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Abstract

Without the cerebellum, organisms are challenged in the learning and execution
of accurate and coordinated actions. It has a central position in the nervous system
receiving and projecting to the spinal cord, midbrain, and cerebral cortex, imply-
ing convergence of sensory and motor streams. Its highly conserved neuroarch-
itecture would imply it is very good at what it does and that what it does is very
general. Here we review theoretical, modeling, and computational work that has
attempted to capture the dynamics and/or function of the cerebellum.
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Introduction

Without the cerebellum, organisms are challenged in the learning and execution of
accurate and coordinated actions. It has a central position in the nervous system, and
it both receives and projects to the spinal cord and midbrain, implying convergence
of sensory and motor streams, and in mammals also sends and receives from the
cerebral cortex. Its highly conserved neuroarchitecture would imply it is very good at
what it does and that what it does is very general.

A clue to its basal function is readily available from comparative neuroanatomy.
The cerebellum first appears in gnathostomata fish, the jawed vertebrates, which
underlie 99% of all vertebrates. In its most primitive instantiations, the cerebellum
arises with the horizontal canal of the vestibular system, and thus the compensatory
vestibular reflexes are among the first functions performed by the early cerebellum.
Vestibular reflexes are implemented essentially by a feedback system, where visual
and vestibular information are transformed into compensatory motor action. Further
down the evolutionary road, the cerebellum retains that functionality (flocculus) and
expands on it, by applying this compensatory function to a vast class of problems,
exemplified in paradigms that study cerebellar function such as learning of
timed reflexes as in eye blink conditioning (Brinke et al. 2015; Mauk et al. 1986;
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Ohyama et al. 2003; Rasmussen et al. 2013), visuomotor feedback and adaptation
(Optican and Robinson 1980; Thier et al. 2000), force-field adaptation (Donchin
et al. 2012), sequence learning (Spencer and Ivry 2009), postural corrections
(Angelaki et al. 2009; Clark 1939), and rhythmic finger tapping (Del Olmo et al.
2007) to name a few. In addition to these, the cerebellum of mammals seems to be
concerned with the learning and acquisition of novel motor behaviors, in association
with the basal ganglia, thalamus, and the cerebral cortex. In humans, the cerebellum
has been implicated in cognitive function (Schmahmann and Caplan 2006).

The million-dollar question in cerebellar modeling is how does the cerebellar
structure enable these functions.

The cerebellum is one component of a tripartite system involving the inferior
olive (IO) and the cerebellar nucleus (figure elsewhere). While early models have
focused on the most conspicuous elements of the cerebellar circuitry, particularly the
interaction between parallel fibers and Purkinje cells, the field has broadened its
scope to include various models of the inferior olive and cerebellar nucleus. Given
how tightly these three systems interact, all these models are included in the chapter.

There have been multiple forays at modeling the cerebellum, attempting to
capture the abstract nature of cerebellar transformations (Albus 1971; Braitenberg
1987; Braitenberg et al.1997; Marr 1969). David Marr recognized in the large arbor
of the Purkinje neuron the potential for pattern recognition, in analogy to the
McCullogh-Pitts neuron (McCulloch and Pitts 1943), and Rosenblatt’s perceptron
learning rule (Rosenblatt 1958). Eccles suggested that the cerebellum exhibited
spatiotemporal transformations without being explicit about what they would
be. Valentino Braitenberg saw in the orthogonal arrangement between parallel fibers
and Purkinje cells temporal summation and coincidence detection (Braitenberg et al.
1997). Llinás saw in the oscillations in the inferior olive a form of binding different
actions together through synchrony (Kazantsev et al. 2003). All these traditions have
seen data that corroborates or questions their assumptions.

In a first approximation, computational models of the brain can be categorized as
functional models and dynamical models, depending on assumptions and emphasis.
Functional models, also called top-down, assume a set of functions and attempt to
interpret the components of the architecture as realizing that function (such as
finding the weights of a network that performs a certain transformation). Bottom-
up models focus on the dynamical implications of selected aspects of anatomy and
physiology. In one case, data on anatomy and physiology takes precedence, on the
other, the focus is on enabling the assumed function with neural components with
varying degrees of plausibility (Houk and Fagg 2014; Medina 2010; Medina and
Lisberger 2008).

