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Abstract. The symmetric skew monoidal categories of Bourke and Lack
are a weakening of Mac Lane’s symmetric monoidal categories where: (i)
the three structural laws of left and right unitality and associativity are
not required to be invertible, they are merely natural transformations
with a specific orientation; (ii) the structural law of symmetry is a nat-
ural isomorphism involving three objects rather than two. In this paper
we study the structural proof theory of symmetric skew monoidal cate-
gories, progressing the project initiated by Uustalu et al. on deductive
systems for categories with skew structure. We discuss three equivalent
presentations of the free symmetric skew monoidal category on a set of
generating objects: a Hilbert-style categorical calculus; a cut-free sequent
calculus; a focused subsystem of derivations, corresponding to a sound
and complete goal-directed proof search strategy for the cut-free sequent
calculus. Focusing defines an effective normalization procedure for maps
in the free symmetric skew monoidal category, as such solving the coher-
ence problem for symmetric skew monoidal categories.

Keywords: Symmetric skew monoidal categories · Focused sequent
calculus · Coherence · Substructural logic · Agda

1 Introduction

Skew monoidal categories are a weakening of Mac Lane’s monoidal categories
in which the structural laws λ, ρ and α are not required to be invertible, they
are merely natural transformations with a specific orientation. They were intro-
duced by Szlachányi in his study of bialgebroids [27] and have subsequently been
investigated by many (mostly Australian) category theorists [3,5,7,19,20]. In
programming language semantics, skew monoidal categories prominently appear
as a categorical framework for the study of relative monads [1]: similarly to
monads on a category C, which are characterized as monoids in the monoidal
category of endofunctors on C, relative monads on a functor J : J → C are
monoids in the skew monoidal category of functors between J and C.
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Skew monoidal categories have received notable attention in recent years in
connection to their coherence problem. For (normal, non-skew) monoidal cate-
gories, Mac Lane [22] showed that each homset in the free monoidal category
generated by a set of objects contains at most one map, and exactly one when
the domain and codomain have the same frontier of generating objects, i.e. gen-
erating objects appear in the same order and with same multiplicity. The same
is not true in the free skew monoidal category: there exist pairs of objects with
the same frontier but with either no maps or multiple maps between them.
This peculiarity spawned the search for concrete presentations of the free skew
monoidal category, or searching for sufficient conditions for the existence of a
unique map between two objects. Taking a rewriting approach, Uustalu [28]
showed that there is at most one map between an object and an object in a
certain normal form, and exactly one map between an object and that object’s
normal form. Lack and Street [20], and successively also Bourke and Lack [4],
addressed the problem of determining equality of maps by proving that there
is a faithful, structure-preserving functor from the free skew monoidal category
on one generating object to the category Δ⊥ of finite non-empty ordinals and
first-element-and-order-preserving functions.

Uustalu et al. [29] solved the coherence problem for skew monoidal categories
by constructing a focused (in the sense of Andreoli [2]) sequent calculus in which
sequent derivations are in one-to-one correspondence with maps in the free skew
monoidal category. From the focused calculus, one can extract algorithms solving
the following problems in the free skew monoidal category: (1) deciding equality
of parallel maps; (2) enumerating all maps in a certain homset, which is a mean-
ingful problem only in the skew case in which not all parallel maps are equal.
This proof-theoretic approach to coherence is inspired by the pioneering work of
Lambek on deductive systems for residuated categories [21], which many authors
have successfully applied in subsequent years to other categories with structure,
such as Szabo [26], Mints [24], and Dosen and Petrić [12]. Recently, Zeilberger
revived this line of work in his study of the Tamari order [33].

In this paper, we continue following Lambek’s footsteps and study the proof
theory of symmetric skew monoidal categories, again for the purpose of coher-
ence. An appropriate notion of symmetry (and, more generally, braiding) for
skew monoidal categories have recently been introduced by Bourke and Lack [6]
(which we recollect in Sect. 2): the original symmetry of Mac Lane [22], typed
B ⊗ C → C ⊗ B, is replaced by a symmetry typed (A ⊗ B) ⊗ C → (A ⊗ C) ⊗ B,
exclusively allowing the swapping of the second and third objects B and C, leav-
ing the first object A in its place. Mac Lane’s coherence for symmetric (normal,
non-skew) monoidal categories states that two parallel maps in the free sym-
metric monoidal category are equal if and only if they have the same underlying
permutation of generating objects. Analogously to the skew monoidal case, this
is not true in the free symmetric skew monoidal category, and this peculiarity
leads again to a more sophisticated solution to the coherence problem.

