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Abstract. Team Semantics is a generalization of Tarskian Semantics
that can be used to add to First Order Logic atoms and connectives
expressing dependencies between the possible values of variables. Some
of the resulting logics are more expressive than First Order Logic, while
others are not. I characterize the (relativizable) atoms and families of
atoms that do not increase the expressive power of First Order Logic
when they and their complements are added to it, separately or jointly.
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1 Introduction

Team Semantics generalizes Tarskian Semantics for First Order Logic by defining
satisfaction with respect to sets of assignments (called Teams) rather than with
respect to single assignments. This semantics arises naturally from the analysis
of the game theoretic semantics of First Order Logic and its extensions: in brief,
a team represents a set of possible game states (= variable assignments) that can
be played at some subformula, and a team satisfies a subformula if the existential
player has a1 strategy that is winning for the corresponding subgame for every
starting assignment in the team. This approach works equally well for extensions
of First Order Logic whose game-theoretic semantics yield imperfect information
games, as is the case for Independence-Friendly Logic [14,15,22] which was the
reason for the original development of Team Semantics (then called “Trump
Semantics”) in [16].

Jouko Väänänen [25] observed that a logic roughly equivalent to
Independence-Friendly Logic, but with more convenient formal properties (for
example locality, in the sense that the interpretation of a formula in a team
depends only on the restriction of the team to the free variables of the formula),
can be obtained by adding to First Order Logic, in place of the so-called slashed
quantifiers (“there exists a y, chosen independently from x, such that . . . ”) of
Independence-Friendly Logic, functional dependence atoms =(x; y) that state
1 Non-deterministic, for the commonly-used “lax” (see [3]) version of Team Semantics

that we consider in this work.
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that the values of y are determined by those of x. The resulting logic, called
Dependence Logic, has been the subject of a considerable amount of research
that cannot be summarized here (for an up-to-date introduction, we refer the
reader to [9]). It was soon noticed that Team Semantics could also be used to
extend First Order Logic via other atoms (see e.g. [3,12]) or connectives (like
the “contradictory negation” of [26], the “intuitionistic implication” of [1], or the
generalized quantifiers of [2]) that have no direct analogues in Tarskian Seman-
tics as their definitions likewise involve possible interactions between different
assignments. Other Team Semantics-based logics use families of connectives dif-
ferent from the ones arising directly from the Game-Theoretic Semantics of First
Order Logic: of particular interest in this context is the FOT logic of [19], that
relates to ordinary First Order Logic not through Game Theoretic Semantics but
on the level of team definability, in the sense that a family of teams is defined by
a FOT formula if and only if the corresponding family of relations is first order
definable and every sentence of FOT is equivalent to some first order sentence.2

Team Semantics – aside from its applications and connections with other
areas, which we will not discuss here – can thus be seen as a generalization of
Tarskian Semantics that allows for the construction of new kinds of extensions
and fragments of First Order Logic; and while some of these extensions have been
studied in some depth by now (see e.g. [18,21] for the contradictory negation,
[27] for the intuitionistic implications, or [3,10,11,13,23] for database-theoretic
atoms), not much is yet known regarding the general properties of the extensions
of First Order Logic obtainable through Team Semantics.

This work is a partial answer to the following question: which extensions of
First Order Logic based on Team Semantics are genuinely more expressive than
First Order Logic itself, and which ones instead can only specify properties that
were already first order definable? This question is the obvious starting point for
a classification of Team Semantics-based extensions of First Order Logic; and
yet, at the moment only some very limited answers (see [6,7]) are known.

The main result of this work is a full characterization – aside from the tech-
nical condition of relativizability, that most dependencies of interest satisfy – of
the dependencies that are doubly strongly first order in the sense that both they
and their complements can be added (jointly or separately) to First Order Logic
with Team Semantics without increasing their expressive power. This may be
regarded as another step towards the classification of the expressive capabili-
ties – and computational costs – of logics based on Team Semantics, a topic of
both practical (especially given the applications of Team Semantics to knowl-
edge representation and database theory, for which we refer the reader to [9])
and theoretical interest.

2 Thus, all families D of first order dependencies are “strongly first order” for FOT
in the sense analogous to Definition 6. Additionally, whenever FO(D) ≡ FO all
formulas (not just all sentences) of FO(D) are equivalent to formulas of FOT.
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2 Preliminaries

2.1 Team Semantics

Definition 1 (Team). Let M be a first order model with domain Dom(M) =
M and let V be a finite set of variables. Then a team X over M with domain
Dom(X) = V is a set of variable assignments s : V → M . Given such a team
and some tuple of variables �v = v1 . . . vk ∈ V k, we will write X(�v) for the |�v|-ary
relation {s(�v) : s ∈ X} ⊆ M |v|, where s(�v) is the tuple s(v1) . . . s(vk).

Definition 2 (Team Semantics for First Order Logic). Let M be a first
order model, let φ be a first order formula in Negation Normal Form3 over the
signature of M, and let X be a team over M whose domain contains the free
variables of φ. Then we say that X satisfies φ in M, and we write M |=X φ, if
this follows from the following rules:

TS-lit: If φ is a first order literal, M |=X φ if and only if, for all assignments
s ∈ X, M |=s φ in the usual sense of Tarskian Semantics;

TS-∨: M |=X φ1 ∨ φ2 if and only if X = Y ∪ Z for two Y,Z ⊆ X such that
M |=Y φ1 and M |=Z φ2;

TS-∧: M |=X φ1 ∧ φ2 if and only if M |=X φ1 and M |=X φ2;
TS-∃: M |=X ∃vψ if and only if there exists some function4 H : X → P(M)\{∅}

such that M |=X[H/v] ψ, where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀: M |=X ∀vψ if and only if M |=X[M/v] ψ, where X[M/v] = {s[m/v] : s ∈

X,m ∈ M}.
A sentence φ is true in a model M if and only if M |={∅} φ, where {∅} is the
team containing only the empty assignment. In that case, we write that M |= φ.

