
Disjunctive Interval Analysis

Graeme Gange1 , Jorge A. Navas2 , Peter Schachte3 ,
Harald Søndergaard3(B) , and Peter J. Stuckey1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
2 SRI International, Menlo Park, CA, USA

3 School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

harald@unimelb.edu.au

Abstract. We revisit disjunctive interval analysis based on the Boxes
abstract domain. We propose the use of what we call range decision
diagrams (RDDs) to implement Boxes, and we provide algorithms for
the necessary RDD operations. RDDs tend to be more compact than
the linear decision diagrams (LDDs) that have traditionally been used
for Boxes. Representing information more directly, RDDs also allow for
the implementation of more accurate abstract operations. This comes
at no cost in terms of analysis efficiency, whether LDDs utilise dynamic
variable ordering or not. RDD and LDD implementations are available
in the Crab analyzer, and our experiments confirm that RDDs are well
suited for disjunctive interval analysis.

Keywords: Abstract interpretation · Boxes · Decision diagrams ·
Integer abstract domains

1 Introduction

The perennial challenge in the design of program analyses is to find an appropri-
ate balance between precision and efficiency. A natural way to improve precision
of analysis is to design an abstract domain that supports path-sensitive analysis,
that is, allows for a degree of disjunctive information to be expressed. However,
abstract domains are rarely closed under disjunction, as the cost of disjunctive
closure usually leads to prohibitively expensive analysis.

In this paper we are concerned with the analysis of integer manipulating pro-
cedural programs. The abstract domain studied here is the Boxes domain [11],
applied to Z, the set of integers.1 Assume we are given n integer variables
v1, . . . , vn. A bounds constraint takes one of the forms vi ≤ k or vi ≥ k, where k
is an integer constant. An integer box is any set B ⊆ Z

n that can be expressed
as a (possibly empty) conjunction of bounds constraints. The Boxes domain
consists of any set S ⊆ Z

n which can be written as a finite union
⋃j

i=1 Bi, such
that B1, . . . , Bj are integer boxes. Some examples are given in Fig. 1: (a) shows

1 With a little additional effort, the approach extends to rationals and floating point
numbers.

c© Springer Nature Switzerland AG 2021
C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 144–165, 2021.
https://doi.org/10.1007/978-3-030-88806-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88806-0_7&domain=pdf
http://orcid.org/0000-0002-1354-431X
http://orcid.org/0000-0002-0516-1167
http://orcid.org/0000-0001-5959-3769
http://orcid.org/0000-0002-2352-1883
http://orcid.org/0000-0003-2186-0459
https://doi.org/10.1007/978-3-030-88806-0_7

Disjunctive Interval Analysis 145

1 2 3 4

1

2

3

4

(a)
3 4

1

4

(b)

5 10 15

10

20

(c)

Fig. 1. Examples of Boxes elements.

an integer box, namely x ∈ [1, 4) ∧ y ∈ [2,∞); (b) shows the Boxes element
x ∈ [1, 3) ∨ y ∈ [2, 4); and (c) shows the element

(x ∈ [−20,−9) ∧ y ∈ [−10,−4)) ∨ (x ∈ [5, 11) ∧ y ∈ [10, 21))

Elements of Boxes are generally non-convex sets. The domain is closed under
both (finite) intersection and union, as well as under complement. This clearly
sets Boxes apart from more commonly studied relational abstract domains, such
as zones [20], octagons [21], and convex polyhedra [7]. Note that, while it is a
non-relational abstract domain, Boxes can still express conditional constraints,
such as x ≥ 2 ⇒ (y ≥ 0 ∧ y ≤ 4).

To implement Boxes, Gurfinkel and Chaki [11] proposed the use of linear deci-
sion diagrams (LDDs) [3]. The inspiration for LDDs came from the better known
binary decision diagrams (BDDs) [2]. But in an LDD, a decision node (a non-
terminal node) no longer corresponds to a Boolean variable; instead it holds a
primitive constraint in some theory. As with BDDs, non-terminal nodes in LDDs
always have fan-out 2. LDDs can express any Boolean combination of primitive
constraints, and in the Boxes case, “primitive constraint” means “bounds con-
straint” (only), such as x ≤ 42. LDDs can utilise sharing of sub-structures, which
reduces memory requirements and allows for a canonical representation.

However, LDDs (with primitive constraints taken from some theory T) come
with a disadvantage: inability to precisely analyse expressions that fall outside
the theory. This happens since many operations rely on a T -solver. With LDD-
boxes, much precision is lost in the context of non-linear2 expressions, as Exam-
ple 1 will show. Moreover, with LDDs, many abstract operations are expensive,
because of the need to preserve a node order that depends not only on vari-
able ordering, but also on logical consequence. Gurfinkel and Chaki [11] define
abstract operations in terms of constraint substitution, a relatively heavyweight
approach which, again, limits transformers to the supported arithmetic fragment.

2 Gurfinkel and Chaki [11] consider a restricted programming language with only linear
expressions and guards.

146 G. Gange et al.

Fig. 2. (a) A Boxes state with disjunctive information, and after applying z := x * y

(b) using interval approximation, and (c) using a precise transformer.

Our aim is to improve Boxes analysis through the use of a dedicated data struc-
ture that can support precise analysis, including analysis of programs involving
non-linear operations. As it turns out, our proposed representation of disjunctive
intervals also tends to speed up the analysis of linear programs, mainly because
it allows bounds-propagation to take the place of calls to a theory solver. We use
what we call “range decision diagrams” (RDDs), a variant of multi-valued decision
diagrams (MDDs) [24]. Non-terminal nodes in these structures can have varying
fan-out, each with each edge corresponding to a range of values for some variable.
RDDs also generalize BDDs, but in a different manner to LDDs.

In this paper, we use RDDs in the context of integer predicates. We note
that LDDs have a wider scope: they can support more complex theories. But for
the Boxes application, in which LDDs use monadic predicates only, RDDs have
exactly the same expressiveness as LDDs.

We define RDDs formally in the next section. Until then, we ask the reader
to rely on intuition and the diagrams shown in Fig. 2.