The central contribution of this paper resides in the introduction of three
equivalent presentations of the free symmetric skew monoidal category on a set
of generators: a Hilbert-style categorical calculus (Sect. 3), a cut-free sequent
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calculus (Sect. 4) and a focused subsystem of the latter (Sect. 5), implement-
ing a sound and complete backward proof search strategy attempting to build a
derivation in the sequent calculus. Similarly to the skew monoidal case of Uustalu
et al. [29], the sequent calculus has peculiar sequents of the form S | Γ � C,
where the antecedent is split into an optional formula S, called the stoup, and a
list of formulae Γ , called the context. The symmetry (A⊗B)⊗C → (A⊗C)⊗B
is modelled via a restrained exchange rule, which allows the permutation of for-
mulae in the context but leaves the formula in the stoup unchanged. Our sequent
calculus can be seen as a restricted variant of the I,⊗ fragment of intuitionis-
tic linear logic [16]. Focusing defines a normalization procedure for maps in the
free symmetric skew monoidal category, as such solving the coherence problem
for symmetric skew monoidal categories. Following Uustalu et al. [30], we also
discuss an extension of the focused sequent calculus, defining a concrete presen-
tation of the free normal symmetric monoidal category and recover the original
Mac Lane coherence theorem for symmetric monoidal categories (Sect. 6).

The material presented in Sects. 3, 4 and 5 have been formalized in the Agda
proof assistant, the code is available at https://github.com/niccoloveltri/coh-
symmskewmon.

2 Braided/Symmetric Skew Monoidal Categories

A category C is (left-)skew monoidal [27] if it is equipped with a distinguished
object I, a functor ⊗ : C × C → C and three natural transformations

λA : I ⊗ A → A ρA : A → A ⊗ I αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

satisfying the equations

(m1) I ⊗ I
λI

���
��
��

I

ρI

�������
I

(m2) (A ⊗ I) ⊗ B
αA,I,B �� A ⊗ (I ⊗ B)

A⊗λB��
A ⊗ B

ρA⊗B

��

A ⊗ B

(m3) (I ⊗ A) ⊗ B
αI,A,B ��

����
���

��
λA⊗B

I ⊗ (A ⊗ B)

λA⊗B�����
���

�

A ⊗ B

(m4) (A ⊗ B) ⊗ I
αA,B,I �� A ⊗ (B ⊗ I)

A ⊗ B

ρA⊗B

		�������



������� A⊗ρB

(m5) (A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D �� A ⊗ ((B ⊗ C) ⊗ D)

A⊗αB,C,D

��
((A ⊗ B) ⊗ C) ⊗ D

αA,B,C⊗D

��

αA⊗B,C,D�� (A ⊗ B) ⊗ (C ⊗ D)
αA,B,C⊗D�� A ⊗ (B ⊗ (C ⊗ D))

https://github.com/niccoloveltri/coh-symmskewmon
https://github.com/niccoloveltri/coh-symmskewmon
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The latter equations are directed versions of the original Mac Lane axioms
[22] for monoidal categories. Kelly [18] observed that, in the monoidal case, equa-
tions (m1), (m3), and (m4) follow from (m2) and (m5). In the skew situation,
this is not the case.

A skew monoidal category is braided [6] if it is additionally equipped with a
natural isomorphism

sA,B,C : (A ⊗ B) ⊗ C → (A ⊗ C) ⊗ B

satisfying the equations

(b1) ((A ⊗ B) ⊗ C) ⊗ D
sA⊗B,C,D ��

sA,B,C⊗D

��

((A ⊗ B) ⊗ D) ⊗ C
sA,B,D⊗C �� ((A ⊗ D) ⊗ B) ⊗ C

sA⊗D,B,C

��
((A ⊗ C) ⊗ B) ⊗ D

sA⊗C,B,D

�� ((A ⊗ C) ⊗ D) ⊗ B
sA,C,D⊗B

�� ((A ⊗ D) ⊗ C) ⊗ B

(b2) ((A ⊗ B) ⊗ C) ⊗ D
sA,B,C⊗D��

αA⊗B,C,D

��

((A ⊗ C) ⊗ B) ⊗ D
sA⊗C,B,D �� ((A ⊗ C) ⊗ D) ⊗ B

αA,C,D⊗B

��
(A ⊗ B) ⊗ (C ⊗ D)

sA,B,C⊗D

�� (A ⊗ (C ⊗ D)) ⊗ B

(b3) ((A ⊗ B) ⊗ C) ⊗ D
sA⊗B,C,D ��

αA,B,C⊗D

��

((A ⊗ B) ⊗ D) ⊗ C
sA,B,D⊗C �� ((A ⊗ D) ⊗ B) ⊗ C

αA⊗D,B,C

��
(A ⊗ (B ⊗ C)) ⊗ D

sA,B⊗C,D

�� (A ⊗ D) ⊗ (B ⊗ C)

(b4) ((A ⊗ B) ⊗ C) ⊗ D
αA,B,C⊗D��

sA⊗B,C,D

��

(A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D �� A ⊗ ((B ⊗ C) ⊗ D)

