
Alexandra Silva
Renata Wassermann
Ruy de Queiroz (Eds.)

LN
CS

 1
30

38

27th International Workshop, WoLLIC 2021
Virtual Event, October 5–8, 2021
Proceedings

Logic, Language,
Information,
and Computation

Lecture Notes in Computer Science 13038

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands
Anuj Dawar, University of Cambridge, UK
Philippe de Groote, Inria Nancy, France
Gerhard Jäger, University of Tübingen, Germany
Fenrong Liu, Tsinghua University, Beijing, China
Eric Pacuit, University of Maryland, USA
Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil
Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandra Silva • Renata Wassermann •

Ruy de Queiroz (Eds.)

Logic, Language,
Information,
and Computation
27th International Workshop, WoLLIC 2021
Virtual Event, October 5–8, 2021
Proceedings

123

Editors
Alexandra Silva
Cornell University
New York, NY, USA

Renata Wassermann
Instituto de Matematica e Estatisrica
Universidade de São Paulo
Sao Paulo, São Paulo, Brazil

Ruy de Queiroz
Centro de Informática
Universidade Federal de Pernambuco
Recife, Pernambuco, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-88852-7 ISBN 978-3-030-88853-4 (eBook)
https://doi.org/10.1007/978-3-030-88853-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-88853-4

Preface

This volume contains the papers presented at the 27th Workshop on Logic, Language,
Information and Computation (WoLLIC 2021) held virtually during October 5–8,
2021. The WoLLIC series of workshops started in 1994 with the aim of fostering
interdisciplinary research in pure and applied logic. The idea is to have a forum which
is large enough in the number of possible interactions between logic and the sciences
related to information and computation, and yet is small enough to allow for concrete
and useful interaction among participants.

There were 44 submissions. Each submission was reviewed by at least three pro-
gram committee members. The committee decided to accept 25 papers. The program
also includes six invited lectures by Catarina Dutilh Novaes (VU Amsterdam, The
Netherlands), Santiago Figueira (Universidad de Buenos Aires, Argentina), Andreas
Herzig (IRIT, France), and Cláudia Nalon (UnB, Brazil).

We would very much like to thank all Program Committee members and external
reviewers for the work they put into reviewing the submissions. The help provided by
the EasyChair system created by Andrei Vorokonkov is gratefully acknowledged.
Finally, we would like to acknowledge the scientific sponsorship of the following
organizations: Interest Group in Pure and Applied Logics (IGPL), The Association for
Logic, Language and Information (FoLLI), Association for Symbolic Logic (ASL),
European Association for Theoretical Computer Science (EATCS), European Asso-
ciation for Computer Science Logic (EACSL), Sociedade Brasileira de Computação
(SBC), and Sociedade Brasileira de Lógica (SBL).

October 2021 Alexandra Silva
Renata Wassermann

Ruy de Queiroz

Organization

Program Committee

Carlos Areces Universidad Nacional de Córdoba, Argentina
Arthur Amorim Azevedo Boston University, USA
Paul Brunet University College London, UK
Nina Gierasimczuk Technical University of Denmark, Denmark
Helle Hvid Hansen University of Groningen, The Netherlands
Justin Hsu University of Pennsylvania, USA
Fairouz Kamareddine Heriot-Watt University, UK
Sandra Kiefer RWTH Aachen University, Germany
Clemens Kupke University of Strathclyde, UK
Konstantinos Mamouras Rice University, USA
Maria Vanina Martinez Universidad de Buenos Aires, Argentina
Larry Moss Indiana University, USA
Claudia Nalon University of Brasilia, Brazil
Valeria de Paiva Samsung Research, USA
Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
Revantha Ramanayake University of Groningen, The Netherlands
Jurriaan Rot Radboud University, The Netherlands
Alexandra Silva University College London
Christine Tasson IRIF, France
Sebastiaan Terwijn Radboud University, The Netherlands
Renata Wassermann Univ São Paulo, Brazil

Program Committee Co-chairs

Alexandra Silva University College London
Renata Wassermann Univ São Paulo, Brazil

General Chair

Ruy de Queiroz .

Contents

Formalized Soundness and Completeness of Epistemic Logic 1
Asta Halkjær From

A Logical Characterization of Constant-Depth Circuits over the Reals 16
Timon Barlag and Heribert Vollmer

Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes. . . 31
Hans van Ditmarsch

Doubly Strongly First Order Dependencies. 47
Pietro Galliani

Explicit Non-normal Modal Logic . 64
Atefeh Rohani and Thomas Studer

A General Relational Semantics of Propositional Logic: Axiomatization 82
Shengyang Zhong

Meaning and Computing: Two Approaches to Computable Propositions 100
Ivo Pezlar

Modal Logic via Global Consequence . 117
Xuefeng Wen

Games for Hybrid Logic: From Semantic Games to Analytic Calculi. 133
Robert Freiman

Verifying the Conversion into CNF in Dafny . 150
Viorel Iordache and Ştefan Ciobâcă

Analysis in a Formal Predicative Set Theory . 167
Nissan Levi and Arnon Avron

Coherence via Focusing for Symmetric Skew Monoidal Categories 184
Niccolò Veltri

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 201
Dazhu Li, Sujata Ghosh, Fenrong Liu, and Yaxin Tu

Orthogonal Frames and Indexed Relations . 219
Philippe Balbiani and Saúl Fernández González

Computable Execution Traces. 235
Declan Thompson

Axiomatic Reals and Certified Efficient Exact Real Computation 252
Michal Konečný, Sewon Park, and Holger Thies

Lorenzen Won the Game, Lorenz Did Too: Dialogical Logic for Ellipsis
and Anaphora Resolution . 269

Davide Catta and Symon Jory Stevens-Guille

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 287
Amirhossein Akbar Tabatabai, Rosalie Iemhoff, and Raheleh Jalali

On the Expressive Power of TeamLTL and First-Order Team
Logic over Hyperproperties . 302

Juha Kontinen and Max Sandström

Characterizations for XPathRð#Þ . 319
Nicolás González and Sergio Abriola

Uniform Interpolation via Nested Sequents . 337
Iris van der Giessen, Raheleh Jalali, and Roman Kuznets

Disjunction and Negation in Information Based Semantics 355
Vít Punčochář and Andrew Tedder

Algorithmically Broad Languages for Polynomial Time and Space 372
Daniel Leivant

A Pure View of Ecumenical Modalities . 388
Sonia Marin, Luiz Carlos Pereira, Elaine Pimentel, and Emerson Sales

Provability Games for Non-classical Logics: Mezhirov Game for MPC,
KD!, and KD . 408

Alexandra Pavlova

Author Index . 427

viii Contents

Formalized Soundness and Completeness
of Epistemic Logic

Asta Halkjær From(B)

Technical University of Denmark, Kongens Lyngby, Denmark
ahfrom@dtu.dk

Abstract. We strengthen the foundations of epistemic logic by formaliz-
ing the family of normal modal logics in the proof assistant Isabelle/HOL.
We define an abstract canonical model and prove a truth lemma for any
logic in the family. We then instantiate it with logics based on vari-
ous epistemic principles to obtain completeness results for systems from
K to S5. Our work gives a disciplined treatment of completeness-via-
canonicity arguments and demonstrates their compositionality.

Keywords: Epistemic logic · Isabelle/HOL · Completeness ·
Canonicity

1 Introduction

Epistemic logic provides a foundation for reasoning about the knowledge of
agents, both factual (“I know the sky is blue”) and higher-order (“I know that
you know that I know the sky is blue”). This has applications in computer sci-
ence and artificial intelligence [17]. Basic epistemic logic extends propositional
logic with a knowledge modality Ki that, for each agent i, expresses that agent’s
knowledge. For example, the following formula states that: (i) agent 1 knows ϕ,
(ii) agent 2 knows that agent 1 knows ϕ, but (iii) agent 1 does not know (ii):

K1ϕ ∧ K2K1ϕ ∧ ¬K1K2K1ϕ

Such formulas are understood on possible worlds models that represent the
different situations that agents consider possible, including which situations are
indistinguishable to them (due to a lack of observations or similar). Different
things can be true at each possible world and the uncertainty of each agent is
modeled by relating the worlds through so-called accessibility relations, one for
each agent. The agent finds itself at some world and it considers those worlds
possible that are accessible from this world. Thus, an agent knows something if it
holds at every world that the agent considers possible, i.e. all accessible worlds.

To model different kinds of knowledge, we consider classes of possible worlds
models. For instance, we may want true knowledge: if something is known then it
is true. Then we consider models with reflexive accessibility relations, where the
agents must always consider the current world. If we want positive introspection,
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 1–15, 2021.
https://doi.org/10.1007/978-3-030-88853-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_1&domain=pdf
http://orcid.org/0000-0002-3601-0804
https://doi.org/10.1007/978-3-030-88853-4_1

2 A. H. From

if the agent knows something then it knows that it knows it, we want transitive
accessibility relations. There are a range of epistemic principles to consider.

With a deductive proof system, we can use just a few axioms and inference
rules, with different principles resulting in different axioms, to reason about
the consequences of such epistemic principles: what formulas classify different
possible worlds models and what formulas are true on this class. To trust such
reasoning we need to know that the system is sound and thus only allows us
to deduce formulas that hold on our considered class. Moreover, we want the
system to be complete: if we cannot prove a formula, then it is not due to a
limitation of the proof system but because the formula is “incorrect”.

In this paper we formalize epistemic logic with countably many agents [9] in
the proof assistant Isabelle/HOL [19]. We consider the so-called normal modal
logics, from the smallest, system K, valid over all models to S5 where the acces-
sibility relations must be reflexive, symmetric and transitive. We base our proofs
on the textbooks Reasoning About Knowledge by Fagin, Halpern, Moses and
Vardi [7], which mainly proves completeness for system K, and Modal Logic by
Blackburn, de Rijke and Venema [3], which goes further.

Unfortunately, in textbooks it is easy to treat extensions to system K infor-
mally. For the completeness of system T on reflexive models, Fagin et al. [7]
write: “A proof identical to that of Theorem 3.1.3 can now be used.” In a formal-
ized setting we do not want to copy/paste our efforts but rather find a suitable
abstraction of the theorem that works for both cases. We seek to achieve the
compositionality expressed by Blackburn et al. [3] (emphasis ours):

The canonical frame of any normal logic containing T is reflexive, the
canonical frame of any normal logic containing B is symmetric, and the
canonical frame of any normal logic containing D is right unbounded. This
allows us to ‘add together’ our results.

To this effect, we give a disciplined treatment of normal modal logics and
completeness-via-canonicity [3] by formalizing an abstract account of the Henkin-
style completeness method. This is made possible by parameterizing our proof
system and the notion of a maximal consistent set to allow for an open-ended
number of additional axioms. We obtain an abstract truth lemma that we reuse
for each logic and fix the axioms pertaining to each system afterwards. Where
Fagin et al. suggest using an identical proof, we reuse the exact same one, instan-
tiated accordingly. Notably, our definitions and proofs are specified in the precise
language of higher-order logic and every step of our reasoning is checked mechan-
ically. While the results are not new, our approach, as well as this level of preci-
sion and guarantee, is. Our formalization [9] provides a recipe for extending the
work with similar logics and can serve as starting point for related work.

A short extended abstract [12] describes an earlier version of the formaliza-
tion, covering only system K and not the family of normal modal logics.

We discuss related work in Sect. 2 before diving into the precise syntax and
semantics in Sect. 3. Section 4 introduces our formalization of normal modal log-
ics as a family of proof systems and Sect. 5 presents the abstract completeness
result. In Sect. 6 we consider concrete axiom systems (K, T, KB, K4, S4) and

Formalized Soundness and Completeness of Epistemic Logic 3

how to prove their completeness in a composable way. Section 7 discusses two
variants of system S5 and Sect. 8 concludes with future work.

Remarks on the Formalization. The formalization is available online [9] and
consists of more than 1400 lines of Isabelle/HOL text. Half of the lines prove
the abstract completeness result and the second half concerns concrete systems.
We reproduce select definitions and results here, but none of the proofs. The
Isabelle text is close enough to formal English, with notation from mathematical
logic, that we trust the accompanying explanations make it understandable. We
present it in this way to remind the reader of the formal guarantees behind each
result: each proof was checked by the proof assistant.

Producing a formalization of this size is a significant undertaking: every step
of reasoning in every proof must be written down explicitly and the gaps must
be sufficiently small such that the proof assistant can fill them in. This is a craft.
Some of this process is pure labor, but a significant part is getting the definitions
right, not just to match our intended meaning but so that they are easy to
work with. For instance, we can formalize substitution instances of propositional
tautologies (cf. Sect. 4.1) or the worlds of the canonical model (cf. Sect. 5.3) in
different ways. One choice can lead to a lot less work than another.

2 Related Work

Wu and Gore [20] formalize modal tableaux with histories for the modal logics
K, KT and S4 in Lean, giving formally verified decision procedures for these
logics. Bentzen [1] also works in Lean but formalizes a Hilbert-style system for
single-agent S5 with a Henkin-style completeness proof similar to ours. Bentzen
only considers S5 built from axioms T, B and 4 while we also consider the com-
bination of T and 5, as well as a wider range of normal modal logics. Both
Li [15] and Neeley [18] have recently formalized dynamic epistemic logic [6] in
Lean including Henkin-style completeness proofs for multi-agent S5 and public
announcement logic. We have recently formalized soundness and completeness
of public announcement logic [11] in Isabelle/HOL by building on the work
presented here. Hagemeier [13] formalized intuitionistic epistemic logic in Coq
including completeness of a natural deduction proof system. Slightly differently,
Magessi and Brogi [16] have given a formal proof of modal completeness for prov-
ability logic in HOL Light. We note that most of this work is unpublished and
all of it focuses on specific systems rather than a family of logics, as we do. The
unverified tool SQEMA by Conradie et al. [5] proves canonicity of modal formu-
las, giving a purely algorithmic approach to proving canonical completeness in
modal logic.

Xiong et al. [21] present a variant of epistemic logic that adds the notion of
secret knowledge as a first-class citizen. They introduce a new modality of secrets
instead of defining it in terms of the knowledge operator. The authors argue
that the main principles can be studied this way, for instance when considering a
language with an operator for secrets and without the usual knowledge operator.
We think it would be interesting to formalize their work in a proof assistant.

4 A. H. From

Kądziołka [14] formalized a solution to a logic puzzle in Isabelle/HOL, using
a logic tailored to the problem that is very similar to the possible worlds model
of epistemic logic. Our formalization might be used for this reasoning instead.

Blanchette et al. [4] formalize an abstract completeness result for various
flavors of first-order logic. Besides the different logic, they consider Gentzen and
tableau systems, where we consider axiomatic proof systems. Their technique is
analytic, based on inspecting infinite proof attempts, where ours is synthetic, in
the Henkin style, using maximal consistent sets of formulas.

We have also used the synthetic technique to formalize completeness for a
tableau system for hybrid logic [8,10].

3 Syntax and Semantics

The well-formed formulas of our epistemic logic are given by the following gram-
mar, where we denote propositional symbols by x and agent labels by i:

φ, ψ ::= ⊥ | x | φ ∨ ψ | φ ∧ ψ | φ → ψ | Kiφ

The Ki operator, “agent i knows” is typically written �i in non-epistemic
multimodal logic. We write Li for the dual modality, “agent i considers possible”,
typically written ♦i. We use x for propositional symbols, since we use p and
q instead of φ and ψ in the Isabelle/HOL text. This is a common choice in
formalizations of logic and their presentations [1,2,16], regardless of the chosen
proof assistant. Similarly, we write K i for Ki.

We interpret the language on Kripke models M = (F , V). The frame F =
(W,R1, R2, . . .) consists of a non-empty set of worlds W and binary accessibility
relations Ri between them, one for each agent. V is the valuation of propositional
symbols. Formula satisfiability is defined as follows:

M, w �|= ⊥
M, w |= x iff w ∈ V (x)
M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= φ → ψ iff M, w �|= φ or M, w |= ψ
M, w |= Kiφ iff wRiw

′ implies M, w′ |= φ for all w′ ∈ W

We deeply embed our language as a datatype in the higher-order logic, which
the semantics interprets. Kripke models are formalized using a type variable ’w
to represent the domain of worlds and ’i for the type of agent labels. We include
the set of worlds explicitly as W. In doing so, we can consider models over sets of
worlds that are cumbersome to define as subtypes. We write π for the valuation
and K for the accessibility relations:

datatype (′i , ′w) kripke =
Kripke (W: ′w set) (π: ′w ⇒ id ⇒ bool) (K: ′i ⇒ ′w ⇒ ′w set)

Formalized Soundness and Completeness of Epistemic Logic 5

We omit the so-called cartouches from the presentation of our Isabelle code.
The type of the semantics is formalized as follows:

primrec semantics :: (′i , ′w) kripke ⇒ ′w ⇒ ′i fm ⇒ bool

In the case for Ki we only consider accessible worlds in the set W (of M):

| (M , w |= K i p) = (∀ v ∈ W M ∩ K M i w . M , v |= p)

4 Normal Modal Logic

We consider the family of normal modal logics, namely those that contain all
propositional tautologies and formulas of the form Kiφ∧Ki(φ → ψ) → Kiψ and
are closed under modus ponens and necessitation.

4.1 Proof System

In Isabelle, we formalize the family as the following inductive predicate �, which
is parameterized by a predicate A on the left-hand side. This is used to admit
additional formulas as axioms. The implication =⇒ allows us to conclude the
right-hand side given the left-hand side:

inductive AK :: (′i fm ⇒ bool) ⇒ ′i fm ⇒ bool (- � - [50 , 50] 50)
for A :: ′i fm ⇒ bool where
A1 : tautology p =⇒ A � p

| A2 : A � (K i p ∧ K i (p −→ q) −→ K i q)
| Ax : A p =⇒ A � p
| R1 : A � p =⇒ A � (p −→ q) =⇒ A � q
| R2 : A � p =⇒ A � K i p

Axiom A1 derives any tautology (under any axiom predicate) and A2 derives
any instance of the distributivity of Ki over implication. The special axiom Ax
derives any formula admitted by A. Finally, R1 is modus ponens and R2 is
necessitation. Note that logics in this family are only closed under substitution
if A is: it is harmless to permit an A that admits Kix → x but not Kix

′ → x′

for distinct x and x′, but we will not consider any such concrete logics here.
We obtain the smallest normal modal logic K when A admits no extra axioms.
The formulas derivable by A1 are typically described as substitution

instances of propositional tautologies. For instance, Kix ∨ ¬Kix is derivable
because it is obtained by substituting Kix for p in the tautology p∨¬p. To avoid
formalizing substitution, we classify tautologies semantically, giving a proposi-
tional semantics for our language. That is, we treat formulas of the form Kiφ as
a different sort of propositional symbols whose truth value is given by another
valuation. The tautologies are the formulas that are valid under this semantics:

abbreviation tautology p ≡ ∀ g h. eval g h p

6 A. H. From

4.2 Soundness

We give a generalized soundness result for our family of logics. Fix a predicate P
on models (e.g. admitting reflexive ones). If the axioms admitted by A are sound
on P -models, then the normal modal logic based on A is sound on P -models:

theorem soundness:
fixes M :: (′i , ′w) kripke
assumes

∧
(M :: (′i , ′w) kripke) w p. A p =⇒ P M =⇒ w ∈ W M =⇒ M , w |= p

shows A � p =⇒ P M =⇒ w ∈ W M =⇒ M , w |= p

The Isabelle symbol
∧

in the assumption quantifies universally over a model
M, world w and formula p. This potentially quantifies over too many worlds, so
we add the assumption that w is the model’s set of worlds. The proof of the
theorem relies on the simple fact that any tautology is valid in all models.

4.3 Derived Rules

The formalization contains a number of derived rules that ease the completeness
proof. We note that the precise meta-language of the proof assistant allows us
to state many such rules in a methodical way. Consider the following lemma,
which allows us to lift any derivation of an implication into the Ki operator:

lemma K-map:
assumes A � (p −→ q)
shows A � (K i p −→ K i q)

In the derivation of another formula, we can readily reuse this result and the
proof assistant makes sure we have applied it correctly: that p and q can be
instantiated so the assumption is met and the conclusion matches the desired
result. In this way, we can compose larger derivations out of smaller pieces in
a disciplined way and the proof automation of Isabelle can even help find the
right pieces and put them together for us.

5 Abstract Completeness

We follow the completeness proof for system K by Fagin et al. [7] but in our
generalized setting. As such, we do not just talk about maximal consistent sets
(MCSs) but MCSs with respect to a choice of additional axioms A (A-MCSs).
Likewise, our canonical model is parameterized by such an A, which we will fix
later to obtain completeness of various logics over various classes of frames.

5.1 Maximal Consistent Sets

A potentially infinite set of formulas S is A-consistent if there is no finite subset
S′ ⊆ S from which, in the presence of A, we can derive a contradiction (⊥):

Formalized Soundness and Completeness of Epistemic Logic 7

definition consistent :: (′i fm ⇒ bool) ⇒ ′i fm set ⇒ bool where
consistent A S ≡ �S ′. set S ′ ⊆ S ∧ A � imply S ′ ⊥

Here S′ = [φ1, . . . , φn] is some (finite and potentially empty) list of formulas
and the expression imply S’ ⊥ builds the formula φ1 → . . . → φn → ⊥.

A set of formulas is A-maximal if any proper extension breaks A-consistency:

definition maximal :: (′i fm ⇒ bool) ⇒ ′i fm set ⇒ bool where
maximal A S ≡ ∀ p. p /∈ S −→ ¬ consistent A ({p} ∪ S)

It is straightforward to verify some classic properties about A-MCSs [3,7]:

theorem mcs-properties:
assumes consistent A V and maximal A V
shows A � p =⇒ p ∈ V
and p ∈ V ←→ (¬ p) /∈ V
and p ∈ V =⇒ (p −→ q) ∈ V =⇒ q ∈ V

Given an A-MCS V we have (i) any derivable formula (using A) is in V (and
by Ax so is any formula admitted by A), (ii) exactly one of φ and ¬φ is in V
and (iii) V is closed under modus ponens. See the formalization for the proofs.

5.2 Lindenbaum’s Lemma

When the agent labels are countable, which we assume from now on, so is our
language, allowing us to assume an enumeration (φn) of formulas. In Isabelle, the
countable-datatype method realizes this enumeration automatically by providing
a surjective function from-nat from natural numbers to formulas of our language.

We can then extend any A-consistent set of formulas S0 into an A-MCS in
the usual way by building an infinite sequence of consistent sets S0, S1, S2, . . .
and taking their union. Given Sn, construct Sn+1 like so:

Sn+1 =

{
Sn if {φn} ∪ Sn is not A-consistent
{φn} ∪ Sn otherwise

In Isabelle, extend A S f n constructs element Sn of the sequence, taking S0 =
S and using f to enumerate the formulas. Extend A S f gives the infinite union⋃

n Sn. The result is A-consistent when the starting point is A-consistent and
maximal when the enumeration is surjective (cf. the formalization for proofs):

lemma consistent-Extend :
assumes consistent A S
shows consistent A (Extend A S f)

lemma maximal-Extend :
assumes surj f
shows maximal A (Extend A S f)

8 A. H. From

5.3 Model Existence

The worlds of the canonical model are A-MCSs, which we abbreviate:

abbreviation mcss :: (′i fm ⇒ bool) ⇒ ′i fm set set where
mcss A ≡ {W . consistent A W ∧ maximal A W }

The remaining parts are the valuation pi and the accessibility relation reach:

abbreviation pi :: ′i fm set ⇒ id ⇒ bool where
pi V x ≡ Pro x ∈ V

abbreviation known :: ′i fm set ⇒ ′i ⇒ ′i fm set where
known V i ≡ {p. K i p ∈ V }

abbreviation reach :: (′i fm ⇒ bool) ⇒ ′i ⇒ ′i fm set ⇒ ′i fm set set where
reach A i V ≡ {W . known V i ⊆ W }

The valuation pi states that proposition x holds in a world V iff x ∈ V .
Where Fagin et al. [7] write V/Ki for the set of formulas known by agent i at
V , i.e. {φ | Kiφ ∈ V }, we write known V i. The worlds reachable by i from V
are those A-MCSs that contain all formulas known at V by i.

We formalize the usual truth lemma: the canonical model satisfies formula φ
at A-MCS V iff φ ∈ V (we need the negated case too for the induction):

lemma truth-lemma:
fixes A and p :: (′i :: countable) fm
defines M ≡ Kripke (mcss A) pi (reach A)
assumes consistent A V and maximal A V
shows (p ∈ V ←→ M , V |= p) ∧ ((¬ p) ∈ V ←→ M , V |= ¬ p)

The proof is by structural induction on the formula φ. The only non-trivial
case is for the Ki-operator where we need to show that when Kiψ is satisfied
at V then Kiψ ∈ V . We follow the proof by Fagin et al. [7] and note that ¬ψ
must be inconsistent with the formulas known at V by i. If they were consis-
tent, they could be extended into an A-MCS satisfying both ¬ψ and known V i
making it accessible from V , which would then satisfy ¬Kiψ as well as Kiψ. A
contradiction. Thus, we can derive ψ from some finite subset L ⊆ known V i of
the known formulas. By necessitation, agent i knows this and by distributivity
of Ki over implication, if agent i knows all of L then it knows ψ. Since L is a
subset of what i knows, the thesis follows immediately.

It is useful to gather Lindenbaum’s lemma and the truth lemma in a lemma
stating that any formula in an A-consistent set is satisfied at the constructed
A-MCS in the canonical model:

lemma canonical-model :
assumes consistent A S and p ∈ S
defines V ≡ Extend A S from-nat and M ≡ Kripke (mcss A) pi (reach A)
shows M , V |= p and consistent A V and maximal A V

Formalized Soundness and Completeness of Epistemic Logic 9

Strong completeness follows directly. If φ is valid under assumptions G but
has no derivation from a subset of G, then {¬φ} ∪ G is A-consistent and the
canonical model satisfies both ¬φ and all of G. This, however, contradicts the
validity of φ under G:

lemma imply-completeness:
assumes valid : ∀ (M :: (′i :: countable, ′i fm set) kripke). ∀w ∈ W M .
(∀ q ∈ G. M , w |= q) −→ M , w |= p

shows ∃ qs. set qs ⊆ G ∧ (A � imply qs p)

In the following section we consider choices of A that impose structure on
the canonical model, giving us completeness over various classes of frames.

We have formalized strong completeness results for every system, but for
brevity we display only the weak counterparts here.

Table 1. Epistemic axioms

Axiom Formula Frame condition Principle

T Kiϕ → ϕ Reflexive True knowledge
B ϕ → KiLiϕ Symmetric Knowledge of consistency of truthsa

4 Kiϕ → KiKiϕ Transitive Positive introspection
5 ¬Kiϕ → Ki¬Kiϕ Euclideanb Negative introspection
aName suggested to us by Rineke Verbrugge.
bNot formalized. Blackburn et al. [3] give a proof.

6 Concrete Systems

We now consider logics based on the axioms in Table 1 and show how we can
compose axioms to easily obtain completeness over the restricted class of frames.

6.1 System K

System K is the smallest normal modal logic so we fix A to always return false:

abbreviation SystemK :: ′i fm ⇒ bool (�K - [50] 50) where
�K p ≡ (λ-. False) � p

Soundness follows immediately from the generalized result:

lemma soundnessK : �K p =⇒ w ∈ W M =⇒ M , w |= p

We abbreviate validity over a class of frames as validX where X is a sys-
tem from table 2, which identifies the corresponding class. For instance validK4

abbreviates validity over transitive frames. For K there are no restrictions:

10 A. H. From

abbreviation validK p ≡ ∀ (M :: (nat , nat fm set) kripke). ∀w ∈ W M . M , w |= p

We obtain immediately that system K is sound and complete on all frames.

theorem mainK : validK p ←→ �K p

We assume validity over one type of worlds only (as given by the type dec-
laration on M in the definition of validK). This a stronger result than assum-
ing validity in all universes. Composing the soundness and completeness results
shows that validity in this universe implies validity in any other:

corollary
assumes validK p and w ∈ W M
shows M , w |= p

In the corollary above there is no restriction on the type of the model M.

Table 2. Soundness and completeness results

System Axioms Class

K All frames
T T Reflexive frames
KB B Symmetric frames
K4 4 Transitive frames
S4 T, 4 Reflexive and transitive frames
S5 T, B 4 or T, 5 Frames with equivalence relations

6.2 System T

We consider system T as an example of our general recipe for proving complete-
ness of a normal modal logic. The inductive command provides an easy way to
define the axiom schema (recall that i and p can be instantiated at will):

inductive AxT :: ′i fm ⇒ bool where
AxT (K i p −→ p)

Following Table 2 we abbreviate the resulting system �T . We will do similarly
from now on without mentioning it explicitly:

abbreviation SystemT :: ′i fm ⇒ bool (�T - [50] 50) where
�T p ≡ AxT � p

If A admits axiom T then every A-MCS can reach itself, by virtue of the
canonical accessibility relation:

Formalized Soundness and Completeness of Epistemic Logic 11

lemma AxT-reflexive:
assumes ∀ p. AxT p −→ A p and consistent A V and maximal A V
shows V ∈ reach A i V

Therefore, when A admits T the canonical model is reflexive:

lemma mcsT -reflexive:
assumes ∀ p. AxT p −→ A p
shows reflexive (Kripke (mcss A) pi (reach A))

Completeness follows directly. Assume validity of φ over reflexive models
(in the AxT -MCS universe) and that φ has no derivation. Then {¬φ} is AxT -
consistent and satisfied by the abstract canonical model. By the result above,
this model is reflexive. But this contradicts the validity of φ over reflexive models,
proving φ must be derivable. As a result:

theorem mainT : validT p ←→ �T p

6.3 Systems KB, K4, S4

The previous section provides a recipe for formalizing completeness of other nor-
mal modal logics: define the axioms, prove that the canonical frame belongs to a
certain class, and reuse the generic canonical model lemma to obtain complete-
ness over that class.

We formalize axioms B and 4 from Table 1 as we did with T. These impose
symmetry and transitivity on the canonical frame, respectively. The correspond-
ing logics, KB and K4, are sound and complete over those classes of frames:

theorem mainKB : validKB p ←→ �KB p
theorem mainK4: validK4 p ←→ �K4 p

We introduce an abbreviation to combine axiom predicates such that A⊕A′

admits φ as an axiom if either A or A′ does:

abbreviation Or :: (′a ⇒ bool) ⇒ (′a ⇒ bool) ⇒ ′a ⇒ bool (infixl ⊕ 65) where
A ⊕ A ′ ≡ λx . A x ∨ A ′ x

We can then define system S4 as the combination of axioms T and 4:

abbreviation SystemS4 :: ′i fm ⇒ bool (�S4 - [50] 50) where
�S4 p ≡ AxT ⊕ Ax4 � p

Each axiom imposes a condition on the canonical frame and this composes
in our setup to give us completeness over reflexive and transitive frames:

theorem mainS4: validS4 p ←→ �S4 p

12 A. H. From

7 System S5

We formalize two versions of System S5. The first version is obtained by com-
bining the axioms T, B and 4. In formalizing the systems T, KB and K4, we
have already proved that these axioms force the canonical model to be reflex-
ive, symmetric and transitive, respectively. Thus, we can easily show that their
composition guarantees equivalence relations. The second version uses the more
traditional combination of axioms T and 5. We show completeness by deriving
the axioms of the first system in the second and vice versa for soundness.

7.1 Compositional Version

We combine the axioms and follow the recipe from before, reusing the canonicity
results, leading us to the expected result:

abbreviation SystemS5 :: ′i fm ⇒ bool (�S5 - [50] 50) where
�S5 p ≡ AxT ⊕ AxB ⊕ Ax4 � p

theorem mainS5: validS5 p ←→ �S5 p

7.2 Alternative Version

We now define a different version of S5 from scratch and call it S5’:

inductive SystemS5 ′ :: ′i fm ⇒ bool (�S5
′′ - [50] 50) where

A1 ′: tautology p =⇒ �S5
′ p

| A2 ′: �S5
′ (K i (p −→ q) −→ K i p −→ K i q)

| AT ′: �S5
′ (K i p −→ p)

| A5 ′: �S5
′ (¬ K i p −→ K i (¬ K i p))

| R1 ′: �S5
′ p =⇒ �S5

′ (p −→ q) =⇒ �S5
′ q

| R2 ′: �S5
′ p =⇒ �S5

′ K i p

We include again all propositional tautologies (A1’) and the distribution
axiom (A2’), but formulated more traditionally for variety. We directly include
the axioms T (AT’) and 5 (A5’). The two rules, modus ponens (R1’) and neces-
sitation (R2’), are the same as before.

To show that this formulation is as powerful as the former, we provide deriva-
tions of the two remaining axioms B and 4. First B:

lemma S5 ′-B : �S5
′ (p −→ K i (L i p))

We omit the proof, which instantiates axiom 5 to Lip → KiLip and uses
axiom T to derive p → Lip. By transitivity, a simple tautology, we arrive at B.

Instantiating axiom 5 to Li(¬p) → KiLi(¬p) allows us to derive axiom 4:

lemma S5 ′-4 : �S5
′ (K i p −→ K i (K i p))

We can then easily show that any formula derivable from axioms T, B, 4 are
derivable with T and 5 as well:

Formalized Soundness and Completeness of Epistemic Logic 13

lemma S5-S5 ′: �S5 p =⇒ �S5
′ p

The other direction (S5’-S5) follows directly from the completeness result for
that system. In combination, we obtain formalized soundness and completeness
for the more traditional choice of axioms over the class of S5 frames:

theorem mainS5
′: validS5 p ←→ �S5

′ p

8 Conclusion and Future Work

We have formalized the syntax and semantics of epistemic logic with countably
many agents in the proof assistant Isabelle/HOL, following the textbook by
Fagin et al. [7] and providing a precise, mechanically-checked elaboration of their
completeness proof. Instead of considering just one proof system for epistemic
logic we have formalized the family of normal modal logics and given an abstract
account of the Henkin-style completeness method, which can be instantiated with
any logic in the family. We have formalized the canonicity of various epistemic
principles and used this, alongside the abstract completeness result, to prove
completeness of systems K, T, KB, K4, S4 and two variants of S5 over their
respective classes of frames. In the composite systems we have reused our results
about the constituent axioms, proving Blackburn et al.’s [3] statement that we
can ‘add our results together’ in such completeness-via-canonicity arguments.

In the initial version of this paper we did not include the set of worlds in the
model explicitly, as we do now, but only implicitly as the inhabitants of the type
variable ’w. This, however, required us to explicitly define a subtype of each
kind of A-MCS, to build the canonical model over. While doable this quickly
proved tedious. We are grateful to the anonymous reviewer who pointed us back
towards the current solution. While we find it slightly less intuitive to have both
a domain of worlds, namely the type, and a concrete set of considered worlds, it
turned out simpler in the end.

In the future we want to extend the formalization with a broader range of
results about epistemic and modal logics, including a formalization of Salhquist’s
correspondence theorem, which would subsume the present results. We also want
to extend the techniques explored here to our formalization of public announce-
ment logic [11].

Acknowledgements. We thank Alexander Birch Jensen and Jørgen Villadsen for
discussions and comments on a draft, Valentin Goranko for suggesting both related
and future work and Bruno Bentzen for informing us of relevant formalizations. We
thank the anonymous reviewers for valuable comments.

References

1. Bentzen, B.: A Henkin-style completeness proof for the modal logic S5. CoRR
abs/1910.01697 (2019). https://arxiv.org/abs/1910.01697

https://arxiv.org/abs/1910.01697

14 A. H. From

2. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs
(2007). https://isa-afp.org/entries/FOL-Fitting.html. Formal proof development

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, vol. 53. Cambridge University Press (2001). https://
doi.org/10.1017/CBO9781107050884

4. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017). https://doi.org/
10.1007/s10817-016-9391-3

5. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic. i. The core algorithm SQEMA. Log. Methods Comput.
Sci. 2(1) (2006). https://doi.org/10.2168/LMCS-2(1:5)2006

6. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-1-4020-5839-4

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/5803.001.0001

8. From, A.H., Blackburn, P., Villadsen, J.: Formalizing a Seligman-style tableau
system for hybrid logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR
2020. LNCS (LNAI), vol. 12166, pp. 474–481. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-51074-9_27

9. From, A.H.: Epistemic logic: Completeness of modal logics. Archive of For-
mal Proofs (2018). https://devel.isa-afp.org/entries/Epistemic_Logic.html. For-
mal proof development

10. From, A.H.: Formalizing Henkin-style completeness of an axiomatic system for
propositional logic. In: Pavlova, A. (ed.) Proceedings of the ESSLLI & WeSSLLI
Student Session 2020 (2020)

11. From, A.H.: Public announcement logic. Archive of Formal Proofs, June 2021.
https://isa-afp.org/entries/Public_Announcement_Logic.html. Formal proof
development

12. From, A.H., Jensen, A.B., Villadsen, J.: Formalized soundness and completeness
of epistemic logic (2021). https://lamassr.github.io/papers/Formalized-Soundness.
pdf. Extended abstract. International Workshop on Logical Aspects in Multi-Agent
Systems and Strategic Reasoning (LAMAS & SR)

13. Hagemeier, C.: Formalizing intuitionistic epistemic logic in Coq. BSc thesis (2021).
https://www.ps.uni-saarland.de/~hagemeier/bachelor.php

14. Kądziołka, J.: Solution to the XKCD blue eyes puzzle. Archive of Formal Proofs
(2021). https://isa-afp.org/entries/Blue_Eyes.html. Formal proof development

15. Li, J.: Formalization of pal·s5 in proof assistant. CoRR abs/2012.09388 (2020).
https://arxiv.org/abs/2012.09388

16. Maggesi, M., Brogi, C.P.: A formal proof of modal completeness for provability
logic. CoRR abs/2102.05945 (2021). https://arxiv.org/abs/2102.05945

17. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (1995). https://doi.org/10.1017/CBO9780511569852

18. Neeley, P.: Results in modal and dynamic epistemic logic: a formaliza-
tion in Lean (2021). https://leanprover-community.github.io/lt2021/slides/paula-
LeanTogether2021.pdf. Slides

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL–A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

https://isa-afp.org/entries/FOL-Fitting.html
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.2168/LMCS-2(1:5)2006
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/978-3-030-51074-9_27
https://doi.org/10.1007/978-3-030-51074-9_27
https://devel.isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/Public_Announcement_Logic.html
https://lamassr.github.io/papers/Formalized-Soundness.pdf
https://lamassr.github.io/papers/Formalized-Soundness.pdf
https://www.ps.uni-saarland.de/~hagemeier/bachelor.php
https://isa-afp.org/entries/Blue_Eyes.html
https://arxiv.org/abs/2012.09388
https://arxiv.org/abs/2102.05945
https://doi.org/10.1017/CBO9780511569852
https://leanprover-community.github.io/lt2021/slides/paula-LeanTogether2021.pdf
https://leanprover-community.github.io/lt2021/slides/paula-LeanTogether2021.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Formalized Soundness and Completeness of Epistemic Logic 15

20. Wu, M., Goré, R.: Verified decision procedures for modal logics. In: Harrison,
J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 141, pp. 31:1–31:19. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.31,
http://drops.dagstuhl.de/opus/volltexte/2019/11086

21. Xiong, Z., Ågotnes, T., Zhang, Y.: The logic of secrets. In: LAMAS 2020–10th
Workshop on Logical Aspects of Multi-Agent Systems (2020)

https://doi.org/10.4230/LIPIcs.ITP.2019.31
http://drops.dagstuhl.de/opus/volltexte/2019/11086

A Logical Characterization
of Constant-Depth Circuits over the Reals

Timon Barlag(B) and Heribert Vollmer

Leibniz University, Hanover, Germany
{barlag,vollmer}@thi.uni-hannover.de

https://www.thi.uni-hannover.de

Abstract. In this paper we give an Immerman Theorem for real-valued
computation, i.e., we define circuits of unbounded fan-in operating over
real numbers and show that families of such circuits of polynomial size
and constant depth decide exactly those sets of vectors of reals that can
be defined in first-order logic on R-structures in the sense of Cucker and
Meer.

Our characterization holds both non-uniformly as well as for many
natural uniformity conditions.

Keywords: Computation over the reals · Descriptive complexity ·
Constant-depth circuit families

1 Introduction

Computational complexity theory is a branch of theoretical computer science
which focuses on the study and classification of problems with regard to their
innate difficulty. This is done by dividing these problems into classes, according
to the amount of resources necessary to solve them using particular models of
computation. One of the most prominent such models is the Turing machine –
a machine operating sequentially on a fixed, finite vocabulary.

If one wishes to study problems based on their parallel complexity or in the
domain of the real numbers, one requires different models of computation. The-
oretical models exist both for real-valued sequential and for real-valued parallel
computation, going back to the seminal work by Blum, Shub and Smale [4], see
also [3]. Their aim was to lay the foundation for a theory of scientific computa-
tion, an area going back to Newton, Euler and Gauss, with algorithms over the
real numbers. Going even a step further, John von Neumann aimed for a formal
logic amenable to mathematical analysis and the continuous concept of the real
number.

Unlike Turing machines, machines over R obtain not an unstructured
sequence of bits as input but a vector of real numbers or an (encoding of an)
R-structure. The respective parallel model we are going to have a closer look at
is a real analogue to the arithmetic circuit (see, e.g., [15]), which, as its name

Supported by DFG VO 630/8-1.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 16–30, 2021.
https://doi.org/10.1007/978-3-030-88853-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_2&domain=pdf
http://orcid.org/0000-0001-6139-5219
http://orcid.org/0000-0002-9292-1960
https://doi.org/10.1007/978-3-030-88853-4_2

A Logical Characterization of Constant-Depth Circuits over the Reals 17

suggests, resembles electrical circuits in its functioning, however, contrary to
these our model operates not on electrical signals, i.e., Boolean values, but real
numbers.

Descriptive complexity is an area of computational complexity theory, which
groups decision problems into classes not by bounds on the resources needed for
their solution but by considering the syntactic complexity of a logical formalism
able to express the problems. Best known is probably Fagin’s characterization
of the class NP as those problems that can be described by existential second-
order formulas of predicate logic [9]. Since then, many complexity classes have
been characterized logically. Most important in our context is a characteriza-
tion obtained by Neil Immerman, equating problems decidable by (families of)
Boolean circuits of polynomial size and constant depth consisting of gates of
unbounded fan-in, with those describable in first-order logic:

Theorem 1 ([14]). AC0 = FO.

An important issue in circuit complexity is uniformity, i.e., the question
if a finite description of an infinite family of circuits exists, and if yes, how
complicated it is to obtain it. Immerman’s Theorem holds both non-uniformly,
i.e., under no requirements on the constructability of the circuit family, as well
as for many reasonable uniformity conditions [2]. In the non-uniform case, first-
order logic is extended by allowing access to arbitrary numerical predicates, in
symbols: non-uniform AC0 = FO[Arb].

The rationale behind the descriptive approach to complexity is the hope to
make tools from logic on expressive power of languages available to resource-
based complexity and use non-expressibility results to obtain lower bounds on
resources such as time, circuit size or depth, etc.

Descriptive complexity seems very pertinent for real-valued computation,
since formulas operate directly on structured inputs, which seems quite natural,
while computation models generally work on encodings of the input structure,
which is an additional abstraction.

In the area of descriptive complexity over the reals, one usually considers
metafinite structures, that is finite first-order structures enriched with a set of
functions into another possibly infinite structure, in our case the real numbers
R. This study was initiated by Grädel and Meer [11], presenting logical charac-
terizations of PR and NPR. Continuing this line of research, Cucker and Meer
showed a few logical characterizations for bounded fan-in real arithmetic cir-
cuit classes [7], which is what the present paper builds on. Cucker and Meer
first proved a characterization of PR using fixed-point logic, and building on this
characterized the classes of the NC-hierarchy (bounded fan-in circuits of polyno-
mial size and polylogarithmic depth) restricting the number of updating in the
definition of fixed points to a polylogarithmic number. They leave out the case
of the very low circuit class AC0

R
, a subclass of NC1

R
. We now expand on their

research by making the framework of logics over metafinite structures amenable
for the description of unbounded fan-in circuits; we are particularly concerned
with a real analogue to the class AC0

R
and show that it corresponds to first-order

logic over metafinite structures:

18 T. Barlag and H. Vollmer

Theorem 2. AC0
R

= FOR.

Cucker and Meer only note that “the expressive power of first-order logic is
not too big” [7] since it can only describe properties in NC1

R
. In a sense we close

the missing detail in their picture by determining a circuit class corresponding
to first-order logic.

The logical characterization of Theorem 2 holds for arbitrary uniformity con-
ditions based on time-bounded construction of the circuit family, in particu-
lar PR-uniformity and LTR-uniformity. Extending the framework of Cucker and
Meer, we also characterize non-uniform AC0

R
by first-order logic enhanced with

arbitrary numerical predicates.
This paper is structured as follows: In the next section, we introduce the

reader to machines and circuits over R and the complexity classes they define.
We also introduce logics over metafinite structures and prove a couple of auxiliary
results concerning useful extensions of FOR. Section 3 contains our main results,
first turning to non-uniform circuits and then generalizing our results to different
uniformity conditions. We close by mentioning some questions for further work.

The proofs of some of our theorems are quite lengthy and due to space
restrictions we only give sketches of basic ideas. For the full proofs, see [1].

2 Preliminaries

In this section, we give an introduction to the machine models and logic over
R used in this paper – which are mostly taken from Cucker and Meer [7] – and
some extensions thereof which we will make use of later on.

2.1 Machines over R

Machines over R, which were first introduced by Blum, Shub and Smale [4],
operate on an unbounded tape of registers containing real numbers. They can
evaluate real polynomials and divisions of real polynomials in a single step and
branch out by checking if the number contained in a cell is nonnegative. A
function f is said to be (R-)computable if and only if there exists an R-machine
M , whose input-output-function is exactly f . We say that such a machine works
in polynomial (logarithmic) time, if the number of steps it takes before halting
when given an input x ∈ R

∞ is bounded by a polynomial (logarithmic) function
in |x|. Here, R∞ denotes arbitrarily long R-vectors (i.e., R∞ =

⋃
k∈N0

R
k) and

|x| denotes the length of x, i.e., if x ∈ R
k then |x| = k.

A more formal definition of these machines can be found can also be found
in the paper by Cucker and Meer [7] or the arXiv version of this paper [1].

2.2 Arithmetic Circuits over R

Arithmetic circuits over R were first introduced by Cucker [6] and are our main
model of computation. We will define them in analogy to how they were defined

A Logical Characterization of Constant-Depth Circuits over the Reals 19

by Cucker and Meer [7], however in this paper we consider unbounded fan-in.
Also, we disallow division and subtraction gates, since it is not clear, how these
operations would be defined for unbounded fan-in. Since it can be shown that
for decision problems, losing (the bounded version of) those gate types does not
change computational power within polynomial size, disallowing them does not
relativize our results.

Definition 3. An arithmetic circuit C over R is a directed acyclic graph. Its
nodes (also called gates) can be of the following types:
Input nodes have indegree 0 and contain the respective input values of the

circuit.
Constant nodes have indegree 0 and are labelled with real numbers.
Arithmetic nodes can have an arbitrary indegree only bounded by the number of

nodes in the circuit. They can be labelled with either + or ×
Sign nodes have indegree 1.
Output nodes have outdegree 1 and contain the output values of the circuit

after the computation.

Nodes cannot be predecessors of the same node more than once, which leads to
the outdegree of nodes in these arithmetic circuits being bounded by the number
of gates in the circuit.

For convenience, we also define arithmetic nodes with the labels −,=, <,>,≤
and ≥, though they do not grant us additional computational power in this
context.

Arithmetic nodes compute the respective function they are labelled with
(with =, <,>,≤ and ≥ representing their respective binary characteristic func-
tions) and sign gates compute the sign function. On any input x, a circuit C
computes a function fC by evaluating all gates according to their labels. The
values of the output gates at the end of the computation are the result of the
computation of C, i.e., fC(x).

In order to talk about complexity classes of arithmetic circuits, one considers
the depth and the size of the circuit. The depth of a circuit is the longest path
from an input gate to an output gate and the size of a circuit is the number of
gates in a circuit.

We say that a directed acyclic graph Csub is a subcircuit of a circuit C, if and
only if Csub is weakly connected (i.e. replacing all directed edges with undirected
ones in Csub would produce a connected graph), all nodes and edges in Csub are
also contained in C and it holds that if there is a path from an input gate to a
gate g in C, then this path also exists in Csub. For any node g in C, we denote
by the subcircuit induced by g that subcircuit Csub,g of C, of which g is the top
node. We then also say that g is the root node of Csub,g.

A single circuit can only compute a function with a fixed number of argu-
ments, which is why we call arithmetic circuits a non-uniform model of compu-
tation. In order to talk about arbitrary functions, we need to consider circuit
families, i.e., sequences of circuits which contain one circuit for every input length

20 T. Barlag and H. Vollmer

Fig. 1. This circuit has size 7, depth 4 and computes the binary function f(x, y) =
(6 · x) + (6 · x) · y.

n ∈ N. The function computed by a circuit family C = (Cn)n∈N is the function
computed by the respective circuit, i.e.,

fC(x) = fC|x|(x). (1)

A circuit family is said to decide a set if and only if it computes the characteristic
function of the set. For a function f : N → N, we say that a circuit family C is
of size f (depth f), if the size (depth) of Cn is bounded by f(n).

Definition 4. The class AC0
R

is the class of sets decidable by arithmetic circuit
families over R of polynomial size and constant depth.

The circuit families we have just introduced do not have any restrictions on
the difficulty of obtaining any individual circuit. For this reason, we also consider
so-called uniform circuit families.

Definition 5. We say that a circuit family C = (Cn)n∈N is uniform if for each of
its circuit the gates are numbered, the predecessors of each gate are ordered and
for any given triple of numbers (n, vnr, pidx), a corresponding triple (t, pnr, c)
can be computed by an R-machine M , where

i) t is the type of the vnrth gate v in Cn,
ii) pnr is the number of the pidxth predecessor of v and
iii) c is the value of v if v is a constant gate, the index i if v is the ith input

gate and 0 otherwise.

If v has less than pidx predecessors, M returns (t, 0, 0) and if vnr does not
encode a gate in Cn, M returns (0, 0, 0).

If this computation only takes logarithmic time in n, we call C LTR-uniform.
If it takes polynomial time in n, we call C PR-uniform.

For a circuit complexity class C, we will by ULTR
-C denote the subclass of C,

which only contains sets definable by LTR-uniform circuit families. We will use
UPR

-C to analogously denote those sets in C definable by PR-uniform families.

A Logical Characterization of Constant-Depth Circuits over the Reals 21

2.3 R-Structures and First-Order Logic over R

The logics we use to characterize real circuit complexity classes are based on
first-order logic with arithmetics.

Definition 6 ([7, Definition 7]). Let Ls, Lf be finite vocabularies where Ls can
contain function and predicate symbols and Lf only contains function symbols.
An R-structure of signature σ = (Ls, Lf) is a pair D = (A,F) where

1. A is a finite structure of vocabulary Ls which we call the skeleton of D whose
universe A we will refer to as the universe of D and whose cardinality we will
refer to by |A|

2. and F is a finite set which contains functions of the form X : Ak → R for
k ∈ N which interpret the function symbols in Lf .

We will use StructR(σ) to refer to the set of all R-structures of signature σ
and we will assume that for any fixed signature σ = (Ls, Lf), we can fix an
ordering on the symbols in Ls and Lf .

In order to use R-structures as inputs for machines, we encode them in R
∞

as follows: We start by choosing an arbitrary ranking r on A, i.e., a bijection
r : A → {0, ..., |A| − 1}. We then replace all predicates in Ls by their respective
characteristic functions and all functions f ∈ Ls by r ◦ f . Those functions are
then considered to be elements of Lf . We represent each of these functions by
concatenating their function values in lexicographical ordering on the respective
function arguments according to r. To encode D we only need to concatenate all
representations of functions in Lf in the order fixed on the signature. We denote
this encoding by enc(D).

In order to be able to compute |A| from enc(D), we make an exception for
functions and predicates of arity 0. We treat those as if they had arity 1, meaning
that e.g. we encode a function f1() = 3 as |A| many 3s.

Since
|enc(D)| =

∑

f∈Lf

|A|max{ar(f),1}, (2)

where ar(f) is the arity of f , we can reconstruct |A| from the arities of the
functions in Lf and the length of enc(D). We can do so by using for example
binary search, since we know that |A| is between 0 and |enc(D)|. We can there-
fore compute |A| when given ϕ and |enc(D)| in time logarithmic in |enc(D)|.

First-Order Logic over R

Definition 7 (First-order logic). The language of first-order logic contains
for each signature σ = (Ls, Lf) a set of formulas and terms. The terms are
divided into index terms which take values in universe of the skeleton and number
terms which take values in R. These terms are inductively defined as follows:

1. The set of index terms is defined as the closure of the set of variables V under
applications of the function symbols of Ls.

22 T. Barlag and H. Vollmer

2. Any real number is a number term.
3. For index terms h1, ..., hk and a k-ary function symbol X ∈ Lf , X(h1, ..., hk)

is a number term.
4. If t1, t2 are number terms, then so are t1 + t2, t1 × t2 and sign(t1).

Atomic formulas are equalities of index terms h1 = h2 and number terms t1 =
t2, inequalities of number terms t1 < t2 and expressions of the form P (h1, ..., hk),
where P ∈ Ls is a k-ary predicate symbol and h1, .., hk are index terms.

The set FOR is the smallest set which contains the closure of atomic formulas
under the Boolean connectives {∧,∨,¬, =⇒ , ⇐⇒ } and quantification ∃vψ and
∀vψ where v ranges over A.

Equivalence of FOR-formulas and sets defined by FOR-formulas are done in
the usual way, i.e., a formula ϕ defines a set S if and only if the elements of
S are exactly the encodings of R-structures under which ϕ holds and two such
formulas are said to be equivalent if and only if they define the same set.

Extensions to FOR

In the following, we would like to extend FOR by additional functions and rela-
tions that are not given in the input structure. To that end, we make a small
addition to Definition 6 where we defined R-structures. Whenever we talk about
R-structures over a signature (Ls, Lf), we now also consider structures over sig-
natures of the form (Ls, Lf , La). The additional vocabulary La does not have
any effect on the R-structure, but it contains function and relation symbols,
which can be used in a logical formula with this signature. This means that any
R-structure of signature (Ls, Lf) is also an R-structure of signature (Ls, Lf , La)
for any vocabulary La.

Definition 8. Let R be a set of finite relations and functions. We will write
FOR[R] to denote the class of sets that can be defined by FOR-sentences which
can make use of the functions and relations in R in addition to what they are
given in their structure. Formally, this means that FOR[R] describes exactly
those sets S ⊆ R

∞ for which there exists an FOR-sentence ϕ over a signature
σ = (Ls, Lf , La) such that for each length n, there is an interpretation In inter-
preting the symbols in La as elements of R such that for all R∞-tuples s of length
n it holds that s ∈ S if and only if s encodes an R-structure over (Ls, Lf , La)
which models ϕ when using In.

With the goal in mind to create a logic which can define sets decided by
circuits with unbounded fan-in, we introduce new rules for building number
terms: the sum and the product rule. We will also give another rule, which we
call the maximization rule, but will later show that we can define this rule in
FOR and thus do not gain expressive power by using it. We will use this rule to
show that we can represent characteristic functions in FOR.

A Logical Characterization of Constant-Depth Circuits over the Reals 23

Definition 9 (sum, product and maximization rule). Let t be a number
term in which the variable i occurs freely with other variables w = w1, ..., wj

and let A denote the universe of the given input structure. Then

sumi(t(i, w)) (3)

is also a number term which is interpreted as
∑

i∈A t(i, w). The number terms
prodi(t(i, w)) and maxi(t(i, w)) are defined analogously.

We also write sumq
i (t(i1, ..., iq, w)) to denote sumi1(...sumiq (t(i1, ..., iq, w)))

for convenience and we will use prodq
i analogously.

For a logic L, we will by L + SUMR, L + PRODR and L + MAXR denote L
extended by the sum rule, the product rule or the maximization rule respectively.

We will now evaluate which logics can already natively use some of the afore-
mentioned rules. As it turns out, the maximization rule can be used in FOR

without any extensions and the sum and product rule extend neither FOR[Arb]
nor a polynomial extension of FOR which we will see later.

Lemma 10. FOR = FOR + MAXR.

Proof. For each FOR + MAXR formula, we can construct an equivalent FOR-
formula. For each such term containing maxi(F (i)), the basic idea it to add a
quantifier prefix which makes sure that there exists an element x ∈ A such that
for all elements y ∈ A, F (x) ≥ F (y).

Definition 11. Let Arb denote the set of all finitary relations over R
∞ and all

functions f : Rk → R for k ∈ N.

Lemma 12. FOR[Arb] = FOR[Arb] + SUMR = FOR[Arb] + PRODR.

Proof. Let ϕ be an FOR[Arb]-sentence which contains sumi-constructions. For
each sumi-occurrence sumi(t(i, w)), starting at the deepest level of nesting, cre-
ate a new function symbol sum(t,i) of arity |w| which for any input structure
D = (A,F) is interpreted as

sum(t,i)(w) =
∑

i∈A

t(i, w). (4)

Now replace each sumi-occurrence in ϕ by the respective function symbol. The
result is an FOR[Arb]-formula which is equivalent to ϕ but does not contain any
sumi-constructions. FOR[Arb] = FOR[Arb]+PRODR can be shown analogously.

Remark 13. For the sake of simplicity we only consider functional R-structures
in the following, i.e., R-structures whose signatures do not contain any predicate
symbols. This does not restrict what we can express, since any relation P ∈ Ak

can be replaced by its characteristic function χP : Ak → {0, 1}.

As mentioned before, the reason why we need the maximization rule is that
we would like to write characteristic functions as number terms. This will become

24 T. Barlag and H. Vollmer

useful when we characterize our circuit models logically. For a first-order formula
ϕ(v1, ..., vr) we define its characteristic function χ[ϕ] on a structure D by

χ[ϕ](a1, ..., ar) =

{
1 if D |= ϕ(a1, ..., ar)
0 otherwise

(5)

The following result is a slight modification of a result presented by Cucker
and Meer [7].

Proposition 14. Let R be a set of functions and predicates. For every FOR[R]-
formula ϕ, there is an FOR[R] number term tχ[ϕ] such that for all structures D
it holds that tχ[ϕ] evaluates to 1 under D if D |= ϕ and to 0, otherwise.

We will write χ[ϕ] to denote the use of tχ[ϕ] when writing number terms.

3 Characterizing AC0
R

In this section, we give descriptive complexity results for the non-uniform set
AC0

R
and some of its uniform subsets. In order to achieve this, we use the pre-

viously defined first-order logic over the real numbers and the extensions we
defined.

3.1 A Characterization for Non-uniform AC0
R

First of all we show an equality which is close to a classical result shown by
Immermann [13]. We show that extending our first-order logic over the reals
with arbitrary functions lets us exactly describe the non-uniform set AC0

R
.

In the proof for the upcoming theorem, we make use of a convenient property
of circuits deciding AC0

R
-sets, namely that for each of those circuits, there exist

tree-like circuits deciding the same set. We call a circuit tree-like, if it is a directed
tree with the exception of the input nodes. Those nodes, which would represent
the leaves, can have multiple successor nodes. That means that tree-like circuits
are trees up until the penultimate level and would be actual trees, if one would
copy every input gate for each outgoing edge, rather than letting them have
multiple successors.

Lemma 15. For every AC0
R
-circuit family (Cn)n∈N, there exists a tree-like AC0

R
-

circuit family (C ′
n)n∈N computing the same function, such that for all n ∈ N and

every gate v in C ′
n, every path from an input gate to v has the same length.

Proof. In order to prove this we show that any AC0
R
-family can be transformed

into an AC0
R
-family which exhibits the specified property. For any given circuit

of a AC0
R
-family, we first make sure that all non-input gates have outdegree 1. In

order to achieve this, for each gate g with outdegree k > 1 we copy the subcircuit
Csub,g induced by g k − 1 times, so that we now have k copies of Csub,g. For
each of the previously outgoing edges g → v of g, the root of one of the copies
of Csub,g then has v as its (sole) successor.

A Logical Characterization of Constant-Depth Circuits over the Reals 25

We do this iteratively, in each step only modifying gates with outdegree
≥ 2 that are closest to input gates. Afterwards, we pad all paths from input
gates to the output gate with addition gates to ensure that they have the same
length. This can be done with only a polynomial overhead in size and a constant
overhead in depth without changing the computed function. Figure 2 show an
example of this construction. ��

Fig. 2. An example of turning the circuit from Fig. 1 into a tree-like circuit as described
in Lemma 15

For the upcoming proof we need some additional notation: For every FOR

formula ϕ and every variable x let ϕ[a/x] denote ϕ where each occurrence of x is
replaced by a. We write ϕ[a1/x1, ..., an/xn] to denote several such replacements.

Theorem 16. FOR[Arb] = AC0
R
.

Proof. The proof for this equality follows a similar pattern as the proof for the
respective discrete result as presented in [15].

The main idea is to show that for any given FOR sentence ϕ, a circuit family
can be constructed which accepts its input if and only if the input encodes an
R-structure that satisfies φ. This is achieved by using addition and multiplica-
tion gates to mimic the functionality of existential and universal quantifiers and
Boolean connectives and using the available gate types to represent the different
kinds of number and index terms that can appear in FOR formulae. This is a
similar basic idea as in the proof in [15], however, the technical execution of that
idea is quite different thanks to the fact that we are dealing with arithmetic
circuits and a logic which deals with Boolean and arithmetic terms of a dyadic
structure.

Let ϕ be an FOR[Arb] sentence of signature σ. For any subformula ψ of ϕ
with exactly k free variables x1, ..., xk, and any vector (m1, ...,mk) ∈ Ak we can
construct an arithmetic circuit C

ψ(m1,...,mk)
n with the following property: For any

input structure D such that |enc(D)| = n it holds that D |= ψ[m1/x1, ...,mk/xk]
if and only if enc(D) is accepted by C

ψ(m1,...,mk)
n .

If for example ϕ = ∃ψ, then Cϕ
n has a sign gate at the top, followed by a

multiplication gate, which in turn has as its predecessors the circuits C
ψ(i)
n for

26 T. Barlag and H. Vollmer

1 ≤ i ≤ n. The final circuit for the sentence ϕ is defined by structural induction
on ϕ. The construction is relatively technical and can be found in [1].

The idea for the converse inclusion is to construct a formula for a given
circuit family C that is satisfied by exactly those structures whose encodings are
evaluated to 1 by the circuits of C. This is accomplished by defining number
terms which encode the structure of the given circuit.

This idea is again very similar to the proof in [15], nevertheless, again the
differences lie in the technical details. While the structures used in [15] are word
structures, the functional structures used here require interpreting the circuit
inputs as an encoded R-structure which contains a single unary function that
maps an index i to the value of the ith input gate of the circuit. These real values
then need to be accumulated and “carried” through the circuit by defining a
number term for each level of the circuit, which maps each gate on that level to
its value during the computation.

We want to show that for any given set S ⊆ R
∞ defined by an AC0

R
family

C, we can construct an FOR[Arb] sentence ϕ defining S. Since we have access
to arbitrary functions, we can essentially just encode the structure of any given
circuit into functions and have the interpretation of the function symbols we
use be dependent on the length of the input n. However, the function symbols
themselves, and thus the formula, do not depend on n. The functions we use will
give us information about the type of any gate, its value if it is a constant gate,
its index if it is an input gate and about its predecessor gates. Given that we
are dealing with AC0

R
circuits, we can by Lemma 15 assume that they are tree-

like and that each path from an input to the output gate has the same length.
Therefore we can construct a sentence which essentially describes the gates of
each level of the circuit.

We thus define ϕ inductively by defining a number term valx for every
x ≤ depth(C), which for any given gate on level x holds the value of that gate
in the computation of Cn on the given input structure. ϕ then states that
if the given gate g has the type 6 – meaning it is the output gate – then
valdepth(C)(g) = 1. Again, for details see [1]. ��

3.2 Characterizations for uniform AC0
R

Having now developed a description for non-uniform AC0
R
, in the upcoming

part of this paper we derive descriptions for two of its uniform variations and a
generalization. We start by giving a description for the logarithmic time uniform
ULTR

-AC0
R
.

For this reason, we introduce another notation here:

Definition 17. By FTIMER(f(n)) we will denote all functions that for a finite
set S and k ∈ N map from Sk to R or to S and that are computable by an
R-machine in time bounded by O(f(|S|)).
Theorem 18. FOR[FTIMER(log n)] + SUMR + PRODR = ULTR

-AC0
R
.

A Logical Characterization of Constant-Depth Circuits over the Reals 27

Proof. Showing the equality of FOR[FTIMER(log n)] and ULTR
-AC0

R
works very

similarly to the proof of Theorem 16. The respective circuit family C for showing
FOR[FTIMER(log n)] ⊆ ULTR

-AC0
R

is defined in the same way. To show logtime
uniformity, we need to additionally number the gates of the circuits of C, and
provide an R-machine running in logarithmic time which produces the gates of
Cn for all n ∈ N. To achieve this, we number the gates of Cn gates in a post-
order fashion. If we now want to produce the information for any given gate
g, we can simply construct every gate on the path from the output gate to g,
since our numbering tells us for each gate on our way, at which predecessor to
continue. We can assume that this path is unique, since by Lemma 15, we can
assume that Cn is tree-like. As Cn has constant depth, we only need to construct
a constant number of gates in this way and each gate can be constructed in at
most logarithmic time. In fact, we only need logarithmic time, if the gate is the
evaluation of a function of FTIMER(log n). In all other cases, gate information
can be procured in constant time. An example for this construction can be seen
in Fig. 3.

The reverse containment again works very similarly as it did in the proof of
Theorem 16. We again define valx in the same way, and all auxiliary number and
index terms we need can be defined in FOR[FTIMER(log n)]+SUMR +PRODR,
since C is LTR-uniform. ��

Fig. 3. The circuit from Fig. 1 has been transformed as shown in Fig. 2 and been
numbered as in (a simplified version of) the numbering for Theorem 18. If we for
example wanted to construct the addition gate numbered 7, we would start at 11,
construct the gate 10 and we would then know to keep going at gate 9, since 7 is less
than 9 but larger than 6. Note, that the input gates are exceptions in this numbering,
since they do not behave tree-like. Their numbering starts just above the size of the
circuit, so if a machine producing the gates of the circuit gets a number 11 < k ≤ 13
as an input, it can immediately return (1, 0, k) (as per Definition 5).

Our second uniformity result is a classification for PR-uniform AC0
R
. This

result basically follows in the same way as the previous one did. It is
of note, however, that the sum and product rule do not actually extend

28 T. Barlag and H. Vollmer

FOR[FTIMER(nO(1))], since the respective sums and products can already be
computed in polynomial time. In analogy to Lemma 12 we get the following.

Lemma 19. FOR[FTIMER(nO(1))] = FOR[FTIMER(nO(1))]+SUMR+PRODR.

Corollary 20. FOR[FTIMER(nO(1))] = UPR
-AC0

R
.

With the construction shown in Theorem 18 we can now generalize that,
whenever we have a variant of AC0

R
given by a time complexity uniformity crite-

rion that is at least logarithmic, we can describe it using first-order logic extended
with functions of that class’ time complexity and the sum and product rule. This
result is formalized as follows:

Corollary 21. For any function f : N → N with f(n) ≥ log n for all n, it holds
that

Uf -AC0
R

= FOR[FTIMER(f(n))] + SUMR + PRODR, (6)

where Uf -AC0
R

is the class of sets decidable by circuit families, which can be
constructed as described in Definition 5 in time bounded by O(f(n)).

Remark 22. The logarithmic bound for f in Corollary 21 stems from the time
it takes to decode an encoded R-structure. For details, see [1].

Remark 23. Even though we have only considered functional R-structures in
this paper, our findings can be generalized for R-structures which use relations
as well, since any relation can be expressed via its characteristic function.

4 Conclusion

We showed that the computational power of circuits of polynomial size and con-
stant depth over the reals can be characterized in a logical way by first-order
logic on metafinite structures. This result is in analogy to corresponding char-
acterizations for Boolean circuits [14] and arithmetic circuits [12]. The results
presented in this paper mostly do not make use of any special properties of the
real numbers and can be generalized for other fields with suitably adapted logic
and circuit definitions.

In the Boolean and arithmetic context, it is known [2] that the numerical
predicates of addition and multiplication play a special role: If we enhance first-
order logic by these, we obtain a logic as powerful as dlogtime-uniform AC0-
circuits, i.e., UD-AC0 = FO[+,×] (see also [15]). This does not seem to hold in
our case of computation over the real numbers: ULTR

-AC0
R

looks more powerful
than FOR[+,×], since real numbers can be manipulated more generally by R-
machines operating in logarithmic time than in first-order formulas, because it
seems that a logarithmic number of operations on reals cannot be simulated in
first-order logic. Maybe an equivalence can be obtained with a more powerful
logic for real numbers, but this is a question for further research. However, an
analogue to the Boolean equality seems to hold if we consider uniformity defined

A Logical Characterization of Constant-Depth Circuits over the Reals 29

itself in a logical way: The identity UFO-AC0 = FO[+,×], well known in the
Boolean world, seems to hold in the real-valued setting as well. We will turn to
this issue in the final version of this paper.

While investigating uniform circuit classes over the reals, we found that uni-
formity behaves somewhat differently in the real setting than it does in the
Boolean one. In the classical setting, the question of uniformity arises quite
naturally, since small classes like non-uniform AC0 already contain undecidable
problems with respect to Turing machines. In the case of AC0

R
and R-machines,

the same is at least not quite obvious and worth looking into further.
We consider it worthwhile to study logical characterizations of analogues of

further circuit classes of unbounded or semi-unbounded fan-in, most prominently
SAC1

R
and AC1

R
. In the theory of arithmetic complexity, i.e., computation over

arbitrary semi-rings, first an analogue of Immerman’s Theorem was shown in
[12], and this was later used to obtain logical characterizations of the larger
arithmetic classes #NC1, #SAC1 and #AC1 [8]. Remarkably these characteri-
zations did not build on logics with repeated quantifier blocks (like in [14]) or
restricted fixed-point logic (like in [7]). Instead, new logical characterizations
of the Boolean classes NC1, SAC1 and AC1 were given, somewhat similar to
earlier ideas from Compton and Laflamme [5], and these were then shifted to
the arithmetic setting. Maybe this can also be useful in our context to develop
characterizations for SAC1

R
and AC1

R
(and maybe obtain a new characterization

of AC1
R
).

In the theory of computation over the reals, separations among classes are
known which are widely open in the discrete world; we only mention the separa-
tion of NCR and PR [6]. In the circuit world, the most prominent open question
is if TC0 = NC1 (see the discussion in [15]). In our context, it is intriguing to
study the landscape between AC0

R
and NC1

R
. Is there any meaningful way to add

computational power to AC0
R

without already arriving at the full power of NC1
R
?

Observe that up to date, no reasonable real analogue of the class TC0 is known.
In Boolean complexity, TC0 is obtained by enriching AC0-circuits with majority
gates. Here, the class AC0

R
is closed under all reasonable forms of majority and

threshold operations. A first step forward will be to separate AC0
R

and NC1
R
, a

real world analogue of a classical circuit separation from the eighties [10].

References

1. Barlag, T., Vollmer, H.: A logical characterization of constant-depth circuits over
the reals. CoRR (2020). https://arxiv.org/abs/2005.04916

2. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1.
J. Comput. Syst. Sci. 41(3), 274–306 (1990). https://doi.org/10.1016/0022-
0000(90)90022-D

3. Blum, L.: Complexity and Real Computation. Springer, Heidelberg (1998). https://
www.worldcat.org/oclc/37004484

4. Blum, L., Shub, M., Smale, S.: On a theory of computation over the real numbers;
NP completeness, recursive functions and universal machines (extended abstract).
In: 29th Annual Symposium on Foundations of Computer Science, pp. 387–397.
IEEE Computer Society (1988). https://doi.org/10.1109/SFCS.1988.21955

https://arxiv.org/abs/2005.04916
https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1016/0022-0000(90)90022-D
https://www.worldcat.org/oclc/37004484
https://www.worldcat.org/oclc/37004484
https://doi.org/10.1109/SFCS.1988.21955

30 T. Barlag and H. Vollmer

5. Compton, K.J., Laflamme, C.: An algebra and a logic for NC1. Inf. Comput.
87(1/2), 240–262 (1990). https://doi.org/10.1016/0890-5401(90)90063-N

6. Cucker, F.: PR �= NCR. J. Complexity 8(3), 230–238 (1992). https://doi.org/10.
1016/0885-064X(92)90024-6

7. Cucker, F., Meer, K.: Logics which capture complexity classes over the reals. J.
Symb. Log. 64(1), 363–390 (1999). https://doi.org/10.2307/2586770

8. Durand, A., Haak, A., Vollmer, H.: Model-theoretic characterization of Boolean
and arithmetic circuit classes of small depth. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pp. 354–363. ACM (2018).
https://doi.org/10.1145/3209108.3209179

9. Fagin, R.: Generalized first-order spectra and polynomial time recognizable sets.
In: Karp, R. (ed.) Complexity of Computations, SIAM-AMS Proceedings, vol. 7,
pp. 43–73. American Mathematical Society, Providence (1974)

10. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Math. Syst. Theory 17(1), 13–27 (1984). https://doi.org/10.1007/BF01744431

11. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, pp. 315–324 (1995). https://doi.org/10.1145/225058.225151

12. Haak, A., Vollmer, H.: A model-theoretic characterization of constant-depth arith-
metic circuits. Ann. Pure Appl. Log. 170(9), 1008–1029 (2019). https://doi.org/
10.1016/j.apal.2019.04.006

13. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16,
760–778 (1987). https://doi.org/10.1137/0216051

14. Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18(3),
625–638 (1989). https://doi.org/10.1137/0218043

15. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03927-4

https://doi.org/10.1016/0890-5401(90)90063-N
https://doi.org/10.1016/0885-064X(92)90024-6
https://doi.org/10.1016/0885-064X(92)90024-6
https://doi.org/10.2307/2586770
https://doi.org/10.1145/3209108.3209179
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/225058.225151
https://doi.org/10.1016/j.apal.2019.04.006
https://doi.org/10.1016/j.apal.2019.04.006
https://doi.org/10.1137/0216051
https://doi.org/10.1137/0218043
https://doi.org/10.1007/978-3-662-03927-4

Wanted Dead or Alive: Epistemic Logic
for Impure Simplicial Complexes

Hans van Ditmarsch(B)

Open University of the Netherlands, Heerlen, The Netherlands
hans.vanditmarsch@ou.nl

Abstract. We propose a logic of knowledge for impure simplicial com-
plexes. Impure simplicial complexes represent distributed systems under
uncertainty over which processes are still active (are alive) and which
processes have failed or crashed (are dead). Our work generalizes the
logic of knowledge for pure simplicial complexes, where all processes are
alive, by Goubault et al. Our logical semantics has a satisfaction relation
defined simultaneously with a definability relation. The latter restricts
which formulas are allowed to have a truth value: dead processes cannot
know or be uncertain about any proposition, and live processes cannot
know or be uncertain about propositions involving processes they know
to be dead. The logic satisfies some but not all axioms and rules of the
modal logic S5. Impure simplicial complexes correspond to Kripke mod-
els where each agent’s accessibility relation is an equivalence relation on
a subset of the domain only. We also propose a notion of bisimulation
for impure simplicial complexes and show bisimulation correspondence.

Keywords: Epistemic logic · Simplicial complex · Combinatorial
topology

1 Introduction

Epistemic logic investigates knowledge and belief, and change of knowledge
and belief, in multi-agent systems. A foundational study is [24]. Knowledge
change was extensively modelled in temporal epistemic logics [2,19,31] and more
recently in dynamic epistemic logics [3,11] including semantics based on histories
of epistemic actions, both synchronously [4] and asynchronously [6].

Combinatorial topology has been used in distributed computing to model
concurrency and asynchrony since [14,27], with higher-dimensional topological
properties entering the scene in [22,23]. The basic structure in combinatorial
topology is the simplicial complex, a collection of subsets called simplices of
a set of vertices, closed under containment. Geometric manipulations such as
subdivision have natural combinatorial counterparts.

An epistemic logic interpreted on simplicial complexes has been proposed
in [17,18,26], including exact correspondence between certain multi-agent Kripke
models where all relations are equivalence relations, and simplicial complexes.
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 31–46, 2021.
https://doi.org/10.1007/978-3-030-88853-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_3

32 H. van Ditmarsch

Also, in those works and in e.g. [35] the action models of [3] are used to model
distributed computing tasks and algorithms, where asynchronous histories are
treated somewhat as in [6]. And we even find action models in their combinatorial
topological incarnations as simplicial complexes [18].

To illustrate the subject matter to a reader familiar with encoding uncer-
tainty in Kripke models, below some examples of simplicial complexes and (under
those) corresponding Kripke models. These simplicial complexes are for three
agents. As simplices are required to be labelled with different agents, a maxi-
mum size simplex consists of three vertices. This is called dimension 2. These are
the triangles in the figure. (For 2 agents we get lines/edges, for 4 agents we get
tetrahedra, etc.) Such a triangle corresponds to a state in a Kripke model. The
variables 0a, 1b, 1c (local value of a is 0, local value of b is 1, . . .) that together
determine the valuation of the single state Kripke model are distributed over the
agents in the simplicial complex. The single triangle corresponds to the singleton
S5 model on its right. (We assume reflexivity and symmetry of accessibility rela-
tions, and we label a state with the valuation of variables.) With two triangles,
if they only intersect in a it means that agent a cannot distinguish these states
(so that a is uncertain about the value of b), whereas if they intersect in a and
c both a and c are uncertain about the value of b.

1b 0b

1c1c

0a

1b 0b

1c

0a 1b

1c

0a

0a1b1c 0a0b1c
a 0a1b1c 0a0b1c

ac 0a1b1c

The current state of the distributed system is represented by a distinguished
maximal simplex (called facet) of the simplicial complex, just as we need a
distinguished or actual state in a Kripke model in order to evaluate propositions.
For example, in the leftmost triangle, as well as in the leftmost state/world, a is
uncertain whether the value of b is 0 or 1, whereas b knows that its value is 1,
and all three agents know that the value of c is 1.

Let us proceed to the novel results of this contribution. The so-called impure
simplicial complexes were beyond the scope of the epistemic logic of [18].
Impure simplicial complexes encode uncertainty over which processes are still
active. They model information states in synchronous message passing with
crash failures (processes ‘dying’). The impure complex below is found in [22,
Section 13.5.2], here decorated with local values in order to illustrate epistemic
features.

This simplicial complex represents the result of possibly failed message pass-
ing between a, b, c. In the (2-dimensional) triangle in the middle the messages
have all been received, whereas in the (1-dimensional) edges on the side a process
has crashed: on the left, b is dead, on the right, a is dead, and below, c is dead.

We propose to interpret this in terms of knowledge and uncertainty: if the
point of evaluation is vertex v for agent a, then a knows that the value of c is 1

Wanted Dead or Alive 33

and that the value of b is 0, but a is also uncertain whether c knows the value
of b. This is because the vertex v is contained in the edge {w, v} and in vertex
w agent c knows that b is dead (that is, w is not contained in a simplex with a
vertex for b), and v is also contained in the edge {v, x} and in vertex x agent
c knows that the value of b is 0. Similarly, in v agent a is uncertain whether b
knows the value of c. And so on.

0b 0a

0b

1cx

0av

0a

1cw
1c

0b

A semantics of knowledge involving impure complexes was considered in [34]
and also in an unpublished manuscript by Goubault. An issue for such semantics
is what an agent knows when she is dead. This quickly leads to counterintuitive
scenarios. In [34, Section 3.3, Sect. 3.4], projections are proposed from impure
complexes to pure subcomplexes or Kripke models for the subset of agents that
are alive. Inspired by the epistemic logic for pure complexes of [18], the knowl-
edge semantics in [34], and synchronous message passing in [22], we propose an
epistemic logic for impure complexes.

Why impure complexes? Crashed processes can alternatively modelled as
non-responding processes in asynchronous message passing, on (larger) pure sim-
plicial complexes. Dually, non-responding processes can be modelled as dead pro-
cesses in a synchronous setting, for example after a time-out, on (smaller) impure
complexes. The impure simplicial complex therefore seems a useful abstraction.
Maybe this also could result in lower computational complexities for decision
problems such as model checking. And why complexes at all? Our epistemic
logic can alternatively be interpreted on certain Kripke models, as we will see.
Such models however contain more, unused, information, as explicit in our results
on bisimulation invariance.

Section 2 gives an introduction to simplicial complexes. Section 3 presents the
epistemic semantics for impure complexes. Section 4 transforms impure com-
plexes into a certain kind of Kripke models and vice versa. Section 5 defines
bisimulation for impure complexes. Section 6 compares our results to the litera-
ture on knowledge and awareness, on knowledge and belief, and on multi-valued
logics; we discuss: (i) how uncertainty over which agents are alive and dead relates
to epistemic logics of awareness (of other agents) [1,7,13,20], (ii) to what extent
our epistemic notion that comes ‘just short of knowledge’ differs from various
notions of belief [21,24,29,33], (iii) how our semantics with the three values true,
false and undefined relates to other multi-valued epistemic logics [15,28,30,32],
and (iv) the advantages of simplicial complexes versus Kripke models.

34 H. van Ditmarsch

Only some results have proofs. All omitted proofs are found in an extended
version on https://arxiv.org/abs/2103.03032.

2 Technical Preliminaries: Simplicial Complexes

Given are a countable set A of agents a0, a1, . . . (or a, b, . . .) and a countable
set P =

⋃
a∈A Pa of variables. The elements pa, qa, . . . of Pa for some a ∈ A are

the local variables for agent a. We often assume that A is finite and |A| = n+1.

Definition 1 (Language). The language LK(A,P) is defined as: ϕ ::= pa |
¬ϕ | ϕ ∧ ϕ | K̂aϕ.

We will write LK(P) if A is clear from the context, and LK if A and P are
clear from the context. Other connectives �, →, ↔, ∨ and Ka are defined by
abbreviation as usual, where for the record Kaϕ := ¬K̂a¬ϕ. In the semantics
and inductive proofs of our work, K̂aϕ is more elegant and allows more succinct
proofs than the more common primitive Kaϕ; however, this is mere syntactic
and semantic sugar as they are interdefinable as above (for the semantics of Ka,
see Lemma 4). For B ⊆ A, we write LK |B for LK(B,

⋃
a∈B Pa), and where LK |b

means L|{b}. For ¬p we may write p. Expression Kaϕ stands for ‘agent a knows
(that) ϕ’ and K̂aϕ stands for ‘agent a considers it possible that ϕ’ which we will
abbreviate as ‘agent a considers (that) ϕ.’

Given a set of vertices V (representing local states; singular form vertex), a
(simplicial) complex C is a set of non-empty finite subsets of V , called simplices,
that is closed under subsets (for all X ∈ C, Y ⊆ X implies Y ∈ C), and that
contains all singleton subsets of V .

If Y ⊆ X we say that Y is a face of X. A maximal simplex in C is a facet. The
facets of a complex C are denoted as F(C), and the vertices of a complex C are
denoted as V(C). The star of X, denoted star(X), is defined as {Y ∈ C | X ⊆ Y },
where for star({v}) we write star(v). The dimension of a simplex X is |X| − 1,
e.g., vertices are of dimension 0, while edges are of dimension 1. The dimension
of a complex is the maximal dimension of its facets. A simplicial complex is pure
if all facets have the same dimension. Otherwise it is impure.

Complex D is a subcomplex of complex C if D ⊆ C. The m-skeleton C of
a n-dimensional complex C is the maximal subcomplex D of C of dimension
m < n. We will use this term for pure and impure complexes, where we typically
consider a pure m-skeleton of an impure n-dimensional complex.

We decorate the vertices of simplicial complexes with agent’s names, that
we often refer to as colours. A chromatic map χ : V(C) → A assigns colours to
vertices such that different vertices of the same simplex are assigned different
colours. Thus, χ(v) = a denotes that the local state or vertex v belongs to agent
a. Dually, the vertex of a simplex X coloured with a is denoted Xa. A pair
(C,χ) consisting of a simplicial complex C and a colouring map χ is a chromatic
simplicial complex. From now on, all simplicial complexes will be chromatic
simplicial complexes.

https://arxiv.org/abs/2103.03032

Wanted Dead or Alive 35

We extend the usage of the term ‘skeleton’ as follows to chromatic simplicial
complexes. Given processes B ⊆ A, the B-skeleton of a chromatic complex
(C,χ), denoted (C,χ)|B, is defined as {X ∈ C,χ(X) ⊆ B} (it is required to be
non-empty).

We decorate the vertices of simplicial complexes with local variables pa ∈ Pa

for a ∈ A, where we recall that
⋃

a∈A Pa = P . Valuations (valuation functions)
assign sets of local variables for agents a to vertices coloured a are denoted
�, �′, . . . For any X ∈ C, �(X) stands for

⋃
v∈X �(v).

A simplicial model C is a triple (C,χ, �) where (C,χ) is a chromatic simplicial
complex and � a valuation function. A pointed simplicial model is a pair (C,X)
with X ∈ C; X is called the designated face or the point.

3 Epistemic Logic on Impure Simplicial Models

Given agents A and variables P =
⋃

a∈A Pa, let C = (C,χ, �) be a simplicial
model, X ∈ C, and ϕ ∈ LK(A,P). Informally, we now wish to define a satisfac-
tion relation |= between some but not all pairs (C,X) and formulas ϕ. Not all,
because if agent a does not occur in X (if a /∈ χ(X)), we do not wish to inter-
pret certain formulas involving a, such as pa and formulas of shape K̂aϕ. This
is, because, if X were a facet (a maximal simplex), the absence of a would mean
that the process is absent/dead, and dead processes do not have local values or
know anything. The relation should therefore be partial. However, this relation
is fairly complex, because we may wish to interpret formulas Kbϕ in (C,X), with
b ∈ χ(X), where after all agent a ‘occurs’ in ϕ, for example expressing that a
‘live’ process b is uncertain whether process a is ‘dead’. Formally, we therefore
proceed slightly differently.

We first define an auxiliary relation �� between (all) pairs (C,X) and for-
mulas ϕ, where C,X �� ϕ informally means that (the interpretation of) ϕ is
defined in (C,X). For “not C,X �� ϕ” we write C,X 	�� ϕ, for “ϕ is undefined.”
Subsequently we then formally also define relation |= between (after all) all pairs
(C,X) and formulas ϕ, where as usual C,X |= ϕ means that ϕ is true in (C,X).
In expressions C,X �� ϕ and C,X |= ϕ we omit the parentheses in (C,X), as
above. For “not (C,X |= ϕ)” we write C,X 	|= ϕ. Unusually, C,X 	|= ϕ does not
mean that ϕ is false in (C,X) but only means that ϕ is not true in (C,X).

Definition 2 (Definability and satisfaction relation). We define the defin-
ability relation �� and the satisfaction relation |= by induction on ϕ.

C,X �� pa iff a ∈ χ(X)
C,X �� ϕ ∧ ψ iff C,X �� ϕ and C,X �� ψ
C,X �� ¬ϕ iff C,X �� ϕ

C,X �� K̂aϕ iff C, Y �� ϕ for some Y ∈ C with a ∈ χ(X ∩ Y)

36 H. van Ditmarsch

C,X |= pa iff a ∈ χ(X) and pa ∈ �(X)
C,X |= ϕ ∧ ψ iff C,X |= ϕ and C,X |= ψ
C,X |= ¬ϕ iff C,X �� ϕ and C,X 	|= ϕ

C,X |= K̂aϕ iff C, Y |= ϕ for some Y ∈ C with a ∈ χ(X ∩ Y)

Given ϕ,ψ ∈ LK , ϕ is equivalent to ψ iff for all (C,X): (C,X �� ϕ iff C,X �� ψ)
implies (C,X |= ϕ iff C,X |= ψ); and ϕ is valid iff for all (C,X): C,X �� ϕ
implies C,X |= ϕ.

Example 1. Consider the following impure simplicial model C for three agents
a, b, c with local variables respectively pa, pb, pc. A vertex v is labelled 0a if
χ(v) = a and pa /∈ �(v), 1b if χ(v) = b and pb ∈ �(v), etc. Some simplices have
been named.

1b 0b

1c

0a

Y
X

As expected, C,X |= pb ∧ ¬pa, where the conjunct C,X |= ¬pa is justified by
C,X �� pa and C,X 	|= pa. We also have C,X |= K̂apb, because a ∈ χ(X) and
C,X |= pb.

Illustrating the novel aspects of the semantics, C,X 	|= pc, because c /∈ χ(X)
so that C,X 	�� pc. Similarly C,X 	|= ¬pc. Also, C,X 	|= K̂c¬pa and similarly
C,X 	|= ¬K̂c¬pa, again because c /∈ χ(X). Still, ¬pa is true in both facets:
C,X |= ¬pa and C, Y |= ¬pa.

Although C,X 	�� pc, after all C,X |= K̂apc, because a ∈ χ(X ∩ Y) and
C, Y |= pc. Statement K̂apc says that agent a considers it possible that atom pc

is true. For this to be true agent c does not have to be alive in facet X. It is
sufficient that agent a considers it possible that agent c is alive.

We also have C, Y |= Kbpc. This is easier to see after we have introduced the
(derived) semantics for knowledge directly. We then explain why even C,X |=
Kapc (not a typo).

Because C,X 	|= ϕ is not equivalent to C,X |= ¬ϕ, we need to prove many
intuitively expected results anew. The main results are as follows. We recall that
omitted proofs are found in the extended version https://arxiv.org/abs/2103.
03032.

Lemma 1. If C,X |= ϕ then C,X �� ϕ.

Also, C,X �� ϕ, iff C,X |= ϕ or C,X |= ¬ϕ. In the next lemma, let ξ[p/ϕ] be
uniform substitution in ξ of p by ϕ.

Lemma 2. Let (C,X) be given. If ϕ is equivalent to ψ, then C,X �� ξ[p/ϕ] iff
C,X �� ξ[p/ψ].

https://arxiv.org/abs/2103.03032
https://arxiv.org/abs/2103.03032

Wanted Dead or Alive 37

Lemma 3. If ϕ is equivalent to ψ, then ξ[p/ϕ] is equivalent to ξ[p/ψ].

Lemma 4 presents the direct semantics for non-primitive logical connectives, that
were defined by abbreviation. It is proved using those definitions.

Lemma 4. Let C = (C,χ, �), X ∈ C, and ϕ,ψ ∈ LK be given. Then:

C,X |= ϕ ∨ ψ iff C,X �� ϕ, C,X �� ψ, and C,X |= ϕ or C,X |= ψ
C,X |= ϕ → ψ iff C,X �� ϕ, C,X �� ψ, and C,X |= ϕ implies C,X |= ψ
C,X |= ϕ ↔ ψ iff C,X �� ϕ, C,X �� ψ, and C,X |= ϕ iff C,X |= ψ
C,X |= Kaϕ iff C,X �� Kaϕ, and

C, Y �� ϕ implies C, Y |= ϕ for all Y ∈ C with a ∈ χ(X ∩ Y)

The final three lemmas relate (definability and) truth between simplices con-
taining each other. Their inductive proofs are representative of most proofs of
results in the contribution.

Lemma 5. If C,X �� ϕ and Y ∈ C such that X ⊆ Y , then C, Y �� ϕ.

Proof. By induction on formula structure. Let Y ∈ C with X ⊆ Y .

– C,X �� pa, iff a ∈ �(X), which implies a ∈ �(Y), iff C, Y �� pa.
– C,X �� ¬ϕ, iff C,X �� ϕ, which implies (by induction) C, Y �� ϕ, iff C, Y �� ¬ϕ.
– C,X �� ϕ ∧ ψ, iff C,X �� ϕ and C,X �� ψ, which implies (by induction)

C, Y �� ϕ and C, Y �� ψ, iff C, Y �� ϕ ∧ ψ.
– C,X �� K̂aϕ, iff C, Z �� ϕ for some Z ∈ C with a ∈ χ(X ∩ Z), iff (as X ⊆ Y)

C, Z �� ϕ for some Z ∈ C with a ∈ χ(Y ∩ Z), iff C, Y �� K̂aϕ.

Lemma 6. If C,X |= ϕ and Y ∈ C such that X ⊆ Y , then C, Y |= ϕ.

Proof. The proof is by induction on the structure of formulas ϕ in negation
normal form, where we note that inductive proof on the usual formula structure
fails for the case ¬ϕ. In the arXiv version it is shown over several lemmas that
every formula is equivalent to one in negation normal form. Let (C,X) with
C = (C,χ, �) and X ⊆ Y be given.

– C,X |= pa iff a ∈ χ(X) and pa ∈ �(X). As X ⊆ Y , also a ∈ χ(Y). We recall
that pa ∈ �(X) means that there is v ∈ X with χ(v) = a and pa ∈ �(v).
Therefore, as X ⊆ Y , also pa ∈ �(Y). By definition, a ∈ χ(Y) and pa ∈ �(Y)
means that C, Y |= pa.

– C,X |= ¬pa, iff C,X �� pa and C,X 	|= pa, iff a ∈ χ(X) and C,X 	|= pa. Again,
we obtain that a ∈ χ(Y). Therefore also C, Y �� pa. Towards a contradiction,
assume that C, Y |= pa. Then pa ∈ �(Y), and as v ∈ X ⊆ Y , also pa ∈ �(X)
and thus C,X |= pa, contradicting C,X 	|= pa. Therefore C, Y 	|= pa. From
C, Y �� pa and C, Y 	|= pa now follows by definition that C, Y |= ¬pa.

– C,X |= ϕ ∧ ψ, iff C,X |= ϕ and C,X |= ψ, which implies (by induction)
C, Y |= ϕ and C, Y |= ψ, iff C, Y |= ϕ ∧ ψ.

38 H. van Ditmarsch

– C,X |= ϕ∨ψ, iff (Lemma 4) C,X �� ϕ, C,X �� ψ, and C,X |= ϕ or C,X |= ψ.
This implies by Lemma 5 and induction that: C, Y �� ϕ, C, Y �� ψ, and
C, Y |= ϕ or C, Y |= ψ, which is by definition C, Y |= ϕ ∨ ψ.

– C,X |= Kaϕ, iff C,X �� Kaϕ, and C, Z �� ϕ implies C, Z |= ϕ for all Z ∈ C
with a ∈ χ(X ∩ Z). From C,X �� Kaϕ, X ⊆ Y and Lemma 5 we obtain
C, Y �� Kaϕ. Further, a ∈ χ(X) and X ⊆ Y implies that a ∈ χ(X ∩ Z) iff
a ∈ χ(Y ∩Z). From all this we obtain that C, Y �� Kaϕ, and C, Z |= ϕ implies
C, Z |= ϕ for all Z ∈ C with a ∈ χ(Y ∩ Z), which is by definition equivalent
to C, Y |= Kaϕ.

– C,X |= K̂aϕ, iff C, Z |= ϕ for some Z ∈ C with a ∈ χ(X ∩ Z), which implies
(as X ⊆ Y) that C, Z |= ϕ for some Z ∈ C with a ∈ χ(Y ∩Z), iff C, Y |= K̂aϕ.

Lemma 7. If C,X |= ϕ and Y ∈ C s.t. Y ⊆ X and C, Y �� ϕ, then C, Y |= ϕ.

Proof. Let now Y ∈ C such that Y ⊆ X. In all inductive cases we assume that
the formula is defined in Y .

– C,X |= pa, iff a ∈ χ(X) and pa ∈ �(X), that is, pa ∈ �(Xa). As C, Y �� pa,
also a ∈ χ(Y), so that a ∈ χ(X ∩ Y). Therefore Xa ⊆ X ∩ Y , so that
pa ∈ �(Xa) ⊆ �(Y).

– C,X |= ¬ϕ, iff C,X �� ϕ and C,X 	|= ϕ. Using the contrapositive of Lemma 6,
C,X 	|= ϕ implies C, Y �� ϕ. From that, together with the assumption C, Y ��
ϕ, we obtain by definition C, Y |= ¬ϕ.

– C,X |= ϕ ∧ ψ, iff C,X |= ϕ and C,X |= ψ, which implies (by induction)
C, Y |= ϕ and C, Y |= ψ, iff C, Y |= ϕ ∧ ψ.

– C,X |= K̂aϕ, iff C, Z |= ϕ for some Z ∈ C with a ∈ χ(X ∩ Z). Assumption
C, Y �� K̂aϕ implies a ∈ χ(Y), so that it follows from a ∈ χ(X ∩ Z) and
Y ⊆ X that a ∈ χ(Y ∩ Z). Therefore C, Z |= ϕ for some Z ∈ C with
a ∈ χ(Y ∩ Z), which is by definition C, Y |= K̂aϕ.

3.1 Validities and Differences with the Logic S5

name validity restriction open question
T Kaϕ → ϕ —
4 Kaϕ → KaKaϕ —
5 K̂aϕ → KaK̂aϕ —
K Ka(ϕ → ψ) → Kaϕ → Kaψ ϕ,ψ ∈ LK |b ϕ, ψ ∈ LK |{a, b}?
N from ϕ infer Kaϕ —
MP from ϕ → ψ and ϕ infer ψ ϕ,ψ ∈ LK |a ϕ, ψ ∈ LK?
L Kapa ∨ Ka¬pa —

The table is an overview of our results in relation to the logic S5. Given
the linguistic restrictions on the K axiom and on, possibly, MP, it seems
unclear what the complete axiomatization for the epistemic logic of impure sim-
plices is. Without the language restriction in K to a single agent, there are

Wanted Dead or Alive 39

counterexamples. In Example 1 we can observe that C,X |= Ka(pc → ¬pb),
and also C,X |= Kapc, but C,X 	|= Ka¬pb. Given that K does not hold for
three or more agents, it is easy to see that the often interchangeable principle
Ka(ϕ ∧ ψ) ↔ (Kaϕ ∧ Kaψ) is also invalid.

A consequence of the knowledge semantics is that the agent may know a
proposition even if that proposition is not defined in all possible simplices. In
particular the proposition may not be true in the actual simplex (although it
cannot be false there): Kaϕ rather means “as far as I know, ϕ” than “I know ϕ.”
We recall Example 1 wherein it is easy to see that C,X |= Kapc but C,X 	|= pc

(because C,X 	�� pc). So, in this case it does not hold that C,X |= Kapc implies
C,X |= pc, and also C,X 	|= Kapc → pc (because C,X 	�� Kapc → pc). But we
still have that |= Kapc → pc, as for that we only need to consider (C′,X ′) such
that both Kapc and pc are defined in X ′. The validity of Kapc → pc means
that there is no (C′,X ′) such that C′,X ′ |= ¬pc ∧ Kapc: knowledge cannot be
verifiably incorrect.

A good way to understand knowledge on impure complexes is dynamically:
even if Kaϕ is true, an update (such as a subdivision) may be possible after
which Kaϕ is no longer true, namely when ϕ is no longer defined: agent/process
a had some remaining uncertainty whether the processes involved in ϕ were alive
or dead and the update confirmed that they were dead. However, no update is
possible after which ϕ is false.

When the simplicial complexes are pure, the logical semantics should become
that of [18,26] and the logic should be S5. This is indeed the case, and the
‘sanity check’ that was expected. Proofs are in the arXiv version. So we now
have unrestricted validity of K and MP. We still need the �� relation, as unlike
[18] our semantics is ‘local’: we interpret formulas on any face, not merely on
facets. So, still C,X 	|= pa and C,X 	|= ¬pa, iff a /∈ χ(X), etc.

4 Correspondence to Kripke Models

A one-to-one correspondence between simplicial models and multi-agent Kripke
models satisfying the following three conditions is given in [18,26]: (i) all accessi-
bility relations are equivalences, (ii) all propositional variables are local, that is,
there is an agent who knows the value of that variable, and (iii) the intersection
of all relations is the identity. In [34] it is observed that transforming impure sim-
plicial models results in Kripke models where dead agents (crashed processes)
do not have equivalence accessibility relations, and projections to subsets of live
agents are proposed. Combining [18] and [34], we propose Kripke models where
agents may be dead or alive. We call them local epistemic models.

As before, given are a countable set A of agents and a countable set P =⋃
a∈A Pa of (local) variables, where both are typically assumed finite. Given

an abstract domain of objects calles states and an agent a, a local equivalence
relation (∼ (a) or) ∼a is a binary relation between elements of S that is an
equivalence relation on a subset of S denoted Sa and otherwise empty. So, ∼a

induces a partition on Sa, whereas ∼a = ∅ on the complement Sa := S \ Sa of

40 H. van Ditmarsch

Sa. For (s, t) ∈ ∼a we write s ∼a t, and for {t | s ∼a t} we write [s]a: this is an
equivalence class of the relation ∼a on Sa. Given s ∈ S, let As := {a ∈ A | s ∈
Sa}. Set As contains the agents that are alive in state s.

Definition 3 (Local epistemic model). Local epistemic frames are pairs
M = (S,∼) where S is the domain of (global) states, and ∼ maps each
agents a to a local equivalence relation ∼a. Local epistemic models are triples
M = (S,∼, L), where (S,∼) is a local epistemic frame, and where valuation L
is a function from S to P(P) satisfying that for all a ∈ A, pa ∈ Pa and s, t ∈ Sa,
if s ∼a t then pa ∈ L(s) iff pa ∈ L(t). We say that all variables pa are local for
agent a. A pair (M, s) where s ∈ S is a pointed local epistemic model.

There is no requirement for the valuation of variables pa on the complement Sa!
The interpretation of a formula ϕ ∈ LK in a global state of a given pointed

local epistemic model (M, s) is by induction on the structure of ϕ. As before,
we need relations �� of to determine whether the interpretation is defined, and
|= to determine its truth value when defined.

Definition 4. Given M = (S,∼, L), define �� and |= by induction on ϕ ∈ LK .

M, s �� pa iff s ∈ Sa M, s |= pa iff s ∈ Sa&pa ∈ L(s)
M, s �� ¬ϕ iff M, s �� ϕ M, s |= ¬ϕ iff M, s �� ϕ&M, s 	|= ϕ
M, s �� ϕ ∧ ψ iff M, s �� ϕ&M, s �� ψ M, s |= ϕ ∧ ψ iff M, s |= ϕ &M, s |= ψ

M, s �� K̂aϕ iff M, t �� ϕ for a t ∼a s M, s |= K̂aϕ iff M, t |= ϕ for a t ∼a s

Formula ϕ is valid iff for all (M, s), M, s �� ϕ implies M, s |= ϕ. We let [[ϕ]]M
stand for {s ∈ S | M, s |= ϕ}. This set is called the denotation of ϕ in M.

Analogous results as for the semantics on simplicial complexes can be
obtained for the semantics on local epistemic models, demonstrating the tricky
interaction between �� and |=.

Generalizing [18], we define maps σ : K → S (σ for S implicial) and κ : S → K
(κ for K ripke), such that σ maps each local epistemic model M to a simplicial
model σ(M), and κ maps each simplicial model C to a local epistemic model
κ(C).1 As σ maps a state s in M to a facet X = σ(s) in σ(M), and κ maps
each facet X in C to a state s = κ(X) in κ(C), these maps are also between
pointed structures (M, s) respectively (C,X). Subsequently we then show that
for all ϕ ∈ LK , M, s |= ϕ iff σ(M, s) |= ϕ, and that (for facets X) C,X |= ϕ iff
κ(C,X) |= ϕ.

Definition 5. Given local epistemic M = (S,∼, L), we define σ(M) =
(C,χ, �):

X ∈ C iff X = {[s]a | a ∈ B,B ⊆ As, B 	= ∅} for some s ∈ S with As 	= ∅
χ([s]a) = a
pa ∈ �([s]a) iff pa ∈ L(s)

1 Another construction to make simplicial models and epistemic models correspond is
found in an unpublished manuscript by Goubault, that he was kind enough to share.

Wanted Dead or Alive 41

Given C = (C,χ, �), we define κ(C) = (S,∼, L) (where X,Y ∈ F(C)):

S = F(C)
X ∼a Y iff a ∈ χ(X ∩ Y)
pa ∈ L(X) iff pa ∈ �(X)

Below, various examples of the transformation via κ of simplicial models
into local epistemic models. Labels of states in epistemic models list the agents
that are alive. Without the agents labels of states, the visualization would be
ambiguous, as all two-state models below would then be identical.

1b 0b

1c

0a

Y
X 1b 0b

1c0c

0a

YW

1b 0b

1c

0a
X

Z

1b

0c

0a

Y

ab abc

0a1b0c 0a0b1c
a

abc abc

0a1b0c 0a0b1c
a

ab ac

0a1b0c 0a0b1c
a

abc

0a1b0c

Proposition 1. For all formulas ϕ ∈ LK , for all pointed local epistemic models
(M, s): M, s �� ϕ iff σ(M, s) �� ϕ, and M, s |= ϕ iff σ(M, s) |= ϕ.

Proposition 2. For all formulas ϕ ∈ LK , for all pointed simplicial models
(C,X) with X a facet: C,X �� ϕ iff κ(C,X) �� ϕ, and C,X |= ϕ iff κ(C,X) |= ϕ.

5 Bisimulation for Impure Simplicial Complexes

We propose a notion of bisimulation between (possibly impure) simplicial mod-
els. It generalizes the notion for pure simplicial models proposed in [9,17,26]. We
then show that bisimilarity implies modal equivalence and vice versa, on certain
finitary simplicial models. For the sake of completeness and logical hygiene, we
also ‘propose’ a notion called local bisimulation between local epistemic models
for which the same results hold. As our logical semantics is somewhat non-
standard, because it is based on �� and |=, this is weaker than the standard
notion of bisimulation [5]. For the standard notion we still have that bisimi-
larity implies modal equivalence, but not, on image-finite models, in the other
direction. The standard notion of bisimulation is too strong for that.

Definition 6 (Bisimulation between simplicial models). Let simplicial
models C = (C,χ, �) and C′ = (C ′, χ′, �′) be given. A relation R between F(C) and
F(C ′) is rigid iff for all X ∈ C and X ′ ∈ C′ with RXX ′, χ(X) = χ′(X ′). A non-
empty rigid relation R between F(C) and F(C ′) is a (simplicial) bisimulation
between C and C′, notation R : C↔C′, iff for all Y ∈ F(C) and Y ′ ∈ F(C ′) with
RY Y ′ the following three conditions are satisfied:

– atoms: for all a ∈ χ(Y) and pa ∈ Pa, pa ∈ �(Y) iff pa ∈ �(Y ′).
– forth: for all a ∈ χ(Y), if Z ∈ F(C) and a ∈ χ(Y ∩Z) there is a Z ′ ∈ F(C ′)

with a ∈ χ(Y ′ ∩ Z ′) such that RZZ ′.

42 H. van Ditmarsch

– back: for all a ∈ χ(Y ′), if Z ′ ∈ F(C ′) and a ∈ χ(Y ′ ∩ Z ′) there is a
Z ∈ F(C) with a ∈ χ(Y ∩ Z) such that RZZ ′.

A total simplicial bisimulation R is a simplicial bisimulation such that for all
X ∈ F(C) there is a X ′ ∈ F(C ′) with RXX ′ and for all X ′ ∈ F(C ′) there is
a X ∈ F(C) with RXX ′. If there is a bisimulation between C and C′ we write
C↔C′. A bisimulation between pointed simplicial models (C,X) and (C′,X ′),
where X ∈ F(C) and X ′ ∈ F(C ′), is a bisimulation R between C and C′ such
that RXX ′, notation R : (C,X)↔(C′,X ′), and if there is such a bisimulation
we write (C,X)↔(C′,X ′).

Given B ⊆ A, a B-restricted bisimulation or B-bisimulation between C and
C′ is a bisimulation between the B-skeletons of C and C′.

A relation R : F(C) → F(C ′) between facets induces a similarly denoted
chromatic relation R : V(C) → V(C ′) between vertices by way of: if RXX ′

then for all a ∈ A, RXaX ′
a, where a relation R between vertices is chromatic if

for all v and v′, if Rvv′ then χ(v) = χ(v′). Dually, given a chromatic relation
R : V(C) → V(C ′) between vertices, then for any simplices X,X ′ with χ(X) =
χ(X ′), RXX ′ denotes that for all a ∈ χ(X), RXaX ′

a. (Induced relations cannot
be primitive to define bisimulations.)

Example 2. The three simplicial models below are all (totally) bisimilar. It will
obvious that we need to require RXX ′ as well as RXW ′ between the left and
the middle, and RY Y ′′ as well as RY Z ′′ between the left and the right.

1b 0b

1c

0a

Y
X

1b

1b 0b

1c

0a

Y
X

1b

W

1b 0b

1c

0a

Y
X

1c

Z

Let (C,X) and (C′,X ′) be given, with C = (C,χ, �) and C′ = (C ′, χ′, �′).
Model (C,X) is modally equivalent to (C′,X ′), notation (C,X) ≡ (C′,X ′), iff for
all ϕ ∈ LK : C,X |= ϕ iff C′,X ′ |= ϕ. A simplicial complex C is star-finite if
for all v ∈ V(C), star(v) is finite. This is the obvious analogue of what is called
image-finite for Kripke models.

Proposition 3. Given (C,X), (C′,X ′), where C = (C,χ, �), C′ = (C ′, χ′, �′).

– (C,X)↔(C′,X ′) implies (C,X) ≡ (C′,X ′).
– (C,X) ≡ (C′,X ′) implies (C,X)↔(C′,X ′), if C and C ′ are star-finite.

We close the section with a similar notion of bisimulation between Kripke models.
A local bisimulation between local epistemic models M = (S,∼, L) and M′ =
(S′,∼′, L′), notation R : M↔ locM′, is a non-empty relation R ⊆ S × S′ such
that for all s ∈ S, s′ ∈ S′ with Rss′ the following three conditions are satisfied:

Wanted Dead or Alive 43

– atoms: for all a ∈ As and pa ∈ Pa, pa ∈ L(s) iff pa ∈ L′(s′).
– forth: for all a ∈ As, for all t ∼a s, there is a t′ ∼′

a s′ such that Rtt′.
– back: for all a ∈ As′ , for all t′ ∼′

a s′, there is a t ∼a s such that Rtt′.

The terminology and notation around bisimulations (as in Definition 6) also
applies to local bisimulation. To get a standard bisimulation [5], notation ↔st,
we replace the requirements: a ∈ As (twice) and a ∈ As′ in the above definition
by a ∈ A. It is therefore clear that standardly bisimilar implies locally bisimilar.
It will also be obvious that on the class of multi-agent S5 models, ↔ loc = ↔st.

We define (M, s) ≡loc (M′, s′) as: for all ϕ ∈ LK , M, s |= ϕ iff M′, s′ |= ϕ.
Informally, this means that these pointed models contain the same information.
(On the class of multi-agent S5 models, ≡loc is the usual modal equivalence of
pointed structures.) Local epistemic model M = (S,∼, V) is image-finite if for
all a ∈ A and s ∈ Sa, [s]a is finite.

Proposition 4. Let (M, s) and (M′, s′) be given. If (M, s)↔ loc(M′, s′), then
(M, s) ≡loc (M′, s′). Let now M,M′ be image-finite. If (M, s) ≡loc (M′, s′),
then (M, s)↔ loc(M′, s′).

Example 3. It is not the case that (M, s) ≡loc (M′, s′) implies
(M, s)↔st(M′, s′). Consider once more the simplicial model C of Example 1
and its counterpart κ(C), and a different model M′. They make the same for-
mulas in LK true, and they are locally bisimilar, but they are not standardly
bisimilar. (Variable pc is false on the left but true on the right! See arXiv.)

κ(C) :
ab abc

0a1b0c 0a0b1c
a M′ :

ab abc

0a1b1c 0a0b1c
a

6 Comparison to the Literature and Further Research

Awareness of Agents. Knowing that an agent is alive is like saying that you are
aware of that agent. Various (propositional) modal logics combine knowledge
with (un)awareness [1,7,8,13,20]. However, in all those except [7] this is aware-
ness of sets of formulas, not awareness of agents. One could consider ‘tricking’
awareness of agents in a given state as awareness of all formulas involving those
agents. But this would be very different from our truly modal setting: whether
a formula is defined in a given state is not a function of which agents are alive
in that state, but a function of what agents are alive in indistinguishable states.

Belief and Knowledge. The logic of knowledge on impure complexes is ‘almost’
S5. Is it yet another notion of belief that is ‘almost’ like knowledge? It is not
Hintikka’s favourite S4 [24] nor S4.4 [21,33], as it satisfies 5. It is not KD45 [10],
as it satisfies T. It is none of the proposals in [29] either, for similar reasons. We
recall Bαϕ of [29]: the agent believes ϕ on assumption α. Could this assumption
not be that ‘ϕ is defined in state s’ (i.e., M, s �� ϕ)? Not really, as their results are
for assumptions that are formulas, and in a binary semantics. But our definability
assumption is not a linguistic feature, and results in a three-valued semantics.

44 H. van Ditmarsch

Multi-valued Logic. Our semantics is a three-valued modal logic with a proposi-
tional basis known as Kleene’s weak three-valued logic: the value of any binary
connective is unknown if one of it arguments is unknown [16]. Modal logical
(including epistemic) extensions of multi-valued logics are found in [15,28,30,32].
There is no relation to embeddings of three-valued propositional logics into
modal logics [25]. In multi-valued modal logics the modal extension tends to
be independent from the multi-valued propositional base. But not in our case:
it is multi-modal, which is not so bad, but the value of a proposition does
not merely depend on the variables occurring in it but also on the agent
names occurring in the modalities. Worse, our logic does not satisfy K (nor
Ka(ϕ ∧ ψ) ↔ (Kaϕ ∧ Kaψ)) nor N, so it is not a normal modal logic.

Simplicial Models Versus Kripke Models. Why simplicial models? We see three
independent reasons. (i) Rediscovering epistemic logic in its entirety (including
group epistemics, and any kind of dynamics) but interpreted on completely dual
structures increases our insight in the foundations of knowledge. (ii) Local epis-
temic models contain too much information. See Proposition 4 and Example 3:
the value of pc in the left state of κ(C) and M′ is irrelevant. Such superfluous
information is absent in the corresponding complex C. (iii) We can evaluate for-
mulas in any simplex, not facets only. In Kripke models this involves sets of
states, not states. Some C, v |= ϕ with χ(v) = a compares to some M, [s]a |= ϕ
([s]a = {t | t ∼a s}). Some edge X for agents a, b compares to some set [s]a ∩ [s]b.
And so on.

Further Research. (i) We cannot formalize ‘a knows that b is dead’ (or alive).
This was on purpose: we targeted the simplest epistemic logic. But it is quite
possible: add variables a↓ for ‘a is alive’, where a↑ := ¬a↓ means ‘a is dead’.
Define C,X �� a↑ iff a /∈ χ(X) and C,X �� a↓ iff a ∈ χ(X), for facets X only, and
with the obvious truth definition. Valid is then Kaa↓. (ii) It is straightforward to
add dynamics as action models [3], generalizing [17,18,26,34,35]. We envisage
(possibly impure) simplicial action models representing incompletely specified
tasks and algorithms, for example Byzantine agreement [12] on dynamically
evolving (with agents dying) impure complexes. It should be noted however that
our framework does not enjoy the property that positive formulas (intuitively,
those without negations before Ka operators; corresponding to the universal
fragment in first-order logic) are preserved after update. It might therefore be
challenging to generalize results for pure complexes employing such ‘positive
knowledge gain’ after update [17,18] to truly failure-prone distributed systems
modelled with impure complexes. (iii) We intend to resolve the bounds on MP
and K, and subsequently prove the completeness of the axiomatization.

Acknowledgements. I thank the reviewers for their comments and support. I grate-
fully acknowledge comments on the extended arXiv version from: Armando Castañeda,
Éric Goubault, Jérémy Ledent, Yoram Moses, Diego Velázquez and David Rosenblueth.

Wanted Dead or Alive 45

References

1. Ågotnes, T., Alechina, N.: A logic for reasoning about knowledge of unawareness.
J. Logic Lang. Inform. 23(2), 197–217 (2014)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49, 672–713 (2002)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of 7th TARK, pp. 43–56. Mor-
gan Kaufmann (1998)

4. van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for
interaction. J. Philos. Log. 38, 491–526 (2009)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

6. Degremont, C., Löwe, B., Witzel, A.: The synchronicity of dynamic epistemic logic.
In: Proceedings of 13th TARK, pp. 145–152. ACM (2011)

7. van Ditmarsch, H., French, T.: Semantics for knowledge and change of awareness.
J. Logic Lang. Inform. 23(2), 169–195 (2014)

8. van Ditmarsch, H., French, T., Velázquez-Quesada, F., Wáng, Y.: Implicit, explicit
and speculative knowledge. Artif. Intell. 256, 35–67 (2018). https://doi.org/10.
1016/j.artint.2017.11.004

9. van Ditmarsch, H., Goubault, E., Ledent, J., Rajsbaum, S.: Knowledge and sim-
plicial complexes (2021, to appear). https://arxiv.org/abs/2002.08863

10. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B.: An introduction to
logics of knowledge and belief. In: van Ditmarsch, H., Halpern, J., van der Hoek,
W., Kooi, B. (eds.) Handbook of Epistemic Logic, pp. 1–51. College Publications
(2015)

11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Syn-
these Library, vol. 337. Springer, Cham (2008). https://doi.org/10.1007/978-1-
4020-5839-4

12. Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine environ-
ment: crash failures. Inf. Comput. 88(2), 156–186 (1990). https://doi.org/10.1016/
0890-5401(90)90014-9

13. Fagin, R., Halpern, J.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1),
39–76 (1988)

14. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.
214121

15. Fitting, M.C.: Many-valued modal logics. In: Fundamenta Informaticae, pp. 365–
448. Kluwer Academic Publishers (1992)

16. Gottwald, S.: Many-valued logic. In: Zalta, E. (ed.) The Stanford Encyclopedia
of Philosophy (2020). https://plato.stanford.edu/archives/sum2020/entries/logic-
manyvalued/

17. Goubault, É., Lazić, M., Ledent, J., Rajsbaum, S.: A dynamic epistemic logic
analysis of the equality negation task. In: Soares Barbosa, L., Baltag, A. (eds.)
DALI 2019. LNCS, vol. 12005, pp. 53–70. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-38808-9 4

18. Goubault, E., Ledent, J., Rajsbaum, S.: A simplicial complex model for dynamic
epistemic logic to study distributed task computability. In: Proceedings of 9th
GandALF. EPTCS, vol. 277, pp. 73–87 (2018). https://doi.org/10.4204/EPTCS.
277.6

https://doi.org/10.1016/j.artint.2017.11.004
https://doi.org/10.1016/j.artint.2017.11.004
https://arxiv.org/abs/2002.08863
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://plato.stanford.edu/archives/sum2020/entries/logic-manyvalued/
https://plato.stanford.edu/archives/sum2020/entries/logic-manyvalued/
https://doi.org/10.1007/978-3-030-38808-9_4
https://doi.org/10.1007/978-3-030-38808-9_4
https://doi.org/10.4204/EPTCS.277.6
https://doi.org/10.4204/EPTCS.277.6

46 H. van Ditmarsch

19. Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed envi-
ronment. J. ACM 37(3), 549–587 (1990)

20. Halpern, J., Rêgo, L.: Reasoning about knowledge of unawareness revisited. Math.
Soc. Sci. 65(2), 73–84 (2013)

21. Halpern, J., Samet, D., Segev, E.: Defining knowledge in terms of belief: the modal
logic perspective. Rew. Symb. Logic 2(3), 469–487 (2009)

22. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann, Burlington (2013)

23. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

24. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
25. Kooi, B., Tamminga, A.: Three-valued logics in modal logic. Stud. Logica. 101(5),

1061–1072 (2013). https://doi.org/10.1007/s11225-012-9420-0
26. Ledent, J.: Geometric semantics for asynchronous computability. Ph.D. thesis,

École Polytechnique, Palaiseau, France (2019)
27. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable

asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)
28. Morikawa, O.: Some modal logics based on a three-valued logic. Notre Dame J.

Formal Log. 30(1), 130–137 (1989). https://doi.org/10.1305/ndjfl/1093635000
29. Moses, Y., Shoham, Y.: Belief as defeasible knowledge. Artif. Intell. 64(2), 299–321

(1993). https://doi.org/10.1016/0004-3702(93)90107-M
30. Odintsov, S.P., Wansing, H.: Modal logics with Belnapian truth values. J. Appl.

Non-Classical Logics 20(3), 279–301 (2010)
31. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th FOCS, pp.

46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32
32. Rivieccio, U., Jung, A., Jansana, R.: Four-valued modal logic: Kripke semantics and

duality. J. Log. Comput. 27(1), 155–199 (2017). https://doi.org/10.1093/logcom/
exv038

33. Stalnaker, R.: On logics of knowledge and belief. Philos. Stud. 128(1), 169–199
(2005)

34. Velázquez, D.: Una relación entre las lógicas modales y el enfoque topológico del
cómputo distribuido. Master’s thesis, UNAM, Mexico (2019)

35. Velázquez, D., Castañeda, A., Rosenblueth, D.: Communication pattern models:
an extension of action models for dynamic-network distributed systems. In: Pro-
ceedings of TARK XVIII (2021)

https://doi.org/10.1145/331524.331529
https://doi.org/10.1007/s11225-012-9420-0
https://doi.org/10.1305/ndjfl/1093635000
https://doi.org/10.1016/0004-3702(93)90107-M
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1093/logcom/exv038
https://doi.org/10.1093/logcom/exv038

Doubly Strongly First Order
Dependencies

Pietro Galliani(B)

Free University of Bozen-Bolzano, Universitätsplatz 1 - Piazza Università 1,
39100 Bozen-Bolzano, Italy
Pietro.Galliani@unibz.it

Abstract. Team Semantics is a generalization of Tarskian Semantics
that can be used to add to First Order Logic atoms and connectives
expressing dependencies between the possible values of variables. Some
of the resulting logics are more expressive than First Order Logic, while
others are not. I characterize the (relativizable) atoms and families of
atoms that do not increase the expressive power of First Order Logic
when they and their complements are added to it, separately or jointly.

Keywords: Team semantics · Dependence logic · Second order logic

1 Introduction

Team Semantics generalizes Tarskian Semantics for First Order Logic by defining
satisfaction with respect to sets of assignments (called Teams) rather than with
respect to single assignments. This semantics arises naturally from the analysis
of the game theoretic semantics of First Order Logic and its extensions: in brief,
a team represents a set of possible game states (= variable assignments) that can
be played at some subformula, and a team satisfies a subformula if the existential
player has a1 strategy that is winning for the corresponding subgame for every
starting assignment in the team. This approach works equally well for extensions
of First Order Logic whose game-theoretic semantics yield imperfect information
games, as is the case for Independence-Friendly Logic [14,15,22] which was the
reason for the original development of Team Semantics (then called “Trump
Semantics”) in [16].

Jouko Väänänen [25] observed that a logic roughly equivalent to
Independence-Friendly Logic, but with more convenient formal properties (for
example locality, in the sense that the interpretation of a formula in a team
depends only on the restriction of the team to the free variables of the formula),
can be obtained by adding to First Order Logic, in place of the so-called slashed
quantifiers (“there exists a y, chosen independently from x, such that . . . ”) of
Independence-Friendly Logic, functional dependence atoms =(x; y) that state
1 Non-deterministic, for the commonly-used “lax” (see [3]) version of Team Semantics

that we consider in this work.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 47–63, 2021.
https://doi.org/10.1007/978-3-030-88853-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_4

48 P. Galliani

that the values of y are determined by those of x. The resulting logic, called
Dependence Logic, has been the subject of a considerable amount of research
that cannot be summarized here (for an up-to-date introduction, we refer the
reader to [9]). It was soon noticed that Team Semantics could also be used to
extend First Order Logic via other atoms (see e.g. [3,12]) or connectives (like
the “contradictory negation” of [26], the “intuitionistic implication” of [1], or the
generalized quantifiers of [2]) that have no direct analogues in Tarskian Seman-
tics as their definitions likewise involve possible interactions between different
assignments. Other Team Semantics-based logics use families of connectives dif-
ferent from the ones arising directly from the Game-Theoretic Semantics of First
Order Logic: of particular interest in this context is the FOT logic of [19], that
relates to ordinary First Order Logic not through Game Theoretic Semantics but
on the level of team definability, in the sense that a family of teams is defined by
a FOT formula if and only if the corresponding family of relations is first order
definable and every sentence of FOT is equivalent to some first order sentence.2

Team Semantics – aside from its applications and connections with other
areas, which we will not discuss here – can thus be seen as a generalization of
Tarskian Semantics that allows for the construction of new kinds of extensions
and fragments of First Order Logic; and while some of these extensions have been
studied in some depth by now (see e.g. [18,21] for the contradictory negation,
[27] for the intuitionistic implications, or [3,10,11,13,23] for database-theoretic
atoms), not much is yet known regarding the general properties of the extensions
of First Order Logic obtainable through Team Semantics.

This work is a partial answer to the following question: which extensions of
First Order Logic based on Team Semantics are genuinely more expressive than
First Order Logic itself, and which ones instead can only specify properties that
were already first order definable? This question is the obvious starting point for
a classification of Team Semantics-based extensions of First Order Logic; and
yet, at the moment only some very limited answers (see [6,7]) are known.

The main result of this work is a full characterization – aside from the tech-
nical condition of relativizability, that most dependencies of interest satisfy – of
the dependencies that are doubly strongly first order in the sense that both they
and their complements can be added (jointly or separately) to First Order Logic
with Team Semantics without increasing their expressive power. This may be
regarded as another step towards the classification of the expressive capabili-
ties – and computational costs – of logics based on Team Semantics, a topic of
both practical (especially given the applications of Team Semantics to knowl-
edge representation and database theory, for which we refer the reader to [9])
and theoretical interest.

2 Thus, all families D of first order dependencies are “strongly first order” for FOT
in the sense analogous to Definition 6. Additionally, whenever FO(D) ≡ FO all
formulas (not just all sentences) of FO(D) are equivalent to formulas of FOT.

Doubly Strongly First Order Dependencies 49

2 Preliminaries

2.1 Team Semantics

Definition 1 (Team). Let M be a first order model with domain Dom(M) =
M and let V be a finite set of variables. Then a team X over M with domain
Dom(X) = V is a set of variable assignments s : V → M . Given such a team
and some tuple of variables �v = v1 . . . vk ∈ V k, we will write X(�v) for the |�v|-ary
relation {s(�v) : s ∈ X} ⊆ M |v|, where s(�v) is the tuple s(v1) . . . s(vk).

Definition 2 (Team Semantics for First Order Logic). Let M be a first
order model, let φ be a first order formula in Negation Normal Form3 over the
signature of M, and let X be a team over M whose domain contains the free
variables of φ. Then we say that X satisfies φ in M, and we write M |=X φ, if
this follows from the following rules:

TS-lit: If φ is a first order literal, M |=X φ if and only if, for all assignments
s ∈ X, M |=s φ in the usual sense of Tarskian Semantics;

TS-∨: M |=X φ1 ∨ φ2 if and only if X = Y ∪ Z for two Y,Z ⊆ X such that
M |=Y φ1 and M |=Z φ2;

TS-∧: M |=X φ1 ∧ φ2 if and only if M |=X φ1 and M |=X φ2;
TS-∃: M |=X ∃vψ if and only if there exists some function4 H : X → P(M)\{∅}

such that M |=X[H/v] ψ, where X[H/v] = {s[m/v] : s ∈ X,m ∈ H(s)};
TS-∀: M |=X ∀vψ if and only if M |=X[M/v] ψ, where X[M/v] = {s[m/v] : s ∈

X,m ∈ M}.
A sentence φ is true in a model M if and only if M |={∅} φ, where {∅} is the
team containing only the empty assignment. In that case, we write that M |= φ.

Over First Order Logic, Team Semantics reduces to Tarskian Semantics:

Proposition 1. ([25], Corollary 3.32) Let M be a first order model, let φ be a
first order formula in Negation Normal Form over the signature of M, and let X
be a team over M whose domain contains the free variables of φ. Then M |=X φ
if and only if, for all s ∈ X, M |=s φ in the sense of Tarskian Semantics.

In particular, if φ is a sentence, M |= φ in the sense of Team Semantics if
and only if M |= φ in the sense of Tarskian Semantics.

Nonetheless, Team Semantics makes it possible to extend First Order Logic via
new types of atoms specifying collective properties of (that is to say, dependencies
between) the assignments in a team. The earliest and arguably most important
atoms studied in this context are the functional dependence atoms [25]

TS-dep: If �x and �y are tuples of variables, M |=X=(�x; �y) if and only if, for all
s, s′ ∈ X, if s(�x) = s′(�x) then s(�y) = s′(�y).

3 In this work we will assume that all expressions are in Negation Normal Form.
4 Here P(M) represents the powerset {X : X ⊆ M} of M .

50 P. Galliani

This rule corresponds precisely to the database-theoretic notion of functional
dependence; and it was soon recognized that other dependency notions may also
be studied in the same context, such as independence atoms [12]

TS-ind: M |=X �x⊥�y�z if and only if for any two s, s′ ∈ X with s(�y) = s′(�y) there
exists some s′′ ∈ X with s′′(�x�y) = s(�x�y) and s′′(�y�z) = s′(�y�z)

which as per [2] have a close connection with database-theoretic embedded mul-
tivalued dependencies, inclusion dependencies [3,11,13]

TS-inc: M |=X �x ⊆ �y if and only if X(�x) ⊆ X(�y)

and exclusion dependencies [3,24]

TS-exc: M |=X �x|�y if and only if X(�x) ∩ X(�y) = ∅.

But what is, in general, a dependency? The following definition is from [20]:

Definition 3 (Generalized Dependency). A k-ary generalized dependency
is a class D, closed under isomorphisms, of models M = (M,R) over the signa-
ture {R}, where R is a k-ary relation symbol. D corresponds to the rule

TS-D: M |=X D�x if and only if (Dom(M), R := X(�x)) ∈ D

where �x is any tuple of k variables and (Dom(M), R := X(�x)) is the model with
the same domain Dom(M) of M and with signature {R}, where R is interpreted
as RM = X(�x) = {s(�x) : s ∈ X}.
Definition 4 (FO(D)). Let D = {D1,D2, . . .} be a set of generalized dependen-
cies. Then FO(D) is the logic obtained by taking First Order Logic (with Team
Semantics) FO and adding to it all the generalized dependency atoms D ∈ D.

An important class of generalized dependencies is that of the first order ones:

Definition 5 (First Order Generalized Dependencies). A k-ary gener-
alized dependency D is first order if there exists some first order sentence
D(R), over the signature {R} where R is a k-ary relation symbol, such that
D = {(M,R) : (M,R) |= D(R)}.

If D is a first order generalized dependency, the rule TS-D is equivalent to

TS-D-FO: M |=X D�x if and only if (Dom(M), R := X(�x)) |= D(R).

Functional dependence atoms, independence atoms, inclusion atoms, and exclu-
sion atoms are all first order; but the logics obtained by adding them to First
Order Logic are more expressive than First Order Logic itself. This differs from
the case of generalized quantifiers in Tarskian Semantics, in which if a quantifier
Q is first order definable then adding it to First Order Logic yields nothing new.
The intriguing phenomenon of first order dependencies increasing the expres-
siveness of First Order Logic is a consequence of the higher order character of

Doubly Strongly First Order Dependencies 51

Team Semantics, and in particular to the existential second order quantification
implicit in the rules TS-∨ and TS-∃,5 and it raises immediately a natural (and
still open) problem: can we identify the dependencies (or the families of depen-
dencies, or even more in general the families of connectives and dependencies)
that do not increase the expressive power of First Order Logic?

2.2 Strongly First Order Dependencies

In this section, we will recall some partial results related to the problem of
characterizing the dependencies that are “safe” to add to First Order Logic:

Definition 6 (Strongly First Order Dependencies). A generalized depen-
dency D is strongly first order if and only if FO(D) ≡ FO,6 i.e., if and only if
every sentence of FO(D) is equivalent to some first order sentence. Likewise, a
family of dependencies D is strongly first order if and only if FO(D) ≡ FO.

If D is strongly first order then it is first order in the sense of Definition 5: indeed,
it is definable via the first order sentence equivalent to the FO(D) sentence
∀�w(¬R�w∨(R�w∧D�w)). However, as mentioned at the end of the previous section,
not all first order dependencies are strongly first order.

A notion closely related to strong first-orderness is that of safety :

Definition 7 (Safe Dependencies). Let D be a generalized dependency and
let E be a family of dependencies. Then D is safe for E if FO(D, E) ≡ FO(E),
that is, if every sentence of FO(D, E) is equivalent to some sentence of FO(E).

If D and E are families of dependencies, D is safe for E if FO(D, E) ≡ FO(E).

Clearly, a dependency D or a family of dependencies D is strongly first order if
and only if it is safe for ∅: in this sense, safety is a generalization of strong first-
orderness. However, as shown in ([8], Theorem 53), strongly first order depen-
dencies are not necessarily safe for all families of dependencies.

An example of strongly first order dependencies is given by the constancy
atoms ([3], Corollary 3.13)

TS-Const: M |=X=(�x) if and only if for all s, s′ ∈ X it holds that s(�x) = s′(�x).

A more general strongly first order family of generalized dependencies is
given by first order upwards closed dependencies, that are strongly first order
even taken together with each other and with the constancy atom:

Definition 8 (Upwards and Downwards Closed Dependencies). A k-ary
dependency D is upwards closed if and only if (M,R) ∈ D implies (M,R′) ∈ D

5 Ultimately, the existential second order character of Team Semantics derives from
the existential second order character of Game-Theoretic Semantics, that defines
truth in terms of the existence of winning strategies – that is to say, functions from
positions to moves or sets of moves – in certain semantic games.

6 Strictly speaking we should write FO({D}) instead of FO(D), FO({D}∪E) instead
of FO(D, E) and so on, but this would clutter our notation too much.

52 P. Galliani

for all k-ary relations R′ ⊇ R over M . We write UC for the family of upwards
closed, first order dependencies. Likewise, we write DC for the family of all
downwards closed first order dependencies, defined analogously.

DC is not strongly first order: for example, functional dependencies =(�x; �y) are
first order and downwards closed, but FO(=(·; ·)) is as expressive as Existential
Second Order Logic ([25], Corollary 6.3). On the other hand,

Theorem 1 ([4], Theorem 21). UC ∪ {=(·)} is strongly first order.

An upwards closed, first order generalized dependency atom that will be of
some use is the totality atom All(�x), that says that �x takes all possible values:

TS-All: M |=X All(�x) if and only if X(�x) = Dom(M)|�x|.

As shown in [8], totality is safe for any collection of dependencies:

Proposition 2 ([8], Theorem 38). FO(All,D) ≡ FO(D) for any collection
of dependencies D.

Also of interest are the families D0 and D1 of 0-ary and unary first order
dependencies. A 0-ary first order dependency atom [ψ] = {M : M |= ψ} is
nothing but a family of models over the empty signature characterized by some
first order sentence ψ, and M |=X [ψ] if and only if M |= ψ (that is to say, 0-ary
dependencies do not “look” at the team X but only at the domain Dom(M) =
M). A unary dependency atom is instead a family of models (M,P) over the
signature {P}, where P is a unary predicate, characterized by some first order
sentence over the signature {P}. As shown in ([5], Proposition 9 and Theorems
9 and 10), both of these families are strongly first order.

The main result of [6] characterizes the strongly first order dependencies D
that are downwards closed, have the empty team property and are relativizable:

Definition 9 (Empty Team Property). A dependency D has the empty
team property if (M, ∅) ∈ D for all domains M .

Definition 10 (Relativization of a dependency; Relativizable Depen-
dencies). Let P be a unary predicate and let D be a k-ary generalized depen-
dency. Then the relativization of D to P is the k-ary atom D(P), whose semantics
- for models M whose signature contains the predicate P interpreted as PM - is

TS-D(P): M |=X D(P)�x if and only if (PM,X(�x)) ∈ D.

A dependency D is relativizable if every sentence of FO(D(P)), i.e. of First
Order Logic with Team Semantics augmented with the above rule, is equivalent
to some sentence of FO(D). Likewise, a family of dependencies D is relativizable
if FO(D(P)) ≡ FO(D), where D(P) = {D(P) : D ∈ D}.
As discussed in [6], non-relativizable generalized dependencies exist.7 However,
the vast majority of the dependencies considered in the context of Team Seman-
tics so far (and all the ones whose corresponding logics have been studied in some
7 The existence of non-relativizable dependencies was first observed in (Barbero, per-

sonal communication).

Doubly Strongly First Order Dependencies 53

depth) are relativizable, and most are even universe-independent in the sense of
[17] (in brief, D is universe-independent if the satisfaction of D�x in a team X
and in a model M does not depend on the existence in M of elements that are
not in X(�x)). All is not universe-independent, but it is still relativizable;8 and
no strongly first order non-relativizable dependencies are currently known.

Theorem 2 ([6], Theorem 4.5). Let D be a downwards closed, relativizable
generalized dependency with the empty team property. Then D is strongly first
order if and only if it is definable in FO(=(·)).
The same notions of strong first-orderness and safety can also be applied to
connectives. Three connectives of particular interest in Team Semantics are the
Global (or Boolean) Disjunction φ1 � φ2, the Possibility Operator �φ and the
Contradictory Negation ∼φ, corresponding to the rules

TS-�: M |=X φ1 � φ2 if and only if M |=X φ1 or M |=X φ2;
TS-�: M |=X �φ if and only if M |=Y φ for some Y ⊆ X, Y �= ∅;
TS-∼: M |=X∼φ if and only if M �|=X φ.

As shown in [7], global disjunction is not safe for arbitrary dependencies, but it
is safe for strongly first order dependencies.

Proposition 3 ([7], Proposition 14). If D is a strongly first order family of
dependencies then every sentence of FO(�,D) (i.e. of First Order Logic with
Team Semantics, plus global disjunctions and the atoms in D) is equivalent to
some sentence of FO.

Instead � is safe for any collection of dependencies, in the sense that

Proposition 4 ([8], Corollary 42). Let D be any family of generalized depen-
dencies, not necessarily strongly first order. Then every sentence of FO(�,D)
(i.e. of First Order Logic with Team Semantics, plus the possibility operator �
and the atoms in D) is equivalent to some sentence of FO(D).

Differently from global disjunction and from the possibility operator, contra-
dictory negation is extremely unsafe. Augmenting Dependence Logic FO(=(·; ·))
with contradictory negation yields Team Logic FO(∼,=(·; ·)) [26], which is as
expressive as Second Order Logic; and as observed in ([5], Corollary 2), even
FO(∼,=(·)) is already equivalent to full Second Order Logic. On the other hand,
∼ is still “strongly first order”, in the sense that FO(∼) ≡ FO: this is mentioned
in [5] as a consequence of ([5], Theorem 4), but it may be verified more simply
by observing that if φ is first order then – as a consequence of Proposition 1 –
∼φ is logically equivalent to �(¬φ), and then applying Proposition 4.

We end this section with two simple results that will be of some use:

Proposition 5. Let D be a strongly first order, relativizable collection of depen-
dencies. Then every sentence of FO(D,=(·)) is equivalent to some sentence of
FO, and so is every sentence of FO(D(P),=(·)).
8 Indeed, All(P)(�x) is equivalent to

(∧
x∈�x Px

) ∧ ∃�v
((∨

v∈�v ¬Pv ∨ �v = �x
) ∧ All(�v)

)
.

54 P. Galliani

Proof (Sketch). Given a sentence φ ∈ FO(D,=(·)) [respectively FO(D(P),=(·))],
replace every constancy atom =(�x) with �x = �d�x, where �d�x is a tuple of constant
symbols (each variable corresponding to a unique distinct constant). The result
will be in FO(D) [respectively FO(D(P))], and so it will be equivalent to some
φ′(�d) ∈ FO, where �d contains all new constants; and then φ will be equivalent
to ∃�wφ′(�w) for some new tuple of variables �w.

Proposition 6. FO(D0,�,=(·),All) ≡ FO.

Proof. By Propositions 3 and 2, it is enough to show that FO(D0,=(·)) ≡ FO.
This follows from Proposition 5, since 0-ary dependencies are strongly first order.

2.3 Relations Definable over the Empty Signature

Finally, in this work we will need a couple of simple results – whose proofs we
omit – about the relations that are definable via First Order Logic formulas:

Definition 11. Let M be a first order model with domain M and let θ(�x, �y) be
a first order formula. Then a |�x|-ary relation R over M is defined by θ if there
is a tuple of elements �a ∈ M |�y| such that R = {�m ∈ M |�x| : M |= θ(�m,�a)}.
Definition 12. A first order formula θ(�x, �y) is said to fix the identity type
of �y if, for every two variables yi, yj ∈ �y, |= ∀�x�y(θ(�x, �y) → yi = yj) or |=
∀�x�y(θ(�x, �y) → yi �= yj).

Proposition 7. If a relation R over M is defined by a formula θ(�x, �y), it is
defined by some θ′(�x, �y) over the same signature that fixes the identity type of �y.

Proposition 8. If two nonempty relations R and S over the same model M with
domain Dom(M) = M are defined by the same formula θ(�x, �y) over the empty
signature and θ fixes the identity type of �y then there is a bijection h : M → M
such that h[R] = S.

3 Doubly Strongly First Order Dependencies

We will now characterize the relativizable dependencies D such that {D,∼D}
is strongly first order, where ∼D is the complement of D:

Definition 13 (Complement of a Dependency). Let D be any generalized
dependency. Then ∼D is the generalized dependency {(M,R) : (M,R) �∈ D}. If
D is a family of dependencies, we write ∼D for the family {∼D : D ∈ D}.
Definition 14 (Doubly Strongly First Order Dependencies). Let D be
a generalized dependency. Then D is doubly strongly first order if and only if
{D,∼D} is strongly first order. Likewise, a family D of dependencies is doubly
strongly first order if and only if D ∪ ∼D is strongly first order.

Doubly Strongly First Order Dependencies 55

Clearly M |=X (∼D)�v if and only if M �|=X D�v if and only if M |=X∼(D�v).
Also, if α is a first order literal, ∼ α is equivalent to �(¬α):9 therefore, via
Proposition 4, it can be shown that D is doubly strongly first order if and only if
FO(∼0,D) ≡ FO, where FO(∼0,D) is the fragment of FO(∼,D) in which the
contradictory negation ∼ only occurs in front of literals or dependency atoms.

Our characterization will be based on the following result about strongly first
order, relativizable dependencies from [7]:

Definition 15 (Dmax). Let D be any dependency. Then Dmax = {(M,R) ∈ D :
∀R′ � R, (M,R′) �∈ D} is the dependency containing the maximal (M,R) ∈ D.