Over First Order Logic, Team Semantics reduces to Tarskian Semantics:

Proposition 1. ([25], Corollary 3.32) Let M be a first order model, let φ be a
first order formula in Negation Normal Form over the signature of M, and let X
be a team over M whose domain contains the free variables of φ. Then M |=X φ
if and only if, for all s ∈ X, M |=s φ in the sense of Tarskian Semantics.

In particular, if φ is a sentence, M |= φ in the sense of Team Semantics if
and only if M |= φ in the sense of Tarskian Semantics.

Nonetheless, Team Semantics makes it possible to extend First Order Logic via
new types of atoms specifying collective properties of (that is to say, dependencies
between) the assignments in a team. The earliest and arguably most important
atoms studied in this context are the functional dependence atoms [25]

TS-dep: If �x and �y are tuples of variables, M |=X=(�x; �y) if and only if, for all
s, s′ ∈ X, if s(�x) = s′(�x) then s(�y) = s′(�y).

3 In this work we will assume that all expressions are in Negation Normal Form.
4 Here P(M) represents the powerset {X : X ⊆ M} of M .
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This rule corresponds precisely to the database-theoretic notion of functional
dependence; and it was soon recognized that other dependency notions may also
be studied in the same context, such as independence atoms [12]

TS-ind: M |=X �x⊥�y�z if and only if for any two s, s′ ∈ X with s(�y) = s′(�y) there
exists some s′′ ∈ X with s′′(�x�y) = s(�x�y) and s′′(�y�z) = s′(�y�z)

which as per [2] have a close connection with database-theoretic embedded mul-
tivalued dependencies, inclusion dependencies [3,11,13]

TS-inc: M |=X �x ⊆ �y if and only if X(�x) ⊆ X(�y)

and exclusion dependencies [3,24]

TS-exc: M |=X �x|�y if and only if X(�x) ∩ X(�y) = ∅.

But what is, in general, a dependency? The following definition is from [20]:

Definition 3 (Generalized Dependency). A k-ary generalized dependency
is a class D, closed under isomorphisms, of models M = (M,R) over the signa-
ture {R}, where R is a k-ary relation symbol. D corresponds to the rule

TS-D: M |=X D�x if and only if (Dom(M), R := X(�x)) ∈ D

where �x is any tuple of k variables and (Dom(M), R := X(�x)) is the model with
the same domain Dom(M) of M and with signature {R}, where R is interpreted
as RM = X(�x) = {s(�x) : s ∈ X}.
Definition 4 (FO(D)). Let D = {D1,D2, . . .} be a set of generalized dependen-
cies. Then FO(D) is the logic obtained by taking First Order Logic (with Team
Semantics) FO and adding to it all the generalized dependency atoms D ∈ D.

An important class of generalized dependencies is that of the first order ones:

Definition 5 (First Order Generalized Dependencies). A k-ary gener-
alized dependency D is first order if there exists some first order sentence
D(R), over the signature {R} where R is a k-ary relation symbol, such that
D = {(M,R) : (M,R) |= D(R)}.

If D is a first order generalized dependency, the rule TS-D is equivalent to

TS-D-FO: M |=X D�x if and only if (Dom(M), R := X(�x)) |= D(R).

Functional dependence atoms, independence atoms, inclusion atoms, and exclu-
sion atoms are all first order; but the logics obtained by adding them to First
Order Logic are more expressive than First Order Logic itself. This differs from
the case of generalized quantifiers in Tarskian Semantics, in which if a quantifier
Q is first order definable then adding it to First Order Logic yields nothing new.
The intriguing phenomenon of first order dependencies increasing the expres-
siveness of First Order Logic is a consequence of the higher order character of
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Team Semantics, and in particular to the existential second order quantification
implicit in the rules TS-∨ and TS-∃,5 and it raises immediately a natural (and
still open) problem: can we identify the dependencies (or the families of depen-
dencies, or even more in general the families of connectives and dependencies)
that do not increase the expressive power of First Order Logic?

2.2 Strongly First Order Dependencies

In this section, we will recall some partial results related to the problem of
characterizing the dependencies that are “safe” to add to First Order Logic:

Definition 6 (Strongly First Order Dependencies). A generalized depen-
dency D is strongly first order if and only if FO(D) ≡ FO,6 i.e., if and only if
every sentence of FO(D) is equivalent to some first order sentence. Likewise, a
family of dependencies D is strongly first order if and only if FO(D) ≡ FO.

If D is strongly first order then it is first order in the sense of Definition 5: indeed,
it is definable via the first order sentence equivalent to the FO(D) sentence
∀�w(¬R�w∨(R�w∧D�w)). However, as mentioned at the end of the previous section,
not all first order dependencies are strongly first order.

A notion closely related to strong first-orderness is that of safety :

Definition 7 (Safe Dependencies). Let D be a generalized dependency and
let E be a family of dependencies. Then D is safe for E if FO(D, E) ≡ FO(E),
that is, if every sentence of FO(D, E) is equivalent to some sentence of FO(E).

