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Preface

This volume contains the proceedings of the 28th edition of the International Static
Analysis Symposium, SAS 2021, held during October 17–19, 2021, in Chicago, USA.
The conference was a co-located event of SPLASH, the ACM SIGPLAN conference
on Systems, Programming, Languages, and Applications: Software for Humanity.
Travel restrictions as a result of the COVID-19 pandemic forced us to organize the
conference in hybrid form.

Static analysis is widely recognized as a fundamental tool for program verification,
bug detection, compiler optimization, program understanding, and software mainte-
nance. The series of Static Analysis Symposia has served as the primary venue for the
presentation of theoretical, practical, and application advances in the area. Previous
symposia were held in Chicago (virtual), Porto, Freiburg, New York, Edinburgh,
Saint-Malo, Munich, Seattle, Deauville, Venice, Perpignan, Los Angeles, Valencia,
Kongens Lyngby, Seoul, London, Verona, San Diego, Madrid, Paris, Santa Barbara,
Venice, Pisa, Paris, Aachen, Glasgow, and Namur.

SAS 2021 called for papers on topics including, but not limited to, abstract domains,
abstract interpretation, automated deduction, data flow analysis, debugging techniques,
deductive methods, emerging applications, model checking, data science, program
optimizations and transformations, program synthesis, program verification, security
analysis, tool environments and architectures, theoretical frameworks, and type
checking. Authors were encouraged to submit artifacts accompanying their papers to
strengthen evaluations and the reproducibility of results. A new feature this year
encouraged short submissions on experience with static analysis tools, industrial
reports, and case studies, along with tool papers, brief announcements of work in
progress, well-motivated discussions of new questions or new areas, etc.

The conference employed a double-blind reviewing process with an author response
period, supported on EasyChair. The Program Committee used a two-round review
process, where each submission received at least three first-round reviews, which the
authors could then respond to. This year, SAS had 40 submitted papers (33 regular, 7
short). Of these, 22 papers were accepted for publication (18 regular, 4 short) and
appear in this volume. The submitted papers were authored by researchers around the
world: from France, the USA, Canada, Germany, the Netherlands, Japan, India, China,
Australia, and several other countries. The author response period was followed by a
two-week Program Committee discussion where consensus was reached on the papers
to be accepted, after a thorough assessment of the relevance and the quality of the
work.

We view the artifacts as being equally important for the success and development of
static analysis as the written papers. It is important for researchers to be able to
independently reproduce experiments, which is greatly facilitated by having the orig-
inal artifacts available. Suvam Mukherjee, the artifact committee chair, set up the
artifact committee and introduced three new features in the artifact review process



which we expect will be carried through in future editions of SAS. The first is the
ability to submit Docker images as artifacts, in addition to Virtual Machine images.
Second, a public archival repository for the artifacts has been set up on Zenodo, hosted
at https://zenodo.org/communities/sas-2021/. Third, artifacts have badges awarded at
three levels: Validated (correct functionality), Extensible (with source code), and
Available (on the Zenodo repository). The artwork for the badges is by Arpita Biswas
(Harvard University) and Suvam Mukherjee. Each artifact was evaluated by three
members of the artifact evaluation committee. SAS had 20 artifact submissions, of
which 16 were accepted, a high percentage.

In addition to the contributed papers, SAS 2021 also featured three invited talks by
distinguished researchers: Gerard Holzmann (Nimble Research, USA), Cristina
Cifuentes (Oracle Labs, Australia), and Mooly Sagiv (Tel Aviv University, Israel). The
Program Committee also selected the recipient of the Radhia Cousot Young Researcher
Best Paper Award, given to a paper with a significant contribution from a student. This
award was instituted in memory of Radhia Cousot, for her fundamental contributions to
static analysis as well as one of the main promoters and organizers of the SAS series of
conferences.

The SAS program would not have been possible without the efforts of many people.
We thank them all. The members of the Program Committee, the artifact evaluation
committee and the external reviewers worked tirelessly to select a strong program,
offering constructive and helpful feedback to the authors in their reviews. The orga-
nizing committee of SPLASH 2021, chaired by Hridesh Rajan (Iowa State University,
USA), and the hybridization committee, chaired by Jonathan Aldrich (CMU, USA),
were tremendously helpful in navigating the conference through these difficult times.
The SAS steering committee provided much needed support and advice. Finally, we
thank Springer for their support of this event as well as for publishing these
proceedings.

October 2021 Cezara Drăgoi
Suvam Mukherjee
Kedar Namjoshi
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Oracle Parfait: The Flavour of Real-World
Vulnerability Detection and Intelligent

Configuration

Cristina Cifuentes

Oracle Labs
cristina.cifuentes@oracle.com

Abstract. The Parfait static code analysis tool focuses on detecting vulnera-
bilities that matter in C, C++, Java and Python languages. Its focus has been on
key items expected out of a commercial tool that lives in a commercial
organisation, namely, precision of results (i.e., high true positive rate), scala-
bility (i.e., being able to run quickly over millions of lines of code), incremental
analysis (i.e., being able to run over deltas of the code quickly), and usability
(i.e., ease of integration into standard build processes, reporting of traces to the
vulnerable location, etc). Today, Parfait is used by thousands of developers at
Oracle worldwide on a day-to-day basis.
In this presentation we’ll sample a flavour of Parfait – we explore some real

world challenges faced in the creation of a robust vulnerability detection tool,
look into two examples of vulnerabilities that severely affected the Java platform
in 2012/2013 and most machines since 2017, and conclude by recounting what
matters to developers for integration into today’s continuous integration and
continuous delivery (CI/CD) pipelines. Key to deployment of static code anal-
ysis tools is configuration of the tool itself – we present our experiences with use
of machine learning to automatically configure the tool, providing users with a
better out-of-the-box experience.



Interactive Code Analysis

Gerard J. Holzmann

Nimble Research
gholzmann@acm.org

Abstract. Static code analyzers have become indispensable especially for safety
critical software development. But, they do have a few drawbacks as well.
For starters, and for good reason, the commercial tools can be quite slow, and

they are certainly not suitable for interactive use. I’ll describe a new tool called
Cobra, that I’m currently developing, which can resolve types of queries
interactively, even on very large code bases. Queries can be scripted or prede-
fined in libraries. The tool is designed to be easy to use, and is freely available.



Pointer Analysis of Bytecode Programs
for Effective Formal Verification of Smart

Contracts

John Toman1, James Wilcox1, and Mooly Sagiv2

1 Certora john
james@certora.com
2 Tel Aviv University
msagiv@acm.org

Abstract. Low-level bytecode programs are difficult to handle by formal rea-
soning, particularly in the case of sound and precise reasoning about memory
operations. There is often no distinguished allocation operation: high-level
object allocations are affected via pointer arithmetic. Type information is lost in
the compilation: the abstraction of memory is simply a flat unstructured array of
bytes. To recover high-level information, a sound pointer analysis is an
invaluable resource. Such an analysis enables optimizations and elucidates
program behavior that would otherwise be obscured in a low-level setting. This
talk describes a new static analysis algorithm we have developed for sound
pointer analysis for low-level bytecode. We make this broad problem tractable
by first restricting our focus to bytecode programs that manage memory via a
bump allocator that operates on a distinguished free pointer. In other words, we
target bytecode programs where memory is divided into disjoint regions, each of
which corresponds to an “object.” Our analysis algorithm uses a novel technique
for mapping updates of a distinguished free pointer to provably non-aliased
abstract addresses, which enables standard pointer analysis techniques. Our
static pointer analysis uses a “trust but verify” approach: we build our analysis
on the expectation that the compiler has properly managed memory via the free
pointer/bump allocator, but at each step, we verify that regions of memory
allocated via the bump allocator are properly disjoint, i.e., every read/write of
memory provably accesses only one, distinct region. This talk discusses our
practical experience using this analysis in verifying smart contracts that run on
the Ethereum Virtual Machine. In particular, we outline multiple high-profile
memory management bugs uncovered by our analysis, and the downstream
optimizations and precision improvements unlocked by our pointer analysis
results.
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Fast and Efficient Bit-Level Precision
Tuning

Assalé Adjé1, Dorra Ben Khalifa1(B), and Matthieu Martel1,2

1 LAMPS Laboratory, University of Perpignan, 52 Av. P. Alduy, Perpignan, France
{assale.adje,dorra.ben-khalifa,matthieu.martel}@univ-perp.fr

2 Numalis, Cap Omega, Rond-point Benjamin Franklin, Montpellier, France

Abstract. In this article, we introduce a new technique for precision
tuning. This problem consists of finding the least data types for numerical
values such that the result of the computation satisfies some accuracy
requirement. State of the art techniques for precision tuning use a trial-
and-error approach. They change the data types of some variables of the
program and evaluate the accuracy of the result. Depending on what is
obtained, they change more or less data types and repeat the process.
Our technique is radically different. Based on semantic equations, we
generate an Integer Linear Problem (ILP) from the program source code.
Basically, this is done by reasoning on the most significant bit and the
number of significant bits of the values which are integer quantities.
The integer solution to this problem, computed in polynomial time by a
classical linear programming solver, gives the optimal data types at the
bit level. A finer set of semantic equations is also proposed which does
not reduce directly to an ILP problem. So we use policy iteration to find
the solution. Both techniques have been implemented and we show that
our results encompass the results of state-of-the-art tools.

Keywords: Static analysis · Computer arithmetic · Integer linear
problems · Numerical accuracy · Policy iteration

1 Introduction

Let us consider a program P computing some numerical result R, typically but
not necessarily in the IEEE754 floating-point arithmetic [1]. Precision tuning
then consists of finding the smallest data types for all the variables and expres-
sions of P such that the result R has some desired accuracy. These last years,
much attention has been paid to this problem [8,11,14,16,17,24]. Indeed, preci-
sion tuning makes it possible to save memory and, by way of consequence, it has
a positive impact on the footprint of programs concerning energy consumption,
bandwidth usage, computation time, etc.

A common point to all the techniques cited previously is that they fol-
low a trial-and-error approach. Roughly speaking, one chooses a subset S of
the variables of P , assigns to them smaller data types (e.g. binary32 instead
c© Springer Nature Switzerland AG 2021
C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 1–24, 2021.
https://doi.org/10.1007/978-3-030-88806-0_1
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2 A. Adjé et al.

of binary64 [1]) and evaluates the accuracy of the tuned program P ′. If the
accuracy of the result returned by P ′ is satisfying then new variables are included
in S or even smaller data types are assigned to certain variables already in S (e.g.
binary16). Otherwise, if the accuracy of the result of P ′ is not satisfying, then
some variables are removed from S. This process is applied repeatedly, until a sta-
ble state is found. Existing techniques differ in their way to evaluate the accuracy
of programs, done by dynamic analysis [14,16,17,24] or by static analysis [8,11]
of P and P ′. They may also differ in the algorithm used to define S, delta debug-
ging being the most widespread method [24]. A notable exception is FPTuner [8]
which relies on a local optimization procedure by solving quadratic problems for
a given set of candidate datatypes. A more exhaustive state-of-the-art about pre-
cision tuning techniques is given in [7].

Anyway all these techniques suffer from the same combinatorial limitation: If
P has n variables and if the method tries k different data types then the search
space contains kn configurations. They scale neither in the number n of variables
(even if heuristics such as delta debugging [24] or branch and bound [8] reduce
the search space at the price of optimality) or in the number k of data types
which can be tried. In particular, bit level precision tuning, which consists of
finding the minimal number of bits needed for each variable to reach the desired
accuracy, independently of a limited number k of data types, is not an option.

So the method introduced in this article for precision tuning of programs is rad-
ically different. Here, no trial-and-error method is employed. Instead, the accuracy
of the arithmetic expressions assigned to variables is determined by semantic equa-
tions, in function of the accuracy of the operands. By reasoning on the number of
significant bits of the variables of P and knowing the weight of their most signifi-
cant bit thanks to a range analysis performed before the tuning phase (see Sect. 3),
we are able to reduce the problem to an Integer Linear Problem (ILP) which can be
optimally solved in one shot by a classical linear programming solver (no iteration).
Concerning the number n of variables, the method scales up to the solver limita-
tions and the solutions are naturally found at the bit level, making the parameter
k irrelevant. An important point is that the optimal solution to the continuous lin-
ear programming relaxation of our ILP is a vector of integers, as demonstrated in
Sect. 4.2. By consequence, we may use a linear solver among real numbers whose
complexity is polynomial [25] (contrarily to the linear solvers among integerswhose
complexity is NP-Hard [22]). This makes our precision tuning method solvable in
polynomial-time, contrarily to the existing exponential methods. Next, we go one
step further by introducing a second set of semantic equations. These new equa-
tions make it possible to tune even more the precision by being less pessimistic on
the propagation of carries in arithmetic operations. However the problem does not
reduce any longer to an ILP problem (min and max operators are needed). Then
we use policy iteration (PI) [9] to find efficiently the solution.

Both methods have been implemented inside a tool for precision tuning
named POP. Formerly, POP was expressing the precision tuning problem as
a set of first order logical propositions among relations between linear integer
expressions [2–4,6]. An SMT solver (Z3 in practice [21]) was used repeatedly to
find the existence of a solution with a certain weight expressing the number of



Fast and Efficient Bit-Level Precision Tuning 3

significant bits (nsb) of variables. In the present article, we compare experimen-
tally our new methods to the SMT based method previously used by POP and
to the Precimonious tool [14,24]. These experiments on programs coming from
mathematical libraries or other applicative domains such as IoT [2,3] show that
the technique introduced in this article for precision tuning clearly encompasses
the state of the art techniques.

The rest of this article is organized as follows. In the next section, we provide
a motivating example. We then present in Sect. 3 some essential background on
the functions needed for the constraint generation and also we detail the set
of constraints for both ILP and PI methods. Section 4 presents the proofs of
correctness. We end up in Sect. 5 by showing that our new technique exhibits
very good results in practice before concluding in Sect. 6.

2 Running Example

A motivating example to better explain our method is given by the code snippet
of Fig. 1. In this example, we aim at modeling the movement of a simple pendu-
lum without damping. Let l = 0.5 m be the length of this pendulum, m = 1 kg
its mass and g = 9.81m · s−2 Newton’s gravitational constant. We denote by
θ the tilt angle in radians as shown in Fig. 1 (initially θ = π

4 ). The Equation
describing the movement of the pendulum is given in Eq. (1).

m · l · d2θ

dt2
= −m · g · sin θ (1)

Equation (1) being a second order differential equation. We need to transform it
into a system of two first order differential equations for resolution. We obtain
y1 = θ and y2 = dθ

dt . By applying Euler’s method to these last equations, we
obtain Eq. (2) implemented in Fig. 1.

dy1

dt
= y2 and

dy2

dt
= −g

l
· sin y1 (2)

The key point of our technique is to generate a set of constraints for each
statement of our imperative language introduced further in Sect. 3. For our exam-
ple, we suppose that all variables, before POP analysis, are in double precision
(source program in the top left corner of Fig. 1) and that a range determination is
performed by dynamic analysis on the program variables (we plan to use a static
analyzer in the future). POP assigns to each node of the program’s syntactic tree
a unique control point in order to determine easily the number of significant bits
of the result as mentioned in the bottom corner of Fig. 1. Some notations can be
highlighted about the structure of POP source code. For instance, the annota-
tion g�1 = 9.81�0 denotes that this instance of g has the unique control point �1.
As well, we have the statement require nsb(y2,20) which informs the tool that
the user wants to get on variable y2 only 20 significant bits (we consider that a
result has n significants if the relative error between the exact and approximated
results is less than 2−n). Finally, the minimal precision needed for the inputs
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1 g = 9.81; l = 0.5;
2 y1 = 0.785398; y2 = 0.785398;
3 h = 0.1; t = 0.0;
4 while (t <10.0) {
5 y1new = y1 + y2 * h ;
6 aux1 = sin(y1) ;
7 aux2 = aux1 * h * g / l;
8 y2new = y2 - aux2;
9 t = t + h;

10 y1 = y1new; y2 = y2new;
11 };
12 require_nsb(y2 ,20);

l
θ

1 g�1 = 9.81�0 ; l�3 = 0.5�2 ;

2 y1�5 = 0.785398�4 ; y2�7 = 0.785398�6 ;

3 h�9 = 0.1�8 ; t�11 = 0.0�10 ;

4 while (t�13 <�15 10.0�14 )�59 {

5 y1new�24 = y1�17 +�23 y2�19 *�22 h�21 ;

6 aux1�28 = sin(y1�26 )�27 ;

7 aux2�40 = aux1�30 *�39 h�32

8 *�38 g�34 /�37 l�36 ;

9 y2new�46 = y2�42 -�45 aux2�44 ;

10 t�52 = t�48 +�51 h�50 ;

11 y1�55 = y1new�54 ; y2�58 = y2new�57 ;
12 };

13 require_nsb(y2 ,20)�61 ;

1 g|20| = 9.81|20|; l|20| = 1.5|20|;
2 y1|29| = 0.785398|29|; y2|21| =

0.0|21|;
3 h|21| = 0.1|21|; t|21| = 0.0|21|;
4 while (t<1.0) {
5 y1new |20| = y1|21| +|20| y2|21|
6 *|22| h|21|;
7 aux1 |20| = sin(y1|29|) |20|;
8 aux2 |20| = aux1 |19| *|20| h|18|
9 *|19| g|17| /|18|l|17|;

10 y2new |20| = y2|21| -|20| aux2 |18|;
11 t|20| = t|21| +|20| h|17|;
12 y1|20| = y1new |20|; y2|20|= y2new

|20|;
13 };
14 require_nsb(y2 ,20);

Fig. 1. Top left: source program. Top right: pendulum movement for θ = π
4
. Bottom

left: program annotated with labels and with inferred accuracies (right).

and intermediary results satisfying the user assertion is observed on the bottom
right corner of Fig. 1. In this code, if we consider for instance lines 5 and 6,
then y1new|20| means that the variable needs 20 significant bits at this point.
Similarly, y1 and y2 need 21 bits each and the addition requires 20 bits.

In the next section, we detail the ILP and PI formulations for precision tuning
implemented in POP. Also, we show the nature of constraints generated for the
pendulum example and consequently the new data types already presented in
Fig. 1. Note that our tool achieves precision tuning only. The inputs are the
program and the ranges over the variables of the program. We insist on the fact
that POP is not able to produce those ranges or to verify the correctness of
the input ranges. Those ranges are understood as intervals. This range inference
is completely external to our tool and has to be performed by an invariant
generator or an analyzer. To simplify the implementation, we use a dynamic
analysis which produces an under-approximation under the form of intervals.
Static analyzers with sophisticated abstract domains could be used such as [10].
In particular the efficiency of our techniques for loops depends on the precision
of the range analysis for loops. The sensibility of our precision tuning to the
estimate of the ranges depends on the following point. We use in the tuning
phase the ufp of the values. So we are sensible to the order of magnitude of the
ranges but not to the exact values. For example, we will obtain the same tuning
with the ranges [3.4, 6.1] and [2.5, 7.8]. But, obviously we get a worst tuning if
we use [0.0, 1000.0].
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3 Generation of Constraints for Bit-Level Tuning

In this section, we start with providing essential definitions for understanding the
rest of the article. Also, we define a simple imperative language from which we
generate semantic equations in order to determine the least precision needed for
the program numerical values. Then, we will focus on the two sets of constraints
obtained when using the simple ILP and the more complex PI formulation which
optimizes the carry bits that propagate throughout computations.

3.1 Preliminary Notations and Definitions

Our technique is independent of a particular computer arithmetic (e.g. IEEE754
[1] and POSIT [15]). In fact, we manipulate numbers for which we know the
unit in the first place (ufp) and the number of significant digits (nsb). We also
assume that the constants occurring in the source codes are exact and we bound
the errors introduced by the finite precision computations. Then, in the following,
ufpe(x) and nsbe(x) denote the ufp and nsb of the error on x (note that nsbe(x)
may be infinite in some cases). These functions are defined hereafter and a more
intuitive presentation is given in Fig. 2.

Unit in the First Place. The unit in the first place of a real number x (possibly
encoded up to some rounding mode by a floating-point or a fixpoint number) is
given in Eq. (3). This function is independent of the representation of x.

ufp(x) =

{
min{i ∈ Z : 2i+1 > |x|} = �log2(|x|)� if x �= 0,
0 if x = 0.

(3)

Number of Significant Bits. Intuitively, nsb(x) is the number of significant
bits of x. Let x̂ the approximation of x in finite precision and let ε(x) = |x − x̂|
be the absolute error. Following Parker [23], if nsb(x) = k, for x �= 0, then

ε(x) ≤ 2ufp(x)−k+1 (4)

In addition, if x = 0 then nsb(x) = 0. For example, if the exact binary value
1.0101 is approximated by either x = 1.010 or x = 1.011 then nsb(x) = 3.
Unit in the Last Place. The unit in the last place ulp of x is defined by

ulp(x) = ufp(x) − nsb(x) + 1. (5)

Computation Errors. The unit in the first place of the error on x is ufpe(x) =
ufp(x) − nsb(x). The number of significant bits of the computation error on x
is denoted nsbe(x). It is used to optimize the function ξ defined in Eq. (6). As
mentioned earlier, we assume that there is no error on any constant c arising
in programs, i.e. nsbe(c) = 0. Nevertheless, the nsbe of the results of elementary
operations may be greater than 0. For instance, if we add two constants c1, c2
in x such that ufpe(c1) ≥ ufpe(c2) then nsbe(x) = ufpe(c1)− (ufpe(c2)− nsbe(c2))
which corresponds to the nsb of the resulting error (see Fig. 2). The unit in
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the last place of the computation error on x is denoted ulpe(x) and we have
ulpe(x) = ufpe(x) − nsbe(x) + 1.
Carry Bit. During an operation between two numbers c1 and c2, a carry bit
can be propagated through the operation. We model the carry bit by a function
denoted ξ computed as shown in Fig. 2:

+

ξ = 0

+

ξ = 1

ufpe

ulpe

ufpe

ulpe

1 carry bit

nsb

ufp ufpe

nsbe

ulpeulp

=

=

Fig. 2. Schematic representation of
ufp, nsb and ulp for values and
errors. Representation of the carry
bit function ξ.

If the ulp of one of the two operands c1
or c2 is greater than the ufp of the other
one (or conversely) then c1 and c2 are not
aligned and ξ = 0 (otherwise ξ = 1). Recall
that, for a number x, we have ufpe(x) =
ufp(x) − nsb(x). In Sect. 3.3, we will use the
ξ function to optimize the error terms. The
over-approximation of ξ by supposing that
it is always equal to 1 leads to the analysis
of Sect. 3.2. However, when many operations
are done in a program which has to compute
with some tens of nsb, adding one bit is far
from being negligible. Consequently, a refined
analysis is presented in Sect. 3.3 where ξ is
formulated by min and max operators. Let
c1 and c2 be the operands of some operation
whose result is x. The optimized ξ function
of Sect. 3.3 is given by

ξ(x)(c1, c2) =

⎧⎪⎨
⎪⎩

0 ulpe(c1) ≥ ufpe(c2),

0 ulpe(c2) ≥ ufpe(c1),

1 otherwise.

In Fig. 5, an equivalent yet less intuitive def-
inition of ξ is used which corresponds to Eq. (6) in Lemma 1.

Lemma 1. Let c1 and c2 be the operands of some operation whose result is x.

ξ(x)(c1, c2) =

{
0 ufpe(c1) − nsbe(c1) ≥ ufp(c2) − nsb(c2) or conversely,

1 otherwise.
(6)

� ∈ Lab x ∈ Id � ∈ {+, -, ×, ÷} math ∈ {sin, cos, tan, arcsin, log, . . .}
Expr � e : e ::= c#p� | x� | e

�1
1 �� e

�2
2 | math(e�1 )� | sqrt(e�1 )�

Cmd � c : c ::= c
�1
1 ; c�2

2 | x =� e�1 | while� b�0 do c
�1
1 | if � b�0 then c

�1
1 else c�2 | require nsb(x, n)�

Fig. 3. Language of input programs.

3.2 Integer Linear Problem Formulation

First, we define in Fig. 3 the simple imperative language in which our input
programs are written.
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We denote by Id the set of identifiers and by Lab the set of control points
of the program as a means to assign to each element e ∈ Expr and c ∈ Cmd
a unique control point � ∈ Lab. First, in c#p, p indicates the initial number
of significant bits of the constant c in the source code. Next, the statement
require nsb(x, n)� indicates the minimal number of significant bits n that a
variable x must have at a control point �. The rest of the grammar is standard.

As we have mentioned, we are able to reduce the problem of determining the
lowest precision on variables and intermediary values in programs to an Integer
Linear Problem (ILP) by reasoning on their unit in the first place (ufp) and the
number of significant bits (nsb). In addition, we assign to each control point � an
integer variable nsb(�) corresponding to the nsb of the arithmetic expressions.
Note that nsb(�) is determined by solving the ILP generated by the rules of
Fig. 4. Let us also mention that, in order to avoid cumbersome notations, the
constraints introduced hereafter assume that the programs handle scalar values
instead of the intervals given by the range analysis. A generalisation to intervals
is introduced in [18] for a comparable (yet not linear) set of constraints.

Let us now focus on the rules of Fig. 4 where � : Id → Id × Lab is an
environment which relates each identifier x to its last assignment x�: Assuming
that x :=�e�1 is the last assignment of x, the environment � maps x to x�. Then,
E [e] � generates the set of constraints for an expression e ∈ Expr in the envi-
ronment �. In the sequel, we formally define these constraints for each element
of our language. No constraint is generated for a constant c#p as mentioned in
Rule (Const) of Fig. 4. For Rule (Id) of a variable x�, we require that the nsb
at control point � is less than its nsb in the last assignment of x given in �(x).
For a binary operator � ∈ {+, −, ×, ÷}, we first generate the set of constraints
E [e�1

1 ]� and E [e�2
2 ]� for the operands at control points �1 and �2. Considering

Rule (Add), the result of the addition of two numbers is stored in control point
�. Recall that a range determination is performed before the accuracy analysis,
ufp(�), ufp(�1) and ufp(�2) are known at constraint generation time.

In the present ILP of Fig. 4, we over-approximate the function ξ by
ξ(�)(�1, �2) = 1 for all �, �1 and �2. To wrap up, for the addition (Rule (Add)),
we have the nsb(�) = ufp(�)−ufpe(�). More precisely, let us consider the addition
c�1
1 +� c�2

2 and let us assume that prec(�) denotes the precision of this operation.
The error ε(�) is bound by ε(c�1

1 +� c�2
2 ) ≤ ε(c�1

1 ) + ε(c�2
2 ) + 2ufp(c1+c2)−prec(�)and

ufpe(�) = max
(
ufp(�1) − nsb(�1), ufp(�2) − nsb(�2), ufp(l) − prec(�)

)
+ ξ(�)(�1, �2)

(7)
Since nsb(�) ≤ prec(�), we may get rid of the last term in Eq. (7) and the two
constraints generated for Rule (ADD) are derived from Eq. (8).

nsb(�) ≤ ufp(�) − max
(
ufp(�1) − nsb(�1), ufp(�2) − nsb(�2)

) − ξ(�)(�1, �2) (8)
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E [c#p�]� = ∅ (Const) E [x�]� =
{
nsb(�(x)) ≥ nsb(�)

}
(Id)

E [e�1
1 +� e�2

2 ]� = E [e�1
1 ]� ∪ E [e�2

2 ]�
∪

{nsb(�1) ≥ nsb(�) + ufp(�1) − ufp(�) + ξ(�)(�1, �2),
nsb(�2) ≥ nsb(�) + ufp(�2) − ufp(�) + ξ(�)(�1, �2)}

(Add)

E [e�1
1 −� e�2

2 ]� = E [e�1
1 ]� ∪ E [e�2

2 ]�
∪

{nsb(�1) ≥ nsb(�) + ufp(�1) − ufp(�) + ξ(�)(�1, �2),
nsb(�2) ≥ nsb(�) + ufp(�2) − ufp(�) + ξ(�)(�1, �2)}

(Sub)

E [e�1
1 ×� e�2

2 ]� = E [e�1
1 ]� ∪ E [e�2

2 ]�
∪

{nsb(�1) ≥ nsb(�) + ξ(�)(�1, �2) − 1, nsb(�2) ≥ nsb(�) + ξ(�)(�1, �2) − 1}
(Mult)

E [e�1
1 ÷� e�2

2 ]� = E [e�1
1 ]� ∪ E [e�2

2 ]�
∪

{nsb(�1) ≥ nsb(�) + ξ(�)(�1, �2) − 1, nsb(�2) ≥ nsb(�) + ξ(�)(�1, �2) − 1}
(Div)

E
[√

e�1
�
]
� = E [e�1

1 ]� ∪ {
nsb(�1) ≥ nsb(�)

}
(Sqrt)

E
[
φ e�1

)�
]
� = E [e�1

1 ]� ∪ {
nsb(�1) ≥ nsb(�)+ϕ

}
with φ ∈ {sin, cos, tan, log, . . .} (Math)

C [
x:=�e�1

]
� = C, � [x �→ �]

)
where C = E [e�1

1 ]� ∪ {nsb(�1) ≥ nsb(�)} (Assign)

C
[
c�1
1 ;c�2

2

]
� = C1 ∪ C2, �2

)
where C1, �1

)
= C

[
c�1
1

]
� and C2, �2

)
= C

[
c�2
2

]
�1

(Seq)

C[if� e�0 then c�1 else c�2 ] � = (C1 ∪ C2 ∪ C3, �
′)

where

∣∣∣∣∣
∀x ∈ Id, �′(x) = �, (C1, �1) = C[c�1

1 ] �, (C2, �2) = C[c�2
2 ] �,

C3 =
⋃

x∈Id

{nsb(�1(x)) ≥ nsb(�), nsb(�2(x)) ≥ nsb(�)}
(Cond)

C[while� e�0 do c�1 ] � = (C1 ∪ C2, �
′)

where

∣∣∣∣∣
∀x ∈ Id, �′(x) = �, (C1, �1) = C[c�1

1 ] �′

C2 =
⋃

x∈Id

{nsb(�(x)) ≥ nsb(�), nsb(�1(x)) ≥ nsb(�)}
(While)

C[require nsb(x, p)�]� =
{
nsb(�(x)) ≥ p

}
(Req)

ξ(�)(�1, �2) = 1

Fig. 4. ILP constraints with pessimistic carry bit propagation ξ = 1.

Rule (Sub) for the subtraction is obtained similarly to the addition case. For Rule
(Mult) of multiplication (and in the same manner Rule(Div)), the reasoning
mimics the one of the addition. Let c1 and c2 be two numbers and c the result
of their product, c = c�1

1 ×� c�2
2 . We denote by ε(c1), ε(c2) and ε(c) the errors
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on c1, c2 and c, respectively. The error ε(c) of this multiplication is ε(c) =
c1 · ε(c2) + c2 · ε(c1) + ε(c1) · ε(c2). These numbers are bounded by

2ufp(c1) ≤ c1 ≤ 2ufp(c1)+1 and 2ufp(c1)−nsb(c1) ≤ ε(c1) ≤ 2ufp(c1)−nsb(c1)+1

2ufp(c2) ≤ c2 ≤ 2ufp(c2)+1 and 2ufp(c2)−nsb(c2) ≤ ε(c2) ≤ 2ufp(c2)−nsb(c2)+1

2ufp(c1)+ufp(c2)−nsb(c2) + 2ufp(c2)+ufp(c1)−nsb(c1) ≤ ε(c) ≤ 2ufp(c)−nsb(c)+1

+2ufp(c1)+ufp(c2)−nsb(c1)−nsb(c2)

(9)

We get rid of the last term 2ufp(c1)+ufp(c2)−nsb(c1)−nsb(c2) of the error ε(c) which
is strictly less than the former two ones. By assuming that ufp(c1 + c2) = ufp(c)
and by reasoning on the exponents, we obtain the equations of Rule (Mult).

nsb(�1) ≥ nsb(�) + ξ(�)(�1, �2) − 1 and nsb(�2) ≥ nsb(�) + ξ(�)(�1, �2) − 1 .

The accuracy of math functions depends on each implementation (for exam-
ple this is not in the IEEE754 Standard). It is then difficult to propose something
independent of the user’s library. Then, for the elementary functions such as log-
arithm, exponential and the hyperbolic and trigonometric functions gathered in
Rule (Math), each implementation has its own nsb which we have to know to
model the propagation of errors in our analyses. To cope with this limitation,
we consider that each elementary function introduces a loss of precision of ϕ
bits, where ϕ ∈ N is a parameter of the analysis and consequently of our tool,
POP. In future work, we plan to reverse the question and to let the tool find
the minimal accuracy needed for functions by including their accuracy in the
constraint systems.

The rules of commands are rather classical, we use control points to distin-
guish many assignments of the same variable and also to implement joins in
conditions and loops. Given a command c and an environment �, C[c] � returns
a pair (C, �′) made of a set C of constraints and of a new environment �′. The
function C is defined by induction on the structure of commands in Figs. 4 and 5.
For conditionals, we generate the constraints for the then and else branches
plus additional constraints to join the results of both branches. Currently, we
do not take care of the guards. As a result, we analyze both the then and else
branches of the if statement with the whole environment. This is correct but it
is a source of imprecision. Concerning loops, we relate the number of significants
bits at the end of the body to the nsb of the same variables and the beginning
of the loop as shown in Rule (While).

Back to Line 5 of the pendulum program of Sect. 2, we generate seven con-
straints as shown in Eq. (10).

C1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nsb(�17) ≥ nsb(�23) + (−1) + ξ(�23)(�17, �22) − (−1),
nsb(�22 ≥ nsb(�23 + 0 + ξ(�23)(�17, �22) − (1),
nsb(�19) ≥ nsb(�22) + ξ(�22)(�19, �21) − 1,
nsb(�21) ≥ nsb(�22) + ξ(�22)(�19, �21) − 1,
nsb(�23) ≥ nsb(�24), ξ(�23)(�17, �22) ≥ 1, ξ(�22)(�19, �21) ≥ 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

The first two constraints are for the addition. As mentioned previously, the ufp
are computed by a prior range analysis. Then, at constraint generation time,
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they are constants. For our example, ufp(�17) = −1. This quantity occurs in the
first constraints. The next two constraints are for the multiplication. The fifth
constraint nsb(�23) ≥ nsb(�24) is for the assignment and the last two constraints
are for the constant functions ξ(�23)(�17, �22) and ξ(�22)(�19, �21), respectively for
the addition and multiplication. For a user requirement of 20 bits on the variable
y2 (all variables are in double precision initially), POP succeeds in tuning the
majority of variables of the pendulum program into single precision with a total
number of bits at bit level equivalent to 274 (originally the program used 689
bits). The new mixed precision formats obtained are: y1new|20| = y1|21| +|20|
y2|22| ×|22| h|22|.

