
Characterizations for XPathR(↓)

Nicolás González1 and Sergio Abriola1,2(B)

1 University of Buenos Aires, Buenos Aires, Argentina
sabriola@dc.uba.ar

2 ICC-CONICET, Buenos Aires, Argentina

Abstract. Over the semantic universe of trees augmented with arbi-
trary sets of relations between nodes, we study model-theoretic proper-
ties of the extension XPathR(↓) of the downward fragment of XPath,
equipped with a finite set R of relation symbols. We introduce an ade-
quate notion of bisimulation, dependant on the set of relations R in con-
sideration, and show a characterization result in the style of Hennessy-
Milner’s, relating bisimulation and logical equivalence and showing that
both coincide over finitely branching R-trees. Furthermore, we also give
a van Benthem-like theorem characterizing each XPathR(↓) as the frag-
ment of first-order logic (over an adequate signature) with one free vari-
able that is R-bisimulation-invariant. Finally, we show that our results
are also valid when applied to universes of trees with some fixed semantics
for the symbols of R. This contains in particular the case of XPath=(↓)
over data trees.

Keywords: XPath · Bisimulation · Characterization · Data logics

1 Introduction

XPath is the most widely used query language for XML documents; it is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommenda-
tion [1]. XPath has syntactic operators to navigate the tree using accessibility
relations such as ‘child’, ‘parent’, ‘sibling’, et cetera, and can make tests on inter-
mediate nodes. Core-XPath [2] is the fragment of XPath 1.0 containing only the
navigational behavior of XPath. Core-XPath can express properties on nodes
with respect to the underlying tree structure of the XML document, such as
‘nodes with label b’, or ‘nodes that have both a child with label a and a grand-
child with label b’. It can also express properties on paths along the tree such as
‘the ending node is the grandchild of the starting node’, or ‘the initial node has
label a and has a child with a, and the ending node is the grandparent of the
starting node’. The first type of formulas are evaluated on individual nodes and
are called node expressions, while the formulas of the second type are evaluated
on pairs of nodes and are called path expressions. However, Core-XPath cannot
express conditions on the actual data contained in the attributes, such as with a
node expression saying ‘this node has two children with different data values’, or
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 319–336, 2021.
https://doi.org/10.1007/978-3-030-88853-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_20

320 N. González and S. Abriola

‘the value of this node coincides with the value of some descendant’. In contrast,
Core-Data-XPath [3] (which we here call simply XPath=) can perform these data
comparisons. Indeed, XPath= is the extension of Core-XPath with the addition
of (in)equality tests between attributes of elements in an XML document.

In the paper [4], the expressive power of fragments of XPath= was studied,
from a logical and model-theoretical point of view, when the set of navegational
axes was taken among ↓, ↑, and the reflexive-transitive closure of those axes. In
that work, the semantic universe of study was that of data trees, whose nodes
have a single label taken from a finite alphabet and a single data value from an
infinite domain. A focus of study in that work was that of bisimulation, which is
a classic tool of modal logics, used to determine equivalence between relational
models. A node x of a data tree T and a node x′ of a data tree T ′ are said to be
bisimilar if they satisfy some special (depending of the studied fragment) back-
and-forth conditions over the structure of the data tree. In [4], suitable notions
of bisimulation were deviced for the XPath= fragments under considerations.
Then, showing a characterization result in the style of the Hennessy-Milner’s
theorem for Basic Modal Logic[6], it was proven that if x and x′ are bisimilar
then they satisfy exactly the same node expressions, and that the converse is
also true for trees whose every node only has a finite number of children. Hence,
bisimulation coincides with logical equivalence, i.e., with indistinguishability by
means of node expressions. The paper [4] also stated and proved theorems in
the style of van Benthem’s for Basic Modal Logic [7], but in the context of
XPath=. One of these theorems states that the downward fragment of XPath=

coincides with the bisimulation-invariant fragment of first-order logic with one
free variable (over the adequate signature). For the case of the vertical fragment
of XPath=, this characterization fails, but a weaker result is proved instead.

In [5], the study of bisimulation for XPath= was expanded in order to encom-
pass bisimulation notions over two-pointed data trees (i.e. a data tree and two
specified nodes), giving a bisimulation notion for the downward and the vertical
fragment of XPath= over two-pointed data trees, and proving the correspond-
ing characterization results between logical equivalence and bisimulation. In this
way, the paper expanded the results of [4] from the domain of node expressions
to that of path expressions.

In the current work we focus our study in a family of generalizations of
XPath=(↓), which includes not only the capability of comparing the end nodes
of two paths by data (in)equality, but also checking for other types of arbitrary
n-ary predicates over nodes at the end nodes of n paths. Given a fixed set R
of relation symbols with their arity, we generalize the concept of data trees to
encompass arbitrary relations between nodes, and study the logic XPathR(↓)
over this universe. We give a general suitable bisimulation notion for these R
fragments, and show a Hennessy-Milner-like characterization result connecting
this notion with that of logical equivalence. Furthermore, we provide a theorem
in the style of van Benthem’s result for Basic Modal Logic, thus characterizing
these logics as fragments of first-order logic whose formulas are invariant under
this new notion of bisimulation. While we initially state these results for the

Characterizations for XPathR(↓) 321

case of the full universe with no semantic restrictions, in the end we show that
restricting ourselves to some universes of data trees preserves our results.

2 Preliminaries

A data tree is a directed tree whose nodes have a single label from a finite alpha-
bet and a single data value from a (possibly infinite) data domain. XPath=(↓) is
a logic that can express properties about these structures, for instance, we can
say if a node has or not certain label or if a node is a child of another via the
child axis ↓. The most important capabilities of this logic lie in its data tests
〈α = β〉 or 〈α �= β〉, which can compare the data values of two nodes. More
precisely, a node satisfying 〈α = β〉 (resp. 〈α �= β〉) means that there are paths
from it such that the first one satisfies α, the second one satisfies β and their
final points have equal (resp. non-equal) data value. Having the same data value
can be thought of as a binary equivalence relation between nodes, so a natural
question that arises is the possibility of extending the types of comparisons that
can be made at the end of paths.

Fixed R, XPathR(↓) is an extension of XPath=(↓) in the sense that now it can
allow relations with arbitrary arity (not necessarily binary) between final points
of paths from a certain node of a tree. Here, formulas of the type 〈α1, α2, . . . , αn〉r

express this type of operation, where r represents a particular relation symbol
and R is the set of such symbols. In this context, the data test ϕ := 〈α = β〉 can
be re-expressed as 〈α, β〉=d

where the sub index =d can be interpreted over a
data tree as the equivalence relation of having same data value. Similarly, a label
test ϕ := a can be re-expressed as 〈ε〉a, where a is an unary relation symbol.

