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Abstract

Cable theory is fundamental to understand the electric behavior of neurons and
their extended dendritic structure. This theory was introduced by Wilfrid Rall
more than half a century ago, and is widely used today for modeling the voltage
and current flow in neuronal and dendritic structures. The classic cable theory was
derived assuming that the extracellular medium is either inexistent or modeled as
a resistor. For modeling neurons in more realistic situations, where the extracel-
lular medium has more complex electric properties, it is necessary to generalize
Rall’s cable equations. We summarize here such generalized cable equations and
show that the nature of the surrounding extracellular medium can exert
non-negligible influences on the cable properties of neurons.
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Introduction

One of the most significant contributions of theoretical neuroscience is the formu-
lation of cable theory by Rall (1962), which was shown to explain a large range of
phenomena (reviewed in Rall 1995). Cable theory relies on a fundamental assump-
tion that the extracellular space around neurons can be modeled by a resistance, or
in other words, that the medium around neurons is resistive or ohmic. While some
measurements seem to confirm this assumption (Logothetis et al. 2007; Miceli
et al. 2017), other measurements revealed a marked frequency dependence of the
extracellular resistivity (Gabriel et al. 1996a, b; Wagner et al. 2014; Gomes et al.
2016), which indicates that the medium is nonresistive. Indirect measurements of
the extracellular impedance also show evidence for deviations from resistivity
(Bédard et al. 2006, 2010; Dehghani et al. 2010; Bazhenov et al. 2011), which
could be explained by the influence of ionic diffusion (Bédard and Destexhe
2011). Intracellularly measured impedances, both in vivo and in vitro (Gomes
et al. 2016), also seem to confirm the nonresistive nature of the extracellular
medium.

Unfortunately directly integrating such nonresistive extracellular properties in
Rall’s cable equations is not possible, and it would contradict one of the basic
assumption of this formalism. For this reason, a generalization of the cable
equations was proposed (Bédard and Destexhe 2013), to obtain a formalism to
describe the cable properties of neurons embedded in media with arbitrarily
complex electrical properties. This generalized cable formalism reduces to Rall’s
cable equations when the medium is taken as resistive. Furthermore, integrating
nonresistive extracellular properties, such as the effect of ionic diffusion (“War-
burg” impedance), can have drastic consequences on basic cable properties such as
the attenuation of voltage along dendrites (Bédard and Destexhe 2013), as we
illustrate here.

Theory

We start by reviewing the traditional Rall’s cable equations for neurons. We next
show how such cable equations can be generalized to yield a model as general as
possible, where the neuronal membrane is embedded within intracellular and extra-
cellular media of arbitrarily complex electrical properties. Finally, we use numerical
simulations to illustrate the behavior of the cable equation, comparing the traditional
and generalized models.

Traditional Cable Equations

We start by deriving the cable equations. Starting from Ohm’s law, according to
which the axial current ii and the external current ie on a differential element of a
cylindric cable, can be written as:
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ii ¼ σiE
! � Sibk ¼ � 1

ri

@Vi

@x

ie ¼ σeE
! � Sebk ¼ � 1

re

@Ve

@x

ð1Þ

where bk is a unit vector pointing towards the axis of the cylinder, Si ¼ πa2i is the
section area and a is the radius of the cylinder, Se is the section area of a cylindric
volume of extracellular medium around the cable, ri is the cytoplasmic resistivity,
and re is the resistivity of the external medium along the length of the cylindric cable.
Note that both resistivities are expressed per unit length, with ri ¼ 1/Siσi and re ¼
1/Seσe. In general, we have re � ri because Se � Si and σe ≈ σi.

Under the return current hypothesis (ie is of opposite sign as ii), the membrane
current per unit length im is given by:

im ¼ � @ ii � ieð Þ
@x

¼ cm
@ Ve � Við Þ

@t
þ Ve � Við Þ

rm
, ð2Þ

where the first term represents the capacitive current, with specific membrane
capacitance cm, and the second term represents the passive “leak”membrane current,
with membrane resistance per unit length rm.

If we write Vm ¼ Ve � Vi, combining these equations leads to the cable equation:

rm
ri þ re

@2Vm

@x2
¼ τm

@Vm

@t
þ Vm: ð3Þ

where τm ¼ rmcm is the membrane time constant. Note that we have a very good
approximation of these equations by neglecting re because re � ri, which is
equivalent to consider that the external medium is a perfect conductor. Indeed, the
formulation with re ¼ 0 was the original Rall’s formulation.