A⊗sB,C,D

��
((A ⊗ B) ⊗ D) ⊗ C

αA,B,D⊗C
�� (A ⊗ (B ⊗ D)) ⊗ C

αA,B⊗D,C

�� A ⊗ ((B ⊗ D) ⊗ C)

The braiding s is a symmetry if it is its own inverse, i.e. s−1 = s. The struc-
tural law s is a restricted version of the usual braiding of Joyal and Street [17]
in normal braided monoidal categories typed B ⊗C → C ⊗B. Now the leftmost
object (A in the type of s above) is not allowed to be swapped with the other
objects B and C. This implies the existence of a map between any two objects
of the form (. . . ((A ⊗ B1) ⊗ B2) . . .) ⊗ Bn and (. . . ((A ⊗ Bi1) ⊗ Bi2) . . .) ⊗ Bin ,
where i1, . . . , in is a permutation of 1, . . . , n, and the object A is required to stay
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in its place. At first sight, equations (b1)-(b4) look very different from the usual
equations of normal braided monoidal categories, but they are reminiscent of an
alternative presentation by Davydov and Runkel via b-structures [10]. They also
appear, with minor variations, as the coherence conditions for operadic trees of
Curien et al. [9]. Bourke and Lack [6] showed that, when the left unitor λ is
invertible, a braiding typed B ⊗ C → C ⊗ B is derivable:

B ⊗ C
λ−1
B ⊗C �� (I ⊗ B) ⊗ C

sI,B,C �� (I ⊗ C) ⊗ B
λC⊗B �� C ⊗ B

and moreover the braided skew monoidal structure is normal braided
monoidal. In particular, ρ and α are also invertible.

Example 1. The category Ptd of pointed sets and point-preserving maps has
the following symmetric skew monoidal structure. The unit is I = (1, �), where 1
is the singleton set with unique element �. The tensor of two pointed sets (A, a)
and (B, b) is (A, a) ⊗ (B, b) = (A + B, inl(a)), where A + B is the disjoint union
of A and B, and inl is the injection of A into A + B. The structural laws λ
and ρ are not invertible, while α is an isomorphism. The natural isomorphism
s : ((A + B) + C, inl(inl(a))) → ((A + C) + B, inl(inl(a))) is defined using the
symmetry and associativity of disjoint union.

This example is an instance of a more general phenomenon discussed by
Bourke and Lack [6]: given a braided (resp. symmetric) monoidal category C

and a monoid M in C, then the category of left M -modules is braided (resp.
symmetric) skew monoidal. The example above arises by taking C as the category
of sets and functions with the symmetric monoidal structure given by disjoint
union, and the monoid M as the singleton set 1. The category of left 1-modules
is isomorphic to Ptd.

Example 2. Given a braided (skew) monoidal category (C, I,⊗) and a comonad
(D, ε, δ) on C. Suppose D is lax braided monoidal, i.e., comes with a map e :
I → D I and a natural transformation m : D A ⊗ D B → D (A ⊗ B) agreeing
suitably with λ, ρ, α, s, ε, δ. The category C has another braided skew monoidal
structure (I,⊗D) where A⊗D B = A⊗D B. The unitors, associator and braiding
are:

λD
A = I ⊗ D A

I⊗εA �� I ⊗ A
λA �� A

ρD
A = A

ρA �� A ⊗ I
A⊗e �� A ⊗ D I

αD
A,B,C = (A ⊗ D B) ⊗ D C

(A⊗DB)⊗δC �� (A ⊗ D B) ⊗ D (D C)

αA,DB,D(DC) �� A ⊗ (D B ⊗ D (D C))
A⊗mB,DC �� A ⊗ D (B ⊗ D C)

sD
A,B,C = (A ⊗ D B) ⊗ D C

sA,DB,DC �� (A ⊗ D C) ⊗ D B

If the braiding s of C is a symmetry and D is lax symmetric monoidal, then
sD is a symmetry as well.
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3 The Free Symmetric Skew Monoidal Category

The free symmetric skew monoidal category Fssk(At) over a set At (of atoms)
can be defined as a Hilbert-style deductive system, which we call the categorical
calculus. Objects of Fssk(At) are formulae inductively generated as follows:
either an atom X ∈ At; I; or A ⊗ B where A, B are formulae. We write Fma
for the set of formulae. Maps between two formulae A and C are derivations of
(singleton-antecedent, singleton-succedent) sequents A =⇒ C, constructed using
the following inference rules:

A =⇒ A
id

B =⇒ C A =⇒ B
A =⇒ C

◦ A =⇒ C B =⇒ D
A ⊗ B =⇒ C ⊗ D

⊗

I ⊗ A =⇒ A
λ

A =⇒ A ⊗ I
ρ

(A ⊗ B) ⊗ C =⇒ A ⊗ (B ⊗ C)
α

(A ⊗ B) ⊗ C =⇒ (A ⊗ C) ⊗ B
s

(1)

and identified up to the congruence .= induced by the equations in Fig. 1.
The categorical calculus defines the free symmetric skew monoidal category

on At in a direct way. Given another symmetric skew monoidal category C with
function G : At → C, we can easily define mappings G0 : Fma → C0 and G1 :
(A =⇒ C) → C(G0(A), G0(C)) by induction. These specify a strict symmetric
monoidal functor, in fact the only existing one satisfying G0(X) = G(X).