Theorem 3 ([7], Theorem 23 and Proposition 22). Let D be a strongly
first order, relativizable dependency. Then there exists some first order sentence

Dm(R) =
n∨

i=1

∃�y∀�x(R�x ↔ θi(�x, �y)), (1)

where each θi is a first order formula over the empty signature, such that, for
all (M,R), if (M,R) ∈ Dmax then (M,R) |= Dm(R). Also, for all (M,R) ∈ D,
R is contained in some R′ such that (M,R′) ∈ Dmax.

We will now see that if D and ∼D are both strongly first order, there can
be no infinite ascending “stair” of relations satisfying alternatively D and ∼D:

Fig. 1. If both D and ∼D are (separately) strongly first order, this configuration of
k-ary relations Pi and Qi over some domain M is forbidden by Lemma 1.

Lemma 1. Let D be a k-ary dependency, and let (Pi)i∈N and (Qi)i∈N be k-ary
relations over the same domain M such that

1. For all i ∈ N, (M,Pi) ∈ D;
2. For all i ∈ N, (M,Qi) ∈∼D;
3. For all i ∈ N, Pi ⊆ Qi ⊆ Pi+1.

Then at least one between D and ∼D is not strongly first order.

9 Indeed, M |=X∼α iff M 	|=X α iff ∃s ∈ X s.t. M |={s} ¬α iff M |=X �¬α.

56 P. Galliani

Proof. Let D and ∼D be strongly first order and suppose that relations Pi, Qi

as per our hypothesis exist over some domain M .
M is clearly infinite, since P0 � P1 � P2 � . . .; so by the Löwenheim-Skolem

Theorem we can assume that M is countable and we can identify it with N.
Now let P and Q be the (k + 1)-ary relations over N whose interpretations are
{(�m, i) ∈ Nk+1 : �m ∈ Pi} and {(�m, j) ∈ Nk+1 : �m ∈ Qj} respectively. Now
consider the model M = (N, <, P,Q) where < is the usual ordering over N. I
state that, if FO(D) ≡ FO(∼D) ≡ FO, M has no uncountable elementary
extensions; but this is impossible due to the Löwenheim-Skolem Theorem.

In order to show that M has no uncountable (in fact, no non-standard)
elementary extensions, consider the FO(∼D) sentence

∃i(i < d ∧ ∀�w(¬P �wi ∨ (P �wi ∧ (∼D)�w))) (2)

in the signature of M augmented by some new constant symbol d. Since ∼D is
strongly first order, this sentence is equivalent to some first order sentence φ(d).
I state that φ(d) is true if and only if there exists a nonempty set of indexes
I ⊆ M such that i < d for all i ∈ I and such that

(
M,

⋃
i∈I Pi)

) �∈ D, where Pi

is the relation {�m : (�m, i) ∈ P}. Indeed, if such a family of indexes exists, we
can satisfy (2) by choosing the values of I as the values of the variable i,10 then
taking all possible values of �w for all chosen i, and then splitting the team by
putting in the right disjunct all the assignments s for which P �wi (that is, for
which s(�w) ∈ Ps(i)); and conversely, if (2) can be satisfied, the values that the
variable i can take will form a set I of indexes < d such that

⋃
i∈I Pi does not

satisfy D.
Now, for the model M with domain N described above no such family I may

be found no matter the choice of d. Indeed, there will be only finitely many
indexes less than d, and so if all elements of I are less than d then

⋃
i∈I Pi =

Pmax(I), which satisfies D. Hence, M |= ¬∃nφ(n).
Similarly, the FO(D) sentence ∃j(j < d ∧ ∀�w(¬Q�wj ∨ (Q�wj ∧D�w))) is true

if and only there exists a nonempty set J of indexes < d such that
⋃

j∈J Qj

satisfies D; and as above, this sentence must be equivalent to some first order
ψ(d), because D is strongly first order, and M |= ¬∃nψ(n).

Now let M′ be any elementary extension of M, and let d be any nonstandard
element of it (that is, any element greater than all n ∈ N). Then at least one
between φ(d) and ψ(d) will hold in M′. Indeed, in M′ – like in M – we will have
that Pi ⊆ Qi ⊆ Pi+1 for all indexes i ∈ N; and therefore,

⋃
i∈N

Pi =
⋃

i∈N
Qi

and all indexes in N are less than our element d. If this union satisfies D, ψ(d)
holds; and if if instead it does not satisfy D, φ(d) holds. So M′ |= (∃nφ(n)) ∨
(∃nψ(n)) and M′ is not an elementary extension of M, contradicting our premise.
Thus, M cannot have elementary extensions with non-standard elements (and
in particular it cannot have uncountable elementary extensions).

The next lemma can be verified by applying the rules of Team Semantics:

10 Note that Rule TS-∃ of Team Semantics allows for the selection of multiple values
for the variable i, e.g. via the function H : {∅} → P(M)\{∅}, H(∅) = I.

Doubly Strongly First Order Dependencies 57

Lemma 2. For all models M with domain M , teams X over M , and formulas
θ(�v, �y) over the empty signature with �v contained in the variables of X,11

(M,R := X(�v)) |= ∃�y∀�x(R�x → θ(�x, �y)) ⇔ M |=X ∃�y(=(�y) ∧ θ(�v, �y));
(M,R := X(�v)) �|= ∃�y∀�x(R�x → θ(�x, �y)) ⇔ M |=X � ∨ ∃�y(All(�y) ∧ ¬θ(�v, �y)).

Lemma 3. Let D be a k-ary strongly first order, relativizable dependency and
let θ(�x, �y) be a first order formula over the empty signature, where �x is a tuple
of k distinct variables. Then Dθ = {(M ′, R′) : (M ′, R′) ∈ D, (M ′, R′) |=
∃�y∀�x(R′�x → θ(�x, �y))} is also strongly first order and relativizable.

Proof. Observe that by Lemma 2, Dθ�x is logically equivalent to the FO(D,=(·))
formula D�x ∧ ∃�a(=(�a) ∧ θ(�x,�a)). Therefore, every FO(Dθ) sentence is equiv-
alent to some FO(D,=(·)) sentence and hence – by Proposition 5 – to some
FO sentence. Therefore, Dθ is strongly first order. To show that Dθ is also
relativizable, observe that its relativization to some unary predicate P can be
defined in terms of constancy atoms and of the relativization of D to P , since
D(P)

θ �x ≡ D(P)�x ∧ ∃�a (
=(�a) ∧ ∧

a∈�a Pa ∧ θ(P)(�x,�a)
)
, where θ(P) is the relativiza-

tion (in the usual First Order Logic sense) of θ to the unary predicate P . There-
fore, every FO(D(P)

θ) sentence is equivalent to some FO(DP ,=(·)) sentence,
and hence – again by Proposition 5 – to some first order sentence.

Proposition 9. Let D be a first order, relativizable dependency such that both
D and ∼D are strongly first order and let M = (M,R) ∈ D for M countable.
Then there exists a first order sentence ηM of the form

ηM = ψ ∧
n∧

i=1

∃�yi(∀�x(R�x → θi(�x, �yi))) ∧
n′∧

j=1

¬∃�zj(∀�x(R�x → ξj(�x, �zj))) (3)

where ψ is a first order sentence over the empty signature and all the θi and
the ξj are first order formulas over the empty signature, such that M |= ηM and
ηM |= D(R).12

Proof. Let T be the theory

T = {ψ : M |= ψ} ∪ {∃�y∀�x(R�x → θ(�x, �y)) : (M,R) |= ∃�y∀�x(R�x → θ(�x, �y))} ∪
{¬∃�z∀�x(R�x → ξ(�x, �z)) : (M,R) �|= ∃�z∀�x(R�x → ξ(�x, �z))}

where �x is a tuple of distinct variables such that |�x| is the arity of D, ψ ranges
over all first order sentences over the empty signature, �y and �z range over tuples

11 Here � is the always-true first order literal and ¬θ(�v, �y) stands for the corresponding
first order formula in Negation Normal Form.

12 Here D(R) is the first order sentence characterizing D as per Definition 5: thus,
every model of ηM with signature {R} is in D.

58 P. Galliani

of distinct variables disjoint from �x of all finite lengths (including the empty tuple
of variables, in which case their existential quantification is vacuous), and θ(�x, �y)
and ξ(�x, �z) range over first order formulas with free variables in �x�y (respectively
�x�z) over the empty signature. If we can show that T |= D(R), the conclusion
follows: indeed, by compactness we can then find a finite theory Tf ⊆ T such
that Tf |= D(R), and then

∧
Tf has the required form.

Suppose that this is not true, and let A = (A,S) be some model such that
A |= T but A �∈ D. Since A and M satisfy the same sentences over the empty
signature, we can assume that A and M have the same cardinality (finite or – via
Löwenheim-Skolem – countably infinite) and therefore that, up to isomorphism,
the domain A of A is the same as that M of M, i.e., A = (M,S). Also, R �= ∅:
indeed, if R were empty then ∀�x(R�x → ⊥) would be in T , and so since (M,S) |=
T the relation S would also be ∅, which is impossible since (M,R) ∈ D but
(M,S) �∈ D. Therefore ¬∀�x(R�x → ⊥) is in T and S �= ∅ too.

I aim to prove, by induction on n, that for every n ∈ N there exists in M a
descending chain of relations Sn

0 ⊇ Rn
0 ⊇ Sn

1 ⊇ Rn
1 . . . Sn

n ⊇ Rn
n ⊇ R such that

1. (M,Sn
i) ∈∼D and (M,Rn

i) ∈ D for all i = 1 . . . n;
2. Every Rn

i , for 0 ≤ i ≤ n, is defined by some formula θi(�x, �y) over the empty
signature that fixes the identity type of �y and by some tuple of elements �an

i ,
in the sense that Rn

i = {�m : M |= θi(�m,�an
i)};

3. Every Sn
i , for 0 ≤ i ≤ n, is defined by some formula ξi(�x, �z) over the empty

signature that fixes the identity type of �z and by some tuple of elements �bn
i ,

in the sense that Sn
i = {�m : M |= ξi(�m,�bn

i)}.

Base Case: See Fig. 2. Since (M,S) �∈ D, (M,S) ∈∼ D; and therefore, by
Theorem 3, there exists some S′ ⊇ S such that (M,S′) ∈ (∼D)max. Also by
Theorem 3, S′ is first order definable over the empty signature: (M,S′) |=
∃�z∀�x(S′�x ↔ ξ0(�x, �z)), where by Proposition 7 we can assume that ξ0 fixes the
identity type of �z. Since S ⊆ S′, (M,S) |= ∃�z∀�x(S�x → ξ0(�x, �z)); and since
(M,S) |= T , (M,R) |= ∃�z∀�x(R�x → ξ0(�x, �z)) too.
Now consider the dependency E0 = {(M ′, R′) ∈ D : (M ′, R′) |= ∃�z∀�x(R′�x →
ξ0(�x, �z))}. By Lemma 3, E0 is strongly first order and relativizable, and
(M,R) ∈ E0; therefore, by Theorem 3, there exists some R0

0 ⊇ R such
that (M,R0

0) ∈ (E0)max, and this R0
0 is definable by some θ0(�x, �y) that

fixes the identity type of �y and by some tuple �a0
0 ∈ M |y|, in the sense that

R0
0 = {�m : M |= θ00(�m,�a0

0)}.
Since (M,R0

0) ∈ (E0)max, (M,R0
0) ∈ E0. Therefore, (M,R0

0) ∈ D, and there
exists some tuple �b00 in M such that R0

0 ⊆ S0
0 = {�m : M |= ξ0(�m,�b00)}. Now

S0
0 is nonempty, as it contains R0

0 and hence R, and S′ is nonempty, as it
contains S, and they are both defined by the same formula ξ0(�x, �z) that fixes
the identity type of �z. Therefore, by Proposition 8, there exists a bijection
h : M → M that maps S′ into S0

0 . This implies that (M,S0
0) is isomorphic to

(M,S′), and thus that (M,S0
0) ∈∼D as required.

Induction Case: See Fig. 3. Suppose that a chain Sn
0 ⊇ Rn

0 . . . Sn
n ⊇ Rn

n ⊇ R
exists as per our hypothesis. Then, in particular, Rn

n is defined by some

Doubly Strongly First Order Dependencies 59

Fig. 2. The base case.

θn(�x, �y) that fixes the identity type of �y; and since R ⊆ Rn
n, (M,R) |=

∃�y∀�x(R�x → θn(�x, �y)). But then, since (M,S) |= T , (M,S) |= ∃�y∀�x(S�x →
θn(�x, �y)) too. Now consider the dependency Fn = {(M ′, R′)∈ ∼D :
(M ′, R′) |= ∃�y∀�x(R′�x → θn(�x, �y))}. By Lemma 3, Fn is strongly first order
and relativizable, and (M,S) ∈ Fn; therefore, there exists some S′ ⊇ S such
that (M,S′) ∈ (Fn)max, and this S′ is defined by some ξn+1(�x, �z) over the
empty signature that (by Proposition 7) fixes the identity type of �z. There-
fore, since S ⊆ S′, (M,S) |= ∃�z∀�x(S�x → ξn+1(�x, �z)); and since (M,S) |= T ,
this implies that (M,R) |= ∃�z∀�x(R�x → ξn+1(�x, �z)) as well.
Consider the dependency En+1 = {(M ′, R′) ∈ D : (M ′, R′) |= ∃�z∀�x(R′�x →
ξn+1(�x, �z))}. Again, by Lemma 3, En+1 is strongly first order and relativiz-
able, and (M,R) ∈ En+1; therefore, there exists some Rn+1

n+1 ⊇ R such that
(M,Rn+1

n+1) ∈ (En+1)max. This Rn+1
n+1 will, again, be first order definable over

the empty signature by some θn+1(�x, �y) that fixes the identity type of �y
and by some tuple �an+1

n+1. Furthermore, since (M,Rn+1
n+1) ∈ En+1, it will be

the case that (M,Rn+1
n+1) ∈ D and that there exists some �bn+1

n+1 such that
Rn+1

n+1 ⊆ Sn+1
n+1 = {�m : M |= ξn+1(�m,�bn+1

n+1)}. Now since Sn+1
n+1 and S′ are

defined by the same ξn+1(�x, �z) and are both nonempty, by Proposition 8
there exists some bijection g : M → M such that g[S′] = Sn+1

n+1 . Therefore,
(M,Sn+1

n+1) ∈ Fn: thus, (M,Sn+1
n+1) ∈∼D, and there exists some �an+1

n for which
Sn+1

n+1 ⊆ Rn+1
n = {�m : θn(�m,�an+1

n)}.
Rn+1

n and Rn
n are defined by the same formula θn(�x, �y), which fixes the identity

type of �y, and they are both nonempty since they both contain R. Thus by
Proposition 8 there exists some bijection h : M → M that maps Rn

n into
Rn+1

n . Then, for all i = 0 . . . n, let Rn+1
i = h[Rn

i] and Sn+1
i = h[Sn

i].
Then Sn+1

0 ⊇ Rn+1
0 ⊇ Sn+1

1 ⊇ . . . Sn+1
n ⊇ Rn+1

n ⊇ Sn+1
n+1 ⊇

Rn+1
n+1 ⊇ R, because h preserves inclusions. Additionally, (M,Sn+1

i)∈ ∼D and
(M,Rn+1

i) ∈ D for all i = 0 . . . n + 1, as required, since D and ∼D are
closed under isomorphisms, and for all i ∈ 0 . . . n the Sn+1

i and Rn+1
i are still

defined respectively by ξi and θi and by �an+1
i = h(�an

i), �bn+1
i = h(�bn

i), since
Sn+1

i = h[Sn
i] = {h(�m) : M |= ξi(�m,�bn

i)} = {�m′ : M |= ξi(�m′, h(�bn
i))} and

Rn+1
i = h[Rn

i] = {h(�m) : M |= θi(�m,�an
i)} = {�m′ : M |= θi(�m′, h(�an

i))}.

60 P. Galliani

Fig. 3. The induction case. M is showed twice to avoid cluttering the figure too much.

Finally, consider the theory

U = {∀�x(Pi�x → Qi�x) ∧ (Qi�x → Pi+1�x) : i ∈ N} ∪ {D(Pi),¬D(Qi)} : i ∈ N}
that states that there is an infinite ascending chain P0 ⊆ Q0 ⊆ P1 ⊆ Q1 ⊆ . . . of
relations satisfying alternatively D and ¬D as per Fig. 1. U is finitely satisfiable:
indeed, for any finite subset Uf of U , if n is the highest index for which Pn or
Qn appear in Uf , the model with domain M in which P0 . . . Pn are interpreted
as Rn

n . . . Rn
0 (note the inverse order) and Q0 . . . Qn are interpreted as Sn

n . . . Sn
0

(likewise in inverse order) satisfies Uf , since Pi = Rn
n−i ⊆ Sn

n−i = Qi and
Qi = Sn−i ⊆ Rn−i−1 = Pi+1. Therefore, by compactness, U is satisfiable; and
by Lemma 1, at least one between D and ∼D is not strongly first order.

We can now prove the main result of this work:

Theorem 4. Let D be a relativizable first order dependency. Then the following
are equivalent:

i) D(R) is equivalent to some sentence of the form

l∨

k=1

⎛

⎝ψk ∧
nk∧

i=1

∃�yk
i (∀�x(R�x → θk

i (�x, �yk
i))) ∧

n′
k∧

j=1

¬∃�zk
j (∀�x(R�x → ξk

j (�x, �zk
j)))

⎞

⎠

(4)
where all the ψk are first order sentences over the empty vocabulary and all
the θk

i and the ξk
j are first order formulas over the empty vocabulary;

ii) Both D and ∼D are definable in FO(D0,�,=(·),All);
iii) D is doubly strongly first order.
iv) Both D and ∼D are (separately) strongly first order.

Doubly Strongly First Order Dependencies 61

Proof.

i) ⇒ ii): Suppose that D(R) is in the form of Eq. (4) and, for each first order
sentence ψ over the empty signature ψ, let [ψ] ∈ D0 be the 0-ary first order
dependency defined as [ψ] = {M : M |= ψ}. Then D�v is equivalent to the
FO(D0,�,=(·),All) formula

l⊔

k=1

⎛

⎝[ψk] ∧
nk∧

i=1

∃�yk
i (=(�yk

i) ∧ θk
i (�v, �yk

i)) ∧
n′
k∧

j=1

(� ∨ ∃�zk
j (All(�zk

j) ∧ ¬ξk
j (�v, �zk

j)))

⎞

⎠

where, up to renaming, we can assume that �v is disjoint from all the �yk
i and

�zk
j and where each ¬ξk

j stands for the corresponding expression in Negation
Normal Form. Indeed, by Lemma 2 – as well as the rules TS-∧ and TS-�
for conjunction and global disjunction – the above expression is satisfied by
a team X in a model M if and only if there exists some k ∈ 1 . . . l such that
1. M |= ψk;
2. For all i ∈ 1 . . . nk, (M,X(�v)) |= ∃�yk

i ∀�x(R�x → θk
i (�x, �yk

i));
3. For all j ∈ 1 . . . n′

k, (M,X(�v)) �|= ∃�zk
j ∀�x(R�x → ξk

j (�x, �zk
j)).

These are precisely the conditions for Eq. (4) to be true in (M,X(�v)), that
is, for it to be the case that M |=X D�v. Likewise, ∼D�v is equivalent to

l∧

k=1

⎛

⎝[¬ψk] �
nk⊔

i=1

(� ∨ ∃�yk
i (All(�yk

i) ∧ ¬θk
i (�v, �yk

i))) �
n′
k⊔

j=1

∃�zk
j (=(�zk

j) ∧ ξk
j (�v, �zk

j))

⎞

⎠ .

Therefore, both D and ∼D are indeed definable in FO(D0,�,=(·),All).
ii) ⇒ iii) Since both D and ∼D are definable in FO(D0,�,=(·),All), every

sentence of FO(D,∼D) is equivalent to some sentence of FO(D0,�,=(·),All)
and therefore – by Proposition 6 – to some sentence of FO. Therefore, D is
doubly strongly first order.

iii) ⇒ iv) Obvious, because FO(D),FO(∼D) ⊆ FO(D,∼D) ≡ FO.
iv) ⇒i) Suppose that both D and ∼D are strongly first order. Then, by Propo-

sition 9, for every countable M = (M,R) ∈ D there exists some first order
sentence ηM of the form of Eq. (3) such that M |= ηM and that ηM |= D(R).
Now consider the first order theory

T = {¬ηM : M ∈ D,M is countable} ∪ {D(R)}
T is unsatisfiable: indeed, if it had a model then by the Löwenheim-Skolem
Theorem it would have a countable model M = (M,R), but this is impossible
because we would have that M ∈ D (since D(R) ∈ T) and thus M |= ηM,
despite the fact that ¬ηM ∈ T . Therefore, T is finitely unsatisfiable and
D(R) |= ∨l

k=1 ηMk
for some finite set M1 . . .Ml of countable models of

D. But each such ηMk
entails D(R), and therefore D(R) is equivalent to∨l

k=1 ηMk
which is in the form of Eq. (4).

Corollary 1. Let D be a family of relativizable dependencies. Then D is doubly
strongly first order if and only if every D ∈ D is doubly strongly first order.

62 P. Galliani

Proof. If D is doubly strongly first order and D ∈ D, every sentence of FO(D,∼
D) is a sentence of FO(D,∼D) ≡ FO, and so D is doubly strongly first order.

Conversely, suppose that every D ∈ D is doubly strongly first order and
relativizable. Then by Theorem 4, for every D ∈ D both D and ∼D are definable
in FO(D0,�,=(·),All). Therefore, every sentence of FO(D,∼D) is equivalent
to some sentence of FO(D0,�,=(·),All), and thus – because of Proposition 6 –
to some first order sentence. Therefore, D is doubly strongly first order.

Acknowledgements. I thank the reviewers for their helpful comments and sugges-
tions.

References

1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009).
https://doi.org/10.1007/s11229-008-9415-6

2. Engström, F.: Generalized quantifiers in dependence logic. J. Logic Lang. Inform.
21(3), 299–324 (2012). https://doi.org/10.1007/s10849-012-9162-4

3. Galliani, P.: Inclusion and exclusion dependencies in team semantics: On some log-
ics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012). https://
doi.org/10.1016/j.apal.2011.08.005

4. Galliani, P.: Upwards closed dependencies in team semantics. Inf. Comput. 245,
124–135 (2015). https://doi.org/10.1016/j.ic.2015.06.008

5. Galliani, P.: On strongly first-order dependencies. In: Abramsky, S., Kontinen, J.,
Väänänen, J., Vollmer, H. (eds.) Dependence Logic, pp. 53–71. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31803-5 4

6. Galliani, P.: Characterizing downwards closed, strongly first-order, relativizable
dependencies. J. Symb. Log. 84(3), 1136–1167 (2019). https://doi.org/10.1017/jsl.
2019.12

7. Galliani, P.: Characterizing strongly first order dependencies: the non-jumping
relativizable case. In: Electronic Proceedings in Theoretical Computer Science,
vol. 305, pp. 66–82 (2019)

8. Galliani, P.: Safe dependency atoms and possibility operators in team semantics.
Inf. Comput. 104593 (2020)

9. Galliani, P.: Dependence logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2021 edn.
(2021)

10. Galliani, P., Hannula, M., Kontinen, J.: Hierarchies in independence logic. In:
Rocca, S.R.D. (ed.) Computer Science Logic 2013 (CSL 2013). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 23, pp. 263–280. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). https://doi.org/10.
4230/LIPIcs.CSL.2013.263

11. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Rocca, S.R.D. (ed.)
Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 23, pp. 281–295. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.
281

12. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica. 101(2),
399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2

https://doi.org/10.1007/s11229-008-9415-6
https://doi.org/10.1007/s10849-012-9162-4
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.ic.2015.06.008
https://doi.org/10.1007/978-3-319-31803-5_4
https://doi.org/10.1017/jsl.2019.12
https://doi.org/10.1017/jsl.2019.12
https://doi.org/10.4230/LIPIcs.CSL.2013.263
https://doi.org/10.4230/LIPIcs.CSL.2013.263
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.1007/s11225-013-9479-2

Doubly Strongly First Order Dependencies 63

13. Hannula, M.: Hierarchies in inclusion logic with lax semantics. In: Banerjee, M.,
Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 100–118. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-45824-2 7

14. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press,
Cambridge (1996). https://doi.org/10.1017/cbo9780511624919

15. Hintikka, J., Sandu, G.: Informational independence as a semantic phenomenon.
In: Fenstad, J., Frolov, I., Hilpinen, R. (eds.) Logic, Methodology and Philos-
ophy of Science, pp. 571–589. Elsevier (1989). https://doi.org/10.1016/S0049-
237X(08)70066-1

16. Hodges, W.: Compositional semantics for a language of imperfect information. J.
Interest Group Pure Appl. Logics 5(4), 539–563 (1997). https://doi.org/10.1093/
jigpal/5.4.539

17. Kontinen, J., Kuusisto, A., Virtema, J.: Decidability of predicate logics with team
semantics. In: 41st International Symposium on Mathematical Foundations of
Computer Science (MFCS 2016). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 58, pp. 60:1–60:14 (2016). https://doi.org/10.4230/LIPIcs.MFCS.
2016.60

18. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fund. Inform. 106(2–
4), 259–272 (2011)

19. Kontinen, J., Yang, F.: Logics for first-order team properties. In: Iemhoff, R.,
Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 392–
414. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 24

20. Kuusisto, A.: A double team semantics for generalized quantifiers. J. Logic Lang.
Inform. 24(2), 149–191 (2015)

21. Lück, M.: On the complexity of team logic and its two-variable fragment. In:
Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2018). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 117, pp. 27:1–27:22. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.
4230/LIPIcs.MFCS.2018.27

22. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic: A Game-
Theoretic Approach. Cambridge University Press, Cambridge (2011). https://doi.
org/10.1017/CBO9780511981418

23. Rönnholm, R.: Capturing k-ary existential second order logic with k-ary inclusion-
exclusion logic. Ann. Pure Appl. Logic 169(3), 177–215 (2018). https://doi.org/
10.1016/j.apal.2017.10.005

24. Rönnholm, R.: The expressive power of k-ary exclusion logic. Ann. Pure Appl.
Logic 170(9), 1070–1099 (2019)

25. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007).
https://doi.org/10.1017/CBO9780511611193

26. Väänänen, J.: Team logic. In: van Benthem, J., Gabbay, D., Löwe, B. (eds.) Inter-
active Logic. Selected Papers from the 7th Augustus de Morgan Workshop, pp.
281–302. Amsterdam University Press (2007)

27. Yang, F.: Expressing second-order sentences in intuitionistic dependence logic. In:
Kontinen, J., Väänänen, J. (eds.) Proceedings of Dependence and Independence
in Logic, ESSLLI 2010, pp. 118–132 (2010)

https://doi.org/10.1007/978-3-662-45824-2_7
https://doi.org/10.1017/cbo9780511624919
https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.4230/LIPIcs.MFCS.2016.60
https://doi.org/10.4230/LIPIcs.MFCS.2016.60
https://doi.org/10.1007/978-3-662-59533-6_24
https://doi.org/10.4230/LIPIcs.MFCS.2018.27
https://doi.org/10.4230/LIPIcs.MFCS.2018.27
https://doi.org/10.1017/CBO9780511981418
https://doi.org/10.1017/CBO9780511981418
https://doi.org/10.1016/j.apal.2017.10.005
https://doi.org/10.1016/j.apal.2017.10.005
https://doi.org/10.1017/CBO9780511611193

Explicit Non-normal Modal Logic

Atefeh Rohani and Thomas Studer(B)

Institute of Computer Science, University of Bern, Bern, Switzerland
{atefeh.rohani,thomas.studer}@inf.unibe.ch

Abstract. Faroldi argues that deontic modals are hyperintensional and
thus traditional modal logic cannot provide an appropriate formalization
of deontic situations. To overcome this issue, we introduce novel justifi-
cation logics as hyperintensional analogues to non-normal modal logics.
We establish soundness and completness with respect to various models
and we study the problem of realization.

Keywords: Justification logic · Non-normal modal logic · Deontic
modals

1 Introduction

Justification logic [4,16] is a variant of modal logic that replaces the implicit
�-operator with explicit justifications. Instead of formulas �A, meaning, e.g., A
is known or A is obligatory, the language of justification logic features formulas
of the form t : A that stand for t justifies the agent’s knowledge of A or A is
obligatory for reason t, where t is a so-called justification term.

The first justification logic, the Logic of Proofs [1], has been developed by
Artemov in order to provide a classical provability semantics for the modal
logic S4 (and thus also for intuitionistic logic) [1,15]. Starting with the work
of Fitting [10], several interpretations of justification logic have been presented
that combine justifications with traditional possible world models [3,14,18]. This
opened the door for numerous applications of justification logic, e.g., in epistemic
and deontic contexts [2,5,13,21,23].

One of the features of a normal modal logic is that it is closed under the
rule of necessitation, that is if F is valid, then so is �F . Hence we can easily
derive the rule of monotonicity: Suppose A → B is valid. By necessitation, we
get �(A → B). By axiom K and modus ponens we conclude �A → �B.

Pacuit [20] mentions several interpretations of � for which the validities and
rules of inference of normal modal logic can be questioned. A well-known example
is the paradox of gentle murder [11], where � is read as ought to. Consider the
statements:

This work was supported by the Swiss National Science Foundation grant
200020 184625.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 64–81, 2021.
https://doi.org/10.1007/978-3-030-88853-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_5

Explicit Non-normal Modal Logic 65

Jones murders Smith. (1)
Jones ought not to murder Smith. (2)
If Jones murders Smith, then Jones ought to murder Smith gently. (3)

These sentences seem to be consistent. However, from (1) and (3) we infer

Jones ought to murder Smith gently. (4)

Moreover, we have the following implication

If Jones murders Smith gently, then Jones murders Smith. (5)

By the rule of monotonicity, (5) implies

If Jones ought to murder Smith gently,
then Jones ought to murder Smith. (6)

Now (4) and (6) toghether yield

Jones ought to murder Smith. (7)

This contradicts (2). This argument suggests that deontic modal logic should
not validate the rules of normal modal logic and thus a semantics different from
Kripke semantics is needed. The traditional approach for models of non-normal
modal logics is to use neighborhood semantics. There, a so-called neighborhood
function N assings to each world w a set of sets of worlds N(w) and a formula
�F is true at w if the truth set of F is an element of N(w).

Justification logics are parametrized by a constant specification, which is a
set

CS ⊆ {(c,A) | c is a constant justification term and
A is an axiom of justification logic}.

Instead of the rule of necessitation, justification logics include a rule called axiom
necessitation saying that one is allowed to infer c : A if (c,A) ∈ CS. Hence, In
epistemic settings, we can calibrate the reasoning power of the agents by adapting
the constant specification.

Faroldi and Protopopescu [8,9] suggest to use this mechanism also in deontic
settigs in order to avoid the usual paradoxes. For instance, they discuss Ross’
paradox [22], which is:

You ought to mail the letter. (8)

implies
You ought to mail the letter or burn it. (9)

66 A. Rohani and T. Studer

The reason is as before. It is a classical validity that

you mail the letter implies you mail the letter or burn it. (10)

By the monotonicity rule we find that (8) implies (9).
Fardoli and Protopopescu avoid this paradox by restricting the constant spec-

ification such that although (10) is a logical validity, there will no justification
term for it. Thus the rule of monotonicity cannot be derived and there is no
paradox.

One of the reasons why Faroldi prefers justification logic over using neighbor-
hood models is that he claims that deontic modalities are hyperintensional [7],
i.e. they can distinguish between logically equivalent formulas. This property is
one of the distinguishing features of justification logics: they are hyperintensional
by design. Even if A and B are logically equivalent, we may have that a term t
justifying A does not justify B. Think of the Logic of Proofs, where the terms
represent proofs in a formal system (like Peano arithmetic). Let A and B be
logically equivalent formulas. In general, a proof of A will not also be a proof
of B. In order to obtain a proof of B we have to extend the proof of A with a
proof of A → B and an application of modus ponens. Thus in justification logic,
terms do distinguish between equivalent formulas, which, according to Faroldi,
makes it a suitable framework for deontic reasoning.

There is a problem with restricting the constant specification. Namely, the
resulting constant specification will not be axiomatically appropriate, i.e. there
will be axioms that are not justified by any term. This implies, however, that
the Internalization property (saying that a justification logic internalizes its own
notion of proof) does not hold, which is a problem for several reasons.

First, Internalization is needed to obtain completness with respect to fully
explanatory models. That is models where each formula that is obligatory (or
believed) in the sense of the modal � operator has a justification.

Further, Internalization is often required to obtain completeness when a form
of the D axiom is present [14,18,19]. In deontic settings, this is often the case
since obligations are supposed not to contradict each other. Hence restricing
the constant specification leads to deductive systems that are not complete.
Conflicting obligations in justification logic have been studied in [6]. Recently, it
turned out that this approach can also be used to analyze an epistemic paradox
of quantum physics [24].

Moreover, Internalization is essential to obtain realization results. A justifi-
cation logic realizes a modal logic if, given any theorem F of the modal logic,
each occurrence of � in F can be replaced with some justification term such
that the resulting formula is a theorem of the justification logic. Realization is
an important property connecting implicit and explicit modalities.

In the present paper, we introduce two novel justification logics JECS and
JEMCS that are the explicit counterparts of the non-normal modal logics E and
EM, respectively. As usual for justification logics, JECS and JEMCS are hyperin-
tensional and can therefore serve as appropriate formalization of deontic modals.
On a technical level, the main novelty of our paper is the use of two types of

Explicit Non-normal Modal Logic 67

terms for JECS and JEMCS. This makes it possible to formalize the characteristic
principle of JECS and JEMCS as an axiom (and not as a rule) and, therefore, our
logics have the Internalization property. We show soundness and completeness
of JECS and JEMCS. For JECS we also prove completeness with respect to fully
explanatory models whereas for JEMCS this will only be a conjecture. Moreover,
we show that the justification logic JEMCS realizes the modal logic EM.

2 Justification Logic

To define the language of our novel justification logic JECS, we extend the usual
language of justification logic by introducing two types of terms.

We consider two types of terms, proof terms and justification terms, where
each type is built-up from countably many constants and variables. So if we
denote proof constants by αi and proof variables by ξi, the set of proof terms is
defined inductively as follows:

λ ::= αi | ξi | (λ · λ) | (λ + λ) | !λ .

Justification terms are built inductively as follows:

t ::= ci | xi | (t · t) | (t + t) | e(λ, λ, t) ,

where justification constants are shown by ci, justification variables by xi, and
λ is a proof term. We denote the set of proof terms by PTm and the set of
justification terms by JTm. Therefore, the set of all terms is Tm := PTm∪ JTm.
We use λ, κ, γ for elements of PTm and r, s, t for elements of JTm.

Let Prop be a countable set of atomic propositions. Then formulas are induc-
tively defined as follows:

F ::= Pi | ⊥ | (F → F) | λ : F | [t]F ,

where Pi ∈ Prop, λ ∈ PTm, and t ∈ JTm. We use Fm for the set of formulas.
The axioms of JE are:

j λ : (F → G) → (κ : F → λ · κ : G)
j+1 (λ : F ∨ κ : F) → (λ + κ) : F
jt λ : F → F
j4 λ : F → !λ : λ : F
j+2 ([t]F ∨ [s]F) → [t + s]F
je (λ1 : (F → G) ∧ λ2 : (G → F)) → ([t]F → [e(λ1, λ2, t)]G)

In order to define the deductive system for our logic, we first need the notion
of a constant specification.

Definition 1 (Constant Specification). A constant specification CS is any
subset:

CS ⊆ {α : A | α is a proof constant and A is an axiom of JE} .

A constant specification CS is called axiomatically appropriate if for each
axiom A of JE there is a constant α with (α,A) ∈ CS.

68 A. Rohani and T. Studer

Definition 2 (Logic JECS). For a constant specification CS, the logic JECS is
defined by a Hilbert-style system with the axioms JE and the inference rules
modus ponens (MP) and axiom necessitation (ANCS), given by:

α : A
where (α,A) ∈ CS .

We write JECS 	 A to express that a formula A is provable in JECS. If the deduc-
tive system is clear from the context and we only want to stress the constant
specification, we simply use 	CS A. When the constant specification does not
matter or is clear from the context, we drop the subscript CS and write 	 A.

Note that the axioms j, j+1, jt, and j4 are exactly the axioms of the Logic of
Proofs. The fragment of JECS with only proof terms (but no justifications terms)
actually is the Logic of Proofs.

It is a standard result that justification logics with an axiomatically appro-
priate constant specification internalize their own notion of proof [1,4,16].

Lemma 1 (Internalization). Let CS be an axiomatically appropriate constant
specification. For any formula A with 	 A, there exists a proof term λ such that
	 λ : A.

Moreover, justification logics enjoy a deduction theorem [1,4,16].

Lemma 2 (Deduction). Let CS be an arbitrary constant specification. For any
set Δ of formulas and for any formulas A and B,

Δ,A 	 B iff Δ 	 A → B .

Let us now turn to semantics. In order to present basic evaluations for JECS

we need some operations on sets of formulas.

Definition 3. Let X,Y,Z be sets of formulas and λ be a proof term. We define
the following operations:

λ : X := {λ : F | F ∈ X};
X · Y := {F | G → F ∈ X for some G ∈ Y };
⊙X

Y Z := {G | F → G ∈ X and G → F ∈ Y for some F ∈ Z} .

Definition 4 (Basic evaluation). Let CS be an arbitrary constant specifica-
tions. A basic evaluation for JECS is a function ε that maps atomic propositions
to 0 or 1

ε(Pi) ∈ {0, 1} for Pi ∈ Prop

and maps terms to a set of formulas:

ε : PTm ∪ JTm → P(Fm) ,

such that for arbitrary λ, κ ∈ PTm , and s, t ∈ JTm :

1. ε(λ) · ε(κ) ⊆ ε(λ · κ);
2. ε(λ) ∪ ε(κ) ⊆ ε(λ + κ);

Explicit Non-normal Modal Logic 69

3. F ∈ ε(λ) if (λ, F) ∈ CS;
4. λ : ε(λ) ⊆ ε(!λ);
5. ε(t) ∪ ε(s) ⊆ ε(t + s);
6.

⊙ε(λ1)
ε(λ2)

ε(t) ⊆ ε(e(λ1, λ2, t)).

Definition 5 (Truth under a basic evaluation). We define truth of a for-
mula F under a basic evaluation ε inductively as follows:

1. ε �⊥;
2. ε � P iff ε(P) = 1 for P ∈ Prop;
3. ε � F → G iff ε � F or ε � G;
4. ε � λ : F iff F ∈ ε(λ);
5. ε � [t]F iff F ∈ ε(t).

Definition 6 (Factive basic evaluation). A basic evaluation ε is called fac-
tive if for any formula λ : F we have ε � λ : F implies ε � F .

Definition 7 (Basic model). Given an arbitrary CS, a basic model for JECS

is a basic evaluation that is factive.

As expected, we have soundness and completeness with respect to basic mod-
els. The following theorem is established in Appendix A.

Theorem 1 (Soundness and completeness w.r.t. basic models). Let CS
be an arbitrary constant specification. The logic JECS is sound and complete with
respect to basic models. For any formula F ,

JECS 	 F iff ε � F for all basic models ε for JECS .

3 Neighborhood Semantics and Modular Models

The main purpose of modular models is to connect justification logic to tradi-
tional modal logic. To define modular models for JECS, we start with a neigh-
borhood model (like for the modal logic E) and assign to each possible world
a basic evaluation. This, however, is not enough since these basic evaluations
may have nothing to do with the neighborhood structure of the model. Hence
we introduce the following principle:

having a specific justification for F must yield
�F in the sense of the neighborhood structure.

This principle was first introduced in epistemic contexts and is, therefore, called
justification yields belief (JYB).

Definition 8 (Neighborhood function). For a non-empty set of worlds W ,
a neighborhood function is any N : W → P (P(W)).

70 A. Rohani and T. Studer

Definition 9 (Quasi-model). A quasi-model for JECS is a triple

M = 〈W,N, ε〉

where W is a non-empty set of worlds, N is a neighborhood function and ε is
an evaluation function that maps each world to a basic evaluation εw.

Definition 10 (Truth in quasi-model). Let M = 〈W,N, ε〉 be a quasi-model.
Truth of a formula at a world w in a quasi-model is defined inductively as follows:

1. M, w �⊥;
2. M, w � P iff εw(P) = 1, for P ∈ Prop;
3. M, w � F → G iff M, w � F or M, w � G;
4. M, w � λ : F iff F ∈ εw(λ);
5. M, w � [t]F iff F ∈ εw(t).

We will write M � F if M, w � F for all w ∈ W .

Remark 1. The neighborhood function plays no rule in the definition of truth
in quasi-models. Hence truth in quasi-models is local. Let M = 〈W,N, ε〉 be a
quasi-model. For any w ∈ W and any formula F ,

M, w � F iff εw � F . (11)

Definition 11 (Factive quasi-model). A quasi-model M = 〈W,N, ε〉 is fac-
tive if for each world w, we have that for any formula λ : F ,

M, w � λ : F implies M, w � F .

Definition 12 (Truth set). Let M = 〈W,N, ε〉 be a quasi-model. The truth
set of a formula F , denoted by |F |M, is the set of all worlds in which F is true,
i.e.,

|F |M := { w ∈ W | M, w � F } .

Further, we define

�w := {F | |F |M ∈ N(w)} .

Looking back at neighborhood models for E, it is easy to see that F ∈ �w means
(modulo the different language that we are using) that �F holds at world w. As
a result, we can formulate principle of justification yields belief as follows:

for any t ∈ JTm and w ∈ W, we have that εw(t) ⊆ �w . (JYB)

Definition 13 (Modular model). A JECS modular model is a quasi-model
for JECS that is factive and satisfies (JYB).

JECS is sound and complete with respect to modular models. A proof of the
following theorem is given in Appendix B.

Explicit Non-normal Modal Logic 71

Theorem 2 (Soundness and completeness w.r.t. modular models). Let
CS be an arbitrary constant specification. For each formula F we have

JECS 	 F iff M � F for all JECS modular models M.

It is natural to ask wether every obligatory formula in a modular model is
justified by a justification term.

Definition 14 (Fully explanatory modular model). A JECS modular model
M = 〈W,N, ε〉 is fully explanatory if for any w ∈ W and any formula F ,

|F |M ∈ N(w) implies F ∈ εw(t) for some t ∈ JTm .

The fully explanatory propery can be seen as the converse of justification
yields belief. In fully explanatory models we have that for each world w,

⋃

t∈JTm

εw(t) = �w .

For axiomatically appropriate constant specifications, we can show that JECS

is sound and complete with respect to fully explanatory JECS modular models.
The proof is presented in Appendix C.

Theorem 3 (Soundness and completeness for fully explanatory modu-
lar models). Let CS be an axiomatically appropriate constant specification. JECS

is sound and complete with respect to fully explanatory JECS modular models.

4 Monotonic Justification Logic

There are several applications for which the modal logic E is too weak and
one considers the extension of E with the axiom �(A ∧ B) → (�A ∧ �B) or,
equivalently, with the rule

A → B

�A → �B
.

The resulting logic is called EM. In this section we introduce an explicit coun-
terpart JEM of the modal logic EM.

First, we extend the language as follows. If λ is a proof term and t is a
justification term, then m(λ, t) is a justification term, too. Formulas are then
built using this extended set of justification terms. It will always be clear from
the context whether we work with the basic language for JE or with the extended
language for JEM.

The axioms of JEM are the axioms of JE extended by

jm λ : (F → G) → ([t]F → [m(λ, t)]G).

72 A. Rohani and T. Studer

For a constant specification CS, we now consider axioms of JEM; and the system
JEMCS consists of the axioms of JEM plus the rules of modus ponens and axiom
necessitation. Note that Internalization and the Deduction theorem hold for
JEMCS, too.

A basic evaluation for JEMCS is defined like a basic evaluation for JECS with
the additional requirement that for arbitrary λ ∈ PTm and t ∈ JTm,

ε(λ) · ε(t) ⊆ ε(m(λ, t)) .

Further we define a monotonic basic model (for JEMCS) as a basic evaluation for
JEMCS that is factive.

Similar to JECS, we can show that JEMCS is sound and complete with respect
to monotonic basic models.

Theorem 4. Let CS be an arbitrary constant specification. The logic JEMCS is
sound and complete with respect to monotonic basic models. For any formula F ,

JEMCS 	 F iff ε � F for all monotonic basic models ε for JEMCS .

Now we are goinig to adapt modular models to JEMCS. A neighborhood
function N for a non-empty set of worlds W is called monotonic provided that
for each w ∈ W and for each X ⊆ W ,

if X ∈ N(w) and X ⊆ Y ⊆ W then Y ∈ N(w).

A monotonic quasi-model for JEMCS is defined like a quasi-model for JECS

but we use a monotonic neighborhood function and each world is mapped to
a basic evaluation for JEMCS. A monotonic modular model is then defined like
a modular model but the underlying quasi-model is required to be monotonic.
As for JECS we get completeness or JEMCS with respect to monotonic modular
models.

Theorem 5. Let CS be an arbitrary constant specification. For each formula F
we have

JEMCS 	 F iff M � F for all JEMCS monotonic modular models M.

We do not yet have completeness with respect to fully explanatory monotonic
modular models. To achieve this, one needs some additional construction to
guarantee that the neighborhood function constructed in the canonical model is
monotonic. We conjecture that a construction like in the completeness proof for
EM [20] should provide this.

Conjecture 1. Let CS be an axiomatically appropriate constant specification.
JEMCS is sound and complete with respect to fully explanatory JEMCS monotonic
modular models.

Explicit Non-normal Modal Logic 73

5 Realisation

This section is concerned with the exact relationship between some non-normal
modal logic M and its explicit counterpart J. Let FmM denote the set of formulas
from modal logic and FmJ the set of all Fm-formulas that do not contain proof
terms. There is the so-called forgetful translation ◦ from FmJ to FmM given by

⊥◦ := ⊥ P ◦ := P (A → B)◦ := A◦ → B◦ ([t]A)◦ := �A◦ .

However, we are mainly interested in the converse direction. A realization is a
mapping from FmM to FmJ such that for all A ∈ FmM, we have (r(A))◦ = A.

Now the question is whether a realization theorem holds, i.e. given a modal
logic M and a justification logic J, does there exist a realization r such that for
all A ∈ FmM, we have M 	 A implies J 	 r(A).

In order to establish such a realization theorem, we need the notion of a
schematic constant specification.

Definition 15. A constant specification CS is called schematic if it satisfies the
following property: for each constant c, the set of axioms {A | (c,A) ∈ CS}
consists of all instances one or several (possibly zero) axioms schemes of the
justification logic.

Schematic constant specifications are important in the context of substi-
tutions, where a subsitution replaces atomic propositions with formulas, proof
variables with proof terms, and justification variables with justification terms.
The following lemma is standard [16].

Lemma 3. Let CS be a schematic constant specification. We have for any set
of formulas Δ, any formula A, and any subsititution σ

Δ 	 A implies Δσ 	 Aσ .

In order to show a realization result, we further need a cut-free sequent
calculus for the given modal logic. The system GE is given by the following
propositional axioms and rules, the structural rules, and the rule (RE). If we
replace (RE) with (RM), we obtain the system GM. In these systems, a sequent
is an expression of the form Γ ⊃ Δ where Γ and Δ are finite multisets of
formulas.

Propositional axioms and rules:

P ⊃ P

Γ ⊃ Δ,A B,Γ ⊃ Δ
(→⊃)

A → B,Γ ⊃ Δ

⊥ ⊃

A,Γ ⊃ Δ,B
(⊃→)

Γ ⊃ Δ,A → B

74 A. Rohani and T. Studer

Structural rules:

Γ ⊃ Δ (w ⊃)
A,Γ ⊃ Δ

A,A, Γ ⊃ Δ
(c ⊃)

A,Γ ⊃ Δ

Γ ⊃ Δ (⊃ w)
Γ ⊃ Δ,A

Γ ⊃ Δ,A,A
(⊃ c)

Γ ⊃ Δ,A

Modal rules:

A ⊃ B B ⊃ A (RE)�A ⊃ �B
A ⊃ B (RM)�A ⊃ �B

The systems GE and GM are sound and complete [12,17].

Theorem 6. For each modal logic formula A, we have

1. GE 	 ⊃ A iff E 	 A;
2. GM 	 ⊃ A iff EM 	 A.

We need some technical notions about occurrence of � operators. We assign
a positive or negative polarity to each sub-formula occurrence within a fixed
formula A as follows:

1. To the only occurrence of A in A we assign the positive polarity.
2. If a polarity is assigned to a sub-formula of the form B → C in A, then the

same polarity is assigned to C and opposite polarity is assigned to B.
3. If a polarity is already assigned to a sub-formula of the form �B in A, then

the same polarity is assigned to B.

Let �B be a sub-formula of A. If A ∈ Δ in a sequent Γ ⊃ Δ, then the
�-operator of �B has the same polarity as the sub-formula occurrence of �B
in A. If A ∈ Γ in a sequent Γ ⊃ Δ, then the �-operator of �B has the opposite
polarity as the sub-formula occurrence of �B in A.

Remark 2. All rules of GM respect the polarities of �-operators. The rule (RM)
introduces negative �-occurrence to the left side, and positive �-occurrence to
the right side of the conclusion.

In the following we only consider the system GM. Let D be a derivation in
GM. We say that occurrences of � in D are related if they occur in the same
position in related formulas of premises and conclusions of a rule instance in D.
We close this relationship of related occurrences under transitivity.

All occurrences of � in D naturally split into disjoint families of related �-
occurrences. We call such a family essential if at least one of its members is a
positive �-occurrence introduced by an instance of (RM).

Now we are ready to formulate and prove the realization theorem.

Definition 16 (Normal realization). A realization is called normal if all neg-
ative occurrences of � are realized by distinct justification variables.

Explicit Non-normal Modal Logic 75

Theorem 7 (Constructive realization). For any axiomatically appropriate
and schematic constant specifications CS, there exist a normal realization r such
that for each formula A ∈ FmM, we have

GM 	 ⊃ A implies JEMCS 	 r(A) .

For space limitations, we cannot present the full proof of the realization
theorem. The essence is the same as in the proof of the constructive realization
theorem for the Logic of Proofs [1,16].

Let D be the GM-proof of ⊃ A. The realization r is constructed by the
following algorithm. We reserve a large enough set of justification variables as
provisional variables.

1. For each non-essential family of �-occurrences, replace all occurrences of �
by [x] such that each family has a distinct justification variable.

2. For an essential family of �-occurrences, enumerate all occurrences of (RM)
rules that introduce a �-operator to this family. Let n be the number of
such occurrences. Replace each �-occurrence of this family with [v1 + ...+vn]
where each vi is a fresh provisional variable. Applying this step for all essential
families yields a derivation tree D′ labeled by FmJ-formulas.

3. Replace all provisional justification variables in D′ from the leaves toward
the root. By induction on the depth of a node in D′, we show that after each
replacement, the resulting sequent of this step is derivable in JEMCS where
for finite multisets Γ and Δ of FmJ-formulas, derivability of Γ ⊃ Δ means
Γ 	CS

∨
Δ.

Let us show the case of an instance of (RM) with number i in an essential
family. The corresponding node in D′ is labelled by

A ⊃ B (RM)
[x]A ⊃ [v1 + . . . + vi + . . . + vn]B

where the v’s are justification terms and vi is a justification variable. By
I.H. we get A 	CS B. By the Deduction Theorem we get 	CS A → B and
Internalization yields a proof term λ with 	CS λ : (A → B). By jm we get
	CS [x]A → [m(λ, x)]B. Hence, again by the Deduction Theorem, we find
[x]A 	CS [m(λ, x)]B and thus [x]A 	CS [v1 + . . . + m(λ, x) + . . . + vn]B by
axiom j+2. Subsitute m(λ, x) for vi everywhere in D′. By Lemma 3 this does
not affect the already established derivabilty results since CS is schematic.

6 Conclusion

We have presented two new justification logics JECS and JEMCS as explicit coun-
terparts of the non-normal modal logics E and EM, respectively. Having a jus-
tification analogue of the modal logic E is particularly important in deontic
contexts since, according to Faroldi [7], deontic modalities are hyperintensional.
On a technical level, the main novelty in our work is the introduction of two
types of terms. This facilitates the formulation of axiom je, which corresponds

76 A. Rohani and T. Studer

to the rule of equivalence. Having this prinicple as an axiom (and not as a rule)
in justification logic is important to obtain Internalization (Lemma 1).

We have established soundness and completeness of JECS and JEMCS with
respect to basic models and with respect to modular models. For JECS we
have also proved completeness with respect to fully explanatory modular models
whereas for JEMCS this is only a conjecture.

Moreover, we have shown that for an axiomatically appropriate and
schematic constant specification, the justification logic JEMCS realizes the modal
logic EM.

It is an open question whether JECS realizes E. The proof idea of Theorem 7
cannot be applied to E. The reason is that this proof relies on the fact that
the rules of GM respect the polarities of � occurrences, see Remark 2. The rule
(RE), however, does not satisfy this property. In the right premise, the formulas
A and B have the opposite polarity of A and B, respectively, in the conclusion.
We conjecture that additional axioms are needed in JECS to make a realization
result possible.

A Soundness and Completeness with Respect to Basic
Models

Theorem 8 (Soundness w.r.t. basic models). The Logic JECS is sound with
respect to basic models. For an arbitrary constant specifications CS and any for-
mula F ,

JECS 	 F =⇒ ε � F for any basic model ε .

Proof. As usual, the proof is by induction on the length of JECS derivations and
a case distinction on the last rule. The only interesting case is when F is an
instance of je. Suppose

ε � λ1 : (A → B) and ε � λ2 : (B → A) and ε � [t]A .

Thus we have

(A → B) ∈ ε(λ1) and (B → A) ∈ ε(λ2) and A ∈ ε(t) .

By Definition 3 we find B ∈ ⊙ε(λ1)
ε(λ2)

ε(t). Hence, by the definition of basic model
we get B ∈ ε(e(λ1, λ2, t)), which is ε � [e(λ1, λ2, t)]B.

To prove the completeness theorem, we need to know that JECS is consistent.

Lemma 4. For any constant specification CS, JECS is consistent.

Proof. As usual, one can show that JECS is a conservative extension of classical
propositional logic. This immediately yields consistency of JECS.

Definition 17. A set of formulas Γ is called JECS-consistent if for each finite
subset Σ ⊆ Γ , we have �CS

∧
Σ → ⊥. The set Γ is maximal JECS-consistent if

Γ is consistent and none of its proper supersets is.

Explicit Non-normal Modal Logic 77

As usual, any consistent set can be extended to a maximal consistent set.

Lemma 5 (Lindenbaum). For each JECS-consistent set Δ, there exists a max-
imal JECS-consistent set Γ ⊇ Δ.

Lemma 6. For any constant specification CS and any maximal JECS-consistent
set Γ , there is a canoncial basic model εc induced by Γ that is defined as follows:

εc(P) := 1, if P ∈ Γ and εc(P) := 0, if P �∈ Γ ;
εc(λ) := {F | λ : F ∈ Γ};
εc(t) := {F | [t]F ∈ Γ}.

Proof. First we have to establish that εc is a basic evaluation. We only show the
condition

εc(λ1)⊙

εc(λ2)

εc(t) ⊆ εc(e(λ1, λ2, t)) . (12)

Suppose B ∈ ⊙εc(λ1)
εc(λ2)

εc(t), which means there is a formula A ∈ εc(t) with
(A → B) ∈ εc(λ1) and (B → A) ∈ εc(λ2). By the definition of εc, we have

λ1 : (A → B) ∈ Γ and λ2 : (B → A) ∈ Γ and [t]B ∈ Γ .

Since Γ is a maximal consistent set and

(λ1 : (A → B) ∧ λ2 : (B → A)) → ([t]A → [e(λ1, λ2, t)]B)

is an instance of je, we obtain [e(λ1, λ2, t)]B ∈ Γ . This yields B ∈ εc(e(λ1, λ2, t))
and (12) is established.

Next, a truth lemma can be established as usual by induction on formula
complexity. For all formulas F ,

F ∈ Γ iff εc � F . (13)

Finally, we show that our basic evaluation εc is factive and hence a basic
model. Suppose εc � λ : F . Hence λ : F ∈ Γ . Since Γ is maximal consistent, we
get by axiom jt that F ∈ Γ . By (13) we conclude εc � F .

Using the Lindenbaum lemma, the canonical basic model and the established
truth lemma (13), we immediately get the following completeness result.

Theorem 9 (Completeness w.r.t. basic models). Let CS be an arbitrary
constant specification. The logic JECS is complete with respect to basic models.
For any formula F ,

JECS 	 F iff ε � F for all basic models ε for JECS .

78 A. Rohani and T. Studer

B Soundness and Completeness with Respect to Modular
Models

Theorem 10 (Soundness and completeness w.r.t. modular models). Let
CS be an arbitrary constant specification. For each formula F we have

JECS 	 F iff M � F for all JECS modular models M.

Proof. To prove soundness, suppose M = 〈W,N, ε〉 is a JECS modular model,
and JECS 	 A. We need to show that A is true in every world w ∈ W . Assume
that εw is a basic model. Then by soundness with respect to basic models we
get εw � A and by (11) we conclude M, w � A. It remains to show that εw

indeed is a basic model, i.e. that it is factive. Suppose εw � λ : F . By (11) we
get M, w � λ : F . By factivitiy of modular models we get M, w � F and by (11)
again we conclude εw � F .

For completeness, suppose that JECS � F . Since JECS is complete with respect
to basic models, there is a JECS-basic model ε with ε � F . Now we construct a
quasi-model M := 〈{w}, N, ε′〉 with ε′

w := ε and

N(w) = {|G|M | G ∈ ε′
w(t), for any t ∈ JTm}.

By (11) we find M, w � F . It only remains to show that M is a modular
model: Factivity follows immediately from (11) and the fact that ε is factive. To
show (JYB), we suppose F ∈ ε′

w(t). By the definition of N we get |F |M ∈ N(w),
which means F ∈ �w.

C Soundness and Completeness with Respect to Fully
Explanatory Modular Models

The next step is to prove that JECS is sound and complete with respect to fully
explanatory JECS modular models. Before starting to prove the theorem, we need
an auxiliary notion:

Definition 18 (Proof set). Let MJE be the set of all maximal JECS-consistent
sets of formulas. We set

MJE := {Γ | Γ is a maximal JECS-consistent set } .

For any formula F we define ‖F‖ := {Γ | Γ ∈ MJE and F ∈ Γ}, called the proof
set of F .

Proof sets share a number of properties, which are given in the following
lemma.

Lemma 7. For formulas F,G following properties hold:

1. ‖F ∧ G‖ = ‖F‖ ∩ ‖G‖;

Explicit Non-normal Modal Logic 79

2. ‖¬F‖ = MJE \ ‖F‖;
3. ‖F ∨ G‖ = ‖F‖ ∪ ‖G‖;
4. ‖F‖ ⊆ ‖G‖ iff 	 F → G;
5. 	 (F ↔ G) iff ‖F‖ = ‖G‖;
6. if ‖λ : G‖ ⊆ ‖G‖ for any proof term λ.

Proof. Let only show claim 4. The claim from right to left immediately follows
from closure of maximal consistent sets under modus ponens. For the other
direction, suppose ‖F‖ ⊆ ‖G‖, but not 	 F → G. Then ¬(F → G) is consistent
and by Lindenbaum’s Lemma there is a maximal consistent set Γ � ¬(F → G).
This means F,¬G ∈ Γ . Since F ∈ Γ and ‖F‖ ⊆ ‖G‖, we get G ∈ Γ , which
contradicts ¬G ∈ Γ .

Theorem 11 (Soundness and completeness for fully explanatory mod-
ular models). Let CS be an axiomatically appropriate constant specification.
JECS is sound and complete with respect to fully explanatory JECS modular mod-
els.

Proof. Soundness is a direct conesquence of soundness for the class of JECS mod-
ular models.

To prove completeness, we define a canonical model Mc := 〈W c, N c, εc〉 by

– W c := MJE ;
– N c : W c → P(P(W c)), such that for each maximal consistent set Γ ∈ W c,

‖F‖ ∈ N c(Γ) iff [t]F ∈ Γ, for some t ∈ JTm ;

– εc
Γ (t) := {F | [t]F ∈ Γ}.

We define Γ/[] := {F | [t]F ∈ Γ, for some t ∈ JTm}. Now the canonical neigh-
borhood function can be reformulated as

N c(Γ) = {‖F‖ | F ∈ Γ/[]} .

Before establishing that this canonical model is a fully explanatory modular
model, we show that the neighborhood function is well-defined. The issue is
that different formulas may have the same proof set. Thus we need to show the
following lemma.

Lemma 8. Let CS be axiomatically appropriate. The neighborhood mapping N c

is well-defined, i.e. for any Γ ∈ MJE and any formulas F,G, if ‖F‖ ∈ N(Γ) and
‖F‖ = ‖G‖ then [t]G ∈ Γ for some t ∈ JTm.

Proof. Let F,G be two formulas such that ‖F‖ = ‖G‖. For some Γ ∈ MJE,
suppose ‖F‖ ∈ N c(Γ). Thus [s]F ∈ Γ for some s ∈ JTm by the definition of the
canonical model. By Lemma 7, we have 	 F ↔ G and thus 	 F → G as well
as 	 G → F . Since CS is axiomatically appropriate, there are proof terms λ1, λ2

such that 	 λ1 : (F → G) and 	 λ2 : (G → F). By the je axiom, we conclude
[e(λ1, λ2, s)]G ∈ Γ .

80 A. Rohani and T. Studer

Next we can establish the truth lemma.

Lemma 9 (Truth lemma). For each formula F , we have |F |Mc

= ‖F‖.
Proof. As usual the proof is by induction on the structure of F . We only show
the case when F is [t]G. We have the following equivalences: Γ ∈ |[t]G|Mc

iff
Mc, Γ � [t]G iff F ∈ εc

Γ (t) iff [t]F ∈ Γ iff Γ ∈ ‖[t]F‖.

Now we show that the canonical model is a modular model. First, we show
that W c �= ∅. Recall that by Lindenbaum’s Lemma, for every consistent set of
formulas Γ , there exist a maximally consistent set of formulas that contains Γ .
Since the empty set is consistent, by Lindenbaum’s Lemma, there is a maximal
consistent set that contains the empty set and is an element of W c.

Next we show factivity. Suppose Mc, Γ � λ : G. By the truth lemma we get
λ : G ∈ Γ . Since Γ is maximally consistent, we obtain by axiom jt that G ∈ Γ .
Again by the truth lemma we conclude Mc, Γ � G.

Now we show that the canonicial model satisfies justificiation yields
belief (JYB). Suppose F ∈ εc

Γ (t) for some term t, some formula F , and some
Γ ∈ W c. Since εc

Γ (t) = {G | [t]G ∈ Γ}, we have [t]F ∈ Γ . By the defini-
tion of N c we obtain ‖F‖ ∈ N c(Γ). Thus, using the the truth lemma, we get
|F |Mc ∈ N c(Γ). Thus (JYB) is established.

It remains to show that the canoncial model is fully explanatory. Suppose
|F |Mc ∈ N c(Γ) for some formula F and some Γ ∈ W c. By the truth lemma
we find ‖F‖ ∈ N c(Γ). By the definition of N c, this implies [t]F ∈ Γ for some
term t. By the definition of εc

Γ we finally conclude F ∈ εc
Γ (t).

References

1. Artemov, S.: Explicit provability and constructive semantics. BSL 7(1), 1–36 (2001)
2. Artemov, S.: Justified common knowledge. TCS 357(1–3), 4–22 (2006)
3. Artemov, S.: The ontology of justifications in the logical setting. Stud. Log. 100(1–

2), 17–30 (2012)
4. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge

University Press, Cambridge (2019)
5. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl.

Non-Class. Log. 21(1), 35–60 (2011)
6. Faroldi, F.L., Ghari, M., Lehmann, E., Studer, T.: Impossible and conflicting obli-

gations in justification logic. In: Marra, A., Liu, F., Portner, P., Van De Putte, F.
(eds.) Proceedings of the DEON 2020 (2020)

7. Faroldi, F.L.G.: Deontic modals and hyperintensionality. Log. J. IGPL 27, 387–410
(2019)

8. Faroldi, F.L.G.: Normative properties and higher-order supervenience. In: Hyper-
intensionality and Normativity, pp. 181–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-03487-0 8

9. Faroldi, F.L.G., Protopopescu, T.: A hyperintensional logical framework for deontic
reasons. Log. J. IGPL 27, 411–433 (2019)

10. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005)

https://doi.org/10.1007/978-3-030-03487-0_8
https://doi.org/10.1007/978-3-030-03487-0_8

Explicit Non-normal Modal Logic 81

11. Forrester, J.W.: Gentle murder, or the adverbial samaritan. J. Philos. 81(4), 193–
197 (1984)

12. Indrzejczak, A.: Admissibility of cut in congruent modal logics. Log. Log. Philos.
20(3), 189–203 (2011)

13. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-
abilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015)

14. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander,
T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp.
437–458. College Publications (2012)

15. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs.
Log. J. IGPL 24(3), 424–440 (2016)

16. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications,
Norcross (2019)

17. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak
modal systems. Stud. Log. 66(1), 121–145 (2000)

18. Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R.,
Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–
449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 26

19. Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Panhel-
lenic Logic Symposium, pp. 117–125. University of Athens, Athens, Greece, 25–28
July 2005

20. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017)
21. Renne, B.: Dynamic Epistemic Logic with Justification. PhD thesis, City Univer-

sity of New York, May 2008
22. Ross, A.: Imperatives and logic. Theoria 7 (1941)
23. Studer, T.: Decidability for some justification logics with negative introspection.

JSL 78(2), 388–402 (2013)
24. Studer, T.: A conflict tolerant logic of explicit evidence. Log. Investig. 27(1), 124–

144 (2021)

https://doi.org/10.1007/978-3-662-59533-6_26

A General Relational Semantics
of Propositional Logic: Axiomatization

Shengyang Zhong(B)

Institute of Foreign Philosophy, Department of Philosophy and Religious Studies,

Peking University, Beijing, China

Abstract. In the chapter on quantum logic in Volume 6 of Handbook
of Philosophical Logic, Dalla Chiara and Giuntini make an interesting
observation that there is a unified relational semantics underlying both
the {¬, ∧}-fragment of intuitionistic logic and ortho-logic. In this paper,
we contribute to a systematic investigation of this relational semantics
by providing an axiomatization of its logic.

Keywords: Relational semantics · Intuitionistic logic · Quantum logic

1 Introduction

Intuitionistic logic [7] and quantum logic [2] are two important kinds of non-
classical logic. They were inspired by the observation that some laws in classical
propositional logic are untenable under some considerations from philosophy of
mathematics or quantum physics. At the beginning, they were studied as formal
proof calculi in which some laws in classical logic are absent. To be precise, we
do not have in propositional intuitionistic logic the law of double negation and a
part of De Morgan Laws, while in quantum logic the distributive laws between
conjunction and disjunction are missing.

Around 1970, after the genesis of relational semantics in modal logic, rela-
tional semantics of intuitionistic logic [1,8] and that of quantum logic [6] were
also proposed. These formal semantics prove to be fruitful in the study of these
two logics and in addition reveal some interesting technical similarities of the
logics. (Please refer to the textbook [4] for intuitionistic logic and the hand-
book chapter [5] for quantum logic.) The main idea is to use a Kripke frame,
i.e. a non-empty set W equipped with a binary relation →, to interpret these
two propositional logics. The intuition behind W is in intuitionistic logic the set
of stages of mental construction of mathematical objects and in quantum logic
the set of pure states of a quantum system, respectively. The intuition behind
→ is in intuitionistic logic the progress from one stage of mental construction
to another and in quantum logic the non-orthogonality relation between pure
states, respectively.

Supported by NSSFC (No. 20CZX048).

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 82–99, 2021.
https://doi.org/10.1007/978-3-030-88853-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_6&domain=pdf
http://orcid.org/0000-0001-5538-0002
https://doi.org/10.1007/978-3-030-88853-4_6

A General Relational Semantics of Propositional Logic: Axiomatization 83

There are two key features of this interpretation. One of them is that the
fundamental level of interpretation, i.e. the notion of truth, is local and bivalent.
To be precise, the formal notion of truth is among a Kripke frame (W,→),
an element s ∈ W and a formula ϕ, instead of being between a Kripke frame
and a formula. Moreover, either ϕ is true at s in (W,→) or ϕ is false at s
in (W,→) (Page 26 in [4] for intuitionistic logic and Definition 2.2 in [6] for
quantum logic). Under such an interpretation the proposition expressed by a
formula ϕ is the set of elements of W at which ϕ is true. The other feature of
this interpretation is that not every subset of W is a proposition. A proposition
satisfies in intuitionistic logic a property called ‘persistent’1 and in quantum logic
a property called ‘bi-orthogonally closed’2 . If every subset of W is a proposition,
we get classical logic; by restricting our attention to special subsets of W , from
an algebraic point of view, we get sublattices of the power set algebra on W
which are not Boolean.

This interpretation provides a unified framework for both intuitionistic logic
and quantum logic which reflects some intuitions behind these two logics and
thus is not as purely technical as algebraic semantics. However, the logics still
seem very different. In intuitionistic logic we study the persistent subsets of W
in a Kripke frame (W,→) where → satisfies at least Reflexivity and Transitivity
(Page 25 in [4]), while in quantum logic we study the bi-orthogonally closed
subsets of W in a Kripke frame (W,→) where → satisfies at least Reflexivity
and Symmetry (Definition 2.1 in [6]3).

In [5] (pp. 139–140) Dalla Chiara and Giuntini make an interesting observa-
tion that, despite the difference on the involved classes of Kripke frames, intu-
itionistic logic and quantum logic care about the same kind of special subsets
of W . In other words, there is a unified property of subsets of W such that,
when → satisfies Reflexivity and Transitivity, it is equivalent to being persistent
and, when → satisfies Reflexivity and Symmetry, it is equivalent to being bi-
orthogonally closed. Technically this points to a unified notion of propositions
in a relational semantics for both intuitionistic logic and quantum logic. We
acknowledge that the motivations behind intuitionistic logic and quantum logic
are completely different, and that at present there is no meaningful interpreta-
tion of this unified notion of propositions, as far as we know. However, we still
hope that a study of the technical aspect of this unified notion of propositions
in relational semantics of propositional logic may eventually lead to something
common and interesting about the notion of propositions in intensional logics.

In this paper we contribute to a systematic investigation of this formal seman-
tics by providing an axiomatization of its logic. The formal language we use only

1 Please refer to Page 25 and Proposition 2.1 in [4], where ‘persistent’ in this paper
(Item (i) in Lemma 9 below) is called ‘upward closed’ there.

2 Please refer to Page 24 and Lemma 3.1 in [6], where ‘bi-orthogonally closed’ in this
paper (Item (i) in Lemma 10 below) is called ‘⊥-closed’ there.

3 Please note that in [6] the orthogonality relation, instead of the non-orthogonality
relation, is primitive, so there the binary relations are required to be irreflexive and
symmetric.

84 S. Zhong

has two connectives ¬ and ∧. We leave out disjunction and implication, because
both of them are defined differently in intuitionistic logic and quantum logic.
(Please refer to Page 26 in [4] for intuitionistic logic and Page 137 and Sect. 3 in
[5] for quantum logic). The axiomatization is essentially in the style of natural
deduction, but we adopt an abstract, rigorous and concise treatment and define
it as the smallest relation between a set of formulas and a formula that satisfies
some syntactic properties. Finally, since the logic is weak, we write the proofs
in greater details than normal so that it is convenient for the readers to check
what is used in which step and whether we take some unwarranted things for
granted.

The remaining part of this paper is organized as follows: In Sect. 2 we present
the logic, including the formal language and the definitions of semantic conse-
quence and syntactic consequence. We also prove the soundness and complete-
ness theorem. In Sect. 3 we briefly discuss how the {¬,∧}-fragment of intuition-
istic logic and quantum logic can be considered as extensions of our logic, which
is the observation in [5]. We add nothing new here but just flesh out this obser-
vation by proving some claims without proofs in [5]. Our techniques are useful
in proving soundness and completeness of the {¬,∧}-fragment of intuitionistic
logic and ortho-logic, the smallest logic in quantum logic; and this will be pre-
sented in the appendices. In Sect. 4 we discuss some interesting topics for future
work.

2 The Logic PL

2.1 Formal Language

Definition 1. PV is a countably infinite set of propositional variables.
Formulas are defined as follows:

ϕ :: = p | (¬ϕ) | (ϕ ∧ ϕ), where p ∈ PV

Denote by Form the set of formulas. Moreover, we may omit the parentheses
with the assumption that ¬ has priority over ∧.

2.2 Semantic Consequence

Definition 2. A frame is an ordered pair F = (W,→) such that W is a non-
empty set and → ⊆ W × W satisfies Reflexivity, i.e. s → s for each s ∈ W .

A proposition4 in a frame F = (W,→) is a set X ⊆ W such that, for each
s ∈ W , the following are equivalent:

(i) s ∈ X;
(ii) for each t ∈ W , s → t implies that there is a u ∈ X satisfying u → t.

Denote by P(F) the set of propositions of F.

4 This terminology and its definition are Definition 7 on page 139 in [5].

A General Relational Semantics of Propositional Logic: Axiomatization 85

Remark 1. Note that, for each X ⊆ W in a frame F = (W,→), for each s ∈ W ,
the direction from (i) to (ii) is trivial and only the direction from (ii) to (i) is
substantial in the definition of propositions. Hence in the following we only show
the proof of the latter direction when proving that a set is a proposition.

Definition 3. A model is an ordered pair M = (F, V), where F = (W,→) is a
frame and V is a function from PV to P(F).

Remark 2. Note that V maps each p ∈ PV to an element of P(F), instead of an
element of ℘(W).5

Definition 4. Define a satisfaction relation |= between a model M =
(W,→, V), s ∈ W and ϕ ∈ Form recursively as follows:

M, s |= p, if s ∈ V (p);
M, s |= (ϕ ∧ ψ), if M, s |= ϕ and M, s |= ψ;
M, s |= (¬ϕ), if, for each t ∈ W , s → t implies that M, t �|= ϕ.

For each Γ ⊆ Form, M, s |= Γ means that, for each γ ∈ Γ , M, s |= γ.
We write ‖ϕ‖ for {s ∈ W | M, s |= ϕ}.

Remark 3. Note that in a model M = (W,→, V) by definition, for any p ∈ PV
and ϕ,ψ ∈ Form,

1. ‖p‖ = V (p);
2. ‖(ϕ ∧ ψ)‖ = ‖ϕ‖ ∩ ‖ψ‖;
3. ‖(¬ϕ)‖ = −‖ϕ‖, where, for an X ⊆ W , −X, called the strong complement of

X, is defined to be {s ∈ W | for each t ∈ W , if s → t, then t �∈ X}.

Lemma 1. Let M = (W,→, V) be a model. For each ϕ ∈ Form, ‖ϕ‖ is a propo-
sition.

Proof. Use induction on the structure of formula.
In the base step, ϕ is a p ∈ PV. By definition ‖p‖ = V (p) is a proposition.
In the induction step, consider two cases.
In the first case, ϕ is ¬ψ. Assume that, for each t, if s → t, then there is a u

such that u ∈ ‖¬ψ‖ and u → t. For each t satisfying s → t, by the assumption
there is a u such that u ∈ −‖ψ‖ and u → t, so t �∈ ‖ψ‖. Thus s ∈ −‖ψ‖ = ‖¬ψ‖.

In the second case, ϕ is ψ ∧ θ. Assume that, for each t, if s → t, then there
is a u such that u ∈ ‖ψ ∧ θ‖ and u → t. For each t satisfying s → t, by the
assumption there is a u such that u ∈ ‖ψ‖ ∩ ‖θ‖ and u → t, so this u is such
that u ∈ ‖ψ‖ and u → t. By IH ‖ψ‖ is a proposition, so s ∈ ‖ψ‖. Similarly we
can show that s ∈ ‖θ‖. Therefore, s ∈ ‖ψ‖ ∩ ‖θ‖ = ‖ψ ∧ θ‖. 	

Definition 5. For any Γ ⊆ Form and ϕ ∈ Form, ϕ is a semantic consequence of
Γ , denoted by Γ |= ϕ, if, for any model M = (W,→, V) and s ∈ W , M, s |= Γ
implies that M, s |= ϕ.

5 For a set A, ℘(A) denotes the power set of A.

86 S. Zhong

2.3 Syntactic Consequence

Definition 6. Let �L ⊆ ℘(Form) × Form.

1. For any Γ ∈ ℘(Form) and ϕ ∈ Form, ϕ is an L-syntactic consequence of Γ ,
if (Γ, ϕ) ∈ �L.
In this case, for convenience, we write Γ �L ϕ. Moreover, we write ψ �L ϕ
for {ψ} �L ϕ and �L ϕ for ∅ �L ϕ.

2. Γ ∈ ℘(Form) is L-consistent, if there is no ϕ ∈ Form such that Γ �L ϕ and
Γ �L ¬ϕ.

3. Γ ∈ ℘(Form) is L-closed, if, for each ϕ ∈ Form, Γ �L ϕ implies that ϕ ∈ Γ .

The following are some syntactic properties of a relation �L ⊆ ℘(Form)×Form (to
make them easier to read, we omit the universal quantifiers for Γ,Δ ∈ ℘(Form)
and ϕ,ψ ∈ Form at the beginning of each of the properties):

(A) Γ ∪ {ϕ} �L ϕ;
(∧I) if Γ �L ϕ and Γ �L ψ, then Γ �L ϕ ∧ ψ;
(∧E) if Γ �L ϕ ∧ ψ, then Γ �L ϕ and Γ �L ψ;

(Exp) if Γ �L ϕ and Γ �L ¬ϕ, then Γ �L ψ;
(Mon) if Γ ⊆ Δ and Γ �L ϕ, then Δ �L ϕ;
(Cut) if Γ ∪ {ψ} �L ϕ and Δ �L ψ, then Γ ∪ Δ �L ϕ;
(¬Iw) if ϕ �L ψ and ϕ �L ¬ψ, then �L ¬ϕ;
(Ctr) if ϕ �L ψ, then ¬ψ �L ¬ϕ;
(¬I) if Γ ∪ {ϕ} �L ψ and Γ ∪ {ϕ} �L ¬ψ, then Γ �L ¬ϕ;

(¬2I) Γ ∪ {ϕ} �L ¬¬ϕ;
(¬2E) Γ ∪ {¬¬ϕ} �L ϕ;
(Com) if Γ �L ϕ, there is a finite set Γ ′ ⊆ Γ such that Γ ′ �L ϕ.

Definition 7. We define three special syntactic consequence relations and mark
them by special subscripts PL, IL and OL, respectively. IL stands for intuition-
istic logic and OL stands for ortho-logic.

�PL =
⋂ {

�L ⊆ ℘(Form) × Form |

�L satisfies (A),(∧I),(∧E),(Exp),(Mon),(Cut),(¬Iw),(Ctr)
}

�IL =
⋂ {

�L ⊆ ℘(Form) × Form |

�L satisfies (A),(∧I),(∧E),(Exp),(Mon),(Cut),(¬I)
}

�OL =
⋂ {

�L ⊆ ℘(Form) × Form |

�L satisfies (A),(∧I),(∧E),(Exp),(Mon),(Cut),(¬Iw),(Ctr),(¬2I),(¬2E)
}

Lemma 2

1. �PL satisfies (A), (∧I), (∧E), (Exp), (Mon), (Cut), (¬Iw) and (Ctr).
2. �IL satisfies (A), (∧I), (∧E), (Exp), (Mon), (Cut) and (¬I).
3. �OL satisfies (A), (∧I), (∧E), (Exp), (Mon), (Cut), (¬Iw), (Ctr), (¬2I) and

(¬2E).

A General Relational Semantics of Propositional Logic: Axiomatization 87

Proof. The proof is an easy verification, because each syntactic property under
consideration is expressed by a universal statement. 	

Next we prove three important lemmas of syntactic consequence relations.

Lemma 3 (Extension Lemma). Let �L ⊆ ℘(Form) × Form satisfies (A),
(Exp), (Mon), (Cut) and (Com). For any Γ ⊆ Form and θ ∈ Form, if Γ ��L θ,
there is a Δ⊆Form such that Δ is L-closed and L-consistent, Γ ⊆Δ and θ �∈ Δ.

Proof. Enumerate Form without repetition as (ϕi : i ∈ N).
Define a sequence of sets of formulas (Γi : i ∈ N) recursively as follows:

Γ0 = Γ

Γi+1 =
{

Γi ∪ {ϕi}, if Γi ∪ {ϕi} ��L θ
Γi, otherwise

By induction it can be shown that (a) Γi ⊆ Γj , for any i, j ∈ N satisfying i ≤ j
and (b) Γi ��L θ, for each i ∈ N.

Let Δ =
⋃

i∈N
Γi. Obviously Γ = Γ0 ⊆ ⋃

i∈N
Γi = Δ.

Note that Δ ��L θ: Otherwise, by (Com) there is a finite subset Δ′ ⊆ Δ such
that Δ′ �L θ; since Δ′ is finite, there is an n ∈ N such that Δ′ ⊆ Γn, so by
(Mon) Γn �L θ, contradicting that Γn ��L θ.

Then it follows from (A) that θ �∈ Δ and by (Exp) Δ is L-consistent.
Note that Δ is L-closed: Assume that Δ �L ϕ. Then there is an n ∈ N such

that ϕn = ϕ. Hence Γn ∪ {ϕn} ��L θ; otherwise, by the assumption and (Cut)
Γn ∪ Δ �L θ, i.e. Δ �L θ, contradicting what has just been proved. Therefore,
ϕ ∈ Γn ∪ {ϕn} = Γn+1 ⊆ ⋃

i∈N
Γi = Δ. 	

Lemma 4 (Conjunction Lemma). Let �L ⊆ ℘(Form) × Form satisfies (A),
(∧I) and (∧E). For any L-closed and L-consistent Γ ⊆ Form and ϕ,ψ ∈ Form,
ϕ ∧ ψ ∈ Γ , if and only if ϕ ∈ Γ and ψ ∈ Γ .

Proof. For the ‘only if’ part, by (A) Γ �L ϕ ∧ ψ. By (∧E) Γ �L ϕ and Γ �L ψ.
Since Γ is L-closed, ϕ ∈ Γ and ψ ∈ Γ .

For the ‘if’ part, by (A) Γ �L ϕ and Γ �L ψ. By (∧I) Γ �L ϕ ∧ ψ. Since Γ
is L-closed, ϕ ∧ ψ ∈ Γ . 	

Lemma 5 (Negation Lemma). Let �L ⊆ ℘(Form)×Form satisfies (A), (¬Iw),
(Ctr), (Mon), (Cut) and (Com). For any L-closed and L-consistent Γ ⊆ Form
and ϕ ∈ Form, the following are equivalent:

(i) ¬ϕ �∈ Γ ;
(ii) there is a Δ ⊆ Form such that Δ is L-closed and L-consistent, ϕ ∈ Δ and

there is no formula θ such that ¬θ ∈ Γ and θ ∈ Δ.

Proof. For the direction from (ii) to (i), since ϕ ∈ Δ, ¬ϕ �∈ Γ .
For the direction from (i) to (ii), following the idea in the proof of Theorem

1.4 in [6], we let Δ = {ψ ∈ Form | ϕ �L ψ}.

88 S. Zhong

1. Show that ϕ ∈ Δ.
By (A) ϕ �L ϕ, so ϕ ∈ Δ.

2. Show that there is no formula θ such that ¬θ ∈ Γ and θ ∈ Δ.
Suppose (towards a contradiction) that there is a formula θ such that ¬θ ∈ Γ
and θ ∈ Δ. Then ϕ �L θ. By (Ctr) ¬θ �L ¬ϕ. Since ¬θ ∈ Γ , by (Mon)
Γ �L ¬ϕ. Since Γ is L-closed, ¬ϕ ∈ Γ , contradicting (i).

3. Show that Δ is L-closed.
Assume that Δ �L ψ. By (Com) there is a finite set Δ′ ⊆ Δ such that
Δ′ �L ψ. By the definition of Δ, for each δ ∈ Δ′, ϕ �L δ. By (Cut) ϕ �L ψ,
so ψ ∈ Δ.

4. Show that Δ is L-consistent.
Suppose (towards a contradiction) that there is a formula ψ such that Δ �L ψ
and Δ �L ¬ψ. By Item 3 ψ ∈ Δ and ¬ψ ∈ Δ. By definition ϕ �L ψ and
ϕ �L ¬ψ. By (¬Iw) �L ¬ϕ. By (Mon) Γ �L ¬ϕ. Since Γ is L-closed, ¬ϕ ∈ Γ ,
contradicting (i). 	

We end this subsection by proving the compactness of PL.

Theorem 1 (Compactness Theorem of PL). �PL satisfies (Com).

Proof. Let

� = {(Γ, ϕ) ∈ ℘(Form) × Form | there is a finite Γ ′ ⊆ Γ such that Γ ′ �PL ϕ}
It suffices to show that � satisfies (A), (∧I), (∧E), (Exp), (Mon), (Cut), (¬Iw)
and (Ctr). After this is done, by definition �PL ⊆ �, so �PL satisfies (Com).

(A) Since {ϕ} is a finite subset of Γ ∪ {ϕ} and ϕ �PL ϕ by (A), Γ ∪ {ϕ} � ϕ.
(∧I) Assume that Γ � ϕ and Γ � ψ. By definition there is a finite set Γ ′ ⊆ Γ

and a finite set Γ ′′ ⊆ Γ such that Γ ′ �PL ϕ and Γ ′′ �PL ψ. By (Mon)
Γ ′ ∪ Γ ′′ �PL ϕ and Γ ′ ∪ Γ ′′ �PL ψ. By (∧I) Γ ′ ∪ Γ ′′ �PL ϕ ∧ ψ. Since
Γ ′ ∪ Γ ′′ is a finite subset of Γ , Γ � ϕ ∧ ψ.

(∧E) Assume that Γ � ϕ ∧ ψ. By definition there is a finite set Γ ′ ⊆ Γ such
that Γ ′ �PL ϕ ∧ ψ. By (∧E) Γ ′ �PL ϕ and Γ ′ �PL ψ. Hence Γ � ϕ and
Γ � ψ.

(Exp) Assume that Γ � ϕ and Γ � ¬ϕ. By definition there is a finite set Γ ′ ⊆ Γ
and a finite set Γ ′′ ⊆ Γ such that Γ ′ �PL ϕ and Γ ′′ �PL ¬ϕ. By (Mon)
Γ ′ ∪ Γ ′′ �PL ϕ and Γ ′ ∪ Γ ′′ �PL ¬ϕ. By (Exp) Γ ′ ∪ Γ ′′ �PL ψ. Since
Γ ′ ∪ Γ ′′ is a finite subset of Γ , Γ � ψ.

(Mon) Assume that Γ ⊆ Δ and Γ � ϕ. By definition there is a finite Γ ′ ⊆ Γ
such that Γ ′ �PL ϕ. By the assumption Γ ′ is a finite subset of Δ. Hence
Δ � ϕ.

(Cut) Assume that Γ ∪ {ψ} � ϕ and Δ � ψ. By (Mon) and definition there
are two finite sets Γ ′ ⊆ Γ and Δ′ ⊆ Δ such that Γ ′ ∪ {ψ} �PL ϕ and
Δ′ �PL ψ. By (Cut) Γ ′ ∪ Δ′ �PL ϕ. Since Γ ′ ∪ Δ′ is a finite subset of
Γ ∪ Δ, Γ ∪ Δ � ϕ.

(¬Iw) Assume that ϕ � ψ and ϕ � ¬ψ. By (Mon) ϕ �PL ψ and ϕ �PL ¬ψ. By
(¬Iw) �PL ¬ϕ. Since ∅ is finite, � ¬ϕ.

A General Relational Semantics of Propositional Logic: Axiomatization 89

(Ctr) Assume that ϕ � ψ. By definition either ϕ �PL ψ or �PL ψ. In both cases
by (Mon) ϕ �PL ψ. By (Ctr) ¬ψ �PL ¬ϕ. Since {¬ψ} is finite, ¬ψ � ¬ϕ.

	

Remark 4. By Theorem 1 the conclusions of Lemmas 3, 4 and 5 apply to �PL.

2.4 Soundness and Completeness

We start from proving the soundness theorem.

Theorem 2 (Soundness Theorem of PL). For any Γ ⊆ Form and ϕ ∈ Form,
Γ �PL ϕ implies that Γ |= ϕ.

Proof. Similar to the proof of Theorem 1, it suffices to show that |= satisfies
(A), (∧I), (∧E), (Exp), (Mon), (Cut), (¬Iw) and (Ctr), from which �PL ⊆ |=
follows.

(A) Let M = (W,→, V) be a model and s ∈ W . Assume that M, s |= Γ ∪{ϕ}.
Then M, s |= ϕ.

(∧I) Assume that Γ |= ϕ and Γ |= ψ. Let M = (W,→, V) be a model and
s ∈ W . Suppose that M, s |= Γ . By the assumption M, s |= ϕ and
M, s |= ψ. Hence M, s |= ϕ ∧ ψ.

(∧E) Assume that Γ |= ϕ ∧ ψ. Let M = (W,→, V) be a model and s ∈ W .
Suppose that M, s |= Γ . By the assumption M, s |= ϕ∧ψ. Then M, s |=
ϕ and M, s |= ψ.

(Exp) Assume that Γ |= ϕ and Γ |= ¬ϕ. Let M = (W,→, V) be a model
and s ∈ W . Note that M, s �|= Γ : Suppose (towards a contradiction)
that M, s |= Γ . By the assumption M, s |= ϕ and M, s |= ¬ϕ. Since
M, s |= ¬ϕ and s → s by Reflexivity, M, s �|= ϕ, contradicting that
M, s |= ϕ. Therefore, Γ |= ψ.

(Mon) Assume that Γ |= ϕ and Γ ⊆ Δ. Let M = (W,→, V) be a model and
s ∈ W . Suppose that M, s |= Δ. By the assumption M, s |= Γ and thus
M, s |= ϕ.

(Cut) Assume that Γ ∪ {ψ} |= ϕ and Δ |= ψ. Let M = (W,→, V) be a
model and s ∈ W . Suppose that M, s |= Γ ∪ Δ. By the assumption
M, s |= Γ ∪ {ψ}, so M, s |= ϕ.

(¬Iw) Assume that ϕ |= ψ and ϕ |= ¬ψ. Let M = (W,→, V) be a model and
s ∈ W . Suppose (towards a contradiction) that M, s �|= ¬ϕ. Then there
is a t ∈ W such that s → t and M, t |= ϕ. By the assumption M, t |= ψ
and M, t |= ¬ψ. Since M, t |= ¬ψ and t → t by Reflexivity, M, t �|= ψ,
contradicting that M, t |= ψ. Hence M, s |= ¬ϕ.

(Ctr) Assume that ϕ |= ψ. Let M = (W,→, V) be a model and s ∈ W . Suppose
that M, s |= ¬ψ. Then, for each t ∈ W , if s → t, then M, t �|= ψ, so
M, t �|= ϕ by the assumption. Hence M, s |= ¬ϕ. 	

For the completeness theorem, we need the notion of the canonical model.
Our definition follows Definition 3.3 in [6] and the definition on Page 160 in [5].

90 S. Zhong

Definition 8. FPL = (WPL,→PL) is called the canonical frame of PL, where

– WPL = {Γ ⊆ Form | Γ is PL-consistent and PL-closed} ;
– Γ →PL Δ, if there is no θ ∈ Form such that ¬θ ∈ Γ and θ ∈ Δ.

The canonical model of PL is an ordered pair MPL = (FPL, V PL) such
that FPL is the canonical frame of PL and V PL : PV → ℘(WPL) is a function
satisfying, for each p ∈ PV, V PL(p) = {Γ ∈ WPL | p ∈ Γ}.
Lemma 6 (Canonical Model Lemma).

1. →PL satisfies Reflexivity.
2. For any Γ ∈ WPL and ϕ ∈ Form, MPL, Γ |= ϕ if and only if ϕ ∈ Γ .

Proof. For Item 1, suppose (towards a contradiction) that Γ �→PL Γ for some
Γ ∈ WPL. By definition there is a θ ∈ Form such that ¬θ ∈ Γ and θ ∈ Γ . By
(A) Γ �PL ¬θ and Γ �PL θ, contradicting that Γ is PL-consistent.

For Item 2, use induction on the structure of formula.
In the base step, ϕ is a p ∈ PV. By definition MPL, Γ |= p ⇔ p ∈ Γ .
In the induction step, consider two cases. In the first case, ϕ is ψ ∧ θ.

MPL, Γ |= ψ ∧ θ

⇔ MPL, Γ |= ψ and MPL, Γ |= θ

⇔ ψ ∈ Γ and θ ∈ Γ (by IH)
⇔ ψ ∧ θ ∈ Γ (by Lemma 4)

In the second case, ϕ is ¬ψ.

MPL, Γ |= ¬ψ

⇔ for each Δ ∈ WPL, if Γ →PL Δ, then MPL,Δ �|= ψ

⇔ for each Δ ∈ WPL, if Γ →PL Δ, then ψ �∈ Δ (by IH)
⇔ ¬ψ ∈ Γ (by Lemma 5)

	

It is not obvious that the canonical model is a model in the sense of Definition

3. We can find a Γ ∈ WPL and a p ∈ PV such that p �∈ Γ and thus Γ �∈ V PL(p).
For MPL to be a model, there must be a Δ ∈ WPL such that Γ →PL Δ and,
for each Θ ∈ WPL, Θ →PL Δ implies that Θ �∈ V PL(p). There is little cue
on what is this Δ. Our way of solving this problem is to add a ‘twin sister’ Γ ′

of Γ such that (a) only Γ and Γ ′ access to Γ ′ via the binary relation and (b)
the set of formulas true at Γ ′ is the same as that at Γ . In this case, there are
only two elements accessing to Γ ′, namely Γ and Γ ′, both of which are not in
V PL(p); and thus Γ ′ has the required property. The tricky point is that the set
of formulas true at Γ ′ must be the same as that at Γ . The idea is to let Γ ′ ‘see
the same panorama’ as Γ . To achieve this in a way that takes care of all points
in a model, a well-known technique in modal logic called ‘unravelling’ is at our

A General Relational Semantics of Propositional Logic: Axiomatization 91

disposal (Proposition 2.15 in [3]). Finally, the model obtained by unravelling in
[3] does not satisfy Reflexivity. This can be solved by taking the reflexive closure
of the binary relation, and it does not affect truth in the model because →PL

satisfies Reflexivity. The above consideration leads to the following definition:

Definition 9. Let Γ ∈ WPL. The Γ -model is MΓ = (WΓ ,→Γ , V Γ), where:

1. WΓ = {(Θ0, . . . , Θn) | n ∈ N, Θ0, . . . , Θn ∈ WPL satisfy that Θ0 = Γ and
Θi →PL Θi+1 for each i = 0, . . . , n − 1}.

2. (Θ0, . . . , Θm) →Γ (Θ′
0, . . . , Θ

′
n), if and only if one of the following is true:

(a) (Θ0, . . . , Θm) = (Θ′
0, . . . , Θ

′
n);

(b) (Θ0, . . . , Θm) = (Θ′
0, . . . , Θ

′
n−1) (in this case m + 1 = n).

3. For each p ∈ PV, V Γ (p) = {(Θ0, . . . , Θn) ∈ WΓ | MPL, Θn |= p}.
Lemma 7 (Γ -Model Lemma) Let Γ ∈ WPL.

1. →Γ satisfies Reflexivity;
2. for each p ∈ PV, V Γ (p) is closed.
3. MΓ is a model.

Proof. Item 1 follows from Condition (a) in the definition of →Γ .
For Item 2, assume that (Θ0, . . . , Θn−1, Θn) �∈ V Γ (p). By definition

MPL, Θn �|= p. Consider (Θ0, . . . , Θn−1, Θn, Θn).

1. We show that (Θ0, . . . , Θn−1, Θn, Θn) ∈ WΓ .
By the Canonical Model Lemma Θn →PL Θn. Since (Θ0, . . . , Θn−1, Θn) ∈
WΓ , (Θ0, . . . , Θn−1, Θn, Θn) ∈ WΓ .

2. We show that, for each (Θ′
0, . . . , Θ

′
m) ∈ WΓ , (Θ′

0, . . . , Θ
′
m) �∈ V Γ (p), if

(Θ′
0, . . . , Θ

′
m) →Γ (Θ0, . . . , Θn−1, Θn, Θn).

Assume that (Θ′
0, . . . , Θ

′
m) →Γ (Θ0, . . . , Θn−1, Θn, Θn).

By definition consider 2 cases.
In the first case, (Θ′

0, . . . , Θ
′
m) = (Θ0, . . . , Θn−1, Θn, Θn). Then Θ′

m = Θn.
Since MPL, Θn �|= p, MPL, Θ′

m �|= p, so by definition (Θ′
0, . . . , Θ

′
m) �∈ V Γ (p).

In the second case, (Θ′
0, . . . , Θ

′
m) = (Θ0, . . . , Θn−1, Θn). By the assumption

at the very beginning (Θ′
0, . . . , Θ

′
m) = (Θ0, . . . , Θn−1, Θn) �∈ V Γ (p).

Therefore, V Γ (p) is closed.
Item 3 follows from Items 1 and 2 directly. 	

Lemma 8 (Γ -Model Truth Lemma). Let Γ ∈ WPL. For any ϕ ∈ Form and
(Θ0, . . . , Θn) ∈ WΓ , MΓ , (Θ0, . . . , Θn) |= ϕ if and only if MPL, Θn |= ϕ.

Proof. Use induction on the structure of formula.
In the base step, ϕ is a p ∈ PV. MΓ , (Θ0, . . . , Θn) |= p ⇔ (Θ0, . . . , Θn) ∈

V Γ (p) ⇔ MPL, Θn |= p.
In the induction step, consider two cases.

92 S. Zhong

In the first case, ϕ is ψ ∧ θ.

MΓ , (Θ0, . . . , Θn) |= ψ ∧ θ

⇔ MΓ , (Θ0, . . . , Θn) |= ψ and MΓ , (Θ0, . . . , Θn) |= θ

⇔ MPL, Θn |= ψ and MPL, Θn |= θ (by IH)

⇔ MPL, Θn |= ψ ∧ θ

In the second case, ϕ is ¬ψ.
First assume that MΓ , (Θ0, . . . , Θn) �|= ¬ψ. There is a (Θ′

0, . . . , Θ
′
m) ∈ WΓ

such that (Θ0, . . . , Θn) →Γ (Θ′
0, . . . , Θ

′
m) and MΓ , (Θ′

0, . . . , Θ
′
m) |= ψ. By def-

inition in both cases Θn →PL Θ′
m. By IH MPL, Θ′

m |= ψ. Hence MPL, Θn �|=
¬ψ.

Second assume that MPL, Θn �|= ¬ψ. There is a Δ ∈ WPL such that
Θn →PL Δ and MPL,Δ |= ψ. Consider (Θ0, . . . , Θn,Δ). Since (Θ0, . . . , Θn) ∈
WΓ and Θn →PL Δ, (Θ0, . . . , Θn,Δ) ∈ WΓ and (Θ0, . . . , Θn) →Γ

(Θ0, . . . , Θn,Δ). Since MPL,Δ |= ψ, by IH MΓ , (Θ0, . . . , Θn,Δ) |= ψ. Hence
MΓ , (Θ0, . . . , Θn) �|= ¬ψ.

	

Theorem 3 (Completeness Theorem of PL). For any Γ ⊆ Form and ϕ ∈
Form, Γ |= ϕ implies that Γ �PL ϕ.

Proof. Assume that Γ ��PL ϕ. By Lemma 3 there is a Δ ∈ WPL such that
Γ ⊆ Δ and ϕ �∈ Δ. By Lemma 6 MPL,Δ |= Γ and MPL,Δ �|= ϕ. By Lemma
8 MΔ, (Δ) |= Γ and MΔ, (Δ) �|= ϕ, where (Δ) is a sequence of length 1. Since
MΔ is a model, Γ �|= ϕ. 	

3 Extensions of PL

In this section we briefly discuss how the {¬,∧}-fragment of intuitionistic logic
and ortho-logic can be considered as extensions of our logic, which is the obser-
vation in [5]. Here we add nothing new but just flesh out this observation by
proving some claims without proofs in [5].

3.1 Intuitionistic Logic

Definition 10. An I-frame is a frame F = (W,→) such that → satisfies Tran-
sitivity, i.e., for any s, t, u ∈ W , s → t and t → u imply that s → u.6

Lemma 9. In an I-frame F = (W,→), for each X ∈ ℘(W), the following are
equivalent:

(i) X is persistent, i.e., for any s, t ∈ W , if s ∈ X and s → t, then t ∈ X;
(ii) X ∈ P(F).

6 Note that, due to the definition of a frame (Definition 2), the relation in an I-frame
satisfies both Reflexivity and Transitivity.

A General Relational Semantics of Propositional Logic: Axiomatization 93

Proof. For the direction from (i) to (ii), let s be arbitrary. Assume that, for each
t ∈ W , if s → t, then there is a u ∈ X such that u → t. By Reflexivity s → s.
Hence there is a u such that u ∈ X and u → s. By (i) s ∈ X.

For the direction from (ii) to (i), let s and t be arbitrary such that s ∈ X
and s → t. By (ii) there is a u such that u ∈ X and u → t.

Let v be arbitrary such that t → v. Since u → t and t → v, by Transitivity
u → v. So u ∈ X is such that u → v.

By the arbitrariness of v and (ii) t ∈ X. 	

Definition 11. An I-model is an ordered pair M = (F, V), where F is an I-
frame and V is a function from PV to P(F).

For any Γ ⊆ Form and ϕ ∈ Form, ϕ is an I-semantic consequence of Γ ,
denoted by Γ |=I ϕ, if, for any I-model M = (W,→, V) and s ∈ W , M, s |= Γ
implies that M, s |= ϕ.

Remark 5. According to Lemma 9, the definition of an I-model is the same
as the usual definition of a model in the relational semantics of propositional
intuitionistic logic. (Please refer to Page 25 in [4]. There the binary relation is
required to be anti-symmetric in addition, but in fact this does not affect the
logic.) Lemma 9 is claimed without proof on pages 139–140 in [5].

Since every I-frame is a frame by definition, |= ⊆ |=I , and thus the {¬,∧}-
fragment of intuitionistic logic is an extension of our logic.

3.2 Ortho-Logic

Definition 12. An O-frame is a frame F = (W,→) such that → satisfies Sym-
metry, i.e., for any s, t ∈ W , s → t implies t → s.7

Lemma 10. In an O-frame F = (W,→), for each X ∈ ℘(W), the following are
equivalent:

(i) X is bi-orthogonally closed, i.e. −(−X) = X;
(ii) X ∈ P(F).

Proof.

X ∈ P(F)
⇔for each s ∈ W, s ∈ X, if and only if, for each t, s → t implies that

there is a u such that u ∈ X and u → t

⇔for each s ∈ W, s ∈ X, if and only if, for each t, s → t implies that
there is a u such that u ∈ X and t → u (by Symmetry)

⇔for each s ∈ W, s ∈ X, if and only if, for each t, s → t implies that t �∈ −X

⇔for each s ∈ W, s ∈ X, if and only if s ∈ −(−X)
⇔ − (−X) = X

	

7 Note that, due to the definition of a frame (Definition 2), the relation in an O-frame

satisfies both Reflexivity and Symmetry.

94 S. Zhong

Definition 13. An O-model is an ordered pair M = (F, V), where F is an
O-frame and V is a function from PV to P(F).

For any Γ ⊆ Form and ϕ ∈ Form, ϕ is an O-semantic consequence of Γ ,
denoted by Γ |=O ϕ, if, for any O-model M = (W,→, V) and s ∈ W , M, s |= Γ
implies that M, s |= ϕ.

Remark 6. According to Lemma 10, the definition of an O-model is the same
as the usual definition of a model in the relational semantics of ortho-logic [6],
despite the fact that in the literature usually ⊥ def= (W ×W)\→ is the primitive
binary relation. Lemma 10 is claimed without proof on page 140 in [5].

Since every O-frame is a frame by definition, |= ⊆ |=O, and thus ortho-logic
is an extension of our logic.

4 Future Work

The axiomatization result in this paper is only a part of a systematic study of
this general relational semantics of propositional logic, and much more could
and should be done.

First, it is interesting to pinpoint the expressive power of this relational
semantics in describing Kripke frames by a van Benthem Characterization The-
orem. We defer this study to an extension of this paper.

Second, we see that the present theory of this relational semantics is not
as modular as that of the relational semantics of modal logic. Remember that
the logics IL and OL are related to the modal logics S4 and KTB via the
Tarski-Mckinsey translation and Goldblatt’s translation, respectively, and there
is a unified theory of relational semantics for S4 and KTB and many other
modal logics. However, it is not the present situation for IL, OL and PL. For
an example, according to Lemma 11 in the appendix, in defining IL, (¬Iw)
and (Ctr) are no longer needed when (¬I) is present. For another example, in
the completeness proofs in the appendices we see that the model for IL and
that for OL are different and both are different from that for PL, although
they are related. It is interesting to see whether there is a logical theory of this
relational semantics, which is as modular as the theory of relational semantics of
modal logic. Conceptually, this will lead to interesting interplay between syntax
and semantics. Technically, this may involve works on proof theory to find the
appropriate formal system and improvement on the current completeness proofs.

Acknowledgements. I’m very grateful to Prof. Roberto Giuntini for a helpful dis-
cussion about the observation in [5]. Sections 2.1 to 2.3 were presented and discussed
at Workshop on Modal Logic 2018 held in Hangzhou, and I thank the participants
very much for their suggestions. The last but not least, I’m very grateful to the three
reviewers of this paper for their helpful comments.

A General Relational Semantics of Propositional Logic: Axiomatization 95

A Intuitionistic Logic

In this appendix, we apply our techniques to prove the soundness and complete-
ness theorem for IL, which is the {¬,∧}-fragment of intuitionistic logic.

We start with a remark about the semantics.

Remark 7. Since every I-model is a model, by Lemmas 1 and 9 in an I-model
‖ϕ‖ is persistent for each ϕ ∈ Form.

Second, we prove some results about the syntactic consequence relation �IL.

Lemma 11. �IL satisfies (¬Iw) and (Ctr), and thus �PL ⊆ �IL

Proof. (¬Iw) is a special case of (¬I) when Γ = ∅.
For (Ctr), assume that ϕ �IL ψ. By (Mon) {ϕ,¬ψ} �IL ψ. By (A)

{ϕ,¬ψ} �IL ¬ψ. By (¬I) ¬ψ �IL ¬ϕ. 	

Theorem 4 (Compactness Theorem of IL). �IL satisfies (Com).

Proof. Let

� = {(Γ, ϕ) ∈ ℘(Form) × Form | there is a finite Γ ′ ⊆ Γ such that Γ ′ �IL ϕ}

Similar to the proof of Theorem 1, it suffices to show that � satisfies (A), (∧I),
(∧E), (Exp), (Mon), (Cut) and (¬I). The proofs for the first 6 properties are the
same as that in Theorem 1. Here we only need to deal with (¬I).

Assume that Γ ∪ {ϕ} � ψ and Γ ∪ {ϕ} � ¬ψ. By definition and (Mon)
there are two finite subsets Γ ′ and Γ ′′ of Γ such that Γ ′ ∪ {ϕ} �IL ψ and
Γ ′′ ∪ {ϕ} �IL ¬ψ. By (Mon) Γ ′ ∪ Γ ′′ ∪ {ϕ} �IL ψ and Γ ′ ∪ Γ ′′ ∪ {ϕ} �IL ¬ψ.
By (¬I) Γ ′ ∪ Γ ′′ �IL ¬ϕ. Since Γ ′ ∪ Γ ′′ is a finite subset of Γ , Γ � ¬ϕ. 	

Remark 8. By Lemma 11 and Theorem 4 the conclusions of Lemmas 3 and 4
apply to �IL.

Lemma 12 (Negation Lemma of IL). Let Γ ⊆ Form be IL-closed and IL-
consistent and ϕ ∈ Form. The following are equivalent:

(i) ¬ϕ �∈ Γ ;
(ii) there is an IL-closed and IL-consistent Δ ⊆ Form such that Γ ∪ {ϕ} ⊆ Δ.

Proof. For the direction from (ii) to (i), suppose (towards a contradiction) that
¬ϕ ∈ Γ . Since Γ ⊆ Δ, ¬ϕ ∈ Δ. By (A) Δ �IL ϕ and Δ �IL ¬ϕ, contradicting
that Δ is IL-consistent.

For the direction from (i) to (ii), note that Γ ∪{ϕ} ��IL ¬ϕ: Suppose (towards
a contradiction) that Γ ∪{ϕ} �IL ¬ϕ. By (A) Γ ∪{ϕ} �IL ϕ. By (¬I) Γ �IL ¬ϕ.
Since Γ is IL-closed, ¬ϕ ∈ Γ , contradicting (i).

By Lemma 3 there is a Δ ⊆ Form such that Δ is IL-closed and IL-consistent
and Γ ∪ {ϕ} ⊆ Δ. 	

96 S. Zhong

Third, we prove the soundness theorem.

Theorem 5 (Soundness Theorem of IL). For any Γ ⊆ Form and ϕ ∈ Form,
Γ �IL ϕ implies that Γ |=I ϕ.

Proof. It suffices to show that |= satisfies (A), (∧I), (∧E), (Exp), (Mon), (Cut)
and (¬I). Since every I-model is a model, the proofs for the first 6 properties are
the same as in Theorem 2. Here we only need to show (¬I).

Assume that Γ ∪ {ϕ} |= ψ and Γ ∪ {ϕ} |= ¬ψ. Let M = (W,→, V) be an
I-model and s ∈ W such that M, s |= Γ . Suppose (towards a contradiction) that
M, s �|= ¬ϕ. Then there is a t ∈ W such that s → t and M, t |= ϕ. Since s → t
and M, s |= Γ , by Remark 7 M, t |= Γ , so M, t |= Γ ∪{ϕ}. By the assumption
M, t |= ψ and M, t |= ¬ψ. By Reflexivity t → t, so M, t �|= ψ, contradicting
M, t |= ψ. Therefore, M, s |= ¬ϕ. 	

Finally, we define the canonical frame of IL, which is standard in the litera-
ture (Pages 132–133 in [4]), and prove the completeness theorem.

Definition 14. FIL = (W IL,→IL) is the canonical frame of IL, where:

– W IL = {Γ ⊆ Form | Γ is IL-consistent and IL-closed};
– →IL = {(Γ,Δ) ∈ W IL × W IL | Γ ⊆ Δ}.

The canonical model of IL is an ordered pair MIL = (FIL, V IL) such that
FIL is the canonical frame of IL and V IL : PV → ℘(W IL) is a function such
that, for each p ∈ PV, V IL(p) = {Γ ∈ W IL | p ∈ Γ}.
Lemma 13 (Canonical Model Lemma of IL).

1. →IL satisfies Reflexivity and Transitivity.
2. MIL is an I-model.
3. For any Γ ∈ W IL and ϕ ∈ Form, MIL, Γ |= ϕ if and only if ϕ ∈ Γ .

Proof. For Item 1, →IL = ⊆ satisfies Reflexivity and Transitivity.
For Item 2, for any p ∈ PV and Γ,Δ ∈ W IL such that Γ ⊆ Δ and Γ ∈ V IL(p),

p ∈ Γ , so p ∈ Δ, i.e. Δ ∈ V IL(p).
For Item 3, the proof is the same as that of Item 2 in Lemma 6, besides that

here we use Lemma 12 instead of Lemma 5. 	

Theorem 6 (Completeness Theorem of IL). For any Γ ⊆ Form and ϕ ∈
Form, Γ |=I ϕ implies that Γ �IL ϕ.

Proof. Assume that Γ ��IL ϕ. By Lemma 3 there is a Δ ∈ W IL such that Γ ⊆ Δ
and ϕ �∈ Δ. By Lemma 13 MIL,Δ |= Γ and MIL,Δ �|= ϕ. Since MIL is an
I-model, Γ �|=I ϕ. 	

A General Relational Semantics of Propositional Logic: Axiomatization 97

B Ortho-logic

In this appendix, we apply the techniques developed before to prove the sound-
ness and completeness theorem for ortho-logic OL.

Our axiomatization of ortho-logic is essentially the same as that on Pages
158–159 in [5], and the results in this appendix are all in [5] (with or without
proofs). Here we give detailed proofs using the results in this paper.

We start with a remark about the semantics.

Remark 9. Since every O-model is a model, by Lemmas 1 and 10 in an O-model
‖ϕ‖ is bi-orthogonally closed for each ϕ ∈ Form.

Second, we prove some results about the syntactic consequence relation �OL.

Remark 10. By definition �PL ⊆ �OL.

Theorem 7 (Compactness Theorem of OL). �OL satisfies (Com).

Proof. Let

� = {(Γ, ϕ) ∈ ℘(Form) × Form | there is a finite Γ ′ ⊆ Γ such that Γ ′ �OL ϕ}

Similar to the proof of Theorem 1, it suffices to show that � satisfies (A), (∧I),
(∧E), (Exp), (Mon), (Cut), (¬Iw), (Ctr), (¬2I) and (¬2E). The proofs for the
first 8 properties are the same as that in Theorem 1. Here we only need to deal
with (¬2I) and (¬2E).

By (¬2I) {ϕ} �OL ¬¬ϕ. Since {ϕ} is finite, Γ ∪{ϕ} � ¬¬ϕ. Similarly we can
show that Γ ∪ {¬¬ϕ} � ϕ. 	

Remark 11. By Theorem 7 the conclusions of Lemmas 3, 4 and 5 apply to �OL.

Third, we prove the soundness theorem.

Theorem 8 (Soundness Theorem of OL). For any Γ ⊆ Form and ϕ ∈ Form,
Γ �OL ϕ implies that Γ |=O ϕ.

Proof. Similar to the proof of Theorem 2, it suffices to show that |= satisfies (A),
(∧I), (∧E), (Exp), (Mon), (Cut), (¬Iw), (Ctr), (¬2I) and (¬2E). Since every O-
model is a model, the proofs for the first 8 properties are the same as in Theorem
2. Here we only need to show (¬2I) and (¬2E).

Let M = (W,→, V) be an O-model and s ∈ W such that M, s |= Γ ∪ {ϕ}.
Then s ∈ ‖ϕ‖. By Remark 9 s ∈ −(−‖ϕ‖). By Remark 3 −(−‖ϕ‖) = ‖¬¬ϕ‖.
Hence s ∈ ‖¬¬ϕ‖, i.e. M, s |= ¬¬ϕ. Therefore, Γ ∪ {ϕ} |=O ¬¬ϕ.

Similarly we can show that Γ ∪ {¬¬ϕ} |=O ϕ. 	

Next, we define the canonical model of OL in exactly the same way as that

of PL and thus as that in the literature [5,6]. We will see that the canonical
model of OL is an O-model.

98 S. Zhong

Definition 15. FOL = (WOL,→OL) is the canonical frame of OL, where:

– WOL = {Γ ⊆ Form | Γ is OL-consistent and OL-closed};
– →OL = {(Γ,Δ) ∈ WOL × WOL | there is no θ ∈ Form such that ¬θ ∈

Γ and θ ∈ Δ}.
The canonical model of OL is an ordered pair MOL = (FOL, V OL) such that

FOL is the canonical frame of OL and V OL : PV → ℘(WOL) is a function such
that, for each p ∈ PV, V OL(p) = {Γ ∈ WOL | p ∈ Γ}.
Lemma 14 (Canonical Model Lemma of OL)

1. →OL satisfies Reflexivity and Symmetry.
2. MOL is an O-model.
3. For any Γ ∈ WOL and ϕ ∈ Form, MOL, Γ |= ϕ if and only if ϕ ∈ Γ .

Proof. For Item 1, Reflexivity can be proved in exactly the same way as that of
→PL. For Symmetry, assume that Γ �→OL Δ. Then there is a θ ∈ Form such
that ¬θ ∈ Γ and θ ∈ Δ. By (¬2I) Δ ∪ {θ} �OL ¬¬θ, i.e. Δ �OL ¬¬θ. Since Δ is
OL-closed, ¬¬θ ∈ Δ. Then Δ �→OL Γ , for ¬¬θ ∈ Δ and ¬θ ∈ Γ .

For Item 2, first assume that Γ ∈ V OL(p). Then, for each Δ ∈ WOL satisfying
Γ →OL Δ, Δ →OL Γ by Symmetry and Γ ∈ V OL(p). Hence Γ ∈ −(−V OL(p)).

Second, assume that Γ �∈ V OL(p). By definition p �∈ Γ . Since Γ is OL-
closed, Γ ��OL p. Then Γ ��OL ¬¬p; otherwise, ¬¬p ∈ Γ and, since by (¬2E)
Γ ∪ {¬¬p} �OL p, Γ �OL p, contradicting that Γ ��OL p. By (A) ¬¬p �∈ Γ . By
Lemma 5 there is a Δ ∈ WOL such that Γ →OL Δ and ¬p ∈ Δ. Since ¬p ∈ Δ,
by definition for each Θ ∈ WOL, Δ →OL Θ implies that p �∈ Θ, i.e. Θ �∈ V OL(p).
Hence Δ ∈ −V OL(p). Since Γ →OL Δ, Γ �∈ −(−V OL(p)).

The proof of Item 3 is the same as that of Item 2 in Lemma 6. 	

Finally, we prove the completeness theorem.

Theorem 9 (Completeness Theorem of OL). For any Γ ⊆ Form and ϕ ∈
Form, Γ |=O ϕ implies that Γ �OL ϕ.

Proof. Assume that Γ ��OL ϕ. By Lemma 3 there is a Δ ∈ WOL such that
Γ ⊆ Δ and ϕ �∈ Δ. By Lemma 14 MOL,Δ |= Γ and MOL,Δ �|= ϕ. Since MOL

is an O-model, Γ �|=O ϕ. 	

References

1. Beth, E.: Semantic construction of intuitionistic logic. Koninklijke Nederlandse
Akad. von Wettenscappen 19(11), 357–388 (1956)

2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37,
823–843 (1936)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

4. Chagrov, A., Zakharyaschev, W.: Modal Logic. Clarendon Press, Oxford (1997)

A General Relational Semantics of Propositional Logic: Axiomatization 99

5. Dalla Chiara, M., Giuntini, R.: Quantum logics. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 6, pp. 129–228. Kluwer Academic Publishers
(2002)

6. Goldblatt, R.: Semantic analysis of orthologic. J. Philos. Log. 3, 19–35 (1974)
7. Heyting, A.: Intuitionism: An Introduction. North-Holland Publishing (1956)
8. Kripke, S.: Semantical analysis of intuitionistic logic. In: Crossley, J., Dummett, M.

(eds.) Formal Systems and Recursive Functions, pp. 92–130 (1965)

Meaning and Computing: Two
Approaches to Computable Propositions

Ivo Pezlar(B)

Czech Academy of Sciences, Institute of Philosophy, Jilska 1, 110 00 Prague, Czechia
pezlar@flu.cas.cz

Abstract. In this paper, we will be interested in the notion of a com-
putable proposition. It allows for feasible computational semantics of
empirical sentences, despite the fact that it is in general impossible to
get to the truth value of a sentence through a series of effective computa-
tional steps. Specifically, we will investigate two approaches to the notion
of a computable proposition based on constructive type theory and trans-
parent intensional logic. As we will see, the key difference between them
is their accounts of denotations of empirical sentences.

Keywords: Computable proposition · Sense–denotation distinction ·
Algorithmic theory of meaning · Procedural semantics · Constructive
type theory · Transparent intensional logic

1 Introduction

In this paper, we will be interested in the following issue:

– Can we make sense of empirical sentences in computational terms given that
it is generally impossible to get to the truth value of a sentence through a
sequence of effective computational steps?

The answer we will put forward is positive, but it requires adoption of the notion
of a computable proposition, i.e., a proposition that yields another proposition
upon execution, not a truth value. These computable propositions will be under-
stood as meanings of empirical sentences. We examine two possible approaches to
this notion, namely, an approach based on constructive type theory (CTT, [14])
and an approach based on transparent intensional logic (TIL, [30]), and we try
to clarify the relation between their respective notions of a computable propo-
sition. But first we will look more closely at the general relationship between
meaning and computing.

Work on this paper was supported by Grant Nr. 19-12420S from the Czech Science
Foundation, GA ČR.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 100–116, 2021.
https://doi.org/10.1007/978-3-030-88853-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_7&domain=pdf
http://orcid.org/0000-0003-1965-2159
https://doi.org/10.1007/978-3-030-88853-4_7

Meaning and Computing 101

Let us start by considering the following mathematical object:1 2 + 2. Using
a common sense notion of computation, we can compute it and get the number
4. In what kind of a relationship does the object 4 stand to the object 2+2? The
standard answer is that the relation between 2 + 2 and 4 can be understood in
terms of an evaluation procedure. The number 2 + 2 is a non-canonical form of
the canonical number 4 and the latter can be reduced to the former by following
appropriate reduction rules associated with the non-canonical operator + used
in constructing this non-canonical number. Thus, generally speaking, we can
view the non-canonical objects as programs and their corresponding canonical
objects as their values. For example, the program 2+2 terminates at the value 4.
Can we then conclude that the meaning of the object 2+2 is its canonical value,
i.e., the object 4 in this case? We can, but then we would also have to concede
that all other programs that terminate at the same value (e.g., 2 × 2, 5 − 1 or
16÷ 4, . . .) have the same meaning, but this would be a hard pill to swallow for
many. So what is the meaning of 2+2, if not its canonical value? Whatever it is,
it seems to be connected with the way we are computing its value, i.e., reducing
it as a non-canonical object to a canonical one, not with the value itself.

Behind every non-canonical object a there is an unspoken question: ‘Can a
be reduced to a canonical object’? Could we, perhaps, view this question as
roughly equivalent to the question: ‘Does a mean anything?’ In other words,
are the non-canonical objects meaningful only insofar as they are reducible to
their corresponding canonical forms?2 This, however, seems to be too strong of a
requirement. Generally, we seem to be understanding non-canonical objects just
fine even in cases where we do not know (or cannot know) their corresponding
canonical objects. Take, e.g., the following non-canonical object 16547 + 34. It
seems clear that we can understand it even if we do not know its value. If we
compute it, we learn something new (the canonical form of this object), but the
meaning of the original object seems to remain unchanged by this discovery – it
does not seem to imbue 16547 + 34 with more meaning than it had before the
computation.

Probably the easiest way to make sense of this situation is to accept some
form of Fregean meaning-denotation dichotomy: non-canonical objects are mean-
ings ‘in themselves’ and they do not need to lead to any denotations in order
to be intelligible for us. In other words, non-canonical objects do not become
meaningful insofar as they are computable to canonical ones, they stand on their
own, so to speak.

So far, we have talked about computation and meaning only in regards to
mathematical objects, but can we adopt an analogous approach to the empirical

1 For simplicity, we assume we are working directly with the mathematical objects,
thus ignoring the syntactic layer for the sake of the semantic one. For example,
consider the difference between a mathematical expression ‘2+2’ and a mathematical
object 2 + 2: while the former can be reduced to the numeral ‘4’, the latter can be
computed to the number 4.

2 As is the case in, e.g., the Dummett–Prawitz-style proof-theoretic semantics (see
[6,19]).

102 I. Pezlar

discourse as well? Consider, e.g., the proposition: Charles is a bachelor. In what
sense, if any, can we compute it? Clearly, we cannot compute it to its truth
value since there is no general method how to compute propositions to their
truth values. But maybe there is another way we can go about computing it,
and thus carrying over the non-canonical and canonical object distinction?

Let us start with a simple example from intuitionistic logic.3 A proposition
¬A is usually defined as A → ⊥ where ⊥ denotes absurdity. Note that the
meaning of the proposition ¬A is explained indirectly, since we have no proof
conditions for it, strictly speaking, only for A → ⊥. In other words, if we want
to inquire into the meaning of ¬A, first we have to transform it into A → ⊥.
Arguably, this definitional transformation can be regarded as a basic computa-
tional step itself. And if so, then we can view ¬A as a non-canonical proposition
that can be computed to its canonical form A → ⊥.

The same approach, we believe, can be applied to empirical propositions as
well. For example, the empirical proposition Charles is a bachelor can be viewed
as a non-canonical proposition, i.e., a proposition that has no direct truth con-
ditions. And if we want to inquire into its meaning, or rather its truth con-
ditions, we have to transform it to its canonical form. In this case, it might
be, for example: Charles is a man ∧ ¬(Charles is married). Thus, the empiri-
cal proposition Charles is a bachelor can be computed to Charles is a man ∧
¬(Charles is married). The proposition Charles is a bachelor can then be under-
stood as the meaning of the sentence ‘Charles is a bachelor’, while the proposition
Charles is a man ∧¬(Charles is married) as its denotation. So, in this approach,
canonical propositions are propositions that cannot be computed any further.4

From a historical perspective, the idea of entertaining computable propo-
sitions can be traced back to two different philosophical and logical sources:
a constructive (intuitionistic) tradition concerned with the language of mathe-
matics and logic that starts with [1] and a non-constructive (platonist) tradition
concerned with natural language that starts later with [28]. In the rest of the
paper, we examine two type-theoretic frameworks that – we believe – best rep-
resent these two traditions: Per Martin-Löf’s constructive type theory [14] and
Pavel Tichý’s transparent intensional logic [30]. Specifically, we will look at how
these systems approach the notion of a computable proposition, a task which
can be split into two further questions: ‘What is a proposition?’ and ‘What is
a computation?’5 In other words, our main aim will be to discuss the notion
of a computable proposition from the perspectives of CTT and TIL and to try

3 This example as well as the whole idea of computing propositions to canonical forms
not to truth values was proposed in [15], a paper presented at a workshop on Frege
at the University of Leiden in August 25, 2001, transcribed by Bjørn Jespersen.

4 Since we are mainly interested in the notion of a computable proposition, we inten-
tionally choose very basic examples of propositions such as ‘¬A = A ⊃ ⊥’ or ‘Charles
is a bachelor’ to keep the focus on the computability aspect rather than on the propo-
sitional aspect. To learn how to analyze more complex sentences in CTT, consult,
e.g., [2,12,25]. For TIL, see, e.g., [7,21,23].

5 This investigation can be viewed as a follow up to the paper [18] that explores how
these two systems approach mathematical and logical propositions.

Meaning and Computing 103

to conceptually clarify the relation between their respective approaches to this
notion. We will not aim to provide new technical developments for CTT or TIL.

Terminological note. Since we will be discussing two frameworks with differ-
ent terminological backgrounds, we will try to simplify the vocabulary whenever
reasonably possible. For example, we will call constructive sets of constructive
type theory as types and hyperpropositions of transparent intensional logic as
propositions. Deviations from the standard terminology such as these will always
be pointed out throughout the text.

2 Constructive Tradition

Although it was probably Aarne Ranta [25] who first applied constructive type
theory to a systematic study of natural language semantics,6 the general meaning
as a computation approach can be traced much further, at least to the work of
L. E. J. Brouwer on constructive mathematics, specifically on constructive logic
and the proof-based account of logical constants, also known as the Brouwer-
Heyting-Kolmogorov (or simply BHK) interpretation. The general idea is to
explain the meaning of logical connectives not in terms of their truth conditions
but in terms of their proof conditions. For the constructive propositional logic,
we get the following explanations (see Table 1).

Table 1. The BHK interpretation of logical constants

A proof of the
proposition

Consists of Which can be formalized as

A ∧ B a proof of A and a proof of B (a, b) : A ∧ B

A ∨ B a proof of A or a proof of B i(a) : A ∨ B or j(b) : A ∨ B

A → B an effective method which
takes any proof of A into a
proof of B

λx.b(x) : A → B (where b(a) is a
proof of B provided a is a proof
of A)

⊥ there is no proof (absurdity) −

This interpretation of logical constants, particularly of implication, served
as a basis for another important discovery, specifically the observed analogy
between proofs and programs and proposition and types.

2.1 Proofs as Programs

The intuition that logic and computing are somehow related has a long tradition
– going back at least to Leibniz’s concept of the calculus ratiocinator – however,
6 Following Michael Dummett’s exploration of constructive principles outside the

scope of mathematics [5] and Göran Sundholm’s analysis of donkey sentences using
constructive type theory [27].

104 I. Pezlar

it hasn’t been made precise until the discovery of the propositions as types
principle.7 Briefly put, it identifies constructive proofs with programs.8

As hinted above, the propositions as types principle is closely related to the
BHK interpretation of constructive logic and in its most common form it refers to
the recognized correspondence between Gerhard Gentzen’s intuitionistic natural
deduction [8] and Alonzo Church’s simply typed λ-calculus [3],9 which can be
understood as a rudimentary functional programming language (see, e.g., [11]).
Specifically, we get the following correspondences (see Table 2).

Table 2. The propositions as types principle

Natural deduction λ-calculus

assumption free variable

implication introduction
(= ‘deduction theorem’)

λ-abstraction
(= function definition)

implication elimination
(= modus ponens)

β-reduction
(= function application)

proposition type

proof (functional) program

In practice, this means that, e.g., A → B can be interpreted as an implica-
tional proposition where A is the antecedent and B the consequent and simul-
taneously as a type of a function from objects of type A to objects of type B.
Proving this proposition then corresponds to constructing an object of the type
A → B. Of course, these correspondences can be expanded (e.g., simplifica-
tion of proofs understood as evaluation of programs, provability as a problem of
type inhabitation, etc.) as well as generalized (introduction rules as constructors,
elimination rules as destructors, etc.).

2.2 Constructive Type Theory

The proposition as types principle is one of the fundamental principles of con-
structive type theory (CTT, [14]) and it will help us to explain what is under-
stood as a proposition in this framework. Specifically, under the propositions
as types principle, the question ‘What is a proposition?’ becomes synonymous

7 Also known as the Curry-Howard correspondence or isomorphism ([4,10]), although
this name is rather unfortunate as it omits two other key figures of the discovery,
namely N. G. de Bruijn and Per Martin-Lf.

8 For an excellent overview, see, e.g., [31].
9 For simplicity, we omit the Haskell Curry’s side of the discovery – the fact that com-

binators from combinatory logic correspond to axioms in Hilbert-style calculus. For
example, the combinator K (i.e., Kxy = x) corresponds to the axiom A → B → A.

Meaning and Computing 105

with the question ‘What is a type?’10 In CTT, we specify a type by specifying
what constitutes its canonical objects and when two canonical objects are equal.
For example, the type N of natural numbers is specified by the following rules
introducing canonical objects and equal canonical objects of type N :

0 : N 0 = 0 : N
n : N

s(n) : N
n = m : N

s(n) = s(m) : N

where 0 : N is a judgment stating that ‘0 is an object of type N ’. Thus, the
type N is inhabited by canonical objects of the form s(n) and 0. Furthermore,
any object that reduces to a canonical object of a certain type is considered an
object of that type as well.

This brings us to the notion of a computation. From the perspective of CTT,
a computation is a process of reducing non-canonical objects to their canonical
forms via the corresponding computation rules. For example, assuming we have
defined 1 as s(0), 2 as s(1), etc., and + as a+0 = a : N and a+s(b) = s(a+b) : N ,
we can form a non-canonical natural number 2 + 2 that can be computed to
s(2 + 1) (lazy evaluation) or fully evaluated to 4.11

For the basic semantic scheme of CTT (based on [20]), see the Fig. 1. It
implements the Fregean idea that meaning is a mode of presentation for picking
out denotation (in modern terms, a program for computing denotation). Note
that since we are able to state things like 2 + 2 = 4 : N , it means that the
result of a computation, i.e., 4 in this case, is an object of the same type N
as the computation itself, i.e., 2 + 2 (see Fig. 2). In other words, the levels of
meanings and denotations are conflated, or rather, viewed as entities of the same
category.12

Fig. 1. Semantic scheme of CTT

10 Or more precisely, ‘What is a constructive set?’ since in CTT the word ‘type’ is
typically reserved for the higher-order presentation of CTT, which we will not use
here. In CTT, one typically starts with the notion of a set and defines a proposition in
terms of it. The category of sets is then identified with the category of propositions,
which is the way the propositions as types principle is adopted in CTT. For more,
see, e.g., [16].

11 The natural number 2+2 is considered non-canonical because it does not follow the
forms prescribed by the introduction rules for the type N , i.e., it is neither 0 nor
does it have the form s(n).

12 See, e.g., [20], pp. 21–26. This, as we will see, is in contrast with TIL, where meanings
and denotations are kept apart and viewed as entities of distinct kinds.

106 I. Pezlar

Fig. 2. An example of CTT semantics of non-empirical expressions

Now that we have briefly acquainted ourselves with the notions of a type
and a computation, let us return back to propositions. So what exactly is a
proposition in CTT? Analogously to what has been said above, to be able to
judge that some A is a proposition, we have to know how to form its canonical
objects and under what conditions two canonical objects are equal, i.e., provide
rules for constructing its canonical proofs and equal canonical proofs.

Furthermore, a proposition A is considered true when we have a proof a of
A. And in order to be able to judge that we have a proof a of A, we have to
know that A is a proposition and that a is a method that yields upon execution a
canonical proof of A as a value.13 For example, the canonical proofs (objects) and
equal canonical proofs of the proposition A → B are specified by the following
pair of rules:

[x : A]
b(x) : B

λx.b(x) : A → B

[x : A]
b(x) = c(x) : B

λx.b(x) = λx.c(x) : A → B

What is the canonical proof λx.b(x) of the proposition A → B? It is an object
– a lambda coding – that codes a function which takes a proof a of A and
transforms it into a proof b(a) of B (compare this with the BHK interpretation
for implication in Fig. 1).

Analogously to the case above with non-canonical natural numbers such as,
e.g., 2 + 2 : N , we can have non-canonical proofs of propositions as well. For
example, consider the following derivation:

f : (A → B) → (C → D) g : (A → B)
ap(f, g) : C → D

The proof ap(f, g) of C → D is non-canonical because it does not have the form
prescribed by the introduction rules for implicational propositions, i.e., λx.b(x).
However, the non-canonical object ap(f, g) is a method of obtaining a canonical
object of C → D. How to execute it? We have f : (A → B) → (C → D)
which means that f is a method which yields a canonical object λx.c(x) of
(A → B) → (C → D). Now, let us take g : (A → B) and substitute it for
x in c(x). Thus we get c(g) : C → D and when we execute c(g) it will yield

13 It is an open question how to best carry over this approach to empirical discourse.
See, e.g., [26,27,32].

Meaning and Computing 107

a canonical object of C → D, i.e., something of the form λy.d(y). For a more
thorough exposition, see [14].

Note, however, that all the computations discussed so far were concerned
exclusively with objects, specifically, with reducing non-canonical objects into
canonical ones. For example, 2 + 2 : N was computed to s(2 + 1) : N or
ap(f, g) : C → D was computed to c(g) : C → D. But what about comput-
ing with propositions themselves? This is, after all, our main interest. To extend
computations towards propositions, we utilize the notion of a non-canonical type
introduced in [9].

Through the propositions as types principle, this naturally applies to propo-
sitions as well. Following [9] (p. 91, Definition 6), let us define a non-canonical
proposition A as a proposition that has a canonical proposition as the value.14

The fact that the non-canonical proposition A has the canonical proposition B
as value will be denoted as

A ⇒ B : prop

and can be read as ‘a proposition A computes to a proposition B’. The mean-
ing of these proposition-computability judgments will be specified inferentially
by the corresponding computation rules whose conclusions will take the general
form A ⇒ B : prop (see, e.g., the computation rule for ¬comp below). Further-
more, again following [9] (p. 97), we adopt explicit definitions of non-canonical
propositions of the following form: D =def A : prop where A is a proposition
(not necessarily canonical) and D is a new undefined non-canonical proposition.
Basically, it tells us that A is the value for the non-canonical proposition D. For
example, our motivating case involving the definition of intuitionistic negation
can be formalized as ¬A =def A → ⊥ : prop which justifies a computational
step from ¬A to A → ⊥ that can be captured as follows ¬A ⇒ A → ⊥ : prop.
The corresponding proposition computation rule (read bottom-up) will be then
as follows:

A → ⊥ ⇒ A → ⊥ : prop ¬comp¬A ⇒ A → ⊥ : prop

with ¬A being a non-canonical proposition and A → ⊥ being a canonical one.
In other words, A → ⊥ is the value of the computable proposition ¬A. From the
above considerations, it also follows that ¬A = A → ⊥ : prop, i.e., that they are
equal propositions.15

14 For a proper specification, see [9], especially sections §4. Noncanonical sets and ele-
ments and §5. Nominal definitions. It is also worth to note that non-canonical propo-
sitions/sets are already considered in [13], however, as opposed to [9], no dedicated
proposition-computability judgments of the form A ⇒ B : prop are used.

15 Of course, more complex reductions for other logical and/or mathematical proposi-
tions can be introduced. For example, [24] (pp. 41–42) shows how we can in CTT
define, and thus reduce the propositional function prime(x) (assuming x : N) into
more basic concepts. Formulating the corresponding computation rule based on the
provided definition is then straightforward.

108 I. Pezlar

Now, returning to our empirical case, let us assume the following definition:
bachelor(x) =def man(x) ∧ ¬married(x) which can be unpacked, analogously
as above, into the following three steps. First, we postulate that bachelor(x) :
prop assuming x : A, i.e., that bachelor(x) is a propositional function taking as
arguments objects of some type A (analogously with married(x) and man(x)).
Then we add the corresponding computation rule (again, assuming x : A):

man(x) ∧ ¬married(x) ⇒ man(x) ∧ ¬married(x) : prop

bachelor(x) ⇒ man(x) ∧ ¬married(x) : prop

Note that here we are taking man and married as basic, further non-computable
concepts.

And finally, we have to show that bachelor(x) and man(x) ∧ ¬married(x)
are equal propositional functions, which follows from our computation rule:
since both bachelor(x) and man(x) ∧ ¬married(x) have the same canonical
forms, we can judge that they are equal propositional functions producing equal
propositions. In other words, non-canonical propositions are equal, if their cor-
responding canonical propositions are equal. To sum it up, the proposition
man(Charles) ∧ ¬married(Charles) : prop is a canonical, i.e., further irre-
ducible proposition and bachelor(Charles) is a non-canonical proposition that
can be computed to man(Charles)∧¬married(Charles) : prop. For an example
of the corresponding expanded semantic scheme for computable propositions, see
Fig. 3.16

Fig. 3. An example of CTT semantics of empirical expressions

To conclude, in CTT we can approach the notion of a computable proposition
via the notion of a non-canonical type introduced by [9], i.e., non-canonical con-
structive sets in a more standard terminology. This explication rests on two main
principles: identification of propositions with types (i.e., the Curry-Howard iso-
morphism) and capturing computation in terms of the reduction of non-canonical
objects to canonical ones.

In the following section, we will examine how TIL approaches the notion of
a computable proposition.

16 Note that our approach has nothing further to say about the meaning of the con-
juncts of this canonical proposition. More specifically, the meaning of atomic empir-
ical propositions such as man(Charles) is assumed to be given externally.

Meaning and Computing 109

3 Non-constructive Tradition

As far as we know, it was Pavel Tichý [28] who first explicitly suggested to
understand meanings of natural language expressions in terms of computations
in the late 1960s, specifically in his paper Intension in terms of Turing machines:

. . . the fundamental relationship between sentence and procedure is obviously of
a semantic nature; namely, the purpose of sentences is to record the outcome of
various procedures. Thus e.g. the sentence ‘The liquid X is an acid’ serves to
record that the outcome of a definite chemical testing procedure applied to X is
positive ([28], p. 7).

Tichý saw in Turing machines an opportunity to finally explicate Frege’s notion
of sense in rigorous terms. Eventually, however, Tichý replaced Turing machines
with constructions. Constructions were understood as abstract computations
codifying the procedures for computing denotations of the corresponding natu-
ral language expressions. Tichý subsequently developed his ideas into a system
called transparent intensional logic presented in [30], which is still being actively
developed (see, e.g., [7,21,23]).

3.1 Transparent Intensional Logic

As we have seen in CTT, the notion of a proposition is ultimately grounded in
the notions of a type and a computation. In transparent intensional logic (TIL,
[30]), the notion of a proposition can also be explained in these notions, however,
the notions of a type and a computation in TIL differ from those of CTT.

First of all, the fundamental notion of computation in TIL, i.e., a construc-
tion, is much broader in comparison with the stricter constructive notion of
effective computation found in CTT. It encompasses even non-computable and
ill-specified procedures. As Tichý puts it:

[N]ot every construction is an algorithmic computation. An algorithmic com-
putation is a sequence of effective steps, steps which consist in subjecting a
manageable object (usually a symbol or a finite string of symbols) to a feasible
operation. A construction, on the other hand, may involve steps which are not of
this sort. [. . .]. As distinct from an algorithmic computation, a construction is an
ideal procedure, not necessarily a mechanical routine for a clerk or a computing
machine ([29], p. 526).

Thus, constructions should be viewed as idealized, abstract, not necessarily effec-
tive computations that need not be realizable either by a human or a machine.
This more general approach towards computations is reflected in the treatment
of types as well. In comparison with CTT, very little is required of them, no
canonical objects have to be presented, no criterion of identity is required.17

17 From this perspective, TIL types are much closer to categories in CTT (i.e., types in
proper CTT terminology), but even a category is a stricter notion as it has to come
with a criterion of application and identity, which is not the case with TIL types.

110 I. Pezlar

Specifically, types are understood simply as non-empty pairwise disjoint collec-
tions ([30], p. 65). No further stipulations are given of what can and cannot
constitute such a collection.

So what is a proposition in TIL?18 In order to understand what a propo-
sition is we have to better understand Tichý’s notion of a construction. First,
it is important to make clear what is really meant in TIL when it is said that
propositions can be computed to yield their denotations (for the basic Fregean
semantic scheme of TIL, see Fig. 4). In most current instances of TIL when one
talks about denotations of propositions, they do not mean truth values (under-
stood as references of sentences) but functions from possible worlds to truth
values.19 Actual truth values cannot be, of course, computed and the task of
determining them is delegated to empirical investigations. Thus, in TIL, we can
compute the denotations of empirical sentences, but we cannot compute their
references (i.e., truth values). Hence, the problem of computing truth values of
empirical sentences is effectively sidestepped by distinguishing between denota-
tions and references. This, however, does not apply to non-empirical expressions,
where denotations and references are typically conflated.