This equation can also be written in Fourier frequency space:

λ2
@2Vm x,ωð Þ

@x2
¼ κ2 ωð ÞVm x,ωð Þ, ð4Þ

where κ2(ω) ¼ 1 þ iωτm and λ ¼
ffiffiffiffiffiffiffiffiffiffiffi

rm
riþreð Þ

q
is the electrotonic constant that charac-

terizes the cable, and τm is the membrane time constant.
This cable equation will be referred to as the “traditional cable” and considers that

the neuron is embedded in an extracellular medium that has ohmic properties and
which can be modeled as a resistive medium.

Generalized Cable Equations

As mentioned in the Introduction, there is fair evidence that the extracellular medium
is more complex than a resistor; there is evidence that the medium accumulates
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charges (like a capacitor), polarization phenomena, or that the ionic diffusion affects
the flow of current. These mechanisms and processes will cause deviations from
resistivity, which will be seen as a frequency dependence of the electric parameters
such as the medium resistivity.

To model such phenomena, the traditional approach is not adequate and a
generalized approach is needed. The reason is that the free charge current, used in
the traditional cable, is not conserved anymore if the medium is nonohmic. One must
use the generalized current, which density is given by:

j
!g

¼ j
!f

þ @D
!

@t
: ð5Þ

Unlike the free-charge current j
!f

, the generalized current j
!g

is always conserved
in any given volume, even if the extracellular medium is nonohmic or frequency-
dependent. One must re-derive the cable equations using the generalized current,
which leads to the generalized cable equation, as derived earlier (Bédard and
Destexhe 2013).

Based on this definition, and considering a one-dimensional cylindric cable of
constant radius a, the generalized current at a position x of the cable can be written
as:

igi x, tð Þ ¼ j
!g

i x, tð Þ � πa2bn� � ¼ �πa2γi
@Vi

@x
x,ωð Þ ð6Þ

where γi ¼ σei x,ωð Þ þ iωei x,ωð Þ is the cytoplasm admittance, and Vi is the intracel-
lular voltage difference with respect to a given reference (which can be far away).

It follows that, using the generalized current, the cable equations can be written in
a form similar to the standard cable equation:

λ2
@2Vm x,ωð Þ

@x2
¼ κ2Vm x,ωð Þ ð7Þ

where

λ2 ¼ rm
zi

κ2 ¼ 1þ iωτm
,

8<
: ð8Þ

for a cylindric compartment. Here, the quantity zi is an equivalent impedance, which
depends on the model considered. zi ¼ ri þ re for the traditional cable model, zi ¼
zi þ ze for a cable model embedded in a medium with frequency-dependent extra-
cellular impedance ze. Other configurations are also possible, such as a cable models
within an “open circuit,” where the current is allowed to be exchanged between

different neurons. In this case, zi ¼ zi= 1þ z
mð Þ
e

rm
1þ iωτmð Þ

h i
, where z mð Þ

e is the

extracellular impedance (see Bédard and Destexhe 2013 for details).
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The general solution of this equation in Fourier space w 6¼ 0 is given by Bédard
and Destexhe (2013):

Vm x,ωð Þ ¼ Aþ ωð Þeκ l�xð Þ
λ þ A� ωð Þe�κ l�xð Þ

λ ð9Þ
for each cylindric compartment of length l and with constant diameter. For a given
frequency, we have a second-order differential equation with constant coefficients.

The mathematical forms of Eqs. (7) and (9) are identical to that of the standard
Rall’s cable model, but with different definitions of λ and κ. Thus, we directly see
that the nature of the extracellular medium will change the value of these parameters,
which may become frequency dependent. This can affect fundamental properties of
the dendrite, such as voltage attenuation, as shown previously (Bédard and Destexhe
2013) and as we illustrate in the next section.

Numerical Simulations of the Cable Models

To solve the generalized cable equations numerically, we used a different method
than that used in common simulator programs such as NEURON (Hines and
Carnevale 1997). In NEURON, each isopotential compartment is connected to
intracellular and extracellular resistances or impedances, and these are normally
used to solve the cable equations. We used another, equivalent method which
consists of a series of continuous cylindric compartments, of constant diameter,
and which are not necessarily isopotential (see Appendix A). These continuous
compartments are connected to an auxiliary impedance (Bédard and Destexhe
2013), which is defined as Za ¼ Vm

ii
, where Vm and ii are, respectively, the transmem-

brane potential and the axial current per unit length at the point where Za is
connected (see Fig. 1a). This auxiliary impedance is important because it allows
one to take into account the influence of other compartments, including the soma,
over the axial current and transmembrane potential. The connection between these
continuous compartments is mathematically equivalent to consider the continuity
conditions on axial current and transmembrane potential (see details in Appendix A
and in Bédard and Destexhe (2013)).

