 1M oo s sy do
Q
< C”M(asn(9)) ”LI(QT)‘

To sum up, we have shown that
Jasdh <3 <P < c/ M(t,x,n(t,x)) dx dt
Qr

which in the view of (4.84) concludes the proof. |

Remark 5.3.11. Minor modifications lead to the same result for ¢ — ¢4. In the case
of ¢ — ¢4 in (5.43) we should extend the interval to the right, namely we should

consider (1,14 +d]N[0,T].

We are in position to prove the approximation in time of the regularizations
defined in (5.40).

Proof (of Proposition 5.3.9). We show the modular convergence V(¢,;) — Ve only,
because for the justification of modular convergence V(¢4) — V¢ one uses precisely
the same reasoning. Then main tool is Lemma 5.3.10. From the definition of this
regularization we directly infer that

a €WH2(0.TVMS(Q) and  V(Fa) = (Vo).

It suffices now to prove the modular convergence
M . N
V(ga) — Ve in Ly (Qr;RY).

We will construct our approximation using simple functions that are dense in Ly
in the modular topology, see Theorem 3.4.11. We take a family of measurable sets
{E,}nen such that |, o E,, = Q7 and a sequence of simple vector-valued functions
{E"}nen given by

n
E"(t,x) = Y g, (6,07,
j=0

where {77; }?:0 is a family of vectors, such that { "}, i converges modularly to V¢

with A3 as n — oo (cf. Definition 3.4.3). We write a telescopic sum
V(@a) = Vo= (V(@a) = (EM)a) + (EM)a—E") +(E" = V).

It is enough to prove the convergence of each of these terms. Indeed, by Jensen’s
inequality we have
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V(pa) -V 1 V(o) — En
‘/MV&iﬁLijwmsé Mvniﬁéllqwm
Qr A A Jor :

1 En)g-En
e 2 [ r B

M(t, —) dxdr

Qr A

1 E"-V

+T3 M(I,X,N—‘p) dx dr
Qr A3

_gynd n,d n
_L1 +L2 +L3,

where 1 = Z?:l Ai, A; > 0. We have A3 fixed already for L% to be small. We take

Ay = A3, and 1, will be chosen soon. Modular convergence will follow provided we
can pass to the limit with all of the terms in the right-hand side tending to zero.
In order to pass to the limit as d — 0, we can estimate

E" = St VO

0<LP < / mg( dt
{ml(‘b ’Efg’lv("“”)‘)sl} 1

v
+C/‘MVLET—£%hw:KT
Qr A3

where lim,,_,, K" = 0. Consequently,

. . ’d _
lim limsup L = 0.

n—e  g_,0
In the case of L’; 4 by Jensen’s inequality and then Fubini’s theorem we obtain
~ Nj

A 4 /
— L% = M(t,x,
L7 Z‘ eJid

i=

1 (1 c - -
/i_‘/Rj2]]-[0,11)(‘9)Z[]IEJ«(I’x)nj(t’x)_]]'Ej(s_t’x)nj(s_t’x)]ds dr dx
2 J=0

Ng
< 1
< —
< i§:1LL¢d1[()’d)(S)M(t’x’

1 ¢ - -
T E []lEj(t,x)nj(t,x)—]lEj(s—t,x)nj(s—t,x)] ds dr dx
2“2

Jj=0

NT n
1 - —
S‘/Q Z/IdM t,x,/i—Z[]lEj(t,x)nj(t,x)—]lEj(s—t,x)r]j(s—t,x)] dr dx.
; 2 Gz
i j—O

=]

(5.48)

Since the shift operator is continuous in L', we have pointwise convergence
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n
Z;[ﬂEj(t,x)ﬁj(t,x) 1, (s =127 (s = 1.0)] =0,
=

because s —t < d. Moreover, for arbitrary A > 0 one can estimate

n

1 _ —
Mlt,x, /i_ Z[]IE:’ (t,x)17;(t,x) - ]IEJ_ (s—t,x)n;(s—1,x)]
2 5 ’
Jj=0

1 G, -

< su M|t,x, — ilreo(E. < 00,
B {ERN:I\)ﬂ:l 21, jZO 2l (E")g

Thus, the Lebesgue dominated convergence theorem justifies convergence to zero of

the right-hand side of (5.48).

‘We have proved that L’f’d + L;‘ Ay L% converges to zero, which completes the proof
of modular convergence of the approximate sequence. The modular convergence of
gradients implies their strong L'-convergence and the Poincaré inequality ends the
proof. Of course, by (5.40) the L*-norm is preserved too. O

One more precise approximation result is needed. It has to converge modularly,
commute with the space gradient, and have properly convergent time derivatives.
When the modular function is time-dependent we cannot use the Landes regulariza-
tion coming from [228], as was done in [188, 79]. The reason is that in this case
the Landes regularization no longer maps Ly, into itself. Moreover, we shall need
a few more delicate properties here. Nonetheless, a careful merging of the ideas of
Landes on the small but not uniformly controlled time intervals enables us to prove
the following result. We essentially need a balance condition in the proof, but it turns
out to be less demanding than (Mp) and (Mp),, which are imposed anyway for other
approximation theorems applied in the proof of existence of weak and renormalized
solutions. This result was proved for the first time in [81].

Theorem 5.3.12 (Approximation in time II) Let Q be a bounded Lipschitz domain
inRN, an N-function M : [0, T] x QxRN — [0, 00) satisfy condition (Mp) or (Mp),,
pe Vﬁ’l (Q), and g € L™ (Q). Then there exist sequences

{‘P/l}y>2,{90;.4};4>2 c V;VI(Q)’ {(V‘P);};DZ CLy (QT;RN)
such that

(i) for every u and a.e. x € Q the function ¢, (-,x) is in C*([0,T)) and satisfies

0rpu =u(e—¢,) ae. inQr,
{goﬂ (0,x) = po(x) a.e inQ, (5.49)

(ii) for every p we have ¢},(0,x) = @o(x)(1 —e_1°g2"),
(i) (Ve)p, =V(e}),
. . sl o« M . RN
(iv) @5 — pstronglyin L' (Qr) and (Vo);, —— Vomodularly in Ly (Qr;RY).
H—)OO l,l—)OO
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(V) If additionally ¢ € L™(Qr), then ||} /|1=(ap) < ¢lli=(oy), for every u and
a.e. x € Q the function ¢}, (-,x) belongs to W2 ([0,T)) and furthermore

Hliggo”%—%ﬂm(gr) =0  and /}glgo||at(¢y_¢z)||L”(QT) =0.

The approximate sequence is constructed as a truncated convolution with partic-
ular kernel. For a measurable function £ : RxQ — R and

0u(8) =pe™ e (s),  u>2,
the regularized function &, : R X — R is defined by
&u(t,x) = (0 %) (1,%),

where * stands for the convolution in the time variable. Then

t
Eu(t,x) = p / et & (s, x) ds. (5.50)
Define further
. ' (s-1) - log” u
& (tx)=p et &E(s,x)ds with e(u) = . (5.51)
t—£(p) H

We provide a uniform estimate in the following lemma and then conclude the
proof of Theorem 5.3.12.

Lemma 5.3.13 Let Q be a bounded Lipschitz domain in RN . Suppose an N-function
M :[0,T] x QxRN — [0, ) satisfies assumptions (Mp) or (Mp)p,. We extend an
arbitrary & € V;/I’M(Q) by £(0,x) on (=0,0) and by 0 on (T, ). If &, is given
by (5.51), then there exist constants C1,C> > 0 independent of u, such that for all
u>2andevery ¢ € V;W’m(ﬂ) we have

[ mxgs acars [ ma (€]) dedr
Qr {mi(1&) <1}

+Cy M (t,x,Cr£(t,x))) dx dt. (5.52)
Qr

Proof. The beginning of the proof is very similar to the proofs of Proposition 3.7.10
and Lemma 5.3.10, where we give more comments on the method. We need, however,
to split the time interval in a more delicate way. First we notice that

M(t,x,&,(t,x)) dxdt

Qr

S/ M (t,x,&,,(1,x)) dxdt+/ M(t,x,&;,(t,x)) dxdt
M, g0 <1} {M(-,-. &0 =1}
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5/ m2(|§;,(t,x)|)dxdt+/ M (t,x,&;(t,x)) dxdt
{mi(1€:D) <1} M(,-. 8021}

=y +dy.

To deal with I, we notice that {m; (|&,(-)]) < 1} = {ma(I&;()]) < c} forc =m0
ml‘1 (1) and we have the following pointwise estimate

ma (1€ DL pmy gz n<ny () < e

Hence, Lebesgue’s dominated convergence theorem enables us to justify that

limsuplyzlimsup/ m2(|§;(x)|)dxdt=/ my (&) dxdt.
pn/o n/0 J{m(|g7) <1} {mi (1€ <1}

We concentrate now on J,,. We fix an arbitrary parameter y > 2 and consider

1 1
families {1/ }ie1 and {J/ }; 1 of time intervals

1 L1
1" = [tl.”,t.” )

i i+1

1 1
covering [0,7] and such that |1/ | = |[}/| = ,lll for every i,k > 1 and

1 1 1

1 1 1 1
T = [eF g +s(ﬂ)) and  [JF| < —+e(u) = v(w),
u

i i+1
1
where £(u) is given by (5.51). Let us stress that the J/ are shrinking, that is
1
lim [J/| = lim v(u) =0.
”—)OO ”—)OO
We consider infima over small time sub-intervals
1
Mi’i(x,n) = inf{M(r,x,n) ctedin [O,T]},

and their second conjugates (M, 1)** coinciding with the greatest convex minorant
TH
(see Theorem 2.1.41). Since M (#,x,£) > 0in {M(-,-,&;,) < 1}, we have

Nll/u
JH = Z; ‘/Q‘/I; M(t,x,f;l(t,x))]l{M(.,.,gl;)s]}(t,x)dxdt

N M(t,x,8% (1, %))
_ LT *% .
"2 L M, ) g o) G0y (041

(5.53)
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To estimate the fraction in the last integral by a constant independent of i and u, we
need to employ the balance condition (Mp) or (Mp),,. For this we note that for every
i€ {1,...,N{/#} there exists a k € {1""’N1t/(u)} such that we have

J % crr®
12 12
L
with E’ (#) having the same properties as I/ described above, but withlength 6 = v(u)
and coming from some other division of [0,7"] chosen for each i. Conditions (Mp)
or (Mp), are formulated with the use of an infimum over a cylinder, so we need

to construct proper cylinders. Let {Q}S };\f: °, be a family of N-dimensional cubes
covering the set €2, which consists of closed cubes of edge length 26, such that

Ns
intQ? NintQf =0 for i#j and Qc| Joo.
j=1

With any cube Q¢ we associate a cube Q‘? centered at the same point and with
parallel corresponding edges of length 46. Define

M]:(j'u)(f) = inf{M(t,x’n) = jz(/‘) N [O,T], = Q;’(Il)}

Now we are in position to compare the infimum over a relevant cylinder with an

infimum over a short interval. Since for a.e. x € Q;(”), J=1,...,Nyu, and i =

1,...,N’ itholds that
1/p

MY () < M, 1 (x.6),

hence we can estimate

M(t,x,n) M(t,x,7)
© ’ : 5.54
M, )70 = () (v(u). Inl) 5.54)

For every x € Q we can choose the cube including it and having the properties

needed for the above estimate. The outcome of (5.54) is uniform with respect to
(t,x) € (QW) n[o, T]) ngyw.
As without loss of generality it can be assumed that ||£|| .« (o, 7.1 (q)) < |, we have

t

€8 (1.0 < / 6 g(s,0)] d
wlIT=H =) §(s.x)lds (5.55)

< c(Qullél Lo 0,01 (@) < c(Q)u.

Then for every x € Q we can choose a cube é;(") including x. By (5.54) and (Mp)
given in Section 4.2.2.1 (resp. (Mp), from Section 4.2.2.2), we observe that for

1 _
arbitrary (z,x) € ([O, T] ﬂli“) X (Qﬂ Q}'(”)) we have
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M(t,x,&;,(2,x))
(M 1)™ (x, &5 (1,x)) =

o (vl (01 < O(v(w.c@u). (556

where the last inequality is justified by (5.55) and the monotonicity of ® with respect
to the second variable. This bound is uniform with respect to (¢,x). Since © is
nondecreasing with respect to the first variable we see that

limsup®(v(u),c(Q)u) <11msup®((1+10g (c(Q)6M))e(Q)sN, 6~ )
5—

H—X

For all § < 6o(N) we have
@((1 +1og2(c(g)5N))c(g)5N,5-N) <0(6,6N) < c < oo,
where the last estimate holds due to (Mp). In the case of (Mp),, by the same arguments

we get that
limsup®, (v(u),c(Q)u) < ¢ < 0.

M0

In both cases we can estimate the right-hand side of (5.56) over a cube é}f(" ) by a
constant ¢ not depending on u. In turn, in (5.53) we obtain

l/ll
Ju <CZ /Q/,ﬁ (M )" (x,&5,(1,x)) di dx. (5.57)

We go back to (5.53). By Jensen’s inequality with an intrinsic constant
cr(w=1/(1-e#M) <1/(1-e=cs(D=Cr<1,

we obtain

Ju <CZ/ (M, )**( /tH eHD (s, x)ds | dr dx

—s—&(u)

< cZ i / p I (s (G ds drar =,
¥ t—s—e(u) TH

We continue our estimations using the fact that the second conjugate is the
greatest convex minorant (Corollary 2.1.42) and Young’s convolution inequality
(Lemma 8.26). We get

—CZ// / eH =M (t,x,¢7(1)&(t,x)) ds dr dx
I” t—s—e(u)

<y / 1 2 ot I s CoEC D s g 1) 05
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<SClIM (- Cé) L ap

where for the last inequality we estimate ||uet"|| 11—z (),0) < 1 and compute the
sum. Summing the last two displays gives the claim. O

Let us present a proof of Theorem 5.3.12.

Proof. We extend ¢ € V() by ¢(0,x) = go(x) on (—c0,0) and by 0 on (T, ).
We shall prove that the sequences we are looking for are: {¢,, } ,,~> coming from (5.50)
and {¢},},>2 coming from (5.51).

Properties (i), (ii), (iii) can be proved by simple computations. Indeed, (i) follows
since we have

Bripu(1.%) = 0, (Il / e g (5, ds)

(o)

=u (sO(I,x) —u[ M p(s5,x) dS) = u(e(t,x) —u(t,x)).

0

We justify (ii) immediately from (5.51) while we notice that

0
@7 (0,x) = / e 0¢(s5,x)ds
O0-&(p)

=¢(0,x)e"®

0 102
= o(x) (1 —e %8 ”) .
—&(p)

As for (iii), we see that
t
(V) (t,x) = eH NV p(s,x)ds
M
t—e(p)

=V (,u [_s(ﬂ) et (s, x) ds) = V(go;l(t,x)).

Let us concentrate now on showing (iv), i.e. the modular convergence
o M : N
V(pp) — Ve in Ly (Qr;RY),
/1*)00

which suffices for strong convergence ¢;, —— ¢ in L'(Qr) due to the Rellich—
l,l—)DO

Kondrachov theorem (Theorem 8.48) for W!-!1(Q). As in the previous proofs of
approximation properties of the space we base our argument on the modular density
of simple functions from Theorem 3.4.11. We start by constructing a simple function
which is close to ¢. We take a family of measurable sets {E,, },,en such that |, e E, =
Q7 and vector-valued simple functions

n
E"t.x)= ) g, (ton,,
j=0
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with a family of vectors {77‘,-};.':0, such that { E"},, i converges modularly to Vg with
A4 (cf. Definition 3.4.3). Its existence is justified by Theorem 3.4.11. Let us write a
telescopic sum

V(g}) =V = (V(gs) = (B )+ (B = E") + (E" = Vo).

Then Jensen’s inequality implies

Vigs)-V V(gs)—(E™)?
/ M([,X,M) dx dr < ﬂ M(t’x,m) dxdr
Qr 4 A Jo, A1
(E"); —E"

M (t,x, —) dxdr
Qr A2

n

E"-V
—(’D) dx dt
A3

A2

A3 (
+—= M|t x,
A Jor

_ MM g Tl
= L1 + L2 + L3 s
where A = Zf:l Ai, ; > 0. We have A3 fixed already for the last term to be small.
Let us take A = A3/C, and leave for a moment the choice of 1. We will justify

convergence to zero of each of the terms on the right-hand side of the last display.
Due to Lemma 5.3.13 we can estimate

|[E" — V|

n,u )
OSLl S/{ml(w)q}mz( Ay ) t

E"-V
+C/ M(r,x,—“’) drdr =: K",
Qr A3

where lim,_,., K" = 0. Consequently,

LT nu_
lim limsup L """ = 0.

n—oo —00

As for L;’“ , Jensen’s inequality and then Fubini’s theorem lead to

NT
A - 1
iy g e // M(t,x,—/ e (Lo 01 (5) -
2 ; Q I,.”L A2 R# o)

<) g (t,x0)m;(t,x) = 1g, (s —t,x)n; (s —t,x)] ds | df dx
=0
A
1
u(s) _ .
< C;/g./lifl‘ 1!V 01 (s)M (t,x, 2
n
~Z[]lEj(t,x)77j(t,x)—]lEj(s—t,x)nj(s—t,x)] ds dr dx
j=0
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N} n
1
SC/Q' E /I%M t,x,/l—2 EO[]IE_I.(t,x)r]j(t,x)—]lEj(s—t,x)nj(s—t,x)] dr dx.
i J=

ii=1

(5.58)

Since the shift operator is continuous in L' we have the pointwise convergence
n

[]lEj (f,x)ﬂj(f’x) - ]lEj (S - f,x)ﬂj(s - t’x)] e Oa
j=0

H—00

because s —t < 1/u. For arbitrary fixed 1, > 0 we have

n

M|tx, & Z (L, (1,07, (1,%) = L, (s = £,2)7; (s~ £,%)]
j=0

n
1
< sup M{6x, A > Injllee e | < o
RN ¢ |=1 =

and by the Lebesgue dominated convergence theorem, the right-hand side of (5.58)
converges to zero. Thus, we have the convergence of {L"* + Ly + L}, en y>2 to
zero for n — oo and u — co, which completes the proof of modular convergence of
the approximating sequence.

To complete the proof it suffices to show (v). The L*-norm is preserved directly
from the formula (5.51). Let us note that

t—e(p)

eut=gitx=p [ V(s ds

—00

Since we assume ¢ € L (Qr), it follows that

° — _ 2
e —3llz=@r < lelle@ne ™™ = llells e ¥ —— 0.

H— X

One may justify that for every u and a.e. x € Q the function ¢}, (-, x) is in Wb ([0,T))
using Young’s inequality for a convolution with a measure (Lemma 8.27). Indeed,
for every u function 9, ¢}, (-, x) has bounded total variation, because its accumulation
points have finite mass. Moreover, direct computation shows that

18 (@1 (%) = 5, (20 L= 0.7y < 2[1 @l oy e W
= 2”QD”Loo(QT)elOg:“(l_logll) O

H—00

uniformly for x € Q, which completes the proof. O
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5.3.3 The comparison principle

The comparison principle we provide below is the consequence of the choice of
a proper family of test functions. Note that the proof essentially uses the decay
condition (R3p).

Theorem 5.3.14 Suppose a satisfies (Alp)—(A3p) with an N-function M : [0,T] x
QxRN — [0, ) satisfying (Mp) or (Mp)p. Let vi,i=1,2, be renormalized solutions

to
vt —diva(t,x, Vv) = fl e L'(Qr),
vi(0,x) = vf)(x) e L'(Q),

then for a.e. 7 € (0,T) it holds that
/Q(v'(r,x)—v2(r,x))+ dx
S]QAanx)—f%nxDsg%(W(ﬁx)—VRﬂxDdxm (5.59)
" /Q (vh(0) = v2(x))sent (v (r.) = v2(7.0)) dx,

where sgnar denotes the positive part of the signum function.

If additionally f' < f* a.e. in Qr and v(l) < v% in Q, then v! <v? a.e. in Qr.

Proof. Let us define a two-parameter family of functions 87" : R — R by
1 for s € [0, 7],

BT (s) =4 =L for s € [1,7+7],
0 forse [t+r,T]

with arbitrary 7 € (0,7) and sufficiently small r > 0, such that 7+r < T, a one-
parameter family of functions Hs : R — R by

0, s<0,
Hs(s) =1 s/6, s € (0,8),
1, s>6,

with 6 € (0,1) and sets
07 = {(1,%) : 0 < T (V') = Tr1 (v?) < 6},

05" == {(t,x) : Trs1 (V1) = Tri1 (V) = 6.
We use (R2p) from the definition of a renormalized solution (Definition 5.3.1)
with
hY =y, @=Hs(T(v) =T (v)B™" (1)
and
hv) =i(v?), @ =Hs(Tra(v)) =T (v))B™" (1),



5.3 Renormalized Solutions to Parabolic Problems 205

where i is a hat-function from (5.25). In turn for i = 1,2 we get the equalities

vi(t,x)
—/ (/ wl(O')da') O dxdt+/ a(t,x, Vi) - V(i (v ) dxdr
QT v,

6 (%) Qr

- / Fun(v)g ddr.
Qr

Note that this choice is admissible due to Theorem 4.2.6 and Lemma 3.4.7. When
we subtract the equality for i = 2 from the one for i = 2, we obtain the equation for
the difference of these problems, reading

o,r,l,T o,r,l, T o,r.l,t s,r.l,T o,r,l,t _ no,r,l,1
D1 +D2 +D3 +D4 +D5 _DR s

where

Dbt ::—/Q (/lve Ll/l(O')d0'+/7v lﬁl(a')d"')'
T V() v

0;(Hs(Ti (Vl) =T (Vz)))ﬂ‘r’r(t) dxdz,

l T+r Vg V]
pprr [ f ( [ w@aos [, l//I(U')dO')Hé(TlH(Vl)—Tl+1(V2))dde,

Y (") =y (v?)
08 0

Y (v?)
0 O

DorhT :=/ (a(t,x, Vvl - Wty (o) —a(r,x, Vv2) - WPy (1))
vt

[N
DR '_/5
[0}4V]0)

DISERES (@(t,, V) - V(Ti1 (v) = Tt ()BT (1)) ded,

DY = (a(t,x, Vv —a(t,x,Vv?) - V((Tra1 (V) = T (v)) B™ (1)) dx s,

Hs(Tr1 (") = Ten (V) B (1) dxdt,

0N = PO Ho (T (v) =Tt ()BT (1) dedr.

d
T

Our aim is now to get rid of the limits of Df’r’l’T, D?’r’l’T,Df’r’l’T,Dgs’r’l’T and
obtain the final estimates from limits of Df’r’l’T and Dl‘i”’l’T.
By properties of 57" we can estimate
Sl v2 vl
i< [ ol [ @ [ nee]|
Q? "(l) v
1
00D =T 027 0] arar
Vg Vl
+/ / a,lrl(O')d0'+/ Yi(o)do ||
o3|\ .
1
[ 060 =T a7 0] asar
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1
= /Q 5‘(wz(a,mﬂ(vl))—m(afm(vz»)5-6‘ dxdr
T

1
+/ ‘(TZH(V(I)) - Tl+1(V(2)) +T4 (Vl) =T (Vz)) = '5' dxdt
02 g

<(2+4(1+1))|03].

Therefore, by Lebesgue’s dominated convergence theorem we can pass to the limit
Df’r’l’T — 0as § — 0. To justify the convergence of Dg’r’l’T, D;S’r’l’T, and Dg’r’l’T
for 6 — 0, it also suffices to apply the dominated convergence theorem. On the other
hand, D‘s’r’l’f > 0 can be justified by the monotonicity of truncations, whilst the
monotonicity of a implies D‘S "LT > 0. To sum up, by dropping nonnegative terms
on the left-hand side, passing to the limit as 6 — 0 in the remaining terms, and by
setting

D;’l = lim Dg Ly and Dg’l = lim D‘S b
5—0 5—0

we obtain

DrlT+Drl‘r_llmD6rlT+llmD6rlT

/Qr/ (/ wl(a)d(ﬂr/z l!”(‘f)d"')Sgng(TlH(Vl)—Tz+1(v2))dtdx

(at,x, Vvl - Wly  (v!) —a(r,x, Vv?) - W2y, (V7))

Qr

-sgng (T (V') = Ty (V)77 (1) dx dt
< / o) = 2o (v)sgnd (Tiar (v') = Toar (v3)) dids

= lim Dl‘zr T
60

Due to (5.66) and the uniform boundedness of
{sgng (Tr1(v") = Tir ) B™" (D) }is0

we get that lim;_,« Dg’l’T =0. Lebesgue’s monotone convergence theorem enables
us to pass to the limit as [ — oo also in D;’I’T and Dg’l’T. Consequently, we obtain

/r/ vg—vp+vl—v? )sgno(v —v?)dr dx
Q

S/Q (fl—fz)sgng(vl—v2)dxdt.

Since a.e. 7 € [0,T) is a Lebesgue point of the integrand on the left-hand side, we
can pass to the limit as r — 0. By rearranging terms we conclude (5.59).
To motivate the final conclusion for ' < f? a.e. in Q7 and v(l) < v(z) in Q, note

that in (5.59) the left-hand side is nonnegative and the right-hand side is nonpositive.
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Hence,

sgng(v! (1,x) —v3(1,x)) =0 forae. xe€Q, andae. 7€ (0,7)

2

and consequently v! <v? a.e. in Qr. O

5.3.4 Existence and uniqueness

The proof of Theorem 5.3.3 is obtained in several steps. Recall that the existence of
solutions to bounded data problems has already been covered in Theorem 4.2.17.
We start with a priori estimates for truncations of a sequence of solutions to bounded
data problems. The use of the truncation method at this stage is already classical and
dates back to the pioneering papers of [43, 47, 31].

From now on, to use the approximation results described in Theorems 4.2.6 and
Theorem 5.3.12, we assume that M satisfies a balance condition, that is, (Mp) from
Section 4.2.2.1 or (Mp),, from Section 4.2.2.2 is in power.

Step 1. Problem with truncated data
The existence of weak solutions to a problem under our regime and with bounded
data g and ug is provided in Theorem 4.2.17. Therefore, the problem

Oy —diva(t,x,Vuy,) =T, (f) in Qr,
uy(t,x) =0 on (0,7) x 0Q, (5.60)
Un (Oa ) = uO,n(') = Tn(u()) in Q

for every n € N is a direct consequence of Theorem 4.2.17 with g = T;,(f), where
T, stands for the symmetric truncations at the level n which is defined in (3.55).
Namely, for every n there exists

un € VM(Q) = {u e L'(0,T;W) ' (Q) : Vue Ly (Qr:RY)},
such that for any ¢ € C.°([0,T) x ) it holds that

—/ U0 dxdt—/un(O)tp(O) dx+/ a(t,x,Vu,) Vo dxdt
Qr Q

Qr

=/ T.(f)e dxd:. (5.61)
Qr

Step 2. A priori estimates

Our aim is to apply the integration by parts formula from Theorem 4.2.10 to a
weak solution u, to (5.60) and a particular choice of A, F, h and £ therein. Let us
prepare for this. We already know that

Ti(un) € Vy (@) = Vi (@ N L¥([0,T]: L' ().

Let the two-parameter family of functions 37" : R — R be defined by
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977 (1) 1= (wp + po,) (0), (5.62)

wherer > 0, 7 € (0,T), and w, is a standard regularizing kernel, that is w, € C2°(R),
suppw, C (-r,r). Note that

supp? ™" = [-r,T+7)
and for every 7 there exists an r, such that for all » < r we have
9" 10,1y € CZ(10,7)).
When we apply Theorem 4.2.10 with
A=a(t,x,Vup), F=T.(f), h()=Tc(-), and £(t,x)=9""(1),

we have

Uy (t,x)
—/ (/ Tk(O')dO') 0,(ﬂT’r)dxdt+/ a(t,x,Vuy) - V(T (uy,)9™") dx ds
.QT U, Q

0,n (x) T

- / T ()T ()97 dxdr.

Qr

We can pass to the limit as r — 0, for a.e. 7 € [0,7T] to infer

un (7,X) L‘O,n(x)
/(/ Tk(O')dO'—/ Tk(O')dO') dx+/ a(t,x,Vu,) - VTi(u,) dxdt
e \Jo 0 Q.

_ / T ()T (1) ddr,

-

and in turn

Ui (i (0)) 12 ) = 31T (t0,0) 122+ /Q a(t,%, VT (i) - VT () drd

- / T ()T () dedr.

T

The coercivity condition (A2p) results in
caM™(t,x,VTi(un)) < M(t,x,VTi(un)) < a(t,x, VI (un)) - VT (ur). (5.63)

Combining the last two displays we get

1 2 1 2
ST 0 (7)) 12 gy = 5 T (t0.0) 22 + /Q M (1.2, Ti (1)) dxdi

<klfller@p)-
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Noticing that
7% (40,1) ”iZ(Q) < klluo,nllLr @) = klITw (o)l L1 (@)
and that 7 € (0,7) is arbitrary, by fixing
1
wa(k, fouo) =k IfllL )+ §||u0||u(g)

and making use of (5.63) again, we get a priori estimates of the following form

/'anqu»mmswxhﬁ%x
Qr

(5.64)
[ (015, VT 1)) i < walke f o).
QT
Step 3. Decay condition
We prove that if u,, is a weak solution to (5.60), n > 0, then it holds that
llim {|lun| > 1} =0 (5.65)
and
lim lim sup/ a(t,x,Vuy)-Vu, dxdr=0. (5.66)
—® pooo {I<|un|<l+1}

We concentrate first on (5.65). To this end we consider m; — the minorant of
M from the definition of an N-function and C}J,c% > ( being constants from the
Poincaré inequality (Theorem 9.3) involving m . We have

{lunl = 0} = {IT1 (un)| = 13 = KITi(un)| 2 1] = [{mi (cplTi(un)]) = mi(cph)},

so for [ > 1 by Chebyshev’s inequality (Theorem 8.28) and the Poincaré inequality
(Theorem 9.3), we have

plTi(un QT
mman/'ﬂﬁiﬁﬂﬁﬁwgﬁ&fg
Qr m](CPl) ml(CPl) or

Since m; is a minorant of M and by the a priori estimate (5.64) we continue the
above estimates to notice that

c(N,Q,T)

ml(c},l)

1 [
<C(M.N.Q.T +=|lu _
( )(”f“L‘(QT) 2“ OHLI(Q) ml(C}Dl)

cpmy (|VTi(uy)]) dxds

{lun| = 1}] < /Q M(t,x,VT;(uy)) dxdt

As we know that f € L' (Q7), ug € L' (Q), dependence on data will now be hidden
in a constant. The function m is superlinear at infinity, so we can conclude that
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l
{lunl 2 1} < C(f,u0,M,N,QT)——— ——0. (5.67)
ml(CPl) A

In turn, this proves (5.65).
To prove (5.66), we consider a family of nonincreasing functions ¢, € C2°([0,7)),
such that

1 fort € [0,T-2r],

(/br([) ::{0 fort e [T—F,T], and G[(S) :=T[+1(S)—TI(S).

Since u, € VIM(Q) is a weak solution to (5.60), we can use

@(t.x) = G1(un(t,x)) ¢, (1)

as a test function in (5.61) and get

(@) Gy (1) by el + / a(t,x.Vity) - Vity 6, ddi

Qr {l<|un|<l+1}

:/ fGi(u,) ¢, dxdr. (5.68)
Qr

On the left-hand side above a direct computation shows that

T T Up
/0 (Dru) G1 (106l = /0 a,( /0 Gl(S)dS) b dr

Uuo,n T Un
= —4,(0) / Gy(s)ds - / / Gy(s)dsdhr di,
0 0 0

Upn
/ Gi(s)ds>0 and &,¢, <O0.
0

T un
—/ / Gi(s)dsd,¢,dr > 0
0 0

and in turn from (5.68) it follows that

where

Therefore, we have

/ a(t,x,Vuy)-Vu, ¢, dxdt
{l<|un|<l+1}
uo,n
< [ Gitue avarr [ 6,0 [ Gio)as ax
Qr Q 0

It suffices now to show that the right-hand side above tends to zero as [ — co. Note
that
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‘MO,n | |uO,n ‘
// |Gl(s)|dsdx§// ]l{s>l} ds dx
QJ0 QJ0

_/ (Iu(),nl_l) dx — 0
{lug,n |-1|>0} I—o0

and
/ fGl(Mn)¢rdxdtS/ |f| dxdr — 0,
Qr {Jun|>1} I—eo

where the convergence is justified by the fact that f is integrable and the domain of
integration shrinks, see (5.67). Consequently, (5.66) follows.

Step 4. Convergence of the truncations 7y (u,,)

Our aim is now to interpret the a priori estimates (5.64) as inferring various
properties of limits of a weak solution u,, € Vé‘/[ () to the problem (5.60) for
arbitrary k > 0. Namely, we show that there exists a measurable function u such that
Ti(u) € V%"’ () and

Tie () — Tic () weakly in L'(0,7;W,"' (), (5.69)
Ti(up) — Ti(u)  weakly-+in L™(Qy), (5.70)

VT () = VT (u)  weakly-x in Ly (Qp;RVY), (5.71)
a(t,x, VT (up)) = Ay weakly-=in Ly (Qr;RVY), (5.72)

for some Ay € Ly (Qr;RY).

In fact, the weak lower semi-continuity of a convex functional together with the
above a priori estimates (5.64), the Dunford—Pettis theorem (Theorem 8.21), and
the Banach—Alaoglu theorem (Theorem 8.31) imply the existence of u such that
Tru € VZM (Q) for every k > 0 and (5.69), (5.70), (5.71) hold. By the same reasoning
there exists an Ay such that (5.72) holds. Similar arguments are presented in detail
in Step 4 of the proof of Theorem 5.2.3.

Step 5. Almost everywhere limit

This step is devoted to showing that if u,, is a weak solution to (5.60), then for
the function u obtained in the limit in the previous step, we have Tru € V;"’ (Q) for
every k >0,

U, - u a.e.inQr, (5.73)
and
llim [{|lu| > 1} =0. (5.74)

We make use of the notion of renormalized solutions already in this step. In fact, to
prove (5.74) we apply the comparison principle of Theorem 5.3.14. We can do this
since by Theorem 4.2.10 any weak solution u,, is a renormalized solution. Let us
denote asymmetric truncations by
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-k if f<-k,
TRy =3f  if —k<f<l
l if f>1

and by u®? — a weak solution to a problem with truncated data
uy —diva(s,x,Vu) =T (f),  u(0,x) =T’ (uy),

which exists due to Theorem 4.2.17. By the comparison principle (Theorem 5.3.14)
we get that for 0 </ <" and 0 < k < k’ it holds that

ukol <yl <yl (5.75)

k,

for a.e. (t,x) € Qr. The sequence {u*'};~¢ is monotone, so lim;_, u*! exists a.e.

in Q7 and we denote it by uk-, Having (5.75) we infer that also

keoo g e.in Qp.

Altogether, the following limit exists

¥ = lim u**  ae.in Q7.

k—o0

Consequently, due to the uniqueness of the limit, we get the convergence (5.73).
Then condition (5.74) is a direct consequence of (5.65).

Step 6. Identification of the limit of {a(z,x, VT (1)) }nen

As in the elliptic case, in this step we employ the monotonicity trick to identify
the limit (5.72). Nonetheless, this is a particularly interesting step, because it is
essentially more complex than the case of M constant in time, e.g. [79, 188]. As a
matter of fact, the classical tool of Landes regularization cannot be applied anymore
and we need to apply a very subtle approximation provided by Theorem 5.3.12. For
this result we need (Mp) or (Mp),, from Section 4.2.2.1 or 4.2.2.2, respectively.

The aim now is to show that
a(t,x, VT (up)) — a(t,x, VT (1)) weakly-+ in Ly (Qr;RY), (5.76)
by proving that in (5.72) for fixed k we have
A =a(t,x,VTi(u)). (5.77)

Let us fix an arbitrary nonnegative w € C2°([0,7)). In order to use the monotonicity
trick of Theorem 4.2.11 we show that

limsup/ wa(t,x,VTk(un))-V(Tk(un))dxdts/ WA - V(Ti(u)) dxdr.
Qr

n—oo Qr
(5.78)
We take the approximate sequence {(7k(u))},},>2 from Theorem 5.3.12. It satisfies
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(VTi(u)), 25 VTi(u)  modularly in Ly (Qr;RY)
when yu — oo. We define ¢; : R — R by
Yi(s) :=min{(l+1—|s])4, 1}. (5.79)
We use the integration by parts formula (Theorem 4.2.10) on (5.60) with
A =a(t,x,Vuy,) € Ly (Qr;RY) and F=T,f LY (Qr)
twice: for the first time with

h(-)=y¢i()Tk(:)  and &

I
=

and for the second time with
h(-)=yi()  and  &=w(Ti(u)),.
By subtracting the second from the first we get

N L (5.80)

1 4

where

= —/ 6,w(/ nlﬁl(S)Tk(S)ds) dxdr
Qr Uuo,n

[ o [T as) aca

0.

gl = / w1 () a(t,x, Vitn) -V (T un) = (Te(u));) dxdr,

Qr

1 = [ ) Ti) = () 80,3,V Vi dedr,
[ W ) () = (T} e,

We need to justify that we can pass to the limit as n — oo, then ¢ — oo, and finally
with [ — oo. Roughly speaking to prove that the limit of I; ol nonpositive, we

show that the limit of 1;"” s nonnegative, while I;’ L and IZ’” ! tend to zero.
Limit of /] ! To prove that
limsuplimsuplimsupll"’”’l >0 (5.81)

l—0c0 H—00 n—oo

by the properties of the approximation, i.e. due to (5.49), we write

n,u,l _ gn,uLl n,u,l n,u,l
L =07+ Ly + 05,
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where
It = /@w/ wl(s)Tk(s)ds) dxdr,

L= /Q (@w) (Tk(u»;( i(s) ds) dxdr,

uo,n

I;"’;"l = /Qrw O ((Te(w))},) (‘/uoun Wi(s) ds) dx dr.

Since s — ;(s)Tx(s) has a compact support, by (5.73) we have the convergence
u, — u a.e. in Qr, and by continuity of the integral, we can justify passing to the
limit as 7 — oo in I;”i“’l to get

n—oo

u
lim I;l”i“’l = —/ 6,w/ Ui(s)T(s)ds dxdt =: I{’l.
Qr )

Furthermore, by integration by parts we have

w w Tk (s)
/0 l//z(s)Tk(s)ds=/O /O Wi (s)do ds

w Ti(w)
= Tk(w)/0 Ui(s) ds—/ / Y (s) dsdo,
SO we can write

Ii,l=—/QTazw(Tkw)/ouwz(s)ds—/m”)/ !ﬁl(S)de(T) drde
« [wor( [ o [ wsasar =t [ nias) o

In the case of I ” , having the pointwise convergence of the integrand when
n — oo and boundedness of all of the involved terms, Lemma 8.22 justifies passing
to the limit. By the properties of the approximation (Theorem 5.3.12 (iv) and (v) we
pass to the limit as u — oo and obtain

(5.82)

lim_lim 74! = /(@w)Tk(u)(/"m<s>ds—/"°m<s>ds) drdi= 1!,
Qr 0 0 ’

MO N—00

In the case of 1,4}’ ! we can let n — oo by the same arguments as for / ?2’” and get

lim I1 3 =/ w@,((Tk(u)),,) (/ 1ﬁl(s)ds) dxdr

n—oo

/ 30 (Te)) e~ (T ()7 ( / wl(s)ds) drds

u,l u,l .l .l .l
Lo (POt 053t 54+ 5 s
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with
17311 /Q w O (T (u))0) ( tﬁz(s)ds)dxdt,

1 Tk(u)
I, = / w O ((Tr (1)) ) (/ Wi (s) ds) dxdt,
Qr Tic (1))

(Tre (1))
]{1313' /Q wd; (Ti (u)),0) (/ l/lz(S)dS) dxdt,
I{J3l4 = _‘/Q Wat((Tk(u))y) [) Wi(s) ds) dx ds,
If3l5 : —/g w (at((Tk(u))Il —(Tk(u));)) (/u i (s) ds) dxdt,

where we want to pass to the limit as u — oo. Note that due to Theorem 5.3.12 (v)
we directly infer that limy, e 4’ L 3 5=0.

The convergence of I f‘ 313 can be justified by integration by parts and continuity
of the integral since

Ti (u) o
Mlggolf” /(a,w)/ / z,bl(s)dsd(r)dxdt
T

_/QW(O) /Tk(w)/ z//l(s)dst')dxdt
Il

1,3,3°

As for It", . 3 4 We integrate by parts with respect to the time variable and pass to the
limit due to Lemma 8.22 to get

sim 1t = im [ [ o [ nas) o
+ / W (0)Tx (o) / Lpl(s)ds)dxdt
Q 0

/ (dw)Tk(u)( uotﬁz(s)ds)dxdt
Qr 0

+ / w(O)Tk(uo)( /0 uoglrl(s)ds) drds
= I{ 3,4

By summing all the terms and the formula from (5.82), after passing to the limit as
M — oo, we get
1 !
111“‘112"'1133"‘1134 0. (5.83)

Notice that in order to get (5.81) it suffices now to prove that
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limsuplimsup (74 + 14} > 0. (5.84)

1,3,2
[—o0 H—00

We will do this by applying the property of the approximation (5.49). Let us notice
first that

1= [ wutno =@ ([ nea) axa
:/{uSk}wy(—k—(Tk(u)),,)(/:z/rl(s)ds)dxdt
ot @) [ nas) avarzo.

where on the set {|u| > k} the most internal integral vanishes and each of the
remaining terms is nonnegative. Moreover, again due to (5.49), we get

1, Z/Q Wﬂ(Tk(u)—(Tk(“))“)(/(

Ty (u)),u

T (u)
wi(s) ds) drdr > 0,

which is justified by monotonicity of truncation.
Thus we conclude (5.84) and consequently (5.81).

Limit of I; 1 The coercivity condition (A2p) implies nonnegativeness of
a(t,x,Vuy) - Vuy,, so the radiation control property (5.66) is equivalent to

lim limsup/ la(t,x,Vuy,) - Vu,| dcdr =0.
{I<|uy, |<l+1}

—® pn—ooo

In such a case
) = ‘ / wi] () (Tiun) = (Tic));, ) (2,6, V) -V dedl
Qr
< 2kl / (8(t,x Vitn) - Vity | drds,
{I<|uy, |<l+1}

which is independent of u, so directly we have that

lim lim limsup 7' = 0.

[—>oopu—00 4o

Limit of IZ’” L We apply the Lebesgue dominated convergence theorem to
justify the limit as n — co. Indeed, we have the continuity of the integrand, (5.73),
i.e. u, — u a.e. in Q7. Having convergence

(Tk(u));, ’u_)—oo> Ti(u) ae.in Qp

due to Theorem 5.3.12 and boundedness in L' of the rest terms means we can apply
the Lebesgue dominated convergence theorem and pass to the limit as u — oo to get
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lim lim lim I"*! = 0.