3.3 Policy Iteration for Optimized Carry Bit Propagation

The policy iteration algorithm is used to solve nonlinear fixpoint equations when
the function is written as the infimum of functions for which a fixpoint can
be easily computed. The infimum formulation makes the function not being
differentiable in the classical sense. The one proposed in [9] to solve smallest
fixpoint equations in static analysis requires the fact that the function is order-
preserving to ensure the decrease of the intermediate solutions provided by the
algorithm. In this article, because of the nature of the semantics, we propose a
policy iterations algorithm for a non order-preserving function.

More precisely, let F be a map from a complete lattice L to itself such
that F = infπ∈Π fπ. Classical policy iterations solve F (x) = x by generating a
sequence (xk)k such that fπk

(xk) = xk and xk+1 < xk. The set Π is called the
set of policies and fπ a policy map (associated to π). The set of policy maps
has to satisfy the selection property meaning that for all x ∈ L, there exists
π ∈ Π such that F (x) = fπ(x). This is exactly the same as for each x ∈ L, the
minimization problem Minπ∈Π fπ(x) has an optimal solution. If Π is finite and
F is order-preserving, policy iterations converge in finite time to a fixpoint of
F . The number of iterations is bounded from above by the number of policies.
Indeed, a policy cannot be selected twice in the running of the algorithm. This
is implied by the fact that the smallest fixpoint of a policy map is computed. In
this article, we adapt policy iterations to the problem of precision tuning. The
function F here is constructed from inequalities depicted in Fig. 4 and Fig. 5.
We thus have naturally constraints of the form F (x) ≤ x. We will give details
about the construction of F at Proposition 1. Consequently, we are interested
in solving:

Min
nsb,nsbe

∑
�

nsb(�)s.t.F

(
nsb
nsbe

)
≤

(
nsb
nsbe

)
nsb ∈ N

Lab, nsbe ∈ N
Lab (11)

Let ξ : Lab → {0, 1}. We write S1
ξ the system of inequalities depicted in Fig. 4

and S2
ξ the system of inequalities presented at Fig. 5. Note that the final system

of inequalities is Sξ = S1
ξ ∪ S2

ξ meaning that we add new constraints to S1
ξ . If

the system S1
ξ is used alone, ξ is the constant function equal to 1. Otherwise, ξ

is defined by the formula at the end of Fig. 5.
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E ′[c#p�]� =
{
nsbe(�) = 0

}
(Const′) E ′[x�]� =

{
nsbe(�(x)) ≥ nsbe(�)

}
(Id′)

E ′[e�1
1 +� e�2

2 ]� = E ′[e�1
1 ]� ∪ E ′[e�2

2 ]� (Add′)
∪⎧⎨

⎩
nsbe(�) ≥ nsbe(�1), nsbe(�) ≥ nsbe(�2),

nsbe(�) ≥ ufp(�1) − ufp(�2) + nsb(�2) − nsb(�1) + nsbe(�2) + ξ(�)(�1, �2),
nsbe(�) ≥ ufp(�2) − ufp(�1) + nsb(�1) − nsb(�2) + nsbe(�1) + ξ(�)(�1, �2)

⎫⎬
⎭

E ′[e�1
1 −� e�2

2 ]� = E ′[e�1
1 ]� ∪ E ′[e�2

2 ]� (Sub′)
∪⎧⎨

⎩
nsbe(�) ≥ nsbe(�1), nsbe(�) ≥ nsbe(�2),

nsbe(�) ≥ ufp(�1) − ufp(�2) + nsb(�2) − nsb(�1) + nsbe(�2) + ξ(�)(�1, �2),
nsbe(�) ≥ ufp(�2) − ufp(�1) + nsb(�1) − nsb(�2) + nsbe(�1) + ξ(�)(�1, �2)

⎫⎬
⎭

E ′[e�1
1 ×� e�2

2 ]� = E ′[e�1
1 ]� ∪ E ′[e�2

2 ]� (Mult′)
∪{

nsbe(�) ≥ nsb(�1) + nsbe(�1) + nsbe(�2) − 2, nsbe(�) ≥ nsb(�2) + nsbe(�2) + nsbe(�1) − 2
}

E ′[e�1
1 ÷� e�2

2 ]� = E ′[e�1
1 ]� ∪ E ′[e�2

2 ]� (Div′)
∪{

nsbe(�) ≥ nsb(�1) + nsbe(�1) + nsbe(�2) − 2, nsbe(�) ≥ nsb(�2) + nsbe(�2) + nsbe(�1) − 2
}

E ′
[√

e�1
�
]
� = E ′[e�1

1 ]� ∪ {
nsbe(�) ≥ nsbe(�1)

}
(Sqrt′)

E ′
[
φ e�1

)�
]
� = E ′[e�1

1 ]� ∪ {
nsbe(�) ≥ +∞}

with φ ∈ {sin, cos, tan, log, . . .} (Math′)

C′ [x:=�e�1
]
� = C, � [x �→ �]

)
where C = E ′[e�1

1 ]� ∪ {nsbe(�1) ≥ nsbe(�)} (Assign′)

C′
[
c�1
1 ;c�2

2

]
� = C1∪C2, �2

)
with C1, �1

)
= C′

[
c�1
1

]
� and C2, �2

)
= C′

[
c�2
2

]
�1 (Seq′)

C′[if� e�0 then c�1 else c�2 ] � = (C1 ∪ C2 ∪ C3, �
′)

where

∣∣∣∣∣
∀x ∈ Id, �′(x) = �, (C1, �1) = C′[c�1

1 ] �, (C2, �2) = C′[c�2
2 ] �,

C3 =
⋃

x∈Id

{nsbe(�1(x)) ≥ nsbe(�), nsbe(�2(x)) ≥ nsbe(�)}
(Cond′)

C′[while� e�0 do c�1 ] � = (C1 ∪ C2, �
′)

where

∣∣∣∣∣
∀x ∈ Id, �′(x) = �, (C1, �1) = C′[c�1

1 ] �′

C2 =
⋃

x∈Id

{nsbe(�(x)) ≥ nsbe(�), nsbe(�1(x)) ≥ nsbe(�)}
(While′)

C′[require nsb(x, p)�]� = ∅ (Req′)

ξ(�)(�1, �2) = min
(
max ufp(�2) − ufp(�1) + nsb(�1) − nsb(�2) − nsbe(�2), 0

)
,

max ufp(�1) − ufp(�2) + nsb(�2) − nsb(�1) − nsbe(�1), 0
)
, 1

)

Fig. 5. Constraints solved by PI with min and max carry bit formulation.

Proposition 1. The following results hold:

1. Let ξ the constant function equal to 1. The system S1
ξ can be rewritten as

{nsb ∈ N
Lab | F (nsb) ≤ (nsb)} where F maps R

Lab to itself, F (NLab) ⊆
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(NLab) and has coordinates which are the maximum of a finite family of affine
order-preserving functions.

2. Let ξ the function such that ξ(�) equals the function of Fig. 5. The system Sξ

can be rewritten as {(nsb, nsbe) ∈ N
Lab × N

Lab | F (nsb, nsbe) ≤ (nsb, nsbe)}
where F maps R

Lab × R
Lab to itself, F (NLab × N

Lab) ⊆ (NLab × N
Lab) and

all its coordinates are the min-max of a finite family of affine functions.

Note that, in the first case, F does not map from R
Lab × R

Lab to itself. It
is easy to extend F as a map from R

Lab × R
Lab to itself without affecting its

intrinsic behaviour. From Proposition 1, when Sξ is used, we can write F as
F = minπ∈Π fπ, where fπ is the maximum of a finite family of affine functions
and thus used a modified policy iterations algorithm. The set of policies here is
a map π : Lab 
→ {0, 1}. A choice is thus a vector of 0 or 1. A policy map fπ is
a function N

Lab to itself such that the coordinates are fπ
� (�). If the coordinate

fπ
� (�) depends on ξ then ξ(�) = π(�). Otherwise, the function is the maximum

of affine functions and a choice is not required.

Corollary 1. Any feasible solution of Problem (11) satisfies our ILP constraints
of Fig. 4 (or Fig. 5 if ξ is not fixed to 1).

Proposition 2 (Algorithm correctness). The sequence (
∑

�∈Lab nsbk(�))0≤k≤K

generated by Algorithm 1 satisfies the following properties:

1. K < +∞ i.e. the sequence is of finite length;
2. each term of the sequence furnishes a feasible solution for Problem (11);
3.

∑
�∈Lab nsb

k+1(�) <
∑

�∈Lab nsb
k(�) if k < K − 1 and

∑
�∈Lab nsb

K(�) =
∑

�∈Lab nsb
K−1(�);

4. the number k is smaller than the number of policies.

Algorithm 1: Non-monotone Policy Iterations Algorithm
Result: An over-approximation of an optimal solution of Equation 11

1 Let k := 0, S := +∞;

2 Choose π0 ∈ Π;

3 Select an optimal solution of (nsbk, nsbe
k) the integer linear program:

Min

⎧
⎨

⎩

∑

�∈Lab

nsb(�) | f
πk

(nsb, nsbe) ≤ (nsb, nsbe), nsb ∈ N
Lab

, nsbe ∈ N
Lab

⎫
⎬

⎭
;

if
∑

�∈Lab nsbk(�) < S then

4 S :=
∑

�∈Lab nsbk(�);

5 Choose πk+1 ∈ Π such that F (nsbk, nsbe
k) = fπk+1

(nsbk, nsbe
k);

6 k := k + 1 and go to 3;

7 else

8 Return S and nsbk.
9 end
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Figure 5 displays the new rules that we add to the global system of constraints
in which the only difference is to activate the optimized function ξ instead of
its over-approximation in Fig. 4. As mentioned in Eq. (6), to compute the ulp of
the errors on the operands, we need to estimate the number of bits of the error
nsbe for each operand on which all the rules of Fig. 5 are based. By applying this
reasoning, the problem do not remain an ILP any longer. Let us concentrate on
the rules of Fig. 5. The function E ′[e] � generates the new set of constraints for
an expression e ∈ Expr in the environment �. For Rule (Const′), the number
of significant bits of the error nsbe = 0 whereas we impose that the nsbe of a
variable x at control point � is less than the last assignment of nsbe in �(x) as
shown in Rule (Id′) of Fig. 5. Considering Rule (Add′), we start by generating
the new set of constraints E ′[e�1

1 ]� and E ′[e�2
2 ]� on the operands at control points

�1 and �2. Then, we require that nsbe(�) ≥ nsbe(�1) and nsbe(�) ≥ nsbe(�2) where
the result of the addition is stored at control point �. Additionally, nsbe(�) is
computed as shown hereafter.

nsbe(�) ≥ max

(
ufp(�1) − nsb(�1)
ufp(�2) − nsb(�2)

)
−min

(
ufp(�1) − nsb(�1) − nsbe(�1)
ufp(�2) − nsb(�2) − nsbe(�2)

)
+ξ(�)(�1, �2)

By breaking the min and max operators, we obtain the constraints on nsbe(�) of
Rule (Add′). For the subtraction, the constraints generated are similar to the
addition case. Considering now Rule (Mult′), as we have defined in Sect. 3.2,
ε(c) = c1 · ε(c2) + c2 · ε(c1) + ε(c1) · ε(c2) where c = c�1

1 ×� c�2
2 . By reasoning on

ulpe, we bound ε(c) by

ε(c) ≤ 2ufp(c1) · 2ufp(c2)−nsb(c2)−nsbe(c2)+1 + 2ufp(c2) · 2ufp(c1)−nsb(c1)−nsbe(c1)+1

+2ufp(c2)+ufp(c1)−nsb(c1)−nsb(c2)−nsbe(c1)−nsbe(c2)+2

By selecting the smallest term ufp(c2) + ufp(c1) − nsb(c1) − nsb(c2) − nsbe(c1) −
nsbe(c2) + 2, we obtain that

nsbe(�) ≥ max

(
ufp(�1) + ufp(�2) − nsb(�1)
ufp(�1) + ufp(�2) − nsb(�2)

)
− ufp(�1) + ufp(�2) − nsb(�1)−

nsb(�2) − nsbe(�1) − nsbe(�2) + 2

Finally, by simplifying the equation above we found the constraints of Rule
(Mult′) in Fig. 5 (same for Rule (Div′)). For Rule (Sqrt′), we generate the
constraints on the expression E ′[e�1

1 ]� and we require that nsbe of the result
stored at control point � is greater than the nsbe of the expression a control
point �1. For Rule (Math′), we assume that nsbe(�) is unbounded. Concerning
the commands, we define the set C′[c] � which has the same function as C defined
in Fig. 4. The reasoning on the commands also remains similar except that this
time we reason on the number of bits of the errors nsbe. The only difference
is in Rule (Req′) where the set of constraints is empty. Let us recall that the
constraints C2 of Fig. 5 are added to the former constraints C1 of Fig. 4 and are
sent to a linear solver (GLPK in practice).

Now, let us take again the pendulum program of Fig. 1. By analyzing Line 5
of our program, we have to add the following set of constraints C2 of Eq. (12),
along with the former set C1 of Eq. (10). In fact, policy iteration makes it possible
to break the min in the ξ(�23)(�17, �22) function by choosing the max between
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ufp(�22) − ufp(�17) − nsb(�17) − nsb(�22) − nsbe(�17) and 0, the max between
ufp(�17) − ufp(�22) + nsb(�22) − nsb(�17) − nsbe(�22) and 0 and the constant 1.
Next, it becomes possible to solve the corresponding ILP. If no fixed point is
reached, POP iterates until a solution is found. By applying this optimization,
the new formats are presented in lines 5 and 6 of the bottom right corner of
Fig. 1: y1new|20| = y1|21| +|20| y2|21| ×|22| h|21|. By comparing with
the formats obtained with the ILP formulation, a gain of precision of 1 bit is
observed on variables y2 and h (total of 272 bits at bit level for the optimized
program).

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nsbe(�23) ≥ nsbe(�17), nsbe(�23) ≥ nsbe(�22),
nsb(�23) ≥ −1 − 0 + nsb(�22) − nsb(�17) + nsbe(�22) + ξ(�23, �17, �22),
nsbe(�23) ≥ 0 − (−1) + nsb(�17) − nsb(�22) + nsbe(�17) + ξ(�23, �17, �22),
nsbe(�23) ≥ nsbe(�24), nsbe(�22) ≥ nsb(�19) + nsbe(�19) + nsbe(�21) − 2,
nsbe(�22) ≥ nsb(�21) + nsbe(�21) + nsbe(�19) − 2,

ξ(�23)(�17, �22) = min

(
max

(
0 − 6 + nsb(�17) − nsb(�22) − nsbe(�17), 0

)
,

max
(
6 − 0 + nsb(�22) − nsb(�17) − nsbe(�22), 0

)
, 1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

4 Correctness

4.1 Soundness of the Constraint System

Let ≡ denote the syntactic equivalence and let e� ∈ Expr be an expression. We
write Const(e�) the set of constants occurring in the expression e�. For example,
Const(18.0�1 ×�2 x�3 +�4 12.0�5 ×�6 y�7 +�8 z�9) = {18.0�1 , 12.0�5}. Also, we denote
by τ : Lab → N a function mapping the labels of an expression to a nsb. The
notation τ |= E [e�]� means that τ is the minimal solution to the ILP E [e�]�.
We write �⊥ the empty environment (dom(�⊥) = ∅). The small step operational
semantics of our language is displayed in Fig. 6. It is standard, the only originality
being to indicate explicitly the nsb of constants. For the result of an elementary
operation, this nsb is computed in function of the nsb of the operands. Lemma 2
asses the soundness of the constraints for one step of the semantics.

�(x) = c#p

〈x�, �〉 −→ 〈c�#p, �〉
c = c1 � c2, p = ufp(c) − ufpe c�#p

)

〈c�1
1 #p1 �� c

�2
2 #p2, �〉 −→ 〈c#p, �〉

� ∈ {+, −, ×, ÷}

〈e�1
1 , �〉 −→ 〈e′�1

1 , �〉
〈e�1

1 �� e
�2
2 , �〉 −→ 〈e′�1

1 �� e
�2
2 , �〉

〈e�2
2 , �〉 −→ 〈e′�2

2 , �〉
〈c�1

1 #p �� e
�2
2 , �〉 −→ 〈c�1

1 �p �� e
′�2
2 , �〉

Fig. 6. Small step operational semantics of arithmetic expressions.
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Lemma 2. Given an expression e� ∈ Expr, if e� → e′� and τ |= E [e�]�⊥ then
for all c�c#p ∈ Const(e′�) we have p = τ(�c).

Proof. By case examination of the rules of Fig. 4. Hereafter, we focus on the most
interesting case of addition of two constants. Recall that ufpe(�) = ufp(�)−nsb(�)
for any control point �. Assuming that e� ≡ c�1

1 +� c�2
2 then by following the

reduction rule of Fig. 6, we have e� → c�#p with p = ufp(c)−ufpe
(
c
)
. On the other

side, by following the set of constraints of Rule (Add) in Fig. 4 we have E [e�]� =
{nsb(�1) ≥ nsb(�) + ufp(�1) − ufp(�) + ξ(�)(�1, �2), nsb(�2) ≥ nsb(�) + ufp(�2)
−ufp(�) + ξ(�)(�1, �2)}. These constraints can be written as

nsb(�) ≤ ufp(�) − ufp(�1) + nsb(�1) − ξ(�)(�1, �2)

nsb(�) ≤ ufp(�) − ufp(�2) + nsb(�2) − ξ(�)(�1, �2)

and may themselves be rewritten as Eq. (8), i.e.

nsb(�) ≤ ufp(�) − max
(
ufp(�1) − nsb(�1), ufp(�2) − nsb(�2)

) − ξ(�)(�1, �2) .

Since, obviously, ufp(c) = ufp(�) and since the solver finds the minimal solution
to the ILP, it remains to show that

ufpe(�) = max
(
ufp(�1) − nsb(�1), ufp(�2) − nsb(�2), ufp(�) − prec(�)

)
+ ξ(�)(�1, �2)

which corresponds to the assertion of Eq. (7). Consequently, nsb(�) = p as
required, for this case, in Fig. 6. �

Theorem 1. Given an expression e� → e′�. If e� →∗ e′� and if τ |= E [e�]�⊥,
then ∀ c�c#p ∈ Const(e′�) we have p = τ(�c).

4.2 ILP Nature of the Problem

In this section, we give insights about the complexity of the problem. The com-
putation relies on integer linear programming. Integer linear programming is
known to belong to the class of NP-Hard problems. A lower bound of the opti-
mal value in a minimization problem can be furnished by the continuous linear
programming relaxation. This relaxation is obtained by removing the integrity
constraint. Recall that a (classical) linear program can be solved in polynomial-
time. Then, we can solve our problem in polynomial-time if we can show that
the continuous linear programming relaxation of our ILP has an unique optimal
solution with integral coordinates. Proposition 3 presents a situation where a
linear program has a unique optimal solution which is a vector of integers.

Proposition 3. Let G : [0,+∞)d 
→ [0,+∞)d be an order-preserving function
such that G(Nd) ⊆ N

d. Suppose that the set {y ∈ N
d | G(y) ≤ y} is non-empty.

Let ϕ : Rd 
→ R a strictly monotone function such that ϕ(Nd) ⊆ N. Then, the
minimization problem below has an unique optimal solution which is integral.

Min
y∈[0,+∞)d

ϕ(y) s. t. G(y) ≤ y
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Theorem 2. Assume that the system S of inequalities depicted in Fig. 4 has a
solution. The smallest amount of memory

∑
�∈Lab nsb(�) for S can be computed

in polynomial-time by linear programming.

Proof. The function
∑

�∈Lab nsb(�) is strictly monotone and stable on integers.
From the first statement of Proposition 1, the system of constraints is of the form
F (nsb) ≤ nsb where F is order-preserving and stable on integers. By assump-
tion, there exists a vector of integers nsb s.t. F (nsb) ≤ nsb. We conclude from
Proposition 3. �

For the second system, in practice, we get integral solutions to the continuous
linear programming relaxation of our ILP of Eq. (11). However, because of the
lack of monotonicity of the functions for the rules (Add) and (Sub) of Fig. 4,
we cannot exploit Proposition 4 to prove the polynomial-time solvability.

5 Experimental Results

In this section, we aim at evaluating the performance of our tool POP imple-
menting the techniques of Sect. 3. We have evaluated POP on several numerical
programs. Two of them were used as a benchmark for precision tuning in prior
work [24] and are coming from the GNU scientific library (GSL): arclength and
simpson program which corresponds to an implementation of the widely used
Simpson’s rule [19]. The next three programs were used as benchmarks for POP
in its former version [2,3,6]. The rotation program performs a matrix-vector
product to rotate a vector around the z axis by an angle of θ [6]. The accelerom-
eter program measures an inclination angle [2]. The lowPassFilter program [3]
is taken from a pedometer application [20]. These last two programs come from
the IoT field. We also experiment POP on a 2-Body problem program and the
pendulum program already introduced in Sect. 2.

The experiments shown in Table 1 present the tuning results produced by
POP for each error threshold 10−4, 10−6, 10−8 and 10−10. This is for compati-
bility with Precimonious which uses decimal thresholds. Technically, we translate
these error thresholds into nsb. In Table 1, we represent by “TH” the error thresh-
old given by the user. “BL” is the percentage of optimization at bit level. “IEEE”
denotes the percentage of optimized variables in IEEE754 formats (binary16,
binary32, etc.) In IEEE mode, the nsb obtained at bit level is approximated
by the upper number of bits corresponding to a IEEE754 format. “ILP-time”
is the total analysis time of POP in the case of ILP formulation. We have also
“PI-time” to represent the time passed by POP to find the right policy and to
resolve the precision tuning problem. “H”, “S”, “D” and “LD” denote respec-
tively the number of variables obtained in, half, single, double and long-double
precision when using the PI formulation that clearly displays better results.
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Table 1. Precision tuning results for POP for the ILP and PI methods.

Program TH BL IEEE ILP-time BL IEEE PI-time H S D LD

Arclength 10−4 61% 43% 0.9 s 62% 45% 1.5 s 8 88 25 0

10−6 50% 21% 0.9 s 51% 21% 1.4 s 2 45 74 0

10−8 37% 3% 0.8 s 38% 4% 1.6 s 2 6 113 0

10−10 24% −1% 1.0 s 25% −1% 1.7 s 2 0 116 3

10−12 12% −17% 0.3 s 14% −8% 1.5 s 2 0 109 10

Simpson 10−4 64% 45% 0.1 s 67% 56% 0.5 s 6 42 1 0

10−6 53% 30% 0.2 s 56% 31% 0.5 s 1 27 21 0

10−8 40% 4% 0.1 s 43% 7% 0.3 s 1 5 43 0

10−10 27% 1% 0.1 s 28% 1% 0.4 s 1 0 48 0

10−12 16% 1% 0.1 s 16% 1% 0.3 s 0 1 48 0

Accelerometer 10−4 73% 61% 0.2 s 76% 62% 1.0 s 53 69 0 0

10−6 62% 55% 0.2 s 65% 55% 1.0 s 2 102 0 0

10−8 49% 15% 0.2 s 52% 18% 1.0 s 2 33 69 0

10−10 36% 1% 0.2 s 39% 1% 1.0 s 2 0 102 0

10−12 25% 1% 0.2 s 28% 1% 1.0 s 2 0 102 0

Rotation 10−4 78% 66% 0.08 s 79% 68% 1.3 s 46 38 0 0

10−6 67% 53% 0.08 s 68% 56% 0.5 s 12 70 2 0

10−8 53% 29% 0.07 s 54% 29% 0.4 s 0 46 38 0

10−10 40% 0% 0.1 s 41% 0% 0.5 s 0 0 84 0

10−12 29% 0% 0.09 s 30% 0% 0.5 s 0 0 48 0

LowPassFilter 10−4 68% 46% 1.8 s 69% 46% 10.7 s 260 581 0 0

10−6 57% 38% 1.8 s 58% 45% 11.0 s 258 580 3 0

10−8 44% −7% 2.0 s 45% −7% 11.4 s 258 2 581 0

10−10 31% −7% 1.7 s 32% −7% 10.9 s 258 0 583 0

10−12 20% −7% 1.8 s 21% −7% 11.3 s 258 0 583 0

2-Body 10−4 41% 51% 0.81 s 41% 51% 0.82 s 5 39 5 0

10−6 18% 49% 0.78 s 18% 49% 0.9 s 0 44 5 0

10−8 −7% 5% 0.8 s −7% 5% 0.78 s 0 5 44 0

10−10 −34% −2% 0.8 s −34% −2% 0.9 0 0 48 1

10−12 −57% −11% 0.9 s −57% −11% 1.0 s 0 0 44 0

Pendulum 10−4 71% 54% 0.15 s 71% 54% 0.4 s 0 13 0 0

10−6 60% 50% 0.2 s 60% 50% 0.5 s 0 12 1 0

10−8 47% 0% 0.12 s 47% 0% 0.4 s 0 0 13 0

10−10 33% 0% 0.16 s 34% 0% 0.5 0 0 13 0

10−12 22% 0% 0.11 s 22% 0% 0.4 s 0 0 13 0

Let us focus on the first “TH”, “BL”, “IEEE” and “ILP-time” columns of
Table 1. We compute the improvements compared to the case where all variables
are in double precision before tuning. For the arclength program, the optimiza-
tion reaches 61% at bit-level while it achieves 43% in IEEE mode (100% is the
percentage of all variables initially in double precision, 121 variables for the origi-
nal arclength program that used 7744 bits). This is obtained in only 0.9 second by
applying the ILP formulation. When we refine the solution by applying the policy
iteration method (from the sixth column), POP attains 62% at bit-level and 43%
for the IEEE mode. Although POP needs more analysis time to find and iterate
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Table 2. Comparison between POP(ILP), POP(SMT) and Precimonious: number of
bits saved by the tool and time in seconds for analyzing the programs.

Program Tool #Bits saved - Time in seconds

Threshold 10−4 Threshold 10−6 Threshold 10−8 Threshold 10−10

Arclength POP(ILP) (28) 2464b.–1.8s 2144b.–1.5s 1792b.–1.7s 1728b.–1.8 s

POP(SMT) (22) 1488b.–4.7 s 1472b.–3.04 s 864b.–3.09 s 384b.–2.9 s

Precimonious (9) 576b.–146.4 s 576b.–156.0 s 576b.–145.8 s 576b.–215.0 s

Simpson POP(ILP) (14) 1344b.–0.4 s 1152b.–0.5 s 896b.–0.4 s 896b.–0.4 s

POP(SMT) (11) 896b.–2.9 s 896b.–1.9 s 704b.–1.7 s 704b.–1.8 s

Precimonious (10) 704b.–208.1 s 704b.–213.7 s 704b.–207.5 s 704b.–200.3 s

Rotation POP(ILP) (25) 2624b.–0.47 s 2464b.–0.47 s 2048b.–0.54 s 1600b.–0.48 s

POP(SMT) (22) 1584b.–1.85 s 2208b.–1.7 s 1776b.–1.6 s 1600b.–1.7 s

Precimonious (27) 2400b.–9.53 s 2592b.–12.2 s 2464b.–10.7 s 2464b.–7.4 s

Accel. POP(ILP) (18) 1776b.–1.05 s 1728b.–1.05 s 1248b.–1.04 s 1152b.–1.03 s

POP(SMT) (15) 1488b.–2.6 s 1440b.–2.6 s 1056–2.4 s 960b.–2.4 s

Precimonious (0) – – – –

between policies, the time of analysis remain negligible, not exceeding 1.5 seconds.
For a total of 121 variables for the arclength original program, POP succeeds in
tuning 8 variables to half precision (H), 88 variables passes to single precision (S)
whereas 25 variables remain in double precision (D) for an error threshold of 10−4.
We remark that our second method displays better results also for the other user
error thresholds. For the simpson, accelerometer, rotation and lowPassFil-
ter, the improvement is also more important when using the PI technique than
when using the ILP formulation. For instance, for an error threshold of 10−6 for the
simpson program, only one variable passes to half precision, 27 variables turns
to single precision while 21 remains in double precision with 56% of percentage
of total number of bits at bit level using the policy iteration method. Concerning
the 2-Body and the pendulum codes, the two techniques return the same per-
centage at bit level and IEEE mode for the majority of error thresholds except for
the pendulum program where POP reaches 34% at bit level when using the PI
method for a threshold of 10−10.

Now, we stress on the negative percentages that we obtain in Table 1, espe-
cially for the arclength program with 10−10 and 10−12 for the columns IEEE,
the lowPassFilter program for errors of 10−8, 10−10 and 10−12 and finally for
the 2-Body for almost all the error thresholds. In fact, POP is able to return
new formats for any threshold required by the user without additional cost nor
by increasing the complexity even if it fails to have a significant improvement
on the program output. To be specific, taking again the arclength program, for
an error of 10−12, POP fulfills this requirement by informing the user that this
precision is achievable only if 10 variables passes to the long double precision
(LD) which is more than the original program whose variables are all in double
precision. By doing so, the percentage of IEEE formats for both ILP and PI for-
mulations reaches −17% and −8%, respectively. Same reasoning is adopted for
the lowPassFilter which spends more time, nearly 12 seconds, with the policy
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iteration technique to find the optimized formats (total of 841 variables). For
the 2-Body program, for an error threshold of 10−8, the number of bits after
optimization attains 2452 bits where the original program used only 2597 bits
which corresponds to a percentage of −7% at bit level. Note that in these cases,
other tools like Precimonious [24] fail to propose formats.

Table 2 shows a comparison between the new version of POP combining both
ILP and PI formulations called POP(ILP), the former version of POP that uses
the Z3 SMT solver coupled to binary search to find optimal solution [6], called
POP(SMT) and the prior state-of the-art Precimonious [24]. The results of the
mixed precision tuning are shown for the arclength, simpson, rotation and
accelerometer programs. Let us mention that some examples used in Preci-
monious benchmarks [24] cannot be analyzed as-is by POP for implementation
reasons (calls to external libraries or use of syntactic forms not yet implemented
in our tool). Conversely, let us also mention that Precimonious fails to tune
(with zero improvement) some examples handled by POP, e.g. lowPassFilter.
Since POP (in its both versions) and Precimonious implement two different tech-
niques, we have adjusted the criteria of comparison in several points. First, we
mention that POP optimizes much more variables than Precimonious. While it
disadvantages POP, we only consider in the experiments of Table 2 the variables
optimized by Precimonious to estimate the quality of the optimization. Second,
let us note that the error thresholds are expressed in base 2 in POP and in
base 10 in Precimonious. For the relevance of comparisons, all the thresholds
are expressed in base 10 in Tables 1 and 2. In practice, POP will use the base 2
threshold immediately lower than the required base 10 threshold. In Table 2, we
indicate in bold the tool that exhibits better results for each error threshold and
each program. Starting with the arclength program, POP(ILP) displays better
results than the other tools by optimizing 28 variables. For an error threshold of
10−4, 2464 bits are saved by POP(ILP) in 1.8 seconds while POP(SMT) saved
only 1488 bits in more time (11 seconds). Precimonious were the slowest tool on
this example, more than 2 minutes with 576 bits for only 9 variables optimized.
For the simpson program, POP(ILP) do also better than both other tools. How-
ever, for the rotation program, POP(ILP) saves more bits than the other tools
only for an error of 10−4 while Precimonious do well for this program for the
rest of error thresholds. Finally, Precimonious fails to tune the accelerometer
program (0 variables) at the time that POP(ILP) do faster (only 1 s) to save
much more bits than POP(SMT) for any given error threshold.

In [4,5], we show how POP generates MPFR code [13] with the precision
returned by the tuning and we run the programs. We also run a MPFR version
with high precision (e.g. 300 bits) and compute the error that we compare to
the threshold. The results show that the thresholds are respected.

6 Conclusion and Perspectives

In this article, we have introduced a new technique for precision tuning, clearly
different from the existing ones. Instead of changing more or less randomly the
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data types of the numerical variables and running the programs to see what
happens, we propose a semantical modelling of the propagation of the numerical
errors throughout the code. This yields a system of constraints whose minimal
solution gives the best tuning of the program, furthermore, in polynomial time.
Two variants of this system are proposed. The first one corresponds to a pure
ILP. The second one, which optimizes the propagation of carries in the elemen-
tary operations can be solved using policy iterations [9]. Proofs of correctness
concerning the soundness of the analysis and the integer nature of the solutions
have been presented in Sect. 4 and experimental results showing the efficiency of
our method have been introduced in Sect. 5.

Compared to other approaches, the strength of our method is to find directly
the minimal number of bits needed at each control point to get a certain accuracy
on the results. Consequently, it is not dependant of a certain number of data
types (e.g. the IEEE754 formats) and its complexity does not increase as the
number of data types increases. The information provided may also be used to
generate computations in the fixpoint arithmetic with an accuracy guaranty on
the results. Concerning scalability, we generate a linear number of constraints
and variables in the size of the analyzed program. The only limitation is the
size of the problem accepted by the solver. Note that the number of variables
could be reduced by assigning the same precision to a whole piece of code (for
example an arithmetic expression, a line of code, a function, etc.) Code synthesis
for the fixpoint arithmetic and assigning the same precision to pieces of code are
perspectives we aim at explore at short term.

At longer term, other developments of the present work are planned. First
we wish to adapt the techniques developed in this article to the special case
of Deep Neural Networks for which it is important to save memory usage and
computational resources. Second, we aim at using our precision tuning method to
guide lossy compression techniques for floating-point datasets [12]. In this case,
the bit-level accuracy inferred by our method would determine the compression
rate of the lossy technique.