This chapter represents the multiplicity of the literature on cerebellar modeling.
We survey multiple proposals and their perspectives, from those emphasizing
physiological plausibility, through those that interpret the circuits in terms of their
mathematical/physical properties (e.g., summation along delay lines – tidal waves/
decorrelation – sparsity/transients – echo states/granular layer resonances), to those
that predict physiological properties (Golgi network oscillations/resonation with
cerebellar nucleus) to those that have been embodied in robots, as well as
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conceptual-mathematical models (forward and inverse models). The inferior olive
has also received modeling attention, and we add a section devoted to it, as it is an
essential element to the cerebellar system.

The chapter begins with introducing the concepts of forward and inverse models,
which appear relevant to multiple aspects of the subsequent discussion. After that,
we look into more detail into models in the literature, in a gradient from functional
(top-down) to dynamic-physiological-anatomical models (bottom-up). Single cell
models are briefly introduced in the proper context.

A Plethora of Models

Forward and Inverse Models

Without any knowledge about how the brain works, it is possible to perform a correct
movement – a movement where the plan is identical to the execution. The brain is
faced with the inverse problem of finding a sequence of muscle activations, to a
given desired state. That is, knowing how to move is the same as knowing how to
transform the desire to reach a state into the sequence that will bring it about. This is
the definition of an inverse model.

How do we know that the movement is correct? When by the end of the
movement, all looks as expected. For instance, the visual outcome of the action
should match the desired/predicted movement. Expectations are not exclusively
visual and can have any sensory feedback. And thus, to know whether a motor
action was correct, we also have to know what we expect in terms of sensory
feedback. This knowledge of how the outcome of an action should feel like is a
“forward model.”

Forward and inverse models dissociate two aspects of motor function, planning
and execution. This separation between forward and inverse is effectively a linear-
ization of the tasks of the motor system. Wolpert and Kawato (1998) have proposed
that motor control is in effect a collection of such forward and inverse models in
“modules.” They propose a method to learn multiple paired forward-inverse models,
and a context switcher – a responsibility estimator. The search for the counterparts of
forward-inverse modules in the brain is a current field of research. As the theory is
somewhat reticent about the actual neural implementation of said models, the
identification of the cortical substrates is not obvious.

Nevertheless, modern discussions of cerebellar function have often attributed the
role of forward model to the cerebellum (Wolpert and Kawato 1998), calculating
sensorimotor expectations of a given action, a fact which has found confirmation in
related brain regions (Han et al. 2000). The critical question in designing an inverse
model is the encoding of “goal” or “end-state” as well as the form of the “sensory
prediction” that inverse models need for training. For example, in a paradigm such as
saccadic adaptation, in what form comes the information about the vector error
(saccadic mismatch)? If we presume, as many do, that complex spikes encode error,
they are burdened with a very specific signal to encode in very few spikes. Given the
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anatomy and the physiology of the Inferior Olive, specific encoding such as required
by feedback theories seems contentious.

Functional Models

What is the function of the cerebellum? Attributing a specific function to a brain
region is a notorious fallacy (Edelman and Gally 2001). Functional models are not
bogged down by this remark, as the function is assumed – based on clinical
observations (intention tremor in ataxias and cerebellar lesions), comparative
neuroanatomy (compensatory movements), lesions, and a variety of experiments.
The task for functional models is to enable the assumed function with selected
neural components. For instance, one of the earliest functional models of the
cerebellum, due to Marr (1969) and Albus (1971), imagines the Purkinje cell as
analogous to a perceptron (Rosenblatt 1958), which is a mathematical function that
linearly sums weighted inputs and applies a threshold, performing linear pattern
separation. Though Purkinje cell physiology is not so simple, models of the
cerebellum based on simple perceptrons have been able to perform a variety of
functions attributed to the cerebellum (Casellato et al. 2014; Houk and Fagg 2014;
Medina 2010), and some assumptions of early models remain valid today, if with
interesting caveats.