If D and E are families of dependencies, D is safe for E if FO(D, E) ≡ FO(E).

Clearly, a dependency D or a family of dependencies D is strongly first order if
and only if it is safe for ∅: in this sense, safety is a generalization of strong first-
orderness. However, as shown in ([8], Theorem 53), strongly first order depen-
dencies are not necessarily safe for all families of dependencies.

An example of strongly first order dependencies is given by the constancy
atoms ([3], Corollary 3.13)

TS-Const: M |=X=(�x) if and only if for all s, s′ ∈ X it holds that s(�x) = s′(�x).

A more general strongly first order family of generalized dependencies is
given by first order upwards closed dependencies, that are strongly first order
even taken together with each other and with the constancy atom:

Definition 8 (Upwards and Downwards Closed Dependencies). A k-ary
dependency D is upwards closed if and only if (M,R) ∈ D implies (M,R′) ∈ D

5 Ultimately, the existential second order character of Team Semantics derives from
the existential second order character of Game-Theoretic Semantics, that defines
truth in terms of the existence of winning strategies – that is to say, functions from
positions to moves or sets of moves – in certain semantic games.

6 Strictly speaking we should write FO({D}) instead of FO(D), FO({D}∪E) instead
of FO(D, E) and so on, but this would clutter our notation too much.
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for all k-ary relations R′ ⊇ R over M . We write UC for the family of upwards
closed, first order dependencies. Likewise, we write DC for the family of all
downwards closed first order dependencies, defined analogously.

DC is not strongly first order: for example, functional dependencies =(�x; �y) are
first order and downwards closed, but FO(=(·; ·)) is as expressive as Existential
Second Order Logic ([25], Corollary 6.3). On the other hand,

Theorem 1 ([4], Theorem 21). UC ∪ {=(·)} is strongly first order.

An upwards closed, first order generalized dependency atom that will be of
some use is the totality atom All(�x), that says that �x takes all possible values:

TS-All: M |=X All(�x) if and only if X(�x) = Dom(M)|�x|.

As shown in [8], totality is safe for any collection of dependencies:

Proposition 2 ([8], Theorem 38). FO(All,D) ≡ FO(D) for any collection
of dependencies D.

Also of interest are the families D0 and D1 of 0-ary and unary first order
dependencies. A 0-ary first order dependency atom [ψ] = {M : M |= ψ} is
nothing but a family of models over the empty signature characterized by some
first order sentence ψ, and M |=X [ψ] if and only if M |= ψ (that is to say, 0-ary
dependencies do not “look” at the team X but only at the domain Dom(M) =
M). A unary dependency atom is instead a family of models (M,P ) over the
signature {P}, where P is a unary predicate, characterized by some first order
sentence over the signature {P}. As shown in ([5], Proposition 9 and Theorems
9 and 10), both of these families are strongly first order.

The main result of [6] characterizes the strongly first order dependencies D
that are downwards closed, have the empty team property and are relativizable:

Definition 9 (Empty Team Property). A dependency D has the empty
team property if (M, ∅) ∈ D for all domains M .

Definition 10 (Relativization of a dependency; Relativizable Depen-
dencies). Let P be a unary predicate and let D be a k-ary generalized depen-
dency. Then the relativization of D to P is the k-ary atom D(P ), whose semantics
- for models M whose signature contains the predicate P interpreted as PM - is

TS-D(P ): M |=X D(P )�x if and only if (PM,X(�x)) ∈ D.

A dependency D is relativizable if every sentence of FO(D(P )), i.e. of First
Order Logic with Team Semantics augmented with the above rule, is equivalent
to some sentence of FO(D). Likewise, a family of dependencies D is relativizable
if FO(D(P )) ≡ FO(D), where D(P ) = {D(P ) : D ∈ D}.
As discussed in [6], non-relativizable generalized dependencies exist.7 However,
the vast majority of the dependencies considered in the context of Team Seman-
tics so far (and all the ones whose corresponding logics have been studied in some
7 The existence of non-relativizable dependencies was first observed in (Barbero, per-

sonal communication).
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depth) are relativizable, and most are even universe-independent in the sense of
[17] (in brief, D is universe-independent if the satisfaction of D�x in a team X
and in a model M does not depend on the existence in M of elements that are
not in X(�x)). All is not universe-independent, but it is still relativizable;8 and
no strongly first order non-relativizable dependencies are currently known.

Theorem 2 ([6], Theorem 4.5). Let D be a downwards closed, relativizable
generalized dependency with the empty team property. Then D is strongly first
order if and only if it is definable in FO(=(·)).
The same notions of strong first-orderness and safety can also be applied to
connectives. Three connectives of particular interest in Team Semantics are the
Global (or Boolean) Disjunction φ1 � φ2, the Possibility Operator �φ and the
Contradictory Negation ∼φ, corresponding to the rules

TS-�: M |=X φ1 � φ2 if and only if M |=X φ1 or M |=X φ2;
TS-�: M |=X �φ if and only if M |=Y φ for some Y ⊆ X, Y �= ∅;
TS-∼: M |=X∼φ if and only if M �|=X φ.

As shown in [7], global disjunction is not safe for arbitrary dependencies, but it
is safe for strongly first order dependencies.

Proposition 3 ([7], Proposition 14). If D is a strongly first order family of
dependencies then every sentence of FO(�,D) (i.e. of First Order Logic with
Team Semantics, plus global disjunctions and the atoms in D) is equivalent to
some sentence of FO.