A Appendix

We need a lemma on some algebraic operations stable on the set of functions
written as the min-max of a finite family of affine functions. The functions are
defined on R

d.

Lemma 1. The following statements hold:

– The sum of two min-max of a finite family of affine functions is a min-max
of a finite family of affine functions.

– The maximum of two min-max of a finite family of affine functions is a min-
max of a finite family of affine functions.

Proof. Let g and h be two min-max of a finite family of affine functions and
f = g+h. We have g = mini maxj gij and h = mink maxl h

kl. Let x ∈ R
d. There
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exist i, k such that f(x) ≥ maxj gij(x)+maxl h
kl(x) = maxj,l g

ij(x)+hkl(x). We
have also, for all i, k, f(x) ≤ maxj gij(x) + maxl h

kl(x) = maxj,l g
ij(x) + hkl(x).

We conclude that f(x) = mini,k maxj,l g
ij(x)+hkl(x) for all x. We use the same

argument for the max. �

Proposition 2. The following results hold:

1. Let ξ the constant function equal to 1. The system S1
ξ can be rewritten as

{nsb ∈ N
Lab | F (nsb) ≤ (nsb)} where F maps R

Lab ×R
Lab to itself, F (NLab ×

N
Lab) ⊆ (NLab×N

Lab) and has coordinates which are the maximum of a finite
family of affine order-preserving functions.

2. Let ξ the function such that ξ(�) equals the function defined at Fig. 5. The
system Sξ can be rewritten as {(nsb, nsbe) ∈ N

Lab × N
Lab | F (nsb, nsbe) ≤

(nsb, nsbe)} where F maps R
Lab × R

Lab to itself, F (NLab × N
Lab) ⊆ (NLab ×

N
Lab) and all its coordinates are the min-max of a finite family of affine

functions.

Proof. We only give details about the system S1
ξ (Fig. 4). By induction on the

rules. We write L = {� ∈ Lab | F� is constructed }. This set is used in the proof
to construct F inductively.

For the rule (CONST), there is nothing to do. For the rule (ID), if the
label �′ = ρ(x) ∈ L then we define F�′(nsb) = max(F�′(nsb), nsb(�)). Otherwise
F�′(nsb) = nsb(�). As nsb 
→ nsb(�) is order-preserving and the maximum of one
affine function, F�′ is the maximum of a finite family of order-preserving affine
functions since max preserves order-preservation.

For the rules (Add), (Sub), (Mult), (Div), (Math) and (Assign), by
induction, it suffices to focus on the new set of inequalities. If �1 ∈ L, we
define F�1 as the max with old definition and RHS(nsb) i.e. F�1(nsb) =
max(RHS(nsb), F�1(nsb)) where RHS(nsb) is the right-hand side part of the
new inequality. If �1 /∈ L, we define F�1(nsb) = RHS(nsb). In the latter rules,
RHS(nsb) are order-preserving affine functions. It follows that F�1 is the maxi-
mum of a finite family of order-preserving affine functions.

The result follows by induction for the rule (SEQ).
The rules (Cond) and (While) are treated as the rules (Add), (Sub),

(Mult), (Div), (Math) and (Assign), by induction and the consideration of
the new set of inequalities.

The last rule (Req) constructs Fρ(x) either as the constant function equal to
p at label ρ(x) or the maximum of the old definition of Fρ(x) and p if ρ(x) ∈ L.
The proof for the system Sξ uses the same arguments and Lemma 1. �

Proposition 3 (Algorithm correctness). The sequence (
∑

�∈Lab nsb
k

(�))0≤k≤K generated by Algorithm 1 satisfies the following properties:

1. K < +∞ i.e. the sequence is of finite length;
2. each term of the sequence furnishes a feasible solution for Problem (11);
3.

∑
�∈Lab nsb

k+1(�) <
∑

�∈Lab nsb
k(�) if k < K − 1 and

∑
�∈Lab nsb

K(�) =
∑

�∈Lab nsb
K−1(�);

4. the number k is smaller than the number of policies.
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Proof. Let
∑

�∈Lab nsb
k(�) be a term of the sequence and (nsbk, nsbe

k) be the
optimal solution of Min{∑�∈Lab nsb(�) | fπk

(nsb, nsbe) ≤ (nsb, nsbe), nsb ∈
N

Lab, nsbe ∈ N
Lab}. Then F (nsbk, nsbe

k) ≤ fπk

(nsbk, nsbe
k) by definition

of F . Moreover, F (nsbk, nsbe
k) = fπk+1

(nsbk, nsbe
k) and fπk

(nsbk, nsbe
k) ≤

(nsbk, nsbe
k). This proves the second statement. Furthermore, it follows that

fπk+1
(nsbk, nsbe

k) ≤ (nsbk, nsbe
k) and (nsbk, nsbe

k) is feasible for the minimi-
sation problem for which (nsbk+1, nsbe

k+1) is an optimal solution. We conclude
that

∑
�∈Lab nsb

k+1(�) ≤ ∑
�∈Lab nsb

k(�) and the Algorithm terminates if the
equality holds or continues as the criterion strictly decreases. Finally, from the
strict decrease, a policy cannot be selected twice without terminating the algo-
rithm. In conclusion, the number of iterations is smaller than the number of
policies. �

Proposition 4. Let G : [0,+∞)d 
→ [0,+∞)d be an order-preserving function
such that G(Nd) ⊆ N

d. Suppose that the set {y ∈ N
d | G(y) ≤ y} is non-empty.

Let ϕ : Rd 
→ R a strictly monotone function such that ϕ(Nd) ⊆ N. Then, the
minimization problem below has an unique optimal solution which is integral.

Min
y∈[0,+∞)d

ϕ(y) s. t. G(y) ≤ y

Proof. Let L := {x ∈ [0,+∞)d | G(x) ≤ x} and u = inf L. It suffices to
prove that u ∈ N

d. Indeed, as ϕ is strictly monotone then ϕ(u) < ϕ(x) for all
x ∈ [0,+∞)d s.t. G(x) ≤ x and x �= u. The optimal solution is thus u. If u = 0,
the result holds. Now suppose that 0 < u, then 0 ≤ G(0). Let M := {y ∈ N

d |
y ≤ G(y), y ≤ u}. Then 0 ∈ M and we write v := supM . As M is a complete
lattice s.t. G(M) ⊆ M , from Tarski’s theorem, v satisfies G(v) = v and v ≤ u.
Moreover, v ∈ N

d and v ≤ u. Again, from Tarski’s theorem, u is the smallest
fixpoint of G, it coincides with v. Then u ∈ N

d. �
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Abstract. Points-to analysis is a fundamental static analysis, on which
many other analyses and optimisations are built. The goal of points-
to analysis is to statically approximate the set of abstract objects that
a pointer can point to at runtime. Due to the nature of static analysis,
points-to analysis introduces much redundancy which can result in dupli-
cate points-to sets and duplicate set union operations, particularly when
analysing large programs precisely. To improve performance, there has
been extensive effort in mitigating duplication at the algorithmic level
through, for example, cycle elimination and variable substitution.

Unlike previous approaches which make algorithmic changes to points-
to analysis, this work aims to improve the underlying data structure,
which is less studied. Inspired by hash consing from the functional pro-
gramming community, this paper introduces the use of hash consed
points-to sets to reduce the effects of this duplication on both space and
time without any high-level algorithmic change. Hash consing can effec-
tively handle duplicate points-to set by representing points-to sets once,
and referring to such representations through references, and can speed
up duplicate union operations through efficient memoisation. We have
implemented and evaluated our approach using 16 real-world C/C++
programs (more than 9.5 million lines of LLVM instructions). Our results
show that our approach speeds up state-of-the-art Andersen’s analysis
by 1.85× on average (up to 3.21×) and staged flow-sensitive analysis
(SFS) by 1.69× on average (up to 2.23×). We also observe an average
≥4.93× (up to ≥15.52×) memory usage reduction for SFS.

Keywords: Points-to analysis · Hash consing · Memoisation

1 Introduction

Points-to analysis is a fundamental static analysis used to, for example, detect
memory errors [32,53], detect concurrency bugs [9,37], perform typestate veri-
fication [17,51], enforce control-flow integrity [14,15], perform symbolic execu-
tion [48,49], and perform code embedding [10,45]. The aim of points-to analysis
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is to compute an approximation of the set of abstract objects that a pointer can
refer to. Inclusion-based analysis, as the most commonly used form of points-
to analysis, formulates points-to resolution as a set constraint solving problem
whereby each program statement produces one or more set constraints which
are translated into union operations between two points-to sets and are solved
until a fixed-point is reached.

When analysing real-world programs, many pointers may yield exactly the
same points-to sets during constraint resolution. This becomes more prevalent
especially as analyses become more precise. For example, unlike flow-insensitive
analysis which computes a single points-to set for each pointer, flow-sensitive anal-
ysis computes and maintains points-to sets at different program points, but unfor-
tunately introduces many duplicate points-to sets. Table 1 provides the propor-
tions of duplicate points-to sets under two popular points-to analyses (Andersen’s
analysis [36] and staged flow-sensitive analysis or SFS [23]) for 16 real-world pro-
grams. Columns 2 and 5 show the number of pointers maintained in the analyses.
Columns 3 and 6 list the number of those pointers which refer to the 5 most com-
mon points-to sets. Columns 4 and 7 list the proportions of the pointers in Columns
3 and 6. The empty points-to set and pointers which have an empty points-to set
are excluded. Both Andersen’s analysis and SFS are field-sensitive inclusion-based
analyses, however, SFS maintains pointers on a per program point basis to achieve
flow-sensitivity, resulting in more pointers and duplicate points-to sets. We see
that, on average, the 5 most common points-to sets are referred to by around 60%
and 90% of pointers for Andersen’s analysis and SFS, respectively. Clearly, repeat-
edly representing the same points-to sets is redundant, memory-wise.

Furthermore, since the resulting points-to sets of many pointers are the same,
most may have reached that result with the same union operations and it is very
costly to perform duplicate unions. That is, if two pointers points-to set are the
same (i.e., pt(p) = pt(q)) by the end of the analysis, it is possible that both
points-to sets were built up through the same union operations. Thus, many
union operations are in fact duplicates of operations which have been previously
performed. This has strong implications on performance as conducting points-to
set unions produced by the set constraints forms a bulk of analysis time.

Both the number of duplicate points-to sets tracked and the number of unions
performed can be reduced but most previous solutions have been analysis-specific
requiring algorithmic changes, which may not be applicable to other points-
to analyses. For example, either, or both, can be achieved by merging equiva-
lent pointers offline [4,21–23,39] or online [20,29,34], selectively applying preci-
sion [30,41], or carefully choosing how to solve constraints [35,36]. Despite these
efforts, duplication still exists and pushing the boundaries through algorithmic
changes to the points-to analysis may lead to increasingly diminishing returns on
performance.

In this paper, we aim to explore solutions at the data structure level – which
is easily applicable to a range of points-to analyses – to reduce the influence of
these duplicate operations and points-to sets on time and space. We leverage
the idea of hash consing [7,16,19,24], which aims to quickly identify structurally
equivalent values, from the functional programming community, to help solve
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Table 1. The number of pointers tracked, the number of those pointers which refer to
one of the 5 most common points-to sets, and that proportion for Andersen’s analysis
and SFS.

Program
Andersen’s SFS

Pointers Top 5 Prop. Pointers Top 5 Prop.

dhcpcd 21572 13651 63.28% 851784 839518 98.56%

nsd 38328 28022 73.11% 2423193 2399449 99.02%

tmux 49080 36999 75.39% 4331232 2483020 57.33%

gawk 47673 30631 64.25% 8467667 8353204 98.65%

bash 36924 27118 73.44% 6067608 5470244 90.15%

mutt 65756 44886 68.26% 8261029 7897442 95.60%

lynx 260220 181359 69.69% 17451804 16362946 93.76%

xpdf 105743 55651 52.63% 32507885 32387655 99.63%

python3 184189 119043 64.63% 114439707 94946890 82.97%

svn 213125 167042 78.38% 91817728 88324837 96.20%

emacs 250739 163956 65.39% 252728727 248665346 98.39%

git 243388 132674 54.51% 182364152 155306147 85.16%

kakoune 182631 55491 30.38% 37689778 37157978 98.59%

ruby 114277 66634 58.31% 71941456 69333326 96.37%

squid 725067 389949 53.78% 189749146 159336073 83.97%

wireshark 326974 147939 45.24% 23789094 22960321 96.52%

Geo. Mean 60.48% 91.19%

the problem of duplicate points-to sets and unions operations. Hash consing is
the process of maintaining single immutable representations of data structures
which can then be shared elsewhere referentially [38,42]. In our context, this
means that each unique points-to set is maintained only once such that points-
to sets becomes persistent.

Originally, hash consing was used to memoise construction to avoid creating
the same object twice, transforming construction into a hash table lookup of the
elements of the object. If we view our union operation as a constructor, taking
two points-to sets to create a new one, we can transform many union operations
into hash table lookups (of a pair of references), which would be much cheaper
than standard set unions as points-to sets become larger. Thus hash consing
is a means for efficient memoisation allowing us to perform faster set unions.
During points-to set resolution, we build up hash tables of previously performed
operations, and use those results if the same operation occurs again.

Moreover, with points-to sets being represented as references we can perform
fast comparisons between such sets in constant, instead of linear, time. Thus, we
also explore the possibility of practically skipping some set operations completely
by exploiting mathematical set properties. For example, since each points-to set,
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e.g., x and y, is represented as a reference, the operands of a union like x ∪ y
can be compared cheaply for equality, in which case the result is x/y, since the
union operation is idempotent.

Our approach is efficient yet simple to implement, independent to the points-
to analysis used, maintains precision, and works alongside the many algorithmic
advances listed earlier. Moreover, our approach does not mandate a specific rep-
resentation of points-to sets as long as each pointer would otherwise be assigned
discrete points-to sets. As far as we know, this paper is the first to describe gen-
eral hash consing and its effects to the base aspects of inclusion-based points-to
analysis. We have implemented our approach on top of points-to analysis frame-
work SVF [47] and evaluated our approach using 16 real-world open-source pro-
grams (more than 9.5 million lines of LLVM instructions). For these programs,
we find an average improvement in time taken of 1.85× for Andersen’s analysis
and 1.69× for SFS, and we observe improvements of up to 3.21× and 2.23× for
the two analyses, respectively. Along with improved time, we see roughly the
same memory usage for Andersen’s analysis and an average reduction of ≥4.93×
(up to ≥15.52×) for SFS.

To summarise, our contributions are:

– Persistent points-to data structure using hash consed points-to sets with less
memory for precise whole program points-to analyses.

– The use of hash consing to more efficiently perform points-to set union oper-
ations through cheap memoisation and exploitation of set properties.

– An evaluation of the impact of hash consing on field-sensitive Andersen’s
analysis and SFS using 16 real world open source C/C++ programs, as well
as a discussion on the amount of duplication found in these analyses.

2 Background and Motivation

This section first introduces a program representation for points-to analysis to be
built upon. We then provide a brief summary of whole-program flow-insensitive
and flow-sensitive inclusion-based points-to analysis. Finally, we give two short
examples to illustrate the presence of duplicate points-to sets and union opera-
tions produced by these two analyses to motivate how hash consing can help.

2.1 Background

Like many other C/C++ analyses [2,4,23,30,47], we perform points-to analysis
on top of the LLVM-IR of a program. In LLVM’s partial SSA form [28], the set
of all program variables V = O ∪ P is split into two subsets: (1) O, or the set of
address-taken variables, which represents all possible abstract memory objects
and their fields, and (2) P, or the set of top-level variables, which represents all
stack virtual registers (symbols starting with %) and global pointers (symbols
starting with @). Top-level variables, P, are explicit in that they are accessed
directly whereas address-taken objects, O, are implicit and can only be accessed
indirectly at Load and Store instructions through top-level variables.
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Given p, q ∈ P and o ∈ O, after the SSA conversion, we represent a C/C++
program using the following five types of instructions:

– Alloc instructions, p = alloco, representing allocation of abstract object o.
– Copy instructions, p = q, representing assignment between two top-level

pointers.
– Field instructions, p = &q→fi, representing assignment of the i-th field (fi)

of the object which q points to.
– Load instructions, p = ∗q, representing assignment from a dereferenced top-

level pointer.
– Store instructions, ∗p = q, representing assignment to an abstract memory

object through a dereferenced top-level pointer.

With the above instructions, Fig. 1 presents a flow-insensitive inclusion-based
analysis commonly referred to as Andersen’s analysis [1] augmented with field-
sensitivity [35]. Each pointer p is assigned a points-to set pt(p) representing
an approximation of the set of abstract memory objects that p may point to.
Andersen’s analysis is performed by generating constraints between points-to
sets according to the five inference rules. The Copy, Load, and Store rules
produce inclusion or union constraints like pt(q) ⊆ pt(p) which means the points-
to set of p is the union of its old value and the points-to set of q, i.e., pt(p) =
pt(p) ∪ pt(q). The produced constraints are iteratively solved with points-to sets
growing monotonically until a fixed-point is reached.

[ALLOC]
p = alloco

{o} ⊆ pt(p)
[COPY]

p = q

pt(q) ⊆ pt(p)
[FIELD]

p = &q→fi o ∈ pt(q)
{o.fi} ⊆ pt(p)

[LOAD]
p = ∗q o ∈ pt(q)

pt(o) ⊆ pt(p)
[STORE]

∗p = q o ∈ pt(p)
pt(q) ⊆ pt(o)

Fig. 1. Inference rules for a flow-insensitive inclusion-based points-to analysis.

More precise analyses typically need to compute and maintain more points-to
relations. For example, in a flow-sensitive analysis, an object accessed at different
program points can have different points-to sets, thus requiring more points-
to sets and constraints. Figure 2 gives a simple inclusion-based flow-sensitive
analysis [30] augmented with field-sensitivity. Since the analysis is flow-sensitive,
the order of instructions now matters and so each instruction is prefixed by a
label like � to represent the points-to information at a particular program point.

Unlike flow-insensitive analysis which computes a single points-to set for each
variable, flow-sensitive analysis maintains separate points-to sets at different pro-
gram points for each memory object. To represent points-to information flow-
sensitively, points-to sets of memory objects are maintained before (pt[�](o)) and
after (pt[�](o)) instructions. Thus, points-to sets need to be propagated within
program points through the [SU/WU] rule and, if there exists control flow
between two instructions (� → �′), across program points through the [CFLOW]
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[ALLOC]
� : p = alloco

{o} ⊆ pt(p)
[COPY]

� : p = q

pt(q) ⊆ pt(p)
[FIELD]

p = &q→fi o ∈ pt(q)
{o.fi} ⊆ pt(p)

[LOAD]
� : p = ∗q o ∈ pt(q)

pt[�](o) ⊆ pt(p)
[STORE]

� : ∗p = q o ∈ pt(p)
pt(q) ⊆ pt[�](o)

[SU/WU]
� : ∗p = o ∈ O \ kill(�)

pt[�](o) ⊆ pt[�](o)
[CFLOW]

� → �′

∀o ∈ O. pt[�](o) ⊆ pt[�′](o)

kill(� : ∗p = ) Δ=

⎧
⎪⎨

⎪⎩

{o} if pt(p) ≡ {o} ∧ o is singleton
O if pt(p) ≡ ∅

∅ otherwise

Fig. 2. Inference rules for a field-sensitive and flow-sensitive inclusion-based points-to
analysis.

rule. This all results in extra set unions between points-to sets being performed.
With the kill function, the [SU/WU] rule can perform strong updates for sin-
gletons [30], another way flow-sensitivity produces more precise results.

To reduce some of these redundancies, state-of-the-art flow-sensitive analyses
like staged flow-sensitive analysis (SFS) [23] perform points-to propagation on
a sparse def-use graph rather than a control-flow graph of a program. Despite
this, redundancies still exist, and duplication is high, as will be shown in Sect. 4.

2.2 Motivating Examples

In this section, we show the duplication of points-to sets and operations that
occurs in flow-insensitive and flow-sensitive analyses. First, let us consider flow-
insensitive analysis of a small program fragment in Fig. 3a where p, q, r, x, y ∈ P
and o1, o2, o3, o4 ∈ O and Fig. 3b shows the constraints produced to analyse
this program fragment following the rules in Fig. 1. Since the analysis is flow-
insensitive, we solve for a points-to set per variable. We use pt(p) to denote the
points-to set of pointer p and use {o1}p to denote the value of pt(p) when it, for
example, contains the points-to target o1. In analysing the program fragment,
we assume pt(p) = {o1}, pt(q) = {o2}, and pt(r) = {o3, o4}.

In practice, these constraints are handed to a constraint solver [13,20,35,36]
which will perform unions like those in Fig. 3c until a fixed-point is reached,
i.e., when points-to sets no longer change. In Fig. 3c, operations are numbered
with the constraints they correspond to and duplicate initial operations are high-
lighted in grey. For brevity, we have only shown the first operation which would
result from a constraint. Ultimately, each constraint actually results in the same
union being performed so 3 of the operations are duplicates of the first. In real-
world programs, such points-to sets may be large, containing hundreds or thou-
sands of objects, meaning repeatedly performing these unions can be expensive.
The resulting points-to sets of the analysis are shown in Fig. 3d, with duplicates
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1 : ∗p = r;

2 : ∗q = r;

3 : x = ∗p;

4 : y = ∗q;

(a) Program fragment.

1 : ∀o ∈ pt(p). pt(r) ⊆ pt(o)

2 : ∀o ∈ pt(q). pt(r) ⊆ pt(o)

3 : ∀o ∈ pt(p). pt(o) ⊆ pt(x)

4 : ∀o ∈ pt(q). pt(o) ⊆ pt(y)

(b) Constraints.

1 : {o3, o4}r ⊆ { }o1

2 : {o3, o4}r ⊆ { }o2

3 : {o3, o4}o1 ⊆ { }x

4 : {o3, o4}o2 ⊆ { }y

(c) Initial operations.

pt(p) = {o1} pt(q) = {o2} pt(r) = {o3, o4} pt(x) = {o3, o4} pt(y) = {o3, o4}
pt(o1) = {o3, o4} pt(o2) = {o3, o4} pt(o3) = { } pt(o4) = { }

(d) Result.

Fig. 3. Example program fragment in (a), the constraints generated for Andersen’s
analysis in (b), the initial operations performed to fulfil the constraints in (c), and
the final results in (d). We assume pt(p) = {o1}, pt(q) = {o2}, and pt(r) = {o3, o4}.
Duplicate points-to sets and operations are highlighted in grey .

also highlighted in grey. We see that 5 of the 9 points-to sets have occurred before,
pointing to much duplication. This can be problematic as points-to sets grow,
with statically sized representations, or as analyses introduce more variables.

We shorten the program fragment above in Fig. 4a1 to illustrate the same
issues in flow-sensitive points-to analysis. Figure 4b lists the constraints gener-
ated according to the rules in Fig. 2 followed by the initial operations performed
to fulfil those constraints and the final result of the analysis in Figs. 4c and 4d.
As before, we highlight duplicate operations and points-to sets in grey.

Since the analysis is flow-sensitive, we need to maintain points-to sets of
objects at program points for precise results, thus resulting in more pointers
being kept track of. By maintaining points-to sets at program points, we also
require more operations to handle the flow of control. This can all be seen by
the increase in number of operations and points-to sets in Figs. 4c and d despite
the smaller program fragment. The improved precision can be seen through the
differing points-to sets of some objects at different program points, for exam-
ple, pt[1](o1) �= pt[1](o1). However, this increased precision comes at a cost
of increased redundancy as some points-to sets do not differ between program
points, like those of o3 and o4. Thus, we see that there are only 4 unique points-
to sets out of 19, and 3 unique operations out of 14, meaning that the analysis
is maintaining duplicate points-to sets and performing duplicate operations.

We note that SFS, one of the analyses we evaluate our approach on, can
remove some of this duplication and redundancy through complex algorithmic
changes to the analysis in Fig. 2, but much duplication still exists, as will be
seen in Sect. 4. We also note that although many points-to sets in these exam-

1 Due to the large number of points-to sets and unions flow-sensitive analysis produces.
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1 : ∗p = r;

2 : ∗q = r;

(a) Program fragment.

1 : ∀o ∈ pt(p). pt(r) ⊆ pt(o)

1 : ∀o ∈ O. pt[1](o) ⊆ pt[1](o)

1/2 : ∀o ∈ O. pt[1](o) ⊆ pt[2](o)

2 : ∀o ∈ pt(q). pt(r) ⊆ pt(o)

2 : ∀o ∈ O. pt[2](o) ⊆ pt[2](o)

(b) Constraints.

1 : {o3, o4}r ⊆ { }[1]o1 2 : {o3, o4}r ⊆ { }o2

1 : { }[1]o1
⊆ {o3, o4}[1]o1 1/2 : {o3, o4}[1]o1 ⊆ { }[2]o1

2 : {o3, o4}[2]o1
⊆ { }[2]o1

1 : { }[1]o2
⊆ { }[1]o2 1/2 : { }[1]o2 ⊆ { }[2]o2

2 : { }[2]o2
⊆ {o3, o4}[2]o2

1 : { }[1]o3
⊆ { }[1]o3 1/2 : { }[1]o3 ⊆ { }[2]o3

2 : { }[2]o3
⊆ { }[2]o3

1 : { }[1]o4
⊆ { }[1]o4 1/2 : { }[1]o4 ⊆ { }[2]o4

2 : { }[2]o4
⊆ { }[2]o4

(c) Initial operations.

pt(p) = {o1} pt(q) = {o2} pt(r) = {o3, o4}
pt[1](o1) = { } pt[1](o2) = { } pt[1](o3) = { } pt[1](o4) = { }

pt[1](o1) = {o3, o4} pt[1](o2) = { } pt[1](o3) = { } pt[1](o4) = { }
pt[2](o1) = {o3, o4} pt[2](o2) = { } pt[2](o3) = { } pt[2](o4) = { }

pt[2](o1) = {o3, o4} pt[2](o2) = {o3, o4} pt[2](o3) = { } pt[2](o4) = { }
(d) Result.

Fig. 4. Example program fragment in (a), the constraints generated for a flow-sensitive
analysis in (b), the initial operations performed to fulfil the constraints in (c), and the
final results in (d). We assume pt(p) = {o1}, pt(q) = {o2}, and pt(r) = {o3, o4}.
Duplicate points-to sets and operations are highlighted in grey .

ples were empty sets which can be easily represented, real-world programs show
duplication of larger points-to sets and more complex union operations.

3 Approach

This section introduces hash consed points-to sets and its application to points-to
analysis. We then describe optimisations that can use hash consing to efficiently
exploit set properties for further performance improvement.

3.1 Hash Consed Points-To Sets

Hash consing is used to create immutable data structures which can be shared
(referentially) to avoid duplication. A common example of hash consing is string
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interning [18, §3.10.5] whereby a compiler or runtime stores strings in a global
pool and assigns pointers to strings in that global pool rather than private copies.
In our context, we want points-to sets to be stored once in a global pool, so that
we deal with references to points-to sets rather than concrete points-to sets.

To do this, whenever a points-to set is created, we perform an interning
routine. We check if that points-to set exists in our global pool, and

– If it exists, return a reference to the equivalent set in the global pool.
– Otherwise, add the points-to set to the global pool and return a reference to

the newly added points-to set.

This process can be achieved by a single hash table mapping each points-to sets
to a single canonical reference. Now, instead of using pt(p) during the analy-
sis, we use ptr(p) which is a reference to the points-to set of p in the global
pool. Dereferencing a points-to set reference as dr(ptr(p)) would be equivalent
to pt(p) and can be used to iterate over the points-to set, for example. Given that
ptr(p) = ptr(q), dr(ptr(p)) and dr(ptr(q)) would also be equivalent and actually
be accessing the same singly stored points-to set in the global pool. This can
save significant memory if duplicate points-to sets are common.

On its own, this process does not save time, and may cost more time to
perform the interning routine, especially as we perform many unions creating
points-to sets which need to be interned. Since each unique points-to set exists
once in the program, we can efficiently memoise operations, including the union
operation. This can be achieved by a hash table, which we call an operations
table, mapping two points-to set references to the points-to set reference which
refers to the result of the actual operation. The union between two points-to set
references ptr(p) ∪ ptr(q) can be performed by looking up the union operations
table with the 〈ptr(p), ptr(q)〉 pair as the key (i.e., operation), and

– If the key exists, returning the associated value, i.e., the reference to the result
of the operation.

– Otherwise, performing a concrete union between dr(ptr(p)) and dr(ptr(q)),
interning the result, associating the operation with the result in the operations
table, and returning it.

With many union operations being duplicates, those would be performed as
constant time hash table lookups, rather than linear time set unions2 which can
be expensive depending on sizes of points-to sets. The intersection and difference
operations can also be memoised the same way, if necessary.

Without hash consing, memoising operations would not be efficient as we
would need to hash entire points-to sets, i.e., we would map 〈pt(p), pt(q)〉 to
another concrete points-to set rather than mapping a reference pair to a refer-
ence. Collisions would also be expensive to resolve as determining equality would
then be linear in the size of the colliding points-to set pairs. With references,
equality can be determined in constant time.

2 For our SVF-based implementation we use sparse bit-vectors (Sect. 4.1).
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{o1 →	} r1

{o2 →	} r2

{o3, o4 →	} r3

→	}{ r4

(a) Global pool mapping points-
to sets to references.

〈r3, r4 →	〉 r3

(b) Union operations table.

ptr(p) = r1 ptr(q) = r2 ptr(r) = r3 ptr(x) = r3 ptr(y) = r3

ptr(o1) = r3 ptr(o2) = r3 ptr(o3) = r4 ptr(o4) = r4

(c) Result.

Fig. 5. Global pool of points-to sets in (a), the union operations table in (b), and the
result in (c) using references instead of concrete points-to sets for the analysis in Fig. 3.

{o1 →	} r1

{o2 →	} r2

{o3, o4 →	} r3

→	}{ r4

(a) Global pool mapping points-
to sets to references.

〈r3, r4 →	〉 r3

〈r4, r4 →	〉 r4

〈r4, r3 →	〉 r3

(b) Union operations table.

pt(p) = r1 pt(q) = r2 pt(r) = r3

pt[1](o1) = r4 pt[1](o2) = r4 pt[1](o3) = r4 pt[1](o4) = r4

pt[1](o1) = r3 pt[1](o2) = r4 pt[1](o3) = r4 pt[1](o4) = r4

pt[2](o1) = r3 pt[2](o2) = r4 pt[2](o3) = r4 pt[2](o4) = r4

pt[2](o1) = r3 pt[2](o2) = r3 pt[2](o3) = r4 pt[2](o4) = r4

(c) Result.

Fig. 6. Global pool of points-to sets in (a), the union operations table in (b), and the
result in (c) using references instead of concrete points-to sets for the analysis in Fig. 4.

Figures 5 and 6 show how our analysis would look for the examples in Figs. 3
and 4 respectively. Three of the four union operations between points-to sets
{o3, o4} and { } are performed as cheap lookups in the operations table in Fig. 5b.
This is because the first time we perform a concrete operation, we cache it
in the operations table, and perform a fast lookup on subsequent operations.
As in Fig. 5c, we store references to points-to sets in the global pool (Fig. 5a)
rather than concrete points-to sets, and so we only store 4 concrete points-to
sets. Figure 6 illustrates that all the initial points-to unions in the flow-sensitive
example are translated into 3 unique reference operations. Furthermore, for the
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flow-sensitive example, the effect of using references into the global pool for
points-to sets is more drastic since there are so many pointers tracked, saving
significant memory.

3.2 Exploiting Set Properties

In this section, we describe some optimisations which exploit the properties of
sets to further improve efficiency of union operations on hash consed points-to
sets. We note that even though our rules in Figs. 1 and 2 only perform unions,
practical implementations may perform intersection and difference operations.
Furthermore, clients may perform some of these operations too, like alias analysis
which performs intersection tests. These operations can be memoised in the same
way as unions above, and we exploit their properties in this section too.

Commutative Operations. For commutative operations like unions and inter-
sections, performing an operation twice with the operands flipped is duplication
though this would not be detected in the operations tables. For example, assum-
ing ptr(p) = x and ptr(q) = y, if we perform x ∪ y = z for the first time, we
would store a mapping from the pair 〈x, y〉 to the result z in the union opera-
tions table. If the analysis was to perform y ∪ x, it would not find the operation
memoised, despite the result also being z, as 〈y, x〉 would not be cached in the
union operations table.

To resolve this, operations should always be ordered deterministically. This
is easy to achieve with hash consing because points-to sets are references and
can be compared in constant time. Now, to perform x ∪ y or y ∪ x, we would
perform the operation in the same order depending on whether x is “less than”
y, and so only a single instance would be stored in the union operations table.
In Fig. 6b, the first and third operation are actually equivalent, and under this
scheme would be stored once as 〈r3, r4〉 �→ r3.

Property Operations. In some cases, the result of an operation can be deter-
mined instantly with only trivial comparisons without any concrete operation
or hash table lookup. We refer to these cases as property operations, and we
describe these cases for unions, intersections, and differences below. We set e to
refer to the empty points-to set, and for commutative operations (i.e., unions
and intersections), we assume the operands have already been ordered and that
the reference e is the least reference (so it is always the first operand in the
commutative operations it appears in).

Unions. Given the ordered union operation between references x and y, x ∪ y,
and that the result would be r,

x = e ⇒ r = y, and
x = y ⇒ r = x.
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All operations in Figs. 5b and 6b are actually property operations and caching
is unnecessary.

Intersections. Given the ordered intersection operation between references x and
y, x ∩ y, and that the result would be r,

x = e ⇒ r = e, and
x = y ⇒ r = x.

Difference. Given the difference operation between references x and y, x − y,
and that the result would be r,

x = e ⇒ r = e,

y = e ⇒ r = x, and
x = y ⇒ r = e.

Preemptive Memoisation. After performing an actual operation and caching
that operation in the operation table, we can preemptively cache other operations
too by exploiting standard set properties. This would avoid performing an actual
operation later if the analysis needed that result. An implementation can choose
which operations are worth preemptively memoising and which are not.

Unions. Assume the ordered operation x ∪ y = r is not a property operation. If
x �= r, we can instantly determine and cache

x ∪ r = r, and
x ∩ r = x,

and similarly if y �= r,

y ∪ r = r, and
y ∩ r = y.