Fig. 4. Semantic scheme of TIL

For example, the non-empirical expression ‘2+2’ is understood as expressing
the arithmetical construction [2 + 2] that computes (or constructs, in standard
terminology) the number 4, i.e., an object of type ν, where ν is the type of natural
numbers, which can be regarded as both the denotation and the reference of ‘2+2’
(see Fig. 5).20 In contrast, the empirical sentence ‘Charles is a bachelor’ expresses
the proposition λw[[Bachelor w] Charles] which computes its denotation, i.e.,
a function of type (oω), where o is the type of truth values and ω is the type of

18 In standard TIL terminology, the term ‘hyperproposition’ is used instead and the
term ‘proposition’ is reserved for functions from possible worlds and time moments
to truth values. We will diverge from this terminology.

19 In standard TIL, denotations of propositions are understood as functions from pos-
sible world and time moments to truth values, however, we omit the time parameter
for simplicity here.

20 The purpose of the bold font is, simply put, to distinguish between the constructional
level and non-constructional level. Let us take, e.g., 2 and 2. What is the difference
between them? The former is a construction, the latter is a constructed object. In
other words, 4 can be understood as a trivial computation that yields the number 4
as a result. Furthermore, we now switch to the standard TIL notation with square
brackets to better distinguish its expressions from those of CTT.

Meaning and Computing 111

possible worlds. And only an empirical investigation can tell us what its reference
is, i.e., whether it is true or false (see Fig. 6). Thus, when we are computing
propositions in this sense, we are not searching for truth values, but for the
corresponding functions from possible worlds to truth values.

Fig. 5. An example of TIL semantics of non-empirical expressions

Fig. 6. An example of TIL semantics of empirical expressions

This notion of computation is, however, rather informal as it comes with
no general instructions or computation rules telling us how should the evalua-
tion of such computations proceed. Furthermore, it takes us from the level of
constructions to a different level, specifically, a level of denotations, i.e., non-
constructions (e.g., natural numbers, truth values, individuals).21 Consequently,
this notion of a computation does not seem to be providing a satisfactory ground
for explaining the notion of a computable proposition.

Fortunately for us, in TIL, another notion of a computation is identifiable
that is much more similar to the notion of a computation in CTT. It comes with
explicit computation rules (β-reductions) and the results of these computations
do not leave the level of constructions, i.e., the results of such computations
have the same type as the computations themselves. Following [17], let us call
this new notion of a computation as a syntactic (‘machine-oriented’) notion of
a computation and let us refer to the notion of a computation we have consid-
ered so far as a semantic (‘human-oriented’) notion of a computation. The main
conceptual difference between these two notions is that a semantic computation
takes us from constructions to their denotations, while a syntactic computation

21 Strictly speaking, in TIL we can have higher-order constructions that yield lower-
order constructions as their denotations, but for simplicity of presentation, we omit
these cases here.

112 I. Pezlar

takes us from constructions to other constructions, but never to their denota-
tions. If we add the syntactic computation layer to the original semantic scheme
of TIL presented earlier, we get a scheme closer to the one of CTT (see Fig. 7).22

Fig. 7. An example of an expanded TIL semantics of non-empirical expressions

How is this relevant to computable propositions? When we are computing
propositions in this syntactic sense, we are not searching for truth values (ref-
erences) or functions from possible worlds to truth values (denotations) but
rather for the simplest possible procedure for evaluating the truth conditions of
the corresponding sentence. To better explain this, let us consider the following
example. To mirror the initial intuitionistic case of defining ¬A as A → ⊥, let
us examine a classical case of defining A → B as ¬A ∨ B. In TIL, this could
be formalized as: λAB[A → B] =def λAB[¬A ∨ B]. Analogously to the CTT
approach, the implicational proposition λAB[A → B] can be understood as a
defined proposition computable to its canonical form λAB[¬A∨B]. The form of
the corresponding computation rules would then be similar to those of CTT:23

λAB[¬A ∨ B] ⇒ λAB[¬A ∨ B] → comp
λAB[A → B] ⇒ λAB[¬A ∨ B]

The same approach could also be applied to empirical cases. For example, when
we compute the proposition λw[[Bachelor w] Charles] in this syntactic sense,
the result we should expect is not a truth value, but rather the canonical form
of the procedure for determining the truth value of the corresponding sentence,
which might be, e.g., set by the following definition (B is an abbreviation of
Bachelor, C of Charles, etc.):

λw[[B w] C] =def λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C]

which is, arguably, a more perspicuous test procedure (assuming it is simpler to
check whether someone is a man and unmarried than that they are a bachelor).
22 Note that in comparison with CTT’s semantic scheme, here we have three levels of

objects: syntactic (the expression ‘2 + 2’), semantic (the construction [2 + 2]), and
denotational (the natural number 4). Recall that in CTT, there are only two levels:
syntactic and semantic. In other words, in TIL the semantic level is distinguished
further into constructional and denotational levels.

23 This is only a sketch, for proper accounts of definitions/computation rules in TIL,
see, e.g., [7], section 2.2.2 Concepts and definitions or [21], section 3.2 Matches,
sequents and rules.

Meaning and Computing 113

The computation rule will then be as follows (to save some space, let M represent
the proposition λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C]):

M ⇒ M
λw[[B w] C] ⇒ M

So, how can we compute with propositions in TIL? Analogously to CTT, we
can approach this issue through the idea of defined and primitive propositions.
However, in TIL the key difference between these two kinds of propositions will
not be the presence or absence of direct proof conditions, but rather whether
or not they contain primitive or derived concepts with respect to some concep-
tual system. In other words, by a canonical proposition we will understand a
proposition that contains no derived concepts.

What are conceptual systems? Conceptual systems are, roughly put, applied
instances of TIL tailored for a specific purpose (see [7,22]). Thus, we can have,
e.g., conceptual systems for propositional logic, conceptual systems for predicate
logic, conceptual systems for reasoning about multiagent systems, etc. Formally,
a conceptual system is a tuple 〈Pr, Type, V ar, C,Der〉 where Pr is a finite class
of primitive concepts P1, . . . , Pk, i.e., basic objects of the system, Type is an infi-
nite class of types generated over a finite collection of base types (e.g., o, ι, ν for
truth values, individuals, and natural numbers, respectively), V ar is an infinite
set of variables, countably infinite for each type from Type, C is the definition
of kinds of basic TIL constructions, and Der is an infinite class of compound
concepts derived from Pr and V ar utilizing C. From this perspective, assuming
a conceptual system CS1 where B and C are simple, further undefined con-
cepts, i.e., Pr1 = {B,C}, the proposition λw[[B w] C] would be considered as a
canonical one. However, assuming some other conceptual system CS2 where B
is treated as a derived concept with Pr2 = {M,Mar,∧,¬}, then the proposition
λw[[B w] C] will be non-canonical and computable to the canonical proposition
λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C] (see Fig. 8), which represents the most
direct procedure for evaluating the truth conditions of the corresponding sen-
tence (in the given conceptual system). For our logical example, we could use
a conceptual system CS3 with Pr3 = {¬,∨}, which would render the proposi-
tion λAB[A → B] non-canonical and the proposition λAB[¬A ∨ B] canonical.
Thus, the status of canonicity of propositions will depend on the choice of the
underlying conceptual system.

Fig. 8. An example of an expanded TIL semantics of empirical expressions

114 I. Pezlar

To conclude, in TIL we can approach the notion of a computable propo-
sition via the notion of a (hyper)proposition, i.e., a construction that yields
upon execution a function from possible worlds to truth values. This explication
rests on three main principles: distinguishing between denotations and refer-
ents of empirical sentences, discerning between syntactic and semantic notions
of computations, and capturing the notion of syntactic computation in terms of
a reduction of non-canonical proposition to canonical ones within a scope of a
given conceptual system.

4 Conclusion

In this paper, we have discussed two computational approaches to the semantics
of empirical sentences that are based on the Fregean sense-denotation distinction.
However, since the truth values – denotations in Frege’s approach – of sentences
cannot be in general computed, these approaches had to modify the original
scheme by changing what should be regarded as a denotation of an empirical
sentence. Both approaches agree that it cannot be truth values and propose
that it should be propositions. However, their respective notions of propositions
differ. When a CTT-based approach proposes that a denotation of an empirical
sentence is a proposition, what is meant is a canonical proposition and a proposi-
tion is understood intuitionistically, i.e., as a constructive set of its truth makers.
On the other hand, when a TIL-based approach proposes that a denotation of
an empirical sentence is a proposition, a proposition is understood as a function
from possible worlds to truth values. Thus, in CTT the relation between mean-
ing and denotation holds between objects of different types than in TIL. In the
former it holds between propositions, in the latter it holds between propositions
and functions.

This is not the only difference. Their respective notions of denoting under-
stood as the relation between sense and denotation also diverge. CTT essen-
tially identifies the notion of denoting with the notion of effective (syntactic)
computation. In TIL, however, denoting is rather identified with the notion of
constructing, i.e., the notion of not necessarily effective (semantic) computa-
tion. However, that does not mean that we cannot make sense of the notion of
effectively (syntactically) computable propositions in TIL. It just means that if
we compute with propositions in this sense, we can never get to their denota-
tions, just to their canonical forms. This is in contrast to CTT, where canonical
propositions and denotations are identified. The relation between propositions
and their corresponding canonical forms in TIL is best seen as analogous to the
same distinction in CTT, i.e., it should be viewed in terms of effective (syntactic)
computability based on the underlying notion of definitional equality. So, from
the TIL perspective, CTT conflates the notions of semantic and syntactic com-
putability. Or, from the CTT perspective, TIL muddies the notion of computing
by splitting it into two further notions of syntactic and semantic computability.
It remains, however, an open question which of these approaches might generally
prove to be more productive when dealing with natural language analysis.

Meaning and Computing 115

To conclude, the key difference between CTT’s and TIL’s understanding
of meaning of empirical sentences, i.e., computable propositions, lies in their
respective ideas of what should constitute their corresponding denotations and
how we should be able to reach them. CTT identifies denotations with canonical
propositions, while TIL keeps them separate. In CTT, denoting has to be an
effective procedure, while no such requirement is present in TIL. However, even
though in TIL the procedure of getting from a proposition to its denotation
is ineffective, the process of getting from a proposition to its canonical form is
effective.

References

1. Brouwer, L.E.J.: Over de Grondslagen der Wiskunde. Ph.D. thesis, Universiteit
van Amsterdam (1907)

2. Chatzikyriakidis, S., Luo, Z.: Adjectival and adverbial modification: the view from
modern type theories. J. Log. Lang. Inform. 26(1), 45–88 (2017). https://doi.org/
10.1007/s10849-017-9246-2

3. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(02),
56–68 (1940). https://doi.org/10.2307/2266170

4. Curry, H.: Functionality in combinatory logic. Proc. Natl. Acad. Sci. 20, 584–590
(1934). https://doi.org/10.1073/pnas.20.11.584

5. Dummett, M.: The philosophical basis of intuitionistic logic. Stud. Log. Found.
Math. 80(C), 5–40 (1975). https://doi.org/10.1016/S0049-237X(08)71941-4

6. Dummett, M.: The Logical Basis of Metaphysics. Duckworth, London (1991)
7. Duž́ı, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional

Logic: Foundations and Applications of Transparent Intensional Logic. Logic, Epis-
temology, and the Unity of Science, Springer, Dordrecht (2010). https://doi.org/
10.1007/978-90-481-8812-3

8. Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(1), 176–
210 (1935). https://doi.org/10.1007/BF01201353

9. Granström, J.G.: Treatise on Intuitionistic Type Theory. Logic, Epistemology, and
the Unity of Science, Springer, Dordrecht (2011)

10. Howard, W.A.: The formulae-as-types notion of construction. In: Curry, H.B.,
Hindley, J.R., Seldin, J.P. (eds.) To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism. Academic Press, London (1980)

11. Landin, P.J.: Correspondence between ALGOL 60 and Church’s lambda-notation:
part I. Commun. ACM 8(2), 89–101 (1965). https://doi.org/10.1145/363744.
363749

12. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Lin-
guist. Philos. 35(6), 491–513 (2012). https://doi.org/10.1007/s10988-013-9126-4

13. Martin-Löf, P.: Constructive mathematics and computer programming. In: Cohen,
J.L., et al. (eds.) Logic, Methodology and Philosophy of Science VI, 1979, pp.
153–175. North-Holland, Amsterdam (1982)

14. Martin-Löf, P.: Intuitionistic type theory: Notes by Giovanni Sambin of a series of
lectures given in Padua, June 1980. Bibliopolis, Napoli (1984)

15. Martin-Löf, P.: The sense/reference distinction in constructive semantics
(manuscript) (2001)

16. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory: An Introduction. Clarendon Press, Oxford (1990)

https://doi.org/10.1007/s10849-017-9246-2
https://doi.org/10.1007/s10849-017-9246-2
https://doi.org/10.2307/2266170
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1016/S0049-237X(08)71941-4
https://doi.org/10.1007/978-90-481-8812-3
https://doi.org/10.1007/978-90-481-8812-3
https://doi.org/10.1007/BF01201353
https://doi.org/10.1145/363744.363749
https://doi.org/10.1145/363744.363749
https://doi.org/10.1007/s10988-013-9126-4

116 I. Pezlar

17. Pezlar, I.: On two notions of computation in transparent intensional logic.
Axiomathes 29(2), 189–205 (2018). https://doi.org/10.1007/s10516-018-9401-7

18. Pezlar, I.: Algorithmic theories of problems. a constructive and a non-constructive
approach. Log. Log. Philos. 26(4), 473–508 (2017). https://doi.org/10.12775/LLP.
2017.010

19. Prawitz, D.: Meaning Approached Via Proofs. Synthese 148(3), 507–524 (2006).
https://doi.org/10.1007/s11229-004-6295-2

20. Primiero, G.: Information and Knowledge. Springer, Dordrecht (2008)
21. Raclavský, J.: Belief Attitudes, Fine-Grained Hyperintensionality and Type-

Theoretic Logic. College Publications, London (2020)
22. Raclavský, J., Kuchyňka, P.: Conceptual and derivation systems. Log. Log. Philos.

20(1–2), 159–174 (2011). https://doi.org/10.12775/LLP.2011.008
23. Raclavský, J., Kuchyňka, P., Pezlar, I.: Transparentńı intenzionálńı logika jako

characteristica universalis a calculus ratiocinator. Masaryk University Press (Muni-
press), Brno (2015)

24. Rahman, S., McConaughey, Z., Klev, A., Clerbout, N.: A brief introduction to
constructive type theory. In: Immanent Reasoning or Equality in Action. LAR, vol.
18, pp. 17–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91149-
6 2

25. Ranta, A.: Type-Theoretical Grammar. Clarendon Press, Oxford (1994)
26. Stovall, P.: Proof-theoretic semantics and the interpretation of atomic sentences.

In: Sedlár, I., Blicha, M. (eds.) The Logica Yearbook 2019. College Publications,
London (2020)

27. Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 166, pp. 471–506. Springer, Dordrecht
(1986). https://doi.org/10.1007/978-94-009-5203-4 8

28. Tichý, P.: Intension in terms of Turing machines. Stud. Log. 24(1), 7–21 (1969).
https://doi.org/10.1007/BF02134290

29. Tichý, P.: Constructions. Philos. Sci. 53(4), 514–534 (1986). https://doi.org/10.
1086/289338

30. Tichý, P.: The Foundations of Frege’s Logic. de Gruyter, Berlin (1988)
31. Wadler, P.: Propositions as Types. Commun. ACM 58(12), 75–84 (2015). https://

doi.org/10.1145/2699407
32. Wiȩckowski, B.: A constructive type-theoretical formalism for the interpretation of

subatomically sensitive natural language constructions. Stud. Log. 100(4), 815–853
(2012). https://doi.org/10.1007/s11225-012-9431-x

https://doi.org/10.1007/s10516-018-9401-7
https://doi.org/10.12775/LLP.2017.010
https://doi.org/10.12775/LLP.2017.010
https://doi.org/10.1007/s11229-004-6295-2
https://doi.org/10.12775/LLP.2011.008
https://doi.org/10.1007/978-3-319-91149-6_2
https://doi.org/10.1007/978-3-319-91149-6_2
https://doi.org/10.1007/978-94-009-5203-4_8
https://doi.org/10.1007/BF02134290
https://doi.org/10.1086/289338
https://doi.org/10.1086/289338
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1007/s11225-012-9431-x

Modal Logic via Global Consequence

Xuefeng Wen(B)

Institute of Logic and Cognition, Department of Philosophy, Sun Yat-sen University,
Guangzhou 510275, China

Abstract. In modal logic, semantic consequence is usually defined
locally by truth preservation at all worlds in all models (with respect
to a class of frames). It can also be defined globally by truth preserva-
tion in all models (with respect to a class of frames). The latter is called
global consequence, which is much less studied than the standard local
one. In this paper we first study the relationship between local and global
consequence. Then we give some correspondence results for global con-
sequence. Finally, we illustrate two applications of global consequence,
connecting it with informational consequence and update consequence
proposed in formal semantics. Some results in the paper are already
known, which are collected in the paper for the sake of completeness.
The others appear to be new. We suggest that global consequence is not
only interesting theoretically, but also useful for applications.

Keywords: Modal logic · Local consequence · Global consequence ·
Domain semantics · Update semantics

1 Introduction

Given a class of frames F, the inference from Γ to ϕ is valid with respect to F,
if for every world w in every model M = (W,R, V) such that F = (W,R) is a
frame in F, if all formulas in Γ are true at w in M then ϕ is also true at w in M.
This is called the local consequence (or local validity) in modal logic, which is
the standard one. Another notion called global consequence (or global validity)
in modal logic is also defined in the literature (e.g. in [1]). The inference from
Γ to ϕ is globally valid with respect to F, if for every model M = (W,R, V)
such that F = (W,R) is a frame in F, if all formulas in Γ are true in M then ϕ
is also true in M, where a formula is true in a model if it is true at all worlds
in the model.1 Compared to local consequence, global consequence is much less
1 Note that local and global consequence are polysemous in the literature. For example,
in [15, p. 37], global consequence is defined as the preservation of frame validity,
whereas local consequence is defined as the preservation of frame validity at every
world. We are not talking about local and global consequence in this sense. In [4,5],
the authors also contrast the local and global perspective in modal logic, where ‘local’
means truth at a world, and ‘global’ means truth in a model. Our use of locality and
globality is in line with theirs. But we are interested in global consequence, namely,
the preservation of global truth, whereas they studied (modal definability by) global
truth itself.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 117–132, 2021.
https://doi.org/10.1007/978-3-030-88853-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_8

118 X. Wen

studied. Notable exceptions include, [7,11] and [12]. Kracht [11] studied global
consequence from an algebraic point of view systematically, obtaining a lot of
meta properties (like finite model property, interpolation, etc.) of modal logics
with global consequence. Fitting [7] integrated local and global consequence into
a ternary relation, and proved completeness for various kinds of proof systems.
Ma and Chen [12] presented Gentzen-style sequent calculi for global consequence.
In this paper, we study global consequence within the standard relational seman-
tics of modal logic, emphasizing its connection to local consequence and to some
other consequence notions, which are popular in philosophical logic and formal
semantics.

The remaining part of the paper is organized as follows. Section 2 shows
the relationship between local consequence and global consequence. Section 3
gives a general correspondence result for global consequence and its typical
instances. Section 4 illustrates two applications of global consequence, connecting
it with informational consequence and update consequence. Section 5 concludes
the paper and suggests future work. Some results in the paper are already known,
which are collected in the paper for the sake of completeness. The others are sup-
posed to be new. All the proofs for the results in Sect. 2 and Sect. 3 are put in
the appendix.

2 Relationship Between Local and Global Consequence

In the sequel, we consider only normal modal logics. Let L0 be the classical
propositional language, L� the basic modal language. We use � for satisfaction
relation. We write M, w � Γ if M, w � ϕ for all ϕ ∈ Γ . We write M � ϕ if
M, w � ϕ for all w in M, and F � ϕ if M � ϕ for all models M based on the
frame F. We denote by K be the class of all frames, and M the class of all models
for L�. We assume the readers are familiar with notations for typical classes of
frames and axiomatic systems. For example, K4 refers to the class of transitive
frames, and S5 the class of frames with equivalent relations; K4 and S5 denote
their corresponding axiomatic systems, respectively.

Some other notations: �0ϕ := ϕ, �n+1ϕ := ��nϕ, �rϕ := ϕ ∧ �ϕ, �Γ :=
{�ϕ | ϕ ∈ Γ}, �rΓ := {�rϕ | ϕ ∈ Γ}, �ωΓ := {�nψ | n ∈ N, ψ ∈ Γ},
�ωϕ := �ω{ϕ}. Let us recall the definitions of local semantic consequence and
global semantic consequence in modal logic.

Definition 1. Given a class of (Kripke) frames F,

(1) ϕ is a local semantic consequence of Γ , denoted, Γ �F ϕ, if for any F in F,
for any model M based on F, and for any world w in M, M, w � Γ implies
M, w � ϕ;

(2) ϕ is a global semantic consequence of Γ , denoted Γ �g
F ϕ, if for any F in F,

for any model M based on F, if M � Γ (i.e. for all w in M, M, w � Γ), then
M � ϕ (i.e. for all w in M, M � ϕ).

We summarize the results in this section as follows. Those with bold fonts are
supposed to be new.

Modal Logic via Global Consequence 119

Local by Global Global by Local

restricting L�, for all F Fact 2 Fact 2, Proposition 5
beyond L�, for all F Proposition 7 Proposition 1, Proposition 2
within L�, for some F Theorem 1, Theorem 2,

Proposition 3, Corollary 1,
Corollary 2, Corollary 3,
Proposition 4

For a start, the following are well known results connecting local and global
consequence.

Fact 1. For any class of frames F, for any Γ ∪ {ϕ} ⊆ L�,

(1) �g
F ϕ iff �F ϕ;

(2) Γ �F ϕ implies Γ �g
F ϕ.

Clause 1 says that locally and globally valid formulas coincide. Because of this,
we are more interested in global consequence rather than globally valid formulas.
Clause 2 says that local consequence is stronger than global consequence.

The following fact can be easily verified, which says that local consequence
and global consequence coincide for modal-free formulas. This may be the reason
why for modal-free reasoning, we do not distinguish local and global consequence.

Fact 2. Let Γ ∪ {ϕ} ⊆ L0. Then for any class of frames F, Γ �g
F ϕ iff Γ �F ϕ.

The following two known results show that if we add some global operators in the
language, then global consequence can always be defined by local consequence.
This might be the reason why global consequence is somewhat neglected in the
study of modal logic. Before that we need two definitions for the global operators.

Definition 2. Given a model M = (W,R, V), define the operator � as follows,

M, w � �ϕ iff for all u ∈ R∗(w),M, u � ϕ,

where R∗ is the reflexive and transitive closure of R.

Definition 3. Given a model M = (W,R, V), define the universal operator A
as follows,

M, w � Aϕ iff for all u ∈ W,M, u � ϕ.

Proposition 1 ([18], p. 159). For any class of frames F, Γ �g
F ϕ iff �Γ �F �ϕ.

Proposition 2 ([9], Proposition 2.1). For any class of frames F, Γ �g
F ϕ iff

AΓ �F ϕ iff AΓ �F Aϕ.

If we consider only the class of frames K, then global consequence can be defined
by local consequence within the basic modal language, as the following proposi-
tion shows.

120 X. Wen

Proposition 3 ([1], p. 32). For any Γ ∪ {ϕ} ⊆ L�, Γ �g
K ϕ iff �ωΓ �K ϕ.

The proposition appears as an exercise in [1]. Instead of proving it directly, we
generalize it as follows.

Theorem 1. Let F be any class of frames that is closed under point generated
subframes. Then for any Γ ∪ {ϕ} ⊆ L�, Γ �g

F ϕ iff �ωΓ �F ϕ.

Note that the direction from right to left does not require F to be closed under
point generated subframes. The other direction, however, does not hold for all
F, as the following fact shows.

Fact 3. There exist a class of frames F and formulas Γ ∪ {ϕ} such that Γ �g
F ϕ

but �ωΓ �F ϕ.

In [6, p. 425], the authors claim that the equivalence between Γ �g
F ϕ and

�ωΓ �F ϕ holds for all F, which is incorrect by the above fact. But the closure
under point generated subframes is not a necessary condition for the equivalence
in Theorem 1, as the following fact shows.

Fact 4. There exists a class of frames F that is not closed under point generated
subframes such that for any Γ ∪ {ϕ} ⊆ L�, Γ �g

F ϕ iff �ωΓ �F ϕ.

If we consider transitive frames, then the biconditional between local conse-
quence and global consequence can be further simplified, as the following corol-
lary shows. Recall that �rϕ := ϕ ∧ �ϕ and �rΓ := {�rϕ | ϕ ∈ Γ}.

Corollary 1. Let F be any class of transitive frames that is closed under point
generated subframes. Then for any Γ ∪ {ϕ} ⊆ L�, Γ �g

F ϕ iff �rΓ �F ϕ.

To define global consequence by local consequence using only � rather than �r,
we could add another constraint for the class of frames.

Definition 4. A class of frames F is closed under irreflexive point extension, if
for any frame F = (W,R) in F, for any w ∈ W with ¬Rww, any point extension
F′ = (W ′, R′) of F for w by u /∈ W is also in F, where F′ is defined as follows:

W ′ = W ∪ {u}
R′ = R ∪ {(u,w)} ∪ {(u,w′) | (w,w′) ∈ R}

Theorem 2. Let F be any class of transitive frames that is closed under point
generated subframes and irreflexive point extensions. Then for any Γ∪{ϕ} ⊆ L�,
Γ �g

F ϕ iff �Γ �F �ϕ.

Corollary 2. Let F be any class of reflexive and transitive frames that is closed
under point generated subframes. Then for any Γ ∪ {ϕ} ⊆ L�, Γ �g

F ϕ iff
�Γ �F �ϕ iff �Γ �F ϕ.

The above corollary can also be derived from Theorem 1, noting that in any
reflexive frame F, F � �rϕ ↔ �ϕ. The following result indicates a definition of
global consequence in terms of local consequence for some familiar modal logics.

Modal Logic via Global Consequence 121

Corollary 3. For any Γ ∪ {ϕ} ⊆ L�, for any F in {K4,KD4,S4,S5}, Γ �g
F ϕ

iff �Γ �F �ϕ.

The following proposition shows that to define global consequence by local con-
sequence as above, sometimes various classes of frames are attainable.

Proposition 4. For any Γ ∪ {ϕ} ⊆ L�, Γ �g
S5 ϕ iff �Γ �S5 �ϕ iff �Γ �S5 ϕ

iff �Γ �K45 �ϕ iff �Γ �KD45 �ϕ

If we restrict premises to be modal-free formulas, then global consequence can
always be defined by local consequence (within the basic modal language), as
the following proposition shows.

Proposition 5. Let Γ ⊆ L0 and ϕ ∈ L�. Then for any class of frames F,
Γ �g

F ϕ iff �ωΓ �F ϕ.

Some of the above results can also be given syntactically. Before that, we need
some definitions. We denote by �S the (local) syntactic consequence for the
axiomatic system S. We �S for modal logics in an eliminational way, as in most
textbooks in modal logic (e.g. [3] and [1]) , i.e. Γ �S ϕ iff there is a finite subset
Δ ⊆ Γ such that �S

∧
Δ → ϕ. The gist of this definition is to prevent the

application of the rule of necessitation to the premises in Γ , since the inference
from ϕ to �ϕ is generally not valid under local consequence. On the contrary,
since we have ϕ �g

F �ϕ for any class of frames F, given a standard axiomatic
system, the global syntactic consequence �g

S can be defined in the same way as
in classical propositional logic, i.e. Γ �g

S ϕ iff there is finite sequence of formulas
ϕ1, . . . , ϕn such that ϕn = ϕ and for each i ≤ n either ϕi ∈ Γ , or ϕi is an
instance of an axiom scheme, or ϕi is obtained from previous formulas in the
sequence by applying the rule(s) of the system. As a result, under global syntactic
consequence, the rule of necessitation is applicable to the premises.

We say that S′ is an axiomatic extension of S, if S′ and S have the same
inference rules, and all axioms of S are also axioms of S′. Now we have the
following results.

Proposition 6. Let S be any axiomatic extension of K. Then for any Γ ∪{ϕ} ⊆
L�, Γ �g

S ϕ iff �ωΓ �S ϕ.

The following two corollaries are straightforward.

Corollary 4. Let S be any axiomatic extension of K4. Then for any Γ ∪{ϕ} ⊆
L�, Γ �g

S ϕ iff �rΓ �S ϕ.

Corollary 5. Let S be any axiomatic extension of S4. Then for any Γ ∪{ϕ} ⊆
L�, Γ �g

S ϕ iff �Γ �S ϕ iff �Γ �S �ϕ.

Can local syntactic consequence also be defined by global consequence? Yes, but
much harder. We need to augment the language with both the universal operator
and a special local operator.

Definition 5. Given a model M, define the ‘only here’ operator as follows:

M, w � Oϕ iff M, w � ϕ and for all w′
= w,M, w′
� ϕ.

122 X. Wen

Venema [18] presented the following result.

Proposition 7 ([18], p. 159). For any class of frames F, for any Γ ∪ {ϕ} ⊆
L�AO, for any p /∈ V ar(Γ ∪ {ϕ})

Γ �F ϕ iff {EOp} ∪ {p → γ | γ ∈ Γ} �g
F p → ϕ,

where E is the dual of the universal operator A in Definition 3, L�AO is the
language extended by adding the operators A and O to L�, and V ar(Γ ∪ {ϕ})
is the set of all propositional variables in all formulas in Γ ∪ {ϕ}.
Though within the basic modal language global consequence cannot be reduced
to local consequence generally, many properties (e.g. completeness, decidability,
interpolation, etc.) for local consequence are preserved for global consequence
for most logics. We do not discuss it here but refer the readers to [10,11].

3 Global Correspondence

If we consider the correspondence between modal formulas and first-order frame
properties, then there is nothing new for global consequence, since globally valid
formulas coincide with locally valid formulas. But if we consider the correspon-
dence between modally valid inferences and first-order frame properties, then it
turns out to be much different for global consequence.

First, we have the following obvious fact.

Fact 5. ϕ �g
F �ϕ for any class of frames F, in particular, we have

(1) �ϕ �g
F ��ϕ

(2) ♦ϕ �g
F �♦ϕ

By contrast, �ϕ �F ��ϕ if and only if F is transitive, and ♦ϕ �F �♦ϕ if and
only if F is Euclidean.

Fact 6. ♦ϕ �g
F ϕ iff F is globally isolated, i.e. for every F = (W,R) in F,

∀x∃y∀z(Ryz → z = x).

Fact 7. ♦♦ϕ �g
F ♦ϕ iff F is globally transitive, i.e. for every F = (W,R) in F,

∀w∃x∀y∀z(Rxy ∧ Ryz → Rwz).

Fact 8. ♦�ϕ �g
F �ϕ iff F is globally Euclidean, i.e. for every F = (W,R) in F,

∀w∀x∃y∀z(Rwx ∧ Ryz → Rzx).

Fact 9. �ϕ �g
F ϕ iff F is globally reflexive, i.e. for every F = (W,R) in F,

∀x∃yRyx.

Fact 10. ϕ �g
F ♦ϕ iff F is globally inverse reflexive, i.e. for every F = (W,R) in

F, ∀x∃yRxy.

Fact 11. �ϕ �g
F ♦ϕ iff F is globally serial, i.e. for every F = (W,R) in F,

∀x∃y∃z(Ryz ∧ Rxz).

Modal Logic via Global Consequence 123

Fact 12. ϕ �g
F �♦ϕ iff F is globally symmetric, i.e. for every F = (W,R) in F,

∀x∀y∃z(Rxy → Ryz).

Fact 13. ♦�ϕ �g
F ϕ iff F is globally inverse symmetric, i.e. for every F = (W,R)

in F, ∀x∃y∀z(Ryz → Rzx).

Parallel to a famous general correspondence result for local consequence, we give
a general correspondence result for global consequence, of which the above facts
are all instances.

Theorem 3. ♦i�jϕ �g
F �k♦lϕ iff every frame F = (W,R) in F satisfies the

following condition

∀w∀x∃y∀z∃u(Rkwx ∧ Riyz → Rlxu ∧ Rjzu).

Note that for local consequence, a valid inference often has an equivalent dual
version. For example, �ϕ � ϕ iff ϕ � ♦ϕ. This equivalence, however, does not
hold for global consequence generally. For example, though �ϕ �g ��ϕ holds
for any class of frames, its dual ♦♦ϕ �g ♦ϕ holds only for globally transitive
frames. This is a notable contrast between local and global consequence. We
will indicate in the conclusion how this theoretical asymmetry might be used to
explain our intuition concerning epistemic modal operators.

4 Applications

4.1 Informational Consequence

In [21] Yalcin advocated a non-classical consequence relation, called informa-
tional consequence. Yalcin noticed that if ♦ denotes epistemic ‘might’ or ‘may’,
then saying both ϕ and ♦¬ϕ seems inconsistent, which is not reflected in stan-
dard modal logic. So he proposed domain semantics and informational conse-
quence (details below) to formalize this phenomenon. We will soon find that
informational consequence is intimately related to global consequence.

Definition 6. A domain model is a pair D = (W,V), where W
= ∅ and V :
PV → ℘(W) is a valuation on W . Given a domain model D = (W,V), that ϕ is
true at (w, i) ∈ W × ℘(W) in D, denoted D, w, i � ϕ, is inductively defined as
follows, where D, i � ϕ means for all w ∈ i, D, w, i � ϕ:

– D, w, i � p iff w ∈ V (p)
– D, w, i � ¬ϕ iff D, w, i � ϕ
– D, w, i � ϕ ∧ ψ iff D, w, i � ϕ and D, w, i � ψ
– D, w, i � �ϕ iff D, i � ϕ

Definition 7 (Informational consequence). The inference from Γ to ϕ is
informationally valid, denoted Γ �I ϕ, if for all domain models D = (W,V) and
i ⊆ W , D, i � Γ implies D, i � ϕ.

124 X. Wen

It can be easily shown that under domain semantics, ϕ ∧ ♦¬ϕ �I ⊥. But this
can also be achieved by global consequence for free.

Fact 14. ϕ ∧ ♦¬ϕ �g
F ⊥ for any class of frames F.

Proof. Suppose F, V � ϕ ∧ ♦¬ϕ. Then F, V � ϕ and F, V � ♦¬ϕ. The former
implies that F, V � �ϕ, which contradicts the latter.

In [2], Bledin convincingly argued that the rule of reduction to absurdity and
constructive dilemma are not generally valid for natural language arguments.
Rather, their correct forms should add some modal operators. More precisely,
Bledin suggests that

– Γ, ϕ �I ⊥ does not imply Γ �I ¬ϕ, instead we have Γ, ϕ �I ⊥ =⇒ Γ �I ♦¬ϕ;
– Γ, α �I ϕ and Γ, β �I ψ do not imply Γ, α ∨ β �I ϕ ∨ ψ, instead we have

Γ, α �I ϕ and Γ, β �I ψ =⇒ Γ,�α ∨ �β �I �ϕ ∨ �ψ.

Bledin argued that informational consequence can perfectly predict the above
desiderata. But global consequence can do the same job as well.

Fact 15. Γ, ϕ �g
F ⊥ does not imply Γ �g

F ¬ϕ, instead for any reflexive and
transitive F, we have Γ, ϕ �g

F ⊥ =⇒ Γ �g
F ♦¬ϕ.

Proof. By Fact 14, we have ♦¬ϕ,ϕ �g
F ⊥ for any class of frames F. But by Fact 6,

♦¬ϕ �g
F ¬ϕ holds only for F that is globally isolated. For the remaining part,

suppose Γ �
g
F ♦¬ϕ. Then there exists a model M with its underlying frame in

F such that M � Γ and M � ♦¬ϕ. By the latter there exists w in M such that
M, w � ♦¬ϕ, i.e. M, w � �ϕ. Let Mw be the subframe of M generated by w.
Then Mw, w � �ϕ. Since Mw is reflexive and transitive, we have Mw � ϕ. Thus
Γ, ϕ �

g
F ⊥.

Fact 16. Γ, α �g
F ϕ and Γ, β �g

F ψ do not imply Γ, α∨β �g
F ϕ∨ψ, instead for any

reflexive and transitive F, we have Γ, α �g
F ϕ and Γ, β �g

F ψ =⇒ Γ,�α ∨ �β �g
F

�ϕ ∨ �ψ.

Proof. By Fact 5, we have p �g
F �p and ¬p �g

F �¬p for any class of frames F. But
it is easily verified that p∨¬p �

g
{F} �p∨�¬p, where F = ({1, 2}, {(1, 2), (2, 1)}).

For the remaining part, suppose Γ, α �g
F ϕ and Γ, β �g

F ψ. Let M be any model
with its underlying frame in F. Suppose M � Γ and M � �α∨�β. Given any w
in M, we have M, w � �α ∨ �β. Then either M, w � �α or M, w � �β. Since
M is reflexive and transitive, if the former holds, then Mw � α. By Γ, α �g

F ϕ,
we have Mw � ϕ. Thus M, w � �ϕ. If the latter holds, then Mw � β. By
Γ, β �g

F ψ, we have Mw � ψ. Thus M, w � �ψ. Hence, M, w � �ϕ ∨ �ψ. Since
w is arbitrary, we have M � �ϕ ∨ �ψ, as required.

Indeed, Schulz proved the following general result.

Theorem 4 ([14], Theorem 2.1). For any Γ ∪{ϕ} ⊆ L�, Γ �I ϕ iff �Γ �S5 �ϕ.

By Proposition 4, the following corollary easily follows.

Modal Logic via Global Consequence 125

Corollary 6. For any Γ ∪ {ϕ} ⊆ L�, Γ �I ϕ iff Γ �g
S5 ϕ.

Compared to Theorem 4, it appears that Corollary 6 better characterizes infor-
mational consequence, since the former uses local consequence and by Proposi-
tion 4, with local consequence not only S5 can be used, but also K45 and KD45
are attainable. But with global consequence, such multiple correspondence dis-
appears. On the other hand, Facts 15 and 16 show that if we just need to satisfy
the desiderata above proposed by Yalcin and Bledin, it is possible to consider
only S4 instead of S5, as far as global consequence is used.

4.2 Update Consequence

Update semantics proposed by Veltman in [17] is also a popular semantics for
natural languages. In update semantics, two conjunctions can be defined. One
is static (as in [17]), the other dynamic (as in [13,19,20]). To differentiate them,
we consider the following language.

Given the set of propositional variables PV , the language L�; is defined as
follows:

L�; � ϕ :: = p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ;ϕ) | �ϕ,

where p ∈ PV , ∧ is the static conjunction and ; the dynamic one. We stipulate
that both ∧ and ; are left associated, so that ϕ1∧ϕ2∧ϕ3 abbreviates (ϕ1∧ϕ2)∧ϕ3,
and ϕ1;ϕ2;ϕ3 abbreviates (ϕ1;ϕ2);ϕ3, etc.

Definition 8. An update model is a pair U = (W,V), where W
= ∅ and V :
PV → ℘(W) is a valuation on W . Given an update model U = (W,V), define
the update function ·[·]U : ℘(W) × L�; → ℘(W) on U as follows.

– s[p]U = s ∩ V (p)
– s[¬ϕ]U = s − s[ϕ]U
– s[ϕ ∧ ψ]U = s[ϕ]U ∩ s[ψ]U
– s[ϕ;ψ]U = s[ϕ]U[ψ]U
– s[�ϕ]U = {w ∈ s | s[ϕ]U = s}
We say that s supports ϕ in U, denoted U, s �U ϕ, if s[ϕ]U = s. We write
U, s �U Γ iff U, s �U ϕ for all ϕ ∈ Γ .

It is easily seen that for any U and s in U, for any ϕ ∈ L�;, s[ϕ]U ⊆ s.

Definition 9 (Update consequence). We say that ϕ is an update consequence
of Γ , denoted Γ �U ϕ, if for all update models U = (W,V), for all information
states s ⊆ W , U, s �U Γ implies U, s �U ϕ. We say that ϕ is a sequential
update consequence of the sequence γ1, . . . , γn, denoted γ1, . . . , γn �SU ϕ, if for all
update models U = (W,V), for all information states s ⊆ W , s[γ1]U · · · [γn]U �U

ϕ.

Sometimes, another operator � for indicative conditionals is also defined in
update semantics (e.g. [8]), whose update function is given below.

– s[ϕ � ψ]U = {w ∈ s | s[ϕ]U[ψ]U = s[ϕ]U}

126 X. Wen

It follows that � can be defined by � and ; as the following fact shows.

Fact 17. For all U and s in U, s[ϕ � ψ]U = s[�¬(ϕ;¬ψ)]U.

Now with �, sequential update consequence can be reduced to update conse-
quence.

Lemma 1. For any γ1, . . . , γn, ϕ ∈ L�;, γ1, . . . , γn �SU ϕ iff �U (γ1; . . . ; γn) �

ϕ iff �U �¬(γ1; . . . ; γn;¬ϕ).

Proof. Straightforward from the definitions.

Now we prove that update consequence can be defined by global consequence.

Definition 10. Given a relational model M = (W,R, V), define the truth con-
dition for ϕ;ψ as follows.

– M, w � ϕ;ψ iff M, w � ϕ and Mϕ, w � ψ, where Mϕ = (Wϕ, Rϕ, V ϕ) is
given below:

Wϕ = {w ∈ W | M, w � ϕ}
Rϕ = R ∩ (Wϕ × Wϕ)

V ϕ(p) = Wϕ ∩ V (p), for all p ∈ PV.

Given a relational model M = (W,R, V), we write �ϕ�
M for the truth set of ϕ

in M, i.e. �ϕ�
M = {w ∈ W | M, w � ϕ}.

Lemma 2. For any update models U = (W,V) and U′ = (W ′, V ′) such that
W ⊆ W ′ and V = V ′ �W , for any s ⊆ W ,

s[ϕ]U = s[ϕ]U′ .

Proof. By induction on ϕ.

– ϕ = p. Then s[ϕ]U = s[p]U = s ∩ V (p) = s ∩ V ′(p) = s[p]U′ = s[ϕ]U′ .
– The Boolean cases are easily verified.
– ϕ = ψ;χ. Then s[ϕ]U = s[ψ;χ]U = s[ψ]U[χ]U = s[ψ]U[χ]U′ = s[ψ]U′ [χ]U′ =

s[ψ;χ]U′ = s[ϕ]U′ .
– ϕ = �ψ. Then s[ϕ]U = s[�ψ]U = {w ∈ s | s[ϕ]U = s} = {w ∈ s | s[ϕ]U′ =

s} = s[�ψ]U′ = s[ϕ]U′ .

Lemma 3. For any relational model M = (W,R, V) with R = W × W and its
underlying update model UM = (W,V), for any ϕ ∈ L�,

W [ϕ]UM = �ϕ�
M.

Hence, UM,W �U ϕ iff M � ϕ.

Proof. By induction on ϕ.

– ϕ = p ∈ PV . Then W [ϕ]UM = W [p]UM = W ∩ V (p) = V (p) = �ϕ�
M.

– The Boolean cases are easily verified.

Modal Logic via Global Consequence 127

– ϕ = ψ;χ. Then W [ϕ]UM = W [ψ]UM [χ]UM = �ψ�
M[χ]UM = W ′[χ]UM =

W ′[χ]U′ = �χ�
Mψ

= �ψ;χ�
M = �ϕ�

M, where W ′ = �ψ�
M and U′ =

(W ′, V �W ′). Note that the fourth identity follows from Lemma 2.

– ϕ = �ψ. Then W [ϕ]UM = W [�ψ]UM =

{
W if W [ψ]UM = W

∅ otherwise

=

{
W if �ψ�

M = W

∅ otherwise
=

{
��ψ�

M if �ψ�
M = W

��ψ�
M otherwise

= ��ψ�
M = �ϕ�

M.

Lemma 4. Given an update model U = (W,V) and an information state s ⊆ W ,
define Ms = (s, s × s, V s), where V s(p) = s ∩ V (p). Then for any ϕ ∈ L�,

s[ϕ]U = �ϕ�
Ms

.

Hence, U, s �U ϕ iff Ms � ϕ.

Proof. By induction on ϕ.

– ϕ = p ∈ PV . Then s[ϕ]U = s[p]U = s ∩ V (p) = V s(p) = �p�
Ms

.
– The Boolean cases are easily verified.
– ϕ = ψ;χ. Then xs[ϕ]U = s[ψ;χ]U = s[ψ]U[χ]U = �ψ�

Ms

[χ]U = s′[χ]U =
�χ�

Ms′
= �χ�

(Ms)ϕ

= �ψ;χ�
Ms

, where s′ = �ψ�
Ms

.

– ϕ = �ψ. Then s[ϕ]U = s[�ψ]U =

{
s if s[ψ]U = s

∅ otherwise
=

{
s if �ψ�

Ms

= s

∅ otherwise

=

{
��ψ�

Ms

if �ψ�
Ms

= s

��ψ�
Ms

otherwise
= ��ψ�

Ms

= �ϕ�
Ms

.

Theorem 5. For any Γ ∪ {ϕ} ⊆ L�;, Γ �U ϕ iff Γ �g
S5 ϕ.

Proof. ⇒) Suppose Γ �
g
S5 ϕ. Then there exists an S5 model M such that M � Γ

and M � ϕ. By the latter, there exists w in M such that M, w � ϕ. Let
Mw = (Ww, Rw, Vw) be the submodel of M generated by w. Then Mw � Γ and
Mw � ϕ. Since Mw is a universal model, by Lemma 3, we have UMw ,Ww �U Γ
and UMw ,Ww �U ϕ. Hence, Γ �U ϕ.

⇐) Suppose Γ �U ϕ. Then there exist an update model U and an information
state s in U such that U, s �U Γ and U, s �U ϕ. By Lemma 4, we have Ms � Γ
and Ms

� ϕ. Since Ms is an S5 model, it follows that Γ �
g
S5 ϕ.

Corollary 7. For any γ1, . . . , γn, ϕ ∈ L�;,

γ1, . . . , γn �SU ϕ iff �g
S5 �¬(γ1; . . . ; γn;¬ϕ) iff �S5 �¬(γ1; . . . ; γn;¬ϕ).

Proof. Straightforward from Lemma 1 and Theorem 5.

Note that the truth condition for ϕ;ψ is just the same as that for 〈ϕ〉ψ in public
announcement logic (PAL, henceforth. For an excellent overview of PAL and
more generally dynamic epistemic logic, see [16].). Thus ϕ � ψ is just �[ϕ]ψ in
PAL. Hence, we can define the following translation from L�; to LPAL.

128 X. Wen

Definition 11. Define t : L�; → LPAL as follows.

– t(p) = p, p ∈ PV
– t(¬ϕ) = ¬t(ϕ)
– t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
– t(ϕ;ψ) = 〈t(ϕ)〉t(ψ)
– t(�ϕ) = �t(ϕ)

Now we can define �SU by the standard local or global consequence within LPAL.

Theorem 6. For any Γ ∪ {γ1, . . . , γn, ϕ} ⊆ L�;,

(1) Γ �U ϕ iff t(Γ) �g
PAL t(ϕ),

(2) γ1, . . . , γn �SU ϕ iff �PAL [〈· · · 〈t(γ1)〉t(γ2)〉t(γ3) · · · 〉t(γn)]t(ϕ).

Proof. For (1), by Theorem 5, we have Γ �U ϕ iff Γ �g
S5 ϕ. Since ϕ;ψ has the

same truth condition as 〈ϕ〉ψ in PAL, we have Γ �g
S5 ϕ iff t(Γ) �g

S5 t(ϕ). Then
by the completeness of PAL (for global consequence), we have t(Γ) �g

S5 t(ϕ) iff
t(Γ) �g

PAL t(ϕ). Item (2) follows from Corollary 7 in the same way, noting that
[ϕ]ψ ↔ ¬〈ϕ〉¬ψ and �PAL ϕ iff �PAL �ϕ.

It is well known that (single agent) PAL can be reduced to S5. It follows that
sequential update consequence in L�; can finally be defined by the local or
global consequence of S5 within L�. This in turn implies that L� has the same
expressive power as L�;, for both update consequence and sequential update
consequence.

Corollary 8. For any Γ ∪ {γ1, . . . , γn, ϕ} ⊆ L�,

(1) Γ �U ϕ iff Γ �g
S5 ϕ,

(2) γ1, . . . , γn �SU ϕ iff �PAL [〈· · · 〈γ1〉γ2〉γ3 · · · 〉γn]ϕ.

5 Conclusions and Future Work

Though global consequence can be defined by local consequence for some classes
of frames, it has its independent value for applications. If domain semantics and
update semantics are considered to be good formalizations of natural languages,
then standard modal semantics with global consequence could be considered as a
handy alternative. At least, it is more flexible than the former two, since we can
consider various classes of frames, which is absent in the former two semantics.
In particular, with the global correspondence results, we are more prepared to
defend and choose various inference patterns concerning modality in natural
languages. For example, one might accept that p entails might p, but refuse
that must p entails p. This cannot be modeled either in domain semantics or in
update semantics, or in (normal) modal logic with local consequence, since in
such semantics, either both p � ♦p and �p � p are valid, or they are equivalent.
With global consequence, however, this can be easily modeled by choosing frames

Modal Logic via Global Consequence 129

which are globally inverse reflexive but not globally reflexive. On the other hand,
by the connection between local and global consequence, some standard theories
of modal logic for local consequence can be reused in the application with global
consequence.

This is only a first step in the study of global consequence. There are still a lot
of technical issues unaddressed. For instance, is there a sufficient and necessary
condition on frames for global consequence to be defined by local consequence?
How does the augmentation by new operators systematically affect such defin-
ability? Is there a Sahlqvist-like correspondence between global consequence and
first-order properties? How to compare the frame definability between global con-
sequence and local consequence extended with the universal modality? We leave
these technical issues for future research.

Acknowledgments. Thanks to three anonymous referees for their helpful comments.
Thanks also to audiences at the 2019 logic seminar and the mathematical philosophy
week & workshop on modal logic at Peking University, where I gave a talk on part
of this paper and received valuable feedback. The paper was supported by National
Social Science Foundation of China for key projects (No. 18ZDA033).

Appendix

Proof of Theorem 1

Proof. ⇒) Suppose �ωΓ �F ϕ. Then there exist a frame F in F, a valuation V on
F, and a world w in F such that F, V, w � �ωΓ but F, V, w � ϕ. Let (F′, V ′) be
the model generated by w from (F, V). Then F′, V ′, w � �ωΓ and F′, V ′, w � ϕ.
From the former, it follows that F′, V ′ � Γ , since all worlds in F′ are accessible
from w in finite (including zero) steps. From the latter, it follows that F′, V ′

� ϕ.
Since F is closed under point generated subframes, F′ is also in F. Thus, Γ �

g
F ϕ.

⇐) Suppose Γ �
g
F ϕ. Then there exist a frame F in F and a valuation V on F

such that F, V � Γ but F, V � ϕ. From the latter, it follows that there exists a
world w in F such that F, V, w � ϕ. From the former, it follows that every ψ ∈ Γ
is true at all worlds in (F, V). Thereby, it can be easily verified by induction
that �nψ is true at all worlds in (F, V) for all ψ ∈ Γ and n ∈ N. In particular,
F, V, w � �ωΓ . Hence, �ωΓ �F ϕ.

Proof of Fact 3

Proof. Let F = {F} with F = ({w, u}, {(w, u)}). Then for any valuation V on
F, F, V � �⊥, since F, V, w � �⊥. Hence, �⊥ �g

F ⊥. On the other hand, given
any valuation V on F, F, V, u � �n�⊥ for all n ∈ N, but F, V, u � ⊥. Hence,
�ω�⊥ �F ⊥.

130 X. Wen

Proof of Fact 4

Proof. Consider F = {F} with F = ({w, u}, ∅). Obviously, F is not closed under
point generated subframes. The direction from right to left is easy. For the other
direction, suppose �ωΓ �F ϕ. Then there exists a valuation V on F such that
either F, V, w � �ωΓ and F, V, w � ϕ, or F, V, u � �ωΓ and F, V, u � ϕ. W.l.o.g.,
suppose the former holds. Then F, V, w � Γ . Let V ′ be a valuation such that
V ′(w) = V ′(u) = V (w). It is easily verified that F, V, w � ψ iff F, V ′, w � ψ iff
F, V ′, u � ψ for all ψ ∈ L�. Hence, F, V ′ � Γ and F, V ′

� ϕ. Thereby, Γ �
g
F ϕ.

Proof of Theorem 2

Proof. ⇒) Suppose �Γ �F �ϕ. Then there exist a frame F in F, a valuation V
on F, and a world w in F such that F, V, w � �Γ and F, V, w � ϕ. From the
latter, it follows that there exists u ∈ R(w) such that F, V, u � ϕ. Then from
the former, it follows that F, V, u � Γ ∪ �Γ , noting that F is transitive. Let Mu

be the submodel of (F, V) generated by u. Then Mu, u � ϕ and hence Mu, � ϕ.
Since Mu is transitive, every world in Mu is either u or accessible from u. Thus
Mu, v � Γ for all v in Mu. Then we have Mu � Γ . Since F is closed under point
generated subframes, the frame underlying Mu is also in F. Therefore, Γ �

g
F ϕ.

⇐) Suppose Γ �
g
F ϕ. Then there exist a frame F in F and a valuation V on F

such that F, V � Γ and F, V � ϕ. From the latter, it follows that there exists w
in F such that F, V, w � ϕ. If Rww, then F, V, w � �ϕ. Since F, V � Γ , we also
have F, V, w � �Γ . Hence �Γ �F �ϕ. If ¬Rww, let F′ be a point extension of F
for w by u. Then it can be verified that F′, V, u � �Γ and F′, V, u � �ϕ. Since
F is closed under irreflexive point extensions, F′ is also in F. Hence, �Γ �F �ϕ.

Proof of Proposition 4

Proof. The first two ‘iff’s follow from Corollary 2. The direction from right to
left of the third ‘iff’ is easy. For the other direction, suppose �Γ �K45 �ϕ.
Then there exist a transitive and Euclidean model M = (W,R, V) and a world
w ∈ W such that M, w � �Γ and M, w � �ϕ. From the latter, it follows that
there exists u ∈ R(w) such that M, u � ϕ. Since M is transitive, we also have
M, u � �Γ . Let Mu be the point generated submodel of M by u. Then it can be
verified that Mu is reflexive, transitive and Euclidean. Moreover, Mu, u � �Γ
and Mu, u � ϕ. Therefore �Γ �S5 ϕ. The last ‘iff’ can be proved analogously.

Proof of Proposition 5

Proof. ⇒) Suppose �ωΓ �F ϕ. Then there exist a frame F = (W,R) in F, a
valuation V on F, and a world w in F such that F, V, w � �ωΓ but F, V, w � ϕ.
Let (F′, V ′) be the model generated by w from (F, V). Let F′ = (W ′, R′). Then
F′, V ′, w � �ωΓ and F′, V ′, w � ϕ. From the former, it follows that F′, V ′ � Γ ,
since all worlds in F′ are accessible from w in finite (including zero) steps. From
the latter, it follows that F′, V ′

� ϕ. Noting that Γ is satisfiable and contains
no modal formulas, we can define a valuation V ′′ on F such that for all worlds

Modal Logic via Global Consequence 131

in W ′, V ′′ coincides with V ′, and for all worlds u in W − W ′, for every atom p,
u ∈ V ′′(p) iff w ∈ V ′(p). Then F, V ′′ � Γ , but F, V ′′

� ϕ. Thus, Γ �
g
F ϕ.

⇐) The same as that in the proof of Theorem 1.

Proof of Proposition 6

Proof. By induction on the length of the proof in S.
⇒) The only interesting case is that ϕ = �ψ is obtained from ψ by applying

the rule of necessication. By induction hypothesis, �ωΓ �S ψ. Hence, ��ωΓ �S

�ψ, which implies that �ωΓ �S ϕ.
⇒) The only interesting case is that ϕ = �nψ ∈ �ωΓ . Then ψ ∈ Γ . Hence,

Γ �g
S ψ. By applying the rule of necessication n times, we obtain Γ �g

S ϕ.

Proof of Theorem 3

Proof. ⇐) Given any frame F = (W,R) in F that satisfies the above property,
given any valuation V on F, suppose F, V � ♦i�jϕ. Given any w ∈ W , suppose
Rkwx. Then by the property of R, there exists y ∈ W s.t. for all z ∈ W if
Riyz then there exists u ∈ W s.t. Rlxu and Rjzu. By F, V � ♦i�jϕ, we have
F, V, y � ♦i�jϕ. Then it follows that there exists z ∈ W s.t. Riyz and F, V, z �
�jϕ. By the property of R, there exists u ∈ W s.t. Rlxu and Rjzu. Thus
F, V, u � ϕ and F, V, x � ♦lϕ. Hence, F, V, w � �k♦lϕ. Since w is arbitrary, we
have F, V � �k♦lϕ, as required.

⇒) Suppose F = (W,R) in F does not satisfy the above property. Then
there exists w, x ∈ W s.t. Rkwx and for all y ∈ W there exits z ∈ W s.t.
Riyz and Rl(x) ∩ Rj(z) = ∅. Let V (p) = W − Rl(x). Then F, V, x � �l¬p and
F, V, w � ♦k�l¬p. Hence, F, V, w � �k♦lp and F, V � �k♦lp. Given any y ∈ W ,
by the property of R, there exists z ∈ W s.t. Riyz and Rl(x)∩ Rj(z) = ∅. Thus
F, V, z � �jp and F, V, y � ♦i�jp. Since y is arbitrary, we have F, V � ♦i�jp.
Therefore, ♦i�jp �

g
F �k♦lp.

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

2. Bledin, J.: Logic informed. Mind 123(490), 277–316 (2014)
3. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-

bridge (1980)
4. de Rijke, M., Sturm, H.: Global vs. local in basic modal logic. In: Proceedings of the

Nicht-Klassische Formen Der Logik Im Rahmen Des XVIII. Deutschen Kongresses
Fuer Philosophie (1999)

5. de Rijke, M., Sturm, H.: Global definability in basic modal logic. In: Wansing, H.
(ed.) Essays on Non-Classical Logic, pp. 111–135. World Scientific (2001)

6. de Rijke, M., Wansing, H.: Proofs and expressiveness in alethic modal logic. In:
Jacquette, D. (ed.) A Companion to Philosophical Logic. Blackwell Publishing
(2006)

7. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer, Berlin,
Heidelberg (1983)

132 X. Wen

8. Gillies, A.: Epistemic conditionals and conditional epistemics. Noûs 4, 585–616
(2004)

9. Goranko, V., Passy, S.: Using the universal modality. J. Log. Comput. 2(56), 203–
233 (1992)

10. Kracht, M.: Tools and Techniques in Modal Logic. Elsevier, Amsterdam (1999)
11. Kracht, M.: Modal consequence relations. In: Handbook of Modal Logic, pp. 491–

545. Elsevier (2007)
12. Ma, M., Chen, J.: Sequent calculi for global modal consequence relations. Stud.

Log. 107(4), 613–637 (2018). https://doi.org/10.1007/s11225-018-9806-8
13. Moss, L.S.: Three etudes on logical dynamics and the program of natural logic.

In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information
Dynamics. OCL, vol. 5, pp. 705–727. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06025-5_26

14. Schulz, M.: Epistemic modals and informational consequence. Synthese 174(3),
385–395 (2010)

15. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis (1983)
16. van Ditmarsch, H.: Wiebe van der Hoek, Barteld Kooi: Dynamic Epistemic Logic,

vol. 337. Springer, Netherlands, Dordrecht (2007)
17. Veltman, F.: Defaults in update semantics. J. Philos. Log. 25(3), 221–261 (1996)
18. Venema, Y.: Many-Dimensional Modal Logic. Ph.D. thesis, University of Amster-

dam (1992)
19. Willer, M.: Dynamics of epistemic modality. Philos. Rev. 122(1), 45–92 (2013)
20. Willer, M.: An update on epistemic modals. J. Philos. Log. 44(6), 835–849 (2015)
21. Yalcin, S.: Epistemic modals. Mind 116(464), 983–1026 (2007)

https://doi.org/10.1007/s11225-018-9806-8
https://doi.org/10.1007/978-3-319-06025-5_26
https://doi.org/10.1007/978-3-319-06025-5_26

Games for Hybrid Logic

From Semantic Games to Analytic Calculi

Robert Freiman(B)

Institute of Logic and Computation, TU Wien, Vienna, Austria
robert@logic.at

Abstract. Game semantics and winning strategies offer a potential con-
ceptual bridge between semantics and proof systems of logics. We illus-
trate this link for hybrid logic – an extension of modal logic that allows
for explicit reference to worlds within the language. The main result is
that the systematic search of winning strategies over all models can be
finitized and thus reformulated as a proof system.

Keywords: Hybrid logic · Games · Proof systems

1 Introduction

Games have a long and varied tradition in logic (see, for example [1,9,12]).
Building on the concepts of rational behavior and strategic thinking, they offer
a fruitful natural approach to logic, complementing the common paradigm of
model-theoretic semantics and proof systems. Game semantics goes back to
Jaakko Hintikka [8], who designed a game for two players, usually called Me
(or I) and You, seeking to establish the truth of a formula φ of first-order logic
in a model M. The game proceeds by rules for step-wise reducing φ to an atomic
formula. The winning condition depends on the truth of this atomic formula in
M. It turns out that I have a winning strategy for this game if and only if φ
is true in M. A natural question is, whether there is an algorithm for search-
ing for winning strategies for the game of φ over all models, which could thus
establish (or refute) the validity φ. One such approach are disjunctive winning
strategies allowing the players to keep track and – if necessary – revise their
choices, depending on the truth values of the atomic sentences in the current
model. This technique has been first demonstrated in [7] for Giles’ game for
�Lukasiewicz logic.

In this paper, we apply this method to the case of hybrid logic. Hybrid logic is
an extension of the possible-world semantics of “orthodox” modal logic allowing
one to explicitly refer to worlds within the object language, using nominals, while
keeping many attractive features of modal logic intact. Obviously, this increased
expressivity allows us to get a grip on many frame properties that are provably
not expressible in orthodox modal logic [2]. Apart from this, using nominals can

Research supported by FWF projects P 32684 and W 1255.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 133–149, 2021.
https://doi.org/10.1007/978-3-030-88853-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_9&domain=pdf
http://orcid.org/0000-0001-8251-4272
https://doi.org/10.1007/978-3-030-88853-4_9

134 R. Freiman

be an advantage for modelling in temporal logic [5] or in making the link between
modal logic and description logics more explicit [4]. The choice of hybrid logic
over orthodox modal logic for the development of a game-theoretic approach is a
natural one: Explicit reference of particular worlds within the language provides
conceptual clarity for the lifting of the semantic game to disjunctive strategies.

The coherence of hybrid logic with games has been demonstrated by Patrick
Blackburn, who designed a Lorenzen-style [10] dialogue game for hybrid logic [3].
Sara Negri presented the labeled proof-system G3K that resembles the semantics
of modal logic [11]. Our approach brings together the best of two worlds: it
supplements the clear semantic motivation of G3K with an accessible game-
theoretic viewpoint of Blackburn’s dialogue game with a direct semantic link.
Similar to G3K, a failed search for a disjunctive winning strategy directly gives
rise to a countermodel.

The main result of this paper addresses the following difficulty: generally,
while searching for a disjunctive winning strategy, one has to keep track of all
infinitely many possible models and (in the case of modal operators) infinitely
many possible choices. The perhaps surprising and highly non-trivial insight is,
that this search can be finitized in a way that is coherent with respect to the
semantics-provability-bridge mentioned above. This is achieved by a conceptual
reduction of choices of the opponent to an optimal choice. Thus, the search for
a disjunctive winning strategy can itself be formulated as a proof-system.

This paper is structured as follows: Sect. 2 is a recap of hybrid logic. In
Sect. 3 we present the semantic game over a model and formalize strategies. The
disjunctive game is introduced in Sect. 4, which also contains the main result.
Finally, its finitized formulation as an analytic calculus is presented in Sect. 5.

2 Preliminaries

The language of hybrid modal logic is as follows: We start from two disjoint,
countably infinite sets N (set of nominals) and P (set of propositional variables).
Nominals are usually called “i, j, k, . . . ” propositional variables are called “p,
q, . . . ” Formulas φ are built according to the following grammar:

φ ::= p | i | R(i, j) | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ | @iφ | �φ | �φ

Formulas of the form p, i and R(i, j) are called elementary. Intuitively, we can
think of the nominal i as being the name of a particular world in a model.
Hence, i is true in exactly one world. The formula @iφ stands for the fact that φ
is true in the world with name i. The relational claim R(i, j) says that the world
with name j is accessible from the world with name i. It is usually defined as
@i�j. However, we leave it as an elementary formula in order to prevent circular
definitions in the description of the game rules in the following sections.

We now define the semantics formally: A model M for hybrid modal logic is
a tuple (W,R,V, g), where

Games for Hybrid Logic 135

1. W is a non-empty set. Its elements are called worlds.
2. R ⊆ W × W is called accessibility relation. As usual, we write wRv instead of

(w, v) ∈ R. The set of accessible worlds from w are wR := {v ∈ W : wRv}.
3. V : P → P(W)1 is called valuation function.
4. g : N → W is called assignment. If g(i) = w, we say that i is a name of w, or

simply that w has a name.

Truth of formulas in the world w of W is defined recursively:2,

M,w |= p, iff w ∈ V(p),
M,w |= i, iff g(i) = w,

M,w |= R(i, j), iff g(i)Rg(j),
M,w |= φ ∧ ψ, iff M,w |= φ and M,w |= ψ,

M,w |= φ ∨ ψ, iff M,w |= φ or M,w |= ψ,

M,w |= φ → ψ, iff M,w �|= φ or M,w |= ψ,

M,w |= ¬φ, iff M,w �|= φ,

M,w |= @iφ, iff M, g(i) |= φ,

M,w |= �φ, iff for all v ∈ W, (w, v) /∈ R or M, v |= φ,

M,w |= �φ, iff for some v ∈ W,wRv and M, v |= φ.

We say that a formula φ is true in the model M and write M |= φ iff for
every world w, M,w |= φ. For a class M of models, we write M |= φ and say
that φ is valid over M iff for all M ∈ M, M |= φ. We say that φ is valid (we
write |= φ) iff φ is valid over the class of all models.

The most important class for what follows is the class of named models N.
A model is called named iff the assignment is surjective, i.e. every world has a
name. The accessibility relation in such named models is completely determined
by the truth value of the relational formulas. For these models, we can thus
state the following semantic facts about the modal operators without explicitly
referring to the semantics of the accessibility relation. Let w = g(i), then

M,w |= �φ, iff for all j ∈ N,M, g(j) |= ¬R(i, j) ∨ φ,

M,w |= �φ, iff for some j ∈ N,M, g(j) |= R(i, j) ∧ φ.

M |= φ, iff for all i ∈ N,M, g(i) |= φ.

Named models are important, since questions of validity can be reduced to ques-
tions of validity over the class of named models:

Lemma 1 (Theorem 7.29 in [2]). |= φ ⇐⇒ N |= φ.
1 P(W) denotes the power set of W.
2 Our definitions of M, w |= φ → ψ and M, w |= � φ is equivalent to the usual “if

M, wmodels φ, then M, wmodels psi” and “for all v ∈ W, if wRv, then M, v |=
φ”. Our formulations are more easily representable as game rules.

136 R. Freiman

3 A Game for Truth

The semantic game is played over a model M = (W,R,V, g) by two players, Me
and You, who argue about the truth of a formula φ at a world w. At each stage of
the game, one player acts in the role of a proponent, while the other one acts as
opponent of the claim that a formula φ is true at the world w. We represent the
situation where I am the proponent (and You are the opponent) by the game state
P,w : φ, and the situation where I am the opponent (and You are the proponent)
by O,w : φ. We add another kind of game state of the form P : φ or O : φ
representing the claim that φ is true in the whole model.
In order to completely lay down the rules of the game, we must define its game
tree, i.e. a tree whose nodes are game states and are labeled either “I” or “Y”. Each
run of the game is identified with a path through that game tree: in nodes labelled
“I” that have children, it is My choice to decide which of the children the game
continues at. It is Your choice in nodes labelled “Y”. Each run of a game ends in
a leaf state: if it is labelled “I”, I win and You lose, if it is labelled “Y”, I lose and
You win. We denote the tree rooted in the game state g by G(M, g)3. Below, we
give a recursive definition of G(g) by specifying its immediate subtrees. We give
the rules only for the case where I am in the role of proponent. The variants of
the rules where I am in the role of the opponent is obtained by switching “I” and
“Y” and “P” and “O” in the respective rule4. Note that the rules closely parallel
the recursive definition of truth of the previous section:

(R∨) If g = P,w : ψ1 ∨ ψ2, then g is labelled “I” and its immediate subtrees are
G(P,w : ψ1) and G(P,w : ψ2).

(R∧) If g = P,w : ψ1 ∧ ψ2, then g is labelled “Y” and its immediate subtrees
are G(P,w : ψ1) and G(P,w : ψ2).

(R→) If g = P,w : ψ1 → ψ2, then g is labelled “I” and its immediate subtrees
are G(O,w : ψ1) and G(P,w : ψ2).

(R¬) If g = P,w : ¬ψ, then g is labelled “I” and its immediate subtree is
G(O,w : ψ).

(R@) If g = P,w : @iψ, then g is labelled “I” and its immediate subtree is
G(P, g(i) : ψ).

(R�) If g = P,w : �ψ and wR �= ∅, then g is labelled “Y”and its immediate
subtrees are G(P, v : ψ), where v ranges over wR. If wR = ∅, then g is a leaf
labelled “I”.

(R�) If g = P,w : �ψ and wR �= ∅, then g is labelled “I” and its immediate
subtrees are G(P, v : ψ), where v ranges over wR. If wR = ∅, then g is a leaf
labelled “Y”.

(Rp) If g = P,w : p, then g is a leaf. It is labelled “I” iff w ∈ V(p).
(Ri) If g = P,w : i, then g is a leaf. It is labelled “I” iff g(i) = w.
(RR) If g = P,w : R(i, j), then g is a leaf. It is labelled “I” iff g(i)Rg(j).
(RU) If g = P : ψ, then g is labelled “Y” and its immediate subtrees are

G(P,w : ψ), where w ranges over W.
3 We often write G(g), if M is clear from context.
4 For example, for (R→), if g = O,w : ψ1 → ψ2, then g is labelled “Y” and its imme-

diate subtrees are G(P,w : ψ1) and G(O,w : ψ2).

Games for Hybrid Logic 137

Since the degree of the involved formula strictly decreases with every child,
game trees are always of finite height. This means that every run of the game
lasts only finitely many rounds.

Example 1. Consider the following model M with worlds w1, ...,w5 and the
accessibility relation represented by arrows. We write p inside the circle rep-
resenting a world w iff w ∈ V(p).

w1

pw2 = g(j)

w3

p w4

w5

Let us consider the following run of the game G(M,P,w1 : �(j ∨ ¬�p)).
First, You must choose a neighboring world. Since You know that I can defend
j at w2, let us say that You choose w3 and I must then defend j ∨ ¬�p at w3.
Clearly, I will choose the second disjunct. According to the rule of negation, now
a role switch occurs: I am now the Opponent and You the Proponent of �p at
w3. Hence, I must choose a neighboring world and You must defend p there. As
My choice is between the p-world w4 and the non-p-world w5, I will choose w5

and win the game. We can represent this run of the game as the following path:

[P,w1 : �(j ∨ ¬�p)]Y

[P,w3 : (j ∨ ¬�p)]I

[P,w3 : ¬�p]I

[O,w3 : �p]Y

[O,w5 : p]I

The whole game tree represents all possible choices of the two players at any
point:

138 R. Freiman

[P,w1 : �(j ∨ ¬�p)]Y

[P,w2 : (j ∨ ¬�p)]I

[P,w2 : j]I [P,w2 : ¬�p]I

[O,w2 : �p]Y

[P,w3 : (j ∨ ¬�p)]I

[P,w3 : j]Y [P,w3 : ¬�p]I

[O,w3 : �p]I

[O,w4 : p]Y [O,w5 : p]I

I cannot win in the state O,w2 : �p, because there are no neighbors of w2.
Although not all possible runs of a game end in a winning state for Me, I can
make choices that will guarantee that the game will end in My victory. Generally,
if I can always enforce a given game to end in a winning state for Me, we say
that I have a winning strategy for that game. We will make this notion more
formal in the following subsection.

Winning Strategies

To precisely describe the scenario where I can enforce that the game ends in a
winning state for Me, we need the notion of a winning strategy:

Definition 1. A strategy5 for Me for the game G(M, g) is a subtree obtained
by removing from the game tree all but one children from every non-leaf node
labelled “I”. A strategy for Me is winning if all leaf states are labelled “I”.
(Winning) strategies for You are defined symmetrically.

Example 2. Continuing the game from Example 1, we can now make precise
our observation that I can make choices such that the game will always end in
winning states for Me. A winning strategy for Me for G(P,w1 : �(j ∨ ¬�p))
can be found in Fig. 1.

Theorem 1. Let M be a model and w a world.

1. I have a winning strategy for G(M,P,w : φ) iff M,w |= φ.
2. I have a winning strategy for G(M,O,w : φ) iff M,w �|= φ.
3. I have a winning strategy for G(M,P : φ) iff M |= φ.

To prove the theorem we use the following basic lemma showing that having
a winning strategy for G(M,P,w : φ) and G(M,O,w : φ) is exclusive.

Lemma 2. I have a winning strategy for G(M,P,w : φ) iff I do not have a
winning strategy for G(M,O,w : φ).

5 This deviates from the standard, more general game-theoretic definition of a winning
strategy. It is sufficient for our purposes.

Games for Hybrid Logic 139

Fig. 1. A winning strategy for G(P,w1 : �(j ∨ ¬�p))

Proof. By induction on φ.

Proof (of Theorem 1). 2 follows from 1 in the obvious way. By Lemma 2, it
suffices to show only 1. We show both directions simultaneously by induction on
φ. If φ is atomic, everything follows from the definition of a winning state. Let
us show some of the inductive steps: if φ is of the form ψ ∧ χ, then I have a
winning strategy for G(M,P,w : ψ ∧ χ) iff I have winning strategies for both
G(M,P,w : ψ) and G(M,P,w : χ). By induction hypothesis, this is the case
iff M,w |= ψ and M,w |= χ, which in turn is equivalent to M,w |= ψ ∧ χ.

As for modal operators, I have a winning strategy for G(M,P,w : �ψ) iff for
all successors v of w, I have a winning strategy for G(M,P, v : ψ). By induction
hypothesis, this is the case iff M, v |= ψ. Since v is an arbitrary successor of
w, this is equivalent to M,w |= �ψ. Note that this also covers the trivial case,
where there are no successors of w.

Lemma 2 is needed for the case of negation: I have a winning strategy for
G(M,P,w : ¬ψ) iff I have a winning strategy for G(M,O,w : ψ). By the
lemma, this is the case iff I do not have a winning strategy for G(M,P,w : ψ).
By induction hypothesis, this is the case iff M,w �|= ψ iff M,w |= ¬ψ.

We conclude this section with an important observation about the game for
named models. Remember that in a named model, every world w has a name
i, i.e. g(i) = w. Therefore, it is unambiguous, if we write Q, i : φ for the game
state Q,w : φ. This, together with the fact that M |= R(i, j) iff g(i)Rg(j) gives
us the following equivalent formulations of the rules (R�), (R�) and (RU):

(R�) If g = P, i : �ψ, then g is labelled “Y” and its immediate subtrees are
G(P, j : ¬R(i, j) ∨ ψ), where j ranges over the nominals.

(R�) If g = P, i : �ψ, then it is labelled “I” and its immediate subtrees are
G(P, j : R(i, j) ∧ ψ), where j ranges over the nominals.

(RU) If g = P : ψ, then it is labelled “Y” and its immediate subtrees are
G(P, i : ψ), where i ranges over the nominals.

140 R. Freiman

From now on, we will tacitly assume that all models are named. This is
justified by Lemma 1. Also, we will only use the reformulations from above. We
will shortly see the advantages of these reformulations.

4 A Game for Validity

In this section we develop a so-called disjunctive game [7] to model validity of
a formula φ. Intuitively, the idea is to play all possible games rooted in a game
state g at once. This is only possible using the reformulations of the rules (R�),
(R�) and (RU): if we stick to those variants, the structure of the model does not
affect the shape of the game tree anymore. To be more precise, if M1 and M2

are two models, then the game trees for G(M1, g) and G(M2, g) are identical,
except maybe for the labelling of leaf states.

We have thus a uniform game tree and truth values become important only
at the leafs. Consequently, we can design the disjunctive game as a two-player
game. We might think of the two players as being the same as in the semantic
game and correspondingly call them Me and You. In order to compensate Me
for having to play “blindly” in a game state g, i.e. without being guided by truth
within a particular model, we allow Me to add backtracking points g

∨
g. The

idea is that this allows Me to first play on the left copy of g and, in case of
failure, change to right backup copy. In general, game states of the disjunctive
game are thus of the form D = g1

∨
g2

∨
....

∨
gn, where the gi are game states

of the semantic game. According to our interpretation, such a disjunctive game
state stands for the fact that for every model M, I have a winning strategy for
G(M, g1) or for G(M, g2) ... or for G(M, gn)6.

Another ingredient is necessary: to determine who is to move at a disjunctive
game state D, we introduce regulation functions. A regulation function ρ maps
non-elementary7 disjunctive states to one of its non-elementary game states gi.

Formally, we identify the disjunctive game specified by the regulation ρ and
starting in the state D with its game tree DG(D, ρ)8. It is defined recursively
by specifying its immediate subtrees:

– If ρ(D
∨

g) = g and g is labelled “Y”, then so is D
∨

g. Its immediate subtrees
are DG(D

∨
g′, ρ), where g′ ranges over all children of g in G(g).

– If ρ(D
∨

g) = g and g is labelled “I”, then so is D
∨

g. Its immediate subtrees
are the following:

• DG(D
∨

g′, ρ), where g′ ranges over all children of g in G(g).
• The subtree DG(D

∨
g

∨
g)9. We say that D

∨
g

∨
g is obtained by dupli-

cating g.
6 Unless noted otherwise, we identify a disjunctive state with the multiset of its game

states. This implies that we consider two disjunctive states to be equal if they contain
the same game states in the same numbers.

7 A disjunctive state is called elementary if all its game states are elementary, i.e. they
involve only elementary formulas.

8 If ρ is clear from context (or not important), we conveniently write DG(D).
9 Due to this rule, the game may continue forever.

Games for Hybrid Logic 141

– If D = g1
∨

...
∨

gn is elementary, then it is labelled “I”, if for every model
M, there is some i such that gi is labelled “I” in G(M, gi). Otherwise, it is
labelled “Y”.

Example 3. The simplest example to illustrate and explain the idea of disjunctive
states is the game DG(P : p ∨ ¬p). Obviously, I have a winning strategy for
G(M,P : p ∨ ¬p) for every model M.

In the first round of DG(P : p ∨ ¬p), You choose a nominal i and the
game proceeds with the state P, i : p ∨ ¬p (You made Your choice according
to the rule (RU)). Now I have two options: The first is to continue the game
with either P, i : p or with P, i : ¬p (according to (R∨)). But both choices
are bad: the first one, because there are models M with M, g(i) �|= p and the
second, because there are models N with N , g(i) �|= ¬p. This is where the second
option comes in: I duplicate the state P, i : p ∨ ¬p and the game continues with
(P, i : p ∨ ¬p)

∨
(P, i : p ∨ ¬p).

A regulation function will choose one of the two (say the left one). Now I can
choose to continue the game with (P, i : p)

∨
(P, i : p ∨ ¬p). In the next round,

the game continues with the right disjunct, and I play (P, i : p)
∨

(P, i : ¬p).
Finally, the game arrives at (P, i : p)

∨
(O, i : p) and I win.

The rest of this section is dedicated to proving that this game indeed ade-
quately models validity. Let us call a disjunctive state D = g1

∨
...

∨
gn game

valid, if for every model M, there is some i such that I have a winning strategy
in G(M, gi). D is called winning if there is a regulation ρ such that I have a
winning strategy for DG(D, ρ).

Theorem 2. Every disjunctive state is game valid iff it is winning.

In light of Theorem 1, we immediately get the following proposition:

Proposition 1. The formula φ is valid iff P : φ is winning.

Theorem 2 suffers from what Johan van Benthem calls “∃-sickness” [1]. How-
ever, our proof will offer a more constructive formulation: (1) There is a direct
construction of winning strategies witnessing the game validity of D from a
winning strategy for Me in DG(D). (2) There is a construction of a particular
strategy σ of Me and a regulation ρ with the following property: If σ is not
winning in DG(D, ρ), then one can extract a model M and winning strategies
for You for all G(M, g), where g ∈ D.10. We will now prove (1) and leave (2)
for the next subsection.

Proof (of Theorem 2, right-to-left). Let σ be a winning strategy for DG(D0, ρ).
We show by upwards-tree-induction on σ that every D appearing in σ is game
valid.

10 If one changes the disjunctive game such that infinite runs are considered winning for
You, then one can extract the model and the strategies from Your winning strategy
in DG(D, ρ).

142 R. Freiman

If D is elementary, then it is valid, since σ is winning. Let us deal with some
exemplary cases of the inductive step. Let us start with two cases, where it is
My choice: If D

∨
g

∨
g is valid and is obtained from D

∨
g by duplication of g,

then clearly D
∨

g is valid too.
Let D

∨
(P, i : �ψ) appear11 in σ and its child be D

∨
(P, j : R(i, j)∧ψ). Let

M be a model. If there is a state g′ of D such that I have a winning strategy
in G(M, g′), then this state appears in D

∨
g and there is nothing to show. We

will omit this trivial subcase in the other cases. If I have a winning strategy
μ for G(M,P, j : R(i, j) ∧ ψ), then I have the following winning strategy for
G(M,P, i : �φ): choose the (world corresponding to the) nominal j in the first
round. The game then continues with G(M,P, j : R(i, j) ∧ ψ), where I can use
μ to win.

We check three cases where it is Your move: if D
∨

(P : ψ) appears in σ then
its children are of the form D

∨
(P, i : ψ), where i ranges over the nominals. If I

have a winning strategy μi for every G(P, i : ψ), then, since M is named, I have
a winning strategy for G(P : ψ): By the rule (RU), You must choose a nominal
i in the first move. The game then proceeds with G(P, i : ψ) and I can use μi

to win the game.
If D

∨
(P, i : ψ1 ∧ ψ2) appears in σ, then its children are D

∨
(P, i : ψ1)

and D
∨

(P, i : ψ2). If M is a model such that I have winning strategies μ1

for G(M,P, i : ψ1) and μ2 for G(M,P, i : ψ2), then I can use them to win
G(M,P, i : ψ1 ∧ ψ2).

If D
∨
P, i : �ψ appears in σ, then its children are D

∨
(P, j : ¬R(i, j) ∨ ψ),

where j ranges over the nominals. If I have a winning strategy μi for every
G(M,P, j : ¬R(i, j) ∨ ψ), then I can use them similarly to the above to win
G(M,P, i : �ψ).

The Best Way to Play

In this subsection we will construct a regulation ρ0 and a strategy σ for Me for
the game DG(D0, ρ0) such that σ is guaranteed to be winning, if D0 is game
valid. Intuitively, the idea is as follows: In order to prevent bad choices, every
time I must move I will use the duplication rule first. This way I can always
come back to have another shot. The trick is now to systematically exploit all
possible choices. Playing this way ensures Me to always take a good choice, if
there is one. Here is an exact formulation of this construction:

Construction of the Strategy σ. Let Del be the disjunctive state obtained
from D by removing all non-elementary game states. Let # be an enumeration
of triples 〈D, g, i〉, where D is a non-elementary disjunctive state, g is a non-
elementary game state and i is a nominal, and such that every triple appears in
that enumeration infinitely often. We build a tree rooted in D0 according to the
following procedure:

11 In this proof, we conveniently write D
∨

g to indicate that ρ(D
∨

g) = g.

Games for Hybrid Logic 143

1. Add D0 as a root of the tree.
2. For every n = #(D, g, i), if D

∨
g is a leaf:

(a) If You move in G(g), then add as successors to D
∨

g all of Your pos-
sible moves D

∨
g′. For example, the successors of D

∨
(P, i : φ ∧ ψ) are

D
∨
P, i : φ and P, i : ψ. The successors of D

∨
(P : φ) are D

∨
(P, i : φ),

for every nominal i.
(b) If I move in G(g) and Del is game valid, then add to D

∨
g an arbitrary

move D
∨

g′ of Me.
(c) If I move in G(g) and Del is not valid, then add to D

∨
g the child

D
∨

g
∨

g. Afterwards, if there are only two options g1 and g2 for Me in
G(g), then add as a child D

∨
g1

∨
g and as its child D

∨
g1

∨
g2. For

example, for D
∨

(P, i : φ ∨ ψ), the tree looks as follows:

D
∨

(P, i : φ ∨ ψ)

D
∨

(P, i : φ ∨ ψ)
∨

(P, i : φ ∨ ψ)

D
∨

(P, i : φ)
∨

(P, i : φ ∨ ψ)

D
∨

(P, i : φ)
∨

(P, i : ψ)

If there are infinitely many options in G(g), then they are parametrized
by the nominals. For example, in P, j : �φ, I must choose between P, k :
R(i, k) ∧ φ, where k ranges over the nominals. We first add D

∨
g

∨
g as

a child to D
∨

g. Afterwards we add as a child D
∨

g
∨

g(i), where g(i) is
the game state given by nominal i. In our example, for D

∨
(P, j : �φ), we

add D
∨

(P, i : �φ)
∨

(P, j : �φ) and D
∨

(P, j : �φ)
∨

(P, i : R(i, j) ∧ φ).

The outline of the rest of the proof is as follows: If σ, as constructed above,
is not a winning strategy, then there is at least one path π through σ rooted
at D0, such that π does not end in a game valid elementary leaf. This means
that π either ends in a non-valid leaf or is infinite. We will now define a model
Mπ with the property that I do not have a winning strategy for G(Mπ, g), for
any game state g appearing along π12. We call a model with this property a
π-countermodel.

Definition 2. Let Dn
π be the n-th node in the path π and let us define the relation

i ∼n
π j between two nominals i and j iff O, i : j or O, j : i appear in Dn

π . Let ≈n
π

be the symmetric, reflexive and transitive closure of ∼n
π. Let i ≈π j, iff for some

n, i ≈n
π j. We write [i] for the equivalence class of i. Since the elementary parts

of the nodes accumulate in the course of π, we have for each n, ≈n
π⊆≈n+1

π ⊆≈π

(if the length of π is at least n + 1). We define the following named model Mπ:

12 We say that a game state g appears along π, if it occurs as part of a disjunctive state
in π.

144 R. Freiman

– Worlds: Equivalence classes of nominals,
– Accessibility relation Rπ: We have [i]Rπ[j] iff for some i′ ∈ [i] and j′ ∈ [j],

k ∈ N , O, k : R(i′, j′) appears along π.
– Valuation function Vπ: [i] ∈ Vπ(p) iff for some i′ ∈ [i], O, i′ : p appears in π.
– Assignment gπ: gπ(i) = [i].

The following lemma shows that the definition of the equivalence relation is
not arbitrary: In every π-countermodel of Di

π equivalent nominals must name
the same worlds.

Lemma 3. Let M be a π-countermodel of Dn
π . Then M respects the equivalence

≈n
π: If i ≈n

π j, then g(i) = g(j).

Proof. Let i ∼n
π j. Then either O, i : j or O, j : i appear in Dn

π . Either way, to
be a π-countermodel, M must satisfy g(i) = g(j). The result for the symmetric,
reflexive and transitive closure follows from the corresponding properties of =.

Lemma 4. If g appears along π, then You have a winning strategy for
G(Mπ, g).

Proof. We show the lemma by induction on G(g). The elementary cases where
g is of the form O, i : φ are clear. Assume g = P, i : p appears along π, but
Mπ, [i] |= p. The latter implies that for some j ∈ [i], O, j : p appears along π.
Since the elementary states of π are accumulative, there is a disjunctive state
D in π containing the three states P, i : p, O, j : p and one of O, i : j or
O, j : i. Clearly, there is no model M satisfying M, g(i) �|= p, M, g(j) |= p and
g(i) = g(j) at the same time. Thus, I could have easily won the game starting
at D, a contradiction to the fact that σ is not a winning strategy for Me in
DG(D, ρ). The cases for P, k : R(i, j) and P, i : j are similar.

Let us show some of the inductive steps: For the inductive step, suppose
g = P, i : ψ1 ∨ ψ2 appears along π. By construction, both O, i : ψ1 and O, i : ψ2

appear along π. By inductive hypothesis, You have winning strategies μ1 and μ2

for G(Mπ,P, i : ψ1) and G(Mπ,P, i : ψ2) respectively. You can easily combine
them to obtain a winning strategy for G(Mπ,P, i : ψ1 ∨ψ2): in the first round I
choose to continue the game with G(Mπ,P, i : ψk) and You can use μk to win.

If g = P, i : ψ1 ∧ ψ2 appears along π, then by construction, at least one of
P, i : ψ1 and P, i : ψ2 appears along π. Without loss of generality, let P, i : ψ1

appear along π. By inductive hypothesis, You have a winning strategy μ for
G(Mπ,P, i : ψ1). Hence, You can win G(Mπ,P, i : ψ1∧ψ2) by choosing P, i : ψ1

in the first round and continuing along μ1.
If P : ψ appears along π, then by construction, there is a nominal i such that

P, i : ψ appears along π. By inductive hypothesis, You have a winning strategy
μ for G(Mπ,P, i : ψ). But then You can also win G(Mπ,P, ψ) by choosing i
in the first round and continuing according to μ.

If P, i : �ψ appears along π, then for every j, also P, j : R(i, j) ∧ ψ
appears along π. By inductive hypothesis,You have a winning strategy μj for
G(Mπ,P, j : R(i, j) ∧ ψ) for every j. Clearly, You can combine them to a
winning strategy for G(Mπ, i : �ψ).

Games for Hybrid Logic 145

Proof (of Theorem 2, left-to-right). By contraposition: If D0 is not winning, then,
in particular, σ from above is not a winning strategy for DG(D0, ρ0). Let π be a
path through σ rooted at D0, such that π does not end in a valid elementary leaf.
By Lemma 4, You have a winning strategy for G(Mπ, g) for every g appearing
along π. In particular, You have a winning strategy for all G(Mπ, g), where g
is in D0. Hence, D0 is not game valid.

5 From Strategies to Proof Systems

Proposition 1 shows that a regulation ρ and a winning strategy for Me in the
game DG(P : φ) can be interpreted as a proof of φ. However, due to the rules
(RU), (R�) and (R�), this proof may be infinitely branching. In the following
we will remedy this and give a finitized version of the disjunctive game.

5.1 Your Optimal Choices or How to Achieve Finite Branching

The idea is to use eigenvariables, similar to sequent calculi: for example, I should
be able to win DG(D

∨
(P, i : �φ), ρ) iff I can win DG(D

∨
(P, j : ¬R(i, j) ∨

φ), ρ), if j stands for “an arbitrary nominal”. We may interpret this j as Your
optimal choice. In technical terms, this translates into the condition that j does
not appear in the state D

∨
(P, i : �φ).

Proposition 2. Let D be any disjunctive state.

1. P : φ is winning iff P, i : φ is winning, where i is a nominal not occurring in
φ.

2. D
∨

(P, i : �φ) is winning iff D
∨

(P, j : ¬R(i, j) ∨ φ) is winning, where j is
a nominal not occurring in D

∨
(P, i : �φ).

3. D
∨

(O, i : �φ) is winning iff D
∨

(O, j : R(i, j) ∧ φ) is winning, where j is a
nominal not occurring in D

∨
(O, i : �φ).

Proof (sketch). Let us show 2: Let σ be a winning strategy for Me for the game
DG(D

∨
(P, j : ¬R(i, j) ∨ φ), ρ). Then the tree rooted in D

∨
(P, i : �φ) with σ

as its immediate subtree defines a winning strategy for Me for DG(D
∨

(P, i :�φ), ρ′), where ρ′ is the same as ρ except that ρ′(D
∨

(P, i : �φ)) = P, i : �φ.
If D

∨
(P, i : �φ) is not winning, then, by Theorem 2, there is a model

M = (W,R,V, g) such that You have winning strategies for all G(M, g) for
g ∈ D and for G(M,P, i : �φ). In particular, You have a winning strategy
for G(M,P, k : ¬R(i, k) ∨ φ) for some nominal k. Since truth of a formula in
a model does not depend on nominals not appearing in that formula, we may
assume that You have winning strategies for all G(M′, g) for g ∈ D and for
G(M′,P, i : �φ). Here M′ = (W,R,V, g′) is the same as M, except for g′: it
agrees with g on all nominals appearing in D and φ, but g′(j) = g(k). Now You
have a winning strategy for G(M′,P, j : ¬R(i, j) ∨ φ).

146 R. Freiman

5.2 The Proof System DS

We are now ready to formulate the sequent calculus DS (Fig. 2). We say that a
string i : φ consisting of a hybrid logic formula φ and a nominal i is a labelled
formula and we call an object Γ � Δ, where Γ and Δ are multisets of formulas
and labelled formulas, a sequent. A disjunctive state D can be rewritten as a
sequent Γ � Δ in the following way: Γ comprises all (labeled) formulas with the
prefix O in D and Δ comprises all (labeled) formulas with the prefix P in D.
For example, the disjunctive game state O, i : �p

∨
P : p becomes the sequent

i : �p � p. There is thus a 1-1 correspondence between sequents and disjunctive
states.

Apart from the encoding of disjunctive states as sequents and the traditional
bottom-up notation of proof trees, proofs in DS exactly correspond to My win-
ning strategies in the disjunctive game: the order of rule application defines a
regulation function and determines My moves in the strategy, branching in the
proof tree corresponds to branching in the winning strategy, i.e. Your possi-
ble moves. Infinitary branching is modified according to the discussion in the
previous subsection. Duplication in the game takes the form of left and right
contraction rules. The base rules are exactly the (encoding13 of) valid disjunc-
tive elementary states and thus winning for Me. Using this correspondence we
immediately get the following results:

Proposition 3. � φ is provable in DS iff P : φ is winning.

Theorem 3. � φ is provable in DS iff |= φ.

The calculus DS takes a familiar form: The rules for the logical connectives
are the (labeled) versions of the usual propositional rules of sequent calculus for
classical logic. The modal operator rules come in the form of their first-order
translations. Apart from the axioms, DS can be therefore seen as a fragment
of the usual sequent system for first-order logic. In turn, DS is an extension of
the sequent calculus G3K [11] to hybrid logic. Similarly to G3K, a failed proof
search in DS directly gives rise to a countermodel. This follows from our proof
of the left-to-right direction of Theorem 2, where the the explicit countermodel
Mπ was constructed.

Example 4. The rule

Γ, i : φ � i : ψ,Δ
(R→)

Γ � i : φ → ψ,Δ

is derivable. This can be seen using the rules (R1
→), (R2

→) and (CR). Let us
show how to prove i : �(p ∧ q) � i : �p in DS:

13 We say that Γ � Δ is elementary iff its associated disjunctive state is. Similarly,
Γ � Δ is called valid, if its associated disjunctive state is game valid.

Games for Hybrid Logic 147

Fig. 2. The proof system DS

148 R. Freiman

j : R(i, j) � j : R(i, j)
(R¬)� j : ¬R(i, j), j : R(i, j)
(L¬)

j : ¬R(i, j) � j : ¬R(i, j)
(R2

∨)
j : ¬R(i, j) � j : ¬R(i, j) ∨ p

j : p � j : p
(R2

∨)
j : p � j : ¬R(i, j) ∨ p

(L1
∧)

j : p ∧ q � j : ¬R(i, j) ∨ p
(L∨)

j : ¬R(i, j) ∨ (p ∧ q) � j : ¬R(i, j) ∨ p
(L�)

i : �(p ∧ q) � j : ¬R(i, j) ∨ p
(R�)

i : �(p ∧ q) � i : �p

The proof of i : �(p ∧ q) � i : �q looks similar. We can use both to give a
proof of �(p ∧ q) → (�p ∧ �q):

i : �(p ∧ q) � i : �p i : �(p ∧ q) � i : �q
(R∧)

i : �(p ∧ q) � i : �p ∧ �q
(R→)� i : �(p ∧ q) → (�p ∧ �q)
(RU)� �(p ∧ q) → (�p ∧ �q)

Remark 1. The above example demonstrates the importance of the regulation
function ρ for the disjunctive game: the proof of i : �(p ∧ q) � i : �p relies
on the possibility to expand the left-hand side before the right one. In game-
theoretic terms, I have a winning strategy for DG(D, ρ), where D = O, i :�(p ∧ q)

∨
P, i : �p and ρ(D) = O, i : �(p ∧ q). If, on the other hand, ρ does

never pick O, i : �(p∧q) (unless it has to), then I do not have a winning strategy
in the corresponding game. This complication does not arise in disjunctive games
where the set of actions is finite, for example [7]. Intuitively the idea there is for
Me to duplicate and exhaustively make one choice after the other. After finitely
many rounds, all the possible actions have been played and I can be sure to
have played a good one, if there is any. It is clear that in general, this strategy
does not work in the infinite case.

6 Conclusion and Future Work

In this paper, we developed a semantic game for hybrid logic and proved its
adequacy: I have a winning strategy in the game of φ at world w over the model
M iff M,w |= φ. We proved that a version of the disjunctive game [7] models
validity in hybrid logic adequately.

In this paper, we have only looked at game-theoretic modelling of validity
in basic hybrid logic. However, hybrid language allows us to characterize many
classes of frames that lie beyond the expressivity of orthodox modal logic [2].
In the future, we plan to make use of this feature and present an interesting
extension of the disjunctive game for hybrid logic to model validity over classes
of frames characterizable in hybrid language and investigate the connections to
Blackburn’s dialogue game [2].

Our aim, however, was not only to give game-theoretic characterizations of
truth in a model and validity, but to do so in a way that allows for a natural lifting

Games for Hybrid Logic 149

of the first to the second: the disjunctive game corresponds to simultaneously
playing the semantic game over all possible models. The search for a winning
strategy, in turn, can be straightforwardly formulated as an analytic calculus.

The lifting of semantic games to analytic calculi via a disjunctive game has
been demonstrated on the propositional level for classical logic, �Lukasiewicz
logic and Gödel logic [6,7]. Our approach is the first to deal with infinitely many
possible actions and we are keen to extend the known results to the first-order
case of the above logics. Ultimately, the liftings rely on similar game-theoretic
properties of the semantic and the corresponding disjunctive game. We plan to
develop a powerful general lifting algorithm by exploiting, on an abstract level,
the relevant features of these similarities.

References

1. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2014)
2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press, Cambridge (2002). https://
books.google.at/books?id=gFEidNVDWVoC

3. Blackburn, P.: Modal logic as dialogical logic. Synthese 127, 57–93 (2001). https://
doi.org/10.1023/A:1010358017657

4. Blackburn, P., Tzakova, M.: Hybridizing concept languages. Ann. Math. Artif.
Intell. 24, 23–49 (2000). https://doi.org/10.1023/A:1018988913388

5. Blackburn, P., Tzakova, M., Gargov, I.: Hybrid languages and temporal logic. Log.
J. IGPL 7, 27–54 (1999). https://doi.org/10.1093/jigpal/7.1.27

6. Fermüller, C., Lang, T., Pavlova, A.: From truth degree comparison games to
sequents-of-relations calculi for Gödel logic. In: Reformat, M.-J., et al. (eds.) IPMU
2020. CCIS, vol. 1237, pp. 257–270. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50146-4 20

7. Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of �Lukasiewicz
logic. Stud. Log.: Int. J. Symb. Log. 92(1), 27–61 (2009). http://www.jstor.org/
stable/40269050

8. Hintikka, J.: Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, Oxford (1973)

9. Hodges, W., Väänänen, J.: Logic and games. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall
2019 edn. (2019)

10. Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft
(1978)

11. Negri, S.: Kripke completeness revisited. In: Primiero, G. (ed.) Acts of Knowledge:
History, Philosophy and Logic, pp. 233–266. College Publications (2009)

12. Väänänen, J.: Models and Games. Cambridge Studies in Advanced Mathemat-
ics, Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/
CBO9780511974885

https://books.google.at/books?id=gFEidNVDWVoC
https://books.google.at/books?id=gFEidNVDWVoC
https://doi.org/10.1023/A:1010358017657
https://doi.org/10.1023/A:1010358017657
https://doi.org/10.1023/A:1018988913388
https://doi.org/10.1093/jigpal/7.1.27
https://doi.org/10.1007/978-3-030-50146-4_20
https://doi.org/10.1007/978-3-030-50146-4_20
http://www.jstor.org/stable/40269050
http://www.jstor.org/stable/40269050
https://doi.org/10.1017/CBO9780511974885
https://doi.org/10.1017/CBO9780511974885

Verifying the Conversion into CNF
in Dafny

Viorel Iordache and Ştefan Ciobâcă(B)

Alexandru Ioan Cuza University, Iaşi, Romania

Abstract. We present two computer-verified implementations of the
CNF conversion for propositional logic. The two implementations are
fully verified: functional correctness and termination is machine-checked
using the Dafny language for both. The first approach is based on repeat-
edly applying a set of equivalences and is often presented in logic text-
books. The second approach is based on Tseitin’s transformation and is
more efficient. We present the main ideas behind our formalization and
we discuss the main difficulties in verifying the two algorithms.

1 Introduction

Several computer-checked solvers for the boolean satisfiability problem have
emerged relatively recently [5,9,18,22]. Most SAT solvers work with CNF-SAT,
where the input formula is known to be in conjunctive normal form. This is not a
limitation, since efficient algorithms to find the CNF of any formula are known.
In this article, we address the problem of finding the CNF of a formula and we
verify in the Dafny [15] language1 two such algorithms.

The first approach that we verify is based on the standard textbook algorithm
of applying a series of equivalences from left to right as long as possible. We work
with the following nine equivalences:

(1) ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1); (2) ϕ2 ⇒ ϕ1 ≡ ¬ϕ1 ∨ ϕ2

(3) ϕ1 ∨ (ϕ2 ∧ ϕ3) ≡ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3);
(4) (ϕ2 ∧ ϕ3) ∨ ϕ1 ≡ (ϕ2 ∨ ϕ1) ∧ (ϕ3 ∨ ϕ1);

(5) ϕ1 ∨ (ϕ2 ∨ ϕ3) ≡ (ϕ1 ∨ ϕ2) ∨ ϕ3; (6) ϕ1 ∧ (ϕ2 ∧ ϕ3) ≡ (ϕ1 ∧ ϕ2) ∧ ϕ3;
(7) ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2; (8) ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2; (9) ¬¬ϕ ≡ ϕ.

The first two equivalences remove implications and double implications,
equivalences three and four distribute disjunctions over conjunctions, equiva-
lences five and six associate parentheses in a standard form and the last three
are used to push negations towards the leaves.

This approach has two advantages: it is simple and it does not introduce new
variables. However, the disadvantage is that certain classes of formulae, such as
(x1 ∧ x′

1) ∨ (x2 ∧ x′
2) ∨ . . . ∨ (xn ∧ x′

n) (n ≥ 1), lead to exponentially large CNFs.
1 We assume some familiarity with a system such as Dafny [15] or Why3 [6]. We give

a very brief overview of Dafny in Appendix A for readers unfamiliar with Dafny.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 150–166, 2021.
https://doi.org/10.1007/978-3-030-88853-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_10

Verifying the Conversion into CNF in Dafny 151

First Contribution. We verify in Dafny that an algorithm based on applying
the nine equivalences above is functionally correct. The most difficult part is to
prove termination, for which we use a carefully designed 5-tuple as a variant. To
our knowledge, this is incidentally the first proof (paper or computer-checked)
of termination of the nine rules. Indeed, in all logic textbooks that we surveyed,
termination is only proved for a certain strategy (first applying rules 1 and 2,
then finding a NNF using rules 7–9, etc.) of applying the rules. The interest into
this is of theoretical interest, since other strategies (such as bringing the formula
into NNF first) are easier to prove.

The second approach that we verify is a so-called definitional CNF [12] based
on Tseitin’s2 transformation [24]. The idea is to create fresh boolean variables for
each subformula. Each such fresh variable is constrained, by using carefully cho-
sen clauses in the resulting CNF, to be equivalent to its associated subformula.
This approach produces a CNF that is linear in the size of the given formula,
with the theoretical disadvantage that the CNF is only equisatisfiable with the
initial formula (not equivalent in general).

Second Contribution. We verify an implementation of Tseitin’s transformation in
Dafny. The main difficulty is to find the right inductive invariant. There are also
some technical difficulties with the verification: our implementation pushes the
prover to its limits and requires carefully designed lemmas, helper predicates,
and assertions in order to verify successfully. For this approach, termination
is established by Dafny automatically, since the function is recursive on the
formula ADT. To our knowledge, this is the first auto-active proof of Tseitin’s
transformation.

Paper Structure. In Sect. 2 we present our verified implementation of the
textbook-based CNF transformation and in Sect. 3 we present our verified imple-
mentation of Tseitin’s transformation. In Sect. 4 we discuss related work and in
Sect. 5 we conclude and discuss potential future work. There are two appendices:
in Appendix A we give a very short overview of Dafny and in Appendix B we
discuss the structure of our Dafny development. The Dafny development is avail-
able at https://github.com/iordacheviorel/cnf-dafny. We only present the most
important parts of the development, which are necessary in order to understand
our approach.

2 The Textbook Conversion into CNF

We describe our verified implementation of the textbook CNF transformation.

2.1 Data Structures

We represent boolean formulas as instances of the following algebraic data type:
datatype FormulaT = Var(val : int) | Not(f1 : FormulaT)

| And(f1 : FormulaT , f2 : FormulaT) | Implies(f1 : FormulaT , f2 : FormulaT)

| Or(f1 : FormulaT , f2: FormulaT) | DImplies(f1 : FormulaT , f2 : FormulaT)

2 Also spelled Tseytin.

https://github.com/iordacheviorel/cnf-dafny

152 V. Iordache and Ş. Ciobâcă

We note that all standard logical connectives are available, that the con-
nectives have a fixed arity, and that variables are represented by non-negative
integers. The fact that variables are represented by non-negative integers is not
encoded into the datatype; instead, we follow the standard Dafny practice of
checking this as a precondition to all functions/methods computing with formu-
lae by using a predicate that we call validFormulaT. We often require to know
not merely that a formula is syntactically valid, but also to know that it contains
at most n variables. For this purpose, we use a predicate variablesUpTo. We
define truthValue to compute the truth value of a formula in a given assignment:

function method truthValue(f: FormulaT , assignment : seq <bool >) : bool

decreases f; requires variablesUpTo(f, |assignment |);

{ match f {

case Var(val) ⇒ assignment[val]

case Not(f1) ⇒ ¬truthValue(f1 , assignment)

case And(f1 ,f2) ⇒ truthValue(f1 ,assignment) ∧ truthValue(f2 ,assignment)

[. . .] } }

Truth assignments are represented as sequences of booleans (seq<bool>) that
have sufficiently many elements to account for all variables in the formula, hence
the requires variablesUpTo(f, |assignment|) precondition. As the truth
value of a formula is used both in the specification and in the implementation
of the algorithm, we declare it as a function method.

We define the predicate equivalent to check equivalence of two formulae:
predicate equivalent(f1 : FormulaT , f2 : FormulaT)

requires validFormulaT(f1) ∧ validFormulaT(f2);

{ ∀ tau : seq <bool > • variablesUpTo(f1 ,|tau|) ∧ variablesUpTo(f2 ,|tau|)

=⇒ truthValue(f1 , tau) = truthValue(f2 , tau) }

The predicate checks that the truth values of the two formulae are the same
in any (sufficiently large) truth assignment.

2.2 Algorithm

We implement the CNF conversion algorithm using three methods:

• The method applyAtTop takes a formula and tries to apply one of the nine
equivalence rules at the root of the formula. If it fails, the formula is returned
unchanged.

method applyAtTop(f: FormulaT , ghost orsAbvLft: int , ghost andsAbvLft: int)

returns (r : FormulaT) decreases f;

requires orsAbvLft ≥ 0 ∧ andsAbvLft ≥ 0 ∧ validFormulaT(f);

ensures validFormulaT(r) ∧ equivalent(f, r);

ensures f = r =⇒ ¬f.Implies? ∧ f = r =⇒ ¬f.DImplies ?;

ensures r = f ∨ Utils.smaller(measure(r, orsAbvLft , andsAbvLft),

measure(f, orsAbvLft , andsAbvLft));

{ match f {

case DImplies(f1 , f2) ⇒ { r := applyRule1(f, orsAbvLft , andsAbvLft); }

case Implies(f1 , f2) ⇒ { r := applyRule2(f, orsAbvLft , andsAbvLft); }

case Or(f1 , f2) ⇒ { if (f2.And?) {

r := applyRule3(f, orsAbvLft , andsAbvLft); } [. . .]

} [. . .] } [. . .] }

Verifying the Conversion into CNF in Dafny 153

We present the entire specification (pre- and post-conditions), but we skip
some implementation details (replaced by [...]). The two ghost parameters are
used in the termination proof, as discussed in Sect. 2.3. The first ensures clause
is used for functional correctness. The last ensures clauses are used to prove
termination of the main algorithm. In particular, the function measure returns
a tuple that acts as the variant of the main algorithm.

We also define the methods applyRule1, applyRule2, . . . , applyRule9,
which apply one of the nine rules. We present the first of these methods:

method applyRule1(f : FormulaT , ghost orsAbvLft : int ,

ghost andsAbvLft : int)

returns (r : FormulaT) requires validFormulaT(f) ∧ f.DImplies ?;

requires orsAbvLft ≥ 0 ∧ andsAbvLft ≥ 0;

ensures validFormulaT(r) ∧ equivalent(f, r);

ensures weightOfAnds(r) ≤ weightOfAnds(f);

ensures countDImplies(r) < countDImplies(f);

ensures smaller(measure(r, orsAbvLft , andsAbvLft),

measure(f, orsAbvLft , andsAbvLft));

{ var DImplies(f1 , f2) := f;

r := And(Implies(f1 , f2), Implies(f2 , f1));

[. . .] }

Again, we show the entire specification, most of which is needed for the ter-
mination proof. The missing part in the implementation, denoted by [...], are
helper assertions and lemma calls that are required to prove the postconditions.

• The method applyRule takes a formula, traverses its tree in preorder, and
calls applyAtTop to transform the first subformula where it is possible to do so
at the root. Therefore, the method applyRule makes exactly one effective call
to applyAtTop. We present the entire specification and the implementation
of one of the cases for applyRule:

method applyRule(f : FormulaT , ghost orsAbvLft : int , ghost andsAbvLft : int)

returns (r : FormulaT) decreases f;

requires validFormulaT(f) ∧ orsAbvLft ≥ 0 ∧ andsAbvLft ≥ 0;

ensures validFormulaT(r) ∧ equivalent(f, r);

ensures r = f ∨ Utils.smaller(measure(r,orsAbvLft ,andsAbvLft),

measure(f,orsAbvLft ,andsAbvLft));

{ var res : FormulaT := applyAtTop(f, orsAbvLft , andsAbvLft);

if (res �= f) { return res; } else if (f.Or?) {

var f1_step := applyRule(f.f1 , orsAbvLft , andsAbvLft);

if (f.f1 = f1_step) {

var f2_step := applyRule(f.f2, orsAbvLft + 1, andsAbvLft);

assert equivalent(f.f2, f2_step);

assert equivalent(Or(f.f1 , f.f2), Or(f.f1, f2_step));

res := Or(f.f1 , f2_step);

if (weightOfAnds(f2_step) < weightOfAnds(f.f2)) {

Rule3Or(f.f1 , f.f2 , f2_step); }

return res;

} else { [. . .] }

} else if (f.And?) { [. . .] } else if (f.Not?) { [. . .] } }

Note again that the two ghost parameters are only used to help prove ter-
mination of the main algorithm and that the pre- and post-conditions are very
similar to applyRule. Also note that there are no cases for f.Implies? and
f.DImplies? since in these two cases applyAtTop is forced to make progress.
The lemma Rule3Or is used to propagate a termination variant upwards in the
tree of the formula and is explained in Sect. 2.3.

154 V. Iordache and Ş. Ciobâcă

• The main method in the algorithm is convertToCNF. It takes a formula and
calls applyRule on it in a recursive loop until there are no more changes.

method convertToCNF(f : FormulaT) returns (r : FormulaT)

decreases weightOfAnds(f);/*3,4,7,8,9*/ decreases countDImplies(f);/*1*/

decreases countImplies(f);/*2*/ decreases countOrPairs(f ,0); /*5*/

decreases countAndPairs(f, 0); /*6*/ requires validFormulaT(f);

ensures validFormulaT(r) ∧ equivalent(f, r);

{ var res := applyRule(f, 0, 0); assert equivalent(f, res);

if(res �= f) { r := convertToCNF(res);

assert equivalent(res , r); [. . .]

} else { r := res; } }

The main difficulty here is to prove the termination of this fixed-point
method. For this purpose, we use as a variant a 5-tuple measure, whose def-
inition we unfold in the five decreases clauses of convertToCNF. The numbers
in the comments represent the equivalences among the set of nine that ensure a
strict decrease of the particular element of the tuple.

2.3 Proof of Termination

In this section, we discuss in more depth the proof of termination which seems
intuitively easy: (I1) it seems that the first two equivalences strictly decrease the
number of double implications and implications, respectively; (I2) it seems that
equivalences three and four strictly decrease the number of disjunctions that sit
above conjunctions in the tree of the formula; (I3) it seems that rule five (resp.
six) strictly decrease the number of ors just above and to the left of another
or (resp. and); (I4) it seems that rules 7–9 strictly decrease the number of
negations above conjunctions and disjunctions. The above intuition works when
using a particular strategy to compute a CNF: first, remove double implications;
secondly, remove implications; thirdly, compute the NNF, etc.

Difficulties. Unfortunately, all of the above intuition breaks when the rules can be
applied in any order. There are two main difficulties with the variant candidates
above: (D1) Equivalences one, three, and four are not right-linear; they might
duplicate subformulae. Therefore, the variants suggested by intuitions I1, I2, I3,
I4 (e.g., number of double implications) might actually increase when applying
one of these equivalences. The apparent solution of counting the number of
distinct subformulae rooted in a double implication instead of the number of
double implications does not work either: after the initial duplication, the two
subformulae might be transformed in different ways. (D2) The variants suggested
by intuitions I1-I4 do not in general extend homomorphically to the root of a
formula when the transformation is performed in a proper subformula. Take for
example the number of ands directly above and to the left of another and node
(intuition I3). If we apply rule three in a context of the form ϕ ∧ �, we obtain
ϕ ∧ ((ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)) from ϕ ∧ (ϕ1 ∨ (ϕ2 ∧ ϕ3)) and therefore our variant
candidate actually increases at the root.

The Main Variant. In order to prove termination, we rely instead on a numerical
interpretation of formulae that we call weightOfAnds. It decreases strictly in
equivalences 3, 4, 7, 8, and 9 and it does not increase in the other equivalences.

Verifying the Conversion into CNF in Dafny 155

function weightOfAnds(f : FormulaT) : (res : int)

decreases f; ensures res ≥ 2;

{ match f {

case Var(val) ⇒ 2

case Not(f1) ⇒ pow(2, weightOfAnds(f1))

case And(f1 , f2) ⇒ weightOfAnds(f1) + weightOfAnds(f2) + 1

case Or(f1 , f2) ⇒ weightOfAnds(f1) * weightOfAnds(f2)

case Implies(f1 , f2) ⇒ pow(2, weightOfAnds(f1)) * weightOfAnds(f2)

case DImplies(f1 ,f2) ⇒ (pow(2, weightOfAnds(f1)) * weightOfAnds(f2)) +

(pow(2, weightOfAnds(f2)) * weightOfAnds(f1)) + 1 } }

Intuitively (although we admit this is not a perfect intuition), this function
computes the number of conjunctions that a formula might have when brought
into CNF, hence the + 1 in the And(f1, f2) case. For disjunctions, intuitively
the Or needs to be distributed over all Ands and therefore we use multiplication.
For negation, the number might increase exponentially (negation “turns” Ors
into Ands and vice-versa). The pow function is not builtin; it performs exponenti-
ation and is defined in the Dafny development along with several helper lemmas.
For technical reasons, for leaves the counting starts at 2 (case Var(val) => 2).

The cases for implication and double implication are handled as if an impli-
cation ϕ1 ⇒ ϕ2 is just syntactic sugar for ¬ϕ1 ∨ ϕ2 and therefore applying
equivalences 1 and 2 trivially does not change the value of weightOfAnds. Equiv-
alences 5 and 6 also do not change the value of weightOfAnds, as the numerical
interpretations of ∨ and of ∧ are associative. This numerical interpretation is
homomorphic, and therefore difficulty D2 is handled.

Secondary Variants. The main variant establishes termination of rules 3, 4, 7, 8,
and 9. To establish termination of the entire system, we require 4 more secondary
variants. The second and third elements of the tuple (countDImplies(f) and
countImplies(f)) unsurprisingly count the number of double implications and
implications in a formula, respectively. These decrease strictly when applying
equivalences 1 and 2, respectively.

More interestingly, we discuss the last two components: countOrPairs(f, 0)
and countAndPairs(f, 0). These are used to establish termination of the rules
for associating parentheses to the left (equivalences 5 and 6). As explained in dif-
ficulty D2 above, simply counting the number of And nodes directly above and to
the left of another And node does not work, since the inequality required of such
a variant does not propagate from a subformula towards the root. Therefore, we
count instead the number of pairs of nodes labeled And such that one is a (pos-
sibly indirect) ancestor of the other towards the left. We display countOrPairs,
as the other function is similar:

function countOrPairs(f : FormulaT , orsAbvLft : int) : (res : int)

decreases f; requires orsAbvLft ≥ 0; ensures res ≥ 0;

{ match f {

case Or(f11 ,f12) ⇒ countOrPairs(f11 , orsAbvLft) +

countOrPairs(f12 , orsAbvLft + 1) + orsAbvLft // note the ‘‘+ 1’’

case Var(val) ⇒ 0

case And(f11 ,f12) ⇒ countOrPairs(f11 , orsAbvLft) +

countOrPairs(f12 , orsAbvLft)

[. . .] } }

156 V. Iordache and Ş. Ciobâcă

The helper parameter represents the number of Ors above and to the left of
the current subformula and should therefore be 0 in the initial call. This variant
propagates as required.

In order to implement this variant, we require to keep track in the applyRule
method of the number of Ors and Ands that are possibly indirect ancestors
towards the left of the current subformula. These numbers account for the two
ghost parameters orsAbvLft and andsAbvLft of the applyRule and applyAtTop
methods mentioned above and left for the current subsection. Initially, when
applyRule is called in convertToCNF, both are initialized to 0.

The first three components of the variant do not commute, but the last two
could be interchanged without affecting the termination proof.

3 The Tseitin Conversion

We discuss our formalization of the Tseitin conversion into CNF [24], also called
definitional CNF [12]. We first briefly recall the Tseitin transformation via a
short example.

Example 1. Consider the formula ϕ = ¬x1 ∨ x2. Choose fresh variables y1, y2
for the two subformulae ¬x1 and ¬x1 ∨ x2, respectively. Add to the resulting
CNF clauses that encode that each of the two variables is equivalent to the
corresponding subformula: 1. for y1 ≡ ¬x1, add the clauses y1 ∨ x1,¬y1 ∨ ¬x1;
2. for y2 ≡ y1 ∨ x2, add the clauses: ¬y1 ∨ y2,¬x2 ∨ y2,¬y2 ∨ y1 ∨ x2.

Finally, add a clause consisting of a single literal: the variable correspond-
ing to the initial formula3. The final result is: (y1 ∨ x1) ∧ (¬y1 ∨ ¬x1) ∧ (¬y1 ∨
y2) ∧ (¬x2 ∨ y2) ∧ (¬y2 ∨ y1 ∨ x2) ∧ y2. The result of applying our implemen-
tation of Tseitin’s algorithm on the above formula is the sequence of sequences
[[3, 1], [−3,−1], [−3, 4], [−2, 4], [−4, 3, 2], [4]], where the numbers 1, 2, 3, and 4
represent the variables x1, x2, y1, and y2, respectively.

The guarantee offered by this transformation is that the resulting formula is
equisatisfiable to the initial formula, as opposed to equivalent for the textbook
transformation discussed in Sect. 2. The advantage is that the size is at most
O(1) times bigger than the initial formula.

3.1 Data Structures

In verifying the definitional CNF transformation, we use the same data type
FormulaT for the input formula as in the previous formalization. However, for the
output formula, we choose to represent literals as integers, clauses as sequences
of integers and CNF formulae as sequences of clauses, similar to the well-known
DIMACS format:

3 Tseitin [24] proposes to add the negation of this literal, the initial formula being
valid iff the resulting formula is unsatisfiable; modern treatments diverge [12].

Verifying the Conversion into CNF in Dafny 157

predicate method validLiteral(lit : int) { lit ≤ -1 ∨ lit ≥ 1 }

predicate validClause(clause : seq <int >) {

∀ lit • lit in clause =⇒ validLiteral(lit) }

predicate validCnfFormula(f : seq <seq <int > >) {

∀ clause : seq <int > • clause in f =⇒ validClause(clause) }

Note that valid in the predicates above reflects standard Dafny use rather
than semantical validity in the logical sense. As variables are represented by
non-negative integers, we consistently use the following function (methods) to
convert between variables and literals:

predicate validVariable(v : int) { v ≥ 0 }

function method posVarToLit(v : int) : int

requires validVariable(v);

ensures posVarToLit(v) ≥ 1 ∧ validLiteral(posVarToLit(v));

{ v + 1 }

function method negVarToLit(v : int) : int

requires validVariable(v);

ensures negVarToLit(v) ≤ -1 ∧ validLiteral(negVarToLit(v));

{ (-v) - 1 }

function method litToVar(l : int) : int

requires validLiteral(l);

{ if (l ≤ -1) then (-l) - 1 else l - 1 }

We represent assignments as sequences of booleans, just like in the textbook
transformation. To compute truth values, we use the following predicates:

predicate truthValueLiteral(lit : int , tau : seq <bool >)

requires validLiteral(lit) ∧ variablesUpToLiteral(lit , |tau|);

{ if lit < 0 then ¬tau[litToVar(lit)] else tau[litToVar(lit)] }

predicate truthValueClause (clause : seq <int >, tau : seq <bool >)

requires validClause(clause) ∧ variablesUpToClause(clause , |tau |);

{ ∃ lit • lit in clause ∧ truthValueLiteral(lit , tau) }

predicate truthValueCnfFormula(rf : seq <seq <int〉, tau : seq <bool >)

requires validCnfFormula(rf) ∧ variablesUpToCnfFormula(rf , |tau |);

{ ∀ clause | clause in rf • truthValueClause (clause , tau) }

The predicates variablesUpTo* (with * ∈ {CnfFormula, Clause, Literal}),
check that the assignment is sufficiently large to account for all variables occur-
ring in the formulae. We consistently use the following convention: program
variables such as f, f1, f2 stand for formulae of type FormulaT and program
variables such rf, rf1 stand for resulting formulae of type seq<seq<int> >.

As the guarantee of the Tseitin transformation is equisatisfiability between
the initial formula and the resulting formula, we model this by using the following
predicates:

predicate satisfiable(f : FormulaT) requires validFormulaT(f);

{ ∃ tau | |tau| = maxVar(f) • truthValue(f, tau) }

predicate satisfiableCnfFormula (rf: seq <seq <int > >) requires validCnf[. . .](rf);

{ ∃ tau | |tau| = maxVarCnfFormula (rf) • truthValueCnfFormula(rf , tau) }

predicate equiSatisfiable(f : FormulaT , rf : seq <seq <int > >)

requires validFormulaT(f); requires validCnfFormula(rf);

{ satisfiable(f) ⇐⇒ satisfiableCnfFormula (rf) }

The function methods maxVar* compute the maximum natural number that
represents a variable inside the formulae, plus one. Therefore an assignment of
size maxVar* is sufficiently large to compute the truth value.

158 V. Iordache and Ş. Ciobâcă

3.2 The Algorithm

The entry point to the algorithm is the method tseitin.
method tseitin(f : FormulaT) returns (result : seq <seq <int > >)

requires validFormulaT(f);

ensures validCnfFormula(result) ∧ equiSatisfiable(f, result);

{ var n := maxVar(f); var v : int; var end : int; var rf : seq <seq <int > >;

rf, v, end := tseitinCnf(f, n, n);

result := rf + [[posVarToLit(v)]]; [. . .] }

The guarantee is that the resulting CNF formula is equisatisfiable to the
initial one. The main work is performed by the method tseitinCnf, which
traverses the input formula recursively and adds the right clauses to the result:

method tseitinCnf(f : FormulaT , n : int , start : int)

returns (rf : seq <seq <int > >, v : int , end : int)

requires variablesUpTo(f, n) ∧ start ≥ n ≥ 0;

ensures valid(f, rf , v, n, start , end);

ensures tseitinSameValue (f, rf , v, n, start , end);

ensures tseitinCanExtend (f, rf , v, n, start , end);

{ match f {

case Or(f1 , f2) ⇒ {

var rf1 : seq <seq <int > >; var rf2 : seq <seq <int > >;

var v1 : int; var v2 : int;

var mid : int;

rf1 , v1 , mid := tseitinCnf(f1 , n, start);

rf2 , v2 , v := tseitinCnf(f2 , n, mid);

end := v + 1;

rf := rf1 + rf2 + orClauses(v1 , v2 , v);

proveCanExtendOr (f1,rf1 ,v1 , f2 , rf2 , v2 , n, start , mid , v, end , rf);

proveSameValueOr (f1,rf1 ,v1 , f2 , rf2 , v2 , n, start , mid , v, end , rf);

}

case And(f1 , f2) ⇒ [. . .] case Implies(f1 , f2) ⇒ [. . .]

case DImplies(f1 , f2) ⇒ [. . .] case Not(f1) ⇒ [. . .]

case Var(val) ⇒ [. . .]

} }

The method tseitinCnf takes as input: 1. a formula f to transform into
CNF, which might be a subformula of the initial formula given to tseitin; 2.
a natural number n with the meaning that all variables in the initial formula
are between 0 and n − 1; 3. a natural number start, with the meaning that the
variables start, start + 1, start + 2, . . . are not used and can be safely used
as fresh variables by the method. Variables between n (inclusively) and start
(exclusively) might have been used for some other subformulae.

The method tseitinCnf returns as output: 1. A set of clauses rf encoding
that the freshly chosen variables are equivalent to the corresponding subformulae;
2. A variable v that corresponds to the input formula f; 3. A number end with the
meaning that the recursive call used fresh variables between start (inclusively)
and end (exclusively) and therefore the variables end, end + 1, end + 2, . . .
can be used safely as fresh after the call is finished. The predicate valid is used
to account for the validity of the entire state of the algorithm:

predicate valid(f : FormulaT , rf : seq <seq <int > >, v : int ,

n : int , start : int , end : int)

{ 0 ≤ n ≤ start ≤ end ∧ variablesUpTo(f, n) ∧ validCnfFormula(rf) ∧
validVariable(v) ∧ variableInInterval(v, n, start , end) ∧
variablesInInterval(rf , n, start , end) }

Verifying the Conversion into CNF in Dafny 159

The predicate variablesInInterval(rf, n, start, end) checks that rf
uses only the initial variables (between 0 and n−1) and fresh variables between
start (inclusively) and end (exclusively).

We discuss in more detail the implementation of the Or case in tseitinCnf
presented above. Note how the recursive call on f1 uses fresh variables between
start (inclusively) and mid (exclusively), while the recursive call on f2 uses
fresh variables between mid (inclusively) and v (exclusively). The variable v is
therefore used as the fresh variable corresponding to the entire formula f =
Or(f1, f2). The final set of clauses is then the union of rf1 (set of clauses cor-
responding to f1), rf2 (set of clauses corresponding to f2) and orClauses(v1,
v2, v), which encodes that v should be equivalent to Or(v1, v2):

function method orClauses(v1 : int , v2 : int , v : int) : seq <seq <int > >

requires validVariable(v1) ∧ validVariable(v2) ∧ validVariable(v);

{ [[negVarToLit(v), posVarToLit(v1), posVarToLit(v2)],

[negVarToLit(v1), posVarToLit(v)], [negVarToLit(v2), posVarToLit(v)]] }

3.3 The Proof

The main difficulty in verifying the algorithm is coming up with the right invari-
ants. Assuming that tseitinCnf(f, n, start) returns rf, v, end, we find
that the following two invariants explain the functional correctness of the algo-
rithm: 1. any truth assignment tau to the initial n variables can be extended
(uniquely) to a truth assignment tau’ that makes rf true and such that the
value of f in tau is the same as the value of v in tau’; 2. vice-versa, any truth
assignment to all end variables that makes rf true also makes v and f have
the same truth value. We formalize the two invariants above in the predicates
tseitinCanExtend and tseitinSameValue:

predicate tseitinCanExtend (f : FormulaT , rf : seq <seq <int > >,

v : int , n : int , start : int , end : int)

requires valid(f, rf , v, n, start , end);

{ ∀ tau : seq <bool > | |tau| = n • canExtend(tau ,f,rf ,v,n,start ,end) }

predicate canExtend(tau : seq <bool >, f : FormulaT , rf : seq <seq <int > >,

v : int , n : int , start : int , end : int)

requires |tau| = n ∧ valid(f, rf , v, n, start , end);

{ ∃ tau ’ : seq <bool > | tau ≤ tau ’ ∧ |tau ’| = end •
truthValueCnfFormula(rf , tau ’) ∧ truthValue(f, tau) =

truthValueLiteral(posVarToLit(v), tau ’) }

predicate tseitinSameValue (f : FormulaT , rf : seq <seq <int > >,

v : int , n : int , start : int , end : int)

requires valid(f, rf , v, n, start , end);

{ ∀ tau : seq <bool > | |tau| ≥ end ∧ truthValueCnfFormula(rf , tau) •
[. . .] truthValueLiteral(posVarToLit(v), tau) = truthValue(f, tau) }

We find that because tseitinCanExtend is of the form ∀ .∃ . (nested quan-
tifiers), it is useful for verification performance to give a name to the ∃ . part,
hence the predicate canExtend. Dafny cannot prove the two predicates auto-
matically, and therefore we design helper lemma for each of the two invariants
and for each of the cases (Or, And, Not, . . .). The main idea behind these proof is
to combine two assignments tau1 and tau2, which necessarily agree on the first
n variables (the variables in the initial formula), into a single assignment tau’.

160 V. Iordache and Ş. Ciobâcă

This is possible since the interesting assignments in tau1 range from start to
mid and the interesting assignments in tau2 range from mid to v; that is they
are disjoint. We ellide the computer-checked proof for space reasons.

4 Related Work

The work closest to ours is by Barroso et al. [3], who verify a CNF transforma-
tion for propositional logic in the Why3 [6] verification platform. They use the
textbook approach, but they rely on a particular strategy (first, remove impli-
cation, then: compute the negation normal form, etc.) This makes their proof
much simpler, especially w.r.t. termination. One theoretical difference is that
they model truth assignments as functions from variables to truth values and
therefore their specification is closer to the mathematical treatment of logic (we
instead model truth assignment as finite sequences, but we ensure they are suf-
ficiently large for the context in which they are used). Barroso et al. emphasize
the verification of continuation-passing style of the CNF transformation, which
is out of the scope of our paper.

Michaelis and Nipkow [20] mechanize and prove Tseitin’s transformation in
Isabelle/HOL as part of the formalization [21] of a series of propositional proof
systems. The implementation is functional, based on first generating fresh names
for all distinct subformulae and then adding the corresponding clauses for each
internal node of the input formula. The fact that the fresh names are generated
at the very beginning seems to make the proof simpler. As the emphasis is
placed on metatheoretical considerations, efficiency is not the main concern. In
our Dafny approach, the implementation is more efficient and is compositional:
each subformula is recursively translated into a set of clauses.

Gäher and Kunze [11] implement and verify Tsetin’s transformation in the
Coq proof assistant as part of the proof of the Cook-Levin theorem. The algo-
rithm is implemented as a fixpoint (terminating, pure, recursive function) in the
functional language of the Coq proof assistant. The function is very similar to
our implementation: it takes a subformula and a natural starting from which
fresh identifiers can be chosen. It returns the set of clauses for the subformula,
the new variable associated to the subformula and a new number to be used for
freshness. The inductive invariant tseytin formula repr used for the proof is
also very similar to what we have independently found. Since the implementa-
tions are in very different proof environments, isolating Tseitin’s transformation
in both developments and performing a more detailed comparison could be used
to understand the pros and cons of the two proof assistants (Dafny and Coq).

Verified transformation into CNF should be a first step in verified SAT solvers
that take as input arbitrary formulae. The SAT solver versat [22] was imple-
mented and verified in the Guru programming language using dependent types.
The solver is verified to be sound: if it produces an UNSAT answer, then the input
formula truly is unsatisfiable. Blanchette and others [5] present a certified SAT
solving framework verified in the Isabelle/HOL proof assistant. The proof effort
is part of the Isabelle Formalization of Logic project. The framework is based on

Verifying the Conversion into CNF in Dafny 161

refinement: at the highest level sit several calculi like CDCL and DPLL, which
are formally proved. Depending on the strategy, the calculi are also shown to
be terminating. Another SAT solver verified in Isabelle/HOL is by Marić [18].
In contrast to previous formalization, the verification methodology is not based
on refinement. Instead, the Hoare triples associated to the solver pseudo-code
are verified in Isabelle/HOL. In subsequent work [19], Marić and Janičić prove
in Isabelle the functional correctness of a SAT solver represented as an abstract
transition system. Andrici and Ciobâcă [1,2] verify an implementation of DPLL
in Dafny. Another formalization of a SAT solver (extended with linear arith-
metic) is by Lescuyer [17], who verifies a DPLL-based decision procedure for
propositional logic in Coq and exposes it as a reflexive tactic. Finally, a decision
procedure based on DPLL is also verified by Shankar and Vaucher [23] in the
PVS system. For the proof, they rely on subtyping and dependent types. Berger
et al. have used the Minlog proof assistant to extract a certified SAT solver [4].
None of the verified SAT solvers described above perform a CNF
conversion, with the exception of the reflexive procedure by Lescuyer [17]. Les-
cuyer notes that implementing Tseitin’s procedure in Coq proved to be much
more challenging and therefore implements a lazy CNF transformation.

5 Discussion

Compiling (including verification time) the entire development (the two CNF
transformations) takes about one minute on a standard laptop. The following
table contains a summary of the entire development in numbers.

Lines of code 2440 Methods 32

Preconditions 318 Postconditions 176

Predicates 26 Functions 26

Assertions 227 Lemmas 51

Ghost variables 31 Verification time ∼1 min

We find that Dafny can be used successfully to complete this case study.
However, the degree of proof automation is small and most of the interesting
verified proofs require significant assistance from the user in the form of helper
assertions and lemmas. Additionally, we found that the verified proofs of the
Tseitin algorithm push Dafny to the edge, in the sense that a particular organi-
zation of the proofs is required in order for the development to verify in reason-
able time. To this purpose, we propose the following verification patterns that
help achieve good verification performance and that are portable to other Dafny
developments:

(1) Do not use nested quantifiers. Instead, whenever a formula like ∀ .∃ . occurs,
create a predicate Q ≡ ∃ . and use ∀ .Q instead of the initial formula. We
use this verification pattern in the verification of the Tseitin transforma-
tion in the context of the tseitinCanExtend predicate. This transformation

162 V. Iordache and Ş. Ciobâcă

could be automated and could serve as an improvement in deductive veri-
fiers, but further investigation into its merits on more case studies should
be performed first.

(2) Do not inline even simple predicates. Make sure inlining is consistent. For
example, we prefer to use the following trivial predicate:
predicate validVariable(v : int) { v ≥ 0 }

instead of inlining it. Additionally, consistency is required: mixing v >=
0 and validVariable(v) will generally result in a potential performance
degradation in verification (e.g., mixing v >= 0 and validVariable(v) in
one file results in a verification time increases by approx. 16% in our project).

(3) Consistently add post-conditions, even if the they are trivial. For example,
if we remove the two post-conditions in the following function method:
function method negVarToLit(v : int) : int requires validVariable(v);

ensures negVarToLit(v) ≤ -1 ∧ validLiteral(negVarToLit(v));

{ (-v) - 1 }

our development still verifies, but takes approx. 50% more time to do so
(approx. 1m30s instead of approx. 1m). On more complex functions, this
can be the difference between verification succeeding and failing (for no
apparent reason).

Incidentally, the above patterns do not only help Dafny verify the develop-
ment faster, but also often clarify invariants for the programmer by forcing them
to consistently give names to certain recurring formulae and enabling them to
essentially create a mini-DSL for proofs.

Our case study also suggests a few areas where Dafny and other similar veri-
fiers could be improved. For example, numerical functions such as pow (exponen-
tiation) could be built in, possibly with some associated helper lemmas. Termina-
tion measures could be improved, both in allowed syntax (e.g., allowing decrease
userdefinedfunction(...)), but also in allowing other well-founded orders
such as multiset orderings (although we have finally not needed such orders in
our development). Another area that could be improved is predictable verifi-
cation performance. We find that, especially when not following the patterns
described above, performance is very difficult to predict.

Implementation Choices. For Tseitin’s algorithm, we use a different representa-
tion for the input formula (an ADT) and the output formula (a set of clauses).
Not only is this representation of the output the most natural for implement-
ing the algorithm, but it is also what a SAT solver takes as input. Therefore, it
allows in principle to easily combine our CNF transformation with a SAT solver.
It would be easy to convert the set of clauses into the ADT representation and
prove equivalence of the two, or to directly work with ADTs as part of the trans-
formation. For the textbook transformation, the output and the input have the
same representation (ADTs). However, we do not prove explicitly that the result
is in CNF (it follows implicitly from the fact that none of the nine equivalences
can be applied anymore). Proving this explicitly would require to first specify
what is means for a formula to be in CNF; it would be an interesting exercise
to prove this and to extract the set of clauses from the CNF.

Verifying the Conversion into CNF in Dafny 163

Future Work. Our case study opens several directions for future work. Possi-
ble improvements. The formulae could be represented as DAGs instead of trees.
This could speed up both algorithms; more interestingly, this might simplify
the termination proofs for the textbook algorithm as discussed in Difficulty
D1 on Page 5. Several optimizations to Tseitin’s algorithm [8,12] could also
be implemented and verified. For a high-performance conversion, literals and
variables should be represented as machine integers, which would require prov-
ing bounds throughout the code. Theoretical extensions. It would be interesting
to find improved (possibly tight) bounds on the termination measure for the
first algorithm. Additionally, it would be useful to bridge the distance between
truth assignment as defined in the Dafny development and the usual notion
of truth assignment in logic: our assignments are finite (with sufficiently many
elements to account for all propositional variables in the context where they
are used), while truth assignments are usually countably infinite. Verification
improvements. It would be useful to further simplify the variant used to prove
termination for the first algorithm. As Dafny supports a limited form of refine-
ment types [10] (only numerical types can be refined by a logical constraint), it
might be useful for the verification time to use such types for variables and lit-
erals. Finally, our CNF transformations can be linked with a verified CNF-SAT
solver to obtain an end-to-end verified solver for the general SAT problem.

A Short Overview of Dafny

The Dafny programming language supports auto-active verification, a technique
known since the 70s, but which has only become practical in the past decade,
thanks to advances in both the usability of verification tools and computer pro-
cessing power. Here is an example of a simple typical auto-actively verified Dafny
method implementing binary search:

method binarySearch(a: array <int >, key : int) returns (r : int)

requires ∀ j, k • 0 ≤ j < k < a.Length =⇒ a[j] ≤ a[k];

ensures r ≥ 0 =⇒ 0 ≤ r < a.Length ∧ a[r] = key;

ensures r < 0 =⇒ ∀ k • 0 ≤ k < a.Length - 1 =⇒ a[k] �= key;

{

var left : int := 0;

var right : int := a.Length - 1;

while (left ≤ right)

invariant 0 ≤ left ≤ a.Length;

invariant -1 ≤ right < a.Length;

invariant ∀ k • 0 ≤ k < left =⇒ a[k] < key;

invariant ∀ k • right < k < a.Length =⇒ a[k] > key;

decreases right - left;

{

var mid : int := (left + right) / 2;

if (key < a[mid]) {

right := mid - 1;

} else if (key > a[mid]) {

left := mid + 1;

} else {

return mid;

}

}

return -1;

}

164 V. Iordache and Ş. Ciobâcă

Auto-active verification is a mix of automatic verification and interactive
verification. It means that the program is annotated by the programmer with
specifications (such as preconditions, introduced by requires, and postcondi-
tions, introduced by ensures), which are automatically checked by the system
to hold. The system verifies that the program implements the specification. If
the postcondition cannot be proven to hold whenever the precondition holds,
then the Dafny compiler fails with an error message. For example, the code
above compiles (and verifies) without any issues; however, if we had made any
mistake, like initializing right by a.Length instead of a.Length - 1 or revers-
ing the comparison operators < and > inside the body of the while loop, then
compilation would fail as the postcondition would not be provable.

For complicated post-conditions, Dafny cannot establish their validity auto-
matically, and therefore additional help is required from the part of the program-
mer (the interactive part) in the form of invariants (in the example above, four
invariants are given for the while loop), variants (introduced by the decreases
keyword, used to establish termination), lemmas, or other helper annotations.

Auto-active verification is featured in frameworks such as Why3 [6],
Dafny [16] or even programming languages such as Ada [14] or C [7]. It has
been used successfully to develop trusted code for small and even average sized
projects [13]. The main advantage of using auto-active verification in software
development is that we obtain a high degree of confidence in the correctness of
software projects that were developed in this style.

B The Dafny Development

The attached Dafny development consists of 8 source files:

• utils.dfy contains generally useful definitions and lemmas, such as the def-
inition of exponentiation (pow);

• formula.dfy contains the definition of the FormulaT data type and related
functions and lemmas such as validFormulaT, truthValue, maxVar;

• cnf.dfy contains the verified implementation of the textbook algorithm
for finding the CNF (with functions/methods such as convertToCNF or
applyRule);

• cnfformula.dfy contains various items concerning the representation of
CNF formulae as elements of type seq<seq<int> >, such as the predicates
validLiteral, validCnfFormula, truthValueCnfFormula;

• tseitin.dfy contains the entry point (tseitin) to Tseitin’s transformation,
together with the main implementatino tseitinCnf;

• it relies on tseitinproofs.dfy, which contains lemmas that prove the invari-
ant of tseitinCnf for all cases;

• both of the modules above rely on tseitincore.dfy, which contains defini-
tions useful in both the algorithm and its proof, such as the set of clauses
orClauses to be added for disjunctions;

• main.dfy exercises the CNF transformation in a Main method and can be
used to obtain an executable;

Verifying the Conversion into CNF in Dafny 165

• Makefile to be used in the usual Unix-like manner.
To compile (and verify) the development, it is sufficient to run:

• dafny /verifySeparately *.dfy.