Marr-Albus Type Models

It is illustrative to trace the evolution of Marr-Albus models to their historical
assumptions and how they were updated over time.

In Marr-Albus type models, cerebellar function is essentially pattern recognition
performed by the Purkinje neuron, in analogy with a perceptron rule. Inputs are
weighted by parallel fiber synapses and the Purkinje neuron performs a hard
threshold function. The Purkinje neuron is trained to recognize spatial patterns of
parallel fibers carrying sensorimotor and other brain signals through a teaching
signal, provided by the climbing fiber, which provides a “supervision” signal
(Doya 2002). In Marr’s original suggestion, this would increase the efficiency of
the synapses encoding the input pattern. Albus later suggested a decrease, which has
been experimentally corroborated by Ito, as long-term depression (LTD) of the
parallel fiber synapse (Ito 1989; Ito and Kano 1982).

According to Marr, a cerebellum made of pattern recognizers is able to perform
two functions, learned movements and learned conditional reflexes. In the original
formulation, the cerebrum produces a motor plan that activates inferior olivary
cells in a sequence such as to produce the desired movement. As the desired
movement is performed stepwise by the brain, the sensorimotor context (muscle
and sensor activations converging into Purkinje cells) is learned in the parallel fiber
to Purkinje cell synapses, upon the IO teaching signal. IO cells representing
elemental movement would fire in the sequence determined by the cerebral cortex.

121 Models of the Cortico-cerebellar System 3509



In this theory, the cerebrum outsources movements to the cerebellum by having the
Purkinje neuron recognizing (through parallel fiber synapses) the context of
motion. After learning, the Purkinje neuron would be able to recognize input
from parallel fibers, thereafter performing automated sequences on recognizing a
sensorimotor context.

In this theory, the only role of the climbing fibers, and indeed, of the IO cells, is to
copy the cerebral signals into single Purkinje neurons, carrying the sequence of
activated motor outputs. Essentially, this model links the output of the Purkinje
neuron to a motor command that activates the IO cell innervating the Purkinje
neuron.

Marr and Albus conducted a very meticulous analysis of all the cerebellar
components in association with the primary role of the neurons. Marr has calculated
combinatorial properties of recognizable patterns, effectively computing the channel
capacity and information encoding properties of the assumed pattern separation.
More recently, there have been elaborations on those quantifications that incorpo-
rated new phenomena. Particularly, on the basis of the in vitro finding that a majority
of parallel fiber Purkinke neuron synapses appear to be silent (in vitro only 1%
generate synaptic current) (Barbour 1993), the information capacity of the Purkinje
cell has been quantified (Barbour et al. 2007). Anatomical observations in the
granular layer have also led to quantifications of pattern separation and have led to
the statement that the granule layer would perform lossless encoding (Billings et al.
2014), a statement already present in Marr’s seminal paper.

Relationship with Reality: Are Purkinje Neurons Perceptrons?
The Purkinje neuron is a constantly active neuron, with tonic firing rates of “simple”
spikes in the range between 20 and 200 Hz, providing a fairly graded output signal.
As a teaching signal, the climbing fibers provide at most an imperfect feedback
signal. The complex spike rate is low and highly variable, has very broad receptive
fields, and unreliable spikes in a variety of event-triggered measurements (Frens
et al. 2001; Herzfeld et al. 2015; Hoogland et al. 2015; Sauerbrei et al. 2015;
Soetedjo et al. 2008). Because the complex spikes respond to a large array of stimuli,
the mutual information for specific stimuli has a low upper bound. Moreover, the
climbing fiber signal does more than change the recently active synapses (Medina
and Lisberger 2008), as it is often accompanied by a postcomplex pause (Bloedel
and Roberts 1971; Eccles et al. 1972), caused by a large calcium influx and the
activation of calcium activated potassium channels (De Schutter and Steuber 2009).
Reflecting on the graded nature of a calcium influx, the alterations of synapses can
also be a graded phenomenon (Coesmans et al. 2004). In fact, systematic changes of
Purkinje cell responses to complex spike with different spike counts have been
recorded (Rasmussen et al. 2013). Modeling has shown that the number of spikelets
in the olivary spike is related to the calcium influx in the olivary cell (De Gruijl
2012), though the extra spikes in the climbing fiber do not directly reflect on the
number of spikelets in the Purkinje neuron (Mathy et al. 2009). Amidst these
complications, and albeit the successes of MAI model, the physiology and dynamics
of the cerebellum have cast doubt on its validity.
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Extensions of MAI Model: Adaptive Filter Model and Distributed
Synaptic Plasticity