Define the frontier δ(A) of a formula A as the ordered list of atoms contained
in A. Given an ordered list l with length n and an element σ of the symmetric
group on n elements, i.e. a permutation of n elements, we write σ ·l for the action
of σ on l.

Mac Lane [22] proved a coherence theorem for (normal, non-skew) symmetric
monoidal categories, which can be phrased as follows: given two formulae A and
C in the free symmetric monoidal category, there exists a map typed A =⇒ C
iff there exists a permutation σ such that δ(C) = σ · δ(A) (which is to say that
δ(A) and δ(C) are equal as multisets) and, if this is the case, two parallel maps
in A =⇒ C are equal iff they have the same underlying permutation σ.

For the free symmetric skew monoidal category, this is not the case. First,
there exist pairs of formulae with the exact same frontier but with no maps
between them: there are no maps typed X =⇒ I⊗X, no maps typed X⊗I =⇒ X
and no maps typed X ⊗ (Y ⊗Z) =⇒ (X ⊗Y )⊗Z. There are also no maps typed
X ⊗Y =⇒ Y ⊗X. Moreover, there are multiple maps between formulae with the
exact same frontier: there are two maps id � .= α◦ρ⊗λ : X⊗(I⊗Y ) =⇒ X⊗(I⊗Y )
and two maps id � .= ρ ⊗ λ ◦ α : (X ⊗ I) ⊗ Y =⇒ (X ⊗ I) ⊗ Y . Bourke and Lack [6]
showed that there are two maps (id ⊗ λ) ⊗ id ◦ α ⊗ id � .= id ⊗ λ ◦ α ◦ s ⊗ id :
((X ⊗ I) ⊗ Y ) ⊗ Z =⇒ (X ⊗ Y ) ⊗ Z. Postcomposing the latter two maps with s,
we obtain two distinct maps typed ((X ⊗ I) ⊗ Y ) ⊗ Z =⇒ (X ⊗ Z) ⊗ Y which
have underlying permutation of frontiers σ = (132).
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Fig. 1. Equivalence of derivations in the categorical calculus

4 Symmetric Skew Monoidal Sequent Calculus

The free symmetric skew monoidal category Fssk(At) admits an equivalent pre-
sentation as a cut-free sequent calculus. Formulae are again elements of Fma.
Similarly to the non-symmetric case worked out in a previous paper [29], sequents
are triples of the form S | Γ � C. The antecedent of the sequent is split in two
parts: S is an optional formula called the stoup, which can either be empty
(which we denote −) or a single formula, and Γ is an ordered list of formulae,
that we call the context. The succedent C is a single formula. Derivations of
sequents S | Γ � C are generated by the following inference rules:

A | Γ � C

− | A, Γ � C
pass

− | Γ � C

I | Γ � C
IL

A | B, Γ � C

A ⊗ B | Γ � C
⊗L

A | � A
ax − | � I

IR
S | Γ � A − | Δ � B

S | Γ, Δ � A ⊗ B
⊗R

S | Γ, A, B, Δ � C

S | Γ, B, A, Δ � C
exA,B

(2)

(pass for ‘passivate’, ex for ‘exchange’, L, R for introduction on the left (in the
stoup) resp. right) and identified up to the congruence � induced by the equa-
tions in Fig. 2.

The rules IL, ⊗L and ex are invertible up to �, but the passivation rule pass
is not. General forms of exchange, swapping a formula with a list of formulae,
are admissible by induction on the list of formulae Ξ:

S | Γ, Ξ, A, Δ � C

S | Γ, A, Ξ, Δ � C
exsA,Ξ

S | Γ, A, Ξ, Δ � C

S | Γ, Ξ, A, Δ � C
exsΞ,A (3)
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Fig. 2. Equivalence of derivations in the sequent calculus

Two forms of cut are admissible, satisfying a large number of �-equations
(see [29, Figures 5 and 6] for the list of such equations not involving the exchange
rule ex).