We guard with the conditions x �= r and y �= r because in each of these cases
the preemptively cached unions would be property unions.

Intersections. Assume the ordered operation x ∩ y = r is not a property oper-
ation. If r �= e ∧ x �= r, we can instantly determine and cache

x ∩ r = r, and
x ∪ r = x,
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and similarly if r �= e ∧ y �= r,

y ∩ r = r, and
y ∪ r = y.

We are not interested in preemptively memoising when r = e because these
intersections and unions would otherwise be property operations.

Difference. Assume the difference operation x−y = r is not a property operation.
If r �= e ∧ x �= r we can instantly determine and cache

x ∪ r = x, and
x ∩ r = r,

and similarly if r �= e,

y − r = y,

r − y = r, and
r ∩ y = e.

4 Evaluation

This section describes our implementation, programs used to evaluate our app-
roach, and then discusses results obtained when applying our hash consed points-
to sets to state-of-the-art inclusion-based flow-insensitive analysis (Andersen’s
analysis [1,36]) and inclusion-based flow-sensitive analysis (staged flow-sensitive
analysis [23]).

4.1 Implementation and Experimental Setup

We have implemented our approach using open source points-to analysis frame-
work SVF [47] built on LLVM 10.0.0. We have not modified any algorithms,
rather just how points-to sets are represented, that is, when an analysis attempts
to perform a union or access a points-to set, our code is called. For concrete
points-to sets, we use LLVM’s sparse bit-vector. SVF’s flow-insensitive points-
to analysis or Andersen’s analysis uses a state-of-the-art constraint resolution
algorithm, wave propagation [36], and performs cycle detection. Indirect calls
(function pointers and virtual calls) are resolved on-the-fly during points-to res-
olution. SVF’s flow-sensitive analysis is staged flow-sensitive analysis (SFS) as
described in Section V of the original work [23]. Unlike Fig. 2, SFS performs
points-to analysis on a pre-computed def-use graph, not a control-flow graph,
vastly reducing the number of constraints. Both analyses are field-sensitive and
assume analysed programs do not perform pointer arithmetic to access fields.
Fields of struct objects are distinguished by their unique indices [35].
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Table 2. Program versions, bitcode sizes, lines of LLVM instructions, and descriptions.

Program Version Size LOI Description

dhcpcd 9.3.4 1.19 MB 82 939 DHCP client

nsd 4.3.4 1.72 MB 117 191 Name server

tmux 3.1c 2.41 MB 156 872 Terminal multiplexer

gawk 5.1.0 2.48 MB 179 805 GNU AWK interpreter

bash 5.0.18 2.68 MB 196 168 Bourne Again Shell (Unix shell)

mutt 2.0.3 3.28 MB 224 500 Text-based email client

lynx 2.8.9 5.31 MB 287 159 Text-based web browser

xpdf 4.03 7.90 MB 494 764 PDF viewer

python3 3.7.9 9.80 MB 635 361 Python 3 interpreter

svn 1.14.0 11.40 MB 673 144 Version control system

emacs 27.2 11.85 MB 804 291 extensible text editor

git 2.29.2 12.29 MB 739 968 Distributed version control system

kakoune 2020.08.04 12.39 MB 733 327 Modal text editor

ruby 2.7.2 13.05 MB 864 114 Ruby interpreter

squid 4.13 20.36 MB 1 252 756 Web proxy cache

wireshark 3.4.0 32.59 MB 2 145 391 Network packet analyser

For our hash consed points-to sets, we map concrete points-to sets to unique
integer identifiers (which act as our references), and a second map, implemented
as an array for performance, mapping those identifiers back to the concrete
points-to set. This allows us to use 32-bit identifiers, rather than 64-bit addresses
as would be required if our references were pointers. Our operations tables are
implemented as maps mapping two such identifiers to another. Our hash function
is simply the concatenation of the two 32-bit identifier operands which is another
benefit of using integral identifiers as references.

We have run Andersen’s analysis and SFS with and without hash consed
points-to sets on 16 real-world open source programs from various domains.
Table 2 lists these programs along with their version, bitcode size, number of
lines of LLVM instructions, and a short description. xpdf, kakoune, squid, and
wireshark are written in C++ and the remainder are C programs. We ran the
analyses on a machine running 64-bit Ubuntu 18.04.2 LTS with an Intel Xeon
6132 processor and we limited analyses to 100 GB of memory. To measure time,
we use C’s clock function and to measure memory we refer to the maximum
resident set size of the entire SVF execution reported by GNU’s time.
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Table 3. Time taken (seconds) and memory usage (GB) for Andersen’s analysis with
and without hash consing, followed by the time and memory difference of the two
approaches.

Program
Baseline Hash consed Time

diff.

Memory

diff.
Time Memory Time Memory

dhcpcd 4.52 0.30 3.58 0.28 1.26× 1.07×
nsd 9.32 0.55 7.23 0.51 1.29× 1.07×
tmux 18.86 0.59 14.11 0.56 1.34× 1.05×
gawk 19.92 0.64 14.15 0.58 1.41× 1.10×
bash 10.93 0.64 7.29 0.58 1.50× 1.11×
mutt 41.79 1.01 20.09 0.95 2.08× 1.06×
lynx 61.09 1.11 44.51 1.03 1.37× 1.08×
xpdf 179.52 1.94 111.80 1.88 1.61× 1.03×
python3 5509.52 4.13 1779.64 3.51 3.10× 1.18×
svn 5869.05 4.24 1829.20 2.82 3.21× 1.50×
emacs 5082.81 13.63 2651.32 13.05 1.92× 1.05×
git 5905.84 6.73 2499.55 6.79 2.36× 0.99×
kakoune 673.88 3.07 263.08 3.26 2.56× 0.94×
ruby 67.32 2.74 32.08 2.58 2.10× 1.06×
squid 2752.84 6.30 949.33 5.03 2.90× 1.25×
wireshark 271.60 6.42 211.42 6.21 1.28× 1.03×
Geo. Mean 1.85× 1.09 ×

4.2 Results and Discussion

In this section, we discuss the effects of hash consing on points-to analysis. We
first look at Andersen’s analysis then SFS, and conclude with a brief discussion
on preemptive memoisation.

Andersen’s Analysis. Table 3 shows the time and memory of Andersen’s anal-
ysis with and without hash consing, and comparisons are shown in the Time
diff. and Memory diff. columns. We see a positive trend in time, showing that
using hash consing speeds up the analysis by a geometric mean of 1.85× for our
programs. At most, the analysis is 3.21× faster, and at worst 1.26× faster. Gen-
erally, slower to analyse programs saw the greatest improvement in speed, with
all programs which originally took over 5000 s to analyse seeing an improvement
of over 2× with the exception of emacs which saw a slightly lower improvement.

For memory, we see around the same usage generally with the hash consed
analysis using slightly more or slightly less. We have not implemented garbage
collection for the global pool of points-to sets. When there exists no references to
a certain points-to set in the global pool, that points-to set can be destroyed, or
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Table 4. Number of union operations which are concrete operations, property opera-
tions (and their proportion), lookups into the union operations table (and their pro-
portion), and the total for Andersen’s analysis using our approach.

Program Concrete Property Lookup Total

dhcpcd 3766 (3.10%) 58 424 (48.14%) 59 185 (48.76%) 121 375

nsd 2900 (1.76%) 98 068 (59.45%) 64 001 (38.80%) 164 969

tmux 5651 (1.58%) 102 511 (28.58%) 250 552 (69.85%) 358 714

gawk 6378 (2.26%) 155 251 (55.09%) 120 172 (42.64%) 281 801

bash 1358 (0.93%) 126 307 (86.61%) 18 167 (12.46%) 145 832

mutt 8135 (3.07%) 145 604 (55.02%) 110 881 (41.90%) 264 620

lynx 10 750 (3.19%) 188 602 (56.04%) 137 205 (40.77%) 336 557

xpdf 29 622 (4.32%) 249 768 (36.41%) 406 582 (59.27%) 685 972

python3 33 274 (3.16%) 560 048 (53.25%) 458 319 (43.58%) 1 051 641

svn 22 879 (1.45%) 808 308 (51.13%) 749 564 (47.42%) 1 580 751

emacs 92 677 (4.61%) 809 938 (40.27%) 1 108 850 (55.13%) 2 011 465

git 124 333 (9.03%) 684 809 (49.73%) 567 897 (41.24%) 1 377 039

kakoune 86 364 (8.72%) 394 225 (39.81%) 509 693 (51.47%) 990 282

ruby 11 090 (3.15%) 195 495 (55.47%) 145 827 (41.38%) 352 412

squid 55 792 (3.23%) 796 024 (46.09%) 875 241 (50.68%) 1 727 057

wireshark 47 856 (3.02%) 592 647 (37.34%) 946 580 (59.64%) 1 587 083

Geo. Mean – (2.98%) – (48.40%) – (44.24%)

garbage collected. This would save memory, as intermediate points-to sets which
are no longer in use litter the global pool. We strongly suspect that garbage
collection of the global pool can further save memory and eliminate memory
usage regressions, which we would like to explore in the future.

Table 4 lists the union operations performed by the Andersen’s analysis and
categorises them as concrete (unique) unions, property unions, or lookups. When
we preemptively memoise, we count such an operation as a property operation.
We see that in every program, less than 10% of unions are concrete unions,
meaning the remainder are either property unions, and thus trivial, or duplicates
of a non-property union. In fact, we only see more than 5% for two programs,
git and kakoune. In most programs, the number of property unions and lookups
are roughly even. It is interesting to note that despite the small number of unions
(compared to more precise analyses, as will be seen in the next section), hash
consing has produced a noticeable speedup.

SFS. Table 5 shows the time taken and memory used by SFS with and without
hash consing. For time, we see a very similar to trend to that of Andersen’s analy-
sis. Unexpectedly, considering how many more constraints flow-sensitive analysis
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Table 5. Time taken (seconds) and memory usage (GB) for SFS with and without
hash consing, followed by the time and memory difference of the two approaches. OOM
means the analysis exhausted the allocated 100 GB of memory.

Program
Baseline Hash consed Time

diff.

Memory

diff.
Time Memory Time Memory

dhcpcd 77.27 1.08 73.04 0.66 1.06× 1.65×
nsd 113.39 2.97 75.76 0.74 1.50× 4.02×
tmux 280.09 3.33 212.25 1.14 1.32× 2.93×
gawk 1526.61 12.13 685.78 2.42 2.23× 5.02×
bash 337.01 8.55 165.28 1.51 2.04× 5.65×
mutt 797.92 13.95 400.08 2.15 1.99× 6.49×
lynx 3256.47 26.71 1594.90 3.65 2.04× 7.32×
xpdf OOM OOM 7210.36 6.44 – ≥15.52×
python3 OOM OOM 23534.00 16.72 – ≥5.98×
svn OOM OOM 14000.10 22.61 – ≥4.42×
emacs OOM OOM 51367.00 44.50 – ≥2.25×
git OOM OOM 49264.50 39.59 – ≥2.53×
kakoune OOM OOM 12845.40 9.49 – ≥10.53×
ruby OOM OOM 4250.19 9.77 – ≥10.24×
squid OOM OOM 72733.50 37.53 – ≥2.66×
wireshark OOM OOM 24820.20 14.50 – ≥6.90×
Geo. Mean 1.69× ≥4.93×

can produce, we see a lower geometric mean of 1.69×. This can be explained by
the lack of analysis timing data for 9 programs without hash consing, i.e., the
baseline, because those analyses exceeded the allocated 100 GB of memory, and
thus we cannot draw a time comparison. If sufficient memory resources were
available, we would expect to see a much larger average improvement as these
9 benchmarks are the largest and would be likely improve most. This can be
gleaned from the data in Table 6 which shows the union type breakdown for
SFS. We see that the number of unions is very high giving much room for our
approach to improve time. Concrete unions never exceed 1% when using hash
consing, thus hash consing and memoisation have improved over 99% of unions
for our programs. We also see that, compared to Andersen’s analysis, a larger
proportion of unions have become property unions rather than lookups.

As for memory usage in Table 5, we see a significant improvement with a
geometric mean reduction of over 4.93×, and at most over 15.52× (xpdf). Hash
consing brings memory requirements to a level acceptable for commodity hard-
ware: of the 9 programs which exceeded the allocated 100 GB in the baseline
analysis, 6 now require less than 32 GB, and all suffice with less than 64 GB.
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Table 6. Number of union operations which are concrete operations, property opera-
tions (and their proportion), lookups into the union operations table (and their pro-
portion), and the total number of unions for SFS using hash consing.

Program Concrete Property Lookup Total

dhcpcd 858 019 (0.95%) 60 000 495 (66.20%) 29 772 284 (32.85%) 90 630 798

nsd 106 236 (0.06%) 131 385 659 (70.44%) 55 032 002 (29.50%) 186 523 897

tmux 265 726 (0.05%) 515 202 000 (89.33%) 61 282 554 (10.63%) 576 750 280

gawk 2 568 240 (0.11%) 1 674 478 472 (72.11%) 645 178 369 (27.78%) 2 322 225 081

bash 27 701 (0.01%) 435 565 965 (84.61%) 79 195 559 (15.38%) 514 789 225

mutt 319 829 (0.02%) 1 033 079 848 (78.53%) 282 194 806 (21.45%) 1 315 594 483

lynx 788 833 (0.02%) 3 836 871 871 (79.72%) 975 346 188 (20.26%) 4 813 006 892

xpdf 2 375 069 (0.02%) 9 475 061 599 (76.93%) 2 838 361 665 (23.05%) 12 315 798 333

python3 1 125 561 (0.00%) 27 494 110 299 (83.29%) 5 516 560 498 (16.71%) 33 011 796 358

svn 9 536 154 (0.04%) 15 950 564 702 (73.53%) 5 731 542 295 (26.42%) 21 691 643 151

emacs 40 525 287 (0.04%) 62 746 471 959 (67.68%) 29 925 669 621 (32.28%) 92 712 666 867

git 15 868 477 (0.03%) 36 002 062 086 (75.28%) 11 805 253 473 (24.69%) 47 823 184 036

kakoune 833 730 (0.00%) 21 708 874 709 (81.56%) 4 907 142 103 (18.44%) 26 616 850 542

ruby 1 219 328 (0.01%) 11 142 763 302 (83.49%) 2 202 254 328 (16.50%) 13 346 236 958

squid 3 080 598 (0.00%) 117 192 828 125 (85.99%) 19 097 056 263 (14.01%) 136 292 964 986

wireshark 9 219 867 (0.06%) 7 534 330 653 (50.97%) 7 237 949 555 (48.97%) 14 781 500 075

Geo. Mean – (0.02%) – (75.61%) – (22.10%)

Even though our implementation does not include garbage collection of unnec-
essary intermediate points-to sets in the global pool, our approach still shows
significant memory reduction for more precise analyses like SFS. With garbage
collection we expect to see an even greater improvement in memory usage.

Effect of Preemptive Memoisation. For our programs, preemptive mem-
oisation generally does not have a discernible effect on time. This is because
preemptive memoisation reduces the number of concrete unions after the appli-
cation of our techniques (i.e., after our other techniques have made the most
expensive operations cheaper, like transforming N occurrences of a particularly
expensive union into one concrete union followed by N − 1 lookups). That is, it
reduces the number of the already reduced concrete unions (second column of
Tables 4 and 6). Regardless, we notice that the number of concrete unions does
meaningfully shrink. For example, for Andersen’s and SFS respectively, we see
about 2500 and 1 million fewer for svn, about 10000 and 500000 fewer for squid,
and about 1000 and 7 million fewer for emacs. This indicates that as input pro-
grams grow and the difference in concrete unions starts to have a noticeable
effect on time (e.g., when points-to sets become unreasonably large), the role
preemptive memoisation plays can become more significant. As expected, we
see a slight increase in memory usage due to storing more operations in the
operations table (each entry taking 12 bytes, modulo any table overhead).
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5 Related Work

Inclusion-Based Points-To Analysis. The study of inclusion-based points-to
analysis has a long history [1,6,13,20,26,29,35,36,39,44,46]. Resolving points-
to relations in inclusion-based analysis is formalised as a set-constraint problem
often solved by using a constraint graph of a program. To boost the performance
of points-to analysis, most existing efforts focus on improving the analysis at the
algorithmic level (e.g., via developing more efficient constraint solvers [35,36,
44]) or simplifying the constraint graph (e.g., cycle elimination [13,20], variable
substitution [21,39], or selective precision [30,41]).

Despite these efforts, redundant and duplicate points-to sets and operations
still exist and can not be completely tamed by existing techniques. Pushing the
boundaries through algorithmic changes to the points-to analysis may produce
increasingly diminishing returns on performance. Unlike previous approaches
which simplify constraints or make algorithmic changes to points-to analysis,
the goal of this work is to improve underlying data structures.

Data Structures for Points-To Analysis. There has been a handful of work
on using and developing data structures, particularly through better represent-
ing points-to sets, for efficient points-to analysis. For computing and representing
points-to sets, several data structures have been used including binary deci-
sion diagrams (BDDs) [5,52], bit-vectors [22,23,31] and explicit representations
such as B-trees [8] and hash-based sets [31]. BDD-based points-to analysis often
requires expensive variable reordering to be efficient. Thus the benefits may not
outweigh using explicit representations [8]. Moreover, they often require algorith-
mic changes to the points-to analysis [5,54], introducing extra implementation
complexity. Bit-vectors as arguably the most popular data structure to repre-
sent points-to sets having been used in mainstream frameworks such as Soot [31],
WALA [50], and LLVM-based static analysis tools [23,40,47]. Bit-vectors have
been shown more efficient than hash-based sets and sorted arrays [31], and
BDDs [22]. In this paper, we demonstrate that our hash consed points-to sets
work well on top of LLVM’s sparse bit-vectors to boost the performance of state-
of-the-art flow-insensitive and flow-sensitive points-to analyses.

Hash Consing for Static Analysis. In unpublished work [25], Heintze
described splitting points-to sets into two parts: a unique part (called an over-
flow list) and a shared part. The shared part can be described as hash consing
and thus implements a finer-grained hash consing since it does this on subsets
rather than entire sets. However, no memoisation is performed, and doing so
would be less effective due to the overflow list where, for example, two sets may
be equivalent but not share any parts (i.e. the unique parts are different and
the shared parts are different). The data structure is also much more difficult to
implement whereas what we have presented can be retrofitted onto most set-like
data structures exposing necessary operations (largely the set union operation).
An implementation is available in Soot [43] as the SharedHybridSet.
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Hash consing has also more generally been explored for static analysis to
represent, for example, memory maps and program states [12,33], invocation
graphs [11], subtrees [3], and constants [27], with success. Static analyses are ripe
for hash consing and memoisation because they are by nature approximations
designed to capture a class of runtime data and so contain many duplicate
data structures, operations, or both. We believe this work is the first to apply
hash consing to the base aspects of points-to analysis, i.e. points-to sets and
their unions, describe extra optimisations, and show why points-to analysis is
perfectly suited for hash consing.

6 Conclusion

This paper uses hash consed points-to sets to produce a persistent data structure
to reduce duplicate points-to sets, saving space, and memoise union operations,
saving time, without any high-level algorithmic changes. Hash consing can effec-
tively handle duplication during points-to resolution by representing points-to
sets once and referring to such representations through references. Our app-
roach can speed up duplicate union operations through efficient memoisation
and operand comparisons. We have evaluated our approach using 16 real-world
C/C++ programs (>9.5 million lines of LLVM instructions). We observe an
average memory reduction of ≥4.93× (up to ≥15.52×) in staged flow-sensitive
analysis (SFS) and an average speed up of 1.69× (up to 2.23×). We also observe
a speed up in state-of-the-art Andersen’s analysis of 1.85× on average (up to
3.21×) while using roughly the same amount of memory.
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Abstract. Symbolic execution is an established program analysis tech-
nique that aims to search all possible execution paths of the given pro-
gram. Due to the so-called path explosion problem, symbolic execution
is usually unable to analyze all execution paths and thus it is not con-
venient for program verification as a standalone method. This paper
focuses on backward symbolic execution (BSE), which searches program
paths backwards from the error location whose reachability should be
proven or refuted. We show that this technique is equivalent to per-
forming k-induction on control-flow paths. While standard BSE simply
unwinds all program loops, we present an extension called loop folding
that aims to derive loop invariants during BSE that are sufficient to prove
the unreachability of the error location. The resulting technique is called
backward symbolic execution with loop folding (BSELF). Our experiments
show that BSELF performs better than BSE and other tools based on
k-induction when non-trivial benchmarks are considered. Moreover, a
sequential combination of symbolic execution and BSELF achieved very
competitive results compared to state-of-the-art verification tools.

1 Introduction

Symbolic execution (SE) [55] is a widely used technique for static program analy-
sis. In principle, SE runs the program on symbols that represent arbitrary input
values with the aim to explore all execution paths. This approach is inherently
doomed to suffer from the path explosion problem. In other words, it typically
runs out of available resources before finishing the analysis as the number of all
execution paths is often very large or even infinite. Moreover, some execution
paths may be infinite, which is another obstacle that makes SE fail to completely
analyze the program.

Many techniques modifying or extending SE have been introduced to mitigate
the path explosion problem. Some of them try to reduce the set of considered exe-
cution paths [19,72,79,81] or process multiple execution paths at once [45,57,74].
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Others focus on the efficient processing of program loops [38,73,78], computation
of reusable function summaries [3,37,68], or they do not symbolically execute
nested [62] or library [60] functions as these are assumed to be correct. There are
also approaches combining SE with other established techniques like predicate
abstraction [39], counterexample-guided abstraction refinement (CEGAR) [15],
or interpolation [46,63]. We refer to a recent survey [6] for more information
about symbolic execution and its applications.

Our original research goal was to study possible combinations of SE and k-
induction [77] for program verification, in particular for the error location reach-
ability problem, i.e., the problem to decide whether there exists an execution
of the program that reaches an error location. k-induction has been introduced
as a technique for checking safety properties of symbolic transition systems by
induction with respect to the length of paths in the system. It has been also
adapted to model checking software [12,29,35,69], where the induction is typ-
ically led with respect to the number of loop iterations. We show that in the
context of error location reachability problem, k-induction applied to control-
flow paths of a given program corresponds to backward symbolic execution with
the breadth-first search strategy. This is the first result of the paper.

Backward symbolic execution (BSE) [22,28,42] is the backward version of
SE: it starts at the program location whose reachability is to be determined and
symbolically executes the program backwards until it either reaches the initial
location or all analyzed paths become infeasible. Similarly, as in the case of SE,
this process may never terminate.

Let us illustrate the difference between SE and BSE on a very simple example.
Assume that we want to verify the validity of the assertion in the program in
Fig. 1 (top left). In other words, we need to decide the error location reachability
problem for the location err in the corresponding control-flow automaton (top
right). SE assigns to each variable v the symbol v representing its input value.
Further, SE gradually builds the SE tree (bottom left) of paths starting in init .
Each node in the SE tree is labelled with a triple l | m | φ of the current
program location l, the memory content m, and the path condition φ, which is
the weakest precondition on input values that makes the program follow the path
leading from the tree root to the node. Whenever a path becomes infeasible, i.e.,
its path condition becomes unsatisfiable, SE stops executing this path (we draw
such nodes dotted). Clearly, the assertion is valid iff the tree does not contain
any node that is labelled with err and a satisfiable path condition. The assertion
in Fig. 1 is valid, but SE cannot prove it as the SE tree is infinite.

BSE works similarly, but it proceeds from the error location backward to
init . In other words, instead of computing the weakest precondition of paths
that start in init , it computes the weakest precondition of paths that end in
err . Note also that because BSE directly computes the precondition, it does not
need to keep the contents of memory. For the program in Fig. 1, the BSE tree
(bottom right) is finite and because there is no feasible path from init to err , it
proves that the assertion is valid.
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Fig. 1. Top part presents a simple program (left) and the corresponding control-flow
automaton (right) with err location representing the assertion violation. The bottom
part shows the infinite SE tree (left) starting in the initial location init , and the BSE
tree (right) starting in the error location err .

Now consider a similar program given in Fig. 2. This time, the results of
SE and BSE are switched: the SE tree (bottom left) is finite and implies the
validity of the assertion, but the BSE tree (bottom right) is infinite and thus
inconclusive.

The main difference between examples in Figs. 1 and 2 from the BSE per-
spective is the position of the assertion. In both cases, BSE first processes the
negation of the assertion. But only in the example with the assertion inside the
loop, it is processed again and this time in the positive form, which makes the
path infeasible. This illustrates that a valid assertion inside a program loop may
be a loop invariant that is able to prove its own validity (it is inductive).

A standard solution to checking assertions that are not strong enough to
prove their own validity is to use externally generated invariants [11,18,20,43].
In this work, we address this issue by extending BSE with loop folding that
attempts to infer inductive invariants during BSE. Backward symbolic execution
with loop folding (BSELF) is the second result presented in this paper.

We have implemented both BSE and BSELF. Our experimental evaluation
shows that BSELF is significantly more efficient than BSE and other tools imple-
menting k-induction on non-trivial benchmarks. Further, our experiments indi-
cate that a sequential combination of SE and BSELF forms a powerful tool fully
comparable with state-of-the-art verification tools.
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Fig. 2. Top part presents a simple program (left) and the corresponding control-flow
automaton (right) with err location representing the assertion violation. The bottom
part shows the infinite SE tree (left) starting in the initial location init , and the BSE
tree (right) starting in the error location err .

The paper is organized as follows. The next section provides necessary defi-
nitions. Section 3 studies BSE, k-induction, and the relation between them. The
algorithm BSELF is described in Sect. 4 and the experimental evaluation is pre-
sented in Sect. 5. Finally, Sect. 6 discusses related work.

2 Preliminaries

In this paper, we consider programs represented as control-flow automata
(CFAs) [13]. A CFA A = (L, init , err , E) consists of a finite set L of program
locations, an initial location init ∈ L, an error location err ∈ L � {init}, and a
finite set E ⊆ (L � {err}) × Ops × L of edges between program locations which
are labeled with operations. An operation is either an assumption (denoted in fig-
ures with blue text in square brackets, e.g., [x > 5]) or a sequence of assignments
(e.g., x = y + 10; y = 5). If a location has two or more outgoing edges, then all
these edges have to be labeled with assumptions such that any valuation satisfies
at most one of these assumptions. The error location has no outgoing edges.
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A control-flow path or simply a path π in a CFA is a nonempty finite sequence
of succeeding edges π = (l0, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, ln) ∈ E+. Locations
l0 and ln are start and target locations of the path and we refer to them with
sl(π) and tl(π), respectively. By Locs(π) we denote the set of locations on π,
i.e., Locs(π) = {li | 0 ≤ i ≤ n}. A path with start location init is called initial.
A path is called error path if its target location is err and it is called a safe path
otherwise. The length of the path π is denoted by |π| and is equal to the number
of edges on π, i.e. |π| = n.

We assume that our CFAs are reducible [47], i.e., every loop has a single
entry location. The entry location of a program loop is called the loop header. We
further assume that there are no nested loops in CFAs. Given a loop header h, by
LoopPaths(h) we denote the set of paths corresponding to a single iteration of the
loop. Formally, LoopPaths(h) is the set of all paths π such that sl(π) = tl(π) = h
and h does not appear inside π (i.e., π = (h, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, h)
where l1, l2, . . . , ln−1 �= h). We extend the Locs notation to loops identified by
their headers such that Locs(h) = ∪π∈LoopPaths(h)Locs(π).

To simplify the presentation, we assume that programs manipulate only vari-
ables of a fixed bit-width integer type. A program state (or simply a state) is
fully specified by a pair (l, v) of the current program location l and the current
valuation v of program variables. An initial state consists of the initial loca-
tion init and an arbitrary valuation. Given an edge (l, [ψ], l′) ∈ E labelled with

an assumption ψ, we write (l, v)
(l,[ψ],l′)−→ (l′, v) for each valuation v satisfying

ψ. Given an edge (l, soa, l′) ∈ E labelled with a sequence of assignments soa,

we write (l, v)
(l,soa,l′)−→ (l′, v′) for all valuations v and v′ such that v′ arises

from v by performing the sequence of assignments. We generalize the nota-
tion to paths: given a program path π = (l0, o0, l1) . . . (ln−1, on−1, ln), we write
(l0, v0)

π−→ (ln, vn) whenever there exist valuations v1, v2, . . . , vn−1 satisfying

(li, vi)
(li,oi,li+1)−→ (li+1, vi+1) for each 0 ≤ i < n. A path π is feasible from a state

(l, v) if (l, v) π−→ (l′, v′) holds for some state (l′, v′). A path is called feasible if
it is feasible from some program state. Note that if two paths are feasible from
the same program state, then one of these paths has to be a prefix of the other.

In this paper, we study the error location reachability problem, i.e., the prob-
lem to decide whether a given CFA contains a feasible initial error path. The
CFA is called correct if there is no such path. If the CFA is not correct, then
any feasible initial error path is called an error witness.

In the following, we often work with a set of states that have the same
program location and their valuations are models of some formula φ over program
variables. Such a set is denoted as (l, φ) and it is formally defined as

(l, φ) = {(l, v) | v satisfies φ}.

A state (l′, v′) is reachable from (l, φ) if there exist (l, v) ∈ (l, φ) and a path π

such that (l, v) π−→ (l′, v′). A set (l, φ) is called inductive if each state reachable
from (l, φ) with the location l is again in (l, φ). A set (l, φ) is an invariant if it
contains all states with the location l that are reachable from (init , true).
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Given a formula φ and a path π, let π−1(φ) denote the weakest precondition
of φ for the sequence of the operations along π. Formally, π−1(φ) is a formula
that is satisfied by a valuation v if and only if (sl(π), v) π−→ (tl(π), v′) for some
v′ satisfying φ. The formula π−1(φ) can be computed from π and φ for example
by symbolic execution of the path. Clearly, a path π is feasible if and only if
π−1(true) is satisfiable.

In general, we work with quantifier-free first-order formulas over a decidable
theory. Each such a formula can be transformed into conjunctive normal form
(CNF), which is a conjunction of clauses, where each clause is a disjunction
of literals and a literal is an atomic formula or its negation. We assume that
there exists a decision procedure sat(φ) which returns true if φ is satisfiable and
false otherwise. We say that two formulas are disjoint if their conjunction is
unsatisfiable.

3 Backward Symbolic Execution and k-Induction

This section recalls backward symbolic execution and k-induction [77]. Moreover,
it shows that the two techniques provide equivalent results when applied to the
error location reachability problem.

3.1 Backward Symbolic Execution (BSE)

Backward symbolic execution (BSE) [22], sometimes also called symbolic back-
ward execution [6], computes the weakest preconditions [26] of control-flow paths
by a slightly different process than SE. In particular, paths are explored in the
opposite direction: from the error location towards the initial location. BSE
either shows that all error paths are infeasible, or it finds a feasible initial error
path, or it runs forever. We assume that paths are explored in the shortest-first
order. A high-level formulation of BSE is provided in Algorithm1.

Input: CFA A = (L, init , err , E)
Output: correct if A is correct, an error witness π otherwise

workbag ← E ∩ (L × Ops × {err})
while workbag �= ∅ do

π ← pick a path of the minimal length from workbag
workbag ← workbag � {π}
if π is feasible then

if π is initial then return error witness π
workbag ← workbag ∪ {eπ | e ∈ E ∧ tl(e) = sl(π)}

return correct

Algorithm 1: The backward symbolic execution (BSE) algorithm.
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In the beginning, workbag is set to contain all paths of length 1 leading to the
error location. Until workbag is empty, it takes a path from workbag and checks
its feasibility. If the path is infeasible, it is discarded. In the opposite case, we
check whether the path is also initial and report it as an error witness if the
answer is positive. Otherwise, we prolong the path by each edge leading to its
start location (i.e., we prolong it in the backward direction) and put all these
prolonged paths to workbag . If workbag gets empty, it means that all initial error
paths have an infeasible suffix and thus they are infeasible. Because each iteration
picks a path of the minimal length from workbag , BSE invoked on an incorrect
CFA eventually reports an error witness even if the number of feasible error
paths is infinite. Unfortunately, there are correct programs for which BSE does
not terminate as illustrated in Fig. 2. More specifically, BSE does not terminate
on correct CFAs with infinitely many feasible error paths.

Theorem 1. Let P be the set of all feasible error paths of a CFA A. BSE
executed on A

– returns an error witness if P contains an initial path;
– returns correct if P is finite and contains no initial path;
– does not terminate if P is infinite and contains no initial path.

Proof. We start with a simple observation. Let π ∈ P be a path of length n
and, for each 0 < i ≤ n, let πi be the suffix of π of length i. As π is a feasible
error path, each suffix πi is also a feasible error path and thus πi ∈ P . Path π1

of length 1 is inserted to workbag during its initialization. For each 0 < i < n,
when πi is processed by BSE, either it is initial and reported as an error witness,
or πi+1 is inserted to workbag .

Assume that A is incorrect, i.e., P contains an initial path. Let π ∈ P be a
feasible initial error path of the minimal length. Hence, no proper suffix of π is
initial. The observation implies that for all 0 < i < n, processing of πi inserts
πi+1 to workbag . When π = πn is processed, it is returned as an error witness
unless other error witness is found sooner.

Now assume that A is correct, i.e., P contains no initial path. Note that
workbag can contain only error paths of length one, paths in P , and paths of the
form eπ such that π ∈ P . Hence if P is finite, there are only finitely many paths
that can appear in workbag . Moreover, every path can be inserted to workbag
at most once. Altogether, we get that finiteness of P implies that workbag gets
empty after a finite number of iterations and BSE returns correct.