Instead � is safe for any collection of dependencies, in the sense that

Proposition 4 ([8], Corollary 42). Let D be any family of generalized depen-
dencies, not necessarily strongly first order. Then every sentence of FO(�,D)
(i.e. of First Order Logic with Team Semantics, plus the possibility operator �
and the atoms in D) is equivalent to some sentence of FO(D).

Differently from global disjunction and from the possibility operator, contra-
dictory negation is extremely unsafe. Augmenting Dependence Logic FO(=(·; ·))
with contradictory negation yields Team Logic FO(∼,=(·; ·)) [26], which is as
expressive as Second Order Logic; and as observed in ([5], Corollary 2), even
FO(∼,=(·)) is already equivalent to full Second Order Logic. On the other hand,
∼ is still “strongly first order”, in the sense that FO(∼) ≡ FO: this is mentioned
in [5] as a consequence of ([5], Theorem 4), but it may be verified more simply
by observing that if φ is first order then – as a consequence of Proposition 1 –
∼φ is logically equivalent to �(¬φ), and then applying Proposition 4.

We end this section with two simple results that will be of some use:

Proposition 5. Let D be a strongly first order, relativizable collection of depen-
dencies. Then every sentence of FO(D,=(·)) is equivalent to some sentence of
FO, and so is every sentence of FO(D(P ),=(·)).
8 Indeed, All(P )(�x) is equivalent to

(∧
x∈�x Px

) ∧ ∃�v
((∨

v∈�v ¬Pv ∨ �v = �x
) ∧ All(�v)

)
.
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Proof (Sketch). Given a sentence φ ∈ FO(D,=(·)) [respectively FO(D(P ),=(·))],
replace every constancy atom =(�x) with �x = �d�x, where �d�x is a tuple of constant
symbols (each variable corresponding to a unique distinct constant). The result
will be in FO(D) [respectively FO(D(P ))], and so it will be equivalent to some
φ′(�d) ∈ FO, where �d contains all new constants; and then φ will be equivalent
to ∃�wφ′(�w) for some new tuple of variables �w.

Proposition 6. FO(D0,�,=(·),All) ≡ FO.

Proof. By Propositions 3 and 2, it is enough to show that FO(D0,=(·)) ≡ FO.
This follows from Proposition 5, since 0-ary dependencies are strongly first order.

2.3 Relations Definable over the Empty Signature

Finally, in this work we will need a couple of simple results – whose proofs we
omit – about the relations that are definable via First Order Logic formulas:

Definition 11. Let M be a first order model with domain M and let θ(�x, �y) be
a first order formula. Then a |�x|-ary relation R over M is defined by θ if there
is a tuple of elements �a ∈ M |�y| such that R = {�m ∈ M |�x| : M |= θ(�m,�a)}.
Definition 12. A first order formula θ(�x, �y) is said to fix the identity type
of �y if, for every two variables yi, yj ∈ �y, |= ∀�x�y(θ(�x, �y) → yi = yj) or |=
∀�x�y(θ(�x, �y) → yi �= yj).

Proposition 7. If a relation R over M is defined by a formula θ(�x, �y), it is
defined by some θ′(�x, �y) over the same signature that fixes the identity type of �y.

Proposition 8. If two nonempty relations R and S over the same model M with
domain Dom(M) = M are defined by the same formula θ(�x, �y) over the empty
signature and θ fixes the identity type of �y then there is a bijection h : M → M
such that h[R] = S.

3 Doubly Strongly First Order Dependencies

We will now characterize the relativizable dependencies D such that {D,∼D}
is strongly first order, where ∼D is the complement of D:

Definition 13 (Complement of a Dependency). Let D be any generalized
dependency. Then ∼D is the generalized dependency {(M,R) : (M,R) �∈ D}. If
D is a family of dependencies, we write ∼D for the family {∼D : D ∈ D}.
Definition 14 (Doubly Strongly First Order Dependencies). Let D be
a generalized dependency. Then D is doubly strongly first order if and only if
{D,∼D} is strongly first order. Likewise, a family D of dependencies is doubly
strongly first order if and only if D ∪ ∼D is strongly first order.
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Clearly M |=X (∼D)�v if and only if M �|=X D�v if and only if M |=X∼(D�v).
Also, if α is a first order literal, ∼ α is equivalent to �(¬α):9 therefore, via
Proposition 4, it can be shown that D is doubly strongly first order if and only if
FO(∼0,D) ≡ FO, where FO(∼0,D) is the fragment of FO(∼,D) in which the
contradictory negation ∼ only occurs in front of literals or dependency atoms.

Our characterization will be based on the following result about strongly first
order, relativizable dependencies from [7]:

Definition 15 (Dmax). Let D be any dependency. Then Dmax = {(M,R) ∈ D :
∀R′ � R, (M,R′) �∈ D} is the dependency containing the maximal (M,R) ∈ D.

Theorem 3 ([7], Theorem 23 and Proposition 22). Let D be a strongly
first order, relativizable dependency. Then there exists some first order sentence

Dm(R) =
n∨

i=1

∃�y∀�x(R�x ↔ θi(�x, �y)), (1)

where each θi is a first order formula over the empty signature, such that, for
all (M,R), if (M,R) ∈ Dmax then (M,R) |= Dm(R). Also, for all (M,R) ∈ D,
R is contained in some R′ such that (M,R′) ∈ Dmax.