We have verified the source code with Dafny version 3.0.0.20820, but some earlier
versions should work as well.

The Dafny development is available at

https://github.com/iordacheviorel/cnf-dafny.

References

1. Andrici, C.-C., Ciobâcă, Ş.: Verifying the DPLL algorithm in Dafny. In: Marin, M.,
Craciun, A. (eds.) Proceedings Third Symposium on Working Formal Methods,
FROM 2019, Timişoara, Romania, 3–5 September 2019. EPTCS, vol. 303, pp.
3–15 (2019)

2. Andrici, C.-C., Ciobâcă, Ş.: Who verifies the verifiers? A computer-checked imple-
mentation of the DPLL algorithm in Dafny. CoRR, arXiv:2007.10842 (2020)

3. Barroso, P., Pereira, M., Ravara, A.: Animated logic: correct functional conversion
to conjunctive normal form. In: PAAR 2020/SC-Square 2020. CEUR Workshop
Proceedings, vol. 2752, pp. 1–20. CEUR-WS.org (2020)

4. Berger, U., Lawrence, A., Forsberg, F.N., Seisenberger, M.: Extracting verified deci-
sion procedures: DPLL and resolution. Log. Methods Comput. Sci. 11(1) (2015)

5. Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. J. Autom. Reason. 61(1–
4), 333–365 (2018)

6. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: shepherd your herd
of provers. In: Boogie 2011: First International Workshop on Intermediate Verifi-
cation Languages, Wroc�law, Poland, pp. 53–64, August 2011. https://hal.inria.fr/
hal-00790310

7. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

8. de la Tour, T.B.: An optimality result for clause form translation. J. Symb. Com-
put. 14(4), 283–302 (1992)

9. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM 2019. LNCS, vol. 11460, pp. 148–165. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20652-9 10

10. Ford, R.L., Leino, K.R.M.: Dafny Reference Manual (2017)
11. Gäher, L., Kunze, F.: Mechanising complexity theory: the cook-Levin theorem in

Coq. In: Cohen, L., Kaliszyk, C. (eds.) 12th International Conference on Interactive
Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, vol. 193, pp. 20:1–20:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

12. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

13. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-system
verification. In: 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2014, Broomfield, CO, USA, 6–8 October 2014, pp. 165–181
(2014)

https://github.com/iordacheviorel/cnf-dafny
http://arxiv.org/abs/2007.10842
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10

166 V. Iordache and Ş. Ciobâcă

14. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and gnatprove
- a competition report from builders of an industrial-strength verifying compiler.
Int. J. Softw. Tools Technol. Transf. 17(6), 695–707 (2015)

15. Rustan, K., Leino, M.: Developing verified programs with Dafny. In: 35th Interna-
tional Conference on Software Engineering, ICSE 2013, San Francisco, CA, USA,
18–26 May 2013, pp. 1488–1490 (2013)

16. Rustan, K., Leino, M.: Accessible software verification with dafny. IEEE Softw.
34(6), 94–97 (2017)

17. Lescuyer, S.: Formalizing and Implementing a Reflexive Tactic for Automated
Deduction in Coq. Theses, Université Paris Sud - Paris XI, January 2011

18. Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom.
Reason. 43(1), 81–119 (2009)

19. Marić, F., Janičić, P.: Formalization of abstract state transition systems for SAT.
Log. Methods Comput. Sci. 7(3) (2011)

20. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:
TYPES 2017. LIPIcs, vol. 104, pp. 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017)

21. Michaelis, J., Nipkow, T.: Propositional proof systems. Archive of Formal Proofs,
June 2017. Formal proof development. https://isa-afp.org/entries/Propositional
Proof Systems.html

22. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: a verified modern SAT solver. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 363–378.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 24

23. Shankar, N., Vaucher, M.: The mechanical verification of a DPLL-based satisfia-
bility solver. Electr. Notes Theor. Comput. Sci. 269, 3–17 (2011)

24. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

https://isa-afp.org/entries/Propositional_Proof_Systems.html
https://isa-afp.org/entries/Propositional_Proof_Systems.html
https://doi.org/10.1007/978-3-642-27940-9_24

Analysis in a Formal Predicative Set
Theory

Nissan Levi(B) and Arnon Avron(B)

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
aa@cs.tau.ac.il

Abstract. We present correct and natural development of fundamental
analysis in a predicative set theory we call PZFU. This is done by using
a delicate and careful choice of those Dedekind cuts that are adopted as
real numbers. PZFU is based on ancestral logic rather than on first-order
logic. Its key feature is that it is definitional in the sense that every object
which is shown in it to exist is defined by some closed term of the theory.
This allows for a very concrete, computationally-oriented model of it, and
makes it very suitable for MKM (Mathematical Knowledge Management)
and ITP (Interactive Theorem Proving). The development of analysis in
PZFU does not involve coding, and the definitions it provides for the
basic notions (like continuity) are the natural ones, almost the same as
one can find in any standard analysis book.

Keywords: Foundation of mathematics · Predicativity · Computable
set theories

1 Introduction

Axiomatic set theory is almost universally accepted as the basic theory which
provides the foundations of mathematics, and in which the whole of present day
mathematics can (and many say: should) be developed. As such it should be con-
sidered to be the most natural framework for MKM (Mathematical Knowledge
Management) in general, and ITP (Interactive Theorem Proving) in particular
(especially for goals like those of the AUTOMATH project ([7,15,22]) and the
QED manifesto ([21]). Moreover: as is emphasized and demonstrated in [4], set
theory has not only a great pragmatic advantage as a basic language for mathe-
matical discourse, but it also has a great computational potential as a basis for
specification languages, declarative programming, and proof verifiers. However,
in order to be used for any of these tasks it is necessary to overcome the following
serious gaps that exist between the “official” formulations of set theory (as given
e.g. by Zermelo Fränkel Set Theory ZF; see e.g. [11]), and actual mathematical
practice:

1. The official formalizations of axiomatic set theories in almost all textbooks
are based on some standard first-order languages. In such languages terms are

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 167–183, 2021.
https://doi.org/10.1007/978-3-030-88853-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_11&domain=pdf
http://orcid.org/0000-0001-8884-0597
http://orcid.org/0000-0001-6831-3343
https://doi.org/10.1007/978-3-030-88853-4_11

168 N. Levi and A. Avron

variables, constants, and sometimes function applications (like x ∩ y). What
is not available in the official languages of those formalizations is the use of
set terms of the form ({x | ϕ}). As a result, already the formulation of the
axioms is quite cumbersome, and even the formalization of elementary proofs
becomes something practically incomprehensible.

2. ZF treats all the mathematical objects on a par, and so hid the computational
significance of many of them. Thus although certain functions are first-class
citizens in many programming languages, in set theory they are just “infinite
sets”, and ZF in its usual presentation is an extremely poor framework for
computing with such sets (or handling them constructively).

3. Full ZF is far too strong for core mathematics, which practically deals only
with a small fraction of the set-theoretical “universe”. It is obvious that much
weaker (and easier to mechanize) systems should do.

The first of these three problems can be overcome by using the framework
for formalizing mathematics that was developed In [1]. This framework is based
on set theory and is close in many ways to ZF on one hand, but is definitional in
spirit on the other. In particular: it makes an extensive use of abstract set terms
of the form {x | ϕ}. One of its crucial features is that all abstract set terms
that it allows to use are statically defined in a precise formal way (using the
mechanism of safety relations). Therefore it preserves the very useful complete
separation we have in first-order logic between the (easy) check whether a given
expression is a well-formed term or formula, and the (difficult) check whether
it is a theorem. This feature makes the framework particularly appropriate for
mechanical manipulations and for interactive theorem proving.1

The other two problems mentioned above have been tackled in [2,3,5] by
employing predicative set theories. By this, these papers followed Poincaré
([16,17]), Weyl ([20]), and Feferman, who in [9,10] forcefully argued that pred-
icative mathematics suffices for developing all of scientifically applicable mathe-
matics, i.e. the mathematics that is actually indispensable to present-day natural
science. Poincaré-Weyl-Feferman’s predicativist program is essentially based on
the principle that higher-order constructs, such as sets or functions, are accept-
able only when introduced through non-circular definitions. The main goal of
[3,5] was to show that using the framework of [1], this definitional approach to
mathematics can be implemented in a user friendly way, which is based on set
theory, and has no essential conflicts with mathematical practice.

The main problem of predicative mathematics is how to introduce and handle
the real numbers, and what is usually taken as their characteristic property: their
completeness with respect to their standard ordering. This principle has in fact
been abandoned (and replaced by a weaker principle) by Weyl and Feferman. In
contrast, it is preserved in [5]. However, its applicability there is severely limited
by the fact that most of the important collections of real numbers, (including R

itself and all intervals) are not available as sets according to the theory RSTHF

1 This has already been demonstrated in an initial implementation made in Tel Aviv
university.

Analysis in a Formal Predicative Set Theory 169

used there, but only as proper classes. Moreover, because of this fact the develop-
ment of analysis there is not natural, and involves a lot of coding (much like the
development of analysis carried out in reverse mathematics [19]). What seemed
to be a successful attempt to avoid this state of affairs was made in [3], using
a (still predicative) extension of RSTHF. Unfortunately, there was a subtle, but
rather difficult to repair, mistake in the proof given there of the completeness of
what is taken there as R. In fact, the theorem is wrong! (See Remarks 5 and 7
below.) Since all proofs that come later in [3] depend on the completeness of its
R, that mistake invalidates them as well.

In this paper we achieve the goals of [3] by presenting correct and natural
development of fundamental analysis in a predicative set theory which is based
on the framework given in [1]. We use for this an extension called PZFU of the
system PZF developed in [2] (which is based on ancestral logic rather than on
first-order logic), and a more delicate and careful choice of those Dedekind cuts
that we adopt as real numbers. Like the systems used in [3] and [5], the key
feature of PZFU is that it is definitional in the sense that every object which is
shown in it to exist is defined by some closed term of the theory. This allows
for a very concrete, computationally-oriented model of it. The development of
analysis in PZFU does not involve coding (like in [19] and [5]), and the definitions
it provides for the basic notions (like continuity) are the natural ones, almost
the same as one can find in any standard analysis book (e.g. [12]).

2 Preliminaries

2.1 Notations

We denote formulas by ϕ, ψ, χ, θ, α, β, terms by r, s, t, and variables by
x, y, z, w, a, b, indexed or not. Given an expression (i.e. a formula or a term) e, we
denote by Fv(e) (Bv(e)) its set of free variables (bound variables). Let x1, . . . , xk

be k different variables, and t1, . . . , tk be k terms. We write e{t1/x1, . . . , tk/xk}
for the expression that is obtained from e by simultaneously substituting the
terms tis for the free occurrences of the variables xis (we do not assume that
Fv(e) = {x1, . . . , xk}, or even that Fv(e) ⊆ {x1, . . . , xk}). We always assume
that during a substitution no free variable of the substituted terms is getting
captured (renaming the bounded variables in e to fresh new ones if needed). We
write x̄ as a shorthand for x1, . . . , xn.

2.2 The Theory PZFU

In this section we define the theories PZF and PZFU. The theory PZF was pre-
sented in [2].2 (See there for more information.) We start by introducing LPZFU ,
the language of PZFU. LPZFU contains three major notions: the notion of term,

2 In [3] the theory RSTHF,U was presented. The theory PZFU is a stronger version of
it.

170 N. Levi and A. Avron

the notion of formula, and the notion of a safety relation �PZFU , which is a rela-
tion between formulas and sets of variables. The definitions of those notions are
mutual recursive.

Definition 1. The terms, formulas, and the safety relation �PZFU of LPZFU are:

– Terms:
1. Every variable is a term.
2. The constant U is a term.
3. If x is a variable and ϕ is a formula s.t. ϕ �PZFU {x}, then {x

∣
∣ ϕ} is a

term.
– Formulas:

4. If t and s are terms than t ∈ s, t = s are (atomic) formulas.
5. If ϕ, and ψ are formulas, and x is a variable, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, and

∃xϕ are formulas.
6. If ϕ is a formula; s, t are terms; and x, y are distinct variables, then

(TCx,yϕ)(t, s) is a formula.
– The safety relation �PZFU :

7. ϕ �PZFU ∅ if ϕ is atomic.
8. ϕ �PZFU {x} if ϕ ∈ {x
= x, x = t, t = x, x ∈ t}, provided that x /∈ Fv(t).
9. ¬ϕ �PZFU ∅ if ϕ �RST ∅.

10. ϕ ∨ ψ �PZFU X if ϕ �PZFU X and ψ �PZFU X.
11. ϕ ∧ ψ �PZFU X ∪ Y if ϕ �PZFU X; ψ �PZFU Y ; and Y ∩ Fv(ϕ) = ∅.
12. ∃yϕ �PZFU X − {y} if y ∈ X and ϕ �PZFU X.
13. (TCx,yϕ)(x, y) �PZFU X if ϕ �PZFU X ∪ {x} or ϕ �PZFU X ∪ {y}.

Definition 2. The definition of LPZF (the language PZF) is (almost) identical
to Definition 1, but with the constant U omitted. (the safety relation of LPZF is
denoted by �PZF .)

Definition 3. A formula ϕ of LPZFU (LPZF) is absolute if ϕ �PZFU ∅ (ϕ �PZF ∅).

Definition 4. The logic which underlies PZFU and PZF is TC-logic (transitive
closure logic), also called AL (ancestral logic). See [2,6,13,14,18].

Definition 5. PZF is the set-theory in LPZF that has the following axioms:

– Extensionality: ∀z(z ∈ x ↔ z ∈ y) ↔ x = y
– Comprehension: ∀x.x ∈ {x | ψ} ↔ ψ, provided ψ �PZF {x}.
– ∈-induction scheme:

(

∀x.
(∀y ∈ x.ϕ{y/x}) → ϕ

)

→ ∀xϕ (provided y is free

for x in ϕ).3

Definition 6. PZFU is the set-theory in LPZFU that has all the axioms of PZF
(with �PZF replaced by �PZFU) and the following schema for U: U-closure scheme:
∀y1 . . . yn ∈ U.t ∈ U, provided t is a term, Fv(t) = {y1, . . . , yn}, and U does not
occur in t. (i.e., t is a term of PZF.)

3 Although the ∈-induction scheme is a part of PZF/PZFU, we shall never use this
scheme in this work.

Analysis in a Formal Predicative Set Theory 171

Some notes concerning Definition 6:

– By straightforward structural induction it can be proved that if e is an (abso-
lute) formula than e{t1/x1, . . . , tk/xk} remains an (absolute) formula, and
that if e is a term than e{t1/x1, . . . , tk/xk} remains a term. It holds for PZF
and for PZFU.

– The constant U stands for “Universe”. In [2] it was shown that every rudi-
mentary operation4 can be defined by a set-term of PZF (even without the
use of the TC operator).5 Hence by the U-closure scheme (see Definition 6),
the universe U is closed under the rudimentary operations. For example if
x, y ∈ U then x × y, x ∪ y, x ∩ y, ∪x are also elements of U.

– In the sequel, we shall always indicate which definitions and which claims
take place in PZF and which in PZFU. Usually we shall do it by writing in
parenthesize whether it is PZF (for example “Definition 1.1 (PZF)”) or
PZFU (for example “Lemma 1.1 (PZFU)”). We have a special concern with
definitions of set-terms that belong to PZF because we can apply to them the
U-closure scheme (see Definition 6).

2.3 Extending the Base Language

Although the official language of PZFU (and of PZF) is the one defined above, it
is a standard mathematical practice to introduce new symbols and notations as
the work progresses. So practically we shall enrich our language, and this will be
done by adding to the language two kinds of defined symbols: defined predicates,
and defined operations.

Defined Predicates. This is done much like as adding new predicate symbols
to a standard FOL language L. In general, given a formula ϕ of L s.t. Fv(ϕ) =
{x1, . . . , xn} we may extend L with a new n-ary predicate symbol Pϕ that
abbreviates ϕ (this of course must come with appropriate axioms that “define”
Pϕ). In our work we shall do the same, but with the constraint that we shall
add new predicate symbols only for absolute formulas. The reason for this is that
we want to preserve property (7) of Definition 1 (atomic formulas need to be
absolute).

Defined Operations. In a usual FOL one may add new operations symbols.6

Working in a theory T (in a language L), if ϕ is a formula of L s.t. Fv(ϕ) =
{y, x1, . . . , xn}, and if T � ∀x1, . . . , xn∃!y.ϕ, we may extend L with a new n-
ary operation symbol fϕ, with the following intuitive meaning: given x1, . . . , xn,
fϕ(x1, . . . , xn) is that unique y. (Of course we need to add to T appropriate
4 In the literature these are referred as “rudimentary functions”. We prefer to call
them “rudimentary operations”, because we reserve the word “function” only for
objects that exist as sets.

5 For more information about the rudimentary operations see [8].
6 These are usually referred as functions symbols.

172 N. Levi and A. Avron

axioms that “defines” fϕ). Hence, in the process of adding a new operation
symbol, there is usually a need to prove (inside the theory) the existence and
uniqueness of the object “returned” by the operation. An exception is the case
where the new operation symbol is introduced as an abbreviation of some term
in the language. (More formally the above ϕ is of the form y = t where t is a
term. The existence and uniqueness of that y is obvious.) While working in PZF
(PZFU) this is the only way we shall use when we add new operation symbols.
For example consider the term t = {a | a ∈ x1∨a ∈ x2} (the union of x1 and x2).
We add a new 2-ary operation symbol “∪” corresponding to t (or more formally
corresponding to the formula y = t). Given two terms r and s, we may view the
term r ∪ s simply as an abbreviation of {a | a ∈ r ∨ a ∈ s}.

Remark 1.

1. We stress that at any point in the future, our extended language will always
satisfy all the properties specified in Definition 1. Specifically, an atomic for-
mula will always be absolute, and given a term t of LPZF, x ∈ t �PZF {x},
and x = t �PZF {x} (same for PZFU).

2. If one wants to translate a formula that involves new predicate-
symbols/operation-symbols to a formula of the original language, all he needs
to do to is to unravel the definitions of the defined notions, which are merely
abbreviations of formulas/terms in the original language.

3. One delicate point concerns the schemes in Definition 6 (the Comprehension
scheme, the ∈-induction scheme, and the U-closure scheme). The formulas and
terms that appear there are expressions in the original language LPZF (LPZFU),
while we will use those schemes also with expressions that involve new defined
symbols. Practically no real problem arises because the new symbols merely
represent new ways of abbreviating formulas and terms. We shall be more
careful with the U-closure scheme, when applying it to a term t. We shall
always check that t is a term of the (extended) language of PZF.

4. Let t1, . . . , tn be n terms, let P be an n-ary predicate symbols, and f be an n-
ary operation symbols. The standard convention of applying P to t1, . . . , tn,
is P (t1, . . . , tn) (and f(t1, . . . , tn) when applying f to them). To enhance
clarity, we leave the symbols “(,)” only for the case when we apply a function
to an element. Instead of P (t1, . . . , tn) we shall always write P [t1, . . . , tn], and
instead of f(t1, . . . , tn) we shall always write f〈t1, . . . , tn〉.

2.4 Basic Notations

In what follows we shall use the following.

1. In [2] it was shown how basic predicates and operations can be defined. In
the sequel we shall use the following: x ⊆ y (the usual meaning), func[f]
(f is a function), func[f, x, y] (f is a function from x to y), bijection[f, x, y],
surjection[f, x, y] (f is a bijection/surjection from x to y), seq[s] (s is a function
with domain N), seqFin[s] (s is a function from a proper initial segment of N).
∅, x∪y , x∩y , x\y , x×y , ∪x (the usual meaning), {x} , {x1, . . . , xn}(the
usual meaning), 〈x, y〉 (ordered pair), dom〈r〉 , rng〈r〉 (the domain/range of

Analysis in a Formal Predicative Set Theory 173

a relation r), f � x (the restriction of a function f to x). We note that all the
above take place in PZF.
The next four notations are merely abbreviations for set-terms. (For more
information see [3]).

2. ιx.ϕ (provided ϕ �PZFU {x}) stands for the unique element x s.t. ϕ.
3. λx ∈ s.t (provided x /∈ Fv(s)). Moreover, we note that if s and t do not involve

the constant U, and if Fv(s)∪Fv(t) ⊆ {x1, . . . , xn} then PZFU � ∀x1, . . . , xn ∈
U.(λx ∈ s.t) ∈ U.

4. If f is a function, f(x) stands for ιy.〈x, y〉 ∈ f , where y is a fresh new variable.
5. Restricted replacement: if t is a term s.t. {x̄} ⊆ Fv(t), ψ �PZFU {x̄}, we write

{t | ψ} instead of {a | ∃x̄.a = t ∧ ψ}.
6. Definition by cases: assume that t1, t2 are terms, and that ϕ1, ϕ2 are absolute

formulas s.t. PZF(PZFU) � ¬(ϕ1 ∧ ϕ2). Let a be a fresh new variable, and
consider the following term: t := {a | a ∈ t1 ∧ ϕ1} ∪ {a | a ∈ t2 ∧ ϕ2}. It is
provable in PZF (PZFU) that:

(

ϕ1 → t = t1
) ∧ (

ϕ2 → t = t2
) ∧ (

(¬ϕ1 ∧ ¬ϕ2) → t = ∅).
In the sequel we introduce t simply by writing:

t :=

⎧

⎨

⎩

t1 if ϕ1

t2 if ϕ2

∅ else

Remark 2. For simplicity, we stated the above notation for a two-cases term,
but we shall use this type of notations also for more than two terms. Also, if it
holds that PZF(PZFU) � ϕ1 ∨ . . . ∨ ϕk we shall omit the “else”.

2.5 Mathematics in PZF

We summarize facts from [2,3,5] about the development of mathematics in PZF.7

The Sets N, Z, Q. For every element of Jωω , the ωω level of Jensen’s hierarchy,
there exists a closed set-term that represents it. Specifically, there are closed
set-terms that represent:

– The set of natural numbers, the set of integers, and the set of rational num-
bers. Those set-terms are denoted as usual by N, Z, and Q.

– The following relations and functions (on Q): <Q,+Q,−Q,×Q, /Q, |·|
Q

It can be proved in PZF that the above sets, functions, and relations have their
usual properties.

Induction Scheme. The full induction scheme can be proved, namely for every
formula ϕ of PZF (PZFU):

�PZF(PZFU)

(

ϕ{0/n} ∧ ∀n(ϕ → ϕ{n + 1/n}))
) → ∀n ∈ N.ϕ.

7 Actually, [3,5] deal with the systems RSTHF and RSTHF,U. Since PZF is stronger than
these theories, all the development done there is also available in PZF.

174 N. Levi and A. Avron

Dedekind Cuts. We define Dedekind cuts in the usual way.

Definition 7. r is a Dedekind cut:

dedCut[r] :=
(∅
= r � Q

) ∧ (

r doesn’t have a maximum
)∧

(∀x, y ∈ Q.x ∈ r ∧ y < x → y ∈ r
)

After defining Dedekind cuts, we can define the usual operations +,−,×, /, | · |,
and the predicate <. For example the term that defines the operation + is:
r + s := {q +Q q′ | q ∈ r ∧ q′ ∈ s}. Similarly we define −,×, /, | · |, <. It is a
standard matter to prove in PZF that these operations and relations have their
usual properties. In addition, for every Dedekind-cut r, and every k ∈ N, the
exponentiation term rk is defined and it has its usual properties.
The following completeness theorem can be proved in PZF:

Theorem 1 (PZF)(Completeness). Let X be a non empty set of Dedekind
cuts. Assume also that there exists a Dedekind cut d s.t. ∀x ∈ X.x ≤ r (namely
X is bounded from above). Then ∪X is a Dedekind cut and it is the supremum
of X. (Later we shall denote ∪X by sup〈X〉)

2.6 Recursive Definitions

In the sequel we shall define several terms by recursion. In this section we prove
that such definitions are indeed legitimate. The following theorem is actually a
schema in PZF (PZFU):

Theorem 2. Let ti, ts be terms of PZF (PZFU) s.t. Fv(ti) = {x̄} and Fv(ts) =
{n, p, x̄}.8 Then there exists a term trec of PZF (PZFU) with Fv(trec) = {x̄}
s.t. the following is provable in PZF (PZFU):

∀x̄. func[trec] ∧ dom〈trec〉 = N ∧ trec(0) = ti ∧ (1)

∀n ∈ N
+ ∀p.p = trec(n − 1) → trec(n) = ts (2)

Informally, ti is the initial value, and ts is the “step” function that “gets” the
previous value in the variable p, and outputs current value.

Remark 3. When using this theorem, we shall introduce trec by writing:

trec〈x̄〉 := λn ∈ N.

{
ti〈x̄〉 if n = 0
ts〈n, trec〈x̄〉(n − 1), x̄〉 if n > 0

Proof. See in the appendix.

2.7 Finite Sums

Using Theorem 2 we can define the 2-ary operation of finite sum
∑n

i=0 a(i). It
is provable in PZF that it has all its usual properties.
8 We remind the reader that x̄ stands for x1, . . . , xn.

Analysis in a Formal Predicative Set Theory 175

3 Sequences of Dedekind Cuts

In this section we develop the notion of a limit of a sequence (of Dedekind cuts).

Definition 8 (PZF). Define the following:

– seqdc[s] := seq[s] ∧ ∀a ∈ rng〈s〉.dedCut[a]
– bounded[a] := seqdc[a] ∧ ∃q ∈ Q ∀n ∈ N.|a(n)| ≤ q.
– The following term maps a bounded sequence a, to its lim sup. Define first

the term t〈a〉 := {q ∈ Q | ∀n ∈ N ∃k ≥ n.q ∈ a(k)}. Note that t〈a〉 is not
necessarily a Dedekind cut, because it might contain a maximal element. In
that case we simply remove it:

limsup〈a〉 =
{

t〈a〉 if ¬∃q ∈ t〈a〉∀q′ ∈ t〈a〉.q′ ≤ q
t〈a〉 \ {ιq.q ∈ t〈a〉 ∧ ∀q′ ∈ t〈a〉. q′ ≤ q} else

– liminf〈a〉 is defined in a similar way.
– converge[a] := bounded[a] ∧ liminf〈a〉 = limsup〈a〉.
– The term limit〈a〉 maps a convergent sequence to its limit:

limit〈a〉 := liminf〈a〉
– The sequence a converges to (the Dedekind cut) r:

converge[a, r] :=seqdc[a] ∧ dedCut[r]∧
∀ε ∈ Q

+ ∃N ∈ N ∀n ≥ N.|a(n) − r| < ε

It is straightforward to prove that converge[a, r] ∧ converge[a, r′] → r = r′.
– The sequence a is a Cauchy sequence if:

cauchySeq[a] := seqdc[a] ∧ ∀ε ∈ Q
+ ∃N ∈ N ∀n,m ≥ N.|a(n) − a(m)| < ε

Proposition 1 (PZF).

∀a.seqdc[a] ∧ bounded[a] → dedCut[limsup〈a〉] ∧ dedCut[liminf〈a〉]
Proof. The proof is straightforward and left for the reader.

Proposition 2 (PZF). Assume that seqdc[a]. The following holds:

1. converge[a] → ∃r.converge[a, r] ∧ r = limit〈a〉
2. ∀r.converge[a, r] → (converge[a] ∧ limit〈a〉 = r)
3. converge[a] ↔ cauchySeq[a]

Proof. The proof of the above propositions is straightforward. In the appendix
we sketch for example the proof that cauchySeq[a] → converge[a].

Remark 4. It is tempting to define converge[a] as ∃r.dedCut[r] ∧ converge[a, r].
But the last formula is not absolute, while our definition of converge[a] is done
by an absolute one.

176 N. Levi and A. Avron

4 The Real Line

Up to now all the terms, absolute formulas, and claim took place in PZF, namely
we did not use the constant U in our definitions. Since we want to treat R (the
real numbers) as a set, we move to work in PZFU and define R as follows.

Definition 9 (PZFU).

– The real line R := {r ∈ U | dedCut[r]}
– r is a real number (or simply real) if r ∈ R. Note that “r is real” is not

equivalent to dedCut[r], since not all Dedekind cuts belong to U.

It is straightforward to prove the following theorem:

Theorem 3 (PZFU)(U-completeness). Let X ⊆ R, X
= ∅, and assume that
X is bounded from above. If X ∈ U then sup〈X〉 ∈ R.

Remark 5. In [3] it was claimed that already in the theory RSTHF,U (and so also
in PZFU, which is stronger) one can prove that every nonempty bounded subset
of R has a supremum in R. As we noted in the introduction, this claim and
its proof in [3] are wrong. The problem was that the need in Theorem 3 of the
condition X ∈ U had been missed.

In addition we have:

Theorem 4 (PZFU). R is closed under +,−,×, / and | · |. (In the case of / we
exclude division by 0, of course.)

Notations: Henceforth we use the usual notations for closed/open intervals,
like: [a, b] := {r ∈ R | a ≤ r ≤ b}, and (a, b) := {r ∈ R | a < r < b}.

Warning: Although R is a subset of U, it is not necessarily an element of U .
The same is true for [a, b] and (a, b) in case a < b (for every a, b ∈ R).

Proposition 3 (PZFU)(Convergence in U). Let a ∈ U be a sequence. Then:

converge[a] → ∃r ∈ R.converge[a, r] ∧ r = limit〈a〉
Proof. See in the appendix.

5 Continuous Functions

In this section we define the notion of continuous functions. The major obstacle
we need to overcome is the fact that we do not have a “full” completeness of
R, rather a completeness with respect to subsets of R which are elements of U
(see Theorem 3). To overcome this problem we only consider a restricted class
of functions. Functions that are quasi element of U, in the sense that their parts
whose domains are available in the universe U, are also in U. The definition of
these functions is the following:

Analysis in a Formal Predicative Set Theory 177

Definition 10 (PZFU)(Ufunc).

1. Ufunc[f] := func[f] ∧ ∀x ∈ U.x ⊆ dom〈f〉 → f � x ∈ U.
2. PR := {x ∈ U | x ⊆ R}
3. UfuncR[f] := func[f] ∧ dom〈f〉 ⊆ R ∧ rng〈f〉 ⊆ R ∧ ∀x ∈ PR.f � x ∈ U (which

is obviously equivalent to Ufunc[f] ∧ dom〈f〉 ⊆ R ∧ rng〈f〉 ⊆ R).

Proposition 4 (PZFU).

– ∀f, g.UfuncR[f] ∧ UfuncR[g] ∧ rng〈g〉 ⊆ dom〈f〉 → UfuncR[f ◦ g]
– ∀c ∈ R ∀f, g.UfuncR[f]∧UfuncR[g] → UfuncR[c ·f]∧UfuncR[f + g]∧UfuncR[f ·

g] ∧ UfuncR[1f]

Proof. The proof is straightforward and left for the reader.

Definition 11 (PZFU)(continuous function). Assume that UfuncR[f].

1. Let x ∈ dom〈f〉.
We say that f is continuous at x (and denote it by continuous[f, x]) if f is
defined in a neighborhood of x (namely ∃δ ∈ R

+.(x−δ, x+δ) ⊆ dom〈f〉) and:

∀ε ∈ R
+ ∃δ ∈ R

+ ∀x′.|x′ − x| < δ → |f(x′) − f(x)| < ε (3)

2. The notion of left continuity and right continuity is defined is a similar way.
3. We say that f is continuous on a closed segment [a, b] if [a, b] ⊆ dom〈f〉, f is

right-continuous at a, f is left-continuous at b, and f is continuous at every
x ∈ (a, b).

4. If the domain of f 0is a closed or open segment, or R, we say that f is
continuous if it is continuous on its entire domain. (In the case of closed
segment [a, b], we only require right/left continuity on a/b (respectively). We
denote it by continuous[f].

Remark 6. It is tempting to drop the condition Ufunc[f] in the above definition.
But it turns out that this approach falls too short. See Remarks 5 and 7.

In the following we show that Definition 11 is not void, and actually every
polynomial is a continuous function at every x ∈ R. We start with the definition
of the set of all polynomials:

Definition 12 (PZFU).

– seqFinR[a] := seqFin[a] ∧ ∀i ∈ dom〈a〉.a(i) ∈ R

– poly〈a〉 := λx ∈ R.
∑dom〈a〉−1

i=0 a(i) · xi

– Polynomials := {poly〈a〉 | a ∈ seqFinR}
Proposition 5 (PZFU).

– continuous[λx ∈ R.x], and ∀c ∈ R.continuous[λx ∈ R.c].
– Let f, g be functions from a subset of R to R, and let c ∈ R.

178 N. Levi and A. Avron

• If x ∈ dom〈f〉 ∩ dom〈g〉 and continuous[f, x] ∧ continuous[g, x] then

continuous[f + g, x] ∧ continuous[f · g, x] ∧ continuous[c · f, x]

• If x ∈ dom〈f〉 ∧ f(x)
= 0 then continuous[1f , x]
• If x ∈ dom〈f〉 ∧ f(x) ∈ dom〈g〉 then continuous[f ◦ g, x].

Proof. For every x ∈ R, condition (3) of Definition 11 is proved in the usual way
(for all the above cases). The fact that the above functions are indeed UfuncR,
follows from Proposition 4.

Corollary 1 (PZFU). For every p ∈ Polynomials, p is continuous at every x ∈
R.

Proof. This is a straightforward induction using Proposition 5.

Power Series and Elementary Functions. Using theorem 2 (recursive def-
initions) it is possible to define the set of the elementary functions, and prove
that they continuous. We sketch it in the appendix.

5.1 Intermediate Value Theorem

To demonstrate our definition of continuity, we prove the intermediate value
theorem:

Theorem 5 (PZFU)(intermediate value theorem). Let f be a continuous
function from [0, 1] to R, s.t. f(0) < 0 and f(1) > 0. Then there exits r ∈ [0, 1]
s.t. f(r) = 0.

Proof. Define the following set:

X = {q ∈ Q | 0 ≤ q ≤ 1 ∧ f(q) < 0} (

= {q ∈ Q | 0 ≤ q ≤ 1 ∧ (f � Q)(q) < 0}).

By the closure properties of U, and the fact that f �Q∈ U, we conclude that
X ∈ U. Obviously X is non-empty and bounded from above, hence by the
completeness of R it has a supremum - denote it by s. Obviously s ∈ [0, 1].
We prove that f(s) = 0. Assume that it is not the case, say f(s) > 0. By the
continuity of f at s, there exists δ ∈ R

+ s.t.

∀x.|x − s| < δ → |f(x) − f(s)| <
f(s)

2
(4)

Since s = sup〈X〉, there exists q′ ∈ (s − δ, s) ∩ X. By the definition of X,
f(q′) < 0, but by (4), f(q′) > f(s)

2 > 0 - a contradiction.

Analysis in a Formal Predicative Set Theory 179

Remark 7. As we noted in Remark 6, it is tempting to define the notion of
continuity for every function f from (subset of) R to R, and not demand that
Ufunc[f]. Indeed, that was the definition that was adopted in [3]. We note that
the assumption Ufunc[f] is crucial in the above proof, otherwise we could not
deduce that s = sup〈X〉 ∈ R. In [3], although the definition of continuity did not
assume that Ufunc[f], the intermediate value theorem was “proved” in a very
similar way. This is due to the mistake in the proof of Theorem 3 (completeness
of R),9 where the assumption that the bounded subset of R is an element of U
was omitted.

A Appendix

Proof (proof of Theorem 2). We prove the case of PZF (the case of PZFU is
identical). In the following proof we argue in PZF .
Define first the formula ϕ to be:

(

f = ∅ ∧ g = {〈0, ti〉}
) ∨

(

f
= ∅ ∧ g = f ∪ {〈dom〈f〉, ts{dom〈f〉/n, f(dom〈f〉 − 1)/p}〉})

Informally, we set g to be the finite sequence achieved from the finite sequence f
by expanding the domain of f by 1 according to the “step function” ts. Obviously
ϕ �PZFU {g}. Let

X = {g | g = {〈0, ti〉} ∨ ∃f.f = ∅ ∧ (TCf,gϕ)(f, g)}
and define trec = ∪X. Obviously trec is a term of PZF.
Let x1, . . . , xn be n sets. We observe first that for all g ∈ X it holds that:

seqFin[g] ∧ g(0) = ti ∧ ∀n ∈ dom〈g〉.n > 0 → g(n) = ts{g(n − 1)/p} (5)

The proof is by a straightforward application of the induction rule for the TC
operator.
Next we prove that func[trec]. Since every g ∈ X is a function s.t. dom〈g〉 ⊆ N,
it is obvious that rel[trec], and that dom〈trec〉 ⊆ N. Therefore it suffices to show
by induction on n that

∀n ∈ N ∀g, g′ ∈ X.n ∈ dom〈g〉 ∩ dom〈g′〉 → g(n) = g′(n)

If n = 0 then by (5), g(0) = g′(0) = ti. Assume that n > 0. Since n ∈ dom〈g〉 ∩
dom〈g′〉 and since seqFin[g]∧seqFin[g′], n−1 ∈ dom〈g〉∩dom〈g′〉. By the induction
hypothesis, g(n − 1) = g′(n − 1), hence by (5), g(n) = g′(n) = ts, and overall
trec is a function.

We prove now by induction on n that ∀n ∈ N.n ∈ dom〈trec〉 (and hence
dom〈trec〉 = N). Let g0 = {〈0, ti〉}. Since ϕ{∅/f, g0/g}, it holds that g0 ∈ X and
hence 0 ∈ dom〈trec〉. Assume that n ∈ dom〈trec〉. Then there exists g ∈ X s.t. n ∈
9 See also Remark 5.

180 N. Levi and A. Avron

dom〈g〉. If n + 1 ∈ dom〈g〉 we are done. Otherwise, let g′ := g ∪ {〈n + 1, ts〈n +
1, g(n), x̄〉〉}. Obviously ϕ{g/f, g′/g}, hence g′ ∈ X, and hence n + 1 ∈ dom〈g〉
as desired.

Overall we proved (1) (trec is a function with domain N). Proving (2) is done
by (5) and a straightforward TC-induction.

Proof (part of the proof of Proposition 2). We sketch the proof for
cauchySeq[a] → converge[a]. So assume that cauchySeq[a]. It is straightforward
to show that a is bounded. We prove that liminf〈a〉 = limsup〈a〉. It is straight-
forward to show that liminf〈a〉 ⊆ limsup〈a〉 (even without any assumption on a).
Assume for contradiction that ∃q ∈ limsup〈a〉\ liminf〈a〉. Since dedCut[limsup〈a〉]
and dedCut[liminf〈a〉] it also holds that

∃q, q′, q′′ ∈ Q.q < q′ < q′′ ∧ q, q′, q′′ ∈ limsup〈a〉 \ liminf〈a〉.

Let ε = q′′ − q′. Since cauchySeq[a], there exists N ∈ N s.t.

∀m, k ≥ N.|a(m) − a(k)| < ε. (6)

Since q′ /∈ liminf〈a〉, there exists k′ ≥ N s.t. q′ /∈ a(k′), and hence a(k′) ≤ q < q′.
Since q′′ ∈ limsup〈a〉, there exists k′′ ≥ N s.t. q′′ ∈ a(k′′), and hence q′′ < a(k′′).
Putting it together, it holds that

a(k′) < q′ < q′′ < a(k′′)

Hence |a(k′′) − a(k′)| > q′′ − q′ = ε, that contradicts (6).

Proof (proof of Proposition 3).
By Proposition 2-(1) it follows that converge[a, limit〈a〉]. Since the term limit〈·〉 is
a term of LPZF), and since a ∈ U, by the U-closure scheme it holds that limit〈a〉 ∈
U. Hence not just dedCut[limit〈a〉] (Proposition 1), but also limit〈a〉 ∈ R, and the
claim follows.

A.1 Uniformly Convergence and Power Series

In this section we want to talk about sequences of (real) functions. We use the
standard procedure of Currying. Define the following:

Definition 13 (PZFU)(sequence of functions).

– seqFunc[F] := func[F] ∧ dom[F] = N × R ∧ rng〈F 〉 ⊆ R.
– uniformlyConvergence[F, f] := seqFunc[F] ∧ func[f, R, R] ∧ ∀ε ∈ R

+ ∃N ∈
N ∀x ∈ R ∀n ≥ N.|F (n, x) − f(x)| < ε.

Proposition 6 (PZFU). Assume that uniformlyConvergence[F, f]. Then:

1. ∀x ∈ R.converge[λn ∈ N.F (n, x), f(x)].
2. ∀x ∈ R.limit〈λn ∈ N.F (n, x)〉 = f(x).

Analysis in a Formal Predicative Set Theory 181

Proof. 1. Let x ∈ R. From uniformlyConvergence[F, f] it follows that ∀ε ∈
R

+ ∃N ∈ N ∀x ∈ R ∀n ≥ N.|F (n, x) − f(x)| < ε. Hence ∀ε ∈ R
+ ∃N ∈

N ∀n ≥ N.|F (n, x) − f(x)| < ε, and hence converge[λn ∈ N.F (n, x), f(x)] as
desired.

2. It follows immediately from previous item and Proposition 2-(2).

Proposition 7 (PZFU). Assume that: uniformlyConvergence[F, f], Ufunc[F],
and that ∀n ∈ N.continuous[λx ∈ R.F (n, x)]. Then continuous[f].

Proof. For every x ∈ R, condition (3) of Definition 11 is proved in the usual
way. It remains to prove that UfuncR[f] holds. Since Ufunc[F], and since for
every x ∈ R, N × {x} ∈ U, it follows that F � N × {x} ∈ U and hence for every
x ∈ R,

λn ∈ N.F (n, x) = λn ∈ N.(F � N × {x})(n, x) ∈ U. (7)

Let A ∈ PR. By Proposition 6-(2),

f � A = λx ∈ A.f(x) = λx ∈ A.limit〈λn ∈ N.F (n, x)〉
and by Proposition 6-(1) for every x ∈ A, the sequence λn ∈ N.F (n, x) converges.
By (7), for every x ∈ A, λn ∈ N.F (n, x) ∈ U, and since limit〈·〉 maps convergent
sequences from U to real numbers (in U), we conclude that

λx ∈ A.limit〈λn ∈ N.F (n, x)〉 ∈ U

and the claim follows.

Remark 8. To ease notations, Definition 13 and hence Proposition 7 deal only
with sequences of functions from R to R. However, it can easily be extended to
deal with sequences of functions from open segments to R.

Definition 14 (PZFU)(Series). Define the following term that maps sequences
a ∈ U such that converge[λn ∈ N.

∑n
k=0 a(k)] to their sum:

series〈a〉 := limit〈λn ∈ N.

n∑

k=0

a(k)〉.

We denote series〈a〉 by the usual convention
∑∞

k=0 a(k).

Proposition 8 (PZFU)(Power Series).
Let a ∈ U be a sequence, and let c ∈ R

+. If converge[λn ∈ N.|a(n)| · cn], then
∀x ∈ (−c, c).converge[λn ∈ N.

∑n
k=0 a(k) · xk], and λx ∈ (−c, c).

∑∞
k=0 a(k) · xk

is continuous (on (−c, c)).

Proof (proof of Proposition 8).
The proof that ∀x ∈ (−c, c).converge[λn ∈ N.

∑n
k=0 a(k) · xk] is standard hence

omitted. Define the functions f := λx ∈ (−c, c).
∑∞

k=0 a(k) · xk, and F = λn ∈
N, λx ∈ (−c, c).

∑n
k=0 a(k) ·xk. We wish to apply Proposition 7 to F and f , and

conclude that continuous[f].

182 N. Levi and A. Avron

The proof for uniformlyConvergence[F, f] is also standard and omitted. By
Proposition 5 and straightforward induction, it holds that

∀n ∈ N.continuous[λx ∈ (−c, c).
n∑

k=0

a(k) · xk].

It remains to prove that Ufunc[F]. Let X ∈ U s.t. X ⊆ N×R. By the closure
properties of U, it is obvious that

(

λ〈n, r〉 ∈ X.
∑n

k=0 a(k) · xk
) ∈ U, and the

claim follows.

Corollary 2 (PZFU). Let a ∈ U be a sequence of rational numbers. If for every
c ∈ R

+, converge[λn ∈ N.|a(n)| · cn], then ∀x ∈ R.converge[λn ∈ N.
∑n

k=0 a(k) ·
xk], and λx ∈ R.

∑∞
k=0 a(k) · xk is continuous (on R).

Proof. It is straightforward from previous proposition.

A.2 Elementary Functions

Define the following sequence:

asin = λn ∈ N.

⎧

⎨

⎩

1
n! if n ≡ 1 (mod 4)
− 1

n! if n ≡ 3 (mod 4)
0 else

It is straightforward to show that for every c ∈ R
+, converge[λn ∈ N.|asin(n)|·

cn]. Hence by Corollary 2 the following function is continuous:

sin = λx ∈ R.

∞∑

k=0

asin(k) · xk

Similarly we can define the other trigonometric functions, the inverse trigono-
metric functions, the hyperbolic/inverse hyperbolic functions, the exponentia-
tion, and the logarithmic functions. Using Corollary 2 or Proposition 8, we can
then prove that those functions are continuous. (Note that not all of these func-
tions have domain R.) Next, we define the elementary functions to be all the
functions obtained by adding, subtracting, multiplying, dividing, and compos-
ing any of the previously mentioned functions. By Proposition 5, we conclude
that every elementary function is a continuous function.

References

1. Avron, A.: A framework for formalizing set theories based on the use of static set
terms. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer
Science. LNCS, vol. 4800, pp. 87–106. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78127-1 6

2. Avron, A.: A new approach to predicative set theory. In: Schindler, R. (ed.) Ways
of Proof Theory, Onto Series in Mathematical Logic, vol. 2, pp. 31–63. Onto Verlag
(2010)

https://doi.org/10.1007/978-3-540-78127-1_6
https://doi.org/10.1007/978-3-540-78127-1_6

Analysis in a Formal Predicative Set Theory 183

3. Avron, A., Cohen, L.: Formalizing scientifically applicable mathematics in a defi-
nitional framework. J. Formaliz. Reason. 9(1), 53–70 (2016)

4. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-1-4757-3452-2

5. Cohen, L., Avron, A.: Applicable mathematics in a minimal computational theory
of sets. Log. Methods Comput. Sci. 14 (2018)

6. Cohen, L., Avron, A.: The middle ground-ancestral logic. Synthese 196(7), 2671–
2693 (2015). https://doi.org/10.1007/s11229-015-0784-3

7. De Bruijn, N.G.: A survey of the project AUTOMATH. In: Studies in Logic and
the Foundations of Mathematics, vol. 133, pp. 141–161. Elsevier (1994)

8. Devlin, K.J.: Constructibility, vol. 6. Cambridge University Press, Cambridge
(2017)

9. Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29(1), 1–30 (1964)
10. Feferman, S.: A more perspicuous formal system for predicativity. Konstruktionen

versus Positionen 1, 68–93 (1978)
11. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. Elsevier, Ams-

terdam (1973)
12. Landau, E.: Foundations of Analysis. Chelsea Publishing Company, New York

(1951).Translated from German ‘Grundlagen der Analysis’ by F. Steinhardt
13. Martin, R.M.: A homogeneous system for formal logic. J. Symb. Log. 8(1), 1–23

(1943)
14. Myhill, J.: A derivation of number theory from ancestral theory. J. Symb. Log.

17(3), 192–197 (1952)
15. Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected Papers on Automath.

Elsevier, Amsterdam (1994)
16. Poincaré, H.: Les mathematiques et la logique. Revue de Metaphysique et de

Morale 14(3), 294–317 (1906). http://www.jstor.org/stable/40893278
17. Poincaré, H.: Derni‘ere pensees. Flammarion, Paris (1913). Trans. by J. Bolduc as

Mathematics and Science: Last Essays (1963)
18. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order

Logic, vol. 17. Clarendon Press, Oxford (1991)
19. Simpson, S.G.: Subsystems of Second Order Arithmetic, vol. 1. Cambridge Uni-

versity Press, Cambridge (2009)
20. Weyl, H.: Das kontinuum: Kritische Untersuchungen. über die Grundlagen der

Analysis (1918)
21. Wiedijk, F.: The QED manifesto revisited. Stud. Log. Gramm. Rhetor. 10(23),

121–133 (2007)
22. Zucker, J.: Formalization of classical mathematics in AUTOMATH. In: Studies in

Logic and the Foundations of Mathematics, vol. 133, pp. 127–139. Elsevier (1994)

https://doi.org/10.1007/978-1-4757-3452-2
https://doi.org/10.1007/s11229-015-0784-3
http://www.jstor.org/stable/40893278

Coherence via Focusing for Symmetric
Skew Monoidal Categories

Niccolò Veltri(B)

Tallinn University of Technology, Tallinn, Estonia
niccolo@cs.ioc.ee

Abstract. The symmetric skew monoidal categories of Bourke and Lack
are a weakening of Mac Lane’s symmetric monoidal categories where: (i)
the three structural laws of left and right unitality and associativity are
not required to be invertible, they are merely natural transformations
with a specific orientation; (ii) the structural law of symmetry is a nat-
ural isomorphism involving three objects rather than two. In this paper
we study the structural proof theory of symmetric skew monoidal cate-
gories, progressing the project initiated by Uustalu et al. on deductive
systems for categories with skew structure. We discuss three equivalent
presentations of the free symmetric skew monoidal category on a set of
generating objects: a Hilbert-style categorical calculus; a cut-free sequent
calculus; a focused subsystem of derivations, corresponding to a sound
and complete goal-directed proof search strategy for the cut-free sequent
calculus. Focusing defines an effective normalization procedure for maps
in the free symmetric skew monoidal category, as such solving the coher-
ence problem for symmetric skew monoidal categories.

Keywords: Symmetric skew monoidal categories · Focused sequent
calculus · Coherence · Substructural logic · Agda

1 Introduction

Skew monoidal categories are a weakening of Mac Lane’s monoidal categories
in which the structural laws λ, ρ and α are not required to be invertible, they
are merely natural transformations with a specific orientation. They were intro-
duced by Szlachányi in his study of bialgebroids [27] and have subsequently been
investigated by many (mostly Australian) category theorists [3,5,7,19,20]. In
programming language semantics, skew monoidal categories prominently appear
as a categorical framework for the study of relative monads [1]: similarly to
monads on a category C, which are characterized as monoids in the monoidal
category of endofunctors on C, relative monads on a functor J : J → C are
monoids in the skew monoidal category of functors between J and C.

This work was supported by the Estonian Research Council grant PSG659 and by the
ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 184–200, 2021.
https://doi.org/10.1007/978-3-030-88853-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_12&domain=pdf
http://orcid.org/0000-0002-7230-3436
https://doi.org/10.1007/978-3-030-88853-4_12

Coherence via Focusing for Symmetric Skew Monoidal Categories 185

Skew monoidal categories have received notable attention in recent years in
connection to their coherence problem. For (normal, non-skew) monoidal cate-
gories, Mac Lane [22] showed that each homset in the free monoidal category
generated by a set of objects contains at most one map, and exactly one when
the domain and codomain have the same frontier of generating objects, i.e. gen-
erating objects appear in the same order and with same multiplicity. The same
is not true in the free skew monoidal category: there exist pairs of objects with
the same frontier but with either no maps or multiple maps between them.
This peculiarity spawned the search for concrete presentations of the free skew
monoidal category, or searching for sufficient conditions for the existence of a
unique map between two objects. Taking a rewriting approach, Uustalu [28]
showed that there is at most one map between an object and an object in a
certain normal form, and exactly one map between an object and that object’s
normal form. Lack and Street [20], and successively also Bourke and Lack [4],
addressed the problem of determining equality of maps by proving that there
is a faithful, structure-preserving functor from the free skew monoidal category
on one generating object to the category Δ⊥ of finite non-empty ordinals and
first-element-and-order-preserving functions.

Uustalu et al. [29] solved the coherence problem for skew monoidal categories
by constructing a focused (in the sense of Andreoli [2]) sequent calculus in which
sequent derivations are in one-to-one correspondence with maps in the free skew
monoidal category. From the focused calculus, one can extract algorithms solving
the following problems in the free skew monoidal category: (1) deciding equality
of parallel maps; (2) enumerating all maps in a certain homset, which is a mean-
ingful problem only in the skew case in which not all parallel maps are equal.
This proof-theoretic approach to coherence is inspired by the pioneering work of
Lambek on deductive systems for residuated categories [21], which many authors
have successfully applied in subsequent years to other categories with structure,
such as Szabo [26], Mints [24], and Dosen and Petrić [12]. Recently, Zeilberger
revived this line of work in his study of the Tamari order [33].

In this paper, we continue following Lambek’s footsteps and study the proof
theory of symmetric skew monoidal categories, again for the purpose of coher-
ence. An appropriate notion of symmetry (and, more generally, braiding) for
skew monoidal categories have recently been introduced by Bourke and Lack [6]
(which we recollect in Sect. 2): the original symmetry of Mac Lane [22], typed
B ⊗ C → C ⊗ B, is replaced by a symmetry typed (A ⊗ B) ⊗ C → (A ⊗ C) ⊗ B,
exclusively allowing the swapping of the second and third objects B and C, leav-
ing the first object A in its place. Mac Lane’s coherence for symmetric (normal,
non-skew) monoidal categories states that two parallel maps in the free sym-
metric monoidal category are equal if and only if they have the same underlying
permutation of generating objects. Analogously to the skew monoidal case, this
is not true in the free symmetric skew monoidal category, and this peculiarity
leads again to a more sophisticated solution to the coherence problem.

The central contribution of this paper resides in the introduction of three
equivalent presentations of the free symmetric skew monoidal category on a set
of generators: a Hilbert-style categorical calculus (Sect. 3), a cut-free sequent

186 N. Veltri

calculus (Sect. 4) and a focused subsystem of the latter (Sect. 5), implement-
ing a sound and complete backward proof search strategy attempting to build a
derivation in the sequent calculus. Similarly to the skew monoidal case of Uustalu
et al. [29], the sequent calculus has peculiar sequents of the form S | Γ � C,
where the antecedent is split into an optional formula S, called the stoup, and a
list of formulae Γ , called the context. The symmetry (A⊗B)⊗C → (A⊗C)⊗B
is modelled via a restrained exchange rule, which allows the permutation of for-
mulae in the context but leaves the formula in the stoup unchanged. Our sequent
calculus can be seen as a restricted variant of the I,⊗ fragment of intuitionis-
tic linear logic [16]. Focusing defines a normalization procedure for maps in the
free symmetric skew monoidal category, as such solving the coherence problem
for symmetric skew monoidal categories. Following Uustalu et al. [30], we also
discuss an extension of the focused sequent calculus, defining a concrete presen-
tation of the free normal symmetric monoidal category and recover the original
Mac Lane coherence theorem for symmetric monoidal categories (Sect. 6).

The material presented in Sects. 3, 4 and 5 have been formalized in the Agda
proof assistant, the code is available at https://github.com/niccoloveltri/coh-
symmskewmon.

2 Braided/Symmetric Skew Monoidal Categories

A category C is (left-)skew monoidal [27] if it is equipped with a distinguished
object I, a functor ⊗ : C × C → C and three natural transformations

λA : I ⊗ A → A ρA : A → A ⊗ I αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

satisfying the equations

(m1) I ⊗ I
λI

���
��
��

I

ρI

�������
I

(m2) (A ⊗ I) ⊗ B
αA,I,B �� A ⊗ (I ⊗ B)

A⊗λB��
A ⊗ B

ρA⊗B

��

A ⊗ B

(m3) (I ⊗ A) ⊗ B
αI,A,B ��

����
���

��
λA⊗B

I ⊗ (A ⊗ B)

λA⊗B�����
���

�

A ⊗ B

(m4) (A ⊗ B) ⊗ I
αA,B,I �� A ⊗ (B ⊗ I)

A ⊗ B

ρA⊗B

		�������

������� A⊗ρB

(m5) (A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D �� A ⊗ ((B ⊗ C) ⊗ D)

A⊗αB,C,D

��
((A ⊗ B) ⊗ C) ⊗ D

αA,B,C⊗D

��

αA⊗B,C,D�� (A ⊗ B) ⊗ (C ⊗ D)
αA,B,C⊗D�� A ⊗ (B ⊗ (C ⊗ D))

https://github.com/niccoloveltri/coh-symmskewmon
https://github.com/niccoloveltri/coh-symmskewmon

Coherence via Focusing for Symmetric Skew Monoidal Categories 187

The latter equations are directed versions of the original Mac Lane axioms
[22] for monoidal categories. Kelly [18] observed that, in the monoidal case, equa-
tions (m1), (m3), and (m4) follow from (m2) and (m5). In the skew situation,
this is not the case.

A skew monoidal category is braided [6] if it is additionally equipped with a
natural isomorphism

sA,B,C : (A ⊗ B) ⊗ C → (A ⊗ C) ⊗ B

satisfying the equations

(b1) ((A ⊗ B) ⊗ C) ⊗ D
sA⊗B,C,D ��

sA,B,C⊗D

��

((A ⊗ B) ⊗ D) ⊗ C
sA,B,D⊗C �� ((A ⊗ D) ⊗ B) ⊗ C

sA⊗D,B,C

��
((A ⊗ C) ⊗ B) ⊗ D

sA⊗C,B,D

�� ((A ⊗ C) ⊗ D) ⊗ B
sA,C,D⊗B

�� ((A ⊗ D) ⊗ C) ⊗ B

(b2) ((A ⊗ B) ⊗ C) ⊗ D
sA,B,C⊗D��

αA⊗B,C,D

��

((A ⊗ C) ⊗ B) ⊗ D
sA⊗C,B,D �� ((A ⊗ C) ⊗ D) ⊗ B

αA,C,D⊗B

��
(A ⊗ B) ⊗ (C ⊗ D)

sA,B,C⊗D

�� (A ⊗ (C ⊗ D)) ⊗ B

(b3) ((A ⊗ B) ⊗ C) ⊗ D
sA⊗B,C,D ��

αA,B,C⊗D

��

((A ⊗ B) ⊗ D) ⊗ C
sA,B,D⊗C �� ((A ⊗ D) ⊗ B) ⊗ C

αA⊗D,B,C

��
(A ⊗ (B ⊗ C)) ⊗ D

sA,B⊗C,D

�� (A ⊗ D) ⊗ (B ⊗ C)

(b4) ((A ⊗ B) ⊗ C) ⊗ D
αA,B,C⊗D��

sA⊗B,C,D

��

(A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D �� A ⊗ ((B ⊗ C) ⊗ D)

A⊗sB,C,D

��
((A ⊗ B) ⊗ D) ⊗ C

αA,B,D⊗C
�� (A ⊗ (B ⊗ D)) ⊗ C

αA,B⊗D,C

�� A ⊗ ((B ⊗ D) ⊗ C)

The braiding s is a symmetry if it is its own inverse, i.e. s−1 = s. The struc-
tural law s is a restricted version of the usual braiding of Joyal and Street [17]
in normal braided monoidal categories typed B ⊗C → C ⊗B. Now the leftmost
object (A in the type of s above) is not allowed to be swapped with the other
objects B and C. This implies the existence of a map between any two objects
of the form (. . . ((A ⊗ B1) ⊗ B2) . . .) ⊗ Bn and (. . . ((A ⊗ Bi1) ⊗ Bi2) . . .) ⊗ Bin ,
where i1, . . . , in is a permutation of 1, . . . , n, and the object A is required to stay

188 N. Veltri

in its place. At first sight, equations (b1)-(b4) look very different from the usual
equations of normal braided monoidal categories, but they are reminiscent of an
alternative presentation by Davydov and Runkel via b-structures [10]. They also
appear, with minor variations, as the coherence conditions for operadic trees of
Curien et al. [9]. Bourke and Lack [6] showed that, when the left unitor λ is
invertible, a braiding typed B ⊗ C → C ⊗ B is derivable:

B ⊗ C
λ−1
B ⊗C �� (I ⊗ B) ⊗ C

sI,B,C �� (I ⊗ C) ⊗ B
λC⊗B �� C ⊗ B

and moreover the braided skew monoidal structure is normal braided
monoidal. In particular, ρ and α are also invertible.

Example 1. The category Ptd of pointed sets and point-preserving maps has
the following symmetric skew monoidal structure. The unit is I = (1, �), where 1
is the singleton set with unique element �. The tensor of two pointed sets (A, a)
and (B, b) is (A, a) ⊗ (B, b) = (A + B, inl(a)), where A + B is the disjoint union
of A and B, and inl is the injection of A into A + B. The structural laws λ
and ρ are not invertible, while α is an isomorphism. The natural isomorphism
s : ((A + B) + C, inl(inl(a))) → ((A + C) + B, inl(inl(a))) is defined using the
symmetry and associativity of disjoint union.

This example is an instance of a more general phenomenon discussed by
Bourke and Lack [6]: given a braided (resp. symmetric) monoidal category C

and a monoid M in C, then the category of left M -modules is braided (resp.
symmetric) skew monoidal. The example above arises by taking C as the category
of sets and functions with the symmetric monoidal structure given by disjoint
union, and the monoid M as the singleton set 1. The category of left 1-modules
is isomorphic to Ptd.

Example 2. Given a braided (skew) monoidal category (C, I,⊗) and a comonad
(D, ε, δ) on C. Suppose D is lax braided monoidal, i.e., comes with a map e :
I → D I and a natural transformation m : D A ⊗ D B → D (A ⊗ B) agreeing
suitably with λ, ρ, α, s, ε, δ. The category C has another braided skew monoidal
structure (I,⊗D) where A⊗D B = A⊗D B. The unitors, associator and braiding
are:

λD
A = I ⊗ D A

I⊗εA �� I ⊗ A
λA �� A

ρD
A = A

ρA �� A ⊗ I
A⊗e �� A ⊗ D I

αD
A,B,C = (A ⊗ D B) ⊗ D C

(A⊗DB)⊗δC �� (A ⊗ D B) ⊗ D (D C)

αA,DB,D(DC) �� A ⊗ (D B ⊗ D (D C))
A⊗mB,DC �� A ⊗ D (B ⊗ D C)

sD
A,B,C = (A ⊗ D B) ⊗ D C

sA,DB,DC �� (A ⊗ D C) ⊗ D B

If the braiding s of C is a symmetry and D is lax symmetric monoidal, then
sD is a symmetry as well.

Coherence via Focusing for Symmetric Skew Monoidal Categories 189

3 The Free Symmetric Skew Monoidal Category

The free symmetric skew monoidal category Fssk(At) over a set At (of atoms)
can be defined as a Hilbert-style deductive system, which we call the categorical
calculus. Objects of Fssk(At) are formulae inductively generated as follows:
either an atom X ∈ At; I; or A ⊗ B where A, B are formulae. We write Fma
for the set of formulae. Maps between two formulae A and C are derivations of
(singleton-antecedent, singleton-succedent) sequents A =⇒ C, constructed using
the following inference rules:

A =⇒ A
id

B =⇒ C A =⇒ B
A =⇒ C

◦ A =⇒ C B =⇒ D
A ⊗ B =⇒ C ⊗ D

⊗

I ⊗ A =⇒ A
λ

A =⇒ A ⊗ I
ρ

(A ⊗ B) ⊗ C =⇒ A ⊗ (B ⊗ C)
α

(A ⊗ B) ⊗ C =⇒ (A ⊗ C) ⊗ B
s

(1)

and identified up to the congruence .= induced by the equations in Fig. 1.
The categorical calculus defines the free symmetric skew monoidal category

on At in a direct way. Given another symmetric skew monoidal category C with
function G : At → C, we can easily define mappings G0 : Fma → C0 and G1 :
(A =⇒ C) → C(G0(A), G0(C)) by induction. These specify a strict symmetric
monoidal functor, in fact the only existing one satisfying G0(X) = G(X).

Define the frontier δ(A) of a formula A as the ordered list of atoms contained
in A. Given an ordered list l with length n and an element σ of the symmetric
group on n elements, i.e. a permutation of n elements, we write σ ·l for the action
of σ on l.

Mac Lane [22] proved a coherence theorem for (normal, non-skew) symmetric
monoidal categories, which can be phrased as follows: given two formulae A and
C in the free symmetric monoidal category, there exists a map typed A =⇒ C
iff there exists a permutation σ such that δ(C) = σ · δ(A) (which is to say that
δ(A) and δ(C) are equal as multisets) and, if this is the case, two parallel maps
in A =⇒ C are equal iff they have the same underlying permutation σ.

For the free symmetric skew monoidal category, this is not the case. First,
there exist pairs of formulae with the exact same frontier but with no maps
between them: there are no maps typed X =⇒ I⊗X, no maps typed X⊗I =⇒ X
and no maps typed X ⊗ (Y ⊗Z) =⇒ (X ⊗Y)⊗Z. There are also no maps typed
X ⊗Y =⇒ Y ⊗X. Moreover, there are multiple maps between formulae with the
exact same frontier: there are two maps id � .= α◦ρ⊗λ : X⊗(I⊗Y) =⇒ X⊗(I⊗Y)
and two maps id � .= ρ ⊗ λ ◦ α : (X ⊗ I) ⊗ Y =⇒ (X ⊗ I) ⊗ Y . Bourke and Lack [6]
showed that there are two maps (id ⊗ λ) ⊗ id ◦ α ⊗ id � .= id ⊗ λ ◦ α ◦ s ⊗ id :
((X ⊗ I) ⊗ Y) ⊗ Z =⇒ (X ⊗ Y) ⊗ Z. Postcomposing the latter two maps with s,
we obtain two distinct maps typed ((X ⊗ I) ⊗ Y) ⊗ Z =⇒ (X ⊗ Z) ⊗ Y which
have underlying permutation of frontiers σ = (132).

190 N. Veltri

Fig. 1. Equivalence of derivations in the categorical calculus

4 Symmetric Skew Monoidal Sequent Calculus

The free symmetric skew monoidal category Fssk(At) admits an equivalent pre-
sentation as a cut-free sequent calculus. Formulae are again elements of Fma.
Similarly to the non-symmetric case worked out in a previous paper [29], sequents
are triples of the form S | Γ � C. The antecedent of the sequent is split in two
parts: S is an optional formula called the stoup, which can either be empty
(which we denote −) or a single formula, and Γ is an ordered list of formulae,
that we call the context. The succedent C is a single formula. Derivations of
sequents S | Γ � C are generated by the following inference rules:

A | Γ � C

− | A, Γ � C
pass

− | Γ � C

I | Γ � C
IL

A | B, Γ � C

A ⊗ B | Γ � C
⊗L

A | � A
ax − | � I

IR
S | Γ � A − | Δ � B

S | Γ, Δ � A ⊗ B
⊗R

S | Γ, A, B, Δ � C

S | Γ, B, A, Δ � C
exA,B

(2)

(pass for ‘passivate’, ex for ‘exchange’, L, R for introduction on the left (in the
stoup) resp. right) and identified up to the congruence � induced by the equa-
tions in Fig. 2.

The rules IL, ⊗L and ex are invertible up to �, but the passivation rule pass
is not. General forms of exchange, swapping a formula with a list of formulae,
are admissible by induction on the list of formulae Ξ:

S | Γ, Ξ, A, Δ � C

S | Γ, A, Ξ, Δ � C
exsA,Ξ

S | Γ, A, Ξ, Δ � C

S | Γ, Ξ, A, Δ � C
exsΞ,A (3)

Coherence via Focusing for Symmetric Skew Monoidal Categories 191

Fig. 2. Equivalence of derivations in the sequent calculus

Two forms of cut are admissible, satisfying a large number of �-equations
(see [29, Figures 5 and 6] for the list of such equations not involving the exchange
rule ex).

S | Γ � A A | Δ � C

S | Γ, Δ � C
scut

− | Γ � A S | Δ1, A, Δ2 � C

S | Δ1, Γ, Δ2 � C
ccut (4)

The inference rules in (2) are reminiscent of the rules of the I,⊗ fragment of
intuitionistic linear logic, but there are some crucial differences/restrictions:

1. The left rules IL and ⊗L act only on the formula in the stoup. In particular,
there are no rules for decomposing a unit I or a tensor A ⊗ B in the context.
This allows the derivability of sequents corresponding to the right unitor
ρ : A =⇒ A ⊗ I and the associator α : (A ⊗ B) ⊗ C =⇒ A ⊗ (B ⊗ C), but not
their inverses.

192 N. Veltri

A | � A
ax − | � I

IR

A | � A ⊗ I
⊗R

A | � A
ax

B | � B
ax

C | � C
ax

− | C � C
pass

B | C � B ⊗ C
⊗R

− | B, C � B ⊗ C
pass

A | B, C � A ⊗ (B ⊗ C)
⊗R

A ⊗ B | C � A ⊗ (B ⊗ C)
⊗L

(A ⊗ B) ⊗ C | � A ⊗ (B ⊗ C)
⊗L

2. There is a distinction between antecedents of the form A | Γ , where the
formula A is in the stoup, and antecedents of the form − | A,Γ , where A
is out of the stoup. This distinction is crucial in the right rule ⊗R, which
always sends the formula in the stoup to the first premise (when the rule is
read bottom-up). This allows the derivability of a sequent corresponding to
the left unitor λ : I ⊗ A =⇒ A, but not its inverse, since the passivation rule
pass is not invertible.

A | � A
ax

− | A � A
pass

I | A � A
IL

I ⊗ A | � A
⊗L

3. The exchange rule exA,B permits the swap of two adjacent formulae A and
B in the context, but there is no way to generally swap a formula in the
stoup with a formula in the context. This allows the derivability of a sequent
corresponding to the symmetry s : (A⊗B)⊗C =⇒ (A⊗C)⊗B involving three
formulae, but not of a symmetry involving two formulae typed B ⊗ C =⇒
C ⊗ B.

A | � A
ax

C | � C
ax

− | C � C
pass

A | C � A ⊗ C
⊗R

B | � B
ax

− | B � B
pass

A | C, B � (A ⊗ C) ⊗ B
⊗R

A | B, C � (A ⊗ C) ⊗ B
exB,C

A ⊗ B | C � (A ⊗ C) ⊗ B
⊗L

(A ⊗ B) ⊗ C | � (A ⊗ C) ⊗ B
⊗L

The sequent calculus rules in (2) accurately match the categorical calculus rules
in (1), and the �-equations in Fig. 2 match the .=-equations in Fig. 1, in very
a precise sense. There exists an effective procedure sound : (S | Γ � C) →
(�S|Γ � =⇒ C) turning a sequent calculus derivation into a categorical calcu-
lus derivation, where the interpretation of an antecedent as a formula �S|Γ � is
defined as �S|Γ � = �S〈〈 〈〈Γ � with

Coherence via Focusing for Symmetric Skew Monoidal Categories 193

�−〈〈= I �A〈〈= A A 〈〈 � = A A 〈〈B,Γ � = (A ⊗ B) 〈〈Γ �

which means that A 〈〈A1, A2 . . . , An� = (. . . (A⊗A1)⊗A2) . . .)⊗An. The function
sound is well-defined, in the sense that it sends �-related derivations to .=-related
derivations. There exists also an effective procedure cmplt : (�S|Γ � =⇒ C) →
(S | Γ � C) which is the inverse of sound up to the equivalences .= and �, i.e.
sound(cmplt(f)) .= f , for all f : �S|Γ � =⇒ C, and cmplt(sound(g)) � g, for all
g : S | Γ � C. Composition f ◦ g in the categorical calculus is intepreted by
cmplt as scut(cmplt(g), cmplt(f)). The function cmplt is also well-defined, i.e. it
sends .=-related derivations to �-related derivations.

Theorem 1. The set of derivations of the sequent S | Γ � C, quotiented by
the equivalence relation �, is isomorphic to the set of derivations of the sequent
�S|Γ � =⇒ C, quotiented by the equivalence relation .=.

This shows that the cut-free sequent calculus is an equivalent presentation of
the free symmetric skew monoidal category Fssk(At).

5 A Focused Subsystem for the Symmetric Skew Case

The free symmetric skew monoidal category admits a more concrete presentation
as a focused sequent calculus. Derivations in this calculus correspond to canonical
representatives of equivalence classes of the relation �. They are generated by
the following inference rules:

S | Ω
... Γ, A, Δ �C C

S | Ω, A
... Γ, Δ �C C

exsA,Γ
S | Γ �L C

S | ... Γ �C C
swLC

− | Γ �L C

I | Γ �L C
IL

A | B
... Γ �C C

A ⊗ B | Γ �L C
⊗L

A | Γ �L C

− | A, Γ �L C
pass

T | Γ �R C

T | Γ �L C
swRL

X | �R X
ax

− | �R I
IR

T | Γ �R A − | Δ �L B

T | Γ, Δ �R A ⊗ B
⊗R

(5)

(T is always an optional atom, i.e. either empty or an atomic formula.) As in
Andreoli’s original formulation for linear logic [2], the focused calculus defines
a goal-directed proof search strategy which attempts to build a derivation of a
sequent in the cut-free sequent calculus of Sect. 4, starting from the root:

– We start in phase C (for ‘context’) by permuting the formulae in the context.
This is performed step-by-step using the rule exs, moving one formula at
the time, in a way reminiscent of the insertion-sort algorithm. In this phase,
contexts are split in two parts Ω

... Γ , where Γ consists of formulae that have
already been moved by exs and the formulae in Ω are yet to be moved. Once
all the formulae have been moved, so the antecedent is of the form

... Γ , we
switch to phase L using the rule swLC.

194 N. Veltri

– In phase L (for ‘left’), the formula in the stoup is eagerly decomposed using
the invertible left rules IL and ⊗L. The premise of the ⊗L rule is a derivation
of a sequent in phase C, which gives the chance to further move the formula
B in a different position of the context. If the stoup is empty we have the
possibility of applying the pass rule, i.e. moving the leftmost formula A in
the context to the stoup, and continue the decomposition of A. When the
formula in the stoup is fully decomposed, i.e. either the stoup is empty or it
contains an atomic formula, we switch to phase R using the rule swRL. Notice
that, when the stoup is empty, we are not obliged to use the pass rule, so we
have a choice between applying pass and swRL.

– In phase R (for ‘right’), we focus on the succedent formula. Depending on
its shape, only one among the rules ax, IR, ⊗R can be applied. The second
premise of the ⊗R rule is a derivation of a sequent in phase L, which gives
the chance of applying the pass rule and subsequently the invertible left rules
IL and ⊗L. Different ways of splitting the context in an application of the
rule ⊗R can lead to different successful derivations, which is another source
of nondeterminism.

By dropping the phase annotations (also turning
... into a comma), we can

define three functions embC, embL and embR embedding focused sequent calculus
derivations in the unfocused sequent calculus. The function embC : (S | Ω

... Γ �C

C) → (S | Ω,Γ � C) interprets the focused rule exsA,Γ in (5) as the admissible
unfocused rule exsA,Γ in (3). We can also define a normalization function focus :
(S | Ω � C) → (S | Ω

... �C C), which maps �-related derivations to equal
focused derivations. For the definition of focus, all the unfocused rules in (2) are
proved admissible in phase C. The functions focus and embC establish a bijection
between the sequent calculus and its focused subsystem: embC (focus f) � f and
focus (embC g) = g, for all f : S | Γ � C and g : S | Ω

... �C C.

Theorem 2. The following are isomorphic:

(i) the set of derivations of the sequent S | Ω
... �C C;

(ii) the set of derivations of the sequent S | Ω � C, quotiented by the equiva-
lence relation �;

(iii) the set of derivations of the sequent �S|Γ � =⇒ C, quotiented by the equiv-
alence relation .=.

The focused sequent calculus is peculiar in that it gives the ability of having
a “change of mind” regarding the position to which a formula is moved during
phase C. To explain this phenomenon, consider for example the two derivations of
− | X, I⊗Y

... �C X ⊗Y , which in the categorical calculus correspond to distinct
maps λX⊗λY � .= λX⊗idY ◦sI,Y,X◦λI⊗Y ⊗idX◦sI,X,I⊗Y : (I⊗X)⊗(I⊗Y) =⇒ X⊗Y :

Coherence via Focusing for Symmetric Skew Monoidal Categories 195

X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

I | Y �L Y
IL

I | ... Y �C Y
swLC

I | Y
... �C Y

exsY,()

I ⊗ Y | �L Y
⊗L

− | I ⊗ Y �L Y
pass

X | I ⊗ Y �R X ⊗ Y
⊗R

X | I ⊗ Y �L X ⊗ Y
swRL

− | X, I ⊗ Y �L X ⊗ Y
pass

− | ... X, I ⊗ Y �C X ⊗ Y
swLC

− | X
... I ⊗ Y �C X ⊗ Y

exsX,()

− | X, I ⊗ Y
... �C X ⊗ Y

exsI⊗Y,()

X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

X | Y �R X ⊗ Y
⊗R

X | Y �L X ⊗ Y
swRL

− | X, Y �L X ⊗ Y
pass

I | X, Y �L X ⊗ Y
IL

I | ... X, Y �C X ⊗ Y
swLC

I | Y
... X �C X ⊗ Y

exsY,X

I ⊗ Y | X �L X ⊗ Y
⊗L

− | I ⊗ Y, X �L X ⊗ Y
pass

− | ... I ⊗ Y, X �C X ⊗ Y
swLC

− | X
... I ⊗ Y �C X ⊗ Y

exsX,I⊗Y

− | X, I ⊗ Y
... �C X ⊗ Y

exsI⊗Y,()

(6)

On the left, the formulae in the context are never swapped. On the right, first
X is swapped with I ⊗ Y (the blue exs rule), then Y is swapped with X (the
green exs rule). The second exchange is necessary for completing the derivation.
This means that we are allowed to move the atom X past the atom Y (initially
inside the composite formula I⊗Y) and subsequently change our mind and swap
the positions of X and Y again. The construction of two such distinct focused
derivations with the same underlying permutation of atoms (in this case the
identity permutation fixing X and Y) is possible since the atom Y is wrapped
in the composite formula I ⊗ Y , whose leftmost formula I is closed, i.e. free of
atoms: in the right derivation in (6), when I⊗ Y is moved to the stoup, after an
application of the rule ⊗L we have the possibility of swapping Y and X again
and subsequently the unit I in the stoup is removed with an application of IL.
This “change of mind”, in which we apply the rule exs on the same atom multiple
times, is only possible in the skew case, the same is not doable in the focused
sequent calculus of symmetric monoidal categories (see the next section).

The separation of the context in two parts Ω
... Γ in phase C takes inspiration

from Chaudhuri and Pfenning’s focused sequent calculus for linear logic [8], and
it also appears in the design of focused sequent calculi for right-normal and
associative-normal skew monoidal categories [30].

6 Recovering Coherence for the Non-Skew Case

The focused sequent calculus in (5) can be expanded and modified in order
to obtain a concrete presentation of the free symmetric monoidal category and
recover Mac Lane’s coherence theorem [22]. This is in analogy with Uustalu et
al.’s recovery of the coherence theorem for monoidal categories starting from a
focused sequent calculus for skew monoidal categories [30].

196 N. Veltri

S | Ω
... Γ �C C

S | Ω, I
... Γ �C C

IC
S | Ω, A, B

... Γ �C C

S | Ω, A ⊗ B
... Γ �C C

⊗C
S | Ω

... Γ, X, Δ �C C

S | Ω, X
... Γ, Δ �C C

exsX,Γ

S | Γ �L C S �= X

S | ... Γ �C C
swLC

− | Γ, X, Δ �L C

X | ... Γ, Δ �C C
exsSX,Γ

− | Γ �L C

I | Γ �L C
IL

A | B
... Γ �C C

A ⊗ B | Γ �L C
⊗L

A | Γ �L C

− | A, Γ �L C
pass

T | Γ �R C T = − → Γ = ()

T | Γ �L C
swRL

X | �R X
ax

− | �R I
IR

T | Γ �R A − | Δ �L B

T | Γ, Δ �R A ⊗ B
⊗R

− | �R A X | Δ �R B

X | Δ �R A ⊗ B
⊗R2

(7)

(Condition S �= X in rule swLC requires the stoup S to not be an atomic formula.
Condition T = − → Γ = () in rule swRL requires the context Γ to be empty
whenever the stoup T is empty.)

The differences with the focused sequent calculus in (5) are:

– In phase C, the new rules IC and ⊗C allow the decomposition of units and
tensors in the context, and correspond to adding inverses for ρ and α in the
categorical calculus (1) (see Sects. 3.2 and 3.3 of [30] for a discussion on this
correspondence). The modified exs rule now acts only on atomic formulae.
This implies that each sequent S | Ω

... Γ �C C appearing in the derivation of
a valid sequent S0 | Ω0

... �C C0 has the context Γ consisting only of atomic
formulae. Once all atoms have been moved using exs and the antecedent is of
the form

... Γ , we check whether the formula in the stoup is an atom: if it
is, we move it in the context using the new rule exsS, otherwise we switch to
phase L using the rule swLC as before.

– Rules IL, ⊗L and pass in phase L are unchanged, but the condition in swRL

for switching from phase L to phase R is more stringent: if the stoup is empty,
we are allowed to switch phase only when the context is empty as well. This
restriction forces all formulae in the context to be reduced to atoms using the
rules IC, ⊗C, IL and ⊗L. In particular, in a successful derivation of a sequent
S0 | Ω0

... �C C0, it is possible to switch to phase R only if the antecedent is
completely empty or all the formulae in the antecedents are atoms and the
stoup is non-empty.

– Phase R contains a new rule ⊗R2, which allows to send the atom in the stoup
to the second premise, provided that all of the context is also sent to the sec-
ond premise (so the antecedent of the first premise is left completely empty).
The rule ⊗R2, together with the restriction in swRL discussed above, corre-
spond to adding an inverse for λ in the categorical calculus (1) (as explained
in Sect. 3.1 of [30]).

The “change of mind” of the focused sequent calculus for symmetric skew
monoidal categories, exemplified in the derivation on the right in (6), where the

Coherence via Focusing for Symmetric Skew Monoidal Categories 197

rule exs can act multiple times on an atomic formula in the context, disappears
in the focused sequent calculus for symmetric monoidal categories. Using rules in
(7), the non-determinism exposed in (6) vanishes, and there is a unique derivation
of the sequent − | X, I ⊗ Y

... �C X ⊗ Y :

X | �R X
ax

Y | �R Y
ax

Y | �L Y
swRL

− | Y �L Y
pass

X | Y �R X ⊗ Y
⊗R

X | Y �L X ⊗ Y
swRL

− | X, Y �L X ⊗ Y
pass

− | ... X, Y �C X ⊗ Y
swLC

− | X
... Y �C X ⊗ Y

exsX,()

− | X, I
... Y �C X ⊗ Y

IC

− | X, I, Y
... �C X ⊗ Y

exsY,()

− | X, I ⊗ Y
... �C X ⊗ Y

⊗C

More precisely, it is possible to prove that, in each derivation of a sequent
S | Ω

... Γ �C C in the focused sequent calculus (7), every atomic formula in
S | Ω is moved exactly once in a (possibly) different position past the dotted
line

... with an application of the rule exs or the rule exsS. This shows that each
successful derivation of a sequent A | ... �C C is in one-to-one correspondence
with a permutation of the frontier of A, which is a proof-theoretic formulation
of Mac Lane’s coherence theorem for symmetric monoidal categories.

It is possible to find appropriate extensions of the categorical calculus of
Sect. 3 (now defining the free symmetric monoidal category on At in a direct
way) and the cut-free sequent calculus of Sect. 4, and prove a theorem analogue
to Theorem 2, stating that the focused sequent calculus (7) is equivalent to
these extended calculi. As such, the focused sequent calculus (7) is a concrete
presentation of the free symmetric monoidal category on At.

7 Conclusions and Future Work

We constructed three equivalent proof systems describing the free symmetric
skew monoidal category Fssk(At) on a set At: a Hilbert-style categorical calculus,
a cut-free sequent calculus, and a subsystem of focused derivations of the latter.
The focused sequent calculus solves the coherence problem for symmetric skew
monoidal categories. It provides a decider for equality of maps in Fssk(At): two
parallel maps f, g : A =⇒ C are .=-related iff focus(cmplt(f)) = focus(cmplt(g)),
and equality of focused derivations is decidable. It also gives a procedure for
enumerating all maps in the homset A =⇒ C up to the congruence .=: simply
count the number of focused derivations of the sequent A | ... �C C. We

198 N. Veltri

showed how to extend the focused sequent calculus in order to obtain a calculus
of normal forms for symmetric monoidal categories and retrieve Mac Lane’s
coherence theorem using techniques from structural proof theory.

The story narrated in Sects. 3 and 4 applies with minor modifications to the
more general case of braided skew monoidal categories, which we also formalized
in Agda. The free braided skew monoidal category on a set of atoms has the same
objects of Fssk(At), but the grammar of derivations (1) is augmented with a new
rule s−1 inverse (up to .=) of s. A sequent calculus for braided skew monoidal cat-
egories is obtained by including in the proof system (2) a new rule ex−1

A,B inverse
(up to �) of exA,B . As in the symmetric case, one can define effective procedures
cmplt and sound translating between categorical calculus and sequent calculus,
preserving the congruences .= and �, and exhibiting a bijection between the
two deductive systems. However, the construction of a focused subsystem in the
braided case does not seem obtainable as a simple generalization of the focused
sequent calculus of Sect. 5. This complication is related to the representation of
normal forms for braids in Artin braid groups, which is more convoluted that the
representation of normal forms in symmetric groups [11,14]. The rule exs in (5)
outlines an algorithm for constructing permutations of formulae in the context:
starting from a context Ω

... , repeated applications of exs construct a context... Γ , where Γ is a permutation of Ω, and all permutations can be represented in
this way. A focused sequent calculus for the braided case will instead construct
an action of the braid group on the formulae in the context, but such actions
admit normal forms which are more arduous to formalize. After properly sorting
out the proof theory of braided skew monoidal categories, it would be interesting
to also understand the relationship between the resulting deductive systems and
existing calculi for categories with braided structure [13,15,23].

In Sect. 6, we introduced a focused sequent calculus for normal symmetric
monoidal categories and retrieve Mac Lane-style coherence. We plan to under-
stand the relation between the latter proof system and Shulman’s practical type
theory for symmetric monoidal categories [25]. We also plan to investigate the
proof theory of partially normal symmetric skew monoidal categories in the style
of [30], when one or both structural laws among ρ and α are invertible (but not
λ, whose invertibility implies the invertibility of all structural laws [6]).

Finally, we want to study deductive systems for (symmetric) skew monoidal
closed categories, which will include a linear implication � as in the proof
systems for skew prounital closed categories [31]. The resulting calculi should
allow the representation of interesting classes of concurrent computations, a
skew variant of the concurrent logical framework of Watkins et al. [32].

References

1. Altenkirch, A., Chapman, J., Uustalu, T.: Monads need not be endofunctors. Log.
Methods Comput. Sci. 11(1), Article 3 (2015). https://doi.org/10.2168/lmcs-11(1:
3)

2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

https://doi.org/10.2168/lmcs-11(1:3)
https://doi.org/10.2168/lmcs-11(1:3)
https://doi.org/10.1093/logcom/2.3.297

Coherence via Focusing for Symmetric Skew Monoidal Categories 199

3. Bourke, J.: Skew structures in 2-category theory and homotopy theory. J. Homo-
topy Relat. Struct. 12(1), 31–81 (2015). https://doi.org/10.1007/s40062-015-0121-
z

4. Bourke, J., Lack, S.: Free skew monoidal categories. J. Pure Appl. Alg. 222(10),
3255–3281 (2018). https://doi.org/10.1016/j.jpaa.2017.12.006

5. Bourke, J., Lack, S.: Skew monoidal categories and skew multicategories. J. Alg.
506, 237–266 (2018). https://doi.org/10.1016/j.jalgebra.2018.02.039

6. Bourke, J., Lack, S.: Braided skew monoidal categories. Theor. Appl. Categ. 35(2),
19–63 (2020). http://www.tac.mta.ca/tac/volumes/35/2/35-02abs.html

7. Buckley, M., Garner, R., Lack, S., Street, R.: The Catalan simplicial set. Math.
Proc. Cambridge Philos. Soc. 158(12), 211–222 (2014). https://doi.org/10.1017/
s0305004114000498

8. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538363 15

9. Curien, P.L., Obradović, J., Ivanović, J.: Syntactic aspects of hypergraph poly-
topes. J. Homotopy Relat. Struct. 14(1), 235–279 (2019). https://doi.org/10.1007/
s40062-018-0211-9

10. Davydov, A., Runkel, I.: An Alternative Description of Braided Monoidal Cat-
egories. Appl. Categ. Struct. 23(3), 279–309 (2013). https://doi.org/10.1007/
s10485-013-9338-3

11. Dehornoy, P.: Efficient solutions to the braid isotopy problem. Discret. Appl. Math.
156(16), 3091–3112 (2008). https://doi.org/10.1016/j.dam.2007.12.009

12. Dosen, K., Petrić, Z.: Proof-Theoretical Coherence. King’s College Publications
(2004)

13. Fleury, A.: Ribbon braided multiplicative linear logic. Mat. Contemp. 24, 39–70
(2003). https://www.mat.unb.br/∼matcont/24 3.pdf

14. Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford 20(1),
235–254 (1969). https://doi.org/10.1093/qmath/20.1.235

15. Hasegawa, M.: A braided lambda calculus. Paper presented at Joint
Workshop on Linearity & TLLA 2020. https://www.cs.unibo.it/∼dallago/
TLLALINEARITY2020/A Braided Lambda Calculus.pdf

16. Hyland, M., de Paiva, V.: Full intuitionistic linear logic (extended abstract).
Ann. Pure Appl. Log. 64(3), 273–291 (1993). https://doi.org/10.1016/0168-
0072(93)90146-5

17. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993).
https://doi.org/10.1006/aima.1993.1055

18. Kelly, G.M.: On Mac Lane’s conditions for coherence of natural associativities,
commutativities, etc. J. Alg. 1(4), 397–402 (1964). https://doi.org/10.1016/0021-
8693(64)90018-3

19. Lack, S., Street, R.: Skew monoidales, skew warpings and quantum categories.
Theor. Appl. Categ. 26, 385–402 (2012). http://www.tac.mta.ca/tac/volumes/26/
15/26-15abs.html

20. Lack, S., Street, R.: Triangulations, orientals, and skew monoidal categories. Adv.
Math. 258, 351–396 (2014). https://doi.org/10.1016/j.aim.2014.03.003

21. Lambek, J.: Deductive systems and categories I: syntactic calculus and residu-
ated categories. Math. Syst. Theory 2(4), 287–318 (1968). https://doi.org/10.1007/
bf01703261

22. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49(4),
28–46 (1963). http://hdl.handle.net/1911/62865

https://doi.org/10.1007/s40062-015-0121-z
https://doi.org/10.1007/s40062-015-0121-z
https://doi.org/10.1016/j.jpaa.2017.12.006
https://doi.org/10.1016/j.jalgebra.2018.02.039
http://www.tac.mta.ca/tac/volumes/35/2/35-02abs.html
https://doi.org/10.1017/s0305004114000498
https://doi.org/10.1017/s0305004114000498
https://doi.org/10.1007/11538363_15
https://doi.org/10.1007/s40062-018-0211-9
https://doi.org/10.1007/s40062-018-0211-9
https://doi.org/10.1007/s10485-013-9338-3
https://doi.org/10.1007/s10485-013-9338-3
https://doi.org/10.1016/j.dam.2007.12.009
https://www.mat.unb.br/~matcont/24_3.pdf
https://doi.org/10.1093/qmath/20.1.235
https://www.cs.unibo.it/~dallago/TLLALINEARITY2020/A_Braided_Lambda_Calculus.pdf
https://www.cs.unibo.it/~dallago/TLLALINEARITY2020/A_Braided_Lambda_Calculus.pdf
https://doi.org/10.1016/0168-0072(93)90146-5
https://doi.org/10.1016/0168-0072(93)90146-5
https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.1016/0021-8693(64)90018-3
http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html
http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html
https://doi.org/10.1016/j.aim.2014.03.003
https://doi.org/10.1007/bf01703261
https://doi.org/10.1007/bf01703261
http://hdl.handle.net/1911/62865

200 N. Veltri

23. Mellies, P.-A.: Ribbon tensorial logic. In: Dawar, A., Grädel, E. (eds.) Proceedings
of 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
pp. 689–698. ACM (2018). https://doi.org/10.1145/3209108.3209129

24. Mints, G.E.: Closed categories and the theory of proofs, Zap. Nauchn. Sem. LOMI
68, 83–114 (1977). (in Russian). Translated in 1981 in J. Sov. Math. 15, pp. 45–
62. https://doi.org/10.1007/bf01404107. Reprinted in 1992 in Selected Papers in
Proof Theory, Studies in Proof Theory 3, 183–212. Bibliopolis/North-Holland

25. Shulman, M.: A practical type theory for symmetric monoidal categories. arXiv
eprint 1911.00818 (2019). https://arxiv.org/abs/1911.00818

26. Szabo, M.E.: Algebra of Proofs. Studies in Logic and the Foundations of Mathe-
matics 88. North-Holland (1978)

27. Szlachányi, K.: Skew-monoidal categories and bialgebroids. Adv. Math. 231(3–4),
1694–1730 (2012). https://doi.org/10.1016/j.aim.2012.06.027

28. Uustalu, T.: Coherence for skew-monoidal categories. In: Levy, P., Krishnaswami,
N. (eds.). Proceedings of 5th Workshop on Mathematically Structured Program-
ming, MSFP 2014, Electronic Proceedings in Theoretical Computer Science, vol.
153, pp. 68–77. Open Publishing Assoc. (2014). https://doi.org/10.4204/eptcs.153.
5

29. Uustalu, T., Veltri, N., Zeilberger, N.: The sequent calculus of skew monoidal
categories. In: Casadio, C., Scott, P.J. (eds.) Joachim Lambek: The Interplay of
Mathematics, Logic, and Linguistics. OCL, vol. 20, pp. 377–406. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-66545-6 11

30. Uustalu, T., Veltri, N., Zeilberger, N.: Proof theory of partially normal skew
monoidal categories. In: Spivak, D. I., Vicary, J. (eds.). Proceedings of 3rd Applied
Category Theory Conference, ACT 2020. Electronic Proceedings in Theoretical
Computer Science, vol. 333, pp. 230–246. Open Publishing Association (2020).
https://doi.org/10.4204/eptcs.333.16

31. Uustalu, T., Veltri, N., Zeilberger, N.: Deductive systems and coherence for skew
prounital closed categories. In: Sacerdoti Coen, C., Tiu, A. (eds.). Proceedings of
15th International Workshop on Logical Frameworks and Metalanguages: Theory
and Practice, LFMTP 2020. Electronic Proceedings in Theoretical Computer Sci-
ence, vol. 332, pp. 35–53. Open Publishing Association (2020). https://doi.org/10.
4204/eptcs.332.3

32. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: the propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24849-1 23

33. Zeilberger, N.: A sequent calculus for a semi-associative law. Log. Methods Com-
put. Sci. 15(1), Article 9 (2019). https://doi.org/10.23638/lmcs-15(1:9)2019

https://doi.org/10.1145/3209108.3209129
https://doi.org/10.1007/bf01404107
https://arxiv.org/abs/1911.00818
https://doi.org/10.1016/j.aim.2012.06.027
https://doi.org/10.4204/eptcs.153.5
https://doi.org/10.4204/eptcs.153.5
https://doi.org/10.1007/978-3-030-66545-6_11
https://doi.org/10.4204/eptcs.333.16
https://doi.org/10.4204/eptcs.332.3
https://doi.org/10.4204/eptcs.332.3
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.1007/978-3-540-24849-1_23
https://doi.org/10.23638/lmcs-15(1:9)2019

On the Subtle Nature of a Simple Logic
of the Hide and Seek Game

Dazhu Li1,2, Sujata Ghosh3(B), Fenrong Liu1,2, and Yaxin Tu4

1 Department of Philosophy, Tsinghua University, Beijing, China
2 ILLC, University of Amsterdam, Amsterdam, The Netherlands

3 Indian Statistical Institute, Chennai, India
sujata@isichennai.res.in

4 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China

Abstract. We discuss a simple logic to describe one of our favourite
games from childhood, hide and seek, and show how a simple addition
of an equality constant to describe the winning condition of the seeker
makes our logic undecidable. There are certain decidable fragments of
first-order logic which behave in a similar fashion and we add a new
modal variant to that class of logics. We also discuss the relative expres-
sive power of the proposed logic in comparison to the standard modal
counterparts.

1 From Games to Logic

Everyone remembers the pleasure of playing hide and seek in her or his childhood.
After calling out “I am ready, you can come to find me”, the fun part is to stay
at your secret spot, not making any noise, and to expect that the other player
would not discover you. Once you are found, the other wins. Let us consider
a two-player setting, use E to denote the hider, and A the seeker. Following
the research program of [7], the game of hide and seek is naturally seen as a
graph game, where A and E are located at two different nodes, and are allowed
to move around. The goal of A is to meet E, while the goal of E is to avoid
A. For the game that many of us played in childhood, the player E (one who
hides) basically stays at one place, whereas player A (one who seeks) moves
from one node to another. We can describe such graph games using the basic
modal logic. However, if we consider a simple modification by allowing moves
for both the players (akin to the game of cops and robber [23]), the setting
becomes quite diverse. On one hand, these graph games are natural candidates
for modelling computational search problems, on the other hand, the nuanced
interaction between the players playing hide and seek is a showcase of interactive
players having their goals entangled, which is a popular phenomenon in social
networks. In other words, the graph game of hide and seek provides us with an
ideal arena where we can study reasoning about social interaction and challenges
therein arising from such intertwined objectives of players. In the following we

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 201–218, 2021.
https://doi.org/10.1007/978-3-030-88853-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_13

202 D. Li et al.

will make these games more precise and provide a language to express strategic
reasoning and winning conditions of players.

However, before going into the logic details, let us first get a feel about the
hide and seek game regarding the information available to the players. That will
also lead us to understand the kind of reasoning that we plan to explore for such
games. Essentially, it is an imperfect information game where the seeker is not
aware of the position of hider, whereas the hider may or may not know the exact
position of the seeker. Both the players know the game graph where they move
about and are aware of their own positions and moves. Now, the modification
that we talk about makes the setting even more interesting information-wise, as
then we can consider different levels of information available to both the play-
ers. However, to keep things simple we start off from a high-level modeller’s
perspective, that is, we reason about such games. Thus, we reason about play-
ers’ observations and moves with the assumption that the whole graph and the
players’ positions at each stage of the game are available to us. We leave the
players’ perspectives for future work.

Coming back to the game proper, we have the two players located at two
different nodes. To model their moves we consider a pair of states as an eval-
uation point rather than a single state in a Kripke model (a pointed model),
and consider distinct modalities to express the moves of the players. The evalu-
ation of these two different modalities, one for each player, can then be assessed
coordinate-wise with respect to the pair of states. In addition, a winning condi-
tion for the hide and seek game corresponding to the seeker finding the hider can
be modelled by considering a pair of states whose first and second elements are
the same. This basically gives us the identity relation which can be expressed
by introducing a special identity proposition. We first note that using standard
modal logic arguments, one can show the decidability of the satisfaction prob-
lem of the two-dimensional modal logic mentioned above, without the special
proposition. Interestingly enough, such a simple addition, viz. incorporating the
identity proposition, transforms a decidable modal logic into an undecidable one.
In fact, there are various elegant examples of logics that suggest that taking this
identity relation into account may change previously decidable logics (without
equality) into undecidable ones, e.g., the Gödel class of first-order formulas with
identity (cf. [16]). A more recent example is the logic of functional dependence
with function symbols (see [4] and [24]). We add one more logic to this class, and
that constitutes the main technical result of this paper. This result also refutes
a claim mentioned in [7] which stated that the extended logic with the identity
proposition will remain decidable. The related notion of expressive power of the
proposed logic is also discussed here.

We finally note that this modified version of hide and seek game played on
graphs is a special case of cops and robber game [23], a classic pursuit-evasion
game played on graphs, where several cops attempt to catch a robber. The hide
and seek game corresponds to the game having a single cop chasing a robber.
Thus, this study opens up the possibility of a logical analysis of these cops and
robber games with all their generality (cf. [23]) which have been well-studied

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 203

from algorithmic and combinatorial perspectives. We are currently working on
this idea and exploring an extension of the logic proposed here with modal
substitution operators [26].

In Sect. 2 we introduce a logic (LHS) to reason about plays and winning
conditions in the hide and seek game. Section 3 deals with the relative expressive
power of the language and relevant notions of bisimulation are introduced to
facilitate the discussion. Section 4 gives the main result of this work, viz. the
satisfaction problem of LHS is undecidable. Section 5 provides a discussion on
related work, and Sect. 6 gives pointers to further research.

2 Logic of Hide and Seek (LHS)

Let us first introduce a logic to describe the game of hide and seek, LHS, followed
by an informal discussion about the expressivity of the proposed logic.

Definition 1 (Language). Let PE denote a countable set of propositional vari-
ables for player E, and PA for player A. The two dimensional modal language
is given as follows:

ϕ :: = pA | pE | I | ¬ϕ | (ϕ ∧ ϕ) | 〈left〉ϕ | 〈right〉ϕ

where pE ∈ PE, pA ∈ PA, and I is a propositional constant. Other Boolean con-
nectives are defined in the usual way, and so are the corresponding box modalities
[left] and [right].

Without loss of generality, the modal operator representing player E’s moves
is given by 〈left〉 and that representing A’s moves is given by 〈right〉. Formulas
are evaluated in standard relational models M = (W,R,V), where W is a non-
empty set of vertices, R ⊆ W × W is a set of edges, and V : PE ∪ PA → 2W

is a valuation function. Moreover, for any s, t ∈ W , we call (M, s, t) a pointed
graph model for two players (for simplicity, graph model): intuitively, s and t
represent respectively the positions of players E and A. To simplify notations,
we also employ M, s, t for (M, s, t). Semantics for LHS is given by the following:

Definition 2 (Semantics). Let M = (W,R,V) be a model and s, t ∈ W . Truth
of formulas ϕ at the graph model (M, s, t), written as M, s, t � ϕ, is defined
recursively as follows:

M, s, t � pE ⇔ s ∈ V(pE)
M, s, t � pA ⇔ t ∈ V(pA)
M, s, t � I ⇔ s = t

M, s, t � ¬ϕ ⇔ M, s, t
� ϕ
M, s, t � ϕ ∧ ψ ⇔ M, s, t � ϕ and M, s, t � ψ
M, s, t � 〈left〉ϕ ⇔ ∃s′ ∈ W s.t. Rss′ and M, s′, t � ϕ

M, s, t � 〈right〉ϕ ⇔ ∃t′ ∈ W s.t. Rtt′ and M, s, t′ � ϕ

204 D. Li et al.

As mentioned earlier, the above language has two modalities, one for each
player, viz. 〈left〉 for player E and 〈right〉 for player A. Accordingly, all the
formulas are evaluated in a graph model. The constant I denotes the identity
relation in a game graph to describe the meeting of two players, signifying the
fact that the seeker has found the hider. Let us denote LHS−I to be the logic
LHS without the constant I.

Here are some useful notions. Given a model M and a set U ⊆ W of states,
define R(U) := {t ∈ W | there is s ∈ U with Rst}, denoting the set of successors
of the points in U . For simplicity, we usually write R(s) for R({s}) when U is
a singleton {s}. We can introduce the logical notions such as satisfiability and
modal equivalence in the usual way, and we will omit the details here.

Going back to the hide and seek game itself, one can consider different vari-
ants played on the game graph model, e.g., the players can move simultaneously
or sequentially. In a sequential play, one can also consider different orders of play.
In this paper, we assume that the players move sequentially, and that the hider
E starts the game. Local one-step winning positions (pairs of states describing
the current positions of the players) for each player can be expressed in our
language as follows:

– E : 〈left〉[right]¬I
– A : [left]〈right〉I
More generally, winning positions for E and A can be described as:

– E: ∀n(〈left〉[right])n¬I
– A: ∃n([left]〈right〉)nI

Note that the above conditions involve countable conjunction/disjunction of
finite iterations of interactions between two players. The interactions 〈left〉[right]/
[left]〈right〉 are expressed with two separate modalities, but they are considered
as a single unit. These are not expressible in our language. As mentioned in
the introduction, we are currently exploring an extension of this language with
modal substitution operators which would also provide a finitary way to express
such countable boolean operations.

Remark 1. There are other ways to give suitable logics capturing the hide and
seek game. For instance, one can replace identity constant I with C, denoting
‘catching ’: M, s, t |= C iff R(s) ⊆ R(t). From the perspective of the game,
constant C describes that all states accessible to the hider are accessible to the
seeker as well. In contrast to I which states that the seeker has already won, C
indicates that she can win in the next round. They amount to the same condition
for games of perfect information: if the seeker has the ability to meet the hider
she will actually do that, if she is rational. However, from a logical perspective,
their interpretations are entirely different, leading to distinct expressive features.
For an illustration, let us note that C can be defined as [left]〈right〉I in LHS, but
I is not definable in the logic extending LHS−I with C. The constant proposition
C with the given interpretation is also useful in describing cop-win graphs in the
cops and robber game involving a single cop [23], see more details in [26].

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 205

In the next two sections we will explore some logical properties of LHS regard-
ing its expressiveness on one hand and satisfiability on the other hand.

3 Bisimulation and Expressive Power

The notion of bisimulation is an important tool for studying the expressive power
of modal logics. We are now going to explore a suitable notion tailored to our
logic. We usually need to be careful when introducing the conditions: on one
hand, the definition should ensure that the logic cannot distinguish bisimilar
models (i.e., the desired notion is strong enough), but on the other hand, it
should also hold between two models whenever they cannot be distinguished
by the logical language (thus, it is weak enough). In what follows, we take the
standard bisimulation [9] as the benchmark and investigate the relations between
expressiveness of basic modal logic M, LHS−I and LHS. Let us start by comparing
that for LHS−I and M.

The standard bisimulation, denoted by ↔s, provides us a semantic character-
ization of the expressiveness of the basic modal language. And at a first glance,
the semantic design of logic LHS−I is similar to that of the basic modal logic,
except that we now need to consider two states simultaneously when evaluat-
ing formulas. So, is logic LHS−I invariant under the standard notion? First, we
provide a positive answer in the following sense:

Proposition 1. If (M, w) ↔s (M′, w′) and (M, v) ↔s (M′, v′), then (M, w, v)
and (M′, w′, v′) satisfy the same formulas of LHS−I .

Proof. The proof is straightforward by applying induction on formulas of LHS−I .
We leave the details to the reader. ��

Therefore, the standard bisimulation is strong enough to measure the expres-
sive power of LHS−I . But meanwhile, to behave properly, is it also weak enough?
Unfortunately, we have the following negative result:

Proposition 2. There are (M, w, v) and (M′, w′, v′) s.t. they satisfy the same
LHS−I-formulas but at least one of (M, w) ↔s (M′, w′), (M, v) ↔s (M′, v′)
may not hold.1

Proof. It suffices to give a counterexample. Consider the models M and M′

depicted in Fig. 1. It holds that (M, w1, w2) and (M′, v1, v2) satisfy the same
LHS-formulas, but we do not have (M, w1) ↔s (M′, v1). ��

1 Strictly speaking, a negative result holds even for the basic modal logic (see [9]).
However, it is still ideal if the notion of bisimulation can behave well in a large class
of models (e.g., image-finite models). This is also one of our guiding spirits. But, as
illustrated by the counterexample used to show the result, the standard notion even
excludes situations that are very simple but cannot be distinguished by LHS−I .

206 D. Li et al.

Fig. 1. Two graph models (M, w1, w2) and (M′, v1, v2) satisfying same LHS-formulas.

Intuitively, the failure originates from the ‘evaluation-gap’ between the two
worlds in our graph models (M, s, t): when considering atomic properties of s,
both LHS−I and LHS can only describe those in PE, but not the ones in PA.2

Now, it is time to introduce the notion of bisimulation for LHS, from which
we can easily obtain that for LHS−I . Here is the definition:

Definition 3 (Bisimulation for LHS models). Let M = (W,R,V), M′ =
(W ′, R′,V′) be two models and let s, t ∈ W and s′, t′ ∈ W ′. We say, (M, s, t) is
bisimilar to (M′, s′, t′) (denoted by (M, s, t) ↔ (M′, s′, t′)) if

Atom: (M, s, t) and (M′, s′, t′) satisfy the same propositional letters.
Meet: s = t iff s′ = t′.
Zigleft: if there exists u ∈ W such that Rsu, then there exists u′ ∈ W ′ such that

R′s′u′ and (M, u, t) ↔ (M′, u′, t′).
Zigright: if there exists v ∈ W such that Rtv, then there exists v′ ∈ W ′ such that

R′t′v′ and (M, s, v) ↔ (M′, s′, v′).
Zagleft, Zagright: those analogous clauses in the converse direction of Zigleft and

Zigright respectively.3

With this definition, it is now easy to check that (M, w1, w2) and (M′, v1, v2)
in Fig. 1 are bisimilar. Although the clauses above look rather routine, it is
instructive to notice some subtle aspects of the definition that are in line with our
previous observation: the condition Atom in effect just requires that V(s)∩PE =
V′(s′)∩PE and V(t)∩PA = V′(t′)∩PA, but s and s′ may satisfy different properties
pA and p′

A, say, from PA, and t and t′ may satisfy different properties pE and
p′

E , say, from PE. Moreover, the clause Meet aims to deal with the constant I,
and the others are analogous to the zigzag conditions in standard situations.

By dropping the clause Meet above, we get the notion for LHS−I , and by
(M, s, t) ↔− (M′, s′, t′) we denote the case that (M, s, t) and (M′, s′, t′) are
LHS−I -bisimilar. With Definition 3, it holds that:

2 From the perspective of games, the evaluation-gap suggests a way to handle situa-
tions where the two players have different observations even when they are at the
same position. For example, the gap might allow us to consider further enrichments
so that the states in the playing arena can encode different properties for the players:
a crowed street reducing the possible moves of the escaping robber is helpful for a
chasing cop, meanwhile, it is definitely a disaster to the robber.

3 One may also like to treat LHS as a product logic over models containing two binary
relations Rleft and Rright on domain W × W , and then explore expressive power or
other properties of LHS with respect to the new setting. We leave a systematic study
of relations between our logic and existing combined logics for future inquiry.

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 207

Proposition 3. If (M, s, t) ↔ (M′, s′, t′), then (M, s, t) and (M′, s′, t′) satisfy
the same LHS-formulas. Also, if (M, s, t) ↔− (M′, s′, t′), then they satisfy the
same LHS−I-formulas.

It can be proved by induction on the structure of LHS-formulas. Therefore,
the language cannot distinguish between bisimilar models. However, our previous
discussion indicates that having a very strong notion is never the final goal: it
is equally important to ask whether the notion is also weak enough. This time
we are going to present a positive result w.r.t. a class of models that are LHS-
saturated :

Definition 4 (LHS-saturation). A model M = (W,R, V) is said to be LHS-
saturated, if for any set Φ of formulas and states w, v ∈ W , it holds that:

• If Φ is finitely satisfiable in R(w) × {v}, then the whole set Φ is satisfiable in
R(w) × {v}, and

• If Φ is finitely satisfiable in {w} × R(v), then the whole set Φ is satisfiable in
{w} × R(v).

The notion is essentially obtained by adapting the so-called m-saturation [9]
to fit into our logics. As usual, any finite model is LHS-saturated. Furthermore,
in terms of infinite M, it intuitively requires that M contains ‘enough’ states: for
instance, if every finite subset of Φ can be satisfied by some pairs in R(w)×{v},
then there must also be a pair satisfying Φ itself. By restricting Φ to the fragment
without I, we have a notion for LHS−I , called LHS−I-saturation. Now we have
enough background to show that:

Proposition 4. For all M and M′ that are LHS-saturated, if (M, s, t)
and (M′, s′, t′) satisfy the same formulas of LHS, then it holds that
(M, s, t) ↔ (M′, s′, t′). Moreover, when M and M′ are LHS−I-saturated, if
(M, s, t) and (M′, s′, t′) satisfy the same formulas of LHS−I , then it holds that
(M, s, t) ↔− (M′, s′, t′).

It can be proved by showing that the modal equivalence relation itself is a
bisimulation, but due to the page-limit constraints, details are omitted. There-
fore, just as the usual case, w.r.t. the class of models that are LHS/LHS−I -
saturated, our notion of bisimulation coincides with the corresponding notion of
modal equivalence.

Having shown that our novel notions behave well, we end this section with
the following result concerning the relations among aforementioned varieties of
bisimulations:

Proposition 5. With respect to the three varieties of bisimulations ↔s, ↔ and
↔−, we have the following:

(1) Both ↔s and ↔ are strictly stronger than ↔−: ↔s entails ↔− and ↔
entails ↔−, but the converse directions do not hold.

(2) ↔s and ↔ are incomparable: they do not entail each other.

208 D. Li et al.

Proof. We show the two claims one by one.
(1) The relation between ↔s and ↔− follows from Proposition 1, 2 and 4.

Also, it is obvious that ↔ is stronger than ↔−. For an example, consider the two
models given in Fig. 2: it holds (M, w1, w1) ↔− (M′, v1, v1), but M, w1, w1 |=
〈left〉〈right〉¬I and M′, v1, v1
|= 〈left〉〈right〉¬I. Now, by Proposition 3, we do not
have (M, w1, w1) ↔ (M′, v1, v1).

(2) Consider the models in Fig. 2. It is not hard to see that the states w1

and v1 cannot be distinguished by the basic modal language, but this would not
be the case when we consider the logic LHS. Thus, standard bisimulations need
not be bisimulations of LHS. On the other hand, using the models in Fig. 1, it is
not hard to see that bisimulations of LHS may also be excluded by the notion of
standard bisimulation. This completes the proof. ��

Fig. 2. (M, w1, w1) ↔− (M′, v1, v1), but not (M, w1, w1) ↔ (M′, v1, v1).

Properties of LHS- and LHS−I -bisimulation explored here are very basic, and
several further questions are worth studying. For instance,

Open Problem. What is the computational complexity of checking for bisim-
ulation of LHS or LHS−I? Are they as complex as each other?

4 Towards Undecidability of the Satisfaction Problem

Essentially, LHS introduces a propositional constant to deal with equality in a
modal logic framework. This universally accepted relation of indiscernibility is
simple in nature. However, as we mentioned in Sect. 1, there are various ele-
gant examples of logics that suggest that taking this relation into account may
change previously decidable logics (without equality) into undecidable ones. In
this section, we are going to contribute one more instance to this class: in what
follows, we first show that LHS does not have the tree model property or the
finite model property, and then prove that the satisfiability problem for LHS is
undecidable.

Usually, the tree model property and the finite model property are positive
signals for the computational behaviors of a logic (cf. e.g., [9]). However, in what
follows, we will show that our logic LHS lacks both the properties. Let us begin
with a simple result concerning the tree model property:

Proposition 6. The logic LHS does not have the tree model property.

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 209

Proof. Consider the following formula:

ϕr := I ∧ 〈left〉� ∧ [left]I

It is easy to see that it is satisfiable. Also, let M = (W,R,V) and u, v ∈ W
such that M, u, v � ϕr. From I it follows that u = v. Also, the conjunct 〈left〉�
indicates that the state u has successors, i.e., R(u)
= ∅. Moreover, for all s ∈
R(u), we have s = v. Therefore, R(u) = {u}. Consequently, the model M cannot
be a tree. The proof is completed. ��

Moreover, by constructing a ‘spy-point ’ [10], i.e., all states that are reachable
from u in n-steps can also be reached in one step, we can also establish the
following:

Theorem 1. The logic LHS lacks the finite model property.

Proof. Let ϕ∞ be the conjunction of the following formulas:

(F1) I ∧ [left]¬I

(F2) 〈left〉[left]⊥
(F3) [left]〈right〉(¬I ∧ 〈right〉� ∧ [right]I)

Let us briefly comment on the intuition underlying these formulas. First,
(F1) shows that the two states in the current graph model are the same and
the point is irreflexive. Also, formula (F2) states that the point can reach a
state that is a dead end having no successors. Additionally, the last formula,
motivated by [20], indicates that the point has more than one successor and for
all its successors i, there is also another successor j of i such that i has j as its
only successor.

After presenting the basic ideas of those formulas, we show that the formula
ϕ∞ is satisfiable. Consider the model M∞ = (W,R,V) that is defined as follows:

• W := {s} ∪ N

• R := {〈s, i〉 | i ∈ N} ∪ {〈i + 1, i〉 | i ∈ N}
• For all p ∈ PA ∪ PE, V(p) := ∅.

See Fig. 3 for an illustration. By construction, it can be easily checked that
the formula holds at (s, s), i.e., M∞, s, s � ϕ∞.

Fig. 3. The model M∞.

210 D. Li et al.

Next, let M = (W,R,V) be an arbitrary model such that u ∈ W and
M, u, u � ϕ∞. We are going to show that W is infinite. To do so, we claim
that the model contains the following sequence of states of M:

w0, w1, w2, w3, w4, · · ·

such that for all i ∈ N, the following conditions hold:

P1. M, wi, wi+1 � ¬I ∧ 〈right〉� ∧ [right]I
P2. 〈u,wi〉 ∈ R
P3. R(w0) = ∅, and for 1 ≤ i, R(wi) = {wi−1}

By making an induction on i ∈ N, we show that there is always such a sequence
of those w′

is.
First, let us consider the basic case that i = 0. As M, u, u � (F2), we know

that there is w0 ∈ W such that Ruw0 and M, w0, u � [left]⊥. Therefore, R(w0) =
∅, i.e., we have already obtained the dead end. Moreover, by formula (F3), it
holds M, w0, u � 〈right〉(¬I ∧〈right〉�∧ [right]I). Therefore, there exists w1 ∈ W
such that Ruw1, w0
= w1 and R(w1) = {w0}. Now, it is not hard to see that
the clauses P1-P3 hold for both w0 and w1.

Now, suppose that we have already had all those states wi≤n, and we proceed
to show that there exists wn+1 satisfying the conditions P1-P3. By the induc-
tion hypothesis, we have Ruwn. Now, from the formula (F3), it follows that
M, wn, u � 〈right〉(¬I ∧ 〈right〉� ∧ [right]I). So, there is a state wn+1 ∈ W such
that Ruwn+1 and M, wn, wn+1 � ¬I ∧ 〈right〉� ∧ [right]I. This indicates that
wn+1 satisfies the requirements P1 and P2. Also, as ¬I, wn
= wn+1. Further-
more, from M, wn, wn+1 � 〈right〉� ∧ [right]I, we know that R(wn+1) = {wn},
which indicates that the node satisfies P3 as well.

Moreover, by the property P3, we have wi
= wj whenever i
= j. To be more
specific, we have M, wi, wi � 〈left〉i� ∧ [left]i+1⊥ for each i. Therefore, we have
infinitely many states wi. So, the model M is infinite. The proof is completed. ��

4.1 Undecidability

Now, by encoding the N × N tiling problem, we show that the logic LHS is
undecidable. A tile t is a 1 × 1 square, of the fixed orientation, with colored
edges right(t), left(t), up(t) and down(t). The N × N tiling problem is: given a
finite set T = {t1, · · · , tn} of tile types, is there a function f : N × N → T such
that right(f(n,m)) = left(f(n+1,m)) and up(f(n,m)) = down(f(n,m+1))? The
problem is known to be undecidable (see [8]).

Theorem 2. The satisfiability problem of logic LHS is undecidable.

The proof is given by reduction of the tiling problem to the satisfaction
problem of LHS, and is provided in the Appendix. It is worth noting that the
proof essentially indicates the undecidability of the class of logics generalizing
our framework to capture the games with 2 ≤ n ∈ N players.

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 211

A closely related problem is that of model-checking, and it is important to
study the complexity of the model-checking problem for our logic. In contrast to
the satisfaction problem, we believe that the model checking problem for LHS
can be solved efficiently, that is, the problem lies in P.

Finally, it is not hard to see that logic LHS can be translated into first-
order logic,4 which then suggests that the logic itself is effectively axiomatizable.
Consequently, a crucial direction is to explore the following:

Open Problem. Is there a complete proof calculus for the logic LHS?

5 Related Works

Graph Games and Modal Logics. Motivated by a simple graph game of hide
and seek, this paper belongs to a broader program [7] that promotes a study
of graph game design in tandem with matching new modal logics. In recent
years, several interesting new graph games have been studied. For instance, in
sabotage games [6], a player moves along a link available to her on a graph
to reach some fixed goal region, while her opponent removes an arbitrary link
in each round to prevent her from reaching her goal. The games are captured
by the sabotage modal logic [3], extending the basic modal logic with a link
deletion operator. Further, games in which links are removed locally according
to certain conditions which were expressed explicitly in the language have been
studied in [21]. Moreover, several variants of sabotage games were applied to
the learning/teaching scenarios [15], and their computational behaviors were
analyzed. Following this direction, a new game setting allowing both link deletion
and link addition was developed in [5] to capture some further features of the
learning process. Closely related to the logic of [5], a class of relation-changing
logics, containing operators to swap, delete or add links, was well explored in
[1,2]. Instead of modifying links, in poison games [13], a player can poison a node
to make it unavailable to the opponent. These games have been studied with
diverse modal approaches in [11] and [17]. Additionally, by updating valuation
functions of models, a dynamic logic of local fact change was studied in [25],
which captures a class of graph games in which properties of states might get
affected by those of others.

Product Logics with Diagonal Constant. Technically, our work is close to
that of many-dimensional modal logics [14,22]. In particular, a class of product
logics was studied in [18–20] with the so-called diagonal constant δ.5 In [18,20]
it was shown that K ×δ K, the product logic augmenting K × K with δ, lacks
the finite model property and is undecidable, which seem very similar to our

4 Although details of the translation are not described in the article, it is instructive
to notice that unlike usual situations, LHS is not a fragment of the first-order logic
with two free variables.

5 For instance, in two dimensional models δ holds at a state (s, t) just in the case that
s = t.

212 D. Li et al.

results at a first glance. However, our logic differs from those both conceptually
and technically.

First, our formulas are evaluated at pairs of states, where each of the states
can occur by itself (and, not just as a constituent of an ordered pair), which
makes it possible for us to study the relationship between two states directly. In
K×δ K, even though formulas are evaluated at pairs of states, these pairs them-
selves form nodes in the domain. As a result, product logic cannot express the
more fine-grained relation (i.e., identity) between the two components forming a
pair. In [18,20], δ is interpreted as a special subset of the domain, not necessar-
ily consisting of pairs formed by the same components from those dimensions.
Therefore, we can say that constant I explored in this article works at a meta
level. In contrast, δ in [18,20] is an object level notion.6

Next, techniques adopted to establish the undecidability of LHS are very
different. Similar to all other product logics, various relations representing tran-
sitions of states in different dimensions are considered in [18,20]. Moreover, the
product nature endows the relations with possible interactions: say, commuta-
tivity and confluence. With such interactions, product logics obtain grid-like
structures automatically. However, as illustrated in our proofs, a crucial step in
proving undecidability of LHS was exactly to build such a shape. In other words,
these extra efforts make our proof technically non-trivial.

6 Conclusion and Future Work

Summary. Motivated by the meeting/avoiding game, this paper studies a modal
logic LHS that allows us to talk about moves for each player, as well as the
situation of meeting. More specifically, formulas in this logic are evaluated at
two states of the domain, representing positions of different players. A constant
I expressing the meeting of two players is explored in depth, which adds a natural
and novel treatment of equality in modal logics. We establish a series of results
concerning its expressive power and computational behavior. A new notion of
bisimulation for LHS is proposed, and is compared systematically with those of
related logics. Further, we have proved that the logic does not enjoy the tree
model property or the finite model property, and that the satisfiability problem
of the logic is undecidable, which refutes a conjecture made by van Benthem and
Liu in their recent paper [7].

Further Directions. We mention a few directions that we would like to pur-
sue immediately. Though we have obtained some basic results about LHS, more
properties of the logic need to be explored. Several open problems have been for-
mulated along the way, including the axiomatization of LHS, and issues regarding
its expressive power. Regarding the language, the constant I seems rather sim-
ple and innocent, but surprisingly, our logic turned out to be undecidable. It
6 But this does not exclude possible ‘mixture’ of the two lines of the frameworks: on

one hand, technically LHS can be reduced to product logics with δ, and on the other
hand, product models themselves can also be viewed as special models (with two
relations) for LHS (and then I denotes the identity of two pairs).

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 213

makes sense to understand this phenomenon better, and possibly by investigat-
ing some alternative logics (e.g., the logic mentioned in Remark 1). In Sect. 5, we
have seen the differences between our work and product logics, and a systematic
comparison is needed. As stated earlier, we have taken a high-level modeller’s
perspective to study the hide and seek game in this paper. We reason about
players’ observations and moves with the assumption that the whole graph and
the players’ positions at each stage of the game are available to us. For the next
step, we will pursue strategic reasoning from the players’ perspectives in the
game. We will focus on technical issues like the epistemic aspects of the players
and extend the current language with epistemic modalities to deal with those
concepts.

Finally, as mentioned in various places, our work has a natural connection
with the game of cops and robber in the vast literature of graph games (see,
e.g., [12,23]). We are exploring richer versions of these games, focusing on dif-
ferent characterization results of cop-win graphs. We have extended LHS with
modal substitution operators [26] which enable us to express winning positions
of players in the general sense, as discussed in Sect. 2. We have also obtained
some new results regarding cop-win characterizations. We will continue this line
of research in the future.

Acknowledgements. We thank Johan van Benthem for his inspiring suggestions.
Also, we wish to thank the three anonymous reviewers for their helpful comments
for improvements. Sujata Ghosh acknowledges Department of Science and Technology,
Government of India for financial support vide Reference No DST/CSRI/2018/202
under Cognitive Science Research Initiative (CSRI) to carry out this work. Dazhu Li,
Fenrong Liu and Yaxin Tu are supported by the Major Program of the National Social
Science Foundations of China [17ZDA026].

Appendix: Proof of Theorem2

Proof. Let T = {T 1, · · · , Tn} be a finite set of tile types. For each T i ∈ T we use
u(T i), d(T i), l(T i), r(T i) to represent the colors of its up, down, left and right
edges, respectively. We are going to define a formula ϕtile such that:

ϕtile is satisfiable iff T tiles N × N.

To do so, we will use three relations in models (W,Rs, Rr, Ru) in the proof
to follow. In line with this, syntactically we have six operators [left]� and [right]�

for � ∈ {s, r, u}. Intuitively, all the relations describe the transitions of the left
evaluation point and the right evaluation point of a graph model: in what follows,
we are going to construct a spy point over relation Rs, and the relations Ru and
Rr represent moving up and to the right, respectively, from the corresponding
tile to the other.

These three relations are useful to present the underlying intuitions of the
formulas that will be constructed. Also, they are helpful in making these formulas
short and readable, facilitating a better understanding of the same. Crucially,

214 D. Li et al.

this does not change the computational behavior of the original LHS: the three
relations can be reduced to one relation as that of our standard models. For
instance, given that we have three relations and the evaluation gap, we can
mimic the three relations with a singular relation and 3 × 2 fresh propositional
letters encoding, e.g., [left]� and 〈right〉� as [left](p�

E → · · ·) and 〈right〉(p�
A ∧· · ·),

respectively. Definitely, to preserve the structure of those relations and truth of
formulas, we need to be careful when defining the new relation and the valuation
function. However, due to page-limit constraints, we forego those details here.
Now, we proceed to present the details of ϕtile, whose components will be divided
into four groups. Let us begin with the first one.

Group 1: Infinite many states induced by Rs and their ‘scope’

(U1) I ∧ [left]s¬I

(U2) 〈left〉s[left]s⊥
(U3) [right]s〈left〉s(¬I ∧ 〈left〉s� ∧ [left]sI)
(U4) [left]s[right]s([left]s⊥ ∧ [right]s⊥ → I)
(U5) [left]s[right]s(〈left〉s〈right〉sI → I)

Notice that formulas (U1)–(U3) are just the Rs-version of the formulas in
Theorem 1 that are used to create infinite models. Immediately, there exists an
infinite sequence of states as follows:

w0, w1, w2, · · ·

such that Rs(wi+1) = {wi} and Rs(w0) = ∅. Also, for the current evaluation
pair (e.g., (s, s)), we have {wi | i ∈ N} ⊆ Rs(s).

Now let us spell out what (U4) and (U5) express. Essentially, both the for-
mulas establish a ‘border’ for the scope of nodes that are (directly or indirectly)
reachable from s via relation Rs. Specifically, the formula (U4) shows that Rs(s)
contains only a dead end which is exactly w0 listed above, and moreover, the for-
mula (U5) indicates that for any wi, wj ∈ Rs(s), if they can reach the same state,
then we have wi = wj . See Fig. 4 for two counterexamples without the properties
of (U4) or (U5). From the two formulas, we know that Rs(s) = {wi | i ∈ N}.

Fig. 4. Two impossible cases of the Rs-structure Rs(s): Case 1 cannot satisfy (U4),
while Case 2 cannot satisfy (U5).

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 215

Intuitively, we will use these w′
is to represent tiles. To make this precise,

beyond the simple linear order of Rs among those states, we still need to struc-
ture them with Rr and Ru in a subtler way. Our next group of formulas concerns
some basic features of the two relations:

Group 2: Basic features of Ru and Rr

(U6) [left]s[left]†〈right〉sI † ∈ {u, r}
(U7) [left]s(〈left〉u� ∧ 〈left〉r�)
(U8) [left]s[right]s(I → [left]u¬I ∧ [left]r¬I)

(U9) [left]s[right]s(I → [left]†¬〈left〉†I) † ∈ {u, r}
Before listing more formulas, let us briefly comment on these properties.
For all i ∈ N, the formulas of (U6) essentially give Rr(wi) and Ru(wi) a

‘scope’. Specifically, they guarantee that Rr(wi), Ru(wi) ⊆ {w0, w1, · · · }. There-
fore, when considering the two relations, we only need to consider those w′

is, and
there do not exist other states that are involved.

The formula (U7) states that every wi has successors via Ru and Rr, i.e.,
Ru(wi)
= ∅ and Rr(wi)
= ∅. Intuitively, this expresses that every tile has at
least one tile above it and at least one tile to its right.

Also, the formula (U8) indicates that for all i ∈ N, we do not have Rrwiwi

or Ruwiwi. Moreover, formulas in (U9) show that both the relations Rr and Ru

are asymmetric.
Except those basic features captured by formulas of Group 2, what might be

more important is our next group of formulas, which structure the states in a
grid with Rr and Ru:

Group 3: Grid formed by Ru and Rr

(U10) [left]s[right]s(〈left〉†I → [left]†I) † ∈ {u, r}
(U11) [left]s[right]s(I → [left]u[right]r¬I)
(U12) [left]s[right]s(I → [left]u[left]r¬I ∧ [left]r[left]u¬I)
(U13) [left]s[right]s(I → [left]u[left]r[left]u¬I)
(U14) [left]s[right]s(I → [left]u[right]r〈left〉r〈right〉uI)

Whereas (U7) tells us that all the w′
is have Rr- and Ru-successors, formulas

in (U10) state that every wi has at most one Rr-successor and at most one
Ru-successor. Thus, both (U7) and (U10) ensure that the transitions between
those w′

is via Ru and Rr are essentially functions: precisely, for all i ∈ N and
† ∈ {u, r}, R†(wi) is a singleton.

Moreover, formula (U11) suggests that the Rr-successor and the Ru-successor
of a tile are different: for all i ∈ N, Rr(wi) ∩ Ru(wi) = ∅. That is, a tile cannot
be above as well as to the right of another tile.

Additionally, (U12) shows that no tile can be both above/below and to the
right/left of another tile, and (U13) disallows cycles following successive steps of
the Ru, Rr and Ru relations, in this order. Formula (U14) states the property

216 D. Li et al.

of ‘confluence’: for all tiles wi, wj , wk, if Ruwiwj and Rrwiwk hold, then there
exists another tile wn such that Rrwjwn and Ruwkwn hold. Now, the tiles are
arranged in a grid.

Now, it remains to set a genuine tiling, which can be achieved by our fourth
group of formulas. Very roughly, in usual cases this work is often routine when
we have an infinite grid-like model (cf. [9]). Let us present the details here:

Group 4: Tiling the model

(U15) [left]s(
∨

1≤i≤n

tiE ∧
∧

1≤i<j≤n

¬(tiE ∧ tjE))

(U16) [right]s(
∨

1≤i≤n

tiA ∧
∧

1≤i<j≤n

¬(tiA ∧ tjA))

(U17) [left]s[right]s(I →
∨

1≤i≤n

(tiE ∧ tiA))

(U18) [left]s(
∧

1≤i≤n

(tiE → 〈left〉u
∨

1≤j≤n,u(Ti)=d(Tj)

tjE))

(U19) [left]s(
∧

1≤i≤n

(tiE → 〈left〉r
∨

1≤j≤n,r(Ti)=l(Tj)

tjE))

Formulas (U15)–(U16) indicate that a node can be occupied ‘two’ tiles tiE
and tjA. As one node can only be occupied by exactly one tile, the statement
here may look a bit strange. However, we would like to argue that essentially
there exists no problem, see our discussion on formula (U17) below.

By formula (U17), for every fixed i, when both tiE and tjA hold at a node,
then we have i = j, i.e., they are of the same type T i. In this sense, we can say
that ‘E’ and ‘A’ are just ‘position-labels’ to refer to the evaluation nodes in the
current graph model, and a node in the model is essentially occupied by exactly
one tile. Moreover, for the same reason, although for each T i, we have different
propositional atoms tiA and tiE , all types of tiles we use are exactly those given
by the original T , but not any extra ones.

Finally, the ideas of formulas (U18) and (U19) are routine: the former one
states that colors match going up, while the latter expresses that they match
going right.

Now, let ϕtile be the conjunctions of all formulas listed in the four groups.
Based on our analyses above, any model satisfying ϕtile is a tiling of N × N.

On the other hand, we still need to show the other direction. Now suppose
that a function f : N × N → T is a tiling of N × N. Define a model Mt =
(W,Rs, Ru, Rr,V) in the following:

• W := {s} ∪ (N × N)
• Rs consists of the following:

– For all x ∈ N × N, 〈s, x〉 ∈ Rs

– For all 〈n, 0〉 ∈ N × N with 1 ≤ n, 〈〈n + 1, 0〉, 〈0, n〉〉 ∈ Rs

– For all other 〈n,m + 1〉 ∈ N × N, 〈〈n,m + 1〉, 〈n + 1,m〉〉 ∈ Rs

On the Subtle Nature of a Simple Logic of the Hide and Seek Game 217

• Ru := {〈〈n,m〉, 〈n,m + 1〉〉 | n,m ∈ N}
• Rr := {〈〈n,m〉, 〈n + 1,m〉〉 | n,m ∈ N}
• V(tiE) = V(tiA) = {〈n,m〉 ∈ N × N | f(〈n,m〉) = T i}, for all i ∈ {1, · · · , n}
• V(pE) = V(qA) = ∅, for all other pE , qA ∈ PE ∪ PA.

Figure 5 presents a crucial fragment of the model. By construction, it is not
hard to check that Mt, s, s � ϕtile. This completes the proof. ��

Fig. 5. The restriction of the structure of Mt to N×N, where the resulting Rs, Ru, Rr

are represented by dotted-, dashed- and solid-arrows respectively. To obtain the whole
structure, we just need to add the state s and draw a dotted-arrow from s to each of
the members of N × N.

References

1. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking
results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp.
142–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-
9 11

2. Areces, C., Fervari, R., Hoffmann, G., Martel, M.: Satisfiability for relation-
changing logics. J. Log. Comput. 28, 1443–1470 (2018)

3. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J.
Logic Comput. 28(2), 269–303 (2018). https://doi.org/10.1093/logcom/exx034

4. Baltag, A., van Benthem, J.: A simple logic of functional dependence. J. Philos.
Logic (2021)

5. Baltag, A., Li, D., Pedersen, M.Y.: On the right path: a modal logic for supervised
learning. In: Blackburn, P., Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol.
11813, pp. 1–14. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-
60292-8 1

6. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2014)

https://doi.org/10.1007/978-3-642-32621-9_11
https://doi.org/10.1007/978-3-642-32621-9_11
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1007/978-3-662-60292-8_1
https://doi.org/10.1007/978-3-662-60292-8_1

218 D. Li et al.

7. van Benthem, J., Liu, F.: Graph games and logic design. In: Liu, F., Ono, H., Yu, J.
(eds.) Knowledge, Proof and Dynamics. LASLL, pp. 125–146. Springer, Singapore
(2020). https://doi.org/10.1007/978-981-15-2221-5 7

8. Berger, R.: The Undecidability of the Domino Problem. American Mathematical
Society (1966)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

10. Blackburn, P., Seligman, J.: Hybrid languages. J. Logic Lang. Inform. 4, 251–272
(1995)

11. Zaffora Blando, F., Mierzewski, K., Areces, C.: The modal logics of the poison
game. In: Liu, F., Ono, H., Yu, J. (eds.) Knowledge, Proof and Dynamics. LASLL,
pp. 3–23. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2221-
5 1

12. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. AMS
(2011)

13. Duchet, P., Meyniel, H.: Kernels in directed graphs: a poison game. Discret. Math.
115, 273–276 (1993)

14. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications, Studies in Logic and the Foundations of Mathe-
matics, vol. 148. Elsevier (2003)

15. Gierasimczuk, N., Kurzen, L., Velázquez-Quesada, F.R.: Learning and teaching as
a game: a sabotage approach. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009.
LNCS (LNAI), vol. 5834, pp. 119–132. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04893-7 10

16. Goldfarb, W.: The unsolvability of the Gödel class with identity. J. Symb. Log. 49,
1237–1252 (1984)

17. Grossi, D., Rey, S.: Credulous acceptability, poison games and modal logic. In:
Agmon, N., Taylor, M.E., Elkind, E., Veloso, M. (eds.) Proceedings of AAMAS
2019, pp. 1994–1996 (2019)

18. Hampson, C., Kikot, S., Kurucz, A.: The decision problem of modal product logics
with a diagonal, and faulty counter machines. Stud. Logica. 104, 455–486 (2016)

19. Kikot, S.P.: Axiomatization of modal logic squares with distinguished diagonal.
Math. Notes 88, 238–250 (2020)

20. Kurucz, A.: Products of modal logics with diagonal constant lacking the finite
model property. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI),
vol. 5749, pp. 279–286. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04222-5 17

21. Li, D.: Losing connection: the modal logic of definable link deletion. J. Log. Com-
put. 30, 715–743 (2020)

22. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. Kluwer Academic Pub-
lishers (1997)

23. Nowakowski, R., Winkler, R.P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
13, 235–239 (1983)

24. Pützstück, P.: Decidability and Bisimulation for Logics of Functional Dependence.
Master’s thesis, Mathematical Foundations of Computer Science, RWTH-Aachen
University (2020)

25. Thompson, D.: Local fact change logic. In: Liu, F., Ono, H., Yu, J. (eds.) Knowl-
edge, Proof and Dynamics. LASLL, pp. 73–96. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-2221-5 5

26. Tu, Y., Ghosh, S., Li, D., Liu, F.: A new modal logic for cops-and-robber games.
Manuscript (2021)

https://doi.org/10.1007/978-981-15-2221-5_7
https://doi.org/10.1007/978-981-15-2221-5_1
https://doi.org/10.1007/978-981-15-2221-5_1
https://doi.org/10.1007/978-3-642-04893-7_10
https://doi.org/10.1007/978-3-642-04893-7_10
https://doi.org/10.1007/978-3-642-04222-5_17
https://doi.org/10.1007/978-3-642-04222-5_17
https://doi.org/10.1007/978-981-15-2221-5_5
https://doi.org/10.1007/978-981-15-2221-5_5

Orthogonal Frames and Indexed Relations

Philippe Balbiani and Saúl Fernández González(B)

Institut de Recherche en Informatique de Toulouse,
CNRS, Université de Toulouse, Toulouse, France

saul.fgonzalez@irit.fr

Abstract. We define and study the notion of an indexed frame. This
is a bi-dimensional structure consisting of a Cartesian product equipped
with relations which only relate pairs if they coincide in one of their com-
ponents. We show that these structures are quite ubiquitous in modal
logic, showing up in the literature as products of Kripke frames, subset
spaces, or temporal frames for STIT logics. We show that indexed frames
are completely characterised by their ‘orthogonal’ relations, and we pro-
vide their sound and complete logic. Using these ‘orthogonality’ results,
we provide necessary and sufficient conditions for an arbitrary Kripke
frame to be isomorphic to certain well-known bi-dimensional structures.

1 Introduction

This text is concerned with a certain type of bi-dimensional relational structure
which shows up in multiple areas of modal logic. The ubiquity of these structures,
we wish to argue, should motivate an independent study of their properties and
their logic, towards which we take the first steps in this paper.

In the text we will call these structures indexed frames. Let us start off by
providing two distinct (but ultimately equivalent) definitions of what we mean
by that.

Definition 1. By indexed frame we refer indistinctly to any of the following
structures:

(IF1) Frames (W1 × W2, R1, R2) where R1 and R2 are binary relations on
W1 × W2 such that (w1, w2)Ri(w′

1, w′
2) implies wj = w′

j for i �= j;
(IF2) Tuples (W1, W2, R1, R2) where, for i �= j, Ri = {Ri

w : w ∈ Wj} is a
family of binary relations on Wi indexed by the elements of Wj.

It is straightforward to see how these two definitions refer to the same
type of structure. Given a frame of the form (IF1), we define w2R1

ww′
2 iff

(w, w2)R1(w, w′
2) and w1R2

ww′
1 iff (w1, w)R2(w′

1, w) to obtain a frame of the
form (IF2); conversely, given a frame in the form (IF2) we obtain a (IF1) frame
by setting (w1, w2)Ri(w′

1, w′
2) iff wj = w′

j and wiR
i
wj

w′
i.

Having these bi-dimensional structures at hand, one can interpret formulas
over a bi-modal language

φ ::= p|⊥|(φ ∧ φ)|¬φ|�1φ|�2φ

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 219–234, 2021.
https://doi.org/10.1007/978-3-030-88853-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_14

220 P. Balbiani and S. F. González

with respect to pairs in W1 × W2 as follows:
(IF1) (w1, w2) |= �iφ iff (w1, w2)Ri(w′

1, w′
2) implies (w′

1, w′
2) |= φ;

(IF2) (w1, w2) |= �1φ iff w1R1
w2w′

1 implies (w′
1, w2) |= φ;

(w1, w2) |= �2φ iff w2R2
w1w′

2 implies (w1, w′
2) |= φ.

It can be easily seen how these semantics are equivalent.
We start this paper by illustrating that indexed frames show up quite often

in the literature. In order to put forward this argument, we provide in the next
section examples of well-known models in different areas of modal logic which
are indexed frames. In Sect. 3 we show that the property of ‘orthogonality’ (i.e.,
the fact that each point in the model is uniquely determined by the pair of con-
nected components to which it belongs) is necessary and sufficient to characterize
indexed frames, and we use this property to provide their sound and complete
logic. In Sect. 4 we enrich our language with modalities �1 and �2 which fix
w2 (resp. w1) and quantify over all points in W1 (resp. W2). We provide the
sound and complete logic for this extended language. In Sect. 5, we come back
to the examples presented in Sect. 2 with the results on orthogonality previ-
ously discussed, showing necessary and sufficient conditions for a bi-relational
Kripke frame to be isomorphic to several well-known types of indexed frames.
We conclude in Sect. 6.