[—00 y—0oon—oo

Conclusion via the monotonicity trick. Since we have (5.80), by passing there
to the limit, since 13" ' and T " tend to zero, we get

0 =limsuplimsuplimsuplimsup I?’”’l

>0 o0—0 H—0 n—oo

+limsup lim sup lim sup lim sup (

[—o0 0—0 H—0  n—0

[ ) (0,257 ) 9T ) = (T} ).
Qr
If we also take into account (5.81) the above line becomes

limsuplimsuplimsuplimsup (

l—c0 o—0 H—0 n—oo

[ ) 2005, V3020 -9 T = (T ) ded) <

By the coercivity assumption (A2p) we have a(t,x, VT (uy,)) - V(Tr(up))) > 0 and
a(t,x,0) =0, so since w,i; > 0 and by (5.79) for sufficiently large /, i, n, we infer

/ wa(t,x,VTk(un))-V(Tk(un))dxdtS/ wa(t,x, VT (un)) - V((Ti(u)),;,) dxdr.
Qr

Qr

Letus concentrate on the right-hand side above. Recall that V(T (u));, € Ly (€273 RM)
and that (5.72) holds, so for sufficiently large u

limsup/ wa(t,x, VT (u,)) - V(T (uy)) dxdtS/ w.ﬂk-V((Tk(u));) dxdr.
Qr

n—oo Qr

We recall again that V((T (“))L) M, VT (1) modularly in Ly (Q7;RM) as yu — oo
(by Theorem 5.3.12), so by Corollary 3.4.7

lim w.ﬂk-V((Tk(u));)dxzf wAy - VT (u) dx.
u=0Jq, Qr

Consequently, we obtain (5.78). Following the monotonicity argument of Theo-
rem 4.2.11, as in the proof of Theorem 4.2.17, we prove (5.77). In fact, the mono-
tonicity assumption of (A3p) implies

(8(x. Y (T () =t 2.1) ) - (V (T (1)) =) = 0

a.e. in Qp for any n € L= (Q7;RN) ¢ Ep (Q7:RY). Due to Theorem 3.5.3

a(,~n) € Ly (Qr,RY) = (Ep (Qr,RY))*,
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so we can pass to the limit as n — oo and take into account (5.78) to conclude that

/Q w(Ar—a(t,x,1)) - (V(Ti(u)) —n) dxdt > 0. (5.85)

Then Theorem 4.2.11 with
A=A and &=V (Tr(un))

implies (5.77), which completes the proof of this step.

Step 7. Renormalized solutions

We are in a position to complete the proof of existence by showing that u obtained
as a limit in the previous steps is a renormalized solution. This part follows the
ideas of [79, 188]. We need to apply here the integration by parts formula, so
indeed approximation from [80] is used and, consequently, we require condition
(Mp) or (Mp),, from Section 4.2.2.1 or 4.2.2.2, respectively, to use the approximation
theorems from Section 4.2.2.

We aim to show that the limit function u from the previous steps is the unique
renormalized solution we are looking for.

Condition (Rip).
Due to Step 4 and (5.76) if u,, solves (5.60) its limit u satisfies condition (RIp).

Condition (R3p).
The aim now is to prove the key convergence for condition (R3p), namely

a(t,x, VT (u,)) - VT (uy) —_ a(t,x, VT (u)) - VT (u) weakly in L'(Qr).
(5.86)
The arguments follow the same arguments as in the proof of Theorem 5.2.3. The
above display is a parabolic version of (5.36). We motivate the convergence in both
cases by an argument based on Chacon’s biting lemma (Theorem 8.37) and the
Young measures (Theorem 8.41). We take a nonnegative w € C°([0,T)). Let us
observe that the sequence

(budners 1= {o (a(0,x, VL1 (10)) =a (0%, VT))) - (VT (1) = V(1) |

neN

is uniformly bounded in L'(Q7) due to the a priori estimate (5.64) and the Fenchel—
Young inequality (2.33). Indeed, we might write

/ bydxdt < Jj+Jr+J3+J4,
Qr

where
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J1 :=/Q wal(t,x, VT (uy,)) - VT (uy,) dxdt,
T

J :='/Q wal(t,x,VTi(uy)) - VT (u) dxds,
T

J3 = /Q wal(t,x, VT (u)) - VI (uy) dxdt,
T

Jy = /Q wal(t,x, VT (u)) - VT (u) dxdt,
T

and each of the terms can be estimated in the following way

Ji < |wllre (/ M*(t,x,a(t,x, VT (un))) + M(t,x, VT (un)) | dx
Q
<c(f,ug,ca,w,M)k,

which yields uniform boundedness in n. In turn, ||bnllp1(,) < J1+J2+J3+ 4,
that is, {b, }ncn is bounded in L'(Qz). The monotonicity of a(z,x,-) from (A3p)
ensures that b,, > 0. Therefore, Theorem 8.41 combined with Theorem 8.37 give, up
to a subsequence, convergence

0< w(a(t,x, YTk (un)) - alt,x, VTk(u))) (VT3 (i) = VT ()

W / (a(t,x,/l)—a(t,x,VTk(u)))~(/l—VTk(u))dv,,x(/l), (5.87)
RN+

n—oo

where v; . denotes the Young measure generated by the sequence {VT (uy)}tnen.
Since (5.69) supplies us with weak convergence VT (u,) = VT (1) in L' (Qr;RN),
we infer that

/ Advi x(A) =VTi(u) forae. te(0,T)and ae. x € Q.
RN+1

In turn
[ AT w) - (- VT4 0) a0 =0
RN+1

and, consequently, the limit in (5.87) for a.e. t € (0,T) and a.e. x € Q satisfy
v /RNH (at.x.2) ~a(r,x, VT@) ) - (1= VT () dv 1 (2)
:w/RNH a(t,x,A)-A dv,,x(/l)—w/NH a(t,x, 1) - VT (u) dv, (1) (5.88)
The uniform boundedness of the sequence
in L'(Qr)

{w a(t,x, VI (uy,)) - VTk(u")}nEN
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coming from the Fenchel-Young inequality and a priori estimates (5.64) (as in the
case of J; above) enables us to apply once again Theorem 8.41 combined with
Theorem 8.37 to obtain

WAl V7)) Vi) ow [ ae2) A1 (0.

RN+1

Since assumption (A2p) implies a(¢,x, VT (uy,)) - VI (1) = 0 by (5.88) and (5.87),
we have

/ w/ a(t,x,4) - Adv; (1) dxdr
Qr RN+1

< limsup/ wal(t,x, VT (uy)) - VT (u,) dxdt.
Qr

n—oo

We already have (5.76), so we can put

Ay = alt,x, VT (1) = / a(t,x, ) dvx (1),
RN+1

and consequently the above expression implies

/ w/ a(t,x,4)-Adv; x (1) dxdts/ wVTk(u)-/ a(r,x,A)dv; x (1) dxdr.
Qr RN+1 Qr RN+1

We apply it together with (5.88) to get that the limit in (5.87) is non-positive and
that

b
w (a1, VT (100)) = a(t,%, VT )] - (Vi 1) = Vi (1) == 0
with arbitrary nonnegative w € C2°([0,7)). When we take into account that

a(t,x, VT (1)) € Ly (Q7;RN), we can choose an ascending family of sets E}‘,
such that

|Ef| >0 for j > oo and a(t,x,VTi(u)) € L (Qr \ EX:RY).
Recall that VT (u,) — VT () weakly in L' (Q7;RN), so
a(t,x, VT (1)) - (Vi) = VT () —— 0
and similarly we infer that
a(t,x, VT () - VTi (1) ,HLW’ a(t,x, VT () - VTi ().
Summing up, we get

(1%, VT (1)) VT (1tn) —— a(t,x, Vic(w)) - Vi (w).
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The coercivity assumption (A2p) ensures that both the right and the left-hand sides
are nonnegative. Recall that Theorem 8.38 together with (5.78) and (5.72) results
in (5.86).

Notice that Vu, =0 a.e. in {(t,x) : |u,(t,x)| € {[,{+1}}, so by (5.66) we get

lim sup/ a(t,x,Vu,)-Vu, dx=0.
{l-1<uy, |<I+2}

=00 ;50

Let us define g’ : R — R by

1 if I<|s|<1+1,
g(s)=40 if |s|<I—1or|s|>1+2,
is affine otherwise.

Therefore

/ a(t,x,Vu)-Vudxdr < / g (w)a(t,x, VT (1)) - Vi (1) dxdr.
{I<|u|<l+1} Qr

(5.89)
Since (5.73) (i.e. u,, — u a.e. in Qr) and due to (5.74) we have

lim |{[u] > 1}| =0.

By (A3p) we have
a(t,x,&)-¢ =0,

so we can estimate the limit of the right-hand side of (5.89) in the following way

0 < lim a(t,x,Vu)-Vu dxdr

I=00 Jup-1<|u|<1+2}

< llim /gl(u) a(t,x,VT2(u)) - VT (u) dxdr =: L.
- Jo

Having weak convergence of (5.86) and recalling that the function g is continuous
and bounded, we infer that

L= lim lim g (up) a(t,x, VT2 (up)) - Vs (up) dx dt,
—00 N— Q

which can be estimated from above due to the definition of g; as follows

L < lim lim a(t,x, VT (uy)) - VT (1) dxde =0,

[—oon—eo J_ 1|y, |<l+2}

where the last equality comes from (5.66). In turn u satisfies condition (R3p).
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Condition (R2p).
We apply the integration by parts formula (Theorem 4.2.10) for (5.60), with arbitrary
he Cl(R) and & € C2([0,T) xQ), obtaining

_‘/QT (‘/uvo,n h(O’)dO’)@,f dxdt+‘/g;—ra(t,x’v“n).V(h(un)é_‘)dxdt

=/ T, (f)h(uy)€ dxde.  (5.90)
Qr

It suffices to justify passing to the limit as n — oo above for fixed R > 0 such
that supph C [—R,R]. The right-hand side converges to the desired limit due
to the Lebesgue dominated convergence theorem since T, f — f in L'(Qr) and
{h(uy)}nen is uniformly bounded.

To deal with the limit on the left-hand side we notice that

lim — (/"h(a)da)a,g dxdtz—/ (/ h(cr)da)a,gdxdt,
n—eo Qr \Jug Qr \Juy

where the equality is justified by the continuity of the integral. As for the second
expression on the left-hand side of (5.90), since supp C [—R, R], we write

/ a(t,x,Vuy,) - V(h(u,)€&) dxdr
Qr

- / B (T (1)) a(t,x, VT (1)) - VT (1) € dx it

Qr
" / h(Tr () a(t,x, VTg (1)) - VE dxdr
Qr
= [II"+111}.

Recall (5.86), that is, the weak convergence of {a(t,x, VT (un)) - VT (upn)tnen in
L' (Qr). By (5.73) we see that 1’ (u,)é — h'(u)€ a.e. in Qr and

1A (un)éll=@r) < Ih (un)ll=@n ll€ll= @)

so we can pass to the limit as n — co in //1{. In order to justify the case of 1117 we
recall that (5.76) implies the weak convergence

a(1,x, VTg (un)) —— a(t,x,VTx(w)) in L'(Qr).

Furthermore, {h(Tgr (1)) }nen converges a.e. in Qr to h(Tr(u)) and is uniformly
bounded in L*(Q7), therefore we can pass to the limit as n — oco. Putting this
together we conclude that

lim (111} +1117)) :/ h' (Tr(u))a(t,x,VTr(u)) - VTg(u) & dxdr
n—0oo QT

+ / h(Tr () a(t,x, Vg () - VE dx dr.
Qr
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Therefore, all the expressions of (5.90) converge to the desired limits in (R2p).

We already proved that u satisfies (RIp), (R2p), and (R3p), hence it is a renor-
malized solution to (4.70).

Uniqueness. Uniqueness is a direct consequence of the comparison principle (Theo-
rem 5.3.14). Assume there exist two renormalized solutions v! and v? to the problem
(4.70) for given data f and v¢. To show that they are equal a.e. in Qr it suffices to
apply (5.59), which implies that for a.e. 7 € (0,7") we have

/(VI(T,x) —v2(7,x))sgng (v! (7,x) =v*(7,x)) dx <0
Q
as well as
/(vz(‘r,x) —vl(T,x))sgng(vz(T,x) —v!(1,x)) dx <0.
Q

Consequently, v!(7,x) = v?(7,x) for a.a. (7,x) € (0,T) x Q.

5.3.5 Exercises

The problem treated in Theorem 5.3.3 can be developed in various directions.

e To cover more general conditions ensuring the density of smooth functions, one
can refine the results of Theorems 8.35, 4.2.6, and 5.3.12. The possible ways
are indicated in Remarks 3.7.11 and 3.7.13. It is possible to lower the regularity
imposed on M with respect to the time variable. Note that the existence of weak
solutions is actually proved under almost no restriction with respect to the time
variable [63]. Nonetheless, proving Step 6 under more general conditions will be
highly challenging.

e The growth conditions can be relaxed. In [188] the existence of renormalized solu-
tions is provided for M independent of the time variable and under the restriction
M* € Ay, but not M € A,. It would be interesting to extend it to M = M (¢,x,&).
On the other hand, one may think about extending the ideas of Theorem 4.1.3 to
prove the existence of renormalized solutions imposing M € Ay, but not M* € Aj.

e Other notions of very weak solutions can be studied under various regimes. In
particular it would be interesting to verify under what assumptions the notions
essentially differ from each other.

e One can study which kinds of lower-order terms can be incorporated into the
equation or what kind of structural conditions need to be imposed on the operator
ifa=a(r,x,u, Vu), see [188].

o Following the pioneering contribution for differential inclusions [109] it might be
interesting to study its parabolic version under various regimes mentioned above
(and with lower-order terms included).

e One may be interested in related problem with problems with data more general
than merely integrable, see e.g. [273, 274]. In particular, there is an open problem
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for measure data equations involving nonlinear operators (even of power growth),
namely what the optimal assumption on a measure datum ensuring uniqueness of
a very weak solution is, cf. [46].

e The regularity theory of solutions to measure data parabolic equations and their
gradients with such a general growth is essentially an open field.
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Chapter 6

Homogenization of Elliptic Boundary Value
Problems

The main concern of this chapter is a homogenization process for families of strongly
nonlinear elliptic problems with a homogeneous Dirichlet boundary condition. The
spatial inhomogeneity in the study of homogenization is motivated by the phe-
nomenon of the creation of a porous structure under the influence of an electric field.
An example of this phenomenon is the formation of such structures in metal oxides,
such as aluminium and titanium, in the process of anodization. Experiments reveal
that in the growing oxide layer spatially irregular pores are formed. This is due to
the dependence of oxide conductivity on the electric field, cf. [288]. A benefit of the
anodization process is that an oxide film increases resistance to corrosion and wear,
and provides better adhesion for paint primers and glues than the bare metal itself,
thus the study of anodization has attracted a great deal of attention, see [204, 200]
among many other references. The mathematical interpretation of homogenization
is simply that it is an averaging of PDEs with oscillating coefficients.

The growth and the coercivity of an elliptic operator is assumed to be prescribed
by an inhomogeneous anisotropic N-function. The dependence of an N-function on
a spatial variable has a significant impact on the problem as it means the homoge-
nization process will change the underlying function spaces and the nonlinear elliptic
operator at each step. For this reason the presented results are not just a generalization
of homogenization of nonlinear elliptic systems in the standard L”-setting, but are
qualitatively different.

6.1 Formulation of the Homogenization Problem

Homogenization is an approach to studying problems involving operators with
rapidly oscillating coefficients. Translating this to physical language it is a way
to study heterogeneous materials, i.e. such that some microstructure is present. The
length scale of oscillations in the coefficients is significantly smaller than the size of
the domain.

The fundamental lecture of Tartar [310] and also consequent works [290, 269]
can be recognized as the origin of the study of homogenization of elliptic equations.
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These results quickly became of the highest interest among the properties of elliptic
systems with periodic structure. The homogenization process was also the starting
point for the development of the two-scale convergence technique, introduced by
Allaire [11] and later generalized for different operators in [341]. This approach
made it possible to find a homogenized equation and prove convergence in a single
process.

Let now Q ¢ RY be a bounded Lipschitz domain with N > 2. The parameter & is
a positive number which is considered to be small in comparison to the size of the
domain Q. Given F: Q — RN and a nonlinear operator A : RY x RN — RIXN
we study elliptic systems of the form

divA (£,Vu®) =divF in Q,
‘ 6.1)
u®=0 ondQ,
where u®: Q — R is an unknown. As the length scale of oscillating coefficients is
visibly smaller than the size of the domain, studying such an equation would be too
complex, and thus in the homogenization process we let € — 0 in (6.1) and expect to
show that u® — u, where the limit u solves the following nonlinear elliptic problem
with an operator independent of a spatial variable, i.e.,

divA(Vu) =divF in Q,
(6.2)
u=0 on 0Q,

and the operator A is defined as

A) = /Y A(y.€+W(y)) dy. 63)

Here by Y we mean a periodicity cell of a fixed size, for simplicity chosen as the
unit cube, ¥ := (0, 1) and W solves the cell problem, i.e., W := Vw with Y-periodic
w:RY — RY solving

divA(y,&+Vw(y)) =0in Y. (6.4)

Note that now £ plays the role of a parameter and y is a variable. Summarizing,
we try to understand how the microscopic properties of a material influence its
macroscopic behavior. A good understanding of the above formulated cell problem
is a starting point for further analysis, and thus the presentation will start by collecting
its properties, see Section 6.5

We start by formulating the assumptions on the operator A. They partially cor-
respond to analogous conditions appearing in preceding chapters in view of growth
conditions prescribed by an N-function. For simplicity we follow the generality
of growth and coercivity conditions introduced in the original papers on the topic
[59, 60], however the whole analysis could be conducted under the most general
conditions (A2e). In addition, A is periodic in the first variable:

(A1) A is a Carathéodory mapping.
(A2) A isY-periodic, i.e. periodic in each argument y;, i = 1,..., N, with period 1.
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(A3) There exists an N-function M : RN x RN — [0, ) and a constant ¢ > 0 such
that for a.a. y € Y and all £ € RN

A(y.€) & 2 c(M(y, )+ M (y,A(y.))).

(A4) For all £, € RN such that € # 57 and a.a. y € ¥, we have

(A6 -AQ.m)-(§-m) >0.

Before formulating the theorem, which is the main content of the current chap-
ter, we briefly describe how the study of homogenization of elliptic equations has
developed. The first results go back to the works of Oleinik and Zhikov [269] and
Allaire [11]. However, the setting of non-standard growth conditions of the opera-
tor A, which is of particular interest to us, appeared in [341]. The authors considered
the growth prescribed by means of a variable exponent p(x), so the corresponding
function spaces were varying with respect to € — 0 in the homogenization process.
Notice that in the LP ) setting they required that 1 < ppin < p(x) < pmax < 09, SO
the corresponding functions spaces were reflexive and separable as well. The first
attempt to deal with an N-function not satisfying the A,-condition was in [59], where
for an operator A satisfying (A1)—(A4) and an N-function M the limit € — 0 was
successfully established, provided that M is log-Hdlder continuous with respect to
the first variable.

Later, the same authors showed that for discontinuous functions M one can obtain
a fairly complete theory provided that M or M™ satisfy A,-condition, but without
any assumption on the continuity with respect to the spatial variable, see [60]. This
result, supplemented with numerous details to ease the understanding of proof steps,
is presented in the current chapter. It is a particularly interesting case as it makes it
possible to model discontinuity of conductivities from one phase to the other.

6.2 Definitions, Main Result and the Strategy

In this section we introduce definitions of solutions to the original problem and
discuss the limit problem, and then explain that the difficulty in the homogenization
process turns upon the possibility of varying function spaces. For simplicity we
define M%(x,&) =M (g,g ) for fixed &. Throughout the chapter we present a twin-
track reasoning — the cases of the Aj-condition for an N-function M and the A,-
condition for its conjugate M™ need to be treated differently and thus the definitions
and theorems have two variants.

Definition 6.2.1. Let Q c RN be a bounded Lipschitz domain, the operator A
satisfy (A1)-(A4), an N-function M be Y-periodic in the first variable and
F € L®(Q;R¥N),

(i) If the conjugate N-function M* satisfies the Ap-condition, then we call u® a
solution to problem (6.1) if for fixed € € (0,1)
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u® € Wi Ly« (@RY)

and

[ A0 0) o = [ F@-Tpt a (65)
Q Q

is satisfied for all ¢ € W L= (Q;RN).
(ii) If the N-function M satisfies the A,-condition, then we call u® a solution to
problem (6.1) if for fixed € € (0,1)

E
ugeVé”

and

/A(g,VuS(x))-vgo(x)dx=/F(x)~Vso(x)dx (6.6)
Q Q

is satisfied for all ¢ € V1",

As announced earlier, we formulate below the homogenization result. We allow
ourselves some imprecision here when mentioning the notion of solution to the limit
problem (6.2), which has not yet been precisely defined. However, this definition
will appear after a careful analysis of the growth conditions, see Definition 6.6.8.
Note that, even though we know the conditions that are satisfied by an operator A,
the growth conditions that are satisfied by A need to be deduced.

Theorem 6.2.2 Let A satisfy (Al)—(A4), an N-function M be Y -periodic and let at
least one of the following conditions hold:

1. M satisfies the A,-condition,
2. M*, the convex conjugate N-function to M, satisfies the A,-condition.

Furthermore, assume that
F € L®(Q;RPN) (6.7)

and for any € > 0 let u® be a unique weak solution to the problem (6.1) according
to Definition 6.2.1. Then, as € — 0,

u® —uwin Wy (Q:RY),

where u is a unique weak solution to (6.2), provided that either the considered
problem is scalar, i.e., d = 1, or the embeddings

Wy Ly (R) = Ly (Q) and W' Ly (Y) < Ly, (Y) (6.8)
hold true.

In the above theorem, as well as in the further parts of the chapter, we use
Musielak—Orlicz (or Musielak—Orlicz—Sobolev) spaces generated by Young func-
tions my,m, coming from condition (2.37). To stay consistent with the definition of
an N-function we should understand these functions as follows: m;(z,&) :=m;(|€]).
Note that we used the same letters for a Young function and for the N-function for
simplicity of notation.



6.3 The Functional Setting 229

Growth and coercivity conditions naturally lead to a priori estimates implying
that

/M(g,vlf)dx and /M*(g,A(g,Vue))dx
Q Q

are bounded. Note however that this bound is not uniform in &, which means that by
passing to the limit as € — 0 the function spaces L= would change in each step. In
such case a passage to the limit is not possible. For that reason we shall benefit from
the uniform bound we have on an N-function, cf. Definition 2.2.2, by two Young
functions m; and m;. Thus Vu® is uniformly bounded in L,,, (2) and A (%, Vu?® ) in
Ly (L), which are already objects that allow for uniform estimates and compactness
conclusions. We will see, however, that there are no definite disadvantages to working
in less general spaces generated by these Young functions. It immediately appears
questionable whether the product of these limits has a chance to be well-defined, as
the spaces L,,, (Q) and Ly (Q) are not associate spaces. However, this problem will
be solved after identifying new N-functions that on one hand prescribe growth and
coercivity conditions of A (Vu), and on the other hand define associate spaces that
allow the above mentioned limits to have a well-defined product. As expected, the
limiting operator A (Vu) does not depend on x.

Before starting the proof of Theorem 6.2.2, we first assemble some facts: The
existence of solutions to problems (6.1) and (6.2) need to be established. We can
already do this for problem (6.1), but to handle problem (6.2) special attention needs
to be directed to a cell problem. In particular, in the first step the growth conditions
of A need to be found, i.e. an appropriate N-function need to be identified, which is
the main content of Section 6.5.

Before however answering all the existence questions, we firstly collect the tools
needed for the passage to the limit as € — 0 (see Section 6.4). This exposition
concentrates on isotropic homogeneous spaces for the reasons mentioned above, i.e.
the passage to the limit is performed exclusively in such spaces.

6.3 The Functional Setting

In accordance with the notation that has been used so far, @ ¢ R" is a bounded
domain and Y := (0, 1), which we endow with the Luxemburg norm

IVliL,, = IVllg, :=inf{1>0: M (y, X2 ) dyde < 1},
M M QJY 4

From here on in this chapter we assume that whenever a function depends on a
variable from Y, it is always Y-periodic, even if the Y-periodicity is not mentioned.

The spaces of periodic functions were introduced in Section 3.6. For our consid-
erations we introduce the following closed subspaces of the spaces E f;r(Y;RdXN )
and EV;7 (Y;RYN), as well as their annihilators
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G:={Vw:we Wll,erEM(Y;Rd)}’

G*:={W € Ly (Y:RN) /W(y) -V(y)dy=0forall Ve G},
Y
D= E[]‘J/;r,div (Y;RdXN),

DY = {We Ly (Y;RPN)Y: /W(y) -V(y)dy=0forall Ve D}.
Y

We note that

DY ={Vv:veV)l}. (6.9)

By G*+ and D** we understand the second annihilators. To prescribe their basic
characterization we already need to distinguish two cases according to whether M
or M* satisfy the A;-condition. If M* satisfies the Ap-condition, then (Lys+)* = Ly
and we can observe that

Gt ={W e Ly (Y;R”N)Y: /W(y) ‘V(y)dy=0 forall Ve G*(Y)}. (6.10)
Y
Similarly, if M satisfies the A,-condition, then (Lps)* = Lps+ and we obtain

DLL:{WGLM*(Y;R”IXN):/W(y)~V(y) dy=0 forallVe D*}. (6.11)
Y

6.4 Homogenization Tools in the Setting of Musielak-Orlicz
Spaces

The method of periodic unfolding is one of the tools used in homogenization prob-
lems. It has its origins in the L? setting in the works [320]. It essentially relies on
two ideas: firstly one doubles the dimension by introducing the unfolding operator
S . This step allows one to use standard weak or strong convergence results in L?
instead of the tools of two-scale convergence. Indeed, this procedure allows us to
associate to a function in L? () a function v(S ), which is an element of L? (QXxY),
and it turns out that two-scale convergence of a sequence in L? is equivalent to the
weak convergence in LP(QXY) of the unfolded sequence. We recall here that a
sequence of functions v® in LP(Q), p € (1,00), is said to two-scale converge to a
limit v0(y,x) € LP (QxY) if for any function ¢(x, y) € C(L, Cer(Y)) itholds that

lim/vg(x)go(x,ﬁ)dx=//vo(y,x)&p(x,y)dxdy. (6.12)
=0 /o QJy

Here Y is assumed to be a unit cube, otherwise the right-hand side would be divided by
the measure of the periodicity cell |Y|. Thus one shows that two-scale convergence
of a sequence v¥ in LP(Q) is equivalent to the weak convergence of v®(S.) in
LP(QXY), see [96, Proposition 2.14].

The current setting of Musielak—Orlicz spaces, because of their non-reflexivity,
only provides conclusions on the weak-* compactness of bounded sets, thus for our
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purposes we need to use the condition of convergence of the unfolded sequence
v¥® oS, as a definition of two-scale convergence, additionally underlining precisely
what type of convergence we have in mind. In the forthcoming lemma the relations
to the standard definition of two-scale convergence (6.12) are discussed.

The second equally important element of the periodic unfolding method is sepa-
rating the characteristic scales, which means that every function is decomposed into
two parts.

For a more rigorous presentation of these ideas we define functions n : R — Z

n(t):=max{n €Z:n<t}, VteR, (6.13)

and
Lx] := (n(x1),...,n(xq)), Vx e RV, (6.14)

Set
r(x):=x-|x]. (6.15)

Then obviously for any x € RN, & > 0, we have a two-scale decomposition

x=e(|]+r(2), (6.16)

where r is aremainder function. Then we define for any £ > 0 a two-scale composition
function S, : Y xRN — RV as

Se(y,x) :=s(|_§J+y). (6.17)
It follows immediately that

S¢(y,x) — x uniformly in ¥ xRN as & — 0 (6.18)

X

since S (y,x) =x+e(y-r(%)).

Definition 6.4.1. Assume m : [0,00) — [0,00) is a Young function. We say that a
sequence of functions {v®} .50 C L,,,(RN)

. . . 2-s .
(i) converges to v° weakly-+ two-scale in Ly, (RN XY), written v¥ —=* 10, if v¥o S,
converges to v0 weakly-# in L,, (RN xY),

.. . . 2-s .
(i) converges to v° strongly two-scale in Ep, (RN xY), written v¥ — v0, if v¥0 S,
£ 8Ly
converges to Vo strongly in En(RN xY).

We define two-scale convergence in L,, (QxY) as two-scale convergence in L, (RN x
Y) for functions extended by zero to RNV \ Q.

In the following lemma we point out the relation of the above definition of two-
scale convergence with the standard one recalled in (6.12). The proof of this lemma
appears at the end of this section, since it uses some convergence properties that are
proved afterwards (Lemma 6.4.4 part (iii)).

Lemma 6.4.2 [fv¢ =" 0 in L,,(QXY), then for any ¢ € C® (Q;c;;’e,(Y))

lim/vg(x)w(g,x) dx=//v0(y,x)w(y,x) dy dx. (6.19)
=0 Jo oJy
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The following two lemmas provide essential aspects of two-scale convergence,
which appear to be a core of the proof of the main result. The first one we recall with
its short proof from [320].

Lemma 6.4.3 (Lemma 1.1, [320]) Let g be measurable with respect to a o-algebra
generated by the product of the o-algebra of all Lebesgue measurable subsets of
RN and the o-algebra of all Borel measurable subsets of Y. Assume in addition that
g € L'(RN;L*(Y)) and extend it by Y-periodicity to RN for a.a. x € RN. Then, for
any € > 0, the function (y,x) — g(v,S¢(y,x)) is integrable and

/RNg(ﬁ,x) MzAjN[/g(y,Sg(y,x)) dy dx.

Proof. Firstly we observe that the functions x — g(£,x) aswellasx — g(y,S¢(y,x))
are measurable. From the definition (6.17) we conclude that the mapping (y,x) +—
(y,S¢(y,x)) is piecewise constant with respect to x and affine with respect to y.
Observe that since RN = J,,,czv (em +£Y) and [%J =m for any x € em+¢£Y the
following holds

/RNg(ﬁ,x) dr= > /mwyg(ﬁ,x) dr=gV ) /Yg(y,S(m+y)) dy

mezZN mezZN
-3 [ e [ele(z] ) @
mezN em+eY Y

=f dx/g(y,Ss(y,X)) dy.
R? Y
(6.20)

Lemma 6.4.4 Assume that m : [0,00) — [0, 00) is a Young function.

(i) Let {v®} ¢>0 be a bounded sequence in L,,(Q). Then there is a v° € L,,(QxY)
such that, passing to a subsequence if necessary,

pe 2250 i L (QXY)

ase —2>_0.
(i) Ifve =" v0 in L,y (QXY) then

N / W00y, dy in Ln(€2).
Y

2-5 4 . 2- D
(i) Ifve =210 in Ly (QXY) and w& =5 w0 in Ep: (QXY), then

liir})‘/gvs(x)ws(x)dxz‘/g/yvo(y,x)wo(y,x) dy dx.

(iv) Letv® 20 in W(; L, (Q). Then
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pe 25 vin L, (QxY)
and there is a v € L, (QxY;R?) such that
Ve 25 vy 4y in L (QxY;RY)

as e — 0, and

[yt day=0
fora.a. x € Qand any ¢ € C;"e,(Y;Rd),dngb =0inY.
(v) Let @ : RN xRN R be a Carathéodory function, ®(y,-) be convex for
almost all y € Y and ®(-,&) be Y-periodic for any & € RPN, Moreover, let
@ >0and ©(-,0)=0. If

U® 2255 Uin Ly (Qx V:RDN)

then

llmlnfL@(%,Us(x)) dxzv/g‘/yé(y,U(y,x)) dy dx.

-0

Proof. In order to show (i), we first apply Lemma 6.4.3 to a function g =m ( ‘V; | ),

which is independent of y, where {v¢}..¢ is an arbitrary bounded sequence in
L,,,(Q). Consequently this implies

cz/ |v <x>| // |vf<s (yx))l)dydx
Q

for some A > 0. This boundedness yields that there exists a subsequence, also denoted
by {v® 08} >0, and a limit function v° € L,, (Q xY) such that

vSOSgi\VO in L,,,(QXY)

as € — 0 by the Banach—Alaoglu theorem (Theorem 8.31). We recall that
Ln(QXY) = (E - (QXY))" and E,»(QXY) is a separable space. Assertion (i)
then obviously follows by the definition of weak-* two-scale convergence.

Point (ii) is an immediate consequence of the definition of the weak-* two-scale
convergence in L,,(QxY) once we use test functions, which are independent of the
y-variable.

To prove assertion (iii) one again applies Lemma 6.4.3, this time to the function
g = vw. With the help of Holder’s inequality (cf. Lemma 3.1.15) it is easy to show
the integrability of g an hence that the assumptions of the lemma are satisfied. Thus

/Q Ve (W (x) dy = /Q /Y D (3, Se (1) (y. S (y,2) dy dx
- /Q /Y V(57,82 (y.0) (91,85 (3.)) ~ w0 (3.2)) dy dx (6.21)
+/Q/Yvw,58(y,x))w0(y,x) dy dx.
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The first term on the right-hand side converges to zero since w* two-scale converges
strongly in E,,;+ () and v¥ o S ¢ is bounded in L,,, (2 X Y). The second term converges,
immediately from the definition of the weak-* two-scale convergence in L,,,(Q X Y),
to fQ /Y vow0 dy dx. Observe that w?, as an element of E,,-(QxY), and since
(Epm(QXY))* =L, (2XY), is a proper test function.

In order to show (iv) we observe first that {v®} .- is bounded in L,, (). Thus
by (2izsthere isavle L,,(QxY) and a subsequence, labelled the same, such that
v& =" 1%in L,,(QxY). Then (iii) implies for all ¢ € C*(Q,C%,,(Y)) that

per

-1 £(x)-0 (X -1 £(x\di x
0= ‘lslirz)a‘/QVv (x) - (%,x) dx llir%)e‘/gv ()div [ (£,x)] dx

=lim [ ev®(x)divee (£,x) +v?(x)divye (£,x) dx
-0 Jo i i

://vo(y,x)divygo(y,x) dy dx,
oJy

which implies that 10 is independent of y. If v is a weak-* limit in L,,(Q) of
v¥, then v = fY v0 by (ii). We thus see that for any weakly-* two-scale convergent
subsequence of {v®}.s¢ the limit is v. Hence v is the weak-* two-scale limit of
the entire sequence {v®}.~o. Applying (i) to the sequence {Vv®}.-o we infer the
existence of w € L,,(Q x Y;R4) such that

Ve 25 win L, (QxY;RY)

as &€ = 0. Let us choose z € CZ°(Q) and y € Cpj,,,. (Y;RY) with divyy =0inY. Then,
the continuity of ¢ implies that the sequence ¢ (x) := (%) two-scale converges in

En (QXY), ie. 45 2= in Epp (QXY) as & — 0. It then follows from (i) that

liir%)/QVv&(x)%(x)lﬁ(%) dx:/g/yW(y,X)-Z(x)lﬁ(y) dy dx

whereas the integration by parts yields
lim/va(xyz(x)w(%) dx=—lim/v*’(x>vZ<x)-w(§) dx
=0 Jo e—0Jo
— [ [Pwv v ayac= [ 90020000 dyar
QJy oJy

Hence, choosing the function v := w— Vv°, we observe that it has all the properties
required in the assertion (iv). s

We complete the proof by showing that assertion (v) holds. Note that U —* U
in L, (QxY;R™N) implies U*—U in L'(Q x Y;R¥N). Thus it follows from
Lemma 6.4.3 and a standard weak lower semicontinuity property that for U®,U
extended by zero in RV \ Q
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liminf/d)(i,Ug(x)) dx:liminf/ ®(y,U?(S:(y,x)) dx dy
Q e=0 Joxy

&e—0

> '/s;xyd)(y,U(y,x))dxdy.

Hence we conclude (vi). O

Proof (of Lemma 6.4.2). First we will observe that the following fact holds. Let ¢ :
Y XxQ — R be an Y-periodic smooth function. Obviously ¢ € E ;- (QxY). Consider
a sequence ¢ “ (x) := ¢ (£,x). Then y* s, W in E-(QxY) as € — 0.

To show that assertion (6.19) holds, we fix a weakly-* two-scale convergent
sequence {V°} g0 C Ly, (Q) with alimit v € L,,, (QxY) and ¢ € CZ(Q: Cyy,, (V).

e

Then we have v& (x)y(x,y) € L' (RN ; L*(Y)) provided that we set vZ =0in RN \ Q,
¥ =0in (RN \ Q) x Y. Therefore by Lemma 6.4.3 we get

/Q Ve (oW () di = /Q /Y V¥ (S5 (1) (3, S (3.3)) dy dr.

Combining this with the convergence results v® 25000 in L(@xY) and
v (£,x) 2, W (y,x) in E,,;-(QXY) as € — 0, we infer
tim [ 200 (500 av=tim [ [v2(S. 00000 025000 dy
e—0,Jo 7 e—0J0 Jy
- [ [Ponutm aras
aJy

with the help of assertion (iii) of Lemma 6.4.3. O

6.5 Properties of the Cell Problem

Our aim is to investigate the properties of the homogenized operator A, defined
by (6.3). However before discussing its properties it is necessary to know that the
problem of defining A, which is problem (6.4), that we also call the cell problem, is
solvable. First, we give a definition of weak solutions to (6.4), and then we prove the
existence result.

Definition 6.5.1. Let A satisfy (A1)—(A4) and an N-function M be Y-periodic.

1. If M satisfies the Ay-condition, then for arbitrary & € RN we say that We is a
weak solution to (6.4) if
we € W), Ly (ViRY)

and

/A (v, E+Vwe(y)) - Ve(y)dy=0 forall ¢ € WlljerLM (Y;Rd) . (6.22)
Y
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2. If M*, the convex conjugate N-function to M, satisfies the A-condition, then for
arbitrary & € RN we say that W is a weak solution to (6.4) if

M
We € Vper

and

/A (v,€+Vwe(y)) - Vo(y) dy=0 forallp e V). . (6.23)
Y

Theorem 6.5.2 Let A satisfy (Al)—(A4), an N-function M be Y -periodic, and let at
least one of the following conditions hold:

1. M satisfies the A,-condition,
2. M*, the convex conjugate N-function to M, satisfies the A,-condition.

Then for arbitrary & € RN | the problem (6.4) admits a unique weak solution.
Moreover,

£ — £ in RN implies A( &+ VW) > A( £+ VW) in Ly (V;RDN),
(6.24)

where Wi is a solution of the cell problem corresponding to & and we to &,
respectively.
Proof. The existence and uniqueness of solution wg can be obtained by a straight-
forward modification of Theorem 4.1.3 and Theorem 4.1.2, respectively.

Thus in the remaining part of the proof we concentrate on showing (6.24). Assume
that {&/ }52, is such that £ — £inRYN as j — co. By w; we mean a weak solution
(according to Definition 6.5.1) to the problem

divA(y,&" +Vw,,(y)) =0inY. (6.25)

The first part of the theorem provides that there exists a weak solution w;, which

is an admissible test function in (6.22), (6.23) respectively, with £/ instead of &, and
thus we obtain

/ A(y, €/ +Vwgi(y)) - Vwg, dy =0. (6.26)
Y

Using the assumption (A3), (6.26) and the Fenchel-Young inequality in consequent
steps of the estimate below we infer that

¢ /Y M (3, A3 &+ VW (1)) + M (y.& +Vw ) dy

< /A(y,fj+VW§j()’)) (€7 + VW) dy
Y

‘/YA(y,fj +Vwei(y) £/ dy

IA

%/),M*(V,A(y’fj+VW§j(y))) dy+/YM(y’%§j) dy.

By the definition of an N-function there exists a Young function m such that
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/YM(y,%fj) dyS/sz(|%§j|) dy

and the integral on the right-hand side is finite as {&’ };":1 is bounded. Thus
we conclude that the sequence {A(y,&’ +VW§,-)}‘J’.';1 is uniformly bounded in

Laz- (Y;RPN) 5o there exists a Z € Ly (Y;RYN) such that, passing to a sub-
sequence if necessary,

A E + VWi () 2 Zin Ly (V;RPN) (6.27)

as € — 0. In the next step we shall show that Z = A(-,& + Vwg) for almost all y € Y,
where w is a weak solution corresponding to &, which exists according to the first
part of the theorem. The monotonicity of A implies that

/YI(A(y,fj +VWei (1) A E+VWe (1)) (£ + VWi (y) —€=Vwe ()| dy
- /Y (AGE 4+ VW) (5) ~ AL E+TWe (1)) - (€0 + Twes (3) — € — Twe (1)) dy

Since w¢ and w,; are weak solutions, they may be used as test functions in (6.4) and
(6.25) respectively. Consequently the above expression can be rewritten as follows

/Y(A(y,ff +VWei (1) =AY E+VWe (1)) (67 +VWei (3) €= Vwe(y) dy

— [AGE T () - AG.£+ Twe ) (67 -6) .
r (6.28)
Since we showed that {A (y, &’ +VW§_1’)};11 is uniformly bounded in L s+ (Y;RPN),
and the same is true for the term A(y,€+Vwe(y)), we conclude that the terms
A(y, & +Vw,;(y)) and A(y,£+Vwe(y)) are uniformly bounded in LY(Y;RDN)
and thus the last term in (6.28) can be easily estimated

/Y(A(y,gj +VWei (1) — A, E+VWe (1) - (6 —€) dy < ClE7 €.

Thus letting j — oo allows us to conclude that the left-hand side converges to zero.
Recalling the identity (6.28) we infer that the sequence

{(AGLE + VWi ()~ A E+TWe (1)) - (€7 + VWi (3) — €~ TWe (3)) ) jene
(6.29)
converges in L' (Y) to zero, and therefore also is weakly precompact in L' (Y). Thus
the limit can be characterized with the help of Young measures (see Theorem 8.41)
as follows

/Rd(A(y,fﬂl)—A(y,§+VW§(y))) (E+A=E-VwWe(y)) dvy(D).  (6.30)
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In view of the strict monotonicity of A, see (A4), we find that the Young measure
Yy has. to concentrated in one point, i.e.. Vy = 0(vw,(y)}- As the Young measure
is a Dirac measure, the sequence generating the Young measure converges almost
everywhere in Y. Thus we obtain by letting j — oo that

Vwg —»Vw  ae.inY.
The continuity of A with respect to the second variable also implies that also
A(y,E+Vwei) = A(y,Vw) ae.inY

and since this limit coincides with a weak-x* limit (6.27), it holds that Z(y) = A(y,& +
Vw(y)) for a.a. y € Y. The uniqueness of this solution implies that not only a
subsequence selected from {A(y,&/ +Vwy; (y))};.‘;l converges weakly-x to A(+, &+
Vw) in Ly (Y;R4N) but the whole sequence converges to the same limit, which
completes the proof of (6.24). O

6.6 The Homogenized Operator and the Limit Problem

This section concentrates on the properties of the homogenized operator. The discus-
sion is split into two cases: either M or M* satisfy the A,-condition. We first prepare
the tools for specifying the growth properties of A in the case when M* satisfies the
A,-condition. For this purpose we define the functional f : RN — [0, c0) as

1) = jot. [ Mg+ Won (631)

and discuss its properties.