If P is infinite and contains no initial path, the observation implies that every
π ∈ P eventually gets to workbag . Since every iteration of BSE removes only one
path from workbag and P is infinite, BSE does not terminate. �	

Note that usual implementations of BSE do not check the feasibility of each
path in workbag from scratch [22,23] as Algorithm 1 does. Instead, they gradu-
ally build the BSE tree of all feasible error paths as shown in Figs. 1 and 2 by
computing the weakest preconditions incrementally: for a path of the form eπ,
the value of (eπ)−1(true) is computed from the previously computed π−1(true)
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Input: CFA A = (L, init , err , E)
Output: correct if A is correct, an error witness π otherwise

k ← 1
while true do

foreach initial path π of length k do // base case

if π is feasible and tl(π) = err then return error witness π

inductionstepfail ← false // induction step

foreach safe path π of length k do
if π is feasible then

foreach e = (tl(π), o, err) ∈ E do
if πe is feasible then

inductionstepfail ← true

if ¬inductionstepfail then return correct
k ← k + 1

Algorithm 2: The algorithm for k-induction on control-flow paths.

using the relation (eπ)−1(true) = e−1(π−1(true)). We employ this incremental
approach in Sect. 4 where we extend BSE with loop folding.

3.2 k-Induction

The k-induction [77] technique uses induction to prove the correctness of tran-
sition systems. Adapted to CFAs, it is sufficient to prove these two statements
for some k > 0 to show that the CFA is correct:

(Base case). All feasible initial paths of length at most k are safe.
(Induction step). Each feasible path of length k + 1 that has a safe prefix of

length k is also safe.

If the base case does not hold, then there exists a feasible initial error path and
the CFA is not correct. To prove the induction step, we consider each feasible
safe path π of length k and check that all paths that arise by prolonging π with
an edge leading to the error location are infeasible. If this check fails, we cannot
make any conclusion. Thus we try to prove both statements again for k+1. If we
check the statements for k = 1, 2, . . . , the base case can be simplified to checking
only paths of length (exactly) k. The whole process is formalized in Algorithm 2.

The k-induction algorithm applied to an incorrect CFA eventually returns
an error witness of the minimal length. When applied to a correct CFA, it either
returns correct or it does not terminate.

Theorem 2. Let P be the set of all feasible error paths of a CFA A. k-induction
executed on A
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– returns an error witness if P contains an initial path;
– returns correct if P is finite and contains no initial path;
– does not terminate if P is infinite and contains no initial path.

Proof. Assume that A is incorrect, i.e., P contains an initial path. Let π ∈ P
be a feasible initial error path of the minimal length and let n = |π|. For each
0 < k < n, the base case holds as all feasible initial paths of the length k are safe
(due to the minimality of |π|) and the induction step cannot be proven as the
suffix of π of length k + 1 is a feasible error path with a safe prefix of length k.
Hence, k-induction reaches the iteration for k = n where the base case identifies
π or another feasible initial error path of length n as an error witness.

Now assume that A is correct, i.e., P contains no initial path. The base case
clearly holds for each k. The induction step holds for k if and only if all paths
in P have length at most k. If P contains a path π of length at least k + 1,
then it also contains the suffix of π of length k + 1. This suffix is a feasible error
path with a safe feasible prefix of length k. Hence, the induction step fails for k.
If all paths in P have length at most k, then all feasible paths of length k + 1
are safe and the induction step holds. To sum up, if P is finite, the k-induction
returns correct in the iteration where k = max{|π| | π ∈ P}. If P is infinite, the
induction step always fails as for any k there exists a path in P longer than k
and thus k-induction does not terminate. �	

Note that when k-induction is applied to finite transition systems instead of
CFAs, the incompleteness can be fixed by restricting the induction step only to
acyclic paths [77].

3.3 Equivalence of BSE and k-Induction

Theorems 1 and 2 imply that BSE and k-induction return an error witness or
the value correct in identical cases. On an incorrect CFA, both algorithms detect
an error witness of the minimal length. On a correct CFA with a finite set P
of all feasible error paths, the k-induction terminates for k = max{|π| | π ∈ P}
and the longest path processed by BSE has length at most k +1 (as k-induction
in fact checks paths of length k + 1 for the given k).

If we look once again at Algorithm2, we can see that the induction step can
be simplified. Instead of analysing each feasible path π of length k and checking
whether it can be prolonged into a feasible error path of the form πe, we can
directly look for all error paths of length k + 1 and check their feasibility. This
form of the k-induction algorithm gets closer to BSE. The main difference is
that BSE checks only the feasibility of error paths of length k + 1 that have a
feasible suffix of length k. Hence, we can see BSE as an optimized version of the
k-induction algorithm.

4 BSE with Loop Folding (BSELF)

This section introduces our extension of BSE called backward symbolic execution
with loop folding (BSELF). Loop folding targets the incompleteness of BSE. Sim-
ilar to other verification techniques, we approach this problem by using invariants
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that constraint the state space analyzed by BSE. Instead of relying on external
invariant generators, we compute the invariants directly in BSELF. That allows
us to compute disjunctive invariants which can be hard to discover for invariant-
generation algorithms [43,67,71,80].

Before describing BSELF in detail, we give a brief description of its function-
ing. BSELF is searching the program backwards from err as regular BSE. The
difference comes when it runs into a loop, i.e., when it finds a feasible error path
π with tl(π) = err and sl(π) = l where l is a loop header. Normal BSE would
continue the backward search, unwinding the loop. BSELF, instead, attempts
to fold the loop – infer an inductive invariant from which is the path π infeasi-
ble. The loop folding successively generates invariant candidates. An invariant
candidate is a formula ξ such that the set of states (l, ξ) is inductive and π is
infeasible from (l, ξ), i.e., ξ ∧ π−1(true) is unsatisfiable. The generation contin-
ues until either some invariant candidate is shown to be an actual invariant or
a pre-set bound is reached, in which case we give up the current loop folding
attempt. If an inductive invariant from which π is infeasible have been found,
the search on π is terminated. Otherwise, BSELF continues BSE as if no loop
folding took place. Irrespective of the result of the folding, we remember all the
generated invariant candidates (if any) in an auxiliary set Ol so that we can
recycle work if we hit l again on some path. The check of whether an invariant
candidate is an invariant is performed by a nested call of BSELF. This way, we
automatically handle sequentially chained loops.

The idea behind loop folding is the following. We start with an initial invari-
ant candidate ξ0 that we derive from π and/or previously computed invariant
candidates stored in Ol. The set of states (l, ξ0) is inductive and the program
contains no nested loops, so ξ0 must describe a set of states in which the program
may be during some last iterations of the loop (this, in fact, holds for any invari-
ant candidate). So if (l, ξ0) is not an invariant, there is a possibility that adding
states from previous iterations will make it an invariant. Thus, we compute the
set of states in which the program may be one iteration before entering (l, ξ0)
and try to overapproximate these states to cover more than just one previous
iteration of the loop. This step provides us with a new invariant candidate. If
it gives rise to an invariant, we are done. Otherwise, we repeat the process to
obtain a new invariant candidate and so on.

Precisely speaking, loop folding does not extend one invariant candidate all
over again. Every invariant candidate can be extended to several new invariant
candidates. Given an invariant candidate ξ, we first compute the pre-image of
(l, ξ) along every path of the loop (thus we get |LoopPaths(l)| pre-images). Every
non-empty pre-image (l, ψ) from which is π infeasible is then overapproximated
to one or more sets (l, ψ′) such that ψ′∨ξ is a new invariant candidate (i.e., ψ =⇒
ψ′, (l, ψ′ ∨ ξ) is inductive, and (ψ′ ∨ ξ) ∧ π−1(true) is unsatisfiable). Therefore,
loop folding generates a tree of invariant candidates instead of a single sequence
of invariant candidates.
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Procedure BSELF (loc, φ0, infoldloop)
Input: location loc ∈ L, formula φ0 over program variables, a boolean infoldloop
Output: correct meaning that no state of (loc, φ0) is reachable from (init , true), or

incorrect meaning that a state of (loc, φ0) is reachable from (init , true), or
unknown meaning that the procedure finished without decision

initialize queue with (loc, φ0, ∅)
while queue is not empty do

(l, φ, visited) ← pop item from queue

if ¬sat(φ) then continue
if l = init then return incorrect

if l is a loop header then // start of the loop folding extension
if FoldLoop(l, φ, visited) then return correct
if infoldloop then return unknown
visited ← visited ∪ {l} // end of the loop folding extension

foreach e = (l′, o, l) ∈ E do

push (l′, e−1(φ), visited) to queue
return correct

Algorithm 3: The main procedure of the BSELF algorithm.

We note that giving up loop folding is an important part of the design of
BSELF. It has several effects: first, it constraints the time spent in computations
that could stall the algorithm for a long time, e.g., nested calls of BSELF that
check the invariance of invariant candidates. Second, remember that we store
all invariant candidates generated for a loop l in Ol. After we give up a folding
of the loop l on π, the next trial of folding l on a path derived from π will
use also invariant candidates generated on other paths than π. Symmetrically,
attempts to fold the loop l on other paths than π will use the invariant candidates
computed during the loop folding of l on π. Finally, during loop folding, we
never merge a newly generated invariant candidate into a previously generated
candidate, i.e., we preserve the tree structure of candidates during loop folding.
This tree structure is forgotten by storing candidates to Ol and thus further
attempts to fold the loop l can merge these candidates generated for different
paths through the loop and thus find invariants that need such a merging (see
the last example of Subsect. 4.5).

4.1 The BSELF Algorithm

The pseudocode of BSELF is shown in Algorithm3. To shorten the notation, we
assume that an input CFA (L, init , err , E) is fixed. Further, for each loop header
l, the algorithm uses
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– a global variable Ol initially set to ∅, which stores constructed invariant
candidates at l, and

– a parameter κl ≥ 0 which bounds the effort to infer an invariant at l in a
single visit of l.

These global variables and parameters appear only in procedure FoldLoop. To
decide the error location reachability problem, one should call BSELF (err ,
true, false).

If we ignore the loop folding extension, Algorithm3 is just an efficient version
of Algorithm 1. The difference is that preconditions are now computed incremen-
tally along individual edges of CFA instead of executing whole error paths. Since
we lost the information about the length of paths, we use a first-in first-out queue
instead of a workbag to achieve the shortest-path search order. The parameter
infoldloop and sets visited have an effect only inside FoldLoop procedure. Indeed,
Algorithm 3 executed with infoldloop = false never returns unknown.

Before discussing the central procedure FoldLoop presented in Algorithm 4,
we describe how it is used in the main BSELF loop. Whenever BSELF hits
a loop header l with the states (l, φ) (further called the error states), we call
the procedure FoldLoop which attempts to find an invariant (l, ρ) that proves
the unreachability of the current error states, i.e., such that ρ ∧ φ is unsatisfi-
able. If the procedure succeeds, we return correct. If it fails, we check whether
infoldloop = true. If it is the case, then BSELF was called from inside FoldLoop
and we return unknown. This is to ensure progress and avoid stalling in nested
calls of FoldLoop. Finally, if infoldloop = false, we update visited with l to
remember that we have visited this loop on the current path and continue search-
ing paths like in regular BSE.

Now we turn our attention to the procedure FoldLoop (Algorithm 4). In the
following, by an invariant candidate at location l we mean a formula ξ such
that (l, ξ) is disjoint with (l, φ) and inductive, i.e., each state with location l
reachable from (l, ξ) is also in (l, ξ). We talk just about an invariant candidate
if l is clear from the context. The procedure FoldLoop maintains a workbag of
triples (ψ, ξ, k), where ξ is an invariant candidate at l, ψ is the latest extension
of ξ (i.e., the last set of states added to ξ), and k is the remaining number of
extensions of this candidate that we allow to try. Initially, we set k to κl, so
every candidate is extended maximally κl times.

First, we ask the procedure InitialInvariantCandidate for an initial invariant
candidate ψ at l. Then we call the procedure Overapproximate that returns a set
of overapproximated candidates. That is, each ψ′ returned from Overapproximate
is again an invariant candidate and (l, ψ′) is a superset of (l, ψ). Then we put
the triples (ψ′, ψ′, κl) to workbag and remember ψ′ also in Ol for possible future
attempts of folding this loop.

In every iteration of the main cycle, a triple (ψ, ξ, k) is picked from workbag .
Then we check whether the corresponding candidate ξ is an invariant. As the
candidate is inductive, it is sufficient to check that ξ holds whenever we enter the
loop header l from outside of the loop. Hence, we consider all edges e = (l′, o, l)
that enter the loop from outside and call BSELF (l′, e−1(¬ξ), true) to detect if
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Procedure FoldLoop(l, φ, visited)
Input: location l ∈ L, formula φ over program variables, and set visited ⊆ L
Output: true if an invariant disjoint with (l, φ) is found; false otherwise

ψ ← InitialInvariantCandidate(l, φ, visited)
if ¬sat(ψ) then return false
workbag ← ∅
for ψ′ ∈ Overapproximate(l, ψ, false, ψ, φ) do

workbag ← workbag ∪ {(ψ′, ψ′, κl)}
Ol ← Ol ∪ {ψ′} // update known invariant candidates

while workbag �= ∅ do
(ψ, ξ, k) ← pick item from workbag
workbag ← workbag � {(ψ, ξ, k)}
fail ← false // check if (l, ξ) is an invariant

foreach e = (l′, o, l) ∈ E outside any loop do
if BSELF (l′, e−1(¬ξ), true) �= correct then

fail ← true
break

if fail = false then return true
if k > 0 then // extend the candidate

foreach π ∈ LoopPaths(l) do
ψ′ ← π−1(ψ)
if ¬sat(ψ′ ∧ φ) then

for ψ′′ ∈ Overapproximate(l, ψ′, ψ, ξ, φ) do
workbag ← workbag ∪ {(ψ′′, ψ′′ ∨ ξ, k − 1)}
Ol ← Ol ∪ {ψ′′ ∨ ξ} // update known candidates

return false

Algorithm 4: The procedure FoldLoop(l, φ) looking for invariants disjoint
with (l, φ).

ξ always holds when entering l. If the answer is correct for all considered edges,
then no state in (l,¬ξ) is reachable from (init , true) and we found an invariant
(l, ξ) disjoint with (l, φ).

Otherwise, if k > 0 then we try to extend the candidate by new states. Specif-
ically, we take every loop path π ∈ LoopPaths(l) and compute the precondition
ψ′ = π−1(ψ) with respect to ψ (the previous extension of the candidate). Note
that the set (l, ψ′ ∨ ψ) is again inductive as (l, ψ) is inductive and all executions
of the program from (l, ψ′) must end up in (l, ψ) ⊆ (l, ψ ∨ ψ′). If ψ′ is disjoint
with φ, then ψ′ is also an invariant candidate. We put the triples corresponding
to overapproximations of this candidate to workbag and update the known can-
didates in the Ol set. Intuitively, the described process of extending a candidate
corresponds to computing the set of states in which the program is one iteration
before getting into ψ along π ∈ LoopPaths(l) and overapproximating this set to
cover not just one, but possibly multiple previous iterations of the loop (along
any path).
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The main cycle is repeated until either an invariant is found or workbag gets
empty. Even if we fail to find an invariant in a particular call to FoldLoop, it
is possible that we find one when BSELF reaches l again. This is because the
procedure InitialInvariantCandidate (which is described later in detail) not only
reuses candidates stored in Ol to recycle the work, but it can even merge several
candidates originally computed for different paths through the loop and from
different attempts of folding the loop with the header l.

To make the description of loop folding complete, it remains to describe the
procedures InitialInvariantCandidate and Overapproximate.

4.2 The Computation of the Initial Invariant Candidate

The procedure InitialInvariantCandidate computes the initial invariant candi-
date during loop folding. It gets the current error states (l, φ) and the set visited
of loop headers where the loop folding failed during the exploration of the cur-
rent path, and produces a formula ψ such that the set (l, ψ) is disjoint with (l, φ)
and inductive.

Let Πe be the set of safe paths starting in l that exit the loop with-
out finishing a single iteration. Formally, Πe contains the paths πe =
(l0, o0, l1)(l1, o1, l2) . . . (ln−1, on−1, ln) such that l0 = l, l1, . . . , ln−1 ∈ Locs(l) �

{l}, and ln �∈ Locs(l) ∪ {err}. Further, we set

ψe = ¬φ ∧
∨

πe∈Πe

πe
−1(true).

Note that ψe is an invariant candidate as it is disjoint with φ and inductive
because it enforces that the loop is left without finishing any other iteration
(and we cannot reach the loop again as the program has no nested loops).

The procedure InitialInvariantCandidate works as follows. If l �∈ visited , then
BSELF tries to fold this loop for the first time during exploration of the current
path. In this case, ψe seems to be a reasonable invariant candidate. However,
we would like to recycle the work from previous loop foldings on l (executed on
different paths), so we extend ψe with all possible candidates stored in Ol that
are disjoint with φ and subsume ψe. Hence, the procedure returns the formula

ψ1 = ψe ∨
∨

ξ∈Ol
ψe =⇒ ξ

¬sat(ξ∧φ)

ξ.

If l ∈ visited , then BSELF previously failed to fold this loop during exploration
of the current path. In this case, we combine the candidates stored in Ol. More
precisely, we define formulas

ψ2 =
∨

ξ∈Ol
ψe =⇒ ξ

¬sat(ξ∧φ)

ξ and ψ3 =
∨

ξ∈Ol

¬sat(ξ∧φ)

ξ
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where ψ2 is a formula that joins all candidates stored in Ol that are disjoint with
φ and subsume ψe. If sat(ψ2) = true (i.e., we found some suitable candidates in
Ol) we return it. Otherwise, we return ψ3 which gives up on subsumption and
just gathers all the candidates stored in Ol that are disjoint with ψ. Note that
there may be no such candidates and therefore ψ3 can be just false.

4.3 Overapproximation of an Inductive Set

The procedure Overapproximate(l, ψ′, ψ, ξ, φ) gets the current error states (l, φ),
an invariant candidate ξ together with its last extension ψ, and the newly sug-
gested extension ψ′. The procedure produces a set of extensions ψ′′ that are
overapproximations of ψ′ (i.e., ψ′ =⇒ ψ′′) and they are valid extensions of ξ.
Formula ψ′′ is a valid extension of ξ if the following two conditions hold.

1. (l, ψ′′ ∨ ξ) is disjoint with (l, φ). As (l, ξ) and (l, φ) are always disjoint, the
condition holds if and only if ψ′′ ∧ φ is unsatisfiable.

2. (l, ψ′′ ∨ ξ) is inductive. As (l, ξ) is inductive, it is sufficient to check that after
one loop iteration starting from (l, ψ′′) we end up in (l, ψ′′∨ξ). This condition
holds if and only if

∨

π∈LoopPaths(l)

(
ψ′′ ∧ π−1(¬(ψ′′ ∨ ξ))

)

is unsatisfiable.

Note that Algorithm 4 ensures that the value of ψ′ is always a valid extension
of ξ.

Our overapproximation procedure works in several steps. In the first step, we
collect relations that are implied by ψ′ (sometimes together with ψ). Specifically,
we derive these kinds of relations:

Type 1. Equalities of the form x = c, where x is a program variable and c is a
constant.

Type 2. Linear equalities of the form x ± y = a or x ± y = a · z, where x, y, z
are program variables and a is a constant.

Type 3. Relations a ≤ x ≤ b ∧ x ≡ 0 (mod b − a) for a program variable x
and constants a < b such that either ψ′ =⇒ x = a and ψ =⇒ x = b, or
ψ =⇒ x = a and ψ′ =⇒ x = b.

Type 4. A formula μ′ created from a sub-formula μ of ψ′ by the substitution of
x with y (or vice versa), where x, y are program variables or constants such
that ψ′ =⇒ x = y and μ �= μ′.

To collect these relations, we use satisfiability queries. For example, to check
whether ψ′ implies the relation x − y = a · z for some a, we first check the
satisfiability of ψ′ ∧ (x − y = A · z) where A is an uninterpreted constant. If the
answer is positive, we get a model that assigns some value a to A. Now we check
the satisfiability of ψ′ ∧ (x − y = A · z) ∧ A �= a. If it is unsatisfiable, then ψ′

implies x − y = a · z.
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In the second step, we create a formula ρ by conjoining the relations of type
1 to ψ′ and transforming this new formula to CNF. Note that ρ is equivalent to
ψ′. The rest of the overapproximation procedure tries to overapproximate ρ ∧ R
for every relation R of type 2–4, yielding potentially many valid extensions of
ψ′. To reduce the number of considered relations, we use only those that are not
implied by any other relation. Additionally, we try also R = true which leads to
overapproximating plain ρ.

Given a relation R, we try to drop clauses of ρ while keeping ρ ∧ R a valid
extension. Note that at the beginning, ρ ∧ R is again equivalent to ρ. Let us
choose a clause c in ρ and let δ = ρ−c ∧ R, where ρ−c denotes the formula ρ
without the clause c. Note that δ is an overapproximation of ρ. If δ is also a
valid extension of ξ, we replace ρ with ρ−c. Otherwise, we keep clause c in ρ. We
repeat this process until no clause can be dropped. Finally, let ρ′ be the formula
ρ ∧ R.

The fourth step tries to relax the inequalities in ρ′. It tries to replace each
inequality e1 ≤ e2 (resp. e1 < e2) in ρ′ with e1 ≤ e2 + r (resp. e1 < e2 + r)
where r is a constant as large as possible such that the modified ρ′ is a valid
extension. We search this constant r using the bisection method. If we find such
an r �= 0, we must also check that the modified formula is an overapproximation
of ψ′. Note that it does not have to be the case, for example, due to integer
overflows. If the modified ρ′ is an overapproximation, we keep it and continue
with the next inequality. A crucial point is to apply this step also to equalities
by taking each equality clause e1 = e2 as (e1 ≤ e2) ∧ (e1 ≥ e2).

The last step is similar to the third one: we drop clauses from the current ρ′

as long as the formula is a valid extension of ξ. In contrast to the third step, now
we try to drop also clauses that were originally in R and thus were not dropped
in the third step. The resulting formula has to be a valid extension of ξ and an
overapproximation of ψ′ by construction.

Similarly, as with filtering relations, we now filter the computed extensions
and return only those that are not implied by any other extension.

Note that the result of overapproximating steps are sensitive to the order
in which the clauses are processed and to the order in which inequalities are
relaxed.

4.4 Optimizations

In our implementation, we use also two optimizations of BSELF. The first opti-
mization is that when we try to fold a loop for the first time, we continue BSE
until we unwind the whole loop once along every loop path before we start
the actual folding. If the current error becomes infeasible during unwinding, we
directly return true. This way we avoid loop folding of loops that are easily
verifiable by pure BSE.

The second optimization is that we annotate loop headers with generated
loop invariants which are then used in BSE. This has no effect on the algo-
rithm as the invariants are always stored also in Ol sets – should the invariant
make a path infeasible during BSE, it will get to the initial inductive candidate
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during loop folding and is discovered again. However, there is the overhead of
overapproximating and checking the invariance again.

Fig. 3. Three programs verifiable with BSELF.

4.5 Examples

In this subsection, we give examples of running BSELF on the program from
Fig. 2 and three programs in Fig. 3 that all trigger a different behavior of BSELF.

Program in Fig. 2. In this program, BSELF first hits the loop with the error
states (1, φ) = (1, x �= i ∧ i ≥ n). There are no stored invariant candidates, so
the initial invariant candidate is inferred as ψe = ((x = i ∨ i < n) ∧ i ≥ n). It
is simplified and overapproximated to x = i, which is directly identified as an
invariant.

Figure 3 (Left). In this program, BSELF computes the initial invariant can-
didate and overapproximates it to ξ0 = (1000000 ≤ i ∧ x = i). It is not an
invariant, so BSELF tries to extend it. Although the loop has two paths, the
only possible pre-image of ξ0 is x = i ∧ i = 999999. The later equality is relaxed
to 999999 ≤ 999993 + i which simplifies to 6 ≤ i and ξ0 is extended with
ψ′′
1 = (6 ≤ i ∧ x = i) to ξ1 = ((1000000 ≤ i ∧ x = i) ∨ (6 ≤ i ∧ x = i)). This is

still not an invariant, but the extension of ξ1, which is computed as an overap-
proximation of the pre-image of ψ′′

1 , is (i = x − 1 ∧ i ≤ 5) which together with
ξ1 forms an invariant.

Figure 3 (Middle). This program shows that BSELF is not constrained to one
loop only. Let us call the first loop L4 and the other loop L7 and set κL4 = κL7 =
1. The loop folding at L7 starts with the candidate i = x ∧ x ≥ n. The nested
call of BSELF to check whether this candidate is invariant leads to folding the
loop L4 with the initial inductive candidate i ≥ n∧ i = x. This folding fails after
one extension (because the limit on the number of extensions κL4 = 1 is hit),
the nested instance of BSELF terminates and the top-level instance of BSELF
continues extending the candidate at L7 to (i = x ∧ x ≥ n) ∨ (n = i ∧ x < n).
This set of states is again checked for invariance, leading to folding the loop L4
which succeeds after 1 extension with the invariant (i ≥ n∧(x = i∨n = i)∧(n =
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i ∨ x ≥ n) ∧ (x < n ∨ x = i)) ∨ (i < n ∧ (x < n ∨ x = 1 + i)) that in turn proves
that (i = x ∧ x ≥ n) ∨ (n = i ∧ x < n) is invariant at L7.

Figure 3 (Right). Assume that κL6 = 1. BSELF starts folding L6 with the
error set y �= n ∧ x < n from which it derives the initial candidate ξ0 = (y = n).
Two extended candidates are generated, namely ξ1 = (y = n ∨ (n > x ∧ n − 1 ≤
y ∧ y ≤ n)) and ξ2 = (y = n∨ (y = x∧ y ≤ n)). Neither of these candidates is an
invariant and we hit the limit on the number of extensions, therefore the folding
fails. However, ξ1 and ξ2 were stored into OL6. BSELF continues unwinding the
loop, hitting its header two more times on different paths. In both cases, the
initial invariant candidate is drawn from OL6 and it is ψ = ξ1 ∨ ξ2 as both these
sets are disjunctive with the new error states. In one case ψ is overapproximated
to y = n ∨ n ≤ y and in the other it is overapproximated to n − 1 ≤ y ∨ y =
x ∨ 1 + x ≤ y ∨ y = n. The overapproximations are different because they
were done with respect to different error states. However, both are identified as
invariants and BSELF terminates.

5 Experimental Evaluation

We have implemented BSE and BSELF1 in the symbolic executor SlowBeast
[1]. SlowBeast is written in Python and uses Z3 [64] as the SMT solver. It
takes LLVM [58] bitcode as input.

As BSELF aims to improve BSE on programs with loops, our evaluation
uses the benchmarks of the category ReachSafety-Loops from the Competition
on Software Verification (SV-COMP) 2021 [9]2. Every benchmark is a sequential
C program with explicitly marked error locations. The category contains 770
benchmarks out of which 536 are safe and 234 are unsafe.

In experiments with BSELF, BSE, and SE, we compile each benchmark
with Clang to LLVM, inline procedure calls, and flatten nested loops. Even
after this preprocessing, some of the benchmarks do not meet the assumptions of
BSELF, which is designed primarily for integer programs and does not support
the reading of input inside loops. In such cases, loop folding may fail and BSELF
falls back to performing BSE. In experiments with BSELF, we set the parameter
κl to 2 · |LoopPaths(l)| − 1 for each loop header l.

We first compare BSELF against BSE and then we compare both these tech-
niques to state-of-the-art verification tools. All experiments were conducted on
machines with AMD EPYC CPU with the frequency 3.1 GHz. For each tool, the
run on a benchmark was constrained to 1 core and 8 GB of RAM and 900 s of
CPU time. We used the utility Benchexec [16] to enforce resources isolation
and to measure their usage.

1 The artifact with implementation and experiments infrastructure can be found at
https://doi.org/10.5281/zenodo.5220293.

2 https://github.com/sosy-lab/sv-benchmarks, commit 3d1593c.

https://doi.org/10.5281/zenodo.5220293
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
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5.1 Comparison of BSELF and BSE

First, we turn our attention to the comparison of BSELF and BSE. The scatter
plot in Fig. 4 (left) shows the running time of BSE and BSELF on all benchmarks
that were decided by at least one of the algorithms. We can see that BSELF can
decide many benchmarks that are out of the scope of BSE (green crosses on the
top). Not surprisingly, there are also benchmarks where BSE beats BSELF as
computing invariants has non-negligible overhead (red crosses and black crosses
under the diagonal line). The quantile plot on the right shows that BSELF
performs better on the considered benchmark set than BSE.

The observation from the plots is confirmed by the total numbers of decided
benchmarks in Table 1. BSELF was able to solve 65 more safe benchmarks. On
unsafe instances, BSE performs better which is expected as BSELF focuses on
proving the correctness rather than on finding bugs.

Fig. 4. The left plot provides comparison of running times of BSELF and BSE on
benchmarks solved by at least one of them. Green crosses represent benchmarks decided
only by BSELF, red crosses are benchmarks decided only by BSE, and black crosses are
benchmarks decided by both algorithms. The right plot shows how many benchmarks
each algorithm decides with the timeout set to the value on y-axis. (Color figure online)

5.2 Comparison of BSELF to State-of-the-Art Tools

Now we compare BSELF to state-of-the-art tools that can use k-induction and
to tools that performed well in the ReachSafety-Loops category in SV-COMP
2021. The first set of tools is formed by CPAchecker [14] and ESBMC [34,36].
These tools combine bounded model checking (BMC) with k-induction, where the
induction parameter is the number of iterations of loops instead of the length
of paths. To solve the incompleteness problem of k-induction, both tools use
invariants [11,36]. We used the configuration -kInduction-kipdrdfInvariants
of CPAchecker (referred to as CPA-kind) that employs external invariants
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Table 1. The total number of benchmarks and non-trivial benchmarks solved by
the tools. The tools are divided into three groups: tools that use k-induction, other
unbounded tools, and bounded tools. The column safe (unsafe) reports the number of
solved benchmarks with an unreachable (reachable, respectively) error location. The
column wrong shows the number of wrong decisions by the tool.

All (770) Non-trivial (299)

Safe Unsafe Wrong Safe Unsafe Wrong

BSE 144 80 0 64 1 0

BSELF 209 53 0 104 0 0

CPA-kipdr 245 125 2 58 0 2

ESBMC-kind 284 161 3 42 9 3

SE+BSELF 373 161 0 102 0 0

CPA-seq 318 151 2 72 4 2

Divine 316 152 2 63 10 2

UAutomizer 255 126 0 126 5 0

VeriAbs 412 199 0 136 32 0

CPA-BMC 255 142 2 0 0 2

SE 273 142 0 0 0 0

from interval analysis (continuously generated in parallel to k-induction) in com-
bination with invariants inferred from counter-examples to k-induction with a
PDR-like procedure [10,11]. This configuration performed the best among the
configurations of CPAchecker that we tried. ESBMC was run with the -s
kinduction option (referred to as ESBMC-kind). In this setup, ESBMC com-
putes invariants using interval analysis, injects them as annotations into the
program, and then runs BMC with k-induction [36].

Tools that performed well in SV-COMP 2021 are Divine [7], UAutomizer
[48], VeriAbs [2], and another configuration of CPAchecker called CPA-seq.
We call these tools collectively as sv-comp tools. Divine is a control-explicit
data-symbolic model-checker. UAutomizer models programs as automata and
reduces the verification problem to deciding a language emptiness (internally
implemented using interpolation-based predicate analysis with CEGAR). Veri-
Abs is a software verifier that uses a portfolio of techniques selected heuristically
according to a given program. One of the techniques is also BMC with k-induction.
CPA-seq combines several approaches including value analysis and predicate
abstraction. All these tools were run in their settings for SV-COMP 2021. We
also created a configuration SE+BSELF where we run SE for 450 s and for the
remaining 450 s we run BSELF (if SE did not decide the result).

Finally, we ran BMC and SE on all benchmarks with the purpose to tell
apart benchmarks that are easy to handle by simple state space enumera-
tion. Benchmarks that can be easily decided neither with BMC (we used BMC
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implementation from the tool CPAchecker) nor with SE (we used SE from
SlowBeast) are further dubbed as non-trivial. Out of the 770 benchmarks,
299 benchmarks were non-trivial.

Table 1 shows that all approaches but BSE outperform BSELF when com-
pared on all benchmarks. However, this superiority is mostly caused by the
ability to decide easy tasks by entirely unwinding loops. The configuration
SE+BSELF that runs SE before BSELF shows that it is the case. If we compare
the tools on non-trivial benchmarks, BSELF is able to solve more benchmarks
than the other k-induction-based tools and is surpassed only by UAutomizer
and VeriAbs in the comparison of all tools. SE+BSELF is highly competi-
tive with sv-comp tools. Indeed, the only tool that performs better is VeriAbs,
which is not that surprising as it selects a suitable verification technique (includ-
ing BMC with k-induction) for each program.

Table 2 provides the cross-comparison of individual tools on non-trivial
benchmarks by any of the approaches. Among k-induction-based tools, BSELF
dominates CPA-kind and ESBMC-kind in these numbers, which suggests that
loop folding is a stronger invariant generation technique than those used by these
tools.

Table 2. Cross-comparison on non-trivial benchmarks. Numbers in rows show how
many benchmarks the tool in the row decided and the tool in the column did not.

B
S
E

B
S
E
L
F

C
P
A
-k

ip
d
r

E
S
B
M
C
-k

in
d

S
E
+
B
S
E
L
F

C
P
A
-s
e
q

D
iv
in
e

U
A
u
t
o
m
iz
e
r

V
e
r
iA

b
s

BSE – 3 28 50 4 27 49 15 31

BSELF 42 – 56 88 2 56 63 38 34

CPA-kipdr 21 10 – 46 11 8 34 4 15

ESBMC-kind 36 35 39 – 36 27 34 18 18

SE+BSELF 41 0 55 87 – 55 62 37 33

CPA-seq 38 28 26 52 29 – 41 5 20

Divine 57 32 49 56 33 38 – 28 7

UAutomizer 81 65 77 98 66 60 86 – 50

VeriAbs 134 98 125 135 99 112 102 87 –

6 Related Work

Related work on symbolic execution was discussed in Sect. 1. Backward symbolic
execution [22], or symbolic backward execution [6] has been paid less attention
in the area of automatic code verification than its forward counterpart. Its roots
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can be tracked to backward symbolic analysis of protocols by Danthine and Bre-
mer [25], and Holzmann et al. [50]. Chandra et al. [22] use interprocedural BSE
with function summaries [75] and path pruning to find bugs in Java programs.
Chen and Kim use BSE in the tool STAR [23], basically following the approach
of Chandra et al., to compute the precondition of a program crash – BSE is
guided by the given crash report to reproduce a bug. Arzt et al. [4] use BSE in
a very similar manner. None of these works consider loop invariants.