The proofs of some minor Propositions and Lemmas have been moved to the
Appendix; this is indicated with the symbol �A.

2 Examples of Indexed Frames

Let us see some well-known structures that are either indexed frames or gener-
ated subframes thereof. We will use the term “indexed relation” to informally
refer to a relation defined on a Cartesian product that respects one of the coor-
dinates.

Example 1 (Products). [7, Chapter 3] The product of two Kripke frames
(W1, R1) and (W2, R2) (wherein Ri is a binary relation defined on Wi for i = 1, 2)
is the frame

(W1, R1) × (W2, R2) = (W1 × W2, RH , RV),
where RH and RV are binary relations on W1 × W2 (called the ‘horizontal’ and
‘vertical’ relations respectively) defined as:

(w1, w2)RH(w′
1, w′

2) iff w2 = w′
2 and w1R1w′

1, and
(w1, w2)RV (w′

1, w′
2) iff w1 = w′

1 and w2R2w′
2

Products very closely adjust to the (IF1) definition. In fact, indexed frames can
be seen as a generalization of products. Indeed, a product can be seen as an (IF2)
indexed frame (W1, W2, R1, R2) with the extra property that, for all w1, w′

1 ∈ W1
and w2, w′

2 ∈ W2, R1
w2 = R1

w′
2

and R2
w1 = R2

w′
1
.

It is of note that, while the logic of bidimensional products of frames
(as studied in [7]) contains axioms making both modalities interact (such as
♦1♦2p ↔ ♦2♦1p), this will not the case for the logic of indexed frames.

Orthogonal Frames and Indexed Relations 221

Example 2 (Subset spaces). In its most basic form [12], a subset space is a tuple
consisting of a set X and some collection O of nonempty subsets of X.

One can interpret formulas of a bimodal language including � and K modal-
ities on a subset space with respect to a pair (x, U) such that x ∈ U and U ∈ O
as follows:

x, U |= Kφ iff y, U |= φ for all y ∈ U
x, U |= �φ iff x, V |= φ for all V ⊆ U such that x ∈ V & V ∈ O.
The semantics above naturally defines two indexed relations on the graph

OX := {(x, U) : x ∈ U & U ∈ O}, namely:

(x, U) ≡K (y, V) iff U = V ;
(x, U) ≥� (y, V) iff x = y and U ⊇ V

Clearly, the standard Kripke semantics on the frame (OX , ≡K , ≥�) (let us call
this a subset space frame) are the exact semantics above, and moreover this
subset space frame is (a generated subframe of) an indexed frame.

Example 3 (Social Epistemic Logic). Social Epistemic Logic (SEL) is a multi-
modal framework to model knowledge within social networks, introduced in [15].
Its language contains, in addition to atomic propositional variables p, q..., nom-
inal variables n, m, ..., an artefact borrowed from Hybrid Logic [1]. It has oper-
ators Kφ and Fφ to express things such as “I know φ” and “all my friends φ”,
and, in addition, it presents an operator @nφ for each nominal n to express “φ
is true of the agent named by n”.

The models for SEL are of the form (W, A, {∼a}a∈A, {�w}w∈W , V), where
each ∼a is an ‘epistemic indistinguishability’ equivalence relation for agent a on
the set of possible worlds W , and each �w is a ‘social’ symmetric and irreflexive
relation, representing which pairs of agents in the set A are ‘friends’ at world w.
The valuation V assigns subsets of W × A to propositional variables p and, for
a nominal n, V (n) is of the form W × {a} for some a; it is then said that “n is
the name of a”, denoted a = nV .

For the semantics, we read formulas with respect to a pair of a world and
an agent as follows: (w, a) |= Kφ iff (v, a) |= φ for all v such that w ∼a v;
(w, a) |= Fφ iff (w, b) |= φ for all b such that a �w b, and (w, a) |= @nφ iff
(w, nV) |= φ.

(W, A, {∼a}a∈A, {�w}w∈W) is clearly an (IF2) indexed frame and even the
@n modality can be interpreted via the “indexed” relation: (w, a)Rn(v, b) iff
w = v and b = nV .

Its equivalent (IF1) form is (W × A, ∼, �), where (w, a) ∼ (v, b) iff a = b and
w ∼a v, and (w, a) � (v, b) iff w = v and a �w b.

Example 4 (STIT logic). The logic of seeing-to-it-that or STIT was studied in
[3] and has shown up in the literature with many variations; in most cases, the
different models for STIT are quite explicitly indexed frames, or present indexed
relations. The one we showcase here is (a slightly simplified version of) a Kamp
frame, discussed in [5,17].

A Kamp frame is a tuple (W, O, {∼t}t∈T , {∼t,i}t∈T,i∈Agt), where each world
has a ‘timeline’ associated to it, this being a linear order O(w) = (Tw, <w). T is

222 P. Balbiani and S. F. González

the union of all the Tw’s. For each t, the relations ∼t and ∼t,i are equivalence
relations defined on the set {w : t ∈ Tw}.

Sentences in a language including a necessity operator �, agency operators
[i] for i ∈ Agt and a temporal operator G are read with respect to pairs (t, w)
such that t ∈ Tw as follows:

(t, w) |= �φ iff (t, w′) |= φ for all w′ ∼t w;
(t, w) |= [i]φ iff (t, w′) |= φ for all w′ ∼t,i w;
(t, w) |= Gφ iff (t′, w) |= φ for all t′ >w t.
While this does not exactly adjust to the definitions of indexed frame above,

one sees how this structure can be defined as (a generated subframe of) the (IF2)
indexed frame

(W, T, {∼t}t∈T , {∼t,i}t∈T,i∈Agt, {<w}w∈W).

(We are slightly bending our definition of ‘indexed frame’ here and allowing for
multiple families of relations indexed by the elements of T .)

We can easily ‘rewrite’ these relations to be defined on (a subset of) W × T
in the (IF1) way:

(t, w) ≡� (t′, w′) iff t = t′ & w ∼t w′

(t, w) ≡i (t′, w′) iff t = t′ & w ∼t,i w′

(t, w) ≺G (t′, w′) iff w = w′ & t <w t′

All the frames showcased in this section share one property: namely that of
orthogonality. We explain and study this in the next section.

3 Orthogonal Frames

The relations R1 and R2 in an indexed frame (W1×W2, R1, R2) are “orthogonal”
to each other, in the sense that there cannot be two distinct points connected by
both R1 and R2. Indeed, if there is an Ri path from (w1, w2) to (w′

1, w′
2) (i.e. if

they belong to the same Ri-connected component), then wj = w′
j for j �= i and,

in consequence, if there are both R1 paths and R2 paths between these pairs,
then (w1, w2) = (w′

1, w′
2). In the present section we shall see that this property

fully characterises indexed frames.
For the rest of this paper, given a relation R, we let R∗ denote the least

equivalence relation containing R, i.e., the equivalence relation induced by the
connected components of R. By IdW we refer to the identity relation {(w, w) :
w ∈ W}.

Definition 2. A birelational Kripke frame (W, R1, R2) is orthogonal if there
exist equivalence relations ≡1 and ≡2 on W satisfying:

(O1) Ri ⊆≡i, i = 1, 2;
(O2) ≡1 ∩ ≡2= IdW .

A frame (W, R1, R2) is said to be full orthogonal if there exist equivalence rela-
tions ≡1 and ≡2 on W satisfying (O1), (O2) and

(O3) ≡1 ◦ ≡2= W 2.

Orthogonal Frames and Indexed Relations 223

We leave it to the reader to check that:

Lemma 1. (W, R1, R2) is orthogonal if and only if R∗
1 ∩ R∗

2 = IdW .

Note that, if such a pair of equivalence relations exists, it is not necessarily
unique: consider the frame (W, R1, R2) where W = N

2 and R1 = R2 = IdW ; the
pair of equivalence relations (≡1, ≡2), where (n1, n2) ≡i (m1, m2) iff ni = mi

satisfies properties O1 – O3; however, the pair (W 2, IdW) does as well.

Proposition 1. (W, R1, R2) is isomorphic to an indexed frame if and only if it
is full orthogonal.

Proof. Let (W1 × W2, R1, R2) be an indexed frame. Then the relations
(w1, w2) ≡i (w′

1, w′
2) iff wj = w′

j (where {i, j} = {1, 2}) satisfy O1, O2, and
O3.

Conversely, suppose such relations exist, and let [w]i denote the equivalence
class of w under ≡i. By O2 and O3, given any pair (w, v) ∈ W 2, there is exactly
one element in the intersection [w]2 ∩ [v]1: let xw,v denote this unique element.
Consider the frame (W/≡2 × W/≡1 ,R1,R2), where

([w]2, [v]1)Ri([w′]2, [v′]1) if and only if xw,vRixw′,v′ .

This in an indexed frame, for if xw,vR1xw′,v′ , then xw,v ≡1 xw′,v′ , and since
v ≡1 xw,v ≡1 xw′,v′ ≡1 v′, this gives [v]1 = [v′]1. We reason analogously for R2.
It is isomorphic to (W, R1, R2) via the map f([w]2, [v]1) = xw,v. For injectivity,
note that if xw,v �= xw′,v′ , then either w �≡2 w′ or v �≡1 v′. For surjectivity, note
that w = xw,w for all w ∈ W . Finally, note that we have defined the map in such
a way that ([w]2, [v]1)Ri([w′]2, [v′]1) iff f([w]2, [v]1)Rif([w′]2, [v′]1).

Definition 3. Given two Kripke-complete unimodal logics L1 and L2 we say
that a birelational frame (W, R1, R2) is a [L1, L2]-frame if (W, Ri) |= Li, for
i = 1, 2.

Recall that the fusion logic L1⊕L2 is the least normal modal logic containing
the axioms and rules of L1 for �1 and of L2 for �2 and that:

Theorem [7, Thm. 4.1]. L1 ⊕ L2 is the logic of [L1, L2]-frames.
We have:

Proposition 2. An orthogonal [L1, L2]-frame (W, R1, R2) is a generated sub-
frame of a full orthogonal [L1, L2]-frame. �A

Proposition 3. The fusion logic L1 ⊕ L2 is the logic of orthogonal [L1, L2]-
frames.

Proof. The proof in [7, Thm. 4.1] of the fact that

the logic of frames (W, R1, R2) such that (W, Ri) |= Li for i = 1, 2 is the
fusion L1 ⊕ L2

224 P. Balbiani and S. F. González

utilises the construction of a dovetailed frame in order to prove that any formula
φ consistent in L1 ⊕L2 is satisfiable in an [L1, L2]-frame. It is a recursive process
done as follows: first, one obtains a consistent formula in the language of L1 by
rewriting φ with ‘surrogate’ propositional variables p1♦2ψ1

, ..., p1♦2ψn
in place of

its maximal subformulas preceded by ♦2. Then one constructs a rooted L1-frame
satisfying φ. Whenever a point in this frame satisfies a surrogate variable p1♦2ψ,
one rewrites ψ in the language of L2 by using surrogates q2♦1θ1

, ..., q2♦1θn
and

makes this point the root of an L2-frame satisfying this formula. One repeats
this process, alternating between L1-formulas and L2-formulas until one obtains
a rooted frame satisfying φ at the root.

We point the interested reader to [7] for more precise details about this
construction; for clarity, we provide a simple example from [7], using the formula
φ = p ∧ ♦1(¬p ∧ ♦2p) ∧ ♦2(¬p ∧ ♦1(p ∧ ♦2p)).

We rewrite φ as p ∧ ♦1(¬p ∧ q2) ∧ r2, where q2 is a ‘surrogate’ for ♦2p, r2
for ♦2(¬p ∧ q1), q1 for ♦1(p ∧ s2), and s2 for ♦2p.

We construct a rooted L1-frame satisfying the rewritten formula (top left of
Fig. 1); we make the node satisfying r2 into the root of an L2-frame satisfying
its surrogate formula ♦2(¬p ∧ q1) and the q2 node into frame satisfying ♦2p
(top right); we then proceed similarly with q1 (bottom left) and finally with s2
(bottom right) to find a [L1, L2]-frame satisfying φ at its bottom point.

Fig. 1. ‘Dovetailed’ construction of a frame for p∧♦1(¬p∧♦2p)∧♦2(¬p∧♦1(p∧♦2p)).

For our current purposes it suffices to point out that the ‘dovetailed’ frames
obtained by this method are always orthogonal, for this construction does not

Orthogonal Frames and Indexed Relations 225

allow for two distinct points x and y to be reachable from each other by both
R1 and R2. As an immediate consequence of Propositions 2 and 3:

Theorem 1. The logic of [L1, L2]-indexed frames is the fusion L1 ⊕ L2.

4 Orthogonal Structures

In the definition for full orthogonal frames (Definition 2) we demand the existence
of equivalence relations which are supersets of the two given relations and satisfy
the properties of full orthogonality. These relations are not made explicitly part
of the structure and are not taken into account when defining the logic.

In this section we consider structures (X, R1, R2, ≡1, ≡2) satisfying O1, O2
and O3, and we study the logic of these frames when we add modal operators
to our language to explicitly account for the orthogonal equivalence relations.

Let us first note the following fact:

Lemma 2 (Generalized orthogonal frames). If (W, R1, R2) is a Kripke
frame such that there exist equivalence relations ≡1 and ≡2 on W satisfying

(O1) Ri ⊆≡i,
(O2) ≡1 ∩ ≡2= IdW , and
(O3’) ≡1 ◦ ≡2=≡2 ◦ ≡1,

then (W, R1, R2) is a disjoint union of full orthogonal frames. �A

Definition 4. An orthogonal structure is a tuple (W, R1, R2, ≡1, ≡2), where
(W, R1, R2) is a birelational Kripke frame and ≡1 and ≡2 are equivalence rela-
tions on W satisfying (O1), (O2), and (O3’) above. A standard orthogonal struc-
ture satisfies moreover (O3) ≡1 ◦ ≡2= W 2.

A tuple satisfying (O1) and (O3’) is called a semistructure.

We define a semantics for (semi)structures (W, R1,2, ≡1,2) with respect to a
language containing operators �i and �i for i = 1, 2 as follows:

w |= �iφ iff, for all v, wRiv implies v |= φ;
w |= �iφ iff, for all v, w ≡i v implies v |= φ.

A very standard canonical model argument shows that:

Proposition 4. The sound and complete logic of semistructures is

K�1 + K�2 + S5�1 + S5�2 + �1�2φ ↔ �2�1φ + �iφ → �iφ.

Moreover, if L1 and L2 are canonical unimodal logics, the logic of semistruc-
tures (W, R1,2, ≡1,2) such that (W, Ri) |= Li for i = 1, 2 is

L1 + L2 + S5�1 + S5�2 + �1�2φ ↔ �2�1φ + �iφ → �iφ.

�A

226 P. Balbiani and S. F. González

Let us call these logics Log� and LogL1L2
� respectively. Let us now see that

Log� is also the logic of orthogonal structures (and, in turn, of “standard” struc-
tures).

Recall that a bounded morphism between Kripke frames F = (W, R1, ..., Rn)
and F ′ = (W ′, R′

1, ..., R′
n) is a map f : W → W ′ satisfying the forth condition

(wRiv implies f(w)R′
if(v)) and the back condition (f(w)R′

iv implies there is
an w ∈ f−1(w′) such that wRiv). If the bounded morphism is surjective, then
every formula which is refutable in F ′ can be refuted in F . (See [4, Thm. 3.14]
for details).

We shall show that a semistructure is always the image of a bounded mor-
phism departing from an orthogonal structure, which in turn will let us prove
that the logic of orthogonal structures is the above.

The proof below utilises the notion of a matrix enumeration. Given sets I
and X, an I-matrix enumeration of X is a map f : I × I → X such that, for
any fixed i0 ∈ I, both maps

j ∈ I �→ f(i0, j) ∈ X and j ∈ I �→ f(j, i0) ∈ X

are surjective.

Lemma 3. If |I| ≥ |X|, there exists an I-matrix enumeration of X. �A

With this:

Proposition 5. A semistructure is a bounded morphic image of an orthogonal
structure.

Proof. Let (W, R1,2, ≡1,2) be a semistructure. Let I be a set of indices with the
same cardinality as W .

Let us consider the quotient set W/≡1∩≡2 . Let us fix a matrix enumeration
f[w] : I × I → [w] of each equivalence class [w] ∈ W/≡1∩≡2 . We use wij as a
shorthand for f[w](i, j). Note that it is always the case that w ≡k wij for k = 1, 2.

We define the following relations on the set W ′ = W/≡1∩≡2 × I2:
([w], i1, i2) ≡′

1 ([v], j1, j2) iff w ≡1 v and i2 = j2;
([w], i1, i2) ≡′

2 ([v], j1, j2) iff w ≡2 v and i1 = j1;
([w], i1, i2)R′

1([v], j1, j2) iff wi1i2R1vj1j2 and i2 = j2;
([w], i1, i2)R′

2([v], j1, j2) iff wi1i2R2vj1j2 and i1 = j1.
Let us see that this is an orthogonal structure. Indeed,
(O1) ([w], i1, i2)R′

k([v], j1, j2) implies wi1i2Rkvj1j2 and il = jl (for k �= l),
which in turn implies wi1i2 ≡k vj1j2 and il = jl. This means that w ≡k v and
il = jl, and thus ([w], i1, i2) ≡′

k ([v], j1, j2).
(O2) If ([w], i1, i2) ≡′

k ([v], j1, j2) for k = 1 and 2, then i1 = j1, and i2 = j2,
and (w, v) ∈≡1 ∩ ≡2, which implies [w] = [v]. Therefore, ≡′

1 ∩ ≡′
2= IdW ′ .

(O3’) If ([w], i1, i2)(≡′
1 ◦ ≡′

2)([u], j1, j2), then w(≡1 ◦ ≡2)u. This, plus prop-
erty (O3’) of the semistructure, implies that there exists some v′ such that
w ≡2 v′ ≡1 u. But then

([w], i1, i2) ≡′
2 ([v′], i1, j2) ≡′

1 ([u], j1, j2).

Orthogonal Frames and Indexed Relations 227

This shows that (≡′
1 ◦ ≡′

2) ⊆ (≡′
2 ◦ ≡′

1); the converse inclusion is analogous.
Finally, the map

([w], i1, i2) ∈ W/≡1∩≡2 × I2 �→ wi1i2 ∈ W

is a bounded morphism. For the forth condition, ([w], i1, i2) ≡′
k ([v], j1, j2)

implies wi1i2 ≡k vj1j2 and ([w], i1, i2)R′
k([v], j1, j2) implies wi1i2Rkvj1j2 , by defi-

nition. For the back condition, if wi1i2R1v, then there exists an index j ∈ I such
that f[v](j, i2) = v and, by definition,

([w], i1, i2)R′
1([v], j, i2).

An analogous argument can be made for R2, ≡1 and ≡2.
As a consequence:

Theorem 2. The sound and complete logic of standard orthogonal structures is
Log�,

K�1 + K�2 + S5�1 + S5�2 + �1�2φ ↔ �2�1φ + �iφ → �iφ.

Proof. Consequence of Propositions 4 and 5.
Remark 1. The construction in the proof above respects many properties of the
Ri relations: for instance, if Ri is reflexive, transitive, symmetric, Euclidean,
etc., then so is R′

i. This means that this technique can be used to prove that
LogL1L2

� is the logic of indexed structures (W, Ri, ≡i) where (W, Ri) |= Li for a
large family of logics that includes S4, S5, KD45, etc. We conjecture that the
result is true for any pair L1, L2 of Kripke-complete unimodal logics.

Let us now define a semantics for this extended language directly on indexed
frames (W1×W2, R1, R2), taking advantage of the isomorphism between indexed
frames and full orthogonal frames given in the proof of Proposition 1. The fact
that the isomorphic image of the equivalence classes of the ‘orthogonal’ equiva-
lence relations are sets of the form W1×{w2} and {w1}×W2 allows us to consider
the � modalities as coordinate-wise ‘universal modalities’; that is to say, if we
interpret formulas of the extended language on indexed frames as follows:

(w1, w2) |= �1φ iff (v, w2) |= φ for all v ∈ W1, and
(w1, w2) |= �2φ iff (w1, v) |= φ for all v ∈ W2,

then we have that:
Proposition 6. Log� is the sound and complete logic of indexed frames for the
language including �i and �i operators. �A

We finish this Section by pointing out the fact that Log� enjoys the
Finite Model Property with respect to semistructures, orthogonal structures and
indexed frames, in the following sense:
Proposition 7. If φ /∈ Log�, then there exists a finite indexed frame refuting
φ. �A

We conjecture that, if L1 and L2 have the Finite Model Property, then for
all φ /∈ LogL1L2

� there exists a finite [L1, L2]-semistructure (perhaps a finite
[L1, L2]-indexed frame) refuting φ; this problem, however, remains open.

228 P. Balbiani and S. F. González

5 Some Case Studies
In the present section we return to the Examples in Sect. 2 and, with the help
of our orthogonality results above, we abstract from the “indexed frame” defi-
nition and give necessary and sufficient conditions on orthogonal frames to be
isomorphic to these structures.
Products (Example 1). We have:
Proposition 8. A frame (X, R1, R2) is isomorphic to a product of Kripke
frames if and only if there exist two equivalence relations ≡1 and ≡2 such that:

(O1) Ri ⊆≡i, for i = 1, 2; (O2) ≡1 ∩ ≡2= IdX ;
(O3) ≡1 ◦ ≡2= X2, and (P1) (Ri◦ ≡j) = (≡j ◦Ri), for i �= j.

Proof. That a product (W1, R2) × (W2, R2) satisfies these properties (with the
equivalence relations (w1, w2) ≡i (v1, v2) iff wj = vj) is trivial.

Now let us consider a frame (W, R1, R2) satisfying the properties above and
let xwv denote the unique element in [w]2∩ [v]1 (as in the proof of Proposition 1).
This frame satisfies, for all w, w′, v, v′ ∈ W : xwvR1xw′v iff xwv′R1xw′v′ . Indeed,
if xwvR1xw′v, since xw′v ≡2 xw′v′ , then by (P1) there must exist some y such
that xwv′ ≡2 yR1xw′v′ , and this y can be no other than xwv′ . We thus can define
a relation on W/≡2 as [w]2R′

1[w′]2 iff xwvR1xw′v for some (equiv.: for all) v. We
proceed similarly to define a relation R′

2 on W/≡1 : [v]1R′
2[v′]1 iff xwvR1xwv′ for

some (for all) w.
The product (W/≡2 , R′

1) × (W/≡1 , R′
2) is equal to (W/≡2 × W/≡1 ,R1,R2),

isomorphic to (W, R1, R2) as per Proposition 1.

Subset spaces (Example 2). Recall the notion of a subset space frame from Exam-
ple 2. We have:

Proposition 9. A frame (W, RK , R�) is isomorphic to a subset space frame if
an only if

(SS1) RK is an equivalence relation;
(SS2) R� is a partial order (i.e. reflexive, transitive and antisymmetric);
(SS3) R� ◦ RK ⊆ RK ◦ R�,

and there exists an equivalence relation ≡� such that
(O1) R� ⊆≡�;
(O2) RK∩ ≡�= IdW ,

and, moreover,
(SS4) ([RK◦ ≡�](u) ⊇ [RK◦ ≡�](v) and u ≡� v) imply uR�v;
(SS5) [RK◦ ≡�](u) = [≡� ◦RK](v) implies uRKv. �A

Social Epistemic Logic (Example 3). Let us define a semantics for Social Epis-
temic Logic on full orthogonal structures (X, RK , RF , ≡A, ≡W), where RK ⊆≡A

and RF ⊆≡W . The equivalence classes of these relations will represent agents
and worlds respectively.

Recall that the only constraints on a SEL model (W, A, ∼, �) are that ∼ must
be an equivalence relation and � must be symmetric and irreflexive. Therefore,
via the isomorphism in Proposition 1, one easily sees that:

Orthogonal Frames and Indexed Relations 229

Lemma 4. Let (X, RK , RF , ≡A, ≡W) be a full orthogonal structure. The full
orthogonal frame (X, RK , RF) is isomorphic to a SEL frame if and only if, on
top of (O1) – (O3), it satisfies:

(SEL1) RK is an equivalence relation, and
(SEL2) RF is symmetric and irreflexive.

Recall (Proposition 1) that the corresponding isomorphic SEL model will be
(X/≡W

, X/≡A
,RK ,RF), where RK relates two pairs of equivalence classes if an

only if the unique elements in the intersection of each pair are related by RK

(and likewise for RF).
Now let us consider how a valuation must act upon this model. For a SEL

model we demand that each V (n) must be of the form W × {a} for some unique
agent a ∈ A. Via the isomorphism outlined above, we can see, for the image of
a valuation V defined on an orthogonal structure (X, RK , RF , ≡A, ≡W) to be
a valid valuation on a SEL model, we want the image of the set V (n) to be
X/≡W

× {[y]A} for some y ∈ X. But the pre-image of this set is precisely [y]A.
We thus demand the following property:

(SEL3) V (n) ∈ X/≡A
for all n.

For each nominal n and x ∈ X, we let nx denote the unique element in
[x]W ∩ V (n).

Models of SEL must be named. A named model is a model wherein every
agent has a name, i.e., for all a ∈ A, there exists a nominal n such that a = n.
In these isomorphic structures, the notion of named model translates to: for all
y ∈ X, there exists n such that V (n) = [y]A, or, equivalently,

(SEL4) for all x ∈ X, there exists n ∈ Nom such that x ∈ V (n).

With all this we can define a semantics for Social Epistemic Logic on full
orthogonal models (X, RK , RF , ≡A, ≡W , V) where RK , RF and V satisfy the
constraints (SEL1) – (SEL4) above as follows:

x |= Fφ iff xRF y implies y |= φ;
x |= Kφ iff xRKy implies y |= φ;
x |= n iff x ∈ V (n) (iff x = nx);
x |= @nφ iff nx |= φ.

The ‘non-rigid’ variant of SEL [18] assigns different names to agents in each
possible world. This is imposed via the following, weaker, constraint of the valu-
ation: for every nominal n and each world w, there exists a unique agent a ∈ A
such that (w, a) ∈ V (n). In the isomorphic structures above, this translates to a
constraint weaker than (SEL3), namely:

(SEL3’) for each n and each x ∈ X,
the intersection [x]W ∩ V (n) is a singleton.

A proof of completeness of (standard, rigid) SEL using ‘indexed’ canonical
models was recently given in [2] (it had been proven in [14] with a different
method). Completeness of ‘non-rigid’ SEL was proven in [18] by means of an

230 P. Balbiani and S. F. González

involved step-by-step construction, but a proof of this result using canonical
models remains an open problem. We conjecture that the semantics above could
assist in this endeavour.
STIT logic (Example 4). [5] compares three distinct semantics for STIT logic.
One of them, in the form of ‘Kamp frames’, was briefly alluded to in Example 4.
Another one, introduced in [10], interprets sentences on T-STIT frames: these
are one-dimensional Kripke frames

(X, ≡�, {≡i}i∈Agt, ≺G)

wherein two different sorts of relations allow to reason, respectively, about time
(≺G) and necessity/agency (the equivalence relations, with ≡i⊆≡�). These rela-
tions are defined to be orthogonal, for they satisfy ‘x ≡� y implies x ⊀G y’.

In [5] it is shown that both T-STIT frames and Kamp frames satisfy the
same formulas, via an argument which involves transforming one structure into
the other in a truth-preserving manner. However, thanks to the isomorphism in
Proposition 1 (and the (IF1) redefinition of a Kamp frame of Example 4) one
can go beyond and show that a Kamp frame is always a T-STIT frame and that
a T-STIT frame is isomorphic to a Kamp frame, wherein the set of ‘timelines’
W is defined by the connected components of ≺ and the set of ‘moments’ T is
given by the equivalence classes of ≡�.

6 Discussion and Future Work

We have identified a structure that shows up with relative frequency in different
areas of modal logic; we have argued that an independent study of this structure
is warranted and have taken the first steps towards it.

We have shown that these structures are completely characterised by the
‘orthogonality’ of their relations. Proofs of completeness of frameworks based
on indexed frames are not particularly easy to tackle; as an example, we point
the reader to the completeness proof of SEL in [14]. We hope that the above
observations about orthogonality will help facilitate some of these proofs.

Some work remains to be done and many questions are open. Among these
are the following:

Is LogL1L2
� the logic of orthogonal structures (W, R1, R2, ≡1, ≡2) such that

(W, Ri) |= Li, for any pair of Kripke-complete logics L1 and L2? Can a formula
φ /∈ LogL1L2

� be refuted in a finite indexed frame whenever L1 and L2 have
the FMP? We conjecture an affirmative answer to these questions, and we plan
further research to resolve them.

Some variations on subset space logics consider families of subsets which
are closed under intersection [12] or which are topologies [6,8, for instance].
What further restrictions does one have to add to obtain a result analogous to
Proposition 9 for these structures? In the latter case, is there a relation between
these properties and the point-free topologies of [13]?

Perhaps the most obvious question: how does one generalise the definitions
and results in this paper to the n-dimensional case? The reader may find that
there are two reasonable generalisations of this framework to the n-th dimension:

Orthogonal Frames and Indexed Relations 231

(A) (W1 × ... × Wn, R1, ..., Rn) such that (wj)n
j=1Ri(vj)n

j=1 implies wj = vj

for all j �= i;
(B) (W1 × ... × Wn, R1, ..., Rn) such that (wj)n

j=1Ri(vj)n
j=1 implies wi = vi.

Out of these two, we suggest (A) is more appropriate, for it does not make
much sense to apply (B) to n = 1, and (A) is the only one which still gener-
alises n-dimensional products. Many of the results of this paper may translate
relatively easily to the n-dimensional case, whereas some may not. We plan to
devote future work to this question.

Acknowledgements. We wish to thank Emiliano Lorini for a very interesting dis-
cussion about STIT logics, some of the fruits of which made it into this paper.

We also extend our gratefulness to the anonymous reviewers of this paper for their
helpful comments and suggestions.

Appendix

Proof of Proposition 2. Given an orthogonal [L1, L2]-frame (W, R1, R2), we
extend W to the set

W ′ = W ∪ {xwv : w, v ∈ W, R∗
2(w) ∩ R∗

1(v) = ∅},

i.e., we add one element for each pair of connected components which have an
empty intersection, and we extend the relations Ri as follows:

• if F• |= Li, then R′
i = Ri;

• if F◦ |= Li, then R′
i = Ri ∪ {(x, x) : x ∈ W ′ \ W};

where F• is the irreflexive singleton frame ({∗}, ∅), and F◦ is the reflexive sin-
gleton frame ({∗}, {(∗, ∗)}). (Recall that every logic is satisfied in either F• or
F◦; this is a consequence of a classical result by Makinson [11].)

Note that, in either case, no elements of W are related to any elements of
W ′ \ W and thus (W, R1, R2) is a generated subframe of (W ′, R′

1, R′
2).

We define
≡′

1= (R1 ∪ {(v, xwv) : v ∈ W})∗, and
≡′

2= (R2 ∪ {(w, xwv) : w ∈ W})∗.

Note that ≡′
1 and ≡′

2 satisfy conditions O1 – O3 of Definition 2, and therefore
(W ′, R′

1, R′
2) is a full orthogonal frame. Finally, for i = 1, 2, (W ′, R′

i) is the
disjoint union of the Li-frame (W, Ri) with a family of singleton Li-frames, and
thus it is an Li-frame.

Proof of Lemma 2. We leave it to the reader to check that (O3’) implies that
≡1 ◦ ≡2 is an equivalence relation. Let W ′ be an equivalence class of ≡1 ◦ ≡2.
Let R′

i and ≡′
i be the restrictions of Ri and ≡i to W ′. It is routine to check that

(O1) R′
i ⊆≡′

i, (O2) ≡′
1 ∩ ≡′

2= IdW ′ , and (O3) ≡′
1 ◦ ≡′

2= (W ′)2. Each of these is
therefore a full orthogonal frame and (W, R1, R2) is equal to the disjoint union⋃

W ′∈W/≡1◦≡2
(W ′, R′

1, R′
2).

232 P. Balbiani and S. F. González

Proof (sketch) of Proposition 4. This uses the very standard technique of
canonical models; we point the reader to [4, Chapter 4] for full details and we
simply offer a sketch here:

Let X be the set of maximal consistent sets of formulas in the language. We
define the relations xRiy iff, for all φ, �iφ ∈ x implies φ ∈ y and x ≡i y iff, for
all φ, �iφ ∈ x implies φ ∈ y.

The Truth Lemma shows that, given the valuation V (p) = {x ∈ X : p ∈ x},
it is the case that x |= φ iff φ ∈ x.

We note that the logic LogL1L2
� is canonical, for canonicity is preserved by

fusions [9, Cor. 6] and the addition of Sahlqvist axioms [4, Chapter 4]. This
canonicity ensures that (X, Ri) |= Li; the S5 axioms for the �i’s ensure that
≡i is an equivalence relation; �1�2φ ↔ �2�1φ ensures that (O3’) is satisfied;
finally, the axioms �iφ → �iφ ensure (O1).

Therefore (X, R1,2, ≡1,2) is a semistructure and any consistent formula φ can
be satisfied in it.

Proof of Lemma 3. We simply show the existence of a matrix enumeration
f : X ×X → X whenever X is infinite; we leave further details to the reader. Let
{X1, X2} be a partition of X into two sets which are equipotent to X itself (note
that the existence of such partition requires the Axiom of Choice for uncountable
cardinalities [16]). Let f1 : X1 → X and f2 : X2 → X be two surjections. The
map

f(x, y) =
{

fi(x) if x, y ∈ Xi

fj(y) if x ∈ Xi, y ∈ Xj , i �= j

is the desired enumeration.

Proof of Proposition 6. Soundness is routine. For completeness, given a
formula φ /∈ Log�, it suffices to use Theorem 2 to find a standard orthog-
onal structure (W, R1,2, ≡1,2) that refutes φ, construct the indexed frame
(W/≡2 × W/≡1 ,R1,R2) isomorphic to (W, R1, R2) via Proposition 1 and note
that the equivalence relation ([w]2, [v]1) ∼=i ([w′]2, [v′]1) iff xwv ≡i xw′v′ relates
two pairs if and only if their j-th coordinate coincides, for j �= i.

Proof (sketch) of Proposition 7. This involves a rather standard filtration
argument. (See [4, Chapter 2] for details on this technique).

Given a consistent formula φ, we let (W, R1,2, ≡1,2) be a semistructure satis-
fying φ at a point w0, and Γ be a finite set of formulas closed under subformulas
such that φ ∈ Γ , and we define an equivalence relation w ∼Γ v iff for all ψ ∈ Γ ,
(w |= ψ iff v |= ψ). We define relations in the quotient set W/∼Γ

as follows: for
i = 1, 2,

[w]Γ ≡′
i [v]Γ iff, for all �iψ ∈ Γ , (w |= �iψ iff v |= �iψ), and

[w]Γ R′
i[v]Γ iff [w]Γ ≡′

i [v]Γ and for all �iψ ∈ Γ (w |= �iψ implies v |= ψ).

We leave it to the reader to check that the resulting tuple is a semistructure
and a filtration and therefore that [w0]Γ |= φ. We can then use Proposition 5
and Lemma 2 to obtain an indexed frame satisfying φ.

Orthogonal Frames and Indexed Relations 233

Proof of Proposition 9. For the left-to-right direction, given a subset space
frame we consider the relations (x, U)RK(y, V) iff U = V , (x, U)R�(y, V) iff
x = y and U ⊇ V , and (x, U) ≡� (y, V) iff x = y. We note that (RK◦ ≡�)
(x, U) = {(x′, U ′) ∈ OX : x′ ∈ U}, and we leave it to the reader to check that
this satisfies all the properties in Proposition 9.

Let us now consider a frame with these properties. We let [.]� and [.]K denote
the equivalence classes of ≡� and RK . Let us define the subset space

X = X/≡� = {[w]� : w ∈ W}
O = {Uv : v ∈ W}, where Uv = {[w]� ∈ X : v[RK◦ ≡�]w}.

Note that [w]� ∈ Uv if and only if [w]� ∩ [v]K �= ∅.
By (O2), an intersection [w]� ∩ [v]K of two equivalence classes is at most

a singleton. Let us map and element ([w]�, Uv) in the graph of (X, O) to the
unique element in [w]�∩[v]K . This is a bijection whose inverse maps each w ∈ W
to ([w]�, Uw). We define relations ≡K and ≥� on this graph as in Example 2
and, to show that this map is an isomorphism, it suffices to show that

wRKv iff ([w]�, Uw) ≡K ([v]�, Uv), and
wR�v iff ([w]�, Uw) ≥� ([v]�, Uv).

We start with the second item. From left to right, if wR�v, then [w]� = [v]�
by (O1), and let us see that Uw ⊇ Uv. If [y]� ∈ Uv, then there is a unique
element x ∈ [y]� ∩ [v]K . But since wR�vRKx, it follows by (SS3) that there
must exist some x′ such that wRKx′R�x. Since x′ ≡� x, by (O1), and x ≡� y,
it follows that x′ ∈ [w]K ∩ [y]�, and thus [y]� ∈ Uw. From right to left, it suffices
to see that Uw ⊇ Uv and w ≡� v implies wR�v. But this follows directly from
(SS4), noting that Uw ⊇ Uv implies [Rk◦ ≡�](w) ⊇ [Rk◦ ≡�](v).

For the first item it suffices to show that wRKv iff Uw = Uv. The left-to-
right direction is immediate from the definition of Uw, whereas the right-to-left
direction follows from (SS5).

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Handbook of Modal Logic, pp. 821–868
(2006)

2. Balbiani, P., Fernández González, S.: Indexed frames and hybrid logics. In:
Advances in Modal Logic (2020)

3. Belnap, N.D., Perloff, M., Xu, M., et al.: Facing the Future: Agents and Choices
in Our Indeterminist World. Oxford University Press, Oxford (2001)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, Cambridge University Press (2001). https://doi.org/10.
1017/CBO9781107050884

5. Ciuni, R., Lorini, E.: Comparing semantics for temporal STIT logic. Logique et
Anal. (N.S.) 61(243), 299–339 (2017)

6. van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topological
spaces. Synthese 196(7), 2927–2969 (2017). https://doi.org/10.1007/s11229-017-
1592-8

https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/s11229-017-1592-8
https://doi.org/10.1007/s11229-017-1592-8

234 P. Balbiani and S. F. González

7. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional
Modal Logics: Theory and Applications. Elsevier (2003)

8. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch,
M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58095-6 11

9. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics.
J. Symb. Log. 56(4), 1469–1485 (1991)

10. Lorini, E.: Temporal logic and its application to normative reasoning. J. Appl.
Non-Classical Log. 23(4), 372–399 (2013)

11. Makinson, D.: Some embedding theorems for modal logic. Notre Dame J. Formal
Log. 12(2), 252–254 (1971)

12. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In:
TARK, vol. 92, pp. 95–105 (1992)

13. Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Springer,
Heidelberg (2011)

14. Sano, K.: Axiomatizing epistemic logic of friendship via tree sequent calculus. In:
Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp.
224–239. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-
8 16

15. Seligman, J., Liu, F., Girard, P.: Logic in the community. In: Banerjee, M., Seth,
A. (eds.) ICLA 2011. LNCS (LNAI), vol. 6521, pp. 178–188. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18026-2 15

16. Tarski, A.: Theorems on the existence of successors of cardinals, and the axiom of
choice. In: Indagationes Mathematicae (Proceedings), vol. 57, pp. 26–32. Elsevier
(1954)

17. Thomason, R.H.: Combinations of tense and modality. In: Gabbay, D., Guenth-
ner, F. (eds.) Handbook of Philosophical Logic, pp. 135–165. Springer, Heidelberg
(1984). https://doi.org/10.1007/978-94-009-6259-0 3

18. Zhen, L.: Towards axiomatisation of social epistemic logic. Ph.D. thesis, University
of Auckland (2020)

https://doi.org/10.1007/3-540-58095-6_11
https://doi.org/10.1007/978-3-662-55665-8_16
https://doi.org/10.1007/978-3-662-55665-8_16
https://doi.org/10.1007/978-3-642-18026-2_15
https://doi.org/10.1007/978-94-009-6259-0_3

Computable Execution Traces

Declan Thompson(B)

Stanford University, Stanford, CA 94305, USA
declan@stanford.edu

Abstract. This paper gives an execution trace set based account of
computability by imposing restrictions on sets of arbitrary sequences of
objects, based on a supplied stock of unary tests and binary operations.
This account of finite control computability provides a highly general,
top down perspective on computability. We prove equivalence with the
Turing machine model, under appropriate assumptions, and show how
finite control computability can be used to provide a unified account of
computability across multiple levels of abstraction.

Keywords: Computability · Execution trace · Models of computation

1 Introduction

The classical accounts of computability due to Turing, Church and Kleene fol-
low a somewhat standard form. A domain of primitive objects is identified, over
which computations are taken to operate (tapes with symbols, strings over a
finite alphabet, N,. . .). Primitive actions on this domain are chosen (moving
a read/write head, rewrite rules, simple functions,. . .), and assemblies of these
operations are taken as the fundamental models of computation. It is well known
that these accounts give rise to equivalent notions of computable function, up to
encodings on denumerable domains, lending support to the claim that they cap-
ture the intuitive notion of computability, known as the Church-Turing Thesis.

The Church-Turing Thesis is posited for denumerable domains, but no equiv-
alent for arbitrary domains has gained such widespread acceptance. For example,
the BSS machine and Type 2 Turing machine models give rise to distinct sets
of “computable” functions over R [13]. Nonetheless, general accounts of com-
putability on arbitrary domains (denumerable or otherwise) have been given by
authors including Gandy [4], Gurevich [5] and Moschovakis [11]. Key among
these iterator accounts is a set of states S equipped with a single transition
function f . Computation proceeds by iteratively applying f to a state s ∈ S, a
process which (if terminating) yields the desired output. The focus lies in finding
appropriate restrictions on f to ensure the resulting process is computable.

These accounts highlight that computation involves a process: a sequence of
stages moving from an input to a desired output. A computational model thus
gives rise to a set of execution traces across all possible inputs. Classical and
iterator accounts take a generative approach, where execution trace sets arise
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 235–251, 2021.
https://doi.org/10.1007/978-3-030-88853-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_15

236 D. Thompson

from running a machine, or iterating a function. In this paper, we adopt a clas-
sificatory perspective, asking: what is required for a given set of sequences to be
the execution trace set of some model of computation? This perspective frees us
to focus on the abstract nature of processes, rather than the basic operations
they use. It is a perspective orthogonal to the traditional focus of computabil-
ity theory: whether particular sets or functions are effectively computable. We
leave the notion of a computable function unanalysed, focussing instead on the
sequences possibly generated when computing such functions. The paper forms
part of a much broader research programme, and the observations discussed here
are suggestive of a more general notion of computability, worthy of further inves-
tigation. The approach is partly inspired by work in randomness focussing on
random sequences themselves, rather than how they are generated.

In this paper, we ask what a computable set of sequences is. Section 1.1
provides preliminary notation for sequences and introduces the Turing machine
model [15]. Though the project at large extends beyond classical models, Turing
machines undeniably generate computable execution traces, and thereby provide
a useful model for developing a theory. The main results of the paper are:

1. An analysis of sets of sequences that could have been generated by some
computable process;

2. A demonstration, over an appropriate domain, that sets of sequences con-
structed from arbitrary Turing-computable actions are able to be carried out
by a Turing machine if, and only if, they satisfy our analysis.

Note that we assume the Church-Turing Thesis; the paper asks which sets of
sequences are computable, not which operations or sets of arbitrary objects.
The import of this distinction is highlighted in Sect. 2: simply composing com-
putable actions is not enough. Our central contention is that sets of sequences
are computable if they are finite control computable, a notion introduced in
Sect. 2. Section 3 shows the compatibility of finite control computability with
Turing computability and Sect. 4 concludes. A technical appendix provides fur-
ther details of proofs.

1.1 Preliminaries

Sequences and Tasks. In studying execution traces, we will focus on sequences
of objects over some a D. Each sequence represents a possible execution trace
from some computation.

Formally, a sequence σ = �a0,a1, . . .� is a function σ : α → D for some
ordinal α ≤ ω. α is the length of σ, written |σ| = α. For β < |σ| we take

σ[0, β + 1) := �a0,a1, . . . aβ� and σ[β] := aβ . (1)

If |σ| < ω and α > 0, we write σ[−α] for σ[|σ| −α] (so σ[−1] is the final element
of σ). Similarly, σ[0,−α) = σ[0, |σ| − α) = �a0,a1, . . . a|σ|−α−1�. If σ[−1] = τ [0]
then

σ ◦ τ := �σ[0], σ[1], . . . σ[−1], τ [1], τ [2], . . .� (2)

Computable Execution Traces 237

is the composition of σ with τ . Intuitively, τ must continue where σ left off. We
say σ is a subsequence of τ , written

σ � τ, (3)

if there is a strictly increasing gσ : |σ| → |τ | with σ[α] = τ [gσ(α)] for all α.
A set of sequences is called a task f. Intuitively, a task could be an execution

trace set for some computational process, across all inputs. We will sometimes
discuss execution trace points, representing incomplete execution traces. These
are given by the set of finite non-empty prefixes of sequences in a task,

f := {σ[0, α + 1) | σ ∈ f, α < |σ|}. (4)

A task f is fully deterministic if σ[0, 1) = τ [0, 1) implies σ = τ for all σ, τ ∈ f.
Task composition is lifted from sequence composition by taking

f ◦ g := {σ ◦ τ | σ ∈ f, τ ∈ g}. (5)

Task composition is similar to composition of binary relations, except that the
entire sequence is preserved.1 We will make use of two special types of task. If
|σ| = 1 for all σ ∈ q then we call q a test, by analogy with dynamic logic. For
tests, f◦q = {σ ∈ f | σ[−1] ∈ q} is the set of σ ∈ f ending with an element of q.
If |σ| = 2 for all σ ∈ p then we call p an operation. In the case of an operation,
f ◦ p = {σ | σ[0,−1) ∈ f, �σ[−2], σ[−1]� ∈ p} is the set of sequences starting
in f and continuing in p. Intuitively, f ◦ q ◦ p applies a guarded operation to f,
extending by one step every sequence σ ∈ f that ends with an element of q.

Turing Machines. Turing machines are defined formally in the appendix. Here
we give intuition. A Turing machine is a tuple M = 〈S, Γ, δ, s0〉, where S is a
finite set of states; Γ is a finite alphabet, with a distinguished symbol B; δ :
S ×Γ → S ×Γ ×{L,R} is a partial transition function; s0 ∈ S is the start state.

Turing machines operate on machine tapes [u|v], with u, v strings over Γ and
| indicating the position of an imagined read/write head. A configuration of M
is given by [u〈s〉v], with s ∈ S and [u|v] a tape contents. Configurations are
iteratively updated by a partial function ΔM defined as

ΔM([ua〈s〉bv]) =

{
[uac〈t〉v] if δ(s, b) = 〈t, c,R〉
[u〈t〉acv] if δ(s, b) = 〈t, c, L〉.

[ua〈s〉bv] is a halting configuration if δ(s, b) is undefined. Iterating ΔM yields

CRunM := {�[u〈s0〉v],ΔM([u〈s0〉v]),Δ2
M([u〈s0〉v]), . . .� | u, v ∈ Γ ∗},

consisting of the completed execution traces of M. Turing machines are generally
defined up to state labellings, so for M’s execution trace set we take

RunM := {�[u0|v0], [u1|v1], . . .� | �[u0〈s0〉v0], [u1〈t1〉v1], . . .� ∈ CRunM},

1 Sequence and task composition are sometimes called fusion or coalesced product in
literature on trace-based semantics for dynamic logic and process logic [6,8,9].

238 D. Thompson

i.e. the projection of CRunM onto tape contents alone. Write M([u|v]) = [w|x]
if there is σ ∈ RunM with σ[0] = [u|v] and σ[−1] = [w|x].

Turing Computable Tests and Operations. A test q is Turing computable
if there is a Turing machine Mq such that Mq([u|v]) = [|1] iff [u|v] ∈ q. An
operation p is Turing computable if there is a Turing machine Mp such that
Mp([u|v]) = [w|x] iff �[u|v], [w|x]� ∈ p. In this paper, we will use computable and
Turing computable interchangeably for tests and operations.

2 Finite Control Computability

We may now formulate our primary question: which tasks are possibly execu-
tion trace sets of computable processes? We start by recalling that in classical
accounts computable execution traces are assembled from a stock of primitive
actions. These involve conditionally modifying the current state, such as when
a Turing machine writes and moves based on the symbol scanned. Actions can
be modelled by guarded operations of the form q ◦ p, with q a test and p an
operation. We might say a task is computable if it is a composition of com-
putable guarded operations, perhaps giving a co-inductive definition by taking
f computable iff f = q ◦ p ◦ g for some computable test q, operation p and
other computable task g. The problem with this approach is that computable
tasks can be combined in a non-computable manner. For N ⊆ N, consider the
task EnumN = {σ}, where σ enumerates the elements of N in increasing order.
EnumN is a composition of computable tasks, since to move from σ[α] to σ[α+1]
we need only apply addition. Yet N may not be computably enumerable.

Classical accounts avoid this problem by utilising a finitary control mecha-
nism (e.g. state table or program text). This can be seen as providing an equiv-
alence relation on stages of a computation: execution trace points are equivalent
if they correspond to the same internal machine state, or program line, so the
same actions are applied in each. We can define a similar control equivalence
relation � on f , without the need for specifying an underlying mechanism.

� can be thought of like a bisimulation [2]. Each equivalence class C ∈ f /�
is a set of execution trace points where the “same actions” are applied. Execution
traces begin somewhere, so some C ∈ f /�f contains all length 1 prefixes of
f (c.f. a bisimulation has an initial pair). At any stage in a computation, one
of two things may happen to an execution trace point σ: it may continue or it
may end. If it continues, we extend σ by a guarded operation q◦p, conditioning
on the current state σ[−1]. C is thus associated with a construction set FC of
guarded operations, containing all actions that could conditionally be performed.
Each guarded operation must lead to the same next equivalence class, to ensure
consistency in the computation (c.f. the zig and zag conditions of bisimulation).
So for each q,p ∈ FC there is D ∈ f /� with C ◦ q ◦ p ⊆ D. If σ ends then
σ ∈ C ∩f. In this case, we assume some test has been performed to confirm that
computation is over: σ ∈ C ◦ q for some q.

Computable Execution Traces 239

Definition 1 (Control Equivalence). Let q be a set of tests and p of oper-
ations. Let f be a task. A control equivalence � on f under q and p is an
equivalence relation on f satisfying:

Starting State σ[0, 1) � τ [0, 1) for all σ, τ ∈ f.
Construction For each C ∈ f /� there is a construction set FC ⊆ q× p such

that both:
Composition {σ ∈ f | σ[0,−1) ∈ C} =

⋃
〈q,p〉∈FC

C ◦ q ◦ p; and
Consistency if 〈q,p〉 ∈ FC then C ◦ q ◦ p ⊆ D for some D ∈ f /�.

Halting For each C ∈ f /� there is a halting set GC ⊆ q such that C ∩ f =⋃
q∈GC

C ◦ q.

Definition 2 (Trace set). A trace set for q and p is a pair a = (f,�), where
f is a task and � is a control equivalence on f under q and p.

A trace set need not be fully deterministic; it may be understood as a descrip-
tion of possible behaviours. The tests contained within q must cover all possi-
ble stages of the computation - there can be no sequence σ ∈ a such that
σ[0, α + 1) ◦ q = ∅ for every q ∈ q.

Lemma 1. Let � be a control equivalence on f under q and p. Let σ ∈ C ∈
f /�f and FC the construction set for C, and GC the halting set. Then there
is some q ∈ {r | ∃p 〈r,p〉 ∈ FC} ∪ GC with σ[−1] ∈ q.

Proof. If σ ∈ f then σ ∈ C ∩ f so by halting σ ∈ C ◦ q for some q ∈ GC .
It follows that σ[−1] ∈ q. If σ /∈ f then σ = τ [0,−1) for some τ ∈ f . From
composition τ ∈ C ◦ q ◦ p for some 〈q,p〉 ∈ FC . Thus τ [−2] = σ[−1] ∈ q.

Not all trace sets are computable. Indeed, all tasks have trace sets.

Proposition 1. For every task f over D there is a test set e, an operation set
w and a control equivalence � such that a = (f,�) is a trace set for e and w.

Proof. Take e = {{a} | a ∈ D} and w = {{�a,b�} | a,b ∈ D}. Define � by
taking σ � τ iff |σ| = |τ | = 1 or σ = τ . Starting state is satisfied since
|σ[0, 1)| = 1. To check construction and halting take C ∈ f /�f and let

FC = {〈{σ[−2]}, {�σ[−2], σ[−1]�}〉 | σ ∈ f and σ[0,−1) ∈ C}
GC = {{σ[−1]} | σ ∈ C ∩ f}.

If C = {τ} for some τ then consistency is trivially satisfied since C ◦ q ◦ p is a
singleton for all 〈q,p〉 ∈ FC . For composition, note that

{σ ∈ f | σ[0, −1) ∈ C} =
⋃

σ∈ f , σ[0,−1)=τ

{σ[0, −1)} ◦ {σ[−2]} ◦ {�σ[−2], σ[−1]�}.

C ∩ f = {τ} ◦ {τ [−1]} if τ ∈ f and ∅ otherwise, giving halting. If C is not a
singleton then C = {σ[0, 1) | σ ∈ f}, the set of length 1 prefixes. In this case,

{σ ∈ f | σ[0, −1) ∈ C} = {�a� ◦ �σ[−2]� ◦ �σ[−2], σ[−1]� ∈ f | �a� = σ[0, −1) ∈ C},

from which construction quickly follows. Consistency follows as in the singleton
case. For halting, note C ∩ f = {�a� ◦ σ ∈ f | �a� ∈ C, |σ| = 1} =

⋃
q∈GC

C ◦ q.

240 D. Thompson

For a trace set a to be computable, we must impose restrictions on �a.
Most trivially, every test in q and operation in p must be computable. Similarly,
every FC and GC must be finite, since arbitrary unions of computable tests (i.e.
computable sets) need not be computable. To avoid the problem of EnumN ,
we must make one further restriction: �a must have a finite number of equiv-
alence classes, reflecting the finitary control mechanism of classical accounts.
This substantial restriction is reminiscent of the Myhill-Nerode Theorem, which
establishes that a language is regular if, and only if, a certain equivalence rela-
tion on that language has a finite number of equivalence classes [12]. Regular
languages are less powerful than computable languages, so this similarity raises
the concern that imposing a finite control equivalence over-reaches. We show
next it does not, by establishing that RunM is finite control computable for
every Turing machine M.

Definition 3 (Finite control/finite control computable). A trace set a
for q and p is finite control if a /�a is finite. a is finite control computable if,
in addition, every q ∈ q and p ∈ p is computable, and both q and p are finite.

Theorem 1. If M = 〈S, Γ, δ, s0〉 is a Turing machine then RunM is finite con-
trol computable.

Proof. For each σ ∈ RunM there is σC ∈ CRunM such that if σ[α] = [uα|vα]
then σC [α] = [uα〈tα〉vα] with tα ∈ S for all α < |σ|. Define � by taking σ[0, α+
1) � τ [0, β + 1) iff σC [α] = [u〈t〉v] and τC [β] = [w〈t〉x] for some t ∈ S. σC [0] =
[u〈s0〉v] for some u, v for all σ ∈ RunM, so starting state holds. For a ∈ Γ
define

tta := {�[u|av]� | u, v ∈ Γ ∗}
tma,R := {�[ub|cv], [uba|v]� | u, v ∈ Γ ∗, b ∈ Γ}
tma,L := {�[ub|cv], [u|bav]� | u, v ∈ Γ ∗, b, c ∈ Γ}.

To verify Construction and Halting, let C ∈ RunM /�RunM
correspond to

internal state s ∈ S. Take

FC = {〈tta,tmb,D〉 | δ(s, a) = 〈t, b,D〉 for some t ∈ S, D ∈ {L,R}}
GC = {tta | δ(s, a) is undefined}.

Composition and halting are straightforward. For consistency, if 〈tta,tmb,D〉 ∈
FC and δ(s, a) = 〈t, b,D〉 take the equivalence class corresponding to t as D.
As Γ is finite, finitely many tests tt and operations tm are needed. As each
equivalence class corresponds to some s ∈ S, and S is finite, we have that a /�a

is finite.

The control equivalence defined in Theorem 1 is very natural for RunM.
Henceforth, we will treat RunM as a trace set with this control equivalence.

Computable Execution Traces 241

3 Carrying Out Trace Sets

Theorem 1 establishes that Turing computability implies finite control com-
putability, at least over the domain of machine tapes. We now ask: is every finite
control computable trace set the execution trace set of some Turing machine?
The answer is no, as it should be for two reasons. First, while we have made no
attempt to analyse computable operations and tests, we assume they need not
be restricted to the sorts of fine-grained transitions in the Turing machine model.
One of the benefits of the trace set framework is the generality afforded by using
arbitrary computable tests and operations. By the Church-Turing Thesis, Tur-
ing machines can complete such operations, but may require multiple steps to
do so. There is an intuitive sense that a trace set using arbitrary computable
operations could be carried out by some M by using extra steps to compute the
complex operations. In this section, we seek to make this notion of carrying out
precise, and to show that every finite control computable trace set over machine
tapes can be carried out by some Turing machine.

The second reason that finite control computable trace sets need not be
Turing machine execution trace sets is that trace sets need not operate over the
domain of machine tapes. A finite control computable trace set over N cannot
be the execution trace set for some Turing machine (at least, absent a suitable
encoding of machine tapes). Addressing this requires an account of encoding
beyond the scope of this paper. More generally, trace sets can be defined over
non-denumerable domains.

3.1 Expansion Mapping

Intuitively, for a Turing machine M to carry out a task f, RunM should consist
of all sequences in f, but with each sequence expanded to allow M to carry out
complex operations. In other words, every σ ∈ f must be a subsequence of some
τ ∈ RunM. RunM “fills in the gaps” in f using tests like tta and operations like
tma,R. This idea has pedigree from process algebra and game semantics, where
silent, hidden or unimportant moves are used to better highlight the major steps,
or external behaviour, of a computation [1,3,10].

More generally, an expansion mapping from f to g requires a bijection match-
ing each σ ∈ f to an expansion f(σ) ∈ g. We must also map execution trace
points of f to execution trace points of g to ensure that the stages of a compu-
tation are mapped consistently. This is important if f is not fully deterministic.

Definition 4 (Expansion mapping). An expansion mapping from f to g is
a pair (f, h) satisfying

Pairing f : f → g is bijective, where |σ| < ω implies |f(σ)| < ω; and
Expansion σ � f(σ) via some gσ for all σ ∈ f; and
Commutativity h : f → g is an injective function such that if σ ∈ f and

α < |σ| then h(σ[0, α + 1)) = f(σ)[0, gσ(α) + 1).

242 D. Thompson

The bijection between sequences is provided by f , and h ensures consistency
in the mapping of trace points. The following lemma details this interaction.

Lemma 2. Let (f, h) be an expansion mapping from f to g and let σ ∈ f with
σ = τ [0, |σ|) for some τ ∈ f.

1. σ � h(σ) via gτ � |σ|.
2. σ[−1] = h(σ)[−1].
3. |h(σ)| = gτ (|σ| − 1) + 1.
4. h(σ)[0, α) = f(τ)[0, α) for α ≤ |h(σ)|.
5. If α < |σ| then h(σ[0, α + 1)) = h(σ)[0, gτ (α) + 1).
6. Let 0 < α, β ≤ |σ|. Then α < β iff |h(σ[0, α))| < |h(σ[0, β))|.

Proof.

1. Follows from commutativity, and the fact that gτ is strictly increasing.
2. h(σ) = f(τ)[0, gτ (|σ| − 1) + 1) and σ[−1] = τ [|σ| − 1] = f(τ)[gτ (|σ| − 1)], so

σ[−1] = f(τ)[gτ (|σ| − 1)] = f(τ)[0, gτ (|σ| − 1) + 1)[−1] = h(σ)[−1].

3. |h(σ)| = |h(τ [0, |σ|))| = |f(τ)[0, gτ (|σ| − 1) + 1)| = gτ (|σ| − 1) + 1.
4. h(σ)[0, α) = f(τ)[0, gτ (|σ| − 1) + 1)[0, α) = f(τ)[0, α) since α ≤ gτ (|σ| − 1) +

1 = |h(σ)|.
5. Since h(σ) = f(τ)[0, gτ (|σ| − 1) + 1) and α ≤ |σ| − 1 we have

h(σ[0, α + 1)) = f(τ)[0, gτ (α) + 1)
= f(τ)[0, gτ (|σ| − 1) + 1)[0, gτ (α) + 1)
= h(σ)[0, gτ (α) + 1).

6. |σ[0, α)| = α so applying Lemma 2.3 |h(σ[0, α))| = gτ (α − 1) + 1. Similarly
|h(σ[0, β))| = gσ(β − 1)+ 1. gσ is strictly increasing, and so α < β iff gσ(α −
1) < gσ(β − 1) iff gσ(α − 1) + 1 < gσ(β − 1) + 1 iff |h(σ[0, α))| < |h(σ[0, β))|.

When f and g are fully deterministic, we need only provide a bijection from
f to g satisfying pairing and expansion.

Lemma 3. Let f and g be fully deterministic and f : f → g satisfy pairing
and expansion. Then the mapping h : f → g defined by h(σ[0, α + 1)) =
f(σ)[0, gσ(α) + 1) for all σ ∈ f and α < |σ| is an injective function, and (f, h)
is an expansion mapping from f to g.

Proof. If h is indeed an injective function then (f, h) is trivially an expansion
mapping. To see h is well-defined, suppose σ[0, α + 1) = τ [0, α + 1) for σ, τ ∈ f.
Since f is fully deterministic, σ = τ and so

h(σ[0, α + 1)) = f(σ)[0, gσ(α) + 1) = f(τ)[0, gτ (α) + 1) = h(τ [0, α + 1)).

For injectivity, suppose h(σ[0, α + 1)) = h(τ [0, β + 1)) where σ, τ ∈ f, α < |σ|
and β < |τ |. By commutativity, f(σ)[0, gσ(α)+1) = f(τ)[0, gτ (β)+1) and since
g is fully deterministic f(σ) = f(τ). By injectivity of f , σ = τ .

Computable Execution Traces 243

Lemma 4. Let (f, h) be an expansion mapping from f to g with g fully deter-
ministic.

1. f is fully deterministic.
2. If σ, τ ∈ f with h(σ[0, α)) = f(τ)[0, β) then σ = τ .
3. If σ ∈ f , τ ∈ f with h(σ) = f(τ)[0, α) then σ = τ [0, |σ|).
Proof.

1. Let σ, τ ∈ f, and suppose σ[0, 1) = τ [0, 1). Then h(σ[0, 1)) = h(τ [0, 1)) and
by commutativity f(σ)[0, gσ(0) + 1) = f(τ)[0, gτ (0) + 1). f(σ), f(τ) ∈ g so
since g is fully deterministic f(σ) = f(τ) and by injectivity σ = τ .

2. We have h(σ[0, α)) = f(τ)[0, β) implies f(σ)[0, gσ(α−1)+1) = f(τ)[0, β) via
commutativity. Since f(σ), f(τ) ∈ g and g is fully deterministic, f(σ) = f(τ),
so by injectivity σ = τ .

3. Since σ ∈ f , there is σ′ ∈ f with σ′[0, |σ|) = σ. Using commutativity,

h(σ) = h(σ′[0, |σ|)) = f(σ′)[0, gσ′(|σ| − 1) + 1) = f(τ)[0, α).

Since g is fully deterministic and f(σ′), f(τ) ∈ g, this means f(σ′) = f(τ).
By injectivity, σ′ = τ so τ [0, |σ|) = σ, as required.

Unfortunately, the mere existence of an expansion mapping is not sufficient
to say one task carries out another, as the following example shows.

Example 1. Take Primes := {�[11|B], [111|B], [11111|B], [1111111|B], . . .�}, the
task of enumerating all prime numbers in increasing order as unary prefixes of
a Turing machine tape. This is a singleton task, as there is only one possible
execution trace. Consider a modified Turing machine M = 〈{s}, {1, B}, δ, s〉,
which always starts with a blank tape [|B] and has δ(s, 1) = δ(s, B) = 〈1,R, s〉. M
endlessly prints 1s, so RunM = {�[|B], [1|B], [11|B], [111|B], [1111|B], . . .�}. There
is a unique f : Primes → RunM, and it satisfies pairing and expansion. By
Lemma 3 there is an expansion mapping from Primes to RunM.

Example 1 is problematic because a list of all natural numbers is not a
solution to the task of listing all primes; M does not carry out Primes. However,
we might accept such an enumeration if the prime entries were highlighted in
some manner. An expansion mapping from f to g does not allow for this sort of
highlighting; absent the function gσ there is no way to know what subsequence
of f(σ) ∈ g appears in f. For M to properly carry out a, we need some way of
identifying which subsequence of each τ ∈ RunM corresponds to a sequence in
a.

3.2 Carrying Out

A simple solution to the problem presented by Example 1 is possible if we change
our focus from tasks to trace sets. The “highlighting” discussed above can be
achieved with equivalence classes. If b carries out a then each C ∈ a /�a must
be mapped by an expansion mapping onto some D ∈ b /�b. That way, we can
identify the subsequence of τ ∈ b corresponding to a sequence in a by taking
the τ [α] for which τ [0, α + 1) ∈ h(C) for some C ∈ a /�a.

244 D. Thompson

Definition 5 (Carrying out). We say b carries out a if there is an expansion
mapping (f, h) from a to b such that C ∈ a /�a iff h(C) ∈ b /�b.

We return to our main goal for this section, showing that every finite control
computable trace set over machine tapes can be carried out by some Turing
machine.

Theorem 2. Let a be a trace set for q and p such that a is finite control and
fully deterministic, q and p are both finite and Turing computable, and there is
a finite alphabet Γ such that

1. for every σ ∈ a, σ[0] = [u|v] for some u ∈ Γ ∗, v ∈ Γ+;
2. for every u ∈ Γ ∗, v ∈ Γ+ there exists σ ∈ a with σ[0] = [u|v].

Then there is a Turing machine M such that RunM carries out a.

Proof (idea). We directly construct a Turing machine M which carries out a.
M contains an internal state sC corresponding to each C ∈ a /�a. In these
states, M simulates the Turing computable tests used in construction and halt-
ing. If a construction test succeeds, M simulates the corresponding operation
and updates the tape contents with the result. If a halting test succeeds, M halts.
An expansion mapping can be given by mapping each C ∈ a /�a onto the
D ∈ RunM /�RunM

matching sC . For details, see the technical appendix.

On its own, this result is unremarkable, since we have not directly addressed
the triviality concerns raised by Example 1. We must justify the definition of
carrying out by showing Theorem 2’s converse: that if M carries out a then a
is finite control computable. This provides a tight fit between Turing machines,
carrying out and finite control computable trace sets over machine tapes.

RunM is fully deterministic for any M, providing further properties.

Lemma 5. Let b carry out a via (f, h), where b is fully deterministic. If σ ∈ a
and f(σ)[0, β + 1) ∈ h(C) for some C ∈ a /�a then there is α < |σ| with
gσ(α) = β and f(σ)[0, β + 1) = h(σ[0, α + 1)).

Proof. If f(σ)[0, β + 1) ∈ h(C) then f(σ)[0, β + 1) = h(τ) for some τ ∈ C.
Applying Lemma 4.3 σ[0, |τ |) = τ , with |τ | ≤ |σ|. Thus f(σ)[0, β + 1) = h(τ) =
h(σ[0, |τ |)), as required.

Lemma 5 allows us to “reverse” expansion mappings. In particular, it ensures
that the “highlighting” discussed above works as intended.

Corollary 1. Let b carry out a via (f, h), where b is fully deterministic, and
let σ ∈ a and α + 1 < |σ|. Then for all C ∈ a /�a and β,

gσ(α) < β < gσ(α + 1) ⇒ f(σ)[0, β + 1) /∈ h(C).

Computable Execution Traces 245

Proof. By contradiction. Suppose f(σ)[0, β + 1) ∈ h(C). As gσ(α + 1) < |f(σ)|,
|f(σ)[0, gσ(α + 1) + 1)| = gσ(α + 1) + 1. Thus by assumption,

|f(σ)[0, gσ(α) + 1)| < |f(σ)[0, β + 1)| < |f(σ)[0, gσ(α + 1) + 1)|.

By Lemma 5, f(σ)[0, β + 1) = h(σ[0, γ)) for some γ, and by commutativity

|h(σ[0, α + 1))| < |h(σ[0, γ))| < |h(σ[0, α + 2))|.

Applying Lemma 2.6 we conclude α + 1 < γ < α + 2, which is impossible since
γ is an ordinal. Thus, f(σ)[0, β + 1) /∈ h(C).

Lemma 6. If b carries out a and b is finite control then a is finite control.

Proof. Let (f, h) be the expansion mapping in question. Take C,D ∈ a /�a with
C �= D. Then h(C), h(D) ∈ b /�b and by injectivity of h, h(C) �= h(D). Thus
each C ∈ a /�a is mapped by h onto a distinct equivalence class in b /�b.
By the pigeonhole principle, | a /�a| ≤ | b /�b|, so a /�a is finite.

Theorem 3. Let a be a trace set and M = 〈S, Γ, δ, s0〉 be a Turing machine. If
RunM carries out a then a is finite control computable.

Proof (Idea). That a is finite control is an immediate consequence of Lemma
6. For computability (i.e., �a is a control equivalence under some finite, Tur-
ing computable q and p), note that if C ∈ a /�a then h(C) = {σ ∈ RunM |
σC [−1] = 〈s, σ[−1]〉} for some s ∈ S. This gives a set Sa ⊆ S of states corre-
sponding to equivalence classes of �a. We define the elements of FC and GC by
simulating M, starting from state s, until another state t ∈ Sa is reached. See
the technical appendix for full details.

Note in passing that every operation p has a trivial trace set using p = {p}
and q = {σ[0] | σ ∈ p}. Theorems 2 and 3 therefore show that for p over
some finite Γ , p is Turing computable iff some Turing machine carries p out. In
other words, we can define Turing computability via carrying out, rather than
an appeal to inputs and outputs.

4 Further Directions

Finite control computability provides a new, general perspective on computable
processes. By moving away from computability theory’s traditional focus on
single-step functions and operations, the trace set account highlights the impor-
tance of the finite control mechanisms used in classical accounts of computabil-
ity. Since any domain and set of tests and operations can be used, finite control
computability provides a highly flexible model, worthy of future investigation.

One direction for future work lies in incorporating an account of encoding, as
alluded to in Sect. 3. In a similar manner to carrying out, encodings should pre-
serve control equivalence classes. An account of encoding, matched with carrying

246 D. Thompson

out, gives a candidate notion of implementation. Non-denumerable domains also
demand investigation. The definition of control equivalence allows for results
similar to those obtained here for BSS machines and Type 2 Turing machines.
The flexibility of control equivalence in allowing for non-deterministic trace sets
means they can provide a good model for non-deterministic models. Interac-
tive computing might be captured by expanding the set p of operations to allow
actions by different agents. The restriction of q and p to Turing computable tests
and operations here is also unnecessary; the trace set model can easily account
for oracle machines. By taking a trace set as a sample space in some probability
space, it may be possible to account for probabilistic computation. The many
possible applications of trace sets show the flexibility of the model.

Arguably, trace sets also provide an insightful lens through which to study
algorithms. Many extant accounts of algorithms share ideas with iterator
accounts, or treat algorithms as programs specified in some formal program-
ming language [5,7,14]. Frequently, these diminish the importance of under-
determinism in algorithms, and differences between algorithms computing the
same function. A trace set based account of algorithms may avoid many of these
problems, and is a focus for future work.

A Technical Appendix

A.1 Preliminaries

Fix potentially infinite sets G and S, and a distinguished element B ∈ G. Γ ∗ is the
set of finite strings over any Γ ⊆ G, with ε the empty string and Γ+ = Γ ∗\{ε}.
We use a, b, . . . for elements of Γ and u, v, . . . for elements of Γ ∗. Sequences of
these symbols indicate concatenation.

Definition 6 (Turing machine). A Turing machine is a tuple M =
〈S, Γ, δ, s0〉, where S ⊆ S is a finite set; Γ ⊆ G is a finite set with B ∈ Γ ;
δ : S × Γ → S × Γ × {L,R} is a partial function; s0 ∈ S is the start state.

A Turing machine tape is a pair of strings over Γ , written [u|v] with | indi-
cating the position of an imagined read/write head. A blank tape is denoted [|B].
The set of all possible Turing machine tapes is T := {[u|v] | u ∈ G

∗, v ∈ G
+}. A

configuration of M is a pair [u〈s〉av] where s ∈ S and [u|av] is a machine tape.
We also sometimes write 〈s, [u|av]〉 for configurations. M gives rise to a partial
transition function ΔM on its configurations satisfying

ΔM([u〈s〉av]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ub〈u〉v] if δ(s, a) = 〈t, b,R〉 and v �= ε

[ub〈u〉B] if δ(s, a) = 〈t, b,R〉 and v = ε

[w〈u〉cbv] if δ(s, a) = 〈t, b, L〉 and w = uc

[〈u〉Bbx] if δ(s, a) = 〈t, b, L〉 and w = ε;

Computable Execution Traces 247

ΔM([u〈s〉av]) is undefined if δ(s, a) is. ΔM generates a set of sequences of con-
figurations labelled CRunM. If ΔM(σ[α]) is undefined then |σ| = α + 1.

CRunM := {�[u〈s0〉v],ΔM([u〈s0〉v]),Δ2
M([u〈s0〉v]), . . .� | u ∈ Γ ∗, v ∈ Γ+}

SRunM := {σ | ∃τ ∈ CRunM with τ [α] = 〈σ[α], [u|v]α〉 for α < |σ| = |τ |}
RunM := {σ | ∃τ ∈ CRunM with τ [α] = 〈sα, σ[α]〉 for α < |σ| = |τ |}.

Each σ ∈ RunM corresponds to sequences σC ∈ CRunM and σS ∈ SRunM

satisfying σC [α] = 〈σS [α], τ [α]〉. Write M([u|v]) = [w|x] if there is σ ∈ RunM

with σ[0] = [u|v] and σ[−1] = [w|x].

A.2 Proof of Theorem 2

Proof. Let a /�a = {C0, C1, . . . Cn}, with C0 the starting state. We will con-
struct a Turing machine M by considering the tests and operations performed
at each Ci. Since q and p are Turing computable, a is a trace set over T .

Take 0 ≤ i ≤ n. Let Fi ⊆ q× p be the construction set for Ci and Gi ⊆ q the
halting set. Since q and p are both finite, so are Fi and Gi. Suppose

Fi = {〈qi,0,pi,0〉, 〈qi,1,pi,1〉, . . . 〈qi,ki−1,pi,ki−1〉}
Gi = {qi,ki

,qi,ki+1, . . .qi,�i−1}

for some 0 ≤ ki ≤ �i. Each test and operation is Turing computable, so qi,j is
associated with some Turing machine Ni,j and pi,j some machine Oi,j . Since a is
fully deterministic, we may assume qi,j ∩qi,m = ∅ when j �= m.2 By consistency,
each pair 〈qi,j ,pi,j〉 leads to a new equivalence class Cc(i,j).

Define a new machine M = 〈S, Γ, δ, s0〉 as follows:

M = “On tape contents [u|v] with u ∈ Γ ∗, v ∈ Γ+:
1. Assign x ← 0 and y ← [u|v].
2. Replace the tape contents with y.
3. Run all Nx,j with j < �x on copies of y in parallel until some Nx,z halts

with output [|1].
4. If z < kx:

a. Run Ox,z on y.
b. Assign x ← c(x, z) and y to the tape content generated in stage 4a

and go to stage 2.
5. If z ≥ kx: halt.”

There are two meta-variables: x for the currently considered equivalence class of
a /�a and y for the currently considered tape contents. M’s operation proper

starts by carrying out all the tests required in Cx (Stage 3). By Lemma 1, some
test qx,z will succeed (i.e. output [|1]). If this qx,z belongs to Fx (i.e. z < kx) M

2 If not, we can define new Turing computable q′
i,j and q′

i,m that do satisfy this
requirement by setting [u|v] ∈ q′

i,j iff Ni,j([u|v]) = [|1] �= Ni,m([u|v]) or Ni,j([u|v]) =
[|1] = Ni,m([u|v]) and Ni,j([u|v]) halts before Ni,m([u|v]); and similarly for q′

i,m.

248 D. Thompson

runs the operation px,z corresponding to qx,z, stores the result in y and updates x
to the new equivalence class from consistency and the process is repeated (Stage
4). Otherwise, the sequence halts and so M halts (Stage 5). Since a is finite
control, x takes finitely many values and can be encoded in the states of M. In
implementing M, we require for each i ≤ n a unique state si ∈ S corresponding
to the end of Stage 2 with x = i. This preserves x’s value through Stage 2.

Let Sa = {s0, . . . sn}. Intuitively, we will define an expansion mapping (f, h)
associating each Ci ∈ a /�a with si, satisfying h(Ci) = {τ ∈ RunM |
τS [−1] = si} ∈ RunM /�RunM

for all i ≤ n. Take f : f → RunM so that
f(σ)[0] = σ[0] for all σ ∈ f. Since f and RunM are both fully deterministic,
starting with the same domain, this is a well-defined bijection. If we can show
σ � f(σ) and |σ| < ω implies |f(σ)| < ω then we can extend f to an expan-
sion mapping (f, h) using Lemma 3. To that end, take σ ∈ f and let τ = f(σ).
τ ∈ RunM so is associated with sequences τS ∈ SRunM and τC ∈ CRunM.
Define gσ : |σ| → |τ | so that:

1. gσ(0) is the least ordinal β for which τS [β] ∈ Sa;
2. for all α with α+1 < |σ|, gσ(α+1) is the least ordinal β such that gσ(α) < β

and τS [β] ∈ Sa;

Clearly, gσ is strictly increasing. We can show by induction that (I) σ[α] =
τ [gσ(α)] and (II) σ[0, α + 1) ∈ Ci iff τS [gσ(α)] = si for all α < |σ| .

Thus for each σ ∈ a we can define a strictly increasing gσ : |σ| → |f(σ)| such
that σ[α] = f(σ)[gσ(α)] for all α < |σ|, so σ � f(σ) for all σ ∈ a. Next we show
that |σ| < ω implies |f(σ)| < ω. Suppose σ ∈ a with |σ| < ω. Then σ ∈ Ci ∩ a
for some i and so by halting there is qi,j with ki ≤ j < �i such that σ[−1] ∈ qi,j .
Thus Ni,j(σ[−1]) = [|1]. Let τ = f(σ). As established by Claims (I) and (II)
above, τ [gσ(|σ| − 1)] = σ[−1] and τS [gσ(|σ| − 1)] = si. So in τC [gσ(|σ| − 1)] M
has just finished Stage 2 with x = i. Since Ni,j(σ[α]) = [|1], when M moves to
Stage 3 it sets z ← j. Thus z ≥ kx and so M next moves to Stage 5, halting.
Thus, τ is finite and f meets the conditions of Lemma 3 and can be extended
to an expansion mapping (f, h) from a to RunM.

Finally, we turn to verifying that f(Ci) ∈ RunM /�RunM
for all Ci ∈

a /�a. It is a quick consequence of Claim (II) that if σ ∈ Ci then h(σ)S [−1] =
si. Conversely, suppose τS [−1] = si for some τ ∈ RunM . Since f is surjective
onto RunM there is σ ∈ a with f(σ)[0, |τ |) = τ and f(σ)S [|τ | − 1] = si. Let
α = max{β | gσ(β) < |τ |−1}. Using Claim (II), we can see that σ[0, α+2) ∈ Ci.
From this we see f(Ci) = {τ ∈ RunM | τ = f(σ) for some σ ∈ Ci} = {τ ∈
RunM | τS [−1] = si}. Hence f(Ci) ∈ RunM /�RunM

by definition of �RunM
.

A.3 Proof of Theorem 3

Definition 7. Let M = 〈S, Γ, δ, s0〉 be a Turing machine and T ⊆ S. Write
〈s, [u|v]〉 M�

T
〈t, [w|x]〉 if either ΔM([u〈s〉v]) = [w〈t〉x] or ΔM([u〈s〉v]) = [w′〈u〉x′]

Computable Execution Traces 249

for some u /∈ T with 〈u, [w′|x′]〉 M�
T

〈t, [w|x]〉. Write 〈s, [u|v]〉 M�
T

↓ if ΔM([u〈s〉v])

is undefined or ΔM([u〈s〉v]) = [w〈t〉x] for t /∈ T with 〈t, [w|x]〉 M�
T

↓.

Proof (Theorem 3). Part 1 is immediate from Lemma 6. Suppose a /�a =
{C0, C1, . . . Cn} and RunM carries out a via (f, h). For each 0 ≤ i ≤ n there is
an si ∈ S with h(Ci) = {τ ∈ RunM | τS [−1] = si}. Take Sa = {s0, . . . sn}.

Let 0 ≤ i ≤ n. Take the minimal set {Di,0,Di,1, . . . Di,ki
} ⊆ a /�a where

{σ ∈ a | σ[0,−1) ∈ Ci} ⊆
⋃

0≤j≤ki
Di,j . Let 0 ≤ j ≤ ki and suppose h(Di,j) =

{τ ∈ RunM | τS [−1] = ti,j} (so ti,j = s� for some �). Define Ni,j and Oi,j as:

Ni,j = “On tape contents [u|v]:

1. Assign x ← si and y ← [u|v].
2. If ΔM(〈x, y〉) is undefined: re-

place the tape with [|0] and halt.
3. If ΔM(〈x, y〉) is defined: update

〈x, y〉 ← ΔM(〈x, y〉).
4. If x ∈ Sa:

a. If s = ti,j : replace the tape
with [|1] and halt.

b. If s �= ti,j : replace the tape
with [|0] and halt.

5. If x /∈ Sa: go to stage 2.”

Oi,j = “On tape contents [u|v]:

1. Assign x ← si and y ← [u|v].
2. If ΔM(〈x, y〉) is undefined: enter

an infinite loop.
3. If ΔM(〈x, y〉) is defined: update

〈x, y〉 ← ΔM(〈x, y〉).
4. If x ∈ Sa:

a. If s = ti,j : replace the tape
with y and halt.

b. If s �= ti,j : enter an infinite
loop.

5. If x /∈ Sa: go to stage 2.”

We have that

Ni,j([u|v]) = [|1] iff 〈si, [u|v]〉 M�
Sa

〈sj , [w|x]〉 for some w, x

Oi,j([u|v]) = [w|x] iff 〈si, [u|v]〉 M�
Sa

〈sj , [w|x]〉.

Let qi,j := {[u|v] | RunNi,j
([u|v]) = [|1]}. and pi,j := {�[u|v], [w|x]� |

Oi,j([u|v]) = [w|x]}. Clearly, qi,j and pi,j are Turing computable. Repeating
the above for each 0 ≤ j ≤ ki, take Fi := {〈qi,j ,pi,j〉 | 0 ≤ j ≤ ki}. The halt-
ing set Gi for Ci is defined similarly. Repeating the same process for each Ci

provides q and p.
In Stage (II), we verify that construction holds using q and p. To do this, let

0 ≤ i ≤ n. We start with composition. Let σ ∈ {τ ∈ a | τ [0,−1) ∈ Ci}. Then
σ[0,−1) ∈ Ci and σ ∈ Di,j for some j. Take τ = h(σ). We have h(σ[0,−1)) =
τ [0, gσ(|σ| − 2) + 1) ∈ h(Ci) and τ ∈ h(Di,j). Thus we know τS [gσ(|σ| − 2)] = si

and τS [−1] = τ [gσ(|σ| − 1)] = ti,j . We claim that

〈τS [gσ(|σ| − 2)], τ [gσ(|σ| − 2)]〉 M�
Sa

〈τS [gσ(|σ| − 1)], τ [gσ(|σ| − 1)]〉.

250 D. Thompson

If not, then there must be some gσ(|σ| − 2) < β < gσ(|σ| − 1) with

〈τ [gσ(|σ| − 2)], τ [gσ(|σ| − 2)]〉 M�
Sa

〈τS [β], τ [β]〉

and τS [β] ∈ Sa. But then τ [0, β+1) ∈ h(Ck) for some k, impossible by Corollary
1. Since τ [gσ(|σ| − 2)] = σ[−2] and τ [gσ(|σ| − 1)] = σ[−1], we conclude that
〈si, σ[−2]〉 M�

Sa

〈ti,j , σ[−1]〉. From this we have Ni,j(σ[−2]) = [|1], so σ[−2] ∈ qi,j ,

and that Oi,j(σ[−2]) = σ[−1], so �σ[−2], σ[−1]� ∈ pi,j . We have σ ∈ Ci◦qi,j◦pi,j .
In the other direction, suppose for some j that σ ∈ Ci ◦qi,j ◦pi,j , so as above

σ[0,−1) ∈ Ci, Ni,j(σ[−2]) = [|1] and Oi,j(σ[−2]) = σ[−1]. We wish to show
that σ ∈ a . Since σ[0,−1) ∈ Ci ⊆ a , there is some τ ∈ a with τ [0, |σ| − 1) =
σ[0,−1). If we can establish that |σ| ≤ |τ | and τ [|σ| − 1] = σ[−1] we will have
that τ [0, |σ|) = σ, so σ ∈ a . Since Oi,j(σ[−2]) = σ[−1], we have 〈si, σ[−2]〉 M�

Sa

〈ti,j , σ[−1]〉. By expansion, σ[−2] = τ [|σ|−2] = f(τ)[gσ(|σ|−2)]. Since τ [0, |σ|−
1) = σ[0,−1) ∈ Ci we know f(τ)S [gσ(|σ|−2)] = h(τ [0, |σ|−1))S [−1] = si. Hence
we have f(τ)C [gσ(|σ| − 2)] = 〈si, σ[−2]〉 so f(τ)C [gσ(|σ| − 2)] M�

Sa

〈ti,j , σ[−1]〉.
It follows there must be β > gσ(|σ| − 2) with f(τ)C [β] = 〈ti,j , σ[−1]〉. We then
have f(τ)[0, β + 1) ∈ h(Di,j) so by Lemma 5 f(τ)[0, β + 1) = h(τ [0, α + 1)) for
some α < |τ |, where gτ (α) = β. Since gτ (|σ|−2) < β, |σ|−2 < α. Thus |σ| ≤ |τ |
and so gτ (|σ| − 1) is defined. β ≥ gτ (|σ| − 1) otherwise f(τ)[0, β + 1) /∈ h(Di,j)
by Corollary 1. τ [0, |σ|) ∈ Ck for some k, so f(τ)S [gτ (|σ| − 1)] ∈ Sa. Thus

β �> gτ (|σ| − 1) or else f(τ)C [gσ(|σ| − 2)]
M

��
Sa

f(τ)C [β], contradicting f(τ)C [β] =

〈ti,j , σ[−1]〉. Thus gτ (|σ| − 1) = β. We have τ [|σ| − 1] = f(τ)[gτ (|σ| − 1)] =
f(τ)[β] = σ[−1]. Since τ [0, |σ| − 1) = σ[0,−1) we conclude τ [0, |σ|) = σ. Thus
σ ∈ {υ | υ[0,−1) ∈ Ci}. This establishes composition.

Consistency is easy to verify, since if σ ∈ Ci ◦ qi,j ◦ pi,j then following the
reasoning above where τ ∈ a has τ [0, |σ|) = σ, h(σ) = f(τ)[0, gτ (|σ| − 1) + 1) ∈
h(Di,j) and since h is injective σ ∈ Di,j . Thus, construction holds with q and p.
Halting follows similar reasoning to construction, except that we must establish

f(σ)C [gσ(|σ| − 1)] M�
Sa

↓ .

The details are omitted for reasons of space.

References

1. Abramsky, S.: Information, processes and games. In: Adriaans, P., Benthem, J.
(eds.) Philosophy of Information. No. 8 in Handbook of the Philosophy of Science,
pp. 483–550. Elsevier (2008)

2. Blackburn, P., Rijke, M., Venema, Y.: Modal Logic. No. 53 in Cambridge Tracts
in Theoretical Computer Science, 4th edn. Cambridge University Press (2002)

3. Dowek, G.: Execution traces and reduction sequences. lsv.fr/ dowek/Publi/tra
ces.pdf

http://www.lsv.fr/~dowek/Publi/traces.pdf
http://www.lsv.fr/~dowek/Publi/traces.pdf

Computable Execution Traces 251

4. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler,
H.J., Kunen, K. (eds.) Studies in Logic and the Foundations of Mathematics,
The Kleene Symposium, vol. 101, pp. 123–148. Elsevier (1980). http://www.
sciencedirect.com/science/article/pii/S0049237X08712576

5. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
1(1), 77–111 (2000). http://portal.acm.org/citation.cfm?doid=343369.343384

6. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, com-
pleteness. 25(2), 144–170 (1982). http://www.sciencedirect.com/science/article/
pii/0022000082900034

7. Huber, H.G.M.: Algorithm and formula. Commun. ACM 9(9), 653–654 (1966)
8. Ju, F., Cui, N., Li, S.: Trace semantics for IPDL. In: van der Hoek, W., Holli-

day, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 169–181. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3 14

9. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63172-0 43

10. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings
of the 2nd International Joint Conference on Artificial Intelligence, pp. 481–489.
Morgan Kaufmann Publishers Inc. (1971)

11. Moschovakis, Y.N.: The logic of functional recursion. In: Dalla Chiara, M.L., Doets,
K., Mundici, D., Benthem, J. (eds.) Logic and Scientific Methods. Synthese Library
(Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol.
259, pp. 179–207. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-017-
0487-8 10

12. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–
544 (1958)

13. Pégny, M.: How to make a meaningful comparison of models: the church-turing
thesis over the reals. Minds Mach. 26(4), 359–388 (2016). https://doi.org/10.1007/
s11023-016-9407-0

14. Rapaport, W.J.: What is an algorithm? In: Philosophy of Computer Science
(Draft), pp. 229–291. https://cse.buffalo.edu/∼rapaport/Papers/phics.pdf

15. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. 2(1), 230–265 (1937). http://onlinelibrary.wiley.com/doi/10.1112/
plms/s2-42.1.230/full

http://www.sciencedirect.com/science/article/pii/S0049237X08712576
http://www.sciencedirect.com/science/article/pii/S0049237X08712576
http://portal.acm.org/citation.cfm?doid=343369.343384
http://www.sciencedirect.com/science/article/pii/0022000082900034
http://www.sciencedirect.com/science/article/pii/0022000082900034
https://doi.org/10.1007/978-3-662-48561-3_14
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-94-017-0487-8_10
https://doi.org/10.1007/978-94-017-0487-8_10
https://doi.org/10.1007/s11023-016-9407-0
https://doi.org/10.1007/s11023-016-9407-0
https://cse.buffalo.edu/~rapaport/Papers/phics.pdf
http://onlinelibrary.wiley.com/doi/10.1112/plms/s2-42.1.230/full
http://onlinelibrary.wiley.com/doi/10.1112/plms/s2-42.1.230/full

Axiomatic Reals and Certified Efficient
Exact Real Computation

Michal Konečný1, Sewon Park2, and Holger Thies3(B)

1 Aston University, Birmingham, UK
m.konecny@aston.ac.uk

2 KAIST, Daejeon, Korea
swelite@kaist.ac.kr

3 Kyoto University, Kyoto, Japan
thies.holger.5c@kyoto-u.ac.jp

Abstract. We introduce a new axiomatization of the constructive real
numbers in a dependent type theory. Our main motivation is to provide
a sound and simple to use backend for verifying algorithms for exact
real number computation and the extraction of efficient certified pro-
grams from our proofs. We prove the soundness of our formalization
with regards to the standard realizability interpretation from computable
analysis. We further show how to relate our theory to a classical formal-
ization of the reals to allow certain non-computational parts of correct-
ness proofs to be non-constructive. We demonstrate the feasibility of our
theory by implementing it in the Coq proof assistant and present sev-
eral natural examples. From the examples we can automatically extract
Haskell programs that use the exact real computation framework AERN
for efficiently performing exact operations on real numbers. In experi-
ments, the extracted programs behave similarly to hand-written imple-
mentations in AERN in terms of running time.

Keywords: Constructive real numbers · Formal proofs · Exact real
number computation · Program extraction

1 Introduction

Verifying the correctness of software is becoming increasingly important, in par-
ticular in safety critical application domains. Often, such programs need to inter-
act in some way with the outside, physical world requiring numerical calcula-
tions over the real numbers and other uncountable mathematical entities. While

Holger Thies is supported by JSPS KAKENHI Grant Number JP20K19744.
Sewon Park is supported by the National Research Foundation of Korea (NRF)
grants funded by the Korea government (No. NRF-2016K1A3A7A03950702, NRF-
2017R1E1A1A03071032 (MSIT) & No. NRF-2017R1D1A1B05031658 (MOE)).

This project has received funding from the EU’s Horizon 2020 research and inno-
vation programme under the Marie Sk�lodowska-Curie grant agreement No. 731143.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 252–268, 2021.
https://doi.org/10.1007/978-3-030-88853-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_16

Axiomatic Reals and Certified Efficient Exact Real Computation 253

proof assistants and formal methods are becoming more mature and are increas-
ingly used in practical applications, verification of numerical programs remains
extremely challenging [2]. One difficulty arises from the fact that in practice real
numbers are commonly replaced by floating-point approximations, introducing
rounding errors and uncertainties that pose additional problems for verification.

While there is active ongoing work on the verification of floating-point arith-
metic [4,15], we here consider a different approach known as exact real computa-
tion. In exact real computation, real numbers are basic entities that allow exact
manipulation without rounding errors. Programs can output finite approxima-
tions up to any desired absolute precision. This is often realized by adding a
datatype for reals and arithmetic operations on them as primitives in program-
ming languages. Several implementations exist demonstrating the feasibility of
the approach [1,10,16]. Although less efficient than optimized hardware-based
floating-point calculations, implementations in exact real computation are by
design more reliable than the former and are thus well-suited for situations
where correctness is of high importance. Further, for efficient implementations
there is often only a small overhead. However, subtilities of the semantics such
as multivaluedness can still make writing correct programs difficult and stronger
guarantees of correctness are highly desirable. One of the strongest such guar-
antees is a computer verified correctness proof e.g. in a proof assistant which
however requires a sound model of the semantics. This poses some theoretical
challenges as operations such as partial comparisons and multivalued branching
are common in exact real computation and need to be computable [18].

Software packages for exact real computation often build on the theoretical
framework of computable analysis and the theory of representations [13,25]. In
previous work [11] two of the authors of the present paper worked on verified
exact real computation using the Incone library [23], which aims to directly
formulate the model of computable analysis in Coq. Incone requires to define
computational realizers, i.e. functions that work on low-level encodings of the
reals e.g. by sequences of rational numbers. Working directly with such encodings
facilitates high control over the algorithm and allows fine-grained optimizations.
However, algorithms and their correctness proofs depend on the concrete encod-
ing and the approach is therefore less elegant and more labour-intensive than
working with a high-level abstract implementation of a real number type. While
this issue has also been addressed in Incone by providing an abstract specification
of some important real number operations, in this work we chose an even higher
level of abstraction. That is, instead of reimplementing and verifying basic real
number operations, we trust the implementation of a core of simple real number
operations and to verify programs using those operations under the assumption
that they are correctly implemented. The basic idea is to axiomatically model
sophisticated implementations of exact real computation which exist for many
modern programming languages, e.g. AERN [10] for Haskell or iRRAM for C++.
This approach also provides a certain amount of independence of the concrete
implementation of real numbers and thus allows to easily switch the underlying
framework.

254 M. Konečný et al.

More concretely, we define a new constructive axiomatization that models
the real numbers in a conceptually similar way as some mature implementations
of exact real computation. We formally define our theory on top of a simple type
theory inspired by the one used in Coq and prove its soundness with respect
to the realizability interpretation used in computable analysis. We also give a
theoretical foundation of relating proofs written over a classical theory of real
numbers with our real numbers.

There are already several formalizations of real numbers and real analysis in
most proof assistants (see e.g. [3] for an overview), including the C-CoRn library
[6], a large constructive framework based on Coq setoids. Our axiomatization is
different in that it very closely models classical reasoning used in computable
analysis and concepts used in practical implementations of exact real computa-
tion, such as multivalued operations. We therefore think that it can be appealing
to people working in this area.

Our approach further allows to easily map the constructive real type, and
its axiomatically defined basic operations such as arithmetic or limits, to corre-
sponding types and operations in an exact real computation framework. Con-
cretely, utilising this mapping and program extraction techniques, we obtain
certified programs over an implementation of exact real computation from cor-
rectness proofs.

We implemented the theory in the Coq proof assistant and extracted Haskell
programs from our proofs using Coq code extraction. In the extracted programs,
primitive operations on the reals are mapped to operations in the exact real com-
putation framework AERN [10] which is written and maintained by one of the
authors. Our first examples show that the extracted programs perform efficiently,
having only a small overhead compared to hand-written implementations.

2 Computable Analysis and Exact Real Computation

In this section, we recap some essential concepts and limitations of computable
analysis and exact real computation in order to justify our choice of axioms.

To compute over uncountable mathematical structures such as real num-
bers exactly, computable analysis takes assemblies over Kleene’s second algebra
(assemblies for short) as the basic data type [8,22].1 An assembly is a pair of a
set A and a relation �⊆ N

N × A, which is surjective in that ∀x ∈ A. ∃ϕ. ϕ � x.
We call ϕ ∈ N

N a realizer of an abstract entity x ∈ A if ϕ � x holds. Given two
assemblies of A and B, a function f : A → B is said to be computable if there
is a computable partial function τ :⊆ N

N → N
N that tracks f , i.e. for any x ∈ A

and its realizer ϕ, τ(ϕ) is a realizer of f(x).
For real numbers, there is a unique assembly (up to isomorphism in the

category of assemblies Asm(K2)) that makes the model-theoretic structure [7]
of real numbers computable: (1) 0, 1 ∈ R are computable, (2) field arithmetic
1 Assemblies are generalizations of represented sets [13,25] which are exactly the

assemblies where the surjective relations are required to be partial surjective func-
tions. The terminology multi-representation [20] may be more familiar to some
readers.

Axiomatic Reals and Certified Efficient Exact Real Computation 255

is computable, (3) the order relation < that is undefined at {(x, x) | x ∈ R} is
computable, and (4) the limit operation defined at rapidly converging sequences
is computable. An example is the Cauchy reals where ϕ is a realizer of x ∈ R if
and only if ϕ encodes a sequence of rationals converging rapidly towards x. An
assembly of reals satisfying the above computability conditions is called effective.

An inevitable side-effect of this approach is partiality. Whichever realizabil-
ity relation for reals we take, comparisons of real numbers are only partially
computable [25, Theorem 4.1.16]. Let Kleenean K be the assembly of {ff , tt ,⊥}
where an infinite sequence of zeros realizes ⊥, an infinite sequence that starts
with 1 after a finite prefix of zeros realizes ff , and an infinite sequence that
starts with 2 after a finite prefix of zeros realizes tt (see e.g. [11, Example 3]).
The assembly K can be seen as a generalization of the Booleans by adding an
explicit state of divergence ⊥. Comparison in any effective assembly of reals R
is computable as a function x < y = tt if x < y, ff if y < x, and ⊥ if x = y.

As the usual comparisons are partial, multivaluedness becomes essential in
exact real computation [14]. For two assemblies of A and B, a multivalued func-
tion f : A ⇒ B, which is basically a nonempty set-valued function, is computable
if there is a computable function that takes a realizer ϕ of x ∈ A and computes
a realizer of any y ∈ f(x). An example is the multivalued soft comparison [5]:

x <k y = {tt | x < y + 2k} ∪ {ff | y < x + 2k}.

The above total multivalued function approximates the order relation. It is
tracked by evaluating two partial comparisons x < y + 2k and y < x + 2k in
parallel, returning tt if x < y + 2k = tt , and ff if y < x + 2k = tt . It is nondeter-
ministic in the sense that for the same x and y but with different realizers, which
of the tests terminates first may vary. Exact real number computation software
such as [10,16] further offer operators like select :⊆ K × K ⇒ K such that
select(k1, k2) 	 tt iff k1 = tt and select(k1, k2) 	 ff iff k2 = tt as a primitive
operation for generating multivaluedness.

3 Axiomatization

In this section we give an overview of the formalization and the axioms we
introduce. For space reasons we omit most axioms in the main part but provide
a complete list in Appendix A. For those axioms that we do introduce here, we
also reference the corresponding entry from the appendix.

Our theory is formalized in a type theory similar to the one of Coq. More
precisely, we work with a dependent type theory with basic types 0, 1, 2,N,Z,
and a universe of classical propositions. That is, we have an impredicative à
la Russel universe Prop, closed under →,∧,∨,∃,Π, where the law of excluded
middle Π(P : Prop). P ∨ ¬P holds (Axiom TT1) [17]. We assume that the
identity types belong to Prop. Opposed to Prop, Type is an à la Russel universe
of types (with an implicit type level) with type constructors →,×,+,Σ,Π. We
further suppose propositional extensionality in Prop (Axiom TT2) and function
extensionality (Axiom TT3). Based on this setting, we propose an axiomatization
for the assemblies K,R and computable multivalued functions from Sect. 2.

256 M. Konečný et al.

3.1 Kleenean and Multivalued Lifting

First, we assume that there is a type K : Type of Kleeneans (Axiom K1) and
that there are two distinct elements true : K and false : K (Axioms K2, K3 and
K4). Let us define the abbreviation �t : Prop :≡ t = true. In many cases, we
do not work directly with Kleeneans. Instead, we call a proposition P : Prop
semi-decidable (in its free variables) if there is a Kleenean t that identifies P :

semiDec(P) :≡ Σ(t : K). P = �t

Multivalued computations are axiomatized by a monad M (Axioms M1–M9)
such that a mapping f : A → B expresses a singlevalued function and f : A →
M B expresses a multivalued function. We assume the monad structure: (1)
there is a type constructor M : Type → Type, (2) there is a unit unitM : Π(A :
Type). A → M A, (3) a multiplication multM : Π(A : Type). M(M A) → M A,
(4) a function lifting liftM : Π(A,B : Type). (A → B) → M A → M B, (5) and
the corresponding coherence conditions.

Intuitively, the monad can be understood as the nonempty power-set monad.
In this sense, we assume that there is a mapping

elimM : Π(A : Type). (Π(x, y : A). x = y) → (M A) → A

which is an inverse of unitM (Axioms M10–M11).
For any sequence of types P : N → Type, we assume that the map

λ(X : M(Π(x : N). P x)). λ(n : N). liftM
(
λ(f : Π(x : N). P x). f n

)
X

which is of type M(Π(x : N). P x) → Π(x : N). M(P x) admits a section
(Axioms M12–M13):

ωlift P : (Π(x : N). M(P x)) → M(Π(x : N). P x).

Intuitively, given a set of sequences S, the first map transforms it to a sequence
of sets (n �→ ⋃

f∈S{f(n)}). And, ωlift is its section which transforms a sequence
of sets f to a set of sequences {g | ∀n. g(n) ∈ f(n)}. This operation enables, for
example, to interchange multivalued sequences of real numbers with sequences
of multivalued real numbers.

The most important axiom we assume is multivalued branching
(Axiom M14):

select : Π(x, y : K). (�x ∨ �y) → M
(�x + �y).

The above axiom yields the following, which we use more frequently:

choose : Π(P,Q : Prop). P ∨ Q → semiDec(P) → semiDec(Q) → M
(
P + Q

)
.

Namely, given two semi-decidable propositions and at least one of them holds
classically, we can nondeterministically decide if P holds or Q holds.

Axiomatic Reals and Certified Efficient Exact Real Computation 257

For any two types A,B, we write f : A ⇒ B to denote f : A → M B and
Σ(x : A). P (x) for M Σ(x : A). P (x) (multivalued functions and existences).

Example 1. For any proposition P , suppose both semiDec(P) and semiDec(¬P)
hold. As P ∨¬P holds by the classical law of excluded middle, we have M(P +¬P)
by applying choose. As it is provable that P + ¬P is subsingleton, using elimM,
we have P + ¬P , the decidability of the proposition P .

3.2 Real Numbers

We assume real numbers by declaring that there is a type R : Type for real
numbers (Axiom R1) and axiomatizing its model-theoretic structure. There are
distinct constants 0 : R and 1 : R, (infix) binary operators +,× : R → R → R,
a unary operator − : R → R, a term / : Π(x : R). x �= 0 → R, and a (infix)
binary predicate <: R → R → Prop (Axioms R2–R8). We assume the properties
of the structure classically in a safe way that does not damage constructivity
(Axioms R11–R27). For example, trichotomy (Axiom R22) is assumed as a term
of type

Π(x, y : R). x < y ∨ x = y ∨ y < x.

However, an inhabitant of the type Π(x, y : R). (x < y) + (x = y) + (y < x) is
not posed anywhere.

In addition to the axioms in Prop, we assume Π(x, y : R). semiDec(x < y)
(Axiom R9). Namely, for any two real numbers its order, as a classical proposi-
tion, is semi-decidable.

Example 2. Using the classical trichotomy, we can construct a term of type

Π(x, y, ε : R). 0 < ε → x < y + ε ∨ y < x + ε.

Since the inequalities are semi-decidable, using choose, the multivalued version
of the approximate splitting lemma [21, Lemma 1.23]

mSplit : Π(x, y, ε : R). 0 < ε ⇒
(
(x < y + ε) + (y < x + ε)

)

is obtainable, which roughly says, for any real numbers x, y, ε, when ε is positive,
we can nondeterministically decide if x < y + ε or y < x + ε.

The set of classical axioms living in Prop includes the completeness of the set
of real numbers (Axiom R27). For its constructive counterpart (Axiom R10), for
any predicate P : R → Prop such that p : ∃!(z : R). P z holds, we assume

lim P p :
(
Π(n : N). Σ(e : R).∃(a : R). P a∧−2−n < e−a < 2−n

)→Σ(a : R). P a.

Here, for any n : N, 2−n : R is constructed by recursive division of 1 + 1 on 1
and ∃!(a : A). P a stands for ∃(a : A). P a ∧ Π(b : A). P b → a = b. Note that
P can be seen as a data that classically defines a real number. The axiom says

258 M. Konečný et al.

that when we have a procedure that computes a 2−n approximation to the real
number for each n, we have the real number constructively.

Example 3. In many cases, we compute an approximation of a real number using
multivalued computation. Using elimM and ωlift, we can define

lim P p :
(
Π(n : N). Σ(e : R).∃(a : R). P a∧−2−n < e−a < 2−n

)→Σ(a : R). P a.

where P : R → Prop and p : ∃!(z : R). P z. Namely, when we have a procedure
that computes a multivalued approximation to a real number, the procedure
itself gets converted to the real number.

3.3 Soundness by Realizabiltiy

To prove soundness of the set of axioms, we extend the standard realizability
interpretation of extensional dependent type theories to the category of assem-
blies over Kleene’s second algebra with computable morphisms Asm(K2) [19, § 4
and § 5]. That is, to each type constant A : Type we axiomatize, we designate
an assembly �A : Type� and to each axiomatic term constant c : A, we assign a
morphism �c : A� : 1 → �A : Type� in Asm(K2) where 1 is a terminal object.

In consequence, by extending the interpretation, we not only prove sound-
ness of the axiomatization but also argue that a closed term in our type theory
automatically gives a construction of a computable function in the sense of com-
putable analysis. For example, suppose we have a proof of the statement

Π(x : R). P x ⇒ Σ(y : R). Q x y

where P : R → Prop and Q : R → R → Prop. The interpretation of the proof is
a computable partial multifunction f :⊆ R ⇒ R where for any x ∈ R such that
�P �(x) = 1, f(x) is well-defined and for any y ∈ f(x), �Q�(x, y) = 1.

For our axioms, we interpret K to the Kleenean assembly K and R to any
effective assembly of real numbers R. Mapping the axiomatic constants properly,
e.g., true to tt and false to ff , validates most of the axioms.

In order to interpret the multivaluedness, we specify the endofunctor M :
Asm(K2) → Asm(K2) such that for an assembly A, M A is an assembly of the
set of nonempty subsets of A whose realization relation � is defined by

ϕ �M A S :⇔ ∃x. x ∈ S ∧ ϕ �A x.

In words, ϕ realizes a nonempty subset S of A if ϕ realized an element x of S in
the original A. Note that for any assemblies A,B, a multifunction f : A ⇒ B
is computable if and only if it appears as a morphism f : A → M B.

The endofunctor M is a monad whose unit is ηA : x �→ {x}, multiplication
is μA : S �→ ⋃

T∈S T , and its action on morphisms is M(f) : S �→ ⋃
x∈S{f(x)}.

When A is sub-singleton, M A is isomorphic to A. And, for any sequence of
assemblies (Ai)i∈N, there is a mapping Πi∈NM(Ai) → M(Πi∈NAi) that collects
all sections of f ∈ Πi∈NM(Ai). The axioms of multivalue types are validated by

Axiomatic Reals and Certified Efficient Exact Real Computation 259

mapping the monad structure of M to the monad structure of M and mapping
select to select.

Discussions thus far conclude the soundness of our axioms:

Lemma 1. The axiomatization is sound admitting a realizability interpretation.

4 Relating Classical Analysis

Although our axiomatization is constructive, in some cases we allow a certain
amount of classical reasoning to prove non-computational properties. For exam-
ple, in terms of program extraction (cf. Sect. 5) we often want to prove a state-
ment of the form Π(x : R). Σ(y : R). P x y where P : R → R → Prop. To do
this, we assume any x : R, provide an explicit y : R and prove that P x y holds.
P x y : Prop is a classical statement and thus admits nonconstructive proofs.

As mentioned in the introduction, most proof assistants already provide for-
malizations of classical reals and some theory upon them. Instead of rebuilding
all this theory on top of our axiomatization, in the above situation it would
be more practical to have a way to carefully apply classical results to our type
without breaking constructivity.

More concretely, let us assume a Coq-like dependent type theory that already
provides a rich theory of classical analysis through a type R̃. Here, by classical
analysis, we mean that classical statements such as Π(x : R̃). x > 0 + ¬(x >
0) hold in the type theory. We want to embed our axiomatization and apply
theorems proven over the classical theory to our formalization while separating
the constructive part and the classical part of the type theory correctly so that
realizability results like those from Sect. 3.3 still hold.

Even though the type theory provides classical types and terms, it stays fully
constructive for the terms that do not access the classical axioms. That means,
a term in the type theory can be formally interpreted into two different models.
We have two type judgements �∼ t : A saying that t of type A may rely on classical
axioms and � t′ : A′ saying that t′ of type A′ is free from any classical axioms.
When �∼ t : A, we interpret it in the category of sets Set and when � t : A,
we interpret it in Asm(K2). For example, �∼ t : Π(x : R̃). x > 0 + ¬(x > 0) is
derivable for some t, but � t : Π(x : R̃). x > 0 + ¬(x > 0) is not for the same t.

The goal is to correctly relate the two type judgements. One way is obvious:
when � t : A is derivable, then so is �∼ t : A.2 However, we are more interested
in the other direction, i.e. how we can get a constructively well-typed term from
classical well-typedness.

Recall that Set is a reflective subcategory of Asm(K2) by the forgetful functor
Γ : Asm(K2) → Set and its right adjoint ∇ : Set → Asm(K2) where for any set A,
∇A is the assembly of A with the trivial realization relation [24, Theorem 1.5.2].

For each type A, define

∇A :≡ Σ(P : A → Prop). ∃!(x : A). P x.

2 However, this is no longer true if we assumed counter-classical axioms such as the
continuity principle.

260 M. Konečný et al.

See that for any type A, ��∼ ∇A : Type� is isomorphic to ��∼ A : Type� in Set
and �� ∇A : Type� is isomorphic to ∇Γ�� A : Type� in Asm(K2). It can be
understood as a functor that erases all the computational structure of A while
keeping its set-theoretic structure.

It is provable in the type theory using the assumptions of Prop being the
type of classical propositions admitting propositional extensionality that ∇ is
an idempotent monad where its unit unit∇ : Π(A : Type). A → ∇A on ∇A, is
an equivalence with the inverse being the multiplication. Moreover, it holds that
unit∇ Prop : Prop → ∇Prop is an equivalence. That means, given a mapping
f : A1 → A2 → · · · → Ad, there is a naturally defined lifting f†∇ : ∇A1 →
∇A2 → · · · → ∇Ad and given a predicate P : A1 → A2 → · · · → Prop, there is
P †∇ : ∇A1 → ∇A2 → · · · → Prop.

We add the type judgement rule:

�∼ t : A
� t : A

A is transferable (Relate)

saying that when t is a classically constructed term of a transferable type A, we
have a constructive term t of type A. A type is transferable if it is of the form ∇c
for a constant type, a Type, or a Prop variable c; A → B, A × B, A ∧ B, A ∨ B,
or ∇(A + B) for transferable types A and B; Π(x : A). P (x), Σ(x : A). P (x), or
∃(x : A). P (x) for transferable types A and P (x); x = y, x < y, or x <† y; or
is Type or Prop. Roughly speaking, a type is transferable if its subexpressions in
the construction of the type are guarded by ∇.

This judgement rule is validated in our interpretation. First, note that
∇{∗} � 1. And, when a type A is transferable, �� A : Type� � ∇��∼ A : Type�
holds. When �∼ t : A, we have a function ��∼ t : A� : {∗} → ��∼ A : Type� in Set.
Hence, we define �� t : A� : 1 → �� A : Type� by pre and postcomposing the
above isomorphisms to ∇��∼ t : A� : ∇{∗} → ∇��∼ A : Type�.

We assume the map relator : R → ∇R̃ to relate our axiomatic real numbers
with classical analysis (Axiom ∇1). Its interpretation in Set is the identity map
��∼ relator : R → ∇R̃� : R 	 x �→ x ∈ R. We assume enough axioms that
characterize the mapping (Axiom ∇1–∇10). For example, relator 0 = unit∇ R̃ 0
(Axiom ∇4), Π(x, y : R). relator(x+y) = (relator x) +†∇ (relator y) (Axiom ∇6),
Π(x, y : R). (x < y) = (relator x) <†∇ (relator y) (Axiom ∇10), and so on.

Example 4. Suppose from the theory of classical analysis, we have a term f
saying that for any positive real number, there is a square root:

�∼ f : Π(x : R̃). 0 < x → Σ(y : R̃). x = y × y

As unit∇ A : A → ∇A is an equivalence in the classical type theory, we can
derive

�∼ f ′ : Π(x : ∇R̃). (unit∇ 0) <†∇ x → Σ(y : ∇R̃). x = y ×†∇ y

As the type of the above judgement is transferable, we have

� f ′ : Π(x : ∇R̃). (unit∇ 0) <†∇ x → Σ(y : ∇R̃). x = y ×†∇ y

Axiomatic Reals and Certified Efficient Exact Real Computation 261

Using the axioms of the relator, we can obtain a term of type

� Π(x : R). 0 < x → ∃(y : R). x = y × y : Prop.

It illustrates how we can transport a classical proof of the existence of square
root based on R̃ to a constructive proof of the classical existence of square root
based on R. This existence result is used when verifying our implementation of
the square root function as described in Sect. 5.3.

Note that in Coq we can not formally deal with having two independent
type theories simultaneously and therefore a complete correctness proof when
applying the relator notion can only be proven on the meta-level. We plan to
address this issue in future work e.g. by writing a Coq plugin that would allow
this distinction.

5 Implementation and Examples

We implemented the above theory in the Coq proof assistant.3 From a correct-
ness proof in our implementation, we can extract Haskell code that uses the
AERN library to perform basic real number arithmetic operations. For this, we
introduce several extraction rules replacing operations on the constructive reals
with the corresponding AERN function. The extracted code requires only minor
mechanical editing, namely adding import statements (cf. Appendix B for details
of the extraction process).

Let us present the main features of our implementation by giving some exam-
ples of operations on real numbers.

5.1 Maximization

A simple example of an operation that requires multivaluedness in its definition
is the maximization operator that takes to real numbers x and y and returns
their maximum. We can define it by the following Coq statement.4

forall x y, {z | (x > y -> z = x) /\ (x = y -> z = x) /\ (x < y -> z = y)}.

The statement can be proven by applying the limit operator defined in Exam-
ple 3. That is, we have to show that there exists exactly one z: Real for which
the condition in the above statement holds and that for each n : nat we can
construct a e : Real multivaluedly that approximates z up to error 2−n. The
first part can be easily concluded from the axioms over the Real type. The
approximation can be constructed by concurrently testing whether x > y − 2−n

or x < y + 2−n, i.e. by multivalued branching from Example 2. In the first case,
x can be used as the desired approximation and in the second case y.

Extracting code from this proof yields a maximization operator in AERN.
Figure 1 shows parts of the Coq proof and the extracted Haskell code.
3 The source code is on https://github.com/holgerthies/coq-aern/tree/release.
4 For sake of presentation, we applied some slight, non-essential simplifications to the

Coq statements in this section compared to the original source code.

https://github.com/holgerthies/coq-aern/tree/release

262 M. Konečný et al.

Fig. 1. Outline of a Coq proof and corresponding extracted Haskell code

5.2 Intermediate Value Theorem (IVT)

A classical example from computable analysis (see e.g. [25, Chapter 6.3]) is
finding the zero of a continuous, real valued function f : [0, 1] → R with f(0) < 0
and f(1) > 0 under the assumption that there is exactly one zero in the interval
(i.e. a constructive version of the intermediate value theorem from analysis).

More precisely, we prove the following statement in Coq.

forall (f : Real -> Real),
continuous f -> uniq f 0 1 -> {z | 0<z<1 /\ f z = 0}.

Here, continuous is defined using the usual ε-δ-criterion and uniq f a b is the
statement that f has exactly one zero in the interval [a, b]. The statement can
be proven using the trisection method which is similar to the classical bisection
method but avoids uncomputable comparison to 0. That is we inductively define
sequences ai, bi with f(ai) ∗ f(bi) < 0 and bi − ai ≤ (2/3)i. In each step we let
a′
i := (2ai + bi)/3, b′

i := (ai + 2bi)/3 and in parallel check if f(a′
i) ∗ f(bi) < 0 or

f(ai) ∗ f(b′
i) < 0. In the first case we set ai+1 := a′

i, bi+1 := bi, in the second
case ai+1 := ai, bi+1 := b′

i. As at least one of the inequalities is true by the
assumptions, this selection can be done using the multivalued choose operator
from Sect. 3.1. The zero can then be defined using the limit operator. Again,
we can extract an AERN program from the proof. The extracted program is an
implementation of root finding using the above algorithm.

5.3 Classical Proofs and a Fast Square Root Algorithm

As a final example let us look at how to use the relator operation defined in Sect. 4
to prove facts about our constructive real type using classical results from the

Axiomatic Reals and Certified Efficient Exact Real Computation 263

Coq standard library. We follow an example from [11] that implements the Heron
method to compute the square root of a real number in the Incone library. The
proof is interesting as it is mostly classical and makes use of some of the theory
and external libraries for classical analysis that are already available for Coq.
Making use of this huge repertoire on theory already formalized in Coq vastly
simplifies the proof. We repeated the example using our new implementation
and compared it to the implementation in Incone.

The Heron method is an approximation scheme for the square root of a real
x ∈ R by the sequence inductively defined by x0 := 1 and xi+1 := 1

2

(
xi + x

xi

)
. In

this work we only consider a restricted version where 1
4 ≤ x ≤ 2. In this interval,

the sequence converges quadratically to
√

x, i.e. |xi − √
x| ≤ 2−2i . This restricted

version can be expanded to all non-negative reals (see the aforementioned work
on Incone).

We prove the following statement in Coq.

forall x, (/ 4) <= x -> (x <= 2) -> {y | 0 <= y /\ y * y = x}.

The Coq standard library already contains a (non-constructive) definition of
a function sqrt and proves many of its properties. To prove our statement, we
construct a real number y by applying the limit operator to the sequence defined
by the Heron iteration scheme. We then relate it to the classical real number
sqrt(x) and use the characteristics of sqrt to show the condition. All necessary
properties to show that the relation holds are again proven purely classical using
tools from the standard library and other libraries building upon it.

The proof is very similar to the one in Incone and we could reuse large parts of
it without major adaptions. It should be noted though, that Incone additionally
requires to prove the existence of a realizer in the sense of computable analy-
sis which adds an additional layer of complexity that is not required with our
axiomatic approach and the new proof therefore becomes significantly simpler.

5.4 Performance Measurements

Since our axiomatization of constructive reals is built on a datatype similar to
that used by AERN, we expect the performance of the extracted programs to
be similar to that of hand-written AERN code. The measurements summarized
below are consistent with our hypothesis.5 iRRAM is known to be one of the most
efficient implementations of exact real computation and thus we also included
hand-written iRRAM versions for calibration. The last three rows are examples
of root finding by trisection. The iRRAM trisection code benefits from in-place
update.

5 Benchmarks were run 10 times on a Lenovo T440p laptop with Intel i7-4710MQ CPU
and 16GB RAM, OS Ubuntu 18.04, compiled using Haskell Stackage LTS 17.2.

264 M. Konečný et al.

Benchmark Average execution time (s)

Formula Accuracy Extracted Hand-written AERN iRRAM

max(0, π − π) 106 bits 16.8 16.2 1.59√
2 106 bits 0.72 0.72 0.62√√
2 106 bits 1.51 1.54 1.15

x − 0.5 = 0 103 bits 3.57 2.3 0.03

x(2 − x) − 0.5 = 0 103 bits 4.30 3.08 0.04√
x + 0.5 − 1 = 0 103 bits 19.4 17.8 0.29

6 Conclusion and Future Work

We presented a new axiomatization of constructive reals in a type theory and
proved its soundness with respect to the standard realizability interpretation
from computable analysis. We implemented our theory in Coq and used Coq’s
code extraction features to generate efficient Haskell programs for exact real
computation based on the AERN library.

We think our new axiomatization is particularly well-suited for verifying
exact real computation programs built on top of the theory of computable anal-
ysis. Nevertheless, we plan to more thoroughly compare our implementation with
other implementations of constructive reals in Coq and other proof assistants in
the future. In particular, we plan to take a deeper look at the C-CoRn library
and how it differs from our implementation. Relating to other constructive for-
malization would also allow execution directly in the proof assistant.

From a more practical point of view, we plan to extend our implementation
by other important operations on real numbers such as trigonometric and expo-
nential functions and mathematical constants such as π and e. Such extensions
should be straight-forward and we do not expect any major difficulties in their
implementation. Maybe more interestingly, we also plan to extend to more com-
plicated operations such as solution operators for ordinary or partial differential
equations by applying recent ideas from real complexity theory [9,12].

A Full List of Axioms

Here we list all our axioms, grouped by the files in our implementation.
Base.v defines our base type theory, making it extensional and Prop classical:

TT1 Π(P : Prop). P ∨ ¬P
TT2 Π(P,Q : Prop). (P → Q) → (Q → P) → P = Q
TT3 Π(A : Type). Π(P : A → Type). Π(f, g : Π(x : A). P (x)). (Π(x : A). f x =

g x) → f = g

Kleene.v axiomatizes the type of Kleeneans and the multivalued monad.

K1 K : Type
K2 true : K

Axiomatic Reals and Certified Efficient Exact Real Computation 265

K3 false : K
K4 true �= false
K5 ¬̂ : K → K
K6 ∨̂: K → K → K
K7 ∧̂: K → K → K

Define �k : K :≡ k = true, �k : K� :≡ k = false, and (k : K)↓:≡ �k ∨ �k�.
K8 x↓→ �x + �x�

Kleene logic operations:
K9 �¬̂x = �x� and �¬̂x� = �x

K10 �x ∧̂ y = (�x ∧ �y) and �x ∧̂ y� = (�x� ∨ �y�)
K11 �x ∨̂ y = (�x ∨ �y) and �x ∨̂ y� = (�x� ∧ �y�)

The monad structure:

M1 M : Type → Type
M2 unitM : Π(A : Type). A → M A
M3 multM : Π(A : Type). M (M A) → M A
M4 liftM : Π(A,B : Type). (A → B) → (M A → M B)

unitM and multM are natural transformations:
M5 Π(A,B : Type). Π(f : A → B). Π(x : A). liftM A B f(unitM A x) = unitM

B (f x)
M6 Π(A,B : Type). Π(f : A → B). Π(x : M (M A)).

multM B((liftM (M A) (M B) (liftM A B f)) x) = (liftM A B f)
(multM A x)
The coherence conditions:

M7 Π(A : Type). Π(x : M A). multM A (unitM (M A) x) = x
M8 Π(A : Type). Π(x : M A). multM A (liftM A (M A) (unitM A) x) = x
M9 Π(A : Type). Π(x : M (M (M A))). multM A (multM (M A) x) =

multM A (liftM (M (M A))(M A)(multM A) x)
Further characterization of the monad:

M10 elimM : Π(A : Type). (Π(x, y : A). x = y) → M A → A
M11 Π(A : Type). Π(p :

(
Π(x, y : A). x = y

)
). Π(a : MA). unitMA

(
elimMA

pa
)

= a

M12 ωlift : Π(P : N → Type).
(
Π(x : N). M P (x)

) → M
(
Π(x : N). P (x)

)

M13 Π(P : N → Type). Π(f :
(
Π(x : N). M P (x)

)
). f n = λ(n : N). liftM

(
λ(f :(

Π(x : N). P (x)
)
). f n

)
(ωlift P f)

M14 select : Π(x, y : K). (�x ∨ �y) → M
(�x + �y)

RealAxioms.v axiomatizes the real numbers:

The structure of real numbers:

R1 R : Type
R2 0 : R
R3 1 : R
R4 + : R → R → R
R5 × : R → R → R

266 M. Konečný et al.

R6 − : R → R
R7 / : Π(x : R). x �= 0 → R
R8 <: R → R → Prop

Semi-decidability of comparison tests:
R9 Π(x, y : R). semiDec(x < y)

Constructive completeness:
R10 Π(P : R → Prop). (∃!(x : R). P x) → (Π(n : N). Σ(x : R). ∃(x̃ : R). P x ∧

−2−n < x − x̃ < 2−n) → Σ(x : R). P x
Classical axioms in Prop:

R11 Π(x, y : R). x + y = y + x
R12 Π(x, y, z : R). (x + y) + z = x + (y + z)
R13 Π(x : R). x + −x = 0
R14 Π(x : R). 0 + x = x
R15 Π(x, y : R). x × y = y × x
R16 Π(x, y, z : R). (x × y) × z = x × (y × z)
R17 Π(x : R). Π(p : x �= 0). (/ x p) × x = 1
R18 Π(x : R). 1 × x = x
R19 Π(x, y, z : R). x × (y + z) = x × y + x × z
R20 1 �= 0
R21 1 > 0
R22 Π(x, y : R). x < y ∨ x = y ∨ x > y
R23 Π(x, y : R). x < y → ¬(y < x)
R24 Π(x, z, y : R). x < y → y < z → x < z
R25 Π(x, y, z : R). y < z → x + y < x + z
R26 Π(x, y, z : R). 0 < x → y < z → x × y < x × z

Define x ≤ y :≡ x < y ∨ x = y. For each P : R → Prop and x : R, define
P < x :≡ Π(y : R). P y → y ≤ x.

R27 Π(P : R → Prop). (∃(x : R). P x) → (∃(x : R). P ≤ x) → ∃(x : R). P ≤
x ∧ Π(y : R). P ≤ y → x ≤ y.

Nabla.v defines the idempotent monad ∇ and RealCoqReal.v axiomatizes the
relator:

∇1 relator : R → ∇R̃
∇2 Π(x, y : R). relator x = relator y → x = y
∇3 Π(y : ∇R̃). ∃(x : R). y = relator x
∇4 relator 0 = unit∇ R̃ 0
∇5 relator 1 = unit∇ R̃ 1
∇6 Π(x, y : R). relator (x + y) = (relator x) +†∇ (relator y)
∇7 Π(x, y : R). relator (x × y) = (relator x) ×†∇ (relator y)
∇8 Π(x : R). relator (−x) =−†∇ (relator x)
∇9 Π(x : R). Π(p : x �= 0). relator (/x p) =/†∇ (relator x)

∇10 Π(x, y : R). (x < y) = (relator x) <†∇ (relator y)

Axiomatic Reals and Certified Efficient Exact Real Computation 267

B Code Extraction

Extraction is defined in file Extract.v, including the following key mappings:

Coq Haskell

Real AERN2.CReal

Real0 0

Realplus (Prelude.+)

limit AERN2.limit

choose AERN2.select

Realltb (OGB.<)

K AERN2.CKleenean

sumbool Prelude.Bool

M type identity
unitM Prelude.id

Nat.log2 (integer . integerLog2)

Note that the monad M does not appear in the extracted programs. Multi-
valuedness is intrinsic thanks to redundancy in the underlying representations.

The AERN comparison OGB.< returns a (lazy) Kleenean for real numbers.
Running the extracted code requires adding a few import statements, which

are specified in file Extract.v.

References

1. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid
automata. In: Proceedings of the International Symposium on Mathematical The-
ory of Networks and Systems (2006)

2. Boldo, S., Filliâtre, J.-C., Melquiond, G.: Combining Coq and Gappa for certifying
floating-point programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.)
CICM 2009. LNCS (LNAI), vol. 5625, pp. 59–74. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02614-0 10

3. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of
proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016).
http://hal.inria.fr/hal-00806920

4. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algo-
rithms in Coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic, pp. 243–
252. IEEE (2011)

5. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex.
14(4), 490–526 (1998). https://doi.org/10.1006/jcom.1998.0488. https://www.
sciencedirect.com/science/article/pii/S0885064X98904885

6. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27818-4 7

7. Hertling, P.: A real number structure that is effectively categorical. Math. Log. Q.
45, 147–182 (1999). https://doi.org/10.1002/malq.19990450202

https://doi.org/10.1007/978-3-642-02614-0_10
http://hal.inria.fr/hal-00806920
https://doi.org/10.1006/jcom.1998.0488
https://www.sciencedirect.com/science/article/pii/S0885064X98904885
https://www.sciencedirect.com/science/article/pii/S0885064X98904885
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1002/malq.19990450202

268 M. Konečný et al.

8. Hofmann, M.: On the interpretation of type theory in locally cartesian closed
categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–
441. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022273

9. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform
operators on multidimensional analytic functions and ODE solving. In: Moss, L.S.,
de Queiroz, R., Martinez, M. (eds.) WoLLIC 2018. LNCS, vol. 10944, pp. 223–236.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57669-4 13

10. Konečný, M.: aern2-real: A Haskell library for exact real number computation
(2021). https://hackage.haskell.org/package/aern2-real

11. Konečný, M., Steinberg, F., Thies, H.: Computable analysis for verified exact
real computation. In: 40th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2020)

12. Koswara, I., Selivanova, S., Ziegler, M.: Computational complexity of real powering
and improved solving linear differential equations. In: van Bevern, R., Kucherov, G.
(eds.) CSR 2019. LNCS, vol. 11532, pp. 215–227. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19955-5 19

13. Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38,
35–53 (1985)

14. Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret.
Comput. Sci. 5(3), 321 – 324 (1977). https://doi.org/10.1016/0304-3975(77)90048-
2. http://www.sciencedirect.com/science/article/pii/0304397577900482

15. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 2–17. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-71070-7 2

16. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

17. Palmgren, E.: On universes in type theory. In: Twenty Five Years of Constructive
Type Theory, pp. 191–204 (1998)

18. Park, S., et al.: Foundation of computer (algebra) analysis systems: semantics,
logic, programming, verification. arXiv e-prints arXiv:1608.05787 (2016)

19. Reus, B.: Realizability models for type theories. Electron. Notes Theoret. Comput.
Sci. 23(1), 128–158 (1999)

20. Schröder, M.: Effectivity in spaces with admissible multirepresentations. Math.
Logic Q. 48(S1), 78–90 (2002)

21. Schwichtenberg, H.: Constructive analysis with witnesses. In: Proof Technology
and Computation. Natio Science Series, pp. 323–354 (2006)

22. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math.
Proc. Cambridge Philos. Soc. 95(1), 33–48 (1984). https://doi.org/10.1017/
S0305004100061284

23. Steinberg, F., Thery, L., Thies, H.: Computable analysis and notions of continuity
in Coq. Log. Methods Comput. Sci. 17(2), May 2021. https://lmcs.episciences.
org/7478

24. Van Oosten, J.: Realizability: an introduction to its categorical side. Elsevier (2008)
25. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.

1007/978-3-642-56999-9

https://doi.org/10.1007/BFb0022273
https://doi.org/10.1007/978-3-662-57669-4_13
https://hackage.haskell.org/package/aern2-real
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1007/978-3-030-19955-5_19
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
http://www.sciencedirect.com/science/article/pii/0304397577900482
https://doi.org/10.1007/978-3-540-71070-7_2
https://doi.org/10.1007/978-3-540-71070-7_2
https://doi.org/10.1007/3-540-45335-0_14
http://arxiv.org/abs/1608.05787
https://doi.org/10.1017/S0305004100061284
https://doi.org/10.1017/S0305004100061284
https://lmcs.episciences.org/7478
https://lmcs.episciences.org/7478
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9

Lorenzen Won the Game, Lorenz Did
Too: Dialogical Logic for Ellipsis and

Anaphora Resolution

Davide Catta1,2(B) and Symon Jory Stevens-Guille3

1 LIRMM Université de Montpellier, Montpellier, France
davide.catta@lirmm.fr
2 CNRS, Paris, France

3 Department of Linguistics, The Ohio State University, Columbus, USA
stevensguille.1@osu.edu

Abstract. We propose a novel solution to anaphora and ellipsis reso-
lution using multi-sorted first order logic. Our theory is proof-theoretic,
employing methods from the study of dialogical logic. The first order
propositions are extracted from reduced lambda terms, which are them-
selves derived from Lambek Categorial Grammar proofs.

Keywords: Natural language semantics · Inferential semantic ·
Dialogical logic · Ellipsis · Anaphora

1 Introduction

We propose a novel solution to anaphora and ellipsis resolution. A meaning η
is anaphoric just in case it cannot occur without the co-occurrence of another
meaning η′ from which it is indistinguishable, dubbed its antecedent. One obvi-
ous example of anaphora in English is ‘he’ in ‘John believes he proved the the-
orem’, where ‘he’ is understood to be John. But ellipsis–the absence of some
subcategorized for expression–is a variety of anaphora too [41]. Anaphora reso-
lution is the process by which the meaning of anaphoric expressions is identified
with the meaning of their antecedents. Since the space of possible antecedents
is in principle wide, but people find the correct (=intended) referent quickly
and often without error, anaphora resolution poses an interesting puzzle for any
theory of linguistic semantics.

The present paper proposes that anaphora can be accounted for by means
of proof-theoretic methods in (multi-sorted) first order dialogical logic [14,15,
32,33]. We introduce a new quantifier E , which is intuitively understood to cor-
respond to quantification over non-fresh terms. Given a context p which includes
a proposition with E binding an occurrence x, there is a proof of some proposi-
tion q which is the result of substituting some term t in the context of p for the

Authors contributed equally and are listed in alphabetic order.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 269–286, 2021.
https://doi.org/10.1007/978-3-030-88853-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_17&domain=pdf
http://orcid.org/0000-0001-8656-3274
http://orcid.org/0000-0002-5541-7394
https://doi.org/10.1007/978-3-030-88853-4_17

270 D. Catta and S. J. Stevens-Guille

x bound by E . This proof-theoretic approach is extended to resolution of post-
auxilliary ellipsis (PAE) [36] by the introduction of events into the inventory of
sorts. In short, PAE under the present theory is event anaphora.

The formulae over which deductions are performed are produced in an
entirely compositional manner using a lambek categorial grammar (LCG). The
semantic component of this grammar implements a synthesis of recent type-
theoretic approaches to events in linguistic semantics [5,20,46].

In the next section, we introduce the phenomena under study–pronouns and
PAE–and our conception of their resolution. In the subsequent Sect. 3 we discuss
the methods used for implementing our theory: events and categorial grammar.
A grammar is introduced and formulae for some examples from the preced-
ing section are derived with it. In Sect. 4 dialogical logic is introduced and the
proof-theoretic approach to resolution is exemplified. Section 5 is a brief overview
of competing and complementary theories of resolution in linguistic semantics.
Section 6 concludes.

2 Data

2.1 Pronouns

Since the pioneering work of [22,26], pronouns in natural language semantics
have received much attention. The conception of pronouns in these theories
is undergirded by the view that some expressions introduce semantic objects
dubbed discourse referents (drefs) and others refer back to these drefs. Much of
the work in this tradition is concerned with when an antecedent dref is ‘accessi-
ble’ for a pronoun to be resolved to it. Consider the following:

(1) Pedro didn’t buy a donkey. *It is grey. cf. [18]

(2) Bill bought a donkey. It is grey.

(3) Bill didn’t visit Sue. She is out.

According to DRT [27], negation blocks the introduction of (some) drefs in its
scope, which are otherwise introduced by indefinites. Names, unlike indefinites,
project the dref they introduce outside the scope of negation. Consequently,
while ‘she’ can refer to Sue in (3), and ‘it’ can refer to Bill’s donkey in (2), ‘it’
cannot be understood to refer to the donkey Pedro didn’t buy in (1), which
needn’t even exist. However, since the scope of indefinites is not restricted to the
complement of negation, there is a second reading of (1) on which the indefinite
outscopes the negation. The two scopes of the indefinite are represented in first
order logic below, where p is ‘Pedro’:

(4) ¬∃x.donkey(x) ∧ buy(p, x)

(5) ∃x.donkey(x) ∧ ¬buy(p, x)

Lorenzen Won the Game, Lorenz Did Too 271

The second reading is sometimes said to be ‘specific’ in that it is felicitous
(=judged coherent) in the context in which Bill bought some grey donkey which
Pedro didn’t buy. Since there is a grey donkey in this context, one could felici-
tously utter the discourse in (1). A variety of other contexts where drefs don’t
seem to project have exercised semanticists. Some drefs don’t project outside the
scope of ‘if, then’ expressions; others don’t project outside the scope of ‘every’.
Modelling the contexts in which drefs do and don’t project is one of the pri-
mary projects of those theories of semantics dubbed ‘dynamic’, which depart
from the static Montagovian [37] picture of meaning in viewing the meaning of
an utterance first and foremost in terms of how it can change the context of a
discourse.

We argue that (1), (2), and (3) can be modelled in a multi-sorted first order
logic. Following [42] we employ a rich set of sorts, including male human (=m)
versus female human (=f) versus nononuman (=nh), which, due to the model of
the lexicon, will produce multiple different properties, differing only in the sorts
of the complements they select. Thus (1), (2), and (3) will correspond to the
following (non)theorems, the specifics of which will be spelled out in the sequel:

(6) ¬∃xnh.donkey(x) ∧ buy(pm, x) ∧ Eynh.grey(y)
�⇒ ∃xnh.donkey(x) ∧ grey(x)

(7) ∃xnh.donkey(x) ∧ buy(bm, x) ∧ Eynh.grey(y)
⇒ ∃xnh.donkey(x) ∧ buy(bm, x) ∧ grey(x)

(8) ¬visit(bm, sf) ∧ Eyf .out(y)
⇒ out(s)

2.2 Ellipsis

We consider the problem of resolving Post-Auxilliary Ellipsis (PAE) [21], more
commonly referred to by the term verb-phrase ellipsis (VPE), using the tech-
nology used to resolve pronouns.1 The following discourse exemplifies the phe-
nomenon:

(9) a. John slept.
b. Bill did not.

If the only context for the second sentence of (9) is the first sentence, one
would correctly infer that what Bill didn’t do is sleep. The terseness of the
antecedent might give the impression that ellipsis resolution is resolution to
some preceding property–here the property of sleeping. This picture is compli-
cated by the possibility of resolving the ellipsis to a modified property, without
thereby including the modifier in the resolution. The following discourse from
[7] exemplifies the phenomenon:
1 VPE doesn’t describe the whole distribution of PAE, since, unless one extends the

notion of VP well beyond its descriptive use, the antecedents for PAE need not be
VPs. See [24] for excellent descriptive discussion of the distribution of ellipsis in
English.

272 D. Catta and S. J. Stevens-Guille

(10) a. John spoke to Mary at four o’clock.
b. And Bill did at five o’clock.

PAE is a highly studied topic in both theoretical syntax and linguistic seman-
tics [35]. Linguistic theories are often split by whether they presume there is hid-
den syntactic structure in the ellipse, i.e. whether ‘and Bill did at five o’clock’ is
underlyingly ‘and Bill spoke to Mary at five o’clock’, and whether the resolution
of the antecedent is in terms of (more or less) syntactic or semantic represen-
tation. Among the theories proposed, few of them enjoy the rigour of a logic
[2,8,12,16] and fewer directly employ the proof theory of the logic [25]. This
list is not exhaustive, but it suffices to show the privilege of denotation over
deduction in the use of logic for linguistic semantics.

We contend that ellipsis can be resolved by means of deduction in the logic
we use to resolve pronouns. We propose to use the notion of an event, common
to philosophy since [9] but widely employed in subsequent linguistic theory [43].
Events are denoted by verbs, and therefore provide objects which can be sub-
sequently referred to. Using the terminology of events, we consider the object
of ‘did’ in (10) to be the event introduced by the preceding verb ‘spoke’. The
object of ‘did’ in (9) is the event introduced by the preceding verb ‘slept’. The
theorems corresponding to (10) and (9) are the following:2

(11) ∃wv, ni.speak(v) ∧ agent(jm, w, n) ∧ theme(mf , w, n) ∧ time(n, 4)
∧ Euv∃oi.agent(b, u, o) ∧ (∃ki, xf .theme(x, u, k) ⇒ theme(x, u, o)) ∧ time(o, 5)
⇒ ∃wv, oi.speak(w) ∧ agent(bm, w, o) ∧ theme(mf , w, o) ∧ time(o, 5)

(12) ∃wv, ni.sleep(w) ∧ agent(jm, w, n) ∧ Euv¬∃oi.(agent(bm, u, o))
⇒ ∃wv¬∃oi.sleep(w) ∧ agent(bm, w, o)

Here w and u are of the sort of event (v) or–to use a term we introduce
shortly–the sort of event kind. Both n and o are of the sort of time (i).3 Times
correspond to when the participants are involved in the event. The participants
are determined by the meaning of the verb, with the set of roles the participants
may occupy roughly corresponding to those found in orthodox Neo-Davidsonian
theories of event structure.