Lemma 6.6.1 Let an N-function M be Y -periodic and satisfy the stability condition
(2.37) with functions my,m,. Then the functional f defined by (6.31) is also an N-
Junction and the corresponding condition is satisfied with the same functions my,ma,
ie.

mi(|€]) < f(§) < ma(I€]) (6.32)
for a.a. &£ e RN,
Proof. We start by showing that the first inequality in (6.32) holds. Obviously, an

average over Y of the gradient of an Y-periodic function vanishes. Thus, using the
estimate (2.37) for M and Jensen’s inequality we have

§+/YW(y) dy

1@ jot. [l s WO ay 2 ot | )2 m .

On the other hand, since G is a subspace of E}7" (Y;RPN), we have 0 € G and thus
the upper bound on M implies that (&) < m,(|€]). Having (6.32) we immediately
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conclude that £(0) = 0. Obviously, since M is even in the second argument and G is
a subspace of E4/" (Y;R?*N) we conclude that f(£) = f(-£).
In order to show the convexity of f wetake A € (0,1),&,,&, € RPN and Wi, W, €

per

G. Again the fact that G is a subspace of E}, (Y ;RPN and the convexity of M
yields

FOE+(1=06) <2 [ MOE+WI0) &+ (1= [ M08+ Wal) o
By taking an infimum over W; and W, we immediately arrive at the definition of
convexity. O

Next we recall a general functional analytic fact that will be used later for a
characterization of a conjugate function to f.

Lemma 6.6.2 Let X be a Banach space, V be a subspace of X, and g be a closed,
convex functional on X that is continuous at some x € V. Then

inf {g(x) = (n.x)} + gienglg*(n%) =0 (6.33)

foralln e X*.

Proof. Directly using the definition of a convex conjugate we have
VEe X (g-m)"(§) = su§{<n+§,X> -8(x)}=g"(n+¢). (6.34)
XE

By Theorem 8.34 for a closed, convex functional A that is continuous at some x € V
it holds that

inf A(x)+ inf A"(x")=0.

xeV x*ev+t

Let us then choose A(x) := (g —n) (x), which indeed is closed, convex and continuous
atsomex € V, and use the expression for A* established by (6.34) in the above equality
to conclude (6.33). m|

Lemma 6.6.3 Let an N-function M be Y -periodic and f be defined by (6.31). Then
the conjugate N-function f* to f is given by

re= it [ oW, (6.35)
W eG+, Y
Jy W (y) dy=¢

Proof. We define a functional F : Ly (Y;RN) — R as
70 = [ MO0 dy

and rewrite the definition of the conjugate function f* as follows

[ (€)= sup {&n—vivréfcf(ww)}. (6.36)

,IERde
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Using again that an average over Y of the gradient of a Y-periodic function vanishes
we obtain

@)= s {-ut {Faew- [emwon ol

I]ERdXN
—- ot e raew- [emewonadf 63
—- - [evoral.
VERIXN G Y

In the first step we show that for all £ € RN

inf :T(V)—/§~V(y)dy}+ inf  FHE+W)=0.  (6.38)
Y

VeRd4xN oG W+e(RIXN gG)+

This statement follows from Lemma 6.6.2 applied to a functional 7. To check
whether the assumptions are satisfied, we first show that 7 is closed, or equivalently,
that if wz; — W in Ly (Y;RN) then

nmigfﬂwk) > F(W). (6.39)

Obviously W* — Win Ly, (Y; RN ) implies WX — Win L' (Y;RN). Thus (6.39)
follows as integral functionals with a Carathéodory integrand are lower semicontin-
uous, see [172, Theorem 4.2].
Directly from the definition and due to the convexity of M for ||v||z,, <1 it
follows that
F (V) < VIl Ly (6.40)

which immediately implies that ¥ is continuous at 0 € G, which allows us to conclude
by Lemma 6.6.2 that (6.38) holds.
Finally, we recall the definition of the conjugate functional ¥ : Ly (Y) —» R

F*(V):= sup (/YV-V*dx—T(V))

veLpy (Y)

and it is not difficult to observe by using the Young inequality that
Fr(v) = /M*(x,v*(x)) dx. (6.41)
Y
Having this characterization, (6.37) and (6.38) provide that

(&) = inf / M*(y,W*(y) +&) dy for all £ € RN
W+e(R*NgG)+ Jy

Finally, to conclude (6.35) we need to show that
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dxN +
(R x @G) — W eG*: /W*(y) dy =0\ =: (G*),.
Y

Obviously (G*)g C (]RdXN @ G)l. In order to get the opposite inclusion, we choose
W* e (RN @ G)*. By the definition of the annihilator

/W*~(i]+W) dy=0
Y
for any 7 € RN and W € G. Setting W =0 and 7 = fYW* we get the condition

% _ * 1 1 —
fY W* =0, whereas W* € G~ follows by setting 5 = 0. O

Finally, we state the key property of f provided that M* satisfies the A,-condition.
Note that this lemma will play an essential role in the homogenization process.

Lemma 6.6.4 Let an N-function M be Y -periodic, M* satisfy the A,-condition and
f be defined by (6.31). Then f can be alternatively expressed as

F&) = inf /Y M E+W()) dy. 6.42)

WeGLL(y)

Proof. According to Lemma 6.6.3 the conjugate function f* is expressed by the
formula (6.35). In the first step we compute f**, which is the second conjugate of f.
Defining the functional G as

G(W) = /Y M (3, W(»)) dy
one can show that G is closed, continuous at 0 € G+ and the fact that
6" W)= [ MOW () dy

along similar lines as the analogous facts for the functional # in the proof of
Lemma 6.6.3. Then we compute

neRAxN 0

[ (&)= sup {f-n—wigglg(ww)}

= sup {—Wigcf;i{g(ww)—/yf'(n+W(y)) dy}}

UERdXN
=_,,J§afxw {wi?cf;g {Q(n+W)—/Y§~(n+W(y)) dy}}

=— inf {g(v>—/y§-V(y)dy}

VeRDN @Gy

UeGLi(y)

=TV {g(w— /Y £-V0) dy} = nf  G'(£+U)
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= inf /YM(y,§+U(y))d)”

UeGLL(Y)

where the last equality follows by Lemma 6.6.2. We immediately conclude (6.42)
since f = f** as f is convex and lower semicontinuous. O

For the case when M satisfies the A,-condition we introduce a functional #* :
RPN — [0, 00) as

W€ = ot [ Mg+ WO, (643

where
Dy:={WeD: /W(y) dy =0}. (6.44)
Y

The properties of 7" are summarized in the ensuing lemma. Since the proof is
analogous to the proof of the corresponding properties of f in Lemma 6.6.1, it is
omitted.

Lemma 6.6.5 Let M be a Y-periodic N-function satisfying the stability condition
(2.37) with functions m1,my and let M* be its conjugate function. Then the functional
h* defined by (6.43) is also an N-function and the corresponding condition is satisfied
with the conjugate functions my,m3, i.e.,

m;(|€]) < h*(§) < mi(€]) (6.45)

for a.a. £ e RN,

Next, we present a characterization of 4" and its conjugate function in the case
when M satisfies the A,-condition.

Lemma 6.6.6 Let an N-function M be Y-periodic and satisfy the Ay-condition and
h* be defined by (6.43). Then

BE) =) ) = inf [ MOV dy (646)

and in addition h* can be equivalently expressed as
wie) = int [ (g WOD . (647)
WeDgt Jy

where Dg* := {W € D**: fYW(J’) dy =0}

Proof. Statement (6.46) is shown in the same way as (6.35) and thus we skip the
proof.

To prove (6.47) we compute A™* := (h**)*. Since M satisfies the A-condition,
we have

D* ={Ve EL" W (r;RPN) . /V(y) “W(y) dy =0 forall W € D}
Y
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and (RN @ D+)* = D}+. Accordingly, we obtain by Lemma 6.6.2

W) == int [ MONOD-VOI= int [ Mg a,
VeR*NgDL Jy WeDgt Jy
As h* is convex and continuous, the latter identity implies (6.47). O

The N-functions f and f*, h* and h*™* respectively, were introduced in order to
indicate the growth and coercivity properties of the operator A as it is stated, among
other properties of A, in the following lemma.

Lemma 6.6.7 Let the operator A satisfy (Al)—(A4) and the N-function M be Y-
periodic. Then:

(A1) A is continuous on RPN,
(A2) There is a constant ¢ > 0 such that for all & e RPN

A&)-€ > c(f(&)+f*(A(£))) provided that M* satisfies Ay—condition,

A(&)-& > c(h™ (&) + 1" (A(&))) provided that M satisfies Ay—condition
(6.48)

(A3) Forall £, e RN, £ #1,
(A& -A@m)-(&-n)>0.

Proof. To show (A1) we consider {gf};.';l such that &/ — £ in RN as j — oo.
Moreover, let {w; };‘;1 be a sequence of weak solutions of the cell problem (6.4)
corresponding to &/ and w be a weak solution of the cell problem (6.4) corresponding

to €. Existence and uniqueness of these solutions is provided by Lemma 6.5.2 Then
it holds for an arbitrary but fixed € R¥*¥ that

A€ -AE) 1= [ (A& +Twe) ~AGE+TW) 1 dy >0

as j — oo by (6.24). Since R¥N is finite-dimensional, we conclude (A1) from the
latter convergence.

Let we still be a solution of the cell problem corresponding to & € RPN If M*
satisfies the A;-condition, we know that wg € W, Ly (Y;R9) and if M satisfies the

per
Ar-condition then wg € V%r. In both cases we know that the following identity is
satisfied

/A(y,§+Vw§) -Vwg dy =0. (6.49)
Y

Then, using (6.49) and the growth conditions of A it directly follows that
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A -£= /Y AGLE+TWe(y) dy -
. /Y A€ +Twe(y)) dy - (£+Vwg (y)) dy (6.50)
> ¢ /Y M (3,€ + g () 4 M* (3, A (3, € + Twg (7)) dy.

The above estimate will lead us to the proof of growth and coercivity conditions
of A.

First, we deal with the case when M* satisfies the A,-condition. The estimate
(6.50) cannot be immediately applied, since w¢ is not necessarily an element of
W},erE m(Y;R?), and thus Vw,g may not be an element of G, which excludes the
possibility of using the direct formula for f, i.e. (6.31). Our strategy is to show that
Vwg € G+ and use Lemma 6.6.4. Choosing an arbitrary V € G+ C Ep- (V;RDN)
and taking into account that wg € W,l)erLM(Y :R9) is a weak-* limit of a sequence

{wei )3, W) Ep(Y:RY) we obtain

/Y Vwe(3) V() dy = lim /Y Vs (v) - V(y) dy =0.

Thus Vwg € G*+, and we can use Lemma 6.6.4, which provides a characterization
of f to infer

/Y M(y.€+Vwe()) dy > £(£). ©6.51)

As w; is a solution of the cell problemand G C {Vv:ve W[l,e,LM (Y:RY)}, the weak
formulation (6.22) immediately implies that A(-,&€ +Vw) € G*. Thus we deduce the

next estimate

/Y M* (. A€ +Tw(y)) dy = F*(A(€)). 6.52)

Finally, estimate (6.48); is obtained as a consequence of (6.50), (6.51) and (6.52).

In a similar fashion we will show the estimates for the case when M satisfies the
Ay-condition. Since D is defined as a closure of smooth periodic divergence-free
functions, it directly follows that

VW§ EDL,

which, by (6.46), implies
/y M(y,€+we()) dy > b (£). (6.53)

Next, since A(-,&+Vwg) € Ly (Y;R¥N) and by the assumption that M satisfies
the A,-condition the observation (6.9) is available, we conclude using the weak
formulation (6.23) that

A(,€+Vwg) € D*.

Consequently, Lemma 6.6.6 yields
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/Y M* (7. A(r.£+we(y)) dy = h* (A(€)). (6.54)

Estimate (6.48), then follows from (6.50), (6.54) and (6.53).
In order to show (A3) we fix &,,&, € RN £, # £,. Let then wg and wg, be
corresponding weak solutions of the cell problem (6.4), which gives

/A(y,.fi +VWe (7)) Vwe, (v) dy=0fori,j = 1,2 (6.55)
. .

in the same way as for (6.26). Then using (6.55) and the strict monotonicity of A,
we deduce

(A€)-A(£))-(£1-&) = L(A(y’fl +Vwi) —A(y,£,+Vw2)) - (§, - &) dy

- /Y (A(r.£1 4+ VW) —A(y. &2+ VW) - (€, + VW1 — £, — V) dy > 0

and this completes the proof of (A3). O

Now that we have the growth conditions of A we are ready to complete the
argument by formulating a definition of a solution to the homogenized problem (6.2)

Definition 6.6.8. Let Q c RV be a bounded Lipschitz domain, the operator A satisfy
(A1)—(A3), an N-function f be given by (6.31) and an N-function h* be given
by (6.43). Moreover, let F € L= (Q;R>N),

(i) If the conjugate N-function M* satisfies the A,-condition, then we call u a
solution to problem (6.2) if

weWyLy (Q:R7)

and

/ A (Vu(x)) - Vo(x) dx = / F(x) - Vo(x) dx (6.56)
Q Q

is satisfied for all € W Ly (Q;R9).
(ii) If the N-function M satisfies the A,-condition, then we call u a solution to
problem (6.2) if
uey, "

and
/ A (Vu(x))-Ve(x) dx = / F(x) - Ve(x) dx (6.57)
Q Q
is satisfied for all ¢ € Vé’**.

Nots: that solutions to (6.2) will be constructed with the help of Theorem 6.2.2.
Since A is strictly monotone, this solution will be unique.



246 6 Homogenization of Elliptic Boundary Value Problems

6.7 Existence of Solutions for a Fixed ¢

In this short section we formulate a theorem concerning the existence and uniqueness
of a solution to problem (6.1) for an arbitrary but fixed & > 0. This fact follows from
the existence theory presented in Chapter 4. Recall that a notion of solution to (6.1)
is given by Definition 6.2.1.

Theorem 6.7.1 Let Q ¢ RY be a bounded Lipschitz domain, the operator A satisfy
(Al)—(A4), and let at least one of the following conditions hold:

1. M satisfies the A,-condition,
2. M*, the convex conjugate N-function to M, satisfies the A,-condition.

Then for a fixed € € (0, 1) there exists a unique weak solution to (6.1).

Next we state an estimate that is uniform with respect to €. For brevity we will
use the notation
€ — X &
A%(x) :=A(%, Vu(x)).

Lemma 6.7.2 Let the assumptions of Theorem 6.7.1 be satisfied and u® be a weak
solution to (6.1). Then we have

sup ./QME (x,Vu®(x))+(M?®)* (x,A®(x)) dx < ¢ < o0, (6.58)

O<e<l

where {A®} o~ is bounded in Lm;(Q;RdXN) and {u®} .~ is bounded in V(')"‘.

Proof. Choosing ¢ =u¥ as a test function in (6.5) and (6.6) depending on whether
M* or M satisfy the A,-condition, we obtain the following integral identity

/Aa-Vue dx:/F-Vua dx. (6.59)
Q Q
Observe that, by the Fenchel-Young inequality, the constant ¢ appearing in the

growth and coercivity condition (A1) is less than or equal to one. Using again the
Fenchel-Young inequality and Lemma 2.1.23 part (i) gives

C/QMS(x,VuE) +(M®)*(x,A®) dx < /Q(Mf)* (x, %F) +$M® (x,Vu®) dx.
Consequently, using the uniform estimates of N-functions we obtain

c/%m1(|Vu8|)+m§(|Ag|)dx§c/%Mg(x,Vug)+(Mg)* (x,A%) dx
Q Q

< /gmi (21F1) ax.

Due to (6.7) the integral on the right-hand side is finite and thus (6.58) follows.
By the Poincaré inequality (Theorem 9.3), which holds in homogeneous isotropic
spaces, the bounds for {u®} .. and {A€} .- also follow from (6.60). m]

(6.60)
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6.8 Limit Passage to the Homogenized Problem

The current section uses all the tools established so far in this chapter and presents
the key step of the limit passage from problem (6.1) to (6.2). We present the proof
of Theorem 6.2.2. The proof is divided into two parts. The first part prepares the
necessary technical facts, while the second one concentrates on the limit of the
nonlinearity. Note that within these two parts we repeatedly need to consider the
cases of M or M* satisfying the A,-condition separately.

Proof (of Theorem 6.2.2). Before presenting the rigorous proof, let us provide a
short itinerary of the whole strategy. First we derive uniform bounds for u® and
A(3,Vu®). These estimates allow us to conclude that {Vu®} ..o converges weakly-
% to some Vu in Ly, (Q;R?N) and {A®} ..o converges weakly-* to a limit A €
Lm»Z«(Q;RdXN ). Then we show that the sequence {Vu®}..¢ converges weakly-x
two-scale to Vu+U in L, (Q xY;RN) and {A®} .- converges weakly-+ two-
scale to A% in L3 (QxY;RN). Consequently, we apply the weak-+ two-scale
semicontinuity of convex functionals to improve the regularity of limit functions,
ie., we obtain Vu € Ly(Q;R¥N) and A = fYAU € Ly (QR™N). This ensures
that fQA - Vu dx is meaningful. We conclude with a variant of the Minty trick for
nonreflexive function spaces to identify the limit A.

Part 1 (Technical facts). For any £ > 0 let u® be a unique weak solution to the
problem (6.1) according to Definition 6.2.1. In the sequel, when letting € — 0 we
may pass to a subsequence if needed, not necessarily stressing this fact. The uniform
estimates, which were proved in Lemma 6.7.2, imply the following convergences

u?Su in Ly, (Q;RY),
Vu® 5 Vuin Ly, (Q:RN), (6.61)
A® A in Ly (QRDN),

As a consequence of (6.61); 2 and Lemma 6.4.4 (iv) we obtain the existence of
a function U € Ly, (Q x Y;RN)) such that

u® 2_—S\*u in Lml(QxY;Rd),
2-s 4 dxN (6.62)
Vu® —*Vu+Uin L, (QXY;RY),
where U satisfies
Juom-uma=0 vwecg, (rrt) (6.63)

Lemma 6.4.4 (vi) and Lemma 6.7.2 imply the existence of a function
Al e Ly (2% Y;R¥N) such that

A% 25 A in Ly (@Y RDN), (6.64)
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Using convergence results (6.62) and (6.64), from the weak lower semicontinuity
proved in part (v) of Lemma 6.4.4 we infer for ® = M and ® = M* respectively that

//M(y, Vu+U)+M*(y,A% dy dx
QJY (6.65)
< limi(r)lf//M(ﬁ,Vug) +M" (£,A%) dy dx < co.
E QJY
Next, by Lemma 6.4.3 and Lemma 6.7.2 we get

sup//M(y,VuE(Sg(y,x)))dydx—sup/M ,Vu®(x)) dx < co,

e>0JQJY >0

sup [ [ 37 A G T (5. (3,0)) dy e =sup / M (2.4 (£.Vu" (1)) dx

e>0JQJY >0

Accordingly, there exist functions V € Ly (QxY;RPN) and A € Ly (QxY;RN)
such that as € — 0 we conclude

Vu® oS, Vin Ly (QxY; RN, 6.66)
A®0S.5Ain Ly (QxY:RN). '

Hence in view of (6.65) we infer using (6.62) and (6.64) that V=Vu+U, A=A",
i.e., we have concluded

(Vu®) oS, = Vu+Uin Ly (QxY;R>N),

. (6.67)
A?0S5,—A"  in Ly (QxY; RN,
By Lemma 6.4.4 (i) we get that the limit functions A and A are related via
= / Al dy. (6.68)
Y

Until now it has not been necessary to distinguish between the cases of M* or M
satisfying the A,-condition. However we now need to start treating them separately.

Case 1: Assume that M* satisfies the Ay-condition. Within each case we again
need to distinguish between the scalar case d = 1 and the accomplishment of the
embedding Wé Ly, = L,y,,. Let us first deal with the case d = 1. To emphasize that
the scalar case is being considered we shall use the simple notation « for the solution.

Firstly we concentrate on the vector field U, in particular on showing that it is an
element of G+*. We recall that the truncation operator Ty was introduced in (3.55).
Lemma 3.7.9 collects some of its properties. Note that ||T,u*||~ < h is uniformly
(in &) bounded and thus, up to a subsequence, it converges weakly-+ in L*(Q X Y).
The limit function is identified using the Lebesgue dominated convergence theorem
from (6.61); 5 together with the compact embedding of W!!(Q) to L'(Q). Along
the same lines as the proof of convergence of (6.67), we argue that for any ¢ > 0
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Tou? o Sy—Tou in L(QxY),

. (6.69)
VT;u® 08, — VIu+U’ in Ly (QxY;RN)

holds as & — 0. The usefulness of these convergences will become apparent below.

Now, choose an arbitrary, but fixed ¢ € CX(Q) and V € G*, which without loss
of generality may be assumed to satisfy ny =0. Then, as divV =0 a.e. in Y we
obtain for an arbitrary but fixed £ > 0 using Lemma 6.4.3 twice and integrating by
parts

/ / VT,u (S5 (7.0)) V(1) p(S(y.x)) dy dr = / VT (x) - V(2)g(x) dx
QJY Q
__ /Q Tou® (V(2) - Ve(x) dx
__ / / Tou®(S4(3,2)) - V() - V(S (3,x) dy d.
QJY

Performing the passage to the limit as € — 0 in the latter identity with the help of
(6.69) yields for an arbitrary but fixed £ > 0

/ / (VTou(x) + UL (y.0)) - V(y)o(x) dy dx
QJY (6.70)
_ /Q /Y Teu()V(3)Ve(x) dy dr.

Observe that the right-hand side can be equivalently written
- [ v oo ayac=( [ Vo) ) [[acoveeo as=o
QJy Y Q

whereas the conclusion that it vanishes is a consequence of /Y V dy =0. On the other
hand, the left-hand side satisfies

/Q /Y U (yox) - V() (x) dy d = /Q /Y (VTu(x) + UL (y.0)) - V() () dy dr.,

which again is an obvious consequence of the fact that /Y V dy =0 and the remaining
terms do not depend on y. Consequently

/ / U (3,) - V() () dy d = 0,
QJY

which means that U¢ € G for any £ > 0. Define W’ = VT u+U’ and W = Vu + U.
Using Lemma 6.4.4 (v) we infer

//M(y,Wf(y,x)) dy dx < liminf/M(%,VTgug(x)) dx
oJy e—0 Q

< liminf‘/M(ﬁ,Vus(x)) dx < .
Q

&e—0
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The above uniform estimate implies that there exist a subsequence, labeled the same,

and W e Ly (Qx Y;RN) such that W¢ 2> W in Ly (Qx Y;RN). On the other hand
we obtain due to the weak lower semicontinuity of the L'-norm that

[ [ wWoon-wiindy ax
QJy
<l1m1nf//|Vu‘9(S (y,x)) = VT,u®(Ss(v,x))| dy dx
e—0

< cu({lu®(Ss(y,x) > €3],

where u is continuous at 0 and ¢ (0) = 0. Thus we conclude from the uniform bound
on {u® 08} >0, which follows from Lemma 6.7.2, that W — Win L' (Qx Y;R").
Consequently, as the L'- and Lj,-limit coincide, we have W =W = Vu+U a.e. in

:liminf/ [Vu®(Ss(y,x))| dy dx
(lu® (s (y.x)) >0}

Qx Y, which along with VTj,u —— Vu in Ly () implies U 2 U in Ly (Q %
Y:RN ). With the help of Corollary 3.4.7, we obtain

. X =1 C(y,x) - X =
[ [vo0-vorew ayar=tim [ [0/ Voo ayas=o,

from which it follows that
U(-,x) € G**. (6.71)

For an arbitrary Vv =V € G and ¢ € C°(Q) we observe that Lemma 3.7.9 implies

0 ) _ 1 0 )
/Q/YA (,x) - Vv(y)p(x) dy dx {}I_{EO/Q/YA (v,x) - VTyv(y)p(x) dy dx.
6.72)

From the convergence (6.66); and Lemma 6.4.3 we conclude further that
[ [A°0057v1000 dy ax

- lim / / A% (3 V(S (1)) - VIv(y) p(S o (3,2)) dy dx

Vs
—hm A‘”(x) VIv(5)e(x) dy dx = )

e—0
(6.73)
Before transforming the term 18’[ notice that obviously
Vo [Tov(2) ()] =Trv (2) @ Vo (x) + LVT,v () o(x) (6.74)

holds. Using (6.74), the weak formulation (6.5) and Lemma 6.4.3 gives
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lim 15°¢

(500 |

= lim lim e'/s;Ag(x)-Vx (Tev (%) @(x) M—SLAE(X)'TgV(§)®V¢(x)@

£—00 g—0

= lim limg/g;F(x)~V)C (T[V(%)(p(x)) dx—glgAs(x)'TgV(ﬁ)@ch(x)dx

{—o0 £—50

~ lim lim /Q /Y F(Se(y.1) - Vy (Tv(3)e(Se(y.))) dy dx

{—00 g0

—8‘/Q/YA8(S8()}’X))'va(y)®v‘70(5.9(y,x)) dy dx

= lim lim /Q /Y F(So(y.2) - V3 Tov(»)(Ss (3,x)) dy dr

£—00 g0

+8[2£F(Ss(y’x))'T[V(Y)®V¢(S£(y’x)) dy dx
_5‘/g;‘/);A (Se(3,x)) Trv(y) @ V(S (y,x)) dy dx

= lim ‘/F(x)t,o(x)dx-/VyTgv(y) dy =0,
o= Jo Y
(6.75)

where we also used the fact that T,v is Y-periodic. Summarizing the steps (6.72)—
(6.75) we conclude that

/ / A%(y.0) - V¥ (y)p(x) dy dr =0
QJY

and thus we have shown that
A%,x) e G*. (6.76)

Now, we consider the case d > 1 and in addition assume that Wole1 <~ Lyy,.
We will show that under such assumptions it is also possible to show that (6.71) and
(6.76) hold.

With this aim we choose an arbitrary but fixed ¢ € C2°(Q), V € G* and without
loss of generality assume that fy V =0.Then as divV =0 a.e. in Y we obtain, using
integration by parts and Lemma 6.4.3 twice

[ 70 S0 - VoS3 dydr= [ V)V () (o) do

—— [V wweTem ar== [ [V us.0m)eTes. o)t
Since we assumed an appropriate embedding, the integral on the right-hand side is
finite. We then pass to the limit as € — 0 and use the convergence (6.66); to the

left-hand side and the convergence (6.62); to the right-hand side of the latter identity
to infer that



252 6 Homogenization of Elliptic Boundary Value Problems
[ [0 Vorew ayae= [ [ (Fuw+ U0 Vorew dy dr
QJy QJy
- [Vorr- [uwevew ay ac=o.
Y Q
which implies (6.71).

In order to show (6.76) we choose an arbitrary but fixed ¢ € C°(£2), and Vv € G,
to obtain

/ A®(x) Vv (2) p(x) dv =& / A(x) Vv (2) () d
Q Q
~e [ 4709, (v(2) o)

—8‘/S;A (x)-v(£)®Vo(x) dx.

Again we use the embedding W(} Ly, = Ly, to argue that the second integral on the
right-hand side is well defined. In a similar fashion as in the scalar case, by using
Lemma 6.4.3 and the weak formulation (6.5) we infer

//AE(SS(y’x))'Vv(y)‘p(SS(y’x))dydx:/Ag(X)~Vv(§)¢(x)dx

oJy A

:g/QAe(x).vx (v(2) p(x)) dx‘S/QA‘S(x%v(%)@w(x)dx

:g/QF(x).Vx (V(f)so(x))—s/g/yAs(ss(y,x)).V(y)®v‘p(ss(y’x))dydx

:'/g;'/Y‘F(Ss(y’x))VyV(y)QO(SS(y’x)) dydx
+s/g/yﬂ&()’,x)).V(y)®V¢(Sg(y,x)) dy dx

_gfgfyAg(Ss(y,x)).V(y)®V¢(SE(y’x)) dy dx

= 19  [524 5)
(6.77)

Letting £ — 0 in the latter we will now concentrate on showing that all the terms on
the right-hand side vanish. Lemma 6.7.2 and the embedding W(} Ly, = Ly, and the
definition of an N-function, particularly condition (2.37), imply that

lim 75! =/F(x)<p(x)dx~/VV(y) dy =0,
e—0 Q Y

lim 7% < climsup ||F|| o (@) [Vl £y, () I V@l () = O,

£—0 -0

lim 753 < limsup8||A£||Lm; @IVl Ly, ) IVl L2 (@) = 0.

£-0 -0
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Thus passing to the limit on the left-hand side of (6.77) using the convergence
described by (6.67), we get

//Ao(y,X)-VV(y)QO(x) dy dx =0,
QJY

which implies (6.76).
Finally, we observe that independently, whether we consider a scalar equation or
asystem (d =1 or d > 1) Lemma 6.6.4 and (6.65) imply that

uev/. (6.78)
Using the expression for f*, (6.76) and (6.65) we obtain that
A€ Ly (QRN). (6.79)

Case 2: Assume that M satisfies the Ay-condition. We only sketch the argument here.
Instead of showing (6.71) we conclude that

U(-,x) € D*. (6.80)

Indeed, we fix V € D, ¢ € C°(L2) and proceed analogously to the proof of (6.71).
Taking into account (6.9) we fix Vv € D+, ¢ € CX(Q) and repeating the proof of
(6.76) we obtain

A%(,x) e D**. (6.81)

Analogously to (6.78) one obtains
ueVl, (6.82)

when employing Lemma 6.6.6 and (6.65). Using the expression for 4*, (6.76) and
(6.65) we obtain
A € Ly (RPN, (6.83)

We are able to complete Part 1 of the proof with the observation that, both in Case I
and Case 2, the function A satisfies

/A-V¢:/F~Vgo (6.84)
Q Q

for all p € C2° (Q;Rd ). The above identity is obtained by performing a passage to
the limit as € — 0 in (6.5) for smooth compactly supported test functions using the
convergence (6.61),.

We are now ready to pass to the second part of the proof and properly identify
the limit in (6.84).
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Part 2 (Identification of A ). The proof is divided into five steps.
Step 1: First we show that the following identity

lim [ A®-Vu® dx:/A-Vudx (6.85)
-0 Jo Q

holds. Considering identity (6.5) with ¢ =u® we conclude with the help of conver-

gence (6.61); that

lim [ A?-Vu®dx=lim F~Vugdx=/F-Vudx. (6.86)
=0 Jo e—0Jo Q
Case 1: Assume that M™ satisfies the Ap-condition. Moreover, assume first that
d = 1. Since Q is a bounded Lipschitz domain in RN, then by Lemma 8.2 the set
Q can be covered by a finite family of sets {G;};c; such that each Q; = QNG; is a
star-shaped domain with respect to balls {B'};;, respectively. Then

Q:UQi.

iel
Let us introduce a partition of unity 6;, i.e.

0<6;<1, 6;€CT(G), Y 6i(x)=1 for xeQ,

iel

which exists due to Lemma 8.3. For each £ € N consider the truncation Tyu and its
decomposition in the form

K

Teu(x) = ZTgu(x)Hi(x), x € Q.
i=1

As V(T;ub;) = VT,ub; +TouVe; € L (Q;;R?) and supp(ub;) € Q; foreachi,f €N,
we can apply Theorem 3.7.7 to construct an approximating sequence {vj .} C C¢°(2)
such that

vy EEAN V(T,u8;) modularly in Ly (Q;) foreachi=1,...,K.

Observe that since f is independent of x, then the assumption (Me) of Theorem 3.7.7
is trivially satisfied. We define v} := Zi’i v, . and obtain from (6.84) using Lem-

¢,
mas 3.7.9 and Corollary 3.4.7 l

/A-Vudxz lim lim A~Vv2‘dx= lim lim F~Vv2dx=/F-Vudx.
Q {ooon=e Jo tooon=eo Jo Q
Hence (6.85) follows from (6.86) and the latter identity.

Next, we consider the case when k > 1 and the embedding W(; Ly, = Ly, holds.
Although in the vector case the usefulness of the truncation method fails, we consider
the following decomposition of u
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K
u(0) = ) u()6;x). xe Q.
i=1

where {Hl-}fi , is the partition of unity introduced above. In view of the assumed
embedding we conclude that V(u6;) € L f(Qi;RdXN ) and moreover supp(ud;) C €;
for each i = 1,...,K. Using again Theorem 3.7.7 we find sequences {u?}neN C

C(;R4N) such that

vu! L V(u6;) modularly in L ;(Q:R*N).

For each n € N define u” =: ZiK: ju; and observe that by Lemma 3.4.6 we get

/A~Vud.x= lim [ A-Vu"dx = lim F-Vu"dx:/F~Vudx,
Q Q

n—oo Q n—oo Q

which implies (6.85) along with (6.86) also for the case d > 1. This completes the
reasoning of Step 1 for the case of M* satisfying the A;-condition both in the scalar
and the vector case.

Case 2: Assume that M satisfies the A,-condition. We note that if M satisfies the
A;-condition we can proceed analogously using (6.80)—(6.83) and the approximation

by smooth compactly supported functions in the modular topology of gradients in
Ly (Q;RY), Ly (RN ) respectively.

Step 2: We devote this step to showing that the following inequality
[ [0 = A0 V(x5 - () +U(0) =V ) dyde 20 (657)
Y

holds for all V € CX(Q; Cyy,,, (Y:RPN)). For V € C2(Q; Cpy,, (Y;RTN)) we have
that
A, V) € L®(QxY; RPN, (6.88)

To show that (6.88) indeed holds observe that conditions of type (A3), see formu-
lation (3.90) for a general statement, imply conditions (3.89), see Proposition 3.8.1.
Moreover, since M and M* are N-functions, we have

cimi(c3A(-,V)) < coaM*(-,c3A(+, V) < M(-,c4V) < ma(csaV). (6.89)
These estimates yield
IAC V=@ < 0D (Ema(ealVli@er)) . (6.90)

Define the sequences

V@ (x) :=V(Z,x) and A®(x) := A(£,V?).
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Due to the appropriate embeddings
L¥(QXY;RPN) € Byt (XY RPN) € By (X VRPN

we obtain, when letting £ — 0,

ve 2y in Ep, (QxY; RN,
(6.91)

A% 25 A V() in By (@XYRDN) = 1,2,

and consequently
lim /Ag(x) -VE(x) dx = / /A(y,V(y,x)) -V(y,x) dy dx. (6.92)
=0 ,J0o oJy
By the monotonicity condition (A3) we have
/ (A%(x)—A%(x))- (Vu®(x) - V&(x)) dx > 0. (6.93)
Q

The above inequality will lead us to (6.87). Let € — 0 in (6.93). We will use Step 1,
namely identity (6.85), together with the characterization (6.68) to infer that

lim [ A®(x)-Vu?®(x)dx = / / A Vudy dx. (6.94)
£=0Jg QJy

As we have already proved (6.71) and (6.76), it immediately follows that

//AO.Vu://AO-(VHU). (6.95)
QJY QJY

Passing to the limit in the remaining terms of (6.93) easily follows with the help
of (6.67), (6.91) together with Lemma 6.4.4 (v) and (6.92). Thus the proof of this
part is complete.

Step 3: Our next step is to sharpen the preceding observation and to show that (6.87)
holds not only for V € C° (Q;C;’,"er(Y;RdXN)) but also for V € L®(Q x Y;R¥N).
For this purpose we take an arbitrary function V € L®(Qx Y; RV and consider a

sequence {K™},,en of compact subsets of Q such that

K'ck?c.. . Qand UK'":Q.

m=1

Define V™ := Vlgm and observe that obviously V" are bounded in
L®(QXxY ‘RIXN ) for every m € N, thus there exists a positive constant ¢ such
that

IAC, V™) |lLoaxy) < ¢ forallm €N, (6.96)

which follows by arguments analogous to those used in the proof of (6.88). Using 2.37
and (6.96) gives



6.8 Limit Passage to the Homogenized Problem 257

/ / My, V™) + M (7, A(y, V™) dy dx < / / (V™)) 4+ (A (v, V™)) dy d
QJY QJY
< /Q /Y ma (V" ) + 2, (A G V™) (@) < -

Boundedness of the modulars allows us to conclude with the help of Lemma 3.4.2
that {V"}>_, and {A(-,V™)}>_, are uniformly integrable. The uniform integrability
together with the convergence in measure of these sequences, which can be easily
shown, by Theorem 3.4.4 give as m — oo

vt MV in Ly (@x Y RN, 697
AGV™Y M ALV in Ly (Qx VRPN,

Let us consider a standard mollifier w € C* (R4 x R?). Since V™ is supported in K™ C
Q for all m, we can find for every m a sequence 6" — 0 as n — oo such that, defining
V= V™ s o, where w"(z) = (6")*Nw (%). This procedure provides both
smoothness and compact support of V", i.e. we have V" € CZ* (€ Cpy,- (V)N
Obviously [[V™" ||z« axy) < IV™]|L=(0xy)-

In the same manner as we showed the convergences (6.97), now we conclude that
for every m

v M ymin Ly (@x Y RN, 698
AGV™) 2 AV in Ly (@x Y RN

as n — oo. Finally, using (6.97), (6.98) and Lemma 3.4.6 we infer from Step 2 that

0< lim lim / / (A" —A(y, V™). (Vu+U-V™")
QJY

m—-00 n—00

=//(AO—A(y,V))-(Vu+U—V).
QJY

Step 4: The final step in establishing the limit of the nonlinear term is to use the
monotonicity trick, which was described in detail in Chapter 4. This step follows the
same idea, however for completeness of our argument in this case we explain this
step with great care. For ¢ > 0 define

Sp ={(x,y) e QXY : |Vu(x)+U(y,x)| < £}

and let 1, be the characteristic function of Sy. As we showed in Step 3 that (6.87)
holds for V € L®(QxY;R¥N), we will now choose

V= (Vll+U)]lj +/l‘_7]li,

where0 <i < jandA € (0,1)and V e L*(QxY;R4N). Thus (6.87) can be rewritten
as follows
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0< / /AO -(Vu+U=-(Vu+U)1;) dydx
oJy
—/ /A(y, (Vu+U)1; +AV1,))-(Vu+U- (Vu+U)1;) (6.99)
QJy
m/ /(A(y, (Vu+U)1; +aV1;) - A% - V1; dy dx.
QJy

The first term on the right-hand side is equal to the integral

/ A’ (Vu+U- (Vu+U)1;) dy dx
QXY\S]'

and it vanishes when passing to the limit as j — oo by the Lebesgue dominated
convergence theorem and the fact that [Q XY \ S;| — 0 as j — co. Observe that

(Vu+U)1;+aVL; =0in S;,

thus the second integral in (6.99) also vanishes. We divide the resulting inequality
by A and conclude the following

y,Vu+U+AV)-A% - Vdydx > 0. (6.100)
(A(y,Vu+U+AV)—A%) .- Vdydx >0 6.100

i

Since M* is an N-function, by (2.37) we obtain

/ M*(y,A(y,Vu+U+V))dydx < / m’f(IA(y,Vu+U+/lV)|) dy dx

Si S (6.101)
< |Si|m’f(||A(-,Vu+U+/lV)||Loo(si)) <c.

To pass to the limit as 4 — 0 in (6.100) we need to estimate

||A(-,Vu+U+/lV)||Loo(3,.)

uniformly with respect to A. For this purpose we proceed in a similar way as in (6.96)
since

IVu+U+AV||1=(s,) < IVu+Ulle(s;) + 1V Lo oxr) < i+ VI L @xy)-

As
A(y,Vu+U+aV) - A(y,Vu+U) ae. in S;

and {A(y,Vu+U+2AV)}c(0.1) is uniformly integrable on S; due to (6.101) and
Lemma 3.4.2, again by the Vitali theorem we conclude

A(y,Vu+U+1V) = A(y,Vu+U) in L'(S))

as A — 04. Thus passing to the limit in (6.100) we arrive at

/<A<y,Vu+U)—A°)-dedxzo.
Si
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Now, the appropriate choice of the function V leads to the conclusion. Indeed,
choosing
V _ AO—A(y,Vu+U)
T JAY-A(y,Vu+U) |+1

yields

A%(y,x) = A(y, Vu(x) +U(y,x)) fora.a. (x,y) € S;. (6.102)
Recall that i was arbitrary and |Q XY \ S;| — 0 as i — oo, thus the above relation
holds a.e. in the whole Q X Y. Moreover, due to the properties (6.71) and (6.76) we

obtain that U(-,x) is equal to the gradient of a weak solution of the cell problem
(6.4) corresponding to & = Vu(x). Finally, we get by (6.68) and (6.3) that

A(x):/yAO(y,x) dy=/YA(y,Vu(x)+U(y,x)) dy=A(Vu(x)), (6.103)

and we obtained the desired characterization.

Step 5: Since it has already been established that (6.2) possesses a unique solution u
and we can extract from any subsequence of {u®} .. a subsequence that converges
to u weakly-* in WéLm1 (Q;RN), and consequently also weakly in W(;’l (Q;Rd), the
whole sequence {u?} ;- converges to u weakly-+ in W, L,,, (Q;R9), and weakly in
WOl 1(QRY), respectively. O



®

Check for
updates

Chapter 7
Non-Newtonian Fluids

7.1 Introducing the Problem

In this chapter we concentrate on a large class of problems arising from the dy-
namics of incompressible non-Newtonian fluids with nonstandard rheology. By
non-Newtonian fluids we mean here fluids which do not satisfy Newton’s law of
viscosity, i.e. viscosity is constant and independent of stress. In the case of non-
Newtonian fluids viscosity may change under various stimuli like shear rate, or a
magnetic or electric field. When subjected to such a force, the fluid may become
more liquid or solid, and becomes runnier or more solid when shaken. Because of
this property of changeable viscosity these fluids have numerous industrial, military
and natural science applications.

To be more precise, in various models described by systems of PDEs the rheology
— behavior of the medium — is reflected by the constitutive relation between the
viscous stress tensor S and the shear stress Du, which is the symmetric part of the
velocity gradient, sometimes called the deformation tensor (u denotes the velocity
field of the fluid). In particular, we will investigate fluids for which the relation
between the viscous stress tensor S and the shear stress Du is nonlinear and we
concentrate on the case when this relation may be anisotropic, inhomogeneous and
not necessarily of polynomial type.

Among the various types of non-Newtonian fluids, we can distinguish shear
thickening and shear thinning fluids, and magneto- and electro-rheologial fluids.

For shear thickening fluids (STF), also called dilatant fluids, viscosity increases
with increased stress, e.g. oobleck (corn starch suspended in water) and nanosilica
with polyethylene glycol. This type of fluid has an interesting military application.
An STF fluid behaves as a liquid until another object strikes it with high kinetic
energy. In this case the fluid increases its viscosity in milliseconds and behaves
almost like a solid. Moreover this process is completely reversible, which makes
such a fluid an ideal component in the production of fabrics and materials for armor,
for military, medical and sports purposes. The obtained material has high elasticity
combined with protection against needles, knives and bullets [108, 129, 203, 231].