Example 1. To appreciate the limitations flowing from reliance on a theory
solver, consider the Boxes set from Fig. 1(c). Its RDD3 is shown in Fig. 2(a).
Given the statement z := x * y, the LDD approach must collapse the informa-
tion to its non-disjunctive interval form −20 ≤ x < 11∧−10 ≤ y < 21. Since the
theory solver used does not understand multiplication, the analysis engine must
collapse the representation, in order to calculate bounds on the multiplication.
The result is the Boxes element shown in RDD form in Fig. 2(b). A precise trans-
former, on the other hand, computes the possible values of z on each branch in
the diagram, resulting in the much more precise Fig. 2(c) with a better lower
bound for z.
�

In summary, the benefit of using RDDs for Boxes analysis is improved expres-
siveness and efficiency. We introduce RDDs in Sect. 2, and Sect. 3 provides

3 It is straightforward to translate an RDD to an LDD over bounds constraints, and
vice versa.

Disjunctive Interval Analysis 147

algorithms for the abstract operations. We report on an experimental evalua-
tion in Sect. 4. Related work is discussed in Sect. 5, and Sect. 6 concludes.

2 Range Decision Diagrams

By range we mean an integer interval of form [i, j) (that is, {k ∈ Z | i ≤ k < j}),
[i,∞), or (−∞, i). A set S of ranges is fitting iff every pair I1, I2 ∈ S is disjoint
(I1 ∩ I2 = ∅) and

⋃
S = Z. We assume a given finite set Var of variables. The

set of range decision diagrams, or RDDs, is defined recursively, as follows.

– F and T are RDDs.
– Let M = {(I1, r1), (I2, r2), . . . (In, rn)}, n > 1 be a set of pairs whose first

components are ranges and whose second components are RDDs. If the set
{I | (I, r) ∈ M} is fitting, and v ∈ Var , then 〈v,M〉 is an RDD.

We may sometimes relax the fitting requirement to allow
⋃

S ⊆ Z, in which case
each missing range is understood to be paired with F .

The meaning of an RDD r is a predicate [[r]], defined as follows:

[[F]] = false
[[T]] = true

[[〈v,M〉]] =
∨

{[[r]] ∧ v ∈ I | (I, r) ∈ M}

We can view the RDD as a directed acyclic graph in the obvious manner: T
and F are sinks. An RDD 〈v,M〉 has a node labelled v as its root, and for each
(I, r) ∈ M , an edge (with label I) from v to the root of r. We draw graphs so
that arrows point downwards. We will assume a (total) precedence order ≺ on
Var and construct RDDs where the path variables earlier in the ordering always
appear above variables later in the ordering (this condition may be temporarily
violated in algorithms).

In algorithms, it is sometimes useful to utilize a different view of a fit-
ting RDD. We may write a non-sink RDD r as 〈v, [r0, k1, r1, . . . , kn, rn]〉. Here
r0, . . . , rn are RDDs and k1, . . . , kn are the split points, with k1 < k2 < · · · < kn.
The intention is that ri is the co-factor of r with respect to v, over the inter-
val [ki, ki+1), implicitly taking k0 = −∞ and kn+1 = ∞.4 For a fixed variable
ordering this representation is canonical, provided we ensure ri �= ri+1 for all i.

The two views are for presentation only; each is faithful to the data structure
used in implementation. To translate between them, we use two functions ser
and des (for “serialize” and “deserialize”). des takes an RDD representation
〈v, [r0, k1, r1, . . . , kn, rn]〉 in split-point form and turns it into the deserialised
〈v, {((−∞, k1), r′

0), ([k1, k2), r
′
1), . . . , ([kn,∞), r′

n)}〉, where r′
i is the deserialised

form of ri (base cases F and T are left unchanged).
The function ser is its inverse, defined only for fitting RDDs; ser, in partic-

ular, adds edges from v to F for any “missing” intervals.
4 This view explains our tendency to use notation like [3, 4) for what is obviously a

(closed) singleton integer interval.

148 G. Gange et al.

x

y

T

[0, ∞)

[1, ∞)

x

y y

T

[0, 1) [1, ∞)

[1, ∞) [2, ∞)

x

yy y

T

[0, 1) [1, 2) [2, ∞)

[1, ∞) [2, ∞) [3, ∞)

(a) (b) (c)

Fig. 3. A sequence of better approximations of p(x, y) ≡ 0 ≤ x ∧ x < y.

In diagrams we omit the node F and its incident edges. The (serial form)
RDD 〈x, [F , 0, 〈y, [F , 1, T]〉, 1, 〈y, [F , 2, T]〉]〉 is shown in Fig. 3(b). Deserializing
the RDD representation yields

〈

x,

⎧
⎨

⎩

((−∞, 0),F),
((0, 1), 〈y, {((−∞, 1),F), ([1,∞), T)〉),
([1,∞), 〈y, {((−∞, 2),F), ([2,∞), T)〉)

⎫
⎬

⎭

〉

Applying a Boolean operator to RDDs is similar to how that is done for binary
or (classical) multi-valued decision diagrams: we apply the operator pointwise
on the co-factors of the nodes, and collect the result into a new node. However,
unlike usual BDD or MDD operations, the intervals for the children of each
node may not coincide. Thus we must first introduce additional separators that
refine the generated intervals, enabling pointwise application of operators (we
exemplify this in Sect. 3.2).

3 Implementing Boxes with RDDs

We now describe how to implement the Boxes domain with RDDs. Note again
that Boxes forms a Boolean lattice, but not a complete one: there are necessarily
predicates for which there can be no best RDD representation, instead admitting
infinite chains of better and better RDD approximations. Consider the predicate
p(x, y) ≡ 0 ≤ x∧x < y. Figure 3(a) shows an over-approximation, x ≥ 0∧y ≥ 1.
We can separate the case x = 0 from x ≥ 1 and obtain a marginally more precise
over-approximation which excludes the infeasible valuation {x �→ 1, y �→ 1}, see
Fig. 3(b). Indeed, we can split the domain of x arbitrarily often, in each step
obtaining a slightly more precise RDD. Similarly there are infinite ascending
chains of ever closer under-approximations.

Hence, for some arithmetic operations, we cannot hope to define optimal
abstract transformers. In the context of RDDs there is, however, a natural cri-
terion for precision, akin to the concept of interval consistency [1,4] from the
constraint programming literature. Consider a constraint c over set X of vari-
ables. A domain D maps each variable x ∈ X to a set of possible values for x.

Disjunctive Interval Analysis 149

Here we assume that D(x) must be an interval and we say that D is interval
consistent for c, iff, for each variable x ∈ X with D(x) = [�, u], each of the
valuations {x �→ �} and {x �→ u} can be extended to a valuation (over all of
X) satisfying D ∧ c. In this context, the role of bounds-propagation is to narrow
variable domains as far as possible without breaking interval consistency.

For RDDs we need to refine the concept of consistency slightly. Note that
each path ρ through the RDD induces a domain Dρ.

Definition 1. All-paths interval consistency. RDD r is all-paths interval
consistent for constraint c iff, for each path ρ in r, the induced domain Dρ is
interval consistent.