Although BSE on its own is not very popular in automatic software veri-
fication, its principal foundation – the weakest precondition – is cherished in
deductive verification [8,26,31,59].

Our work was motivated by finding a synergy of symbolic execution with
k-induction. The first use of k-induction is attributed to Sheeran et al. [77] who
used it to model check hardware designs. Many other model checking approaches
follow up on this work [17,44,53,56,65,70]. The k-induction scheme has been
transferred also to software model checking, where it is usually applied only to
loops [11,21,29,35].

Our technique infers loop invariants. There are plenty of works on this
topic [5,18,20,24,27,30,40–43,51,54,66,76], but a relatively few of the works tar-
get disjunctive invariants [27,40–42,66,76,80] that arise naturally in loop folding
in BSELF.

Loop acceleration computes the reflexive and transitive closure of loop iter-
ations [49] or its supersets or subsets [33,61]. It can be used to infer or help to
infer inductive invariants [49,51,61] or, in general, for the verification of safety
properties with model checking or abstract interpretation. BSELF could benefit
from accelerators to speed up BSE and loop folding.

Similar to loop acceleration is loop summarization [80] which deals with infer-
ring loop summaries [38]. A loop summary is a relation that associates a set of
output states (a post-condition) of the loop to a given set of input states (a
pre-condition) of the loop [37,38]. With loop summaries, one is able to skip
the execution of loops and directly apply the loops’ effect instead of unwind-
ing them [78]. Such an application would directly help BSE(LF) in scaling on
programs with loops as it removes the need to unwind/fold loops.

Inferring relations when overapproximating inductive sets in BSELF is sim-
ilar to the use of predicates in predicate abstraction [32,52].

7 Conclusion

In this work, we showed that performing k-induction on control-flow paths is
equivalent to running backward symbolic execution (BSE) with the breadth-first
search strategy. Then we introduced loop folding, a technique to infer disjunctive
invariants during BSE that can help to solve a new class of benchmarks that were
previously out of the scope of BSE. We compared BSE with loop folding (BSELF)
with pure BSE, several k-induction-based tools, and also with the state-of-the
art tools that performed well on the ReachSafety-Loops category in SV-COMP
2021. Compared to each of these tools, BSELF is able to solve benchmarks
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that the other tool is not, which makes it a valuable addition to the portfolio of
program verification approaches.

In the future, we want to explore the possibilities of using the information
from failed induction checks and try different overapproximation methods, e.g.,
some PDR-like procedure.
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invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

12. Beyer, D., Dangl, M., Wendler, P.: Combining k-induction with continuously-
refined invariants. CoRR abs/1502.00096 (2015). http://arxiv.org/abs/1502.00096

13. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007). https://doi.
org/10.1007/s10009-007-0044-z

https://gitlab.fi.muni.cz/xchalup4/slowbeast
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1145/2771284.2771285
https://doi.org/10.1145/2771284.2771285
https://doi.org/10.1145/1146909.1147180
https://doi.org/10.1145/1146909.1147180
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1145/1108792.1108813
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-319-21690-4_42
http://arxiv.org/abs/1502.00096
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z


72 M. Chalupa and J. Strejček
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16. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. STTT 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

17. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In:
Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 409–426.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X 23

18. Bjørner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-
mediate assertions. Theor. Comput. Sci. 173(1), 49–87 (1997). https://doi.org/10.
1016/S0304-3975(96)00191-0

19. Boonstoppel, P., Cadar, C., Engler, D.: RWset: attacking path explosion in
constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78800-3 27

20. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Aspects Comput. 20(4–5), 379–405 (2008). https://doi.org/10.1007/s00165-
008-0080-9

21. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refutation
by k -invariants and k -induction. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS,
vol. 9291, pp. 145–161. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48288-9 9

22. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weak-
est preconditions. In: Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2009, pp. 363–374. ACM
(2009). https://doi.org/10.1145/1542476.1542517

23. Chen, N., Kim, S.: STAR: stack trace based automatic crash reproduction via
symbolic execution. IEEE Trans. Softw. Eng. 41(2), 198–220 (2015). https://doi.
org/10.1109/TSE.2014.2363469

24. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, POPL 1978, pp. 84–96. ACM Press (1978).
https://doi.org/10.1145/512760.512770

25. Danthine, A., Bremer, J.: Modelling and verification of end-to-end transport proto-
cols. Comput. Netw. (1976) 2(4), 381–395 (1978). https://www.sciencedirect.com/
science/article/pii/037650757890017X

26. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976). https://www.
worldcat.org/oclc/01958445

27. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via
abductive inference. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA 2013, pp. 443–456. ACM (2013). https://doi.org/10.1145/2509136.
2509511

28. Dinges, P., Agha, G.A.: Targeted test input generation using symbolic-concrete
backward execution. In: ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2014, pp. 31–36. ACM (2014). https://doi.org/10.1145/
2642937.2642951

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/3-540-40922-X_23
https://doi.org/10.1016/S0304-3975(96)00191-0
https://doi.org/10.1016/S0304-3975(96)00191-0
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1145/512760.512770
https://www.sciencedirect.com/science/article/pii/037650757890017X
https://www.sciencedirect.com/science/article/pii/037650757890017X
https://www.worldcat.org/oclc/01958445
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/2642937.2642951
https://doi.org/10.1145/2642937.2642951


Backward Symbolic Execution with Loop Folding 73
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Abstract. Static program analysis uses sensitivity to balance between
precision and scalability. However, finer sensitivity does not necessarily
lead to more precise results but may reduce scalability. Recently, a num-
ber of approaches have been proposed to finely tune the sensitivity of dif-
ferent program parts. However, these approaches are usually designed for
specific program analyses, and their abstraction adjustments are coarse-
grained as they directly drop sensitivity elements.

In this paper, we propose a new technique, 4DM, to tune abstractions
for program analyses in Datalog. 4DM merges values in a domain, allow-
ing fine-grained sensitivity tuning. 4DM uses a data-driven algorithm for
automatically learning a merging strategy for a library from a training
set of programs. Unlike existing approaches that rely on the properties of
a certain analysis, our learning algorithm works for a wide range of Dat-
alog analyses. We have evaluated our approach on a points-to analysis
and a liveness analysis, on the DaCapo benchmark suite. Our evaluation
results suggest that our technique achieves a significant speedup and
negligible precision loss, reaching a good balance.

Keywords: Static analysis · Datalog · Data-driven analysis ·
Domain-wise merging

1 Introduction

One key problem in program analysis is to choose what information to keep
in the program abstraction in order to balance its precision and scalability. It
is often controlled through a domain of sensitivity elements. For example, call-
site sensitivity [17,19] distinguishes information under different calling contexts
using the string of most recent call sites, and it is parameterized by the length
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of this string. In general, the finer the sensitivity is, the higher the precision is,
yet the lower the scalability is. However, it is not always the case. Under some
circumstances, coarse-grained sensitivity is enough and making it finer does not
lead to higher precision. Using fine-grained sensitivity in such cases would lead
to unnecessary time cost.

In order to reduce the time spent by such “inefficient” sensitivity, many
existing approaches focus on using sensitivity selectively. A common practice
is to drop sensitivity elements at specific program points. Take tuning call-site
sensitivity as an example: Smaragdakis et al. [20] used a crafted rule to decide
whether to keep the contexts for specific call sites; Jeong et al. [11] tried to
cut the context length for each call site using a data-driven method; and Zhang
et al. [27] proposed an approach which started by dropping all contexts and
then selectively added them back by identifying call sites where adding contexts
helps. However, a binary choice of whether to drop a sensitivity attribute can
be too coarse-grained to achieve the best precision and efficiency. Imagine, in a
1-object-sensitive points-to analysis, a method is invoked by 10 different objects
at a call site, 9 of them leading to the same analysis result while the other one
leading to a different result. Dropping all of the contexts would lead to imprecise
analysis, but keeping the contexts leads to 8 rounds of unproductive analysis.

Recently, Tan et al. [21] proposed a different idea of tuning abstraction which
is more fine-grained. Their method, MAHJONG, merges heap objects into dif-
ferent equivalent classes according to type and field-points-to information. In
the previous example, if certain conditions are met, MAHJONG could merge
the 9 objects that lead to the same analysis result, therefore achieving the same
precision as a 1-object-sensitive analysis but with better efficiency. However,
this approach is limited to tuning heap abstraction for type-related queries in
points-to analysis. Specifically, it only allows merging heap objects and relies on
a pre-analysis to identify which objects to merge. If the query is not about types,
e.g., querying aliases of a variable, it is not applicable.

We propose a new merging-based method, named 4DM (Data-Driven Data-
log Domain-wise Merging), to resolve the weakness of the above two approaches.
For given domains, 4DM’s domain-wise merging merges concrete values that
contribute to similar results into the same abstract value. It makes finer adjust-
ment on domains of sensitivity elements by merging into multiple abstract values
than simply dropping as in context reduction. Furthermore, it generalizes con-
text reduction. For example, reducing the contexts for a particular call site c
from 2-objective-sensitive to 1-object-sensitive can be seen as transforming all
triples (o1i , o

2
i , c) to (∗, o2i , c), where o1i and o2i are the calling contexts and ∗ is

an abstract value. 4DM merges values in various domains as opposed to only
heap objects, e.g. call sites, program points, variables, and can be applied to
tune various sensitivities in a wide range of analyses.

In order to apply merging to various domains in different analyses, 4DM
employs a general framework for Datalog-based analyses. It transforms Datalog
rules to embed merging in them, and guarantees soundness.
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1 package library;

2

3 public class Lib {

4 public static A id(A x){

5 return x;

6 }

7 public static A foo(A u){

8 v = id(u); // cs5
9 return v;

10 }

11 public static A bar(A s){

12 t = id(s); // cs6
13 return t;

14 }

15 }

1package client1;

2import library;

3public class Clt1 {

4public static void main(String[] args){

5A p1 = new A(); // o1
6A p2 = new A(); // o2
7x1 = library.Lib.id(p1); // cs1
8x2 = library.Lib.id(p1); // cs2
9x3 = library.Lib.foo(p2); // cs3
10x4 = library.Lib.bar(p2); // cs4
11assert(x1==x2); // Q1: safe?

12assert(x3==x4); // Q2: safe?

13assert(x1==x3); // Q3: safe?

14}

15}

Listing 1.1. Example code that higher sensitivity leads unnecessary computa-
tion

Now the challenge is to find an effective merging strategy under 4DM’s repre-
sentation that accelerates analysis while keeping precision. Our insight to address
this challenge is that library code occupies a large part in analysis and the
merging strategy on shared library code would be similar for different programs.
Under this insight, we propose a data-driven method to learn a good merging
for programs that share a common library.

We have implemented 4DM, and evaluated it on two different Datalog-based
analyses, a points-to analysis and a liveness analysis. The results suggest 4DM
could achieve significant speedup on both analyses with minimal precision loss.

This paper makes the following contributions:

– A general framework for accelerating analyses in Datalog by merging sensi-
tivity elements.

– A learning algorithm to discover an effective strategy for merging sensitivity
elements in library code.

– Empirical evaluation that demonstrates the effectiveness our approach.

The rest of this paper is organized as follows. Section 2 uses a motivating
example to give a comprehensive overview of 4DM. Section 3 prepares some
knowledge of Datalog. Section 4 describes how to apply 4DM’s merging to Data-
log rules in detail and proves some of its important properties. Section 5 explains
4DM’s algorithm to learns a merging strategy from input programs that share a
common library. Section 6 describes the implementation and evaluation of 4DM.

2 Overview

In this section, we informally describe 4DM using a motivating example.
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Listing-1.1 demonstrates an example where finer-grained sensitivity leads to
unnecessary computation. The code snippet contains two packages, i.e. library
and client1. Package library declares method foo, bar and id. Package
client1 declares method main. In the comments, cs1 . . . cs6 represent the six
call sites in the program, while o1, o2 represent abstract objects allocated by
new statements in the corresponding lines. At the end of the main method, the
developer queries whether three assertions may be violated, denoted as Q1, Q2,
and Q3 respectively. It is easy to see that while Q1 and Q2 hold, Q3 does not.

We can derive the correct results by applying a 1-call-site-sensitive (1cs)
points-to analysis. In particular, it is sufficient to distinguish calls to id in main
and calls to id in foo and bar. When applying a 1cs analysis, there are 4 different
contexts for variable x in line 5 of library, and x points to different objects in
these contexts, as follows.

x �→ {o1} in two contexts [cs1], [cs2]
x �→ {o2} in two contexts [cs5], [cs6]

While 1cs analysis successfully resolves all three queries, there is redundancy
in the computation. In particular, distinguishing the call sites cs1 and cs2 does
not increase the precision. Similar for cs5 and cs6. Ideally we want to remove
such redundancy.

2.1 Accelerating by Domain-Wise Merging

Before introducing our idea, let us first see whether we can remove this redun-
dancy using existing methods. A dominating approach for tuning analysis
abstractions is to select different sensitivities for different program points [10,
11,14–16,26]. In this case, it allows dropping the contexts for certain call sites
to id. However, to preserve the precision, we can only drop the contexts either
for both {cs1, cs2} or for both {cs5, cs6}. However, there is still redundancy in
the call sites where the context is not dropped. On the other hand, a previous
merging-based approach, Mahjong [21], only allows merging heap objects.

4DM uses a novel method for abstraction-tuning, which we refer to as “domain-
wise merging”. In the running example, our approach would conclude that the call
sites cs1 and cs2 have the same effect on the queries (Q1, Q2 and Q3) and thus
can be merged. Therefore, our approach would treat them as an equivalent class
and use symbol ∗1 to represent the equivalent class. Similarly, our approach would
identify cs5 and cs6 as equivalent and use ∗2 to represent the class. As a result,
the original four contexts for variable x in line 5 become 2 contexts:

[∗1] = {[cs1], [cs2]} and [∗2] = {[cs5], [cs6]}
This merged abstraction of calling contexts removes the redundancy in the orig-
inal analysis while keeping the precision.

In order to apply the idea of domain-wise merging to different sensitivities in
a wide range of analysis, we propose a general framework that allows rich ways
to merge facts in Datalog-based analyses (Sect. 4). Further, we prove that under
this framework, any merging strategy would yield a sound analysis if the original
analysis is sound.
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1 package client2;

2 import library;

3 public class Clt2 {

4 public static void main(String[] args) {

5 A q1 = new A(); // o3
6 y1 = library.Lib.foo(p1); // cs7
7 y2 = library.Lib.bar(p1); // cs8
8 assert(y1==y2); // Q4: safe?

9 }

10 }

Listing 1.2. Another example client that uses the library package

2.2 Learning a Merging over Library Code

While the above framework defines the space of sound merging strategies, the
next question is how to find a merging that accelerates the analysis while keeping
the precision as much as possible.

We propose a data-driven method focusing on library code. Many modern
program analyses spend a large portion of its time in analyzing large library code
(e.g., JDK for Java programs). Based on the assumption that different programs
use libraries in similar ways, we can obtain a heuristic that merges facts in a
library by observing analysis runs on a training set of programs that share this
library. Then we can use this heuristic to accelerate analyzing a new program
that also uses this library.

For example, suppose there is another client package client2 in Listing-1.2
that also invokes foo and bar in the library package. Similar to the client1,
it passes the same object to these two functions. At the end, there is an aliasing
assertion Q4. In a 1cs analysis, it still takes a large portion of runtime on package
library, while the merging strategy on library is the same as client1, as
merging call sites cs5 and cs6 in function foo and bar can accelerate the analysis
without losing precision for Q4. Inspired by this observation, we can discover
this merging strategy by trying out various merging strategies on client1, and
then use this strategy to accelerate analyzing client2.

We describe a general method for obtaining such merging strategies in Sect. 5.
In particular, our approach allows training on multiple programs. When the
training set is large enough, we are confident that the learnt merging can be
applied to programs outside the training set. Furthermore, our framework is
general to allow specifically-designed training algorithms for certain analyses,
and our evaluation shall demonstrate such an algorithm for liveness analysis.

3 Preliminary

Before we describe 4DM, we first briefly introduce Datalog. Datalog is a declara-
tive logic programming language, which started for querying deductive database.
Recently, it has been widely used for specifying program analyses.
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(program) C ::= c̄; o
(rule) c ::= l ← l̄
(literal) l ::= r(ā)
(argument) a ::= v | d
(output) o ::= ′output′ r̄

(relations) r ∈ R = {R0, R1, . . .}
(variables) v ∈ V = {X, Y, . . .}
(constants) d ∈ D = {0, 1, . . .}
(domains) D ∈ M = {D1, D2, . . .} ⊆ P(D)

dom(r) = D
(tuples) t ∈ T ⊆ R × D

∗

(substitutions) σ ∈ Σ ⊆ V → D

Fig. 1. Syntax of Datalog and auxiliary definitions

�C� ∈ P(T) FC , fc ∈ P(T) → P(T)
�C� = lfp(FC) FC(T ) = T ∪ ⋃{fc(T ) | c ∈ C}

fl0←l1,...,ln(T ) = {σ(l0) | σ(lk) ∈ T for 1 ≤ k ≤ n
∧σ(l0)[i] ∈ dom(l0)[i] for 1 ≤ i ≤ |l0|}

Fig. 2. Semantics of Datalog

The syntax of Datalog is listed in Fig. 1. A Datalog program is constructed
from a list of rules and an output instruction. (Here, overbar like c̄ represents
a list of zero, one or more elements.) Each rule has a head and a body. A head
is one literal, and a body is a list of literals. Each literal consists of a relation
name and several arguments. Each argument is either a variable or a constant.
We call literals containing no variables as ground literals or tuples, and call
constants in tuples as values. A rule should be well-formed, in the sense that all
variables occurring in the head should also appear in the body. In addition, we
use an output instruction to mark some relations as the analysis results.

All relations are assigned with domains for each of its dimensions. The
domain constrains possible constants that a variable at this dimension can be
substituted with, and constants should also conform the constraints. We define a
relation super-domain among domains: – when a variable appears both in the
head and body in rule, the corresponding domain DH in the head is a (direct)
super-domain of the corresponding domain DB in the body, – and transitively,
super-domains of DH are also super-domains of DB .

Each Datalog program C denotes a set of tuples derived using its rules, as
detailed in Fig. 2. Each rule l0 ← l1, . . . , ln is interpreted as deriving a tuple from
known tuples: if there exists a substitution σ such that σ(l1), . . . , σ(ln) are all
known tuples, and every constant in σ(l0) satisfies the domain constraint, σ(l0) is
derived. The program denotes the least fixed-point (lfp) of repeated applications
of the rules in C. We use a subscript �C�o to denote the derived tuples of output
relations o.

Usually, we want to keep all derived tuples, so we require that if domain DH

in the head is a super-domain of DB in the body, DH ’s valueset should also
be a superset of DB ’s. Thus, the domain constraints are always satisfied during
derivation.
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4 Constructing Domain-Wise Merging in Datalog

In this subsection we introduce our definition of domain-wise merging and how
we transform the Datalog rules to implement domain-wise merging.

4.1 1-Domain-Wise Merging

We first give our definition of 1-domain-wise merging, which specifies what ele-
ments in a domain should be merged into an abstract element. Then we discuss
how to transform the Datalog rules to support this kind of merging. Finally,
we prove our transformation is sound: any facts that can be produced by the
original rule set can still be produced by the transformed rule set.

Defining Merging. Usually, for a Datalog program, we only cares about derived
tuples of output relations. Our goal is to keep derived tuples in output relations
unchanged, so we hope not to merge any values in domains of output relations.
We also need to avoid merging values in the domains where output tuples are
derived from. Therefore, we first give the definition of sensitivity domains, in
which the values can be merged.

Definition 1 (Sensitivity Domain). For a Datalog program C and a set of
output relations o, a domain D ∈ M is a sensitivity domain iff no domain of
output relations is D’s super-domain.

Then, a 1-domain-wise merging is defined as a function mapping concrete
values in a domain to abstract values. When multiple concrete values are mapped
to the same abstract values, these values are merged. As a result, the domain
itself is also changed.

Definition 2 (1-Domain-Wise Merging). A (1-domain-wise) merging in the
sensitivity domain Dα is a function that maps some of its values Δ = {d1, d2, . . .}
to abstract values Δ̂ = {α1, α2, . . .} while keeping other values unchanged.

π : Dα → D̂α, where D̂α = (Dα\Δ) ∪ Δ̂

In Sect. 5 we shall discuss how to obtain mergings through learning over a
set of client programs.

Transforming Datalog Programs. When we have a merging π on domain Dα,
we would like to perform the Datalog analysis over the merged abstract values
rather than the original concrete values to accelerate the analysis. Therefore, we
propose a transformation of Datalog rules to apply this merging.

We start from replacing all occurrences of the concrete values to merge in
Dα with abstract values, changing Dα to D̂α:

– If there is a constant d in the corresponding dimension of Dα, it is changed
to π(d).



84 Y. Chen et al.

– If Dα is derived from other domains, or say, there is a variable X of Dα in a
rule head,

R0(. . . , X : Dα, . . . ) ← . . . , Rk(. . . , X, . . . ), . . . .

we add a relation Abstract(X, X̂) (dom(Abstract) = Dα × D̂α) in the rule
body and change X in the head to X̂,

R0(. . . , X̂ : D̂α, . . . ) ← . . . , Rk(. . . , X, . . . ), . . . , Abstract(X, X̂).

Thus, every time a constant in Dα is derived by this rule, it is merged into
D̂α.

– If Dα derives to its super-domain, or say, there is a variable X of Dα in a
rule body and the same variable of Dβ in the rule head, the concrete values
to merge in Dβ should also be replaced with abstract values by derivation.
It involves no syntactical change, but Dβ should be changed to (D̂β\Δ) ∪ Δ̂.
Transitively, all super-domains of Dα are changed. The previously described
transformations are applied to all these super-domains. In the following para-
graphs, we refer to Dα and all its super-domains as merging domains.

However, the change in domains will break some original derivation, when
two domains in the body of a rule joins with each other, i.e.,

R0(. . . ) ← . . . , Ri(. . . , X, . . . ), . . . , Rj(. . . , X, . . . ), . . . .

If Di and Dj , domains of X in the two relations, are both non-merging domains
or both merging domains, the equivalence of values between the two domains are
unchanged, so original derivation still holds. However, if Di is a merging domain
but Dj is not (the order does not matter here), the derivation would break after
replacing concrete values in Di with abstract values, because the abstract values
cannot match the unchanged concrete values in Dj . To restore the derivation,
the rule should be transformed as:

R0(. . . ) ← . . . , Rk(. . . , X, . . . ), . . . , Rl(. . . , X̂, . . . ), . . . , Abstract(X, X̂).

When X is substituted with the original concrete constant d and X̂ is substituted
with abstract value π(d), the derivation still holds.

We use an example to demonstrate the effect of the rule transformation.
Figure 3(a) shows a proof tree that is used to derive a points-to instance of
the example in Sect. 2. Each node is a tuple derived from other tuples by a
rule. Node (3) is derived from (1)(2) by rule I and Node (7) is derived from
(3)(4)(5)(6) by rule II. Note that the second domain of CallGraph(CG) is the
call-site of a function call, and the third domain of CG is context of called
function, represented by its most recent call-site. In (3), it means call-site cs1
under initial context # calls method id with context cs1, and we would like to
replace cs1 in the context of called functions with abstract value ∗1, while keep
the cs1 in call-site domain unchanged.

Figure 3(b) shows a proof tree after our transformation. When the call-site
cs1 in Invoke derives into the context domain of CG in (3), the transformed
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rule for CG replace it with abstract value ∗1; meanwhile, the call-site domain in
CG is not super-set of the context domain, so the cs1 in the second dimension
of CG is not replaced. Furthermore, though rule II is not transformed, its first
domain - context of variable - is a super-domain of context of called function in
CG according to rule II, so cs1 in (7) is also changed accordingly.

Soundness. Finally, we show that our transformation is sound: any relation that
can be produced by the original rules is still produced by the transformed rules.

(a) (b)
I. CG(CalleeCtx, CallSite, CallSite, Method) ←

Invoke(Callee, CallSite, Method), CG(CallerCtx, Caller, CalleeCtx, Callee).
II. VPT(CalleeCtx, FormalVar, Obj) ←

CallGraph(CallerCtx, CallSite, CalleeCtx, Method), ActualParam(CallSite, ActualVar),
FormalParam(Method, FormalVar), VarPointsTo(CallerCtx, ActualVar, Obj).

Fig. 3. An example of embedding merging rules within proof trees

Theorem 1 (Soundness). For a Datalog program C, given a domain-wise
merging of sensitivity elements π on domain Dπ, the derived tuples of output
relations after applying π, denoted as �C|π�o, contains all of the original derived
tuples �C�o, i.e. �C�o ⊆ �C|π�o.

Proof. For any derived tuple of relations in the original Datalog analysis, C,
R(d1, d2, . . .) ∈ �C�, there is a derivation for it. According to the process of
transforming Datalog rules, the derivation still holds after transforming the rules
and replacing merged concrete values with abstract values. So by induction,
Π[R(d1, d2, . . .)] = R(Π(d1),Π(d2), . . .) ∈ �C|π� (Π(d) = π(d) if d is in merging
domains, otherwise Π(d) = d). Since an output relation Ro has no super-domain
of Dπ, its tuples are unchanged, so Ro(d1, d2, . . .) ∈ �C|π�. Thus, �C�o ⊆ �C|π�o

is proved.

The above theorem concerns only the standard Datalog. In practice, nega-
tion operator ¬ is frequently used, which supports the negation operation over
relations. Unfortunately, the above soundness property does not hold if nega-
tions is made on the domain to be merged. In such a case, we may still merge
the domains where no negation is applied, or merge the values that are in a
negated domain but would never be involved in a negation calculation during
an execution.
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4.2 N-Domain-Wise Merging

Under some circumstances, there are several sensitivity domains in a Datalog
program to which we can apply mergings. We can find mergings in these domains
and apply these mergings one by one, but this approach cannot capture the
correlation among these sensitivity domains. For example, in a context-sensitive
points-to analysis, heap objects and their contexts are usually combined to derive
some relations, such as field points-to relations. So we attempt to extend our
merging function on the Cartesian product of multiple sensitivity domains:

π : D1 × · · · × DN → D̂1...N

Here ̂D1×···×N = (D1 × · · · × DN\Δ1...N ) ∪ Δ̂1...N , Δ1...N is the set of concrete
value tuples to merge and Δ̂1...N is the set of abstract values.

We can apply the merging by transforming Datalog rules similarly, chang-
ing Abstract(X, X̂) to Abstract(X1, . . . , XN , X̂, . . . , X̂) (X̂ is the abstract value
copied N times to keep the N-D shape). It can be proved similarly that soundness
of N-domain-wise merging still holds.

However, there is a challenge in defining such an N-dimension-wise merging
function. Here we take the 2-dimension case of heap objects (DH) and heap
contexts (DC), for illustration. Basically we can define arbitrary merging func-
tion in the form: πH,C(dH , dC) = (d̂, d̂). However, in an object-sensitive setting,
values of heap contexts are derived from values of heap objects, i.e. DC is DH ’s
super-domain. Replacing values of DH would change the values in DC as well.
How can we define a merging function on the values that depends on the results
of this function? To resolve this recursive dependency, we propose Incremental
Merging. Instead of defining π directly, we define a series of mergings, the first
one merging a single domain and the others each merging a larger set of domains.

Here we introduce the 2-dimension case. Suppose we want to define a merging
π on two domains D1 and D2, and D2 is a super-domain of D1.

We first merge in the D1 independently by defining π1 : D1 → D̂1.
Since D2 is a super-set of D1, it is also changed according to transformation

of rules. But we can know the changes in D2 through the output of π1. Then we
make a second merging in changed domain D̂2, but dependent on the merged
values in D̂1, by a function π2 : D̂1 × D̂2 → D̂1,2.

Thus, (d1, d2) in D1 × D2 is merged to (d̂, d̂), where d̂ = π2(π1(d1), π1(d2)).
The added argument D̂1 in π2 allows us to make different mergings on D2

dependently on D1, thus still capturing the correlation between the two domains.
Incremental Merging can be extended to general N-dimensional cases as well.

We present it in AppendixA.

4.3 Properties of Mergings

We have introduced how to transform Datalog rules to apply merging, and proved
its soundness. Then we need to choose a good merging.
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The number of different mergings over a given domain is equivalent to the
number of different partitions of its value set Bell(n) (where n is the size of
the set), which is prohibitively large1. In general, when more values are merged,
the datalog program may run faster, but meanwhile it is more likely to lose the
original precision. We can formalize that the precision of results is monotone to
the mergings.

First we need to define a partial order over mergings.

Definition 3 (Partial Order of Mergings). Given a set of N sensitivity
domains D1 . . . DN , a merging πa of D1×· · ·×DN is finer than another merging
πb (and πb is coarser than πa) iff any tuple of elements merged into one tuple of
abstract values in πa are also merged into one tuple of abstract values in πb.

πa � πb ⇐⇒ ∀x1, y1 ∈ D1, . . . , xN , yN ∈ DN ,

πa(x1, . . . , xN ) = πa(y1, . . . , yN ) → πb(x1, . . . , xN ) = πb(y1, . . . , yN ).

We can also define the Meet and Join since merging values in a domain is
equivalent to partitioning over its value set.

Thus, mergings of sensitive elements form a lattice. And the (transformed)
Datalog program is a function on this lattice. Then we can prove the monotonic-
ity of analysis results on this lattice (we present the proof in AppendixB).

Theorem 2 (Monotonicity). Given a Datalog program C. If the merging πb

of the domains D1, . . . , DN is a finer merging than πa, then applying πb to C
will deduce no fewer results than πa. It means

πa 	 πb → �C|πa�o ⊆ �C|πb�o

As is shown in the example in Sect. 2, the monotonicity is not strict and there
are some mergings that generate just the same results as origin.

Definition 4 (Precision-preserving merging). Given a Datalog program C.
A merging π is a precision-preserving merging on iff �C|π�o = �C�o.

All the precision preserving merging can keep the precision of the original
result. Among these mergings, in order to improve efficiency, we want to find one
that reduces the domain size as much as possible. So we define maximal merging
as our target of finding mergings.

Definition 5 (Maximal Merging). A precision-preserving merging πa is a
maximal merging iff there is no other precision preserving merging is coarser
than πa.

5 Algorithm

We have proved soundness of domain-wise merging and defined maximal merging
as a good merging. Our current goal is approximating the target merging.
1 Bell number can be recursively calculated as B(n + 1) = Σn

k=0C
k
nB(n).
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5.1 Learn Merging Heuristics of Library Facts from Input Programs

The first challenge is that our defined maximal merging is specific to one given
input program. It would be time-consuming if we use a pre-analysis to generate
a maximal merging every time before analyzing a new program. So a general
merging that can apply to different programs is preferable.

While it is impossible to find a universal merging that suits all kinds of input
programs, the good news is that we can take advantage of the fact that large
part of modern software is shared library code. Library code is usually large
and analyzing it occupies a large portion of the analysis time. Among library
functions, some functions are internal methods that are always called by other
library functions; some are called in a fixed pattern due to code paradigms:
therefore, library codes share similar behaviour across different client codes.

Based on this observation, we can assume that if a merging can reduce run-
ning time with precision kept for analysis on a rather large number of input
programs that share a library, it can also accelerate the analysis on other input
programs using the same library. Thus, we can generate a merging heuristic for
this library by learning from these input programs as a training set. Though
there is no guarantee that precision is kept on new programs because they are
not the same as the training programs, we can introduce fewer false positives by
enlarging the training set.

When the user specifies a sensitivity domain to merge, 4DM first finds out
all the values of the specified domain for each input program in the training set.
It can be done either by collecting from input instances or running an original
analysis to dump the sensitivity domain. Then it selects ones that are only related
to the library from the union set of these values, and explores a merging on this
set that reduces execution time and keeps precision for all input programs in the
training set. We take the found merging as a merging heuristic for the library.

With a library heuristic, we can apply a merging to another program using
this library, where only values specified by the heuristic are merged while other
values stay unchanged.

5.2 Finding a Maximal Merging

How can we find a good merging on the set of library-related values? That is the
remaining problem we need to solve in this part.

If we have some insight about the rules and domains we want to merge, we
can use a specifically-designed rule to find a good merging. For example, we can
use the heap equivalent automata from Tan et al. [21] as a guide to generate
merging heuristics of Heap domain in analysis.

And what if we do not have enough insight? We propose a highly general
method GenMax. We use a greedy algorithm to partition these values iteratively.
In each iteration, we find a maximal set of concrete values that can be replaced
by one assigned abstract value while preserving the original precision. In this
situation, no more values in this domain can be added into this set without losing
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Algorithm 5.1: Enumeration
Input : Set of all concrete values E

Output: Current merging set N
Data: Set of concrete values outside merging set C
Data: Set of unchecked concrete values M

1 begin
2 N ← ∅;
3 C ← ∅;
4 M ← E;
5 for v ∈ E do
6 M ← M − {v};
7 if merge N ∪ {v} preserves precision then
8 N ← N ∪ {v}
9 end

10 C ← C ∪ {v};
11 end
12 end

precision, so they are excluded from the rest of values in following iterations.
When all values are tested, the algorithm terminates.

This resulting merging is maximal, i.e. any two abstract values cannot be
merged without losing precision. According to definition, there can be more
than one maximal merging for the given set of concrete values, but evaluation in
Sect. 6 shows the maximal merging found by our greedy algorithm is adequate.

To find a maximal merging set in every iteration, we explore two different
approaches, an enumerative one and a randomized one.

Enumeration for Maximal Merging Set. In order to find the maximal num-
ber of mergeable concrete values, a direct method is to enumerate over every
concrete value. As is shown in Algorithm-5.1, given the set of all concrete values
E, each time we randomly choose one unchecked value from E, check whether it
can be added into current merging set, until all values are checked. Note that
the analysis is embedded with rules of merging through Sect. 4. In this method,
number of calls to logic analysis is linear to the size of the set of abstract values.
But the time complexity is worse than O(|E|) because runtime of each attempt
of analysis also gets longer when input program grows larger. This method would
be too time-consuming especially for large programs.