There is also wide range of fluids with the shear thinning property. In this case
the fluid viscosity decreases with an increase of stress, e.g. nail polish, ketchup, latex
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paint, ice, blood. We mention here two constitutive relations: the Prandtl-Eyring
model, cf. [140], where the stress tensor S is given by

arcsinh(A|Dul)

D
1|Du| "

=10

and the modified Powell-Eyring model, cf. [275],

In(1+4|Du

S =neDu+ (170 —%)Wm, (7.1)
where 1, 170, 4, m are material constants. Both above models are broadly used in
geophysics, engineering and medical applications, e.g. for the modeling of glacier ice,
cf. [209], blood flow, cf. [284, 285] and many other contexts, cf. [67, 271, 295, 330].
We also would like to cover the case of constitutive relations which may depend
on spatial variables and directions of Du. Anisotropic and inhomogeneous effects are
in particular present in the case of electrorheological and magnetorheological fluids.
Electrorheological (ER) fluids are suspensions of extremely fine non-conducting but
electrically active particles in an electrically insulating fluid. The viscosity of these
fluids changes reversibly when an electric field is applied. A magnetorheological
fluid is a mixture of magnetic particles suspended in a carrier fluid, usually a type
of oil. When such a fluid is subjected to a magnetic field, the fluid significantly
increases its viscosity, sometimes to the point of becoming a viscoelastic solid. In
both cases the effect of the increase of viscosity is caused by the fact that particles
suspended in the fluid form a particular structure depending on the applied field, e.g.
a column-like structure may be formed. In such case the viscosity of the fluid may
depend on the spatial point in the domain, directions of lines of the electric/magnetic

field and various directions of the shear rate.

In general the constitutive relation may depend also on density distribution,
temperature, electric field, or spatial variables. This chapter is directed towards
existence and properties of weak solutions to the systems of equations describing
the motion of non-Newtonian fluids.

In particular in this chapter we focus on incompressible flow. Then the considered
model takes the form of the following system of equations:

dpu+div(u®u) —divS(x,Du)+Var=f in (0,7)xQ,

7.2
divu=0 in (0,7)xQ, 7.2)

where u denotes the velocity field of a fluid; « is a pressure; Q is a bounded domain
in RY with sufficiently smooth boundary; (0,7) with T < o is a finite time interval;
f is a given body force; and

1
Du= 5 (Vu+V7Tu)
stands for the symmetric part of the gradient of the velocity field. The first equation

describes the balance of momentum and the last one stands for an incompressibility
condition. We supplement the above system with no-slip boundary conditions for
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velocity (or a zero Dirichlet boundary condition), namely u = 0 on dQ, for all
t€(0,7).

In this chapter we consider various generalizations of (7.2). Depending on the
particular problem considered here the viscosity of the fluid is not only allowed to
depend on Du, but it may depend on a spatial variable x, density distribution or
temperature of the fluid.

Since our aim is to study various phenomena of non-Newtonian fluids, we consider
a general form of the stress tensor S. Our analysis includes power-law and Carreau-
type models which are quite popular in rheology, chemical engineering and colloidal
mechanics. In particular, we formulate the growth conditions of the stress tensor in
the following way: we assume that there exist an N-function M and its conjugate
M*, and a constant ¢ € (0, 1] such that

S(x,Du) : Du > ¢(M(x,Du) + M*(x,S(x,Du))) fora.a. x € Q (7.3)
and S is monotone, i.e.
(S(x,&1)-S(x,£2)): (£1-&2) >0 foraa xeQandall £, & e RVV,

For a discussion on the form of growth conditions for the higher order terms we
refer the reader to Section 3.8.2. Let us emphasize that in our considerations, as in
previous chapters, it is important that we do not assume that S has only polynomial-
structure, which may not suffice to describe the nonstandard behavior of the fluid.
Hence the N-function defining a functional space does not satisfy the A,-condition
and is possibly inhomogeneous and anisotropic.

Since we allow S to depend on the spatial variable x, the N-function also depends
on x € Q. This corresponds to the possible inhomogeneity of the medium as in the
case of electrorheological or magnetorheological fluids. The dependence of S, and
consequently of M, on a whole tensor results from the fact that the viscosity may
differ in different directions of the symmetric part of the velocity gradient Du and
the growth condition for the stress tensor may be dependent on the whole tensor Du,
not only on |Dul. In our considerations the general growth of S is provided by quite
general properties of the N-function M defining an anisotropic Musielak—Orlicz
space Ljps. As we do not want to be restricted here by no-faster than polynomial
growth on S or by the doubling condition (to cover the case of significantly shear
thickening fluids) we do not assume that the A,-condition is satisfied by M.

In the majority of publications concerning non-Newtonian fluids a p-structure for
S is assumed and then typically the stress tensor takes the following form

S = u(x+|Du))”~Du

orS = yu(k+|Dul?)P~2/’py,
for constants « > 0 and p > 0. Then the growth and coercivity conditions for the
stress tensor take the following form of polynomial type:
IS(x,Du)| < ¢(1+|Dul?)P~2/2|Dul,

(7.4)
S(x,Du) : Du > ¢(1+|Dul?)P~2/2|Du)?,
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see e.g. [158, 160, 244]. Unfortunately such a formulation is not adequate for fluids
that rapidly and significantly change their viscosity, i.e. when the growth of the
stress tensor may be much faster than polynomial, or very slow, faster than linear,
but not comparable with any polynomial. Moreover conditions (7.4) do not allow
the situation when the stress tensor differs in various directions of the shear stress or
is inhomogeneous in spatial variables.

On the other hand one might be interested in studying the constitutive relation
for fluids with dependence on an external field. Let us mention here electrorheolog-
ical fluids. Mathematical models of such fluids were considered by Rajagopal and
Razicka in [280]. The authors derive governing equations for the motion of elec-
trorheological fluids, where the complex interactions between the thermo-mechanical
and electromagnetic fields are taken into account (see also [279]). In the case of such
fluids, from the representation theorem it follows that the most general form of the
stress tensor S (cf. [287]) is given by

S=aje®e+aD+a3D’ +ay(De®@e+e®De)+as(D’e®@e+e®D%)
where a;,1=1,...,5, may be functions of the invariants
le|?, trD?, trD?, tr(De®e), tr(D’e®e).
It can be shown that fori =1, 3, 5, @; = 0 the stress tensor in the form
S = |trD?|’D +]tr (D*e ®e)|*(De ® e +e ® De) (7.5)

is thermodynamically admissible (i.e. 8 : D > 0), satisfies a principle of material
frame-indifference and is monotone. However, for e = (1,0,0) it can be calculated
that the isotropic growth conditions |S(D,e)| < ¢(1+|D|)?~!,and S(D,e) : D > ¢|D|”
are not satisfied, since the tensor S possesses growth of different powers in various
directions of D. In particular, this means that one may need to consider S possessing
growth of different powers in various directions of Du.

As mentioned above we also would like to cover the case of constitutive relations
which may depend on spatial variables. As an example we can again recall the class
of electrorheological fluids. Such fluids can be seen as suspensions of extremely
fine non-conducting particles in an electrically insulating liquid. This case was
considered, for example, in [287], where in order to describe the behavior of the
fluid an isotropic but inhomogeneous N-function of the form M (x,z) = |z|P*) with
1 < p_ < p(x) < p* < oo was used.

Let us now briefly recall some related results concerning the theory of exis-
tence of solutions to systems describing non-Newtonian fluids. The analysis of the
time-dependent flow of homogeneous (density was assumed to be constant) non-
Newtonian fluids of power-law type was initiated in [224, 225], where the global
existence of weak solutions for the exponent p > 1+ (2N)/(N +2) (N stands for
space dimension) was proved under Dirichlet boundary conditions. Later the steady
flow was investigated in [159], where the existence of weak solutions was obtained
for a constant exponent lower than above, p > %, N > 2, by Lipschitz truncation
methods.
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In [287] generalized Lebesgue spaces L”() were used to analyze the flow of an
electrorheological fluid. In this work the exponent p(-) is such that 1 < pg < p(x) <
Peo < 00, where p € C1(Q) is a function of an electric field E, i.e. p = p(|E[?),
and po > % in the case of steady flow, where N > 2 (the space dimension). The
A-condition is then satisfied and consequently the space is reflexive and separable,
which is not the case for our considerations. Later in [116] the above result was
improved, by allowing a smaller lower bound on the exponent, using Lipschitz
truncation methods in the LP¥)-setting for S, where % < p(+) < oo was log-Holder
continuous and S was strictly monotone.

In [325] the author showed the existence of weak solutions to the unsteady
motion of an incompressible homogenous power-law fluid with shear rate dependent
viscosity with p > 2(N +1) /(N +2) without strong restrictions on the shape and size
of Q. The author applied an L*-test function and a local pressure method. Finally
the existence of global in time weak solutions with Dirichlet boundary conditions for
p > (2N)/(N +2) was achieved in [118] by Lipschitz truncation and local pressure
methods.

Most of the available results concerning heterogeneous (without the assumption
that density is constant) incompressible fluids again deal with the polynomial depen-
dence between S and |Du|. In this case the system (7.2) needs to be supplemented
with a balance of mass (continuity equation):

Orp+div (pu) =0,

where p denotes the density of the fluid. The analysis of heterogeneous Newtonian
(p =2 in standard growth condition (7.4)) fluids was given in [15] in the seventies.
Next in [237] the concept of renormalized solutions was presented, which made it
possible to obtain convergence and continuity properties of the density.

The first result for unsteady flow of heterogeneous non-Newtonian fluids goes
back to [152], where the existence of Dirichlet weak solutions was obtained for
p >12/5if N =3, and for p > 2 if N =2. Later in [177] the existence of space-
periodic weak solutions for p > 2 was shown and regularity properties of weak
solutions were found for p > 20/9if N =3 and p > 2 if N = 2. In [160] the existence
of a weak solution was shown for generalized Newtonian fluids of power-law type
for p > (BN +2)/(N +2). The authors also needed the existence of the potential of
S.

Next if we additionally want to consider heat effects and include the temperature
as a changing unknown, one can add to the system (7.2) balance of thermal energy
(see Section 7.2). The most closely related result concerning heterogeneous, incom-
pressible and heat-conducting non-Newtonian fluids, but of growth conditions of
polynomial type for p > 11/5 with N = 3, can be found in [158].

Non-Newtonian fluids in the framework of anisotropic Musielak—Orlicz spaces
have been studied using a variety of approaches. Considerations on the existence of
weak solutions in the case of homogeneous, incompressible non-Newtonian fluids
can be found in [180], where S was assumed to be strictly monotone. The authors
used Young measure techniques in place of monotonicity methods. The additional
assumption of strict monotonicity makes it possible to conclude that the measure-
valued solution is of the form of a Dirac measure and then the system has weak
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solution. As mentioned in previous chapters, the monotonicity method for non-
reflexive anisotropic Musielak—Orlicz spaces was used in [183, 326, 328], allowing
only the monotonicity of S to be assumed.

In this chapter we investigate the following problems:

e The flow of heterogeneous heat-conducting fluids which depends also on density
and thermal energy. This means that the above system (7.2) needs to be supple-
mented with two equations: balance of mass (continuity equation) and balance of
thermal energy. In this case the stress tensor depends also on density and temper-
ature. Here we are restricted by the condition that M grows essentially faster than
|- |? with p > 11/5 for three-dimensional space, which allows us to consider only
shear thickening fluids (STF).

e The flow of incompressible non-Newtonian fluids described by a generalized
Stokes system which allows us to consider shear thinning fluids, since the convec-
tive term can be omitted in this model. In this case we allow M and its conjugate
M* not to satisfy the A,-condition.

e The system describing fluid-structure interaction where the motion of rigid bodies
immersed in the non-Newtonian fluid is taken into account. Here the important
issue is local reconstruction of the pressure function, which is neglected in the weak
formulation for the above two problems due to the incompressibility condition.

The setting considered in this chapter needs tools which generalize results not
only of classical Lebesgue and Sobolev spaces (related to power-law fluids), but also
in variable exponent, anisotropic and classical Orlicz spaces, which has already been
emphasized in previous chapters.

Let us now comment on the content of particular sections of this chapter.

In Section 7.2 our aim is to show the existence of weak solutions to the system
consisting of balance of mass, momentum and thermal energy, see (7.7)—(7.12). Since
we do not assume here that M satisfies the A,-condition, such a formulation allows
us to capture shear thickening fluids, even very rapidly thickening, e.g. exponential
growth. The proof is based on the construction of a proper approximation and
showing that the approximation converges to a weak solution, i.e. showing sequential
stability.

In order to show the convergence in a nonlinear viscous term we apply monotonic-
ity methods adapted to the case of anisotropic Musielak—Orlicz spaces developed in
[326, 328, 183], see also [263] and our presentation in Section 4.1.2. Also here we
deal with the lack of a classical integration by parts formula and in the present section
we recall the formula obtained in [328] by adaptation of arguments from [183] and
[158], see also Theorem 4.2.10 in Chapter 4. Let us emphasize that we assume here
that M* satisfies the A,-condition, therefore Lys+ = E )+, which facilities the analysis
since it allows us to use the weak-* convergence of the approximation for symmetric
gradients of solutions.

One of the essential difficulties we have to face here in order show the weak
sequential stability concerns the right-hand side of the energy equation, which reads
as follows

0, (00) +div (pud) —divq(p,6,VO) =S(x, 0,6,Du) : Du,
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where 6 denotes the absolute temperature and q is a heat flux function. Setting
S":=8(-, 0",0",Du") we need to show that S" : Du” — S(-, o, 6,Du) : Du weakly
in L'(Qr), where {e"},_» {u"}>,, {6"}),, are approximation sequences of o,
u, 6 and {S"}>  C Ly (Qr), {Du"}> | C Ly (Qr). Note that when working with
reflexive spaces (such as L?”) the monotonicity is a sufficient argument to conclude
from (8" —S) : (Du”* —Du) — 0in L' that 8" : Du”* — S : Du weakly in L'. However,
once the space is not reflexive, as is the case for our Lj,-space, then the convergence
may fail if one is not able to provide modular convergence of sequences 8" and Du”
in proper spaces.

For the current problem we use the Chacon Biting Lemma (Theorem 8.38) and
Young measures (Theorem 8.41) to show that the product of our two sequences
converges weakly in L' and consequently to provide the sequential stability of the
right-hand side of the energy equation. Similar arguments in the framework of
anisotropic Musielak—Orlicz spaces were used in [188] for parabolic equations and
later also in [218] for the thermo-visco-elasticity model and in Section 5.3 (Step 7).
See also the works of Chlebicka et al. recalled in Chapter 5.

The results and methodology of Section 7.2 are mainly based on [249] and the
references therein, see also [180, 183, 326, 328, 329].

In Section 7.3 we consider incompressible non-Newtonian fluids described by
a generalized Stokes system (see (7.134)—(7.135)). In (7.2) we skip the convective
term div (u®u). Moreover, the N-function M and its conjugate in condition (7.3) are
homogeneous (do not depend on x and ¢) but still anisotropic. In order to show weak
sequential stability, when the convective term is present, the common assumption
providing compactness in this term in the case of power-law fluids satisfying (7.4)

is that p > 3,1\,\] :22. Also in Section 7.2 we assume that the growth of M is at least as

|- | with p > %, since we consider the problem in three-dimensional space. In the
case of a generalized Stokes system we are allowed to skip these assumptions and
moreover we do not assume that M or M* needs to satisfy the A,-condition. With
such conditions on S, namely with the lack of the lower bound on M of polynomial
type, we can capture a wide class of models and it opens the possibility of including
flows with different behavior, in particular shear thinning fluids.

Here we are particularly interested in a rheology close to linear in at least one
direction. Note that S can be of the form given by (7.1) with o, =0 and m = 1.
However for the case of non-star-shaped domains we need to assume some conditions
on the upper growth of M, but this does not conflict with the goal of describing a
close to linear rheology.

To motivate the simplified model without the convective term let us mention two
situations. If the flow is assumed to be slow, then the term div (u®u) can be assumed
to be very small and therefore neglected, hence the whole system (7.2) reduces to a
generalized Stokes system. Another situation is the case of simple flows, namely a
Poisseuille type flow, between two fixed parallel plates, which is driven by a constant
pressure gradient (e.g. see [205]). Also when regarding blood flow (shear thinning)
it seems to be important to consider simple flows, as the geometry of vessels can be
simplified to a flow in a pipe. An analysis of both models in the steady case (also
without convective term) through the variational approach was undertaken by Fuchs
and Seregin in [163, 164].
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Let us observe that as soon as M(x,-) > ¢|-|P with p > 15—1 for a.a. x e Q C
R3, solutions are bounded in an appropriate Sobolev space W!”(Q;R?) which is
compactly embedded in L?(Q;R?). If M* € A, we gain that LM*(QT;RB{‘Y%N ) =
EM*(QT;RgéN ) is a separable space. The above two assumptions are used in
Section 7.2. The naturally arising question which we answer in Section 7.3 is whether
the existence of solutions can still be proved after relaxing the assumptions on M
and M*. The preliminary studies in this direction were done for an abstract parabolic
equation, cf. [182]. Also the convergence of a full discretization of a quasilinear
parabolic equation can be found in [134]. In Section 7.3 we give a proof based on
showing that weak-* and modular limits for symmetric gradients coincide.

In the above considerations help comes from the generalization of the Korn—

Sobolev inequality, stated for homogeneous and isotropic N-function m:

lm(laDll, oy ) = Enllm (DUl )
see Theorem 9.4. In general one of the most important tools in the existence theory
for problems in fluid mechanics is a Korn type inequality, which allows us to provide
an estimate of the gradient via a symmetric gradient in appropriate norms. There are
numerous classical results such as Poincaré, Sobolev, Korn inequalities which have
been generalized from Lebesgue and Sobolev spaces to Orlicz and Musielak—Orlicz
spaces. Let us recall here results of Cianchi on the Sobolev inequality, see [91, 92] and
the results concerning the embedding of a particular type of Orlicz—Sobolev space,
namely BLD(Q) := {u € L'(Q;R") : |Du| € L,,,(Q)} where L,,(Q) is defined by
the function m(¢) =&1In(£+1),¢€ € Ry, given in [162].
The generalization of the Korn inequality, namely

/m(qul)dec/mﬂDul) dx,
Q Q

is valid for the case of homogeneous and isotropic N-functions m and its conjugate
m* satisfying the A;-condition, see e.g. [161]. In [94] the author exhibits balance
conditions between used N-functions for a Korn type inequality to hold. However,
this is not the case for our considerations in Section 7.3 and therefore we need to
generalize Strauss’ result, cf. [300], that

< .
||u||L%(Q) <c||Dul[1(q) with somec >0

to the case of appropriate homogeneous and isotropic N-functions.

In Section 7.4 we provide the decomposition and local estimates for the pressure
function. This part is stated in anisotropic Musielak—Orlicz spaces. Then we show
how this method can be used to investigate the existence of weak solutions for the
non-stationary flow of incompressible non-Newtonian fluids. However this particular
result is stated in the isotropic and homogeneous Orlicz space setting where the
governing N-function does not have to satisfy the Ap-condition. Therefore we can
cover the case of shear thickening fluids. The considerations of Sections 7.4 are
based on [327, 329].
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The problem of existence and construction of a pressure function arises in the
theory of non-stationary incompressible non-Newtonian fluids. Since in the analysis
of the mechanics of incompressible fluids one mainly considers divergence-free test
functions in the definition of a weak solution, the pressure usually does not appear,
see the definitions of weak solutions in Section 7.2 and 7.3. However the pressure
function 7 can be identified a posteriori in some cases, see e.g. [158]. For the power
law fluids it can be shown that there exists a & of the form

T = Tlreg +0; Tharm,

where some e € L9 (1;L9(Q)) for g, 1 < g < 00 and fharm € L2 (1; L*(Q)), where
I stands for the time interval and Q c R? is a spatial domain occupied by the fluid.
However, as the time derivative d;mpam is present here, we do not know if 7 is an
integrable function on the time space cylinder, or even if it is a measurable function
in (¢,x) € Qr. Furthermore, if the pressure is introduced by the De Rham theorem
(see Theorem 8.46), we still do not know what the best function space is where the
pressure function exists. In Section 7.4 we extend the method of local pressure to the
case of Musielak—Orlicz spaces. The concept of local pressure was introduced by J.
Wolf in [325] in order to obtain an existence result for the non-stationary motion of a
non-Newtonian fluid with shear rate dependent viscosity of a power-law type where
no restriction on shape or size of the spatial domain was an issue. The local pressure
estimates are based on variational methods. Here and in [150, 325] the pressure is
decomposed into a measurable function 7, and the singular part 0; pam, Where
Tharm 1S harmonic with respect to a space variable. In [325] the author provides
optimal a priori estimates for the components 7yeg and 7harm, Which are achieved
mainly by L?-estimates for weak solutions to the Laplace equation. Later in [150] the
authors employed different methods to derive estimates for the pressure components
Treg and 7parm. Their construction is based on the Riesz transform, which seems to
be more suitable for application to problems associated with fluids of a power-law
type. Such methodology allows the regular part 7y, to share the same regularity
properties (integrability) as the nonlinear viscous part in the momentum equation
for the velocity field of the fluid (in the case of power-law fluids).

Our construction of the local pressure is based on the Riesz transform as in [150],
but we state the problem in the more general setting of Musielak—Orlicz spaces. Note
that the Riesz transform in general cannot be well defined as an operator from one
Orlicz space to the same one. If M and M* do not satisfy the A,-condition it can
turn out that it is continuous from one Orlicz space to another larger one. Moreover,
in general Lps(0,7T;Lp(Q)) # Lps((0,T) x Q). Consequently we are not able to
show, for the time being, that 7, is in the same space as the viscous term (with its
generality), but possibly in a weaker/larger space, see Theorem 7.4.1. Therefore the
method of local pressure seems to be more delicate than in the classical L?-setting.

In order to investigate the existence of weak solutions to the motion of one
or several rigid bodies in a non-Newtonian fluid with the above nonstandard (not
necessarily polynomial) rheology we use the concept of weak solutions based
on the Eulerian reference system and on a class of test functions which depend
on the position of the rigid bodies. This idea was introduced in [212], see also
[110, 111,166, 167,202, 289, 291]. In order to prove the existence of weak solutions
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to the problem one needs to construct a proper approximation based on penaliza-
tion/replacement of rigid bodies by a fluid of very high viscosity proportional to é,
& — 0. Then the monotonicity argument has to be localized to the ‘fluid’ part of
the time-space cylinder. We cannot test the momentum equation by functions with
non-zero support on regions which contain rigid bodies, since we can control neither
the penalizing term uS(Du,) nor u Du,. At this stage of our investigation, the
problem has to be localized in the fluid part separately from the rigid bodies. This
requires the investigation of the pressure function locally in the fluid part of the
time space cylinder Qp. If the tensor S satisfies the same conditions as (7.3) with a
homogeneous and isotropic N-function m which does not satisfy the A,-condition,
then the regularity of 7., can be lower than the regularity of the viscous term, which
in fact makes the problem even more delicate for power-law fluids.

7.2 Heat-Conducting Non-Newtonian Fluids

In this section we show the existence of weak solutions for unsteady flow of non-
Newtonian, incompressible, heterogeneous (here this means that density is not as-
sumed to be constant), heat-conducting fluids with generalized form of the stress
tensor without restriction on its upper growth of polynomial type or without assum-
ing the Aj-condition for the governing N-function. Let us emphasize that we do
not assume any smallness condition on the initial data in order to obtain long-time
existence. As in the previous chapter, monotonicity methods, integration by parts
adapted to nonreflexive spaces and Young measure techniques are crucial to the
proof. This section is based on [180, 183, 249, 328].

7.2.1 A few words about notation

Let us recall that Q stands for a bounded domain in RY, (0,7) is a time interval and
Qr :=(0,T)xQ.

Let us introduce some functions spaces which will be used within this chapter.
Let V be the set of all smooth compactly supported functions on € which are
divergence-free

V(Q) ={peCl(Q) : divp=0}

and the related spaces:

L(ZiiV (Q):
Lp .
WO,div(Q) :

the closure of ¥V with respect to the || - || ;2-norm
(7.6)

the closure of V' with respect to the ||V (+)||Lr-norm.

—1.p 1, % -1,p’ 1, * ’
Let W™l (QRN) = (Wy? (RN))°, Wl ” (RN) = (W2 (:RV))". By p
we mean the conjugate exponent to p, that is, Ilj + # =1.



7.2 Heat-Conducting Non-Newtonian Fluids 271

Finally, we recall that the Nikolskii space N%?(0,T;X) corresponding to the
Banach space X and the exponents « € (0, 1) and p € [1, 0] is given by

N®P(0,T:X) :={f € LP(0,T;X) = sup h™“lltnf = fllLr 0,7-n;x) < 0},
0<h<T

where 1, f(t) = f(t+h) fora.a. t € [0,T — h].

7.2.2 Existence of weak solutions. Formulation of the problem

The mathematical model of the flow of an incompressible, heterogeneous (density
dependent), non-Newtonian, heat-conducting fluid can be described in terms of the
mass density of the fluid o : Q7 — R, the velocity fieldu : Qr — R3, and the absolute
temperature 6 : Q7 — R. The motion can be governed by the following system of
equations consisting of balance of mass (continuity equation)

0;0+div(ou) =0 in Qr, (7.7)
balance of momentum (momentum equation)
0;(ou) +div(ou®u) —divS(x, 0,0,Du)+Vr=pof in Qp, (7.8)
and balance of thermal energy (thermal energy equation)
0¢(00) +div (oub) —divq(p,0,V0) =S(x,0,0,Du) :Du in Q. (7.9)

The last equation is in fact a balance of internal energy. One can find a discussion
about the possible choices of the last equation in [64], see also [149]. Since we are
considering incompressible fluids we set

divu=0 in Qf. (7.10)
We supplement the above system with initial data
0(0,x) = 0o(x), u(0,x)=ug, 6(0,x)=0y(x) in €Q, (7.11)

and with a zero Dirichlet boundary condition for the velocity field, and no-heat flux
through the boundary

u(t,x)=0, q-n=0 on [0,7T]%x0Q. (7.12)

In the above 7 : Q7 — R is a pressure function, S — a stress tensor, q — a thermal flux
vector, and f : Q7 — R — a given outer force. The set Q ¢ R? is a bounded domain
with a regular boundary 9Q (of class, say C%”, v > 0, taken for convenience).
We consider the above system on the time-space cylinder Qr = (0,7) X Q where
T € (0,+00) is given. The tensor Du = %(Vu+VTu) stands for a symmetric part of
the velocity gradient.
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For the above system we assume that the initial density o and temperature
satisfy

0(0,) =00 € L”(Q) and 0<p.<0p(x)<0" <40 foraa.xeQ, (7.13)

Ope L'(Q) and 0<6, <6y(x) foraa.xeQ, (7.14)

where 0., 0", 6. are constants.
We formulate the growth conditions of the stress tensor with the help of an
anisotropic and inhomogeneous N-function M : Q x R¥3 — [0,00). We assume

here that the stress tensor S : Q X [0,00) X [0,00) X RS> — R satisfies:

(S1h) S(x, o,0,K) is a Carathéodory function (i.e., measurable function of x for all
0,0 >0andK e Rf;‘; and continuous function of 4, 0 and K for a.a. x € Q)
and S(x, 0,6,0) =0.

(S2h) There exist a positive constant ¢ € (0,1), an N-function M and its conjugate
M*, M, M*: QxR¥3 — [0, ) such that for all K € ngxg;, 6,0 >0 and a.a.
t, x € Qr the following growth and coercivity condition

S(x,0,0,K) : K> co(M(x,K)+M*(x,S(x, 0,6,K))) (7.15)

holds.
(S3h) S is monotone, that is,

(S(x,Q,H,Kl) -S(x, Q,G,Kz)) : (Kl —Kz) >0,

for all K;,K, e R>3, 0> 0,6 >0and a.a. x € Q.

sym>
Let us emphasize that the stress tensor S may depend here not only on a shear stress
but also on a fluid density and a fluid temperature.
The heat flux q in our model takes a quite common form. Let us remark that we do
not concentrate here on choosing the most optimal form for the heat flux. Similarly
as in [158], we expect that (0,0, VO) behaves as

k(0)0PVo = K(g)ﬁveﬁ“ for BeR

such that (o) satisfies
0 <k <k(p) K" <00,

where k., k" are some fixed constants. In particular, we require that q : [0, 00) X
[0,0) xR3 — R3 satisfies

q(0,8,V0) =ko(0,0)VO  with kg € C([0,00) X [0, 0)) (7.16)
and for all 6, 0 > 0, VO € R?

q(0,0,V0)-V6 > k,6°|Ve)> with BeR and k, > 0,

_ (7.17)
lq(0,0,V8)| < «*6P|V0)| with  «* > 0.
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Let us start with a definition of a weak solution to the system (7.7)—(7.12).

Definition 7.2.1. Let Q be bounded domain in R?, let (0,7’) be finite time interval,

and let p > 1. Let oo satisfy (7.13), ug € L3 (Q:;R?), 6 satisfy (7.14) and f €

LP'(0,T;LP (€;R?)). We call a triple (o, u, 6) a weak solution to (7.7)—(7.12) if:

o the continuity equation is satisfied in a weak sense, namely
T T
/ (0r0,2) dt—/ /Qu-Vz dxdr=0 (7.18)
0 0 Ja
forall z € L"(0,T;W"" (Q)) withr =5p/(5p —3), i.e.

/ ’ / (0dhz+ (ou)- V) drdr = / (0z(s)—oz(s1) dx  (1.19)
K Q Q

for all z smooth and sy, 52 € [0,T7], 51 < 3.
o the momentum equation is satisfied in a weak sense, namely

T
/ /(—gu-ﬁ,gp—gu@u:V<p+S(x,g,9,Du):D<p) dxdr
0 Ja

T (7.20)
- [ [ ef-paxars [ oouo-p(0)ax
0 Jo Q
forall p € C2((—00,T);V).
o the thermal energy equation is satisfied in a weak sense, namely
T T
/ (8t(99),h)dt+/ / (—08u-Vh+q(0,6,V0)-Vh) dxdt
0 0 Ja (7.21)

T
:/ /(S(x,Q,H,Du):Du)hdxdt
0o Jo

for all h = L*(0,T;W"4(Q)) with ¢ sufficiently large, where the duality paring
above is between (W4 (Q))* and W4 (Q).

Theorem 7.2.2 Ler Q C R? be a bounded domain with C*” boundary, where v €
(0,1) and let (0,T) be finite time interval. Let M : QxR — [0,00) be an N-
function satisfying for some ¢ > 0, C > 0 and for a.a. x € Q and all € € RS

sym
M(x,£) > cl¢|P ~C  withp > 1. (7.22)
Let us assume that the conjugate to M function

M* satisfies the Ay-condition. (7.23)

Let S satisfy conditions (S1h)—(S3h). Moreover let q satisfy (7.16), (7.17) with

—mind2 3p=5
B> mln{3,3p_3}.
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Letug € Léiv (Q:R3) and 0g € L®(Q) with 0 < 0. < 00(x) < 0* < +0o0 for a.a. x € Q.

Let 6p € L' (Q), 0 < 0, < 6y for a.a. x € Q and let £ € LP'(0,T;LP' (Q;R?)). Then

there exists a weak solution to (7.7)—(7.12) in the sense of Definition 7.2.1.
Moreover

0<o0.<0(t,x) < 0" foraa. (t,x) € Qr,
0 € C([0,T];L1(Q)) forarbitrary q € [1,00),
B0 € LPP (0,1 (W'SP/5r-9 ())

ue L®(0,T;L2 (QRY)NLP(0,T:Wyh (RY))NN'22(0,T; L2, (RY)),

Du € Ly (Q7:R3S) and (ou,y) € C([0,T]) forall y € L3, (Q:R?),

sym

e e L®(0,T;LY(Q)) and 6 > 6, > 0 for a.a. (t,x) € Qr,
o 0557 € L2(0,T:W'2(Q)) for all 1 € (0,1),
e q€ L™(0,T;L™(Q)) form € [1, gg:i ,

e 9,(00) € L'(0,T;(W"49(Q))*) with q sufficiently large.

Moreover, the initial conditions are achieved in the following way

im (1100 - ollzo @) + () ~woli2s gy ) =0 Jor some g € [1,),
(7.24)
lirg/gH(t)hdx:/goeohdx forall he L™ (Q).
t—0* Jo Q

Here we have restricted ourselves to a flow in a domain of space dimension N = 3,
just for the brevity of the presentation. The existence result can be extended to the

: 3N+2
case of arbitrary N > 2 and p > 5.

Let us remark that the assumption (7.22) on the exponent p > % restricts our
consideration to the case of shear thickening fluids. Since in our approach we use as
a test function an approximation of the solution in the space where we a priori expect
the solution will be, in order to proceed with the convergence in the convective term
the restriction (7.22) is crucial. If one is able to use a method based on Lipschitz
truncation, we expect this could be relaxed to the condition p > g for dimension
N =3, see [116].

7.2.3 The proof of existence of weak solutions

The proof of Theorem 7.2.2 is provided in steps.
Step 1. The n-approximate problem.

In order to prove Theorem 7.2.2 we start by constructing n-approximate solutions.
Let

{wi};2, be an orthonormal basis of W(; ’gv (Q:R%)

such that {w;}%2, C Wé’i’s(Q;R%

(7.25)
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where elements of the basis are constructed with the help of eigenfunctions of the
problem

(wi,9))s = /l,-/w,- -pdx forall p € Vg,
Q
where ((+,))s denotes the scalar product in V, defined by
= the closure of V with respect to the W**>(Q)-norm for s > 3. (7.26)

The existence of the above basis is provided by Lemma 8.55. By the Sobolev
embedding Theorem 8.47 we have that

Wsh2(Q) c L™(Q). (7.27)

Then we consider the n-approximate velocity u” € C([0,T]; Wg j’\’/ (;R?)) of the
following form

n
= Zaf(z)w" fori=1,2,..., (7.28)

where o' € C([0,T]). The condition divu” = 0 is fulfilled automatically, since u”
is a linear combination of divergence-free functions. The n-approximate solution,
namely the triple (o",u",0"), satisfies

T T
/ (00" z) dr— / / o"u"-Vzdxdr=0 (7.29)
0 0 Q

for all z € L"(0,T;W"" (Q)) with r =5p/(5p —3), and

0<0.<0"(t,x) 0" <+co fora.a. (t,x) € Qr, (7.30)
58+10
0" € L*(0.T: L Q) UL (0.T: W' (Q)  withs = min{z» ﬁis }
and 6" > 9* in QT» (731)

(0,(Q"u"),wl-)+/ (—o"u"@u" : Vw; +S(x, 0",0",Du") : Dw;) dx
Q

(7.32)
=/Q"f"'a)idx
Q
foralli=1,...,nand a.a.t € [0,T], and
/ (0,(0" ™), h) dt+/ /( 0" o"u" - Vh+ko(0"0")VO" -Vh) dxdr
(7.33)

=/ /S(x,g",@”,Du"):Du"hdxdt
0o Ja

for all h € L*(0,T;W'4(Q)) for large enough ¢. For the initial data we set

0"(0,)) =09, u"(0,-)=P"uy, 6"(0,) =6y, (7.34)
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where P denotes the orthogonal projection of Lfﬁv (€;R?) onto the linear hull of
{wi}, and

P"up > uy strongly in LZ(Q;RS) as n — oo, (7.35)
and 6] is a smooth regularization of 6 such that
6y — 6o  strongly in LY(Q).

Moreover, in (7.32) {f"},, stands for a standard smooth regularization of f (or regular
enough approximation to provide the existence of an approximate solution) such that

f* > f strongly in LP (0,T;L" (Q;R3) asn — oo. (7.36)

Let us remark that we can understand (7.29) in the following sense: for z €
C*([0,T] xQ)

4]
/ (0"0;z+ 0" -V2) dxdt:/Q"z(tg) dx—/ o"z(ty) dx (7.37)
11 Q Q

for a.a. t1, t such that 0 < ¢; < t, <T. In a similar way we can rewrite (7.32).

The existence of a triple (o”,u”,6") being a solution to (7.28)—(7.33) with initial
data (7.34) can be proved by a two-step approximation: regularization of the conti-
nuity equation and a finite-dimensional approximation of the temperature function.
It is quite technical but most of the difficulties are not directly related to growth
conditions (7.15) or the Musielak—Orlicz setting, since due to (7.27) for any fixed
n both 8" and Du” are in L*(Qz;R¥*3). Therefore it is enough to adapt the proof
given for the power-law type fluid in [158, Section 6]. For details, see Section 8.3.

Step 2. Uniform estimates for p" and u”.

Let us denote the sequence of solutions to the n-approximate problem (7.29)—
(7.33) by {(0",u",6™)},, with n=1,2,.... Now we concentrate on providing esti-
mates which are uniform with respect to n which in later steps will allow us to pass
to the limit as n — oo.

Let us multiply (7.32) by ozlf’, take a sum over i = 1,...,n, and use (7.29) with

z = %[u"|?. This leads us to
1d
2dr o"u"? dx+/3(x, 0",0",Du") : Du" dx = ./ e 739
tJo Q Q

By the Holder, the Poincaré, the Korn (Lemma 8.54) and the Young inequalities,
assumption (7.22) and inequality (7.30) we can estimate the right-hand side of (7.38)
in the following way

/Q"f”'u" dx
Q

* n P’ Ce n ~
< C@Cae 0 DI g+ 5 [ MDU) dr+C(@1ce O,
(7.39)
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where the constant ¢ corresponds to (7.15) and C. , ¢ to (7.22). Next let us integrate
(7.38) over the time interval (0, so). The use of estimates (7.39), (7.30), the coercivity
conditions (S2h) on S, uniform continuity of P" with respect to n and (7.36) give
the uniform with respect to n estimates

1
[ 5" o P ax
Q
50
, / / [ M (x.DU") + o M* (x,8(x, 0", 0".Du™)  deas (7.40)
0o Jal2

* ~ 1 «
< C(Q,CC,Q»Q sp»C?“f“LP/((),T;LP/(Q)))-i_EQ ”u()”iZ(Q)'

Here C is a nonnegative constant independent of 7, but it depends on the given data.
As (7.40) holds, from the condition (7.22) we infer that {Du"}> , is uniformly
bounded in the space L? (QT,R3><3), i.e.

/OllDu”lle(Q) r<C. (7.41)

By the Korn inequality (Lemma 8.54) we obtain

T
/0 IVU" 12, d < C. (7.42)

From estimate (7.40) it is straightforward to show that
||S(X,Qn,9”,Dlln) : Du"||L1(QT) < C, (743)

IS(x,0",6",Du")||L1(q,) < C. (7.44)

Moreover, the sequence {S(x, 0",6",Du")}* | is uniformly bounded in the general-
ized Musielak—Orlicz class L+ (QT,R3X3 ).
According to (7.40) and (7.30) we have

sup W' (O}, < and swp " OO i@ <€ (745)

telo, t€[0,T]

where C is a positive constant dependent on the size of data, but independent of
n. By (7.42), the zero boundary condition for the velocity field, and the Poincaré
inequality we deduce that

Lr (0, T;WD (@R3)) = c.

fla"]]
Due to the classical Sobolev inequality (see Theorem 8.47) also

lu" | Lr (0,T:L3P/G-P) (Q:;R3)) = C.

Then a classical interpolation between spaces L= (0,7T;L?) and L? (0,T; L3P/3-P))
(see Lemma 8.56) gives
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T
/0 ||u"||rL,(Q) de<C forl<r<5p/3. (7.46)

Let us remark here that the above particular argument deals with the case p < 3. The
case p > 3 can be treated more easily, due to L™ embedding (see Theorem 8.47).
Hence by the L* bound on density (7.30) and by (7.46) we infer

T
5p/3
[ nenwizl g <. (7.47)

Using again (7.30) and bounds on velocity field (7.42) and (7.46), by the Holder
inequality we are led to

T
[ [l eu: url asar < Co g ) 199 v o

11
<C & p2= ?;.
Here the restriction for the exponent p stated in (7.22) is crucial. Next by (7.47) and
(7.30) we obtain from the continuity equation (7.29) that

T
5p/3
[0 < € (7.48)

Step 3. Uniform estimates for u” in Nikolskii space.

Now let us show that the sequence {u"}* | is uniformly bounded with respect to
n in the Nikolskii space N'/>2(0,T; de (Q;R?)), that is,
] T-6 7
sup 672 (/ [ (s+6)— u"(s)||L2(Q) s| <C. (7.49)
0<o<T 0

The proof of this fact is based on an argument from [15, Chapter 3, Lemma 1.2]
with modifications concerning a change of L?-structure to L”-structure and due to
the nonlinear term controlled by the coercivity condition (7.15).

Letusfixdands,0< 0 <7T,0<s <T-¢.Next we test the momentum equation
(7.32) at time ¢ by u"(s+6) —u” () and integrate the equation over the time interval
(s,s+06) with respect to time ¢. Applying the integration by parts formula with
respect to time, the continuity equality (7.29) and the following obvious identity

o (s+0)u"(s+8) —o(s)u”(s)
=0"(s+0)[u"(s+06) —u"(s)] +[0" (s +6) — 0" (s)]u" (s)

we get
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/Q”(s+6)|u"(s+6)—u"(s)|2dx
Q
+/Q[Q”(S+5)—Q”(S)]u"(S)~[u"(S+6)—u”(S)] dx
s+d
+/ /div(g"(t)u"(t))u"(t)~ [u"(s+6)—u"(s)]dxds
s (7.50)
+/ /Q"(t)[Vu”(t)]u"(t)-[u"(s+(5)—u"(s)]dxdt
s+6
/ /S(x 0" (1),0™(r),Du”(¢)) : D[u" (s +6) —u"(s)] dx dr
s+d
=/ /g}g"(t)f"(t)-[u"(s+6)—u"(s)]dxdt.

Now, let us test the continuity equation (7.29) at time ¢ by u”" (s) - (0" (s +8) —u"(s))
and integrate the equation over the time interval (s,s+d) with respect to ¢ to find
that

[l 6+0) =" ) u(s+0) ~u(5)]
--/ " [ v o o (s)- [ (s+0)~u (9) dar
Using the above relation in (7.50), since
[div (' 0)- ' s+0) ~u(5)]
— [ SO0 (5+0) - (9)] ds (751)
- [ o ou o) Iu (s+8) ~u"(5)

and by (7.30) we have that

IIU"(S+5) u'(s)[l
s+0

L? (Q)

o"(Hu"(s)®u"(¢) - V[u"(s+6) —u"(s)] dxdr
Q
s+0
+/S /an(t)u"(z)m"(z)~V[u"(s+5)—u"(s)]dxdt
s+0
_/ / 0" (D) [V ()]u™ (1) - [w" (s +6) —u" (5)] e dr (7:32)
s+0
/ /S(x 0" (£),6"(1),Du" (1)) : D[u" (s +6) —u" (5)] dxds

s+0
/ /g OF () [o(5+9)-u" (9 avar) = -
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Next we integrate (7.52) over (0,7 — §) with respect to time s. Our aim now is to

show that for any of the ten addends I;(s), k =1,2,..., 10, on the right-hand side of
(7.52), the following estimates hold true

T-6
/ Ii(s)ds < 4,6 fork=1,2,...,10, (7.53)
0

where the constants A are independent of ¢ and n. In order to deal with the first
six integrals let us set, for the moment, ¢ := 5p/3. Using the L*-bound on density
(7.30), the Holder inequality, and the Fenchel-Young (Lemma 2.1.32) we infer for
one of representative terms that

T-6
‘/ Ii(s)ds
0

T-6 s+0
<o / / 1 () 12t 10 () ) V0" (54 6 | . e s
0

T-6 111 s+0 q
S5Q*/ {—IIu"(s)HLq(Q) 5‘5/ lu" ()|l L (o) dt

_||Vun(s+6)||Lp(Q)}ds iy

T-6 s+0

ot (Hu"(s)®u"(r) - Vu" (s +6) dx drds
Q

Then Jensen’s inequality and the following obvious relation

T-61 ps+6 T
/ 5/ a(r)deds S/ a(s)ds fora(r) >0
0 s 0

gives us that

T-6 11 s+0
ssoot [ O g o [ IO, g

—IIVu"(s+5)||Lp<g>}

Sé@ (_”un(s)”Lq(() TLq(Q)) ”un(s)”Lq(() T: Lq(g)) ||Vll ||L[J(() T:LP(Q))

In order to estimate the right-hand side of the above with ¢ = 5p/3 we use estimates
(7.42) and (7.46). Then we find that

T-6
/ Ii(s)ds
0

where A, is independent of § and n. In a similar way we treat I with k =2,...,6.