In what follows, we have used different expressions for the parameters z mð Þ
e and λ,

comparing a resistive model to a diffusive model (see Bédard and Destexhe 2013 for
details). All computations were made in MATLAB in Fourier space.

Figure 2 shows a simulation of the generalized cable equations in a simple model.
A ball-and-stick model was simulated, with a noisy current injection in the middle of
the dendrite, as illustrated in Fig. 2a. This paradigm was simulated for two possible
configurations of extracellular medium, a resistive model (Fig. 2b, left), in which
case the generalized cable is equivalent to the traditional cable. The distance profile
of the voltage shows the typical attenuation with distance obtained with this model
(Fig. 2c, black). A more complex “diffusive” extracellular impedance was simulated
(Fig. 2b, right). In this case, the extracellular impedance is frequency-dependent and
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scales as
ffiffiffiffi
ω

p
, as found experimentally (Gomes et al. 2016). Only the generalized

cable model can simulate such a situation, and the dendritic attenuation profile
obtained is markedly different from the traditional cable (Fig. 2c, red). This shows
that the nature of the extracellular medium can influence the propagation and
attenuation of the membrane potential in dendritic structures, as found previously
(Bédard and Destexhe 2013).

Discussion

In this chapter, we have reviewed one of the most fundamental contributions of
computational neuroscience to the study of neurons: the cable equations. This
formalism was initially introduced by Rall and was later developed by many authors
(reviewed in Rall 1995). The cable equations have been successfully applied to
many paradigms that are today widely recognized as an important tool to study
dendrites and the spatial integration of inputs by neurons. Indeed, some of the most

X

a
0 X

ii (x)

1

b c

Fig. 1 Coordinate convention and impedances involved in solving the generalized cable equations.
(a) Cable segment of unit length, in series with an “auxiliary impedance” Za, which takes into
account the influence of the other compartments. (b) Scheme of branching cables. A mother
dendrite (1) separates into two daughter segments (2, 3). (c) Equivalent circuit of the configuration
shown in (b). The auxiliary impedance of segment 1 is equal to the input impedances of segments
2 and 3 (zout 2 and zout 3) taken in parallel. (Figure modified from Bédard and Destexhe (2013))
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popular neural simulation tools directly implement Rall’s cable equations, as for
example for the NEURON simulator (Hines and Carnevale 1997).

In the present chapter, we also explored one of the (rare) caveats of Rall’s cable
theory, the fact that it applies only to a simplified model of the extracellular medium.
The traditional cable equation was derived assuming that the medium surrounding
neurons can be modeled by a resistor, and is therefore ohmic. If the medium is
considered with more realistic electric properties, departing from ohmic behavior,
then the traditional Rall’s cable formalism cannot be used and must be generalized.
This generalization was done previously (Bédard and Destexhe 2013) and the
generalized cable equations were derived for arbitrarily complex extracellular
media. The generalized cable reduces to the traditional cable when the medium is
resistive.

One of the main finding of the generalized cable is that the nature of the
extracellular medium can have a strong influence on the integrative properties of
the neuron. As we illustrated in Fig. 2, the attenuation of voltage with distance on
dendrites is dependent on the nature of the medium. Thus, we conclude that the
generalized cable constitutes a useful tool to study the behavior of neurons with an

noitaunett
A.le

R
Distance

Dendrite

Soma

Dendrite

a b

c

Soma

Fig. 2 The electric nature of the extracellular medium influences voltage attenuation in dendrites.
(a) Scheme of a ball-and-stick neuron model where a noisy current waveform was injected in the
middle of the dendrite. (b) Voltage traces obtained in the dendrite (blue; site of injection) and in the
soma (red) for resistive (left) and diffusive (right) media. (c) Relative voltage attenuation profile
obtained (at 5 Hz) when the neuron is simulated in a resistive (black) or diffusive (red) medium.
When the medium is diffusive, the voltage attenuation is greatly reduced and the cell is therefore
more compact electrotonically. The extracellular impedance was matched to the in vitro measure-
ments. (Modified from Gomes et al. (2016))
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unprecedented level of realism, because one can integrate any electrical properties of
the extracellular medium.