S | Γ � A A | Δ � C

S | Γ, Δ � C
scut

− | Γ � A S | Δ1, A, Δ2 � C

S | Δ1, Γ, Δ2 � C
ccut (4)

The inference rules in (2) are reminiscent of the rules of the I,⊗ fragment of
intuitionistic linear logic, but there are some crucial differences/restrictions:

1. The left rules IL and ⊗L act only on the formula in the stoup. In particular,
there are no rules for decomposing a unit I or a tensor A ⊗ B in the context.
This allows the derivability of sequents corresponding to the right unitor
ρ : A =⇒ A ⊗ I and the associator α : (A ⊗ B) ⊗ C =⇒ A ⊗ (B ⊗ C), but not
their inverses.
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A | � A
ax − | � I

IR

A | � A ⊗ I
⊗R

A | � A
ax

B | � B
ax

C | � C
ax

− | C � C
pass

B | C � B ⊗ C
⊗R

− | B, C � B ⊗ C
pass

A | B, C � A ⊗ (B ⊗ C)
⊗R

A ⊗ B | C � A ⊗ (B ⊗ C)
⊗L

(A ⊗ B) ⊗ C | � A ⊗ (B ⊗ C)
⊗L

2. There is a distinction between antecedents of the form A | Γ , where the
formula A is in the stoup, and antecedents of the form − | A,Γ , where A
is out of the stoup. This distinction is crucial in the right rule ⊗R, which
always sends the formula in the stoup to the first premise (when the rule is
read bottom-up). This allows the derivability of a sequent corresponding to
the left unitor λ : I ⊗ A =⇒ A, but not its inverse, since the passivation rule
pass is not invertible.

A | � A
ax

− | A � A
pass

I | A � A
IL

I ⊗ A | � A
⊗L

3. The exchange rule exA,B permits the swap of two adjacent formulae A and
B in the context, but there is no way to generally swap a formula in the
stoup with a formula in the context. This allows the derivability of a sequent
corresponding to the symmetry s : (A⊗B)⊗C =⇒ (A⊗C)⊗B involving three
formulae, but not of a symmetry involving two formulae typed B ⊗ C =⇒
C ⊗ B.

A | � A
ax

C | � C
ax

− | C � C
pass

A | C � A ⊗ C
⊗R

B | � B
ax

− | B � B
pass

A | C, B � (A ⊗ C) ⊗ B
⊗R

A | B, C � (A ⊗ C) ⊗ B
exB,C

A ⊗ B | C � (A ⊗ C) ⊗ B
⊗L

(A ⊗ B) ⊗ C | � (A ⊗ C) ⊗ B
⊗L

The sequent calculus rules in (2) accurately match the categorical calculus rules
in (1), and the �-equations in Fig. 2 match the .=-equations in Fig. 1, in very
a precise sense. There exists an effective procedure sound : (S | Γ � C) →
(�S|Γ � =⇒ C) turning a sequent calculus derivation into a categorical calcu-
lus derivation, where the interpretation of an antecedent as a formula �S|Γ � is
defined as �S|Γ � = �S〈〈 〈〈Γ � with
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�−〈〈= I �A〈〈= A A 〈〈 � = A A 〈〈B,Γ � = (A ⊗ B) 〈〈Γ �

which means that A 〈〈A1, A2 . . . , An� = (. . . (A⊗A1)⊗A2) . . .)⊗An. The function
sound is well-defined, in the sense that it sends �-related derivations to .=-related
derivations. There exists also an effective procedure cmplt : (�S|Γ � =⇒ C) →
(S | Γ � C) which is the inverse of sound up to the equivalences .= and �, i.e.
sound(cmplt(f)) .= f , for all f : �S|Γ � =⇒ C, and cmplt(sound(g)) � g, for all
g : S | Γ � C. Composition f ◦ g in the categorical calculus is intepreted by
cmplt as scut(cmplt(g), cmplt(f)). The function cmplt is also well-defined, i.e. it
sends .=-related derivations to �-related derivations.

Theorem 1. The set of derivations of the sequent S | Γ � C, quotiented by
the equivalence relation �, is isomorphic to the set of derivations of the sequent
�S|Γ � =⇒ C, quotiented by the equivalence relation .=.

This shows that the cut-free sequent calculus is an equivalent presentation of
the free symmetric skew monoidal category Fssk(At).

5 A Focused Subsystem for the Symmetric Skew Case

The free symmetric skew monoidal category admits a more concrete presentation
as a focused sequent calculus. Derivations in this calculus correspond to canonical
representatives of equivalence classes of the relation �. They are generated by
the following inference rules:

S | Ω
... Γ, A, Δ �C C

S | Ω, A
... Γ, Δ �C C

exsA,Γ
S | Γ �L C

S | ... Γ �C C
swLC

− | Γ �L C

I | Γ �L C
IL

A | B
... Γ �C C

A ⊗ B | Γ �L C
⊗L

A | Γ �L C

− | A, Γ �L C
pass

T | Γ �R C

T | Γ �L C
swRL

X | �R X
ax

− | �R I
IR

T | Γ �R A − | Δ �L B

T | Γ, Δ �R A ⊗ B
⊗R

(5)

(T is always an optional atom, i.e. either empty or an atomic formula.) As in
Andreoli’s original formulation for linear logic [2], the focused calculus defines
a goal-directed proof search strategy which attempts to build a derivation of a
sequent in the cut-free sequent calculus of Sect. 4, starting from the root:

– We start in phase C (for ‘context’) by permuting the formulae in the context.
This is performed step-by-step using the rule exs, moving one formula at
the time, in a way reminiscent of the insertion-sort algorithm. In this phase,
contexts are split in two parts Ω

... Γ , where Γ consists of formulae that have
already been moved by exs and the formulae in Ω are yet to be moved. Once
all the formulae have been moved, so the antecedent is of the form

... Γ , we
switch to phase L using the rule swLC.
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– In phase L (for ‘left’), the formula in the stoup is eagerly decomposed using
the invertible left rules IL and ⊗L. The premise of the ⊗L rule is a derivation
of a sequent in phase C, which gives the chance to further move the formula
B in a different position of the context. If the stoup is empty we have the
possibility of applying the pass rule, i.e. moving the leftmost formula A in
the context to the stoup, and continue the decomposition of A. When the
formula in the stoup is fully decomposed, i.e. either the stoup is empty or it
contains an atomic formula, we switch to phase R using the rule swRL. Notice
that, when the stoup is empty, we are not obliged to use the pass rule, so we
have a choice between applying pass and swRL.

– In phase R (for ‘right’), we focus on the succedent formula. Depending on
its shape, only one among the rules ax, IR, ⊗R can be applied. The second
premise of the ⊗R rule is a derivation of a sequent in phase L, which gives
the chance of applying the pass rule and subsequently the invertible left rules
IL and ⊗L. Different ways of splitting the context in an application of the
rule ⊗R can lead to different successful derivations, which is another source
of nondeterminism.

By dropping the phase annotations (also turning
... into a comma), we can

define three functions embC, embL and embR embedding focused sequent calculus
derivations in the unfocused sequent calculus. The function embC : (S | Ω

... Γ �C

C) → (S | Ω,Γ � C) interprets the focused rule exsA,Γ in (5) as the admissible
unfocused rule exsA,Γ in (3). We can also define a normalization function focus :
(S | Ω � C) → (S | Ω

... �C C), which maps �-related derivations to equal
focused derivations. For the definition of focus, all the unfocused rules in (2) are
proved admissible in phase C. The functions focus and embC establish a bijection
between the sequent calculus and its focused subsystem: embC (focus f) � f and
focus (embC g) = g, for all f : S | Γ � C and g : S | Ω

... �C C.

Theorem 2. The following are isomorphic:

(i) the set of derivations of the sequent S | Ω
... �C C;

(ii) the set of derivations of the sequent S | Ω � C, quotiented by the equiva-
lence relation �;

(iii) the set of derivations of the sequent �S|Γ � =⇒ C, quotiented by the equiv-
alence relation .=.

The focused sequent calculus is peculiar in that it gives the ability of having
a “change of mind” regarding the position to which a formula is moved during
phase C. To explain this phenomenon, consider for example the two derivations of
− | X, I⊗Y

... �C X ⊗Y , which in the categorical calculus correspond to distinct
maps λX⊗λY � .= λX⊗idY ◦sI,Y,X◦λI⊗Y ⊗idX◦sI,X,I⊗Y : (I⊗X)⊗(I⊗Y ) =⇒ X⊗Y :
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X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

I | Y �L Y
IL

I | ... Y �C Y
swLC

I | Y
... �C Y

exsY,()

I ⊗ Y | �L Y
⊗L

− | I ⊗ Y �L Y
pass

X | I ⊗ Y �R X ⊗ Y
⊗R

X | I ⊗ Y �L X ⊗ Y
swRL

− | X, I ⊗ Y �L X ⊗ Y
pass

− | ... X, I ⊗ Y �C X ⊗ Y
swLC

− | X
... I ⊗ Y �C X ⊗ Y

exsX,()

− | X, I ⊗ Y
... �C X ⊗ Y

exsI⊗Y,()

X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

X | Y �R X ⊗ Y
⊗R

X | Y �L X ⊗ Y
swRL

− | X, Y �L X ⊗ Y
pass

I | X, Y �L X ⊗ Y
IL

I | ... X, Y �C X ⊗ Y
swLC

I | Y
... X �C X ⊗ Y

exsY,X

I ⊗ Y | X �L X ⊗ Y
⊗L

− | I ⊗ Y, X �L X ⊗ Y
pass

− | ... I ⊗ Y, X �C X ⊗ Y
swLC

− | X
... I ⊗ Y �C X ⊗ Y

exsX,I⊗Y

− | X, I ⊗ Y
... �C X ⊗ Y

exsI⊗Y,()

(6)

On the left, the formulae in the context are never swapped. On the right, first
X is swapped with I ⊗ Y (the blue exs rule), then Y is swapped with X (the
green exs rule). The second exchange is necessary for completing the derivation.
This means that we are allowed to move the atom X past the atom Y (initially
inside the composite formula I⊗Y ) and subsequently change our mind and swap
the positions of X and Y again. The construction of two such distinct focused
derivations with the same underlying permutation of atoms (in this case the
identity permutation fixing X and Y ) is possible since the atom Y is wrapped
in the composite formula I ⊗ Y , whose leftmost formula I is closed, i.e. free of
atoms: in the right derivation in (6), when I⊗ Y is moved to the stoup, after an
application of the rule ⊗L we have the possibility of swapping Y and X again
and subsequently the unit I in the stoup is removed with an application of IL.
This “change of mind”, in which we apply the rule exs on the same atom multiple
times, is only possible in the skew case, the same is not doable in the focused
sequent calculus of symmetric monoidal categories (see the next section).