2 Note we write Qxi, ..., xn.P for Qxi...Qxn.P .
3 We do not not employ equality or functions in the logic. Both of these devices could

be added to the logic, but we prefer to use the simplest system–the one without these
devices–for expository purposes. There might be independent need for functions and
even second order quantification over functions, depending on how one conceives of
‘strict’ versus ‘sloppy’ anaphoric reference, but we will not discuss this topic further
here.

Lorenzen Won the Game, Lorenz Did Too 273

3 Methods

3.1 Events

We propose every verb introduces an event kind, which may subsequently be
referred to. While events are put to a wide variety of uses in philosophy and
linguistics, they remain a somewhat vexed notion.4

There is precedent for the notion of event kind in linguistic theory [17],
though we commit to no pre-existing theory of whether or how such kinds could
be (re)constructed from the Davidsonian [9] notion of event. Subsequently we
will use the term ‘event kind’ to refer to our theoretic conception of events and
the term ‘event proper’ to refer to the tokening of an event kind with respect to
some time, extension, and participant(s). When no confusion is possible, we will
simply use the term ‘event’. We will subsequently use the Neo-Davidsonian idiom
of ‘thematic roles’ when discussing the participants of an event token, which will
be modelled in terms of properties of triples of entities, times, and event kinds.
We argue that referring back to an event kind needn’t involve referring to those
involved in the event proper or the time of the event proper–under our theory
these further references correspond to further anaphors. To see how the time and
extension of an event proper are resolved independently of event kinds consider
the following:

(13) John reviewed the paper on Tuesday at his home. Bill did (it) the same
day and at John’s house too.

The expression ‘same’ is anaphoric to the time of the preceding event proper,
while the additive expression ‘too’ is anaphoric to the extension of the previous
event proper. Without these explicit devices for referring to parts of the preceding
event proper, it would be unjustified to conclude the event kind corresponding
to reviewing includes reference to the time or extension of John reviewing the
paper. Note that the theme ‘the paper’ isn’t part of the event kind. Reference
to the theme depends on whether the event proper corresponding to the event
kind involved a theme.5

3.2 Categorial Grammar

We employ a Lambek Categorial Grammar (LCG) [30,31,38,39,41] to derive
proofs of the well-formedness of sentences. Given a set B of basic categories,
including the categories NP,N,Pred, S where NP is the category of noun
phrases, N the category of nouns, Pred the category of predicative phrases

4 See [43] for an overview of some of the uses of events in linguistics and philosophy.
[44] divided events into various subtypes: achievments, activities, accomplishments,
and states. We will not be concerned with subtyping events in the present paper.

5 This dependence is explicitly modelled in (12), where the theme is recovered iff the
event proper of the antecedent involved a theme.

274 D. Catta and S. J. Stevens-Guille

and S the category of sentences, Lambek categories are defined by the following
grammar:

L ::= p | L/L | L\L

where p is a basic category. We use A,B,C . . . for arbitrary categories. Sequents
have the form Γ ; φ A ;Mρ, where Γ is a list of lambek categories, φ a list
of typed variables, A a lambek category and Mρ a simply typed λ-term with
type ρ. We use Γ and Δ for lists of lambek categories, Φ and Ψ for lists of typed
variables, M and N for λ-terms. Finally ρ and τ denotes arbitrary types.

Let W be a set of words over an alphabet. A lexicon is a function that
associates each w ∈ W with a pair of finite sets (C,L) where C is a set of
lambek categories and L is a set of lambda-terms. We provide two lexicons,
one event-free in Fig. 2 and the other one using events in Fig. 3. We represent
a lexicon as a table with three columns. In the first column we write down the
word. In the second column we write the first component of the pair associated
to the word and in the third column we write the second component of the pair.
If one of the two components of the pair is a singleton {x} we will simply write
x.

Fig. 1. Rules of LCG with term correspondences.

It is known through the Curry-Howard (CH) isomorphism one can extract
proofs in the lambda calculus from natural deduction proofs in LCG [1]. The
result of substituting the semantic content of the lexemes for the hypotheses of
the proof is a semantic recipe, the reduction of which will produce a term of the
type corresponding to the proposition deduced by the grammar.

The inference rules of LCG given in Fig. 1 suffice to produce the hypotheses
for formula (7) using the lexicon in Fig. 2. Figure 4 shows the construction of the
proof for the formula (12) using the lexicon in Fig. 3. For perspicuity we show
strings on the left side of the turnstile instead of their corresponding lambek
categories and typed variables whenever the sequence of lambda variables is
empty i.e., whenever the sequent is introduced by a Lex-rule.

In the /E and \E rules the expression �MN� denotes the β-normal form
of the application of the λ-term Mρ→τ to the lambda term Nρ. There are two
initial rules: the Id-rule and the Lex-rule. In the Lex-rule the sequence of typed
variables on the left-hand of the turnstile is empty, A is the lambek category of
some word w and and the λ-term Mρ on the right-hand side of the turnstile is
some term associated by the lexicon to the word w.

Lorenzen Won the Game, Lorenz Did Too 275

Fig. 2. Event-free Lexicon.

Fig. 3. Lexicon with events.

Our lexicon for the event fragment synthesizes the approaches of [5,20,46],
who propose to combine event semantics with the rigour of Montague Grammar-
esque theories of the syntax to semantics mapping. While [5] is mostly agnostic
with respect to the underlying syntactic theory, [20,46] employ abstract catego-
rial grammars (ACG), which enjoy a transparent mapping between both syntax
and semantics and syntax and word order.6 For present purposes it suffices to use
just LCG, since we don’t here consider the more complex syntactic phenomena
which require the move to ACG.

We follow [20,46] in including a closure operator over events, the purpose
of which is to form a sentence of syntactic type S from expressions of syntactic
type V –though, given the possibility of adjuncts, this closure includes the truth
preserving function λuv, ki.�, which prevent further modifying the event.7 Our
notion of V differs from [20,46] by the subdivision of V into anaphoric VE and
nonanaphoric V, which is needed to ensure the consistent mapping of types to
LCG categories–the semantic type of VE differs from the semantic type of V.
These differences notwithstanding, neither our lexicon nor our combinatorics
differ in spirit from either [20,46] or [5].

6 One could extend our theory to ACG or any of the other Curry-esque Categorial
Grammars [30,34,40] which can express syntactic dependencies which cannot be
expressed in LCG without modifying the underlying type-logic.

7 John’s sleeping could be modified by the expression ‘well’, which would correspond
to V \V . Since multiple adjuncts are possible for most verbs, the term for ‘well’ would
be λP (v→i→t)→v→t, Rv→i→t, wv.[P (λuv, ki.well(q, k) ∧ R(q, k), w)]t.

276 D. Catta and S. J. Stevens-Guille

Fig. 4. John slept. Bill did not.

4 Dialogical Logic

4.1 First Order Language

We consider a standard first order multi-sorted language L over a signature
Σ = (P, C, S). Where S = {α1, α2, . . .} is a set of base sorts, P is a set of
predicate variables and C = {a, b, c, d . . .} is a set of individual constants. There
is a function f that assign a type of the form α1 → α2 → · · · αn → t where the
αi are base sorts and t is the type of truth values to each predicate variable,
and a base sort αi to each individual constant. We will denote an individual
constant c such that f(c) = α for α ∈ S by cα. Terms or our language will be
either individual variables (denoted by xα, yα, zα, etc. where α is an arbitrary
sort) or individual constants.

Let ∧,∨,⇒,∀,∃ be the symbols for the usual connective and quantifiers of
first order logic, E the symbol for our new quantifier, ⊥ and � be predicate
constants. Formulas are specified by the following grammar:

F := P (t1, . . . tn)| ⊥ | � | F ∧ F | F ∨ F | F ⇒ F | ∀xαF | ∃xαF | ExαF

where P is a predicate variables with type α1 → . . . αn → t and for all i ∈
{1, . . . n} ti is a term with sort αi. The predicate constants ⊥ and � and formulas
of the form P (t1, . . . tn), where P is a predicate variable, will be called atomic
formulas. The negation of a formula is defined as ¬F ≡ F ⇒ ⊥. In the present
work we will often talk about sequences. The length of a sequence is the number
of elements in it. Given two sequences s and t, s is a prefix (resp. suffix) of t
iff there is a sequence r such that t = sr (resp t = rs). If r (resp. s) is not the
empty sequence ε then s is said to be a proper prefix (resp. proper suffix) of t.
Given a set of sequences S, a sequence t ∈ S is said to be maximal in S whenever
there is no proper suffix of t in S.

Lorenzen Won the Game, Lorenz Did Too 277

4.2 Dialogical Games: Informal Overview

Before entering into the formal matter of dialogical logic let us give an informal
example of game about a formula. Let A,B and C stand for three arbitrary
formulas.

0. P: I affirm that A ∧ B ⇒ B ∨ C
1. O: Let me assume, for the sake of the proof, that A ∧ B holds, can you show

that B ∨ C holds?
2. P: You admitted that A ∧ B holds, can you admit that B holds?
3. O: Indeed, I must admit that B holds.
4. P: I thus affirm that B ∨ C holds.
5. O: Can you show that one of B or C holds?
6. P: Of course. You have admitted that B holds if A ∧ B holds. Thus I can

safely affirm that B holds.

We can see that the Proponent (P) and the Opponent (O) alternate in the game.
The game is a sequence of interventions. Each intervention but the first consist in
either an attack against a preceding intervention of the other player or a defence
against an attack of the other player. In intervention 1 O attacks intervention
0 by asking P for evidence that B ∨ C holds provided that A ∧ B holds. P’s
defence against 1 is the intervention 4. What counts as a question against an
asserted formula A, and what counts as an answer to such a question depends
upon the logical form of A. For example, in 2 P attacks the formula asserted in
1 by asking O to assert B. This is because if one concedes that a conjunction
holds he must be ready to concede that both members of the conjunction holds.

In the sequel a game will be a sequence of alternated interventions made by
the Proponent and the Opponent. Each intervention in the game is an attack or
a defence against a preceding intervention, the game ends whenever the Oppo-
nent cannot produce a new intervention without contradicting what he already
conceded. The content of the next subsection will be devoted to giving formal
content to this intuitive discussion. In Subsect. 4.3 we define what a question on
a formula is and what counts as an answer to such a question. In Subsect. 4.4
we formally define what it means for an intervention in a dialogue to refer to
another preceding intervention in the same game (Definitions 1 and 2). Finally
in Subsect. 4.5 we define (Definition 3) the class of games and when P wins a
game.

4.3 Argumentation Forms

The set of auxiliary symbols Aux is the smallest set containing the symbols
∧1,∧2,∨,∃, E and the expressions ∀[cα/x] for all constants c ∈ C. An argumen-
tation form Arg is a function assigning to each non atomic formula F a set of
pairs, where each pair consists of one question (also called attacks in the litera-
ture) and one answer (also called defense in the literature). Questions are either

278 D. Catta and S. J. Stevens-Guille

formulas or symbols in Aux and answers are formulas.

Arg(A ⇒ B) = {(A,B)}
Arg(A ∧ B) = {(∧1, A), (∧2, B)}
Arg(A ∨ B) = {(∨, A), (∨, B)}
Arg(∀xαA) = {(∀[cα/x], A[cα/x]) | cα ∈ C}
Arg(∃xαA) = {(∃, A[cα/x]) | cα ∈ C}
Arg(ExαA) = {(E , A[cα/x]) | cα ∈ C}

Given a formula A, a question q that belongs to a pair (q, a) ∈ Arg(A) is called
a question on A. Given a formula A and a question q on A, a formula B is called
an answer to the question q on the formula A whenever the pair (q,B) is an
element of Arg(A). So, for example, if A is B ∧ C, both ∧1 and ∧2 are question
on A but only B is an answer to ∧1 and only C is an answer to ∧2. If A is B ∨C,
the symbol ∨ is a question on A, and both B,C are answers to ∨.

4.4 Moves, and Augmented Sequences

A defense move is a pair (!, A) where A is a formula. An attack move is a pair
(?, s) where s is either a formula or an auxiliary symbol. A move is either an
attack move or a defense move. A move (�,A) in which A is a formula and
� ∈ {?, !} is called assertion. We will also say that the move asserts the formula
A or that A is the asserted formula. Let ρ = m0m1 . . . mn . . . be a sequence of
moves and let mi ∈ ρ. The parity of mi is the parity of i. An assertion move
mj ∈ ρ and mj = (�,A) is called a reprise iff there is move mk ∈ ρ with k < j
such that mk = (�′, A) and mk,mj have different parities; we will also say that
mj is a reprise of mk

Definition 1. An augmented sequence is a pair (ρ, φ) where ρ = m0 . . . mn . . .
is a sequence of moves and φ is a function that is defined on each mi with i > 0.
For each i > 0 the function φ maps an mi ∈ ρ to an mj ∈ ρ such that j < i.

Definition 2. Let (ρ, φ) be an augmented sequence where ρ = m0, . . . mn, . . .
and let mi,mj be moves in ρ.

– An attack move mi = (?, s) is justified whenever φ(mi) is of the form (�,A)
and s is a question on A.

– A defense move mi = (!, B) is justified whenever φ(mi) = mj, mj = (?, s) is
a justified attack move, φ(mj) = (�,A) and B is an answer to the question s
on A.

Example 1. We give an example of an augmented sequence (ρ, φ); we represent
the augmented sequence by a table with two columns and as many rows as
there are moves in the sequence of moves. In the first column we write down the
moves of the sequence. In the second column the value of the function φ for the
corresponding entry in the first column:

Lorenzen Won the Game, Lorenz Did Too 279

σ value of φ
m0 = (?, P ∧ Q)
m1 = (!, P) m0

m2 = (?,∧1) m1

m3 = (?,∧1) m0

m4 = (!, P) m3

m5 = (!, R ∨ Q) m2

m6 = (?,∨) m5

The moves m3 and m6 (colored in blue) are both justified attack-moves. The
move m3 is a justified attack move because ∧1 is a question on the formulas P ∧Q
asserted by the move m0 and m0 is the enabler of m3. The move m4 (colored
in red) is both the unique reprise of the augmented sequence, and the unique
justified defense move: it is a reprise because it is an assertion move and there
is a move with a smaller index of opposite parity i.e., m1 that asserts the same
formula. It is a justified defense because its enabler (the move m3) is a justified
attack move and the asserted formula P of m4 is an answer to the question ∧1

on the formula that is asserted by the move m0 i.e., P ∧ Q.

4.5 Games

Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the
augmented sequence iff there is a move m ∈ ρ that asserts A. We say that a
constant c appears in ρ whenever c occurs in some asserted formula or there is
a move m = (?,∀[c/x]) in ρ. Fix an enumeration (ci)i∈I of constants of C
Definition 3 (Game). A game G for a formula A is an augmented sequence
(ρ, φ) where ρ = m0, . . . mn, . . . is non empty and such that

1. m0 = (!, A) and for all i > 0 the move mi is justified;
2. φ(mi) = mi−1 if i is odd, φ(mi) = mj with j odd if i is even;
3. if mi = (�,B) with B �= � atomic formula and i even then mi is a reprise

and B �= ⊥;
4. if mi is an attack move of the form (?,∀[cα/x]) and i is odd then cα is the

first constant in the enumeration (ci)i∈I that does not appear in the prefix of
ρ ending in mi−1;

5. if mi = (!, B[cα/x]) is a defense move, i is odd and mi−1 is of the form (?,∃)
then cα is the first constant in the enumeration (ci)i∈I that does not appear
in the prefix of ρ ending in mi−1;

6. if mi = (!, B[cα/x]) is a defense move and φ(ρi) is of the form (?, E) then
there is an assertion move mj = (�, C) with j < i and j odd such that cα

occurs in C.

In a game G moves mi with i even are called P-moves. They are called O-
moves otherwise. If Gm is a game and m is P-move we will write GmP. We

280 D. Catta and S. J. Stevens-Guille

will write GmO otherwise. Let us make some comments about the definition of
game. Conditions 1 and 2 ensure that every move of the game but the first is
justified by a previous move and that moves of one player are justified by moves
of the other player. Moreover the player O always reacts to the last move of P.
Condition 3 ensures that P can asserts an atomic proposition only if O already
asserted it in the game. Condition 4 ensures that P must instantiate a universal
quantifier with a fresh constant. Condition 5 ensures that O must do the same
thing with existential quantifiers. Condition 6 determines the behaviour of the
quantifier E in a game. This quantifier must be instantiated with a constant that
appears in the common ground of the game where the common ground is the
set of formulas asserted by O through the game.

Let G = (ρ, φ) be a finite game and m be a move. The move m is legal for G
iff the augmented sequence (ρm, σ) is a game, where σ|ρ = φ and σ(m) ∈ ρ

Definition 4. A game G is won by P iff it is finite and either

– the game is of the form G′mP and there is no move n legal for G
– the game is of the form G′mO and m asserts ⊥

Intuitively speaking a strategy for a game G is a function that specifies which
move a player must play according to the moves previously played. A strategy
is winning when the player that follows the strategy wins irrespective of the
history of the game. We informally describe how a strategy should operate and
then formalize this notion.

Imagine being engaged in a game G, that the last move of G was played
according to the strategy, and that it is now your opponent’s turn to play. Your
opponent could extend the game in different ways: if you are playing chess, you
are white and you just made your first move by moving a pawn to a certain
position of the chessboard, black can in turn move a pawn or move a horse. If
you are playing according to the strategy, the strategy should tell you how to
react against either type of move. If black moves a pawn to C6 and you just
moved your pawn to C3 then move the horse to H3. If black moves a horse to
H6 and you just moved your pawn to C3 then move your pawn in B4. Therefore,
a strategy can be viewed as a tree in which each vertex is a move in the game,
the moves of my opponent have at most one daughter, and my moves have as
many daughters as there are available moves for my opponent. A tree can be
seen as a prefix-closed set of sequences over an alphabet [28]. Since our games are
sequences over the alphabet of moves we can define strategies in the following
manner:

Definition 5 (Strategy). A strategy S for a formula A is a non empty prefix
closed set of games for A such that

– if GmP and GnP belongs to S then m = n and m,n are enabled by the same
move

– if G = G′mP ∈ S then GnO ∈ S for all moves n legal for G

Lorenzen Won the Game, Lorenz Did Too 281

A strategy S is winning if and only if every maximal prefix of the strategy is a
game won by P.

A game (ρ, φ) will be represented by a table with three columns and as many
rows as there are moves in the game. The left hand-column specifies whether
its P’s turn or O’s turn and we draw it only for the sake of clarity. The central
column represents the sequence ρ. Each row of the right-hand column represent
the value of the function φ for the entry in the center column. Figure 5 shows
a winning strategy for the formula (7); we use abbreviations of predicates for
typographic reasons e.g. we write do instead of donkey, bo instead of bought
etc.

In the strategy we have colored–with the same color–a move and its reprise.
In move m0 P asserts that if bill bought a grey donkey and it is grey then there
is a grey donkey. We have underlined the anaphoric expression and coloured the
logical connective of the sentence. In the second move m1 O supposes that the
proposition ‘Bill bought a donkey and it is grey’ holds and asks, implicitly, for
evidence that the proposition ‘there is a grey donkey’ holds.

Fig. 5. Winning strategy for formula (7)

In moves m2 through m5 P forces O to instantiate the existential quantifier
with a fresh constant c. In moves m6 through m9 P forces O to instantiate the
quantifier E that translates the pronoun ‘it’ with the constant c–the only term in
the proof of the right sort.8 By m9 O concurs that if he concedes that Bill bought
a donkey and it is grey, then the pronoun ‘it’ in ’it is grey’ and the expression ‘a
donkey’ must be instantiated with the same individual. The player P can then
conclude by affirming that ‘there is a grey donkey’ in move m12. This conclusion

8 If there were more possible antecedents, more axioms would be needed to pick among
those antecedents or else the strongest proposition to be proved would be a disjunc-
tion, with each disjunct corresponding to the proposition proved here modulo the
choice of antecedent.

282 D. Catta and S. J. Stevens-Guille

is the result of instantiating the existential quantifier with the constant c, and
asserting, in move m14, that c is a donkey and c is grey. According to Definition 5
of strategy the move m14 has two daughters. Under both daughters P asserts
an atomic proposition and wins the game.

Figure 6 shows a winning strategy for the formula 12 i.e., the formula that
translates the sentence if John slept and Bill did not then Bill did not sleep. The
predicate sl has type v → t where v is the sort of events and t the sort of truth
values. The predicate ag has type h → v → i → t where h is the sort of humans
and i is the sort of time-moments. b and j are two constants with sort h.

Fig. 6. Winning strategy for formula (12).

5 Discussion

The most obvious theories to compare the present work to are Discourse Repre-
sentation Theory (DRT) [26,27], Dynamic Predicate Logic (DPL) [19], Dekker’s
Predicate Logic with Anaphora [11] and Predicate Logic with Indices [10]. We
discuss these theories in turn. We note here that we can derive the famous ‘don-
key sentences’ e.g.,

∀xh[farmer(x) ∧ (∃ynhdonkey(y) ∧ owns(x, y)) ⇒ Eznhcuddles(x, z)]

⇒
∀xh∀ynh[farmer(x) ∧ donkey(y) ∧ owns(x, y) ⇒ cuddles(x, y)]

though the proof of this formula will need to be deferred to a longer follow-up to
this paper.

Lorenzen Won the Game, Lorenz Did Too 283

DRT is concerned with the construction of Discourse Representation Struc-
tures (DRS), which serve to track objects invoked by speakers in the course of
producing some discourse. It includes rules for introducing, blocking, and linking
(sub)DRSs to one another. The semantics of the DRS language, in its standard
version, is given by an embedding function into first order logic. Some attempts
have been made to do inference directly over DRSs; [29] provides a brief but non-
exhaustive survey of existing inference systems for DRT and DPL circa 2000.
Subsequently he proposes a tableaux theorem proving method for DRT that
includes a connective quite close to our E connective.

DPL, unlike DRT, just is first order logic. However it effectively redefines
the semantics of FOL in order to extend the scope of ∃. It is, in principle, a
reconstruction of DRT. While much work develops DPL’s novel semantics for
FOL [45], the proof theory of the logic receives less study. DPL’s proof theory
only fully developed some years subsequent to its discovery. The most successful
study of DPL’s proof theory is [13]. However, DPL relies on the linguist to
select the correct variable for a pronoun to be resolved by its antecedent and is
therefore modelling anaphoric dependence but not resolution.

Dekker develops two logics for anaphora, intending to show the minimum
needed to modify FOL to account for pronouns. Dekker’s approach is more
proof-theoretic in adding pronouns to the inventory of terms, which, in [10], are
de Bruijn (pre-)indexed identity functions on (sequences of) the ith antecedent.
Such terms are subject to inference rules. Nonetheless, the preindexing corre-
sponds to the choice of variable made by the linguist in choosing the antecedent
of a pronoun in DPL.

The price of modelling resolution in the logic is the multiplicity of possible
antecedents for an anaphor. If there is a disjunction of possible antecedents,
the selection of just one could be enforced by means of further axioms. In fact,
the winnowing down of possible antecedents is present in common symbolic
approaches to anaphora resolution. We are presently considering how to imple-
ment Centering Theory [3] and/or Coherence Theory [23] in our logic, which we
intend to present in future work.

6 Conclusion

This paper proposes a novel proof-theoretic method of resolving anaphora in
first order multi-sorted logic. This method is the introduction of a new quan-
tifier, the substitutions of which are restricted to constants introduced in the
course of proof. The proof-system for the logic without the new quantifier is
known to be sound and complete for first order classical logic [4,6]. The proof-
system extended with E does not derive contradictions since there is no strategy
for atomic formulae distinct from �. In future work we intend to account for
‘strict’ versus ‘sloppy’ readings of both pronouns and PAE. Study concerning
the proof-theoretic and semantic properties of the new quantifier we employ is
under development. Furthermore, we intend to implement the proof system for
automated theorem proving.

284 D. Catta and S. J. Stevens-Guille

References

1. van Benthem, J.: The semantics of variety in categorial grammar. Categ. Gramm.
25, 37–55 (1988)

2. Bos, J.: Vp ellipsis in a drt-implementation. In: Sixth Conference of the European
Chapter of the Association for Computational Linguistics (1993)

3. Brennan, S.E., Friedman, M.W., Pollard, C.: A centering approach to pronouns.
In: 25th Annual Meeting of the Association for Computational Linguistics, pp.
155–162 (1987)

4. Catta, D., Moot, R., Retoré, C.: Dialogical argumentation and textual entailment.
In: Loukanova, R. (ed.) Natural Language Processing in Artificial Intelligence—
NLPinAI 2020. SCI, vol. 939, pp. 191–226. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-63787-3 7

5. Champollion, L.: The interaction of compositional semantics and event semantics.
Linguist. Philos. 38(1), 31–66 (2014). https://doi.org/10.1007/s10988-014-9162-8

6. Clerbout, N.: First-order dialogical games and tableaux. J. Philos. Log. 43(4),
785–801 (2014)

7. Cooper, R., et al.: Using the framework. Tech. rep., Technical report LRE 62–051
D-16, The FraCaS Consortium (1996)

8. Dalrymple, M., Shieber, S.M., Pereira, F.C.: Ellipsis and higher-order unification.
Linguist. Philos. 14(4), 399–452 (1991)

9. Davidson, D.: The logical form of action sentences. In: Rescher, N. (ed.) The Logic
of Decision and Action, pp. 81–95. University of Pittsburgh Press (1967)

10. Dekker, P., et al.: Exclusively indexical deduction. Rev. Symb. Log. 9(3), 603–637
(2016)

11. Dekker, P.J.: Predicate logic with anaphora. In: Dynamic Semantics, pp. 7–47.
Studies in Linguistics and Philosophy, vol. 91. Springer, Dordrecht (2012). https://
doi.org/10.1007/978-94-007-4869-9 2

12. van Eijck, J., Francez, N.: Verb-phrase ellipsis in dynamic semantics. In: Pólos L.,
Masuch, M. (eds.) Applied Logic: How, What and Why. Synthese Library (Studies
in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 247, pp.
29–59. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-015-8533-0 2

13. van Eijck, J., Heguiabehere, J., Ó Nualláin, B.: Tableau reasoning and program-
ming with dynamic first order logic. Log. J. IGPL 9(3), 411–445 (2001)

14. Felscher, W.: Dialogues, strategies, and intuitionistic provability. Ann. Pure Appl.
Log. 28(3), 217–254 (1985)

15. Felscher, W.: Dialogues as a foundation for intuitionistic logic. In: Gabbay, D.M.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 115–145. Springer,
Netherlands, Dordrecht (2002)

16. Gardent, C.: Sloopy identity. In: Retoré, C. (ed.) LACL 1996. LNCS, vol. 1328,
pp. 188–207. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052158

17. Gehrke, B.: Event kinds. Oxf. Handb. Event Struct. 205, 233 (2019)
18. Geurts, B., Beaver, D.I., Maier, E.: Discourse representation theory. In: Zalta,

E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2020 edn. Metaphysics
Research Lab, Stanford University (2020)

19. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguistics and Philosophy,
pp. 39–100 (1991)

20. de Groote, P., Winter, Y.: A type-logical account of quantification in event seman-
tics. In: Murata, T., Mineshima, K., Bekki, D. (eds.) JSAI-isAI 2014. LNCS
(LNAI), vol. 9067, pp. 53–65. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48119-6 5

https://doi.org/10.1007/978-3-030-63787-3_7
https://doi.org/10.1007/978-3-030-63787-3_7
https://doi.org/10.1007/s10988-014-9162-8
https://doi.org/10.1007/978-94-007-4869-9_2
https://doi.org/10.1007/978-94-007-4869-9_2
https://doi.org/10.1007/978-94-015-8533-0_2
https://doi.org/10.1007/BFb0052158
https://doi.org/10.1007/978-3-662-48119-6_5
https://doi.org/10.1007/978-3-662-48119-6_5

Lorenzen Won the Game, Lorenz Did Too 285

21. Hankamer, J.: On the nontransformational derivation of some null vp anaphors.
Linguist. Inq. 9(1), 66–74 (1978)

22. Heim, I.: The semantics of definite and indefinite noun phrases. Ph.D. thesis, Uni-
versity of Massachusetts Amherst (1982)

23. Hobbs, J.R.: Coherence and coreference. Cogn. Sci. 3(1), 67–90 (1979)
24. Huddleston, R., Pullum, G.K., et al.: The Cambridge grammar of English. Lan-

guage, vol. 1, p. 23. Cambridge University Press, Cambridge (2002)
25. Jäger, G.: Anaphora and Type Logical Grammar, vol. 24. Springer Science &

Business Media, Heidelberg (2006)
26. Kamp, H.: A theory of truth and semantic representation. In: Truth, interpretation

and information, pp. 1–41. Foris Dordrecht (1984)
27. Kamp, H., Reyle, U.: From discourse to logic: introduction to model theoretic

semantics of natural language, formal logic and discourse representation theory.
Part 1. Kluwer Academic (1993)

28. Kechris, A.: Classical Descriptive Set Theory. Springer, New York, NY, USA
(December 2012)

29. Kohlhase, M.: Model generation for discourse representation theory. In: ECAI, pp.
441–445 (2000)

30. Kubota, Y., Levine, R.D.: Type-Logical Syntax. MIT Press, Cambridge (2020)
31. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65(3), 154–

170 (1958)
32. Lorenz, K.: 1 arithmetic and logic as games. excerpts (1978 [1961]). In: From

dialogical logic to dialogical constructivism, pp. 1–74. De Gruyter (2021)
33. Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft,

[Abt. Verlag] (1978)
34. Martin, S., Pollard, C.: A dynamic categorial grammar. In: Morrill, G., Muskens,

R., Osswald, R., Richter, F. (eds.) Formal Grammar 2014. LNCS, vol. 8612, pp.
138–154. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44121-3
9

35. Merchant, J.: Ellipsis: a survey of analytical approaches. The Oxford Handbook of
Ellipsis, pp. 18–46 (2019)

36. Miller, P., Pullum, G.K.: Exophoric vp ellipsis. Core Periphery: Data-Driven Per-
spectives Syntax Inspired Ivan A. Sag 5, 32 (2013)

37. Montague, R.: The proper treatment of quantification in ordinary English. In:
Hintikka, K.J.J., Moravcsik, J.M.E., Suppes, P. (eds.) Approaches to Natural Lan-
guage. Synthese Library (Monographs on Epistemology, Logic, Methodology, Phi-
losophy of Science, Sociology of Science and of Knowledge, and on the Mathemat-
ical Methods of Social and Behavioral Sciences), vol. 49, pp. 221–242. Springer,
Dordrecht (1973). https://doi.org/10.1007/978-94-010-2506-5 10

38. Moortgat, M.: Categorial type logics. In: Handbook of logic and language, pp.
93–177. Elsevier (1997)

39. Moot, R., Retoré, C.: The Logic of Categorial Grammars. LNCS, vol. 6850.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31555-8

40. Moot, R., Stevens-Guille, S.J.: Proof-theoretic aspects of hybrid type-logical gram-
mars. In: Bernardi, R., Kobele, G., Pogodalla, S. (eds.) FG 2019. LNCS, vol.
11668, pp. 84–100. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-59648-7 6

41. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Springer Science
& Business Media, Heidelberg (2012)

https://doi.org/10.1007/978-3-662-44121-3_9
https://doi.org/10.1007/978-3-662-44121-3_9
https://doi.org/10.1007/978-94-010-2506-5_10
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-662-59648-7_6
https://doi.org/10.1007/978-3-662-59648-7_6

286 D. Catta and S. J. Stevens-Guille

42. Retoré, C.: The montagovian generative lexicon lambda tyn: a type theoretical
framework for natural language semantics. In: 19th International Conference on
Types for Proofs and Programs (TYPES 2013), vol. 26, pp. 202–229 (2014)

43. Truswell, R.: The Oxford Handbook of Event Structure. Oxford University Press,
Oxford (2019)

44. Vendler, Z.: Linguistics in Philosophy. Cornell University Press, Ithaca (2019)
45. Vermeulen, C.F.M.: Sequence semantics for dynamic predicate logic. J. Log. Lang.

Inform. 2(3), 217–254 (1993)
46. Winter, Y., Zwarts, J.: Event semantics and abstract categorial grammar. In:

Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 2011. LNCS (LNAI),
vol. 6878, pp. 174–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23211-4 11

https://doi.org/10.1007/978-3-642-23211-4_11
https://doi.org/10.1007/978-3-642-23211-4_11

Uniform Lyndon Interpolation for Basic
Non-normal Modal Logics

Amirhossein Akbar Tabatabai(B), Rosalie Iemhoff, and Raheleh Jalali

Utrecht University, Janskerkhof 13, 3512 BL Utrecht, The Netherlands
{s.akbartabatabai,r.iemhoff,r.jalalikeshavarz}@uu.nl

Abstract. In this paper, a proof-theoretic method to prove uniform
Lyndon interpolation for non-normal modal logics is introduced and
applied to show that the logics E, M, MC, EN, MN have that property. In
particular, these logics have uniform interpolation. Although for some of
them the latter is known, the fact that they have uniform Lyndon inter-
polation is new. Also, the proof-theoretic proofs of these facts are new, as
well as the constructive way to explicitly compute the interpolants that
they provide. It is also shown that the non-normal modal logics EC and
ECN do not have Craig interpolation, and whence no uniform (Lyndon)
interpolation.

Keywords: Non-normal modal logics · Uniform interpolation ·
Uniform Lyndon interpolation · Craig interpolation

1 Introduction

Uniform interpolation (UIP), a strengthening of interpolation in which the inter-
polant only depends on the premise or the conclusion of an implication, is an
intriguing logical property. One of the reasons is that it is hard to predict which
logic does have the property and which does not. Well-behaved logics like K and
KD have it, but then, other well-known modal logics, such as K4, do not. Early
results on the subject were by Shavrukov [17], who proved UIP for the modal
logic GL, and by Ghilardi [4] and Visser [19], who independently proved the same
for K, followed later by B́ılková, who showed that KT has the property as well
[2]. Surprisingly, K4 and S4 do not have UIP, although they do have interpola-
tion [2,4]. Pitts provided the first proof-theoretic proof of UIP, for intuitionistic
propositional logic, IPC, the smallest intermediate logic [13]. Results from [5,9]
imply that there are exactly seven intermediate logics with interpolation and
that they are exactly the intermediate logics with UIP. Pitts’ result is especially
important to us, as also in our paper the approach is proof-theoretic.

The study of UIP in the context of non-normal modal logics has a more
recent history. The area is less explored than its normal counterpart, but for

Support by the Netherlands Organisation for Scientific Research under grant
639.073.807 is gratefully acknowledged.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 287–301, 2021.
https://doi.org/10.1007/978-3-030-88853-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_18

288 A. Akbar Tabatabai et al.

several well-known non-normal logics UIP has been established, for example, for
the monotone logic M [14], a result later extended in [12,15] to other non-normal
modal and conditional logics, such as E and basic conditional logic CK.
Non-normal modal logics are modal logics in which the K-axiom, i.e. the axiom
�(ϕ → ψ) → (�ϕ → �ψ), does not hold but a weaker version that is given by
the following E-rule does:

ϕ ↔ ψ

�ϕ ↔ �ψ

Thus the minimal non-normal modal logic, E, is propositional logic plus the
E-rule above. Over the last decades non-normal modal logics have emerged in
various fields, such as game theory and epistemic and deontic logic [3]. Two well-
known non-normal modal logics that are investigated in this paper are natural
weakenings of the principle �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) that implies K over E.
Namely, the two principles:

(M) �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) (C) (�ϕ ∧ �ψ) → �(ϕ ∧ ψ).

Because the K-axiom holds in the traditional relational semantics for modal
logic, non-normal modal logics require different semantics, of which the most
well-known is neighborhood semantics. As we do not need semantics in this
paper, we refer the interested reader to the textbook [11].

Our interest in the property of UIP for non-normal modal logics lies in the
fact that it can be used as a tool in what we would like to call universal proof
theory, the area where one is concerned with the general behavior of proof sys-
tems, investigating problems such as the existence problem (when does a theory
have a certain type of proof system?) and the equivalence problem (when are two
proof systems equivalent?). The value of UIP for the existence problem has been
addressed in a series of recent papers in which a method is developed to prove
UIP that applies to many intermediate, (intuitionistic) modal, and substructural
(modal) logics [1,6,7]. The proof-theoretic method makes use of sequent calculi,
and shows that general conditions on the calculi imply UIP for the corresponding
logic. Thus implying that any logic without UIP cannot have a sequent calcu-
lus satisfying these conditions. The generality of the conditions, such as closure
under weakening, makes this into a powerful tool, especially for those classes of
logics in which UIP is rare, such as intermediate logics. Note that in principle
other regular properties than UIP could be used in this method, as long as the
property is sufficiently rare to be of use.
In this paper we do not focus on the connection with the existence problem as
just described, but rather aim to show the flexibility and utility of our method
to prove UIP by showing that it can be extended to (yet) another class of logics,
namely the class of non-normal modal logics, that it is constructive and can be
easily adapted to prove not only UIP but even uniform Lyndon interpolation.
Uniform Lyndon interpolation (ULIP) is a strengthening of UIP in which the
interpolant respects the polarity of propositional variables (a definition follows in
the next section). It first occurred in [8], where it was shown that several normal

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 289

modal logics, including K and KD, have that property. In this paper we show that
the non-normal modal logics E, M, MC, EN, MN have uniform Lyndon interpola-
tion and the interpolant can be constructed explicitly from the proof. In the last
part of this paper we show that the non-normal modal logics EC and ECN do not
have interpolation, and whence no uniform (Lyndon) interpolation either. This
surprising fact makes EC and ECN potential candidates for our approach to the
existence problem discussed above, but that we have to leave for another paper.

Our proof-theoretic method to prove UIP makes use of sequent calculi for
non-normal modal logics that are equivalent or equal to calculi introduced in [10].
In this paper it is also shown that E, M, MC, EN, MN have Craig interpolation.
The proof that these logics have UIP is not a mere extension of the proof that
they have interpolation but requires a very different approach. That the logics
E and M have UIP has already been established in [12,14], but that they have
uniform Lyndon interpolation is, as far as we know, a new insight. Interestingly,
for logics with LIP, that fact does not always follow easily from the proof that
they have IP, as is for example the case for GL [16]. But for our method this
indeed is the case: the proof of UIP easily implies ULIP. Thus the hard work
lies in proving the former, in a way that turns out to imply the latter. Therefore
we consider the proof-theoretic method to prove uniform interpolation for non-
normal modal logics the main contribution of this paper, as until now such proofs
have always been semantical in nature. In [15] the search for proof-theoretic
techniques to prove uniform interpolation in the setting of non-normal modal
logics is explicitly mentioned in the conclusion of that paper.

2 Preliminaries

Set L = {∧,∨,→,⊥,�} as the language of modal logics. We use � and ¬A
as abbreviations for ⊥ → ⊥ and A → ⊥, respectively, and write ϕ ∈ L to
indicate that ϕ is a formula in the language L. The weight of a formula is
defined inductively by: w(⊥) = w(p) = 0, for any atomic p and w(A 	 B) =
w(A) + w(B) + 1, for any 	 ∈ {∧,∨,→}, and w(�A) = w(A) + 1.

Definition 1. The sets of positive and negative variables of a formula ϕ ∈ L,
denoted by V +(ϕ) and V −(ϕ), respectively, are defined recursively by:

• V +(p) = {p}, V −(p) = V +(�) = V −(�) = V +(⊥) = V −(⊥) = ∅, for atom
p,

• V +(ϕ 	 ψ) = V +(ϕ) ∪ V +(ψ) and V −(ϕ 	 ψ) = V −(ϕ) ∪ V −(ψ), for 	 ∈
{∧,∨},

• V +(ϕ → ψ) = V −(ϕ) ∪ V +(ψ) and V −(ϕ → ψ) = V +(ϕ) ∪ V −(ψ),
• V +(�ϕ) = V +(ϕ) and V −(�ϕ) = V −(ϕ).

Define V (ϕ) as V +(ϕ)∪V −(ϕ). For an atomic formula p, a formula ϕ is called
p+-free (p−-free), if p /∈ V +(ϕ) (p /∈ V −(ϕ)). It is called p-free if p /∈ V (ϕ).
Note that a formula is p-free iff p occurs nowhere in it.

290 A. Akbar Tabatabai et al.

For the sake of brevity, when we want to refer to both V +(ϕ) and V −(ϕ),
we use the notation V †(ϕ) with the condition “for any † ∈ {+,−}”. If we want
to refer to one of V +(ϕ) and V −(ϕ) and its dual, we write V ◦(ϕ) for the one
we intend and V �(ϕ)1 for the other one. For instance, if we state that for any
atomic formula p, any ◦ ∈ {+,−} and any p◦-free formula ϕ, there is a p�-free
formula ψ such that ϕ∨ψ ∈ L, we are actually stating that if ϕ is p+-free, there
is a p−-free ψ such that ϕ ∨ ψ ∈ L and if ϕ is p−-free, there is a p+-free ψ such
that ϕ ∨ ψ ∈ L.

Definition 2. A logic L is a set of formulas in L extending the set of classical
tautologies, CPC, and closed under substitution and modus ponens ϕ,ϕ → ψ
ψ.

Definition 3. A logic L has Lyndon interpolation property (LIP) if for any
formulas ϕ,ψ ∈ L such that L ϕ → ψ, there is a formula θ ∈ L such that
V †(θ) ⊆ V †(ϕ) ∩ V †(ψ), for any † ∈ {+,−} and L ϕ → θ and L θ → ψ.
A logic has Craig interpolation (CIP) if it has the above properties, omitting all
the superscripts † ∈ {+,−}.
Definition 4. A logic L has uniform Lyndon interpolation property (ULIP) if
for any formula ϕ ∈ L, atom p, and ◦ ∈ {+,−}, there are p◦-free formulas,
∀◦pϕ and ∃◦pϕ, such that V †(∃◦pϕ) ⊆ V †(ϕ) and V †(∀◦pϕ) ⊆ V †(ϕ), for any
† ∈ {+,−} and

(i) L ∀◦pϕ → ϕ,
(ii) for any p◦-free formula ψ if L ψ → ϕ then L ψ → ∀◦pϕ,

(iii) L ϕ → ∃◦pϕ, and
(iv) for any p◦-free formula ψ if L ϕ → ψ then L ∃◦pϕ → ψ.

A logic has uniform interpolation property (UIP) if it has all the above proper-
ties, omitting the superscripts ◦, † ∈ {+,−}, everywhere.

Remark 1. As the formulas ∀◦pϕ and ∃◦pϕ are provably unique, using the func-
tional notation of writing ∀◦pϕ and ∃◦pϕ as the functions with the arguments
◦ ∈ {+,−}, p and ϕ is allowed.

Theorem 1. If a logic L has ULIP, then it has both LIP and UIP.

Proof. For UIP, set ∀pϕ = ∀+p∀−pϕ and ∃pϕ = ∃+p∃−pϕ. We only prove the
claim for ∀pϕ, as the case for ∃pϕ is similar. First, it is clear that V †(∀pϕ) ⊆
V †(ϕ), for any † ∈ {+,−}. Hence, we have V (∀pϕ) ⊆ V (ϕ). Moreover, ∀pϕ
is p-free. Because ∀−pϕ is p−-free by definition and as V −(∀pϕ) ⊆ V −(∀−pϕ),
the formula ∀+p∀−pϕ is also p−-free. As ∀+p∀−pϕ is p+-free by definition, we
have p /∈ V (∀pϕ) = V +(∀pϕ) ∪ V −(∀pϕ). For condition (i) in Definition 4, as
L ∀+p∀−pϕ → ∀−pϕ and L ∀−pϕ → ϕ, we have L ∀pϕ → ϕ. For condition
(ii), if L ψ → ϕ, for a p-free ψ, then ψ is also p−-free and hence L ψ → ∀−pϕ.
As ψ is also p+-free, we have L ψ → ∀+p∀−pϕ.
1 The label � has nothing to do with the modal operator ♦ = ¬�¬.

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 291

For LIP, assume L ϕ → ψ. For any † ∈ {+,−}, set P † = V †(ϕ) − [V †(ϕ) ∩
V †(ψ)]. Define θ = ∃+P+∃−P−ϕ, where by ∃†{p1, . . . , pn}† we mean ∃p†

1 . . . ∃p†
n.

Since θ is p†-free for any p ∈ P † and any † ∈ {+,−}, we have V †(θ) ⊆ V †(ϕ) −
P † ⊆ V †(ϕ) ∩ V †(ψ). For the provability condition, it is clear that L ϕ → θ
and as ψ is p†-free for any p ∈ P †, we have L θ → ψ.

2.1 Sequent Calculi

We use capital Greek letters and the bar notation in ϕ̄ and C̄ to denote multisets.
A sequent is an expression in the form Γ ⇒ Δ, where Γ (the antecedent) and Δ
(the succedent) are multisets of formulas. It is interpreted as

∧
Γ → ∨

Δ. For
sequents S = (Γ ⇒ Δ) and T = (Π ⇒ Λ) we denote the sequent Γ,Π ⇒ Δ,Λ
by S ·T , and the multisets Γ and Δ by Sa and Ss, respectively. Define V +(S) =
V −(Sa) ∪ V +(Ss) and V −(S) = V +(Sa) ∪ V −(Ss) and the weight of a sequent
as the sum of the weights of the formulas occurring in that sequent. A sequent
S is lower than a sequent T , if the weight of S is less than the weight of T .

Fig. 1. The sequent calculus G3cp. In the axiom, p must be an atomic formula.

In this paper we are interested in modal extensions of the well-known sequent
calculus G3cp from [18] (Fig. 1) for classical logic CPC and its extension by the
following two weakening rules, denoted by G3W:

Γ ⇒ Δ
Lw

Γ,ϕ ⇒ Δ
Γ ⇒ Δ

Rw
Γ ⇒ ϕ,Δ

In each rule in G3W, the multiset Γ (res. Δ) is called the left (res. right) con-
text, the formulas outside Γ ∪ Δ are called the active formulas of the rule and
the only formula in the conclusion outside Γ ∪ Δ is called the main formula.
If S is the conclusion of an instance of a rule R, we say that R is backwards
applicable to S. The modal rules by which we extend G3cp or G3W are given
in Fig. 2. For any such rule (X) except (EC), (N) and (NW), if we add it
to G3W we denote the resulting system by GX, and if we add (N) to that
system we get GXN. Note that GMCN is the usual system for the logic K.
If we add (EC) to G3cp, we get GEC and if we also add the rule (NW),
we get GECN. Note that GEC and GECN have no explicit weakening rules.

292 A. Akbar Tabatabai et al.

The systems GEC and GECN are introduced in [10]. The others are equivalent
to the systems introduced in [10]. The only difference is that in our representa-
tion, the weakening rules are explicitly present, while the extra context in the
conclusion of the modal rules are omitted. We will present the systems as such
for convenience in our later proofs. As the systems GE, GM, GMC, GEN and
GMN are equivalent to the systems introduced in [10], they all admit the cut
rule and the contraction rules. Moreover, the logics of these systems, i.e., the
sets of formulas ϕ for which the systems prove (⇒ ϕ) are the well-known basic
non-normal modal logics E, M, MC, EN and MN, respectively. The logics of the
systems GEC and GECN are the logics EC and ECN, respectively [10].

Fig. 2. The modal rules

Here are some remarks about the rules introduced above. First, for any rule
the weight of each premise is less than the weight of its conclusion. Specifically,
the weight of Γ,Σ ⇒ Δ,Λ is less than the weight of �Γ,Σ ⇒ �Δ,Λ, as long as
Γ ∪ Δ is non-empty. Second, in any rule in G3W, if we add a multiset, both to
the antecedent (succedent) of the premises and to the antecedent (succedent) of
the conclusion, the result remains an instance of the rule. We call this property
the context extension property. Conversely, if a multiset is a sub-multiset of the
left (right) context of the rule, then if we eliminate this multiset both from
the premises and the conclusion, the result remains an instance of the rule. We
call this property the context restriction property. Third, for any rule in G3W
and any ◦ ∈ {+,−}, if the main formula ϕ is in the antecedent, then for any
active formula α in the antecedent of a premise and any active formula β in
the succedent of a premise, we have V ◦(α) ∪ V �(β) ⊆ V ◦(ϕ), and if ϕ is in the
succedent, we have V �(α) ∪ V ◦(β) ⊆ V ◦(ϕ) (note the use of ◦ and �). We call
this property, the variable preserving property. As a consequence of this property
for the rule S1 . . . Sn

S
in G3W, we have

⋃n
i=1 V ◦(Si) ⊆ V ◦(S).

3 Uniform Lyndon Interpolation

In this section, we prove ULIP for the logics E, M, MC, EN, and MN. To this
end, we need to first extend the notion to the sequent calculi of these logics.
Since all these logics are classical, we only define the universal quantifier, as the
existential quantifier is constructed by the universal quantifier and negation.

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 293

Definition 5. Let G be one of the sequent calculi introduced in Preliminaries.
G has uniform Lyndon interpolation property (ULIP) if for any sequent S, any
atom p and any ◦ ∈ {+,−}, there exists a formula ∀◦pS such that:

(var) ∀◦pS is p◦-free and V †(∀◦pS) ⊆ V †(S), for any † ∈ {+,−},
(i) S · (∀◦pS ⇒) is derivable in G,

(ii) for any sequent Γ ⇒ Δ such that p /∈ V �(Γ ⇒ Δ), if S · (Γ ⇒ Δ) is
derivable in G then (Γ ⇒ ∀◦pS,Δ) is derivable in G.

∀◦pS is called a uniform ∀◦
p-interpolant of S in G. For any set of rules R of G,

a formula ∀◦
RpS is called a uniform ∀◦

p-interpolant of S with respect to R, if it
satisfies the conditions (var) and (i), when ∀◦pS is replaced by ∀◦

RpS, and:

(ii′) for any sequent Γ ⇒ Δ such that p /∈ V �(Γ ⇒ Δ), if there is a derivation
of S · (Γ ⇒ Δ) in G whose last inference rule is an instance of a rule in R,
then (Γ ⇒ ∀◦

RpS,Δ) is derivable in G.

Remark 2. As the formula ∀◦pS is provably unique, using the functional notation
of writing ∀◦pS as a function with the arguments ◦ ∈ {+,−}, p and S is allowed.
The same does not hold for ∀◦

RpS. However, as there is no risk of confusion and
we will be specific about the construction of the formula ∀◦

RpS, we will also use
the functional notation in this case.

The following theorem connects ULIP for sequent calculi to the original ver-
sion.

Theorem 2. Let G be one of the sequent calculi introduced in Preliminaries and
L be its logic. Then, G has ULIP iff L has ULIP.

Proof. If G has ULIP, set ∀◦pA = ∀◦p(⇒ A) and ∃◦pA = ¬∀�p¬A. Conversely,
if L has ULIP, set ∀◦p(Γ ⇒ Δ) = ∀◦p(

∧
Γ → ∨

Δ).

Our strategy to prove ULIP for the logics E, M, MC, EN, and MN is to prove
ULIP for their sequent calculi. From now on, up to Subsect. 3.1, we assume that
G is one of GE, GM, GMC, GEN, and GMN. As stated previously, backward
applications of the rules decreases the weight of the sequent. Using this property
and recursion on the weight of the sequents, for any given sequent S = (Γ ⇒ Δ),
any atom p and any ◦ ∈ {+,−}, we first define a p◦-free formula ∀◦pS and then
by induction on the weight of S, we prove that ∀◦pS meets the conditions in
Definition 5. Towards that end, both in the definition of ∀◦pS and in the proof
of its properties, we must address all the rules of the system G, one by one. To
make the presentation uniform, modular, and more clear, we divide the rules of
G into two families: the rules of G3W and the modal rules specific for G. The
rules in the first class has one of the following forms:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ ⇒ ϕ,Δ

294 A. Akbar Tabatabai et al.

where Γ and Δ are free for all multiset substitutions, and ϕ̄i’s and ψ̄i’s are mul-
tisets of formulas (possibly empty). The rules have the variable preserving condi-
tion, i.e., given ◦ ∈ {+,−}, for the left rule

⋃
i

⋃
θ∈ϕ̄i

V ◦(θ) ∪ ⋃
i

⋃
θ∈ψ̄i

V �(θ) ⊆
V ◦(ϕ), and for the right one

⋃
i

⋃
θ∈ϕ̄i

V �(θ) ∪ ⋃
i

⋃
θ∈ψ̄i

V ◦(θ) ⊆ V ◦(ϕ).
Rather than addressing each rule in G3W, we simply address these two forms.

Lemma 1. For any sequent S, atom p and ◦ ∈ {+,−}, a uniform ∀◦
p-interpolant

of S with respect to the set of all axioms of G exists.

Proof. Let us define a formula ∀◦
axpS: if S is provable, define it as �, otherwise,

define it as the disjunction of all p◦-free formulas in Ss and the negation of all
p�-free formulas in Sa. We show that ∀◦

axpS is the uniform ∀◦
p-interpolant of S

with respect to the set of axioms of G. It is easy to see that ∀◦
axpS is p◦-free,

V †(∀◦
axpS) ⊆ V †(S), for † ∈ {+,−} and S ·(∀◦

axpS ⇒) is provable in G. To prove
the condition (ii′) in Definition 5, if S is provable, then as ∀◦

axpS = �, we have
C̄ ⇒ ∀◦

axpS, D̄. If S is not provable, then let S · (C̄ ⇒ D̄) be an axiom. There
are two cases to consider. First, if S · (C̄ ⇒ D̄) is in the form Γ, q ⇒ q,Δ, where
q is an atomic formula. Then, if q /∈ C̄ and q /∈ D̄, we have q ∈ Γ ∩ Δ and hence
the sequent S is provable which contradicts our assumption. Therefore, either
q ∈ C̄ or q ∈ D̄. If q ∈ C̄ ∩ D̄, then C̄ ⇒ ∀◦

axpS, D̄ is provable. Hence, we assume
either q ∈ C̄ and q /∈ D̄ or q /∈ C̄ and q ∈ D̄. In the first case, if q ∈ C̄, it is
p◦-free and since it occurs in Δ, it is a disjunct in ∀◦

axpS. Hence, C̄ ⇒ ∀◦
axpS, D̄

is provable. In the second case, if q ∈ D̄, it is p�-free and as q ∈ Γ , its negation
occurs in ∀◦

axpS. Therefore C̄ ⇒ ∀◦
axpS, D̄ is provable.

If S · (C̄ ⇒ D̄) is in the form Γ,⊥ ⇒ Δ, then ⊥ ∈ C̄, because otherwise, ⊥ ∈ Γ
and hence S will be provable. Now, since ⊥ ∈ C̄, we have C̄ ⇒ ∀◦

axpS, D̄.

Definition 6. Let U◦
p (S) be the statement that “all sequents lower than S have

uniform ∀◦
p-interpolants”. A calculus G has MUIP if for any sequent S, atom p,

and ◦ ∈ {+,−}, there exists a formula ∀◦
mpS such that if U◦

p (S), then ∀◦
mpS is

a uniform ∀◦
p-interpolant for S with respect to the set of modal rules of G.

Theorem 3. If a sequent calculus G has MUIP, then it has ULIP.

Proof. Define a formula ∀◦pS by recursion on the weight of S: if S is provable
define it as �, otherwise, define it as:

∨

R

(
∧

i

∀◦pSi) ∨ (∀◦
axpS) ∨ (∀◦

mpS)

where the first disjunction is over all rules R in G3W backward applicable to
S, where S is the consequence and Si’s are the premises. ∀◦

axpS is a uniform ∀◦
p-

interpolant of S with respect to the set of axioms of G that Lemma 1 provides.
∀◦

mpS is the formula that MUIP provides. To prove that ∀◦pS is a ∀◦
p-interpolant

for S, we use induction on the weight of S to prove:

(var) ∀◦pS is p◦-free and V †(∀◦pS) ⊆ V †(S), for any † ∈ {+,−},
(i) S · (∀◦pS ⇒) is provable in G,

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 295

(ii) for any p�-free sequent C̄ ⇒ D̄, if S · (C̄ ⇒ D̄) is derivable in G then
C̄ ⇒ ∀◦pS, D̄ is derivable in G.

By induction hypothesis, (var), (i), and (ii) hold for all sequents T lower than
S. Now, (var) also holds for ∀◦pS, because both ∀◦

axpS and ∀◦
mpS satisfy (var)

and all rules in G3W have the variable preserving property.
To prove (i), it is enough to show that the following are provable in G:

S · (
∧

i

∀◦pSi ⇒) (1) , S · (∀◦
axpS ⇒) (2) , S · (∀◦

mpS ⇒) (3).

Sequent (3) is provable by induction hypothesis and the assumption that G has
MUIP. Sequent (2) is proved in Lemma 1. For the sequent (1), assume that
the rule R of G3W is backward applicable to S, i.e., the premises of R are
Si’s and its conclusion S. As Si’s are lower than S, by induction hypothesis we
have Si · (∀◦pSi ⇒). Therefore, by weakening, we have Si · ({∀◦pSi}i ⇒). Since
any rule in G3W has the context extension property, we can add {∀◦pSi}i to
the antecedent of both premises and conclusion and by the rule itself, we have
S · ({∀◦pSi}i ⇒) and hence S · (

∧
i ∀◦pSi ⇒).

For (ii), we use induction on the length of the proof of S ·(C̄ ⇒ D̄). Let S ·(C̄ ⇒
D̄) be derivable in G. If it is an axiom, we have C̄ ⇒ D̄,∀◦

axpS by Lemma 1,
and hence C̄ ⇒ D̄,∀◦pS. If the last rule is a rule in G3W of the form:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ
,

then there are two cases to consider, i.e., either ϕ ∈ C̄ or ϕ ∈ Sa. If ϕ ∈ C̄, then
set C̄ ′ = C̄ − {ϕ}. Since ϕ ∈ C̄, it is p◦-free by the assumption and ϕi’s are all
p◦-free and ψi’s are all p�-free by the variable preserving property. By induction
hypothesis, as (C̄ ′, ϕ̄i ⇒ ψ̄i, D̄) is p�-free and S · (C̄ ′, ϕ̄i ⇒ ψ̄i, D̄) has a shorter
proof, we have C̄ ′, ϕ̄i ⇒ ∀◦pS, ψ̄i, D̄. By using the rule itself, we have

{C̄ ′, ϕ̄i ⇒ ψ̄i,∀◦pS, D̄}i

C̄ ′, ϕ ⇒ ∀◦pS, D̄

which implies C̄ ⇒ ∀◦pS, D̄.
If ϕ /∈ C̄, then both C̄ and D̄ do not contain any active formula of the rule and
hence the last rule is in form

{C̄, Γ, ϕ̄i ⇒ ψ̄i, D̄,Δ}i

C̄, Γ, ϕ ⇒ D̄,Δ
.

By context restriction property, if we erase C̄ and D̄ both on the premises and
the consequence of the last rule, the rule remains valid and it changes to:

{Γ, ϕ̄i ⇒ ψ̄i,Δ}i

Γ, ϕ ⇒ Δ
.

Therefore, the rule is backward applicable to S = (Γ, ϕ ⇒ Δ). Set Si = (Γ, ϕ̄i ⇒
ψ̄i,Δ). As the weight of Si’s are less than the weight of S and Si · (C̄ ⇒ D̄)

296 A. Akbar Tabatabai et al.

are provable, by induction hypothesis, we have C̄ ⇒ ∀◦pSi, D̄. Hence, C̄ ⇒∧
i ∀◦pSi, D̄ and as

∧
i ∀◦pSi is a disjunct in ∀◦pS, we have C̄ ⇒ ∀◦pS, D̄.

The case where the last rule is in GW3 with its main formula in the antecedent is
similar. For the modal rules, by induction hypothesis U◦

p (S) and the assumption
that G has MUIP, we get that ∀◦

mpS is a uniform ∀◦
p-interpolant for S with

respect to the set of modal rules of G. By (ii′) in Definition 5, this gives C̄ ⇒
∀◦

mpS, D̄ and hence C̄ ⇒ ∀◦pS, D̄.

In the upcoming subsections, for the following choices of the system G, we
show that it has MUIP. Therefore, by Theorem 3 and Theorem 2, we will have:

Theorem 4. Logics E, M, MC, EN and MN have ULIP, hence UIP and LIP.

3.1 Modal Logics M and MN

Let G be either GM or GMN. We will show that G has MUIP. To define ∀◦
mpS,

if ¬U◦
p (S), define ∀◦

mpS as ⊥. If U◦
p (S), (i.e., for any sequent T lower than S a

uniform ∀◦
p-interpolant, denoted by ∀◦pT , exists), define ∀◦

mpS in the following
way: if S is provable, define it as �, otherwise, if it is of the form (�ϕ ⇒),
define ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ ⇒), if S is of the form (⇒ �ψ), define
∀◦

mpS = �∀◦pS′′, where S′′ = (⇒ ψ), and otherwise, define ∀◦
mpS = ⊥. Note

that ∀◦
mpS is well-defined as we have U◦

p (S) and S′ and S′′ are lower than S.
To show that G has MUIP, we assume U◦

p (S) to prove the three conditions (var),
(i) and (ii′) in Definition 5 for ∀◦

mpS. First, note that using U◦
p (S) on (ϕ ⇒)

and (⇒ ψ) that are lower than (�ϕ ⇒) and (⇒ �ψ), respectively, the variable
conditions are implied from (var) for S′ and S′′, respectively.
For (i), if S is provable, there is nothing to prove. Otherwise, if S = (�ϕ ⇒)
then ∀◦

mpS = ¬�¬∀◦pS′. As S′ is lower than S, we have (ϕ,∀◦pS′ ⇒) by U◦
p (S),

which implies (ϕ ⇒ ¬∀◦pS′). Using the rule (M), we get (�ϕ ⇒ �¬∀◦pS′),
which is equivalent to (�ϕ,¬�¬∀◦pS′ ⇒). Hence, S · (∀◦

mpS ⇒) is provable.
If S is not provable and S = (⇒ �ψ), we have ∀◦

mpS = �∀◦pS′′. Using U◦
p (S)

on S′′ and the fact that S′′ is lower than S, we have (∀◦pS′′ ⇒ ψ) and by the
rule (M), we can show that S · (�∀◦pS′′ ⇒) is provable in G. If S is not provable
and has none of the mentioned forms, as ∀◦

mpS = ⊥, there is nothing to prove.
For (ii′), let S · (C̄ ⇒ D̄) be derivable in G for a p�-free sequent C̄ ⇒ D̄ and the
last rule is a modal rule. We want to show that C̄ ⇒ ∀◦

mpS, D̄ is derivable in G.
If the last rule used in the proof of S · (C̄ ⇒ D̄) is (M), the sequent must have
the form (�ϕ ⇒ �ψ) and the rule must be in form:

ϕ ⇒ ψ
M�ϕ ⇒ �ψ

If S is provable, as ∀◦
mpS = �, we clearly have C̄ ⇒ ∀◦

mpS, D̄. Assume S is not
provable and hence C̄ ∪ D̄ cannot be empty. Therefore, there are three cases to
consider, either C̄ is �ϕ or D̄ is �ψ or both. First, if C̄ = �ϕ and D̄ = ∅, then,
S = (⇒ �ψ) and ϕ is p◦-free. Set S′′ = (⇒ ψ). Then ∀◦

mpS = �∀pS′′. As S′′

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 297

is lower than S, by U◦
p (S) we have (ϕ ⇒ ∀◦pS′′). Using the modal rule (M), we

have (�ϕ ⇒ �∀◦pS′′) and hence (C̄ ⇒ ∀◦
mpS, D̄).

In the second case, assume C̄ = ∅ and D̄ = �ψ. Hence, S = (�ϕ ⇒) and ψ is
p�-free. Set S′ = (ϕ ⇒). Hence, ∀◦

mpS = ¬�¬∀◦pS′. Since (ϕ ⇒ ψ) is provable
in G and S′ is lower than S, by U◦

p we have (⇒ ∀◦pS′, ψ), or equivalently
(¬∀◦pS′ ⇒ ψ). Using the rule (M), we get (�¬∀◦pS′ ⇒ �ψ) or equivalently
(⇒ ¬�¬∀◦pS′,�ψ). Therefore, we have (⇒ ∀◦

mpS,�ψ) or (C̄ ⇒ ∀◦
mpS, D̄).

In the third case, if C̄ = �ϕ and D̄ = �ψ, then S is the empty sequent and
C̄ ⇒ D̄ is provable. Hence, C̄ ⇒ ∀◦

mpS, D̄ is also provable.
For the case G = GMN, if S · (C̄ ⇒ D̄) = (⇒ �ψ) is proved by the rule (N),
it must have the following form:

⇒ ψ
N⇒ �ψ

Then C̄ = ∅ and there are two cases to consider. The first case is when S =
(⇒ �ψ) and D̄ = ∅. Then, it means that S is provable which contradicts our
assumption. The second case is when S = (⇒) and D̄ = �ψ. Hence, C̄ ⇒ D̄ is
provable and we have the provability of C̄ ⇒ ∀◦

mpS, D̄ in G.

3.2 Modal Logic MC

Similar to the argument of the previous subsection, to define ∀◦
mpS, if ¬U◦

p (S),
define ∀◦

mpS as ⊥. If U◦
p (S), (i.e., for any sequent T lower than S the uniform

∀◦
p-interpolant, denoted by ∀◦pT , exists), define ∀◦

mpS as the following: if S is
provable, define ∀◦

mpS = �. Otherwise, if S is of the form (�ϕ1, · · · ,�ϕi ⇒),
for some i ≥ 1, define ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ1, · · · , ϕi ⇒). If S
is of the form (⇒ �ψ), define ∀◦

mpS = �∀◦pS′′, where S′′ = (⇒ ψ). If S is
of the form (�ϕ1, · · · ,�ϕi ⇒ �ψ), for some i ≥ 1, define ∀◦

mpS = �∀◦pS′′,
where S′′ = (ϕ1, · · · , ϕi ⇒ ψ). Otherwise, define ∀◦

mpS = ⊥. Note that ∀◦
mpS is

well-defined as we assumed U◦
p (S) and in each case S′ or S′′ are lower than S.

To show that GMC has MUIP, we assume U◦
p (S) to prove the three conditions

(var), (i) and (ii′) in Definition 5 for ∀◦
mpS. The condition (var) is an immediate

consequence of U◦
p (S) and the fact that S′ or S′′ are lower than S. For (i), if

S is provable, there is nothing to prove. If S is of the form (�ϕ1, · · · ,�ϕi ⇒)
and ∀◦

mpS = ¬�¬∀◦pS′, where S′ = (ϕ1, · · · , ϕi ⇒), as S′ is lower than S, by
U◦

p (S) we have (ϕ1, · · · , ϕi,∀◦pS′ ⇒) or equivalently (ϕ1, · · · , ϕi ⇒ ¬∀◦pS′).
Using the rule (MC), we get (�ϕ1, · · · ,�ϕi ⇒ �¬∀◦pS′), which is equivalent
to (�ϕ1, · · · ,�ϕi,¬�¬∀◦pS′ ⇒) and hence S · (∀◦

mpS ⇒).
If S is of the form (⇒ �ψ) and S′′ = (⇒ ψ), or S is of the form (�ϕ1, · · · ,�ϕi ⇒
�ψ), for some i ≥ 1 and S′′ is of the form (ϕ1, · · · , ϕi ⇒ ψ), we have
∀◦

mpS = �∀◦pS′′. In both cases, using U◦
p (S) on S′′, we have either ∀◦pS′′ ⇒ ψ

or ϕ1, · · · , ϕi,∀◦pS′′ ⇒ ψ, respectively. In both cases, using the rule (MC), we
can show that S · (�∀◦pS′′ ⇒) is provable and hence S · (∀◦

mpS ⇒).
For (ii′), let S · (C̄ ⇒ D̄) be derivable in GMC and the last rule is the modal
rule (MC), for a p�-free sequent C̄ ⇒ D̄. We want to show that C̄ ⇒ ∀◦

mpS, D̄

298 A. Akbar Tabatabai et al.

is derivable in GMC. If S is provable, as ∀◦
mpS = �, we have C̄ ⇒ ∀◦

mpS, D̄.
Therefore, we assume that S is not provable. As the last rule used in the proof
of S · (C̄ ⇒ D̄) is (MC), the sequent must have the form (�ϕ1, · · · ,�ϕn ⇒ �ψ)
and the rule is:

ϕ1, · · · , ϕn ⇒ ψ
MC�ϕ1, · · · ,�ϕn ⇒ �ψ

Then, there are two cases to consider, either D̄ = �ψ or D̄ = ∅. First, assume
S is of the form (�ϕ1, · · · ,�ϕi ⇒), for i ≤ n, then C̄ = �ϕi+1, · · · ,�ϕn and
D̄ = �ψ and hence ϕi+1, · · · , ϕn ⇒ ψ is p�-free. Set S′ = (ϕ1, · · · , ϕi ⇒). By
the form of S, we have ∀◦

mpS = ¬�¬∀◦pS′. As S′ is lower than S, by U◦
p (S), we

have (ϕi+1, · · · , ϕn ⇒ ∀◦pS′, ψ). Hence, by moving ∀◦pS′ to the left, applying
the rule (MC) and moving back, we have (�ϕi+1, · · · ,�ϕn ⇒ ¬�¬∀◦pS′,�ψ)
or equivalently (C̄ ⇒ ∀◦

mpS, D̄).
If S is of the form �ϕ1, · · · ,�ϕi ⇒ �ψ, for some i ≤ n, we must have
C̄ = �ϕi+1, · · · ,�ϕn and D̄ = ∅. Hence, ϕi+1, · · · , ϕn are p◦-free. Note that
i < n, because if i = n, then S will be provable that contradicts our assump-
tion. Set S′′ = (ϕ1, · · · , ϕi ⇒ ψ). As S′′ is lower than S, by U◦

p (S) we have
ϕi+1, · · · , ϕn ⇒ ∀◦pS′′. By the fact that i < n, we can apply the rule (MC) to
prove �ϕi+1, · · · ,�ϕn ⇒ �∀◦pS′′ and hence (C̄ ⇒ ∀◦

mpS, D̄).

3.3 Modal Logics E and EN

Let G be GE or GEN. Similar to the argument of the previous subsection, if
¬U◦

p (S), define ∀◦
mpS as ⊥. If U◦

p (S), then: if S is provable in G, define ∀◦
mpS =

�. Otherwise, if S = (�ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and (ϕ ⇒ ¬∀◦pS′) are
provable in G, define ∀◦

mpS = ¬�¬∀◦pS′ for S′ = (ϕ ⇒). If S has the form
(⇒ �ψ) and both (∀◦pS′′ ⇒ ψ) and (ψ ⇒ ∀◦pS′′) are provable in G, define
∀◦

mpS = �∀◦pS′′ for S′′ = (⇒ ψ). Otherwise, define ∀◦
mpS = ⊥. Note that ∀◦pS

is well-defined as S′ and S′′ are lower than S and we assumed U◦
p (S).

To show that G has MUIP we assume U◦
p (S) to prove (var), (i) and (ii′) in

Definition 5 for ∀◦
mpS. Condition (var) is a consequence of U◦

p (S) and that S′

or S′′ are lower than S. For (i), if S is provable, there is nothing to prove. If
S = (�ϕ ⇒) and S′ = (ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and (ϕ ⇒ ¬∀◦pS′) are
provable in G, then using the rule (E), we have (�ϕ ⇒ �¬∀◦pS′) which implies
(�ϕ,¬�¬∀◦pS′ ⇒) and hence S · (∀◦

mpS ⇒) is provable in G.
If S = (⇒ �ψ) and S′′ = (⇒ ψ) and both (∀◦pS′′ ⇒ ψ) and (ψ ⇒ ∀◦pS′′)
are provable in G, then using the rule (E), we have (�∀◦pS′′ ⇒ �ψ) and hence
S · (∀◦

mpS ⇒) is provable in G. If ∀◦
mpS = ⊥, there is nothing to prove.

For (ii′), if S is provable, then ∀◦
mpS = � and hence C̄ ⇒ ∀◦

mpS, D̄. Therefore,
assume that S is not provable. If the last rule used in the proof of S · (C̄ ⇒ D̄)
is the rule (E), the sequent S · (C̄ ⇒ D̄) is of the form �ϕ ⇒ �ψ. There are
four cases to consider based on if C̄ or D̄ are empty or not. First, if C̄ = D̄ = ∅,
then S is provable which contradicts our assumption. If S is the empty sequent
(⇒), then C̄ ⇒ D̄ is provable and hence C̄ ⇒ ∀◦

mpS, D̄ is provable.

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 299

If S = (�ϕ ⇒), then C̄ = ∅ and D̄ = �ψ and hence ψ is p�-free. Set S′ = (ϕ ⇒)
and as the last rule is (E), both ϕ ⇒ ψ and ψ ⇒ ϕ are provable. By U◦

p (S) and
the fact that S′ is lower than S, we have (ϕ,∀◦pS′ ⇒) or equivalently, (ϕ ⇒
¬∀◦pS′). Again by U◦

p (S) for S′, the provability of S′ ·(⇒ D̄) = (ϕ ⇒ ψ) and the
fact that (⇒ ψ) is p�-free, we have (⇒ ∀◦pS′, ψ) or equivalently, (¬∀◦pS′ ⇒ ψ).
Since (ϕ ⇒ ψ) and (ψ ⇒ ϕ) are provable, by cut we can prove the equivalence
between ϕ, ψ and ¬∀◦pS′. Using this fact, we have:

ψ ⇒ ¬∀◦pS′ ¬∀◦pS′ ⇒ ψ
E�¬∀◦pS′ ⇒ �ψ

Hence, (⇒ ¬�¬∀◦pS′,�ψ). Then, as S = (�ϕ ⇒) and both (¬∀◦pS′ ⇒ ϕ) and
(ϕ ⇒ ¬∀◦pS′) are provable in G, by definition we have ∀◦

mpS = ¬�¬∀◦pS′ and
hence (⇒ ¬�¬∀◦pS′,�ψ) = (C̄ ⇒ ∀◦

mpS, D̄) is provable in G. The last case
where S = (⇒ �ψ) and C̄ = �ϕ and D̄ = ∅ is similar.
For the case G = GEN, if S · (C̄ ⇒ D̄) = (⇒ �ψ) is proved by the rule (N), it

must have the form
⇒ ψ

N⇒ �ψ
. Then C̄ = ∅ and there are two cases. First,

S = (⇒ �ψ) and D̄ = ∅, which means that S is provable which contradicts our
assumption. Second, if S = (⇒) and D̄ = �ψ, and hence C̄ ⇒ D̄ is provable,
we have the provability of C̄ ⇒ ∀◦

mpS, D̄ in G.

4 Modal Logics EC and ECN

In this section we prove that the logics EC and ECN do not enjoy the Craig
interpolation property. To this end, we set ϕ = �(¬q∧r) and ψ = �(p∧q) → �⊥,
where p, q, and r are three distinct atomic formulas and show that if L is either
EC or ECN, the formula ϕ → ψ is provable in L, while there is no formula θ such
that V (θ) ⊆ {q} and both formulas ϕ → θ and θ → ψ are provable in L.

To show that ϕ → ψ is in EC and hence ECN, we use the following proof tree
in GEC:

p ∧ q,¬q ∧ r ⇒ ⊥ ⊥ ⇒ p ∧ q ⊥ ⇒ ¬q ∧ r
EC�(p ∧ q),�(¬q ∧ r) ⇒ �⊥

Now, for the sake of contradiction, assume that the interpolant θ for ϕ → ψ
exists. Let G be either GEC or GECN. Hence, both �(¬q ∧ r) ⇒ θ and
�(p ∧ q), θ ⇒ �⊥ are provable in G. We first analyse the general form of θ.

First, note that by a simple induction on the structure of the formulas in the
language L, it is possible to show that any formula A is G3cp-equivalent to a
CNF-style formula

∧
i∈I

∨
j∈Ji

Lij , where I and Ji’s are (possibly empty) finite
sets, V (Lij) ⊆ V (A), and each Lij is either an atomic formula, the negation of
an atomic formula, �C or ¬�C, for a formula C. In particular, the formula θ
is G3cp-equivalent to a CNF-style formula in the form

∧
i∈I

∨
j∈Ji

Lij . W.l.o.g,
assume that for any i ∈ I, it is impossible to have both an atomic formula and
its negation in {Lij}j∈Ji

, and that none of sequents (⇒ Lij) or (Lij ⇒) are
provable in G.

300 A. Akbar Tabatabai et al.

Back to the main argument, as ϕ ⇒ θ is provable in G, we have ϕ ⇒∧
i∈I

∨
j∈Ji

Lij which means that for every i ∈ I, we have ϕ ⇒ ∨
j∈Ji

Lij . Based
on the form of each Lij , we can transform the sequent to a provable sequent of the
form ϕ,P,�Γ ⇒ Q,�Δ, where P and Q are multisets of atomic formulas and Γ
and Δ are multisets of formulas. We claim that for any i ∈ I, the corresponding
Γ is non-empty. Suppose Γ = ∅. Then, we have ϕ,P ⇒ Q,�Δ. This sequent
must have been the conclusion of the rule (EC), because for G = GEC, the other
possible case is being an axiom which implies either ⊥ ∈ P or the existence of an
atomic s in P ∩Q. Both contradict the structure of

∨
j∈Ji

Lij . For G = GECN,
the same holds. Moreover, if the last rule is (NW), then for an element δ ∈ Δ,
the sequent (⇒ δ) and hence (⇒ �δ) must be provable in G which contradicts
the structure of Lij ’s again. Therefore, T = (ϕ,P ⇒ Q,�Δ) is the consequence
of (EC) and hence, it has the form (Σ,�α1, · · · ,�αn ⇒ �β,Λ) and the last
rule is:

α1, · · · , αn ⇒ β β ⇒ α1 · · · β ⇒ αn
EC

Σ,�α1, · · · ,�αn ⇒ �β,Λ

Now there are two cases, either ϕ ∈ Σ or ϕ /∈ Σ. In the first case, as the formulas
outside Σ are either atomic or boxed, we must have no boxed formula outside
Σ. This is impossible, as the form of the rule (EC) dictates that we must have
at least one boxed formula in the antecedent of the conclusion. Hence, ϕ /∈ Σ.
As all formulas in T a (except ϕ) are atomic, we must have only one boxed formula
in T a, which is ϕ. Therefore, in the premises of the rule, we have ¬q∧r ⇒ β and
β ⇒ ¬q ∧ r. Since V (β) ⊆ V (θ) ⊆ {q}, then β is r-free. If we once substitute ⊥
for r and then ¬q for r, as β remains intact, we will have β ⇔ ⊥ and β ⇔ ¬q,
which implies the contradictory ⊥ ⇔ ¬q. Hence, Γ cannot be empty.

So far, we have proved that Γ is non-empty, for any i ∈ I. Let Di be a
formula in Γ and note that ¬�Di occurs as one of the Lij ’s. Now, as �(p ∧
q), θ ⇒ �⊥ or equivalently �(p ∧ q),

∧
i∈I

∨
j∈Ji

Lij ⇒ �⊥ is provable in G,
we have �(p ∧ q), {¬�Di}i∈I ⇒ �⊥ is provable in G. Define D = {Di}i∈I .
Thus S = (�(p ∧ q) ⇒ �D,�⊥) is provable. As all the formulas are boxed,
this must have been the conclusion of the rule (EC). The reason is that G has
no weakening rules, and for G = GEC, the only modal rule is (EC) and for
G = GECN, the last rule cannot be the rule (NW) as it implies that for one
D ∈ D the sequent (⇒ D) is provable in G which means that (⇒ �D) and
hence (¬�D ⇒) is provable. The last contradicts with the structure of Lij ’s.
This implies that the last inference is of the form:

α1, · · · , αn ⇒ β β ⇒ α1 · · · β ⇒ αn
EC

Σ,�α1, · · · ,�αn ⇒ �β,Λ

Similar as before, there are two cases, either β = ⊥ or β ∈ D. If β = ⊥, in the
premises we must have p∧ q ⇔ ⊥ which is impossible. If β ∈ D, it means that in
the premises we had p∧ q ⇔ β. Note that as β ∈ D we have V (β) ⊆ V (θ) ⊆ {q}.
Hence β is p-free. Substituting once ⊥ and then q for p, leave β intact and hence
we get ⊥ ⇔ β and q ⇔ β which implies q ⇔ ⊥, which is impossible.

Uniform Lyndon Interpolation for Basic Non-normal Modal Logics 301

Theorem 5. Logics EC and ECN do not have CIP, hence not UIP or ULIP
either.

Acknowledgements. We thank Iris van der Giessen for fruitful discussions on the
topic of this paper and three referees for comments that helped improving the paper.

References

1. Akbar Tabatabai, A., Jalali, R.: Universal proof theory: semi-analytic rules and
uniform interpolation. arXiv preprint arXiv:1808.06258 (2018)

2. B́ılková, M.: Interpolation in modal logics. Ph.D. thesis, Univerzita Karlova, Filo-
zofická fakulta (2006)

3. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

4. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the
modal system S4. Stud. Log. 55(2), 259–271 (1995)

5. Ghilardi, S., Zawadowski, M.: Sheaves, Games, and Model Completions. A Cat-
egorical Approach to Nonclassical Propositional Logics. Trends in Logic, vol. 14.
Springer, Netherlands (2002). https://doi.org/10.1007/978-94-015-9936-8

6. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. Arch. Math.
Log. 58(1), 155–181 (2019)

7. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Log. 170(11), 102711 (2019)

8. Kurahashi, T.: Uniform Lyndon interpolation property in propositional modal log-
ics. Arch. Math. Log. 59, 659–678 (2020)

9. Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable
varieties. Algebra Log. 16(6), 643–681 (1977)

10. Orlandelli, E.: Sequent calculi and interpolation for non-normal logics (2019). arXiv
preprint arXiv:1903.11342

11. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

12. Pattinson, D.: The logic of exact covers: completeness and uniform interpolation.
In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.
418–427. IEEE (2013)

13. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 59(1), 33–52 (1992)

14. Santocanale, L., Venema, Y., et al.: Uniform interpolation for monotone modal
logic. Adv. Modal Log. 8, 350–370 (2010)

15. Seifan, F., Schröder, L., Pattinson, D.: Uniform interpolation in coalgebraic modal
logic. In: 7th Conference on Algebra and Coalgebra in Computer Science (CALCO
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

16. Shamkanov, D.S.: Interpolation properties for provability logics GL and GLP. Proc.
Steklov Inst. Math. 274(1), 303–316 (2011)

17. Shavrukov, V.Y.: Subalgebras of diagonalizable algebras of theories containing
arithmetic. Polska Akademia Nauk, Instytut Matematyczny Warsaw (1993)

18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracks in The-
oretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)

19. Visser, A., et al.: Uniform interpolation and layered bisimulation. In: Hajek, P. (ed.)
Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics–
Kurt Gödel’s Legacy. Lecture Notes in Logic, pp. 139–164. Cambridge University
Press (1996)

http://arxiv.org/abs/1808.06258
https://doi.org/10.1007/978-94-015-9936-8
http://arxiv.org/abs/1903.11342
https://doi.org/10.1007/978-3-319-67149-9

On the Expressive Power of TeamLTL
and First-Order Team Logic over

Hyperproperties

Juha Kontinen and Max Sandström(B)

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
{juha.kontinen,max.sandstrom}@helsinki.fi

Abstract. In this article we study linear temporal logics with team
semantics (TeamLTL) that are novel logics for defining hyperproperties.
We define Kamp-type translations of these logics into fragments of first-
order team logic and second-order logic. We also characterize the expres-
sive power and the complexity of model-checking and satisfiability of
team logic and second-order logic by relating them to second- and third-
order arithmetic. Our results set in a larger context the recent results of
Lück showing that the extension of TeamLTL by the Boolean negation is
highly undecidable under the so-called synchronous semantics. We also
study stutter-invariant fragments of extensions of TeamLTL.

Keywords: Hyperproperties · Linear temporal logic · Team semantics

1 Introduction

Linear temporal logic (LTL) is a simple logic for formalising concepts of time.
It has become important in theoretical computer science, when Amir Pnueli
connected it to system verification in 1977, and within that context the logic has
been studied extensively [15]. With regards to expressive power, a classic result
by Hans Kamp from 1968 shows that LTL is expressively equivalent to FO2(<).

LTL has found applications in the field of formal verification, where it is used
to check whether a system fulfils its specifications. However, the logic cannot
capture all of the interesting specifications a system may have, since it cannot
express dependencies between its executions, known as traces. These properties,
coined hyperproperties by Clarkson and Schneider in 2010, include properties
important for cybersecurity such as noninterference and secure information flow
[3]. Due to this background, extensions of LTL have recently been the focus
of research. In order to specify hyperproperties, temporal logics like LTL and
QPTL have been extended with explicit trace and path quantification to define
HyperLTL [2] and HyperQPTL [4,16], respectively.

HyperLTL is one of the most extensively studied of these extensions. Its
formulas are interpreted over sets of traces and the syntax extends LTL with
quantification of traces. A serious limitation of HyperLTL is that only a fixed
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 302–318, 2021.
https://doi.org/10.1007/978-3-030-88853-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_19&domain=pdf
http://orcid.org/0000-0003-0115-5154
http://orcid.org/0000-0002-6365-2562
https://doi.org/10.1007/978-3-030-88853-4_19

On the Expressive Power of TeamLTL and First-Order Team Logic 303

number of traces can be named via the quantifiers when evaluating a formula
and hence global hyperproperties cannot be expressed in HyperLTL.

Analogously to Kamp’s theorem, HyperLTL can be also related to first-order
logic FO(<,E) by encoding a set of traces T in a natural way by a first-order
structure T × N that, in addition to linear-orders for the traces, has an equal
level predicate E to synchronize time between different traces [5].

On the other hand, there are alternative approaches to extending LTL to
capture hyperproperties. Team semantics is a framework in which one moves
on from considering truth through single assignments to regarding teams of
assignments as the linchpin for the satisfaction of a formula [10,17]. Clearly, this
framework, when applied to LTL, provides an approach on the hyperproperties.
Krebs et al. in 2018 introduced two semantics for LTL under team semantics: the
synchronous semantics and the asynchronous variant that differ on the interpre-
tation of the temporal operators [11]. In team semantics the temporal operators
advance time on all traces of the current team and with the disjunction ∨, a
team can be split into two parts during the evaluation of a formula, hence the
nickname splitjunction.

While HyperLTL and other hyperlogics have been studied extensively, many
of the basic properties of TeamLTL are still not understood. Already in [11] it was
shown that asynchronous TeamLTL collapses to LTL and that the synchronous
version and HyperLTL are incomparable in expressivity [11]. Furthermore, the
model checking problem of synchronous TeamLTL without splitjunctions ∨ is
in PSPACE [11]. Recently it was shown by Lück that the complexity of satisfi-
ability and model checking of synchronous TeamLTL with Boolean negation ∼
is equivalent to the decision problem of third-order arithmetic [14] and hence
highly undecidable. Furthermore, a more fine-grained analysis of the complexity
of synchronous TeamLTL has been obtained in [18] where a decidable frag-
ment of TeamLTL was identified and new undecidable extensions that allow
restricted uses of the Boolean negation. The paper also showed that TeamLTL
and its extensions can be translatated to HyperQPTL+, which is an extension
of HyperLTL by (non-uniform) quantification of propositions [18].

In this article we analyse the expressivity and complexity of TeamLTL via a
different route compared to that of [18]. We define several translations between
extensions of TeamLTL and first-order team logic interpreted over the structures
T ×N. The benefit of translating TeamLTL into first-order team logic is that, e.g.,
finding a translation for ∨, which is the main source of complexity of TeamLTL,
becomes trivial. Furthermore such translations allow us to utilize the better
understanding of the properties of logics in first-order team semantics in the
study of TeamLTL.

We consider both the synchronous and asynchronous TeamLTL extended by
the Boolean negation. In Sect. 3 we show that the asynchronous version can
be translated into FO3(=(. . .) ,∼), whereas for the synchronous variant the
so-called equal-level predicate is also needed. In Sect. 4 we define a version of
stutter-equivalence suitable for asynchronous semantics and show that X-free
TeamLTL(∼) -formulas are stutter invariant. In Sect. 5 we consider the full first-

304 J. Kontinen and M. Sandström

order team logic, equivalently second-order logic, as a language for hyperproper-
ties. We show that any second-order definable hyperproperty can be expressed
in third-order arithmetic and, over countable teams, in second-order arithmetic.
We also show that SO captures the trace-order invariant fragment of second-
order arithmetic over countable teams. Finally in Sect. 6 we combine our trans-
lations with the results of Lück to show that any logic between the synchronous
TeamLTL(∼) and SO inherits the complexity properties of TeamLTL(∼).

2 Preliminaries

In this section we briefly discuss the basics of linear temporal logic, its team
semantic extension, and first-order team semantics. We begin with describing
the classical semantics for LTL.

Let AP be a set of atomic propositions. A trace t over AP is an infinite
sequence t ∈ (2AP)ω. We denote a trace as t = (t(i))∞

i=0, and given j ≥ 0 we
denote the suffix of t starting at the jth element t[j,∞) := (t(i))∞

i=j .
Now formulas of LTL are defined by the grammar (where p ∈ AP)

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ.

The truth definition for this language is usually defined as follows.

Definition 1 (Classical Semantics for LTL). Given a trace t, proposition
p ∈ AP, and LTL formulas ϕ and ψ, the semantics of linear temporal logic are
as follows.

t |= p ⇔ p ∈ t(0)
t |= ¬p ⇔ p /∈ t(0)
t |= ϕ ∧ ψ ⇔ t |= ϕ and t |= ψ

t |= ϕ ∨ ψ ⇔ t |= ϕ or t |= ψ

t |= Xϕ ⇔ t[1,∞) |= ϕ

t |= Fϕ ⇔ ∃k ≥ 0 : t[k,∞) |= ϕ

t |= Gϕ ⇔ ∀k ≥ 0 : t[k,∞) |= ϕ

t |= ϕUψ ⇔ ∃k ≥ 0 : t[k,∞) |= ψ and

∀k′ < k : t[k′,∞) |= ϕ

t |= ϕRψ ⇔ ∀k ≥ 0 : t[k,∞) |= ψ or

∃k′ < k : t[k′,∞) |= ϕ

Next we consider the team semantics of LTL. As is usual for team semantics,
we extended classical semantics by evaluating truth through a set of classical
evaluations, which in this case means truth is defined by a set of traces.

A team of TeamLTL is a set T of traces. We denote T [i,∞) := {t[i,∞) | t ∈
T} and, for f : T → N, T [f,∞) := {t[f(t),∞) | t ∈ T}. Below, for functions as
above, we write f ′ < f if for all t ∈ T it holds that f ′(t) < f(t).

Definition 2 (Team Semantics for LTL). Suppose T is a team, p ∈ AP, and
ϕ and ψ are LTL formulas. Then the semantics of LTL are defined as follows.
The cases marked with * are the same in both the asynchronous and synchronous
semantics.

On the Expressive Power of TeamLTL and First-Order Team Logic 305

T |=∗ p ⇔ p ∈ t(0) for all t ∈ T

T |=∗ ¬p ⇔ p /∈ t(0) for all t ∈ T

T |=∗ ϕ ∧ ψ ⇔ T |= ϕ and T |= ψ

T |=∗ ϕ ∨ ψ ⇔ ∃T1, T2 ⊆ T :
T1 ∪ T2 = T and

T1 |= ϕ and T2 |= ψ

T |=∗ Xϕ ⇔ T [1,∞) |= ϕ

T |=s Fϕ ⇔ ∃k ≥ 0:
T [k,∞) |= ϕ

T |=a Fϕ ⇔ ∃f : T → N :
T [f,∞) |= ϕ

T |=s Gϕ ⇔ ∀k ≥ 0: T [k,∞) |= ϕ

T |=a Gϕ ⇔ ∀f : T → N

T [f,∞) |= ϕ

T |=s ϕUψ ⇔ ∃k ≥ 0: T [k,∞) |= ψ

and ∀k′ < k : T [k′,∞) |= ϕ

T |=a ϕUψ ⇔ ∃f : T → N :
T [f,∞) |= ψ and

∀f ′ < f : T [f ′,∞) |= ϕ

T |=s ϕRψ ⇔ ∀k ≥ 0:
T [k,∞) |= ψ or ∃k′ < k :
T [k′,∞) |= ϕ

T |=a ϕRψ ⇔ ∀f : T → N

T [f,∞) |= ψ or

∃f ′ < f : T [f ′,∞) |= ϕ

We denote the asynchronous and the synchronous versions of LTL by TeamLTLa

and TeamLTLs, respectively. In the following we consider extensions of these
logics by the Boolean negation ∼ with the usual interpretation:

T |=∼ ϕ ⇔ T �|= ϕ.

We note that in the following it suffices to consider the temporal operators X and
U as the rest can be easily defined using ∼ and the shorthand � = p∨¬p under
both synchronous and asynchronous semantics: Gϕ ≡∼ F ∼ ϕ, Fϕ ≡ �Uϕ,
ϕRψ ≡∼ (∼ ϕU ∼ ψ).

Definition 3 (FO under team semantics and FO(=(. . .) ,∼)). Formulas of
FO are defined by the grammar

ϕ := x = y | R(x1, . . . , xn) | ¬x = y | ¬R(x1, . . . , xk) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ,

where x, y and x1, . . . , xn are variables, and R is a relation symbol of arity
n. Formulas of FO(=(. . .) ,∼) extend the grammar by dependence atoms
=(x1, . . . , xn, y) and the Boolean negation ∼ ϕ.

First-order team semantics is defined using sets S of assignments s : X → M
with a common finite domain X and an arbitrary set M as co-domain. For
an assignment s, s[a/x] denotes the modified assignment that acts otherwise
as s except that it maps x into a. For a so-called supplementation function
F : S → P(M)\∅, we define

S[F/x] := {s[a/x] | s ∈ S and a ∈ F (s)}.

The duplication of a team with respect to variable x is defined by S[M/x] :=
{s[m/x] | m ∈ M, s ∈ S}. Supplementation and duplication are used to gener-
alise existential and universal quantification, respectively, into team semantics.

306 J. Kontinen and M. Sandström

Definition 4 (Team Semantics for FO). Suppose M is a first-order model
with domain M , and let S be a team of M. Suppose n ≥ 1, and ϕ and ψ are
FO formulas. Then the team semantics of FO are defined by the following.

M |=S x = y ⇔ ∀s ∈ S : s(x) = s(y)
M |=S R(x1, . . . , xn) ⇔ ∀s ∈ S :

(s(x1), . . . , s(xn)) ∈ RM

M |=S ¬x = y ⇔ ∀s ∈ S : s(x) �= s(y)
M |=S ¬R(x1, . . . , xn) ⇔ ∀s ∈ S :

(s(x1), . . . , s(xn)) /∈ RM

M |=S ϕ ∧ ψ ⇔ M |=S ϕ and

M |=S ψ

M |=S ϕ ∨ ψ ⇔ ∃S1, S2 ⊆ S

such that S1 ∪ S2 = S and

M |=S1 ϕ and M |=S2 ψ

M |=S ∃xϕ ⇔ ∃F : S → P(M) \ ∅
such that M |=S[F/x] ϕ

M |=S ∀xϕ ⇔ M |=S[M/x] ϕ

First-order team logic FO(=(. . .) ,∼) extends FO with ∼ and dependence atoms:

M |=S =(x1, . . . , xn, y) ⇔ ∀s1, s2 ∈ S : if s1(xi) = s2(xi) for all i ∈ {1, . . . , n},
then s1(y) = s2(y)

For further details see for example [17]. Note that for the so-called constancy
atoms =(y) the truth definition above amounts to requiring that y has a constant
value in the team. Dependence logic FO(=(. . .)) is known to be equi-expressive
with existential second-order logic while FO(=(. . .) ,∼) is equi-expressive full
second-order logic (SO) [9,17]. On the other hand, the extensions of FO by mere
constancy atoms or ∼ alone collapse to FO for sentences [7,13]. We now define
some properties of team logics relevant to the results presented in this paper.

The formulas of TeamLTLa satisfy the following flatness property: T |= ϕ
if and only if ∀t ∈ T : t |= ϕ while the same does not hold for the formulas
of TeamLTLs [11]. This means that TeamLTLa without any extensions cannot
define non-trivial hyperproperties. Similarly, FO-formulas (by themselves) are
also flat in the sense that for all M and T : M |=T ϕ if and only if ∀s ∈ T : M |=s

ϕ, where |=s refers to the standard Tarskian semantics of FO [17]. On the other
hand, e.g., the formula =(y) does not have the flatness property. A logic L with
team semantics has the locality property if for all formulas ϕ ∈ L, M and T it
holds that M |=T ϕ if and only if M |=T �Fr(ϕ) ϕ, where Fr(ϕ) denotes the free
variables of ϕ. All of the logics in the so-called lax team semantics, including
FO(=(. . .) ,∼), satisfy the locality property [6].

3 Embedding TeamLTL and Its Extensions into
First-Order Team Logic

In this section we define translations of TeamLTL into first-order team logic. We
begin by considering the translation under the asynchronous semantics.

On the Expressive Power of TeamLTL and First-Order Team Logic 307

3.1 Asynchronous Semantics

Let T = {tj | j ∈ J} be a set of traces. In order to simulate TeamLTLa and its
extensions in first-order team semantics we encode T by a first-order structure
MT of vocabulary {≤} ∪ {Pi | pi ∈ AP} such that

Dom(MT) = T × N

≤MT = {((ti, n), (tj ,m)) | i = j and n ≤ m}
PMT

i = {(tk, j) | pi ∈ tk(j)}.

The first positions of each of the traces of the temporal team T are encoded as the
values of variable x by the set of assignments Sx

T = {si | si(x) = (ti, 0) for all ti ∈
T}, which we will use as the first-order team in our translation. The first-order
encoding of a set of traces goes back to [5].

We define a translation of TeamLTLa formulas into the three-variable frag-
ment FO3(=(. . .) ,∼) of team logic. We use the variables x, y and z in the first-
order side. In fact, since FO3(=(. . .) ,∼) is closed under the Boolean negation,
we may assume ∼ also available in TeamLTLa. Furthermore, it now suffices
to consider the operators X and U as the rest can be easily defined using the
Boolean negation. For readability we abbreviate the following formula

x < y ∧ ∀z(z ≤ x ∨ y ≤ z ∨ (¬x ≤ z ∧ ¬z ≤ x))

defining y as the successor of x by S(x, y).
Define the translation STu, for u ∈ {x, y, z} via simultaneous induction as

follows (we only list the formulas for STx):

STx(pi) = Pi(x)
STx(¬pi) = ¬Pi(x)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)
STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ)

STx(∼ ϕ) =∼ STx(ϕ)
STx(Xϕ) = ∃y(S(x, y) ∧ STy(ϕ))
STx(ϕUψ) = ∃y(x ≤ y ∧ =(x, y) ∧ STy(ψ)∧
∼ ∃z(x ≤ z ∧ z ≤ y ∧ =(x, z) ∧ ∼ STz(ϕ)))

The next theorem can now be proved using induction on the formula ϕ.

Theorem 1. Let ϕ be a TeamLTLa(∼)- formula. Then for all non-empty T :

T |= ϕ ⇔ MT |=Sx
T

STx(ϕ).

Proof. See the Appendix.

As a corollary (see Appendix for the proof) we obtain that any TeamLTLa(∼)-
definable trace property can be defined by a sentence of the logic FO3(=(. . .) ,∼).

Corollary 1. Let ϕ be a TeamLTLa(∼)- formula. Then there exists a sentence
ψ of FO3(=(. . .) ,∼) such that for all non-empty T :

T |= ϕ ⇔ MT |= ψ.

308 J. Kontinen and M. Sandström

Synchronous Semantics
Under the synchronous team semantics TeamLTL does not have the flatness
property [11] and it is incomparable to HyperLTL. Armed with the translation
from the previous section, we need to modify it to capture the synchronicity of
the semantics on the first-order side. For this end we assume that the structure
MT is equipped with the equal-level predicate E that is interpreted as follows:

EMT = {((t, n), (t′,m)) | n = m}.

Next we define a translation from TeamLTLs(∼) into FO3(=(. . .) ,∼) as
follows: The translation is analogous to the previous translation for the atomic
propositions, ∧, ∨, and X. For U we define the translation as follows:

ST ∗
x (ϕUψ) = ∃z∃y(=(z) ∧ x ≤ y ∧ E(z, y) ∧ ST ∗

y (ψ)) ∧
∼ ∃z

(∃x(=(x) ∧ E(z, x)) ∧ x ≤ z < y∧ ∼ ST ∗
z (ϕ)

)
.

The proof of the following theorem is now analogous to that of Theorem 1
and Corollary 1.

Theorem 2. Let ϕ be a TeamLTLs(∼)- formula. Then T |= ϕ ⇔ MT |=Sx
T

ST ∗
x (ϕ) for all non-empty T and there exists a FO3(=(. . .) ,∼)-sentence ψ such

that for all non-empty T
T |= ϕ ⇔ MT |= ψ.

It is interesting to note that the role of the dependence atom in the translation
of U in the asynchronous semantics can be replaced by the equal level predicate
and the constancy atom in the synchronous case.

4 Asynchronicity and Stutter Equivalence

In [14] Lück generalised the notions of stutter-equivalence and stutter-invariance
to TeamLTLs [14]. In this section we define an analogous concept for the asyn-
chronous team semantics, and show how these two conceptualizations relate to
each other.

We begin by defining the classical stuttering function.

Definition 5 (Stuttering function). A stuttering function of a trace t is a
strictly increasing function f : N → N, such that f(0) = 0 and t(f(k)) = . . . =
t(f(k + 1) − 1) for all k ∈ N.

For functions f : N → N we denote the trace t(f(0))t(f(1))t(f(2)) . . . by t[f]
and similarly for teams T [f] = {t[f] | t ∈ T}. Lück defined the synchronous
stuttering function of a team T to be a function that is a stuttering function for
all traces t ∈ T simultaneously.

The asynchronous variants of these definitions are similar, with the general-
ization that the stuttering functions are independent for each trace. We restrict
our attention to finite teams T below.

On the Expressive Power of TeamLTL and First-Order Team Logic 309

Definition 6 (Asynchronous stuttering function). An asynchronous stut-
tering function of a team T = {t1, . . . , tk} is a function F : N → N

k, such
that F (n) = (ft1(n), . . . , ftk(n)) for stuttering functions ft1 , . . . ftk of traces
t1, . . . , tk ∈ T .

For stuttering functions F : N → N
k we denote by t[F] the trace

t(ft(0))t(ft(1))t(ft(2)) . . . ,

and furthermore for teams T [F] = {t[F] | t ∈ T}.

Definition 7 (Asynchronous stutter-equivalence). Teams T, T ′ are asyn-
chronously stutter-equivalent, in symbols T ≡a

st T ′, if there are asynchronous
stuttering functions F of T and F ′ of T ′ such that T [F] = T ′[F ′].

Now it is clear that every synchronous stuttering function is also an asyn-
chronous stuttering function, but the converse does not necessarily hold.

A formula ϕ is stutter-invariant if T |= ϕ if and only if T ′ |= ϕ, for all stutter
equivalent teams T and T ′. Note that an asynchronous stuttering function F
of team T induces a stuttering function F |S for any subteam S ⊆ T . Next we
prove analogous claims to the ones shown by Lück.

We call a function i : T → N a configuration, and we define an component-
wise order among configurations, i.e. for configurations i and j i < j if and only
if i(t) < j(t) for all t ∈ T . The definition of ≤ is analogous. We consider the
component-wise order because not all configurations of a team are attainable
from each other with regards to the until-operator. For instance, let T = {t1, t2}
be a team. Now the configuration (t1(0), t2(1)) is not attainable from the configu-
ration (t1(1), t2(0)), or vice versa. Hence we say that a configuration is attainable
form another if for each trace of the former configuration the time-point is equal
or later to the time-point of the same trace in the latter configuration.

Lemma 1. Let T and T ′ be teams. Then T ≡a
st T ′ if and only if, if T = T1 ∪ T2,

then there are subteams T ′
1, T

′
2 such that T ′ = T ′

1 ∪ T ′
2 and Ti ≡a

st T ′
i for i ∈ {1, 2}.

Proof. See the Appendix.

Lemma 2. Let T and T ′ be teams such that T ≡a
st T ′, as witnessed by the

stuttering functions F and G, and let j be a configuration of T . Then there is
a configuration i ≤ j of T such that for all t ∈ T there is a at ∈ N such that
ft(at) = i(t) and T [i,∞) ≡a

st T [j,∞). Furthermore, there is a configuration k of
T ′ such that T [i,∞) ≡a

st T ′[k,∞).

Proof. See the Appendix.

Theorem 3. Every X-free TeamLTL(∼)-formula is stutter invariant.

Proof. We consider formulas ϕ ∈ TeamLTL(∼, U). Let T and T ′ be teams such
that T ≡a

st T ′, as witnessed by the functions F and G respectively. In this proof
we say that a configuration c is in accordance with a stuttering function F to
mean that for all t there is an n such that c(t) = ft(n). We prove the claim
through induction on the structure of ϕ.

310 J. Kontinen and M. Sandström

– For all propositional formulas the claim holds, since F (0) = (0, . . . , 0) = G(0).
– For the Boolean connectives ∧ and ∼ the claim follows immediately from the

induction hypothesis.
– The case for the splitjunction ∨ is an immediate consequence of the induction

hypothesis and Lemma 1.
– For the case of the until operator U , we only show ⇒, since the other direction

is symmetric. Assume T |= ψUθ, i.e. there is a configuration i of T such that
T [i,∞) |= θ and T [j,∞) |= ψ for all configurations j < i. We aim to show
that T ′ |= ψUθ. By Lemma 2 we know that there is a configuration c in
accordance with the stuttering function F such that T [c,∞) |= θ and c ≤ i,
and there is a configuration k of T ′ such that T [i,∞) ≡a

st T ′[k,∞), which is in
accordance with the stuttering function G. Thus by the induction hypothesis
T ′[k,∞) |= θ. We still need to show that T ′[l,∞) |= ψ for all l < k. If k(t) = 0
for all t ∈ T ′, then we are done. If not, choose an arbitrary configuration l < k.
Now by Lemma 2 there is a configuration c′ in accordance with the stuttering
function G such that c′ ≤ l and T ′[c′,∞) ≡a

st T ′[l,∞), and a configuration p
of T such that T ′[c′,∞) ≡a

st T [p,∞). Now c′ ≤ l < k, and thus p < c ≤ i.
Therefore T [p,∞) |= ψ, and by the induction hypothesis, also T ′[l,∞) |= ψ.

Example 1. We show that asynchronous stutter-equivalence does not imply syn-
chronous stutter-equivalence. Consider the teams T = {{∅}{p}ω, {∅}{∅}{p}ω}
and T ′ = {{∅}{p}ω}. These two teams are asynchronously stutter-equivalent,
as witnessed by the asynchronous stuttering functions F (n) = (f1, f2) and
G(n) = n, where f1(n) = n and

f2(n) =

{
n if n = 0
n + 1 otherwise.

On the other hand, synchronously stutter-equivalent teams necessarily have the
same cardinality hence T and T ′ are not synchronously stutter-equivalent [14].

Now for all X-free TeamLTLa(∼) formulas ϕ, T |= ϕ if and only if T ′ |= ϕ,
however T �

s Fp and T ′ |=s Fp, which indicates that the TeamLTLs formula
Fp cannot be expressed by any X-free formula of TeamLTLa(∼).

5 SO Versus Arithmetic Definability

The translations given in the previous section show that both TeamLTLs(∼)
and TeamLTLa(∼) can be embedded into three-variable fragments of first-order
team logic (which is known to be equi-expressive with second-order logic). In this
section we compare second-order logic and arithmetic as formalisms for defining
hyperproperties.

We begin by showing that any SO-definable trace property can be also defined
in third-order arithmetic. The analogous result relating TeamLTLs(∼) proper-
ties to third-order arithmetic was shown in [14]. In arithmetic, a set T can be
represented by a third-order relation. Before going to the results, we briefly dis-
cuss third-order arithmetic (see, e.g., [12]). The standard model of arithmetic

On the Expressive Power of TeamLTL and First-Order Team Logic 311

is denoted by (N,+,×,≤ 0, 1). A third-order type is a tuple τ = (n1, . . . , nk),
for natural numbers k, n1, . . . , nk ≥ 1. For each type τ , we adopt a countable
set of τ -variables Vτ := {a, b, c, . . .}, which are interpreted by third-order objects
whose type is determined by τ . Syntactically, third-order logic extends the (more
familiar) language of second-order logic by

– new atomic formulas of the form a(A1, . . . , Ak), where for a of type τ =
(n1, . . . , nk), Ai is a relation symbol of arity ni for 1 ≤ i ≤ k,

– existential and universal quantification over third-order variables a.

For a type τ = (n1, . . . , nk), the third-order objects a vary over elements A of
the set

P(P(Nn1) × · · · × P(Nnk))

The set of all formulas of third-order arithmetic, i.e., third-order formulas
over the vocabulary {+,×, 0, 1,=,≤} is denoted by Δ3

0 (and second-order arith-
metic by Δ2

0). The subset of Δ3
0 -sentences true in (N,+,×,≤ 0, 1) is denoted

by a boldface letter Δ3
0 (analogously Δ2

0).
We are now ready to define the encoding of a team T using suitable arith-

metical relations. We identify the proposition pi with number i and encode a
trace t by a binary relation S that (j, k) ∈ S iff pk ∈ t(j). Now clearly a team T
can be encoded by a third-order object AT ⊆ P(N2) of type ((2)).

Theorem 4. Let ϕ ∈ SO be a sentence. Then there exists a formula Tr(ϕ)(a)
of Δ3

0 such that for all trace sets T :

MT |= ϕ ⇐⇒ (N,+,×,≤ 0, 1) |= Tr(ϕ)(AT /a),

where MT is defined as in Sect. 3.1.

Proof. See the Appendix.

Next we consider the special case of countable teams T . In this case we can
precisely characterize SO-definable hyperproperties arithmetically. Assume that
T is countable, i.e., T = {ti | i ∈ N} or T = {ti | 0 ≤ i ≤ n} for some n. Now T
can be encoded by a single ternary relation such that

(i, j, k) ∈ AT ⇐⇒ pk ∈ ti(j). (1)

In order to encode also the cardinality of T , we let AT ⊆ N
4 to consist of the

tuples
(0, i, j, k) ∈ AT ⇐⇒ pk ∈ ti(j)

together with (1, n, n, n) if n = |T |. It is now straightforward to modify the
translation Tr in such a way that Tr′(ϕ) becomes a Δ2

0-formula as now an element
of the domain T×N can be encoded by a pair (i, j) (recall (1)) and a k-ary relation
X ⊆ (T × N)k directly by a 2k-ary relation RX ⊆ N

2k. Define a translation Tr′

inductively as follows. Below i is a definable constant.

Tr′(x = y) := x1 = y1 ∧ x2 = y2

Tr′(x ≤ y) := x1 = y1 ∧ x2 ≤ y2

Tr′(Pi(x)) := RT (0, x1, x2, i)

Tr′(X(x1, . . . , xk)) := RX(x1
1, x

1
2, . . . , x

k
1 , x

k
2)

Tr′(∃xϕ) := ∃x1∃x2(θ1 ∧ Tr′(ϕ))
Tr′(∃Xϕ) := ∃RX(θ2 ∧ Tr′(ϕ))

312 J. Kontinen and M. Sandström

Above the formula θ1 restricts the values of x1, x2 (θ2 analogously restricts RX)
to range either over N

2 or {0, 1, . . . , n} × N depending on whether T is infinite
or finite (which can be detected by the existence of a tuple (1, n, n, n) ∈ T). The
following theorem can be now proved analogously to Theorem 4.

Theorem 5. Let ϕ ∈ SO be a sentence. Then there exists a formula Tr′(ϕ)(RT)
of Δ2

0 such that for all countable trace sets T :

MT |= ϕ ⇐⇒ (N,+,×,≤ 0, 1) |= Tr′(ϕ)(AT /RT).

The above translation is quite simple due to the fact that only the representation
of T changes but the logic remains the same. It is worth noting though that in
arithmetic we can, e.g., express a property

T = {ti | ti(i) = {pi} and ti(j) = ∅ for j �= i and i, j ∈ N}
that addresses infinitely many propositions pi whereas over MT only finitely
many of the propositions can be mentioned in a formula via the relations Pi.
Another difference between the representations is that in arithmetic the team
T is always naturally ordered whereas MT carries no ordering for the traces. It
turns out that these properties are the only obstacles for proving a converse of
Theorem 5. Below I is either N or {0, 1, . . . , n} for some n.

Definition 8. Let ϕ(R) ∈ Δ2
0 be a formula. The formula ϕ(R) is called trace-

order invariant if for all countable teams T = (ti)i∈I and all permutations f : I →
I:

(N,+,×,≤ 0, 1) |= ϕ(AT /R) ↔ ϕ(AT f /R)

where T f = (tf(i))i∈I .

Theorem 6. Let ϕ(R) ∈ Δ2
0 be trace-order invariant and let AP be finite. Then

there exists a SO-sentence ψ such that for all countable trace sets T over AP:

MT |= ψ ⇐⇒ (N,+,×,≤ 0, 1) |= ϕ(AT /R).

Proof. Let T = (ti)i∈I where I = {0, . . . , n} for some n or I = N. Let us assume
first that the structure MT is also equipped with some linear ordering ≤t of
the elements {(ti, 0) | i ∈ I}. Now the set {(t0, i) | i ∈ N} (which is linearly
ordered by ≤) can be treated as an isomorphic copy of N over which we can
interpret the structure (N,+,×,≤ 0, 1) (the predicates + and × can be defined
using second-order existential quantification.) Now the following formulas can
be constructed utilizing the “dual” of this interpretation (see e.g., [8]):

– A formula θ(x, y, u, v) that defines (an isomorphic copy of) the relation AT

from the information in the structure MT . For this an order preserving
bijection f between (an initial segment of) {(t0, i) | i ∈ N} and the set
{(ti, 0) | i ∈ I} and an equal-level predicate E can be first existentially quan-
tified. The formula then asserts that

∨

pk∈AP

(
x = 0 ∧ v = k ∧ ∃z(Pk(z) ∧ f(y) ≤ z ∧ E(u, z))

)
.

On the Expressive Power of TeamLTL and First-Order Team Logic 313

Note that the finiteness of AP is crucial for this to work and that f(y) ≤ z
guarantees that the index of the trace of z equals y.

– A sentence ψ that expresses that

(N,+,×,≤ 0, 1) |= ϕ(AT /R)

using the formula for AT .

Finally we can get rid of the ordering ≤t using second-order existential quantifi-
cation as the set {(t, 0) | t ∈ T} is a definable subset of T ×N. Now the sentence
∃ ≤t ψ will satisfy the claim of the theorem.

6 Complexity of Model Checking and Satisfiability

In this section we apply our results to characterize the complexity of model
checking and satisfiability for first-order team logic and some of its variable
fragments for hyperproperties (i.e., over structures MT).

For the model checking problem it is asked whether a team of traces generated
by a given finite Kripke structure satisfies a given formula. We consider Kripke
structures of the form K = (W,R, η, w0), where W is a finite set of states,
R ⊆ W 2 a left-total transition relation, η : W → 2AP a labelling function, and
w0 ∈ W an initial state of W . A path σ through K is an infinite sequence
σ ∈ Wω such that σ[0] = w0 and (σ[i], σ[i + 1]) ∈ R for every i ≥ 0. The trace
of σ is defined as t(σ) := η(σ[0])η(σ[1]) · · · ∈ (2AP)ω. A Kripke structure K then
induces a trace set Traces(K) = {t(σ) | σ is a path through K}.

Definition 9. 1. The model checking problem of a logic L is the following deci-
sion problem: Given a formula ϕ ∈ L and a Kripke structure K over AP,
determine whether Traces(K) |= ϕ,

2. The (countable) satisfiability problem of a logic L is the following decision
problem: Given a formula ϕ ∈ L, determine whether T |= ϕ for some (count-
able) T �= ∅.
In [14] Lück gave a complete picture of the complexity properties of syn-

chronous TeamLTL(∼). By combining Lück’s results with ours, we are able to
show the following. Below FO3(=(. . .) ,∼) is assumed to be equipped with the
equal-level predicate E.

Theorem 7. 1. The model checking and satisfiability problems of first-order
team logic FO(=(. . .) ,∼), its three-variable fragment FO3(=(. . .) ,∼), and
SO are equivalent to Δ3

0 under logspace-reductions.
2. The countable satisfiability problem of FO(=(. . .) ,∼), its three-variable frag-

ment FO3(=(. . .) ,∼), and SO is equivalent to Δ2
0 under logspace-reductions.

3. The model checking and (countable) satisfiability problems of TeamLTLa(∼)
are logspace-reducible to Δ3

0 (Δ2
0).

314 J. Kontinen and M. Sandström

Proof. In each of the logics the results follow by utilizing the results of [14]
and the translations given in the previous sections. Let us consider the claim
for satisfiability in 1. Note first that by Theorem 2 the satisfiability problem
of TeamLTLs(∼) can be easily reduced to that of FO3(=(. . .) ,∼) implying a
logspace-reduction from Δ3

0 to the satisfiability problem of FO3(=(. . .) ,∼). On
the other hand, any sentence ϕ of FO3(=(. . .) ,∼) can be first translated to
an equivalent SO-sentence ϕ∗ [9], and then, using Theorem 4, we see that ϕ is
satisfiable iff

(N,+,×,≤ 0, 1) |= ∃a(a �= ∅ ∧ Tr(ϕ∗)).

For model checking we note that a logspace-reduction from Δ3
0 to the model

checking problem of FO3(=(. . .) ,∼) can be obtained just like with satisfiability
above. On the other hand, by Theorem 4.3 in [14] it is possible to construct
(in logspace) a Δ3

0-formula ψK(a) defining the set Traces(K) for any finite K =
(W,R, η, w0). Hence now for any given sentence ϕ ∈ SO and K it holds that

MTraces(K) |= ϕ ⇐⇒ (N,+,×,≤ 0, 1) |= ∃a(ψK(a) ∧ Tr(ϕ)).

Hence the model checking problem of SO, FO(=(. . .) ,∼), and FO3(=(. . .) ,∼)
reduces to Δ3

0.
Finally Claim 3 follows by 1 and 2 and the fact that TeamLTLa(∼) can be

translated into SO by Theorem 1.

It is worth noting that the previous theorem can be extended to any logic L
effectively residing between:

TeamLTLs(∼) ≤ L ≤ SO.

This is a potent result, as the upper bound for many hyperlogics have not as
of yet been studied.

7 Conclusion and Future Work

We have studied TeamLTL(∼) under both synchronous and asynchronous
semantics, showing through compositional translations embeddings into first-
order team logic and second-order logic. Furthermore, using these translations
we were able to transfer the known complexity properties of TeamLTLs(∼) to
various logics that reside between TeamLTLs(∼) and second-order logic. Many
questions remain such as:

– How does TeamLTLa(∼) relate to the recently defined asynchronous variant
of HyperLTL [1]?

– Is it possible to find a non-trivial extension of TeamLTLa that translates
to FO(∼) or to the extension of FO by constancy atoms? This would be
interesting as both of the logics collapse to FO for sentences.

On the Expressive Power of TeamLTL and First-Order Team Logic 315

– What is the relationship of the logics TeamLTLs(∼) and TeamLTLa(∼); by
our result the synchronous Fp cannot be expressed in TeamLTLa(∼) by any
X-free formula and, on the other hand, asynchronous Fp cannot be expressed
by any TeamLTLs-formula even if the Boolean disjunction is allowed in the
formulas (see Proposition 8 in [18]).

Acknowledgements. This research was supported by the Finnish Academy (grants
308712 and 322795).

Appendix

Proofs

Proof (Sketch of the proof of Theorem 1). Let T ′ ⊆ T and i : T ′ → N. We use T ′

and i as a means to refer to any team that might be relevant for the evaluation of
TeamLTLa(∼) formulas when starting the evaluation with T . On the first-order
side the corresponding team will be

Sx
T ′,i := {s | s(x) = (t, i(t)) and t ∈ T ′}.

We can now show using simultaneous induction on ϕ that for all T ′ ⊆ T , i : T ′ →
N, and u ∈ {x, y, z}

{t[i(t),∞) | t ∈ T ′} |= ϕ ⇔ MT |=Su
T ′,i

STu(ϕ).

– Assume ϕ = pi and T ′ ⊆ T , i : T ′ → N are arbitrary. Now

{t[i(t),∞) | t ∈ T ′} |= ϕ ⇔ pi ∈ t(i(t)) for all t ∈ T ′

⇔ (t, i(t)) ∈ PMT
i for all t ∈ T ′

⇔ MT |=Sx
T ′,i

Pi(x)

⇔ MT |=Sx
T ′,i

STx(ϕ)

Note that the second equivalence holds by the definition of the structure MT

and the third equivalence by first-order team semantics of atomic formulas.
– Assume ϕ = Xψ and T ′ ⊆ T and i : T ′ → N are arbitrary. Let i+ be defined

by i+(t) := i(t) + 1 for all t. Now

{t[i(t),∞) | t ∈ T ′} |= ϕ ⇔ {t[i+(t),∞) | t ∈ T ′} |= ψ

⇔ MT |=Sy

T ′,i+
STy(ψ)

⇔ MT |=Sx
T ′,i

∃y(S(x, y) ∧ STy(ψ))

⇔ MT |=Sx
T ′,i

STx(Xϕ)

The second equivalence above holds by the induction assumption for STy(ψ).
For the the third equivalence we use the facts that the supplementation func-
tion F for y is uniquely determined by the formula and x is not free in STy(ψ).
Note that by locality it holds that

MT |=Sx
T ′,i[F/y] STy(ψ) ⇔ MT |=Sy

T ′,i+
STy(ψ),

316 J. Kontinen and M. Sandström

since Sy
T ′,i+ is the reduct of Sx

T ′,i[F/y] to the team with domain {y}.

The proof for the connectives is straightforward and for the temporal operator
U it is similar to the case of X.

Proof (Proof of Corollary 1). We show that T |= ϕ if and only if MT |= ψ,
where ψ is the sentence:

∀x(∃y(y < x) ∨ (∀y(¬y < x) ∧ STx(ϕ))).

Note that

MT |= ψ ⇔ MT |={∅}[dom(MT)/x] ∃y(y < x) ∨ (∀y¬(y < x) ∧ STx(ϕ)).
⇔ MT |=Sx

T
STx(ϕ).

In the second line the team {∅}[dom(MT)/]x] (i.e., dom(MT)) has to be split
into two disjoint parts: the subset of elements having a predecessor and to those
not having a predecessor (= Sx

T). The first disjunct is then trivially satisfied (by
flatness it behaves classically) hence we arrive at the case which is equivalent to
T |= ϕ by Theorem 1.

Proof (Proof of Lemma 1). Suppose 2. Now T = T ∪ ∅, however the empty set
is only stutter equivalent to itself. Thus T ≡a

st T ′.
Suppose 1 and suppose that T = T1∪T2, hence we have asynchronous stutter-

ing functions F of T and G of T ′, such that T [F] = U = T ′[G]. We consider the
subteams induced by the stuttering function, i.e. Ti[F |Ti]. Since T [F] = T ′[G],
there exist subteams T ′

1, T
′
2 such that T ′

i [G|T ′
i] = Ti[F |Ti]. Thus Ti ≡a

st T ′
i .

It remains to show that the subteams T ′
1 and T ′

2 constitute the entirety of
the team T ′. It is clear that T ′

1∪T ′
2 ⊂ T ′, so it remains to show the converse. Let

t′ ∈ T ′. Now, since T ≡a
st T ′, there exists a t ∈ T such that t[F |{t}] = t′[G|{t′}].

By our assumption, the trace t belongs to either T1 or T2. Without loss of
generality we may assume that t ∈ T1, but then t′[G|{t′}] ∈ T ′

1[G|T ′
1]. Since the

team T ′ is a set, i.e. it does not contain duplicates, we may conclude that t′ ∈ T ′.

Proof (Proof of Lemma 2). By the definition of the asynchronous stuttering
function, for each coordinate of j(t) there exists a constant at such that ft(at) ≤
j(t) and t(ft(at)) = t(j(t)). Let i be the configuration defined by i(t) = ft(at).
Now we can use the stuttering function F to construct stuttering functions F ′

and F ′′ for T [i,∞) and T [j,∞) respectively. First of we define F ′ via f ′
t(n) =

ft(n + at) for all t ∈ T , which clearly is a stuttering function of T [i,∞). Next
we define

F ′′(n) =

{
(j(t))t∈T if n = 0
F ′(n) otherwise.

Since t(ft(at)) = t(i(t)) = t(j(t)) for all t ∈ T , it follows that T [i,∞)[F ′] =
T [j,∞)[F ′′]. Thus T [i,∞) ≡a

st T [j,∞).

On the Expressive Power of TeamLTL and First-Order Team Logic 317

For the second claim we use the assumption that T ≡a
st T ′. We let the

configuration i be as above. Now for all n, t ∈ T and t′ ∈ T ′ it holds that
t(ft(n)) = t′(gt′(n)). Thus there exists some configuration k : T ′ → N such that
t′(gt′(k(t′))) = t(ft(i(t))), which allows us to define the stuttering function G′

of T ′[k,∞) as g′
t′(n) = gt′(n + k(t′)) for all t′ ∈ T ′. Clearly now T ′[k,∞)[G′] =

T [i,∞)[F ′], and hence T [i,∞) ≡a
st T ′[k,∞).

Proof (Proof of Theorem 4). We define a inductive translation Tr from second-
order logic to third order arithmetic as follows. The key ideas in the translation
are:

– an element of the domain T×N of the structure MT can be uniquely identified
by specifying a trace t and i ∈ N. Hence, syntactically, a first-order variable
x can be encoded by a pair of variables (Rx, zx) where Rx is a binary relation
and zx is a first-order variable;

– a subset of T × N is a set of pairs (t, i) and hence in the translation a unary
relation X is encoded by a third-order variable bX of type ((2), (1)), where
the unary relation encodes i by the singleton {i}.

Define now a formula translation Tr as follows. We omit below the obvious cases
of the Boolean connectives and, for clarity, we consider only unary relations X
on the side of SO. It is straightforward to write the corresponding translations
also for relations of arbitrary arities.

Tr(x = y) := ∀u∀v(Rx(u, v) ↔
Ry(u, v)) ∧ zx = zy

Tr(x ≤ y) := ∀u∀v(Rx(u, v) ↔
Ry(u, v)) ∧ zx ≤ zy

Tr(Pi(x)) := a(Rx) ∧ Rx(zx, i)

Tr(X(x)) := ∃Y (bX(Rx, Y) ∧ Y = {zx})
Tr(∃xϕ) := ∃Rx∃zx(a(Rx) ∧ Tr(ϕ))
Tr(∃Xϕ) := ∃bX(∀R∀Y (bX(R, Y) → a(R)∧

|Y | = 1) ∧ Tr(ϕ))

In the above formulas, i denotes a (definable) constant. It is now straightforward
to show using induction on ϕ that for all s and s∗:

MT |=s ϕ ⇐⇒ (N,+,×,≤ 0, 1) |=s∗ Tr(ϕ)(AT /a),

where the interpretations s and s∗ relate to each other as described above.

References

1. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. CoRR abs/2104.14025 (2021)

2. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

3. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15

318 J. Kontinen and M. Sandström

4. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019, pp. 1–13. IEEE (2019)

5. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In:
Vollmer, H., Vallée, B. (eds.) STACS 2017, LIPIcs, vol. 66, pp. 30:1–30:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2017)

6. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some
logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)

7. Galliani, P.: Epistemic operators in dependence logic. Stud. Log. 101(2), 367–397
(2013). https://doi.org/10.1007/s11225-013-9478-3

8. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science,
Springer, Heidelberg (1999)

9. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Inform.
106(2–4), 259–272 (2011)

10. Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: TIME 2015,
pp. 140–149 (2015). https://doi.org/10.1109/TIME.2015.11

11. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-
ification and verification of hyperproperties. In: Potapov, I., Spirakis, P., Worrell,
J. (eds.) MFCS 2018, vol. 117, pp. 10:1–10:16. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2018)

12. Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A.,
Siekmann, J.H. (eds.) Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, vol. 2, pp. 229–322. Oxford University Press, Oxford (1994)

13. Lück, M.: Axiomatizations of team logics. Ann. Pure Appl. Log. 169(9), 928–969
(2018). https://doi.org/10.1016/j.apal.2018.04.010

14. Lück, M.: On the complexity of linear temporal logic with team semantics. Theor.
Comput. Sci. 837, 1–25 (2020)

15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE Computer Society (1977)

16. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis,
Saarland University (2016)

17. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
18. Virtema, J., Hofmann, J., Finkbeiner, B., Kontinen, J., Yang, F.: Linear-

time temporal logic with team semantics: Expressivity and complexity. CoRR
abs/2010.03311 (2020)

https://doi.org/10.1007/s11225-013-9478-3
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.1016/j.apal.2018.04.010

Characterizations for XPathR(↓)

Nicolás González1 and Sergio Abriola1,2(B)

1 University of Buenos Aires, Buenos Aires, Argentina
sabriola@dc.uba.ar

2 ICC-CONICET, Buenos Aires, Argentina

Abstract. Over the semantic universe of trees augmented with arbi-
trary sets of relations between nodes, we study model-theoretic proper-
ties of the extension XPathR(↓) of the downward fragment of XPath,
equipped with a finite set R of relation symbols. We introduce an ade-
quate notion of bisimulation, dependant on the set of relations R in con-
sideration, and show a characterization result in the style of Hennessy-
Milner’s, relating bisimulation and logical equivalence and showing that
both coincide over finitely branching R-trees. Furthermore, we also give
a van Benthem-like theorem characterizing each XPathR(↓) as the frag-
ment of first-order logic (over an adequate signature) with one free vari-
able that is R-bisimulation-invariant. Finally, we show that our results
are also valid when applied to universes of trees with some fixed semantics
for the symbols of R. This contains in particular the case of XPath=(↓)
over data trees.

Keywords: XPath · Bisimulation · Characterization · Data logics

1 Introduction

XPath is the most widely used query language for XML documents; it is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommenda-
tion [1]. XPath has syntactic operators to navigate the tree using accessibility
relations such as ‘child’, ‘parent’, ‘sibling’, et cetera, and can make tests on inter-
mediate nodes. Core-XPath [2] is the fragment of XPath 1.0 containing only the
navigational behavior of XPath. Core-XPath can express properties on nodes
with respect to the underlying tree structure of the XML document, such as
‘nodes with label b’, or ‘nodes that have both a child with label a and a grand-
child with label b’. It can also express properties on paths along the tree such as
‘the ending node is the grandchild of the starting node’, or ‘the initial node has
label a and has a child with a, and the ending node is the grandparent of the
starting node’. The first type of formulas are evaluated on individual nodes and
are called node expressions, while the formulas of the second type are evaluated
on pairs of nodes and are called path expressions. However, Core-XPath cannot
express conditions on the actual data contained in the attributes, such as with a
node expression saying ‘this node has two children with different data values’, or
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 319–336, 2021.
https://doi.org/10.1007/978-3-030-88853-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_20

320 N. González and S. Abriola

‘the value of this node coincides with the value of some descendant’. In contrast,
Core-Data-XPath [3] (which we here call simply XPath=) can perform these data
comparisons. Indeed, XPath= is the extension of Core-XPath with the addition
of (in)equality tests between attributes of elements in an XML document.

In the paper [4], the expressive power of fragments of XPath= was studied,
from a logical and model-theoretical point of view, when the set of navegational
axes was taken among ↓, ↑, and the reflexive-transitive closure of those axes. In
that work, the semantic universe of study was that of data trees, whose nodes
have a single label taken from a finite alphabet and a single data value from an
infinite domain. A focus of study in that work was that of bisimulation, which is
a classic tool of modal logics, used to determine equivalence between relational
models. A node x of a data tree T and a node x′ of a data tree T ′ are said to be
bisimilar if they satisfy some special (depending of the studied fragment) back-
and-forth conditions over the structure of the data tree. In [4], suitable notions
of bisimulation were deviced for the XPath= fragments under considerations.
Then, showing a characterization result in the style of the Hennessy-Milner’s
theorem for Basic Modal Logic[6], it was proven that if x and x′ are bisimilar
then they satisfy exactly the same node expressions, and that the converse is
also true for trees whose every node only has a finite number of children. Hence,
bisimulation coincides with logical equivalence, i.e., with indistinguishability by
means of node expressions. The paper [4] also stated and proved theorems in
the style of van Benthem’s for Basic Modal Logic [7], but in the context of
XPath=. One of these theorems states that the downward fragment of XPath=

coincides with the bisimulation-invariant fragment of first-order logic with one
free variable (over the adequate signature). For the case of the vertical fragment
of XPath=, this characterization fails, but a weaker result is proved instead.

In [5], the study of bisimulation for XPath= was expanded in order to encom-
pass bisimulation notions over two-pointed data trees (i.e. a data tree and two
specified nodes), giving a bisimulation notion for the downward and the vertical
fragment of XPath= over two-pointed data trees, and proving the correspond-
ing characterization results between logical equivalence and bisimulation. In this
way, the paper expanded the results of [4] from the domain of node expressions
to that of path expressions.

In the current work we focus our study in a family of generalizations of
XPath=(↓), which includes not only the capability of comparing the end nodes
of two paths by data (in)equality, but also checking for other types of arbitrary
n-ary predicates over nodes at the end nodes of n paths. Given a fixed set R
of relation symbols with their arity, we generalize the concept of data trees to
encompass arbitrary relations between nodes, and study the logic XPathR(↓)
over this universe. We give a general suitable bisimulation notion for these R
fragments, and show a Hennessy-Milner-like characterization result connecting
this notion with that of logical equivalence. Furthermore, we provide a theorem
in the style of van Benthem’s result for Basic Modal Logic, thus characterizing
these logics as fragments of first-order logic whose formulas are invariant under
this new notion of bisimulation. While we initially state these results for the

Characterizations for XPathR(↓) 321

case of the full universe with no semantic restrictions, in the end we show that
restricting ourselves to some universes of data trees preserves our results.

2 Preliminaries

A data tree is a directed tree whose nodes have a single label from a finite alpha-
bet and a single data value from a (possibly infinite) data domain. XPath=(↓) is
a logic that can express properties about these structures, for instance, we can
say if a node has or not certain label or if a node is a child of another via the
child axis ↓. The most important capabilities of this logic lie in its data tests
〈α = β〉 or 〈α �= β〉, which can compare the data values of two nodes. More
precisely, a node satisfying 〈α = β〉 (resp. 〈α �= β〉) means that there are paths
from it such that the first one satisfies α, the second one satisfies β and their
final points have equal (resp. non-equal) data value. Having the same data value
can be thought of as a binary equivalence relation between nodes, so a natural
question that arises is the possibility of extending the types of comparisons that
can be made at the end of paths.

Fixed R, XPathR(↓) is an extension of XPath=(↓) in the sense that now it can
allow relations with arbitrary arity (not necessarily binary) between final points
of paths from a certain node of a tree. Here, formulas of the type 〈α1, α2, . . . , αn〉r

express this type of operation, where r represents a particular relation symbol
and R is the set of such symbols. In this context, the data test ϕ := 〈α = β〉 can
be re-expressed as 〈α, β〉=d

where the sub index =d can be interpreted over a
data tree as the equivalence relation of having same data value. Similarly, a label
test ϕ := a can be re-expressed as 〈ε〉a, where a is an unary relation symbol.

Initially, we will consider that the universe of the models for XPathR(↓) is
still that of trees, but extended with an arbitrary relation over nodes for each
r ∈ R (with its respective arity). We call these models R-trees.

Definition 1. Let R be a finite and non-empty set of relational symbols with
arities given by the function A : R → N≥1. The formulas of XPathR(↓) are
defined by the grammar below:

ϕ,ψ = ϕ ∧ ψ | ¬ϕ | 〈α1, α2, . . . , αA(r)〉r | 〈α1, α2, . . . , αA(r)〉r r ∈ R
α, β = ε | ↓ | αβ | α ∪ β | [ϕ]

The first row generates the node expressions, and the second one, the path
expressions: 〈α1, α2, . . . , αA(r)〉r and 〈α1, α2, . . . , αA(r)〉r are called path tests
where αi is a path expression for all i ∈ {1, 2, . . . ,A(r)}; αβ and α ∪ β are
respectively the concatenation and union between α and β; [ϕ] are node tests
(as part of a path expression) where ϕ is a node expression; and the symbols ε
and ↓ are the self and child axes, respectively.

As usual we use ϕ ∨ ψ as a shorthand for ¬(¬ϕ ∧ ¬ψ). By R we indicate
the set of the complement symbols r with r ∈ R and extend A to R ∪ R as
A(r) := A(r) for r ∈ R.

322 N. González and S. Abriola

From now on, we consider a fixed R �= ∅, a family of predicate symbols as in
Definition 1.

Definition 2. An R-tree T = 〈T,E↓, {Rr}r∈R〉 is a set T with a binary rela-
tion E↓ ⊆ T 2 such that 〈T,E↓〉 is a rooted tree, and with a family of relations
{Rr}r∈R, where Rr ⊆ TA(r). We use Rr to abbreviate the complement of Rr,
that is, Rr := T A(r) \ Rr . If x, y ∈ T , the pair (T , x) is called a pointed
model, and (T , x, y) is called a two-pointed model.

Note 1. To simplify the notation when there is no risk of confusion, we will often
simply use r to refer to the semantics Rr corresponding to the R-tree currently
in discussion.

In some cases when a is an unary symbol, we might simply write a instead
of the node expression 〈ε〉a.

Example 1. Let us consider T = 〈T,E↓, {a, b, c,=n,=w}〉 a representation of
a very simple and brief bibliographical database as in Fig. 1. Here a, b, c are
unary predicates (representing in T that a node is an author, book, or chapter,
respectively. =n,=w are binary predicates, which express in T when two nodes
have the same numerical value for =n, or the same word for =w.

Fig. 1. A representation of a bibliographical database as in Example 1, via a tree whose
nodes contain both a numeric and lexical value and where nodes can belong to any of
three types of unary relations ((a)uthor), (b)ook, (c)hapter).

Characterizations for XPathR(↓) 323

Definition 3. We now give the interpretation of the symbols from Definition 1
over an R-tree T = 〈T,E↓, {Rr}r∈R〉.

[[ε]]T := {(x, y) ∈ T 2 | x = y} [[↓]]T := E↓ [[[ϕ]]]T := {(x, x) ∈ T 2 | x ∈ [[ϕ]]T }
[[αβ]]T := [[α]]T ◦ [[β]]T [[α ∪ β]]T := [[α]]T ∪ [[β]]T
[[ϕ ∧ ψ]]T := [[ϕ]]T ∩ [[ψ]]T [[¬ϕ]]T := T \ [[ϕ]]T

[[〈α1, α2, . . . , αn〉r]]T := {x ∈ T | ∃y1, y2, . . . , yn ∈ T ∀i ∈ {1, 2, . . . , n}
(x, yi) ∈ [[αi]]T ∧ Rr(y1, y2, . . . , yn)}

[[〈α1, α2, . . . , αn〉r]]T := {x ∈ T | ∃y1, y2, . . . , yn ∈ T ∀i ∈ {1, 2, . . . , n}
(x, yi) ∈ [[αi]]T ∧ Rr(y1, y2, . . . , yn)}

If ϕ is a node expression and α a path expression, then we write (T , x) |= ϕ
iff x ∈ [[ϕ]]T and (T , x, y) |= α iff (x, y) ∈ [[α]]T .

Remark 1. Note that we can express the node property 〈α〉, which indicates that
from a node it is possible to descend to some node via the path expression α.
Indeed, we can see that for any r ∈ R, the following formula expresses the desired
property: 〈α, . . . , α〉r ∨ 〈α, . . . , α〉r.

We can also define a node expression that is true on any node, irrespective of
the semantics of the tree: take any r ∈ R and define � := 〈ε, . . . , ε〉r ∨〈ε, . . . , ε〉r.

Example 2. From the root t0 of the database represented in Fig. 1, we could ask
whether there is an author having the same name as some book title. The answer
to this depends on whether (T , t0) |= 〈↓ [〈ε〉a], ↓↓ [〈ε〉b]〉=w

. From what we can
see in the graphical representation, this does not happen, as we can see that
[[〈↓ [〈ε〉a], ↓↓ [〈ε〉b]〉=w

]]T = ∅.
Note that here (as in some types of data logics) asking whether there are two

different nodes with the same data value is in general not possible. For example,
[[a ∧ 〈↓, ↓〉=n

]]T (see Note 1) will contain any node that corresponds to an author
that has written a book, since there is no guarantee that the two witnesses of ↓
are different. Indeed, in the figure [[〈ε〉a ∧ 〈↓, ↓〉=n

]]T would contain the node of
Alexandre Dumas, even though it has only one book child.

Example 3. Consider an extension of T and R including the binary predicate
=d

n, such that over T , x =d
n y iff (x =n y and x �= y). Now we can express in T

properties such as ‘this author has two different books with the same number of
pages’, via ϕ : a ∧ 〈↓, ↓〉=d

n
.

Definition 4. Two expressions η1 and η2 of the same type (node or path expres-
sion) are said to be semantically equivalent, written η1 ≡ η2 if for all T we
have that [[η1]]T = [[η2]]T .

Remark 2. It easy to see that the semantic equivalence is preserved by any syn-
tactic construction. That is, negating two equivalent node expression results in
equivalent node expressions, concatenating a path expression to two different
but equivalent path expressions results in two equivalent path expressions, etc.

324 N. González and S. Abriola

Remark 3. Let γ = γ1, . . . , γk and γ′ = γk+1, . . . , γn be finite (and potentially
empty) sequences of path expressions. For all α and β path expressions and for
all ∗ ∈ R ∪ R with A(∗) = n + 1 we have that

〈γ, α ∪ β, γ′〉∗ ≡ 〈γ, α, γ′〉∗ ∨ 〈γ, β, γ′〉∗

Guided by this fact, we will re-define XPathR(↓) as the fragment of the orig-
inal one (Definition 1) where we do not include the rule α ∪ β in the grammar.
That is, the fragment whose path expressions do not have the symbol ∪ in their
syntax. Even though this union-free fragment is less expressive when consid-
ering both path and node expressions, the expressive power remains the same as
the full fragment when considering only pointed models and node expressions,
because of the semantic equivalence given in Remark 3.

We now give the definition of direct path expressions, which are path expres-
sions without unnecessary concatenations of symbols. This definition is used
later to define normal expressions, whose purpose is to simplify the proofs by
induction.

Definition 5. A direct path expression α is a path expression of the form
α = ε or α =↓ ξ1 ↓ . . . ↓ ξn where each ξi is an empty string or a node test.

A normal expression is one with all the path expressions in its path tests
being direct. We will formally define this idea by means the operator sub(−).