Our abstract operations strive to maintain all-paths interval consistency. Loosely
this means we produce the strongest information that can possibly be inferred
without resorting to speculative introduction of new disjunctive splits. Only
our algorithm for inequality fails to maintain all-paths interval consistency—
Example 5 will show a case of this.

3.1 Lattice Operations

The standard lattice operations are fairly straightforward. �,
,� coincide with
the standard Boolean operators →,∧,∨, and can all be implemented pointwise:
for u �� v, we scan the children of u and v in order, applying �� recursively
to children with overlapping intervals, and rebuild the results into a new node.
As with the corresponding BDD/MDDs operations, these can be performed in
O(|u||v|) time. All lattice operations are optimally precise.

3.2 Variable Hoisting

An operation which will be useful for operators defined below is hoisting (or
interchanging) variables. This is necessary when we would like to construct a
function representing 〈x, [r0, k1, . . . , kn, rn]〉, but where the root of ri is earlier
than x in the precedence order (so just building the node would be malformed).

For this definition, we restrict ourselves to the case where, for all ri, every
variable except (possibly) the root y are before x, so we merely need to inter-
change the decisions for x and y. For RDDs, this is straightforward and detailed
in Fig. 4. We sort all the split points at the second level of the tree, removing
duplicates and create a set I of covering intervals for the variable y. We fill in the
matrix Cofac of cofactors, based on the intervals for y and x. We then construct
a new node for each x interval using Cofac. Finally we construct a new root
linked appropriately to these nodes.

Example 2. Figure 5 shows an almost-ordered RDD, where top levels x2 and x1

must be transposed. Figure 6 shows the matrix of cofactors Cofac[I, I ′] generated
by the algorithm. Figure 7 shows the RDD that results from hoisting.
�

150 G. Gange et al.

function hoist-var(y, 〈x, M〉)
E = sort nodup(

⋃
{{l, u} | (, 〈x, M ′〉) ∈ M, ([l, u),) ∈ M ′})

I = [(E[i], E[i + 1]) | i ∈ 1 .. |E| − 1]
for (I, 〈x, M ′〉) ∈ M do

for I ′ ∈ I do
let (Is, r′) be the element in M ′ where Is ⊇ I ′

Cofac[I, I ′] ← r′

for I ′ ∈ I do
rI′ ← 〈y, {(I,Cofac[I, I ′]) | (I, r) ∈ M})〉

return 〈x, {(I ′, rI′) | I ′ ∈ I}〉

Fig. 4. Variable hoisting: How to construct a node rooted at y, representing the decision
structure 〈x, M〉.

x2

x1 x1

BA C D

(−∞, 1)

[1, 11)

[11, ∞)

(−∞, 9)
[9, ∞) (−∞, 4)

[4, 17)
[17, ∞]

Fig. 5. A mis-ordered RDD r.

3.3 Arithmetic Operators

Gurfinkel and Chaki [11] implemented the arithmetic operators for Boxes using
constraint substitution over LDDs. This has some drawbacks, relying as it does
on having a theory solver for a sufficiently expressive theory of arithmetic.
Instead, we construct arithmetic abstract transformers that operate directly on
the RDD representations. Each transformer is formulated as a recursive traver-
sal of the RDD, carrying with it the projection of the operation along the path
to the current node. This makes implementing operators more involved, but it
avoids the need for a (frequently expensive) theory solver and offers more flex-
ibility in terms of expressiveness and the level of precision we can support. As
with conventional BDD operations, we save previously computed results in a
cache to avoid repeated work; nevertheless worst-case complexity of the arith-
metic operators is exponential in the size of the RDD, as each path through the
RDD may yield a different projected arithmetic expression.

Interval Computation. A basic step for many algorithms will be computing the
interval of possible values for an expression E, given RDD r. The pseudo-code
in Fig. 8 shows how to do this. We walk the RDD, substituting each variable as
reached, by its possible intervals, collecting their union. Once all variables in E

Disjunctive Interval Analysis 151

−∞ 4 9 17 +∞
x2

(−∞, 1)

[1, 11)

[11,+∞)

x1

A B

B

B C D

Fig. 6. Matrix of cofactors used to interchange x1 and x2

x1

x2x2 x2 x2

BA C D

(−∞, 4)
[4, 9) [9, 17)

[17, ∞)

Legend:

I1 = (−∞, 1)
I2 = [1, 11)
I3 = [11, ∞) I1

I2 ∪ I3

I1

I2 I3

I1 ∪ I2

I3
I1 ∪ I2

I3

Fig. 7. The correctly ordered RDD r′ after hoisting r from Fig. 5.

have been replaced by intervals, we use the function interval(E) to return the
smallest interval containing the possible values of E. In the figure we use ⊥ to
denote the empty interval. min-var(E) produces the variable (from E) with the
earliest precedence (∅ if E is variable-free).

Example 3. Consider computing eval(x*y, r), the possible interval values of the
expression x*y given the RDD r from Fig. 2(a). The initial call generates a call
eval([−20,−9)*y, r′) where r′ is the left child of the root. This in turn gener-
ates a call eval([−20,−9)*[−10,−4), T) which returns [50, 201). The initial call
generates a second call eval([5, 11)*y, r′′) where r′′ is the right child of the root.
This in turn generates a call eval([5, 11)*[10, 21), T) which returns [50, 201). The
initial call thus returns the union which is again [50, 201).
�

Assignments. The abstract transformers for assignments all operate in a similar
manner. Let E[y �→ I] denote the (interval-valued) expression obtained by par-
tially evaluating E assuming y = I. To apply z := E to r = 〈y,E〉, we iterate
over each non-F child (I, r′) of r, recursively applying z := E[y �→ I], and then
rebuild the resulting node.

152 G. Gange et al.

function eval(r, E)
match r with

case F ⇒ return ⊥
case T ⇒ return interval(E[v �→ (−∞,+∞) | v ∈ vars(E)])
case 〈x, M〉 ⇒

match min-var(E) with
case ∅ ⇒

return interval(E)
case y where y ≺ x ⇒

return eval(r, E[y �→ (−∞,+∞)])
case y where y � x ⇒

return
⋃

{eval(r′, E) | (I, r′) ∈ M, r′ �= F}
case x ⇒

return
⋃

{eval(r′, E[x �→ I]) | (I, r′) ∈ M, r′ �= F}
end

end

Fig. 8. Evaluating the interval approximation of E on RDD r.

function eval-split(r, E)
match r with

case F ⇒ return F
case T ⇒

I ← interval(E[v �→ (−∞,+∞) | v ∈ vars(E))})
return 〈ε, {(I, T)}〉

case 〈x, M〉 ⇒
match min-var(E) with

case ∅ ⇒
return (ε, {(interval(E), r)}))

case y where y ≺ x ⇒
return eval-split(r, E[y �→ (−∞,+∞))

case y where y � x ⇒
let M ′ = {(I, eval-split(r′, E[y �→ I])) | (I, r′) ∈ M}
return hoist-var(ε, 〈x, M ′〉)

end
end

Fig. 9. Constructing a node, rooted at variable ε, encoding the possible valuations of
E on RDD r. We use hoist-var to percolate the valuations of E up to the root.