Initially, we will consider that the universe of the models for XPathR(↓) is
still that of trees, but extended with an arbitrary relation over nodes for each
r ∈ R (with its respective arity). We call these models R-trees.

Definition 1. Let R be a finite and non-empty set of relational symbols with
arities given by the function A : R → N≥1. The formulas of XPathR(↓) are
defined by the grammar below:

ϕ,ψ = ϕ ∧ ψ | ¬ϕ | 〈α1, α2, . . . , αA(r)〉r | 〈α1, α2, . . . , αA(r)〉r r ∈ R
α, β = ε | ↓ | αβ | α ∪ β | [ϕ]

The first row generates the node expressions, and the second one, the path
expressions: 〈α1, α2, . . . , αA(r)〉r and 〈α1, α2, . . . , αA(r)〉r are called path tests
where αi is a path expression for all i ∈ {1, 2, . . . ,A(r)}; αβ and α ∪ β are
respectively the concatenation and union between α and β; [ϕ] are node tests
(as part of a path expression) where ϕ is a node expression; and the symbols ε
and ↓ are the self and child axes, respectively.

As usual we use ϕ ∨ ψ as a shorthand for ¬(¬ϕ ∧ ¬ψ). By R we indicate
the set of the complement symbols r with r ∈ R and extend A to R ∪ R as
A(r) := A(r) for r ∈ R.

322 N. González and S. Abriola

From now on, we consider a fixed R �= ∅, a family of predicate symbols as in
Definition 1.

Definition 2. An R-tree T = 〈T,E↓, {Rr}r∈R〉 is a set T with a binary rela-
tion E↓ ⊆ T 2 such that 〈T,E↓〉 is a rooted tree, and with a family of relations
{Rr}r∈R, where Rr ⊆ TA(r). We use Rr to abbreviate the complement of Rr,
that is, Rr := T A(r) \ Rr . If x, y ∈ T , the pair (T , x) is called a pointed
model, and (T , x, y) is called a two-pointed model.

Note 1. To simplify the notation when there is no risk of confusion, we will often
simply use r to refer to the semantics Rr corresponding to the R-tree currently
in discussion.

In some cases when a is an unary symbol, we might simply write a instead
of the node expression 〈ε〉a.

Example 1. Let us consider T = 〈T,E↓, {a, b, c,=n,=w}〉 a representation of
a very simple and brief bibliographical database as in Fig. 1. Here a, b, c are
unary predicates (representing in T that a node is an author, book, or chapter,
respectively. =n,=w are binary predicates, which express in T when two nodes
have the same numerical value for =n, or the same word for =w.

Fig. 1. A representation of a bibliographical database as in Example 1, via a tree whose
nodes contain both a numeric and lexical value and where nodes can belong to any of
three types of unary relations ((a)uthor), (b)ook, (c)hapter).

Characterizations for XPathR(↓) 323

Definition 3. We now give the interpretation of the symbols from Definition 1
over an R-tree T = 〈T,E↓, {Rr}r∈R〉.

[[ε]]T := {(x, y) ∈ T 2 | x = y} [[↓]]T := E↓ [[[ϕ]]]T := {(x, x) ∈ T 2 | x ∈ [[ϕ]]T }
[[αβ]]T := [[α]]T ◦ [[β]]T [[α ∪ β]]T := [[α]]T ∪ [[β]]T
[[ϕ ∧ ψ]]T := [[ϕ]]T ∩ [[ψ]]T [[¬ϕ]]T := T \ [[ϕ]]T

[[〈α1, α2, . . . , αn〉r]]T := {x ∈ T | ∃y1, y2, . . . , yn ∈ T ∀i ∈ {1, 2, . . . , n}
(x, yi) ∈ [[αi]]T ∧ Rr(y1, y2, . . . , yn)}

[[〈α1, α2, . . . , αn〉r]]T := {x ∈ T | ∃y1, y2, . . . , yn ∈ T ∀i ∈ {1, 2, . . . , n}
(x, yi) ∈ [[αi]]T ∧ Rr(y1, y2, . . . , yn)}

If ϕ is a node expression and α a path expression, then we write (T , x) |= ϕ
iff x ∈ [[ϕ]]T and (T , x, y) |= α iff (x, y) ∈ [[α]]T .

Remark 1. Note that we can express the node property 〈α〉, which indicates that
from a node it is possible to descend to some node via the path expression α.
Indeed, we can see that for any r ∈ R, the following formula expresses the desired
property: 〈α, . . . , α〉r ∨ 〈α, . . . , α〉r.

We can also define a node expression that is true on any node, irrespective of
the semantics of the tree: take any r ∈ R and define � := 〈ε, . . . , ε〉r ∨〈ε, . . . , ε〉r.

Example 2. From the root t0 of the database represented in Fig. 1, we could ask
whether there is an author having the same name as some book title. The answer
to this depends on whether (T , t0) |= 〈↓ [〈ε〉a], ↓↓ [〈ε〉b]〉=w

. From what we can
see in the graphical representation, this does not happen, as we can see that
[[〈↓ [〈ε〉a], ↓↓ [〈ε〉b]〉=w

]]T = ∅.
Note that here (as in some types of data logics) asking whether there are two

different nodes with the same data value is in general not possible. For example,
[[a ∧ 〈↓, ↓〉=n

]]T (see Note 1) will contain any node that corresponds to an author
that has written a book, since there is no guarantee that the two witnesses of ↓
are different. Indeed, in the figure [[〈ε〉a ∧ 〈↓, ↓〉=n

]]T would contain the node of
Alexandre Dumas, even though it has only one book child.

Example 3. Consider an extension of T and R including the binary predicate
=d

n, such that over T , x =d
n y iff (x =n y and x �= y). Now we can express in T

properties such as ‘this author has two different books with the same number of
pages’, via ϕ : a ∧ 〈↓, ↓〉=d

n
.

Definition 4. Two expressions η1 and η2 of the same type (node or path expres-
sion) are said to be semantically equivalent, written η1 ≡ η2 if for all T we
have that [[η1]]T = [[η2]]T .

Remark 2. It easy to see that the semantic equivalence is preserved by any syn-
tactic construction. That is, negating two equivalent node expression results in
equivalent node expressions, concatenating a path expression to two different
but equivalent path expressions results in two equivalent path expressions, etc.