Finally, on a physical point of view, it is important to realize that the key concept
here is the notion of generalized current. In media more complex than a resistor,
there can be charge accumulation, and therefore, the free-charge current is not
necessarily conserved. One must use the generalized current (the sum of the
free-charge current and displacement current), which is always conserved for any
arbitrarily complex structure. This notion was also used to obtain generalized
expressions for the current-source density analysis (Bédard and Destexhe 2011).
Like the traditional cable equation, this method was based on the free-charge current
and was unable to account for nonresistive situations. Thus, like the generalized
cable, the generalized CSD allows one to study neurons in complex extracellular
media, and they both constitute powerful tools for future neuroscience applications.

Appendices

Method to Solve the Generalized Cable

The basis of the method to solve the generalized cable is that Eq. (9) is exact for a
continuous cylindric compartment of constant diameter (which is equivalent to an
infinite number of membrane RC circuits). In other words, we can use this property
to simulate exactly the full cylindric compartment as a continuum with no need of
spatial discretization into segments that is usually done in numerical simulators. This
exact solution is only possible if the cylindric compartment has a constant diameter.
This approach was called the “continuous compartment” method (Bédard and
Destexhe 2013), and this leads to an efficient method to simulate the generalized
cable formalism in complex cable structures.

To apply this formalism to more complex morphologies than a single cable, one
must adjust the specific limit conditions of the different compartments (continuity of
Vm and of the current igi ¼ � 1

zi
@Vm

@x ; see details in Bédard and Destexhe (2013)).

We must calculate the input impedances needed to compute the membrane
voltage in complex morphologies. We consider the input impedance of the mem-
brane, as well as the impedance of the extracellular medium, both of which are
needed to calculate the spatial profile of the Vm in a given cable segment.

In a first step, one separates the cable into a series of continuous compartments of
constant diameter, where parameters 2a, zi, rm and z mð Þ

e are constant and specific to
each compartment.

In a second step, one calculates the (transmembrane) input impedance Znþ1
in ¼ Vm 0ð Þ

ii 0ð Þ
at the begin of each compartment by taking into account the auxiliary impedance at the
end of this compartment, Za ¼ Znþ1

out ¼ Vm lnþ1ð Þ
ii lnþ1ð Þ ¼ Zn

in (see Fig. 1a) if there is no

branching point. At the branching points, the auxiliary impedances are simply equal
to the equivalent input impedance of n dendritic branches in parallel (where n is the
number of “daughter” branches; see Fig. 1b, c). Thus, because the input impedance at
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one end is equal to the input impedance of the other compartment connected to this
end, one obtains a recursive relation (see details in Bédard and Destexhe 2013):

Znþ1
in Zn

in

� � ¼ zin
κλn

κλnZ
n
in þ zin

� �
e2κλn ln þ κλnZ

n
in � zin

� �
κλnZ

n
in þ zin

� �
e2κλn ln � κλnZ

n
in � zin

� � , ð10Þ

where κλn ¼ κ=λn�zi takes its value according to the model considered.
Thus, we can write

Znþ1
in ¼ F Zn

in; zin , κλn , ln
� �

This leads to the following expression to relate the first to the nth segment:

Znþ1
in ¼ F . . .F F Z1

in; zi1 , κλ1 , l1
� �

; zi2 , κλ2 , l2
� �

. . .; zin , κλn , ln
� � ð11Þ

In a third step, to calculate the profile of Vm along the cable, one must use the
spatial transfer function Vm Pnþ1,wð Þ

Vm Pn,wð Þ on a continuous cylindric compartment of arbitrary

length and calculate the product of the transfer functions between each connected
compartment. This leads to (see details in Bédard and Destexhe 2013):

FT l,ω; Zn
out

� � ¼ κλnZ
n
out

κλnZ
n
out cosh κλn lð Þ þ zi sinh κλn lð Þ ð12Þ

Vm Pn,ωð Þ
Vm P1,ωð Þ ¼

Yn�1

i¼1

Vm Piþ1,ωð Þ
Vm Pi,ωð Þ ð13Þ

In a fourth step, one evaluates zproximal. To do this, one must calculate the first
impedance Z1

in which enters the recursive relation (12). This impedance corresponds
to the impedance of the soma, which is given by:

Z1
in ¼ Zs þ Zcs, ð14Þ

where Zs is the soma membrane impedance and Zcs is the cytoplasm impedance
inside the soma. This relation is obtained under the hypothesis that the soma is
isopotential, and the application of the generalized current conservation law implies
ig ¼ Vi�Ve

ZsþZcs
� Vm

ZsþZcs
where Vi and Ve are the electric potentials at both sides of the

membrane, inside and outside, respectively, relative to a reference located far-away.
The impedance of the bilipidic membrane is approximated by a parallel RC

circuit where R ¼ Rm is the resistance and τm ¼ RmCm is the membrane time
constant. Thus, Z1

in can be written as:

Z1
in ¼ Zs þ Zcs ¼ Rm

1þ iωτm
þ Zcs ð15Þ

Finally, to evaluate zdistal, we use the “sealed end” boundary condition Z1
in ¼ 1.

In this condition, we have Z2
in ¼ zi1

κλ1
coth κλ1 l1ð Þ (see Eq. 10). In the case of a single

dendritic branch, we can write:
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Zdistal
in ¼ zi

κλ
coth κλlð Þ, ð16Þ

where l is the total length of the cable.
Thus, this method allows one to calculate the value of the Vm at any point of the

dendritic structure. The method is analytical besides approximating the structure by a
finite set of continuous compartments, because each continuous compartment has an
analytic solution. The connection between compartments is calculated by a finite
iteration method. Thus, the Vm can be calculated at every coordinate with an
excellent approximation, without the need of discretizing the dendritic tree into
isopotential segments (like in simulators such as NEURON). It should also be faster
and more accurate because it does not rely on a specific integration method.

References

Bazhenov M, Lonjers P, Skorheim P, Bedard C, Destexhe A (2011) Non-homogeneous extracellular
resistivity affects the current-source density profiles of up-down state oscillations. Philos Trans
A Math Phys Eng Sci 369:3802–3819

Bédard C, Destexhe A (2011) A generalized theory for current-source density analysis in brain
tissue. Phys Rev E 84:041909

Bédard C, Destexhe A (2013) Generalized cable theory for neurons in complex and heterogeneous
media. Phys Rev E 88:022709

Bédard C, Kröger H, Destexhe A (2006) Does the 1/f frequency scaling of brain signals reflect self-
organized critical states? Phys Rev Lett 97:118102

Bédard C, Rodrigues S, Roy N, Contreras D, Destexhe A (2010) Evidence for frequency-dependent
extracellular impedance from the transfer function between extracellular and intracellular
potentials. J Comput Neurosci 29:389–403

Dehghani N, Bédard C, Cash SS, Halgren E, Destexhe A (2010) Comparative power spectral
analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in
humans suggests non-resistive extracellular media. J Comput Neurosci 29:405–421

Gabriel S, Lau RW, Gabriel C (1996a) The dielectric properties of biological tissues: I. Literature
survey. Phys Med Biol 41:2231–2249

Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues:
II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

Gomes JM, Bédard C, Valtcheva S, Nelson M, Khokhlova V, Pouget P, Venance L, Bal T, Destexhe
A (2016) Intracellular impedance measurements reveal non-ohmic properties of the extracellular
medium around neurons. Biophys J 110:234–246

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:
1179–1209

Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance
spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

Miceli S, Ness TV, Einevoll GT, Schubert D (2017) Impedance spectrum in cortical tissue:
implications for propagation of LFP signals on the microscopic level. eNeuro 4:e0291

Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2:145–167
Rall W (1995) The theoretical foundations of dendritic function. MIT Press, Cambridge, MA
Wagner T, Eden U, Rushmore J, Russo CJ, Dipietro L, Fregni F, Simon S, Rotman S, Pitskel NB,

Ramos-Estebanez C, Pascual-Leone A, Grodzinsky AJ, Zahn M, Valero-Cabre A (2014) Impact
of brain tissue filtering on neurostimulation fields: a modeling study. NeuroImage 85:1048–1057

3420 C. Bedard and A. Destexhe


	117 Generalized Cable Models of Neurons and Dendrites
	Introduction
	Theory
	Traditional Cable Equations
	Generalized Cable Equations

	Numerical Simulations of the Cable Models
	Discussion
	Appendices
	Method to Solve the Generalized Cable

	References