One of the most conspicuous mismatches between prediction and reality in Marr’s
model has been the strict assumption that the only locus of plasticity in the cerebel-
lum is the Purkinje cell parallel fiber synapse. Recent research has shown that
virtually every cerebellar synapse that has been tested for plasticity has shown
long-term changes upon paired stimulations (Gao et al. 2012b).

In order to salvage the original model, many sites of plasticity have been grafted
onto the original trunk of the MAI (Clopath et al. 2014; Hansel et al. 2001; Houk and
Fagg 2014; Porrill and Dean 2007). These extensions have been able to reproduce
some learning phenomena in simplified paradigms of cerebellar function, and
particularly, in some cases reproduced learning rates observed in experiments
(Clopath et al. 2014).

Information Encoding and Channel Capacity

If the Purkinje neuron is viewed as a binary pattern recognition, i.e., a McCullogh-
Pitts unit, one may ask what is its information capacity, in bits. This question has
been addressed by Barbour and colleagues on the basis of the observation that most
parallel fiber-Purkinje synapses are silent (Barbour et al. 2007). It has also been
addressed by Clopath under the assumption of correlated inputs (Clopath et al.
2012). Within a MAI formalism, the capacity of channels can be computed for
mostly all elements of the circuit. Silver has recently suggested that the convergence
ration of mossy fibers onto granule cell synapse (4–6) promotes lossless encoding of
the mossy fiber input (Billings et al. 2014) (see also Heck and Sultan 2002). Marr
himself has made a similar prediction on the basis of the ability of Purkinje neurons
to decode “codons.” Though an interesting exercise, the meaning of the quantifica-
tion of information channels is not immediately evident in motor control.

Successes and Failures of the MAI Model

MAI type models still face substantial criticism, reflected in the ongoing debates
about the interpretation of the climbing fiber signal.

When the first models of the cerebellum were proposed, most of the information
available was anatomical, which is reflected on the emphasis of early models from
Marr, or Braitenberg. Alongside with developments of experimental science, models
systematically incorporated more plausible physiological assumptions. Now there is
a rich set of electrophysiological and molecular data that have complexified the
picture and sharply contrasts the attractive simplicity of initial models. Some of the
physiological phenomena could have broad implications for cerebellar function and
modeling. Long-term potentiation of parallel fiber synapses is behaviorally quite
important (Schonewille et al. 2010), climbing fibers do more than modify the
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synapses, as in calcium related pauses in Purkinje neurons (De Schutter and Steuber
2009), complex spike spikelets (De Gruijl et al. 2012; Jirenhed et al. 2007; Mathy
et al. 2009; Rasmussen et al. 2013), and the suggestion that they can be graded error
signals (De Gruijl 2012). Zebrin bands, i.e., distinct subdivisions of the cerebellum,
which are related to different IO nuclei, have substantial physiological differences
(Zhou et al. 2014). Anatomy has also shown that there are inhibitory feedbacks to the
cerebellar cortex (Uusisaari and Knöpfel 2012; Wulff et al. 2009). Electrophysiology
has shown the importance of inhibition in behavioral learning under the form of
sharp ephaptic inhibition of Purkinje neurons by basket cells (Blot and Barbour
2013, 2014). The relationship between parallel fiber input and Purkinje cell output
has become unclear, with increasing evidence that Purkinje cell spiking is largely
driven by intrinsic mechanisms (Shin et al. 2007) and a possible pronounced role of
the ascending branch of the parallel fiber (Bower 2010). It is an interesting question
whether the functional simplicity of early models is compatible with these physio-
logical observations.