We will now see that if D and ∼D are both strongly first order, there can
be no infinite ascending “stair” of relations satisfying alternatively D and ∼D:

Fig. 1. If both D and ∼D are (separately) strongly first order, this configuration of
k-ary relations Pi and Qi over some domain M is forbidden by Lemma 1.

Lemma 1. Let D be a k-ary dependency, and let (Pi)i∈N and (Qi)i∈N be k-ary
relations over the same domain M such that

1. For all i ∈ N, (M,Pi) ∈ D;
2. For all i ∈ N, (M,Qi) ∈∼D;
3. For all i ∈ N, Pi ⊆ Qi ⊆ Pi+1.

Then at least one between D and ∼D is not strongly first order.

9 Indeed, M |=X∼α iff M 	|=X α iff ∃s ∈ X s.t. M |={s} ¬α iff M |=X �¬α.
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Proof. Let D and ∼D be strongly first order and suppose that relations Pi, Qi

as per our hypothesis exist over some domain M .
M is clearly infinite, since P0 � P1 � P2 � . . .; so by the Löwenheim-Skolem

Theorem we can assume that M is countable and we can identify it with N.
Now let P and Q be the (k + 1)-ary relations over N whose interpretations are
{(�m, i) ∈ Nk+1 : �m ∈ Pi} and {(�m, j) ∈ Nk+1 : �m ∈ Qj} respectively. Now
consider the model M = (N, <, P,Q) where < is the usual ordering over N. I
state that, if FO(D) ≡ FO(∼D) ≡ FO, M has no uncountable elementary
extensions; but this is impossible due to the Löwenheim-Skolem Theorem.

In order to show that M has no uncountable (in fact, no non-standard)
elementary extensions, consider the FO(∼D) sentence

∃i(i < d ∧ ∀�w(¬P �wi ∨ (P �wi ∧ (∼D)�w))) (2)

in the signature of M augmented by some new constant symbol d. Since ∼D is
strongly first order, this sentence is equivalent to some first order sentence φ(d).
I state that φ(d) is true if and only if there exists a nonempty set of indexes
I ⊆ M such that i < d for all i ∈ I and such that

(
M,

⋃
i∈I Pi)

) �∈ D, where Pi

is the relation {�m : (�m, i) ∈ P}. Indeed, if such a family of indexes exists, we
can satisfy (2) by choosing the values of I as the values of the variable i,10 then
taking all possible values of �w for all chosen i, and then splitting the team by
putting in the right disjunct all the assignments s for which P �wi (that is, for
which s(�w) ∈ Ps(i)); and conversely, if (2) can be satisfied, the values that the
variable i can take will form a set I of indexes < d such that

⋃
i∈I Pi does not

satisfy D.
Now, for the model M with domain N described above no such family I may

be found no matter the choice of d. Indeed, there will be only finitely many
indexes less than d, and so if all elements of I are less than d then

⋃
i∈I Pi =

Pmax(I), which satisfies D. Hence, M |= ¬∃nφ(n).
Similarly, the FO(D) sentence ∃j(j < d ∧ ∀�w(¬Q�wj ∨ (Q�wj ∧D�w))) is true

if and only there exists a nonempty set J of indexes < d such that
⋃

j∈J Qj

satisfies D; and as above, this sentence must be equivalent to some first order
ψ(d), because D is strongly first order, and M |= ¬∃nψ(n).

Now let M′ be any elementary extension of M, and let d be any nonstandard
element of it (that is, any element greater than all n ∈ N). Then at least one
between φ(d) and ψ(d) will hold in M′. Indeed, in M′ – like in M – we will have
that Pi ⊆ Qi ⊆ Pi+1 for all indexes i ∈ N; and therefore,

⋃
i∈N

Pi =
⋃

i∈N
Qi

and all indexes in N are less than our element d. If this union satisfies D, ψ(d)
holds; and if if instead it does not satisfy D, φ(d) holds. So M′ |= (∃nφ(n)) ∨
(∃nψ(n)) and M′ is not an elementary extension of M, contradicting our premise.
Thus, M cannot have elementary extensions with non-standard elements (and
in particular it cannot have uncountable elementary extensions).

The next lemma can be verified by applying the rules of Team Semantics:

10 Note that Rule TS-∃ of Team Semantics allows for the selection of multiple values
for the variable i, e.g. via the function H : {∅} → P(M)\{∅}, H(∅) = I.
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Lemma 2. For all models M with domain M , teams X over M , and formulas
θ(�v, �y) over the empty signature with �v contained in the variables of X,11

(M,R := X(�v)) |= ∃�y∀�x(R�x → θ(�x, �y)) ⇔ M |=X ∃�y(=(�y) ∧ θ(�v, �y));
(M,R := X(�v)) �|= ∃�y∀�x(R�x → θ(�x, �y)) ⇔ M |=X � ∨ ∃�y(All(�y) ∧ ¬θ(�v, �y)).

Lemma 3. Let D be a k-ary strongly first order, relativizable dependency and
let θ(�x, �y) be a first order formula over the empty signature, where �x is a tuple
of k distinct variables. Then Dθ = {(M ′, R′) : (M ′, R′) ∈ D, (M ′, R′) |=
∃�y∀�x(R′�x → θ(�x, �y))} is also strongly first order and relativizable.