Once we reach (or skip) variable z, we have two options. We can compute
the interval I containing the possible values of the residual E, and apply z := I
at the current node. Alternatively, we can construct the resulting RDD as if z
were below all variables in E, then percolate z back up to the correct location.
The latter is the analogue of the substitution-based approach used by Chaki,
Gurfinkel and Strichman [3]; the former is less precise, but reduces the growth
of the RDD. In practice the less precise version loses too much precision. Pseudo-
code for the latter approach is shown in Fig. 9.

Disjunctive Interval Analysis 153

function apply(r, z := E)
match r with

case F ⇒ return F
case T ⇒

I ← interval(E[v �→ (−∞,+∞) | v ∈ vars(E))})
return 〈ε, {(I, T)}〉

case 〈x, C〉 ⇒
if x � z then

r ← eval-split(r, E) � Constructs a node rooted at ε
if x = z then

r ← forget(r, x)
return r[ε �→ z]

else
match min-var(E) with

case ∅ ⇒ � E fully evaluated
return 〈z, {(interval(E), r)}〉

case y where y ≺ x ⇒ � y unconstrained in r
E′ ← E[y �→ (−∞,+∞)]
C′ ← {(I,apply(r′, z := E′)) | (I, r′) ∈ C}

case y where y � x ⇒ � E independent of x
C′ ← {(I,apply(r′, z := E)) | (I, r′) ∈ C}

case x ⇒
C′ ← {(I,apply(r′, z := E[y �→I])) | (I, r′) ∈ C}

end
return 〈x, C′〉

end

Fig. 10. Abstract version of z := E given RDD r, for some arithmetic expression E.

The algorithm in Fig. 10 is instantiated for the cases where E is a linear
expression (

∑
i cixi + I), n-ary product (

∏
i xi × I) or (binary) division (x/y).

In each case, we specialize the generic algorithm slightly:

– For linear expressions, we terminate if some variable in E is skipped (in which
case E, and therefore z, is unconstrained).

– For products, we handle negative, zero, and positive ranges separately, and
apply early termination when some variable is zero or unbounded.

– For division, we again perform case-splits on sign, and terminate early on
zero and unbounded inputs.

Example 4. Consider the RDD in Fig. 11(a). apply(r, z := E) constructs the
RDD shown in Fig. 11(b). For x2 the split points are the extreme values of
3x1 + 8x3 + 10, along the possible paths, that is, 77, 93, 113, and 241; hence the
x2 fan-out of three. In general, for each path ρ of r, apply(r, z := E) constructs
an all-paths interval consistent RDD, introducing an edge for z that is tight with
respect to the projection of E along ρ. For linear expressions, apply constructs
the smallest such RDD (though not for multiplication and division, owing to our
speculative splits on sign).
�

154 G. Gange et al.

x1

x3

P Q

[1, 11)

[8, 10) [10, 26)

x1

x2

x3x3 x3

P Q

[1, 11)

[77, 93) [93, 113) [113, 241)

[8, 10)

[8, 10) [10, 26)

[10, 26)

x1

x3

P Q

[4, 11)

[8, 10) [10,21)

x3 − 2x1 ≤ 0

� −12
1

2

3

x3 ≤ 20 � 8

10 ≤ 20 � 0 20 ≤ 20 � 0

)c()b()a(

Fig. 11. With full splitting, evaluating x2 := 3x1 +8x3 +10 on (a) yields (b). Applying
x3−2x1 ≤ 0 on (a) yields (c), with tightened bounds shown in bold: 1 the downwards
phase finds upper bound 20 for x3; 2 the upwards phase notes the lower bound 8
and 3 uses this information (2x1 ≥ 8) to improve the lower bound on x1.

Arithmetic Constraints. The abstract transformer for an arithmetic constraint
apply(r, E ≤ k) is very similar to that for assignment. Again we traverse the RDD
depth-first, passing the projection of our constraint onto the current valuation,
then reconstruct the result on the way back up. But during reconstruction, we
also return the projection of E onto the variable beneath the current node which
we use to perform bounds-propagation on edge ranges. The pseudo-code is given
in Fig. 12. Each call returns the resulting RDD, together with an upper bound
to be applied to the RDD above. At each node involved in the expression (lines
33–36), we recursively apply the projected constraint along each outgoing edge,
and use the returned upper bound to prune the bounds of the edge.

Example 5. Figure 11(c) shows the effect of applying x3 − 2x1 ≤ 0 to the RDD
from Fig. 11(a). Each node is annotated with C � �, where C is the projected
constraint we constructed in the downward phase, and � the lower-bound which
was returned upwards.
�

Unlike assignment, apply(r, E ≤ k) does not in general yield an all-paths inter-
val consistent RDD—it (implicitly) introduces splits on the way down, but trim-
leq only uses the returned lower bound on E for pruning, rather than introduc-
ing new splits. A slightly more precise RDD for the case considered in Example 5
would have an additional split point for x1, namely 5. That would bar some spu-
rious solutions, such as Q ∧ x1 = 4 ∧ x3 = 13. An algorithm that maintains
all-paths interval consistency also in the case of inequalities is perfectly possible,
but in practice we find the cost of doing so outweighs any advantage.