Purkinje Neuron Single Cell Modeling
The Purkinje neuron is one of the neurons most frequently modeled in physiological
detail, with compartmental models dating back to 1977, with a 62 compartmental
model based on the Hodgkin Huxley formalism, with three ionic sorts, sodium,
potassium, and a leak current (Pellionisz et al. 1977).

Later models increased the level of morphological detail, along with differential
distributions of more ion channels over the dendrite and simulation of calcium
dynamics (De Schutter and Bower 1994a, b) (Fig. 1b). This model has predicted
parallel fiber mediated calcium influx (De Schutter and Bower 1994c) and that LTD
of parallel fiber synapses causes decreased calcium influx, leading to shorter pauses
in simple spike firing (Steuber et al. 2007). This is a counterintuitive result, as
this would mean that Purkinje cell would increase its firing rate after LTD.

100 µ

1msec  50 mV

10 µ
10 µ

100 µ

E F

A B C
5 ms 0

1

2

3

5

8

16
[Ca2+]

20 mV

1977
A B

1994

Fig. 1 (a) Pellionisz and Llinas’s model, showing the propagation of the action potential in a
compartmental model of the Purkinje neuron. (b) Calcium concentrations during an action potential
in the arbor of the Purkinje neuron (left panel), and the dendritic spikes created by the calcium
transient (right panel) from De Schutter and Bower (1994a)
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This prediction has been confirmed in vitro, but not yet in vivo under physiological
conditions. There has been little progress in modeling the complete Purkinje cell
since, but extensive voltage clamp measurements of channels in isolated Purkinje
cell somata have led to a detailed model of somatic spike initiation (Khaliq and
Raman 2006) that is used extensively (de Solages et al. 2008; Ostojic et al. 2015;
Phoka et al. 2010).

Increasing the level of magnification further, Purkinje cell models also focused on
single dendritic branches and even on complex biochemical expression networks in
single dendritic spines (Anwar et al. 2012, 2013). Using reaction diffusion formal-
isms, it has been shown that the stochastic gating of calcium-activated K+ channels
causes the large variability of dendritic calcium spikes that may have large implica-
tions for plasticity mechanisms, which depend on the calcium concentration in the
spine probabilistically (Antunes and De Schutter 2012).

Dynamical Models

The Cerebellum Implements Spatiotemporal Transformations

As early as 1958, Braitenberg has proposed that the lattice structure of the cerebel-
lum causes transformations of spatial patterns into temporal patterns and vice versa
(Braitenberg and Atwood 1958). A similar suggestion appears in “Cerebellum as a
Computer” from Eccles et al. (1967), where the authors mention spatiotemporal
patterns but do not elaborate past that suggestion. As spatiotemporal patterns are
very general, the burden is to be explicit about the sensorimotor patterns and what
are their entailments.

Spatiotemporal patterns in the cerebellum may have a great variety of origins – in
the delay line properties of parallel fibers, in the oscillatory resonances of the Golgi-
granule cell network (Maex and De Schutter 1998; Solinas et al. 2010; Vervaeke
et al. 2012), in the coupled oscillations of the inferior olive (Llinas and Yarom 1981),
in the longitudinal distribution of climbing fiber afferents, in the organization of
cerebellar Zebrin stripes (Marshall and Lang 2004; Shinoda et al. 2000; Sugihara
et al. 2001), in the loops between the cerebellar modules in the cortex, deep
cerebellar nuclei (DCN), and IO (reviewed from a functional perspective in
Glickstein et al. 2011).

The models above, in one way or another, imply spatiotemporal transformations
although it is not immediately obvious how the spatiotemporal patterns would map
into behavior. The interpretation of cerebellar output is a responsibility of its targets,
and it is not clear what is the general principle that unifies all cerebellar output.

Mathematical Properties of the Circuit (Tidal Waves)

One of the earliest proposals interpreting the cerebellum in terms of its anatomical
features was the timing hypothesis, which observed that granule cell “activity will
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reach different Purkinje cell arbors at different times” (Braitenberg and Atwood
1958). The next instantiation of this idea specified that parallel fiber propagation
times would directly reflect the order of muscle activations (Braitenberg 1965). The
proponent himself later deemed this unlikely, given that even if the parallel fibers are
very long axons with very slow conduction velocities (~0.5 m/s), the propagation is
of the order of 10 ms, much shorter than the 50 plus ms necessary for even the
shortest of movements. This led to the “Tidal wave” hypothesis (Braitenberg 1983,
1987), which shifted the emphasis from the propagation delays of individual parallel
fibers into temporal summation along the parallel fiber bundles in the folia (Fig. 2).