Proof. Observe that by Lemma 2, Dθ�x is logically equivalent to the FO(D,=(·))
formula D�x ∧ ∃�a(=(�a) ∧ θ(�x,�a)). Therefore, every FO(Dθ) sentence is equiv-
alent to some FO(D,=(·)) sentence and hence – by Proposition 5 – to some
FO sentence. Therefore, Dθ is strongly first order. To show that Dθ is also
relativizable, observe that its relativization to some unary predicate P can be
defined in terms of constancy atoms and of the relativization of D to P , since
D(P )

θ �x ≡ D(P )�x ∧ ∃�a (
=(�a) ∧ ∧

a∈�a Pa ∧ θ(P )(�x,�a)
)
, where θ(P ) is the relativiza-

tion (in the usual First Order Logic sense) of θ to the unary predicate P . There-
fore, every FO(D(P )

θ ) sentence is equivalent to some FO(DP ,=(·)) sentence,
and hence – again by Proposition 5 – to some first order sentence.

Proposition 9. Let D be a first order, relativizable dependency such that both
D and ∼D are strongly first order and let M = (M,R) ∈ D for M countable.
Then there exists a first order sentence ηM of the form

ηM = ψ ∧
n∧

i=1

∃�yi(∀�x(R�x → θi(�x, �yi))) ∧
n′∧

j=1

¬∃�zj(∀�x(R�x → ξj(�x, �zj))) (3)

where ψ is a first order sentence over the empty signature and all the θi and
the ξj are first order formulas over the empty signature, such that M |= ηM and
ηM |= D(R).12

Proof. Let T be the theory

T = {ψ : M |= ψ} ∪ {∃�y∀�x(R�x → θ(�x, �y)) : (M,R) |= ∃�y∀�x(R�x → θ(�x, �y))} ∪
{¬∃�z∀�x(R�x → ξ(�x, �z)) : (M,R) �|= ∃�z∀�x(R�x → ξ(�x, �z))}

where �x is a tuple of distinct variables such that |�x| is the arity of D, ψ ranges
over all first order sentences over the empty signature, �y and �z range over tuples

11 Here � is the always-true first order literal and ¬θ(�v, �y) stands for the corresponding
first order formula in Negation Normal Form.

12 Here D(R) is the first order sentence characterizing D as per Definition 5: thus,
every model of ηM with signature {R} is in D.
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of distinct variables disjoint from �x of all finite lengths (including the empty tuple
of variables, in which case their existential quantification is vacuous), and θ(�x, �y)
and ξ(�x, �z) range over first order formulas with free variables in �x�y (respectively
�x�z) over the empty signature. If we can show that T |= D(R), the conclusion
follows: indeed, by compactness we can then find a finite theory Tf ⊆ T such
that Tf |= D(R), and then

∧
Tf has the required form.

Suppose that this is not true, and let A = (A,S) be some model such that
A |= T but A �∈ D. Since A and M satisfy the same sentences over the empty
signature, we can assume that A and M have the same cardinality (finite or – via
Löwenheim-Skolem – countably infinite) and therefore that, up to isomorphism,
the domain A of A is the same as that M of M, i.e., A = (M,S). Also, R �= ∅:
indeed, if R were empty then ∀�x(R�x → ⊥) would be in T , and so since (M,S) |=
T the relation S would also be ∅, which is impossible since (M,R) ∈ D but
(M,S) �∈ D. Therefore ¬∀�x(R�x → ⊥) is in T and S �= ∅ too.

I aim to prove, by induction on n, that for every n ∈ N there exists in M a
descending chain of relations Sn

0 ⊇ Rn
0 ⊇ Sn

1 ⊇ Rn
1 . . . Sn

n ⊇ Rn
n ⊇ R such that

1. (M,Sn
i ) ∈∼D and (M,Rn

i ) ∈ D for all i = 1 . . . n;
2. Every Rn

i , for 0 ≤ i ≤ n, is defined by some formula θi(�x, �y) over the empty
signature that fixes the identity type of �y and by some tuple of elements �an

i ,
in the sense that Rn

i = {�m : M |= θi(�m,�an
i )};

3. Every Sn
i , for 0 ≤ i ≤ n, is defined by some formula ξi(�x, �z) over the empty

signature that fixes the identity type of �z and by some tuple of elements �bn
i ,

in the sense that Sn
i = {�m : M |= ξi(�m,�bn

i )}.

Base Case: See Fig. 2. Since (M,S) �∈ D, (M,S) ∈∼ D; and therefore, by
Theorem 3, there exists some S′ ⊇ S such that (M,S′) ∈ (∼D)max. Also by
Theorem 3, S′ is first order definable over the empty signature: (M,S′) |=
∃�z∀�x(S′�x ↔ ξ0(�x, �z)), where by Proposition 7 we can assume that ξ0 fixes the
identity type of �z. Since S ⊆ S′, (M,S) |= ∃�z∀�x(S�x → ξ0(�x, �z)); and since
(M,S) |= T , (M,R) |= ∃�z∀�x(R�x → ξ0(�x, �z)) too.
Now consider the dependency E0 = {(M ′, R′) ∈ D : (M ′, R′) |= ∃�z∀�x(R′�x →
ξ0(�x, �z))}. By Lemma 3, E0 is strongly first order and relativizable, and
(M,R) ∈ E0; therefore, by Theorem 3, there exists some R0

0 ⊇ R such
that (M,R0

0) ∈ (E0)max, and this R0
0 is definable by some θ0(�x, �y) that

fixes the identity type of �y and by some tuple �a0
0 ∈ M |y|, in the sense that

R0
0 = {�m : M |= θ00(�m,�a0

0)}.
Since (M,R0

0) ∈ (E0)max, (M,R0
0) ∈ E0. Therefore, (M,R0

0) ∈ D, and there
exists some tuple �b00 in M such that R0

0 ⊆ S0
0 = {�m : M |= ξ0(�m,�b00)}. Now

S0
0 is nonempty, as it contains R0

0 and hence R, and S′ is nonempty, as it
contains S, and they are both defined by the same formula ξ0(�x, �z) that fixes
the identity type of �z. Therefore, by Proposition 8, there exists a bijection
h : M → M that maps S′ into S0

0 . This implies that (M,S0
0) is isomorphic to

(M,S′), and thus that (M,S0
0) ∈∼D as required.