Active Learning for Maximal Merging Set. It would be better if we can
try to add more than one concrete values into current merging set at once.
Liang et al. [16] proposes an active learning algorithm, ActiveCoarsen, to find
a minimal binary abstraction which is estimated to be more efficient. The algo-
rithm is transformed in our setting and described in Algorithm-5.2.

Each time, ActiveCoarsen picks multiple concrete values by the ratio α, and
tries to add them into current merging set. If failed, put the concrete values back
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Algorithm 5.2: ActiveCoarsen
Input : Set of all concrete values E

Input : Probability of random selection α
Output: Set of concrete values outside merging set N
Data: Set of undetermined concrete values M
Data: Set of random-selected concrete values T

1 begin
2 N ← ∅;
3 M ← E;
4 while M is not empty do
5 T ← select(M,α);
6 if merge N ∪ T preserves precision then
7 N ← N ∪ T ;
8 M ← M − T ;
9 end

10 update α;
11 end
12 end

and re-pick again. If we set α = e− 1
s , where s is the size of the maximal merging

set of concrete values, the expected number of calls to the analysis is O(s log n).
However, we have no knowledge of the size s. Liang et al. [16] also introduce a
mechanism for setting and updating α without knowledge of s, which is detailed
in their article.

Optimization. Though ActiveCoarsen tries more concrete values at a time,
when the size of remaining concrete values in M is small, randomly selecting
more than one value to merge at each trial would be less effective than plain
enumeration. We approximately calculate that when the remaining size n is
smaller than about (1 +

√
5)/2 times the size s of minimal critical set, it would

be better to switch to enumeration for minimal critical set.
Another optimization is that since each iteration we expand a merging set

to max, the generated merging sets would get smaller since remaining concrete
values get fewer. The benefit-cost ratio would decrease a lot. So after finding
several large merging sets, we cut the exploration of merging early.

6 Implementation and Evaluation

To evaluate the effectiveness and generality of our approach 4DM, we imple-
mented 4DM in Python and compared it with existing approaches over two
different Datalog-based analyses: points-to analysis and liveness analysis.



Accelerating Program Analyses in Datalog by Merging Library Facts 91

6.1 Points-to Analysis

We first carried out an experiment on a context-sensitive points-to analysis over
Java programs. The analysis is from the Doop framework [3]. We use 2-object-
sensitive+heap (2o1h) as the sensitivity configuration in our evaluation because
it is the most precise configuration on which most benchmark projects can be
analysed with reasonable amount of time. We transformed the Soufflé implemen-
tation of Datalog rules as input of 4DM’s merging.

In this experiment, we trained abstractions for all libraries in JDK. The
abstraction is the Cartesian product of domains Heap and HeapContext. Since
in the setting of object-sensitivity, heap context is a super-domain of heap
objects, we used incremental abstraction on them as described in Sect. 4.

We selected 15 Java projects as subjects from Dacapo benchmark [2] and
pjbench [18]. We excluded some projects (bloat, batik and jython) from our
subject set because it takes too long time to run 2o1h analysis on them.

To check whether 4DM is stable when using different training sets, we per-
formed a 5-fold cross-validation over the selected projects. In particular, we ran-
domly partitioned these projects into 5 groups, each containing 3 projects. In
each fold of cross-validation, every 4 groups form a training set and the remain-
ing one group forms a testing set. We apply the learned merging heuristics from
the 12 programs to the rest 3 programs. Each column in Fig. 4 and each segment
in Table 1 show the results on one group by training on the other 4 groups (e.g.,
tradebeans, chart, and fop are a group). Though it takes 2 to 3 days to find a
merging heuristic from a training set, the learnt heuristic can be reused across
different programs in the testing set, and thus, the training process is offline.
The execution time and precision measures in the following paragraphs are the
results on the testing set.

In our evaluation, we compare the execution time and precision of 4DM with
3 existing approaches:

– Standard 2o1h analysis (denoted as 2o1h). This is the baseline.
– The 2o1h analysis with Mahjong [21] (denoted as Mahjong). Its execution

consists of two parts: the pre-analysis is a light-weight analysis to learn merg-
ing rules and the post-analysis is the 2o1h analysis based on the merging rules
learned from the pre-analysis.

– The 2o1h analysis with a variant of Mahjong (denoted as Mahjong(lib)). The
process is similar to Mahjong, but the difference is that all values outside
JDK are excluded from the merging sets generated by pre-analysis.

In our evaluation, we try to answer the following three research questions:

RQ1: How effective our technique is on the acceleration of points-to
analysis? To answer this question, we present the execution time of compared
approaches in Fig. 4. All the execution time is measured on a machine with 2 Intel
Xeon Gold 6230 CPUs and 512 GB RAM, equipped with Ubuntu 18.04 and JDK
1.7.0-80. All analyses are executed single-threaded. In the Figure, the execution
time of each project is presented as a cluster of four columns. From left to right,
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Fig. 4. Comparison of execution time (in sec)

the columns represent the execution time of 2o1h, Mahjong, Mahjong(lib), and
4DM respectively. For Mahjong and Mahjong(lib), the lighter-color part of the
column represents the pre-analysis time, and the darker-color part of the column
represents the post-analysis time.

From this figure, we can observe that our technique can significantly acceler-
ate the points-to analysis compared with the standard implementation 2o1h on
all the experimented projects (with an average speedup of 1.6×).

Comparing with the post-analysis of Mahjong, 4DM is faster in 6 of the
15 projects, and slower in 9. The difference in time is modest in most of the
projects. But if we take Mahjong ’s pre-analysis for each project into account,
4DM is significantly faster than Mahjong on all projects. While merging learnt
by 4DM can be applied to different programs sharing the common library once
it is obtained, the pre-analysis in Mahjong must be executed whenever analyzing
a new project.

Since 4DM only merges library elements, we also compare it with a variant of
Mahjong which merges only heap objects in the library, and 4DM is faster than
Mahjong(lib)’s post-analysis in 10 of 15 projects. It implies that 4DM ’s data-
driven method learnt a comparably good merging as the specifically-designed
strategy in Mahjong.

RQ2: How much precision loss 4DM causes? To answer this question, we
use two commonly used metrics for the precision of points-to analysis - polymor-
phic virtual call-sites (abbreviated as poly) and may-failing typecasts (abbrevi-
ated as cast), and compare experimented approaches on the two metrics. The
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more call-sites the analysis identified as polymorphic and the more typecasts the
analysis identified as may-failing, the analysis is more imprecise.

The details are in Table 1. Columns poly and cast present the number of
polymorphic virtual call-sites and may-failing typecasts detected by baseline
2o1h, and Columns Δpoly and Δcast refers to the number of additional false
positives detected by other approaches compared with the baseline 2o1h.

According to analysis results, the precision loss of our technique is mini-
mal. Compared with standard 2o1h, 4DM causes no precision loss in 10 out of
15 projects. In the remaining projects, the highest precision loss happens in the
eclipse project, with 3.0% extra polymorphic virtual call-sites reported. Compar-
ing with Mahjong, though the maximal precision loss of Mahjong (2.0% in cast
of eclipse) is smaller than 4DM, it loses precision in cast in more projects than
4DM. Thus, we can conclude that our approach is also comparable to Mahjong
in precision loss.

RQ3: Is our approach stable when using different training sets? We
need to check that if the training set changes, 4DM’s learnt merging heuristic
still reach a significant acceleration with minimal precision loss. From evaluation
results in RQ1 and RQ2, we can see that all the five sets of heuristics gener-
ated with five different training sets achieve significant acceleration and minimal

Table 1. Comparison of precision loss.

Analysis 2o1h Mahjong Mahjong (lib) 4DM
Program poly cast Δpoly Δcast Δpoly Δcast Δpoly Δcast

tradebeans 850 567 0 1 0 0 0 0
chart 1446 1279 0 1 0 0 3 3
fop 838 519 0 1 0 0 0 0
antlr 1643 640 0 1 0 0 0 0
eclipse 1318 1020 14 20 0 0 40 10
hsqldb 802 515 0 1 0 0 0 0
h2 942 559 0 2 0 0 0 0
luindex 929 549 0 1 0 0 0 0
xalan 808 514 0 1 0 0 0 0
tsp 784 441 0 1 0 0 0 0
pmd 886 911 0 1 0 0 0 0
avrora 936 715 0 1 0 0 2 0
lusearch 1136 596 0 1 0 0 0 0
sunflow 2000 1528 0 1 0 0 25 8
hedc 871 458 0 1 0 0 25 10
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precision loss. Thus, we can conclude that our technique is stable across different
training sets.

RQ4: What is the performance of our approach in large applica-
tions? We excluded 3 large projects (bloat, batik and jython) previously, as
it takes a long time to run the training algorithm in Sect. 5 on them. But we
can apply the learnt heuristics from smaller projects to accelerate the points-
to analysis on large approaches. We apply the 5 heuristics learnt above to the
3 projects, and find that both bloat and batik are accelerated with a minimal
precision loss (bloat speeds up by 1.0% with 0 precision loss, batik speeds up by
11.0% with precision loss less than 1%). However, jython still exceeds a 3-h time
limit. The details are in AppendixC.

Evaluation Summary on Points-to Analysis. From the answers of the above
research questions, we can see that (1) 4DM can significantly accelerate base-
line 2o1h with minimal precision loss; (2) compared with Mahjong, 4DM can
achieve comparable efficiency and precision loss without performing pre-analysis
for each new project; and (3) 4DM’s efficiency and precision are stable when
using different training sets.

6.2 Liveness Analysis

In this subsection, we evaluate our method on an inter-procedure liveness anal-
ysis over Java programs to validate the generality of our approach.

To further challenge our approach on generality, we use a different domain,
program points, as the sensitivity domain for liveness analysis. The observation
is that for many program points, their live variable sets are exactly the same,
i.e. there exists much redundant propagation in the analysis. If we view program
points as sensitivity elements, and apply domain-wise merging, we could speed
up the analysis by reducing redundant computation from tuning flow-sensitivity.

In particular, in order to find appropriate merging for sensitivity elements,
we use the following heuristic: if two program points are adjacent in the control
flow graph, and the kill sets of them are empty, then the two program points are
mergeable. By considering all adjacent pairs in the control flow graph, we could
obtain our desired abstraction for the program.

Experiment Setting. We evaluated our approach on 9 projects from Dacapo
benchmark. They are divided into 3 groups and each group contains 3 projects.
For each group, we learn a unique abstraction of the library code by applying
4DM, and test the library abstraction on the other two groups.

Results. Our approach accelerates the liveness analysis on all of the bench-
marks. The average speed-up is 19.8%, and the average precision loss is 4.9%.
The detailed performance is listed in AppendixD.

We stress that we only use a simple heuristic in a new domain, and the results
show that our method still works remarkably well. It indicates that by carefully
choosing domains, and applying various learning techniques, our method could
speed up many other analyses in a way orthogonal to existing works.
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7 Related Work

There have been many approaches proposed to accelerate program analysis.
Among these approaches, three types are relevant to our paper.

Context Reduction. Lhoták and Hendren [13] conducts an empirical study
that demonstrates there are very few contexts related to the precision of the
analysis results. Liang et al. [16] propose to finding the minimal set of call sites
that preserve the precision. The result shows that most call sites does not affect
the precision. Both Lhoták and Hendren [13] and Liang et al. [16] do not directly
accelerate context-sensitive analysis, instead they see opportunities to reduce
contexts for acceleration. Actually, the algorithm for finding minimal partitions
in our paper are inspired by Liang et al. [16]

Based on the above observation, researchers [10,11,14,15,26,27] propose to
adjust context sensitivities at different program points to accelerate context-
sensitive points-to analysis. There are two main directions. One is refinement,
that is, iteratively increasing sensitivity on some program points on demand to
improve precision. For example, Zhang et al. [27] starts from the most coarse
abstraction and finds suitable program points to increase context length using
an online SAT-solver-based algorithm, to reduce false positives. The other is
coarsening, which analyzes the code beforehand, and performs the full analysis
with coarser sensitivity at specific program points. For example, Li et al. [14]
neglects context sensitivity in some methods which are calculated during pre-
processing phase.

As is already mentioned in the overview, our domain-wise merging could
merge redundant contexts in a fine-grained way that cannot be implemented by
these approaches. On the other hand, our method considers more in a coarsening
direction as it merges concrete values. As a result, in the future potentially our
approach could develop in another direction, combined with refinement-based
methods. Furthermore, our work deals with not only context-sensitive points-to
analysis but also more general cases.

Equivalence Classes. The idea of equivalence classes has already been used to
accelerate analysis. Cycle detection [8,9,16] is a common way to detect variable
and object equivalence, which can reduce the number of variables or objects
in points-to analysis. Tan et al. [21] uses an idea of equivalent automata to
merging type-consistent heap objects. In addition, Xu and Rountev [25] and
Xiao and Zhang [24] exploit context equivalence and use custom encoding to
merge contexts, and are also considered as ways for context reduction. Our
definition of domain-wise merging could be viewed as a generalization of the
previous abstractions. Our approach can automatically learn the merging from
a training set, in contrast to existing approaches relying on properties of certain
analyses.
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Library Summarization. Library summarization techniques keep only neces-
sary library facts in library summaries so as to accelerate client analysis. Client
analysis can use summaries for reasoning, without inner reasoning for the library.
Tang et al. [22,23] propose conditional reachability to summarize all potential
reachability between library boundaries. Polymer [12] learns library behavior
from training clients to create conditional summaries for a library. However,
a full summarization of the library is usually too large to store and load. For
example, the summary produced by Tang et al. [22] needs tens of Gigabytes for
some of the JDK classes over a simple data-dependence analysis. In contrast to
these approaches that try to fully summarize the library, our work tries to learn
a merging that is suitable for analyzing the library. The learnt merging heuristic
of heap objects with heap contexts for the whole JDK library in our evalua-
tion in Sect. 6.1 consist of only around 1000 lines of Datalog facts, respective for
different training sets. Such a merging heuristic is easy to store and load.

Abstract Interpretation of Logic Programs. There is classic literature on
extending abstract interpretation to logic programs [1,4–7]. Previous research on
this topic mainly aims to analyze properties of logic programs themselves, such
as variable binding and predicate type; while in 4DM, the analysis is expressed
in a logic program but it analyzes properties of other programs. But the way
4DM transforms Datalog programs and merges analysis values can be viewed as
abstracting the Datalog program expressing the analysis. It lifts the “concrete
domain” of the original analysis values to the abstract domain of merged values.
This is a special case of abstract interpretation of logic programs.

8 Conclusion

In this paper we have introduced 4DM, a new framework for tuning abstractions
in a program analysis using domain-wise merging. In particular, it uses a data-
driven method to automatically learn an effective merging heuristic for library
code from a training set of programs. 4DM can be applied to merging different
kinds of sensitivity elements in various analyses that are expressed in Datalog.
Our evaluation results show that our approach significantly accelerates a context-
sensitive pointer analysis and a flow-sensitive liveness analysis with minimal
precision loss.
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and Development Program of China No. 2019YFE0198100, National Natural Science
Foundation of China under Grant Nos. 61922003, and a grant from ZTE-PKU Joint
Laboratory for Foundation Software.
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A Incremental Merging in N-Domain-Wise Cases

Here we describe how to define an incremental merging function for general cases
of N-domain-wise merging.

Suppose we want to define a merging function on N domains D1,D2, . . . , DN .
Without loss of generality, we suppose Di can only be a super-domain of Dj when
i > j. We define πi (1 ≤ i ≤ N) by induction:

– When i = 1, we can define an arbitrary 1-domain-wise merging function on
D1.

– Suppose we have defined a function πi : D1 ×· · ·×Di → D̂1...i, we can define
πi+1 : D1 × · · · × Di × Di+1 → D̂1...i+1 with a helper function π′

i+1:

π′
i+1 : D̂1...i × D̂i+1 → D̂1...i+1

Here D̂i+1 represents the changed domain of original Di+1 after applying the
merging πi, and πi+1(d1, . . . , di, di+1) = π′

i+1(πi(d1, . . . , di), πi(di+1)). Note
that πi(di+1), which di+1 would become under πi, is determined after applying
πi to the Datalog program.

With π = πN , we get an N-domain-wise merging function on D1 × · · ·×DN .

B Proof: The Monotonicity of Mergings

Theorem 3 (Monotonicity). Given a Datalog program C. If the merging πb

of the domains D1, . . . , DN is a finer merging than πa, then applying πb to C
will deduce no fewer results than πa. It means

πa 	 πb → �C|πa�o ⊆ �C|πb�o

Proof. Given a Datalog program C, any derivation on the proof tree in �C|πa�
has the form

R0(Πa(d01),Πa(d02), . . .) ::= . . . , Rj(Πa(dj
1),Πa(dj

2), . . .), . . . .

(note that the concrete values {dj
i} may not originally match with each other,

but get matched after applying Πa).
As is defined, for any domain D, ∀x, y ∈ D,Πa(x) = Πa(y) → Πb(x) =

Πb(y), so in �C|πb�’s proof tree,

R0(Πb(d01),Πb(d02), . . .) ::= . . . , Rj(Πb(d
j
1),Πb(d

j
2), . . .), . . . .

also holds as a renaming of the previous instantiation.
Therefore, �C|πa�o ⊆ �C|πb�o.
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C Detailed Performance of 4DM in Points-to Analysis on
Large Projects

Table 2 presents the performance of 4DM by applying learnt heuristics from small
projects to large projects. Each column of 4DM shows the result of applying a
heuristic learnt from a training set of 12 projects. The partition of training set
is the same as in Sect. 6.1.

Table 2. Performance of applying heuristics learnt by 4DM from small projects
to large projects.

Project Analysis 2o1h 4DM
1 2 3 4 5

bloat time (s) 3122.32 3083.92 3093.46 3082.87 3097.3 3100.15
poly 1577 1577 1577 1577 1577 1577
cast 1526 1526 1526 1526 1526 1526

batik time (s) 1001.57 908.73 894.49 882.18 886.73 879.52
poly 4798 4836 4831 4846 4812 4828
cast 2445 2473 2467 2476 2453 2459

D Detailed Performance of 4DM in Liveness Analysis

Table 3 shows the detailed results of applying 4DM to liveness analysis.
One practical concern in evaluation is that liveness analysis is usually very

fast, hence random events in the processor could have a big influence on the mea-
sured run time of compiled executable. We tackle this problem by using Soufflé
interpreter to run the analysis and obtain a more reliable record of analysis time.

We use a T-test to check whether the distribution of analysis time changes
significantly after merging. The smaller the p-value, the stronger the evidence
that two distributions are different. We perform 50 independent runs for each
benchmark and analysis. The analysis time is the average of the 50 runs, and
the p-value is calculated base on these data.

We measure the precision by the size of calculated live-variable set at all call
sites. Note that since our approach is sound, this property is non-decreasing; and
the less the size increases, the more precise the analysis is.
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2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{abdelraouf.ouadjaout,antoine.mine}@lip6.fr

3 Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5, France

Abstract. We present a static analysis of endian portability for C pro-
grams. Our analysis can infer that a given program, or two syntactically
close versions thereof, compute the same outputs when run with the same
inputs on platforms with different byte-orders, a.k.a. endiannesses. We
target low-level C programs that abuse C pointers and unions, hence rely
on implementation-specific behaviors undefined in the C standard.

Our method is based on abstract interpretation, and parametric in
the choice of a numerical abstract domain. We first present a novel con-
crete collecting semantics, relating the behaviors of two versions of a
program, running on platforms with different endiannesses. We propose
a joint memory abstraction, able to infer equivalence relations between
little- and big-endian memories. We introduce a novel symbolic predi-
cate domain to infer relations between individual bytes of the variables
in the two programs, which has near-linear cost, and the right amount of
relationality to express (bitwise) arithmetic properties relevant to endian
portability. We implemented a prototype static analyzer, able to scale to
large real-world industrial software, with zero false alarms.

Keywords: Formal methods · Abstract interpretation · Abstract
domains · Static analysis · C programming language · Portability ·
Endianness · Industrial application

This work is performed as part of a collaborative partnership between Sorbonnne Uni-
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1 Introduction

There is no consensus on the representation of a multi-byte scalar value in com-
puter memory [9]. Some systems store the least-significant byte at the lowest
address, while others do the opposite. The former are called little-endian, the
latter big-endian. Such systems include processor architectures, network proto-
cols and data storage formats. For instance, Intel processors are little-endian,
while internet protocols and some legacy processors, such as SPARC, are big-
endian. As a consequence, programs relying on assumptions on the encoding of
scalar types may exhibit different behaviors when run on platforms with different
byte-orders, a.k.a. endiannesses. The case occurs typically with low-level C soft-
ware, such as device drivers or embedded software. Indeed, the C standard [19]
leaves the encoding of scalar types partly unspecified. The precise representation
of types is standardized in implementation-specific Application Binary Interfaces
(ABI), such as [2], to ensure the interoperability of compiled programs, libraries,
and operating systems. Although it is possible to write fully portable, ABI-
neutral C code, the vast majority of C programs rely on assumptions on the ABI
of the platform, such as endianness. Therefore, the typical approach used, when
porting a low-level C program to a new platform with opposite endianness, is to
eliminate most of the byte-order-dependent code, and to wrap the remainder, if
any, in conditional inclusion directives, which results in two syntactically close
endian-specific variants of the same program. A desirable property, which we
call endian portability, is that a program computes the same outputs when run
with the same inputs on the little- and big-endian platforms. By extension, we
also say that a program is endian portable if two endian-specific variants thereof
compute the same outputs when run with the same inputs on their respective
platforms. In this paper, we describe a static analysis which aims at inferring
the endian portability of large real-world low-level C programs.

Motivating Example. For instance, Example 1 features a snippet of code for
reading network input. The sequence of bytes read from the network is first stored
into integer variable x. Assume variable y has the same type. x is then either
copied, or byte-swapped into y, depending on the endianness of the platform.
Our analysis is able to infer that Example 1 is endian portable, i.e. both endian-
specific variants compute the same value for y, whatever the values of the bytes
read from the network. This property is expressed by the assertion at line 8.

Example 1. Reading input in network byte-order.

1 read_from_network((uint8_t *)&x, sizeof(x));

2 # if __BYTE_ORDER == __LITTLE_ENDIAN

3 uint8_t *px = (uint8_t *)&x, *py = (uint8_t *)&y;

4 for (int i=0; i<sizeof(x); i++) py[i] = px[sizeof(x)-i-1];

5 # else

6 y = x;

7 # endif

8 assert_sync(y);
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Example 1 abuses pointers to bypass the C type system, a common practice in low-
level programming known as type punning. Alternatively, some implementations
rely on bitwise arithmetics. E.g., if x and y have type uint32_t, the little-endian
case may be rewritten as ((x & 0xff000000) >> 24) | ((x & 0xff0000) >> 8) | ((x
& 0xff00) << 8) | ((x & 0xff) << 24). Other implementations rely on compiler
built-in functions, or assembly code, possibly using dedicated processor instruc-
tions. Examples can be seen in the Linux implementations of the POSIX htons
and htonl functions, converting values between host and network byte-order. Our
analysis is able to analyze all the above C implementations successfully, as well as
alternative implementations (with stubs for assembly code). In the following of the
paper, unless otherwise stated, we will implicitly refer to a version of Example 1
where variables have type uint16_t.

Approach. Low-level programs exhibit different semantics when run on plat-
forms with different endiannesses. We thus model them as so-called double pro-
grams. The little-endian program is called the first (or left, or little-endian)
version of the double program, while the big-endian program is called the sec-
ond (or right, or big-endian) version. Both versions may share the same source
code, or present syntactic differences (if conditional inclusion is used). Our app-
roach to endian portability is to devise a joint, whole-program static analysis of
a double program able to infer equivalences between the input-output relations
of its versions. To this aim, we define a memory model able to represent a joint
abstraction of their memories. We first parameterize a standard memory domain
for low-level C programs with an explicit endianness parameter. Then, we lift
it to double programs, and tailor it to infer, and represent symbolically, rele-
vant equalities between little- and big-endian memories. We rely on a dedicated
numerical domain based on symbolic predicates, to infer complementarity rela-
tions between individual bytes of program variables, such as those established
by bitwise arithmetic operations. We validate our approach by analyzing large
industrial low-level embedded C programs designed to be endian portable.

Related Work. Several approaches to endian portability are developed in the
literature. [30] relies on a source-to-source translation, which is only sound with
respect to annotations provided by the programmer, whereas we require no anno-
tations. [5] extends a compiler to generate code that executes with the opposite
byte order semantics as the underlying architecture, at the cost of a performance
penalty. Annotations are also required for soundness in some cases. [21] relies
on dynamic analysis, which can find portability errors, but cannot prove endian
portability formally, unlike our method. The Sparse [6] static analysis tool used
by Linux kernel developers relies on pervasive type annotations to detect endi-
annesses issues, but comes with no formal guarantee.

To our knowledge, no prior work uses sound static analysis to infer endian
portability. Yet, our approach leverages prior work. We build on a memory
abstract domain [24], [27, Sect. 5.2] developed for run-time error analysis of low-
level C programs able to expose endian-dependent behaviors, and on double
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program semantics developed for patch analysis [14,15]. Our symbolic predi-
cate domain is based on previous work on predicate domains [26], and symbolic
constant propagation [25]. Our domain is also reminiscent of the Slice domain
introduced in [7,8] for another purpose, and implemented differently.

Contributions. The main contributions of this work are:

– We present a novel concrete collecting semantics, relating the behaviors of
two versions of a program, running on platforms with different endiannesses.

– We propose a joint memory abstraction able to infer equivalence relations
between little- and big-endian memories.

– We introduce a novel symbolic predicate domain to infer relations between
individual bytes of the variables in the two programs, which has near-linear
cost, and the right amount of relationality to express (bitwise) arithmetic
properties relevant to endian portability.

– We implemented our analysis on the Mopsa [20,29] platform. Our prototype
is able to scale to large real-world industrial software, with zero false alarms.

The paper is organised as follows. Section 2 formalizes the concrete collecting
semantics, Sect. 3 describes the memory abstraction, Sect. 4 describes the numer-
ical abstraction and introduces a novel numeric domain, Sect. 5 presents experi-
mental results with a prototype implementation. Section 6 concludes.

2 Syntax and Concrete Semantics

Following the standard approach to abstract interpretation [10], we develop a
concrete collecting semantics for a C-like language for double programs. The ‖
operator may occur anywhere in the parse tree to denote syntactic differences
between the left (little-endian) and right (big-endian) versions of a double pro-
gram. However, ‖ operators cannot be nested: a double program only describes
a pair of programs. Given double program P with variables in V, we call its left
(resp. right) version P1 = π1(P ) (resp. P2 = π2(P )), where π1 (resp. π2) is a
version extraction operator, defined by induction on the syntax, keeping only the
left (resp. right) side of ‖ symbols. For instance, π1(x ← 1 ‖ y ← 0) = x ← 1,
and π2(x ← 1 ‖ y ← 0) = y ← 0, while π1(z ← 0) = z ← 0 = π2(z ← 0). Recall
that syntactic differences between P1 and P2 may be distinct from semantic dif-
ferences. Syntactically different statements may exhibit the same semantics in
P1 and P2, like in Example 1, while syntactically equal statements may exhibit
different semantics, like with the C statement *((char*)&x)=1, when integer
variable x is such that sizeof (x) > 1.

2.1 Syntax

Simple programs P1 and P2 enjoy a standard, C-like syntax presented in Fig. 1.
Statements stat are built on top of expressions expr and Boolean conditions
cond . The syntax of double statements dstat includes specific assume sync and
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Fig. 1. Syntax of simple and double programs.

assert sync statements, used for specifications. The former is used to express
assumptions on program inputs, while the latter is used to express assertions
on program outputs: assume sync(e) introduces the assumption that expres-
sion e evaluates to the same value in double program versions P1 and P2, while
assert sync(e) checks that the value of e is identical in both versions, and fails
otherwise. Expression [c1, c2] chooses a value non-deterministically between con-
stants c1 and c2. The double statement x ← [c1, c2] may assign different val-
ues to variable x in the two program versions. In contrast, the sequence x ←
[c1, c2]; assume sync(x) ensures that x holds the same non-deterministic value
in both versions.

Expressions rely on a C-like type-system. Integer and pointer types are col-
lectively referred to as scalar types. Expressions support pointer arithmetic,
expressed as byte-level offset arithmetic. All left-values are assumed to be pre-
processed to dereferences ∗τ e (i.e. *((τ*)e) in C) where τ is a scalar type, and
e is a pointer expression. Note that dereferences are limited to scalar types, and
the dereferenced type is explicit in the syntax.

2.2 Semantics of Low-Level Simple C Programs

The semantics of simple programs is parameterized by an ABI. In this paper,
we assume program versions have the same ABIs, but for endianness. Let A �
{L,B } denote the possible endiannesses (little- and big-endian). The sizes of
types, in contrast, are the same for both program versions. We thus assume a
unique function sizeof ∈ type → N given, which provides these sizes (in bytes).

Pointer values are modeled as (semi-)symbolic addresses of the form 〈V, i〉 ∈
Addr � V × Z, which indicate an offset of i bytes from the first byte of V .
Special pointer values are defined for C’s NULL and dangling pointers: Ptr �
Addr ∪ {NULL, invalid}.

Let B � [0, 255] ∪ (Ptr × N) describe the possible numeric byte values and
symbolic pointer bytes. We keep pointer values symbolic as their precise numeric
values depend on memory allocation strategies outside the scope of the analysis.
〈p, i〉 ∈ B denotes the i−th byte in the memory representation of the pointer
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Fig. 2. Concrete semantics of memory reads and writes.

value p. Expressions manipulate scalar values, which may be numeric (machine
integers) or pointer values. We denote the set of values as V � Z∪ Ptr. The defi-
nition of the most concrete semantics requires a family of representation functions
bencτ,α ∈ V → P(B∗), that convert a scalar value of given type τ ∈ scalar-type
and endianness α ∈ A into a sequence of sizeof (t) byte values. We denote as
bdecτ,α ∈ B∗ → P(V ) the converse operation. For instance, on a 32-bit plat-
form, bencunsigned int,L(1) = { (1, 0, 0, 0) }, bdecunsigned short,B(0, 1) = { 1 },
and bencptr,L(p) = { (〈p, 0〉, 〈p, 1〉, 〈p, 2〉, 〈p, 3〉) }. This seemingly trivial encoding
allows modeling copying pointer values byte per byte, as done e.g. by memcpy. Note
that the bencτ,α and bdecτ,α functions return a set of possible values. For instance,
reinterpreting a pointer value as an integer, as in bdecint,L ◦ bencptr,L(p), returns
the full range of type int. We do not detail the definitions of these functions here,
for the sake of conciseness. An example may be found in [27, Sec. 5.2].

Environments are elements of E � Addr ⇀ B. The semantics E� expr � ∈
A → E → P(V ) and S� stat � ∈ A → P(E) → P(E) for simple expressions
and statements is defined by standard induction on the syntax. We therefore
only show, on Fig. 2, the semantics E� ∗τ e �α and S� ∗τ e1 ← e2 �α for memory
reads and writes, given endianness α ∈ A. Bytes are fetched and decoded with
bdecτ,α when reading from memory in expression ∗τ e, while values computed by
expression e2 are encoded into bytes with bencτ,α when writing to memory in
assignment ∗τ e1 ← e2. Note that illegal memory accesses are silently omitted to
simplify the presentation.

2.3 Semantics of Double Programs

We now lift simple program semantics S to double program semantics D. As
both simple program versions Pk = πk(P ) have concrete states in E , the double
program P has concrete states in D � E×E . The semantics of Pk is parameterized
by its endianness αk ∈ A. We assume, without loss of generality, that P1 is the
little-endian version, and P2 the big-endian one.

D� s � ∈ P(D) → P(D) describes the relation between input and output
states of s, which are pairs of states of simple programs. The definition for D� s �
is shown on Fig. 3. D leverages previous work on patch analysis [14,15]. It is
defined by induction on the syntax, so as to allow for a modular definition and
joint analyses of double programs. Note that D is parametric in S.

The semantics for the empty program is the identity function. The semantics
D� s1 ‖ s2 � for the composition of two syntactically different statements reverts
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Fig. 3. Denotational concrete semantics of double programs.

to the pairing of the simple program semantics of individual simple statements
s1 and s2. The semantics for assignments is defined with this construct. The
semantics of assume sync and assert sync statements filters away environ-
ments where the left and right versions of a double program may disagree on
the value of expression e. In addition, assert sync raises an alarm if e may
evaluate to different values in P1 and P2. We omit alarms from the semantics
for conciseness. The semantics for the sequential composition of statements boils
down to the composition of the semantics of individual statements. The seman-
tics for selection statements relies on the filter F � e1 �� 0 ‖ e2 �� 0 � to distinguish
between cases where both versions agree on the value of the controlling expres-
sion, and cases where they do not (a.k.a. unstable tests). There are two stable
and two unstable test cases, according to the evaluations of the two conditions.
The semantics for stable test cases is standard. The semantics for unstable test
cases is defined by the composition of left version of the then branch, filtered by
the condition, and of the right version of the else branch, filtered by the negation
of the condition (and the dual case). The semantics for (possibly unbounded)
iteration statements is defined using the least fixpoint of a function defined sim-
ilarly.

2.4 Properties of Interest

We wish to prove the functional equivalence between the left and right ver-
sions of a given double program P ∈ dstat , restricted to a set of distinguished
outputs, specified with the assert sync primitive. Let x0 ∈ D be an initial
double-program state. The set of states reachable by P is D�P � {x0 }. Let Ω be
a set of output left-values of program P . The property of interest is that π1(P )
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Fig. 4. Memory cells of Example 1: = b0, , = b0 × 28 + b1.

and π2(P ) compute equal values for all outputs:

∀l ∈ Ω : ∀〈ρ1, ρ2〉 ∈ D�P � {x0 } : ∃v ∈ V : ∀k ∈ { 1, 2 } : E� l �αk
ρk = { v } .