Bounds Extraction/Box Hull. The box hull operation takes boxes B and pro-
duces a stick mapping each variable to the smallest interval covering its feasible

Disjunctive Interval Analysis 155

1: function trim-leq(cx + E ≤ k, I, r)
2: ur, r

′ ← apply(r, E ≤ k − cmin(I))
3: Ir ← I ∩ (−∞, ur

c
)

4: if Ir = ∅ then
5: return ∞, (∅, F)
6: else
7: return lr − cmin(I), (Ir, r′)
8: function apply(r, E ≤ k)
9: match r, E with
10: case F , ⇒ return ∞, F
11: case , 0 ⇒ � E fully evaluated
12: if k < 0 then
13: return ∞, F
14: else
15: return 0, r
16: case T , ax ⇒ � One unconstrained variable, can be bounded
17: return −∞, 〈x, {((−∞, k

a
), r)}〉

18: case T , ax + E ⇒ � At least two unconstrained, cannot infer anything
19: return −∞, T
20: case 〈x, M〉, ay + E′ where y ≺ x ⇒ � y currently unconstrained in r,
21: � check if E′ is bounded
22: IE′ ← eval(r, E′)
23: yub ← � k−min IE′

a
�

24: if yub is finite then
25: return −∞, 〈y, {((−∞, yub), r)}〉
26: else
27: return −∞, r

28: case 〈x, M〉, ay + E′ where y � x ⇒ � E independent of x
29: R ← {lc, (I, c′) | (I, c) ∈ M and lc, c

′ = apply(c, E ≤ k)}
30: lr ← min{lc | , (lc,) ∈ R}
31: r′ ← 〈x, {(I, c′) | , (I, c′) ∈ R}〉
32: return lr, r

′

33: case 〈x, M〉, ax + E′ ⇒
34: R ← {trim-leq(ax + E ≤ k, I, r′) | (I, r′) ∈ M}
35: lc ← min{lc | lc, ∈ R}
36: return lc, 〈x, {(Ic, c′) | , (Ic, c′) ∈ R}〉
37: end

Fig. 12. Applying a constraint
∑

i cixi ≤ k on RDD r. For simplicity, we restrict
consideration to positive ci.

valuations. The box hull algorithm of Gurfinkel and Chaki [11] proceeds by merg-
ing all feasible children of the root node (using �), then recursively building the
hull of the single remaining child. However, while the final result is compact, the
successive joins may cause an exponential growth in the intermediate results.
Instead, we construct the box hull in two stages: we first traverse the RDD to
collect lower and upper bounds of each variable, then construct the hull RDD
directly.

156 G. Gange et al.

function lower-bounds(〈x, M〉)
let [d0, k1, . . . , kn, dn] = ser(M)
i0 ← if (d0 = F) then 1 else 0
B ← lower-bounds(di0)
for i ∈ i0 + 1 . . . n do

if di �= F then
B ← lower-bounds-R(di, B)

seen(〈x, M〉) ← true
if d0 = F then

return [(x, k1)|B]
else

return B

function lower-bounds-R(〈r, M〉, B)
let [d0, k1, . . . , kn, dn] = ser(M)
match B with

case [] ⇒
return []

case [(x′, k′)|B′] where x � x′ ⇒
return lower-bounds-R(〈x, M〉, B′)

case [(x′, k′)|B′] ⇒
if seen(〈x, M〉) then

return [(x′, k′)|B′]
seen(〈x, M〉) ← true
for i ∈ 0 . . . n do

if di �= F then
B′ ← lower-bounds-R(di, B

′)
if x = x′ ∧ d0 = F then

return [(x′,min(k′, k1))|B′]
else

return B′

end

Fig. 13. Extracting lower bounds of all variables from RDD 〈x, M〉. Upper bound
extraction is similar. The seen markers are used to avoid re-processing a previously
explored node.

The algorithm for extracting bounds is given in Fig. 13. On the leftmost
feasible path in r, it constructs an ordered list of variables having finite lower
bounds. On the remaining paths, it updates the current set of bounds, removing
any variables that are skipped or are unbounded. This operation takes time linear
in the size of the input RDD. Unfortunately, the operation is not cached across
calls (as we update bounds information in-place, rather than merge bounds from
subgraphs).

3.4 Widening

The last operator we need is a widening, �, to ensure convergence. A standard
approach to constructing a sound widening is based on the notion of stabil-
ity : we decompose the domain into a finite set of individual properties, and
any unstable properties—those which are not preserved (under entailment) from
the previous iteration—are weakened (usually discarded) to eliminate infinite
ascending chains.

If we were working with pure BDDs or classical MDDs (with finite domains),
the join would be sufficient, as there are only finitely many cofactors, and each
cofactor can increase at most once. But with RDDs, a difficulty arises when the
position of a split changes.

Disjunctive Interval Analysis 157

Example 6. Consider the following sequence of iterates:

r0 ≡ 〈x, {((−∞, 0), T), ([0,+∞),F)}〉
r1 ≡ 〈x, {((−∞, 1), T), ([1,+∞),F)}〉
ri ≡ 〈x, {((−∞, i), T), ([i,+∞),F)}〉

If we apply a ‘widening’ pointwise, we get the chain:

w0 = r0 ≡ 〈x, {((−∞, 0), T), ([0,+∞),F)}〉
w1 = w0�r1 ≡ 〈x, {((−∞, 0), T), ([0, 1), T �F), ([1,+∞),F)}〉 = r1

w2 = w1�r2 ≡ 〈x, {((−∞, 1), T), ([1, 2), T �F), ([2,+∞),F)}〉 = r2

wi = wi−1�ri ≡ 〈x, {((−∞, i − 1), T), ([i − 1, i), T �F), ([i,+∞),F)}〉 = ri

Looking at the result for any one fixed value of x, there are no infinite chains.
But the overall widening sequence is nevertheless an infinite ascending chain.
�

The problem just exemplified arises when the target of a child remains stable,
but its range shrinks. The widening of Gurfinkel and Chaki [11] handles the
situation by detecting when this has occurred, and instead taking the value of
(one of) its unstable siblings. For Example 6, we notice that the transition to
F was unchanged but its range decreased, so we take the neighbouring T value
instead.

We can adapt the same widening strategy for the RDD representation.
Figure 14 gives the detailed widening algorithm; widen(u, v) is the function that
calculates u�v. As with other lattice operations, we walk over both operands in
lock-step. But as � is asymmetric, the main case of widen(u, v) (lines 34–39)
iterates over the edges of u, and, for each edge, calls widen-edge to compute
the (possibly refined) widening of the corresponding ranges of v. widen-edge
walks over the edges of v applying widening pointwise (lines 12–19), substitut-
ing stable children with their left unstable sibling (line 16). The first edge of
course has no such sibling, so the algorithm starts (lines 5–8) by finding the first
unstable successor if one exists (if not, the entire edge was stable, so it can be
returned)5.

The argument for termination of the widening algorithm is the following.

1. The operator is increasing by construction.
2. Note that (a) it is not possible to have an infinite ascending chain of refined

split positions and (b) for any one (fixed) split position there is no infinite
ascending chain. Namely, each co-factor leads to a finite ascending chain:
whenever a new split location is introduced, the co-factors on both sides
increase strictly.