Induction Case: See Fig. 3. Suppose that a chain Sn
0 ⊇ Rn

0 . . . Sn
n ⊇ Rn

n ⊇ R
exists as per our hypothesis. Then, in particular, Rn

n is defined by some
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Fig. 2. The base case.

θn(�x, �y) that fixes the identity type of �y; and since R ⊆ Rn
n, (M,R) |=

∃�y∀�x(R�x → θn(�x, �y)). But then, since (M,S) |= T , (M,S) |= ∃�y∀�x(S�x →
θn(�x, �y)) too. Now consider the dependency Fn = {(M ′, R′)∈ ∼D :
(M ′, R′) |= ∃�y∀�x(R′�x → θn(�x, �y))}. By Lemma 3, Fn is strongly first order
and relativizable, and (M,S) ∈ Fn; therefore, there exists some S′ ⊇ S such
that (M,S′) ∈ (Fn)max, and this S′ is defined by some ξn+1(�x, �z) over the
empty signature that (by Proposition 7) fixes the identity type of �z. There-
fore, since S ⊆ S′, (M,S) |= ∃�z∀�x(S�x → ξn+1(�x, �z)); and since (M,S) |= T ,
this implies that (M,R) |= ∃�z∀�x(R�x → ξn+1(�x, �z)) as well.
Consider the dependency En+1 = {(M ′, R′) ∈ D : (M ′, R′) |= ∃�z∀�x(R′�x →
ξn+1(�x, �z))}. Again, by Lemma 3, En+1 is strongly first order and relativiz-
able, and (M,R) ∈ En+1; therefore, there exists some Rn+1

n+1 ⊇ R such that
(M,Rn+1

n+1) ∈ (En+1)max. This Rn+1
n+1 will, again, be first order definable over

the empty signature by some θn+1(�x, �y) that fixes the identity type of �y
and by some tuple �an+1

n+1. Furthermore, since (M,Rn+1
n+1) ∈ En+1, it will be

the case that (M,Rn+1
n+1) ∈ D and that there exists some �bn+1

n+1 such that
Rn+1

n+1 ⊆ Sn+1
n+1 = {�m : M |= ξn+1(�m,�bn+1

n+1)}. Now since Sn+1
n+1 and S′ are

defined by the same ξn+1(�x, �z) and are both nonempty, by Proposition 8
there exists some bijection g : M → M such that g[S′] = Sn+1

n+1 . Therefore,
(M,Sn+1

n+1) ∈ Fn: thus, (M,Sn+1
n+1) ∈∼D, and there exists some �an+1

n for which
Sn+1

n+1 ⊆ Rn+1
n = {�m : θn(�m,�an+1

n )}.
Rn+1

n and Rn
n are defined by the same formula θn(�x, �y), which fixes the identity

type of �y, and they are both nonempty since they both contain R. Thus by
Proposition 8 there exists some bijection h : M → M that maps Rn

n into
Rn+1

n . Then, for all i = 0 . . . n, let Rn+1
i = h[Rn

i ] and Sn+1
i = h[Sn

i ].
Then Sn+1

0 ⊇ Rn+1
0 ⊇ Sn+1

1 ⊇ . . . Sn+1
n ⊇ Rn+1

n ⊇ Sn+1
n+1 ⊇

Rn+1
n+1 ⊇ R, because h preserves inclusions. Additionally, (M,Sn+1

i )∈ ∼D and
(M,Rn+1

i ) ∈ D for all i = 0 . . . n + 1, as required, since D and ∼D are
closed under isomorphisms, and for all i ∈ 0 . . . n the Sn+1

i and Rn+1
i are still

defined respectively by ξi and θi and by �an+1
i = h(�an

i ), �bn+1
i = h(�bn

i ), since
Sn+1

i = h[Sn
i ] = {h(�m) : M |= ξi(�m,�bn

i )} = {�m′ : M |= ξi(�m′, h(�bn
i ))} and

Rn+1
i = h[Rn

i ] = {h(�m) : M |= θi(�m,�an
i )} = {�m′ : M |= θi(�m′, h(�an

i ))}.
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Fig. 3. The induction case. M is showed twice to avoid cluttering the figure too much.

Finally, consider the theory

U = {∀�x(Pi�x → Qi�x) ∧ (Qi�x → Pi+1�x) : i ∈ N} ∪ {D(Pi),¬D(Qi)} : i ∈ N}
that states that there is an infinite ascending chain P0 ⊆ Q0 ⊆ P1 ⊆ Q1 ⊆ . . . of
relations satisfying alternatively D and ¬D as per Fig. 1. U is finitely satisfiable:
indeed, for any finite subset Uf of U , if n is the highest index for which Pn or
Qn appear in Uf , the model with domain M in which P0 . . . Pn are interpreted
as Rn

n . . . Rn
0 (note the inverse order) and Q0 . . . Qn are interpreted as Sn

n . . . Sn
0

(likewise in inverse order) satisfies Uf , since Pi = Rn
n−i ⊆ Sn

n−i = Qi and
Qi = Sn−i ⊆ Rn−i−1 = Pi+1. Therefore, by compactness, U is satisfiable; and
by Lemma 1, at least one between D and ∼D is not strongly first order.