324 N. González and S. Abriola

Remark 3. Let γ = γ1, . . . , γk and γ′ = γk+1, . . . , γn be finite (and potentially
empty) sequences of path expressions. For all α and β path expressions and for
all ∗ ∈ R ∪ R with A(∗) = n + 1 we have that

〈γ, α ∪ β, γ′〉∗ ≡ 〈γ, α, γ′〉∗ ∨ 〈γ, β, γ′〉∗

Guided by this fact, we will re-define XPathR(↓) as the fragment of the orig-
inal one (Definition 1) where we do not include the rule α ∪ β in the grammar.
That is, the fragment whose path expressions do not have the symbol ∪ in their
syntax. Even though this union-free fragment is less expressive when consid-
ering both path and node expressions, the expressive power remains the same as
the full fragment when considering only pointed models and node expressions,
because of the semantic equivalence given in Remark 3.

We now give the definition of direct path expressions, which are path expres-
sions without unnecessary concatenations of symbols. This definition is used
later to define normal expressions, whose purpose is to simplify the proofs by
induction.

Definition 5. A direct path expression α is a path expression of the form
α = ε or α =↓ ξ1 ↓ . . . ↓ ξn where each ξi is an empty string or a node test.

A normal expression is one with all the path expressions in its path tests
being direct. We will formally define this idea by means the operator sub(−).

Definition 6. For a formula η we denote by sub(η) the set defined recursively
as follows:

sub(ε) = sub(↓) := ∅ sub(αβ) := sub(α) ∪ sub(β)
sub(¬ϕ) = sub([ϕ]) := sub(ϕ) sub(ϕ ∧ ψ) := sub(ϕ) ∪ sub(ψ)

sub(〈α1, α2, . . . , αn〉∗) := {α1, α2, . . . , αn} ∪
n⋃

i=1

sub(αi) for ∗ ∈ R ∪ R

Definition 7. A formula η is a normal expression if all the path expressions
in sub(η) ∪ {η} are direct.

The downward depth of an expression measures the maximum depth from
the current point of evaluation that the formula could potentially ‘see’. The
idea is that, when analysing such an expression over a particular point or pair
of points, nodes that are further down than this depth have no effect on the
resulting truth value of the expression.

Definition 8. The downward depth of η denoted by dd(η) is the number
defined as follows:

dd(¬ϕ) := dd(ϕ) dd(ϕ ∧ ψ) := max{dd(ϕ), dd(ψ)}
dd(λ) := 0 where λ represents the empty string
dd(εβ) := dd(β) dd([ϕ]β) := max{dd(ϕ), dd(β)} dd(↓ β) := 1 + dd(β)

dd(〈α1, α2, . . . , αn〉∗) := max{dd(α1), dd(α2), . . . , dd(αn)} for ∗ ∈ R ∪ R

Characterizations for XPathR(↓) 325

The set of all formulas with downward depth less than or equal to � ≥ 0 is written
as XPathR(↓).

Note that this definition encompasses all (union-free) formulas in XPathR(↓)
and the function dd(−) is well-defined.

Remark 4. Let γ = γ1, . . . , γk and γ′ = γk+1, . . . , γn be finite (and potentially
empty) sequences of path expressions. The following semantic equivalences also
preserve the downward depth.

1. 〈γ, [ϕ]α, γ′〉∗ ≡ ϕ ∧ 〈γ, α, γ′〉∗ ∗ ∈ R ∪ R with A(∗) = n + 1
2. εα ≡ α
3. [ϕ][ψ] ≡ [ϕ ∧ ψ]

Proposition 1. For every formula η we have that

i) If η is a node expression then there exists a normal node expression η′ with
dd(η) = dd(η′) and η ≡ η′.

ii) If η is a path expression then there exists a normal path expression η′ with
dd(η) = dd(η′) and η ≡ η′.

Proof. One can easily prove the statement by syntactic induction over η and
making use of the semantic equivalences from Remark 4.

3 Bisimulation and Equivalence

The classic Hennessy-Milner’s characterization theorem [6] for Basic Modal Logic
establishes the relation between two notions: logical equivalence and bisimilarity.
In our case, the former notion indicates when a pair of pointed models are
indistinguishable by means of node expressions. The latter intuitively ensures
that for each selection of paths in one of the models, there are copies in the
other, preserving the possible relational properties between their respective final
points.

Definition 9. Let � ≥ 0. Given (T , x) and (T ′, x′) we say that they are R�-
logically equivalent and denote it by (T , x) ≡R

� (T ′, x′) if for all node
expression ϕ ∈ XPath�

R(↓) we have that (T , x) |= ϕ, if and only if, (T ′, x′) |= ϕ.
(T , x) and (T ′, x′) are R-logically equivalent, written

(T , x) ≡R (T ′, x′), if (T , x) ≡R
� (T ′, x′) for all � ≥ 0. In other words, if

for any node expression ϕ, (T , x) |= ϕ, if and only if, (T ′, x′) |= ϕ.

Definition 10. A path μ in a tree T is a sequence μ = μ0 ↓ μ1 ↓ . . . ↓ μn where
n ≥ 0, μi ∈ T for all i ∈ {0, . . . , n} and E↓(μi, μi+1) for all i ∈ {0, 1, . . . , n− 1}.
The length len(μ) := n is the number of symbols ↓ in μ. The i-th node of μ is
[μ]i := μi and end(μ) := [μ]len(μ) is the final node of μ.

We denote by Path(T) the set of all paths μ in T . For a node x ∈ T ,
Path(T , x) are the paths μ starting from the node x, i.e., [μ]0 = x and by
Pathk(T , x) we refer to the subset of paths in Path(T , x) with length at most k.

326 N. González and S. Abriola

The concatenation μ � ν of two paths μ, ν ∈ Path(T) such that ν0 = end(μ)
is defined as [μ � ν]i := [μ]i for all i ∈ {0, . . . , len(μ)} and [μ � ν]len(μ)+i := [ν]i
for all i ∈ {0, . . . , len(ν)}.
Definition 11. Given a R-tree T and a node x ∈ T , T |x� is the R-tree whose
underlying tree is the set of nodes y ∈ T for which there exists a path μ ∈
Path�(T , x) with end(μ) = y (note that x is the root of such tree).

Remark 5. For all � ≥ 0 and R-tree T , we have that (T |x� , x) ≡R
� (T , x).

Definition 12. Let T and T ′ be R-trees. An R�-bisimulation Z = {Zk}0≤k≤�

is a family of relations Zk ⊆ T × T ′ such that for all k, for all (x, x′) ∈ Zk, and
for all n ∈ Im(A), the clauses below hold.