5 As presented, this differs slightly from [11] in that we select the left sibling as
replacement in widen-edge, where [11] selects the right. We also implemented a
right-biased variant, and differences are minimal.

158 G. Gange et al.

1: function widen-edge(x, Mx, [y0, k1, . . . , km, ym])
2: dy ← y0

3: i ← 1
4: d ← x�dy

5: while d = x ∧ i ≤ m ∧ ki < Mx do � Find first unstable child d
6: dy ← yi

7: i ← i + 1
8: d ← x�dy

9: if i > m ∨ km ≥ Mx then � Only one child, no subdivision
10: return [d], [dy, ki, yi, . . . , km, ym]
11: Eout ← [d] � Replace any stable children with d to ensure convergence
12: while i ≤ m ∧ km < Mx do
13: dy ← yi

14: d′ ← x�dy

15: if d′ = x then
16: d′ ← d
17: Eout ← Eout ++[ki, d

′]
18: d ← d′

19: i ← i + 1
20: return (Eout, [dy, ki, yi, . . . , km, ym])
21: function widen(u, v)
22: match (u, v) with
23: case (T ,) ⇒ return T
24: case (F , v) ⇒ return v
25: case (〈x, M〉, v) ⇒
26: let [r0, k1, r1, . . . , kn, rn] = ser(M)
27: let 〈x′, Ev〉 = v
28: if x ≺ x′ then
29: return 〈x, [r0�v, k1, r1�v, . . . , kn, rn�v]〉
30: else if x′ ≺ x then
31: (Eout,) ← widen-edge(u,+∞, ser(Ev))
32: return 〈x′,des(Eout)〉
33: else
34: Eout ← []
35: for i ∈ 1 . . . n do
36: (E′

i, Ev) ← widen-edge(ri−1, ki, ser(Ev))
37: Eout ← Eout ++E′

i

38: (En,) ← widen-edge(rn,+∞, ser(Ev))
39: return 〈x,des(Eout ++En)〉
40: end

Fig. 14. Widening on Boxes, adapted to the RDD representation.

4 Experimental Evaluation

We have implemented all the RDD operations required by the Boxes domain,
following the algorithms described in this paper. Apart from the node represen-
tation, the architecture of the underlying RDD package is relatively standard: a

Disjunctive Interval Analysis 159

unique table mapping node structures to canonical representations, and a cache
to record the results of recent computations. The implementation is available at
https://bitbucket.org/gkgange/mdd-boxes.

The evaluation that we now report on has had two aims: First, to compare
scalability of rdd-boxes with the existing ldd-boxes implementation. Second,
to compare precision of the two implementations in order to assess the impact
of the more precise abstract transformers provided by rdd-boxes.

4.1 Experimental Setup

For the evaluation, we integrated our RDD-based implementation of Boxes into
the Crab6 abstract interpreter, which already provides LDD-based Boxes. We
evaluated both implementations on a collection of C programs using Clam7, an
LLVM frontend for Crab.

The programs used for testing were taken from the 2019 Software Verification
Competition. We chose 190 programs from the ControlFlow and Loops cate-
gories. These programs are already annotated with assertions. ControlFlow is
a challenging set of programs for abstract interpretation because the instances
generally require path-sensitive reasoning. However, they do not require a deep
memory analysis. They constitute a good test suite for Boxes because this
abstract domain is expressive enough to prove the majority of assertions. Never-
theless, both rdd-boxes and ldd-boxes needed to use a widening delay of 15 to
produce precise results. The second selected category, Loops, is quite different
from ControlFlow: the programs are much smaller and neither memory anal-
ysis nor path sensitivity is required. However, the majority of programs have
many nested loops or require complex (although typically linear) loop invari-
ants. We used Loops to evaluate the effect of the widening operations in both
implementations.

All experiments have been carried out on a 2.1 GHz AMD Opteron processor
6172 with 32 cores and 64 GB on a Ubuntu 18.04 Linux machine. From those 32
cores, we used 16 cores to run multiple instances of Crab in parallel, but each
instance was executed sequentially.

For rdd-boxes, we statically order variables according to the order in which
they first appear in the program. For ldd-boxes, we used two orderings: the same
static ordering used by rdd-boxes, and the dynamic ordering used by Gurfinkel
and Chaki [11], based on the Cudd library’s CUDD REORDER GROUP SIFT option.

It is important to note that the ldd-boxes library8 does not provide support
for arbitrary linear or tree expressions as other libraries such as Apron [14] do.
ldd-boxes only supports assignments of the form x ← (k1 × y) + [k2, k3] and
linear constraints of the form (k1 × x) relop k2 where k1, k2, k3 are integers,
relop are the standard relational operators {≤,≥, <,>,=, �=}, and x and y are
variables.

6 Available at https://github.com/seahorn/crab.
7 Available at https://github.com/seahorn/clam.
8 Available at https://github.com/seahorn/ldd.

https://bitbucket.org/gkgange/mdd-boxes
https://github.com/seahorn/crab
https://github.com/seahorn/clam
https://github.com/seahorn/ldd

160 G. Gange et al.

Fig. 15. Three graphs to compare analysis time in seconds on 190 Control Flow and
Loops programs with timeout of 180 s and memory limit of 8 GB. The marker ● rep-
resents domains finished before exhausting resources, ✖ represents timeout, and ◆

memory-out. The size of a marker reflects the number of scatter points at that loca-
tion.

For all other cases, the abstract interpreter Crab simplifies arbitrary expres-
sions by extracting interval constraints until the simplified expression can be
supported by the ldd-boxes library. The current Crab implementation safely
ignores arithmetic operations with non-unit coefficients. For our benchmarks,
LLVM did not generate any instruction with non-unit coefficients.

4.2 Performance

Figure 15 compares efficiency of the three implementations on the set of SV-
COMP benchmarks. The top part (a) shows the result of static ordering plotted
against that of dynamic ordering for ldd-boxes. Different orderings can have a
significant impact on performance, and there is no clear winner. In the bottom
part, we compare rdd-boxes with ldd-boxes using static (b) and dynamic (c)

Disjunctive Interval Analysis 161

Table 1. Comparing the precision of LDD-boxes with static ordering, LDD-boxes with
dynamic reordering, and two variants of RDD-boxes on SV-COMP programs for which
all the domains terminated with timeout of 180 s and memory limit of 8 GB.

Implementation Programs Total assertions Proven assertions

static ldd-boxes 168 628 497

dynamic ldd-boxes 168 628 494

linear rdd-boxes 168 628 504

rdd-boxes 168 628 510

ordering. Independently of variable ordering, the rdd-boxes analysis tends to
be faster. With a time limit of 180 s, rdd-boxes timed out for 7 programs, while
static and dynamic ldd-boxes timed out for 13 and 12 programs, respectively.