We can now prove the main result of this work:

Theorem 4. Let D be a relativizable first order dependency. Then the following
are equivalent:

i) D(R) is equivalent to some sentence of the form

l∨

k=1

⎛

⎝ψk ∧
nk∧

i=1

∃�yk
i (∀�x(R�x → θk

i (�x, �yk
i ))) ∧

n′
k∧

j=1

¬∃�zk
j (∀�x(R�x → ξk

j (�x, �zk
j )))

⎞

⎠

(4)
where all the ψk are first order sentences over the empty vocabulary and all
the θk

i and the ξk
j are first order formulas over the empty vocabulary;

ii) Both D and ∼D are definable in FO(D0,�,=(·),All);
iii) D is doubly strongly first order.
iv) Both D and ∼D are (separately) strongly first order.
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Proof.

i) ⇒ ii): Suppose that D(R) is in the form of Eq. (4) and, for each first order
sentence ψ over the empty signature ψ, let [ψ] ∈ D0 be the 0-ary first order
dependency defined as [ψ] = {M : M |= ψ}. Then D�v is equivalent to the
FO(D0,�,=(·),All) formula

l⊔

k=1

⎛

⎝[ψk] ∧
nk∧

i=1

∃�yk
i (=(�yk

i ) ∧ θk
i (�v, �yk

i )) ∧
n′
k∧

j=1

(� ∨ ∃�zk
j (All(�zk

j ) ∧ ¬ξk
j (�v, �zk

j )))

⎞

⎠

where, up to renaming, we can assume that �v is disjoint from all the �yk
i and

�zk
j and where each ¬ξk

j stands for the corresponding expression in Negation
Normal Form. Indeed, by Lemma 2 – as well as the rules TS-∧ and TS-�
for conjunction and global disjunction – the above expression is satisfied by
a team X in a model M if and only if there exists some k ∈ 1 . . . l such that
1. M |= ψk;
2. For all i ∈ 1 . . . nk, (M,X(�v)) |= ∃�yk

i ∀�x(R�x → θk
i (�x, �yk

i ));
3. For all j ∈ 1 . . . n′

k, (M,X(�v)) �|= ∃�zk
j ∀�x(R�x → ξk

j (�x, �zk
j )).

These are precisely the conditions for Eq. (4) to be true in (M,X(�v)), that
is, for it to be the case that M |=X D�v. Likewise, ∼D�v is equivalent to

l∧

k=1

⎛

⎝[¬ψk] �
nk⊔

i=1

(� ∨ ∃�yk
i (All(�yk

i ) ∧ ¬θk
i (�v, �yk

i ))) �
n′
k⊔

j=1

∃�zk
j (=(�zk

j ) ∧ ξk
j (�v, �zk

j ))

⎞

⎠ .

Therefore, both D and ∼D are indeed definable in FO(D0,�,=(·),All).
ii) ⇒ iii) Since both D and ∼D are definable in FO(D0,�,=(·),All), every

sentence of FO(D,∼D) is equivalent to some sentence of FO(D0,�,=(·),All)
and therefore – by Proposition 6 – to some sentence of FO. Therefore, D is
doubly strongly first order.

iii) ⇒ iv) Obvious, because FO(D),FO(∼D) ⊆ FO(D,∼D) ≡ FO.
iv) ⇒i) Suppose that both D and ∼D are strongly first order. Then, by Propo-

sition 9, for every countable M = (M,R) ∈ D there exists some first order
sentence ηM of the form of Eq. (3) such that M |= ηM and that ηM |= D(R).
Now consider the first order theory

T = {¬ηM : M ∈ D,M is countable} ∪ {D(R)}
T is unsatisfiable: indeed, if it had a model then by the Löwenheim-Skolem
Theorem it would have a countable model M = (M,R), but this is impossible
because we would have that M ∈ D (since D(R) ∈ T ) and thus M |= ηM,
despite the fact that ¬ηM ∈ T . Therefore, T is finitely unsatisfiable and
D(R) |= ∨l

k=1 ηMk
for some finite set M1 . . .Ml of countable models of

D. But each such ηMk
entails D(R), and therefore D(R) is equivalent to∨l

k=1 ηMk
which is in the form of Eq. (4).

Corollary 1. Let D be a family of relativizable dependencies. Then D is doubly
strongly first order if and only if every D ∈ D is doubly strongly first order.
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Proof. If D is doubly strongly first order and D ∈ D, every sentence of FO(D,∼
D) is a sentence of FO(D,∼D) ≡ FO, and so D is doubly strongly first order.

Conversely, suppose that every D ∈ D is doubly strongly first order and
relativizable. Then by Theorem 4, for every D ∈ D both D and ∼D are definable
in FO(D0,�,=(·),All). Therefore, every sentence of FO(D,∼D) is equivalent
to some sentence of FO(D0,�,=(·),All), and thus – because of Proposition 6 –
to some first order sentence. Therefore, D is doubly strongly first order.

Acknowledgements. I thank the reviewers for their helpful comments and sugges-
tions.
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