Zig For every selection of paths μ1, μ2, . . . , μn ∈ Pathk(T , x), there exist paths
μ′
1, μ

′
2, . . . , μ

′
n ∈ Pathk(T ′, x′) such that for all j ∈ {1, . . . , n} and for all

r ∈ R we have that:
i) len(μj) = len(μ′

j)
ii) ([μj]i, [μ′

j]i) ∈ Zk−i ∀i ∈ {0, . . . , len(μj)}
iii) Rr(end(μ1), end(μ2), . . . , end(μn)) ⇔ R′

r(end(μ′
1), end(μ′

2), . . . , end(μ′
n))

Zag For every selection of paths μ′
1, μ

′
2, . . . , μ

′
n ∈ Pathk(T ′, x′) there exist paths

μ1, μ2, . . . , μn ∈ Pathk(T , x) such that for all j ∈ {1, . . . , n} and for all r ∈ R
we have that:
i) len(μj) = len(μ′

j)
ii) ([μj]i, [μ′

j]i) ∈ Zk−i ∀i ∈ {0, . . . , len(μj)}
iii) Rr(end(μ1), end(μ2), . . . , end(μn)) ⇔ R′

r(end(μ′
1), end(μ′

2), . . . , end(μ′
n))

Two pointed models (T , x) and (T ′, x′) are said to be R�-bisimilar, denoted
(T , x) �R

� (T ′, x′), if there exists an R�-bisimulation Z = {Zi}0≤i≤� such
that (x, x′) ∈ Z�.

If Z ⊆ T × T ′ is a relation such that for all � ≥ 0 the family {Zi | Zi =
Z}0≤i≤� is a R�-bisimulation then we call Z an R-bisimulation. If there exists
a R-bisimulation Z with (x, x′) ∈ Z then (T , x) and (T ′, x′) are R-bisimilar,
written as (T , x) �R (T ′, x′).

Remark 6. It is useful to observe that, when there are predicates of arity 2
or greater, the Zig (and Zag) conditions can be replaced in the case of unary
predicates with a simpler ‘Harmony’ condition in the style of bisimulation for
modal logics and XPath=: for any unary predicate u it is enough to check that
whenever xZx′, then u(x) iff u(x′). Note, however, that this replacement cannot
be done if we only have unary predicates in R, since doing so would remove all
Zig and Zag conditions, and thus we would not be comparing any topological
information about the models.

Remark 7. Using the Remark 6, we can see that our Definition 12 for the concept
of R-bisimulation generalizes the definition of bisimulation for XPath=(↓) over
the universe of data trees from [4]. It does so by taking R = {=d}∪A, where =d

is a binary symbol (interpreted as data equality over data trees) and the finite
symbols in the label set A are unary predicates. See also Theorem 4 and the
discussion preceding it.

Characterizations for XPathR(↓) 327

Remark 8. The notion of R-bisimilarity given in Definition 12 does not coincide
with bisimilarity for multi-relational Kripke models (where ↓ and each relation
from R get their own modal operator, and where we translate from R-trees into
Kripke models). Indeed, consider the case where R consists solely of a binary
relation =d (we will represent the semantics of =d with numeric data values).
For an example of two pointed models that are modally bisimilar but not R-
bisimilar, consider: on one hand the infinite linear tree (T , x), where the root
x has data value 1, the sole next child has data value 2, the next one has data
value 1, and so on alternating between these two values (i.e. 1, 2, 1, 2, . . .); on
the other hand, take the infinite linear tree (T ′, x′) that has data value 1 in all
nodes (i.e. 1, 1, 1, 1, . . .).

Intuitively, while modal bisimulation appears to have greater navigational
freedom by being able to move with any modality from R, when doing that it
cannot keep track of the actual topology of the model (given by ↓) nor can it
ask whether the endpoints of paths are related via an r ∈ R.

Example 4. Let R = {b, f, S}, where b, f are unary predicate symbols and S is
a ternary predicate symbol. We consider the R-trees T , T ′ from Fig. 2, where
a node in b is represented as having a red border, and a node satisfying f is
represented as being filled with the color black. In both trees, S has an inter-
pretation related to the numbers: S(x, y, z) iff d(x) = d(y) + d(z), where d(w)
represents the number drawn on the node w. If we call t0, t

′
0 the respective roots

of both trees, it is easy to verify that (T , t0) and (T ′, t′0) are R-bisimilar via the
represented Z relation. It is important to note that it does not matter that T
represents the values of nodes in integers and T ′ does so with rational numbers:
the only thing that matters is the semantics of each predicate in R, as the logic
itself has no way of ‘seeing’ these particular values (and indeed some possible
semantics of S cannot be expressed in this form).

As we have for modal logics, the bounded notions R�-logical equivalence and
R�-bisimulation coincide. That is, two pointed models are R�-logically equiva-
lent, if and only if, they are R�-bisimilar.

The proof of each one of the following statements can be found in the
Appendix.

Lemma 1. For every � ≥ 0, there are finitely many equivalence classes (modulo
semantic equivalence) of node expressions with downward depth at most �.

Corollary 1. For each � ≥ 0 and a pointed model (T , x) there is a node
expression χ�

(T ,x) ∈ XPath�
R(↓) satisfying that for any pointed model (T ′, x′),

(T , x) ≡R
� (T ′, x′) iff (T ′, x′) |= χ�

(T ,x).

Proposition 2. Given (T , x) and (T ′, x′) we have that if (T , x) �R
� (T ′, x′)

then (T , x) ≡R
� (T ′, x′).

Proposition 3. Given (T , x) and (T ′, x′) we have that if (T , x) ≡R
� (T ′, x′)

then (T , x) �R
� (T ′, x′).

328 N. González and S. Abriola

Fig. 2. A representation of two R-trees T and T ′ for R = {b, f, S}, as in Example 4.
Also represented in the figure is a Zig step and, via a dotted line connecting nodes, a
{b, f, S}-bisimulation Z between (T , t0) and (T ′, t′0).

We can unify Proposition 2 and Proposition 3 in the following statement:

Theorem 1. Given (T , x) and (T ′, x′) we have that (T , x) �R
� (T ′, x′), if and

only if, (T , x) ≡R
� (T ′, x′).

4 Characterizations

In this section we state and prove characterization results for XPathR(↓), in the
style of Hennessy-Milner’s theorem [6] for Basic Modal Logic. Our result states
that R-logical equivalence and R-bisimulation agree over models whose under-
lying tree is finitely branching. After giving this result, we will treat XPathR(↓)
as a fragment of the first order logic in order to show a characterization result in
the style of van Benthem’s theorem [7] for Basic Modal Logic, concluding that
the formulas of XPathR(↓) are exactly those of the first order logic (with certain
signature) which are preserved by R-bisimulation.

Proposition 4. Given (T , x) and (T ′, x′) we have that if (T , x) �R (T ′, x′)
then (T , x) ≡R (T ′, x′).

Proof. Suppose (T , x) �R (T ′, x′) via (x, x′) ∈ Z ⊆ T ×T ′. For every � ≥ 0, the
family Z� := {Z0 = Z1 = · · · = Z� := Z} is a R�-bisimulation between (T , x)
and (T ′, x′). Thus, by Theorem 1, for every � ≥ 0 we have that (T , x) ≡R

� . In
other words, (T , x) ≡R (T ′, x′).