To understand the causes of the performance differences, we manu-
ally inspected several programs. We hypothesize that the main reason why
ldd-boxes and rdd-boxes differ significantly in performance is the above-
mentioned process of interval extraction that takes place in the Crab analyzer.
This interval extraction for ldd-boxes is quite expensive, which sometimes
makes rdd-boxes significantly faster. On the other hand, it may equally make
rdd-boxes slower since rdd-boxes performs optimal transfer functions (which
may introduce more disjunctive splits), while ldd-boxes does not, owing to its
limited API.

4.3 Precision

Table 1 compares the precision of the two ldd-boxes implementations, together
with two variants of rdd-boxes for the SV-COMP test suite: the version used for
our performance evaluation which precisely supports both linear and non-linear
operations, and a variant that only supports linear operations (linear rdd-boxes)
and relies on the Crab analyzer to linearize [22] non-linear expressions.

Column Programs is the total number of programs for which all three imple-
mentations finished without exhausting resources. Total Assertions is the total
number of assertions checked by the analysis, and Proven Assertions is the total
number of proven assertions.

The variable ordering can affect the precision of widening. We believe this
can explain the differences between the ldd-boxes implementations and linear
rdd-boxes. Note that linear rdd-boxes is more precise than the ldd-boxes
implementations, because of a more precise modelling of linear operations. The
precise modelling of non-linear operations in rdd-boxes further improves the
number of proven assertions (510 vs 504)—a relatively small, but, to an end
user potentially significant, gain.

As a baseline comparison, using a traditional convex interval analysis, we were
able to prove 392 of the 628 assertions, that is, 62%. Disjunctive information is,
as expected, critical in the context of program verification.

162 G. Gange et al.

5 Related Work

Early examples of disjunctive analysis were primarily found in work on abstract
interpretation of declarative programming languages [15,17] (the “Pos” domain
for groundness dependency analysis of logic programs [17] is a rare example
of an abstract domain for relational analysis that is closed under conjunction
and disjunction). The abstract domain refinement known as “disjunctive com-
pletion” was introduced by Cousot and Cousot [5]. Giacobazzi and Ranzato [9]
explored the fact that different domain “bases” may induce identical disjunc-
tive completions, leading to the concept of a least (or most abstract) disjunctive
basis [9].

Decision diagrams for disjunctive domains are of interest also in symbolic
model checking, for example for analysis of timed automata. In that context,
Strehl and Thiele [25] have made use of “function graphs” which, in their
“reduced” form, correspond to RDDs. Strehl and Thiele capture transition rela-
tions through an additional concept of “interval mapping functions”. Implemen-
tation details are somewhat sparse, but it appears that only simple (linear)
transformations are considered. Join and widening are not of relevance in model
checking applications.

Clock decision diagrams (CDDs) [16] generalise Strehl and Thiele’s function
graphs, by allowing nodes that represent either single (clock) variables X or
differences X −Y . That way, not only bounds can be expressed; it is possible to
use CDDs to express difference constraints such as X = Y and X −Z ∈ [0, 3], so
that CDDs support a limited form of relational analysis. CDDs are not canonical,
and the abstract operations that would be required for program analysis (as
opposed to the clock operations considered in [16]) would seem quite difficult
to implement. For a program analysis tool to achieve the added expressiveness
that is offered by CDDs, it would probably make better sense to use a product
domain that incorporates a standard implementation of Zones [20]. Other BDD
variants have been proposed that have constraints as nodes, such as difference
decision diagrams (DDDs) [23] and EQ-BDDs [10].

Dominant sources of imprecision in classical abstract interpretation are join
points—program points that represent a confluence of flow from several points.
If an analysis is able to distinguish program states based on different execution
traces that lead to a given program point, then imprecise joins can be avoided or
delayed, resulting in greater precision of analysis. Approaches to introduction of
such (limited) disjunctive information include loop unrolling and (flow- or value-
based) trace partitioning [12,19]. The idea that decision tree structures can rep-
resent control flow is reflected in various abstract domains or functors, based on
decision diagrams. Examples include the “segmented decision trees” [6] designed
to support analysis of array processing programs, and the decision structures
used in the FuncTion analyzer [26] for proving termination based on synthesised
ranking functions. Jeannet’s BDDAPRON library [13] provides a broad frame-
work for the implementation of “logico-numeric” abstract domains, supporting
analysis of programs with a mixture of finite-type and numeric variables.

Disjunctive Interval Analysis 163

Regarding interval analysis, the DisInterval abstract domain used in the
Clousot analysis tool [8] allows for a limited amount of disjunctive informa-
tion; while it can express monadic constraints such as |x| > 5, it cannot express
a set such as the one depicted in Fig. 1(b). For fully disjunctive interval analysis,
the most important data structure so far has been the linear decision diagram
(LDD), introduced by Chaki, Gurfinkel and Strichman [3]. The Crab imple-
mentation of Boxes that we use as a baseline corresponds to the proposal by
Gurfinkel and Chaki [11], that is, it uses a restricted form of LDDs, in which
nodes can only be bounds constraints.

For program analysis, Typed Decisions Graphs [18] give an alternate, more
concise representation of BDDs. They might be usable as a direct replacement
for LDDs, but how to extend them to handle RDDs is far from obvious since they
rely on representing a Boolean function to get good compression (by negating
arcs).

6 Conclusion

We have demonstrated the importance of well-chosen data structures for disjunc-
tive interval analysis. Our focus has been on the case of variables with integer
types, but an extension to rationals or floating point numbers is not difficult
(the main added complication is the need to identify split points as left- or
right-included, that is, to distinguish whether a range bound is included or not).

For simplicity, we have also assumed the use of integers of unlimited precision.
It would not be difficult to adapt the algorithms to the case of fixed-width inte-
gers, as the RDD representation is agnostic about the underlying representation
of intervals.

The use of a dedicated data structure (RDDs) for interval sets has led us
to a disjunctive interval analysis that is more efficient than the current LDD-
based alternative. The use of RDDs offers a more precise analysis of non-linear
arithmetic expressions, and it frees us from any dependence on a theory solver.
These advantages explain why we see gains in both precision and speed.

A next natural step is to explore the combination of Boxes with weakly
relational abstract domains. We hypothesize that, in practice, this provides an
avenue to obtain considerably greater expressiveness while still keeping analy-
sis tractable. For example, a product that includes the Zones abstract domain
should produce an efficient program analysis with the expressiveness of clock
decision diagrams [16].