Definition 6. For a formula η we denote by sub(η) the set defined recursively
as follows:

sub(ε) = sub(↓) := ∅ sub(αβ) := sub(α) ∪ sub(β)
sub(¬ϕ) = sub([ϕ]) := sub(ϕ) sub(ϕ ∧ ψ) := sub(ϕ) ∪ sub(ψ)

sub(〈α1, α2, . . . , αn〉∗) := {α1, α2, . . . , αn} ∪
n⋃

i=1

sub(αi) for ∗ ∈ R ∪ R

Definition 7. A formula η is a normal expression if all the path expressions
in sub(η) ∪ {η} are direct.

The downward depth of an expression measures the maximum depth from
the current point of evaluation that the formula could potentially ‘see’. The
idea is that, when analysing such an expression over a particular point or pair
of points, nodes that are further down than this depth have no effect on the
resulting truth value of the expression.

Definition 8. The downward depth of η denoted by dd(η) is the number
defined as follows:

dd(¬ϕ) := dd(ϕ) dd(ϕ ∧ ψ) := max{dd(ϕ), dd(ψ)}
dd(λ) := 0 where λ represents the empty string
dd(εβ) := dd(β) dd([ϕ]β) := max{dd(ϕ), dd(β)} dd(↓ β) := 1 + dd(β)

dd(〈α1, α2, . . . , αn〉∗) := max{dd(α1), dd(α2), . . . , dd(αn)} for ∗ ∈ R ∪ R

Characterizations for XPathR(↓) 325

The set of all formulas with downward depth less than or equal to � ≥ 0 is written
as XPathR(↓).

Note that this definition encompasses all (union-free) formulas in XPathR(↓)
and the function dd(−) is well-defined.

Remark 4. Let γ = γ1, . . . , γk and γ′ = γk+1, . . . , γn be finite (and potentially
empty) sequences of path expressions. The following semantic equivalences also
preserve the downward depth.

1. 〈γ, [ϕ]α, γ′〉∗ ≡ ϕ ∧ 〈γ, α, γ′〉∗ ∗ ∈ R ∪ R with A(∗) = n + 1
2. εα ≡ α
3. [ϕ][ψ] ≡ [ϕ ∧ ψ]

Proposition 1. For every formula η we have that

i) If η is a node expression then there exists a normal node expression η′ with
dd(η) = dd(η′) and η ≡ η′.

ii) If η is a path expression then there exists a normal path expression η′ with
dd(η) = dd(η′) and η ≡ η′.

Proof. One can easily prove the statement by syntactic induction over η and
making use of the semantic equivalences from Remark 4.

3 Bisimulation and Equivalence

The classic Hennessy-Milner’s characterization theorem [6] for Basic Modal Logic
establishes the relation between two notions: logical equivalence and bisimilarity.
In our case, the former notion indicates when a pair of pointed models are
indistinguishable by means of node expressions. The latter intuitively ensures
that for each selection of paths in one of the models, there are copies in the
other, preserving the possible relational properties between their respective final
points.

Definition 9. Let � ≥ 0. Given (T , x) and (T ′, x′) we say that they are R�-
logically equivalent and denote it by (T , x) ≡R

� (T ′, x′) if for all node
expression ϕ ∈ XPath�

R(↓) we have that (T , x) |= ϕ, if and only if, (T ′, x′) |= ϕ.
(T , x) and (T ′, x′) are R-logically equivalent, written

(T , x) ≡R (T ′, x′), if (T , x) ≡R
� (T ′, x′) for all � ≥ 0. In other words, if

for any node expression ϕ, (T , x) |= ϕ, if and only if, (T ′, x′) |= ϕ.

Definition 10. A path μ in a tree T is a sequence μ = μ0 ↓ μ1 ↓ . . . ↓ μn where
n ≥ 0, μi ∈ T for all i ∈ {0, . . . , n} and E↓(μi, μi+1) for all i ∈ {0, 1, . . . , n− 1}.
The length len(μ) := n is the number of symbols ↓ in μ. The i-th node of μ is
[μ]i := μi and end(μ) := [μ]len(μ) is the final node of μ.

We denote by Path(T) the set of all paths μ in T . For a node x ∈ T ,
Path(T , x) are the paths μ starting from the node x, i.e., [μ]0 = x and by
Pathk(T , x) we refer to the subset of paths in Path(T , x) with length at most k.

326 N. González and S. Abriola

The concatenation μ � ν of two paths μ, ν ∈ Path(T) such that ν0 = end(μ)
is defined as [μ � ν]i := [μ]i for all i ∈ {0, . . . , len(μ)} and [μ � ν]len(μ)+i := [ν]i
for all i ∈ {0, . . . , len(ν)}.
Definition 11. Given a R-tree T and a node x ∈ T , T |x� is the R-tree whose
underlying tree is the set of nodes y ∈ T for which there exists a path μ ∈
Path�(T , x) with end(μ) = y (note that x is the root of such tree).

Remark 5. For all � ≥ 0 and R-tree T , we have that (T |x� , x) ≡R
� (T , x).

Definition 12. Let T and T ′ be R-trees. An R�-bisimulation Z = {Zk}0≤k≤�

is a family of relations Zk ⊆ T × T ′ such that for all k, for all (x, x′) ∈ Zk, and
for all n ∈ Im(A), the clauses below hold.

Zig For every selection of paths μ1, μ2, . . . , μn ∈ Pathk(T , x), there exist paths
μ′
1, μ

′
2, . . . , μ

′
n ∈ Pathk(T ′, x′) such that for all j ∈ {1, . . . , n} and for all

r ∈ R we have that:
i) len(μj) = len(μ′

j)
ii) ([μj]i, [μ′

j]i) ∈ Zk−i ∀i ∈ {0, . . . , len(μj)}
iii) Rr(end(μ1), end(μ2), . . . , end(μn)) ⇔ R′

r(end(μ′
1), end(μ′

2), . . . , end(μ′
n))

Zag For every selection of paths μ′
1, μ

′
2, . . . , μ

′
n ∈ Pathk(T ′, x′) there exist paths

μ1, μ2, . . . , μn ∈ Pathk(T , x) such that for all j ∈ {1, . . . , n} and for all r ∈ R
we have that:
i) len(μj) = len(μ′

j)
ii) ([μj]i, [μ′

j]i) ∈ Zk−i ∀i ∈ {0, . . . , len(μj)}
iii) Rr(end(μ1), end(μ2), . . . , end(μn)) ⇔ R′

r(end(μ′
1), end(μ′

2), . . . , end(μ′
n))

Two pointed models (T , x) and (T ′, x′) are said to be R�-bisimilar, denoted
(T , x) �R

� (T ′, x′), if there exists an R�-bisimulation Z = {Zi}0≤i≤� such
that (x, x′) ∈ Z�.

If Z ⊆ T × T ′ is a relation such that for all � ≥ 0 the family {Zi | Zi =
Z}0≤i≤� is a R�-bisimulation then we call Z an R-bisimulation. If there exists
a R-bisimulation Z with (x, x′) ∈ Z then (T , x) and (T ′, x′) are R-bisimilar,
written as (T , x) �R (T ′, x′).

Remark 6. It is useful to observe that, when there are predicates of arity 2
or greater, the Zig (and Zag) conditions can be replaced in the case of unary
predicates with a simpler ‘Harmony’ condition in the style of bisimulation for
modal logics and XPath=: for any unary predicate u it is enough to check that
whenever xZx′, then u(x) iff u(x′). Note, however, that this replacement cannot
be done if we only have unary predicates in R, since doing so would remove all
Zig and Zag conditions, and thus we would not be comparing any topological
information about the models.

Remark 7. Using the Remark 6, we can see that our Definition 12 for the concept
of R-bisimulation generalizes the definition of bisimulation for XPath=(↓) over
the universe of data trees from [4]. It does so by taking R = {=d}∪A, where =d

is a binary symbol (interpreted as data equality over data trees) and the finite
symbols in the label set A are unary predicates. See also Theorem 4 and the
discussion preceding it.

Characterizations for XPathR(↓) 327

Remark 8. The notion of R-bisimilarity given in Definition 12 does not coincide
with bisimilarity for multi-relational Kripke models (where ↓ and each relation
from R get their own modal operator, and where we translate from R-trees into
Kripke models). Indeed, consider the case where R consists solely of a binary
relation =d (we will represent the semantics of =d with numeric data values).
For an example of two pointed models that are modally bisimilar but not R-
bisimilar, consider: on one hand the infinite linear tree (T , x), where the root
x has data value 1, the sole next child has data value 2, the next one has data
value 1, and so on alternating between these two values (i.e. 1, 2, 1, 2, . . .); on
the other hand, take the infinite linear tree (T ′, x′) that has data value 1 in all
nodes (i.e. 1, 1, 1, 1, . . .).

Intuitively, while modal bisimulation appears to have greater navigational
freedom by being able to move with any modality from R, when doing that it
cannot keep track of the actual topology of the model (given by ↓) nor can it
ask whether the endpoints of paths are related via an r ∈ R.

Example 4. Let R = {b, f, S}, where b, f are unary predicate symbols and S is
a ternary predicate symbol. We consider the R-trees T , T ′ from Fig. 2, where
a node in b is represented as having a red border, and a node satisfying f is
represented as being filled with the color black. In both trees, S has an inter-
pretation related to the numbers: S(x, y, z) iff d(x) = d(y) + d(z), where d(w)
represents the number drawn on the node w. If we call t0, t

′
0 the respective roots

of both trees, it is easy to verify that (T , t0) and (T ′, t′0) are R-bisimilar via the
represented Z relation. It is important to note that it does not matter that T
represents the values of nodes in integers and T ′ does so with rational numbers:
the only thing that matters is the semantics of each predicate in R, as the logic
itself has no way of ‘seeing’ these particular values (and indeed some possible
semantics of S cannot be expressed in this form).

As we have for modal logics, the bounded notions R�-logical equivalence and
R�-bisimulation coincide. That is, two pointed models are R�-logically equiva-
lent, if and only if, they are R�-bisimilar.

The proof of each one of the following statements can be found in the
Appendix.

Lemma 1. For every � ≥ 0, there are finitely many equivalence classes (modulo
semantic equivalence) of node expressions with downward depth at most �.

Corollary 1. For each � ≥ 0 and a pointed model (T , x) there is a node
expression χ�

(T ,x) ∈ XPath�
R(↓) satisfying that for any pointed model (T ′, x′),

(T , x) ≡R
� (T ′, x′) iff (T ′, x′) |= χ�

(T ,x).

Proposition 2. Given (T , x) and (T ′, x′) we have that if (T , x) �R
� (T ′, x′)

then (T , x) ≡R
� (T ′, x′).

Proposition 3. Given (T , x) and (T ′, x′) we have that if (T , x) ≡R
� (T ′, x′)

then (T , x) �R
� (T ′, x′).

328 N. González and S. Abriola

Fig. 2. A representation of two R-trees T and T ′ for R = {b, f, S}, as in Example 4.
Also represented in the figure is a Zig step and, via a dotted line connecting nodes, a
{b, f, S}-bisimulation Z between (T , t0) and (T ′, t′0).

We can unify Proposition 2 and Proposition 3 in the following statement:

Theorem 1. Given (T , x) and (T ′, x′) we have that (T , x) �R
� (T ′, x′), if and

only if, (T , x) ≡R
� (T ′, x′).

4 Characterizations

In this section we state and prove characterization results for XPathR(↓), in the
style of Hennessy-Milner’s theorem [6] for Basic Modal Logic. Our result states
that R-logical equivalence and R-bisimulation agree over models whose under-
lying tree is finitely branching. After giving this result, we will treat XPathR(↓)
as a fragment of the first order logic in order to show a characterization result in
the style of van Benthem’s theorem [7] for Basic Modal Logic, concluding that
the formulas of XPathR(↓) are exactly those of the first order logic (with certain
signature) which are preserved by R-bisimulation.

Proposition 4. Given (T , x) and (T ′, x′) we have that if (T , x) �R (T ′, x′)
then (T , x) ≡R (T ′, x′).

Proof. Suppose (T , x) �R (T ′, x′) via (x, x′) ∈ Z ⊆ T ×T ′. For every � ≥ 0, the
family Z� := {Z0 = Z1 = · · · = Z� := Z} is a R�-bisimulation between (T , x)
and (T ′, x′). Thus, by Theorem 1, for every � ≥ 0 we have that (T , x) ≡R

� . In
other words, (T , x) ≡R (T ′, x′).

Definition 13. A pointed model (T , x) is finitely branching if for all k ≥ 0
the set Pathk(T , x) is finite.

Theorem 2 (Hennessy-Milner’s style characterization). If (T , x) and
(T , x′) are finitely branching, then (T , x) �R (T ′, x′) if and only if (T , x) ≡R

(T ′, x′).

Characterizations for XPathR(↓) 329

Proof.

(⇒) By Proposition 4.
(⇐) Consider the relation Z ⊆ T × T ′, which is defined such that (z, z′) ∈
Z iff (T , z) ≡R (T ′, z′). The proof to show that Z is a R-bisimulation is
analogous to that which was given for Proposition 3 in order to see that Z
was a R�-bisimulation. Now, we define Φ(j,i) :=

∧
μ∈P ϕ

(j,i)
μ since the set P is

finite because (T ′, x′) is finitely branching.

Remark 9. The classical counterexample for the modal logic with only one
modality still works to see that the finitely branching hypothesis is required:
take on one side an infinitely branching tree constructed with one branch of
each finite length; on the other side, a copy of the previous tree with the addi-
tion of an infinitely long linear branch hanging from the root. For every r ∈ R,
we set in both trees that Rr = ∅. It can be seen that both R-trees with their
roots are logically equivalent but that any proposed Z fails to be a bisimulation.

From now on, we focus on XPathR(↓) as a fragment of the first-order logic
FO(σR) with the natural signature σR, and with a standard translation ST (−)
between formulas of XPathR(↓) and of first-order logic. For details, see the
corresponding Definitions 16 and 17 in the Appendix.

The following lemmas are the key for proving the van Benthem’s characteri-
zation style theorem. Before stating them, we need to give some definitions:

Definition 14. Let � ≥ 0 and ψ(u), ϕ(u) ∈ FO(σR) with one free variable u.

– ψ(u) is �-local if for all pointed model (T , x), T |= ψ[u �→ x] iff T |x� |=
ψ[u �→ x].

– ψ(u) is �R-invariant if for all (T , x) and (T ′, x′) such that T |= ψ[u �→ x]
and (T , x) �R (T ′, x′) then T ′ |= ψ[u �→ x′].

– ψ(u) is �R
� -invariant if for all (T , x) and (T ′, x′) such that T |= ψ[u �→ x]

and (T , x) �R
� (T ′, x′) then T ′ |= ψ[u �→ x′].

– ψ(u) and ϕ(u) are semantically equivalent over trees ψ(u)
trees≡ ϕ(u)

if for all (T , x) we have that T |= ψ[u �→ x] iff T |= ϕ[u �→ x].
– A pointed model (T , x) has depth at most � if Path�(T , x) = Pathn(T , x)

for all n ≥ �.

Lemma 2. For each �R-invariant ψ(u) ∈ FO(σR) with one free variable u,
there is � ≥ 0 such that ψ is �-local.

Proof. See Appendix.

Lemma 3. Suppose (T , x) and (T ′, x′) have depth at most �. Then (T , x) �R

(T ′, x′) if and only if (T , x) �R
� (T ′, x′). Equivalently, (T , x) �R (T ′, x′), if

and only if, (T , x) ≡R
� (T ′, x′).

Proof. The left-to-right direction is clear. For the other direction, suppose that
we have (T , x) �R

� (T ′, x′) via Z = {Zk}0≤k≤�. Then we have that Z :=⋃�
k=0 Zk is a R-bisimulation between (T , x) and (T ′, x′).

330 N. González and S. Abriola

Theorem 3 (van Benthem’s style characterization). Let ψ(u) be a for-
mula in FO(σR) with one free variable u. The following statements are equiva-
lent:

1. ψ(u) is �R-invariant.

2. There exists a node expression ϕ such that ψ(u)
trees≡ ST (ϕ) (u)

Proof.

(1⇒2) Suppose ψ(u) is �R-invariant. By Lemma 2 we know that there is some
� ≥ 0 for which ψ(u) is �-local. Let us see that ψ(u) is �R

� -invariant for
such �: given (T , x) and (T ′, x′) such that T |= ψ[u �→ x] and (T , x) �R

�

(T ′, x′) we want to show that T ′ |= ψ[u �→ x′]. On one side, by Remark
5, (T |x� , x) �R

� (T , x) �R
� (T ′, x′) �R

� (T ′|x′
� , x′). On the other side, by

Lemma 3, (T |x� , x) ≡R (T ′|x′
� , x′). Since T |= ψ[u �→ x] iff T |x� |= ψ[u �→ x],

we conclude that T ′|x′
� |= ψ[u �→ x′] iff T ′ |= ψ[u �→ x′]. From this, it

is clear that ϕ(u)
trees≡ ST

(∨
T |=ϕ[u	→x] χ

�
(T ,x)

)
(u) where χ�

(T ,x) is given by
Corollary 1.

(2⇒1) Suppose ψ(u)
trees≡ ST (ϕ) (u). Using Proposition 4, we can see that

ST (ϕ) (u) is �R-invariant. Indeed, if (T , x) �R (T ′, x′), then, by Proposi-
tion 4, (T , x) ≡R (T ′, x′); also if T |= ST (ϕ) [u �→ x], because ST (−) is
truth-preserving then (T , x) |= ϕ. Hence, since (T , x) ≡R (T ′, x′), we have
that (T ′, x′) |= ϕ which is equivalent to T ′ |= ST (ϕ) [u �→ x′]. So ψ(u) is
indeed �R-invariant.

So far, we have considered that R had no fixed semantics on the universe, but
for many cases it is reasonable to consider some restrictions, such that a partic-
ular binary relation is an equivalence relation, which is a reasonable assumption
if we want to talk about R-trees as a generalization of data trees.

Let A be a subset of unary symbols from R, and let X, S, and T be three
subsets of binary symbols from R. We denote by UR

A,X,S,T the class of R-trees
T satisfying that for every node x ∈ T there is a unique symbol a ∈ A such that
x ∈ Ra, and for all r ∈ R the relation Rr is reflexive if r ∈ X, symmetric if
r ∈ S and transitive if r ∈ T . It can be seen that each formula ψ(u) in FO(σR)
that is invariant by bisimulation between structures in UR

A,X,S,T will be semanti-
cally equivalent (relative to UR

A,X,S,T) to the translation of a node expression in
XPathR(↓). The main reason is that the R-trees TA and TB constructed in the
proof of Lemma 2 are now in the class UR

A,X,S,T , since each binary R̃r inherits
good properties from Rr as reflexivity, symmetry and transitivity (for the fresh
nodes tA and tB , we can freely assign them to any single unary set Ra with
a ∈ A). The invariance of ψ(u) between structures in this new class allows us
to finish the proof. Thus, we can relativize van Benthem’s characterization to
UR
A,X,S,T . This gives us a generalization to the van Benthem’s characterization

for XPath=(↓), where the symbols in A are the labels and there is a symbol
=d ∈ X ∩ S ∩ T whose semantic is the pair of nodes with same data value.
Therefore, we have:

Characterizations for XPathR(↓) 331

Theorem 4. Let ψ(u) be a formula in FO(σR) with one free variable u. The
following statements are equivalent:

1. For all (T , x) and (T ′, x′) with T , T ′ ∈ UR
A,X,S,T , if T |= ψ[u �→ x] and

(T , x) �R (T ′, x′) then T ′ |= ψ[u �→ x′]
2. There exists a node expression ϕ ∈ XPathR(↓) such that for all (T , x) with

T ∈ UR
A,X,S,T it happens that (T , x) |= ψ(u) iff (T , x) |= ST (ϕ) (u).

5 Conclusions and Future Work

We have provided (Definition 12) R-bisimulation notions for generalizations of
the logic XPath=(↓) over the full universe of R-trees. This notion coincides with
that of [4] for an adequate R (Remark 7). We have shown that R-bisimulation
coincides with R-logical equivalence over finitely branching pointed trees (The-
orem 2). We have also characterized XPathR(↓) as the fragment of first-order
logic that is invariant by R-bisimulations (Theorem 3). Finally, we have shown
(Theorem 4) that our results also apply for universes of trees with some restricted
semantics which contain the case of XPath=(↓) over data trees.

In the future, we would like to further generalize the work done in this paper,
for example allowing other navigational modalities (such as sibling operators)
for trees.

Acknowledgments. We thank Román Sasyk (Departamento de Matemática, Uni-
versidad de Buenos Aires) for his helpful questions and observations which spurred the
main topic of this work.

A Proofs and Definitions Omitted from the Main Text

Lemma 1. For every � ≥ 0, there are finitely many equivalence classes (modulo
semantic equivalence) of node expressions with downward depth at most �.

Proof. Without loss of generality (by Proposition 1), we assume that every node
expression ϕ is normal, and even more, of the form ϕ = 〈α1, α2, . . . , αn〉∗ for
∗ ∈ R ∪ R, because every normal expression is a Boolean combination of these.
Therefore, if the number of equivalence classes is finite for this type of node
expressions, it will also be finite for their Boolean combinations.

The proof goes by induction over � ≥ 0.

� = 0 For this case, as dd(ϕ) = 0 and ϕ is normal, necessarily ϕ = 〈ε, ε, . . . , ε〉∗
with ∗ ∈ R ∪ R (notice that we can not have path tests like, for instance,
〈[〈ε〉], . . . , [〈ε〉]〉∗ because [〈ε〉] is not direct). Since R is finite, then there are
finitely many ϕ.

� > 0 ϕ = 〈α1, α2, . . . , αn〉∗ for ∗ ∈ R ∪ R and 0 < dd(ϕ) ≤ �. As the αi are
direct (since ϕ is normal), each node test in one of the αi has downward
depth at most � − 1. By induction hypothesis, there are finitely many direct
αi modulo semantic equivalence, and, since R is finite, also there are finitely
many ϕ modulo semantic equivalence.

332 N. González and S. Abriola

Corollary 1. For each � ≥ 0 and a pointed model (T , x) there is a node
expression χ�

(T ,x) ∈ XPath�
R(↓) satisfying that for any pointed model (T ′, x′),

(T , x) ≡R
� (T ′, x′) iff (T ′, x′) |= χ�

(T ,x).

Proof. Let χ�
(T ,x) be the conjunction of all the node expressions modulo equiv-

alence ϕ ∈ XPath�
R(↓) that (T , x) satisfies. Lemma 1 ensures that χ�

(T ,x) is
well-defined because it is a conjunction of finitely many node expressions (mod-
ulo semantic equivalence), and clearly, it satisfies the desired property.

Remark 10. One can redefine some satisfiability notions with the Definition 15:

1. (T , x, y) |= α, if and only if, there exists μ ∈ Path(T , x) with end(μ) = y
and (T , μ) |= α.

2. If ∗ ∈ R ∪ R then (T , x) |= 〈α1, α2, . . . , αn〉∗, if and only if, for all j ∈
{1, 2, . . . , n} there are paths μj ∈ Path(T , x) such that (T , μj) |= αj and
also R∗(end(μ1), . . . , end(μn))

The following definition is a more concrete form of the satisfiability notion
for path expressions in an R-tree. It will be used in Lemma 4 and simplify its
proof.

Definition 15. Given a path μ ∈ Path(T , x), we define inductively the meaning
of (T , μ) |= γ for a path expression γ.

(T , μ) |= ε
def⇐⇒ len(μ) = 0

(T , μ) |= [ϕ]
def⇐⇒ μ = x and (T , x) |= ϕ

(T , μ) |= ↓ def⇐⇒ len(μ) = 1

(T , μ) |= αβ
def⇐⇒ there is a decomposition μ = μα � μβ

such that (T , μα) |= α and (T , μβ) |= β

Lemma 4. Let Z = {Zi}0≤i≤� be a R�-bisimulation between T and T ′. For
all k ∈ {0, 1, . . . , �}, any normal expression η with dd(η) ≤ k, and paths μ ∈
Pathk(T , x) and μ′ ∈ Pathk(T ′, x′) such that ([μ]i, [μ′]i) ∈ Zk−i for all i ∈
{0, 1, . . . , k}, we have that:

1. If η is a node expression then (T , x) |= η, if and only if, (T ′, x′) |= η.
2. If η is a path expression then (T , μ) |= η, if and only if, (T ′, μ′) |= η.

Proof. The proof is by induction over k ∈ {0, 1, . . . , �}.

k = 0 For this case, note that μ = x, μ′ = x′ and if η is a path expression then
η = ε. So, the double implication at 2 is obvious. Let us see when η is a node
expression. Necessarily η = 〈ε, ε, . . . , ε〉∗ with ∗ ∈ R ∪ R, and since (x, x′) ∈
Z0 we have that for all ∗ ∈ R ∪ R, R∗(x, x, . . . , x) iff R′

∗(x
′, x′, . . . , x′). It is

the same that (T , x) |= 〈ε, ε, . . . , ε〉∗, if and only if, (T ′, x′) |= 〈ε, ε, . . . , ε〉∗.

Characterizations for XPathR(↓) 333

k > 0 Suppose η is a path expression with 0 < dd(η) ≤ k then η =↓ ξγ where
ξ is an empty string or a node test, and γ is an empty string or a normal
path expression. Note that dd(ξγ) ≤ k − 1. Let us see the most interesting
case when ξ and γ are not the empty string, so ξ = [ϕ] for some normal
node expression ϕ. Suppose μ = (x ↓ y) � ν and μ′ = (x′ ↓ y′) � ν′ with
ν ∈ Pathk−1(T , y) and ν′ ∈ Pathk−1(T , y′). If (T , μ) |= η then (T , y) |= ϕ
and (T , ν) |= γ. By induction hypothesis, (T ′, y′) |= ϕ and (T ′, ν′) |= γ,
and therefore (T ′, μ′) |= η. Similarly, we can see that if (T ′, μ′) |= η then
(T , μ) |= η.
Suppose now η is a node expression and for simplicity, of the form η = 〈↓
[ϕ1]α1, ↓ [ϕ2]α2〉∗ where ∗ ∈ R ∪ R, ϕ1, ϕ2 are normal node expressions and
α1, α2 are normal path expressions non-equal to ε (the rest of the cases are
proved by the same idea). Let x be a node in T and x′ a node in T ′ such that
(x, x′) ∈ Zk. If (T , x) |= η then there are paths μ1, μ2 ∈ Pathk(T , x) such
that (T , μ1) |= ↓ [ϕ1]α1, (T , μ2) |= ↓ [ϕ2]α2 and R∗(end(μ1), end(μ2)). Since
(x, x′) ∈ Zk, by Zig, for the paths μ1 and μ2 there are another paths μ′

1, μ
′
2 ∈

Pathk(T ′, x′) such that for all j = 1, 2 we have that len(μj) = len(μ′
j), if

i ∈ {0, 1, . . . , len(μj)} then ([μj]i, [μ′
j]i) ∈ Zk−i, and R∗(end(μ1), end(μ2)) iff

R′
∗(end(μ′

1), end(μ′
2)). As ϕ1, ϕ2, α1, α2 have downward depth at most k − 1,

we can apply induction hypothesis and conclude that for all j ∈ {1, 2} if
μj = (x ↓ yj) � νj for some νj ∈ Pathk−1(T , yj) and μ′

j = (x′ ↓ y′
j) � ν′

j

for some ν′
j ∈ Pathk−1(T ′, y′

j) then (T , yj) |= ϕj iff (T ′, y′
j) |= ϕj , and

(T , νj) |= αj iff (T ′, ν′
j) |= αj . Thus, (T ′, x′) |= η. Similarly (by Zag),

(T ′, x′) |= η implies (T , x) |= η.

Proposition 2. Given (T , x) and (T ′, x′) we have that if (T , x) �R
� (T ′, x′)

then (T , x) ≡R
� (T ′, x′).

Proof. Suppose (T , x) �R
� (T ′, x′) via Z = {Z0, Z1, . . . , Z�} with (x, x′) ∈ Z�.

We want to see that for all ϕ ∈ XPath�
R(↓) we have that (T , x) |= ϕ iff (T ′, x′) |=

ϕ. It suffices to show this for all normal path test ϕ = 〈α1, α2, . . . , αn〉∗ with ∗ ∈
R∪R: if (T , x) |= ϕ then there are paths μ1, μ2, . . . , μn ∈ Path�(T , x) such that
(T , μi) |= αi for all i ∈ {1, 2, . . . , n} and R∗(end(μ1), end(μ2), . . . , end(μn)).
Because (x, x′) ∈ Z�, there are paths μ′

1, μ
′
2, . . . , μ

′
n ∈ Path�(T ′, x′) satisfying Zig

with respect to the paths μ1, μ2, . . . , μn. Thus, by Lemma 4, if i ∈ {1, 2, . . . , n}
then (T , μi) |= αi iff (T ′, μ′

i) |= αi. Since R∗(end(μ1), end(μ2), . . . , end(μn)), if
and only if, R′

∗(end(μ′
1), end(μ′

2), . . . , end(μ′
n)), we conclude that (T ′, x′) |= ϕ

via the paths μ′
1, μ

′
2, . . . , μ

′
n. Similarly, by Zag, if (T ′, x′) |= ϕ then (T , x) |= ϕ.

Proposition 3. Given (T , x) and (T ′, x′) we have that if (T , x) ≡R
� (T ′, x′)

then (T , x) �R
� (T ′, x′).

Proof. First we define for all k ∈ {0, 1, . . . , �} the relations (z, z′) ∈ Zk iff
(T , z) ≡R

k (T ′, z′). We want to see that the family Z := {Z0, Z1, . . . , Z�} is
a R�-bisimulation, and since by hypothesis (x, x′) ∈ Z�, we will have that
(T , x) �R

� (T ′, x′) via Z.

334 N. González and S. Abriola

Given Zk ∈ Z and (z, z′) ∈ Zk, we want to show that the Zig and Zag clauses
are satisfied. Let us see only Zag (for Zig, the same idea works).

Let (μ′
1, μ

′
2, . . . , μ

′
n) be a sequence of paths in Pathk(T , z′) and ∗ ∈ R ∪ R

such that R′
∗(end(μ′

1), . . . , end(μ′
n)), we consider the set

P := {(μ1, μ2, . . . , μn) ∈ Pathk(T , z)n | ∀i ∈ {1, 2, . . . , n}
len(μi) = len(μ′

i) ∧ R∗(end(μ1), . . . , end(μn))}

Note that P �= ∅ because since (z, z′) ∈ Zk

(T ′, z′) |= 〈↓len(μ′
1), ↓len(μ′

2), . . . , ↓len(μ′
n)〉∗ ∈ XPathk

R(↓)

⇔ (T , z) |= 〈↓len(μ′
1), ↓len(μ′

2), . . . , ↓len(μ′
n)〉∗

where ↓N is an abbreviation for the concatenation of N symbols ↓, and for
convenience ↓0:= ε.

Suppose Zag does not hold for the paths μ′
1, μ

′
2, . . . , μ

′
n. Thus, we have that

for all μ = (μ1, μ2, . . . , μn) ∈ P there must be some μj and some [μj]i such that
([μj]i, [μ′

j]i) �∈ Zk−i.

1. Fix μ = (μ1, μ2, . . . , μn) ∈ P . We define a family of node expressions {ϕ
(j,i)
μ }

as follows, where j ∈ {1, 2, . . . , n} and i ∈ {0, 1, . . . , len(μ′
j)}: if (j0, i0) is the

smallest pair (by the lexicographic order) with ([μj0]i0 , [μ
′
j0

]i0) �∈ Zk−i0 then
there exists some node expression ψ ∈ XPathk−i0

R (↓) such that (T , [μj0]i0) �|=
ψ and (T ′, [μ′

j0
]i0) |= ψ. So, let ϕ

(j0,i0)
μ be equal to such ψ, and for the rest

of the pairs (j, i) let ϕ
(j,i)
μ := � where � is some fixed tautological node

expression with downward depth zero (such as that from Remark 1).
2. Now, for each j ∈ {1, 2, . . . , n} and i ∈ {0, 1, . . . , len(μ′

j)} let Φ(j,i) be a

formula such that for every (T̃ , x̃), (T̃ , x̃) |= Φ(j,i) iff for all ϕ
(j,i)
μ with μ ∈ P

we have (T̃ , x̃) |= ϕ
(j,i)
μ (informally, abusing the notation in the case that P

is infinite Φ(j,i) ≡
∧

μ∈P ϕ
(j,i)
μ). This formula exists because the expressions

ϕ
(j,i)
μ have downward depth at most k − i, and thus by Lemma 1 they are

finite modulo equivalence. Thus Φ(j,i) can be defined as the conjunction of
some witnesses from each of the (finite) equivalence classes.

3. Finally, for each j ∈ {1, 2, . . . , n} consider

αj := [Φ(j,0)] ↓ [Φ(j,1)] ↓ . . . ↓ [Φ(j,len(μ′
j))]

By construction, dd(αj) ≤ k and (T ′, μ′
j) |= αj . Therefore, (T ′, x′) |=

〈α1, α2, . . . , αn〉∗ and since (T , x) ≡R
k (T ′, x′), it must be that (T , x) |=

〈α1, α2, . . . , αn〉∗. But, this means that there are paths μ1, . . . , μn ∈
Pathk(T , x) satisfying (T , μj) |= αj and R∗(end(μ1), . . . , end(μn)). As μ :=
(μ1, . . . , μn) ∈ P , there must be some μj with (T , μj) �|= αj . So, we obtain a
contradiction by assuming that Zag is not satisfied.

Characterizations for XPathR(↓) 335

Definition 16. Let σR := {F↓} ∪ {Lr}r∈R be a signature where F↓ is binary
and for each r ∈ R the symbol Lr is A(r)-ary. We interpret the symbols in σR
in an R-tree T = 〈T,E↓, {Rr}r∈R〉 as [[F↓]]T := E↓ and [[Lr]]T := Rr for r ∈ R.

Definition 17. If FO(σR) is the set of first order formulas with signature σR
and equality, we define recursively the truth-preserving standard translation
ST (−) from XPathR(↓) to FO(σR) which maps node expressions to formulas
with one free variable and path expression to formulas with two free variables.

ST (ϕ ∧ ψ) (u) := ST (ϕ) (u) ∧ ST (ψ) (u) ST (¬ϕ) (u) := ¬ST (ϕ) (u)

ST (〈α1, α2, . . . , αn〉r) (u) := (∃v1, . . . , vn)
(∧n

i=1 ST (αi) (u, vi) ∧ Lr(v1, . . . , vn)
)

for r ∈ R, with A(r) = n

ST (〈α1, α2, . . . , αn〉r) (u) := (∃v1, . . . , vn)
(∧n

i=1 ST (αi)(u, vi) ∧¬Lr(v1, . . . , vn)
)

for r ∈ R, with A(r) = n

ST (ε) (u, v) := (u = v) ST (↓) (u, v) := F↓(u, v)

ST ([ϕ]) (u, v) := (u = v) ∧ ST (ϕ) (u)

ST (αβ) (u, v) := (∃w)(ST (α) (u, w) ∧ ST (β) (w, v))

Lemma 2. For each �R-invariant ψ(u) ∈ FO(σR) with one free variable u,
there is � ≥ 0 such that ψ is �-local.

Proof. We follow the Step 1 of the proof of van Benthem/Rosen’s theorem for
the modal logic given by Martin Otto in [8].

Let � := 2q − 1 ≥ 0 where q is the quantifier rank of ψ(u). We want to show
that for an arbitrary pointed model (T , x), T |= ψ[u �→ x] iff T |x� |= ψ[u �→ x],
and hence, ψ(u) is �-local.

Given a pointed model (T , x) we define two new R-trees TA and TB as follows:

– The underlying tree of TA is constructed by tying from a fresh node tA: the
original (T , x), q-copies of (T , x) via a family I of q isomorphisms (as σR-
structures) from T , and q-copies of (T |x� , x) via a family J of q isomorphisms
from T |x� . For each r ∈ R of arity n, the relation R̃r in TA is defined by
extending the relation Rr in T as R̃r(y1, y2, . . . , yn) iff Rr(x1, x2, . . . , xn)
where for all k ∈ {1, 2, . . . , q} there exists f ∈ I ∪ J such that f(xk) = yk.
Notice that tA doesn’t play a relevant role because it is not related to any of
the nodes, even itself.

– TB and tB are constructed almost exactly like TA and tA, but now we replace
the original (T , x) with (T |x� , x).

Clearly, (TA, x) �R (T , x) and (TB , x) �R (T |x� , x). Suppose T |= ψ[u �→
x], and since ψ(u) is �R-invariant we have that TA |= ψ[u �→ x]. We affirm
that (TA, x) ≡q (TB , x) as σR-structures, i.e., they satisfy the same formulas
with quantifier rank less than or equal to q. To see that, one can follow the idea
given by Otto showing a winning strategy for player II in a Ehrenfeucht-Fräıssé
game.

Therefore, as ψ(u) has quantifier rank q, TB |= ψ[u �→ x], and then T |x� |=
ψ[u �→ x].

336 N. González and S. Abriola

References

1. Clark, J., DeRose, S.: XML path language (XPath). Website (1999). W3C Recom-
mendation

2. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries.
TODS 30, 444–491 (2005)

3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. JACM 56, 1–48 (2009)

4. Figueira, D., Figueira, S., Areces, C.: Model theory of XPath on data trees. Part I:
bisimulation and characterization. JAIR 53, 271–314 (2015)

5. Abriola, S., Descotte, M.E., Figueira, S.: Model theory of XPath on data trees. Part
II: binary bisimulation and definability. Inf. Comput. 255, 195–223 (2017)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. van Benthem, J.: Modal correspondence theory. Ph.D. thesis, Universiteit van Ams-
terdam (1976)

8. Otto, M.: Elementary proof of the van Benthem-Rosen characterisation theorem.
Technical report 2342, Fachbereich Mathematik, Technische Universität Darmstadt
(2004)

Uniform Interpolation via Nested
Sequents

Iris van der Giessen1, Raheleh Jalali1, and Roman Kuznets2(B)

1 Utrecht University, Utrecht, The Netherlands
{i.vandergiessen,r.jalalikeshavarz}@uu.nl

2 TU Wien, Vienna, Austria
roman@logic.at

Abstract. A modular proof-theoretic framework was recently devel-
oped to prove Craig interpolation for normal modal logics based on
generalizations of sequent calculi (e.g., nested sequents, hypersequents,
and labelled sequents). In this paper, we turn to uniform interpolation,
which is stronger than Craig interpolation. We develop a constructive
method for proving uniform interpolation via nested sequents and apply
it to reprove the uniform interpolation property for normal modal log-
ics K, D, and T. While our method is proof-theoretic, the definition of
uniform interpolation for nested sequents also uses semantic notions,
including bisimulation modulo an atomic proposition.

Keywords: Uniform interpolation · Modal logic · Nested sequents

1 Introduction

A propositional (modal) logic L admits the Craig interpolation property (CIP) if
for any formulas ϕ and ψ such that �L ϕ → ψ, there is an interpolant θ containing
only atomic propositions that occur in both ϕ and ψ such that �L ϕ → θ and �L

θ → ψ. Logic L has the uniform interpolation property (UIP) if for each formula ϕ
and each atomic proposition p there are uniform interpolants ∃pϕ and ∀pϕ built
from atomic propositions occurring in ϕ except for p, such that for all formulas ψ
not containing p:

�L ϕ → ψ ⇔ �L ∃pϕ → ψ and �L ψ → ϕ ⇔ �L ψ → ∀pϕ.

It is well known that this property is stronger than Craig interpolation.
To prove the CIP (UIP) constructively, one can use analytic (terminating)

sequent calculi. Whereas for the CIP the syntactic proofs are often straightfor-
ward, the case of the UIP is more complicated. Pitts provided the first syn-
tactic proof of this kind, establishing the UIP for IPC [19]. B́ılková success-
fully adjusted the method to (re)prove the UIP for several modal logics includ-
ing K, T, and GL [2]. Iemhoff provided a modular method for (intuitionistic)

Iris van der Giessen and Raheleh Jalali acknowledge the support of the Netherlands
Organization for Scientific Research under grant 639.073.807. Roman Kuznets is funded
by the Austrian Science Fund (FWF) ByzDEL project (P33600).

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 337–354, 2021.
https://doi.org/10.1007/978-3-030-88853-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_21

338 I. van der Giessen et al.

modal logics and intermediate logics based on sequent calculi consisting of the
so-called focused rules, among others establishing the UIP for D [12,13].

There are also algebraic and model-theoretic methods. The UIP for GL and K
is due to Shavrukov [21] and Ghilardi [8] respectively. Interestingly, modal log-
ics S4 and K4 do not enjoy the UIP [2,9] despite enjoying the CIP. Visser provided
semantic proofs for K, GL, and IPC based on bounded bisimulation up to atomic
propositions [24]. This method was later used for the stronger Lyndon UIP [14].
The semantic interpretation of uniform interpolation is called bisimulation quan-
tifiers, see [6] for an overview. Bisimulation will also play a role in this paper.

The proof-theoretic approach has two advantages. First, it enables one to find
interpolants constructively rather than merely prove their existence.1 Second,
negative results were obtained in [12,13] stating that logics without the UIP
cannot have certain natural sequent calculi. As a consequence, K4 and S4 do
not possess such proof systems. Similar negative results were obtained for modal
and substructural logics in [22] and [23] using the CIP and UIP.

The goal of this paper is to extend the same line of research to multisequent
formalisms starting with nested sequents2. Multisequent formalisms, such as
nested sequents, hypersequents, and labelled sequents, are (commonly believed
to be) more expressive than sequents and offer modular and analytic calculi for a
wide range of logics. E.g., S5 has well-known cut-free hypersequent calculi [1,17]
but no known cut-free sequent calculus while modal logics K5 and B possess
cut-free nested sequent calculi, but no hypersequent calculi [5]. Nested sequent
calculi were recently used to prove the CIP for modal logics [7]. A modular proof-
theoretic framework encompassing them and other multisequents was provided
in [15]. The same ideas, which combine syntactic and semantic reasoning, were
extended to multisequent calculi for intermediate logics [16].

We provide a method to prove the UIP for K, D, and T using terminating
nested sequent calculi from [5]. These calculi are used to construct uniform inter-
polants syntactically, whereas the correctness proof for the constructed inter-
polants relies on semantic reasoning, including model modifications and bisimu-
lation. While the UIP for these three logics has been previously shown via ana-
lytic sequent calculi, our constructive method is also applicable to logics based
on multisequent formalisms that lack a sequent representation. In particular, in
an extended version [10] of this paper, we successfully adapted our method to
hypersequents for S5.

B́ılková [3] also provided a syntactic proof for the UIP for K based on nested
sequents. The main difference with our method is that we exploit the treelike
structure of nested sequents, thus reflecting the treelike models for K, by using
semantic reasoning while the algorithm for the interpolants remains fully syn-
tactic.

The paper is organized as follows. In Sect. 2 the nested sequent calculi
for K, T, and D, as well as model modifications invariant under bisimulation, are

1 More precisely, it enables one to find interpolants efficiently rather than by an
exhaustive search that terminates due to the existence of the interpolant.

2 Nested sequents are also known as tree-hypersequents [20] or deep sequents [5].

Uniform Interpolation via Nested Sequents 339

introduced. In Sect. 3, we prove uniform interpolation for K, T, and D. Finally,
in Sect. 4 we summarize the results and outline future work. An extended ver-
sion [10] of this paper provides more detailed proofs of these results and, in
addition, includes a direct proof of the UIP for S5 via hypersequents.

2 Preliminaries

Definition 1. Modal formulas in negation normal form are defined by the gram-
mar ϕ ::= ⊥ | � | p | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | �ϕ | ♦ϕ where ⊥ and � are Boolean
constants, p is an atomic proposition (atom) from a countable set Prop, and
p is its negation. An element � of the set Lit of literals is either an atom or its
negation. Literals and Boolean constants are atomic formulas.

We define ϕ (or ¬ϕ) recursively as usual using De Morgan’s laws to push the
negation inwards. We define ϕ → ψ := ϕ ∨ ψ as usual.

Definition 2. A nested sequent Γ is recursively defined in the following form:

ϕ1, . . . , ϕn, [Γ1], . . . , [Γm]

where ϕ1, . . . , ϕn are modal formulas for n ≥ 0 and Γ1, . . . , Γm are nested
sequents for m ≥ 0. We call brackets [] a structural box. The formula inter-
pretation ι of a nested sequent is defined recursively by

ι(ϕ1, . . . , ϕn, [Γ1], . . . , [Γm]) := ϕ1 ∨ · · · ∨ ϕn ∨ �ι(Γ1) ∨ · · · ∨ �ι(Γm).

One way of looking at a nested sequent is to consider a tree of ordinary (one-
sided) sequents, i.e., multisets of formulas. Each structural box in the nested
sequent creates a child in the tree. In order to be able to reason about formulas
in a particular tree node, we introduce labels. A label is a finite sequence of
natural numbers. We denote labels by σ, τ, . . . ; a label σ ∗ n denotes the label σ
extended by the natural number n. We sometimes write σn instead of σ ∗ n,
unless it is ambiguous, as, e.g., for 1 ∗ 2 ∗ 3, which is different from 1 ∗ 23.

Definition 3 (Labeling). For a nested sequent Γ and label σ we define a label-
ing function lσ to recursively label structural boxes in nested sequents as follows:

lσ(ϕ1, . . . , ϕn, [Γ1], . . . , [Γm]) := ϕ1, . . . , ϕn, [lσ1(Γ1)]σ1, . . . , [lσm(Γm)]σm.

Let Lσ(Γ) be the set of labels occurring in lσ(Γ) plus label σ (for formulas outside
all structural boxes). Define l(Γ) := l1(Γ), and let L(Γ) := L1(Γ).3

Formulas in a nested sequent Γ are labeled according to the labeling of the
structural boxes containing them. We write 1 : ϕ ∈ Γ iff the formula ϕ occurs
in Γ outside all structural boxes. Otherwise, σ : ϕ ∈ Γ whenever ϕ occurs in l(Γ)
within a structural box labeled σ.
3 Labeled nested sequents are closely related to labelled sequents from [18] but retain

the nested notation.

340 I. van der Giessen et al.

Fig. 1. Terminating nested rules: the principal formula is not K- (D-, T-) saturated.

The set L(Γ) can be seen as the set of nodes of the corresponding tree of Γ ,
with 1 being the root. Often, we do not distinguish between a nested sequent Γ
and its labeled sequent l(Γ). For instance, we write σ ∈ Γ if σ ∈ L(Γ).

Whether X is a formula, a sequence/set/multiset of formulas, a nested
sequent/context, or some other formula-based object, we denote by Var(X) ⊆
Prop the set of atoms occurring in X (note that p may also occur in the form
of p).

Recall that the normal modal logic K consists of all classical tautologies,
the k-axiom �(ϕ → ψ) → (�ϕ → �ψ) and is closed under modus ponens
(from ϕ → ψ and ϕ, infer ψ) and necessitation (from ϕ, infer �ϕ). Further, the
modal logics D and T are defined as D := K+ �ϕ → ♦ϕ and T := K+ �ϕ → ϕ.

The nested calculus NK for the modal logic K consists of the rules in the first
row in Fig. 1 plus the rules � and k. This calculus is an extension of the multiset-
based version from [5] to the language with Boolean constants ⊥ and �, neces-
sitating the addition of the rule id� for handling these. The calculus ND (NT)
for the logic D (T) is obtained by adding to NK the rule d (t). As shown in [5],
the nested sequent calculi NK, ND, and NT are sound and complete for modal
logics K, D, and T respectively.

Definition 4 (Saturation). Let Γ = Γ ′{θ}σ, i.e., σ : θ ∈ Γ . The formula θ
is K-saturated in Γ if the following conditions hold based on the form of θ:

– θ is an atomic formula;
– if θ = ϕ ∨ ψ, then both σ : ϕ ∈ Γ and σ : ψ ∈ Γ ;
– if θ = ϕ ∧ ψ, then either σ : ϕ ∈ Γ or σ : ψ ∈ Γ ;
– if θ = �ϕ, then there is a label σn ∈ L(Γ) such that σn : ϕ ∈ Γ .

The formula θ = ♦ϕ is

– K-saturated in Γ w.r.t. σn ∈ L(Γ) if σn : ϕ ∈ Γ ;
– D-saturated in Γ if there is some label σn ∈ L(Γ);
– T-saturated in Γ if σ : ϕ ∈ Γ .

Uniform Interpolation via Nested Sequents 341

A nested sequent Γ is K-saturated if (1) it is neither of the form Γ ′{p, p} for
some p ∈ Prop nor of the form Γ ′{�}; and (2) all its formulas σ : ♦ϕ are K-
saturated w.r.t. every child of σ; and (3) all its other formulas are K-saturated
in Γ . A nested sequent is D-saturated (T-saturated) if it is K-saturated and all
its formulas σ : ♦ϕ are D-saturated (T-saturated) in Γ .

Theorem 5 ([5]). The calculi NK, ND, and NT in Fig. 1 are terminating.

Definition 6. A Kripke model is a triple M = (W,R, V), where W �= ∅, R ⊆
W ×W , and V : Prop → 2W is a valuation function. Define M, w |= ϕ as usual:
M, w |= � and M, w �|= ⊥; for p ∈ Prop, we have M, w |= p iff w ∈ V (p) and
M, w |= p iff w /∈ V (p); we have M, w |= ϕ∧ψ (M, w |= ϕ∨ψ) iff M, w |= ϕ
and (or) M, w |= ψ; finally, M, w |= �ϕ iff M, v |= ϕ whenever wRv and
M, w |= ♦ϕ iff M, v |= ϕ for some wRv. A formula ϕ is valid in M, denoted
M |= ϕ, when M, w |= ϕ for all w ∈ W .

A model M′ = (W ′, R′, V ′) is a submodel of M = (W,R, V) when W ′ ⊆ W ,
R′ = R ∩ (W ′ × W ′), and V ′(p) = V (p) ∩ W ′ for each p ∈ Prop. A submodel
generated by w ∈ W , denoted Mw := (Ww, Rw, Vw), is the smallest submodel
M′ = (W ′, R′, V ′) of M such that w ∈ W ′ and v ∈ W ′ when xRv and x ∈ W ′.

We will use models based on finite intransitive directed trees, usually denot-
ing the root ρ. For K, we require the accessibility relation R to be irreflexive,
i.e., ∀w ∈ W¬(wRw). For T, R is reflexive, i.e., ∀w ∈ WwRw. And for D,
R is serial, i.e., ∀w ∈ W∃v ∈ WwRv. Note that seriality implies reflexivity of
the leaves of the tree. We call these models K-models, T-models, and D-models
respectively.

Theorem 7 ([11, Sect. 4.20]). If L ∈ {K,D,T}, then ϕ ∈ L iff M |= ϕ for each
L-model M.

Following [15], we extend definitions of truth and validity to nested sequents,
recall relevant facts about bisimulation, and introduce some model modifications.

Definition 8. A (treelike) multiworld interpretation of a nested sequent Γ into
a model M = (W,R, V) is a function I : L(Γ) → W from labels in Γ to worlds
of M such that I(σ)RI(σn) whenever {σ, σn} ⊆ L(Γ). Then

M, I |= Γ ⇐⇒ M, I(σ) |= ϕ for some σ : ϕ ∈ Γ.

Γ is valid in M, denoted by M |= Γ , means that M, I |= Γ for all multiworld
interpretations I of Γ into M.

The following lemma, which can be easily proved by induction on the struc-
ture of Γ , implies completeness for validity of nested sequents.

Lemma 9. M |= Γ iff M |= ι(Γ) for any nested sequent Γ and model M.

342 I. van der Giessen et al.

We now define bisimulations modulo an atom p, similar to the ones
from [6,24], where uniform interpolation is studied on the basis of bisimulation
quantifiers. While those papers focus on purely semantic methods, we embed the
semantic tools of bisimulation into our constructive proof-theoretic approach in
Sect. 3. Our bisimulations behave largely like standard bisimulations except they
do not have to preserve the truth of formulas with occurrences of p.

Definition 10 (Bisimilarity). A bisimulation up to an atom p between mod-
els M = (W,R, V) and M′ = (W ′, R′, V ′) is a non-empty relation Z ⊆ W ×W ′

such that the following hold for all w ∈ W and w′ ∈ W ′ with wZw′:

atomsp. w ∈ V (q) iff w′ ∈ V ′(q) for all q ∈ Prop \ {p};
forth. if wRv, then there exists v′ ∈ W ′ such that vZv′ and w′R′v′; and
back. if w′R′v′, then there exists v ∈ W such that vZv′ and wRv.

When wZw′, we write (M, w) ∼p (M′, w′). Further, we write (M, I) ∼p

(M′, I ′) for I : X → W and I ′ : X → W ′ with a common domain X if
there is a bisimulation Z up to p between M and M′ such that I(σ)ZI ′(σ) for
each σ ∈ X.

The main property of bisimulations is truth preservation for modal formulas.
The following theorem is proved the same way as [4, Theorem 2.20].

Theorem 11. If (M, w) ∼p (M′, w′), then for all formulas ϕ with p /∈ Var(ϕ),
we have M, w |= ϕ iff M′, w′ |= ϕ.

We are interested in manipulations of treelike models that preserve bisimu-
lation up to p, in particular, in duplicating a part of a model or replacing it with
a bisimilar model.

Definition 12 (Model transformations). Let M = (W,R, V) be an intransi-
tive tree (possibly with some reflexive worlds), Mw = (Ww, Rw, Vw) be its subtree
with root w ∈ W , and N = (WN , RN , VN) be another tree with root ρN ∈ WN .
A model M′ = (W ′, R′, V ′) is the result of replacing the subtree Mw with N
in M if W ′ := (W \ Ww) � WN , V ′(q) := (V (q) \ Ww) � VN (q) for all q ∈ Prop,
and R′ := (R ∩ (W \ Ww)2) � RN � {(v, ρN) | vRw}.

A model M′′ = (W ′′, R′′, V ′′) is the result of duplicating (cloning) Mw

in M if another copy4 Mc
w = (W c

w, Rc
w, V c

w) of Mw is inserted alongside (as a
subtree of) Mw, i.e., if W ′′ := W � W c

w, V ′′(q) := V (q) � V c
w(q) for all q ∈

Prop, and, in case of duplicating, R′′ := R � Rc
w � {(v, wc) | vRw} (in case of

cloning, R′′ := R�Rc
w �{(w,wc)}). Finally, for a reflexive world w, the result of

unraveling Mw in M is obtained by first cloning Mw in M and then removing
the reflexive loop (w,w) from the accessibility relation.

Lemma 13. In the setup from Definition 12, let Z ⊆ WN × Ww be a bisim-
ulation demonstrating that (N , ρN) ∼p (Mw, w). Then, for M′ obtained by

4 Here vc := (v, c), W c
w := {vc | v ∈ Ww}, Rc

w := {(vc, uc) | (v, u) ∈ Rw}, and
V c

w(q) := {vc | v ∈ Vw(q)}.

Uniform Interpolation via Nested Sequents 343

replacing Mw with N in M we have that (M′, v) ∼p (M, v) for all v ∈ W \Ww

and that (M′, uN) ∼p (M, u) whenever uNZu. Moreover, if both M and N are
K-models (D-models, T-models), then so is M′.

For M′′ obtained by duplicating Mw in M, we have (M′′, v) ∼p (M, v) for
all v ∈ W and, in addition, (M′′, uc) ∼p (M, u) for all u ∈ Ww. If M is a K-
model (D-model, T-model) not rooted at w, so is M′′. The same holds for cloning
and unraveling if wRw except that unraveling does not preserve T-models.

Proof. It is easy to see that Z ′ := {(v, v) | v ∈ W \ Ww} � Z for replacing or
that Z ′′ := {(v, v) | v ∈ W} � {(uc, u) | u ∈ Ww} for duplicating, cloning, and
unraveling witnesses all the stated bisimilarities in each respective case. Both
the tree structure and reflexivity of worlds are preserved by all operations other
than unraveling, which turns a reflexive w into an irreflexive world, violating
T-model requirements. Seriality is preserved by all operations. ��

3 Uniform Interpolation for Nested Sequents

In this section we prove the UIP for K, T, and D via NK, NT, and ND. We define
two new notions of UIPs for nested sequents that involve Kripke semantics: the
nested-sequent UIP (NUIP) in Definition 22 that closely follows the structure
of the UIP and the more convenient to use bisimulation NUIP (BNUIP) in
Definition 25. Lemma 24 and Corollary 28 extract back the standard definition
of the UIP.

Definition 14 (UIP). A logic L in a language containing an implication →
and Boolean constants ⊥ and � (primary or defined) has the uniform interpo-
lation property, or UIP, if for every formula ϕ in the logic and atom p, there
exist formulas ∀pϕ and ∃pϕ such that

(i) Var(∃pϕ) ⊆ Var(ϕ) \ {p} and Var(∀pϕ) ⊆ Var(ϕ) \ {p},
(ii) �L ϕ → ∃pϕ and �L ∀pϕ → ϕ, and
(iii) for each formula ψ with p /∈ Var(ψ):

�L ϕ → ψ ⇒ �L ∃pϕ → ψ and �L ψ → ϕ ⇒ �L ψ → ∀pϕ.

For classical-based logics, the existence of left-interpolants ensures the exis-
tence of right-interpolants, and vice versa (e.g., ∃pϕ := ¬∀pϕ). Thus, from now
on, we focus on ∀pϕ. In the following, we import some notation from [15].

Definition 15. Multiformulas are defined by � ::= σ : ϕ | (� � �) | (� � �),
where σ is a label and ϕ is a formula. We write L(�) for the set of labels in �.

Definition 16 (Suitability). A multiworld interpretation I of a sequent Γ into
a model M is suitable for a multiformula � if L(�) ⊆ L(Γ), in which case we
call it a multiworld interpretation of � into M.

344 I. van der Giessen et al.

Definition 17 (Truth for multiformulas). Let I be a multiworld interpre-
tation of a multiformula � into a model M. Define M, I |= � recursively as:

M, I |= σ : ϕ iff M, I(σ) |= ϕ,
M, I |= �1 � �2 iff M, I |= �i for both i = 1, 2,
M, I |= �1 � �2 iff M, I |= �i for at least one i = 1, 2.

Since L(�i) ⊆ L(�), I is also a multiworld interpretation of each �i into M.

We define the label-erasing function from multiformulas to formulas, as well
as multiformula equivalence and some of the latter’s easily provable properties.

Definition 18. The label-erasing function form from multiformulas to formulas
is defined as follows: form(σ : ϕ) := ϕ, form(�1 � �2) := form(�1) ∧ form(�2),
and form(�1 � �2) := form(�1) ∨ form(�2).

Definition 19 (Multiformula equivalence). Multiformulas �1 and �2 are
equivalent, denoted �1 ≡ �2, iff L(�1) = L(�2) and M, I � �1 ⇔ M, I � �2

for any multiworld interpretation I of �1 into a model M.

Lemma 20 (Equivalence property). For any multiformula �, label σ, and
formulas ϕ and ψ, we have � � � ≡ � � � ≡ �, and σ : ϕ�σ : ψ ≡ σ : (ϕ∧ψ),
and σ : ϕ � σ : ψ ≡ σ : (ϕ ∨ ψ).

Lemma 21 (Normal forms). For any multiformula �, there is an equivalent
multiformula �

d (�c) in SDNF (SCNF) such that �
d (�c) is a �-disjunction

(�-conjunction) of �-conjunctions (�-disjunctions) of labeled formulas σ : ϕ
and each disjunct (conjunct) contains exactly one occurrence of each σ ∈ L(�).5

Proof. Since � and � behave classically, one can employ the standard transfor-
mation into the DNF/CNF. In order to ensure one label per disjunct/conjunct
rule, multiple labels can be combined using Lemma 20, whereas missing labels
can be added in the form of σ : ⊥ (σ : �). ��

We now introduce the uniform interpolation property for nested sequents.
Here, the uniform interpolants are multiformulas instead of formulas.

Definition 22 (NUIP). Let a nested sequent calculus NL be sound and com-
plete w.r.t. a logic L. We say that NL has the nested-sequent uniform interpo-
lation property, or NUIP, if for each nested sequent Γ and atom p there exists
a multiformula Ap(Γ), called a nested uniform interpolant, such that

(i) Var
(
Ap(Γ)

) ⊆ Var(Γ) \ {p} and L(
Ap(Γ)

) ⊆ L(Γ),
(ii) for each multiworld interpretation I of Γ into an L-model M

M, I |= Ap(Γ) implies M, I |= Γ,

5 Here ‘S’ in SDNF and SCNF stands for special to account for the additional require-
ment of one occurrence per label.

Uniform Interpolation via Nested Sequents 345

(iii) for each nested sequent Σ with p /∈ Var(Σ) and L(Σ) = L(Γ) and for each
multiworld interpretation I of Γ into an L-model M,

M, I �|= Ap(Γ) and M, I �|= Σ imply M′, I ′ �|= Γ and M′, I ′ �|= Σ

for some multiworld interpretation I ′ of Γ into some L-model M′.

NUIP(i) ensures that interpretations of Γ are suitable for Ap(Γ).

Remark 23. B́ılková’s definition in [3] differs in several ways. Apart from a minor
difference in NUIP(iii), our definition involves semantic notions and uses multi-
formula interpolants instead of formulas.

Lemma 24. If a nested calculus NL has the NUIP, then its logic L has the UIP.

Proof. To show the existence of ∀pϕ, consider a nested uniform interpolant Ap(ϕ)
of the nested sequent ϕ, with L(ϕ) = {1}. By Lemma 21, w.l.o.g. we can assume
that Ap(ϕ) = 1 : ξ. Let ∀pϕ := ξ. We establish the UIP properties based on the
corresponding NUIP properties. By NUIP(i), we have that Var(∀pϕ) = Var(1 :
ξ) ⊆ Var(ϕ) \ {p} which establishes UIP(i) (cf. Definition 14).

For UIP(ii) we use a semantic argument. Assume towards a contradiction
that �L ξ → ϕ, in which case by completeness M, w �|= ξ → ϕ for some L-
model M = (W,R, V) and w ∈ W . Consider a multiworld interpretation I of
sequent ϕ into M such that I(1) := w. Then M, I |= 1 : ξ but M, I �|= ϕ, in
contradiction to NUIP(ii). Hence, �L ∀pϕ → ϕ as required.

Finally, for UIP(iii), let p /∈ Var(ψ) and suppose �L ψ → ξ. Once again, by
completeness, M, w �|= ψ → ξ for some L-model M = (W,R, V) and w ∈ W .
Consider the nested sequent ψ, with L(ψ) = L(ϕ) = {1}, and a multiworld
interpretation I of sequent ϕ into M with I(1) := w. Then M, I �|= 1 : ξ and
M, I �|= ψ. By NUIP(iii), there must exist an L-model M′ and a multiworld
interpretation I ′ of sequent ϕ into M′ such that M′, I ′ �|= ϕ and M′, I ′ �|= ψ.
In other words, M′, I ′(1) �|= ϕ and M′, I ′(1) |= ψ. Thus, by soundness of L,
we have �L ψ → ϕ, thus completing the proof of UIP(iii). ��

We replace NUIP(iii) with a (possibly) stronger condition (iii)′ that uses
bisimulations up to p to find a model M′:

Definition 25 (BNUIP). A nested sequent calculus NL has the bisimulation
nested-sequent uniform interpolation property, or BNUIP, if, in addition to
conditions NUIP(i)–(ii) from Definition 22,

(iii)′ for each L-model M and multiworld interpretation I of Γ into M, if
M, I �|= Ap(Γ), then there are an L-model M′ and multiworld interpreta-
tion I ′ of Γ into M′ such that (M′, I ′) ∼p (M, I) and M′, I ′ �|= Γ .

It easily follows from Theorem 11 that, like formulas, both nested sequents
and multiformulas are invariant under bisimulations:

346 I. van der Giessen et al.

Lemma 26. Let Γ (�) be a sequent (multiformula) not containing p and
I and I ′ be multiworld interpretations of Γ (�) into M and M′ respectively
such that (M, I) ∼p (M′, I ′). Then M, I |= Γ iff M′, I ′ |= Γ (M, I |= � iff
M′, I ′ |= �).

Lemma 27. If Γ,Ap(Γ) satisfy (iii)′ of Definition 25, then they satisfy (iii) of
Definition 22.

Proof. Let Σ be a nested sequent with p /∈ Var(Σ) and L(Σ) = L(Γ). Let
M, I �|= Ap(Γ) and M, I �|= Σ. By condition (iii)′ we find an L-model M′

and I ′ from Γ into M′ such that (M′, I ′) ∼p (M, I) and M′, I ′ �|= Γ . By
Lemma 26, we also conclude M′, I ′ �|= Σ. ��
Corollary 28. If a calculus NL has the BNUIP, then its logic L has the UIP.

3.1 Uniform Interpolation For K

Now we present our method of constructing nested uniform interpolants satisfy-
ing the BNUIP for NK. Interpolants Ap(Γ) are defined recursively on the basis
of the terminating calculus from Fig. 1. If Γ is not K-saturated, Ap(Γ) is defined
recursively in Table 1 based on the form of Γ . For rows 3–5, we assume that
the formula in the left column is not K-saturated in Γ , whereas in the last row
we assume ♦ϕ not to be K-saturated w.r.t. σn in Γ .6 Each row in the table
corresponds to a rule in the proof search.

Table 1. Recursive construction of Ap(Γ) for NK for Γ that are not K-saturated.

Γ matches Ap(Γ) equals

Γ ′{�}σ σ : �
Γ ′{p, p}σ σ : �
Γ ′{ϕ ∨ ψ} Ap

(
Γ ′{ϕ ∨ ψ, ϕ, ψ})

Γ ′{ϕ ∧ ψ} Ap

(
Γ ′{ϕ ∧ ψ, ϕ})

� Ap

(
Γ ′{ϕ ∧ ψ, ψ})

Γ ′{�ϕ}σ

m

�
i=1

(
σ : �δi � �

τ �=σn
τ : γi,τ

)

where n is the smallest integer such that σn /∈ L(Γ) and the
SCNF

of Ap

(
Γ ′{�ϕ, [ϕ]σn})

is
m

�
i=1

(
σn : δi � �

τ �=σn
τ : γi,τ

)
,

Γ ′{♦ϕ, [Δ]σn} Ap

(
Γ ′{♦ϕ, [Δ, ϕ]})

6 Strictly speaking, this is a non-deterministic algorithm. Since the order does not
affect our results, we do not specify it. However, it is more efficient to apply rows 1–2
of Table 1 first and row 5 last.

Uniform Interpolation via Nested Sequents 347

For K-saturated Γ , we define Ap(Γ) recursively as follows:

Ap(Γ) := �
σ:�∈Γ

�∈Lit\{p,p}
σ : � � �

τ∈L(Γ)
(∃ψ)τ :♦ψ∈Γ

τ : ♦Aform
p

(∨

τ :♦ψ∈Γ
ψ

)
, (1)

where Aform
p (Γ) := form

(
Ap(Γ)

)
. Since we apply form to a multiformula � with

1 being its only label, we have M, I |= � iff M, I(1) |= form(�). As usual, we
define the empty disjunction to be false, which here means �∅ := 1 : ⊥. The
construction of Ap(Γ) is well-defined (modulo a chosen order) because it termi-
nates w.r.t. the following ordering on nested sequents. For a nested sequent Γ , let
d(Γ) be the number of its distinct diamond subformulas. Let � be the ordering
in which the rules of NK terminate (see Lemma 5). Consider the lexicographic
ordering based on the pair (d,�). For each row in Table 1, d stays the same
but the recursive calls are for premise(s) lower w.r.t. ordering �. The recursive
call in step (1) for K-saturated sequents, on the other hand, decreases d because
the set of diamond subformulas of

∨
τ :♦ψ∈Γ ψ is strictly smaller than that of Γ .

When d(Γ) = 0 for a K-saturated Γ , the second disjunct of the recursive call (1)
is empty and, thus, no new recursive calls are generated.

Before we prove the main theorem, we provide some examples.

Example 29. Consider the sequent �p,�p. We use Lemmas 20 and 21 as nec-
essary. The algorithm for Ap(�p,�p) calls the calculation of Ap (�p,�p, [p]11),
which in turn calls Ap (�p,�p, [p]11, [p]12). The latter sequent is K-saturated,
and the algorithm returns 1 : ⊥ � 1 : ⊥, the first disjunct corresponding to the
empty disjunction of literals other than p and p and the second one representing
the absent diamond formulas. Computing its SCNF we get

Ap (�p,�p, [p]11, [p]12) ≡ 1 : ⊥ � 11 : ⊥ � 12 : ⊥.

Applying the transformation from the penultimate line of Table 1, we first get

Ap (�p,�p, [p]11) = 1 : ⊥ � 11 : ⊥ � 1 : �⊥ ≡ 1 : �⊥ � 11 : ⊥,

and finally Ap (�p,�p) = 1 : �⊥ � 1 : �⊥ ≡ 1 : �⊥. It is easy to check that
�⊥ is indeed a uniform interpolant of �p ∨ �p.

Example 30. Consider the nested sequent Γ = p,♦q ∧ ♦p, [q]. In the absence
of boxes, the algorithm amounts to processing the K-saturated sequents in the
leaves of the proof search tree.

p,♦q ∧ ♦p,♦q, [q]11

p,♦q ∧ ♦p,♦p, [q, p]11
p,♦q ∧ ♦p,♦p, [q]11

p,♦q ∧ ♦p, [q]11

We have

Ap(p,♦q ∧ ♦p,♦q, [q]11) = 11 : q � 1 : ♦Aform
p (q),

Ap(p,♦q ∧ ♦p,♦p, [q, p]11) = 11 : q � 1 : ♦Aform
p (p).

348 I. van der Giessen et al.

Since formulas Aform
p (q) and Aform

p (p) can be simplified to q and ⊥ respectively,
we obtain Ap(Γ) ≡ (11 : q � 1 : ♦q) � (11 : q � 1 : ♦⊥), which is equivalent
to 11 : q since ♦⊥ can never be true. Again, it is easy to see that 11 : q is a
bisimulation nested uniform interpolant of p,♦q ∧ ♦p, [q]11 with respect to p.

Theorem 31. The nested calculus NK has the BNUIP.

Proof. BNUIP(i) is easily satisfied. To prove BNUIP(ii), let Γ be a nested
sequent and I a multiworld interpretation of Γ into a K-model M = (W,R, V)
such that M, I |= Ap(Γ) (by BNUIP(i) I is suitable for Ap(Γ)). We show
M, I |= Γ by induction on the lexicographic ordering (d,�). Considering the
construction of Ap(Γ), we treat the cases of Table 1 first and deal with the
case of K-saturated Γ last. Cases in rows 1–2 of Table 1 are trivial. Those in
rows 3, 4, and 6 are similar (see [10]), so we only discuss row 5:

Let Γ = Γ ′{�ϕ}σ, and Ap

(
Γ ′{�ϕ, [ϕ]σn}) ≡

m

�
i=1

(
σn : δi � �

τ �=σn
τ : γi,τ

)
for

some σn /∈ L(Γ), and

M, I |=
m

�
i=1

(
σ : �δi � �

τ �=σn
τ : γi,τ

)
. (2)

For any v with I(σ)Rv, define a multiworld interpretation Iv := I � {(σn, v)}
of Γ ′{�ϕ, [ϕ]σn} into M. By (2) we have, for each i, either M, Iv(τ) |= γi,τ for
some τ ∈ L(Γ) or M, Iv(σn) |= δi, meaning that M, Iv |= Ap(Γ ′{�ϕ, [ϕ]σn}).
By the induction hypothesis, M, Iv |= Γ ′{�ϕ, [ϕ]σn} whenever I(σ)Rv.
Clearly, M, I |= Γ if M, I(σ) |= �ϕ. Otherwise there exists a v such
that I(σ)Rv and M, v �|= ϕ. For this world M, Iv |= Γ ′{�ϕ, [ϕ]σn} implies
M, Iv |= Γ ′{�ϕ}σ, which yields M, I |= Γ because Iv agrees with I on all
labels from Γ .

Finally, for the case when Γ is K-saturated, let M, I |= Ap(Γ) from (1).
Clearly, M, I |= Γ if we have M, I(σ) |= � for some σ : � ∈ Γ . Thus, it
remains to consider the case when M, I(τ) |= ♦Aform

p

(∨
τ :♦ψ∈Γ ψ

)
for some

τ ∈ L(Γ). Then M, v |= Aform
p

(∨
τ :♦ψ∈Γ ψ

)
for some v such that I(τ)Rv and,

accordingly, M,J |= Ap

(∨
τ :♦ψ∈Γ ψ

)
for J := {(1, v)}. By induction hypothesis

(for a smaller d), M,J |= ∨
τ :♦ψ∈Γ ψ, and, hence, M, v |= ψ for some τ :

♦ψ ∈ Γ . Now M, I |= Γ follows from I(τ)Rv. This case concludes the proof
for BNUIP(ii).

It only remains to prove BNUIP(iii)′. Let I be a multiworld interpretation
of Γ into a K-model M such that M, I �|= Ap(Γ). We must find another multi-
world interpretation I ′ into some K-model M′ such that (M′, I ′) ∼p (M, I) and
M′, I ′ �|= Γ . We construct M′ and I ′ while simultaneously proving BNUIP(iii)′

by induction on the lexicographic order (d,�).
Let Γ be K-saturated and M, I �|= Ap(Γ) for Ap(Γ) from (1). The following

steps are schematically depicted in Fig. 2 (see [10] for more details).

(1) First, we make the interpretation injective. It is easy to see (though tedious
to describe in detail) that by a breadth-first recursion on nodes σ in Γ , one

Uniform Interpolation via Nested Sequents 349

Fig. 2. Main transformations for constructing model M′: circles are worlds in Range(I).

can duplicate MI(σn) according to Definition 12 whenever I(σm) = I(σn) for
some n < m to obtain a model N and an injective multiworld interpretation J
of Γ into it such that (N ,J) ∼p (M, I). Thus, J (σ) �= J (τ) whenever σ �= τ
and N ,J �|= Ap(Γ) by Lemma 26.

(2) Then we deal with out-of-range children. A model N ′ is constructed from N
by applying the following ♦-processing step for each node τ ∈ L(Γ) that
contains at least one formula of the form ♦ϕ (nodes can be chosen in any
order). Start by setting N 0 := N and j := 0:

• ♦-processing step for τ : Since N j ,J �|= Ap(Γ), it follows from (1) that

N j ,J (τ) �|= ♦Aform
p

(∨
τ :♦ψ∈Γ ψ

)
. Thus, N j , v �|= Aform

p

(∨
τ :♦ψ∈Γ ψ

)
for

each child v of J (τ) in N j , and, accordingly, N j
v , Iv �|= Ap

(∨
τ :♦ψ∈Γ ψ

)

for the multiworld interpretation Iv := {(1, v)} of sequent
∨

τ :♦ψ∈Γ ψ

into the subtree N j
v of N j with root v. By the induction hypothesis

for a smaller d, there exists a K-model Nτ,v with root ρτ,v such that
(N j

v , v) ∼p (Nτ,v, ρτ,v) and Nτ,v, ρτ,v �|= ∨
τ :♦ψ∈Γ ψ. Let N j+1 be the

result of replacing each subtree N j
v for children v of J (τ) not in Range(J)

with Nτ,v in N j according to Definition 12. Note that all these subtrees
are disjoint because the models are intransitive trees and, hence, these
replacements do not interfere with one another. Note also that since
Range(J) is downward closed and the roots of the replaced subtrees are
outside, no world from the range is modified. Thus, J remains an injec-
tive interpretation into N j+1. Finally, it follows from Lemma 13 that
(N j ,J) ∼p (N j+1,J). Hence, N j+1,J �|= Ap(Γ).
Let N ′ = (W ′, R′, V ′) be the model obtained after replacements for all τ ’s
are completed (again they do not interfere with each other). Then we have
(N ,J) ∼p (N ′,J) and, for each out-of-range child v of J (τ) in N , the
world ρτ,v is a child of J (τ) in N ′ and N ′, ρτ,v �|= ∨

τ :♦ψ∈Γ ψ. This
accounts for all children of J (τ) in N ′.

(3) It remains to adjust the truth values of p. We define M′ := (W ′, R′, V ′
p) by

modifying the valuation V ′ of N ′ as follows. We define V ′
p(q) := V ′(q) for

q �= p. And for q = p we define:

V ′
p(p) := V ′(p) ∩ (

W ′ \ Range(J)
) � {v ∈ W ′ | ∃σ(v = J (σ)&σ : p ∈ Γ)}.

350 I. van der Giessen et al.

For I ′ := J , it immediately follows from the definition that

M′, I ′(σ) �|= p if σ : p ∈ Γ and M′, I ′(σ) �|= p if σ : p ∈ Γ. (3)

Moreover, since subtrees M′
ρτ,v

are disjoint from Range(I ′),

M′, ρτ,v �|= ψ whenever τ : ♦ψ ∈ Γ. (4)

After these 3 steps, we have a model (M′, I ′) ∼p (N ′,J) ∼p (N ,J) ∼p (M, I)
that satisfies (3) and (4). It remains to prove that M′, I ′ �|= Γ by showing that
M′, I ′(σ) �|= ϕ for all σ : ϕ ∈ Γ , which is done by induction on the structure
of ϕ. Each case, except for the ♦ case is easy (see [10]). So, let σ : ♦ψ ∈ Γ .
To falsify ♦ψ at I ′(σ), we need to show that M′, u �|= ψ whenever I ′(σ)R′u.
If u = I ′(σn) for some label σn ∈ L(Γ), saturation ensures that σn : ψ ∈ Γ ,
hence, M′, u �|= ψ by the induction hypothesis. The only other children of I ′(σ)
are u = ρσ,v, for which M′, u �|= ψ follows from (4). This completes the proof
of BNUIP(iii)′ for K-saturated sequents.

To conclude the proof of BNUIP(iii)′, we have to treat all sequents that are
not K-saturated based on Table 1. Here, the only non-trivial case is the � case.
The other cases are easy (see [10]). Assume M, I �|= Ap(Γ ′{�ϕ}σ), i.e.,

M, I �|=
m

�
i=1

(
σ : �δi � �

τ �=σn
τ : γi,τ

)
(5)

where

Ap

(
Γ ′{�ϕ, [ϕ]σn}) ≡

m

�
i=1

(
σn : δi � �

τ �=σn
τ : γi,τ

)
. (6)

By (5), for some i we have M, I(σ) �|= �δi and M, I(τ) �|= γi,τ for all τ �= σn.
The former means that M, v �|= δi for some v such that I(σ)Rv. Therefore,
a multiworld interpretation J := I � {(σn, v)} of Γ ′{�ϕ, [ϕ]σn} into M falsi-
fies (6), and, by the induction hypothesis, there is a multiworld interpretation J ′

into a K-model M′ such that (M′,J ′) ∼p (M,J) and M′,J ′ �|= Γ ′{�ϕ, [ϕ]σn}.
For I ′ := J ′ � Dom(I), we have (M, I) ∼p (M′, I ′) and M′, I ′ �|= Γ ′{�ϕ}σ

because all formulas from Γ ′{�ϕ}σ are present in Γ ′{�ϕ, [ϕ]σn}. ��
Example 32. As shown in Example 29, Ap(�p,�p) = 1 : �⊥. To see the impor-
tance of injectivity in BNUIP(iii)′, suppose M, I �|= 1 : �⊥, i.e., I(1) has at
least one child. Assume this is the only child, as in a model depicted on the left:

For a saturation �p,�p, [p]11, [p]12 of this sequent, we found an interpolant
in SCNF: namely, 1 : ⊥ � 11 : ⊥ � 12 : ⊥. A multiworld interpretation J
mapping both 11 and 12 to the only child of J (1) := I(1) yields the picture on

Uniform Interpolation via Nested Sequents 351

the right. Clearly, the SCNF is false, M,J �|= 1 : ⊥ � 11 : ⊥ � 12 : ⊥. But,
without forcing J to be injective, it is impossible to make �p,�p false at J (1):
whichever truth value p has at J (11), it makes one of the boxes true.

3.2 Uniform Interpolation For D and T

The proof for K can be adjusted to prove the same result for D and T.

Theorem 33. The nested sequent calculi ND and NT have the BNUIP.

Proof. We follow the structure of the proof in Theorem 31 and only describe
deviations from it. If Γ is not D-/T-saturated, then cases in Table 1 are appended
with the bottom (top) row of Table 2, which is applied only if ♦ϕ is not D-/T-
saturated in Γ . For D-/T-saturated Γ , define Ap(Γ) by (1) as before. BNUIP(i) is
clearly satisfied by either row in Table 2.

Table 2. Additional recursive rules for constructing Ap(Γ) for Γ that are not T-
saturated (top row) or not D-saturated (bottom row).

Γ matches Ap(Γ) equals

Γ ′{♦ϕ} in logic T Ap(Γ ′{♦ϕ, ϕ})

Γ ′{♦ϕ}σ in logic D
m

�
i=1

(
σ : ♦δi � �

τ �=σ1
τ : γi,τ

)
where the SDNF of

Ap(Γ ′{♦ϕ, [ϕ]σ1}) is
m

�
i=1

(
σ1 : δi � �

τ �=σ1
τ : γi,τ

)

Let us first show BNUIP(ii) for NT. Although T-models are reflexive, this
does not affect the reasoning for either saturated sequents or non-saturated box
formulas. The only new case is applying the top row of Table 2 to a non-T-
saturated σ : ♦ϕ in Γ . Assume M, I |= Ap(Γ ′{♦ϕ,ϕ}σ) for a T-model M.
By the induction hypothesis, M, I |= Γ ′{♦ϕ,ϕ}σ. Since M, I(σ) |= ϕ implies
M, I(σ) |= ♦ϕ by reflexivity, the desired M, I |= Γ ′{♦ϕ}σ follows.

For BNUIP(iii)′ for T-saturated sequents, we have to modify the construc-
tion in step (1) on p. 12 of an injective multiworld interpretation J into a new
T-model N out of the given I into M where M, I �|= Ap(Γ). In the case of K,
there could be only one situation of σm conflated with some already processed τ :
namely, when τ = σn is a sibling. This can still happen for T-models and is pro-
cessed the same way. But, due to reflexivity, there is now another possibility:
conflating with the parent τ = σ. In this case, cloning is used instead of duplica-
tion, which produces a bisimilar T-model by Lemma 13. Having reflexive rather
than irreflexive intransitive trees in step (2) on p. 12 does not affect the argu-
ment. The proof that M′, I ′ �|= Γ for the given T-saturated Γ in step (3) on
p. 13 requires an adjustment only for the case of σ : ♦ψ ∈ Γ : it is additionally
necessary to show that M′, I ′(σ) �|= ψ for the reflexive loop at I ′(σ). This is

352 I. van der Giessen et al.

resolved by observing that σ : ψ ∈ Γ due to T-saturation and, hence, ψ must
also be false in I ′(σ) by the induction hypothesis.

Finally, for BNUIP(iii)′ for non-T-saturated sequents, a new case comes from
the top row of Table 2, but M′, I ′ �|= Γ ′{♦ϕ,ϕ} obtained by the IH directly
implies M′, I ′ �|= Γ ′{♦ϕ}. This completes the proof of the BNUIP for NT.

For BNUIP(ii) for ND, the only new case is applying the bottom row of
Table 2 to a non-D-saturated σ : ♦ϕ in Γ = Γ ′{♦ϕ}σ. So let us assume

M, I |=
m

�
i=1

(
σ : ♦δi � �

τ �=σ1
τ : γi,τ

)
for some multiworld interpretation I into

a D-model M = (W,R, V) such that the SDNF of Ap(Γ ′{♦ϕ, [ϕ]σ1}) equals
m

�
i=1

(
σ1 : δi � �

τ �=σ1
τ : γi,τ

)
. Therefore, for some i we have M, I(τ) |= γi,τ for

all τ ∈ L(Γ) and M, I(σ) |= ♦δi. Therefore, M, v |= δi for some v such
that I(σ)Rv. Formula ♦ϕ is not D-saturated in Γ ′{♦ϕ}σ, so Iv := I � {(σ1, v)}
is a multiworld interpretation of Γ ′{♦ϕ, [ϕ]σ1} into M. Moreover, we have
M, Iv |= Ap(Γ ′{♦ϕ, [ϕ]σ1}). By induction hypothesis, M, Iv |= Γ ′{♦ϕ, [ϕ]σ1},
from which it easily follows that M, I |= Γ ′{♦ϕ}σ.

For BNUIP(iii)′ for a D-saturated sequent Γ , we change step (1) in such a way
that not only is the multiworld interpretation J injective, but Range(J) contains
only irreflexive worlds. Injectivity is obtained in a similar way as done for T using
duplication and cloning to obtain a bisimilar D-model M′′ by Lemma 13 with
injective multiworld interpretation, say J . So (M′′,J) ∼p (M, I), with injec-
tive J . To ensure that the multiworld interpretation only maps to irreflexive
worlds, we repeatedly unravel subtrees rooted in reflexive worlds from Range(J)
while keeping the same multiworld interpretation J . Since each unraveling
decreases the number of reflexive worlds in Range(J), this process terminates
yielding a model M′ that is a D-model and satisfies (M′,J) ∼p (M, I) by
Lemma 13. The replacements of step (2) preserve D-models by Lemma 13 and
step (3) requires no changes either. Note that in steps (2) and (3) we do not
change the range of I ′ := J , so it still only maps to irreflexive worlds. We need
this construction in the proof that M′, I ′ �|= Γ for case σ : ♦ψ ∈ Γ , where the
argument for M′, I ′(σ) �|= ♦ψ now works the same way as in K since I ′(σ) is
irreflexive by construction.

The only remaining new case is the application of the bottom row of Table 2
for a non-D-saturated σ : ♦ϕ, i.e., when node σ is a leaf of the sequent

tree, in BNUIP(iii)′. Let M, I �|=
m

�
i=1

(
σ : ♦δi � �

τ �=σ1
τ : γi,τ

)
. By seriality

of M, there is a world v ∈ W such that I(σ)Rv. Then J := I ′ � {(σ1, v)}
is a multiworld interpretation of Γ ′{♦ϕ, [ϕ]σ1} into M. Moreover, we have

M,J �|=
m

�
i=1

(
σ1 : δi � �

τ �=σ1
τ : γi,τ

)
. By induction hypothesis, there is a mul-

tiworld interpretation J ′ of Γ ′{♦ϕ, [ϕ]σ1} into some D-model M′ such that
(M′,J ′) ∼p (M,J) and M′,J ′ �|= Γ ′{♦ϕ, [ϕ]σ1}. Similar to the case of �ϕ
for K, restricting this J ′ to the labels of Γ yields a multiworld interpretation
bisimilar to I and refuting Γ = Γ ′{♦ϕ}σ. ��

Uniform Interpolation via Nested Sequents 353

Corollary 34. Logics K, D, and T have the uniform interpolation property.

4 Conclusion

We developed a constructive method of proving uniform interpolation based on
nested sequent calculi. While this is an important and natural step to further uti-
lize these formalisms, much remains to be done. This method works well for the
non-transitive logics K, D, and T but meets with difficulties, e.g., for S5, which
is also known to enjoy uniform interpolation. In [10], we successfully adapted
the method to hypersequents to cover S5. There are other logics in the so-called
modal cube between K and S5 with the UIP, for which it remains to find the
right formalism and adaptation of our method. Another natural direction of
future work is intermediate logics, where exactly seven logics are known to have
the UIP.

Acknowledgements. Iris and Roman thank Björn Lellmann and Tim Lyon for
enlightening discussions, detailed explanations, and a genuinely pleasant working atmo-
sphere during Iris’s visit to Vienna. We also thank the anonymous reviewers for their
careful and useful comments that led to several improvements of the paper.

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In Logic: From Foundations to Applications, pp. 1–32. Clarendon
Press (1996)

2. B́ılková, M.: Interpolation in modal logics. Ph.D. thesis, Charles University (2006).
https://dspace.cuni.cz/handle/20.500.11956/15732

3. B́ılková, M.: A note on uniform interpolation proofs in modal deep inference calculi.
In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009.
LNCS (LNAI), vol. 6618, pp. 30–45. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22303-7 3

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001). https://doi.org/10.1017/CBO9781107050884

5. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577
(2009). https://doi.org/10.1007/s00153-009-0137-3

6. D’Agostino, G.: Uniform interpolation, bisimulation quantifiers, and fixed points.
In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp.
96–116. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75144-1 8

7. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Log. 166, 274–305 (2015). https://doi.org/10.1016/j.apal.2014.11.002

8. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Log. 71, 189–
245 (1995). https://doi.org/10.1016/0168-0072(93)E0084-2

9. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the
modal system S4. Studia Logica 55, 259–271 (1995). https://doi.org/10.1007/
BF01061237

10. van der Giessen, I., Jalali, R., Kuznets, R.: Uniform interpolation via nested
sequents and hypersequents. E-print 2105.10930, arXiv (2021). arXiv:2105.10930

https://dspace.cuni.cz/handle/20.500.11956/15732
https://doi.org/10.1007/978-3-642-22303-7_3
https://doi.org/10.1007/978-3-642-22303-7_3
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1007/978-3-540-75144-1_8
https://doi.org/10.1016/j.apal.2014.11.002
https://doi.org/10.1016/0168-0072(93)E0084-2
https://doi.org/10.1007/BF01061237
https://doi.org/10.1007/BF01061237
http://arxiv.org/abs/2105.10930

354 I. van der Giessen et al.

11. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gab-
bay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–
396. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0 6

12. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. Arch. Math.
Log. 58, 155–181 (2019). https://doi.org/10.1007/s00153-018-0629-0

13. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Log. 170(11), 102711 (2019). https://doi.org/10.1016/j.apal.2019.05.008

14. Kurahashi, T.: Uniform Lyndon interpolation property in propositional modal log-
ics. Arch. Math. Log. 59, 659–678 (2020). https://doi.org/10.1007/s00153-020-
00713-y

15. Kuznets, R.: Multicomponent proof-theoretic method for proving interpolation
properties. Ann. Pure Appl. Log. 169, 1369–1418 (2018). https://doi.org/10.1016/
j.apal.2018.08.007

16. Kuznets, R., Lellmann, B.: Interpolation for intermediate logics via hyper- and
linear nested sequents. In: Advances in Modal Logic, vol. 12, pp. 473–492. College
Publications (2018). http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.
pdf

17. Minc, G.E.: On some calculi of modal logic. In: The Calculi of Symbolic Logic.
I, volume 98 (1968) of Proceedings of the Steklov Institute of Mathematics, pp.
97–124. AMS (1971)

18. Negri, S., von Plato, J.: Proof Analysis. Cambridge University Press (2011).
https://doi.org/10.1017/CBO9781139003513

19. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 57, 33–52 (1992). https://doi.org/10.
2307/2275175

20. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In:
Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philoso-
phy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/
978-1-4020-9084-4 3

21. Shavrukov, V.Yu.: Subalgebras of diagonalizable algebras of theories containing
arithmetic, volume 323 of Dissertationes Mathematicae. Polish Academy of Sci-
ences (1993). http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf

22. Tabatabai, A.A., Jalali, R.: Universal proof theory: Semi-analytic rules and Craig
interpolation. E-print 1808.06256, arXiv (2018). arXiv:1808.06256

23. Tabatabai, A.A., Jalali, R.: Universal proof theory: semi-analytic rules and uniform
interpolation. E-print 1808.06258, arXiv (2018). arXiv:1808.06258

24. Visser, A.: Uniform interpolation and layered bisimulation. In: Gödel 1996, volume
6 of Lecture Notes in Logic, pp. 139–164. ASL (1996). https://doi.org/10.1017/
9781316716939.010

https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/s00153-018-0629-0
https://doi.org/10.1016/j.apal.2019.05.008
https://doi.org/10.1007/s00153-020-00713-y
https://doi.org/10.1007/s00153-020-00713-y
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1016/j.apal.2018.08.007
http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf
http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf
https://doi.org/10.1017/CBO9781139003513
https://doi.org/10.2307/2275175
https://doi.org/10.2307/2275175
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1007/978-1-4020-9084-4_3
http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf
http://arxiv.org/abs/1808.06256
http://arxiv.org/abs/1808.06258
https://doi.org/10.1017/9781316716939.010
https://doi.org/10.1017/9781316716939.010

Disjunction and Negation in Information
Based Semantics

Vı́t Punčochář(B) and Andrew Tedder

Institute of Philosophy, Czech Academy of Sciences,
Jilská 1, 110 00 Prague, Czech Republic

puncochar@flu.cas.cz

Abstract. We investigate an information based generalization of the
incompatibility-frame treatment of logics with non-classical negation
connectives. Our framework can be viewed as an alternative to the neigh-
bourhood semantics for extensions of lattice logic by various negation
connectives, investigated by Hartonas. We set out the basic semantic
framework, along with some correspondence results for extensions. We
describe three kinds of constructions of canonical models and show that
double negation law is not canonical with respect to any of these con-
structions. We also compare our semantics to Hartonas’.

Keywords: Non-classical logics · Incompatibility · Information ·
Relational semantics · Negation · Disjunction

1 Introduction

A characteristic feature of relational semantics is that it is based on a relation
�, which in any given model relates elements of the model and formulas of
some language. For example, in the standard Kripke semantics for modal logics
the elements of Kripke models represent possible worlds and �, as a relation
between possible worlds and formulas, is conceived of as the relation of truth.
Motivated by this interpretation, the following semantic clauses for conjunction,
disjunction, and negation are postulated:

(∧) s � α ∧ β iff s � α and s � β,
(∨) s � α ∨ β iff s � α or s � β,
(¬) s � ¬α iff s � α.

As a consequence, these connectives behave in accordance with classical logic in
Kripke semantics. To avoid various features of classical logic, relational semantic
frameworks for various non-classical logics, like, for example, intuitionistic logic
and relevant logics, replace possible worlds with some more general entities,

This paper is an outcome of the project Logical Structure of Information Channels, no.
21-23610M, supported by the Czech Science Foundation and realized at the Institute
of Philosophy of the Czech Academy of Sciences.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 355–371, 2021.
https://doi.org/10.1007/978-3-030-88853-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_22

356 V. Punčochář and A. Tedder

which we might neutrally call states. With respect to these states negation does
not behave in this simple way, and the question of how to interpret these more
general states has posed a perennial issue. One suggestion that has appeared
repeatedly in the literature is that they should be viewed as bodies of informa-
tion, i.e. as information states.1 The relation � between such states and formulas
should perhaps be called (informational) support rather than truth. But the cru-
cial thing is that with respect to such interpretation the clause (¬) for negation
seems implausible because a body of information may be incomplete and thus
support neither a given sentence nor its negation, or it can be inconsistent and
thus support both a sentence and its negation. Consequently, one has to intro-
duce a different semantic clause for negation. When the clause (¬) for negation
is abandoned the space for non-classical logics is opened.

It is quite common that even if possible worlds are replaced with abstract
states and the semantics of negation is modified, the structure of the semantic
clauses (∧) and (∨) for conjunction and disjunction is preserved.2 However,
from the informational perspective there seems to be some asymmetry between
conjunction and disjunction. The clause (∧) still makes a good sense even if we
replace possible worlds with information states (a body of information supports
a conjunction iff it supports both conjuncts). However, it has been pointed out
many times that the clause (∨) for disjunction is implausible in the informational
interpretation, just like the clause (¬) for negation.3 A body of information may
support a disjunction even if it does not support any of its disjuncts. If, for
instance, we conceive of a body of information as that being available to an
agent in the course of some reasoning task, then we know from experience that
we may have information that a disjunction holds without any information about
which of the disjuncts holds.

Several alternative treatments of disjunction have been proposed in the lit-
erature. For example, while Kripke semantics for intuitionistic logic [17] accepts
the clause (∨) for disjunction, the so called Beth semantics [2] for intuitionistic
logic treats disjunction in a more complex way.

In the informational perspective one can characterize disjunction in this way,
which shall be our approach: the disjunction of α and β is what two states have
in common if one of them supports α and the other one supports β. In other
words, if an information state s supports α ∨ β then it contains the common
content of the information expressed by α and the information expressed by β.
If this is taken as the characteristic property of disjunction, one can transform it
into a semantic clause. Assume that s◦ t represents the common (informational)

1 The interpretations of frame semantics in terms of information states was most
famously provided for intuitionistic logic in [17]. Such an interpretation was given
for relational semantics for relevant logics in [24], and has been used extensively in
work influenced by situation semantics [1], such as in [18].

2 This is, for instance, the case in the ternary relation semantic framework for relevant
logics, details about which can be found in [23].

3 See, e.g. [5,14], or [20] for examples.

Disjunction and Negation in Information Based Semantics 357

content of the states s and t and s ≤ u expresses that the information of s is
contained in the information of u. Then we obtain the following:

(∨)’ s � α ∨ β iff there are states t, u such that t � α, u � β, and t ◦ u ≤ s.

For example, assume that information states are conceived as sets of possible
worlds (as is common in epistemic logic [8]) and a formula is supported by an
information state iff it is true (in the sense of classical logic) in every possible
world of the state. Then the common content of two states coincides with union
(a formula is true in all worlds of s and all worlds of t iff it is true in all worlds
of s ∪ t) and informational inclusion ≤ coincides with the superset relation. It
indeed holds in this setting that a disjunction is supported by an information
state iff the state is a subset of the union of two states, t and u, such that t
supports the first disjunct and u supports the second disjunct. For instance, one
can take t to be the set of all worlds in which the first disjunct is true and u the
set of all worlds in which the second disjunct is true.

Dually, information states can be represented as theories (of some standard
logical system like classical logic, intuitionistic logic, relevant logic or fuzzy logic)
and a formula is supported by a state iff it belongs to the corresponding theory.
In that case the common content coincides with intersection and informational
inclusion coincides with the subset relation. Then it holds that a state s supports
a disjunction iff there are two theories t and u (e.g. the theories generated by
the two disjuncts) such that t supports the first disjunct, u supports the second
disjunct, and t ∩ u ⊆ s.

The clause (∨)’ can be viewed as capturing the general structure of these
cases. Our framework will be based on this clause. A similar semantic treatment
of disjunction has been employed for example in [6,9,16,19].4

As regards negation, we will adopt the semantic characterization in terms of
a primitive incompatibility relation, following work by Goldblatt [11] on ortho-
lattices, and Dunn [7] and Restall [22] on relevant and paraconsistent negations,
among other researchers working in non-classical logic. The central idea is that
an information state supports ¬α iff the state is incompatible with any state
that supports α. As mentioned, negation interpreted in this manner has been
studied in the context of non-classical logic before, but we’ll combine this treat-
ment of negation with the treatment of disjunction mentioned above. The main
aim of this paper is to investigate abstract features of negation characterized in
this way in the context of information based semantics involving the mentioned
treatment of disjunction, proving new completeness, frame correspondence, and
canonicity results. Our framework is similar, in certain respects, to that devel-
oped by Hartonas [14], but ours has the advantage of being more concrete and,
in some ways, simpler, allowing for an easier interpretation of the resulting class
of models. In particular, we seek to interpret the points in the frame as state of
information, and the various relations and operations thereon as dealing directly
4 Interestingly, this style of interpretation has been recently adapted to provide exact
verification clause for conjunction in the context of truthmaker semantics – see [10]
for this style of semantics applied to intuitionistic logic.

358 V. Punčochář and A. Tedder

with their information, and for this purpose the more concrete approach here is
a better fit than the more abstract approach taken in [14].

2 Semilattice Semantics

In this section we introduce a semilattice semantics for the language L which is
built out of a set of atomic formulas At by conjunction ∧ and disjunction ∨.5

A pair of L-formulas 〈α, β〉 will be called a consequence L-pair. We will write
α � β instead of 〈α, β〉. Our logical basis will be the so called lattice logic LL
understood as a set of consequence L-pairs generated by the system consisting
of the following axioms and rules:

α � α α ∧ β � α α ∧ β � β α � α ∨ β β � α ∨ β

α � β, β � γ/α � γ α � β, α � γ/α � β ∧ γ α � γ, β � γ/α ∨ β � γ

The distributive lattice logic DLL is generated by the system for LL enriched
with the following axiom:

α ∧ (β ∨ γ) � (α ∧ β) ∨ (α ∧ γ)

For the semantic treatment of the logic we will use the following structures.

Definition 1. An information frame (IF) is a structure 〈S, ◦, i〉, where S is a
non-empty set, ◦ is an associative, commutative, idempotent binary operation on
S, and i is an element of S such that s ◦ i = s.

The set S represents a space of information states. The operation ◦ assigns
to any two states t, u the common (informational) content of t and u, i.e. a state
t ◦u consisting of information that the two states have in common. The element
i represents the state of the absolute inconsistency (or triviality). As pointed
out in the introduction, the operation ◦ can be conceived of either as union (of
possible worlds), or as intersection (of theories). Both perspectives make good
sense, so it is open to interpretation whether ◦ is understood as join or rather
as meet. We will fix the latter perspective, so that we introduce the order of the
structure in the following way: s ≤ t iff s ◦ t = s. In this perspective, i is the top
element of the structure.

Definition 2. Let I = 〈S, ◦, i〉 be an IF. A filter in I is any subset F of S such
that i ∈ F , and for any t, u ∈ S it holds that t ◦ u ∈ F iff t ∈ F and u ∈ F . A
valuation in I is a function that assigns to each atomic formula from At a filter
in I. Given a valuation V in I, the pair 〈I, V 〉 is called an information model
(IM).
5 It should be noted that the phrase “semilattice semantics” is often used to refer

to the semantic framework developed by Urquhart [24] for logics containing a rel-
evant implication connective. While our proposed semantics could be extended to
incorporate some of that machinery (following the lead of [16]), it is not included
in the basic setting we investigate here, for the sake of clarity. Having said this, a
conditional (relevant, intuitionistic, or otherwise) could be included without much
difficulty.

Disjunction and Negation in Information Based Semantics 359

Equivalently, one can define filters as non-empty subsets of S that are upward
closed (w.r.t. ≤) and closed under ◦. Relative to a given IM, we can introduce
the following semantic clauses for L-formulas:

(a) s � p iff s ∈ V (p), for any atomic formula p,
(b) s � α ∧ β iff s � α and s � β,
(c) s � α ∨ β iff there are states t, u such that t � α, u � β, and t ◦ u ≤ s.

If s � α we say that the state s supports the formula α. Let M be an IM, and α
an L-formula. Then ||α||M is the set of states in M that support α (the subscript
will usually be omitted).

Proposition 1. ||α||M is a filter in M , for every L-formula α.

We say that a consequence L-pair α � β is valid in an IF I if ||α|| ⊆ ||β||, for any
IM M = 〈I, V 〉. The proof of the following proposition proceeds by a canonical
model construction as in [19].

Proposition 2. A consequence L-pair α � β is valid in all IFs if and only if it
is derivable in the system LL.

Definition 3. A distributive information frame (DIF) is an IF satisfying the
following condition: if t ◦ u ≤ s then there are t′, u′ such that t ≤ t′, u ≤ u′, and
t′ ◦ u′ = s.

In the distributive information frames the semantic clause for disjunction can be
reformulated as in the following proposition.

Proposition 3. Let M be an IM based on a DIF, and α, β any L-formulas.
Then it holds for any state s in M :

s � α ∨ β iff there are states t, u such that t � α, u � β, and t ◦ u = s.

Proposition 4. A consequence L-pair α � β is valid in all DIFs if and only if
it is derivable in the system DLL.

3 Incompatibility Relation in Information Frames

In this section we focus on general features of negation in the context of semilat-
tice semantics. Our approach is based on the treatment of negation that has been
extensively used in the literature on non-classical logics and that characterizes
negation in terms of the following plausible semantic clause: ¬α is supported
by a state s if and only if any state supporting α is incompatible with s (see
[7,11,22]). We extend L with negation (¬) and denote the resulting language as
L¬. Moreover, we enrich our models with a primitive incompatibility relation ⊥.

Definition 4. An incompatibility proto-IF is a tuple 〈S, ◦, i,⊥〉, where 〈S, ◦, i〉
is an IF, and ⊥ is a binary relation on S, satisfying the following monotonicity
condition: if t⊥u and t ≤ s then s⊥u. For any s ∈ S, the set {t ∈ S | s⊥t} will
be denoted as ⊥s, and the set {t ∈ S | t⊥s} as ⊥s. An incompatibility proto-IM
is an incompatibility proto-IF equipped with a valuation.

360 V. Punčochář and A. Tedder

The semantic clause for negation is defined as follows:

s � ¬α iff for any t, if t � α then t⊥s.

Proposition 5. Let I = 〈S, ◦, i,⊥〉 be an incompatibility proto-IF. Then ||α|| is
a filter in 〈I, V 〉, for every valuation V and every L¬-formula α, if and only if
⊥t is a filter, for every t ∈ S.

Definition 5. An incompatibility proto-IF where ⊥t is a filter, for every t ∈ S,
will be called simply an incompatibility IF (IIF, for short). A filter F in an IIF
will be called an incompatibility filter if there is a state t ∈ S such that F = ⊥t.

Proposition 6. For any IIM M and all L¬-formulas α, β, if α � β is valid in
M then ¬β � ¬α is valid in M .

Definition 6. By a logic Λ, we will understand a set of consequence L¬-pairs
that (a) is closed under uniform substitution (b) contains all the axioms of the
lattice logic, (c) is closed under the rules of the lattice logic, and under the
following rule:

(N) α � β/¬β � ¬α.

Instead of α � β ∈ Λ, we will just write α �Λ β. Given a logic Λ, a Λ-theory is
defined as a non-empty set of L¬-formulas Δ satisfying the following conditions:
(a) if α ∈ Δ and β ∈ Δ then α ∧ β ∈ Δ, (b) if α ∈ Δ, and α �Λ β then β ∈ Λ.

Proposition 7. For any logic Λ and all L¬-formulas α, β, ¬α∨¬β �Λ ¬(α∧β)
and ¬(α ∨ β) �Λ ¬α ∧ ¬β.

Now, we will show that our framework is flexible especially in that it allows
us to define for any logic various alternative canonical models. Fix an arbitrary
logic Λ. We will construct three alternative canonical models for Λ. The first two
constructions use Λ-theories. First, we define the following structure:

IΛ
1 = 〈S1, ◦1, i1,⊥1〉

where S1 is the set of non-empty6 Λ-theories, Δ ◦1 Γ = Δ ∩ Γ , i1 is the set of
all L¬-formulas, and ⊥1 is defined as follows:

Δ⊥1Γ iff there is an α ∈ Δ such that ¬α ∈ Γ .

We also define MΛ
1 =

〈
IΛ
1 , V1

〉
, where Δ ∈ V1(p) iff p ∈ Δ.

Proposition 8. The structure IΛ
1 is an IIF and MΛ

1 is an IIM.

Proposition 9. For any Λ-theory Δ, and any L¬-formula α:

Δ � α in MΛ
1 iff α ∈ Δ.

As a consequence, for all α, β ∈ L¬, α �Λ β if and only if ||α|| ⊆ ||β|| in MΛ
1 .

6 The requirement of non-emptiness is used in the proof of the following proposition.

Disjunction and Negation in Information Based Semantics 361

Proposition 10. For any logic Λ there is a class of IIMs C such that Λ coin-
cides with all the consequence L¬-pairs valid in C.

Proposition 11. The set of all consequence pairs that are valid in all IIFs
coincides with the minimal logic, i.e. the logic obtained by axioms and rules of
the lattice logic plus the rule (N).

A negation connective obeying only (N) has been called a “subminimal nega-
tion”, following Hazen [15]. The previous construction of canonical models gen-
eralizes Goldblatt’s canonical models for orthologic [11]. Interestingly there is a
quite different alternative way how to define the incompatibility relation among
theories. This construction was employed by Hartonas in [14] and it works also
for our setting (a more detailed discussion of the connection between our and
Hartonas’ frameworks will be provided in the following section).

Definition 7. For any Λ-theory Δ we define

Δ∗ = {α ∈ L¬ | there is β ∈ L¬ s.t. β �Λ δ, for all δ ∈ Δ, and ¬β � α}.
Note that Δ∗ is again a (possibly empty) Λ-theory. Now, consider the following
structure:

IΛ
2 = 〈S2, ◦2, i2,⊥2〉

where, S2 is the set of all Λ-theories (including the empty one), Δ ◦2 Γ = Δ∩Γ ,
i2 is (as before) the set of all L¬-formulas, and Δ⊥2Γ iff Δ∗ ⊆ Γ . Moreover, we
define MΛ

2 =
〈
IΛ
2 , V2

〉
, where V2 = V1.

Proposition 12. The structure IΛ
2 is an IIF and MΛ

2 is an IIM.

Proposition 13. For any Λ-theory Δ, and any L¬-formula α:

Δ � α in MΛ
2 iff α ∈ Δ.

As a consequence, for all α, β ∈ L¬, α �Λ β if and only if ||α|| ⊆ ||β|| in MΛ
2 .

Our third construction of a canonical model is based on the structure of the
Lindenbaum-Tarski algebra of Λ. Let [α] denote the equivalence class determined
by α, i.e. [α] is a set of L¬-formulas β such that α �Λ β and β �Λ α. Let
PropΛ = {[α] | α ∈ L¬}. We distinguish two cases. First assume that Λ contains
an explosive formula, i.e. some L¬-formula ξ such that ξ � β for all β ∈ L¬.
Then we define:

IΛ
3 = 〈S3, ◦3, i3,⊥3〉,

where S3 = PropΛ, [α] ◦3 [β] = [α ∨ β], i3 = [ξ], [α]⊥3[β] iff β �Λ ¬α. So, the
structure consists of the Lindenbaum-Tarski algebra of Λ turned upside down.
We further define MΛ

3 =
〈
IΛ
3 , V3

〉
, where [α] ∈ V3(p) iff α �Λ p.

If Λ contains no explosive formula, the structure has to be enriched with a top
element so that the definition of the structure IΛ

3 = 〈S3, ◦3, i3,⊥3〉 is complicated
in the following way:

362 V. Punčochář and A. Tedder

– S3 = PropΛ ∪ {i3}, where i3 is a new element, i.e. i3 /∈ PropΛ,
– for [α], [β] ∈ PropΛ, [α] ◦3 [β] = [α ∨ β],

and for all s ∈ S3 we fix s ◦3 i3 = i3 ◦3 s = s,
– for [α], [β] ∈ PropΛ, [α]⊥3[β] iff β �Λ ¬α,

and for all s ∈ S3, we state that i3⊥3s and s⊥3i3.

Moreover, MΛ
3 =

〈
IΛ
3 , V3

〉
, where s ∈ V3(p) iff s = i3 or s = [α] and α �Λ p. The

following two propositions hold for both these constructions.

Proposition 14. The structure IΛ
3 is an IIF and MΛ

3 is an IIM.

Proposition 15. For all L¬-formulas α, β:

[α] � β in MΛ
3 iff α �Λ β.

As a consequence, for α, β ∈ L¬, α �Λ β if and only if ||α|| ⊆ ||β|| in MΛ
3 .

Definition 8. We say that a set of consequence L¬-pairs K characterizes a
class of IIFs C if it holds for any IIF I that I ∈ C iff all L¬-pairs from K are
valid in I. A consequence L¬-pair α � β characterizes a class C if {α � β}
characterizes C.

Proposition 16. The following facts hold:

(a) p � ¬¬p characterizes the class of IIFs with symmetric incompatibility rela-
tion7,

(b) ¬¬p � p characterizes the class of IIFs satisfying the following property: for
every filter F and every state s /∈ F there is a state t such that s /∈ ⊥t and
F ⊆ ⊥t.

(c) {p � ¬¬p,¬¬p � p} characterizes the class of IIFs where ⊥ is symmetric
and where every filter is the intersection of a set of incompatibility filters,
i.e., for every filter F there is a set of states X ⊆ S such that F =

⋂
s∈X ⊥s.

(d) ¬p ∧ ¬q � ¬(p ∨ q) characterizes the class of IIFs satisfying the following
property: for any states s, t, u, if u⊥s and v⊥s then u ◦ v⊥s.

(e) ¬(p ∧ q) � ¬p ∨ ¬q characterizes the class of IIFs satisfying the following
property: for any state s and any filters F,G, if F ∩ G ⊆ ⊥s then there are
states t, u such that F ⊆ ⊥t, G ⊆ ⊥u and t ◦ u ≤ s.

(f) p ∧ ¬p � q characterizes the class of IIFs satisfying the following property:
for any state s, if s⊥s then s = i.

(g) p � q ∨ ¬q characterizes the class of IIFs satisfying the following property:
for any filter F and any state s, there are states t, u s.t. t ∈ F , u⊥v for all
v ∈ F , and t ◦ u ≤ s.

Definition 9. Let n ∈ {1, 2, 3} and let K be a set of consequence L¬-pairs that
characterizes a class of IFFs C. We say that K is canonicaln if for every logic Λ
such that K ⊆ Λ, the frame IΛ

n is in the class C. A consequence L¬-pair α � β
is canonicaln if {α � β} is canonicaln.
7 Note that α � ¬¬α is interderivable with the rule α � ¬β/β � ¬α, so ‘symmetric

incompatibility’ frames are also characterized by this rule.

Disjunction and Negation in Information Based Semantics 363

Note that canonicity gives us completeness results in the following sense: if a
consequence L¬-pair α � β is canonicaln for at least one n ∈ {1, 2, 3} then
the lattice logic enriched with α � β is complete with respect to the class of
IIFs that α � β characterizes. More generally, if {αj � βj | j ∈ J} is a set of
consequence L¬-pairs such that for each j ∈ J , αj � βj is canonicaln (for at
least one n ∈ {1, 2, 3}) and characterizes a class of IIFs Cj then the lattice logic
enriched with {αj � βj | j ∈ J} is complete with respect to the class

⋂
j∈J Cj .

Here are some examples of canonicity.

Proposition 17. Each of the consequence L¬-pairs p � ¬¬p, ¬p∧¬q � ¬(p∨q),
p ∧ ¬p � q is canonical1 and canonical3.

The previous proposition cannot be stated for canonicity2. See for instance the
proof of Proposition 18 in the appendix that shows that IΛ

2 for a logic Λ contain-
ing p � ¬¬p does not have a symmetric incompatibility relation. As regards the
cases with ‘non-first order conditions’, i.e. (b), (c), (e), and (g) of Proposition
16, we will focus only on the double negation law (c) and leave the remain-
ing cases for future research. We also leave for future research whether it can
be actually proved that these consequence L¬-pairs cannot be characterized by
first-order conditions (for a related result, see [12]). However, we will show that
double negation is not canonical for each of our canonical model constructions.
Especially the case of non-canonicity1 is interesting.

Proposition 18. For each n ∈ {1, 2, 3}, {p � ¬¬p,¬¬p � p} is not canonicaln.

In the next section, we provide a comparison with Hartonas’ semantics. To
facilitate the comparison we need another definition. This definition can be moti-
vated by non-canonicity of double negation law, or by the fact that the algebra
of propositions in an IIF, i.e. the algebra of possible values of formulas in the
IIF, is always a complete lattice with an additional negation operation (to be
more specific, it is always an algebraic lattice with a negation operation). To
allow also for lattices that are not complete, we can restrict the space of possible
valuations in the style of the so-called general frames known from modal logic
(see [3, §1.4]). Given an IIF, let us define the following two operations on filters
corresponding to the algebraic counterparts of disjunction and negation:

F � G = {s ∈ S | there are t ∈ F and u ∈ G such that t ◦ u ≤ s},
−F = {s ∈ S | for all t ∈ F , t⊥s}.

Definition 10. A general IIF (GIIF, for short) is a pair J = 〈I, P 〉 where I
is an IIF, and P is a set of filters in I closed under the operations ∩,�,−. A
valuation V in J is a valuation in I that assigns to every atomic formula an
element of P . A GIIF equipped with a valuation is called a general IIM (GIIM).

Note that every logic Λ is sound and complete for instance with respect to the
GIIF obtained from IΛ

3 by restricting the space of valuations to principal filters,
or with respect to the GIIFs obtained from IΛ

1 or IΛ
2 by restricting the valuations

364 V. Punčochář and A. Tedder

to principal filters that are generated by a theory that is in turn generated by a
single formula.

Before moving on, let’s pause to note some points of difference between our
semantics and the incompatibility semantics discussed by Dunn [7], and others.
Restricted to language L¬, the difference comes down to two sequents which are
immediate consequences of Dunn’s approach, but which are not generally valid
in our framework. These are distribution α∧ (β ∨γ) � (α∧β)∨γ and ¬α∧¬β �
¬(α ∨ β). Both of these are consequences of working only with ‘prime’ states,
for which the usual disjunction truth condition (∨) obtains. By moving to our
semantic setting, we can reject these sequents, and perhaps there are compelling
philosophical reasons to want to do so. For instance, there are well-rehearsed
reasons to reject distribution coming out of the literature on quantum logic
(see [21] for a classic philosophical discussion), and logics without distribution
have also been defended in connection with understanding logical consequence
in terms of meaning containment (see [4]).

4 Comparison with Hartonas’ Approach

In this section we compare our semantics with the one presented in Hartonas’
[14], which is based on his duality theory for lattices developed in [13]. We first
reconstruct Hartonas’ approach based on his neighborhood frames. Let X �= ∅,
and ν : X → P(X). The function ν determines the following two maps on P(X)
defined as follows:

λU = {x ∈ X | for all u ∈ U : x ∈ ν(u)},
ρU = {x ∈ X | for all u ∈ U : u ∈ ν(x)}.

These maps form a Galois connection and their composition determines a closure
operator Γν = λρ. The sets satisfying U = Γν(U) are called ν-stable sets. Now
we can introduce Hartonas neighborhood frames (models).

Definition 11. A Hartonas neighborhood frame (HNF) is any structure N =
〈X,Y, ι, ν,⊥〉, where X is a non-empty set, Y ⊆ X, ι ∈ X, ν : X → P(X), and
⊥ ⊆ X × X such that the following conditions are satisfied:

(a) ν(x) = Γν({x}), for any x ∈ X,
(b) for any ν-stable U ⊆ X there is x ∈ X such that U = ν(x),
(c) the ν-stable sets generated by the points of Y form a bounded sublattice of the

complete lattice of ν-stable sets where the top element is X and the bottom
element is the singleton set {ι}; the elements of the sublattice are called
regular subsets of X,

(d) the neighborhood function imposes a partial order on the carrier set of a
frame by letting x ≤ν y iff ν(y) ⊆ ν(x),

(e) if U is regular, then {x ∈ X | for all u ∈ U : u⊥x} is also regular.

A valuation in N is a function that assigns to each atomic formula from At
a regular subsets of X. Given a valuation V in N , the pair 〈N,V 〉 is called a
Hartonas neighborhood model (HNM).

Disjunction and Negation in Information Based Semantics 365

Proposition 19. In any HNF, the ν-stable sets are exactly the principal upsets
with respect to the ordering ≤ν and ν is a bijection between X and the lattice of
ν-stable sets such that ν(x) = {y ∈ X | x ≤ν y}, for every x ∈ X. Moreover,
ν−1(Γν(ν(x)∪ν(y))) is the greatest lower bound of x and y, and ι the top element
w.r.t. ≤ν .

Relative to a given HNM, a relation of support � between the elements of X
and L¬-formulas is defined in Hartonas’ semantics as follows:

(a) x � p iff x ∈ V (p), for any atomic formula p,
(b) x � α ∧ β iff x � α and x � β,
(c) x � α∨β iff x ∈ ν(y) for each y s.t. for any z if z � α or z � β then z ∈ ν(y),
(d) x � ¬α iff for any y, if y � α then y⊥x.

Hartonas’ condition for disjunction, which is somewhat unintuitive and compli-
cated, on first blush, is designed to lead to the following equivalence:

x � α ∨ β iff x ∈ Γν({y ∈ X | y � α or y � β}).

The following proposition is a simple consequence of the definitions.

Proposition 20. Let M be a HNM. Then {x ∈ X | x � α in M} is regular,
for every L¬-formula α.

Definition 12. A HNF (HNM) is called normal (NHNF, NHNM) if it satisfies
the following two conditions:

(a) for every x ∈ X, the set {y ∈ X | x⊥y} is ν-stable,
(b) for every x, y, z ∈ X, if z ∈ ν(x) and x⊥u then z⊥u.

In the light of Proposition 19 we define x ◦ν y = ν−1(Γν(ν(x) ∪ ν(y))). Now we
can formulate the claim that NHNFs and NHNMs can be viewed, respectively,
as special cases of GIIFs and GIIMs.

Proposition 21. Let N = 〈X,Y, ν, ι,⊥〉 be a NHNF. Then the structure I =
〈X, ◦ν , ι,⊥〉 is an IIF and N ′ = 〈I, ν(Y)〉 is a GIIF. The valuations in N in
the sense of the Definition 11 are exactly the valuations in N ′ in the sense of
Definition 10. Moreover, for any such valuation V , any x ∈ X and α ∈ L¬ it
holds that x � α in 〈N,V 〉 iff x � α in 〈N ′, V 〉.

We have shown that normal HNMs correspond exactly to particular cases
of our GIIMs. One can observe that the restriction to normal HNMs is not a
serious limitation. Hartonas’ completeness proof [14, Theorem 3.12] proceeds
by the canonical model method. The canonical model that Hartonas uses for
a logic Λ is the structure NΛ = 〈XΛ, Y Λ, ιΛ, νΛ,⊥Λ〉 where XΛ is the set of
all Λ-theories, Y Λ is the set of those Λ-theories that are generated by a single
formula, ιΛ is the set of all formulas, Γ ∈ νΛ(Δ) iff Δ ⊆ Γ , and ⊥Λ is defined
in the same way as our ⊥2. In general the model NΛ corresponds structurally
with our MΛ

2 . Note that for any Λ, NΛ is normal in the sense of Definition 12.

366 V. Punčochář and A. Tedder

Hartonas also formulates an interesting modification of the framework pre-
sented above. In this modified semantics negation is captured in an operational
way using an operation that we might call Hartonas star to contrast it with
the so-called Routley star that is often used especially in relevant logics instead
of the incompatibility relation (see [7]). As Hartonas points out, the Routley
star is motivated by the fact that one can define a corresponding operation on
prime theories in the canonical model. In order to work properly the Routley
star requires ‘primeness’ and thus it is not suitable for the approaches based on
theories rather than prime theories. To be more specific, there is no operation
corresponding directly to Routley star that could be defined in canonical mod-
els based on all theories. Hartonas shows that his star operation is a feasible
alternative for Routley star suitable for theory-based approaches. We have used
this operation when we defined the incompatibility relation ⊥2 in the canonical
model MΛ

2 .
The construction of the canonical model MΛ

2 within our framework actually
shows that the Hartonas star can be adapted to our setting. Let us finish this
section with a brief discussion of how this can be done.

Definition 13. An information frame with a Hartonas star (IFHS) is a tuple
〈S, ◦, i, ∗〉, where 〈S, ◦, i〉 is an IF, and ∗ is an arbitrary unary operation on S.
An information model with a Hartonas star (IMHS) is an IFHS equipped with a
valuation.

Relative to a IMHS, the semantic clauses for conjunction and disjunction are as
before and the semantic clause for negation is as follows:

s � ¬α iff for any t, if t � α then t∗ ≤ s.

This clause is less intuitive than the clause using incompatibility relation. This
is however similar to the case of Routley star which is also difficult to justify on
the intuitive basis (though see [22] for an attempt). Nevertheless, this treatment
of negation has some technical merits.

In Hartonas’ framework, the star operation is regulated by several con-
straints. In our framework no restrictions are needed and any operation is admis-
sible which is supported by the following two propositions.

Proposition 22. For any IMHS M and any α ∈ L¬, ||α||M is a filter in M .

Proposition 23. For any IMHS M and all α, β ∈ L¬, if α � β is valid in M
then ¬β � ¬α is valid in M .

The previous proposition together with the fact that for any logic Λ the
canonical model MΛ

2 can be viewed as an IMHS give us the following result.

Proposition 24. For any logic Λ there is a class of IMHSs C such that Λ coin-
cides with all the consequence L¬-pairs valid in C. Moreover, the set of all con-
sequence pairs that are valid in all IFHSs coincides with the minimal logic, i.e.
the logic obtained by axioms and rules of the lattice logic plus the rule (N).

Disjunction and Negation in Information Based Semantics 367

This comparison between our proposed semantics and Hartonas’ is illustra-
tive in showcasing some nice properties of our approach. In addition to this,
however, we think that the comparison also speaks in favour of our framework
at an intuitive and conceptual level. In particular, we think the use of ◦ to
interpret disjunction makes intuitive sense, and fits nicely into an approach to
relational semantics which takes information states to be the basic entities. That
we can obtain a similar kind of generality to Hartonas’ framework, employing
neighbourhood semantic machinery, suggests that our approach retains some of
the generality of his framework, while, perhaps, employing intuitively clearer
structures.

A Appendix

Proof (Proposition 5). First, assume that ⊥t is a filter, for every t ∈ S. We
show the inductive step for negation, that is, we will assume that ||α|| is a filter,
and show that then ||¬α|| is a filter as well. It holds that i � ¬α, since for any
t ∈ ||α||, i ∈ ⊥t. Next, assume that s � ¬α and s ≤ t. Then if u � α then s ∈ ⊥u,
and thus t ∈ ⊥u. So, t � ¬α. Assume that s � ¬α and t � ¬α. Then for any
u ∈ ||α||, s ∈ ⊥u and t ∈ ⊥u, and so s ◦ t ∈ ⊥u. Thus s ◦ t � ¬α.

Second, assume that for some t ∈ S, ⊥t is not a filter. We will show that
there is a valuation V in I, and a formula α such that ||α|| is not a filter in
〈I, V 〉. We consider three cases: (a) i /∈ ⊥t; (b) there are s, u ∈ S such that
s ≤ u, s ∈ ⊥t, and u /∈ ⊥t; (c) there are s, u ∈ ⊥t such that s ◦ u /∈ ⊥t.

Consider a valuation V such that V (p) = {v ∈ S | t ≤ v}. In the case (a),
t � p but i /∈ ⊥t. So, i /∈ ||¬p||. In the case (b), if v � p then t ≤ v, and thus
s ∈ ⊥v. So, s � ¬p. But u � ¬p, for t � p and u /∈ ⊥t. Hence, ||¬p|| is not a filter.
In the case (c) s � ¬p and u � ¬p but s ◦ u � ¬p. Hence, again, ||¬p|| is not a
filter. ��
Proof (Proposition 9). The proof is by induction on the complexity of α, and the
only case we will consider is that where α = ¬β. The right-to-left direction is
immediate, so suppose that ¬β /∈ Δ. Fix Γ = {γ | β �Λ γ}, and note that Γ ∈ S1

and Γ � β. Suppose that Γ⊥1Δ holds, so that for some γ ∈ Γ , ¬γ ∈ Δ; in that
case, β � γ, and so ¬γ � ¬β, and thus ¬β ∈ Δ, contrary to the assumption.
Thus Δ � ¬β, as desired. ��
Proof (Proposition 13). Again the proof is by induction on the complexity of α.
The inductive step for negation amounts to Lemma 3.13 in [14]. Since our nota-
tion is quite different, let us reconstruct this step. For the left-to-right direction
assume that Δ � ¬β. Then for any Γ ∈ S2, if Γ � β, i.e. β ∈ Γ , then Γ ∗ ⊆ Δ.
Let us fix Γ = {γ | β �Λ γ}. Then γ ∈ Γ ∗ iff for some δ, δ �Λ β and ¬δ �Λ γ,
which is equivalent to ¬β �Λ γ. Hence, Γ ∗ = {γ | ¬β �Λ γ} and thus ¬β ∈ Δ.
For the right-to-left direction assume that ¬β ∈ Δ. Take any Γ such that Γ � β
and thus β ∈ Γ . Let γ ∈ Γ ∗. Then there is δ such that δ �Λ β and ¬δ �Λ γ.
Hence, ¬β �Λ γ and γ ∈ Δ. We have shown that Γ ∗ ⊆ Δ, i.e. Γ⊥2Δ. It follows
that Δ � ¬β. ��

368 V. Punčochář and A. Tedder

Proof (Proposition 15). The inductive step for negation can be proved as follows:
[α] � ¬β iff for all γ, if [γ] � β then [γ]⊥3[α] iff for all γ, if γ �Λ β then α �Λ ¬γ
iff α �Λ ¬β. ��
Proof (Proposition 16). (b) First, take any IIF I in which the condition is sat-
isfied, i.e. for every filter F and every state s /∈ F there is a state t such that
s /∈ ⊥t and F ⊆ ⊥t. Assume s � p, i.e. s /∈ V (p). Thus, there is t such that
s /∈ ⊥t and V (p) ⊆ ⊥t. Then t � ¬p (any state supporting p is incompatible
with t) but since it is not the case that t⊥s we obtain s � ¬¬p. We have shown
that ¬¬p � p is valid in I. Second, take an IIF I in which the condition is not
satisfied, i.e. there is a filter F and a state s /∈ F such that for every state t, if
F ⊆ ⊥t then s ∈ ⊥t. Consider a valuation V such that V (p) = F . Then s � p.
Moreover, if t � ¬p, then V (p) ⊆ ⊥t, and, consequently t⊥s. It follows that
s � ¬¬p. We have shown that ¬¬p � p is not valid in I.

(c) First, note that if ⊥ is symmetric, ⊥t = ⊥t for any state t. Hence, it
follows from (a) and (b) that {p � ¬¬p,¬¬p � p} characterizes the class of
IIFs where (i) the compatibility relation is symmetric and (ii) for any filter F
and any state s /∈ F there is an incompatibility filter G such that F ⊆ G
and s /∈ G. Now it suffices to show that (ii) is equivalent to the condition
stating that every filter is the intersection of a set of incompatibility filters. Let
UpF = {G | G is an incompatibility filter such that F ⊆ G}. It is obvious that
F ⊆ ⋂

UpF . It holds that there is F that is not the intersection of any set of
incompatibility filters iff there is F that is a proper subset of

⋂
UpF iff there is

F and s /∈ F such that s ∈ ⋂
UpF iff (ii) does not hold. ��

Proof (Prop. 17). We will just consider the case of ¬p ∧ ¬q � ¬(p ∨ q) – the
others are similar, and this is the axiom that distinguishes our basic setting
from that employing a standard treatment of disjunction (and all ‘prime’ states).
For canonicity1, suppose that Γ,Σ,Δ ∈ S1, Γ⊥1Δ, and Σ⊥1Δ. It follows that
there are α ∈ Γ and β ∈ Σ such that ¬α,¬β ∈ Δ. Thus ¬α ∧ ¬β ∈ Δ, and
thus ¬(α ∨ β) ∈ Δ. It is immediate that α ∨ β ∈ Γ ◦1 Σ = Γ ∩ Σ, and thus
Γ ◦1 Σ⊥1Δ, as desired. For canonicity3, we’ll work in the more complex setting,
not assuming that there is an explosive formula. To that end, suppose that
s, t, u ∈ S3, s⊥3u, and t⊥3u. If any of s, t, u is i3 then we’re done, as i3⊥3v,
v⊥3i3, and v ◦3 i3 = i3 ◦3 v = i3 all hold for every v, so suppose that none is:
i.e., that there are α, β, γ ∈ PropΛ such that s = [α], t = [β], and u = [γ]. By
the supposition, then, γ � ¬α and γ � ¬β, and thus γ � ¬α∧¬β. It follows that
γ � ¬(α ∨ β), and thus, since s ◦3 t = [α ∨ β], s ◦3 ⊥3u, as desired. ��
Proof (Proposition 18). First, we will show that {p � ¬¬p,¬¬p � p} is not
canonical1. Let Λ be the distributive lattice logic enriched with (N) and both
¬¬p � p and p � ¬¬p. We will show the following: There is a filter of non-empty
Λ-theories F (i.e. a set of non-empty Λ-theories that is closed under intersection
and stronger Λ-theories) and there is a non-empty Λ-theory Δ /∈ F such that
Δ⊥1Ω for all Ω such that Γ⊥1Ω for each Γ ∈ F . This will imply that F cannot
be expressed as an intersection of incompatibility filters. Let us construct F and
Δ satisfying the desired property. Take for each i ∈ N an infinite set of atomic

Disjunction and Negation in Information Based Semantics 369

formulas Xi = {pi
1, p

i
2, . . .}, assuming that if i �= j then Xi and Xj are disjoint.

Let Γi be the Λ-theory generated by Xi. Let F be the filter generated by the
set of Λ-theories {Γ1, Γ2, . . .}. Now we can construct Δ. Let Y be the set of all
disjunctions of atomic formulas from

⋃
i∈N

Xi satisfying the following:

pi1
j1

∨ . . .∨pin
jn

∈ Y iff all i1, . . . , in are distinct and it is not the case that there
is k such that j1 = . . . = jn = k and i1, . . . , in ≤ k.

This definition can be illustrated with the following table. Y contains all disjunc-
tions of atomic formulas from different columns except those that are connected
by a path built from the horizontal lines.

Γ1 Γ2 Γ3 Γ4 . . .

p11 p21 p31 p41 . . .

p12 — p22 p32 p42 . . .

p13 — p23 — p33 p43 . . .

p14 — p24 — p34 — p44 . . .

...
...

...
...

. . .

Let Δ be the Λ-theory generated by Y . Let Γ ∈ F . Then there are
Γi1 , . . . , Γin such that Γi1 ∩ . . . ∩ Γin ⊆ Γ . Take k = max{i1, . . . , in}. Then
p1k ∨ . . . ∨ pk

k ∈ Γ but p1k ∨ . . . ∨ pk
k /∈ Δ, and thus Δ �= Γ . We have shown that

Δ /∈ F .
Now assume Γ⊥1Ω for each Γ ∈ F . Then p1j1 ∧ . . . ∧ p1jn �Λ α for some

p1j1 , . . . , p
1
jn

∈ X1 and some α such that ¬α ∈ Ω. Then ¬(p1j1 ∧ . . . ∧ p1jn) ∈ Ω.
Take k = max{j1, . . . , jn} + 1. There must be some pk

i1
, . . . , pk

im
∈ Xk such

that ¬(pk
i1

∧ . . . ∧ pk
im

) ∈ Ω. Hence ¬((p1j1 ∧ . . . ∧ p1jn) ∨ (pk
i1

∧ . . . ∧ pk
im

)) ∈ Ω.
Moreover, k was selected in such a way that it also holds that p1j∨pk

i ∈ Δ, for each
j ∈ {j1, . . . , jn} and i ∈ {i1, . . . , im}. Then (p1j1 ∧ . . .∧p1jn)∨(pk

i1
∧ . . .∧pk

im
) ∈ Δ,

by distributivity, and thus Δ⊥1Ω as desired.
Second, we will show that {p � ¬¬p,¬¬p � p} is not canonical2. Let Λ be

the lattice logic enriched with (N) and both ¬¬p � p and p � ¬¬p. We will
show that ⊥2 is not symmetric. Let Γ be the Λ-theory generated by {p} and
Δ the Λ-theory generated by an infinite set of atomic formulas X = {q1, q2 . . .}
assuming that p /∈ X. Then Γ ∗ is the Λ-theory generated by {¬p} and Δ∗ = ∅
(for there is no β such that β �Λ δ for each δ ∈ Δ). Hence, Δ⊥2Γ but not
Γ⊥2Δ.

Finally, we will show that {p � ¬¬p,¬¬p � p} is not canonical3. Let Λ be
again the lattice logic enriched with (N) and with ¬¬p � p and p � ¬¬p. Let
X = {q1, q2, q3, . . .} be an infinite set of atomic formulas such that p /∈ X. Let
F be the filter in IΛ

3 generated by {[q1], [q2], [q3], . . .}. Recall that IΛ
3 is given by

the Lindenbaum-Tarski algebra turned upside down and enriched with a new
top element i3. It holds that [α] ∈ F iff there are qi1 , . . . , qin such that α �Λ

qi1 ∨ . . . ∨ qin . It follows that [p] /∈ F . In order to show that {p � ¬¬p,¬¬p � p}
is not canonical3 it is sufficient to observe that for any t ∈ S3, if F ⊆ ⊥t

3 then

370 V. Punčochář and A. Tedder

[p]⊥3t. Note that there is no β such that β �Λ ¬α for all α ∈ F . This follows
for example from the fact that Λ has the variable sharing property and so for
any β we can take any qi not occurring in β and then β �Λ ¬qi. It follows that
F ⊆ ⊥t

3 only if t = i3. But it holds [p]⊥i3 which finishes the proof. ��
Proof (Proposition 19). First, we show that ν(x) = {y ∈ X | x ≤ν y}. By the
definition of Γν as λρ it generally holds that if y ∈ Γν({x}) then Γν({y}) ⊆
Γν({x}). By (a) and (d) of Definition 11 we obtain: if y ∈ ν(x) then x ≤ν y, i.e.
ν(x) ⊆ {y ∈ X | x ≤ν y}. On the other side, if x ≤ν y then ν(y) ⊆ ν(x), and
since y ∈ ν(y) (because in general y ∈ λρ({y})), it follows that y ∈ ν(x), and
thus {y ∈ X | x ≤ν y} ⊆ ν(x). Since any ν-stable set is of the form ν(x), for
some x ∈ X, ν-stable sets are exactly the principle upsets w.r.t. ≤ν . Since ≤ν is
a partial order, ν is a bijection between X and the lattice of ν-stable sets.

By (c) of Definition 11 we obtain {ι} ⊆ ν(x), for every x ∈ X, which
means (by (d)) that ι the top element w.r.t. ≤ν . It remains to be shown that
ν−1(Γν(ν(x) ∪ ν(y))) is the greatest lower bound of x and y w.r.t. ≤ν . It holds
that ν(x) ⊆ Γν(ν(x) ∪ ν(y)) and thus ν−1(Γν(ν(x) ∪ ν(y))) ≤ν x. By the same
reasoning ν−1(Γν(ν(x)∪ν(y))) ≤ν y, so ν−1(Γν(ν(x)∪ν(y))) is a lower bound of
{x, y}. Assume that z ≤ν x and z ≤ν y. Then ν(x) ⊆ ν(z) and ν(y) ⊆ ν(z). So,
ν(x) ∪ ν(y) ⊆ ν(z) and since ν(z) is ν-stable we obtain Γν(ν(x) ∪ ν(y)) ⊆ ν(z).
It follows that z ≤ν ν−1(Γν(ν(x) ∪ ν(y))) which is what we needed to show. ��
Proof (Proposition 21). Let N = 〈X,Y, ν, ι,⊥〉 be a NHNF. Proposition 19 shows
that 〈X, ◦ν , ι〉 is an IF. Moreover, the conditions (a) and (b) from Definition 12
guarantee that I = 〈X, ◦ν , ι,⊥〉 is an IIF. Since ν(x) is always a (principal) filter,
the valuations in N are always the valuations in I. Let V be a valuation in N
(in the sense of Definition 11). We will show by induction that for any α ∈ L¬

it holds that x � α in 〈N,V 〉 iff x � α in 〈I, V 〉. The case of atomic formulas
and the inductive stapes for conjunction and negation are immediate. Let us
show the inductive step for disjunction. Assume that the claim holds for some
L¬-formulas α, β. It follows from Propositions 19 and 20 that there are states
zα, zβ such that ν(zα) = {x ∈ X | x � α} and ν(zβ) = {x ∈ X | x � β}. Now
we can observe that the following claims are equivalent:

– x � α ∨ β,
– there are u, v ∈ X such that u � α, v � β and u ◦ν v ≤ν x,
– there are u, v ∈ X such that u � α, v � β and ν−1(Γν(ν(u) ∪ ν(v))) ≤ν x,
– there are u, v ∈ X such that u � α, v � β and ν(x) ⊆ Γν(ν(u) ∪ ν(v)),
– ν(x) ⊆ Γν(ν(zα) ∪ ν(zβ)),
– x ∈ Γν(ν(zα) ∪ ν(zβ)),
– x � α ∨ β.

It follows that ν(Y) is closed under the required operation and thus N ′ =
〈I, ν(Y)〉 is a GIIF such that the valuations in N coincide with the valuations
in N ′, which finishes the proof. ��

Disjunction and Negation in Information Based Semantics 371

References

1. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)
2. Beth, E.W.: Semantic construction of intuitionistic logic. Mededlingen Koninklijke

Nederlandse Akad. Wetenschappen Afd. Letterkunde ns 19(11), 357–388 (1956)
3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,

Cambridge (2001)
4. Brady, R.T., Meinander, A.: Distribution in the logic of meaning containment

and in quantum mechanics. In: Tanaka, K., Berto, F., Mares, E., Paoli, F. (eds.)
Paraconsistency: Logic and Applications, vol. 26, pp. 223–255. Springer, Dordrecht
(2013). https://doi.org/10.1007/978-94-007-4438-7 13

5. Copeland, B.J.: On when a semantics is not a semantics: some reasons for disliking
the Routley-Meyer semantics for relevance logic. J. Philos. Log. 8, 399–413 (1979)

6. Došen, K.: Sequent-systems and groupoid models. II. Stud. Log. 48(1), 41–65
(1989)

7. Dunn, J.M.: Star and perp: two treatments of negation. Philos. Perspect. 7, 331–
357 (1993)

8. Fagin, R., Halpern, J.Y., Moses, Y., Moshe, Y.V.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

9. Fine, K.: Models for entailment. J. Philos. Log. 3, 347–372 (1974)
10. Fine, K.: Truth-maker semantics for intuitionistic logic. J. Philos. Log. 43, 549–577

(2014)
11. Goldblatt, R.I.: Semantic analysis of orthologic. J. Philos. Log. 3, 19–35 (1974)
12. Goldblatt, R.I.: Orthomodularity is not elementary. J. Symb. Log. 49, 401–404

(2014)
13. Hartonas, C.: Duality for lattice-ordered algebras and for normal algebraizable

logics. Stud. Log. 58, 403–450 (1997)
14. Hartonas, C.: Reasoning with incomplete information in generalized Galois logics

without distribution: the case of negation and modal operators. In: Bimbó, K. (ed.)
J. Michael Dunn on Information Based Logics. OCL, vol. 8, pp. 279–312. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29300-4 14

15. Hazen, A.: Subminimal negation. Philosophy Department Preprint 1/92, Univer-
sity of Melbourne (1992)

16. Humberstone, L.: Operational semantics for positive R. Notre Dame J. Formal
Log. 29(1), 61–80 (1988)

17. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Dummett, M.A.E.,
Crossley, J.N. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 40,
pp. 92–130. Elsevier, Amsterdam (1965)

18. Mares, E.D.: Relevant Logic: A Philosophical Interpretation. Cambridge University
Press, Cambridge (2004)

19. Punčochář, V.: Algebras of information states. J. Log. Comput. 27, 1643–1675
(2017)

20. Punčochář, V.: A relevant logic of questions. J. Philos. Log. 49(5), 905–939 (2020).
https://doi.org/10.1007/s10992-019-09541-9

21. Putnam, H.: How to think quantum-logically. Synthese 29(1), 55–61 (1974)
22. Restall, G.: Negation in relevant logics: how i stopped worrying and learned to love

the routley star. In: Gabbay, D., Wansing, H. (eds.) What is Negation? Volume 13
of Applied Logic Series, pp. 53–76. Kluwer (1999)

23. Restall, G.: An Introduction to Substructural Logics. Routledge, London (2000)
24. Urquhart, A.: Semantics for relevant logics. J. Symb. Log. 37(1), 159–169 (1972)

https://doi.org/10.1007/978-94-007-4438-7_13
https://doi.org/10.1007/978-3-319-29300-4_14
https://doi.org/10.1007/s10992-019-09541-9

Algorithmically Broad Languages
for Polynomial Time and Space

Daniel Leivant1,2(B)

1 Computer Science, Indiana University, Bloomington, IN 47405, USA
leivant@indiana.edu

2 IRIF, Université de Paris, 75205 Paris, France

Abstract. Flexible programming languages with built-in bounds on
time or space resources are of obvious practical interest. Since we know
that no programming language can capture exactly the PTime (or
PSpace) algorithms, the challenge is to design languages that guaran-
tee PTime while accommodating a broad spectrum of algorithmic meth-
ods. We propose here such languages for PTime and PSpace, based on
size-sensitive imperative programming, parameterless procedures, and a
retooling of the ramification method.