Definition 13. A pointed model (T , x) is finitely branching if for all k ≥ 0
the set Pathk(T , x) is finite.

Theorem 2 (Hennessy-Milner’s style characterization). If (T , x) and
(T , x′) are finitely branching, then (T , x) �R (T ′, x′) if and only if (T , x) ≡R

(T ′, x′).

Characterizations for XPathR(↓) 329

Proof.

(⇒) By Proposition 4.
(⇐) Consider the relation Z ⊆ T × T ′, which is defined such that (z, z′) ∈
Z iff (T , z) ≡R (T ′, z′). The proof to show that Z is a R-bisimulation is
analogous to that which was given for Proposition 3 in order to see that Z
was a R�-bisimulation. Now, we define Φ(j,i) :=

∧
μ∈P ϕ

(j,i)
μ since the set P is

finite because (T ′, x′) is finitely branching.

Remark 9. The classical counterexample for the modal logic with only one
modality still works to see that the finitely branching hypothesis is required:
take on one side an infinitely branching tree constructed with one branch of
each finite length; on the other side, a copy of the previous tree with the addi-
tion of an infinitely long linear branch hanging from the root. For every r ∈ R,
we set in both trees that Rr = ∅. It can be seen that both R-trees with their
roots are logically equivalent but that any proposed Z fails to be a bisimulation.

From now on, we focus on XPathR(↓) as a fragment of the first-order logic
FO(σR) with the natural signature σR, and with a standard translation ST (−)
between formulas of XPathR(↓) and of first-order logic. For details, see the
corresponding Definitions 16 and 17 in the Appendix.

The following lemmas are the key for proving the van Benthem’s characteri-
zation style theorem. Before stating them, we need to give some definitions:

Definition 14. Let � ≥ 0 and ψ(u), ϕ(u) ∈ FO(σR) with one free variable u.

– ψ(u) is �-local if for all pointed model (T , x), T |= ψ[u �→ x] iff T |x� |=
ψ[u �→ x].

– ψ(u) is �R-invariant if for all (T , x) and (T ′, x′) such that T |= ψ[u �→ x]
and (T , x) �R (T ′, x′) then T ′ |= ψ[u �→ x′].

– ψ(u) is �R
� -invariant if for all (T , x) and (T ′, x′) such that T |= ψ[u �→ x]

and (T , x) �R
� (T ′, x′) then T ′ |= ψ[u �→ x′].

– ψ(u) and ϕ(u) are semantically equivalent over trees ψ(u)
trees≡ ϕ(u)

if for all (T , x) we have that T |= ψ[u �→ x] iff T |= ϕ[u �→ x].
– A pointed model (T , x) has depth at most � if Path�(T , x) = Pathn(T , x)

for all n ≥ �.

Lemma 2. For each �R-invariant ψ(u) ∈ FO(σR) with one free variable u,
there is � ≥ 0 such that ψ is �-local.

Proof. See Appendix.

Lemma 3. Suppose (T , x) and (T ′, x′) have depth at most �. Then (T , x) �R

(T ′, x′) if and only if (T , x) �R
� (T ′, x′). Equivalently, (T , x) �R (T ′, x′), if

and only if, (T , x) ≡R
� (T ′, x′).

Proof. The left-to-right direction is clear. For the other direction, suppose that
we have (T , x) �R

� (T ′, x′) via Z = {Zk}0≤k≤�. Then we have that Z :=⋃�
k=0 Zk is a R-bisimulation between (T , x) and (T ′, x′).

330 N. González and S. Abriola

Theorem 3 (van Benthem’s style characterization). Let ψ(u) be a for-
mula in FO(σR) with one free variable u. The following statements are equiva-
lent:

1. ψ(u) is �R-invariant.

2. There exists a node expression ϕ such that ψ(u)
trees≡ ST (ϕ) (u)

Proof.

(1⇒2) Suppose ψ(u) is �R-invariant. By Lemma 2 we know that there is some
� ≥ 0 for which ψ(u) is �-local. Let us see that ψ(u) is �R

� -invariant for
such �: given (T , x) and (T ′, x′) such that T |= ψ[u �→ x] and (T , x) �R

�

(T ′, x′) we want to show that T ′ |= ψ[u �→ x′]. On one side, by Remark
5, (T |x� , x) �R

� (T , x) �R
� (T ′, x′) �R

� (T ′|x′
� , x′). On the other side, by

Lemma 3, (T |x� , x) ≡R (T ′|x′
� , x′). Since T |= ψ[u �→ x] iff T |x� |= ψ[u �→ x],

we conclude that T ′|x′
� |= ψ[u �→ x′] iff T ′ |= ψ[u �→ x′]. From this, it

is clear that ϕ(u)
trees≡ ST

(∨
T |=ϕ[u	→x] χ

�
(T ,x)

)
(u) where χ�

(T ,x) is given by
Corollary 1.

(2⇒1) Suppose ψ(u)
trees≡ ST (ϕ) (u). Using Proposition 4, we can see that

ST (ϕ) (u) is �R-invariant. Indeed, if (T , x) �R (T ′, x′), then, by Proposi-
tion 4, (T , x) ≡R (T ′, x′); also if T |= ST (ϕ) [u �→ x], because ST (−) is
truth-preserving then (T , x) |= ϕ. Hence, since (T , x) ≡R (T ′, x′), we have
that (T ′, x′) |= ϕ which is equivalent to T ′ |= ST (ϕ) [u �→ x′]. So ψ(u) is
indeed �R-invariant.

So far, we have considered that R had no fixed semantics on the universe, but
for many cases it is reasonable to consider some restrictions, such that a partic-
ular binary relation is an equivalence relation, which is a reasonable assumption
if we want to talk about R-trees as a generalization of data trees.