Against empirical tests, the proposal met with conflicting results. While some did
observe sequential activity between Purkinje neurons arranged along a parallel fiber
(Ebner and Bloedel 1981; Eccles et al. 1966), others did not encounter them, unless
inhibitory interneuron influence on Purkinje neurons was blocked. A parsimonious
conclusion is that temporal summation along parallel fiber bundles indeed exists,
albeit gated by inhibitory interneuron intervention (Bower 2010).

Reverberating Loops and Golgi Gating

Due to anatomically closed loops, components of the extended olivocerebellar
circuit influence themselves, with delays (Apps and Hawkes 2009; Ekerot et al.
1987; Jörntell et al. 2010; Voogd et al. 2003, 2010). For example, a pause in Purkinje
cell spiking, whether from an inhibitory interneuron or from the complex spike,
feeds back on itself through two routes (mesodiencephalic junction as well as the
cerebellar nuclei) which re-converge onto the same inferior olivary nucleus, which

Fig. 2 Summation of
synaptic potentials along
parallel fiber bundles,
according to Braitenberg
(1967, 1983)
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ultimately projects back to Purkinje neurons in the same microzone (Apps and
Hawkes 2009). The activity of the cerebellar cortex thus influences itself in a time-
delayed fashion. This observation has been spelled out with attention to detail in
Kistler’s “reverberating loops” model (De Zeeuw et al. 2000; Kistler and van
Hemmen 1999), which identifies two reverberating loops within the cerebellar
system, one due to rebound firing of the cerebellar nuclear cells (B. D. Armstrong
and Harvey 1966; De Gruijl et al. 2013; Ruigrok and Voogd 1995) creating delayed
responses on the IO and the other due to Golgi cell oscillatory gating of granule cell
activity.

Golgi cell’s low frequency of oscillation, broad receptive fields (Prsa et al. 2009;
Vos et al. 1999), gap junctioned network (Dieudonne 1998; Dugué et al. 2009), and
relatively limited dynamic range in response to input have led many to propose its
role as an oscillatory gating of the granule cells (Kistler and van Hemmen 1999;
Maex and De Schutter 1998; Solinas et al. 2010; Vervaeke et al. 2012). Kistler has
further proposed that this oscillatory gating would generate reverberatory loops in
the cerebellar system within the 100 ms scale, and this discretization step would be
essential to production of motor sequences. An abrupt signal into the granule layer
would lead Golgi cells to transiently and synchronously oscillate, gating their own
input by inhibiting surrounding granule cells. Glutamate spillover depression of
inhibition most likely promotes a winner takes all scenario that is compatible with
all the theories mentioned here (Hull and Regehr 2012; Mitchell and Silver 2000).

Though sought for, the predicted ability of Golgi cells to create gated oscillations
has not been conclusively confirmed. Nevertheless, some corroboration for the
assumption may be derived from the frequency spectrum of the local field potential
of the granular layer, which has been observed to correlate with the predicted bands.

The spatial properties of the putative Golgi gating spatial extent has been
investigated in the model by Solinas (Solinas et al. 2007, 2010), which produces
“center-surround” inhibition properties. It is worth noting that the shape of the center
surround in this model is determined by the range and shape of the Golgi cell axonal
arbor, which is a crucial assumption of the model. This overlooks, for instance, the
fact that the axonal arbor is not round or cylindrical, rather flat and constrained by
zebrin bands (Hawkes et al. 2008).