Now we concentrate on the nonlinear viscous term. By Fubini’s theorem, the
Fenchel-Young inequality (see Lemma 2.1.32) and Jensen’s inequality (see Corol-
lary 2.1.24) we get the following estimates

<49,
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T-65
’/ I (s)ds
0

T-6

s+0
/S(x, 0" (1),0"(1),Du"(¢r)) : Du" (s +6) dxdrds
Q

T-6

=0 S(x,0"(1),0"(t),Du" (z)) dr 'Du”(s+6)' dxds

ald Js
<5 /0 e /Q (e (xé / SHSS(t,x,Q”(t),Du”(t))dt)

+M(x,Du"(s+5))} dxds

T-6 1 s+6
S6/9/0 {5 M7 (8, "(0,6"(1).Du" (1)) i

+M(x,Du"(s+5))}ds dx
T-6

T
S‘/Q{‘/O M* (x,S(x,0"(s),0" (s5),Du” (s))) ds + ;

<476,

M (x,Du" (s +9)) ds} dx

where A7 is uniform with respect to n. For the last inequality (7.40) is applied. In
a similar way we treat Ig.
Due to (7.36) and (7.46) we obtain

T-6
/ Iy(s)ds
0
*/T(S 1
0 p

n|p’
<60’ (—nf o

T-6 s+0

o ()f"(¢) -u(s+6)dxdrds
Q

1 s+0
= T
N

"Iy

p/

+ ||ll"(S+5)||LP(Q)} ds

1
;”u LP(0,T; Ll’(Q))) < /196

In the same way we proceed with /j9. Summarizing all of the above estimates we
infer that (7.53) holds. As we already know that {u” is uniformly bounded in

L%(0,T; L2 (Q;R?)) (see (7.45)), we get that

= 1
div

T-65
‘/0 [0 (s+6) - u"(s)||L2(Q) s < A6, (7.54)

where A is independent of n and 6. Consequently {u”"}”  is uniformly bounded
in Nikolskii space N'/22(0,T; L2, (Q;R?)). In particular, (7.49) holds true for all
n € N and

ue N'22(0,T; L2 (Q:;R?)).

div
Step 4. Uniform estimates for 6.

Now let us concentrate on the energy equation and estimates on the temperature
function. We notice that taking /& = 1 in (7.33), by the Fenchel-Young inequality (see
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Lemma 2.1.32), (7.40) and (7.30) we obtain the following

sup |[0"0"|| 1@ <C and  sup [[60"||L1q) <C.
t€l0,T]

(7.55)
t€[0,T]
Taking h =—(0") A with A € (0,1) in (7.33), as 6" > 6, (see (8.63)), we have that

166" =@y < C.
Therefore we find that

Aﬂmﬂ

which allows us to infer by (7.56) that

A|W%

T
B+l
VOt =C1 [ IO g ar <€ (250

||W1 Z(Q)

T T
< ["en™ |@mﬁwf|wwﬂ 2 g dr
o 0 (7.57)
s/'mm) 2 g i+ Co

<c{/ om™ HU®w+LIWWﬂ R ]+ 2 o

Since W!2(Q) c L9(Q), we obtain

T
—a+l
[ ienisi, ga<c. (2.58)

By the interpolation argument, (7.55), and (7.58) we conclude that (here we use the
restriction that 8 > ——)

T
/0 1O} dr < € forallse[1,§+ﬁ). (7.59)

According to the assumption on heat flux (7.17) we have
lq" " dxdr < / |k (0P |ve"|" dxdr
QT QT
< c(K*,/l,,B,m)/ V(")
Qr

SC(/Q V(e

“‘|2dxdz) ((om* [Mﬂ)dxd)_%.

By estimates (7.57) and (7.59) we find that

(e Axdr (760

B
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543
/QT|K0ven|mc1xdtsc for all me[l,%). (7.61)

Notice that ¢" € L™ if and only if “£*4+1)

m in Theorem 7.2.2.

Finally we aim to estimate the last term in the energy equation. Due to the
Holder inequality, the Sobolev embedding, the interpolation argument, and the above
considerations, in particular by (7.55), (7.59), (7.56), we infer that

< %+ B, which gives the restriction on

T T
[reei g [T, e,

L¥P (Q) LT3 (Q)
T
1-a)
<c /0 1017, I 2 N1,

T
< ny n|ay dr
(7.55),(7.59) € /0 [l ”W'*" (Q) llo ”LW"“”(Q)

ya B-A+l-ay
T B—A+1 T (B-A+1)y B—A+1
<Cr| [ 1015 () U " 13 ey e s C
=L o L3(B-a+1) (Q) 0 wlhp (Q) (736) 2
In the above the parameter a € [0, 1] is chosen such that
3+ -3 1-
G+yp-3y _l-a @ (7.62)
3py 1 3(B-A+1)

Notice also that the last inequality in (7.63) gives constraints combining values of S,
a,d, pandy,i.e.
B-A+l)y _
B-A+1-ay
Using formula (7.62) we claim that y > 1 if 8 > —gﬁ—:s, which is the restriction
required in Theorem 7.2.2. Summarizing we obtain that for p < 3 and appropriate 8
there exists a y > 1 such that

lo™a" 0"l 10, 7.07 () <C- (7.63)

Let us remark that the above holds also for p > 3 due to embedding results for whp,
see Theorem 8.47. In this case y > 1 if 8 > —%.
Finally, by balance of thermal energy we find that

10, (0" 0" )Ml (0,1:(w.s (@)+) <C  for s sufficiently large. (7.64)
More precisely

10: ("0 o.m:(wrs @y = sup [0 (0"0")(7),h)| < g"(7), (7.65)
lillys g <1

where ||g" ()|l 10,1y < C < co. Recall the thermal energy equation (7.33) which
holds for a.a. 7 € (0,T) and estimates on terms appearing in (7.33), namely (7.43),
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(7.61), (7.63). Then integration of (7.65) over (0,7") with respect to 7 allows us to
infer that (7.64) holds.

Step 5. Weak convergence of (0",u",0") as n — oo,

The uniform estimates obtained in the above section together with the Banach—
Alaoglu theorem, see Theorem 8.31, provide the existence of subsequences selected
from {o"}>> |, {u"}> |, {6"};_, such that for n — oo

o" — o weakly in L9(Qr) for any g € [1,00) and weakly-* in L™ (Qr), (7.66)

d0" — 8,0 weakly in L°P/3(0,T; (W'3P/GP=3(Q))), (7.67)

u' —~u  weaklyin L7 (0,T; W'k (R?)) and L3/ (Qr; RY) 6%
and weakly-+ in L*(0,T; Liiv (R?)),

0" — 0 weakly in LY(Qr) for any g € [1,5/3+5). (7.69)

Moreover, due to (7.47), (7.57), there exist ou € L°P/3(Q7;R3) and also 62 €
L*(0,T;W'2(Q)) such that

o"u" —ou weakly in LP3(Q;R?), (7.70)

() = (0)@  weakly in L*(0,T;W"2(Q)) for a € (0,(B+1)/2).  (1.71)

Let us clarify here that when in the above we have an overlined - object, we mean
that there exists a limit of a proper subsequence. The other issue is to identify it
and to be able to ‘erase’ the bar. Additionally, as Ej; and E )+ are separable spaces
(see Theorem 3.4.14) and (Ep;)* = Lps+, (Epg+)* = Ly (see Theorem 3.5.3 and
Theorem 2.1.41), the following holds

Du" = Du  weakly-* in Ly (Q7;R3S), (1.72)
S(..0".0",Du") =8 weakly-» in Ly (Qr;RIS), (7.73)

where .
S € Ly (Qr:RYS) and Du € Ly (Qrs RIS (7.74)

which results from the convexity of M, M*. Due to Theorem 3.4.2 we conclude the
uniform integrability of {S(-,0",6",Du")}>  in L'. Thus by the Dunford—Pettis
theorem (Theorem 8.21 there exists a tensor S € L! (Qr;RJs) such that

S(-,0",0",Du") =S weakly in L' (Q7;R>3). (7.75)

Step 6. Strong convergence of (0",u",0") as n — oo,

Our aim now is to prove the strong convergence of the triple (0", u’", ") using the
Aubins—Lions arguments (Theorem 8.50) and the Div-Curl lemma (Lemma 8.52).

Let us start with the strong convergence of the velocity field. By (7.68), (7.54),
and due to an Aubin-Lions type argument (Theorem 8.49) we find that
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u" —>u strongly in L2(Qp;R?).
Then by (7.46) and an interpolation argument we also get that
u” —>u strongly in LI(Qp;R?) with g € [1, STP) . (7.76)

Using the L*-bound on density (7.30) and (7.48), (7.67), together with the Aubin—
Lions argument (Theorem 8.51) we obtain that

0" — o strongly in C([0,T]; (W'3P/GP=3(Q))*),

The standard concept of the renormalized solutions of DiPerna and Lions for conti-
nuity equations (see Proposition 8.63) leads to

o" — o strongly in C([0,7T];L9(Q)) forall g € [1,00) and a.e. in Qr.  (7.77)

Notice that (7.77) provides the continuity of density to initial condition stated as the
very first part of (7.24), namely that

limflo(r) - oollza(@ =0 forall g € [1,0).
Our next aim is to show that
o"u" — ou weakly in LY(Qz;R?) forall g € [l, STP] . (7.78)
Indeed, the above strong convergence (7.77) implies that
0" — o strongly in LST’)+7(O,T;LSTP+7(Q;R3)),

where y € [0, c0). This together with convergence of the velocity field (7.68) implies

that
T T
lim/ /Q”u"-cpdxdtzj /gu-<pdxdt
n—=e Jo  Jo 0o Ja

for every p € (L 5TPJ“E(O,T;LSTPJ"S(Q;]I@)))*, where (y) € [0, 5—p). Therefore (7.70)
implies that (7.78) holds.

Now employing strong and weak convergence of the velocity sequence (7.76) and
(7.68), the L-bound on the density sequence, and strong convergence of the density
sequence (7.77) we obtain

o"u"®u" — pu®u  weakly in LY(0,T; LY (Q;R**?))
for y sufficiently large, i.e. é + % < % with arbitrary ¢. A density argument together

with (7.68) ensures that for p > % we have

o"n"@u" — pu®u weakly in L” (0,T; L7 (Q;R>?3)). (7.79)
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Now we are going to show the convergence of {0"6"u"}* | using the Div-Curl
lemma (Lemma 8.52). For this reason we set

a" = (0"6",0"0"u} +k00x, 0", 0" 0" U5 + k00x,0", 0" 0" Uy + k00x,0"),
where 0" = (uq‘,u';,u?) and
b" = ((6")%,0,0,0) withe € (0,(8+1)/2),

here « is rather small. By bounds (7.61), (7.63), (7.31) and convergence (7.77) we
infer that

a" — (0"0", 0"0"ul +kVO", 0" 0" ul + ko V", 0" 0" U + ko VO") in L (Qr)
for some s > 1 close to 1 and
- — 1 1
b" — (#2,0,0,0) weakly in L" (Q7) for r such that —+— < 1
s r

(which is possible for small « and due to condition (7.69)). The energy equation
provides that

Div, ,a" =9, (0"0") +div (0" 0"u" + ko V") =S(x, 0",6",Du") : Du”.

Since (7.43) holds, we find that S(x, 0",6",Du”) : Du” € L' (Q7) cc W= (Qr),
where 7 € (1,4/3). On the other hand, by estimates (7.57) we infer that

0 V(o)

2 .R4x4 -1,2 .R4x4
_(V(gn)a)T (o) el (QT»R ) ccw (QTaR )

Cur]t,xf)n =

Then according to Lemma 8.52 we finally get that
0" (0™ — 099 weakly in L'+ (Qy) for some 5 > 0,

where 1 is chosen such that %+} = ﬁ < 1. Then by the simple manipulation

0(0M) ! = ((0—0™) +0™)(6™) ! the above combined with the estimate (7.59) on
{6"},, and strong convergence (7.77) imply that

0(6M) ™! = 096«  weakly in L'*¢ (Qy) for some ¢ > 0 (7.80)
(here a is such that @+ 1 < % + ). Now our aim is to show that
07=0" ae.inQr. (7.81)

To this end we employ the classical Browder and Minty trick (see e.g. [138]). Indeed,
noticing that y* for y € [0,c0), @ > 0, is an increasing function we find that

T
OS/ /Q[(@")“—h“](@”—h)dxdt for all h € L'*(Qy).
0 Ja
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Next let us pass to the limit as n — oo. By limits (7.69), (7.77), and (7.80) we obtain
T —
0< / / 0l0% —h?)(0—h)dxdr forall he L™(Qyr).
0 Ja

Setting 4 =60 — Av for A > 0,v € L'*7(Q7) and h = 6 + Av, then passing to the limit
as 4 — 0 we conclude that

T
0=/ /Q[H_“—Ha]v dxdr forallve L™(Qp).
0 Jo
Therefore as o > p.. we deduce that (7.81) holds. Hence by (7.80)
Qﬁe” — gﬁe weakly in L'*(Qr)

and ] 1
lo™@ 0" || 1+a ) — ll0™@ Ol 1va(qyp) -

Therefore for a subsequence
gﬁé)" — oTal strongly in L' (Qr).

Since p is bounded from above and below, see (7.30), 6" > 8, by (7.31), the weak
limit (7.69) for the approximate temperature sequence together with the above strong
convergence leads to

0" — @ strongly in L9 for all g € [1,5/3+f) and a.e. in Q7. (7.82)
The above strong limit together with (7.71) imply that
(0% — 0%  weakly in L2(0,T; W'2(Q)) forall @ € (0,(8+1)/2).  (7.83)

Due to the strong convergence of the approximate density sequence (7.77) and (7.82)
we obtain that

00" — 00 strongly in L9(Qr) forall g € [1,5/3+8). (7.84)

By strong convergence of the approximate velocity sequence (7.76), and by (7.77),
(7.82) we conclude that

0"0"u" — p6u  strongly in L' (Q7;R?). (7.85)

Next, let us consider the convergence of the sequence {q(0",6",V6")},. Due to
(7.16) we obtain

(o".6". V0" (o".6")V6" 2 (0" B+l (0" en)v(gn)ﬁ—/m
= = 2 2,
q(0".0", Ko(0", Boar Ko(o",

(7.86)
Inequality (7.59) can be used to ensure
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T —B+A+
[ nen s aen i g ars [ @y aase  asn
0 Qr

for r such that r(B+1+1) =5/3+ 8 — 1. Notice that r > 1 for A small enough. Then
by (7.87) we have that

B+

{62 ko(0",0™)}, is uniformly integrable in L*(Qr).

The almost everywhere convergence of {0}, |,{6"} | shown in (7.77) and (7.82)
combined with the Vitali convergence theorem (Theorem 8.23) leads to

—B+A+1

@7 ko(0",6") > 97&2/“1 ko(0,0) strongly in LZ(O,T;L2 (Q)).

Moreover, according to (7.83) we obtain that

V(e = v9"ET weakly in L2(0,T; L2(Q:R%)),

which applied to (7.86) and by (7.61) give us that

5+3
q(0",0",V0") — q(0,0,V0) weakly in L*(Qz;R>) forall s € (1 ﬁ) .

T4+438
(7.88)

Step 7. Passing to the limit as n — oo in the continuity and momentum
equation.

Summarizing the arguments of the previous steps we are allowed to pass to the
limit as n — oo in the system (7.29)—(7.32).

With the limits (7.67), (7.77), (7.78) at hand we pass to the limit as n — oo in
(7.29) and we get that

T T
/ (0:0,2) dt—/ /Qll~VZ dxdr=0 (7.89)
0 0 Q

forall z € L™ (0,T; W' (Q)) with r =5p/(5p - 3).

Let us now collect convergences for all terms from the momentum equation,
namely (7.36), (7.75), (7.79), (7.34), (7.35). Multiplying the approximate momentum
equation (7.32) by ¢ € C2°(—00,T), integrating the result over (0,7") with respect to
time we pass to the limit as n — co obtaining that

T —
/ /(—Qu-é?tgo—gu®u:Vga+S:Dgo) dxdr
0o Ja

T
:/ /Qf'¢dde+/Qou0'¢(0)dx
0 Q Q

for all ¢ € C2°((—0,T);V). Here we used the fact that the family of functions of
the form Y w; where ¢ € C°(—0,T), w;, i =1,2,..., given by (7.25) is dense in

(7.90)
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C2((—=0,T);V). Then it remains only to characterize the nonlinear viscous term S.
That is the aim of the forthcoming steps.

We have now collected most of the ingredients allowing us to pass to the limit in
the balance of thermal energy (7.33). It remains only to show the convergence in the
right-hand side of (7.33), which will be provided in the penultimate Step 11.

Step 8. Integration by parts.

Let us recall that the classical integration by parts formula does not hold for
our considered problem, since Musielak—Orlicz spaces are not in general reflexive
and smooth functions are not dense, if the A,-condition is not satisfied. Also, in
general there is no equivalence between the Bochner type space Lz (0,T; Lps (€2))
and L (Q7). This problem has already been investigated in previous chapters,
see Section 4.2.3. However in order to give a complete treatment of the fluid flow
problem, we also present it here, since some steps need to be treated differently.

Our goal now will be to show that if (7.90) is satisfied, then for a.a. sg and s such
that 0 < 59 < s <T it holds that

1 s o
—/@(s,x>|u(s,x>|2dx+/ /S:Dudxdt
2 Ja s Ja

§ 1
=/ ‘/,Qf-udxdt+—'/Q(so,x)lu(so,)c)l2 dx.
s Jo 2 Ja

The proof here is based on a proper choice of a test function in (7.90) and makes
use of Steklov regularization with respect to the time variable. To this end let us
introduce the following notation: for any function g (for which the integrals below
make sense) and for 4 > 0

(7.91)

1 a
@190 i=1 [earrnan
0

L0 (7.92)
(G*8)(t,x) = 1 / g(t+71,x)dr,
where * means convolution over the time variable, and let us set
D+/lg = g(t+/l9x/)1_g([ax) ,
_ t,x)—g(t—1,x)
D /lg - g(1,x) i( .
We observe that
0, (57 +g)=D™g and 0, (;+g)=D"g. (7.93)

Taking A > 0 and 0 < 59 < s < T such that A < min{so,7 — s} let us multiply the
momentum equation (7.32) by

T3 (T %l (1) L) (1)
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Next we sum up overi = 1,...,j, where j < n and integrate this sum over the time
interval (0, 7). Noticing that

J
T (7 +0) Ty 0) = D07+ (57 # @] (1) L (sy0)0 ()
i=1

let us define . i
u/l?J = 6’3— * ((5‘; * uj) 1(5()’5))

with A < min{sg, T —s}. As

/ (6,(Q”u"),u’l”> dt:/ <(9t(5-/{*(9”u")),((5-/{ *uf)]l(SO’s))> dr,
0 0

and j < n, we have

s T
/ <(a,(&;*9"u")),(&;*uf)>dz:/ /(Q"u"®u"):Vu’l’jdxdt
S0 0 Q

T T
- / / S":Dut/ dxdr+ / / o -ut/ dxdr.
0 Q 0 Q

Let us notice that for fixed A and j we have that u'/ € L*(Qr;R?) and Du'/ €
L®(Qr;R¥>3). Our aim is now to pass to the limit with n. For the first term on
the left-hand side of (7.94) we use the fact that & +w/ is locally Lipschitz with
respect to the time variable and (7.78) holds. For the terms on the left-hand side
we use the weak limit in LP'(O,T;LP'(Q;R3X3)) for the convective term (7.79), the
weak-* convergence in Lys (Qz;R¥3) for the nonlinear viscous term (7.73), and
the strong convergence in LP (0,T;LP (;R?)) for the forcing term (7.36) with
strong convergence for the approximate density sequence (7.77), respectively. Then
as n — oo we have

(7.94)

s T
/ <(6,(5'/{*Qu)),(6'/{*uj)>dt=/ /(Qu®u):Vu’l’jdxdt
0o Jo

S0
T _— . T .
—/ /S:Du’l’/ dxdt+/ /Qf-u’l’/dxdt.
0 Q 0 Q

(7.95)

Our aim now is to replace in (7.94) u-/ by u? defined as follows

ut:= gy (0] *u) Lig.s)

with 0 < A < min{sg,T — s}. For this purpose let us define the truncation operator
T,, : R¥3 — R33 such that

.| KK,
ml =k it Kl > m.



7.2 Heat-Conducting Non-Newtonian Fluids 291

Then observe the following identity

Ky T
0, (57 = (57 xu)) dr = - Vut/ dxd
/(( (&7 % (ow). (&7 +u/)) di / /Q(gu@m b dedr

S0 0

T
Q\_Q) . A,j
+/0 /Q(Tm(S) S) : Du’ dxdr

T — .
- / / T,.(S) : Du"/ dxds
0 Q

T
+/ /Qf~u”’jdxdt.
0 Q

Now let us focus on the right-hand side of (7.96) and investigate the first and the last
term. Note that

(7.96)

ut/ —~u!  weakly in L? (O,T;Wé’(ﬁv(Q;R3)) as j — oo.

Since p > 15—1 and o is bounded, we infer that

T T
/ /(gu@u)-Vuﬂ’jdxdtﬁ/ ‘/(Qu®u)-Vu’ldxdt as j — oo,
0o Jo 0 Jo

Asf e LP'(0,T;LP (Q;R?)) we treat the source term in the same way. Hence

T T
/0 /S;Qf-u’l’jdxdt—)/o /g;gf-u’ldxdt as j — oo.

Now we analyze the second term on the right-hand side of (7.96). Let us fix k € N.
Due to the Fenchel-Young inequality (see Lemma 2.1.32), the convexity of M and as
M* satisfies the A,-condition (see (7.23)) with some nonnegative integrable function
h:Q — [0,00) (see (2.38)), we infer the following

T T
Q\_Q) - A, * k Q\_Q
/0 /Q|(Tm(S) S) :Du ]IdxdtS/O LM (x,2%(T,,(S) —8)) dx dt

T
1 .
+/ /M(x,—kDu’l’f)dxdt
o Ja 2

T
SCZZ/O /QM*(x,Tm(§)—§)dxdz (7.97)

T
+k/0 Lh<x>1{|§(t,x)|>m}dxdt

1 T .
+—/ /M(x,Du’l’J)dxdt.
2k )y Ja

By (7.40) and noticing that reasoning as in the proof of Lemma 3.4.8 holds also for
Steklov regularization (7.92), we get that for each 0 < A < min{sg, 7 — s} it holds that
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T
supsup/ /M(x,Du’l’j)dxdt<C,
A jenJo Ja

where C is a nonnegative constant independent of j and 4. Consequently we infer
that

1 T .
lim — supsup / / M (x,Du/)dxdr = 0. (7.98)
k—oo 25 30 ienJo  Ja

By the convexity and symmetry of M*, and since M*(x,0) =0 a.e. in Qr, for m large
enough (here such that 2|1 — (m/|S|)| < 1)) we infer the following

M (x, T (S)—8) = M* (x,S—T,u(8))
= M*(X,O)]l{|§|gm} +M* (x,S(l - %)) ]1{|§\>'"}
< M*(x,g).

As M* satisfies the A,-condition and Se Ly~ (QT;REyXIg), the above inequality
provides by the Lebesgue convergence theorem that

M*(x,T,n(8) -8)dxdr >0 asm — co.
Qr

Hence

. . s k " = = _
kll_r)lgmlll_r)nw/so /QCAzM (x,T,n(S)-9S) +kh(x)]l{|§(t’x)|>m} dxdr=0. (7.99)
Therefore we can pass to the limits in the second term on the right-hand side of
(7.96) (together with (7.97)) consecutively as j — oo, m — oo and k — oo.
Concerning the third term on the right-hand side of (7.96) — let us notice that

Dut/ —Du'  weakly in L”(Q7;R¥?) as j — oo

Since T,,(S) — S a.e. in Q7 as m — oo and since [T,,(S) : Du?| < |S : Du?|, by sym-
metry of the N-function, from the Fenchel-Young inequality we have an integrable
majorant for the sequence {T,, (S) : Du'},,. Then by the Lebesgue convergence
theorem

m—oo j—oo

T — . —
lim lim / / T,.(S) : Dut/ dxdr = / S :Du'dxdr.
0 Q Q

Now let us concentrate on the left hand-side term of (7.94). Recall that pu €
L®(0,T;L*(Q;R?)), then 07 *ou is a Lipschitz function with respect to the time
variable, and therefore 9, (& * ou) € L (0,T; L*(Q)). By (7.68) and letting j — oo
we get

L= [ [ @@ ou- 7w avar

ool (7.100)

=/ /((Qu®u):Vu’l—g:Du’l+gf-u’l)dxdz:;R/,_
so JQ
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Now our aim is to pass to the limit as 2 — 0*. We infer from (7.93) that
S
L,1=/ /(D*‘(gu))-(&;*u)dxdt. (7.101)
so JQ

Observe that due to (7.93) and the relation (satisfied in a weak sense)
D™ 0= ~div (57 * (ow)),

which holds since o and u solve the continuity equation (7.89) in a weak sense, we
have that

LA:/S/(QD*/lu).(ﬁ'; *ll)+((D*/1Q)u(t—,l)).(&;*u)dxdt
o (7.102)

:/ ‘/QQ%(),I&/{*u|2+(5'/{*(Qu))~(V (u(t=2)- (& *uw))) dxdr.

Let us insert z = %lé’/{ +u|? into the weak formulation of the continuity equation,
which gives for all sg, s € [0,T], s < s, that

/ / (0(r)-8,2(1) + o(D)u(r) - V(1)) drdr = / 0(s) - 2(5) — 0(s0) - 2(s0) dx
S0 Q Q

(for all z € L"(0,T;W'") with r =5p/(5p —3) and 0,z € L'*9(0,T;L'*9(Q))).
Hence we have

Li= [ o) Glopeu(s)?) ar= [ ol (Gla wu(so)P) ds
- [ [[(ew - G¥Ioreul?) aar (7.103)
so JQ

+‘/S()S/Q(5';*(Qu))-(V [u(t—/l)-(é‘/{*u)])dxdt.

Let us notice that

0, *u—u strongly, locally in time, in L2(0,T;L2(Q;R3))
and in L°P/3 (O,T;LSP/3 (Q;RS)),

V(&; *u) = Vu strongly, locally in time, in L (0,T; L” (Q:R¥3)).

The same arguments work for translation 7_,u = u(f — Q). Then by the Holder
inequality, letting 4 — 0% in the above we get for almost all s and s in (0,7) the
following
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. 1 1
lim L, = ELQ(s,x)|u(s,x)|2M—§ QQ(so,)c)lu(so,x)|2dx

A—-0*
s 1 )
+ (ou)-[=V|u|*| dxdr
S0 Q 2

1 1
=5 [ etsntutsof ar=3 [ otsonlutsonP ax
Q Q

S
+/ /Qu®u:Vudxdt.
so JQ

Next let us concentrate on the right-hand side of (7.100) and pass to the limit as
A — 0. First we analyze the convergence of the convective term

S
/ /(gu@u : Vut) dx dr.
so JQ

Due to (7.42), the sequence {Vu'}, = {V (Fr:{ 1 (Cn #u)1(5.5))) }a is uniformly
bounded with respect to A in LI’(O,T;LP(Q;R3X3)). Hence, for a subsequence if
needed, we get that

lim / /(gu@u:Vuﬂ)dxdzz/‘ /(gu@u:Vu)dxdt. (7.105)
-0 Jg, Ja so JQ

Asfe LP'(0,T;L” (Q;R?)) and as o is bounded by (7.30), in the same way we find

that N S
lim/ /(gf)-uﬂdxdtz/ /Qf-udxdt. (7.106)
-0 Jg, Ja so JQ

Let us concentrate now on the term

(7.104)

T _ s _
/ /S:(5’3’*((&;*DU)H(SO,S)))dde=/ /(&;*S):(&;*Du)dxdt.
0o Jao so JQ
The sequences

{57 *S}a and {5 *Du}, converge in measure on Q7 (7.107)

due to Lemma 3.4.8, which holds also for Steklov regularization. Hence argu-
ments similar to Lemma 3.4.8 with (7.74) imply that the sequences {5, *S}, and
{7 *Du}, are uniformly integrable, which together with (7.107) give

o * Du-%Du modularly in L]\,,(QT;]R::’;f1 , 7.108)
57 +8-58  modularly in Ly (Qr:R3S).

Then Lemma 3.4.6 allows us to conclude

lim / /(&;*é):(&;*ou)dxdtzf /§:Dudxdt. (7.109)
A-0* S0 Q S0 Q
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Summarizing the arguments for (7.104), (7.109) and (7.106) we are able to pass
to the limit in (7.94) and we obtain (7.91).

Step 9. Continuity with respect to time in the weak topology and the initial
condition.

Note that as o € C([0,7],L9(Q)) for g € [1,0), 0. < 0 < 0", and u €

L""(O,T;LﬁiV (;R?), we may conclude that o(-)u(-) is continuous in time in the

weak topology, namely for s; € (0,7) for all ¢ € Lgiv (Q),

tim [ (e(szu(sz) - e(snu(sn) ¢ dx=0.
S§2—81 Q
In particular we observe that
limo/(g(sl)u(sl )—ooup) - gdx=0 forall ge Lﬁiv (Q:;RY). (7.110)
S1— Q
Then integrating (7.38) over the time interval (0, s1), using (7.30) and the fact that

S(x,0",6",Du") :Du" >0 ae.inQr,

which holds because of the monotonicity and as S(,-,-,0) =0, and taking the limit
as n — oo we obtain

1
[tetsnmutsnP -couoF av<2e” [ [ fuarar. @
Q 0o Ja
If we employ the obvious identity

IWe(s) (u(s) =uo)l3 g,
= [ {etsolutsn)=20(s0usn) wo+ o(s1)luoP) d
then the second part of property (7.24) is an easy consequence of (7.111) and
Wolsi) (u(s1) —uo)ll3 s g,
= [ (etntuGsnP~2e(sutsn) -uo+ (s luof?)
= [ {ets0luts0) = coluol~2(e(s0)us1) - gom) - w+ (es0) - o) luoP)

S1

<20 [ [ tudvar=2 [ (otsiutsn) - gouo)wo dx+ [ (ols1) - en)lunP dx.
0 Jo Q Q

(7.112)

Now let us observe that using in (7.89) a test function of the form 1, ,)h with

h e Wh(Q) with r = 5p/(5p — 3), partial integration with respect to time and
density of W!" in L' gives
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lim Q(tz)hdxzfg(tl)hdx forall he L'(Q) and 1, € [0,T]. (7.113)
Q Q

h—t

Letting s; — 0% in (7.112) using (7.110), (7.113) and as f € L?'(0,T;LP (;R?))
andue LP(0,T; W(}’p(Q;R3)), we conclude that

Jim Vo (s1) (@(s1) =u0)l72 g =0. (7.114)

Hence this implies together with (7.30) the second part of (7.24). The above argu-
ments and (7.112), (7.114) also imply the fact, which we will use later, that

lim / o(s1)u(s)P dx = / ooluol? dx. (7.115)
s1—0 Q Q

Step 10. Monotonicity argument to show S = S(x, o, 6,Du).
Let us now concentrate on the weak limit S. We aim to show that

S=S(x,0,6,Du) ae.inQr. (7.116)

As in the previous chapter the proof is based on the monotonicity method in
nonreflexive anisotropic Musielak—Orlicz spaces. We follow here arguments analo-
gous to the one from Section 4.1.2. However since it is slightly modified due to the
dependence of S on density and temperature, we recall it here for the convenience
of the reader.

Using the integration by parts formula, see (7.91), and letting so — 0, see (7.115),
we find that

E/Q(SJ)Iu(s,x)lzdx+/A /§:Dudxdt
2 Jo 0 Jo
$ 1
=/ /Qf-udxdt+—/,go(x)|uo(x)|2 dx.
0 Q 2 Q

Next let us integrate the equation (7.38) over the interval (0,s), let n — co and
compare the result with the above one. Thus we infer that

limsup‘/‘ /S(x,g”,@",Du”):Du"dxdtﬁ/‘ /g:Dudxdt. (7.117)
0 Jao 0 Jao

n—oo

Let Qg = (0, s) X Q. Due to the monotonicity of S (see condition (S3h)) we get that
/ (S(x,0",0",w)—S(x,0",6",Du™)) : (Ww—Du")dxdr > 0 (7.118)
Qg

holds for all w € L (Qp; R33).
Now let us show the following fact:

S(-,1,9,w) is bounded forw € L®(Qz;R>*3) and for I, ¢ € R. (7.119)

sym
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Indeed, this statement can be proved by contradiction. Suppose that S(x,/, s,w) is
unbounded. Since M is nonnegative, by the coercivity condition (7.15), we have that

M*(x,S(x,1,9,w))
IS(x,1,9,w)]

w| >

Then the right-hand side tends to infinity as |S(x,/,®,w)| — co, since M* is su-
perlinear at infinity (see property 4. in Definition 2.2.2 of an N-function together
with condition 3. of Definition 2.2.1), which contradicts that w € L®(Qz;R3>*3).
Therefore we find that S(x, 0", 6", w) € L= (Q7;R>3).

Due to the continuity of S with respect to the second and the third argument
(i.e. with respect to density and temperature) and a.e. convergence of the sequences
{o"}r,, {0"},7 | we have that

S(x,0",0",w) —> S(x,0,0,w) ae.inQr.
Since {S(x, 0",0", W)} C L*®(Qy;R¥3) we obtain uniform integrability in L' of
the sequence {M*(S(x, 0",6",w))} > . By Theorem 3.4.4

S(x,0", 0”,w)£>3(x, 0,6,w) modularly in Ly (Qr;R3>3).

Since M* satisfies the A,-condition, the modular and strong convergence in Ly
coincide

S(x,0".6",w) = S(x,0,6,w) strongly in Ly (Qr;RY?).

Therefore by the weak-* convergence in Lys (Q7;R¥3) of {Du"}, (see (7.72)) we
find that

lim S(x,g",G",w):Du"dxdtzf S(x,0,0,w) : Dudxdr. (7.120)
'S QS

—00
n Q

Let us pass to the limit as 7 — coin (7.118). By weak- convergence in Lz« (Q7; R>3)
of the subsequence {S(x, 0",6",Du")},, (see (7.73)) and by (7.117), (7.120) we ob-
tain

/§:Dudxdt2/ §:wdxdt+/ S(x,0,0,w) : (Du—-w)dxdr  (7.121)
Qs Q Qs
and consequently

/ (S(x,0,0,w)—S) : (W—Du)dxdr > 0. (7.122)

S

As in Section 4.1.2 we choose the function w by setting
w=(Du)l, i +hvig j,

with
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Q% ={(t,x) € Q, : |Du(r,x)| < k a.e.inQy}

and where £k >0, 0 < j<i, h>0and v € Lw(QT;R3X3) are arbitrary. Since
S(x, 0,0,0) =0, from (7.122) we infer

—/ A(S(x,,Q,H,O)—§):Dudxdt+h/ '(S(x,Q,H,Du+hv)—§):vdxdtZO,
Q Q,

'S \QS !
(7.123)
where obviously

/ §:Dudxdt=/ (S:Du)ly \q i dxdr.
.\, Q T

By (7.74) and by the Fenchel-Young inequality (see Lemma 2.1.32) we obtain that
/Qr S : Dudxdr < oo and consequently

(S: Du)lg \qi —0 ae.inQ fori — co.

The Lebesgue dominated convergence theorem gives

lim S :Dudxdr =0.
1—00 QS\QSL'

Let us pass to the limit as i — oo in (7.123) and divide by /. Hence we have that

/_(S(x,g,@,Du+hv)—§):vdxdtZO.

S

As Du+hv — Du ae. in Q/ when h — 0% and as {S(x,0,0,Du+hv)};-o C
L®(Q,7;R¥™3), |Q,/| < oo, the Vitali convergence theorem (Theorem (8.23)) yields

S(x,0,0,Du+hv) = S(x,0,6,Du) strongly in L'(Q,/;R¥>?) as h— 0*
and
/ (S(x,0,0,Du+hv) —S) :vdxdr — / (S(x,0,0,Du) —8) :vdxdr as h — 0*.
Qg/ Q7
Therefore

/Qj(S(x,Q,G,Du)—g):vddeZO for allv € L®(Qg;R¥?).

Let us chose v such that v = — S(X:2.0.DW=8 ¢ S(x,0,6,Du) #S and v = 0 if
|S(x,0,0,Du)-S|

S(x,0,06,Du) = S. Therefore, we find that

/_|S(x,g,0,Du)—§|dxdl§0.
J

QA
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Hence S(x, 0,0,Du) = Sae. in Q,/ and as J is arbitrary it also holds a.e. in Qg for
almost all s such that 0 < s < T'. Finally we conclude that (7.116) holds true and we
are allowed to replace S by S(x, 0,6,Du) in (7.90).

Step 11. Convergence of {S(x, 0",6",Du”) : Du"},.

Note that (7.116), (7.117), the limits shown in the part concerning weak lim-
its (7.66)—(7.75) and the part concerning strong convergence (7.76)—(7.88) allow
us to pass to the limit as n — oo in the approximate thermal energy equation
(7.33), but instead of equality in the limit we still can only conclude inequality
(due to (7.117)). Therefore we concentrate now on the convergence of the sequence
{S(x,0",0",Du") : Du"}” | and our aim is to show that the following holds

S(x,0",0",Du") : Du" — S(x,0,6,Du) : Du  weakly in L' (Q7). (7.124)

The idea follows from [188] (later also used in [218]) and is based on the concept
of biting convergence and the theory of Young measures. For the definition of the
biting limit, see Definition 8.36. In particular, we apply here Lemma 8.39. The
methodology can also be found in Section 5.3 Step 7. However, we recall here all
the details for clarity of presentation so that new details concerning the dependence
of S on temperature and density are not missed.

Let us set
{an}2, ={S(x,0",6",Du") : Du"}?,.

Our aim now is to show that for {a, }* | the assumptions of Lemma 8.39 are fulfilled.
As a consequence, this leads to the weak convergence of a,, in L' (Qr).

Assumption (i) is fulfilled due to monotonicity condition (S3h) and as S(-,-,-,0) =
0, namely a, > 0.

Next (iii) is a straightforward consequence of (7.117).

Finally we have to show (ii) — biting convergence of a,, to a :=S(x, 0,6,Du) : Du.

By the monotonicity of S (see (S3h)) we have

0<(8(x,0",0",Du")-S(x,0",6",Du)) : (Du” —Du). (7.125)

By coercivity condition (S2h), the Fenchel-Young inequality (see Lemma 2.1.32)
and convexity of the N-function M* we infer that

cM (x,Du) + 254 M* (x,8(x, 0",6",Du)) < M(x, %Du)

with d = min{c, 1}. As Du € Ly (Q7;R¥3), we find that {S(x,0",6",Du)}>  is
uniformly bounded in Ly« (Q7;R¥*?). Due to (7.40) and by the generalized Holder
inequality (see Lemma 3.1.15) the right-hand side of (7.125) is uniformly bounded
in L' (Q7). Therefore, by Theorem 8.37 combined with Theorem 8.41, there exists
a Young measure ; (-, -,-) satisfying up to a subsequence

0 <(8(x,0",6",Du") —=S(x, 0",0",Du)) : (Du" —Du)

b (7.126)
- (S(x,1,5,4) —S(x,l,5,Du))) : (A —Du)dy; «(s,,2) ;==L

R2xR3%3
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asn — co. Applying Lemma 8.44, by (7.77) and (7.82) we have in fact that i, (-, -,-)
can be rewritten in the form 6, ¢ (/,5)®v; (). This gives that

L =/ (S(x,0,0,1) —S(x,0,6,Du)) : (1 —Du)dv; (1)
R3%3
= / S(x,0,60,1) : (A—Du)dv; (1) —/ S(x,0,6,Du) : (1 —-Du)dv; (4).
R3%3 R3%3
(7.127)

Notice that S(x, 0,6,Du) is independent of A and
/ Adv, (1) =Du  fora.e. (t,x) € Qr
R3%3

by Theorem 8.41 and since Du” — Du in L' (Q7;R**3) (consequence of (7.72)).
Then we have that

S(x,0,6,Du) : (1—Du)dv, (1)
3x3
E (7.128)

=8(x,0,0,Du) : (/ Adv; x (1) —Du] =0.
R3%3

As the second term of the right-hand side of (7.127) disappears, the biting limit of
(7.126) becomes

L =/ S(x,0,0,4) : (1—Du)dv, x(1). (7.129)
RSXS

By the Fenchel-Young inequality (see Lemma 2.1.32) and (7.40), {a,,}f:’=1 is uni-
formly bounded in L' (Q7). Therefore we obtain that

a, =8(x,0",0",Du") : Du" g/ S(x,l,5,4) : Adu; (1, 5,12)
RZXR3><3

= S(x,0,0,4) : Adv; ().

R3x3

Thenasa, >0forn=1,...,00, by Lemma 8.43 and due to (7.117), (7.116), we get
that

S(x,0,0,Du) : Dudxdr > liminf S(x,0",0",Du") :Du"dxdr (7.130)
Qr

Qr n—oo
2/ S(x,0,60,4) : Adv; (1) dxdt.
Qr R3x3

On the other hand due to (7.75) and (7.116) we have that,

S(x,Q,H,Du)zf S(x,l,5,2)dvs (1).
R3%3
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So by (7.129) and (7.130) the right-hand side (7.125) is non-positive, as is the
right-hand side of (7.126). This implies that

(S(x,0",6",Du") —S(x, 0", 6",Du)) : (Du" —Du) 2 0. (7.131)

In a similar way as (7.128) we find that

S(x,0",6",Du) : (Du" —Du) 2 0, (7.132)
and one can obtain also that

S(x,0",0",Du") : Du 2> S(x, 0,6,Du) : Du. (7.133)

Let us sum up (7.131)—(7.133). This implies that a, LA a. Hence assumption (ii) of
Lemma 8.39 is fulfilled and from its statement we conclude that (7.124) is shown.