Let A be a subset of unary symbols from R, and let X, S, and T be three
subsets of binary symbols from R. We denote by UR

A,X,S,T the class of R-trees
T satisfying that for every node x ∈ T there is a unique symbol a ∈ A such that
x ∈ Ra, and for all r ∈ R the relation Rr is reflexive if r ∈ X, symmetric if
r ∈ S and transitive if r ∈ T . It can be seen that each formula ψ(u) in FO(σR)
that is invariant by bisimulation between structures in UR

A,X,S,T will be semanti-
cally equivalent (relative to UR

A,X,S,T) to the translation of a node expression in
XPathR(↓). The main reason is that the R-trees TA and TB constructed in the
proof of Lemma 2 are now in the class UR

A,X,S,T , since each binary R̃r inherits
good properties from Rr as reflexivity, symmetry and transitivity (for the fresh
nodes tA and tB , we can freely assign them to any single unary set Ra with
a ∈ A). The invariance of ψ(u) between structures in this new class allows us
to finish the proof. Thus, we can relativize van Benthem’s characterization to
UR
A,X,S,T . This gives us a generalization to the van Benthem’s characterization

for XPath=(↓), where the symbols in A are the labels and there is a symbol
=d ∈ X ∩ S ∩ T whose semantic is the pair of nodes with same data value.
Therefore, we have:

Characterizations for XPathR(↓) 331

Theorem 4. Let ψ(u) be a formula in FO(σR) with one free variable u. The
following statements are equivalent:

1. For all (T , x) and (T ′, x′) with T , T ′ ∈ UR
A,X,S,T , if T |= ψ[u �→ x] and

(T , x) �R (T ′, x′) then T ′ |= ψ[u �→ x′]
2. There exists a node expression ϕ ∈ XPathR(↓) such that for all (T , x) with

T ∈ UR
A,X,S,T it happens that (T , x) |= ψ(u) iff (T , x) |= ST (ϕ) (u).

5 Conclusions and Future Work

We have provided (Definition 12) R-bisimulation notions for generalizations of
the logic XPath=(↓) over the full universe of R-trees. This notion coincides with
that of [4] for an adequate R (Remark 7). We have shown that R-bisimulation
coincides with R-logical equivalence over finitely branching pointed trees (The-
orem 2). We have also characterized XPathR(↓) as the fragment of first-order
logic that is invariant by R-bisimulations (Theorem 3). Finally, we have shown
(Theorem 4) that our results also apply for universes of trees with some restricted
semantics which contain the case of XPath=(↓) over data trees.

In the future, we would like to further generalize the work done in this paper,
for example allowing other navigational modalities (such as sibling operators)
for trees.

Acknowledgments. We thank Román Sasyk (Departamento de Matemática, Uni-
versidad de Buenos Aires) for his helpful questions and observations which spurred the
main topic of this work.

A Proofs and Definitions Omitted from the Main Text

Lemma 1. For every � ≥ 0, there are finitely many equivalence classes (modulo
semantic equivalence) of node expressions with downward depth at most �.

Proof. Without loss of generality (by Proposition 1), we assume that every node
expression ϕ is normal, and even more, of the form ϕ = 〈α1, α2, . . . , αn〉∗ for
∗ ∈ R ∪ R, because every normal expression is a Boolean combination of these.
Therefore, if the number of equivalence classes is finite for this type of node
expressions, it will also be finite for their Boolean combinations.

The proof goes by induction over � ≥ 0.

� = 0 For this case, as dd(ϕ) = 0 and ϕ is normal, necessarily ϕ = 〈ε, ε, . . . , ε〉∗
with ∗ ∈ R ∪ R (notice that we can not have path tests like, for instance,
〈[〈ε〉], . . . , [〈ε〉]〉∗ because [〈ε〉] is not direct). Since R is finite, then there are
finitely many ϕ.

� > 0 ϕ = 〈α1, α2, . . . , αn〉∗ for ∗ ∈ R ∪ R and 0 < dd(ϕ) ≤ �. As the αi are
direct (since ϕ is normal), each node test in one of the αi has downward
depth at most � − 1. By induction hypothesis, there are finitely many direct
αi modulo semantic equivalence, and, since R is finite, also there are finitely
many ϕ modulo semantic equivalence.

332 N. González and S. Abriola

Corollary 1. For each � ≥ 0 and a pointed model (T , x) there is a node
expression χ�

(T ,x) ∈ XPath�
R(↓) satisfying that for any pointed model (T ′, x′),

(T , x) ≡R
� (T ′, x′) iff (T ′, x′) |= χ�

(T ,x).

Proof. Let χ�
(T ,x) be the conjunction of all the node expressions modulo equiv-

alence ϕ ∈ XPath�
R(↓) that (T , x) satisfies. Lemma 1 ensures that χ�

(T ,x) is
well-defined because it is a conjunction of finitely many node expressions (mod-
ulo semantic equivalence), and clearly, it satisfies the desired property.

Remark 10. One can redefine some satisfiability notions with the Definition 15:

1. (T , x, y) |= α, if and only if, there exists μ ∈ Path(T , x) with end(μ) = y
and (T , μ) |= α.

2. If ∗ ∈ R ∪ R then (T , x) |= 〈α1, α2, . . . , αn〉∗, if and only if, for all j ∈
{1, 2, . . . , n} there are paths μj ∈ Path(T , x) such that (T , μj) |= αj and
also R∗(end(μ1), . . . , end(μn))

The following definition is a more concrete form of the satisfiability notion
for path expressions in an R-tree. It will be used in Lemma 4 and simplify its
proof.

Definition 15. Given a path μ ∈ Path(T , x), we define inductively the meaning
of (T , μ) |= γ for a path expression γ.

(T , μ) |= ε
def⇐⇒ len(μ) = 0

(T , μ) |= [ϕ]
def⇐⇒ μ = x and (T , x) |= ϕ

(T , μ) |= ↓ def⇐⇒ len(μ) = 1

(T , μ) |= αβ
def⇐⇒ there is a decomposition μ = μα � μβ

such that (T , μα) |= α and (T , μβ) |= β

Lemma 4. Let Z = {Zi}0≤i≤� be a R�-bisimulation between T and T ′. For
all k ∈ {0, 1, . . . , �}, any normal expression η with dd(η) ≤ k, and paths μ ∈
Pathk(T , x) and μ′ ∈ Pathk(T ′, x′) such that ([μ]i, [μ′]i) ∈ Zk−i for all i ∈
{0, 1, . . . , k}, we have that:

1. If η is a node expression then (T , x) |= η, if and only if, (T ′, x′) |= η.
2. If η is a path expression then (T , μ) |= η, if and only if, (T ′, μ′) |= η.

Proof. The proof is by induction over k ∈ {0, 1, . . . , �}.

k = 0 For this case, note that μ = x, μ′ = x′ and if η is a path expression then
η = ε. So, the double implication at 2 is obvious. Let us see when η is a node
expression. Necessarily η = 〈ε, ε, . . . , ε〉∗ with ∗ ∈ R ∪ R, and since (x, x′) ∈
Z0 we have that for all ∗ ∈ R ∪ R, R∗(x, x, . . . , x) iff R′

∗(x
′, x′, . . . , x′). It is

the same that (T , x) |= 〈ε, ε, . . . , ε〉∗, if and only if, (T ′, x′) |= 〈ε, ε, . . . , ε〉∗.