The second reverberating loop was proposed by Kistler and involves the delayed
reverberation from the cerebellar nucleus. In this idea, a complex spike on the
Purkinje neuron lifts inhibition from the cerebellar nucleus, which produces a set
of rebound spikes (D. M. Armstrong and Harvey 1968; Witter et al. 2013), which in
turn reset oscillations on the IO, and 100 ms later, rebound IO spikes, subsequently
translated to complex spikes in the cerebellum, potentially closing the loop. This is
an attractive idea because it implies temporal binding of cerebellar actions on the
motor system, within a plausible window for motor control. Several caveats should
be mentioned. The complex spike pause is highly variable in duration and comprises
only a small fraction of the pauses in Purkinje neuron spiking (Warnaar et al. 2015);
these other pauses can also be synchronized among Purkinje neurons (Shin and De
Schutter 2006). Moreover the presence of rebound spikes in DCN neurons is specific
to certain classes of neurons (Najac and Raman 2015), though other forms of
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phase-locking between Purkinje neuron and DCN neuron activity have been
described recently (Person and Raman 2012). The latter, together with recent
optogenetic studies confirming the functioning of the Purkinje neuron–DCN–IO
loop (Chaumont et al. 2013), suggests the possible presence of more complex forms
of reverberating loops. The existence of multiple loops in the olivocerebellar system
would seem essential, although it has not so far been tied with a necessary correlate.

Single Cell Models of the Granular Layer

The dynamical behavior of network models evidently depends on the dynamics of
the component cells. The two main players in the granule cell layer have seen
devoted modeling efforts. Network oscillations are often an emergent property of
single cell oscillations. Golgi cell models have reproduced the single cell oscillations
on the basis of a persistent sodium current and a slow potassium current (Solinas
et al. 2007). Golgi cell model produces robust oscillations upon both phasic and
tonic depolarizing input, which implies that synaptic input to Golgi cells inhibits
those cells that excite it, effectively gating the granule cells to particular windows
(Table 1).

Granule cell models have shown high reliability of mossy fiber signal transmis-
sion. A full-fledged compartmental model of the turtle granule cell with differential
ion channel expressions shows dynamic models: a linear relationship between mossy
fiber activity and granule cell firing (Gabbiani et al. 1994). A later model based on
measurements from rodent cells emphasized resonant properties of this neuron
(D’Angelo et al. 2001) and was extended by showing that the active sodium
conductance sharpens the action potential being propagated in the ascending axon
to an almost instantaneous signal transmission (<200 us) (Diwakar et al. 2009).

Inferior Olivary Models

Coupled Oscillators and Electrotonic Coupling

Weakly coupled oscillators are able to maintain phase differences. Moreover, they
can often be reset, which can be regarded as a short-term memory mechanism. The
inferior olivary physiology supports these assumptions in spades, as IO cells have
been shown to robustly oscillate (due to an interplay between calcium low threshold
channels and calcium activated potassium channels) (Llinas and Yarom 1981; Manor
et al. 1997). Crucially, these cells are robustly coupled electrotonically (De Zeeuw
et al. 1997; Llinas et al. 1974), causing phase shifts in neighboring cells. Finally,
both inhibitory and excitatory stimuli to the IO cells produces phase resets,
according to phase of the oscillation (van der Giessen 2007). These three facts
stand as compelling evidence that the IO acts as a network of coupled oscillators.
Multiple models have examined these properties and their consequences in the
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network (Kazantsev et al. 2004; Latorre et al. 2013; Lefler et al. 2013; Schweighofer
et al. 1999; Torben-Nielsen et al. 2012).

Not all olivary cells maintain robust oscillations, however (Bazzigaluppi and
Bazzigali 2013; Bazzigaluppi et al. 2012). Intracellular recordings in vivo (but under
anesthesia) have verified that around one third of cells robustly oscillate, with
another third exhibiting transient oscillations, and a third of nonoscillating cells.
This proportion varies considerably from subnucleus to subnucleus of the olive,
indicating that robust oscillations may not be necessary for all olivary function.
Interestingly, modeling has shown that even nonoscillating cells, when coupled, may
engage a group of coupled cells in oscillations (Torben-Nielsen et al. 2012),
suggesting that the combination of physiological properties of the cells in a group
determines the group behavior.