Acknowledgements. We thank the three anonymous reviewers for their careful read-
ing of an earlier version of the paper, and their constructive suggestions for how to
improve it. Jorge Navas has been supported by the National Science Foundation under
grant number 1816936.

References

1. Apt, K.: Principles of Constraint Programming, Cambridge University Press, Cam-
bridge (2003). https://doi.org/10.1017/CBO9780511615320

https://doi.org/10.1017/CBO9780511615320

164 G. Gange et al.

2. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/
136035.136043

3. Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear arithmetic. In:
Proceedings of the 9th Conference on Formal Methods in Computer-Aided Design
(FMCAD 2009), pp. 53–60. IEEE Comp. Soc. (2009). https://doi.org/10.1109/
FMCAD.2009.5351143

4. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consis-
tency revisited. In: Proceedings of the Australian Conference on Artificial Intelli-
gence 2006. LNCS, vol. 4304, pp. 49–58. Springer (2006). https://doi.org/10.1007/
11941439 9

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Pro-
ceedings of the Sixth ACM Symposium on Principles of Programming Languages,
pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.567778

6. Cousot, P., Cousot, R., Mauborgne, L.: A scalable segmented decision tree abstract
domain. In: Manna, Z., Peled, D.A. (eds.) Time for Verification: Essays in Memory
of Amir Pnueli, LNCS, vol. 6200, pp. 72–95. Springer (2010). https://doi.org/10.
1007/978-3-642-13754-9 5

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, pp. 84–97. ACM Press (1978). https://doi.org/10.1145/
512760.512770

8. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) Formal Verification of Object-Oriented Software.
LNCS, vol. 6528, pp. 10–30. Springer (2011). https://doi.org/10.1007/978-3-642-
18070-5 2

9. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpre-
tation. Sci. Comput. Prog. 32, 177–210 (1998). https://doi.org/10.1016/S0167-
6423(97)00034-8

10. Groote, J.F., van de Pol, J.: Equational binary decision diagrams. In: Parigot, M.,
Voronkov, A. (eds.) Logic for Programming and Automated Reasoning, LNCS, vol.
1955, pp. 161–178. Springer (2000). https://doi.org/10.1007/3-540-44404-1 11

11. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: Cousot,
R., Martel, M. (eds.) Static Analysis: Proceedings of the 17th International Sym-
posium, LNCS, vol. 6337, pp. 287–303. Springer (2010). https://doi.org/10.1007/
978-3-642-15769-1 18

12. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning
using control flow. In: Levi, G. (ed.) Static Analysis, LNCS, vol. 1503, pp. 200–214.
Springer (1998). https://doi.org/10.1007/3-540-49727-7 12

13. Jeannet, B.: The BddApron logico-numerical abstract domains library (2009).
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron/

14. Jeannet, B., Miné, A.: A library of numerical abstract domains for static analysis.
In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, LNCS, vol. 5643,
pp. 661–667. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 52

15. Jensen, T.P.: Disjunctive strictness analysis. In: Proceedings of the 7th Annual
IEEE Symposium of Logic in Computer Science, pp. 174–185. IEEE Computer
Society (1992). https://doi.org/10.1109/LICS.1992.185531

16. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nordic J.
Comput. 6(3), 271–298 (1999)

https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1007/11941439_9
https://doi.org/10.1007/11941439_9
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1016/S0167-6423(97)00034-8
https://doi.org/10.1016/S0167-6423(97)00034-8
https://doi.org/10.1007/3-540-44404-1_11
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/3-540-49727-7_12
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron/
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1109/LICS.1992.185531

Disjunctive Interval Analysis 165

17. Marriott, K., Søndergaard, H.: Precise and efficient groundless analysis for logic
programs. ACM Lett. Prog. Lang. Syst. 2(1–4), 181–196 (1993). https://doi.org/
10.1145/176454.176519

18. Mauborgne, L.: Abstract interpretation using typed decision graphs. Sci. Comput.
Prog. 31(1), 91–112 (1998). https://doi.org/10.1016/s0167-6423(96)00042-1

19. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) Programming Languages and Systems: Proceedings
of the 14th European Symposium, LNCS, vol. 3444, pp. 5–20. Springer (2005).
https://doi.org/10.1007/978-3-540-31987-0 2

20. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) Programs as Data Objects, LNCS, vol. 2053, pp.
155–172. Springer (2001). https://doi.org/10.1007/3-540-44978-7 10

21. Miné, A.: The Octagon abstract domain. In: Burd, E., Aiken, P., Koschke, R. (eds.)
Proceedings of the Eighth Working Conference on Reverse Engineering, pp. 310–
319. IEEE Computer Society (2001). https://doi.org/10.1109/WCRE.2001.957836

22. Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) Verification, Model Check-
ing, and Abstract Interpretation, LNCS, vol. 3855, pp. 348–363. Springer (2006).
https://doi.org/10.1007/11609773 23

23. Møller, J., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision dia-
grams. In: Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic, LNCS,
vol. 1683, pp. 111–125. Springer (1999). https://doi.org/10.1007/3-540-48168-0 9

24. Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function
manipulation. In: Computer-Aided Design: Proceedings of the IEEE International
Conference, pp. 92–95. IEEE Computer Society (1990). https://doi.org/10.1109/
ICCAD.1990.129849

25. Strehl, K., Thiele, L.: Symbolic model checking of process networks using interval
diagram techniques. In: International Conference on Computer-Aided Design, pp.
686–692. ACM Press (1998). https://doi.org/10.1145/288548.289117

26. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional ter-
mination. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis, LNCS, vol. 8723,
pp. 302–318. Springer (2014). https://doi.org/10.1007/978-3-319-10936-7 19

https://doi.org/10.1145/176454.176519
https://doi.org/10.1145/176454.176519
https://doi.org/10.1016/s0167-6423(96)00042-1
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1007/11609773_23
https://doi.org/10.1007/3-540-48168-0_9
https://doi.org/10.1109/ICCAD.1990.129849
https://doi.org/10.1109/ICCAD.1990.129849
https://doi.org/10.1145/288548.289117
https://doi.org/10.1007/978-3-319-10936-7_19

	Disjunctive Interval Analysis
	1 Introduction
	2 Range Decision Diagrams
	3 Implementing Boxes with RDDs
	3.1 Lattice Operations
	3.2 Variable Hoisting
	3.3 Arithmetic Operators
	3.4 Widening

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Performance
	4.3 Precision

	5 Related Work
	6 Conclusion
	References