Characterizations for XPathR(↓) 333

k > 0 Suppose η is a path expression with 0 < dd(η) ≤ k then η =↓ ξγ where
ξ is an empty string or a node test, and γ is an empty string or a normal
path expression. Note that dd(ξγ) ≤ k − 1. Let us see the most interesting
case when ξ and γ are not the empty string, so ξ = [ϕ] for some normal
node expression ϕ. Suppose μ = (x ↓ y) � ν and μ′ = (x′ ↓ y′) � ν′ with
ν ∈ Pathk−1(T , y) and ν′ ∈ Pathk−1(T , y′). If (T , μ) |= η then (T , y) |= ϕ
and (T , ν) |= γ. By induction hypothesis, (T ′, y′) |= ϕ and (T ′, ν′) |= γ,
and therefore (T ′, μ′) |= η. Similarly, we can see that if (T ′, μ′) |= η then
(T , μ) |= η.
Suppose now η is a node expression and for simplicity, of the form η = 〈↓
[ϕ1]α1, ↓ [ϕ2]α2〉∗ where ∗ ∈ R ∪ R, ϕ1, ϕ2 are normal node expressions and
α1, α2 are normal path expressions non-equal to ε (the rest of the cases are
proved by the same idea). Let x be a node in T and x′ a node in T ′ such that
(x, x′) ∈ Zk. If (T , x) |= η then there are paths μ1, μ2 ∈ Pathk(T , x) such
that (T , μ1) |= ↓ [ϕ1]α1, (T , μ2) |= ↓ [ϕ2]α2 and R∗(end(μ1), end(μ2)). Since
(x, x′) ∈ Zk, by Zig, for the paths μ1 and μ2 there are another paths μ′

1, μ
′
2 ∈

Pathk(T ′, x′) such that for all j = 1, 2 we have that len(μj) = len(μ′
j), if

i ∈ {0, 1, . . . , len(μj)} then ([μj]i, [μ′
j]i) ∈ Zk−i, and R∗(end(μ1), end(μ2)) iff

R′
∗(end(μ′

1), end(μ′
2)). As ϕ1, ϕ2, α1, α2 have downward depth at most k − 1,

we can apply induction hypothesis and conclude that for all j ∈ {1, 2} if
μj = (x ↓ yj) � νj for some νj ∈ Pathk−1(T , yj) and μ′

j = (x′ ↓ y′
j) � ν′

j

for some ν′
j ∈ Pathk−1(T ′, y′

j) then (T , yj) |= ϕj iff (T ′, y′
j) |= ϕj , and

(T , νj) |= αj iff (T ′, ν′
j) |= αj . Thus, (T ′, x′) |= η. Similarly (by Zag),

(T ′, x′) |= η implies (T , x) |= η.

Proposition 2. Given (T , x) and (T ′, x′) we have that if (T , x) �R
� (T ′, x′)

then (T , x) ≡R
� (T ′, x′).

Proof. Suppose (T , x) �R
� (T ′, x′) via Z = {Z0, Z1, . . . , Z�} with (x, x′) ∈ Z�.

We want to see that for all ϕ ∈ XPath�
R(↓) we have that (T , x) |= ϕ iff (T ′, x′) |=

ϕ. It suffices to show this for all normal path test ϕ = 〈α1, α2, . . . , αn〉∗ with ∗ ∈
R∪R: if (T , x) |= ϕ then there are paths μ1, μ2, . . . , μn ∈ Path�(T , x) such that
(T , μi) |= αi for all i ∈ {1, 2, . . . , n} and R∗(end(μ1), end(μ2), . . . , end(μn)).
Because (x, x′) ∈ Z�, there are paths μ′

1, μ
′
2, . . . , μ

′
n ∈ Path�(T ′, x′) satisfying Zig

with respect to the paths μ1, μ2, . . . , μn. Thus, by Lemma 4, if i ∈ {1, 2, . . . , n}
then (T , μi) |= αi iff (T ′, μ′

i) |= αi. Since R∗(end(μ1), end(μ2), . . . , end(μn)), if
and only if, R′

∗(end(μ′
1), end(μ′

2), . . . , end(μ′
n)), we conclude that (T ′, x′) |= ϕ

via the paths μ′
1, μ

′
2, . . . , μ

′
n. Similarly, by Zag, if (T ′, x′) |= ϕ then (T , x) |= ϕ.

Proposition 3. Given (T , x) and (T ′, x′) we have that if (T , x) ≡R
� (T ′, x′)

then (T , x) �R
� (T ′, x′).

Proof. First we define for all k ∈ {0, 1, . . . , �} the relations (z, z′) ∈ Zk iff
(T , z) ≡R

k (T ′, z′). We want to see that the family Z := {Z0, Z1, . . . , Z�} is
a R�-bisimulation, and since by hypothesis (x, x′) ∈ Z�, we will have that
(T , x) �R

� (T ′, x′) via Z.

334 N. González and S. Abriola

Given Zk ∈ Z and (z, z′) ∈ Zk, we want to show that the Zig and Zag clauses
are satisfied. Let us see only Zag (for Zig, the same idea works).

Let (μ′
1, μ

′
2, . . . , μ

′
n) be a sequence of paths in Pathk(T , z′) and ∗ ∈ R ∪ R

such that R′
∗(end(μ′

1), . . . , end(μ′
n)), we consider the set

P := {(μ1, μ2, . . . , μn) ∈ Pathk(T , z)n | ∀i ∈ {1, 2, . . . , n}
len(μi) = len(μ′

i) ∧ R∗(end(μ1), . . . , end(μn))}

Note that P �= ∅ because since (z, z′) ∈ Zk

(T ′, z′) |= 〈↓len(μ′
1), ↓len(μ′

2), . . . , ↓len(μ′
n)〉∗ ∈ XPathk

R(↓)

⇔ (T , z) |= 〈↓len(μ′
1), ↓len(μ′

2), . . . , ↓len(μ′
n)〉∗

where ↓N is an abbreviation for the concatenation of N symbols ↓, and for
convenience ↓0:= ε.

Suppose Zag does not hold for the paths μ′
1, μ

′
2, . . . , μ

′
n. Thus, we have that

for all μ = (μ1, μ2, . . . , μn) ∈ P there must be some μj and some [μj]i such that
([μj]i, [μ′

j]i) �∈ Zk−i.