Step 12. The limit in the thermal energy equation.

Finally let us recall the strong convergence in L'(Q7;R?) of {o"u"6"}, (see
(7.85)), the weak convergence in L*(Q7;R3) with proper s of {q(o",6",V6™)},
(see (7.88)), and the above weak convergence (7.124). Then letting n — oo in (7.33)
we obtain the thermal energy equation (7.21) from the Definition 7.2.1 of a weak
solution. All that is left now is to establish the convergence of the first term on the
left-hand side of (7.33) to the first term on the left-hand side of (7.21). Notice that
from (7.33), (7.64), by (7.124), (7.85), (7.88) we have that

T T
/(z,h)dtzz lim/ (6,(6"0™), h) dt
O n—0o 0

exists for all 7 € L®(0,T;W"9(Q)) with large g. On the other hand, by (7.84) we

find that
T

T
tim [ @.0"e")h di= [ o0, by
n—e Jo 0
for all h € C2(0,T;W'4(Q)). Hence z = 8, (06).
To observe how the initial data is achieved, i.e. (7.24)3, we take as a test function
in (7.21) 1o,k with h € Wh9(Q).
The proof of Theorem 7.2.2 is completed.

7.3 A Generalized Stokes System

This section concerns a generalized Stokes system with the nonlinear viscous term
having growth conditions prescribed by an N-function which places the problem
of existence of weak solutions in homogeneous and anisotropic Orlicz spaces. Our
main interest here is directed toward relaxing the growth assumptions on the N-
function in comparison to those presented in Section 7.2. In particular, we want to
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capture the shear thinning fluids with rheology close to linear, namely to avoid an
N-function M being supported from below by a polynomial of power larger then 2,
see the condition (7.22). Here we consider the case of anisotropic but homogeneous
functions. The main result of this section is the existence of weak solutions to the
generalized Stokes system. Additionally, for the purpose of the existence proof, we
need a version of the Korn—-Sobolev inequality in the Orlicz setting (Theorem 9.4).
This section is based on [180, 183, 184].

7.3.1 Formulation of the problem and the existence result

Let Q c RY be an open, bounded set with a sufficiently smooth boundary 9Q (say
C* with v > 0), (0,7) the time interval with 7 < o0, Q7 = (0,T) xQ, u: Qr — RN
the velocity of a fluid, 7 : Q7 — R the pressure function and S + Iz the Cauchy
stress tensor. Here we do not consider density and temperature as unknowns. The
flow is prescribed by the generalized incompressible Stokes system, which consist
of balance of momentum, the condition of incompressibility, and initial data:

0,u—divS(t,x,Du)+Vr=f 1in (0,7)xQ, (7.134)
divu=0 1in (0,7)xQ, (7.135)

u(0,x) =uy inQ, (7.136)

u(t,x) =0 on (0,T) X0, (7.137)

For the viscous stress tensor S we assume that

(S1s) S:[0,T] xQx RgrﬁN - Rfy’fle is a Carathéodory function (i.e., measurable
with respect to r and x and continuous with respect to the last variable).
(S2s) There exists an anisotropic N-function M : RSI\;QN — [0,0) and a constant
cc > Osuchthatforall € € RS’\;ITIN the following growth and coercivity condition
is satisfied
S(t,x,£) 1€ > c.(M(&)+M*(S(t,x,£))). (7.138)

(S3s) S is monotone, i.e. for all £, € Ré\y’fle and for a.a. (7,x) € Qr

(S(t.x,£) =S(t,x.m)) : (£ -7) = 0.

We define the space of functions with symmetric gradient in Lys (Q;RNV*V),
namely

BDy (RY) = {ue L' (RY) : Due Ly (RYXN)}.
The space BD s (£2) is a Banach space with the norm

lullBpy @) = llullL1 (@) +[1DullL,, @)

and it is a subspace of the space of bounded deformations BD(Q), i.e.
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BD(Q;RV) :={ue L' (Q:RV) : [Du]; ; e M(Q), fori,j=1,...,N},

where M () denotes the space of signed Radon measures with finite mass on Q and

Bul au}
D
[Dul; (6)6/ Ox; )

According to [313, Theorem 1.1.] there exists a unique continuous operator
o from BD(Q;R™) onto L' (dQ;RN)

such that the generalized Green formula

/¢ [Du]; ; dx = /(M]a i~ 09 ) dx+/ ¢ (yo(ui)n; +yo(u;)n;) dH!
Xi j oQ

(7.139)

holds for every ¢ € C'(Q), where n = (ny, ...,ny) is the unit outer normal vector on

A€ and yo(u;) is the i-th component of yo(u) and H™ ! is the (N — 1)-HausdorfF

measure. Notice that such a ¢ is a generalization of the trace operator in Sobolev

spaces to the case of BD space. Moreover, if u € C(Q;RY), then yo(u) = u|s0.

Observe that the above coincides with the classical trace operator in classical Sobolev

spaces, if u € Wé’l (RN).

With the above understanding of the trace in a generalized sense we define the

subspace and the subset of BD ;7 (€;RY) as follows

BDpo(QRY) :={ue BDy (RY) 1 yo(u) =0},

BDpo(QRY) :={ue BDy (QRY) : Due L (QRNN) and yo(u) = 0}.

sym
(7.140)
Moreover, let us define also
BDy (Qr:RY) :={ue L'(Qr:RY) : Due Ly (Qr:RYIN)}
and the related subspace
BD10(Qr;RY) = {u € BDy(Qr:iRY) : y(u) =0},
where g is understood as follows
0 0
2 ¢[Du]; jdxdt = - / ( ¢+u, ¢)dxdt
or Tox oy (7.141)

+/ ¢ (Yo(ui)nj+yo(uj)n;) dHN""dt
(0,T)x0Q

forall ¢ € C'(Qr) andi,j=1,...,N. If u € BDp (Qr;RY), then we have u(z,-) €
BDp (;RN) for a.a. t € (0,T). For such vector fields it is equivalent that u €
BDy o(Qr;RY) and that u(t,) € BDps,o(;RN) for a.a. ¢ € (0,T). The [313,
Proposition 1.1.] gives us that there exists an extension operator from BD (Q;R") to
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BD(RY) and consequently we are able to extend the functions in BD 7 o(Q7;RN)
by zero to functions in BD ([0, T] xRN ;RV).

In the forthcoming part we will consider the closure of C°(Q;RY) with respect
to two topologies, i.e.

NXN

(i) the modular topology of Lys (QT;Rsym ), which we denote by YM, namely

Yéw(QT;RN) ={ue L”(O,T;Lﬁiv (:RN)) : Due Ly (Qp;RVXN),

sym
3w/}, € C((=00,7);V) s w/ = win L®(0.T; LY, (RY))

and D/ 5 Du modularly in Ly (@RI},

(7.142)

NXN

(ii) the weak-= topology of Ly, (Q7; R , which we denote by ZM | namel
pology sym y y

ZM(Qr;RN) = {u e L¥(0,T; L, (RY)) : Due Ly (Qr;RYXM),

sym
3 {0/}, (=00, T);V) :w/ = win L®(0,T: LY, (RN))

and Du/ N Du weakly-* in Ly, (QT;RNXN)},

Sym

(7.143)

Let us now formulate the result on existence of weak solutions to the initial-
boundary value problem (7.134)—(7.137). We study the problem in two different
types of domains:

o the domain Q is star-shaped, an N-function is anisotropic, and we do not need any
additional restriction on the growth of the N-function.

o the domain is arbitrary, with a sufficiently smooth boundary. For this case we
recall the minorant and majorant of an N-function which are Young functions as
described in Definition 2.2.2 m{, mj : [0,00) — [0, c0) satisfying

my(€]) < M(&) < ma(|£]). (7.144)

In this case the existence result is formulated under the control of the spread
between m; and m;.

Observe that one could choose here for m; and m,

my(r) :=m{*(r), wherem(r):= min M(£),
EeRNXN | £|=r
my(r) = max M),

EeRNXN |£|=r
see Section 2.1.4.

Theorem 7.3.1 Let Q be a bounded domain in RN, N > 2, with smooth boundary.
Let M : Ré\y/ff]N — [0,00) be a homogeneous, anisotropic N-function with minorant
and majorant my, my : [0,00) — [0,00) being the Young functions described in

Definition 2.2.2. Let condition (D1) or (D2) be satisfied.
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(D1) Qis a bounded star-shaped domain,
(D2) Qs a bounded non-star-shaped domain and

ma(r) < em((my (P FT +[r2+1)  forall r € [0,00), (7.145)

and
m satisfies the Ay-condition, (7.146)

Let S satisfy conditions (S1s)—(S3s) and let uy € Lgiv(Q;RN) andf e Em: (Qr:;RN)
be given. Then there exists a weak solution to the system (7.134)—(7.137). Namely,

there exists au € Z(])” (Q7r:RN) such that

(—u-6t¢p+S(t,x,Du):Dgo)dxdtz/ f-<pdxdt+/uo'<p(0)dx
QT QT Q

Sorall ¢ € C2(—00,T;V).
In order to prove the above result we will proceed as follows:

e First we show that the spaces Yé"’ and Z(])"’ defined above coincide and explain
how this fact is used in the integration by parts formula. To do so will we need the
Korn—-Sobolev-type inequality in Orlicz spaces shown in Theorem 9.4;

o Next we give a proof of Theorem 7.3.1 starting with the construction of a proper
approximation and using the part mentioned above.

7.3.2 Domains and closures

In this subsection we study the issue of closures of smooth functions with respect to
various topologies and the two spaces Yé"’ and Z(I)” defined in the beginning of the
section by (7.142) and (7.143). Our aim is to show the equivalence between these
two spaces. We start with the simpler case of star-shaped domains. Then we extend
the result to arbitrary domains with regular boundary, where the set Q is considered
as a sum of star-shaped domains. In particular, for this case the Korn—Sobolev
inequality (9.12) provides an essential estimate. A requirement which appears for
non-star-shaped domains is the constraint on the spread between m; and m, and on
the growth of m; — both are represented by assumption (D2) in Theorem 7.3.1.

In this following part we consider the issue of integration by parts, where the
equivalence between the spaces Yé"’ and Z(I)"’ appears to be crucial.

Let us start with the case of star-shaped domains:

Lemma 7.1 (star-shaped domains). Let M : RYXN — [0,00) be a homogeneous
and anisotropic N-function, Q be a bounded star-shaped domain, (0,T) be a finite
time interval, and Yé"’ (Qr:RM), Z(])"I (Qr:RN) be the Sfunction spaces defined by
(7.142) and (7.143) respectively. Then

M M
yM=zM.
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Moreover, ifu e YM, Se Ly (Qp;RNXN) f ¢ LmT (Qr:RYN) and

sym

T T T
—/ ‘/u'atgodxdt+/ /S:Dgodxdtz/ f-pdxdt forall pe CZ(Qr),

0o Ja 0o Ja 0
(7.147)

then

PN TR, s ;
§||u(s)||L2(Q)—§||u(s0)||L2(Q)+/SO /Qs.nudxcu:/SO /Qf.udxdt

for a.a. sy, s such that 0 < sg <s <T.

Proof. Part1: (Y} = Z)").
As the modular topology is stronger than weak-+, we have

Y (QrsRY) € Z) (Qr;RY).
Hence we concentrate on proving the opposite inclusion, i.e.
zM Qs RY) c v (Qr;RY). (7.148)

To this end we want to extend u by zero outside of Q to the whole of R" and then
regularize it. In order to extend u we notice that

ZY(Qr;RN) € BD o (QrsRY).

By definition each u € Zé”(QT;RN) is an element of BD 37 (Q7;R™). So now let us
show that it vanishes on the boundary. Let us recall that u satisfies the formula (7.141).
Let us take a sequence

{uk}Z":l := compactly supported smooth functions

with the properties prescribed in the definition of the space Zé” .

Inserting this sequence into (7.141) we obtain

9¢ 9¢
k2 k%
7 6xl- +ul ax]'

2 ¢[Du’<],-,jdxdz=—/ (u
Qr

) dxdr (7.149)
Qr

for all ¢ € C'(Qr) and i,j=1,...,N. By the linearity of all terms we pass to the
weak-* limit in (7.149) and we conclude that the boundary term is zero.
Next we introduce u’. Here the index A over the function v denotes the following

v4(2,x) 1= v(t,A(x —x0) +x0) (7.150)

where xg is a vantage point of Q and 1 € (0, 1).

Let
1
g1= Edist(ﬁQ,/lQ), where A1Q :={y = A(x —xg) +xo | x € Q}.

Let us define then



7.3 A Generalized Stokes System 307
u® (1) 1= 05 (00 0 (1,3)) Lisy,0)), (7.151)

where 0, (x) = 8%,@(%) is a standard regularizing kernel on RN (i.e. o € C*(RV),
o has a compact support in B(0,1) and /RN o(x) dx =1, 0(x) = 0o(—x)) and the
convolution is with respect to the space variable x, £ < 5t and o75(7) = %a’(%) is
a regularizing kernel on R (i.e. o € C*(R), o has a compact support in B(0,1)
and /RO'(T) dr =1,0(t) = o(-t)) and the convolution is with respect to the time
variable ¢ with 6 < min{so,T — s}. Notice that the approximation function u®*#
also has zero trace.

Let us pass to the limit as £ — 0 as a first step. We have then that
RNXNy.

Dud e — Du®*  strongly in L' (Qr;
E—

For a.a. t € [0,T] the function Du®%4(z,-) € L' (Q;RN>*N) and
0s*Du(t,") — Du’®4(z,-) strongly in L' (Q;RV*V)

then

05 %Du®"? —O> Du®*  in measure on the set [0,7] x Q.
E

By Lemma 3.4.8
{M(BDu®*?)} . is uniformly integrable in L'
and then by Theorem 3.4.4 we infer that

RNXN

Du’te M, pyd modularly in L (Q7; Ry

e—0

Next, passing to the limit as 4 — 1 we obtain that

Du®! ——Du’ strongly in L' (Qr;RV*N)

A—1
and again the above together with the uniform integrability of {M (8Du®)}, gives

NxN

Du’1 L Du? modularly in Lps (QT;Rsym

A—1
To pass to the limit as 6 — 0" we use similar arguments as for convergence with
&£ — 0". Finally we observe that Yé"’ = Z(I)"’ .

Part 2: The integration by parts formula.
Let us define now a new approximation sequence (denoted in the same way as the
previous one)

u?be(1,x) 1= 0 (06 % 0+ W (1,X)) T (55.5)) (7.152)

with £ < £ and o < $ min{so,T — s}. We test each equation in (7.147) by u®-*#,
noting that it is a sufficiently regular and admissible test function, to get
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K T
/ ‘/(u*a'g)ﬁ,(u’l’g*a(;)dxdt:‘/ ‘/S:Du‘s”"gdxdt
so JQ 0 Q
T
—/ /f-uMgdxdt.
0 Q

The left-hand side of (7.153) is equivalent to

/‘ /Q(um(s).(uﬂva*a,aé)dxdt
S0

and to pass to the limit as € — 0 and 4 — 1 it is enough to observe that

(7.153)

ub? S weakly-* in L""(O,T;LﬁiV (Q:RM)).

To handle the right-hand side of (7.153) we use the results shown in the first part

of the proof. In order to prove the convergence of the term fOT fgf -ud b dxdr we
apply Theorem 9.4 with an N-function m; and observe that

( f (1 (2 (1,)])) R dx)N <Cy / 1 (DU (1,2)]) d)
Q Q

for a.a. t € [0,T]. Consequently Holder’s inequality implies that

T T
/0 /Q (my (lu®# (1,0)])) de df < Ca /0 /Q (my (1DUP 4 (1,)]) dedr,

By the definition of m; together with the above we obtain

T T
/ /(m,(|u5»*»£(z,x)|))dxdrscg,N/ /M(Du‘s”l"g(t,x))dxdt. (7.154)
0 Q 0 Q

Relation (7.154) and the following modular convergences

M M .
Du’®*¢ —— pu®t, Du®t!— Du’ modularly in L, (QT;Ré\y/ﬁlN
&e—0 A—-1 h
imply that

mg mj .
ubte — 5 uot &t —, o modularly in Ly, (Qr;RN).
e—0 -1

By Lemma 3.4.6 with N-functions m’f and m; we obtain

lim f-u‘s»ﬂvfdxdtzf f-uldxdr.
e—0,1—1 Qr Qr

Similarly by Lemma 3.4.6 with N-functions M and M* we get that

lim S:Du®t®dxdr = S :Du’dxdt.
e—0,1—1 Qr Qr
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Note that for all 0 < sg < s < T it follows that

N Sl d )
| [esew diosewasar= [ 5 Lo euls g0

1 1
= 5llos <u(9)I2: g = 510 +u(s0) 2 g

Passing to the limit as 6 — 0 and obtain for almost all 0 < sg < s < T (namely for all
Lebesgue points of the function u(z)), the following identity

lim / /Q (wees) -3, (wns) drdt = 2 u(5) 21 )~ 5 I(50) gy (715

Let us concentrate now on the term

T p s _
/0 ./s;S: (o5 % ((os5*Du) Ly, 4)))dxde =L) /9(0'5 x8) : (05 *Du)dxdz.

We observe that
o5 +S —>8  in measure on Qrasd—0

and
os*Du— Du in measure on Q7 as § — 0.

Moreover, the assumptions u € Yé"l (Qr;RN) and S € Ly (QT;RS%N ) provide that

T T
/ /M(Du)dxdt<oo and / /M*(§)dxdt<oo.
0 Q 0 Q

Therefore, using the same method as above we conclude that the sequences
{M*(os5+S)}s and {M (o5 +Du)}s are uniformly integrable

and by Theorem 3.4.4 we have

o5 +Du %) Du modularly in Ly, (QT;RSN},E;N ,
os*S M5 modularly in Lz (Qr; RSI\;QN

6—0

Next by Lemma 3.4.6 we have

lim‘/‘ /(0‘5*§)2(0’5*Du)dxdt=/‘ /§:Dudxdt. (7.156)
60 S0 Q S0 Q

We treat the source term in the same way, except instead of the N-function M we
consider m;. Hence we have
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‘/OT‘/gf.(U'a*((U'a*u) ]l(so’s)))dth:/w)sL(gé*f)'(aé*u)dth'

Noticing that

0% xu % u  modularly in L,,, (Q7;RY),

s my . N
o0 =t — f modularly in L,,: (Qr;R™)

we infer

lim/‘ /(aﬁ*f)-(o-é*u)dxdtzf /f~udxdt. (1.157)
60 S0 Q S0 Q

Summarizing (7.155), (7.156) and (7.157) we obtain after passing to the limit with
g,A and ¢ in (7.153) that

§||u(s)||L2(g)—§||u(so)||L2(Q)+/SO /QS:Dudxdtz‘/so /Qf.udxdz (7.158)

for almostall 0 < sg <s <T. O

Lemma 7.2 (Non-star-shaped domains with the control of anisotropy). Ler M :
RgéN — [0, 00) be a homogeneous and anisotropic N-function such that

mo(r) < cm((ml(r))% + |r|2+ 1) forre|0,00) (7.159)

and let
m satisfy the A,-condition.

Let Q be a bounded domain with a sufficiently smooth boundary and (0,T) be a finite
time interval, and let Yé"’ (Qr:RM), Z(I)"I (Q7:RN) be the function spaces defined by
(7.142) and (7.143) respectively. Then

Yy =z
Moreover, ifu € Yé"’ (Q7r;RN), S e L (QT;RQQN), fely (Q7:RN) and
T T o T
—/ ‘/u'atgodxdt+/ /S:Dgodxdtz/ f-pdxdt forall p e CZ(Qr),
0 Jao 0 Jo 0
(7.160)
then

1 ) 1 ) N =, s
§||u(s)||L2(Q)—§||u(s0)||L2(Q)+/SO /QS.Dudxdt='/SO /Qf.udxdt

for a.a. sy, s such that 0 < sg <s <T.

Proof. Let us start by recalling the fact that for Lipschitz domains there exists a finite
family of star-shaped domains
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{Qi}ic; suchthat Q= UQ (7.161)
ieJ

see Lemma 8.2. Let us introduce the partition of unity

0; with 0 < 6; < 1, 6; € C(;), suppb; = Q,-,Zﬁi(x) =1forxeQ.
ieJ

Applying now Theorem 9.4 with the N-function (homogeneous and isotropic) m
we obtain

/(ml(lud’ﬂ’g(t,X)l))% dx < Cn (/m1(IDu‘5’”’8(t,X)I) dX)N_l
Q Q

o,A,e

for a.a. t € [0,T], where u is defined as in (7.151). Consequently

T N T N-T
/O /Q (1 (2% (1,0) ) ¥ dedr < Cy /0 (/g <m1<|Du6’*’g<r,x>|>dx) dt.

By definition of m, see (7.144), and as T < co we find that

T § T e
/O /Q(ml(lué”l’g(l,x)D)ﬁdxdtSCN/O (/QM(Du‘S”l’g(t,x))dx) dr

N
N-T
<CrnN sup (/M(Dué’l’s(t,x)) dx) .

refo,r] \JQ
(7.162)

Next we show that the right-hand side of (7.162) is bounded for fixed 6. To this
end we use Jensen’s inequality, Fubini’s theorem and the nonnegativity of M in the
following way

/ M(Du®*2(1,x)) dx < / M (Du'® (1 -7,x))05 (1) drdx
Q QJBs

:/B"/S;M(Dll/l’g(l‘—‘l',x))(fé(‘r) dxdr (7.163)

<llosllzes,5) 1M O ) |1 (51, 6)%0)
<llosllz=(B,5) 1M (Du**) | L1 0y -
As m2(r) < cm((m1 (X)) 8T +]r[2+1) and V6; € L®(Q;RY) we get that
(D(uévﬂ)ef)%%(u‘s ® Vo) + %(veimﬁ)ﬂ’s
=D(u’0)"% € Ly (Q:RYXN),

where Q’T = (0,T) x Q' with Q' = supp 6;.
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Let us concentrate now on the function

u e (1,x) = 3 00 {(0s x0T 5.5) 0.},
ieJ

where {-}* is defined by (7.150). Notice that u®*¢ is in general not divergence-free.

Therefore we introduce for a.a. t € (0,T) the function (t,-) € L " (Q;RM)
R

1
which for a.a. r € (0,7) is a solution to the problem

diveh® () = )" 0s {(0s+u(t,7) L50) YO} inQ
= (7.164)

©t€(t,-)=0 on dQ.

The existence of such a ¢*¢ is provided by Proposition 8.60 applied to the above
N

problem (7.164) with N-function m " -1 that satisfies the A,-condition. Note that the
quasiconvexity condition in Proposition 8.60 is satisfied with y = % Then we can
follow the case of star-shaped domains to complete the proof. The difference is that
instead of the sequence defined by (7.151), in order to show the integration by parts
formula, we consider

pOe(t,x) 1= ) 0w { (075 #u(t,%) sy ) 0} = ot (1),
ieJ

It remains to show that ¢ vanishes in the limit as A — 1 and & — 0. To this end
we notice that Proposition 8.60 implies the estimate

NeT N
‘/g;mlN*](|D(p/1,8(t,x)|)dxS/g;mlf\/fl(lvsp/l,g-:')dx
& a
Sc‘/gmlN-lﬂZQg*{(a'a*u Liss)) - VO }' D)

ieJ
(7.165)

for a.a. t € (0,T). Let us integrate (7.165) over the time interval (0,7). Since for
every i € J, see (7.161), the sequence

N

mN 1
Qs*{(a(;*u ]l(s(),s))-VGi}/1 SN (os*ul(sy.s)-V6; modularly in Lm%(QT)

1

ase > 0and A — 1 and Y;c; (s *u L(y.s) - VO; =0, we immediately conclude
that

N

mN-1
Zgg*{(aé*u L(s.)-V6:}' <5 0 moduladyin L Q) (7.166)
iel M

as € — 0 and A — 1. Therefore
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m]N—l

Det®* — 0 modularly in L %(QT;RNXN). (7.167)
m, -

Next we use the same arguments as for the star-shaped domain case. However
instead of the function defined by (7.152), we test the weak formulation (7.160) with

a
L0V (1x) = Y 0ot {ors (054 T y,0) 0} =05 (50602 (1) Ty ).

ieJ

(7.168)
As a result we obtain the analogue of (7.153). Then in order to pass to the limit as
A — 1 and &€ — 0 it remains to show that terms corresponding to the second part of
the test function (7.168) vanish, i.e., the following three related limits hold

N
lim / / (uscs) 6, (Jg*ga’l’g(t,x)]l(s(),x))dxdtzo, (7.169)
£—0,4—>1 so JQ
T —
lim / / S:O'(;*(O'(;*Dtp’l’g(t,x)]l(so,s))dxdtzO, (7.170)
8—)0,/1—)1 0 Q
T
lim / /f‘O'é*(O'é*‘PA’S(I,X)]1(s0,s))dxdt=0. (7.171)
£—0,1-1 J Q

To show (7.169) we apply Proposition 8.60 with the N-function m = | -|* and the
Poincaré inequality, which gives us
e (1)l 20 < ctllVe 2 (8,12 (0

<ol ng w{(os*u(t, ) Lg.s) 'V9i}/l 2@
ieJ

(7.172)

for a.a. t € (0,T). Since the term on the left-hand side of (7.169) is equivalent to

/ /(u*0'5)'(tp’l’5*6,0'5) dxdt,
S0 Q

we pass to the limit using the fact that

Doet{(Tsxuly.g) YO} 20 weakly-x in L¥(0,7:LX(Q)),
ieJ

thus
(p/l’s -0 weakly-+ in L”(O,T;Lz(Q;RN)) ase —>0and 1 — 1.

Now let us concentrate on the limit (7.170). Due to (7.167), assumption (7.159),
and estimate (7.172) we have that

{M(aDg"#)} ;. is uniformly integrable with some a > 0. (7.173)

Moreover, by Theorem 3.4.4 the convergence (7.167) implies
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Det® -0 in measure.
Hence using again Theorem 3.4.4 with a function M we conclude that

De® —»0 modularly in Ly (Qr;RYXN) ase - 0and 1 — 1.

Hence (7.170) is satisfied.
Finally, the limit in (7.171) is a consequence of (7.165), (7.166) and Holder’s
inequality, which all imply that

Vet — 0  modularly in L,,, (Qr;RV*N)

and since ¢ = 0 on §Q we obtain

"% -0 modularly in L, (Q7;R%) as & — 0and 1 — 1.

Now to complete the proof of Lemma 7.2 we follow the case of star-shaped
domains. O

7.3.3 The proof of existence

With tools from the previous section at hand let us concentrate now on completing
the proof of Theorem 7.3.1
We start with the construction of Galerkin approximations to (7.134)—(7.137)

using a basis {w; };7, consisting of eigenvectors of the Stokes operator. We define

n
u’ = Z ot (twi,
i=1

where the @] (t) solve the system

d
/ —u" - w; dx+/S(t,x,Du”) :Dw; dx =/f-a)i dx,
L dr o o (7.174)

uk(0) = P"uy,
wherei=1,...,nand

P" denotes the orthogonal projection of L(Zjiv (Q;RM)

on conv{wi,...,wy}.

Let us observe that the system (7.174) can be rewritten as a system of ordinary
differential equations. We obtain local in time solvability — existence of a}'(f) —
due to the Peano existence theorem for systems of ordinary differential equations.
According to the uniform bounds on u” presented in what follows, the existence of
;' (t) can be shown globally for any finite time. Here we skip the details, since one
can adapt the arguments from [245, Section 5.2], see also [328, 134].
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Multiplying each equation of (7.174) by a!*(¢), summing overi = 1,...,n we find

that
1d

——|u"|? +/S(t,x,Du") :Du"dx:/f~u" dx. (7.175)
2 dt L(Q) Q Q

The Fenchel-Young inequality (see Lemma 2.1.32), Holder’s inequality, Theo-
rem 9.4 and convexity of the N-function tell us that

N-1
_[2¢ ~
S/mi(—clfl) dx+|Q|'1’(/H11(§|lln|) dx) (1.176)
Q c Q C
(26
S/mi(—clfl) dx+|9|%cN/m1(i~|nu"|) d
Q ¢ Q 2¢

(26
g/m;(—cm) dx+5/M(Du") dx.
Q c 2Jo

In (7.176) we choose constants such that max(lQWCN, 5) < € < oo, where Cy
comes from Theorem 9.4. To explain the last inequality in (7.176) we use the
relation between m; and M, the convexity of M, and that M(0) =0 and 0 <c <1
(which is an obvious consequence of combining (7.138) with the Fenchel-Young
inequality).

Let us now integrate (7.175) over the time interval (0, ) with r < T'. Using estimate
(7.176) and the coercivity condition (S2s) on S we obtain the following estimates

1 n 2 C/t/ /t/
= = M(Du")dxdr+c M Du"))dxd
S0 O3 [ [ MO dxdrre [ [ M8,k Du)arar

tro (2 IR
SL [zml(?|f|)dth+5|lU0|lL2(Q),

for all r € (0,T]. Hence due to the Banach—Alaoglu theorem (see Theorem 8.31)
there exists a subsequence such that

(7.177)

Du" - Du weakly-# in Lys (Qp; RN

sym

and
S(-,-,Du") -5 weakly-* in L (Qp; RNXNY,

sym

From (7.177) we conclude also that

™Il Lo 0,702 () £ C (7.178)

and consequently we have at least for a subsequence

' Su weakly-* in L (O,T;L(zﬁv(Q;RN)).
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After passing to the limit as n — oo in (7.174) by the density arguments we obtain
the following identity

—/ u-0;pdxdr+ §:Dg0dxdt=/ f-(pdxdt+/ll0~¢(0,x)dx (7.179)
Qr Qr Qr Q

forall p € C2((—00,T);V).

In the remaining part of the proof we will concentrate on the characterization
of the limit S. Since the weak-* and modular limits coincide here, Lemma 7.1 for
star-shaped domains or Lemma 7.2 for non-star-shaped domains and the equality
(7.179) provide

1 2 1 2 S _. 3 A
§||u(s)||L2(g)—§||u(so)||L2(Q)+/SO /QS.Dudxdt—/so /Qf~udxdt (7.180)

fora.a.0 < sg <s <T.To pass to the limit as s — 0 we need to establish the continuity
of u with respect to time in the weak topology in L?(€;R™). For this reason let us

concentrate for a while on the sequence {dst" }. Taking ¢ € L*(0,T; Wg’év(Q;RN)),

N
- < —_
l|‘p|lL°°(0’T;Wo,hzw(9)> < 1, where r > 5 +1, we observe that

<ﬂ,¢>=<@,Pk¢>=—/3(t,x,ou"):D(P"¢)dx+/f-(1>"¢) dx. (7.181)
dr dr Q Q

As 1P ¢llyr2 ) < ll¢llyra g and Wr=12(Q) c L®(Q) we get the following
0,div 0,div

T T
[ [ stexouyinrgadl < [ 800l g IDP" )y
0 Q 0
T
< [ 180D i 1Pl oy
0 0,div

T
<c [ 180Dl el o,

<c||S(, ',Dun)“L‘(QT) ||‘10||Lm(0,7“;u/()”212iv(g))
(7.182)

and
T T
[ [erreacals [ itlnaleelieod

T T
n
< [ M@ elygz @ < e [ Il o0

< cllfllzr@n el s 0. 7wr2 (@)
(7.183)

By the assumptions on f and by (7.177) we have that {f},, and {S(-,-,Du")}y are
bounded in L!. Therefore we conclude that
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n

< is bounded in LY0,T; (W2 )*(Q)).

0,div

By (7.177) and the assumptions on f there exists a constant C > 0 such that
sup/ [M*(S(t,x,Du"))+m’{(|f|)] dxdr < C.
keNJQr

Since m; < M* by Lemma 2.1.37 and by Jensen’s inequality, we obtain

T
Zu§|9|/0 [m5 (IS (2, -, DU L1 () +mi (lIfll 1)) | dr < C.
€

Hence by Theorem 3.4.2 the sequence {[|S(7,-,Du")||.1(q) }n and ||f||11(q) are uni-
formly integrable in L! (0,T). Then we notice that we can find a monotone, contin-
uous function L : Ry — R,, with L(0) = 0 which is independent of n and

52
/ (||S(l‘,',Dll")||Ll(Q) + ||f||L1<Q)) dr < L(|s1—s2[)

S1

for any s, s, € [0,T]. Consequently, estimates (7.182)—(7.183) and (7.181) provide

that gy
u
L) dt
IRk

for all ¢ with supp ¢ C (s1,52) € [0,T] and ||¢||,

< L(ls1—s20)

O.T:W 2, () < 1. Note that

[[a™(s1) —un(SZ)“(W(;fiV(Q))*

n n 2 du” (1)
= sp (s -u"(s))l = sup </ . ¢>‘
”‘”“w&évm)gl Hlpnwgév(mg 51 t

T du”
ol [ o0,

The above implies that

dr : ”"D”Lw(o,T;Wgﬁiv(Q)) < 1, supp ¢ C (S],SZ)}.

sup [0 (s1) =" (2)l| 2 g+ < L{Is1=52]). (7.184)

neN

The estimate (7.184) ensures that the family of functions

{u":]0,T] — (Wg,’;V(Q;RN)*}n is equicontinuous.

By (7.178) and by the compact embedding L3, (Q:R") cc (Wg’dziv)* (asr>5+1)
we infer by the Arzela—Ascoli theorem that the sequence

{u"};, is relatively compact in C([0,T]; (W&’év(ﬁ))*).
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Therefore u € C([0,T]; (W2 (R))*) and

0,div
u(sf))i:fu(O) strongly in (Wg iv(g))*~ (7.185)

On the other hand u € L*(0,T;
— 0% as i — oo, such that

; dW(Q RY)), and we can choose a sequence {so},,

0

u(sf)) —u(0) weaklyin L2 _(Q;RV).

div

The limit (7.185) coincides with the above weak limit in LﬁiV(Q;RN ) and therefore
we infer that
liminf{lu(so)llz2(q) 2 [[woll2 (- (7.186)

Let s be any Lebesgue point of u. Integration of (7.175) over the time interval (0, s)
gives

limsup/A /S(t,x,Du") :Du”" dxdr
n—oo 0
1
/ /f udxdt+2||u0||L2(Q) 11m1nf ||u"(s)||L2(Q)
1
< [ [ fruacars Sl g, - 5101 g

Sliminf(/ /f udxdr+ = ||u(sO)||L2(Q) ||u(s)||L2(Q)

=_lim/ /§:Dudxdt=/ /§:Dudxdt.
= sl Ja 0 Ja

For the last two steps in the above we used (7.186) and (7.180). The monotonicity
of S provides that

(7.187)

‘/S/(S(t,x,v)—S(t,x,Du")) . (v—Du")dxdr > 0 (7.188)
0 Q

holds for all v € L= (Q7;RN*N). Using (7.187) and (7.188) we follow the same steps
as in Section 4.1.2 or in Section 7.2.3 to show by the monotonicity trick

S= S(t,x,Du) a.e. in Q7.

This finishes the proof of Theorem 7.3.1.
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7.4 Local Pressure and the Fluid-Structure Interaction Problem
for Non-Newtonian Fluids

In this section we provide a decomposition and local estimates for the pressure func-
tion for the non-stationary flow of incompressible non-Newtonian fluids. We show
also that this method can be applied to prove the existence of weak solutions to the
problem of motion of one or several rigid bodies in a non-Newtonian incompress-
ible fluid with growth conditions given by a homogenous and isotropic N-function
A,-condition. The below considerations are based on [327, 329]

7.4.1 Decomposition of the pressure function and local estimates

Let us begin by recalling some basic properties of particular homogenous and
isotropic N-functions, which will justify the forthcoming assumptions in this and in
the next section. Let 3, € (0,00) and 7 € [0, 00). Let us denote by Llog? L(Q) the Or-
licz space associated with the N-function m : [0, 00) — [0, 0), m(7) = 7(log(7+1))#
and by Leypr () the Orlicz space associated with the N-function defined for 7 > 1
by m(7) = exp(t?). Note that Llogf L = Elog’ L(Q),

(Eexpr (@) = Llog"” L(Q) and (Llogﬁ L(Q))* = Loy (Q)
hold, see [221].

The following result concerning local reconstruction of the pressure function
holds:

Theorem 7.4.1 Let B ¢ R3 be a bounded domain with a regular C3 boundary dB
and I = (ty, 1) be a finite time interval. Let i1, i, : [0, 00) — [0, c0) be homogeneous
and isotropic N-functions defined for g > 0 by

~ — £+1
my(t) =7log"" (t+1), (7.189)
(1) = TlOg’B(T+ 1).

Let M3 : (I x B)xR¥3 — [0, 00) be an N-function such that for some c1, ¢2 > 0
cimy([€]) < M3(t,x,&) < calé)* forall & e R, (7.190)
Assume that U € L (I; L*(B;R?)), divU = 0 in a weak sense, namely

//U-wdxdzzo forall y € CX(IXB),
1JB

and T € Ly, (I X B;R33) satisfy the integral identity

// (U-8t<p+T:Vgo)dxdt=O (7.191)
1JB
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forall p € CZ(Ix B;R?), divep =0.
Then there exist two functions, called regular and harmonic components, Treg,
Tharm, Such that

Treg € L' (I;LlogﬁL(B)), /ﬂ'harm(t, )dx=0 foraa.tel,
B

Tharm (7,7) € (CZ(B))”, Aftharm =0 in (CZ(IX B))",
namely

//ﬂharmAwdxdtzo forall y € C(IX B),
1JB

and Treg, Mharm SAtisfy

/ / (U-6,¢+T:Vgo)dxdt= / / (nharma,diwmregdiw)dxdz (7.192)
1JB 1JB
for any ¢ € CX (I x B;R3). Moreover,

||7Treg||L1 (LLlog? L(B)) = C(Vh2)”T”LM3(I><B;R3X3) (7.193)

and
Tharm (2,°)| B € C*(B’), where B’ CC B, (7.194)

1 Tharm [l o= (7.1 (B)) < C(MZ»I»B)(”T”LM3 (IXB:R3) +||U||L°°(I;L2(B;R3)))' (7.195)

Proof. Let us start with the ‘regular’ component of the pressure .y, wWhich we
define as

3
Treg(t,) :=R:T= 3" Ry j[T; j1(t,) in R foraa. te 1,
i,j=1

where R denotes the ‘double’ Riesz transform (see (8.7)) and T = [T; ;];,;,i=1,2,3,
Jj =1,2,3, has been extended by zero outside of B. Using Lemma 8.61 (see (8.9))
we find that the mappings

Ri jlp: Llog?*' L(B) — LlogP L(B) are bounded fori,j =1,2,3.
Therefore we get (7.193) by the following

7|l 11 (r:n100% Ley) = IR =Tl Lt (1n1068 L)) < CLERITI L1 (1108841 L(B))

< (M) Tl g 1ogs+1 £ axcpy < €32 IT Ly, (1xB) s
(7.196)

where we use the fact that Lz, (I x B;R3*3) ¢ L' (I; Ly, (B;R¥?)) and (7.190).
By definition of 7, and the double Riesz transform, see (8.7),

/;rregmp dx = /T :V2y dx  forany ¢ € C2(B). (7.197)
B B
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Notice that by (7.191) we can redefine U with respect to time on a set of zero measure
such that the mappings

t / U -y dx are continuous on I for any ¢ € Cf."(B;]RS) with divy = 0.
B

Then we find that the Helmholtz projection of U on the space of divergence-free
functions is continuous in time with respect to the weak topology in L*(B;R3).
Then considering our equation (7.191) with test function ¢(¢,x) = n(#)y(x) such
that n € C(I), y € C2(B;R3), divy = 0 we infer that

[[‘L(U(I9‘)_U(’0"))'de]at”dt“/l[‘/B(/IOIT(Sy)dS):Vtﬁdx]a,ndtzo.

By the above and Theorems 8.46 and 8.45, there exists a function (pressure function)
7 =n(t,-) such that

t
/(U(t,') ~U(t0,")) - dx—/ (/ T(s, ) ds) LV dx = / (1, )divy dx
B B \Ji B
(7.198)
for all £ € I and all € C(B;R?). Notice that the term on the right-hand side is

measurable and integrable with respect to the time variable, since the left-hand side
is measurable and integrable. Moreover, by Theorem 8.45 and 8.46 fora.a. t € [

/ﬂ(t,-) dx=0 and n(t,-) € (CJ(B))". (7.199)
B

Let us test (7.198) by 0,¢, { € C2 (1), and integrate over the time interval /. Then
setting ¢(t,x) = £ (t)y(x) we find that

// (U-6,¢,0+T:V<p)dxdt://7r8tdiv<pdxdt (7.200)
1JB 1JB

for any ¢ € C2(Ix B;R?).
Define now the harmonic part of the pressure function in the following way:

d‘r). (7.201)

(2 =100+ [ s o [ tr) a0

fo

Next our aim is to show that pp.m (2, -) is, in fact, a harmonic function for ¢ € I. For
this reason we take test functions of the form ¢ = Vy, with y € C°(B) in (7.198),
thus

/B(U(t,~)—U(to,~))~Vydx—/B('/t0tT(s,~) ds):szdxszn(t,-)Aydx

for all 7 € 1. The first term on the left-hand side disappears after integration by parts
and as divU = 0. Due to (7.197) and (7.201) we infer that
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/ Tharm(2,)Ay dx =0 forall y € CZ(B). (7.202)
B

Inserting (7.201) into (7.200) and using the integration by parts formula we obtain
also that (7.192) holds true.

Finally the Weyl lemma (see Lemma 8.62 with f = 0) provides that the function
Pharm 18 regular locally in B, namely mha, € C*°(B’), where B’ cC B and B’ has a
smooth boundary. In this way we obtain (7.194).

Next our aim is to show that (7.195) holds due to (7.201) and (7.198). For this
purpose we will use a result involving the Bogovskii operator in L*-space, see
Lemma 8.58. Let us use in (7.198) a test function ¢ such that

1
divy = (sgnp—ﬁ‘/lgsgnp) € L™ (B).

By Lemma 8.58 we find in fact that Vi € Lex,(B). In particular, also ¢ € L*(B).
Then by the Holder inequality, the generalized Ho6lder inequality and since Ly, C
LlogP*!' L, we infer from (7.198) that

esssup p (1)1 g) < €(B.M) {1012 +IT g, - (7:209
te

Therefore (7.201) and (7.193) ensures (7.195). |

7.4.2 Motion of rigid bodies in non-Newtonian fluid.
An application of the method

The method of local reconstruction of the pressure function can facilitate the math-
ematical analysis of the motion of one or several rigid bodies immersed in an
incompressible viscous fluid which occupies a bounded domain Q c R>. Below we
present just a draft of the proof and we emphasize how the reconstruction of the
pressure function from the previous section can be used in order to show the exis-
tence of weak solutions to such problem. One can find details of this result and its
proof in [150, 267] for the case of power-law fluids and for the more general case of
isotropic Orlicz spaces in [329].
Let us start with the assumptions on the viscous stress tensor:

(S1b) the viscous stress tensor S depends on the symmetric part of the gradient of
the velocity field u, i.e.