The separation of the context in two parts Ω
... Γ in phase C takes inspiration

from Chaudhuri and Pfenning’s focused sequent calculus for linear logic [8], and
it also appears in the design of focused sequent calculi for right-normal and
associative-normal skew monoidal categories [30].

6 Recovering Coherence for the Non-Skew Case

The focused sequent calculus in (5) can be expanded and modified in order
to obtain a concrete presentation of the free symmetric monoidal category and
recover Mac Lane’s coherence theorem [22]. This is in analogy with Uustalu et
al.’s recovery of the coherence theorem for monoidal categories starting from a
focused sequent calculus for skew monoidal categories [30].
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S | Ω
... Γ �C C

S | Ω, I
... Γ �C C

IC
S | Ω, A, B

... Γ �C C

S | Ω, A ⊗ B
... Γ �C C

⊗C
S | Ω

... Γ, X, Δ �C C

S | Ω, X
... Γ, Δ �C C

exsX,Γ

S | Γ �L C S �= X

S | ... Γ �C C
swLC

− | Γ, X, Δ �L C

X | ... Γ, Δ �C C
exsSX,Γ

− | Γ �L C

I | Γ �L C
IL

A | B
... Γ �C C

A ⊗ B | Γ �L C
⊗L

A | Γ �L C

− | A, Γ �L C
pass

T | Γ �R C T = − → Γ = ()

T | Γ �L C
swRL

X | �R X
ax

− | �R I
IR

T | Γ �R A − | Δ �L B

T | Γ, Δ �R A ⊗ B
⊗R

− | �R A X | Δ �R B

X | Δ �R A ⊗ B
⊗R2

(7)

(Condition S �= X in rule swLC requires the stoup S to not be an atomic formula.
Condition T = − → Γ = () in rule swRL requires the context Γ to be empty
whenever the stoup T is empty.)

The differences with the focused sequent calculus in (5) are:

– In phase C, the new rules IC and ⊗C allow the decomposition of units and
tensors in the context, and correspond to adding inverses for ρ and α in the
categorical calculus (1) (see Sects. 3.2 and 3.3 of [30] for a discussion on this
correspondence). The modified exs rule now acts only on atomic formulae.
This implies that each sequent S | Ω

... Γ �C C appearing in the derivation of
a valid sequent S0 | Ω0

... �C C0 has the context Γ consisting only of atomic
formulae. Once all atoms have been moved using exs and the antecedent is of
the form

... Γ , we check whether the formula in the stoup is an atom: if it
is, we move it in the context using the new rule exsS, otherwise we switch to
phase L using the rule swLC as before.

– Rules IL, ⊗L and pass in phase L are unchanged, but the condition in swRL

for switching from phase L to phase R is more stringent: if the stoup is empty,
we are allowed to switch phase only when the context is empty as well. This
restriction forces all formulae in the context to be reduced to atoms using the
rules IC, ⊗C, IL and ⊗L. In particular, in a successful derivation of a sequent
S0 | Ω0

... �C C0, it is possible to switch to phase R only if the antecedent is
completely empty or all the formulae in the antecedents are atoms and the
stoup is non-empty.

– Phase R contains a new rule ⊗R2, which allows to send the atom in the stoup
to the second premise, provided that all of the context is also sent to the sec-
ond premise (so the antecedent of the first premise is left completely empty).
The rule ⊗R2, together with the restriction in swRL discussed above, corre-
spond to adding an inverse for λ in the categorical calculus (1) (as explained
in Sect. 3.1 of [30]).

The “change of mind” of the focused sequent calculus for symmetric skew
monoidal categories, exemplified in the derivation on the right in (6), where the
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rule exs can act multiple times on an atomic formula in the context, disappears
in the focused sequent calculus for symmetric monoidal categories. Using rules in
(7), the non-determinism exposed in (6) vanishes, and there is a unique derivation
of the sequent − | X, I ⊗ Y

... �C X ⊗ Y :

X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

X | Y �R X ⊗ Y
⊗R

X | Y �L X ⊗ Y
swRL

− | X, Y �L X ⊗ Y
pass

− | ... X, Y �C X ⊗ Y
swLC

− | X
... Y �C X ⊗ Y

exsX,()

− | X, I
... Y �C X ⊗ Y

IC

− | X, I, Y
... �C X ⊗ Y

exsY,()

− | X, I ⊗ Y
... �C X ⊗ Y

⊗C

More precisely, it is possible to prove that, in each derivation of a sequent
S | Ω

... Γ �C C in the focused sequent calculus (7), every atomic formula in
S | Ω is moved exactly once in a (possibly) different position past the dotted
line

... with an application of the rule exs or the rule exsS. This shows that each
successful derivation of a sequent A | ... �C C is in one-to-one correspondence
with a permutation of the frontier of A, which is a proof-theoretic formulation
of Mac Lane’s coherence theorem for symmetric monoidal categories.