1. Fix μ = (μ1, μ2, . . . , μn) ∈ P . We define a family of node expressions {ϕ
(j,i)
μ }

as follows, where j ∈ {1, 2, . . . , n} and i ∈ {0, 1, . . . , len(μ′
j)}: if (j0, i0) is the

smallest pair (by the lexicographic order) with ([μj0]i0 , [μ
′
j0

]i0) �∈ Zk−i0 then
there exists some node expression ψ ∈ XPathk−i0

R (↓) such that (T , [μj0]i0) �|=
ψ and (T ′, [μ′

j0
]i0) |= ψ. So, let ϕ

(j0,i0)
μ be equal to such ψ, and for the rest

of the pairs (j, i) let ϕ
(j,i)
μ := � where � is some fixed tautological node

expression with downward depth zero (such as that from Remark 1).
2. Now, for each j ∈ {1, 2, . . . , n} and i ∈ {0, 1, . . . , len(μ′

j)} let Φ(j,i) be a

formula such that for every (T̃ , x̃), (T̃ , x̃) |= Φ(j,i) iff for all ϕ
(j,i)
μ with μ ∈ P

we have (T̃ , x̃) |= ϕ
(j,i)
μ (informally, abusing the notation in the case that P

is infinite Φ(j,i) ≡
∧

μ∈P ϕ
(j,i)
μ). This formula exists because the expressions

ϕ
(j,i)
μ have downward depth at most k − i, and thus by Lemma 1 they are

finite modulo equivalence. Thus Φ(j,i) can be defined as the conjunction of
some witnesses from each of the (finite) equivalence classes.

3. Finally, for each j ∈ {1, 2, . . . , n} consider

αj := [Φ(j,0)] ↓ [Φ(j,1)] ↓ . . . ↓ [Φ(j,len(μ′
j))]

By construction, dd(αj) ≤ k and (T ′, μ′
j) |= αj . Therefore, (T ′, x′) |=

〈α1, α2, . . . , αn〉∗ and since (T , x) ≡R
k (T ′, x′), it must be that (T , x) |=

〈α1, α2, . . . , αn〉∗. But, this means that there are paths μ1, . . . , μn ∈
Pathk(T , x) satisfying (T , μj) |= αj and R∗(end(μ1), . . . , end(μn)). As μ :=
(μ1, . . . , μn) ∈ P , there must be some μj with (T , μj) �|= αj . So, we obtain a
contradiction by assuming that Zag is not satisfied.

Characterizations for XPathR(↓) 335

Definition 16. Let σR := {F↓} ∪ {Lr}r∈R be a signature where F↓ is binary
and for each r ∈ R the symbol Lr is A(r)-ary. We interpret the symbols in σR
in an R-tree T = 〈T,E↓, {Rr}r∈R〉 as [[F↓]]T := E↓ and [[Lr]]T := Rr for r ∈ R.

Definition 17. If FO(σR) is the set of first order formulas with signature σR
and equality, we define recursively the truth-preserving standard translation
ST (−) from XPathR(↓) to FO(σR) which maps node expressions to formulas
with one free variable and path expression to formulas with two free variables.

ST (ϕ ∧ ψ) (u) := ST (ϕ) (u) ∧ ST (ψ) (u) ST (¬ϕ) (u) := ¬ST (ϕ) (u)

ST (〈α1, α2, . . . , αn〉r) (u) := (∃v1, . . . , vn)
(∧n

i=1 ST (αi) (u, vi) ∧ Lr(v1, . . . , vn)
)

for r ∈ R, with A(r) = n

ST (〈α1, α2, . . . , αn〉r) (u) := (∃v1, . . . , vn)
(∧n

i=1 ST (αi)(u, vi) ∧¬Lr(v1, . . . , vn)
)

for r ∈ R, with A(r) = n

ST (ε) (u, v) := (u = v) ST (↓) (u, v) := F↓(u, v)

ST ([ϕ]) (u, v) := (u = v) ∧ ST (ϕ) (u)

ST (αβ) (u, v) := (∃w)(ST (α) (u, w) ∧ ST (β) (w, v))

Lemma 2. For each �R-invariant ψ(u) ∈ FO(σR) with one free variable u,
there is � ≥ 0 such that ψ is �-local.

Proof. We follow the Step 1 of the proof of van Benthem/Rosen’s theorem for
the modal logic given by Martin Otto in [8].

Let � := 2q − 1 ≥ 0 where q is the quantifier rank of ψ(u). We want to show
that for an arbitrary pointed model (T , x), T |= ψ[u �→ x] iff T |x� |= ψ[u �→ x],
and hence, ψ(u) is �-local.

Given a pointed model (T , x) we define two new R-trees TA and TB as follows:

– The underlying tree of TA is constructed by tying from a fresh node tA: the
original (T , x), q-copies of (T , x) via a family I of q isomorphisms (as σR-
structures) from T , and q-copies of (T |x� , x) via a family J of q isomorphisms
from T |x� . For each r ∈ R of arity n, the relation R̃r in TA is defined by
extending the relation Rr in T as R̃r(y1, y2, . . . , yn) iff Rr(x1, x2, . . . , xn)
where for all k ∈ {1, 2, . . . , q} there exists f ∈ I ∪ J such that f(xk) = yk.
Notice that tA doesn’t play a relevant role because it is not related to any of
the nodes, even itself.

– TB and tB are constructed almost exactly like TA and tA, but now we replace
the original (T , x) with (T |x� , x).

Clearly, (TA, x) �R (T , x) and (TB , x) �R (T |x� , x). Suppose T |= ψ[u �→
x], and since ψ(u) is �R-invariant we have that TA |= ψ[u �→ x]. We affirm
that (TA, x) ≡q (TB , x) as σR-structures, i.e., they satisfy the same formulas
with quantifier rank less than or equal to q. To see that, one can follow the idea
given by Otto showing a winning strategy for player II in a Ehrenfeucht-Fräıssé
game.

Therefore, as ψ(u) has quantifier rank q, TB |= ψ[u �→ x], and then T |x� |=
ψ[u �→ x].

336 N. González and S. Abriola

References

1. Clark, J., DeRose, S.: XML path language (XPath). Website (1999). W3C Recom-
mendation

2. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries.
TODS 30, 444–491 (2005)

3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. JACM 56, 1–48 (2009)

4. Figueira, D., Figueira, S., Areces, C.: Model theory of XPath on data trees. Part I:
bisimulation and characterization. JAIR 53, 271–314 (2015)

5. Abriola, S., Descotte, M.E., Figueira, S.: Model theory of XPath on data trees. Part
II: binary bisimulation and definability. Inf. Comput. 255, 195–223 (2017)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. van Benthem, J.: Modal correspondence theory. Ph.D. thesis, Universiteit van Ams-
terdam (1976)

8. Otto, M.: Elementary proof of the van Benthem-Rosen characterisation theorem.
Technical report 2342, Fachbereich Mathematik, Technische Universität Darmstadt
(2004)

	Characterizations for XPathR("3223379)
	1 Introduction
	2 Preliminaries
	3 Bisimulation and Equivalence
	4 Characterizations
	5 Conclusions and Future Work
	A Proofs and Definitions Omitted from the Main Text
	References