Keywords: Ramification · Imperative programming · Parameterless
procedures · Variants · Bundles · PTime · PSpace · Non-size-increase

1 Introduction

The quest for machine-independent formalisms that characterize complexity
classes has been pursued for over half a century, with three distinct motivations:
providing new tools for separation results between complexity classes, exploring
links between computational complexity and abstraction principles, and devel-
oping programming languages and systems with certified resource-bounds.

The potential value of a formalism for software development depends, how-
ever, on its algorithmic expressiveness. Unfortunately, Hajek’s Theorem [15, The-
orem 2] implies that, for any Turing-complete programming language, deciding
whether a program runs in PTime (or PSpace) is a Σ0

2 -complete problem, so
no reasonable (i.e. semi-decidable) formalism can possibly capture exactly the
PTime (respectively PSpace) algorithms.

The challenge is thus to construct formalisms that are sound for PTime,
include an algorithm for every PTime function (i.e. are extensionally complete for
PTime), and capture PTime algorithmic methods as broadly as possible. In seek-
ing algorithmic breadth it seems reasonable to combine imperative paradigms
with a useful form of recursive procedures. Towards that end we combine a
number of ingredients. To obtain data genericity, we use as basic data-unit finite
partial-functions (f-functions for short), and construe compound data, such as
graphs or strings, as collections of f-functions, which we dub bundles. Size-change

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 372–387, 2021.
https://doi.org/10.1007/978-3-030-88853-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_23

Languages for PTime and PSpace 373

takes center stage by adopting as basic operations the extension and contraction
of f-functions. To facilitate direct memory management we use as basic actions
updates of single entries of f-functions. As complexity concerns seem to natu-
rally call for a finitistic approach to data, that is avoiding references to completed
infinite objects, we stay away from infinite objects, such as functions over N.

The framework above yields quite naturally an abstract characterization of
primitive-recursive complexity [33]. By ramifying the framework we obtain lan-
guages for PTime and PSpace with broad algorithmic breadth.

2 Finite Functions as Generic Data

2.1 F-Functions

We pursue the approach of [29], which takes finite functions over “atoms” as
generic building block for all finite data, and basic operations over these func-
tions’ entries (i.e. elements of their graph) as fundamental mappings. The use
of finite functions, rather than finite sets or relations, achieves at one fell swoop
a built-in tupling operation and a streamlined way of naming and addressing
atoms. Our basic program-operations are consequently abstract and generic
analogs of micro-code; the intent is that other operations can be defined directly
in terms of those operations.

Thus, we posit a denumerable set A of atoms, which are unspecified and
unstructured objects. To accommodate in due course non-denoting terms we
extend A to a set A⊥ =df A ∪ {⊥}, where ⊥ is a fresh object intended to
denote “undefined.”

Definition 1 A (k-ary) f-function (short for finite function) is a function
F : Ak

⊥ → A⊥ for which there is a finite set SF ⊂ Ak (the source of F) such
that F (a1..ak) is ⊥ iff 〈a1..ak〉 �∈ SF . An entry of F is a tuple 〈a1 . . . ak, b〉
where b = F (a1, . . . , ak) �= ⊥. The size |F | of F is its number of entries. The
image of F is the set IF = {b ∈ A | b = F (a) for some a ∈ Ak }.

Function partiality provides a natural representation of finite relations over
A by partial functions. Namely, a finite k-ary relation R over A (k > 0) is
represented by the f-function ξR(a1, . . . , ak) = if R(a1, . . . , ak) then a1 else
⊥. In particular, a finite subset B ⊂ A is represented by the identity function
on B.

Conversely, any partial k-ary function F over A determines the k-ary relation
RF = {〈a〉 ∈ Ak | F (a) is defined }. Consequently, we write a ∈ F for
F (a) �= ⊥.

2.2 Bundles

Definition 2 A vocabulary is a finite list V of function-identifiers, referred
to as V -ids, with each f ∈ V assigned an arity r(f) � 0. We refer to nullary
V -ids as tokens and to those of positive arity as pointers. A bundle over a
vocabulary V , or V -bundle for short, is a mapping β that to each f ∈ V of
arity r assigns an r-ary f-function β(f), said to be a component of β.

374 D. Leivant

Definition 3 The source Sβ of a bundle β is the union of the sources of its
components as defined above, its image Iβ is the union of the images of its
components, its universe Uβ is the union of its source and its image, and its
size |β| is the sum of the sizes of its components. If β is a V -bundle, and γ a
W -bundle where W ⊇ V , then we say that γ is an expansion of β (to W) if
the two structures have identical interpretations for each identifier in V .1 The
trivial expansion of β to W , denoted βW , interprets every f ∈ W−V as the
empty f-function.
Given f ∈ V and a V -bundle β, the size of f in β, denoted |f |β , is the size
of β(f), that is the number of entries therein. For F ⊆ V the size of F in β,
denoted |F |β , is

∑{ |f |β | f ∈ F}.
For a vocabulary V the set TmV of V -terms is defined inductively: the
reserved identifier ω is in TmV ; and if f ∈ V is of arity k � 0, and
t1, . . . , tk ∈ TmV , then ft1 · · · tk ∈ TmV .

Note that the traditional role of variables is taken over here by tokens. A
term t without ωωω is standard.

We write function application in formal terms without parentheses and com-
mas, as in fxy or fx→ (thus stand-alone tokens are terms). We implicitly posit
that the arity of a function-id matches the number of arguments displayed.
Definition 4 A V -bundle β engenders a mapping β̂ : TmV → Uβ , defined

by recurrence on TmV : β̂(ωωω) = ⊥; and β̂(ft1 · · · tk) = β(f)(β̂(t1), . . . , β̂(tk))
(r(f) = k � 0). An equation over V , or V -equation, is a phrase t q
where t and q are V -terms. t q is true in β if β̂(t) and β̂(q) are the same
element of A⊥.

2.3 Bundles for Inductive Data

Examples of bundles include not only finite data-structures, but also inductive
data, such as natural numbers, strings, and lists. That is, elements of free alge-
bras generated from a finite set of constructors. Defining natural numbers as
particular finite structures goes back to Euclid, and underlies Church’s numer-
als and its generalization to all inductive data [10]. For example, the following
bundles are the natural number 3 (construed as the term sssz), and the string
011 (construed as 011)

Since bundles are all finite by definition, fundamental theorems about impos-
sibility of first-order axiomatizations do not apply, and it is indeed possible to
axiomatize, for each vocabulary V , the bundles representing V -terms, by the
following statements.

� Separation: If c(a1, . . . , ak) and c′(a′
1, . . . , a

′
k′) are the same atom, where

c and c′ are constructors, then c and c′ are the same, k = k′, and ai = a′
i

for all i.

1 Unlike the traditional notion of structure expansion, here γ may have a larger
universe than β.

Languages for PTime and PSpace 375

� Decomposition: If a is c(b1 . . . br) for some c and bi ∈ A , then so is each
bi .

� Anchor: There is exactly one atom a in the collective image of the construc-
tors and not in their collective source. That is: a = c(b) for some constructor
c and atoms b; and no atom a′ is of the form c(b) with a listed in b.

It follows from these properties that if c is a constructor of arity r > 0 then
there are unary inverse-functions c−1, . . . , c−r, i.e. c−i(c(a1, . . . , ar)) = ai . A
more general sequencing mechanism is also easy to define [29].

Finally, note that a tuple of bundles can be represented by a single bundle.
The simplest approach is as follows. Given Vi-bundles βi (i = 1..k) let V ′

1 , . . . V
′
k

be a renaming of V1, . . . , Vk, V ′ = ∪iV
′
i , and β′

i be the renaming of βi to
V ′

i . The tuple 〈β1 . . . βk〉 is then represented by the V ′-bundle β defined by
β(f) = β′

i(f) for f ∈ V ′
i . For example, a pair of natural numbers, represented as

bundles over the vocabulary 〈z, s〉, can be represented as a single bundle for the
vocabulary 〈z, s, z′, s′〉.

3 Programs for Bundle Transformation

3.1 Atomic Operations

We define an imperative language BT for the transformation of bundles, based
on parameterless recursive procedures.

Definition 5 The following operations modify a bundle β into a bundle β′

which is identical to β except as noted.

� V -extension: A phrase f t1 · · · tk ↓ t′ where t′ and each ti are standard
V -terms. If β(f t1 · · · tk) = ⊥, then β′(f t1 · · · tk) = β(t′).

� V -contraction: ft1 · · · tk ↑ . It sets β′(f)(β(t1), . . . , β(tk)) = ⊥.

� V -inception: c⇓ , where c is a V -token.2 If β(c) = ⊥, then β′(c) is any
atom not in the universe of β. The choice of atom will have no bearing on
the descriptive or computational properties of β′.

We refer to extensions and contractions as revisions, and to revisions and
inceptions as updates. The identifier f in each revision above is its eigen-id. A
revision is active (in a bundle β) if the resulting structure β′ is not identical
to β.

Remarks

1. An assignment f t→ := q can be defined using an auxiliary token b, as an
abbreviation for the program b ↓q; f t→ ↑; f t→ ↓b; b ↑ .3 When f is a token
we get the customary form of imperative assignment.

2 A common alternative notation is c := new.
3 b memorizes the atom denoted by q, in case the contraction renders that atom

inaccessible.

376 D. Leivant

2. The inception operation does not have a dual, as atoms can be released from
a bundle by repeated contractions.

3. A more general form of inception, t⇓ with t a term, can be defined using an
auxiliary token b: b ⇓; t↓b; b↑

3.2 Programs

Definition 6 A guard (over V) is a boolean combination G of V -equations;
!t abbreviates t �= ω. We posit an unbounded supply of reserved procedure-
identifiers for which we use ψ as syntactic parameter.
The set of programs over V , or V -programs for short, is generated induc-
tively, as follows. Updates, as well as skip, abort, and every PI are programs.
And if P,Q are programs, then so are P ;Q , if[G]{P}{Q}, and μψ. {P}. For a
V -program P , we write P [V ′] for a renaming V ′ of V .4

Definition 7 Given a V -program P ≡ P [ψ] , with its free PIs among
ψ1...ψm , the semantics P is a mapping, denoted [[P]] , from binary rela-
tions Ψ1, · · · , Ψm between bundles, to a binary relation between bundles.
[[P]](Ψ1, . . . , Ψm) is defined by structural recurrence on P .

� If P is an update then it is interpreted as described above;
� [[skip]] (Ψ) is the identity on bundles, and [[abort]] (Ψ) is the empty map-

ping.
� If P is ψi then [[P]] (Ψ1, . . . , Ψm) is Ψi.
� For P obtained by composition or branching the semantics is standard.
� If P is μψ.{Q} where Q ≡ Q[ψ,ψ1 . . . ψm], then [[P]] (Ψ1, . . . , Ψm) is the

union ∪i Ξi, where each Ξi is a binary relation on bundles, defined by
recurrence on i: Ξ0 = ∅; and Ξi+1 = [[Q]] (Ξi, Ψ1, · · · , Ψm) (This union a
mapping by the Knaster-Tarski Theorem)

Note that although μψ.{P} is parameter-free, each call to P at an occur-

rence of ψ in P can be preceded by a suitable initialization of some V -ids. How-
ever, the value of those V -ids is not recovered upon termination of the recursive
call, as would have been the case for formal procedure parameters.

Guarded iteration constructs, such as while and until, are definable in
terms of parameterless recursion (compare [17, §9.1]). In particular, a while-loop
do[G]{P} can be regarded as an abbreviation for μ ψ {if [G] {P ; ψ} {skip}}.

Guarded iterative programs are well known to be sound and complete for
Turing computability. See [33] for a proof of Turing completeness adapted to
BT.

3.3 Functions in BT

Based on the semantics of BT we define the semantics of programs with respect
to classes of bundles. By a class of V -bundles we mean here a collection of
4 Recall that our vocabularies are lists.

Languages for PTime and PSpace 377

V -bundles closed under isomorphism and renaming of the vocabulary V . In
particular, for each V , if A(V) is the free algebra generated from V , as for
example the free algebra N = A(z, s), then the collection of V -bundles for
terms in A(V) is a class of V -bundles.

Definition 8 We write P [Vin; Vout] for a V -program P with two distinguished
sublists Vin and Vout of V .5 A W -program P [Vin; Vout] computes a partial-
mapping Φ : C ⇀ C′ from a class C of V -bundles to a class C′ of V ′-bundles.
if for every β[V] ∈ C we have βW ⇒P β′ where βW is the trivial expansion6

of β to W , and β′ is an expansion of Vout.

Note that the mappings Φ computed by programs are mappings over f-

functions, not over atoms. As such, they are infinite objects. While not being
named explicitly in programs, they can be referred to indirectly via the programs
that compute them. Indeed, had we wished to refer to them explicitly, we’d need a
separate syntactic sort for infinite mappings over f-functions (and bundles). That
seems useful in defining more flexible and practical extensions of our languages,
but is not called for here. The issue here is akin to the mappings underlying
Fraenkel’s Replacement Axiom of the formal set theory ZF, which as proper
classes are first-class citizens in the NBG and MK set theories (see e.g. [8,20]).

3.4 Examples of BT-programs

� [Successor:] The following program Succ[z, s; z, s] uses the same vocabu-
lary for input and output.
c ⇓; sc↓z; z↑ ; z↓c; c↑

� [Predecessor:]7 c↓sz; sz↑ ; z↓c; c↑
� [Addition] A program Sum[z, s, z′, s′; z, s] for addition:

μψ { if [!s′z′]
{c := s′z′; s′z′ ↑ ; z′ := c; Succ[z, s]; ψ}
{skip} }

4 Variants and Primitive-Recursive Complexity

4.1 Recursion with Variants

We proceed to modify BT by rephrasing recursion with a built-in termination
condition, resulting in a language BTV conveying a generic form of primitive-
recursive complexity, independently from any inductive type. Whereas a loop’s
5 Vin d Vout need not be disjoint, and V need not be their union.
6 See Definition 3.
7 These successor and predecessor programs are in constant time, in contrast to the

linear time obtained when acting on the final atom of the input.

378 D. Leivant

guard can be construed as a liveness condition, evaluated locally at the loop’s
input bundle, a dual notion, expressing a safety condition, is evaluated for an
entire pass through the loop body, and implying termination when successful.

Definition 9 A V -variant is a subset T of V .

The depletion of variants will be used to pace the iteration of procedure calls by
the depletion of variants. Our variants are a restricted form of the traditional
function-variants [13,14,45], with the variant-functions taken here to be the size
of a portion of the underlying data.

Definition 10 The programs of BTV are generated as for BT, but with
recursion rephrased to account for variants: If P is a BTV-program, ψ a PI,
and T a variant, then μψ:T {P} is a BTV-program.

For the iterative operation do (definable in term of recursion) we place a
variant T as a second guard: do[G][T]{α}

4.2 Semantics of BTV

The semantics of BTV refers to the size-change of variants to trigger exit from
procedure iteration: If the variant is empty at a procedure call, then the recursion
is exited; if it has decreased in the last pass, then a recursive call is triggered;
otherwise computation is aborted. Namely:

� If |β(T)| = 0 , then [[P]](Ψ1, . . . , Ψm)(β) = β.
� If |β(T)| > 0 then [[P]] (Ψ1, . . . , Ψm) is the union ∪i=1..m Ξi, where the

Ξi ’s are binary relations on bundles, defined by recurrence on i: Ξ0 = ∅;
and Ξi+1(β) = [[Q]] ((Ξi�β), Ψ1, . . . , Ψm)(β) where

(Ξi�β)(γ) = if |γ(T)| < |β(T)| then Ξi(γ) (otherwise undefined)

Note that primitive recursion over inductive types, such as strings or natural
numbers, is a special case of this definition, in which the aborted termination
never occurs, because the recurrence argument is reduced by the very statement
of recurrence.

In [34] we proved that BTV characterizes primitive-recursive complexity.
On the one hand, every primitive-recursive function over a free algebra is com-
putable by a BTV-program (generalizing [36]); on the other hand, for every
BTV-program P there is a primitive-recursive function f : N→N such that if
β ⇒P β′ then |β′| � f(|β|) .

Languages for PTime and PSpace 379

4.3 Examples of BTV-programs

� [Addition] Referring to the BT-program of Sect. 3.4 for addition we take
the second input as variant. This done, the guard used in the Sect. 3.4 pro-
gram is no longer needed, because it is implied by the variant depletion. So
Sum[z, s, z′, s′; z, s] becomes

μψ:s′ {c := s′z′; s′z′ ↑ ; z′ := c; Succ[z, s]; ψ}
Note that since s′ is consumed by the iteration, via s′z′ ↑ , as required for

the iteration to proceed, s′ is not available for repeated use (e.g. for multi-
plication).

� [Duplication] The program Dup[z, s; z′, s′, z′′, s′′] outputs two copies of the
input:

z′ ⇓; z′′ ⇓;
μψ:s { c := sz; sz↑ ; z := c;

Succ[z′, s′]; Succ[z′′, s′′];
ψ }

A reduced form of Dup is a program Rnm[z, s; z′, s′] that renames the
input. Composing the two we get a program Copy[z, s; z′, s′] with an output
equal to the input, and the input unchanged.

� [Multiplication] Program Prod[z, s, z′, s′; z′′, s′′] :

z′′ ⇓;
μψ:s′. {c := s′z; s′z′ ↑ ; z := c;

Copy[z, s; z̄, s̄];
Sum[z′′, s′′, z̄, s̄; z′′, s′′];
ψ }

� [Exponentiation] The BTV-programs Dup and Sum can be iterated, yield-
ing a BTV program for n �→ 2n.

5 Ramification

5.1 The Ramification Method

Considerable work has been done on ramified recurrence, also known as tiered,
stratified, predicative, or normal/safe. The method has been used to obtain
machine-independent characterizations of several major complexity classes, such
as polynomial time [4,25] and polynomial space [30,40], as well as alternating
log time[9,31], alternating poly-log time [9], NC [28,39], linear space [16,24,
26], NP [2,41], the PTime hierarchy [3], and probabilistic polynomial time [23].
The method is all the more of interest given the roots of ramification in the
foundations of mathematics [43,44], thus bridging abstraction levels in set-theory
and type-theory to computational complexity classes.

380 D. Leivant

Ramification of imperative programs was tentatively explored in [35] and
[32]. The former refers to PTime over arbitrary structures, via a combination
of imperative programming and interpretations. It posits constructors (“oper-
ators”), that interpret the structure in hand in W = {0, 1}∗ by non-increasing
functions, thus embedding the ostensibly-generic data into W, with functions
over W serving as variant-functions, and ramification applying to W. Unfortu-
nately, the resulting language falls short of being practical, and it characterizes
quasi-PTime, i.e. programs whose number of distinct configurations for a given
input is polynomially bounded by the size of the input (termination not guar-
anteed). Likewise, [32] characterizes quasi-PTime for programming over graphs,
and is unfortunately confined to rather special cases that have failed to general-
ize.

We believe that a more successful use of ramification for imperative programs
calls for more than formal analogies with the ramification of recursion equations.
For one, the emphasis of the latter on a dichotomy between input and output
values is no longer tenable for imperative programs, where data is not neces-
sarily singled out as input or output. Also, the use of variables in declarative
programming hides a form of free data duplication (which is also present, albeit
implicitly, in the use of combinators in place of variables). For example, the
defining equation for product, ×(sn, x) = +(x,×(n, x)), refers to x twice in the
definiendum, and any imperative implementation of this schema would have to
duplicate x, since those two occurrences have distinct roles in the computation

Our approach here is to refer to loop variants as part of the language syntax,
and to ramify those variants via a ramification of the entire vocabulary. We
allow size-reduction of loop-variants of rank r to be counter-balanced by a size-
increase of some ids of rank r that are not in the variant, provided the over-all
size of Vr does not increase. The non-size-increase principle [1,19] is a special
case of this mechanism, for programs that use only rank 0.

5.2 Ramified Imperative Recursion

Definition 11 A ramified vocabulary is a vocabulary V with each V -id
assigned a natural number as its rank.8 We write Vr for the set of V -ids of rank
r. A variant (of rank r) is a set T ⊆ Vr.

We define programming languages BTR and BTR∗ for PSpace and PTime
algorithms, respectively. These languages impose rank-driven conditions on vari-
ants, and the two languages differ only in their semantic interpretation of vari-
ants’ “size decrease,” which refers to individual recursive calls for BTR, but to
cumulative recursive calls for BTR∗, in a sense to be described below.

The programs of BTR and BTR∗ are generated like those of BTV, but with
all variants ramified. As was the case for BTV, the intent resides here in the
semantics.

8 Leaving some ids unranked is akin to assigning them 0.

Languages for PTime and PSpace 381

Consider a program P of the form μψ:T.Q, where T is a variant of rank
r. For an input bundle β the semantics of BTR aborts the computation on a
recursive call not only when the depletion condition fails, as is the case in BTV,
but also when the ramification condition fails:

� If |β(T)| = 0 , then [[P]](Ψ)(β) = β.
� If |β(T)| > 0 then [[P]] (Ψ1, . . . , Ψm) is the union ∪i Ξi, where the Ξi ’s

are binary relations on bundles, defined by recurrence on i: (Ξ0 = ∅; and
Ξi+1(β) = [[Q]] (Ξi�β), Ψ1, · · · , Ψm)(β) where

(Ξi�β)(γ) =
if |γ(T)| < |β(T)| and |γ(Vj)| � |β(Vj)| for all j � r

then Ξi(γ) (otherwise undefined)

BTR∗ differs semantically from BTR only in the ramification-condition,
which is tightened here to the following. If ψ1 . . . ψ� are the instances of ψ
in Q, and the execution of Q with input β leads to bundles γ1 . . . γ� at those
instances (respectively, with γh empty if ψh is not reached by execution for
input β), then

∑
h |γh(T)| < |β(T)|.

Remarks

1. Note that ranks are here properties of V -ids, and not of atoms, f-functions,
or terms. Moreover, no ranking for atoms or functions is inherited from the
ranking of function-ids: an f-function may be the value of two distinct ids,
possibly of different ranks. Consequently, there is no rank-driven restriction
on inceptions or extensions, as the function-entries created are not assigned
any rank, e.g. an extension fc ↓ q may have f of rank 0 whereas q refers to
arbitrarily large ranks.

2. Ramification is not trivially compatible with function composition: we might
have BTR-programs P [V ;V ′] and Q[W ;W ′] , in which pointers might be
ramified differently. However, since ramification depends only on the order
between ranks, it is easy to see that ranks in P and Q may be reconfigured
to have ranks in V ′ and W match, as proved for ramified recurrence in [18].

5.3 Related Work in Static Analysis

Feasibility analysis of imperative programs goes back at least to the Meyer-
Ritchie characterization of primitive recursion by imperative “loop”-programs
over N [36]. It is natural to explore restrictions on recurrence that imply stronger
forms of termination, i.e. complexity bounds. This idea goes back to Ritchie
and Cobham [11,42], who introduced recurrence restricted explicitly by bound-
ing conditions. Although the characterizations they obtained use one form of
bounded resources (bounded recurrence) to delineate another form (bounded
execution), they proved useful, for example in suggesting complexity measures

382 D. Leivant

for higher-order functionals [12]. A potent line of research has sought algorithms
for certifying the feasibility of such programs [5–7,21,22]. A different approach
was pursued in [37,38], where imperative programs with n variables are assigned
“certificates of feasibility,” which are roughly n × n matrices over {0, 1,∞}.

6 Completeness and Soundness Properties

6.1 Extensional Completeness of BTR* for PTime

While no programming language can be sound and complete for FPTime algo-
rithms [15], as noted above, a useful sanity check remains extensional com-
pleteness, that is the property that every function computable in PTime is
computable by some program.

An easy approach is to rely on existing implicit characterizations of PTime,
such as ramified recurrence over strings [27]. Indeed, the coding in BTR∗ of
ramified recurrence over strings is straightforward, yielding:

Proposition 12 1. BTR∗ interprets ramified recurrence over strings, and by
[27] is therefore extensionally complete for FPTime.

2. BTR interprets ramified parameterized recurrence9 over strings, and by [30]
is therefore extensionally complete for FPSpace.

More interesting are the extensional completeness of BTR and BTR∗ for the
PTime programs of BT. Indeed, BT is the Turing-complete complete computa-
tion model germane to our approach. We give the proof for BTR.

Theorem 13 Every BT-program P running in PTime is extensionally equiva-
lent to some BTR∗-program P †; i.e. P † computes the same mapping between
bundles as P .

Proof Outline
Let P be a BT-program over V , running within time c ·n�. P † is defined by

recurrence on the loop-nesting depth of P . P † is P if P is loop-free; (Q;R)† is
Q†; R†; and (if [G]{Q}{R})† is if [G]{Q†}{R†} .

If P is μψ.{Q}, let n0 < . . . < nk−1 be the ranks in Q†. We define a
“clocking” program that maps a V -bundle β to a list of length c · |β|�: By [33,
§5.1] (and the proof there) there is a BTR∗-program E that maps β to a list
e of length |β|. By our examples above of BTR∗-programs there is a BTR∗-
program M that, maps e to a list d of length c · |β|�, and a program R that
contracts d by one entry. Since ranks in E,M, and P can be lifted uniformly,
without affecting their rank-correctness or semantics, we may assume without
loss of generality that all components of d have a rank higher than all variants
in Q†.

9 I.e. ramified recurrence over strings “with parameter substitution”.

Languages for PTime and PSpace 383

Now define P † to be E; M ; μψ:d. {R; Q†}.
Since d is of higher rank of all ranks in Q† the semantics of Q† is the same

in P † as in P , concluding the proof. �

Remark. Note that our extensional completeness results for BTR∗ depend on
the availability of all ranks. The fact that 2 ranks suffice in the Bellantoni-Cook
system [4] is a consequence of allowing rank mismatch in “safe-composition”.
This phenomenon is specific to a declarative setting, and cannot be replicated
in an imperative language.

A proof of the extensional completeness of BTR for PSpace will be given in
the full version of this paper.

6.2 Soundness of BTR and BTR* for Feasibility

Theorem 14 (Soundness of BTR∗ for PTime)
Let P be a BTR∗-program with recursions of ranks � �.

1. For each j � � there is a positive10 polynomial ZP,j [nj+1 . . . n�] such that

SpaceP,j(β) � |β|j + ZP,j [|β|j+1, . . . , |β|�]
2. There is a positive polynomial MP [n0 . . . n�] such that for all V -bundles β

TimeP (β) � MP [|β|0, . . . , |β|�]
Proof. Parts (1) and (2) are proved simultaneously by induction on P .
Proof of (1). Suppose β ⇒P β′, where β = β0 ⇒Q β1 · ·· ⇒Q βk = β′.
Since T is decreasing in the aggregate in Q, we have k � |T |β � |β|r. Vj is
non-increasing in P , For each j � r , so we take ZP,j ≡ 0.

For j = r − d, d = 0, . . . , r, we proceed by a secondary induction on d. The
induction base d = 0, i.e. j = r, is already proved above.

For the main induction step, we have

SpaceP,r−(d+1)(β)
= maxi<k SpaceQ,r−(d+1)(βi)
� maxi<k ZQ,r−(d+1)[|βi|r−d, . . . , |βi|�] (by main IH)
� ZQ,r−(d+1)[SpaceP,r−d(β), ...SpaceP,�(β)]

(by definition of SpaceP,j and since each ZQ,j is positive)
� ZQ,r−(d+1)[Ar−d, . . . , A�]

(by secondary IH)

where Aj stands for |β|j + ZP,j [|β|j+1, . . . , |β|�].
So it suffices to take ZP,r−(d+1)[nr−d, . . . , n�] ≡df ZQ,r−(d+1)[Br−d . . . B�],
where Bj stands for nj + ZP,j [nj+1, . . . , n�].
This concludes the inductive step for (2).
10 I.e. defined without subtraction or negative integers.

384 D. Leivant

Proof of (2). We have

TimeP (β) � k +
∑

i<k TimeQ(βi)
� k +

∑
i<k MQ(|βi|0, ..., |βi|�)

by IH
� k +

∑
i<k MQ[A0, ..., A�]

with the Aj ’s above
� |β|r (1 + MQ[A0, ..., A�])

So it suffices to take MP (n) ≡df nr(1 + MQ[B0, . . . , B�])
where the Bi’s are as above. �

Theorem 15 (Soundness of BTR for FPSpace)
Let P be a BTR-program with recursions of ranks � �. For each j � � there is
a positive polynomial RP,j [nj+1 . . . n�] such that

SpaceP,j(β) � |β|j + RP,j [|β|j+1, . . . , |β|�]

Proof. The proof is analogous to that of Theorem14, and simpler (no ref-
erence to time complexity is needed). In executing a program Q of the form
μψ:V, {P [q]} , with P satisfying the theorem, with a polynomial RP , execution
of Pn+1 ≡ P [Pn] might run Pn a number of times, but each time with the vari-
ant V smaller than its size n at call time. Each of these executions takes space
� RP , yielding polynomials RQ,j for Q, of degree 1 higher than the degree of
RP,j . �

7 Examples of BTR*-programs

7.1 Fundamental Examples

� [Duplication] The duplication program of Sect. 4.3 can be ramified with the
input at rank r higher than either output. Recall that Dup[z, s; z′, s′, z′′, s′′]
outputs two copies of the input. Note that one output can be of rank r as well,
since it is not part of the variant, so the total rank-r size of the vocabulary
remains constant. Consequently, the program Rnm needs no ramification at
all; but Copy does require that the input be of higher rank than the output,
since Dup requires it. Sum too needs no ramification.

� [Polynomials] Consider the BTV-program Prod of Sect. 4.3. The program
Copy[z, s; z̄, s̄] requires that s have rank higher than s̄ , And the recursion
defining Prod requires that s′ have rank higher than s′′ (since the latter
grows within the body). So two ranks suffice for Prod, with both inputs of
higher rank than the outpus (as is the case for the definition of multiplication
by primitive-recursion).
Now consider a program for n �→ n3 . We cannot nest two multiplication, as

Languages for PTime and PSpace 385

in the definition by ramified recurrence [24]. To repeat Copy, would require
a variant of rank higher than the pointer being copied! Consequently, we’d
need three ranks. For n �→ n4 we can also make do with just 3 ranks, by
composing the square function with itself.

7.2 Limitative Examples

� [Exponentiation] The exponentiation program of Sect. 4.3 cannot be rami-
fied, because each iteration of Dup requires that the input be of higher rank
than the second copy. The very same hurdle prevents a definition of exponen-
tiation by iterating multiplication.

� [Ackermann’s Function] Programming Ackermann’s Function requires
naming the function and referring to it in recursive calls within “actual param-
eters”. As observed in Sect. 3.3, BTV uses names for mapping between atoms,
but none for mappings between bundles (such as functions over N), and no use
of parameters in recursive programs. Indeed, Ackermann’s function exceeds
even BTV, let alone BTR∗.

8 Conclusion and Directions

Much of current research on practical program verification has focused on pro-
grams with a strong imperative component and direct memory access. Tech-
niques of implicit computational complexity, notably ramification, have seemed
only tangentially relevant to such goals, as their application to imperative pro-
grams have seemed to be problematic. We propose here a new take on ramified
imperative programming. Starting with finite functions over atoms as a building
block for data, and with basic updating such functions as fundamental oper-
ations, we obtained imperative programming languages capturing PTime and
PSpace respectively, with a promising potential for algorithmic breadth.

Still missing from this picture is the intergation into programs of methods of
program verification based on the theory of bundles of [29]. This would hopefully
be developed into automatic verfication to guarantee that given programs do
abort via depletion-failures or ramification-failures.

References

1. Aehlig, K., Berger, U., Hofmann, M., Schwichtenberg, H.: An arithmetic for non-
size-increasing polynomial-time computation. TCS 318(1–2), 3–27 (2004)

2. Bellantoni, S.: Predicative recursion and computational complexity. Ph.D. thesis,
University of Toronto (1992)

3. Bellantoni, S.: Predicative recursion and the polytime hierarchy. In: Clote, P.,
Remmel, J. (eds.) Feasible Mathematics II, pp. 15–29. Birkhäuser (1994)

4. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions. Comput. Complex. 2, 97–110 (1992). https://doi.org/10.1007/
BF01201998

https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998

386 D. Leivant

5. Ben-Amram, A.M.: On decidable growth-rate properties of imperative programs.
In: Baillot, P. (eds.) International Workshop on Developments in Implicit Compu-
tational Complexity. EPTCS, vol. 23, pp. 1–14 (2010)

6. Ben-Amram, A.M., Hamilton, G.W.: Tight worst-case bounds for polynomial loop
programs. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425,
pp. 80–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 5

7. Ben-Amram, A.M., Jones, N.D., Kristiansen, L.: Linear, polynomial or exponen-
tial? complexity inference in polynomial time. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 67–76. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 7

8. Bernays, P.: A system of axiomatic set theory - part I. JSL 2, 65–77 (1937)
9. Bloch, S.A.: Functional characterizations of uniform log-depth and polylog-depth

circuit families. In: Proceedings, Structure in Complexity Theory, pp. 193–206.
IEEE Computer Society (1992)

10. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theor. Comput. Sci. 39, 135–154 (1985)

11. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, North-Holland, Amsterdam, pp. 24–30 (1962)

12. Constable, R.: Type two computational complexity. In: Proceedings of the Fifth
ACM Symposium on Theory of Computing, pp. 108–121 (1973)

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Hoboken (1976)
14. Gries, D.: The Science of Programming. Springer, Heidelberg (1981). https://doi.

org/10.1007/978-1-4612-5983-1
15. Hájek, P.: Arithmetical hierarchy and complexity of computation. Theoret. Com-

put. Sci. 8, 227–237 (1979)
16. Handley, W.G.: Bellantoni and Cook’s characterization of polynomial time func-

tions. Typescript, August 1992
17. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
18. Hofmann, M.: Type systems for polynomial-time computation. Ph.D. thesis, Uni-

versitat Darmstadt (1998)
19. Hofmann, M.: Linear types and non-size-increasing polynomial time computation.

Inf. Comput. 183(1), 57–85 (2003)
20. Kanamori, A.: Bernays and set theory. Bull. Symb. Logic 15(1), 43–69 (2009)
21. Kristiansen, L.: The implicit computational complexity of imperative programming

languages. Technical report, BRICS (2001)
22. Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative pro-

gramming languages. Theor. Comput. Sci. 318(1–2), 139–161 (2004)
23. Lago, U.D., Toldin, P.P.: A higher-order characterization of probabilistic polyno-

mial time. Inf. Comput. 241, 114–141 (2015)
24. Leivant, D.: Stratified functional programs and computational complexity. In:

Twentieth Annual ACM Symposium on Principles of Programming Languages,
New York, pp. 325–333. ACM (1993)

25. Leivant, D.: Predicative recurrence in finite types. In: Nerode, A., Matiyasevich,
Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 227–239. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58140-5 23

26. Leivant, B.: Ramified recurrence and computational complexity i: word recurrence
and poly-time. In: Feasible Mathematics II, New York, pp. 320–343. Birkhauser-
Boston (1994)

https://doi.org/10.1007/978-3-030-17127-8_5
https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/3-540-58140-5_23

Languages for PTime and PSpace 387

27. Leivant, D.: Ramified recurrence and computational complexity I: word recurrence
and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, Perspec-
tives in Computer Science, pp. 320–343. Birkhauser-Boston, New York (1994).
www.cs.indiana.edu/∼leivant/papers

28. Leivant, D.: A characterization of NC by tree recurrence. In: Thirty Ninth FOCS,
pp. 716–724. IEEE Computer Society (1998)

29. Leivant, D.: A theory of finite structures. CoRR, abs/1808.04949 (2018)
30. Leivant, D., Marion, J.-Y.: Ramified recurrence and computational complexity

II: substitution and poly-space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0022277

31. Leivant, D., Marion, J.-Y.: A characterization of alternating log time by ramified
recurrence. Theor. Comput. Sci. 236(1–2), 193–208 (2000)

32. Leivant, D., Marion, J.-Y.: Evolving graph-structures and their implicit computa-
tional complexity. In: ICALP, vol. 40, pp. 349–360 (2013)

33. Leivant, D., Marion, J.-Y.: Implicit complexity via structure transformation.
CoRR, abs/1802.03115 (2018)

34. Leivant, D., Marion, J.-Y.: Primitive recursion in the abstract. Math. Struct. Com-
put. Sci. 30(1), 33–43 (2019)

35. Marion, J.-Y.: A type system for complexity flow analysis. In: Proceedings of the
26th Annual IEEE Symposium on Logic in Computer Science, pp. 123–132 (2011)

36. Meyer, A., Ritchie, D.: The complexity of loop programs. In: Proceedings of the
1967 22nd National Conference, New York, NY, USA, pp. 465–469. ACM (1967)

37. Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006)

38. Niggl, K.-H., Wunderlich, H.: Implicit characterizations of FPTIME and NC revis-
ited. J. Log. Algebraic Methods Program. 79(1), 47–60 (2010)

39. Oitavem, I.: Characterizing nc with tier 0 pointers. Math. Log. Q. 50(1), 9–17
(2004)

40. Oitavem, I.: Characterizing PSPACE with pointers. Math. Log. Q. 54(3), 323–329
(2008)

41. Oitavem, I.: A recursion-theoretic approach to NP. Ann. Pure Appl. Logic 162(8),
661–666 (2011)

42. Ritchie, R.W.: Classes of predictably computable functions. Trans. AMS 106, 139–
173 (1963)

43. Schütte, K.: Proof Theory. Springer, Berlin (1977). https://doi.org/10.1007/978-
3-642-66473-1

44. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. II. Cambridge Univer-
sity Press, Cambridge (1912)

45. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

www.cs.indiana.edu/~leivant/papers
https://doi.org/10.1007/BFb0022277
https://doi.org/10.1007/BFb0022277
https://doi.org/10.1007/978-3-642-66473-1
https://doi.org/10.1007/978-3-642-66473-1

A Pure View of Ecumenical Modalities

Sonia Marin1, Luiz Carlos Pereira2, Elaine Pimentel3(B), and Emerson Sales4

1 Department of Computer Science, University College London, London, UK
2 Philosophy Department, PUC-Rio/UERJ, Rio de Janeiro, Brazil

3 Department of Mathematics, UFRN, Natal, Brazil
4 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Recent works about ecumenical systems, where connectives
from classical and intuitionistic logics can co-exist in peace, warmed the
discussion on proof systems for combining logics. This discussion has
been extended to alethic modalities using Simpson’s meta-logical char-
acterization: necessity is independent of the viewer, while possibility can
be either intuitionistic or classical. In this work, we propose a pure, label
free calculus for ecumenical modalities, nEK, where exactly one logical
operator figures in introduction rules and every basic object of the cal-
culus can be read as a formula in the language of the ecumenical modal
logic EK. We prove that nEK is sound and complete w.r.t. the ecumenical
birelational semantics and discuss fragments and extensions.

1 Introduction

Ecumenism can be seen as the search for unicity, that is, for different thoughts,
ideas or points of view to coexist in harmony. In mathematical logic, ecumenical
approaches for a peaceful coexistence of logical systems have been studied deeply,
e.g. [Gir93,LM11].

More recently, Prawitz proposed a natural deduction system combining clas-
sical and intuitionistic logics [Pra15]. The fundamental question he addressed
was: what makes a connective classical or intuitionistic? We will illustrate, with
a simple example, some ways of answering this. Consider the following statement,
where x, y, z ∈ R and z ≥ 0:

if x + y = 2z then x ≥ z or y ≥ z

How should we interpret “if then” and “or” in this sentence for it to be
valid? The answer is: it depends! If we view this sentence with the classical
mathematician’s eyes (CM), the intuitionistic mathematician (IM) would not
see a theorem. Since intuitionists can see classical tautologies through the lens of
double negation, we could embed this classical interpretation in the intuitionistic
setting as:

not (not (if x + y = 2z then x ≥ z or y ≥ z))

This would indeed be a valid statement for both CM and IM.
c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 388–407, 2021.
https://doi.org/10.1007/978-3-030-88853-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-88853-4_24

A Pure View of Ecumenical Modalities 389

A finer possibility for guaranteeing the validity of the sentence is to give to
the implication an intuitionistic interpretation and to the disjunction a classical
one. Namely, the following statement is also a theorem for both CM and IM :

if x + y = 2z then not (not (x ≥ z or y ≥ z))

Prawitz’ ecumenism idea can be summarized as: pinpoint the exact places
where the classical and intuitionistic views differ and signal it such that IM knows
to read it with her “ecumenical glasses”, i.e. through a double negation filter.
The example above shows that CM and IM can consider, for example, different
connectives for disjunction ∨c and ∨i, respectively. Prawitz answered this ques-
tion for all the first-order connectives in [Pra15] by presenting an ecumenical
natural deduction system.

In [PPdP19], we justified some of Prawitz’ choices via pure proof theoreti-
cal reasoning, using sequent based systems. Consider the well known classical
and intuitionistic sequent systems G3c and G3i [TS96]. Since all rules in G3c are
invertible, no choices have to be made during a classical proof search: one can
apply any rule bottom-up in any order. This is not the case in G3i: choices may
have to be made for disjunction, implication and the existential quantifier. This
suggests that CM and IM would share the universal quantifier, conjunction and
the constant for the absurd (hence also negation) – the neutral connectives, but
they would each have their own existential quantifier, disjunction and implica-
tion, with different meanings.

Following this discussion, the originial statement is ecumenically translated
as

(x + y = 2z) →i x ≥ z ∨c y ≥ z

Now the classical mathematician would see everything just fine (since she can-
not differentiate classical from intuitionistic), while the intuitionistic mathemati-
cian would put on her ecumenical glasses only when observing the disjunction,
so they would both agree on the statement. This is the essence of ecumenism!

In [MPPS20], we have extended this discussion to modalities to address the
question: how would CM and IM view such concepts as “necessity” and “pos-
sibility”? Using Simpson’s meta-logical characterization [Sim94], the answer is
that, if something is necessarily true, then it is independent of the viewer. Pos-
sibility, on the other hand, can be either intuitionistic: in the sense that one
should have a guarantee that something will eventually be true; or classical: in
the sense that it is not the case that necessarily something will not be true.
Hence CM and IM share the necessity connective �, but each would have their
own possibility views, represented by �c and �i, respectively.

Our solution, however, was not entirely satisfactory since the ecumenical
modal calculi presented so far are not pure [Dum91]: the introduction rules for
some connectives depend on negation and other connectives. Moreover, the ecu-
menical modal systems in [MPPS20] make use of labels: the basic objects used in
proofs are from a more expressive language than the logic itself, which partially
encodes the logic’s semantics.

390 S. Marin et al.

This paper tackles these issues, proposing a pure label free calculus for
ecumenical modalities, where every basic object of the calculus can be read
as a formula in the language of the logic. For that, we will use nested sys-
tems [Bull92,Kas94,Brü09,Pog09] with a stoup [Gir91], together with a new
notion of polarities for ecumenical formulas. Nested systems are extensions of
the sequent framework where each sequent is replaced by a tree of sequents. The
stoup is a distinguished context containing a single formula. Finally, formulas
can be polarized as negative if the main connective is classical or the negation,
or as positive otherwise. This is unlike any other notion of polarities that we
know of, but could well be related [Lau02]. The idea is that negative formulas
are stored in the classical context, while positive formulas are decomposed in the
stoup. This not only allows for establishing the meaning of modalities via the
rules that determine their correct use (logical inferentialism), but also places the
ecumenical system as a unifying framework for modalities of which well known
modal systems are fragments.

Organization and Contributions. Section 2 reviews the notation for modal formu-
las, the labeled system labEK and the ecumenical birelational semantics; Sect. 3
introduces the ecumenical nested system nEK and its normalization procedure;
in Sects. 4 and 5 soundness and completeness of nEK w.r.t. the ecumenical bire-
lational semantics are proved; Sect. 6 identifies the classical and intuitionistic
fragments of nEK; Sect. 7 discusses some modal extensions; and Sect. 8 concludes
the paper.

2 Preliminaries

In [MPPS20] we proposed an ecumenical version of normal modal logic, where
classical and intuitionistic modalities co-exist. The system adopts Simpson’s app-
roach [Sim94], called meta-logical characterization, where a modal logic is char-
acterized by the interpretation of modalities in a first-order meta-theory. We
translated modalities into the ecumenical first-order logic LE [Pra15,PPdP19],
justified similarly by the standard interpretation of alethic modalities in a model.
The presence of classical and intuitionistic existential connectives in LE induces
two possibility modalities, while the neutral universal quantifier in LE entails a
neutral necessity modality.

Language A of ecumenical modal formulas is generated by the following
grammar:

A:: = pi | pc | ⊥ | ¬A | A ∧ A | A ∨i A | A ∨c A | A →i A | A →c A | �A | �iA | �cA

We use subscript c for the classical meaning and i for the intuitionistic one,
dropping such subscripts when formulas/connectives can have either meaning. A
classical version pc and an intuitionistic version pi of each propositional variable
co-exist in A: their meanings are different but related via double negation. The
neutral logical connectives {⊥,¬,∧,�} are common for classical and intuitionis-
tic fragments, while {→i,∨i,�i} and {→c,∨c,�c} are restricted to intuitionistic
and classical interpretations, respectively.

A Pure View of Ecumenical Modalities 391

The meta-logical characterization naturally induces a labeled proof sys-
tem [Sim94]. The language L of labeled modal formulas is determined by labeled
formulas of the form x : A with A ∈ A and relational atoms of the form xRy,
where x, y range over a set of variables. Labeled sequents have the form Γ ⇒ x : A,
where Γ is a multiset containing labeled modal formulas and relational atoms.
In what follows, if L is a sequent based calculus, we use 	L Γ ⇒ A to denote that
there is an L-proof of Γ ⇒ A. The labeled ecumenical system labEK [MPPS20]
is presented in Fig. 1.

Fig. 1. Ecumenical modal system labEK. In rules �R,�iL,�cL, the eigenvariable y
does not occur free in any formula of the conclusion. In the rule W, either A �= ⊥ or
x �= y.

Example 1. Below the derivation in labEK of the distributivity of the intuition-
istic diamond w.r.t the intuitionistic disjunction (see axiom k2 in Sect. 5).

xRy, y : A ⇒ y : A
init

xRy, y : A ⇒ x : �iA
�iR

xRy, y : A ⇒ x : �iA ∨i �iB
∨iR

xRy, y : B ⇒ y : B
init

xRy, y : B ⇒ x : �iB
�iR

xRy, y : B ⇒ x : �iA ∨i �iB
∨iR

xRy, y : A ∨i B ⇒ x : �iA ∨i �iB
∨iL

x : �i(A ∨i B) ⇒ x : �iA ∨i �iB
�iL

⇒ x : �i(A ∨i B) →i (�iA ∨i �iB)
→i R

392 S. Marin et al.

2.1 Ecumenical Birelational Models

The ecumenical birelational Kripke semantics, which is an extension of the pro-
posal in [PR17] to modalities, was presented in [MPPS20].

Definition 2. A birelational model [PS86] is a quadruple M = (W,≤, R, V)
with a poset (W,≤), a binary relation R ⊂ W × W , a monotone valuation
V : 〈W,≤〉 → 〈2P,⊆〉 and
F1. For all worlds w, v, v′, if wRv and v ≤ v′, there is a w′ such that w ≤ w′

and w′Rv′;
F2. For all worlds w′, w, v, if w ≤ w′ and wRv, there is a v′ such that w′Rv′

and v ≤ v′.
An ecumenical modal model is a birelational model such that truth of an

ecumenical formula at a point w is the smallest relation |=E satisfying

M, w |=E pi iff pi ∈ V (w);
M, w |=E A ∧ B iff M, w |=E A and M, w |=E B;
M, w |=E A ∨i B iff M, w |=E A or M, w |=E B;
M, w |=E A →i B iff for all v such that w ≤ v,M, v |=E A implies M, v |=E B;
M, w |=E ¬A iff for all v such that w ≤ v,M, v �|=E A;
M, w |=E ⊥ never holds;
M, w |=E �A iff for all v, w′ such that w ≤ w′ and w′Rv,M, v |=E A.
M, w |=E �iA iff there exists v such that wRv and M, v |=E A.
M, w |=E pc iff M, w |=E ¬(¬pi);
M, w |=E A ∨c B iff M, w |=E ¬(¬A ∧ ¬B);
M, w |=E A →c B iff M, w |=E ¬(A ∧ ¬B);
M, w |=E �cA iff M, w |=E ¬�¬A.

A formula A is valid in a model M = (W,≤, R, V) if for all w ∈ W , M, w |=E

A. A formula A is valid in a frame (W,≤, R) if, for all valuations V , A is valid
in the model (W,≤, R, V). Finally, we say that a formula is valid, if it is valid
in all frames.

Since, restricted to intuitionistic and neutral connectives, |=E is the usual
birelational interpretation |= for IK [Sim94], and since the classical connectives
are interpreted via the neutral ones using the double-negation translation, an
ecumenical birelational model coincides with the standard birelational model for
intuitionistic modal logic IK. Hence the following result easily holds from the
similar result for IK.

Theorem 3 ([MPPS20]). The system labEK is sound and complete w.r.t. the
ecumenical modal semantics, that is, 	labEK x : A iff |=E A.

Remark 4. It is interesting to note that the relational semantics for the
classical connectives is surprisingly more complex than for the intuitionistic
ones. In fact, the definition of |=E for the classical diamond is equivalent to

A Pure View of Ecumenical Modalities 393

where v (≤ ◦R ◦ ≤)u represents that there exist v′, w′ ∈ W such that v ≤ v′,
v′Rw′ and w′ ≤ u. Although intriguing, this kind of two-level semantics also
appears in the relational semantics for classical logic in [ILH10], where the forc-
ing relation is defined on top of the primitive notion of “strong refutation”.

3 A Nested System for Ecumenical Modal Logic

The two main criticisms regarding system labEK are: (i) it is not pure, in the sense
that negation still plays an important role on interpreting classical connectives –
for example, the rule �cR introduces a classical diamond via its boxed negated
version; and (ii) it includes labels in the technical machinery, hence allowing one
to write sequents that cannot always be interpreted within the ecumenical modal
language.

This section is devoted to tackle these points and propose a pure label free
calculus for ecumenical modalities, where every basic object of the calculus can
be translated as a formula in the language of the logic, with no use of auxiliary
negations.

The inspiration comes from Girard’s notion of stoup [Gir91] and Straßburger’s
nested system for IK [Str13]. The main idea is to let sequents of the form Σ ⇒ Π,
with Σ,Π multisets of formulas, go through a two-phase refinement: the first one
is to separate the succedent Π into two parts: one that is essentially classical;
and another containing a single formula, the stoup. The second one is to add
nested layers to sequents, which intuitively corresponds to worlds in a relational
structure [Fit14,Brü09,Pog09].

The primary key concept to distinguish which formulas are allowed or not in
the stoup is the following notion of polarity.

Definition 5. A formula is called negative if its main connective is classical
or the negation, and positive otherwise (we will use N for negative and P for
positive formulas).

The structure of a nested sequent for ecumenical modal logics is a tree whose
nodes are multisets of formulas, just like in [Str13], with the relationship between
parent and child in the tree represented by bracketing

[·]. The difference however
is that the ecumenical formulas can be left inputs (in the left contexts – marked
with a full circle •), right inputs (in the classical right contexts – marked with a
triangle �) or a single right output (the stoup – marked with a white circle ◦).

Definition 6. Ecumenical nested sequents are defined in terms of a grammar
of input sequents (written Λ) and full sequents (written Γ) where the left/right
input formulas are denoted by A• and A�, respectively, and A◦ denote the output
formula. When the distinction between input and full sequents is not essential
or cannot be made explicit, we will use Δ to stand for either case.

Λ := ∅ | A•, Λ | A�, Λ | [
Λ

]
Γ := A◦, Λ | [Γ], Λ Δ := Λ | Γ

394 S. Marin et al.

As usual, we allow sequents to be empty, and we consider sequents to be equal
modulo associativity and commutativity of the comma.

We write Γ⊥◦
for the result of replacing an output formula from Γ by ⊥◦,

while Λ⊥◦
represents the result of adding anywhere of the input context Λ the

output formula ⊥◦. Finally, Δ∗ is the result of erasing an output formula (if
any) from Δ.

Observe that full sequents Γ necessarily contain exactly one output-like for-
mula, having the form Λ1,

[
Λ2,

[
. . . ,

[
Λn, A◦]] . . .

]
.

Example 7. The nested sequent �cA
�,

[¬A◦] represents a tree of sequents where
�cA is in the right (classical) input context of the root sequent, while ¬A is in
the output context (stoup), in the leaf sequent.

The next definition (of contexts) allows for identifying subtrees within nested
sequents, which is necessary for introducing inference rules in this setting.

Definition 8. An n-ary context Δ
{1 } · · · {n }

is like a sequent but contains n
pairwise distinct numbered holes { } wherever a formula may otherwise occur. It
is a full or a input context when Δ = Γ or Λ respectively.

Given n sequents Δ1, . . . ,Δn, we write Δ{Δ1} · · · {Δn} for the sequent where
the i-th hole in Δ

{1 } · · · {n }
has been replaced by Δi (for 1 ≤ i ≤ n), assuming

that the result is well-formed, i.e., there is at most one output formula. If Δi = ∅

the hole is removed.
Given two nested contexts Γ i{} = Δi

1,
[
Δi

2,
[
. . . ,

[
Δi

n, {}]] . . .
]
, i ∈ {1, 2},

their merge1 is

Γ 1 ⊗ Γ 2{} = Δ1
1,Δ

2
1,

[
Δ1

2,Δ
1
2,

[
. . . ,

[
Δ1

n,Δ2
n, {}]] . . .

]

Figure 2 presents the nested sequent system nEK for ecumenical modal logic EK.

Example 9. Below left the nested proof corresponding to the labeled one in
Example 1.

[
A•, A◦] init

�iA
◦,

[
A•] �◦

i

�iA ∨i �iB
◦,

[
A•] ∨◦

i

[
B•, B◦] init

�iB
◦,

[
B•] �◦

i

�iA ∨i �iB
◦,

[
B•] ∨◦

i

�iA ∨i �iB
◦,

[
A ∨i B•] ∨•

i

�i(A ∨i B)•,�iA ∨i �iB
◦ �•

i

�i(A ∨i B) →i (�iA ∨i �iB)◦ →◦
i

[
A•, A�,⊥◦] initc

[
A�,¬A◦] ¬◦

�cA
�,

[¬A◦] ��
c

�¬A◦,�cA
� �◦

¬�¬A•,�cA
�,⊥◦ ¬•

¬�¬A•,�cA
◦ sto

The derivation above right shows part of the proof that �c can be defined from
� (�cA ≡ ¬�¬A). Note the instance of the classical general version of the
initial axiom, initc (see Theorem 11 in the next section). It also illustrates well
1 As observed in [Pog09,Lel19], the merge is a “zipping” of the two nested sequents
along the path from the root to the hole.

A Pure View of Ecumenical Modalities 395

Fig. 2. Nested ecumenical modal system nEK. P is a positive formula, N is a negative
formula.

the relationship between nestings, classical inputs, and birelational structures:
reading the proof bottom-up, the sto rule is a delay on applying rules over
classical connectives. It corresponds to moving the formula up w.r.t. ≤ in the
birelational semantics. The rule �◦, on the other hand, slides the formula to a
fresh new world, related to the former one through the relation R. Finally, rule
¬◦ also moves up the formula w.r.t. ≤. Compare this description with the image
in Remark 4. In this paper, we will not explore formally the relationship between
delays/negations/nestings and semantics.

3.1 Harmony

A logical connective is called harmonious in a certain proof system if there
exists a certain balance between the rules defining it. For example, in natural
deduction based systems, harmony is ensured when introduction/elimination
rules do not contain insufficient/excessive amounts of information [DD20]. In
sequent calculus, this property is often guaranteed by the admissibility of a
general initial axiom (identity-expansion) and of the cut rule (cut-elimination).
In the following, we will prove harmony, together with some intermediate results.
We start with a proof theoretical result in nEK, which has a standard proof
(see [PPdP19] and [MPPS20] for similar results).

Lemma 10. 1. In nEK, the rules ∨•
c ,∨�

c ,→•
c ,→�

c ,¬•,¬◦, p•
c , p

�
c ,�•

c ,�
�
c and dec

are invertible, that is, in any application of such rules, if the conclusion is a
provable nested sequent so are the premises.

2. The rules ∧•,∧◦,∨•
i ,→◦

i ,�
•
i ,�

•,�◦ and sto are totally invertible, that is,
they are invertible and can be applied in any contexts.

396 S. Marin et al.

3. The following rules are admissible in nEK

Γ

Λ ⊗ Γ
Wc

Λ ⊗ Λ ⊗ Γ

Λ ⊗ Γ
Cc

Proof. The proofs are by standard induction on the height of derivations. The
proof of admissibility of Wc does not depend on any other result, while the
admissibility of Cc depends on the invertibility results above.

The invertible but not totally invertible rules in nEK concern negative formu-
las, hence they can only be applied in the presence of empty stoups (⊥◦). Note
also that the rules W,∨◦

i , and �◦
i are not invertible, while →•

i is invertible only
w.r.t. the right premise.

Theorem 11. The following rules are admissible in nEK

Λ{A•, A◦} initi
Γ⊥◦{A•, A�} initc

Proof. The proof of admissibility of the general initial axioms is by mutual induc-
tion. Below we show the modal cases where, by induction hypothesis, instances
of the axioms hold for the premises.

Γ⊥◦{[
A•, A�]} initc

Γ⊥◦{
�cA

�,
[
A•]} ��

c

Γ⊥◦{�cA
•,�cA

�}
�•

c

Λ
{[

A•, A◦]} initi

Λ
{
�A•,

[
A◦]} �•

Λ{�A•,�A◦} �◦

Proving admissibility of cut rules in sequent based systems with multiple
contexts is often tricky, since the cut formulas can change contexts during cut
reductions. This is the case for nEK. The proof is by mutual induction, with
inductive measure (n,m) where m is the cut-height, the cumulative height of
derivations above the cut, and n is the ecumenical weight of the cut-formula,
defined as

ew(Pi) = ew(⊥) = 0 ew(A � B) = ew(A) + ew(B) + 1 if � ∈ {∧,→i,∨i}
ew(Pc) = 4 ew(♥A) = ew(A) + 1 if ♥ ∈ {¬,�i,�}
ew(�cA) = ew(A) + 4 ew(A ◦ B) = ew(A) + ew(B) + 4 if ◦ ∈ {→c,∨c}
Intuitively, the ecumenical weight measures the amount of extra information
needed (the negations added) to define classical connectives from intuitionistic
and neutral ones.

Theorem 12. The following intuitionistic and classical cut rules are admissible
in nEK

Λ{P ◦} Γ{P •}
Λ ⊗ Γ{∅} cut◦

Λ⊥◦{N�} Γ{N•}
Λ ⊗ Γ{∅} cut�

A Pure View of Ecumenical Modalities 397

Proof. The dynamic of the proof is the following: cut applications either move up
in the proof, i.e. the cut-height is reduced, or are substituted by simpler cuts of
the same kind, i.e. the ecumenical weight is reduced, as in usual cut-elimination
reductions. The cut instances alternate between intuitionistic and classical (and
vice-versa) in the principal cases, where the polarity of the subformulas flip. We
sketch the main cut-reductions.

– Base cases. Consider the derivation below left
π

Λ{p◦
i } Γ{p•

i }
init

Λ ⊗ Γ{∅} cut◦
π

Λ{p◦
i }

Λ ⊗ Γ ∗{p◦
i }

Wc

If p•
i is principal, then Γ{p•

i } = Γ ∗{p◦
i , p

•
i } and the reduction is the one above

right.
If p•

i is not principal, then there is an atom q for which the pair q◦
i , q

•
i appears

in Λ ⊗Γ{∅} and the reduction is a trivial one. Similar analyses hold for cut�,
when the left premise is an instance of init, and for the other axioms.

– Non-principal cases. In all the cases where the cut-formula is not principal in
one of the premises, the cut moves upwards. We illustrate the most significant
case, where a decide rule is applied, as in the derivation below left.

π1

Λ{P�, P ◦}{N�}
Λ⊥◦{P�}{N�} dec π2

Γ{N•}
Λ{P�} ⊗ Γ{∅} cut�

π1

Λ{P�, P ◦}{N�}
π2

Γ⊥◦{N•}
Λ{P�, P ◦} ⊗ Γ ∗{∅} cut�

Λ{P�} ⊗ Γ⊥◦{∅} dec

The cut moves upwards in the right premise until N• is principal in the
bottom-most step of π2, at which point Γ = Γ⊥◦

and dec can move below
the cut, obtaining the derivation above right.

– Principal cases. If the cut formula is principal in both premises, then we need
to be extra-careful with the polarities. We illustrate below the reduction for
case where N = P →c Q, with P,Q positive.

π1

Λ⊥◦{P •, Q�}
Λ⊥◦{P →c Q�} →�

c

π2

Γ ∗{P →c Q•, P ◦}
π3

Γ⊥◦{Q•}
Γ⊥◦{P →c Q•}

→•
c

Λ ⊗ Γ⊥◦{∅} cut�0

reduces to

π3

Γ ⊥◦{Q•}
Γ ⊥◦{¬Q�} ¬�

π1

Λ⊥◦{P •, Q�}
Λ⊥◦{P →c Q�}

→�
c

π2

Γ ∗{P →c Q•, P ◦}
Λ ⊗ Γ ∗{P ◦} cut�2

π≡
1

Λ⊥◦{P •, ¬Q•}
Λ2 ⊗ Γ ⊥◦{¬Q•}

cut◦

Λ2 ⊗ Γ ∗ ⊗ Γ ⊥◦{∅}
cut�1

Λ ⊗ Γ ⊥◦{∅}
Cc

398 S. Marin et al.

where π≡
1 is the same as π1 where every application of the rule dec over Q� is

substituted by an application of ¬• over ¬Q•. Observe that the cut-formula
of cut�1 has lower ecumenical weight than cut�0 , while the cut-height of cut�2
is smaller than cut�0 . Finally, observe that this is a non-trivial cut-reduction:
usually, the cut over the implication is replaced by a cut over Q first. Due to
polarities, if Q is positive, then ¬Q is negative and cutting over it will add to
the left context the classical information Q, hence mimicking the behavior of
formulas in the right input context.

4 Soundness

In this section we will show that all rules presented in Fig. 2 are sound w.r.t. the
ecumenical birelational model. The idea is to prove that the rules of the system
nEK preserve validity, in the sense that if the interpretation of the premises is
valid, so is the interpretation of the conclusion.

The first step is to determine the interpretation of ecumenical nested sequents.
In this section, we will present the translation of nestings to labeled sequents,
hence establishing, at the same time, soundness of nEK and the relation between
this system with labEK.

First of all, we observe that the entailment in ecumenical systems is intrin-
sically intuitionistic, in the sense that Γ ⇒ B is valid iff

∧
Γ →i B is

valid [PPdP19]. Moreover, the classical connectives are defined semantically via
the intuitionistic ones by sporadic double-negation. Another interesting aspect
is that, in the labeled ecumenical modal system labEK, fresh world labels can
be created (bottom-up) by the box operator in succedents and both diamond
connectives in antecedents. Yet, once this new label is created, it is shared by
all modal formulas, independently of their intuitionistic or classical nature.

This suggests the following interpretation of nested into labeled ecumenical
sequents.

Definition 13. Let Π•,Π�,Π◦ represent that all formulas in the each multiset
are respectively input left, right, or output formulas. The underlying Π will rep-
resent in all cases the corresponding multiset of unmarked formula in A. The
translation [[·]]x from nested into labeled sequents is defined recursively by

[[Π•
1 , Π�

2 , Π◦
3 ,

[
Δ1

]
, . . . ,

[
Δn

]
]]x := ({xRxi}i, x : Π1, x : ¬Π2 ⇒ x : Π3) ⊗ {[[Δi]]xi}i

where 1 ≤ i ≤ n, xi are fresh, and the merge operation on labeled sequents is
defined as

(Σ1 ⇒ Π1) ⊗ (Σ2 ⇒ Π2) := Σ1, Σ2 ⇒ Π1,Π2

Given R a set of relational formulas, we will denote by xR∗z the fact that there
is a path from x to z in R, i.e., there are yj ∈ R for 0 ≤ j ≤ k such that
x = y0, yj−1Ryj and yk = z.

That is, right input formulas are translated as negated left formulas in labeled
sequents, and nestings correspond to relational altoms. The next result shows
that, in fact, this interpretation is correct.

A Pure View of Ecumenical Modalities 399

Theorem 14. Let Γ be a nested sequent and x be any label, if 	nEK Γ then
	labEK [[Γ]]x.

Proof. The proof is by structural induction on the proof π of Γ . We will illustrate
a classical and a modal case.

– If the last rule applied in π is ∨�
c , by induction hypothesis,

[[Γ⊥◦{
A�, B�}

]]x = R, Σ, z : ¬A, z : ¬B ⇒ x : ⊥

is provable for a set R of relational atoms and a multiset Σ of labeled formulas,
obtained by translating Γ⊥◦{∅} and such that xR∗z ∈ R. Hence:

R, Σ, z : ¬A, z : ¬B ⇒ z : ⊥
R, Σ ⇒ z : A ∨c B

∨cR

R, Σ, z : ¬(A ∨c B) ⇒ x : ⊥ ¬L

– If the last rule applied in π is ��
c , by induction hypothesis,

[[Δ⊥◦
1

{
�cA

�,
[
A�,Δ⊥◦

2

]}
]]x = R, zRy,Σ, z : ¬(�cA), y : ¬A ⇒ x : ⊥

is provable for a set R and a multiset Σ of relational and labeled formulas,
resp., obtained by translating sequents Δ⊥◦

1 and Δ⊥◦
2 , and where xR∗z ∈ R.

Hence: R, zRy,Σ, z : ¬(�cA), y : ¬A ⇒ z : ⊥
R, zRy,Σ, z : ¬(�cA), z : �¬A, y : ¬A ⇒ z : ⊥ W

R, zRy,Σ, z : ¬(�cA), z : �¬A ⇒ z : ⊥ �L

R, zRy,Σ, z : ¬(�cA) ⇒ z : �cA
�cR

R, zRy,Σ, z : ¬(�cA) ⇒ x : ⊥ ¬L

Due to rule W in labEK, the label assigned to ⊥ on the right is irrelevant in both
cases.

The proof above also establishes the relationship between proofs in nEK and
labEK: the right input context stores negative formulas, which are in fact negated
positive formulas (as in [Gir91]), and the decision rule dec in nEK is mimicked in
labEK by applications of the left rule for negation. In this way, the use of nestings
together with decision and store rules imposes a discipline on rule applications
in labeled systems.

Theorems 3 and 14 immediately imply the following.

Corollary 15. Nested system nEK is sound w.r.t. ecumenical birelational
semantics.

Finally, we observe that from labeled to nested sequents, on the other hand,
is not a simple task, sometimes even impossible. In fact, although the relational

400 S. Marin et al.

atoms of a sequent appearing in a labEK proof can be arranged so as to corre-
spond to nestings, in general, if the relational context is not tree-like [GR12], the
existence of such a translation is not clear. For instance, how should the sequent
xRy, yRx, x : A ⇒ y : B be interpreted in modal systems with symmetrical
relations?

Hence, we will avoid the translation method for proving completeness, which
will instead be proven in Sect. 5 with respect to the Hilbert system.

However, thanks to their tree shape, it is possible to interpret nested sequents
as ecumenical modal formulas, and hence prove soundness in the same way as
in [Str13]. This direct interpretation of nested sequents as ecumenical formulas
means that nEK is a so-called internal proof system. We thus finish this section
by sketching an alternative proof of soundness of nEK w.r.t. the ecumenical
birelational semantics.

Definition 16. The formula translation et(·) for ecumenical nested sequents is
given by

et(∅) := � et(A•, Λ) := A ∧ et(Λ)
et(A�, Λ) := ¬A ∧ et(Λ) et

([
Λ1

]
, Λ2

)
:= �iet(Λ1) ∧ et(Λ2)

et(Λ,A◦) := et(Λ) →i A et
(
Λ,

[
Γ
])

:= et(Λ) →i �et(Γ)

where all occurrences of A∧� and � →i A are simplified to A. We say a sequent
is valid if its corresponding formula is valid.

The following technical lemma holds in nEK, adapting the proof from NIK.

Lemma 17. [Str13, Lemmas 4.3 and 4.4] Let Δ and Σ be input (resp. full)
sequents, and Γ{ } be a full context (resp. Λ{ } be an input context). If et(Δ) →i

et(Σ) is valid, then et(Γ{Σ}) →i et(Γ{Δ}) and et(Λ{Δ}) →i et(Λ{Σ}) are
valid.

The next theorem shows that the rules of nEK preserve validity in ecumenical
modal frames w.r.t. the formula interpretation et(·).
Theorem 18. Let

Γ1 . . . Γn

Γ
r n ∈ {0, 1, 2}

be an instance of the rule r in the system nEK. Then et(Γ1)∧ . . .∧ et(Γn) →i

et(Γ) is valid in the birelational ecumenical semantics.

Proof. The proof for the intuitionistic propositional and modal connectives fol-
lows the same lines as in [Str13]. For the other cases, due to Lemma 17, it
is sufficient to show that the following formulas are valid; all such proofs are
straightforward.

1. for W: ⊥ →i A
2. for ¬•: (¬A →i A) →i (¬¬A)
3. for ¬�: ¬A →i ¬A
4. for ∨•

c : (¬A ∧ ¬B) →i (¬(A ∨c B))

A Pure View of Ecumenical Modalities 401

5. for ∨�
c : (¬(¬A ∧ ¬B)) →i (A ∨c B)

6. for →•
c : (((A →c B) →i A) ∧ (¬B)) →i (¬(A →c B))

7. for →�
c : (¬(A ∧ ¬B)) →i (A →c B)

8. for p•
c : (¬pi) →i (¬pc)

9. for p�
c : (¬¬pi) →i pc

10. for �•
c : (¬�iA) →i (¬�cA)

11. for ��
c : (�¬A) →i (¬�cA)

5 Completeness

Classical modal logic K is defined as propositional classical logic, extended with
the necessitation rule (presented in Hilbert style) A/�A and the distributivity
axiom k : �(A → B) → (�A → �B).

There are, however, many variants of axiom k that induce logics that are
classically, but not intuitionistically, equivalent (see [PS86,Sim94]). In fact, the
following axioms follow from k via the De Morgan laws, but are intuitionistically
independent

k1 : �(A → B) → (♦A → ♦B) k2 : ♦(A ∨ B) → (♦A ∨ ♦B)
k3 : (♦A → �B) → �(A → B) k4 : ♦⊥ → ⊥

Combining axiom k with axioms k1 − k4 defines intuitionistic modal logic
IK [PS86].

In the ecumenical setting, this discussion is even more interesting, since there
are many more variants of k, depending on the classical or intuitionistic inter-
pretation of implications and diamonds.

Theorems of ecumenical modal logic EK are defined as the formulas that are
derivable from the axioms of intuitionistic propositional logic plus the definitions
of classical operators using negation and the intuitionistic versions of the axioms
k−k4. We can show that all these EK axioms are provable in nEK (e.g. Example 9).
Hence, in the presence of cut-elimination (Sect. 3.1), we can deduce completeness
of nEK w.r.t. EK.

Theorem 19. Every theorem of the logic EK is provable in nEK.

Moreover, a formula is derivable in EK iff it is valid in all birelational frames
(see [MPPS20]), which in turn implies completeness of nEK w.r.t. birelational
semantics.

6 Extracting Fragments

In this section, we will study pure classical and intuitionistic fragments of nEK.
For the sake of simplicity, negation will not be considered a primitive connective,
it will rather take its respective intuitionistic or classical form.

402 S. Marin et al.

Definition 20. An ecumenical modal formula C is classical (intuitionistic) if
it is built from classical (intuitionistic) atomic propositions using only neutral
and classical (intuitionistic) connectives but negation, which will be replaced by
A →c ⊥ (A →i ⊥).

The first thing to observe is that, when only pure fragments are concerned,
weakening is admissible. Observe that this is not the case for the whole system
nEK. In fact, A ∨c ¬A�, C◦ is provable in nEK for any formula C, but the proof
necessarily starts with an application of the rule W if, e.g., C is an atomic formula
pi.

Proposition 21. Let nEKi (nEKc) be the system obtained from nEK − W by
restricting the rules to the intuitionistic (classical) case (see Figs. 3 and 4). The
rule W is admissible in nEKi and nEKc.

Proof. For the intuitionistic fragment, the proof is standard, by induction on
the height of derivations (considering all possible rule applications). The classi-
cal case is more involved. The idea is that classical formulas in the stoup are
eagerly decomposed until either an axiom is applied, or the formula is stored in
the classical input context and the stoup becomes empty. This is only possible
because the rules ∧◦ and �◦ are totally invertible and all the other rules in nEKc

are invertible (Lemma 10). Formally, the following proof strategy is complete for
nEKc, when proving a nested sequent Γ :

i. Apply the rules ∧•,∧◦,�•,�◦ and sto eagerly, obtaining leaves of the form
Λ{⊥◦}.

ii. Apply any rule of nEKc eagerly, until either finishing the proof with an axiom
application or obtaining leaves of the form Λ{P ◦}, where P is a positive
formula in nEKc, that is, having as main connective ∧ or �. Start again from
step (i).

Observe that weakening is never applied, since a positive classical formula P ◦ is
totally decomposable into negative subformulas of the form N◦, which are stored
in the classical input context as N�, or ⊥◦.

This result clarifies the role of weakening in nEK: it serves as a bridge
between intuitionistic and classical parts of a derivation and its application can
be restricted to just below classical rules.

Since weakening is not present, nEKi matches exactly the system NIK
in [Str13].

Fact 22. The intuitionistic fragment of nEK is Straßburger’s system NIK.

For the classical fragment, the discipline presented in the proof of Propo-
sition 21 is interesting as it resembles focused search [LM11] in nEKc: neutral
connectives are handled in the stoup, while rules on classical connectives are
applied in classical context.

Yet, this discipline does not match the focusing defined in [CMS16], since
in that work diamond is considered positive and box negative, while the ecu-
menical system enforces the opposite polarity assignment. The task of providing

A Pure View of Ecumenical Modalities 403

Fig. 3. Intuitionistic fragment nEKi.

Fig. 4. Classical fragment nEKc.

a fully focused system, as well as adding polarized versions of conjunction and
disjunction, as done e.g. in [LM11,CMS16] is left for a future work.

7 Extensions

Depending on the application, several further modal logics can be defined as
extensions of EK by simply restricting the class of frames we consider or, equiv-
alently, by adding axioms over modalities. Many of the restrictions one can be
interested in are definable as formulas of first-order logic, where the binary predi-
cate R(x, y) refers to the corresponding accessibility relation. Table 1 summarizes
some of the most common logics, the corresponding frame property, together
with the modal axiom capturing it [Sah75].

Since the intuitionistic fragment of nEK coincides with NIK, intuitionistic
versions for the rules for the axioms t, b, 4, and 5 match the rules (•) and (◦)
presented in [Str13], and are depicted in Fig. 5.

For completing the ecumenical view, the classical (�) rules for extensions are
justified via translation to the labeled system labEK. For example, the labeled

404 S. Marin et al.

Table 1. Axioms and corresponding first-order conditions on R.

Axiom Condition First-Order Formula

d : �A → ♦A Seriality ∀x∃y.R(x, y)

t : �A → A ∧ A → ♦A Reflexivity ∀x.R(x, x)

b : A → �♦A ∧ ♦�A → A Symmetry ∀x, y.R(x, y) → R(y, x)

4 : �A → ��A ∧ ♦♦A → ♦A Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z)) → R(x, z)

5 : �A → �♦A ∧ ♦�A → ♦A Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z)) → R(y, z)

Fig. 5. Ecumenical modal extensions for axioms d, t, b, 4 and 5.

derivation on the left justifies the classical rule in the middle.

xRx,R, Σ, x : ¬A ⇒ x : ⊥
xRx,R, Σ, x : �¬A ⇒ x : ⊥ �L

R, Σ, x : �¬A ⇒ x : ⊥ T

R, Σ ⇒ x : �cA
�cR

R, Σ, x : ¬�cA ⇒ z : ⊥ ¬L + W
Γ⊥◦{A�}

Γ⊥◦{�cA
�} t�

xRx, Γ 	 z : C

Γ 	 z : C
T

The rule T above right is the labeled rule corresponding to the axiom t [Sim94].
The rules b�, 4� and 5�, shown in Fig. 5, are obtained in the same manner. By
mixing and matching these rules, we conjecture hat we obtain ecumenical modal
systems for most logics in the S5 modal cube [BRV01], i.e. those that are not
defined with axiom d.

8 Conclusion

In this paper, we have presented a pure, nested proof system nEK for the ecu-
menical modal logic EK, together with pure fragments and extensions. We proved
soundness of nEK w.r.t. the ecumenical birelational model via a translation to
the labeled ecumenical modal system labEK. For completeness, we used the fact
that EK axioms are provable in nEK and we proved cut-elimination for nEK.
Finally, having an ecumenical nested system allowed for extracting well known
systems as fragments.

A Pure View of Ecumenical Modalities 405

First of all, it should be noted that combining classical and intuitionistic
modalities conservatively in the same pure logical system is not trivial. In fact,
the labeled system in [MPPS20] makes an extensive use of negations in order to
keep classical information persistent. We have shown that this can be avoided
by having an additional classical context to store negative formulas, similarly to
Girard’s classical system LC [Gir91], henceforth solving the “impurity” issue. On
the other hand, there seems to be no trivial solution to remove labels from intu-
itionistic modal sequent systems where the distributivity of the diamond w.r.t.
the disjunction holds [Sim94]. The solution here was to adopt the framework to
nested sequents, whose tree structure describes the corresponding path in the
birelational semantics, a special case in which labels can be eliminated.

It turns out that this mix of classical context, polarities and nestings can
be implosive, in the sense that adding a cut rule may lead to a collapse of the
system to classical modal logic. For controlling the implosion, the cut rules must
have a restricted use of polarities which, in turn, makes the cut-elimination proof
non trivial.

There are many interesting ideas that can be explored for the proposed sys-
tems, axioms and semantics, as indicated throughout the text, and many lines
to be pursued in this research direction. First of all, we have proposed a proof
discipline for nEK, which does not correspond to focusing for modal systems
as presented in [CMS16]. In fact, the presence of weakening is known to break
focusing, we should threfore investigate alternative ways of having a fully focused
system. Moreover, it should be interesting to study typing in ecumenical systems,
in which fragments of already known modal type systems could be embedded.
Finally, we plan to implement ecumenical provers, as well as to automate the
cut-elimination proof in the L-Framework [OPR21].

Acknowledgements. This work was partially financed by CNPq, CAPES and by
the UK’s EPSRC through research grant EP/S013008/1. We would like to thank the
anonymous reviewers for their suggestions and comments.

References

[Brü09] Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48,
551–577 (2009). https://doi.org/10.1007/s00153-009-0137-3

[Bull92] Bull, R.: Cut elimination for propositional dynamic logic without*. Zeitschr.
f. math. Logik und Grundlagen d. Math. 38, 85–100 (1992)

[BRV01] Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge
(2001)

[CMS16] Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems
for intuitionistic modal logics. In: FSCD 2016, no. 16, pp. 1–18 (2016)

[DD20] Dı́az-Caro, A., Dowek, G.: A new connective in natural deduction, and its
application to quantum computing. CoRR, abs/2012.08994 (2020)

[Dum91] Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press,
Cambridge (1991)

https://doi.org/10.1007/s00153-009-0137-3

406 S. Marin et al.

[Fit14] Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Formal
Logic 55(1), 41–61 (2014)

[GR12] Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and
nested (deep) sequents. Adv. Modal Logic 9, 279–299 (2012)

[Gir91] Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Com-
put. Sci. 1(3), 255–296 (1991)

[Gir93] Girard, J.-Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217
(1993)

[ILH10] Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure
Appl. Logic 161(11), 1367–1378 (2010)

[Kas94] Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica
53(1), 119–136 (1994)

[Lau02] Laurent, O.: Étude de la Polarisation en Logique. Ph.D. thesis, Université
Aix-Marseille II (2002)

[Lel19] Lellmann, B.: Combining monotone and normal modal logic in nested
sequents – with countermodels. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 203–220. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29026-9 12

[LM11] Liang, C., Miller, D.: A focused approach to combining logics. Ann. Pure
Appl. Logic 162(9), 679–697 (2011)

[MP13] Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus
proof systems. Theor. Comput. Sci. 474, 98–116 (2013)

[MPPS20] Marin, S., Pereira, L.C., Pimentel, E., Sales, E.: Ecumenical modal logic.
In: Martins, M.A., Sedlár, I. (eds.) DaĹı 2020. LNCS, vol. 12569, pp. 187–
204. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-65840-
3 12

[OPR21] Olarte, C., Pimentel, E., Rocha, C.: A rewriting logic approach to
specification, proof-search, and meta-proofs in sequent systems. CoRR,
abs/2101.03113 (2021)

[Pog09] Poggiolesi, F.: The method of tree-hypersequents for modal proposi-
tional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards
Mathematical Philosophy. TL, vol. 28, pp. 31–51. Springer, Dordrecht
(2009). https://doi.org/10.1007/978-1-4020-9084-4 3

[PPdP19] Pimentel, E., Pereira, L.C., de Paiva, V.: An ecumenical notion of entail-
ment. Synthese (2019). https://doi.org/10.1007/s11229-019-02226-5

[PR17] Pereira, L.C., Rodriguez, R.O.: Normalization, soundness and completeness
for the propositional fragment of Prawitz’ ecumenical system. Rev. Port.
Filos. 73(3–3), 1153–1168 (2017)

[Pra15] Prawitz, D.: Classical versus intuitionistic logic. Why is this a Proof?
Festschrift for Luiz Carlos Pereira, 27, 15–32 (2015)

[PS86] Plotkin, G.D., Stirling, C.P.: A framework for intuitionistic modal logic. In:
Halpern, J.Y. (ed.) 1st Conference on Theoretical Aspects of Reasoning
About Knowledge. Morgan Kaufmann, Burlington (1986)

[Res06] Restall, G.: Comparing Modal Sequent Systems. Draft manuscript (2006)
[Sah75] Sahlqvist, H.: Completeness and correspondence in first and second order

semantics for modal logic. In: Kanger, S. (eds.) Proceedings of the Third
Scandinavian Logic Symposium, pp. 110–143 (1975)

[Sim94] Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic.
Ph.D. thesis, College of Science and Engineering, School of Informatics,
University of Edinburgh (1994)

https://doi.org/10.1007/978-3-030-29026-9_12
https://doi.org/10.1007/978-3-030-65840-3_12
https://doi.org/10.1007/978-3-030-65840-3_12
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1007/s11229-019-02226-5

A Pure View of Ecumenical Modalities 407

[Str13] Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal
logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 14

[TS96] Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Univ.
Press, Cambridge (1996)

https://doi.org/10.1007/978-3-642-37075-5_14

Provability Games for Non-classical
Logics

Mezhirov Game for MPC, KD!, and KD

Alexandra Pavlova(B)

Institute of Logic and Computation, TU Wien, Vienna, Austria
alexandra@logic.at

Abstract. Game semantics provides an alternative view on basic logical
concepts. Provability games, i.e., games for the validity of a formula pro-
vide a link between proof systems and semantics. We present a new type
of provability games, namely the Mezhirov game, for minimal proposi-
tional logic and two modal systems: the logic of functional frames and
the logic of serial frames, i.e., KD and prove their adequacy. The games
are finite resulting in a finite search for winning strategies.

Keywords: Provability game · Modal logic · Minimal logic

1 Introduction

A game attitude to logic in the broad sense has a long tradition [1,2]. The under-
lining idea consists in providing a game-related explanation to various concepts,
like truth, validity, bisimulation. Currently, there exists a grand variety of differ-
ent types of games, e.g., semantic games, provability games, model comparison
games, games on consistency, and others [1,3]. One of the most prominent exam-
ples of provability games, i.e., those checking validity of the formula, is the dia-
logue logic introduced by Lorenzen [4] and later developed by S. Rahman [5] and
Pavlova [21]. This framework seeks to explain and represent the logical concept
of validity as a result of a structured argumentative dispute between two partic-
ipants, or players, Proponent (P) and Opponent (O). Disjunctive games [6,7],
represent an alternative approach to provability and build upon semantic games
(initially proposed by J.Hintikka [8,9]) aimed at determining the truth of a for-
mula in a given model by step-wise reduction to atomic formulae. In a disjunctive
game, a game state is a disjunction of states from semantic games and P can
duplicate states to be able to backtrack. The idea is to play a game over all
possible models, but instead of playing an infinite (for some logics, e.g., Gödel
logic [7]) number of semantic games, players engage in one disjunctive game.

We present another type of provability game called Mazhirov’s game initially
proposed by Iliya Mezhirov for intuitionistic logic IPC as well as Grzegorczyk

Research supported by FWF project W1255-N23. The author is grateful to the anony-
mous referees for comments which led to improvements in this paper.

c© Springer Nature Switzerland AG 2021
A. Silva et al. (Eds.): WoLLIC 2021, LNCS 13038, pp. 408–425, 2021.
https://doi.org/10.1007/978-3-030-88853-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88853-4_25&domain=pdf
http://orcid.org/0000-0002-1877-1167
https://doi.org/10.1007/978-3-030-88853-4_25

Provability Games for Non-classical Logics 409

modal logic Grz [10,11,20] as a type of game semantics characterizing validity.
An important feature of the game is its finiteness and explicit reference to truth
values. We extend this approach to several other logics. The main results are
new games that not only are finite but also shed light on the relation between
the semantic and the syntactic approaches to validity. The paper is structured as
follows: the game for minimal propositional logic is presented in Sect. 2, Sect. 3
is dedicated to Modal logic with the game for the logic of functional frames
KD! being presented in Subsect. 3.1, and the game for the logic of serial frames
KD discussed in Subsect. 3.2.

2 Game for Minimal Logic

A distinguishing feature of Minimal propositional logic MPC1 compared to intu-
itionistic logic IPC, is the failure of the principle of explosion, i.e., ⊥ � ψ where
ψ is an arbitrary formula. IPC = IPC++ principle of explosion, IPC+ being
the positive fragment of intuitionistic calculus. One of the metalogical features
of MPC is that ⊥ is treated just like an ordinary constant so it does not have
the same properties as the intuitionistic ⊥2. There are two possible ways to
formulate minimal logic [13], namely:

1. adding falsum to the positive fragment of intuitionistic logic IPC+(respective
language L+) s.t. ¬ϕ =def ϕ → ⊥. Then LMPC = L+ ∪ {⊥} and MPC has
the same set of axioms as IPC+. We denote this system as MPC⊥;

2. taking ¬ as a primitive connective, i.e., L+ ∪ {¬}. There is a separate axiom
for ¬ such that MPC¬ = IPC+ + ((p → q) ∧ (p → ¬q)) → ¬p3.

For both versions of minimal logic, completeness w.r.t. Kripke semantics was
proved [13,14]. We shall use MPC⊥ system and denote it simply as MPC.

Definition 1. Let Prop be a countable set of atomic propositions. The language
Lm for minimal propositional logic MPC is generated by the following BNF:

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ⊥
where p ∈ Prop. The negation is an abbreviation: ¬ϕ =def ϕ → ⊥.

MPC Axioms

1. ϕ → (ψ → ϕ);
2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ));
3. (ϕ ∧ ψ) → ϕ;
1 MPC is alternatively known as J after Ingebrigt Johansson who proposed it in [12].
2 To distinguish between the two, sometimes f is used as falsum constant for minimal

logic. We, however, will stick to ⊥. Whenever we compare the intuitionistic ⊥ with
the minimal one, we shall use the lower indexes i and m respectively.

3 This version was originally proposed by Johansson. One can even trace it back to
the famous paper by Kolmogorov.

410 A. Pavlova

4. (ϕ ∧ ψ) → ψ;
5. ϕ → (ψ → (ϕ ∧ ψ));
6. ϕ → (ϕ ∨ ψ);
7. ψ → (ϕ ∨ ψ);
8. (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))

Kripke Semantics for MPC: We give a standard definition of Kripke semantic
for minimal logic [13–15]. Mm = 〈W, R, v,Q〉4 which is a generalization of an
intuionistic model Mi, namely: W is non-empty set of possible worlds, R is
a partial order (i.e., a reflexive, antisymmetric and transitive relation) on W,
and the variable valuation function v : Prop × W −→ {0, 1}. The function
v is required to be monotonic w.r.t. R: if xRy, then v(p, x) ≤ v(p, y) for any
p ∈ Prop. Thus, if v(p, x) = 1 and xRy, then v(p, y) = 1. Let R(x) = {y|xRy}
be an upward closed set. An upward closed set S of a partially ordered set (X,≤)
is a subset S ⊆ X with the following property: if s ∈ S and if x ∈ X is larger
than s (i.e., if s ≤ x), then x ∈ S.

To get a model for minimal logic, Mi is augmented with the set Q ⊆ W s.t.
Q = {w ∈ W | w � ⊥} (sometimes called abnormal worlds) and it is an upward
closed set. By Fm = {W, R} we denote a Kripke frame for MPC. We write
M, x � ψ if formula ψ is true in the world x of M. This is called the forcing
relation which is defined as follows:

1. M, x � p iff v(p, x) = 1;
2. M, x � ϕ ∧ ψ iff M, x � ϕ and M, x � ψ;
3. M, x � ϕ ∨ ψ iff M, x � ϕ or M, x � ψ;
4. M, x � ϕ → ψ iff for all y ∈ R(x) either M, y � ϕ or M, y � ψ;
5. M, x � ⊥ iff x ∈ Q.

Forcing relation is also monotonic w.r.t. R, i.e. if xRy and x � ϕ, then y � ϕ
(proof by induction on the construction of ϕ). MPC has finite model property,
i.e. for every formula not derivable in MPC there exists a finite countermodel.

Proposition 1. A formula is derivable in MPC iff it is true in all finite frames.

Proof: The proof uses the filtration method. Assume that �MPC ϕ. Then there
exists a model M = 〈W, R, v,Q〉 such that M, x0 � ϕ. Let F be a set of all
subformulae of ϕ. F is finite. Since the definition of forcing refers only to the
formulae from F , if two worlds force the same formulae from F , we can consider
them equivalent and join them into one world. This is the idea behind the notion
of filtration. Formally, we define an equivalence relation (reflexive, transitive and
symmetric) on W as follows: x ∼F y iff for all ψ ∈ F : x � ψ ⇐⇒ y � ψ. Now
we define a new model M/∼F = 〈W/∼F , R∗, v∗,Q∗〉 where W∼F is the set of
equivalence classes of worlds from W w.r.t. ∼F . The equivalence class of x ∈ W is
the set [x]∼F = {y | y ∼F x}. Therefore, x ∼F z ⇐⇒ [x]∼F ∼F [z]∼F . Therefore,
Q∗ ∈ W∗ is a set of abnormal equivalence classes. Now we define the accessibility
4 We shall generally omit the lower index if it does not lead to confusion.

Provability Games for Non-classical Logics 411

relation. [x]∼F R∗[y]∼F iff x � χ implies y � χ for every χ ∈ F . Note that, since
in equivalent worlds the same formulae from F are true, this definition does
not depend on what particular elements we take from [x]∼F . The new relation
R∗ is reflexive and transitive by definition. R∗ is also antisymmetric (Assume
that [x]∼F R∗[y]∼F and [y]∼F R∗[x]∼F . Then, due to monotonicity of forcing,
[x]∼F and [y]∼F force exactly the same formulae. Hence, they represent the
same equivalence class). It only remains to define the valuation v∗. v∗(p, [x]∼F) =
v(p, x) for all p ∈ F . To preserve monotonicity let us set all the variables that
are not in F to be always false. The filtered model M/∼F is finite since there is
a finite number of ϕ’s subformulae and a finite number of possible valuations for
formulae from F . We need to prove that it preserves forcing for formulae from
F , i.e. if ψ ∈ F , then:

M, x � ψ ⇐⇒ M/∼F , [x]/∼F � ψ

Proof: By induction on the structure of ψ:

– ψ ∈ Prop. Then by definition of v∗: M, x � p ⇐⇒ M/∼F , [x]/∼F � p.
– ψ := ⊥, then M, x � ⊥ iff x ∈ Q. But then x ∈ [xi]/∼F such that [xi]/∼F ∈

Q∗. Then M/∼F , [xi]/∼F � ⊥ (since in all the worlds in the class [xi]/∼F all
formulae get the same value)

– ψ := ψ1 ∧ ψ2. M, x � ψ1 ∧ ψ2 iff M, x � ψ1 and M, x � ψ2. By IH,
M/∼F , [x]/∼F � ψ1 and M/∼F , [x]/∼F � ψ2. Thus, M/∼F , [x]/∼F � ψ1 ∧ ψ2

by def. of forcing. The case for ∨ is similar.
– ψ := ψ1 → ψ2. M, x � ψ1 → ψ2 iff for all y such that xRy: M, y � ψ1 or

M, y � ψ2. By IH, M/∼F , [y]/∼F � ψ1 or M/∼F , [y]/∼F � ψ2 for all [y]/∼F
such that y ∈ [y]/∼F . Then M/∼F , [x]/∼F � ψ1 → ψ2. ��
By applying it to ϕ, we get that M/∼F ,[x]/∼F �

ϕ, which is our goal. ��
Mezhirov Game for MPC. The game G(ϕ) played over the formula ϕ contains
the following elements:

– ϕ is the initial formula of the game.
– F is the set of all subformulae of the initial formula ϕ.
– the set of players A = {O,P} where P is Proponent and O is Opponent ;
– players’ corresponding sets of moves will be denoted by P and O.
– a position, or a game state, C is a pair (P,O), where O and P are sets

of subformulae of ϕ. The number of possible positions is finite, since there
number of formulae is finite. The starting position is C0 = (ϕ, ∅). By C we
denote the set of all game states.

– game valuation function v : F × C −→ {0, 1} defined recursively. Game val-
uation of each subformula of ϕ is calculated for every position in the game,
hence we denote valuations in particular games as vi read as the valuation of
ψ at some game state i. V is the set of all possible valuations. For all game
position C and all ψi, ψj ∈ F , p ∈ Prop, � ∈ {∧,∨,→}:

412 A. Pavlova

v(⊥, C) = 1 iff ⊥ ∈ O (1)
v(p,C) = 1 iff p ∈ O (2)

v(ψi � ψj , C) = 1 ⇐⇒
{

(ψi � ψj) ∈ (O ∪ P)
v(ψi) �B v(ψj) = 1

(3)

where �B is the Boolean function associated with �. The curly bracket should
be read as a conjunction.
The last condition can be read as follows: a formula that is not in O∪P (also
called a non-marked) is always false, and a marked formula behaves according
to its classical truth table.

The game proceeds as follows:

∗ Players move by adding a formula to their respective sets (P and O) which is
called marking a formula.

∗ If a player has marked a formula and its game valuation is 0, let us say that
this formula is his mistake. If O has no mistakes but P has, then it’s P’s
turn to move. Otherwise, it’s O’s turn.

∗ The game terminates when a player whose turn it is cannot move. A player
loses when he cannot move.

Mezhirov game for intuitionistic logic can be seen as a special restricted case
of the game for minimal logic. Hence, to get Mezhirov game for Minimal Logic,
we need to allow players to mark ⊥ and assign it the value 1. Since ⊥ is a
constant, it gets the value 1 iff it is marked by O.

Each game can be viewed as a finite tree of game positions, rooted in the
initial formula ϕ and branching according to the rules of Mezhirov game until
all leaves reach a terminal state. Its branches are the possible runs of the game.
A strategy σ for P is a subtree of the game tree obtained from pruning all but
one P-labelled outgoing branches (i.e., where its P’s turn to move) from every
node in the tree, while keeping O-labelled branches intact. The remaining tree
specifies P’s moves at the given state, while all possible choices of O are still
recorded. σ is a winning strategy (w.s.), for P if all leaf nodes of σ are winning
states for P.

Example 1. Consider the following example of a run of the game for the formula
p → (¬p → q). Actions that do not influence the final valuation (so P cannot
correct his mistakes) are in red.

F O P V0 V1 V2 V3 V4 V5 V6 V7 V8

p → (¬p → q) 0.X 1 0 1 1 0 0 0 0 0
¬p → q 2.X 0 0 1 1 0 0 0 0 0

¬p := p → ⊥ 3.X 8.X 0 0 0 0 1 1 1 1 1
p 1.X 6.X 0 1 1 1 1 1 1 1 1
q 5.X 0 0 0 0 0 0 0 0 0
⊥ 4.X 7.X 0 0 0 0 1 1 1 1 1

Provability Games for Non-classical Logics 413

It is quite easy to see that not only P loses this particular run of the game,
but in fact, P does not have a winning strategy for a game over the formula
p → (¬p → q). Whereas P still has a winning strategy in a game over minimally
valid formula p → (¬p → ¬q).

Theorem 1. �MPC ϕ iff P has a winning strategy in the game for minimal
logic over ϕ.

Proof: Since minimal logic uses the same frame structures as intuitionistic logic
(intuitionistic models are just models for minimal logic where Q = ∅) and it has
finite model property, we can refer to the proof in [16] for the intuitionistic case
and use it for both directions.

=⇒-direction: Given that �MPC ϕ, there exists at least one finite counter-
model M. Let O play according to that model as described in the proof in [16].
The only thing that we should modify in the proof is to show that Iw(⊥) = v(⊥)
when O has marked all the formulae true in the world w (that O has in mind)
since for all other formulae the proof is the same: Iw(⊥) = 1 iff O has marked
⊥ by the construction of O’s strategy. By definition of v, v(⊥) = 1 iff ⊥ ∈ O.
The rest of the proof is the same as for the intuitionistic case.

⇐=-direction: Again, take the proof in [16] for the intuitionistic case. We
construct the model the same way. Since Q ∈ W, the proof that our construction
is a model is analogous to the one in [16]. We need to update is the proof by
induction that Ix0(θ) = v(θ) by adding the case of ⊥. Since ⊥ is treated as a
special variable, i.e. Ix0(θ) = 1 if and only if θ is in O by the construction, thus,
v(θ) by definition of game valuation. This works in both directions. ��

3 Game for Modal Logic

In this section, we consider two variations of the game for classical modal logic.
The frames are no longer required to be partial orders. Before we proceed with
game specification, let us first define the notion of modal depth of a formula,
denoted as MD(ϕ) and of the depth of a frame (sometimes we refer to it as
semantic depth).

Definition 2. Let Prop be a countable set of atomic propositions and p ∈ Prop.
The language LMc for classical modal logic is generated by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �ϕ

♦ϕ := ¬�¬ϕ.

Definition 3. Let F be a frame. We call the depth of F, indicated by d(F), the
maximal number n such that no directed path5 in F is longer than n. d(M) is
the semantic depth of a model M based on a frame F such that d(M) = d(F).
5 A directed path in a directed graph is a finite or infinite sequence of edges which

joins a sequence of distinct vertices with the additional restriction that the edges
should be all directed in the same direction. The length of a path is the number of
edges it contains.

414 A. Pavlova

Definition 4. Modal depth of a formula, MD(ϕ) is defined recursively as fol-
lows:

1. MD(p) = 0 where p ∈ Prop;
2. MD(¬ϕ) = MD(ϕ);
3. MD(ϕ1 � ϕ2) = max(MD(ϕ1),MD(ϕ2)) where � ∈ {∧,∨,→};
4. MD(�ϕ) = MD(ϕ) + 1.

We denote by �nϕ the formula � . . . �︸ ︷︷ ︸
n times

ϕ.

Definition 5. A pointed frame F = 〈W, R〉 with distinguished state w ∈ W is
a tree with root w if F is rooted at w and every state u ∈ W W is reachable
from w by a unique path. Accordingly, every Kripke structure over (F, w) is a
tree structure.

Claim 1 (Lemma 36 in [17]). Let n ∈ N. Every finite pointed Kripke structure
(M, y) is bisimilar to a finite pointed structure (Mn, x0) whose restriction to
depth n from the distinguished node x0 is a tree structure.

Proof. Cf. proof in [17].

3.1 Mezhirov Game for Modal Logic of Functional Frames

We introduce Mezhirov game for the logic functional frames, known as KD!,
KDDc, or DAlt. For the model-theoretic account of KD! see [18]; proof-theory
is studied in [19]. Logic KD! can be axiomatised in several ways:

– KD! = K + ♦ϕ ↔ �ϕ where D-axiom �ϕ → ♦ϕ corresponds to seriality
(∀x∃y : xRy), and axiom Dc: ♦ϕ → �ϕ corresponds to partial functionality
(∀x, y, z : (wRy & wRz) =⇒ y = z).

– It can be alternatively axiomatised as KD! = K + ¬�ϕ ↔ �¬ϕ.

KD! Semantics: The corresponding frame condition is functionality, i.e., ∀w∃!u :
wRu meaning that every world has a unique successor. From this follows the
linearity of the frame. Functional frames can either end in a loop (of arbitrary
size) or be an infinite chain. Let MKD! = 〈W, R, v〉 where R is functional. Then:

1. M, x � p where p ∈ Prop iff v(p, x) = 1;
2. M, x � ¬ϕ iff M, x � ϕ;
3. M, x � ϕ ∧ ψ iff M, x � ϕ and M, x � ψ;
4. M, x � ϕ ∨ ψ iff M, x � ϕ or M, x � ψ;
5. M, x � ϕ → ψ iff M, x � ϕ or M, x � ψ;
6. M, x � �ϕ iff for all y ∈ W s.t. xRy: M, y � ϕ.

Mezhirov Game for KD! is based on the game for Grz logic presented by
I. Mezhirov in [10]. Let ϕ be the initial formula over which the game is played.
Since the game is played to determine the validity (hence ϕ should be valid in

Provability Games for Non-classical Logics 415

every world), we can add without loss of generality � as the main operator of
the initial formula. Let F be defined as in Sect. 2. From now on, ‘a formula’
will mean a formula from F∗, and ‘a variable’ will mean a variable occurring in
ϕ. So there is a finite number of formulae and a finite number of variables. We
recursively define the set F∗ as follows:

1. ϕ0 := (�(ϕ))0;
2. if (¬ψ)i ∈ F∗, then ψi ∈ F∗;
3. if (ψ � χ)i ∈ F∗, then ψi ∈ F∗ and χi ∈ F∗ where � ∈ {∧,∨,→};
4. if (�ψ)i ∈ F∗, then ψi+1 ∈ F∗.

This means that we start with ϕ0 := (�(ϕ))0. Then for each boxed formula6

with the upper index n a copy of its immediate subformulae with n + 1 as its
upper index is added.

Let F∗
� be the boxed formulae of F∗ (namely: F∗

� ⊂ F∗ such that ψi ∈ F∗
�

iff ψi ∈ F∗ and ψi := (�χ)i). Both F∗
� and F∗ play their role in the game. The

game is played over the set F∗
� and propositional variables pi ∈ F∗.

A game state, or position, is a tuple C = (P,O, V pr) where P is a set of
formulae marked by P, P ⊆ F∗

�, O is a set of formulae marked by O, O ⊆ F∗
�,

V pr is a set of indexed atomic formulae.

– P moves by:
• marking formulae from F∗

�;
• P can unmark a previously marked boxed formula that is an indexed

proper subformula of ϕ (deleting a formula from P), but not the initial
formulae ϕ. No position can be visited twice during the game7.

– O moves by:
• marking formulae from F∗

�;
• adding a propositional variable pi ∈ F∗ to the set V pr. (The initial valu-

ation of all indexed propositional variables is 0)

Remark 1. An alternative restriction on unmarking that “for every (�ψ)i P can
unmark it at most once” requires a different proof of completeness.

Formulae from F∗ are used to calculate game valuations for each state. As
previously, the game starts by P marking the initial formula ϕ0 (C0 = (ϕ0, ∅, ∅))
and ends when a player whose turn it is cannot move. This player loses.

Game valuation v depends on the position of the game we are currently in.
Let V be the set of game valuations as in Sect. 2. V is not a part of a game state.
For all game position C and all ψi, χi ∈ F∗, pj ∈ Prop, � ∈ {∧,∨,→}:

6 By boxed formula we understand a formula the main operator of which is �, i.e.,
formula of the form �ψ.

7 To be more formal and precise, we can formulate this as follows: “for every game
position Ck and every (�ψ)i ∈ Pk s.t. (�ψ)i �= ϕ0: P can unmark (�ψ)i at the
game step k + 1 iff Ck+1 �= Cl where l ≤ k”.

416 A. Pavlova

v(⊥j) = 0 (4)

v(pj) = 1 iff pj ∈ V pr (5)

v((¬ψ)i) = 1 ⇐⇒ v(ψi) = 0 (6)

v((ψ � χ)i) = 1 ⇐⇒ v(ψi) �B v(χi) = 1 (7)

where �B is the Boolean function associated with �.

v((�ψ)i) = 1 ⇐⇒
{

(�ψ)i ∈ (O ∪ P)
v(ψi+1) = 1

(8)

If P has a mistake and O has none, then it is P’s turn to move. Otherwise,
moves O. Mistakes and winning conditions are defined as in Sect. 2.

Example 2. Let’s have a look at an example of a run of the game.

F O P V0 V1 V2 V3 V4

(�(�(p → q) → (�p → �q)))0 0.X 1 1 1 0 1
(�(p → q))1 1.X 0 1 1 1 1

(�p)1 2.X 0 0 0 1 1
(�q)1 4.X 0 0 0 0 1

Variable Valuations 3.V pr = {p2, q2}
One can see that in this run of the game O loses (even if we play the run up to

the end when O marks all the formulae). O cannot change the valuation because
he will get a mistake then. It is easy to see, that P has a winning strategy in
the game over the K-axiom against any move by O.

Example 3.

F O P V0 V1 V2

(�(�p → p))0 0.X 1 1 0
(�p)1 1.X 0 0 1

Variable Valuations 2.V pr = {p2}

For the initial formula to be
true after the game state C2, p1

should be in V pr, but P cannot
enforce it, so he loses. It is easy
to see that O not only wins the
above run of the game but also
has a winning strategy.

Example 4. This example shows why we need P to have a possibility to unmark
a formula once. By del(m.X) we mean that P unmarks the formula marked at
step m. The run of the game goes as follows: P marks the initial formula, but
since the main connective of (�p ∨ �¬p)1 is a disjunction, it evaluates to 0,
hence P marks (�¬p)1. This forces O to move by marking (�p)1 and adding p2

to V pr hence making v2(p2) = 1. then P unmarks formula (�¬p)1 (denoted as
4.del(1.X)). The red colour emphasises the unmarked formula.

Provability Games for Non-classical Logics 417

F O P V0 V1 V2 V3 V4

(�(�p ∨ �¬p))0 0.X 0 1 0 1 1
(�p)1 3.X 0 0 0 1 1

(�¬p)1 4.del(1.X) 0 1 0 0 0
Variable Valuations 2.V pr = {p2}

w0 w0 � �(�p � p)

w1 w1 � �p w1 � � p

w2 w2 � p w2 � p

Remark 2. Assume we do not allow P to unmark formulae, then if ϕ is a theorem
of and ϕ is �-free, then P has a w.s. for �nϕ where n ≥ 0. But P does not
have a w.s. for �(�p ∨ �¬p).

Adequacy: We are proving the adequacy of the Mezhirov game defined in this
section with respect to Kripke semantics for the logic KD!. Since KD! has finite
model property [18], we can follow the previous semantic proof strategy here.

Theorem 2. P has a winning strategy in Mezhirov game for KD! over some
formula ϕ iff �KD! ϕ.

Lemma 1. If �KD! ϕ, then O has a winning strategy in Mezhirov game for
KD! over ϕ.

Proof. Assume that �KD! ϕ and MD(ϕ) = n − 1, then there exists a finite
countermodel M = 〈W, R, v〉 and a world x0 s.t. M, x0 � ϕ. From Claim 1
follows that we can use a tree-structured countermodel of depth n. So let W =
{x0, . . . , xn−1} and R be a functional relation such that x0Rx1R . . . xn−2Rxn−1

and xn−1Rxn−1.
O should build up his strategy following that countermodel, starting with

the world x0 falsifying the initial formula, i.e., M, x0 �KD! ϕ. We need to relate
the worlds in the model to the upper indexes in the game so that O knows how
to form his strategy. Let ind(y) be the game index related to the world y. Note
that function ind(y) is injective:

– ind(x0) = 0;
– for xiRxj such that xi �= xj & ¬xjRxi

8 and ind(xi) = i: ind(xj) = i + 1.

Since our model does not contain symmetric relations, the definition works fine.
O should play as follows:

1. O marks (�ψ)i iff M, xi � �ψ.
2. add an atomic formula pj to the set V pr iff M, xj � p.

8 This condition indicates that xi is not the final world and if xj is the final world the
accessibility relation between xi and xj is not symmetric.

418 A. Pavlova

Note that according to these rules, O can only add propositional variables to
the set V pr, but he cannot delete them. Why is it enough? We need to make sure
that this restriction does not spoil O’s strategies and does not give additional
advantage to P in games over formulae that are not valid in functional frames.
We need to show that O can follow the strategy described above in a game over
a non-valid formula ϕ. This is due to the functionality of the frame9:

1. The game starts with V pr = ∅, hence for all pi ∈ F∗: v(pi) = 0. Assume
O starts building the strategy with the root x0. According to the construction,
O adds the variable p0 to V pr iff M, x0 � p. Since there is only one world
associated to the variables with index 0, O does not need to revise the subset
Y 0 ⊆ F∗ s.t. Y 0 = {p0 ∈ Prop}.

2. Assume that we have proven this fact for the propositional variables with
index i. Since there is always at most one world accessible from xi, the
same argument as for x0 applies. Since our model has exactly n worlds and
MD(ϕ) = n − 1 no issues with the world xn−1 arise.

Claim 2. If O has marked all the formulae according to the instruction above,
then M, xi � ψ iff v(ψi) = 1 (for any ψi ∈ F∗).

Proof. Proof by induction on the structure of ψ.

1. ψi ∈ Prop. M, xi � ψ iff O has added the formula ψi to the set V pr (by
strategy construction), and thus by the def. of game valuation v(ψi) = 1.

2. ψi := (ψ1 ∧ ψ2)i. M, xi � ψ1 ∧ ψ2 iff [M, xi � ψ1 and M, xi � ψ2] iff (by IH)
[v(ψi

1) = 1 and v(ψi
2) = 1] iff by def. of game valuation v(ψi) = 1. The cases

of disjunction and implication are analogous.
3. ψi := ¬ψi

1. M, xi � ¬ψ1, iff M, xi � ψ1 iff (by IH) v(ψi
1) = 0 iff (by def. of

game valuation) v(¬ψi
1) = 1.

4. ψi := (�ψ1)i.
=⇒: If M, xi � �ψ1, then in world xi+1 s.t. xiRxi+1: M, xi+1 � ψ1. By

IH, v(ψi+1
1) = 1. By def. of game valuation v((�ψ1)i) = 1 since O has

marked (�ψ1)i.
⇐=: ψi := (�ψ1)i. If v((�ψ1)i) = 1, then v(ψi+1

1) = 1. By IH, M, xi+1 � ψ1,
then M, xi � �ψ1 for the unique xi+1 s.t. xiRxi+1.

If O has marked all formulae according to his strategy, then he has no mistakes,
i.e. for all ψ ∈ O: v(ψ) = 1, by Claim 2. P, on the other hand, has at least one
mistake, namely the initial formula ϕ. By the definition of the game, from this
point on, it cannot be O’s turn again.

Lemma 2. If O has a winning strategy in Mezhirov game for KD! over ϕ, then
�KD! ϕ.

9 The same argument is applicable to show that O does not need to be able to unmark
formulae.

Provability Games for Non-classical Logics 419

Proof. Assume that O has a winning strategy ς. Given such a winning strategy
for O, let us build a model M = 〈W, R, v〉. We later prove that it is a coun-
termodel of ϕ, i.e., , w0 �KD! ϕ. Let ϕ be of modal depth MD(ϕ) = n − 1.
Hence, in our game, we have n indexes, namely 〈0, . . . , n − 1〉. For every index
i we create a world wi. Then W = {w0, . . . , wn−1} will be the set of all worlds
in the constructed model M. Let us define the accessibility relation as follows:
wiRwi+1 iff i �= n − 1 and wn−1Rwn−1 where n − 1 is the maximal world (i.e.,
it has the largest index number). It is easy to see that R is a functional relation
and that the model has n worlds. Finally, we need to add valuation. Since O has
a winning strategy, it can have branching (for instance, when it depends on P’s
action). Since the strategy is winning, P has at least one mistake at each final
game state of the strategy. However, we cannot just take any arbitrary final
state.

Definition 6. For all game positions (states) x where it is P’s turn to move
(P has m mistakes), we say that P plays rationally if either vx(ϕ0) = 0 or in
the following m moves P unmarks all his mistakes.

Remark 3. P can always keep playing rationally (i.e., at any game state x either
vx((ϕ)0) = 0 or P is allowed to unmark all his m number of mistakes in the next
m rounds) if P was always playing rationally earlier in the game run.

Proof. The case when P has the initial formula as a mistake is trivial. We prove
the remark by induction on the number of P’s mistakes, i.e., number m of
formulae (�χ)i ∈ Px s.t. vx((�χ)i) = 0. Assume that vx(ϕ0) = 1.

1. m = 1. Then there exists exactly one formula (�χ)i such that (�χ)i ∈ Px,
vx((�χ)i) = 0 and (�χ)i �= ϕ0. Assume that P cannot unmark (�χ)i. Then
there exists a state (position) Cy such that Cy = (Px\{(�χ)i},Ox, V pr

x). Note
that since vx((�χ)i) = vy((�χ)i) = 0 and marking and set of propositional
valuations of all other formulae coincide in states y and x, the sets of game
valuations at game positions y and x are identical, i.e., for all formulae (ξ)j ∈
F∗: vy((ξ)j) = vx((ξ)j). Hence, P does not have any mistakes in the game
position y, since its only mistake in the state x was (�χ)i, hence it is O’s
turn to move. O can only either mark a formula, but then Oy+1 �= Ox which,
given that O cannot unmark formulae (monotonicity of O), contradicts the
fact that Oy = Ox; or add a propositional variable to V pr, but it contradicts
the assumption that V pr

x = V pr
y given that O cannot delete formulae from

V pr (monotonicity of V pr). Hence, our assumption that P cannot unmark
(�χ)i leads to a contradiction.

2. m = k + 1 (induction step). Assume we have proven the remark for the case
with k mistakes. We prove that it also hold for the case k +1. Assume that it
is not the case that P can unmark all its mistakes at position x. Then there
exists at least one formula (�χ)i such that (�χ)i ∈ Px, vx((�χ)i) = 0, and
(�χ)i cannot be unmarked. then there exists a game position Cy such that
Cy = (Px\{(�χ)i},Ox, V pr

x). Note that since vx((�χ)i) = vy((�χ)i) = 0 and
marking and set of propositional valuations of all other formulae coincide in

420 A. Pavlova

states y and x, the sets of game valuations at game positions y and x are
identical, i.e., for all formulae (ξ)j ∈ F∗: vy((ξ)j) = vx((ξ)j). Hence, at game
position y, P has k mistakes. By assumption vx(ϕ0) = 1, thus vy(ϕ0) = 1. By
the induction hypothesis, P can unmark all k mistakes. Let P play rationally,
i.e., in k moves, P unmarks all mistakes10. Then at game position Cy+k,
P does not have any mistakes and Ox = Oy = Oy+k and V pr

x = V pr
y = V pr

y+k

and it is O’s turn to move. Then either Ox ⊂ Oy+k+1, which contradicts
monotonicity of O, or V pr

x ⊂ V pr
y+k+1, which contradicts monotonicity of V pr.

Hence, our assumption that vx(ϕ0) = 1 was wrong.

Since we have proven that P can enforce rationality of his play, we can consider
without loss of generality only those final states that result from P playing
rationally. Let’s call it Cf and define the valuation as follows: for all p ∈ Prop:
v(p,wi) = vf (pi) at the state Cf . It is easy to see that the valuation in the
worlds is the same as the game valuation at the state Cf (since P has marked
all possible formulae because P cannot avoid mistakes).

Claim 3. For any world wi from M and any formula ψi ∈ F∗: M, wi � ψ iff
vf (ψi) = 1 where vf is the valuation at some final state Cf of the strategy (i.e.,
O has marked all the formulae according to his strategy).

Proof. Proof by induction on the structure of the formula ψ.

1. ψ ∈ Prop. M, wi � ψ iff by def. of countermodel valuation, v: vf (ψi) = 1.
2. ψ := ψ1 ∧ ψ2. M, wi � ψ1 ∧ ψ2 iff [M, wi � ψ1 and M, wi � ψ2] iff (by

IH) [vf (ψi
1) = 1 and vf (ψi

2) = 1] iff (by def.) vf ((ψ1 ∧ ψ2)i). The cases for
disjunction and implication are analogous.

3. ψ := ¬ψ1. M, wi � ¬ψ1 iff M, wi � ψ1 iff (by IH) vf (ψi
1) = 0 iff (by def.)

vf (¬ψi
1) = 1.

4. ψ := �ψ1.
=⇒: if M, wi � �ψ1, then M, wi+1 � ψ1 (wiRwi+1 since (�ψ1)n−1 �∈ F∗).

By IH, vf (ψi+1
1) = 1, then by def. of game valuation vf ((�ψ1)i) = 1.

⇐=: if vf ((�ψ1)i) = 1, then vf (ψi+1
1) = 1 (by game construction there

cannot be a boxed formula with the maximum index). By IH, M, wi+1 �
ψ1, then M, wi � �ψ1 (since wi+1 is the only world accessible from wi

and by countermodel construction there exists wi).

Claim 4. If O has a winning strategy ς(ϕ) in Mezhirov game for KD! over
formula ϕ, then in every final state of the game where P always plays rationally
f of the w.s. ς(ϕ): vf (ϕ0) = 0.

Proof. Let ϕ := �ψ and f an arbitrary final state of O’s winning strategy ς(ϕ)
in game runs where P plays rationally. Consider the following two cases:

10 Note that we are proving that P can always keep playing rationally meaning that if
P was not playing rationally, then P could have lost the opportunity to do so.

Provability Games for Non-classical Logics 421

1. ψ is a propositional formula, i.e., does not contain any �-formulae (�-free).
Since O has a w.s., P has at least one mistake. Since there is only one �-
formula that can be marked, namely ϕ0 := (�ψ)0, vf ((�ψ)0) = 0. Since f is
arbitrary, it holds for any final state of O’s strategy ς(ϕ).

2. ψ contains �-formulae as its subformulae, namely formulae of the form (�ξ).
Since f is one of the final positions of O’s strategy ς, then P cannot unmark
any of his mistakes. Since P plays rationally by assumption, vf (ϕ0) = 0 from
Remark 4.

From Claim 3 and Claim 4 it follows that M, w0 � ϕ, i.e., �KD! ϕ.
There are alternative ways to prove this direction of the adequacy theorem,

for instance, to show that if �KD! ϕ then P has a winning strategy by setting
P’s strategy to mark only those formulae that are logical consequences of O.

Adjusting the game to capture validity in frames that are linear, serial, and
reflexive is rather straightforward by making the game valuation function to be:

v((�ψ)i) = 1 ⇐⇒
{

(�ψ)i ∈ (O ∪ P)
v(ψi) = 1 and v(ψi+1) = 1

(4∗)

3.2 Mezhirov Game for Modal Logic of Serial Frames

In this section, we present a modified version of the game that is adequate for
KD normal modal logic, which is the logic of serial frames. The corresponding
logical axiom is �ϕ → ♦ϕ, called the D-axiom. Thus, syntactically KD = K+D.
The semantics is defined in a standard way, cf. the Section for KD!, but in the
case of KD, there is only one restriction on the accessibility relation R, namely,
seriality i.e., ∀x∃y : xRy where x, y ∈ W . Valuation and forcing relation are
defined in a standard way.

The Game is Mezhirov game for KD! modulo moves for O. O moves by:

(a) marking a formula from F l� (adding it to O) or
(b) changing the valuation of propositional formulae in V pr (iff it forces P to

move next11) or
(c) unmarking a previously marked formula (deleting it from O). No position

can be visited twice during the game.

Why cannot we restrict players’ move only to marking? Then P would have
winning strategies over some formulae that are not valid in KD. For example,
consider formula �((�(�p ∨ �q) → ��p) ∨ (�(�p ∨ �q) → ��q)) which is not
valid in KD, but if players are not allowed to unmark formulae, then P has a
winning strategy for the corresponding game.

There exists a more efficient way to bound the number of repetitions (of
marking/unmarking) based on the structure of ϕ0. However, it is more involved
and requires additional definitions tightly related to countermodel construction
and are left outside the scope of this work.
11 Move (b) can be made iff it forces P to have a mistake and O to have none.

422 A. Pavlova

Example 5. Variables {p0, p1, p2, p3}.

F O P V0 V1 V2 V3 V4 V5

�(�p → ��p)0 0.X 1 1 0 0 0 0
(��p)1 3.X 0 0 0 0 0 0
(�p)1 1.X 5.X 0 0 1 1 1 1
(�p)2 4.X 0 0 0 0 0 0

Variable Valuations 2.V pr = {p2}

Adequacy of Mezhirov Game for KD w.r.t. Serial Frames

Theorem 3. P has a w.s. in Mezhirov game for KD over ϕ iff �KD ϕ.

Proof: We omit some very technical details to provide the general idea of the
proof and the relation between the game and Kripke structures.

=⇒-direction: Proof by contraposition: Assume that �KD ϕ, then there exists
a model M and a world x0 such that M, x0 � ϕ. By Claim 1, there exists a
serial model Mn with d(Mn) = MD(ϕ) + 1 = n and with the root node x0 s.t.
Mn, x0 � ϕ. Mn has at least one simple path of the length n where xn−1Rxn−1.
We shall refer to the worlds of this path as xi where 0 ≤ i ≤ n − 1. To refer to
any world of the model, we shall use variable wj .

We relate the model and the formulae used in the game. Each world we assign
a set Xi which intuitively corresponds to how deep in the model this world is
w.r.t. the world x0:

1. X0 = {x0};
2. Xk = {wi | wjRwi and wj ∈ Xk−1}.

Let us relate the sets of worlds to the upper indexes in the game. Note that the
ind(Xi) : {X0, . . . , Xn−1} −→ {0, . . . , n − 1} is a bijection where ind(Xk) = k.

Let us build O’s strategy as follows:

1. O fixes up a path π0 of the length ≤ n in the countermodel.
2. O marks (�ψ)i iff M, xi � �ψ where xi ∈ π0;
3. O evaluates all atomic formulae ψi to 1 iff Mn, xi � ψ where xi ∈ π0;
4. If O has marked all the formulae according to 1–3 but P does not have a

mistake, O chooses another path π1 of the length ≤ n such that there exists
a formula (�ψ)i ∈ P s.t. Mn, xi � �ψ where xi ∈ π1.

5. O unmarks formulae (�χ)j in O s.t. Mn, xj � �χ where xj ∈ π1. Then
repeat 2–3 w.r.t. the path π1.

6. If the current O’s fixed path is π and P has unmarked all the formulae
(�ψ)i ∈ π s.t. Mn, wi � where wi ∈ π, then O12 fixes a new path π∗ and
proceeds with actions 5, 2, and 3;

O keeps repeating the same tactic. We need to prove the following:

Claim 5. If there are no formulae left for O to choose when following this
strategy, i.e., all formulae that are true in π fixed by O’s have been marked and
the game reached the terminal position, then it is P’s move.
12 We prove that it is always possible in what follows.

Provability Games for Non-classical Logics 423

Proof Sketch: The idea is to prove that P has at least one mistake. Unlike in the
case of Mezhirov game for KD!, here the mistake is not necessarily the initial
formula. Two cases should be considered:

1. In case when the mistake is in the initial formula, we can use the proof of
Claim 2 since it does not require branching.

2. In case when branching in the countermodel is required, the observation that
P cannot unmark the mistakes that are semantically related to the previous
branch used in O’s strategy is used. We leave out the technical details, but
rather explain the argument: The idea is that the branching is finite, hence
there are only finitely many paths π to fix. Hence, after a finite number
of iterations, O will come back to marking the set of formulae as he has
previously marked (Of = Oi s.t. i ≤ f where Of is O’s set at the terminal
position). However, given that P has additional formulae in P, O can do
that. Each time O has marked all the formulae according to his strategy and
a fixed path π: v(ψi) = 1 for all ψi ∈ O, so O does not have mistakes. On the
contrary, P won’t be able to unmark all the mistakes since it would lead to
the repetition of a previous game position. Hence, P has at least one mistake
and it is P’s move indeed. ��
If P has used up all the possibilities to mark/unmark it, then P loses.
=⇒-direction: This direction is analogous to the proof of Lemma 2 mod-

ulo changes similar to those in the proof of =⇒-direction. The major technical
complication is related to the fact that P’s mistake is not necessarily the ini-
tial formula ϕ0. Hence, constructing a countermodel from O’s winning strategy
becomes more involved. ��

4 Conclusion and Future Work

In this paper, we proposed a new game-theoretic semantics for several logics:
Johansson’s Minimal logic, logic of functional frames KD!, and logic KD (of
serial frames). The choice of logics is dictated by the idea of extending the
framework to deal with intuitionistic (and potentially minimal) modal logic.
The game is played over the validity of a formula, i.e., truth in every model.
We have proved the adequacy of the provability games for MPC and KD! as
well as provided a proof sketch for the KD case13: a formula ϕ is valid in one
of the mentioned logics if and only if P has a winning strategy in a game over
ϕ for that logic. Since the games are finite and the logics have the finite model
property under intended Kripke frames, so is the search for winning strategies.

We have looked at two different modal logics: one without branching (KD!,
the logic of functional frames) and one allowing branching, namely KD. This
shows that the approach is not limited to the logics with bounded branching or
reflexive and transitive like in Grz case. Hence, we plan to extend the approach
to a wider range of normal modal logics since we have established the relation

13 The full formal proof is subject to a separate presentation due to its technicality.

424 A. Pavlova

between structural properties of the games and Kripke frames of corresponding
logics. The game shows a tight connection between winning strategies and coun-
termodel contraction. We hypothesise that for every logic having finite model
property, a variant of Mezhirov game can be proposed.

Another promising application direction for the game that we plan to inves-
tigate is a provability game for intuitionistic and minimal modal logic. Since
the framework is rather flexible, we are working on integrating intuitionistic
(minimal) and modal features. One of the logics of our interest is Intuitionis-
tic Epistemic Logic IEL. Kripke semantics for IEL comprises two accessibility
relations, one being a subset of another. We see the potential of Mezhirov game
in dealing with various intuitionistic modal logics.

Since the game is closely related to Kripke semantics, it is of interest to relate
P’s winning strategies to the proof-theoretic concept of inference. The possibility
of translation between winning strategies and proofs in labelled sequent calculi
is one of the major open questions.

References

1. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2014)
2. Väänänen, J.: Models and Games. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge (2011)
3. Benthem, J.: Logic Games: From Tools to Models of Interaction, pp. 183–216,

March 2011
4. Lorenzen, P., Lorenz, K..: Dialogische Logik. Wissenschaftliche Buchgesellschaft

(1978)
5. Rahman, S., Tulenheimo, T.: From games to dialogues and back. In: Majer, O.,

Pietarinen, A.V., Tulenheimo, T. (eds.) Games: Unifying Logic, Language, and
Philosophy. LEUS, vol. 15, pp. 153–208. Springer, Dordrecht (2009). https://doi.
org/10.1007/978-1-4020-9374-6 8

6. Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of �Lukasiewicz
logic. Stud. Logica. 92(1), 27–61 (2009)

7. Fermüller, C., Lang, T., Pavlova, A.: From truth degree comparison games to
sequents-of-relations calculi for Gödel logic. In: Lesot, M.-J., et al. (eds.) IPMU
2020. CCIS, vol. 1237, pp. 257–270. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50146-4 20

8. Hintikka, J.: Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, Oxford (1973)

9. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press,
Cambridge (1996)

10. Mezhirov, I.: A game semantics for Grz. J. Logic Comput. 16(5), 663–669
(2006). eprint: https://academic.oup.com/logcom/article-pdf/16/5/663/6282443/
exl029.pdf

11. Mezhirov, I., Vereshchagin, N.: On game semantics of the affine and intuitionistic
logics. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol.
5110, pp. 28–42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69937-8 4

12. Johansson, I.: Der minimalkalkül, ein reduzierter intuitionistischer formalismus.
Compos. Math. 4, 119–136 (1937)

https://doi.org/10.1007/978-1-4020-9374-6_8
https://doi.org/10.1007/978-1-4020-9374-6_8
https://doi.org/10.1007/978-3-030-50146-4_20
https://doi.org/10.1007/978-3-030-50146-4_20
https://academic.oup.com/logcom/article-pdf/16/5/663/6282443/exl029.pdf
https://academic.oup.com/logcom/article-pdf/16/5/663/6282443/exl029.pdf
https://doi.org/10.1007/978-3-540-69937-8_4
https://doi.org/10.1007/978-3-540-69937-8_4

Provability Games for Non-classical Logics 425

13. Colacito, A., de Jongh, D., Vargas, A.L.: Subminimal negation. Soft. Comput.
21(1), 165–174 (2016). https://doi.org/10.1007/s00500-016-2391-8

14. Odintsov, S., Rybakov, V.: Unification and admissible rules for paraconsistent min-
imal Johanssons’ logic j and positive intuitionistic logic IPC+. Ann. Pure Appl.
Log. 164, 771–784 (2013)

15. Odintsov, S.P.: Constructive Negations and Paraconsistency. Springer, Dordrecht
(2008)

16. de Jongh, D., Bezhanishvili, N.: Intuitionistic logic: Lecture notes (2006)
17. Goranko, V., Otto, M.: Model theory of modal logic. In: Handbook of Modal Logic,

pp. 255–325, January 2006
18. Segerberg, K.: Modal logics with functional alternative relations. Notre Dame J.

Formal Log. 27(4), 504–522 (1986)
19. Standefer, S.: Proof theory for functional modal logic. Stud. Logica. 106(1), 49–84

(2017). https://doi.org/10.1007/s11225-017-9725-0
20. Mezhirov, I.: Game semantics for intuitionistic and modal (Grz) logic. Master’s

thesis, Lomonosov Moscow State University, Department of Mechanics and Math-
ematics (2006)

21. Pavlova, A.: Dialogue games for minimal logic. Logic Log. Philos. 30(2), 281–309
(2021)

https://doi.org/10.1007/s00500-016-2391-8
https://doi.org/10.1007/s11225-017-9725-0

Author Index

Abriola, Sergio 319
Akbar Tabatabai, Amirhossein 287
Avron, Arnon 167

Balbiani, Philippe 219
Barlag, Timon 16

Catta, Davide 269
Ciobâcă, Ştefan 150

Fernández González, Saúl 219
Freiman, Robert 133
From, Asta Halkjær 1

Galliani, Pietro 47
Ghosh, Sujata 201
González, Nicolás 319

Iemhoff, Rosalie 287
Iordache, Viorel 150

Jalali, Raheleh 287, 337

Konečný, Michal 252
Kontinen, Juha 302
Kuznets, Roman 337

Leivant, Daniel 372
Levi, Nissan 167
Li, Dazhu 201
Liu, Fenrong 201

Marin, Sonia 388

Park, Sewon 252
Pavlova, Alexandra 408
Pereira, Luiz Carlos 388
Pezlar, Ivo 100
Pimentel, Elaine 388
Punčochář, Vít 355

Rohani, Atefeh 64

Sales, Emerson 388
Sandström, Max 302
Stevens-Guille, Symon Jory 269
Studer, Thomas 64

Tedder, Andrew 355
Thies, Holger 252
Thompson, Declan 235
Tu, Yaxin 201

van der Giessen, Iris 337
van Ditmarsch, Hans 31
Veltri, Niccolò 184
Vollmer, Heribert 16

Wen, Xuefeng 117

Zhong, Shengyang 82

	Preface
	Organization
	Contents
	Formalized Soundness and Completeness of Epistemic Logic
	1 Introduction
	2 Related Work
	3 Syntax and Semantics
	4 Normal Modal Logic
	4.1 Proof System
	4.2 Soundness
	4.3 Derived Rules

	5 Abstract Completeness
	5.1 Maximal Consistent Sets
	5.2 Lindenbaum's Lemma
	5.3 Model Existence

	6 Concrete Systems
	6.1 System K
	6.2 System T
	6.3 Systems KB, K4, S4

	7 System S5
	7.1 Compositional Version
	7.2 Alternative Version

	8 Conclusion and Future Work
	References

	A Logical Characterization of Constant-Depth Circuits over the Reals
	1 Introduction
	2 Preliminaries
	2.1 Machines over R
	2.2 Arithmetic Circuits over R
	2.3 R-Structures and First-Order Logic over R

	3 Characterizing AC0
	3.1 A Characterization for Non-uniform AC0
	3.2 Characterizations for UP-AC0

	4 Conclusion
	References

	Wanted Dead or Alive: Epistemic Logic for Impure Simplicial Complexes
	1 Introduction
	2 Technical Preliminaries: Simplicial Complexes
	3 Epistemic Logic on Impure Simplicial Models
	3.1 Validities and Differences with the Logic S5

	4 Correspondence to Kripke Models
	5 Bisimulation for Impure Simplicial Complexes
	6 Comparison to the Literature and Further Research
	References

	Doubly Strongly First Order Dependencies
	1 Introduction
	2 Preliminaries
	2.1 Team Semantics
	2.2 Strongly First Order Dependencies
	2.3 Relations Definable over the Empty Signature

	3 Doubly Strongly First Order Dependencies
	References

	Explicit Non-normal Modal Logic
	1 Introduction
	2 Justification Logic
	3 Neighborhood Semantics and Modular Models
	4 Monotonic Justification Logic
	5 Realisation
	6 Conclusion
	A Soundness and Completeness with Respect to Basic Models
	B Soundness and Completeness with Respect to Modular Models
	C Soundness and Completeness with Respect to Fully Explanatory Modular Models
	References

	A General Relational Semantics of Propositional Logic: Axiomatization
	1 Introduction
	2 The Logic PL
	2.1 Formal Language
	2.2 Semantic Consequence
	2.3 Syntactic Consequence
	2.4 Soundness and Completeness

	3 Extensions of PL
	3.1 Intuitionistic Logic
	3.2 Ortho-Logic

	4 Future Work
	A Intuitionistic Logic
	B Ortho-logic
	References

	Meaning and Computing: Two Approaches to Computable Propositions
	1 Introduction
	2 Constructive Tradition
	2.1 Proofs as Programs
	2.2 Constructive Type Theory

	3 Non-constructive Tradition
	3.1 Transparent Intensional Logic

	4 Conclusion
	References

	Modal Logic via Global Consequence
	1 Introduction
	2 Relationship Between Local and Global Consequence
	3 Global Correspondence
	4 Applications
	4.1 Informational Consequence
	4.2 Update Consequence

	5 Conclusions and Future Work
	References

	Games for Hybrid Logic
	1 Introduction
	2 Preliminaries
	3 A Game for Truth
	4 A Game for Validity
	5 From Strategies to Proof Systems
	5.1 Your Optimal Choices or How to Achieve Finite Branching
	5.2 The Proof System DS

	6 Conclusion and Future Work
	References

	Verifying the Conversion into CNF in Dafny
	1 Introduction
	2 The Textbook Conversion into CNF
	2.1 Data Structures
	2.2 Algorithm
	2.3 Proof of Termination

	3 The Tseitin Conversion
	3.1 Data Structures
	3.2 The Algorithm
	3.3 The Proof

	4 Related Work
	5 Discussion
	A Short Overview of Dafny
	B The Dafny Development
	References

	Analysis in a Formal Predicative Set Theory
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 The Theory PZF-U
	2.3 Extending the Base Language
	2.4 Basic Notations
	2.5 Mathematics in PZF
	2.6 Recursive Definitions
	2.7 Finite Sums

	3 Sequences of Dedekind Cuts
	4 The Real Line
	5 Continuous Functions
	5.1 Intermediate Value Theorem

	A Appendix
	A.1 Uniformly Convergence and Power Series
	A.2 Elementary Functions

	References

	Coherence via Focusing for Symmetric Skew Monoidal Categories
	1 Introduction
	2 Braided/Symmetric Skew Monoidal Categories
	3 The Free Symmetric Skew Monoidal Category
	4 Symmetric Skew Monoidal Sequent Calculus
	5 A Focused Subsystem for the Symmetric Skew Case
	6 Recovering Coherence for the Non-Skew Case
	7 Conclusions and Future Work
	References

	On the Subtle Nature of a Simple Logic of the Hide and Seek Game
	1 From Games to Logic
	2 Logic of Hide and Seek (LHS)
	3 Bisimulation and Expressive Power
	4 Towards Undecidability of the Satisfaction Problem
	4.1 Undecidability

	5 Related Works
	6 Conclusion and Future Work
	References

	Orthogonal Frames and Indexed Relations
	1 Introduction
	2 Examples of Indexed Frames
	3 Orthogonal Frames
	4 Orthogonal Structures
	5 Some Case Studies
	6 Discussion and Future Work
	References

	Computable Execution Traces
	1 Introduction
	1.1 Preliminaries

	2 Finite Control Computability
	3 Carrying Out Trace Sets
	3.1 Expansion Mapping
	3.2 Carrying Out

	4 Further Directions
	A Technical Appendix
	A.1 Preliminaries
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3

	References

	Axiomatic Reals and Certified Efficient Exact Real Computation
	1 Introduction
	2 Computable Analysis and Exact Real Computation
	3 Axiomatization
	3.1 Kleenean and Multivalued Lifting
	3.2 Real Numbers
	3.3 Soundness by Realizabiltiy

	4 Relating Classical Analysis
	5 Implementation and Examples
	5.1 Maximization
	5.2 Intermediate Value Theorem (IVT)
	5.3 Classical Proofs and a Fast Square Root Algorithm
	5.4 Performance Measurements

	6 Conclusion and Future Work
	A Full List of Axioms
	B Code Extraction
	References

	Lorenzen Won the Game, Lorenz Did Too: Dialogical Logic for Ellipsis and Anaphora Resolution
	1 Introduction
	2 Data
	2.1 Pronouns
	2.2 Ellipsis

	3 Methods
	3.1 Events
	3.2 Categorial Grammar

	4 Dialogical Logic
	4.1 First Order Language
	4.2 Dialogical Games: Informal Overview
	4.3 Argumentation Forms
	4.4 Moves, and Augmented Sequences
	4.5 Games

	5 Discussion
	6 Conclusion
	References

	Uniform Lyndon Interpolation for Basic Non-normal Modal Logics
	1 Introduction
	2 Preliminaries
	2.1 Sequent Calculi

	3 Uniform Lyndon Interpolation
	3.1 Modal Logics M and MN
	3.2 Modal Logic MC
	3.3 Modal Logics E and EN

	4 Modal Logics EC and ECN
	References

	On the Expressive Power of TeamLTL and First-Order Team Logic over Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Embedding TeamLTL and Its Extensions into First-Order Team Logic
	3.1 Asynchronous Semantics

	4 Asynchronicity and Stutter Equivalence
	5 SO Versus Arithmetic Definability
	6 Complexity of Model Checking and Satisfiability
	7 Conclusion and Future Work
	References

	Characterizations for XPathR("3223379)
	1 Introduction
	2 Preliminaries
	3 Bisimulation and Equivalence
	4 Characterizations
	5 Conclusions and Future Work
	A Proofs and Definitions Omitted from the Main Text
	References

	Uniform Interpolation via Nested Sequents
	1 Introduction
	2 Preliminaries
	3 Uniform Interpolation for Nested Sequents
	3.1 Uniform Interpolation For K
	3.2 Uniform Interpolation For D and T

	4 Conclusion
	References

	Disjunction and Negation in Information Based Semantics
	1 Introduction
	2 Semilattice Semantics
	3 Incompatibility Relation in Information Frames
	4 Comparison with Hartonas' Approach
	A Appendix
	References

	Algorithmically Broad Languages for Polynomial Time and Space
	1 Introduction
	2 Finite Functions as Generic Data
	2.1 F-Functions
	2.2 Bundles
	2.3 Bundles for Inductive Data

	3 Programs for Bundle Transformation
	3.1 Atomic Operations
	3.2 Programs
	3.3 Functions in BT
	3.4 Examples of BT-programs

	4 Variants and Primitive-Recursive Complexity
	4.1 Recursion with Variants
	4.2 Semantics of BTV
	4.3 Examples of BTV-programs

	5 Ramification
	5.1 The Ramification Method
	5.2 Ramified Imperative Recursion
	5.3 Related Work in Static Analysis

	6 Completeness and Soundness Properties
	6.1 Extensional Completeness of BTR* for PTime
	6.2 Soundness of BTR and BTR* for Feasibility

	7 Examples of BTR*-programs
	7.1 Fundamental Examples
	7.2 Limitative Examples

	8 Conclusion and Directions
	References

	A Pure View of Ecumenical Modalities
	1 Introduction
	2 Preliminaries
	2.1 Ecumenical Birelational Models

	3 A Nested System for Ecumenical Modal Logic
	3.1 Harmony

	4 Soundness
	5 Completeness
	6 Extracting Fragments
	7 Extensions
	8 Conclusion
	References

	Provability Games for Non-classical Logics
	1 Introduction
	2 Game for Minimal Logic
	3 Game for Modal Logic
	3.1 Mezhirov Game for Modal Logic of Functional Frames
	3.2 Mezhirov Game for Modal Logic of Serial Frames

	4 Conclusion and Future Work
	References

	Author Index