It is possible to find appropriate extensions of the categorical calculus of
Sect. 3 (now defining the free symmetric monoidal category on At in a direct
way) and the cut-free sequent calculus of Sect. 4, and prove a theorem analogue
to Theorem 2, stating that the focused sequent calculus (7) is equivalent to
these extended calculi. As such, the focused sequent calculus (7) is a concrete
presentation of the free symmetric monoidal category on At.

7 Conclusions and Future Work

We constructed three equivalent proof systems describing the free symmetric
skew monoidal category Fssk(At) on a set At: a Hilbert-style categorical calculus,
a cut-free sequent calculus, and a subsystem of focused derivations of the latter.
The focused sequent calculus solves the coherence problem for symmetric skew
monoidal categories. It provides a decider for equality of maps in Fssk(At): two
parallel maps f, g : A =⇒ C are .=-related iff focus(cmplt(f)) = focus(cmplt(g)),
and equality of focused derivations is decidable. It also gives a procedure for
enumerating all maps in the homset A =⇒ C up to the congruence .=: simply
count the number of focused derivations of the sequent A | ... �C C. We
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showed how to extend the focused sequent calculus in order to obtain a calculus
of normal forms for symmetric monoidal categories and retrieve Mac Lane’s
coherence theorem using techniques from structural proof theory.

The story narrated in Sects. 3 and 4 applies with minor modifications to the
more general case of braided skew monoidal categories, which we also formalized
in Agda. The free braided skew monoidal category on a set of atoms has the same
objects of Fssk(At), but the grammar of derivations (1) is augmented with a new
rule s−1 inverse (up to .=) of s. A sequent calculus for braided skew monoidal cat-
egories is obtained by including in the proof system (2) a new rule ex−1

A,B inverse
(up to �) of exA,B . As in the symmetric case, one can define effective procedures
cmplt and sound translating between categorical calculus and sequent calculus,
preserving the congruences .= and �, and exhibiting a bijection between the
two deductive systems. However, the construction of a focused subsystem in the
braided case does not seem obtainable as a simple generalization of the focused
sequent calculus of Sect. 5. This complication is related to the representation of
normal forms for braids in Artin braid groups, which is more convoluted that the
representation of normal forms in symmetric groups [11,14]. The rule exs in (5)
outlines an algorithm for constructing permutations of formulae in the context:
starting from a context Ω

... , repeated applications of exs construct a context... Γ , where Γ is a permutation of Ω, and all permutations can be represented in
this way. A focused sequent calculus for the braided case will instead construct
an action of the braid group on the formulae in the context, but such actions
admit normal forms which are more arduous to formalize. After properly sorting
out the proof theory of braided skew monoidal categories, it would be interesting
to also understand the relationship between the resulting deductive systems and
existing calculi for categories with braided structure [13,15,23].

In Sect. 6, we introduced a focused sequent calculus for normal symmetric
monoidal categories and retrieve Mac Lane-style coherence. We plan to under-
stand the relation between the latter proof system and Shulman’s practical type
theory for symmetric monoidal categories [25]. We also plan to investigate the
proof theory of partially normal symmetric skew monoidal categories in the style
of [30], when one or both structural laws among ρ and α are invertible (but not
λ, whose invertibility implies the invertibility of all structural laws [6]).

Finally, we want to study deductive systems for (symmetric) skew monoidal
closed categories, which will include a linear implication � as in the proof
systems for skew prounital closed categories [31]. The resulting calculi should
allow the representation of interesting classes of concurrent computations, a
skew variant of the concurrent logical framework of Watkins et al. [32].
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9. Curien, P.L., Obradović, J., Ivanović, J.: Syntactic aspects of hypergraph poly-
topes. J. Homotopy Relat. Struct. 14(1), 235–279 (2019). https://doi.org/10.1007/
s40062-018-0211-9

10. Davydov, A., Runkel, I.: An Alternative Description of Braided Monoidal Cat-
egories. Appl. Categ. Struct. 23(3), 279–309 (2013). https://doi.org/10.1007/
s10485-013-9338-3

11. Dehornoy, P.: Efficient solutions to the braid isotopy problem. Discret. Appl. Math.
156(16), 3091–3112 (2008). https://doi.org/10.1016/j.dam.2007.12.009
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