Phase Resets and Synchronous Groups

Upon perturbations, olivary cells may produce a spike and reset, as a function of
perturbation phase, sign, and intensity. This endows a group of coupled oscillators
with the ability of maintaining phase differences, as a function of their correlated
input (Jacobson et al. 2009; Kazantsev et al. 2004; Latorre et al. 2013; Torben-
Nielsen et al. 2012). It is natural to interpret this property as underlying the temporal
organization of muscle synergies. Synchronous groups have indeed been observed
experimentally (Lang et al. 2006; Welsh et al. 1995), as and correlate with different
phases of the activation of muscle ensembles. This could imply that simultaneous
groups of Purkinje neurons would be activated in functional sequences, rather than
exclusively synchronously.

Early oscillatory models of cerebellar function attribute to the complex spike a
direct effect on the outcome of movements, rather than a teaching/error signal.
This seems consistent with the outcome of experiments, which observe stark
motor deficits from pharmacological, lesion, and genetic model experiments (Gao
et al. 2012a; Llinas et al. 1975; Schonewille et al. 2011). Nevertheless, the
complex spike has been shown to modify the response properties of Purkinje
neuron simple spikes (Medina and Lisberger 2008), and so, it does not seem
improbable that the two functions may coexist. And indeed, even features of the
complex spike shape have also been shown to correlate with particular alterations
of the Purkinje neuron simple spike responses (Rasmussen et al. 2013; Warnaar
et al. 2015), such as the number of spikelets. The number of spikelets has been
studied in a small network setting (De Gruijl 2012), from which the authors
concluded that phase relationships and synchronicity between cells could explain
the number of spikelets.

Echo State Machines
Still in the topic of dynamical models of the cerebellum, it has been suggested that the
architecture of the cerebellum supports the encoding of transients, as in an echo-state
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machine (Jaeger 2003). Interestingly, this model has suggested that the cerebellar
architecture may be interpreted as encoding the passage of time (Yamazaki and Tanaka
2007).

Cerebellar Nucleus

Most models that feature a cerebellar nucleus often assume a very simplified version
of its fairly intricate architecture and physiology. Until recently, the cerebellar nuclei
did not receive extensive attention (Uusisaari and De Schutter 2011). Detailed
anatomical and physiological work has shown that the cerebellar nucleus has a
nonnegligible set of cell types, about five, and that these cells differ in their
innervation schemes from the cerebellar cortex (some receiving somatic inhibition
from Purkinje neurons, some distal dendritic input), anatomical properties (cell
sizes), response properties (some with fast responses and rebounds), while some
have much broader responses. A further complication of the overall picture of the
olivocerebellar system is that some of the cells send feedback projection to
the cerebellar cortex (Ankri et al. 2015), effectively dispelling the assumption that
the cerebellum is exclusively a feed-forward system.

From the perspective of cerebellar nuclei output, two cells are of particular
interest. The nucleo-olivary gabaergic projection cells and the glutamatergic pro-
jection cells have substantially different projection schemes and physiological
responses (Houck and Person 2014; Kalmbach et al. 2011; Najac and Raman
2015; Uusisaari and Knöpfel 2012), the latter being fast firing and producing
rebounds and the former being a slowly modulating cell. Most models of the
cerebellar nucleus tend to include only the former, although it was often assumed
that the output was of the fast/rebounding type. And as there are differences in the
projection cells, it is likely that circuit dynamics of the DCN still reserve discoveries
in the interactions of the poorly described interneurons (Table 2).

Conclusion

Consilience: Meeting in the Middle

Our exposition focuses on cerebellar modeling from two perspectives, functional and
dynamical, which should be ultimately complementary. Nevertheless, the interfaces
between functional models and dynamical necessities of the circuit are not always
evident. Though many layers of biophysical phenomena appear exquisitely adapted,
the functional relevance of biological mechanisms is not always apparent. Physiolog-
ically accurate modeling does not assume we know what the cerebellum does, but it
does assume that things exist for a reason, unless there are compelling reasons to think
otherwise. Functionalmodeling producesmeaningfulmotor behavior, at the expense of
biological accuracy. Although all models are fated to exclude something, both types of
models are effective testbeds for assumptions both biological and functional.
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