S:R¥? - R and S(0) =0, S = S(Du) is continuous.

Sym sym

(S2b) there exist a positive constant ¢ and N-functions m, m* : [0, c0) — [0, c0) (m*
denotes the conjugate function to m) such that

S(@):£ = c(m(gh)+m*(S@))) forall & RS (7.204)
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(S3b) S is monotone, i.e.

(S(&)~8(m) : (£-n) > 0forall § £n, £ € RIL. (7.205)

For a discussion on the form of the growth conditions in the Orlicz (Musielak—Orlicz)
setting, see Section 3.8.2.

Formulation of the problem

We formulate the following problem (see [150, 329]): let Q c R3 be an open
bounded domain with a sufficiently smooth boundary 9€2, occupied by an incom-
pressible fluid containing rigid bodies. The initial position of the rigid bodies is
determined through a family of domains

S;cQcRi=1,...,n,

which are diffeomorphic to a ball in R3. In order to avoid additional difficulties the
boundaries of all rigid bodies are assumed to be sufficiently regular, namely there
exists a

60>0 (7.206)

such that for any x € dS; there are two closed balls Bigg, B‘g;‘ of radius & such that
xeBYNBY, B CS;, By CR\S..
We assume the same for the considered physical space Q c R, namely for any
x € 0Q there are two closed balls B‘g;, B%’;‘ of radius ¢¢ such that
int ext int raY ext 3
X € B(;UHB(SO, B(s(, cQ, Bé() Cc R\ Q.

We represent the motion of the rigid body S; by the associated mapping 7; such
that
ni =ni(t,x), t € [0,T), x eR?,

ni(t,) : R* = R? is an isometry for all ¢ € [0,T)
and 77;(0,x) = x for all x € R i=1,...,n.

Let us emphasize that the position of the rigid bodies is not known a priori for ¢ > 0
and depend on the flow. In particular, the position of the body S; at time ¢ € [0,7) is
represented by the following formula

Si(t)=ni(t,8:), i=1,...,n. (7.207)
Using the above terms we introduce the following domains:

Qi is the rigid (solid) part of the time space cylinder,

and
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Q’; is the fluid part of the time space cylinder
QL =07\ Q5.

Let us denote the velocity field of the system by u : Q7 — R and decompose it
for the fluid and rigid parts as follows

ufzuonQ’; and uszuonQ‘;.

Let x;(¢) denote the position of the center of mass of S; at time ¢ and

mi

1
x;i(t) = —f os,;(t,x)x dx, where m; = ﬁ os, (1,x) dx.
Si(t) Si(t)

Here m; is the total mass of the i-th rigid body of mass density os,.
Since the mappings 7; are isometries, we can write

ni(t,x) =x;(t)+0;(t)x, t€][0,7),i=1,2,...,n,

where O; (¢) is a matrix satisfying Ol.TO,- =Id. Notice that the motion 7; is absolutely
continuous. We define the translation velocity U;(f) and the angular velocity Q of
the body by

%xi(t) =U;(1), (%Oi(t))O[T(t) =Q;(¢) a.a. on (0,7). (7.208)

Therefore, the solid velocity in the Eulerian coordinate system can be written as
ug, (1,x) = g—lz(t,n_l (1,x)) = Ui (1) +Q; (1) (x = x; (1)).

The total force Fy, acting on S; consists of the body force and contact force, i.e.

Fs, (1) = Tﬂd0'+/ 0s,8s; dx,

3S; (1) Si(t)

where n is the unit outward normal vector and T denotes the Cauchy stress tensor,
T= S(Dllf) —7l'f|.

The expression Tn stands for the local force applied by the fluid on the surface 9S;
(e.g. the buoyancy force). The term gg, denotes the specific body (volume) force
(e.g. the gravitation force). Here S;(¢) =n(¢,S;). Due to Newton’s second law, we
have

Tndo + ﬁ 0s,8s, dx.  (7.209)

d d
m'—U'(f)=—/ Os;Us; dx =
LT dr s, 5:(0)

aS; (1)

As the angular velocity Q; is skew symmetric by (7.208), there exists a vector w;
such that
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Q; (1) (x —x;) = w;i (1) X (x —x;).

Assuming continuity of the stress, the balance of linear and angular momentum for
the body S; can be seen as follows

Jiiwi =J;w; (1) Xwi(f)""/,

(x—x,-)xTnda'+/ os, (x —x;) X gs, dx,
dr a5, (1) S

Si(1)
(7.210)
where J; is the inertial tensor defined through

Jia.b:‘/; os;(ax (x—x;)) - (bX (x—x;)) dx.
S;i (1)

Notice that the equations (7.209) and (7.210) determine the motion of the rigid body
Si,iz l,...,n.
Here the state of the fluid is determined by

of: Q’; — R, the density of the fluid,

anduy : Q; —R3 , the velocity field of the fluid,

and is governed by the following system of equation on the set Q; consisting of the
continuity equation, balance of momentum and condition for incompressibility:

atgf+diV(Qfl1f)=O, (7.211)
6,(,gfuf) +diV(Qfllf ®llf) +Vr =div(S) +0r8f, (7.212)
divu, =0, (7.213)

where 1 : Q}Tc — Risthe pressure and g : QJTC — R3 is the volume force (e.g. gravity).

Concerning the boundary conditions we assume there is no slip on the boundary
of the physical domain dQ and on the boundary of each rigid body S; (i =1,...,n)
is assumed to coincide with the velocity of the rigid object. This means that

uy(t,x)=00n0Qand us(t,x) =ug(t,x) on dS(z) forall ¢ € [0,T7].

To close the system we need to specify the relation between the velocity u and
the motion of solids given by the isometries 7;. We say that the velocity field u is
compatible with the family of motions {n,...,n,} if

u(t,x) =ug, (t,x) =U; (1) +Q; (¢) (x —x;(¢)) for a.a. x € Si(1),i=1,...,n (1.214)

for a.a. t € [0,T), where udi is the solid velocity. More details concerning the
formulation of this problem can be found, for example, in [148].

Let us emphasize that for this problem the concept of weak solutions is based on
the Eulerian reference system and on a class of test functions which depend on the
position of the rigid bodies.

To be more precise: when considering the mass density o = o(t,x), the velocity
field u = u(z,x) at time ¢ € (0,7) and the spatial position x € Q, those functions,
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governed by system of the equations (7.209), (7.210) and (7.211)—(7.213), satisfy
the following integral identities

T

/ /(Q&,¢+QU-V¢)dxdt=—/go¢dx for all ¢ € C1([0,T)xQ), (7.215)
0 Q Q

and

T
/ /(gu-3,¢p+gu®u:Dgo—S:Dgo)dxdt
0 Jao

T
=—/ /Qg-sodxdt—/gouo~¢dx
0 Q Q

for any test function ¢ € C!([0,T) x Q;R?) associated with the position of rigid
bodies, in other words with the rigid motion. Namely

(7.216)

QD([,') € [RM](t)7 (7217)
where

[RM](1) := {¢ € CHR?) 1 divg=0in Q,

D¢ has compact support on Q \ U?:lgi(t)}.
(7.218)

Here the viscous stress tensor S is assumed to satisfy conditions (S1b)—(S3b), g is
a given potential driving force and g, ug stand for the initial distribution of the
density and the velocity, respectively.

The tensor Du = %(Vu+ VTu) is also called a deformation rate tensor, since u
stands for a velocity field. The kernel of this tensor is a rigid vector field. This means
that if we assume that S is a connected domain in R and u : § — R3 is a velocity
field, then

Du =0 in § if and only if the motion is rigid.

That is, there exists a vector a € R? and an antisymmetric tensor A € R>3 such that
u(x) =a+Ax for x € S. For a proof of this fact see, for instance, [312, Theorem 5.1].
In other words, rigid motion means that the distance between any pair of points is
conserved. Therefore we are able to determine the position of rigid bodies using the
condition that the deformation rate tensor vanishes in the domains corresponding to
the bodies. In particular, this observation plays an essential role in the formulation
of the problem, choice of test functions in (7.217), and for the strategy of the proof
of the existence of weak solutions.

Let us now formulate the existence result, which can be found with a detailed
proof in [329, Theorem 4.1]. Below we give an outline of the proof.
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Theorem 7.4.2 Let Q be a bounded domain in R3 and let the following assumptions
be satisfied:

e Let the initial position of the rigid bodies be given by a family of open sets
S;icQcC R3, S; diffeomorphic to a ball fori=1,...,n,

where both 0S;, i = 1,...,n, and 0Q belong to the regularity class specified by
(7.206).

o Let dist[gi,gj] >0 fori# j,dist[S;,R3\ Q] >0 foranyi,j=1,...,n.

o Let the viscous stress tensor S satisfy assumptions (S1b)—(S3b).

e Letm: [0,00) — [0,00) be a homogenous and isotropic N-function satisfying the
following:

— for some positive constants cy, ¢;

il 1P < M(I-) € coexpPI(|-])  forp =4, B>0, (7.219)

T
— M(|-|?) is convex,
— the conjugate function m* to m satisfies the A,-condition.

o Let g =divF, where F € W (Q;R¥3), be given.
o Let the initial distribution of the density be given by

oy =const > 0in Q\ Ug’:lgi,
Q0=
os; on S;, where ps, € L*(Q), essinfs, o5, >0,7=1,...,n,
while the initial velocity field uy € L*>(Q;R3) satisfies
divug =0 in D’ (Q), Dug =0 in D' (S;;R>?) fori=1,...,n.
Then there exist a density function o € C([0,T]; L' (Q)) satisfying

0< essigf,g(t,-) <esssupo(t,-) <ocoforallte[0,T],
Q
afamily of isometries {n;(t,-)}'_ |, 1i(0,x) =x, x € R3, and avelocity field u satisfying
0 .72 .R3 whPo-R3 .R3%3
ue L%(0,T; Ly (QR) NLP(0,T:W, P (Q:R%)), Du € Ly (Qr;R™>),

compatible with {n;}!_, in the sense specified by (7.208), (7.214). Moreover o, u
satisfy

T
/ /(Q6t90+gu-V¢p)dxdt=—/Qotpdx forall ¢ € C1([0,T) xQ),
0 Ja Q

for any test function ¢ € C1([0,T) xQ), and
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T
/ /(gu~¢9,t,o+,9u®u:Dgo—S:D(p)dxdt
0 Ja

T
=—/ /Qg'QOdXdl—/QOUO'QDdX
0 Ja Q

for any ¢ € CL([0,T) x Q;R?) such that ¢(t,-) € [RM](t) for all t € [0,T).

A few words about the proof.

The proof of Theorem 7.4.2 starts by constructing a two-level approximation
scheme as in [150, 267]. Therefore we introduce the following approximation
scheme:

dr0+div(o[u]s) =0,

0 (ou) +div(ou® [u]s)+Vr=div([us]sS) — ysu+ odivF
Orpe+div(peuls) =0,
divu=0.

(7.220)

As Q is bounded, we can assume that Q ¢ [—L, L] for a certain L > 0 and study the
system (7.220) on a spatial torus denoted by:

T =[(-L,L)|{-r.4]°.

Now all quantities are assumed to be spatially periodic with period 2L, where we
extend the initial velocity field ug by O outside of €2 and the density by o, the
constant density of the fluid. We also extend the outer force in such a way that
FeWwhe(T).

In the approximation (7.220) the rigid bodies are replaced by a fluid of high
viscosity i, becoming singular as € — 0. In the fluid part (where is no rigid body)
U stays equal to 1. More precisely, we prescribe the e-dependent ‘artificial viscosity’
1 :(0,T)xT — R with initial data given by

p(0,) = poe = 1+1 3 ps,, (7.221)

i=1
where

us; € C2(Si), us, (t,x) =0 whenever dist[x,dS;(¢)] <9,

us, (t,x) >0 for x € S;(¢), t € [0,T), dist[x,0S;(t)] >5 fori=1,...,n.
(7.222)
The ‘viscosity’ u can be understood as the penalization introduced by Hoffmann and
Starovoitov [202] and San Martin et al. [289], where the rigid bodies are replaced
by the fluid of high viscosity becoming singular (unbounded) for £ — 0.
Furthermore, we also penalize the region out of the set Q and we take

Xe=1x, x€CX(T), x>00nT\Q, x=0inQ. (7.223)
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For simplicity we assume that the density of the fluid is constant. The extra
parameter 6 > 0 is introduced to improve properties of the approximation and to
keep the density constant in the approximate fluid region in order to construct the
local pressure and

[ ]s denotes spatial convolution with the standard regularizing kernel.

For fixed £ > 0 and 6 > 0, we can report an existence result that can be proved
by means of the monotonicity argument for nonreflexive spaces as in the previous
Section 7.2 (see also [328, 180, 183, 326]).

Let us denote by {0¢, tte,Us }&>0 the family of approximate solutions associated
with the problem (7.220)—(7.223). For brevity of notation we omit the dependence
of this sequence on ¢.

The first step is to pass to the limit as € — 0O for fixed ¢ and identify the positions
of the rigid bodies. Details of this procedure can be found in [150, 329]. Here we
pass to the next difficulty, which is more specific to the Orlicz space setting we are
working in.

The main problem, inherent to the theory of non-Newtonian fluids, is that we
have to identify the nonlinear viscous term, when we want to pass to the limit as
& — 0. This problem appears to be more delicate than in Section 7.2 and Section 7.3
since the monotonicity argument must be localized to the ‘fluid’ part of the time-
space cylinder. We are not allowed here to test the momentum equation by functions
with non-zero support on 7., since we cannot control either the penalizing term
1S(Du,) or uDu,. At this stage of our investigation, the problem of the existence
of weak solutions, or rather passage with approximation parameter to the limit,
have to be localized in the fluid part separately from the rigid bodies. However, this
requires the investigation of the pressure function locally in the fluid part of the
time space cylinder Q7, which does not vanish in the local weak form momentum
equation of the approximation scheme.

In order to characterize the nonlinear term in the fluid part we consider the
momentum equation of the approximate problem on the time interval I c [0,7T]
and the spatial domain B C Q such that 7 X B is in the ‘fluid’ part of the time space
cylinder. Let us point out that according to a result of Starovoitov [299, Theorem 3.1],
two rigid objects cannot collide. This follows from the fact that the considered fluid is
incompressible and the velocity gradients are assumed to be bounded in the Lebesgue
space L?, with p > 4. Together with the regularity of the domain € and the rigid
bodies S;, this ensures that the fluid domain can be ‘covered’ by such a choice of
small time-space cylinders, at least for fixed J.

We can assume that o0 = oy = const in I X B. In particular, we have for any
¢ € CX(Ix B;R?), divp = 0 that

//qus'at‘,o"'(que@[08]5—S(Du8)—QfF)IVQdedZ‘:O.
1JB

In the above formula we are separated from the rigid bodies and we can apply
Theorem 7.4.1 with the N-function M3 = m”*, the function
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U:=pfu, and T:=pru.®[u,]s-S(Du,)-orF.

Let us remark that the assumption of the lower bound in Theorem 7.4.1 for an
N-function m*, i.e. /i (t) = 71ogf* (t+1) < M3 =m*(7) for T € Ry, B > 0, implies
1
that we need to assume also that m(7) < c¢(exp(7#+) — 1) for some positive constant
c (see (7.219)).

According to Theorem 7.4.1, for any & > 0, there exist two scalar functions 7

ﬂlf such that
arm

&
reg’

Mg € L' (I;Llog? L(B)), o € LY(I L'(B)) are uniformly bounded for all &
(7.224)
and 7y - is a harmonic function with respect to x, i.e.

Aﬂ'l‘learm =0, /Bnlfarm(t’ ) =0 forrel.

Moreover, the following is satisfied

T
//[(qus+V7rfam)~6zw
o Ja (7.225)
+(07u.®[ucls—S(Duy) —osF +75,) - V(p] dxdr =0

for any test function ¢ € C2 (I x B;R?).
Standard estimates (see (7.194)) implies that

A& is uniformly bounded in L™ (1; W22 (B)). (7.226)
By similar arguments as in Section 7.2 we find that
lugllzer,wir Bz <C.
Moreover, the equation (7.225) implies that
10 (0fue+ Vg, I, (LW (B))) < C,

where s > 5/3 (then W*~1-2(B) c L™ (B)). Hence the Lions—Aubin argument (see
Theorem 8.50) gives us that

ofug+Vrl — 0pu+ Vg in L*(I;L*(B";R%)), (7.227)

for arbitrary B’ CC B as € — 0 (o = const in B).
By estimates similar to those in Section 7.2 one can show that the velocity field

{ug|p}eso is precompact in L2(0,T; L*(B;RY)).
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Hence we infer that
> : 207.72 .3
VrZ = Vipam in L2(I; L (B;RY)). (7.228)

The argument holds true for any compact B’ ¢ B. Therefore when passing to the
limit as € — 0 in (7.225) we provide proper convergence in the first term.

Next we deduce, again similarly as in previous sections, that the sequence
{S(Du,)|;xB} >0 up to a subsequence satisfies

IS(Du;)|lz,,. (1x8) < C,

S(Du,) — S weakly-# in Ly, (I x B;R>3 (7.229)

sym/»

and S(Du,) — S weakly in L' (I x B;R>3

sym/*

Manipulations based on embedding theory and the growth assumption (7.219) on m
provide that

T4z, - (1xB) = [(0rus ® [ug]s —S(Dug) — 0sF)|1xallL,,. (1xB) < C

uniformly with respect to &. Therefore there exists some T € L,,- (I x B) such that up
to a subsequence

T¢ 5T  weakly-* in L, (I X B;R>?)
and we infer that _ .
T=(oru®[u]ls-S-0sF)|ixs.

As R; ; given by (8.7) is a linear operator, using the properties of difference
quotients, we provide that

IRi.j[@1lllwir(m) < cllpllwir (s foranyre(1,e0),

for any function ¢ € W' (B) with compact support contained in an open set B,
where on the left-hand side ¢ is extended by zero (preserving the norm). Therefore
the functions R; ;0x, ¢k, i, j, k = 1,2,3, are sufficiently regular to allow us to get by
(7.229) that

//Pfeg|5v¢dth=//(7€:T£)l:V(pdxdt
1JB 1JB
3 3
:[L Z Efi‘Rj,i[akak]dth—)‘/l"/B Z E,jRj,i[akuOk]dXdl as & — 0

i,j,k=1 i,j,k=1
(7.230)

for any test function ¢ € C* (I x B;R?).
Finally passing to the limit as £ — 0 by precompactness of {u,}, in L? and by
(7.225), (7.229) and (7.227), (7.230) we get
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[ [ [tesu+Tpm)-di0+ (0 ue 1 -8): v

(1.231)
+ T; jR;.i0x prdxdr =0

3
i,j,k=1

for any test function ¢ € C(I x B;R?).

The next step is to use (7.225) and (7.231) with strong convergence (7.228) to char-
acterize the nonlinear viscous term using monotonicity methods as in Section 4.1.2
or Section 7.2. But first we have to show that

limsup// rS(Dug):VuadxdtS//rS(Du):Vudxdt for any r € C(B),
1JB 1JB

e—0

which requires the use of the integration by parts formula. This has already been
highlighted in Section 4.2 and Section 7.2, 7.3. To this end we take for any sg,s1 € 1
and sufficiently small &

o=0p*(L(gs)(on*r(ofu+Vay 1)) withany r € CZ(B)

as a test function in (7.225). Here * stands for convolution in the time variable with
regularising kernel o7, (i.e. o € C*(R), suppo € B1(0), o (—t) =0 (¢), /R o(r)dr=1,
op(t) = %0‘(%)). Then one proceed similarly as in Section 7.2.

Note that with the above information we are able to characterize the nonlinear
term in a fluid region as in previous sections, which is essential for showing the
existence of weak solutions. We leave the remaining details (which can be found in
[329]) to the reader.
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Chapter 8
Basics

8.1 Measure Theory

Lemma 8.1 (Lemma II.1.3 in [168]) Ler Q be locally Lipschitz. Then, there exist
m locally Lipschitz bounded domains G, ...,G,, such that 0Q C Uﬁl G; and the
domains Q; = QNGy, i =1,...,m, are (locally Lipschitz and) star-shaped with
respect to a ball B; with B; C Q;.

Lemma 8.2 Ler Q be locally Lipschitz. Then, there exist m+r locally Lipschitz
bounded domains G1,...,G mr suchthatQ c \J!\" G; and the domains Q; = QN G;,
i=1,...,m+r, are (locally Lipschitz and) star-shaped with respect to a ball B; with
B; C Q;. Moreover, @ ="' Q.

Proof. By Lemma 8.1 the boundary d€2 can be covered by a finite family of sets
{G;}, and

QiZQnGi, i:l,...,m,
are star-shaped with respect to a ball B; with B; C ;. Note that Q\ (U, G;) is

a compact set, as is the boundary 02, and [Q\ (U2, G;)] N = 0, thus we can
choose § > 0 small enough so that

Q\(OGi),GQ

i=1

dist >0>0.

Again, since Q\ (U, G;) is compact, one can choose its finite covering
{B(x;,6/2)};_;.
Obviously, each such ball is contained in €, thus we can write
Gim =Qiym =B(x;,6/2), i=1,...,r.
Then {G;}!*" is a desired covering and {€;}/*" a family of star-shaped domains.

O
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Lemma 8.3 (Proposition 2.3, Chapter 1 in [266]) Ler QcRYN bea compact set
and let G1,...G 4 be an open covering of Q. Then, there exist functions 6;, i =
1,...,m+r, satisfying the following properties

(1) 0<6;<1i=1,....m+r
(ii) 8; € C°(Gy), i=1,...,m+r
(iii) X" 0:(x) =1, forallx € Q.

The family {6;}"\" is referred to as a partition of unity in Q corresponding to the

covering G1,...Gpr.
Our main reference for properties of measures is [139].

Definition 8.4 (Measure). A mapping u : 2X — [0, c0] is called a measure on X if
u(0)=0and u(A) < 37, u(Ax) whenever A C Uy Ax.

Note that the mapping in this definition is often called an ‘outer measure’.

Definition 8.5 (o-algebra). A collection of subsets S ¢ 2X is called a o-algebra
provided

i) 0,X €S;
(i) A € S implies X \ A € S;
(iii) Ag € S for k =1,... implies | J;_, Ax € S.

Definition 8.6. The Borel o-algebra of RY is the smallest o"-algebra of RN contain-
ing the open subsets of R™. Each element of the Borel o-algebra is called a Borel
set.

Definition 8.7.

e A measure y on X is called regular if for each set A C X there exists a u-measurable
set B such that A ¢ B and u(A) = u(B).

e A measure p on R is called Borel if every Borel set is u-measurable.

e A measure u on RY is called Borel regular if u is Borel and for each set A ¢ R
there exists a Borel set B such that A ¢ B and u(A) = u(B).

e A measure u on X is called a Radon measure if u is Borel regular and u(K) < oo
for each compact set K ¢ RV,

Definition 8.8. A function f : RNV — R is called (Lebesgue) measurable if for any
open U C R, f~1(U) is measurable. A function f : RN — R™ is called measurable
if each of its coordinates is measurable.

In this monograph mostly Lebesgue measurable functions are considered. Therefore,
by measurable we shall mean Lebesgue measurable. The results below hold true for
general u, for proofs, see [139].
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Theorem 8.9 (Theorem 6, Section 1.1 in [139]) Measurable functions share the
following basic properties.

G) If f.g : RN — R are measurable, then so are f+g, fg, min{f,g}, and
max{f,g}. The function f|g is also measurable, provided g #+ 0 on RV

(i) If fi : RN — [—o0,00] are measurable for k =1,2,.. ., theninfis1 fi, SUpg~1 fir
liminfx_, fx, and limsupy_,, fx are also measurable.

Theorem 8.10 (Luzin, Theorem 2, Section 1.2 in [139]) Ler f : RN S R™ pe a
measurable function an A C RN a set of finite measure. Then for fixed & > 0 there
exists a compact set K C A such that |A\ K| < € and f|k is continuous.

Theorem 8.11 (Egorov, Theorem 3, Section 1.3 in [139]) Let f,, : RN - R™ (n=
1,2,...) be a sequence of measurable functions. Assume that A C RN is a measurable
set of finite measure and f, — f a.e. on A. Then for every & > 0 there exists
a measurable set B C A such that |A\ B| < € and f,, — f uniformly on B.

Theorem 8.12 (Scorza-Dragoni, Theorem 4.5 in [283]) Suppose that A C RN is
a measurable set of finite measure and f : AXRN — R is a Carathéodory function
such that for almost every fixed z € A the function f(z,-) is uniformly continuous.
Then, there exists an increasing sequence of compact sets Sy C A, k € N, with
|[A\Sk| \ O such that f|g, xgn~ is continuous.

Definition 8.13 (Absolute continuity). A measure v is said to be absolutely con-
tinuous with respect to p (written v < u) if u(A) =0 implies v(A) = 0 for all
ACRN.

Theorem 8.14 (Radon—Nikodym, Theorem 3.2.2 in [48]) Let v,u be finite mea-
sures on RN. Then v < p precisely when there exists a p-measurable function f
such that v is given by v(A) = fAfd,u for all u-measurable sets A ¢ RN.

Theorem 8.15 (Riesz representation theorem, Theorem 1, Section 1.8 in [139])
Let L : C.(RN;R™) — R be a linear functional satisfying

sup{L(f): f e Cc(RV;R™),|f| <1, suppf CK}<oo

for each compact set K ¢ RN. Then there exists a Radon measure u on RN and
a u-measurable function o : RN — R™ such that |0 (x)| = 1 for y-a.e. x and L(f) =
fon frodu forall f € C.(RN;R™).

Definition 8.16 (Convergence in measure). Let Z ¢ RY. We call a sequence
{fu},., of measurable functions f, : Z — R? convergent in measure to a mea-

surable function f : Z — R if for any & > 0 it holds that
lim [{z€ Z: [fu(2) - f(2)| > £}| = 0.

Definition 8.17 (Superlinear function). We say that a function f : RY — R is

superlinear at infinity if
s L&)
£ TeT =2
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We say that a function f : R — R is superlinear at the origin if

o fE)
\gnlo er =0

Definition 8.18 (Uniform integrability). Let Z ¢ R™ . We call a sequence { fato, C
LY(Z;R%) uniformly integrable if the following two conditions hold

(i) for any & > O there exists a measurable set A with |A| < co such that fZ\ Alful dx <
¢ foreveryn e N;

(ii) for any & > 0 there exists a § > 0 such that for every measurable set E, if |E| < 6,
then fE | ful dz < & for every n € N.

Note that the condition (i) is trivially satisfied when Z has finite measure (by taking
A=2).

We give below equivalent characterizations of uniform integrability. Condition
(ii) is known as de la Valleé—Poussin’s theorem. This fact is proved in [14] for a more
general measure, but we restrict our attention to the most classical case of Lebesgue
measure.

Lemma 8.19 (Proposition 1.27 in [14]) Suppose Z c RN is such that | Z| < oo and
a sequence {fy}> | is bounded in LY (Z;R%). Then the following conditions are
equivalent:

o]

(i) the sequence {f,}_, is uniformly integrable;
(1) it holds that

{fu} C {fELl(Z;Rd): /pr(lfl) dz < 1}

for some increasing continuous function ¢ : [0,00) — [0, o) satisfying ¢(t) [/t —
0o ast— ooy

(iii) it holds that

lim (sup/ | frn(2)] dz) =0.
Roo\nend{zez: |f.(2)|2R}

Lemma 8.20 If Z c RY is such that |Z| < oo, then a sequence { f,, | bounded in
L' (Z;R?) is uniformly integrable if and only if for every & > 0 there exists an R > 0
such that

sup /Z (fu(2)|-R), dz <&. @)

neN

Proof. Suppose {f,},_, is uniformly integrable and notice that

/ (fa(D - R), dx < / ()] dz.
z {z€Z: |fu(2)|2R}

so (8.1) follows from Lemma 8.19.
On the other hand, if we assume (8.1), fix arbitrary £ > 0 and take R > 0, such that
(ii) of Definition 8.18 holds true with /2. Then we choose 6 < £/(2R). We have
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sup sup /Alfn(Z)IdZ=Sup sup /AR+(|fn(Z)|—R)dx

neN Acz neN Acz
|Al<S |Al<é
< sup |A|R+sup /(lfn(z)I—R)+ dz
AcCZ neN JZ
|Al<é
<OR+5 <e. O

8.2 Functional Analysis

Theorem 8.21 (Dunford—Pettis, Theorem 4.30 in [57]) A sequence {f,}, is uni-
formly integrable in L' (Z) if and only if it is relatively compact in the weak topology.
Lemma 8.22 Suppose g, —— g in L' (Z) and f,, f € L®(Z). Assume further that

there exists a C > 0 such that sup,,cei || fullL~ < C and f, N f. Then
n—0o0

fngnllLiz) ——= /&l (z)-
n—oo

Proof. By Theorem 8.21 the sequence {g,} is uniformly integrable. We fix an
arbitrary € > 0. According to Lemma 8.20, we choose ¢ > 0 such that

sup sup/ lgn| dz < £ (8.2)
[Al<sneNJ A C

By Egorov’s theorem (Theorem 8.11) there exists a measurable set B with |Z\ B| < ¢
such that f,, — f strongly in L*(B). Let us write

/fngn dZ:/ Jfn&n dZ+/fngn dz.
z Z\B B

Given the assumed boundedness and convergence of { f,, }, we get that || fugn |l 1 (5) —
lfgll 1 (5)- On the other hand, we have

Sfngndz = / fn(gn—28) dz+/ fng dz,
Z\B Z\B

Z\B

where on the right-hand side due to (8.2) the first term can be estimated as follows

‘/ fn(gn_g) dZ
Z\B

and the second one is convergent by the assumption to || fgl| .1 (g). To conclude we
combine the above remarks and recall that £ > 0 was arbitrarily small. O

<2e¢,
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We make use of the following version of Vitali’s convergence theorem resulting
from [133, 5.6. Konvergenzsatz von Vitali p. 262]. In [133] one can find an extended
version covering the case 0 < p < co and possibly unbounded Z.

Theorem 8.23 (Vitali’s convergence theorem) If1 < p <o, f,,f € L?(Z), |Z| <
oo, then the following conditions are equivalent:

(i) fu — fin LP(Z);

(ii) fu — f in measure and { f,,} is uniformly integrable in LP (Z).

Lemma 8.24 (Lemma 9.1 in [170]) If g,, : Z — R are measurable functions con-
verging to g almost everywhere, then for each regular value t of the limit function g
we have 1(;<|g,. |} — Li<pg)y ae in Z.

Lemma 8.25 (Lemma 9.4 in [57]) Let N > 2 and let fi, f>,. .., fxv € LN"I/(RN71).
ForxeRY and 1 <i <N set X[ = (X1,X2, .., Xi—1,Xix1,- .-, XN) € RN= e x; is
omitted from the list. Then the function f(x) := fi(x]) f2(x}) -+ fn(xy), x € RV,
belongs to L' (RN) and

/RN|f|dxsﬁ[(/RN_llmN_ldx;)~“.

Lemma 8.26 (Young inequality for a convolution of functions, Theorem 3.9.4
in [48]) If f.g € L'(RN), then || f =gl mvy < 111y lgllnt gy

The above inequality actually also holds for measures, see [48, Theorem 3.9.9]
or [176, Theorem 1.2.13 and Example 1.2.14]. We will need it only in the following
version.

Lemma 8.27 (Young inequality for a convolution with a measure) If f € L' (RV)
and p is a bounded Borel measure, then || f + ull 11 zny < || f1lL1 @y || (RV).

Theorem 8.28 (Chebyshev’s inequality, Theorem 2.5.3 in [48]) Suppose Z c RN
and f : RN — [—co,+00] is an integrable function, then for any real numbert > 0 it
holds that

1
: 1 dz.
|{Z €Z: f(2) = t}| < t ./{zeZ: f(z)Zf}f(Z) )

Theorem 8.29 (Hahn-Banach extension theorem, Theorem 1.1. in [57]) Let E be
a vector space over R and p : E — R be a function satisfying

(1) p(Ax) =Ap(x) for every x € E and A > 0,

@) p(x+y) < px)+p(y) foreveryx,y € E.

Assume further that G C E is a linear subspace and let g : G — R be a linear
functional such that g(x) < p(x) for every x € G. Under these assumptions, there

exists a linear functional f defined on all of E that extends g, i.e., g(x) = f(x) for
every x € G and such that f(x) < p(x) for every x € E.

The following lemma is one of the components of the proof of the hyperplane
separation theorem, cf. Theorem 1.6 in [57].
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Theorem 8.30 (Lemma 1.3 in [57]) Let E be a normed vector space, C C E be
a nonempty open convex set and let xy ¢ C. Then there exists a linear functional
v € E* such that v(x) < v(xg) for each x € C. In particular, the hyperplane {x € E :
v(x) =v(xo)} separates {xo} and C.

Theorem 8.31 (Banach—Alaoglu, Corollary 3.30 in [S7]) Let E be a separable
Banach space and let { f,}nen be a bounded sequence in E*. Then there exists
a subsequence { f,,, }ren that converges in the weak-* topology.

Theorem 8.32 (Mazur’s lemma, Corollary 3.8 in [57]) Suppose x, —— x in a

Banach space E. Then, there exists a sequence {y, }nen C E of convex combinations,

ie.
N (n) N(n)

Yn = Z Ap,iXi, 0< Ap,i < 1, Z an,i = 1,
i i=n

converging strongly in E (that is, such that ||y, —x||x = 0 as n — o).

Due to the nature of our problem, we often deal with sequences that converge
weakly-+. In the case of reflexive spaces the weak and weak-* topologies coincide,
therefore we find the following corollary of Mazur’s lemma useful.

*

Corollary 8.33 Suppose x, x weakly-+ in a reflexive Banach space E. Then,

n—oo

there exists a sequence {y,tnen C E made up of convex combinations of the x,,’s
such that y,, » x in E.

Theorem 8.34 (Duality theorem, Theorem 14.2 in [211]) Let A be a closed con-
vex function on X and let V be a subspace of X. Suppose that there is a point of V
when A is continuous. Then the following relation holds

in{/A(x) +infreyr A" (x") =0.
X€E

In the Orlicz setting we have the following result due to Gossez. Modular conver-
gence is defined in Section 3.4.

Theorem 8.35 (Gossez’s approximation, Theorem 4 in [175]) Suppose Q C RY,
N > 1 is a bounded Lipschitz domain, m : [0,00) — [0,00) is a homogeneous and
isotropic N-function, and u € Wé L,,,(Q). Then there exists a sequence {us}s €
Cy’(Q) such that

ws 2% 0 in WL (Q).

d—0
Moreover, if u € L% (Q), then |Jus|| L~ @) < c(Q)|lullL=(q).
Definition 8.36 (Biting convergence). Let f,,, f € L'(Z) for every n € N. We say
that a sequence { f;, } e converges in the sense of biting to f in L'(Z) (and denote

it by f, LA f), if there exists a sequence Ej of measurable subsets of Z such that
limy_, |Ex| = 0 and for every k we have f,, — f in L' (Z\ Ey).
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Theorem 8.37 (Chacon’s biting lemma, Theorem 6.6 in [272]) Suppose the se-
quence { fu}n is uniformly bounded in L' (Z). Then there exists an f € L'(Z) such

b
that f, — f.
A consequence of the above result is the following.

Theorem 8.38 (Lemma 6.9 in [272]) Let f, € L'(Z) foreveryn €N, f,(z) > 0 for
everyn € N and a.e. x in Z. Moreover, suppose

S r and limsup/fnde/fdx.
zZ zZ

n—oo

Then f, — f weakly in L'(Z) for n — oo.
We may reformulate Theorem 8.37 and Theorem 8.38 in the following way:

Lemma 8.39 Let {a,}?, be a bounded sequence in LY (Qr) and let 0 < ag €
LY (Qr). If assumptions
(i) ap = —apforalln=1,2,3,...,

.. b
>i1) a, > aasn— oo,

(iii) limsup, ., /QT a,dxdr < fQTad.xdt,

hold, then
a, —a weaklyin LY (Q7) asn — .

For the proof, see also [272, 188].

Definition 8.40 (Tightness condition). Let Z c R?. A sequence {&£;}ren of mea-
surable functions & : Z — RY is said to satisfy the tightness condition if

lim sup [{z: [ék(z)| = R} =0.
R—oopen

Theorem 8.41 (Fundamental theorem for Young measures) LetZ Cc RN and ¢ Ix
Z — R be a sequence of measurable functions. Then there exists a subsequence
{¢; .k} and a family of weakly-+ measurable maps v, : Z — MR, such that:

® vz 20, vzl pray = fRd dv, <1forae z€Z.

(ii) For every f € Co(R?), we have f(Ejx) = f weakly-x in L*(Z). Moreover,

@)= [ s,
R4
(iii) Let K ¢ R¢ be compact and dist(¢;,x,K) — 0 in measure, then suppv, C K.
V) vzl mray = 1 for a.e. z € Z if and only if the tightness condition is satisfied.

(v) If the tightness condition is satisfied, A C Z is measurable, f € C(R?), and
{f(&;,x)} is relatively weakly compact in L'(A), then

fE0= in L'(A) and  f@)= | f(A)dv(D).
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The family of maps v, : Z — M(R?) is called the Young measure generated by {&jx}

Remark 8.42. The notion of Young measures dates back to [331, 332, 333] whereas
the proof of the above theorem can be found in [20], see also [18] and [217].

Lemma 8.43 (Corollary 3.3in [259]) Let Z c RN be a measurable set of finite
measure and let 7y : Z — R? be a sequence of measurable functions which generates
the Young measure v. Let f : ZxR? — R be a Carathéodory function and assume
that the negative part ( f(x,&(x))_ is weakly relatively compact in L' (Z). Then

ligigf/zf(z,fk(z)) dzz/Z/Rdf(z,/l)dvz dx.

Lemma 8.44 (Corollary 3.4 in [259]) Let Z c RN be a measurable set of finite
measure, let u; : Z — R,y jitZ— R% be measurable and suppose that u j—ou
a.e. while v generates the Young measure v. Then the sequence of pairs (uj,v;) :
Z — R4+ generates the Young measure z — Ou(z)®V;. Here ® denotes the tensor
product of measures.

Theorem 8.45 (De Rham, Proposition 1.1 in [311]) Letq € (CZ(;RN))*, where
Q is an open subset of R, be such that

(q:¥)(cz@)yxce @) =0 (8.3)

for all y € C2(Q;RN) such that divy = 0. Then there exists an f € (CX(;RN))*
such that
q=Vf. (8.4)

Theorem 8.46 (De Rham, Lemma 2.2.1 in [298]) Ler Q c RN, N > 2, be an arbi-
trary domain. Let Qo C Q be a bounded nonempty subdomain such that Qo C Q, and
let 1 < g < o0. Suppose f € Wl::c’q (Q;RN) satisfies

[(£.v]=0 forallve CX(QRY), divv=0.

q

Then there exists a unique p € L,

and

(Q) satisfying Vp ={f in the sense of distributions

/ pdx=0.
Qo

In the above [f, v] means the value of the functional f at v.

Theorem 8.47 (Sobolev embedding, Theorem 1.20 in [286]) Ler Q C RN be an
open, bounded Lipschitz domain. The space WP (Q) is continuously embedded in
LP"(Q) provided that the exponent p* is defined as:

() p* =55 for p € [L,N),

(i) p* is arbitrarily large real if p = N,
(iii)) p*=+4o00ifp>N.

Theorem 8.48 (Rellich—-Kondrachov, Theorem 9.16 in [57]) Let Q c RYN be an
open, bounded Lipschit; domain, and let 1 < p < n. If p* = %, then WP (Q) is
compactly embedded in L9(Q) for every 1 < g < p*.
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Theorem 8.49 (Aubin-Lions I, Theorem 3 in [293]) Let X, X, be Banach spaces,
such that X; cC Xp. Let F ¢ LP(0,T;X;) where 1 < p < oo, and let F be bounded
inL! (0,T;X,), and ltnf = fllLr 0,7:x,) — 0 as h — O uniformly for f € F. Then

loc

F is relatively compact in LP(0,T;X3) (and in C(0,T;X3) for p = ).

Theorem 8.50 (Aubin-Lions II, Corollary 8 in [293]) Ler Xy, X and X, be Ba-
nach spaces such that Xy is compactly embedded in X and X is continuously embed-
ded in X|. Suppose that a sequence of functions { f;, } nen is bounded in L9(0,T; X,)
and L'(0,T; Xo). Moreover, assume that the sequence of distributional time deriva-

tives {0, f,} is bounded in L'(0,T;X;). Then, {fu}nen is relatively compact in
LP(0,T;X) forany 1 < p <gq.

Theorem 8.51 (Aubin—-Lions III, Corollary 4 in [293]) Let Xy, X and X; be Ba-
nach spaces such that Xy is compactly embedded in X and X is continuously em-
bedded in X|. Let the sequence of functions { f,}nen be bounded in LP(0,T;Xy)
where 1 < p < oo and let the sequence of distributional time derivatives {0 fn}, en
be bounded in L' (0,T;Xy). Then { f, }nen is relatively compact in L? (0,T; X).

Let {fu}nen be bounded in L*(0,T;Xo) and let {0 fu} ey be bounded in
L"(0,T;Xy), where r > 1. Then { f,,}nen is relatively compact in C(0,T; X).

We recall below the Div-Curl lemma, which can be found in [309, 158].
Let us start with the notation: for a = (ag,a;,d»,a3)

3
Div, a:=dao+ ) dga; and Curl,a:=V, a— (V@) (8.5)
i=1

Lemma 8.52 (Div-Curl lemma) Let Qr = (0,7) x Q c R* be a bounded set. Let
D,q,1l,s € (1,00) be such that %+ql = % and the vector fields a" ,b" satisfy

a® —a weaklyin LP(Qr;RY) and b"—b weaklyin L4(Qr;RY),

and Div; xa and Curl; b are precompact in W=15(Qr) and W15 (Qr; R¥4)
respectively. Then
a"-b" —a-b  weaklyin L'(Qr),

where - denotes the scalar product in R*.

Lemma 8.53 (Zeros of vector field, Section 9.1 in [138]) Ler s : R™ — R™ be a
continuous mapping and
s(x)- x=0if|x|=r (8.6)

for some r > 0. Then there is a point x with |x| < r such that s(x) = 0.

Lemma 8.54 (Korn’s inequality, Theorem 1.10 in [245]) Ler Q c RN with N > 1
be an open bounded set such that 0Q € C%! (Lipschitz continuous). Let 1 < p < co
and let v € W(;’p(Q;RN ). Then there exists a constant C, depending on p and Q
such that the inequality

Collvllwrr @) < [IDV]|Lr ()
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holds, where Dv = %(Vv+ vTv).

Lemma 8.55 (Theorem 4.11 in Chapter A.4 of [245]) Let us recall that V is de-
fined by (7.26). Let ((-,*))s denotes the scalar product in Vs, while (-,-) denotes
the scalar product in L>(Q;RN). Then there exists a countable set {Ai}2, and a
corresponding family of eigenvectors {w'}:?, solving the problem

(wir9))s =/li/wi-t,odx forall p €V
Q

such that (w;,w;) =6; j, foralli, j €N, being the Kronecker delta, 1 <11 <Ay < ---
and A; — oo asi — oo, and {w; };2 | forms a basis in Vs. Moreover, ifL(ziiv n(Q;RN) =

span{wyi,...,wy} (a linear hull) and P" : Vg — Lﬁiv n(Q;RN) is given by P"(v) :=
2y (V,wi)w;, then we obtain that for v € V

1P (Dlws2) < IVllws2@)s 1P WD2@) < 1VII2(g)-

Lemma 8.56 (Interpolation between Bochner spaces, Proposition 1.41 in [286])
Let Q c RY be bounded domain and I be bounded time interval. Let

feLP(0,T,L9(Q))NLP*(0,T; L*(Q)),

where p1,p2,q1,q2 € [1,00]. Let A € [0,1]. If

A 12
pP1 p2

1 and L=4 4122

P q q q°

then

||f||LP(1;L‘1(Q)) < ”f”im (I;L9 (Q))||f||1L;/zl(1;qu(Q))-

Let us recall some results concerning the Bogovskii operator.
Lemma 8.57 (Lemma IL.2.1.1in [298]) Let Q c RN, N > 2, be a bounded Lips-
chitz domain. Let 1 < g < co. Then we have for each g € L9(Q) with ng dx =0, that
there exists at least one v € Wé 4 (Q;RN) satisfying

divv=g, |IVVl]ra) < C(q.Q)llgllLa()-

Lemma 8.58 (Theorem 5.2 in [322].) Let Q be bounded Lipschitz domain in RV,
N >2. Let m : [0,00) — [0, 00) be an isotopic and homogeneous Young function of
the formm(t) =exp(t)—7—1. Letv:Q - RN, f:Q >R, f € L*(Q) andfgfzo.
Then there exists at least one solution v € W(}’l (Q;RN) satisfying divv = f, v|gq =0.
Furthermore

VI, @ +IVVlL, @ < cllflliLe

for some constant ¢ > 0.

Definition 8.59 (Quasiconvexity). We say that a function f : [0,c0) — R is qua-
siconvex if for all x,y € [0,00) and A € [0,1] one has that f(Ax+ (1—Ay) <

max{f (x), f(y)}.
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Proposition 8.60 ([321], Section 6 in [117]) Let Q be a bounded domain with a
Lipschitz boundary. Let m : [0,00) — [0,00) be an isotropic and homogeneous
N-function satisfying the A,-condition and such that m” is quasiconvex for some
v € (0,1). Then, for any f € L,,() such that

[ ra=o.

the problem of finding a vector field v : Q — RN such that

divv=f inQ
v=0 ondQ

has at least one solution v € L,,(Q;RN) and Vv € L,,,(Q;RN*N). Moreover, for
some positive constant ¢

memmsgémmmm

Now let us introduce the Riesz transform in an isotropic Orlicz space.
Let R; ; stand for a ‘double’ Riesz transform of an integrable function g on R3,
which can be given by a Fourier transform ¥ as

&iéj

R; ; — gl (_
>J [g] T |§|2

)7:[8] :axiaxjA_lga l?J: 15273’ (87)

where
1

oy =gt (L _ [ &W)
) =7 ()71 [ £

Lemma 8.61 ([135]) Let Q be a bounded domain, let b - R3 — R be a multiplier,
be a multi-index such that |a| < 2, and

E11IDb(&)] < € < oo,
Then for any 8 > 0 there exists a constant ¢(B) such that for all g € L1ogP™ L(Q)

IF " oF) [gllell g 1 < cBIEN Liogse 1 (8.8)

where g is extended to be 0 on R3>\ Q. In particular, for any B > 0 and
g € LlogP' L(Q)

1R:,j (81l 1ogs 1. < (B8l g 1 (8.9)
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Lemma 8.62 (Weyl’s lemma, [302]) Let Q be an open domain in RN with smooth
boundary 0Q. If u € D’'(Q;R) (the space of Schwartz distributions on Q) satisfies
Au=f, f € CZ(Q;R) in the sense that

Ayu)y =, f). ¥ e CT(R),

then u € C*(;R).

8.3 Approximation

In this section we prove the existence of an approximate solution to the system
describing the flow of a heat-conducting non-Newtonian fluid given by (7.7)—(7.9).

Before stating the main result about the whole approximation let us first recall a
result of Lions concerning the approximation of the continuity equation.

Proposition 8.63 (DiPerna and Lions, [237]) Let Q be bounded domain in R3 with
C>Y boundary, v > 0. Let (0,T) be a finite time interval. Let sequences {0} 1, {u'},
A >0 be given. Assume that

ote C([0,T];L'(R), 0<o0.<0'<0*<xae. inQr,
0'(0,)=0f ando.< 0" < 0",
Q(} — 00 strongly in L'(Q) as 1 — oo,
uw'e L2(0,T; L%, (R?), ullpe=0, divul=0ae. inQr,
2
lll2 0,702 @3y < Cs
u' —u  weakly in L*(0,T; L3, (R?)) as 1 — oo.
Assume that o* and v for each fixed A > 0 satisfy the following

T T
/ /Q’l(')ttpdxdt+/ /(Q’lu’l)'chdxdtz—/Q(}cp(O,-)dx
0 Q 0 Q Q

SJorall o € CX([0,T);C2()).
Then

pt—p  strongly in C(0,T;LP(Q)) and a.e. in Qr forall p € [1,00) as A — .
In order to prove the above result one can follow pp. 43—46 in [237].

Below we show the existence of an approximate solution to (7.7)—(7.9), namely
to a triple (o",u”,6") which is a solution to (7.28)—(7.33) with initial data (7.35).
The construction of the proof contains a two-step approximation which is based on
the standard methods of artificial viscosity and combines the continuous problem
with two Ritz—Galerkin finite-dimensional systems. We adapt the proof given for the
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power-law type fluid in [158, Section 6]. Below we present most of the steps of the
reasoning. Some details are skipped, however these can be found, for example, in
[158, Section 6], [64], [328, Section 4.1].

Definition of an n-approximate problem.
Let us recall that here Q is a bounded domain in R? with C% boundary, v > 0,
and (0,7) is a finite time interval. Let M : QxR¥>3 — [0,00) be an N-function

satisfying for some ¢ > 0, C > 0 and for a.a. x € Q and all £ € RS

M (x,&) > c|€]P - C withp> l?

Let S satisfy conditions (S1h)—(S3h) from Section 7.2.
Moreover, let q : [0, 00) X [0, 00) x R? — R? satisfy

q(0,0,V0) = ko(0,0)VE  with kg € C([0,00) x [0,00)) (8.10)
and for all 6,0 > 0, VO € R3

q(0,6,V0)-V6 > k,6°|Ve|*>  with B R and k. > 0,

' . (8.11)
lq(0,0,V8)| < «*6P|V0) with  «* > 0.

with
B> —min{%, —22:2}
Let us recall here the n-approximate problem from Section 7.2.
Let

{w;};2, be an orthonormal basis of W0 dw(Q RY)

such that {w;}%2, C W(; jﬁ(Q;R%,

introduced in Section 7.2 by (7.25).
Then we define the n-approximate velocity u” € C([0,77; é jf (R%)) of the
following form

=Za{l(r)w" fori=1,2,..., (8.12)

where @' € C([0,T]). The n-approximate solution is defined such that the triple
(o",u",0") satisfies

T T
/ (0:0",2) dr—/ /Q"u”-Vz dxdr =0 (8.13)
0 0 Q

for all z € L™ (0,T;W"" (Q)) with r =5p/(5p —3), and
0<0.<0"(t,x) 0" <+co fora.a. (t,x) € Qr, (8.14)

58+10
+5 |

0" € L=(0,T;L*(Q))UL*(0,T;W"*(Q))  with s = min {2,
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and 60" > 0, in Qr, (8.15)

(6,(g”u"),wi)+[2(—gnu"®u" :Vw; +S(x,0",6",Du") : Dw;) dx

(8.16)
:/Q"f"~widx
Q
foralli=1,...,nand a.a. r € [0,T], and
/ (0, (8" 0™), h) dt+/ /( 0" o"u" -Vh+ko(0"0")VE" - Vh) dxdt
(8.17)

:/ /S(x,g”,&",Du”):Du"hdxdt
0o Jo

for all h € L*(0,T;W'4(Q)) for large enough g. For the initial data we set

0"(0,)=00€ L'(Q), 0<p.<gf <o <o,
u"(0,-) = P"ug, wufj € L3 (%R, (8.18)
0"(0,)) =05 € CX(Q), 0<86, <6y,

where P" denotes the orthogonal projection of L3, (€;R?) onto the linear hull of
{wi}_,. Moreover,
" € C2(Qr;R?) (8.19)

stands for a standard smooth regularization of £ € L”"(0,T; L' (Q;R?) (or regular
enough approximation to ensure the existence of an approximate solution).

Theorem 8.64 Ler Q C R3 be a bounded domain with C*” boundary, where v €
(0,1) and let (0,T) be a finite time interval. Let M : QxR¥>3 = [0,00) be an
N-function satisfying for some ¢ >0, C > 0 and for a.a. x € Q and all ¢ € Rg’}ﬁ

M(x,£) > cl¢|P -C  withp > 1. (8.20)

Let S satisfy conditions (S1h)—(S3h) from Section 7.2. Moreover let q satisfy (8.10),
(8.11) with

o 2 3p-5
B> m1n{3,3p 3}

Letuf, o, 0o satisfy (8.18). Let f" € C (Qr;R?).
Then there exists a triple (0", 0", 0") satisfying (8.12)—(8.17).

Proof. To define the new two-step approximation to the n-approximate problem let
us introduce a basis spanning the space where we construct a k-approximation of
6". Namely

{w j};‘;l a smooth basis of W'2(Q) orthonormal in L*(€).

Then we look for a triple (o™%-€,u™k-€ §™-k-€) where u™*-€ and 6-%-€ are defined
by
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n k
ke = Za/;”k’e(t)wi and @"k€ = Zv:”k’e(t)w,-, (8.21)

i=1 i=1

where v;”k’e € C([0,T]), and (o™%€, k€, g% €) satisfies the following

00" € +div (o™ Cu€) —eA™ € =0in Qr, (8.22)
Vo*€.n=0 on[0,7]x0Q, o"*€(0,)=0y in Q, (8.23)

d N

/ (Qn,k,eaun,k,e - w; +Qn,k,e [Vun,k,E]un,k,e “w; +S"’k’5 :Dw; | dx
Q (8.24)
_/ (Evgn,k,e . [Vu"’k’f]w[) dx = / Qn,k,éfn - w; dx
Q Q
foralli=1,2,...,n,
n

u™e€(0,) =uph =" (0w = Plag  inQ, (8.25)

i=1

d
n,k,e n,k,e n,k,e n,k,e n,k,e ~n,k,e n,k,e
/Q(Q _dt9 wi+o [Vo ]-u Wji+R Vo “Vw; | dx

—/EV,Q"”"6 -VH"’k’ij dx = /én’k’f : Du"’k’ewj dx
Q Q

(8.26)
forall j=1,2,...,k,

k
052 (0,) =035 = VR (O, = PE(0y)  inQ, (8.27)
j=1

where we set

~ ’k,
Hn,k,e = max{gn,k,e’g*}’ S" € = S(x’gn,k,e,gn,k,e Duk,e)

max max °

~n,k,e

.k, .k,
and & K€ gnx. €y

= KO(Q max

Again P" means projection of Lfﬁv (€;R?) onto linear hull spanned by {w;i}, and
P¥ analogously projection of L? onto span{w j}lle.

Notice that the system (8.22)—(8.27) combines one continuous problem (8.22)
with two Ritz—Galerkin finite-dimensional systems. As u”>*-€ is a linear combination
of the first n basis functions, which are bounded, there exists exactly one weak
solution o"*-€ to (8.22), that by a classical weak minimum/maximum principle, see
[223], satisfies

0. <0™F€ <" ae. inQr. (8.28)

Then in order to solve the system (8.24)—(8.27) for fixed k €N, £ >0, and n e N
one can apply Schauder’s fixed point theorem and basic estimates. These will appear
in the following part. Therefore we skip the details concerning the solvability of
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(8.22)—(8.27). The analogous system but with € = 0 can be solved by a combination
of characteristic methods, Schauder’s fixed point theorem, and basic estimates. For
a more detailed proof in the barotropic (without heat effects) case, see [328].

Passing to the limit as £ — 0.

Let us provide uniform estimates for (8.22)—(8.26) for every & > 0.
First, let us multiply the equation (8.22) by o™* € and integrate over Q7. Since
divu™*-€ = 0, this leads to

T
sup |0" € (1)]12 ¢ +2¢ / IVe™ e l3dr <llgoll}.  (8.29)
t€[0,T] 0

By taking the L2-scalar product of (8.22) and a smooth z we obtain that

(B,0™"€,2) - / (0™ u™*€) . Vzdx+ / eVo™He.Vzdr=0.  (8.30)
Q Q

Next let us multiply the i-th equation in (8.24) by %€ takethesumoveri=1,...,n,
and let us use (8.30) with z = [u™>*-€|?/2 (a density argument is used here) integrated
over (0,¢). Hence we have that

1d

Zdt nke|unks|2dx+/snke: Du™%€ dx = / n.k,epn gn.k.€ g (8.31)

Using the Holder, the Korn, and the Fenchel-Young inequality (see Lemma 2.1.32),
(8.28), (8.20) we are able to estimate the right-hand side of (8.31) as follows

Qn,k,Efn . un,k,e dxdr

, (8.32)
s ¢ n €
< CUE" o 0,70 ) + /0 > /Q M (x,Du™"€) dxdr,

where C = C(Q,c,c.p%, p). Integrating (8.31) over time (0,7), by (8.32) and as-
sumption (7.15) we obtain that

H ’ nkfunke(t)
LA(@) ) (8.33)
+/ /M*(x,é"’k’e)dxdr+/ /M(x,Du"’k’e)dxdTSC,
0 Q 0 Q

where C = C(go,u9,f,Q,c.,c,p*, p). Combining (8.33) with (7.22), together with
the classical Korn inequality we have

.k, Jk,
™"l Lo 0,702 () + 105Nl Le 0,720 (0)) < C-

n,k,e

Multiplying the j-th equation of (8.26) by v; , taking the sum over j =1,...,k,

using the L?-scalar product of (8.30) with |6" k.€12/2, and integrating the result over
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(0,1), using Gronwall’s inequality we are led to

Qn,k,egn,k,f

k,e
165N L 0,7:02) +
0.15L%) Lo (07:12) L2(0.7:L%)

+ HW/I?"’k’fVH"’k’E
~xn,k,e

< C||V9090||iz(g) +C|IS D) 20,1020 < Cn).

In the above, for the last inequality we used (8.33) and the fact that w’>%-€ is a linear

combination of the first n elements of the basis {w’ }22, such that Vo' € L®(Q) (see

(7.27)). By the same reasoning as for (7.119) we find that

~xn,k,e nk.e
18" Il () + DU €| Lo (@) < C(n). (8.34)

Let us recall that £ and n are fixed. Let us multiply the i-th equation of (8.24) by

n,k,e n,k,e

dv’
L— and the j-th equation of (8.26) by —4-

/T da
0

T|dyko€
/

J
in particular, we have that

. We conclude that

n,k,e
i

dt<C(n) fori=1,---,n,

dt<C(k) forj=1,--k,

Sk, .
" llwr2r) S Cn)  fori=1,---,n,

mhee _ (8.35)
ij “WI'Z(O,T) < C(k) fOI'] =1,---,k.

Summarizing estimates (8.33)—(8.35) we can pass to the limit with €, proving that

omke A o™k weakly-+ in L*(Qr), (8.36)
a;”k’f - a;”k weakly in W!+2(0,T) and strongly in C([0,T]) fori=1,---,n,
(8.37)
v;.“k’f - v;”k weakly in W'2(0,T) and strongly in C([0,T]) for j =1,--- k.
(8.38)
Consequently by (8.37)
uk€ 5wk strongly in L7 (0,T; Wy 2P (Q;R?)), (8.39)

where W*?P stands for P"(W!-2P).
From (8.36) and (8.39), by taking the limit as £ — 0 in the weak formulation of
(8.22) we find that o™* weakly satisfies the transport equation

80" " +div (o™ u™¥) =0.
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Notice that the last term on the left-hand side of (8.30) vanishes as € — 0 due to the
bound (8.29). Then applying the DiPerna—Lions theory of the renormalized solutions
to the transport equations (see [121, 238]) one infers that

o™ (D172 = leollZx q)- (8.40)
By (8.29) and (8.36) we also find that

10" Dl g) < liminfll™ (D112 g, < limsupllg™* (1)1 g < ool
(8.41)

Then (8.41) together with (8.40) implies that (possibly for a subsequence)
0™k — o™k strongly in L?(0,7;L*(Q)) and a.e. in Q7. (8.42)

Let us concentrate now on the nonlinear viscous term. It converges a.e. in Qr,
since the arguments converge a.e., due to (8.38), (8.39). Then the uniform inte-

grability of {é”’k’f}g provided by (8.34) gives by the Vitali convergence theorem
(Theorem (8.23)) that

xn,k,e

S - §m* strongly in L? (0,T; L' (Qr; R>3)). (8.43)

Notice that by (8.29), (8.35) the last term on the left-hand side of (8.26) converges
to zero as € — 0.

Consequently by (8.21), (8.36), (8.37), (8.38), (8.39), (8.42), (8.43), we obtain
that the limit triple (o"™*,u™*, 6™k) solves

T T
/ (0;0",z)y dt — / / o'u"-Vzdxdr=0 (8.44)
0 0 Q

for all z € L*(0,T;W'$(Q)) with arbitrary s € [1,0),

ka (O’ ) =00 in Q,

d -
/ (Q"’kau"’k cwi + 0K [V R uk - w; +8"F, Dw,-) dx = / o™ w; dx
Q Q

foralli=1,2,...,n,
(8.45)

u™*(0,) =P"ay inQ,
(8.46)

6"*(0,-) = PX(6f) inQ.
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Here

&1,k

gk :=max{0"’k,0*}, S

max

snkoL_ n,k pn,k
and &% := ko (0™, 004,)-

=8(x, 0", 04 . Du™¥)

Passing to the limit as k — oo.

The next step is to pass to the limit as k — oo. To this end let us collect estimates
uniform with respect to k. From (8.28), (8.44) we find that

T
0. <0 <o* and / 10,0115~V dr <¢  with arbitrary s € (1,00).
0

(Whs)*(Q) — —
(8.47)
Repeating the procedures as for (8.33)—(8.35) we obtain the following estimates

I

k &
™" Lo 0,702 0)) + 0 e 0, 7:w1r (0)) < Cs

<C,
L>(0,T:L% ()

~n,k
DU |2y, ) + 18" |2y (2 < C

167511 o 0,732 (@) +|[ @™ F O™ +H\/k"»kV9"’k Lo <C(m),
L*(0,T:L2(Q)) L2(0,T;L*(Q))
e  lwrz0,7) < C(n) for 1=1,....n, (8.48)

where &% (6F) := ko (0™, ok . Similarly as for (8.34) we infer also that
&k
18" %1l L= @p) + DU K| Lo @) < C (). (8.49)
Let us set

k(") = (0% itk >0,
ROV%) =68 iferk <,

Let K be a primitive function to Vink de.
o k g nk k
K(©""*)=620" for ™% < 0,

_ 4 B2
R(0F) = 25 (00 F + £0.7  for g™ > 6.,

Then we may infer that (the details here are skipped and can be found in [158, 64])

IR (O™ )| o 0.7:22()) + IR (0"l 120, 7 w12(0)) < C (), (8.50)
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&5 V™K || Lot 0. 7.071 (@)) < C(n)  with py =2for f<0
and p; = (38+10)/(38+5) for 8> 0,

(8.51)
|7
_ with py = oo for 8 <0
‘/m LP2(Qr) ’ (8.52)
and p; = (68+20)/(3p) for B8 > 0,
||V9n’k||LP3 Q) < C(n) with p3 = (58+10)/(B+5) for <0 (8.53)

and p3 =2 for g > 0.

Due to the above estimates, (8.46), and the continuity of the projection P" we also
obtain

19: (" 0" W L2 w74 () S C(n) Where py = min{2,(38+10)/(35+5)}.
(8.54)
In particular, due to (8.48)
™k — " weakly in W'?(0,T) and strongly in C([0,T7),
consequently
u™k — u” strongly in L*” (O,T;W,ll’zp (Q;R?)) and a.e. in Q7. (8.55)

Using the theory of renormalized solutions of DiPerna and Lions, see Proposi-
tion 8.63, we conclude that

0™k — 0" strongly in C(0,T;L9()) and a.e. in Q7 forall g € [1,00).  (8.56)
By the uniform estimates on {#"%}, (8.56), we infer the following

6™k —~ " weakly in LP*(0,T;W'P3(Q)) with p3 as in (8.53), (8.57)

0™ kgk 2s oM weakly-x in {z € L¥(0,T:LX(Q)), dz € LPQ(O,T;W’I’I’Q(Q))},
(8.58)
which by the Aubin-Lions arguments, Theorem 8.50, implies that

0o™kgmk — o"9"  strongly in C(0,T; (W'P*)*) with p4 as in (8.54).  (8.59)

Then due to (8.47), (8.56), (8.57), (8.59), by an interpolation argument, for a subse-
quence if necessary, we have that

ok — gn strongly in LZ(QT) and a.e. in Q. (8.60)
By (8.49), (8.55), (8.56), (8.60), as for (8.43) we infer that

& 8" .- S(x, 0", 6" ,.,Du™) strongly in L” (0,T;L” (Q7;R*>3)). (8.61)

max?
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Let us emphasise that it is crucial here that » is fixed. Therefore there is no need to
enter the Musielak—Orlicz space structure. However even that is still very straightfor-
ward in this case, since in (8.61) one may quite easily obtain modular convergence
in Ly (Q7;R>3). Finally, from a.e. convergence (8.56), (8.60), estimates (8.50) and
(8.52) we infer that

K(0™%) = K(6") weakly in L>(0,T;W"2(Q)),

En’k o

JR@s k@

Therefore we infer that

strongly in L? (Qr)  with j < pa.

RPEvek < gve" weakly in LP4(0,T; W"P*(€;R?)) with py as in (8.54),
(8.62)
where & := ko(0", 01%,x) With 67, = max{6",0.}.

Summarizing (8.55)—(8.62) we pass to the limit in the system (8.44)—(8.46) ob-
taining the equations stated as in (8.13)—(8.17). In addition, from the minimum
principle we get

0<0,<0" aa €Qr. (8.63)

This implies that §" =8" and " = k" a.e. in Qr, which finishes the proof of existence
of solutions to the n-approximation (8.13)—(8.17). m|
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Chapter 9
Functional Inequalities

9.1 Sobolev-Type Embedding

Suppose m : [0, 00) — [0, c0) is a homogeneous and isotropic N-function. In the case
of the Orlicz—Sobolev spaces there are known embedding results into some Orlicz
space, namely

Wo L (Q) = Lia(Q),

with /M growing in a certain sense faster than m. In particular, there are known
optimal embeddings, in the sense that there does not exist a bigger Orlicz space such
that the embedding is still continuous. See [89] for the isotropic and [91] for the
anisotropic case.

To avoid an excess of unnecessary complications we shall give details only in
the isotropic setting, but there are also known anisotropic optimal embeddings [91].
The embedding of an isotropic Orlicz—Sobolev space into an optimal Orlicz space
was proved by Cianchi [89]. Two cases are distinguished of a quickly or slowly
growing modular function m, corresponding to the cases of a p-Laplacian with
p > N and p < N. For several purposes it is enough to use — let us roughly call it
— a simple embedding capturing all types of growth of the modular function. The
simple embedding, which yields that

W Lin(Q) = L~ (Q)

with mN" = m%, is provided below, after we give the optimal embedding. It is
obviously weaker than the optimal embedding, but it is easy to apply and sufficient for
us since it captures a general N-function m independently of any growth conditions
with one formulation. Let us stress that since the approximation results of Section 3.7
and their applications to PDEs require Q to be a Lipschitz bounded domain, we
present all of the following results on such domains. See e.g. [95] for an overview of
the issue of the regularity of the boundary in relation to the embedding.

To recall the optimal embeddings we employ, we note that in [89] the Sobolev
inequality is proved under the restriction

© Springer Nature Switzerland AG 2021 357
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o\

on the growth of m at the origin. As for the method it is only important to verify (9.1)
for an arbitrary positive right limit, and we follow the customary notation to avoid
prescribing its right limit. Nonetheless, the properties of L, depend on the behavior
of m(s) for large values of s and (9.1) can be easily bypassed in applications. We
define functions Hy and mp by the following formulas

HN(s):z‘/Ox(ﬁ)N_ldt and  my (1) =m(HR(D). (92

When (9.1) is satisfied and the growth of an N-function m at infinity is slow, that is

w(  \F
/ (W) dt = oo, 9.3)

where again the left limit is omitted in the notation, then [89, Theorem 3] provides
the following continuous embedding

W3 Lin () < Liny (), 9:4)

where my is given by (9.2). Otherwise, when the growth of B at infinity is fast, that

is, 1
) ¢ ~-1
/ (m) dr < o0, 9.5)

then we have the following continuous embedding
WL, (Q) — L(Q). 9.6)
This result was first proved in [308], see also [88].

In the general case, independently of the growth conditions we provide the easy
embedding
WAL (Q) = L, (Q).

Theorem 9.1 (Modular Sobolev-Poincaré inequality) Suppose Q is a bounded
Lipschitzdomain inRN, N > 1, andm : [0, c0) — [0, 00) is an arbitrary homogeneous
and isotropic N-function. Then there exist constants c1,cy > 0 depending on Q, such
that for every u € W(; L, (Q) it holds that

(/mN'(c1|u|)dx)M Sczfm(|Vu|)dx. 9.7)
Q Q

Proof. The proof consists of three steps starting with the case of smooth and com-
pactly supported functions on a small cube including the origin, then turning to the
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Orlicz—Sobolev space (still on the small cube) and by a scaling argument concluding
the claim on a general set.

Step 1. We start with the proof for u € C°(€2) with suppu € [-1/4, 1/41N. We
extend u by 0 outside Q and note that for every j =1,..., N we have

()] < [i 10,u(x)|dx;.

1
2

As m is increasing, we can apply it to both sides above and get forany j =1,...,N

m(lu()]) < m(/f |6ju(x)|dxj) < m(/f Vu()| dxj) < [fm(|vM(x)|) dx;.

1 1
2 2

Here we used Jensen’s inequality.
When we multiply N copies of the above inequality for j = 1,..., N, we obtain

N
() <[] [ m(vueoD d;
j=17"12

By raising both sides in the last display to the power 1/(N — 1), then integrating over
Q, one gets

[ uean ac= [ w5 ue) ax
Q ov

N % N1
S/QNB([ m(|Vu(x)|)dxj) de=:1,.

1
2

We apply Lemma 8.25 and obtain

N 1 N1 -
I < 1:[ /QN_I ('[ m (|Vu(x)]) dxj) dx’ = b.

1
2
It suffices to note that

N 1 N

n=[]( [ mavuton as) ™ = ( [nwucon ax)

j=1

Summing up the above estimates we end up with (9.7) for smooth functions with
support included in a small cube.

Step 2. We pass to the Orlicz—Sobolev functions supported in small sets. Let
ue W(} L, (). Then by Theorem 8.35 there exists a sequence {us}s C C;’(€2) such
that

us—u modularly in W'L,,(Q).
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Since {us}s is a Cauchy sequence in the modular topology in W!L,,(Q) and the
inequality obtained above holds for every us, by (9.7) {us}s is also a Cauchy
sequence in the modular topology in L, ~' (Q).

Due to the modular convergence we get Vus — Vu in measure. By Jensen’s
inequality (Corollary 2.1.24) and properties of modular convergence together with
the Lebesgue dominated convergence theorem, we can pass to the limit as § — 0 to
get the final claim on the small set Q including the origin.

Step 3. We are in position to prove the claim on an arbitrary bounded set Q. If
Q includes the origin, it is contained in the cube of edge length D = diam£2. Then

i(x) = u (4Dx) has suppu C Q; C [-1, i]N . We have

(/mN’(|u|)dx)M=((4D>N/ mN/(|m>)”/ dxs(4D>%/ m(|Va) dx
Q Q Q

v
=1D m(4D| u|) dx.

Since the Lebesgue measure is translation-invariant, we have the estimate on an
arbitrary domain. O

The result below can be obtained as a consequence of Theorem 9.1. Nonetheless,
we include the following proof from [22] to highlight how substantially less technical
the analysis is under the A,-condition.

Theorem 9.2 (Modular Sobolev-Poincaré inequality) Suppose Q is a bounded
LipschitzdomaininRN, N > 1, andm : [0, 00) — [0, 00) is an arbitrary homogeneous
and isotropic continuously differentiable N-function satisfying the Aj-condition.
Then there exists a constant C = C(N, |Q|,m) > 0 such that for every u € Wé’l (Q)

with Vu € L,,(Q)
NI
/mN’(|u|)dxgc(/m(|vu|)dx) )
Q Q

Proof. We start with the proof for fixed u € C& (€2) and then conclude by the density
argument. The classical Sobolev inequality gives

(/mN’<|u|> dx) V< c/ IV (m(Ju)] d. ©.8)
Q Q

Since m € A, it satisfies

m'(t) <c

mft ) 9.9)

where m’ is the right-derivative of m. Moreover, due to Lemma 2.3.11, we get

( ()) < m(t). (9.10)

Then using (9.9), the Fenchel-Young inequality (2.33), and (9.10) we arrive at
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IV (m(Jul)| = m’ (|ul)|Va] < 04D ||
9.11)

<em” (%) +em(|Vul) < em(ul) +cm(|Vul).

Summing up, we have

1

(/mN’(|u|)dx)N' SC/|V(m(|Vu|)|dx
Q Q

SCs‘/Qm(|u|)dx+ch‘/Q|V(m(|Vu|)|dx,

where according to the Holder inequality we obtain

(/QmN'(|u|) dx)M SEC|Q|z‘v(/QmN’(|u|)dx)N'+cCE[2|V(m(|Vu|)|m.

Now we can choose € small enough to absorb it into the right-hand side and obtain
the claim for u € C& (€2). Since due to Theorem 8.35 the space V{'(€2) is a closure
of C;°(L2) in the modular topology, we infer the general claim by a standard approx-
imation argument. O

A highly useful tool is the following modular Poincaré-type inequality in the
Orlicz setting without growth restrictions. It is, via the Holder inequality, a direct
consequence of Theorem 9.1 (or Theorem 9.2 in the A;-setting).

Theorem 9.3 (Modular Poincaré inequality) Let m : [0,00) — [0, 0) be an arbi-
trary homogeneous and isotropic N-function and Q c RN be a bounded domain,
then there exist cp,, ¢ p, > 0 such that for every u € Wé L,,,(Q) it holds that

/m(cp1|u|)dx§cp2/m(|Vu|) dx.
Q Q

If additionally m € A, there exists a ¢, > 0 such that for every u € Wé L, (Q) it
holds that

Jomtuly s < e [ (vl a.

For more general recent results on modular Poincaré inequalities, see [169].

9.2 The Korn Inequality

The following version of the Korn—Sobolev inequality for the case of isotropic Orlicz
spaces holds:

Theorem 9.4 Let m : [0,00) — [0,00) be a homogeneous and isotropic N-function
and Q be a bounded domain such that Q C [_zlt’ i]N, andu € BD,, o(;R") (for
the definition of BDy, 0, see (7.140)). Then for some constant Cy > 0 depending on
the space dimension N the following holds
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lmChaDll, ;o) = En llm(IDuDlL1 - 9.12)

The proof below can be found in [185] and generalizes the result of [300].

Proof. As a first step let us show that (9.12) holds for u € X(Q;R"), where
X@RY) = (p e CL@R) : [ m(IDyl) dx <o)
Q

and next in the second step we will extend this result for u € 8D, o(Q;RY).

Step 1.
Let us assume that u € X(Q;R") and suppu  [-1, 2]V Let us denote (1, 1,...,1)
by 0. According to the mean value theorem in the integral form (see e.g. [1 3]) we
have that

0N LN
ul-(x)=/lZajui(x+s61v)ds=—/2Zé‘jui(x+s6;v)ds
-2 7= 0

j=1
and
u (x) = /1 Z Ojui(x+séy)ds =~ / Z dju;(x+s6n)ds.
i, i,j=1
Hence
N 0o N
2Zui(X)=/ Z (Ojui(x+s6N)+0u;(x+56N)) ds
i=1 ~3ij=1
I N
/ Z (Ojui(x+s6n)+0u;(x+s6y)) ds
i,j=1

and consequently it follows that

N 1 N
4|Zul~(x)| S/IZ Z |0jui(x+56n)+0;uj(x+s6n)|ds. (9.13)
i=1 i

T2 i,j=1

Applying the N-function m : [0,00) — [0,00) to (9.13), by convexity of m and
Jensen’s inequality, and using the fact that the support of u is in [—}P i]N , We
observe that

g

1 N —
|0ju;i(x+s6n)+0;uj(x+sén)| | d

1
41]:1

IA
h

[N]
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Let ex = (0,...,0,1,0,...,0) be a unit vector along the x-axis and fi = 6y — ey =
(1,...,1,0,1,...,1) for k € {1,...,N — 1}. Notice that

N 0 N 0
ui(x)=/ Z ﬁju,-(x+sfk)ds+/ Orui(x+ser)ds
i=1 =% i, j=1lizk, j#k -3
1 N 1
2 2
:—/ Z Gjui(x+sfk)ds—/ Oruy(x+sey)ds.
0 j=liizk,j#k 0

Consequently

v w
(m(@ui(xm) <
i=1

1 N
l/_ m(é—l1 Z |6jui(x+sfk)+8l-uj(x+sfk)|+%|8kuk(x+sek)|) dsl

i,j=1izk,j#k
1
N-1
1

+m (|0kuk(x+sek)|)}dsl 7

N-1

(ST

D=

N
% :m(% 3 |6J~ui(x+sfk)+8,~uj(x+sfk)|)

1
2 i,j=1,ik,j+k

1

N N-T

5(%)N_IC{ [f (% Z |aj”i(x+sfk)+ai”j(x+sfk)|)ds

2 i,j=1,i#k,j#k

‘[im(Iﬁkuk(x+sek)|) dsl 7 }

1
2

+

9.14)

1
Next, multiplying expression (m(l Zf\:’ i ul-(x)l)) M by itself N times we infer that

N w1
/RN (m(|;”(x)|)) dx;..dxy

i.j=1

N-1 ! 1 N ~-
[ / m| = E |0ju; (x4 fi) + 0w (x +5fi)l
_1 2
k=1 2 i,j=1.i%k, j#k



364

N-1 (
k=1,k¢o

9 Functional Inequalities

+(/lzm(|6kuk(x+sek)|)ds) 7 ]ldxl...de ©.15)

A IR0

1

1
N-T
|6jui(x+séN)+8iuj(x+séN)|) ds)
1
1
1

N-1 1 N N-
2 1
(/ m| = E |(9ju,-(x+sfk)+(9,-uj(x+sfk)|))
_1 2
k=1,keo 2 i,j=1,i#k,j#k

_1
2

/zm(Iakuk(x+sek)|) ds) ) ldxl...de

where o runs over all possible subsets of {1,2,...,N —1}. As suppu C [—%, %]N,
due to Fubini’s theorem one can observe that

/RN [’"(|2ul)lNNl dxy...dxy

| & o
¥ | (9.16)
N-1 / | i N
- |6ju,-(x)+6iuj(x)| dx
k=1,keo |/RY 2i,j=1,i;ék,j¢k
N-1 !

[/ e dx}Nl.
RN

k=1,k¢o

In a similar way, by integration over lines (1,-1,1,....,—1) etc., instead of these
we can obtain the same bound for any ||m (| Zi]\:’] vi(x)u;i|) ||N/(N_1) where v; €

LN/(N-1) (RN)’

{£1,0}. Next, let v; vary by setting

then

AR

vi(x) =sgnu;(x),

N
N=

T N N-1
dx...dxy < /RN (m (Z|v,-(x)u,-(x)|)) dx;...dxy
i=1

has the same bound (up to a constant 2N). Indeed, let

Y ={y=(y1,v2,v3) : vi €{-1,0,1},i=1,2,3},

Ay={x e RVt sgnui(x) =vi(x) =y, i = 1,2,3).
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Estimates (9.14), (9.16) also hold if we integrate over any measurable subset of RN
instead of the whole of R™. Notice that {A,}, is a division of RY into measurable
subsets. Observe that

N

N
| D Vi) = Y vi(oui(x) 2 0,
i=1

i=1

Hence

N N
AN|;vi<x)ui<x>|m=ZA 1 @) dr

yeY ¥y =]
N

=Y [ Yool ar=n,
yex YAy ol

where v; (x) is constant on any subset of the division {A, },,. Therefore all expressions
in the above summation over y are nonnegative and independent of v;(x). Then we

infer N N
n= ) Ywuiar= [ 3 lwolds
Y i=1 i=1

yeY

but notice also that
N
n<2V [ om0 Y v d
RN =1
Hence we deduce that

N N
Lo e sz [ m 3 viconwp o

Finally, since the geometric mean of nonnegative numbers is no greater than the
arithmetic mean, we can estimate the right-hand side of (9.16) as follows

N N-1
/ (m<|2u,~|>) dxy...dry
i=1
1\~ o
sc;(ﬁ) /RNm Zi;1|6jui(x)+8[uj(x)| dx
’ (9.17)
N-1 1 N
+ / ml= >\ 19jui(0)+du(x)] | dx
v \2 L
k=1,keo i,j=1,i#k,j#k

N-1

+ /RNm(%lakuk(x)l) dxl =1.
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As m is convex and m(0) = 0, we obtain that

IZSCZ( )N[/ Zlaul(x)+6u](x)|

l—l

N-1 N-1

Do 10ui(x) + 0 (x)] | dx

i,j=l,i#k,j#k
1 N
m( 310k (x)1) dx|
)

S[C(N)/RNm Z|Bu(x)+(9u](x)| ]”L

i,j=1

+
k=1,

m

N =

T

RN
ke (9.18)
k

k=1,k¢o

+

Summarizing (9.17), (9.18) we infer that (9.12) holds for u € X (Q;R").

Step 2.
Let Q be a bounded domain such that [—— —] 5> Q> Q and let C2(C;RN) be the

set of smooth functions in RY with support in Q. Step 1 ensures thatu € Cé"’(Q, RY)
with suppu € [—}1, JT]N satisfies

(Dl @ zn) < EnllmDUD L1 r) - 9-19)

To show (9.19) for allu € BD m,o(Q;RN ), we extend u by zero outside of the set Q.
Notice that u € BD s o(£2; R™). Now let us construct a regularized sequence

u®(x) := og *u(x),

where € < %dist (0Q,Q) and o, is a standard regularizing kernel (nonnegative
smooth function such that /RN o(x)dx=1and o.(x) = %Q(%x)) and the convolution

is with respect to the x-variable. Since u? is smooth and of compact support in Q,
inequality (9.19) holds true for u®. Passing to the limit as £ — 0 we have that

u® >u, Du®—Du ae inRV
and consequently by the continuity of an N-function m we have that

m([u?|) = m(ju]), m(|Du®|]) - m(|Du|) ae.inRV.

Moreover, due to Lemma 3.4.8 {m(u?)} o~ is uniformly integrable in L' . Finally,
by the Vitali convergence theorem (see Theorem 8.23) we obtain that

m(Ju®|) = m(|u]) strongly in L'(RY),
m(|Du®|) — m(|Du]) strongly in L' (RV).

The above gives that the limit u satisfies inequality (9.19). O
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Remark 9.2.1. In the case when Q is a bounded domain, which is not necessarily
contained in [—}1, JT]N , we can use a rescaling of the space variables. Then we get
that

(Dl o o) < Enlim(C-DuD L.

where C, is a constant dependent on the Jacobian of the rescaling.
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Euclidean length of a vector & € RV ; for £ = (£1,...,&n) we have
1

€= (2N, &)
scalar product of two vectors, i.e. for & = (£1,...,&n) € R" and

n=(m,....nn) €RN we have £-n=3Y, &mi
the Frobenius product of two second-order tensors;

foré =& j)i=1,.. N, j=1,...N ERNVN p=[n; j1i=1,.N.j=1,...N €
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N
&in= Z i jMi,j
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® the tensor product of two vectors; for & = (£1,...,én) € RV and
n=0n,....nn) €RN, we have @1 := [n]i=1,. N, j=1,...N>
that is
&im &ima o &N
&m bomp o SN
Een= . . . . RV*N
ENm N2 - ENTIN
() duality pairing, i.e. for a € X* and b € X, {(a, b) is a duality pairing
AT the transpose of a square matrix A = {a; ;};, AT = {a;;}
p’ p' = p—l — the Holder conjugate to p; a number satisfying % + 1% =
Ty symmetric truncation at level k;
Te(f)(x) = min{max{~k, f (x)},k}; (3.55)
T truncation operator applied to a square matrix; T, (K) =Kif |K| <m
and T,,,(K) = m(K/|K|) for |K| < m where K € RNXN
I+ (f(s))+ :=max{f(s),0} — the positive part of function f
/- (f(s))- :=min{f(s),0} — the negative part of function f
sgng the positive part of the signum function
14 the indicator function of the set A
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the space of signed Radon measures with finite mass in Q
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the classical Sobolev spaces, 1 < p < o0, Q C RN

the space of functions continuous on Q

the space of functions continuously differentiable on € up to the
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inQc RN
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the space of functions f : Q — R is called @-Hdlder continuous,
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the space of CX(Q) functions such that k-derivative is a-Holder
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sical Orlicz—Sobolev space; Appendix 9

with m being a homogeneous and isotropic N-function is the
closure of C2(Q) in W'L,,(Q) with respect to the topology
0 (L, Ep+); Section 3.6, Appendix 9

with doubling m being a homogeneous and isotropic N-function
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the generalized Musielak—Orlicz class; the set of all measurable
functions & : Z — R? such that pj; (&) < co; Section 3.1
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Ly (Q7;RN); Sections 3.6, 4.2.2, and 4.2
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and 4.2

the space of functions u € L' (Q;R") such that Du € Ly (Q; RN XN
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the space of Schwartz distributions on
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strong two-scale convergence, 231
subdifferential, 17

superlinear function, 337
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tightness condition, 342
topologies, 67

truncation, 83, 172, 207, 290
two-scale convergence, 230

uniform integrability, 338
uniqueness, 166, 169, 170, 185, 223

variable exponent double-phase
spaces, 90, 105

variable exponent Sobolev spaces,
84, 87, 104

very weak solutions, 167

Vitali’s convergence theorem, 340

weak solutions, 160

weak-* convergence, 67

weak-* two-scale convergence, 231
weighted Sobolev spaces, 102
Weyl’s lemma, 347

Young function, 29

Young measures, 169, 181, 182, 218,
219, 342

Young’s conjugate, 24

Young’s convolution inequality, 340

zeros of vector field, 344
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