For instance, let S denote the set of reachable states of Example 1, before line 8:
S = { 〈[xo

1 → bo, y
o
1 → b1−o], [xo

2 → bo, y
o
2 → bo]〉 | o ∈ {0, 1}, (b0, b1) ∈ [0, 255]2 },

where b0 and b1 denote the values of bytes read from the network, and we write
xo

i and yo
i for 〈x, o〉 and 〈y, o〉 in program version i. The portability property

expressed at line 8 is y0
1 + 28y1

1 = 28y0
2 + y1

2 , which can be proved from S.
Our concrete collecting semantics D is not computable in general. We will

thus rely on computable abstractions, to infer this property by static analysis.
Note that the use of assume sync and assert sync in specifications allows for
both whole-program analysis, and separate analyses of program parts.

3 Memory Abstraction

Though we aim at designing a computable abstract semantics in Sect. 4, we
first tailor a (non computable) abstraction of our memory model. We rely on
the Cells memory abstraction of simple programs [24], [27, Sect. 5.2]. In order to
handle C programs computing with machine integers of multiple sizes, with byte-
level access to their encoding through type-punning, this domain represents the
memory as a dynamic collection of scalar variables, termed cells, holding values
for the scalar memory dereferences discovered during the analysis. It maintains
a consistent abstract state despite the introduction of overlapping cells by type-
punning. We lift this memory abstraction to double programs, and we extend it
for representing equalities between cells symbolically.

3.1 Cells

We first consider the finite universe Cell � V × N × scalar-type × A of cells of
one program. A cell 〈V, o, τ, α〉 ∈ Cell is denoted as a variable V , an offset o, and
information specifying the encoding of values: a scalar type τ and endianness α.
To account for both programs, we introduce projected cells as ˜Cell � Cell×{ 1, 2 },
where 1 (resp. 2) denotes a cell in the memory of P1 (resp. P2).

For instance, consider the program in Example 1. We show in Fig. 4 the cells
synthesized at the end of the program. Let xk � 〈x, 0,u16, αk, k〉 denote 2-byte
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cells for x in Program k ∈ { 1, 2 }, where α1 = L and α2 = B. 1-byte cells are
denoted as xo

k � 〈x, o,u8, αk, k〉 where o ∈ { 0, 1 }. The cells for y are defined in a
similar way. Both program versions first call function read_from_network, which
reads a stream of bytes from an external source, and writes it into a buffer. The
same stream is read by both program versions. A stub for read_from_network
is shown in Fig. 5. After completion of the call, we have x0

1 = b0 = x0
2 and

Fig. 5. Stub for read_from_network function.

x1
1 = b1 = x1

2, where b0 and b1 are the first and second bytes read from the
network, respectively. Then, Program 1 swaps the bytes of x into those of y:
x0
1 = y1

1 and x1
1 = y0

1 . Program 2, in contrast, assigns x to y. x is thus read as
a 2-byte cell, while only 1-byte cells are present. Therefore, the Cells domain
synthesizes x2 by adding the constraint x2 = 28x0

2 + x1
2, following big-endian

byte-order, before performing the assignment y2 ← x2. To sum up, we obtain
the following constraints:

x0
1 = x0

2 = y1
1 x1

1 = x1
2 = y0

1 y2 = x2

In addition to the cell constraints on x and y:

x1 = x0
1 + 28x1

1 y1 = y0
1 + 28y1

1 x2 = 28x0
2 + x1

2 y2 = 28y0
2 + y1

2

Our goal is to prove that y1 = y2 given such constraints. To do so, we want
to leverage numerical domains to abstract the values of cells. However, such
constraints require an expressive domain, such as polyhedra or linear equalities,
that can hamper the scalability of the analysis. In addition, we note that we need
to infer many equalities, most of them between the left and right versions of the
same cells. This is no surprise as we expect most variables to hold equal values in
the little- and big-endian memories most of the time, with only local differences.
Rather than relying completely on the expressiveness of the underlying numeric
domain, we first optimize our memory model for this common case, introducing
the concept of shared bi-cells, which act as a symbolic representation of cells
equality.

3.2 Shared Bi-Cells

We denote as Bicell � ˜Cell ∪ (˜Cell × ˜Cell) the set of bi-cells. A bi-cell is either a
projected cell in ˜Cell, or a pair of such cells in ˜Cell × ˜Cell assumed to hold equal
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value, called a shared bi-cell. Bi-cell sharing allows a single representation, in the
memory environment, for two projected cells from different program versions at
the same memory location and holding equal values. Abstract memory states of
double programs are modeled as a choice of a set of bi-cells C ⊆ Bicell, and a
set of scalar environments on C. Let D� �

⋃

C⊆Bicell{ 〈C,R〉 |R ∈ P(C → V ) }
be the associated abstract domain. An abstract state represents a set of concrete
byte-level memories in D = E × E . The values of the bytes of these memories
must satisfy all the numeric constraints on bi-cells implied by the environments:
γBicell〈C,R〉 � { (μ1, μ2) ∈ D | ∃ρ ∈ R : ∀ck = 〈V, o, τ, α, k〉 ∈ ˜Cell :

∀c ∈ occ(ck, C) : ∃(b0, . . . , bsizeof (τ)−1) ∈ bencτ,α(ρ(c)) :
∀0 ≤ i < sizeof (τ) : μk〈V, o + i〉 = bi }

where occ ∈ ˜Cell × P(Bicell) → P(Bicell) records occurrences of a projected cell
among bi-cells: occ(c, C) � { c′ ∈ C | c′ = c ∨ ∃c′′ : c′ = 〈c, c′′〉 ∨ c′ = 〈c′′, c〉 }.

Fig. 6. Shared bi-cells of Example 1.

In Fig. 6, we depict the bi-cells obtained
after analyzing the program shown in
Example 1. For variable x, since read_
from_network writes the same value to x0

1

and x0
2, we can synthesize the shared bi-cell

〈x0
1, x

0
2〉 to represent the equality x0

1 = x0
2.

In a similar way, we synthesize the shared
bi-cell 〈x1

1, x
1
2〉. Therefore, as opposed to

the separate representation of the memo-
ries of Programs 1 and 2 in Fig. 4, the joint representation induced by bi-cell
sharing allows reducing the burden on numeric domains. In the following, we
describe more involved cell synthesis operations that allow us to realize 〈y1, y2〉,
and thus to infer that y1 = y2.

3.3 Cell Synthesis

A cornerstone of our memory model is bi-cell synthesis. In order to read or write
a scalar value to a given location of memory, we must create a suitable bi-cell,
or retrieve an existing one from the environment. To guarantee the soundness
of the analysis when adding a new bi-cell, it is necessary to ensure that values
assigned to it are consistent with those of existing overlapping bi-cells. Our
memory domain first attempts to synthesize shared bi-cells if an equality can be
inferred from the environment, by pattern-matching. In case of failure, it safely
defaults to a pair of projected bi-cells, the values of which are set according to
those of existing overlapping bi-cells.

We have already used shared bi-cell synthesis implicitly on Fig. 6. When
reading variable y at the end of Example 1, the memory domain attempts to
synthesize 〈y1, y2〉, as a proof of y1 = y2. To this aim, it searches, among possible
patterns, for an existing cell, equal to both y1 and y2. x2 is a candidate, assuming
equality x2 = y2 is recorded in (an abstraction of) the environment. Then the
domain looks for 1-byte bi-cells for y1 and x2, and finds the four blue and red
cells from Fig. 6. As y1 and x2 have opposite endian encodings, it queries the
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Fig. 7. Shared bi-cell synthesize function.

environment for equalities y0
1 = 〈x1

1, x
1
2〉 and y1

1 = 〈x0
1, x

0
2〉. The success of the

synthesis relies on pattern-matching, and three equalities which may be inferred
by a numerical domain implementing simple symbolic propagation.

Shared Bi-Cell Synthesis. More generally, function φ� formalizes the pat-
terns matched attempting to synthesize a shared bi-cell for a given dereference
c ∈ Cell0 � V × N × scalar-type. An implementation is proposed in Fig. 7.
Firstly, it returns 〈c1, c2〉 if c1 = c2 may be inferred from the environment,
where ci = 〈c, αi, i〉 are projected versions of c, with the native endiannesses of
their respective platforms. Otherwise, it returns 〈c∗

1, c2〉, where c∗
1 is a big-endian

projected bi-cell of Program 1, if c∗
1 = c2 holds. For instance, 〈x∗

1, x2〉 will be
synthesized if variable x is read after the end of Example 1. Otherwise, it returns
〈c1, c∗

2〉, where c∗
2 is a little-endian projected bi-cell of Program 2, if c1 = c∗

2 holds.

Finally, if all fails, it returns an error �. φ� ∈ Cell0 → D� → ˜Cell2∪{�} relies on
predicate equal to compare two projected bi-cells of the same type, with specified
endianness encodings. An implementation is shown on Fig. 8. equal returns true
when compared cells are part of a shared bi-cell, or when equality is ensured by
the environment. Otherwise, it compares individual 1-byte bi-cells of the same
weights 28w, at endianness-dependent offsets: offset(w, s, α) � w if α = L, and
s − w − 1 otherwise. Otherwise, equal searches for candidate projected bi-cells
in the environment, equal to both c and c′. In the formula, we denote the set of
projected bi-cells in the environment as flatten(C) � { c ∈ ˜Cell | c ∈ C ∨∃c′ ∈ C :
〈c, c′〉 ∈ C ∨ 〈c′, c〉 ∈ C }. equal returns true in case of success, false otherwise.

Projected Bi-Cell Synthesis. If all attempts to synthesize a shared bi-cell
〈c1, c2〉, 〈c∗

1, c2〉, or 〈c1, c∗
2〉 fail, our memory domain creates the pair of pro-

jected bi-cells c1 and c2 instead. To set their values soundly, it calls φ1(c1)(C)
and φ2(c2)(C), where φi(ci)(C) returns a syntactic expression denoting (an
abstraction of) the value of ci as a function of cells existing in C. For instance,
φ1(〈y, 0,u16,B, 1〉)(C) = 28y0

1 + y1
1 at the end of Example 1 (see Fig. 6).

To define the synthesize functions φ1 and φ2 ∈ ˜Cell → P(Bicell) → expr
for projected bi-cells, we first need to define a generic cell synthesize function
φ ∈ Cell → P(Cell) → expr , such that φ(c)(C) returns a syntactic expression
denoting (an abstraction of) the value of the cell c as a function of cells in C. φ
is designed as an extension to multiple endianness encodings of the cell synthesize
function originally proposed in [27, sec. 5.2].
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Fig. 8. Equality test between projected bi-cells.

Fig. 9. Generic cell synthesize function.

An example implementation is proposed in Fig. 9. Firstly, if the cell already
exists (c ∈ C), it is directly returned by φ. Otherwise, φ looks for integer cells of
the same size and different signedness, and converts them using function wrap to
model wrap-around, and function range for the range of the type: wrap(v, [l, h]) �
min { v′ | v′ ≥ l ∧ ∃k ∈ Z : v = v′ + k(h − l + 1) }, and range(t) � [0, 28s − 1] if t
is unsigned, and [−28s−1, 28s−1 −1] if t is signed, where s = sizeof (t). Thirdly, φ
extracts unsigned bytes from integers. Fourthly, φ aggregates unsigned bytes into
integers. Function w ∈ A × N2 → N is used to model the endianness-dependent
weight of bytes in integers: w(L, b, s) � b and w(B, b, s) � s − b − 1. The value
of the byte of weight 28w in integer x is: byte(x,w) = �x/28w� mod 28. When
all fails, φ returns the full range of the type (or invalid, for a pointer). Many
definitions are possible for φ, e.g. adding cases to support floats, or to synthesize
integer cells from cells of opposite endianness.

To define φ1 and φ2, we project bi-cells of the appropriate side onto cells,
apply φ, and lift the resulting cell expression back to a bi-cell expression. More
precisely, to compute φ1〈c, 1〉(C), we first project the bi-cell set C to the cells
of program version 1: C1 � {x | 〈x, 1〉 ∈ C ∨ ∃y : 〈〈x, 1〉, 〈y, 2〉〉 ∈ C }. Then,
we retrieve the constraints on cell c by applying the generic cell synthesize func-
tion: e1 � φ(c)(C1). Finally, φ1〈c, 1〉(C) is obtained by substituting every cell
x occurring in e1 with an element of occ(〈x, 1〉, C). Note that e1 is a syntactic
expression over cells in C1, and occ(〈x, 1〉, C) �= ∅ for all x ∈ C1. The definition
of φ2〈c, 2〉(C) is analogue.
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Cell Addition. Cell addition, add-cell� ∈ Cell0 → D� → D�, then simply adds
the cell(s) and initializes their value(s).

add-cell�(c)〈C,R〉 �
if φ�(c)〈C,R〉 = 〈x1, x2〉 then

〈C ∪ { 〈x1, x2〉 } , { ρ[〈x1, x2〉 → v] | ρ ∈ R, v ∈ E�φ1(x1)(C) �α1ρ }〉
else

〈C ∪ {c1, c2}, { ρ[∀i : ci → vi] | ρ ∈ R, ∀i : vi ∈ E�φi(ci)(C) �αi
ρ }〉

where c1 = 〈c,L, 1〉 and c2 = 〈c,B, 2〉.

3.4 Abstract Join

The abstract join must merge environment sets defined on heterogeneous bi-
cell sets. We therefore define a unification function unify ∈ (D�)2 → (D�)2.
unify(〈C1, R1〉, 〈C2, R2〉) adds, with add-cell�, any missing cells to 〈C1, R1〉
and 〈C2, R2〉: respectively C2 \ C1 and C1 \ C2. Let 〈C ′

1, R
′
1〉 and 〈C ′

2, R
′
2〉

be the resulting abstract states. C ′
1 and C ′

2 may include both projected and
shared bi-cells. A shared bi-cell that does not occur in both C ′

1 and C ′
2 can-

not be soundly included in the unified state, as it conveys equality information
that holds for one abstract state only. All such cells are thus removed before
unification. Formally, unify(〈C1, R1〉, 〈C2, R2〉) = (〈C12, R

′′
1 〉, 〈C12, R

′′
2 〉), where

C12 = (C ′
1 ∪ C ′

2) \ (((C ′
1 ∪ C ′

2) \ ˜Cell) \ (C ′
1 ∩ C ′

2)), and R′′
k = { ρ|C12 | ρ ∈ R′

k }.
The abstract join may now be defined as: 〈C1, R1〉 � 〈C2, R2〉 � 〈C12, R

′′
1 ∪ R′′

2 〉.

3.5 Semantics of Simple Statements

Before defining the semantics for double statements in this domain, we first define
the semantics E�

k� ∗t e � ∈ D� → P(V ) and S�
k� ∗t e1 ← e2 � ∈ P(D�) → P(D�)

for simple memory reads and writes, in program version k ∈ { 1, 2 }.

Evaluations. To compute E�
k� ∗t e � 〈C,R〉, we first resolve ∗t e into a set L of

projected bi-cells on side k, by evaluating e into a set of pointer values, and
gathering projected bi-cells corresponding to valid pointers:

L � { 〈V, o, t, αk, k〉 | 〈V, o〉 ∈ E� e �αk
ρ, ρ ∈ R, 0 ≤ o ≤ sizeof (V ) − sizeof (t) }

Then, we call add-cell� to ensure that all the target cells in L are in the abstract
environment, which updates 〈C,R〉 to 〈C0, R0〉. Finally: E�

k� ∗t e � 〈C,R〉 =
{ ρ(c) | ρ ∈ R0, c ∈ L }.

Assignments. The semantics of assignments S�
k� ∗t e1 ← e2 � 〈C,R〉 involves

more steps. Like for evaluations, we start with resolving ∗t e1 into a set L of
projected bi-cells on side k. Then, we realize the cells in L using add-cell�: let
〈C0, R0〉 be the updated environment. Some of the projected bi-cells in L may

have been realized into shared bi-cells. Let S � (C0 \ C) ∩ ˜Cell2 be the set of



Static Analysis of Endian Portability by Abstract Interpretation 115

such shared bi-cells. Elements of S represent equalities between bi-cells projected
on side k, and on side opposite to k. Such equalities may no longer hold, after
assignment on side k. Therefore, we split shared bi-cells of S into their left and
right projections, in a copy-on-write strategy. The updated environment is:

〈C′
0, R

′
0〉 = 〈C0 ∪ ⋃

〈c,c′〉∈S { c, c′ } , { c �→
{

ρ(x) if ∃x ∈ occ(c, S) 	= ∅
ρ(c) otherwise

| ρ ∈ R0 }〉

Finally, we update the environment for the projected bi-cells written (elements
of L), with the possible values of e2. However, this is not sufficient: it is also nec-
essary to update the environment for any overlapping bi-cells, including shared
bi-cells that have been split into pairs of projected cells. A sound and efficient
(though possibly coarse) solution is to simply remove them. Indeed, removing
any bi-cell is always sound in our memory model: it amounts to losing infor-
mation, as we loose constraints on the byte-representation of the memory. Let
Ω ⊆ C′

0 \ L be the set of such bi-cells: elements of Ω are shared bi-cells and
projected bi-cells on side k, with offsets and sizes such that they overlap some
element of L. The updated environment is:
S�

k� ∗t e1 ← e2 � 〈C, R〉 = 〈C′
0 \ Ω,

{ ρ|C′
0\Ω [∀c ∈ L : c �→ v] | ρ ∈ R′

0, v ∈ E�
k� e2 � 〈C′

0, R
′
0〉 }〉

3.6 Semantics of Double Statements

We are now ready to define the semantics D�� dstat � ∈ D� → D� of double
statements in this domain. Like D, D� is defined by induction on the syntax. We
focus on base cases, as inductive cases are unchanged.

The semantics D�� s1 ‖ s2 � for two syntactically different statements com-
poses simple programs semantics: D�� s1 ‖ s2 � � S�

2� s2 � ◦S�
1� s1 � . The seman-

tics for assume sync, assert sync, and F �� e1 �� 0 ‖ e2 �� 0 � are mostly
unchanged, but for symbolic simplifications taking advantage of symbolic rep-
resentations of equalities in our domain, for improved efficiency and precision.
In particular, when e is a deterministic expression containing a single derefer-
ence, then D��assume sync(e) � adds a shared bi-cell for this dereference to
the abstract environment. Consistently, D��assert sync(e) � first tests whether
e is deterministic, and its dereferences evaluate to shared bi-cells. In this case,
D��assert sync(e) � raises no alarm. Otherwise, the semantics uses environ-
ment functions ρ to test equalities of bi-cell values, like for D. A similar sym-
bolic simplification is used for the F �� · � filter: F �� e �� 0 ‖ e ��� 0 �〈C,R〉 = ∅
(hence the test is stable) when e is deterministic and all dereferences evalu-
ate to shared bi-cells, which is the common case. For instance, when evaluating
D� if (x < y) then s else t �, if the dereferences for variable x and y evaluate to
shared bi-cells, the two unstable tests cases are ⊥.

Assignments. In an assignment D�� ∗t e1 ← e2 � 〈C,R〉, although both pro-
grams execute the same syntactic assignment, their semantics are different,
as are their endiannesses. In addition, available bi-cells may be different. By
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default, double assignments are straightforward extensions of simple assign-
ments: D�� ∗t e1 ← e2 � = S�

2� ∗t e1 ← e2 � ◦ S�
1� ∗t e1 ← e2 � . We introduce

two precision optimizations, taking advantage of implicit equalities represented
by shared bi-cells. We first transform ∗t e1 and the dereferences in e2 into sets
of bi-cells L and R, respectively. R may be empty, as e2 may be a constant
expression. Then, we realize the cells in L and R, using add-cell�. Let 〈C0, R0〉
be the updated environment. Two optimizations are possible, depending on e1,
e2, L, and R.

Optimization 1: Assignment of Shared Bi-Cells. If e1 and e2 are deterministic
expressions, and if they evaluate to bi-cells that are all shared (L ∪ R ⊆ ˜Cell2),
then Programs 1 and 2 write the same value to the same destination. We thus
update shared destination bi-cells (in L), and remove any overlapping bi-cells.
Formally:
D�� ∗t e1 ← e2 � 〈C, R〉 = 〈C0 \ Ω,

{ ρ|C0\Ω [∀c ∈ L : c �→ v] | ρ ∈ R0, v ∈ E�
1� e2 � 〈C0, R0〉 }〉,

where Ω ⊆ C0 \L is the set of (shared or projected) bi-cells overlapping elements
of L. The choice of evaluating E�

1� e2 � (rather than E�
2� e2 � ) is arbitrary, as they

are equal. Indeed, endianness α1 = L is not used by E�
1� e2 � , as all the necessary

cells are materialized before evaluating expression e2.

Optimization 2: Copy Assignment. If the conditions for optimization 1 are sat-
isfied, and if, in addition, e2 = ∗t e′

2, and both ∗t e1 and ∗t e′
2 evaluate to single

bi-cells (|L| = |R| = 1), then we are dealing with a copy assignment. We may
thus soundly copy a memory information from the source {l} = L to the desti-
nation {r} = R, so as to further improve precision. We therefore create a copy
of r, and any smaller bi-cell for the same bytes, to a corresponding bi-cell for
the bytes of l. Newly created destination bi-cells have the sides and endiannesses
of their sources. The environment is updated accordingly, to reflect equalities
between sources and destinations.

4 Value Abstraction

Connecting to Numerical Domains. We now rely on numeric abstractions
to abstract further D� into a computable abstract semantics D�, resulting in an
effective static analysis. Like [27, Sec. 5.2], our memory domain translates mem-
ory reads and writes into purely numerical operations on synthetic bi-cells, that
are oblivious to the double semantics of double programs: each bi-cell is viewed
as an independent numeric variable, and each numeric operation is carried out
on a single bi-cell store, as if emanated from a single program. In particular,
we notice that the transfer function for simple assignments S�

k� ∗t e1 ← e2 �
described in Sect. 3.5 has the form of that of an assignment in a purely numeric
language, where bi-cells play the roles of the numeric variables. This property is
a key motivation for the Cell domain and the extension presented in this paper.
Bi-cells may thus be fed, as variables, to a numerical abstract domain for envi-
ronment abstraction. Any standard numerical domain, such as polyhedra [11],
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may be used. Yet, as we aim at scaling to large programs, we restrict ourselves to
combinations of efficient non-relational domains, intervals and congruences [17],
together with a dedicated symbolic predicate domain.

We thus assume an abstract domain D�
C given, with concretization γC , for

each bi-cell set C ⊆ Bicell. It abstracts P(C → Z) � P(Z|C|), i.e., sets of
points in a |C|−dimensional vector space. A cell of integer type naturally cor-
responds to a dimension in an abstract element. We also associate a distinct
dimension to each cell with pointer type; it corresponds to the offset o of a sym-
bolic pointer 〈V, o〉 ∈ Ptr. In order to abstract fully pointer values, we enrich
the abstract numeric environment with a map P associating to each pointer
cell the set of variables it may point to. Hence, the abstract domain becomes:
D� � { 〈C,R�, P 〉 |C ⊆ Cell, R� ∈ D�

C , P ∈ PC → P(V ∪ {NULL, invalid }) },
where PC ⊆ C is the subset of bi-cells of pointer type. We refer to [27, Sec. 5.2]
for a formal presentation of the concretization and the abstract operators.

Introducing a Dedicated Symbolic Predicate Domain. Recall Example 1
from Sect. 1. Various implementations are possible for the byte-swaps enforc-
ing endian portability of software. Though Example 1 shows an implementation
relying on type-punning, implementations relying on bitwise arithmetics are also
commonplace. In addition, system-level software, such as [31], often rely on com-
binations of type-punning and bitwise arithmetics. Example 2 is a simplified
instance of such programming idioms: as y has type unsigned char, y|0xff00
and (y<<8)|0xff represent the same 16-bit word in different endiannesses.

Example 2. Byte-wise equal memories in different endiannesses.

1 u16 x; u8 y = rand_u8(), *p = &x;

2 assume_sync(y);

3 # if __BYTE_ORDER == __LITTLE_ENDIAN

4 x = y | 0xff00;

5 # else

6 x = (y << 8) | 0xff;

7 # endif

8 assert_sync(p[0]); assert_sync(p[1]);

For a successful analysis of Example 2, the numerical domain must interpret
bitwise arithmetic expressions precisely, and infer relations such as: the low-
order (respectively high-order) byte of the little-endian (respectively big-endian)
version of integer x is equal to y. Then, the interpretation of dereferences of
p by the memory domain introduces similar relations between cells, thanks to
the bi-cell synthesize function. In this example, it infers that the little-endian
version of the low-address (respectively high-address) byte cell in x is equal to the
low-order (respectively high-order) byte of x – and the converse for big-endian.

Predicate Abstract Domain. We use a domain based on pattern matching of
expressions to detect arithmetic manipulations of byte values commonly imple-
mented as bitwise arithmetics. It is not sufficient to match each expression
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independently, as computations are generally spread across sequences of state-
ments. We need, in addition, to maintain some state that retains and propagates
information between statements. We maintain this state in a predicate domain
Pred� � C → Bits, which maps each bi-cell c ∈ C ⊆ Bicell to a syntactic
expression e in a language Bits, as a symbolic representation of predicate c = e.

Bits ::= � | Slice

Slice ::= n | c | −−−→
c[i, j)

k
| (Slice | Slice) (n ∈ Z, c ∈ C, i, j, k ∈ N)

� denotes the absence of information. Otherwise, a syntactic predicate expres-
sion may be either a bit-slice, or a bitwise OR of bit-slices. A bit-slice may be

an integer constant n, a bi-cell c, or a slice expression
−−−→
c[i, j)

k
denoting the value

obtained by shifting the bits of c between i and j − 1 to position k:
−−−→
c[i, j)

k
� �(c

mod 2j)/2i� × 2k. Each term of a bitwise OR of bit-slices represents a interval

of bits, e.g. [k, k + j − i) for a term
−−−→
c[i, j)

k
. We assume that bit-intervals do

not overlap: each bit from the result comes from a single cell or constant. The
ordering is flat, based on syntactic predicate equality:

X� �� Y � �⇐⇒ ∀c ∈ C : X�(c) = Y �(c) ∨ Y �(c) = �
An abstract element X� ∈ Pred� denotes the set of environments that satisfy all
the predicates in X�, where predicates are evaluated as expressions:

γPred(X�) � { ρ ∈ C → V | ∀c ∈ C : X�(c) = � ∨ ρ(c) ∈ E�X�(c) �ρ }
We do not present the abstract operators in this paper. Like that of the related
symbolic constant domain [25], they are based on symbolic propagation, and
implement simple algebraic simplifications. They exhibit similar, near-linear time
cost in our experiments.

Analysis of Example 2. Before line 8, three cells are synthesized by the memory
domain: C8 = {x1, x2, y12 }, where x1 = 〈x, 0,u16,L, 1〉 is the little-endian
projected bi-cell of variable x, x2 = 〈x, 0,u16,B, 2〉 is the big-endian one, and
y12 = 〈〈y, 0,u8,L, 1〉, 〈y, 0,u8,B, 2〉〉 is a shared bi-cell.

– y12 is created at line 2, and represents the fact that variable y has the same
value in the little- and big-endian versions.

– The transfer function for assignment of the symbolic predicate domain infers

invariants x1 = y12 | 65280 from line 4, and x2 = 255 | −−−−−→
y12[0, 8)

8
from line 6.

– Then, the dereferences of pointer p at line 8 are interpreted by the mem-
ory domain. Four more cells {xo

k | (k, o) ∈ { 1, 2 } × { 0, 1 } } are added to
the abstract environment, to denote the bytes of variable x in the little-
and big-endian programs. More precisely, xo

1 = 〈x, o,u8,L, 1〉, and xo
2 =

〈x, o,u8,B, 2〉, at offsets o ∈ { 0, 1 }. Following the bi-cell synthesize functions
φ1 and φ2, these new bi-cells are added together with assumptions on their val-
ues. In practice, these assumptions are four tests, used by the memory domain
to filter the abstract environment. These tests are xo

1 = byte(x1, o), and
xo
2 = byte(x1, 1−o), for offsets o ∈ { 0, 1 }, with byte(n, k) = �n/28k� mod 28.

These tests are then interpreted by the numerical domain, and the symbolic
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predicate domain in particular, as xo
1 = byte ′(x1, o), and xo

2 = byte ′(x2, 1−o),

with byte ′(n, k) =
−−−−−−−−−→
n[8k, 8k + 8)

0
.

– Finally, the assertion line 8 is interpreted as tests x0
1 = x0

2 and x1
1 = x1

2 by
the memory domain. The transfer function for tests in the symbolic predicate
domain replaces all bi-cells with the symbolic expressions bound to them, if

any. The tests are thus
−−−−−−−−−−−−→
(y12 | 65280) [0, 8)

0
=

−−−−−−−−−−−−−−−−−→(

255 | −−−−−→
y12[0, 8)

8
)

[8, 16)

0

and

−−−−−−−−−−−−−→
(y12 | 65280) [8, 16)

0
=

−−−−−−−−−−−−−−−−→(

255 | −−−−−→
y12[0, 8)

8
)

[0, 8)

0

. Both tests evaluate to true,

using symbolic simplifications (and integer arithmetic computations) sup-
ported by the transfer function.

Hence, the assertions line 8 are proved correct: at the end of the program, the
memories for variable x are byte-wise equal in the little and big-endian versions.

5 Evaluation

We implemented our analysis into the Mopsa platform [20,29] designed to sup-
port modular developments of precise static analyses for multiple languages
and multiple properties. Our prototype is composed of 3,000 lines of OCaml:
45% for the memory abstraction, 36% for the symbolic predicate domain, and
19% for double program management and iterators. It leverages 31,000 lines
(excluding parsers) of elementary functions of Mopsa: framework and utili-
ties (64%), generic iterators and numeric domains for analyses of all languages
(11%), specific iterators and memory domains for the C language (25%). We
have experimented our prototype on small idiomatic examples, open source
software, and large industrial software. The analyses were run on a 3.4 GHz
Intel R© Xeon R© CPU.

5.1 Idiomatic Examples

We first check the precision and robustness of our analysis against a collection
of small double C programs (between 20 and 100 LOC), inspired by various
implementations of byte-swaps in Linux drivers, POSIX htonl functions, and
industrial software.

A set of 9 programs illustrate network data processing. These programs are
similar to Example 1 of Sect. 1. They receive an integer from the network, incre-
ment it, and send over the result. Necessary byte-swaps are implemented for
little-endian versions of these programs. Each example program implements a
different byte-swapping technique on a 2, 4, or 8-byte integer: type-punning with
pointer casts (like in Example 1), unions, or bitwise arithmetics. Refer to Exam-
ples 4, 5, and 6 in artifact [16] for the source codes. We also analyze Example 2
from Sect. 4 to demonstrate the efficiency of our symbolic predicate domain.
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Our prototype also handles floating-point data, which was omitted in the
paper for the sake of conciseness. We developed small floating-point examples
representative of industrial use-cases of Sect. 5.3. They include byte-swappings
of simple or double precision floating-point numbers sent to or received from
the network, on architectures where integers and floats are guaranteed to have
the same byte-order. Type-punning is used to reinterpret floats as integers of the
same size, which are byte-swapped using bitwise arithmetics. Also, a combination
of type-punning and byte-swapping is used to extract exponents from double
precision floats. The source codes of these Examples 8 and 9 is available in
artifact [16]. All analyses run in less than 200 ms and report no false alarm.

5.2 Open Source Benchmarks

We then check the soundness, precision, and modularity of our analysis on three
benchmarks based on open source software available on GitHub, with multiple
commits for bug-fixes related to endianness portability. Refer to Examples 10, 11,
and 12 in artifact [16] for relevant source codes excerpts. We analyze slices
between 100 and 250 LOC, using primitives assume sync and assert sync
for modular specifications of program parts.

Our first benchmark is an implementation of a tunneling driver [31] based
on the Geneve [18] encapsulation network protocol, which uses big-endian inte-
gers as tunnel identifiers. The driver was introduced in the Linux kernel, and
patched several times for endianness-related issues detected by Sparse [6]. Then,
a performance optimization introduced a new endianness portability bug, which
Sparse failed to detect. It was fixed a year later. Our analysis soundly reports
this bug, as well as previous issues detected by Sparse. It reports no alarm
on the fixed code. Our second benchmark is a core library of the mlx5 Linux
driver [23] for ethernet and RDMA net devices [22]. We analyze a slice related
to a patch, committed to fix an endianness bug introduced 3 years earlier, and
undetected by Sparse despite the use of relevant annotations. The fix turned out
to be incomplete, and was updated 6 months later. Our analysis soundly reports
bugs on the two first versions, and no alarm on the third. Our third benchmark
is extracted from a version of Squashfs [35], a compressed read-only filesystem
for Linux, included in the LineageOS [34] alternative Android distribution. We
analyze a slice related to a patch, committed to fix an endianness bug undetected
by Sparse due to a lack of type annotations. Our analysis soundly reports the
bug, and no alarm on the fixed version. All the analyses run within 1 s.

5.3 Industrial Case Study

We analyzed two components of a prototype avionics application, developed at
Airbus for a civil aircraft. This application is written in C, and primarily targets
an embedded big-endian processor. Nonetheless, it must be portable to little-
endian commodity hardware, as its source code is reused as part of a simulator
used for functional verification of SCADE [3] models. The supplement to the
applicable aeronautical standard [32] related to model-based development [1]
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mandates, in this case, that “an analysis should provide compelling evidence
that the simulation approach provides equivalent defect detection and removal as
testing of the Executable Object Code”. Airbus, known to rely on formal methods
for other verification objectives [4,12,13,28,33], is currently considering the use
of static analysis to verify this portability property.

Endianness is the main difference between the ABIs of the embedded com-
puter and the simulator. We thus experimented our prototype analyzer on the
modules of the application integrated to the simulator, to which we refer as A and
S. Modules A and S are data-intensive reactive software, processing thousands
of global variables, with very flat call graphs. Module A is in charge of acquiring
and emitting data through aircraft buses. It is composed of about 1 million LOC,
most of which generated automatically from a description of the avionics net-
work. It handles integers, Booleans, single and double precision floats. The code
features bounded loops, memcpys, pointer arithmetics, and type-punning with
unions and pointer casts. It also uses bitwise arithmetics, among which several
thousand byte-swaps related to endianness portability. Module S is in charge of
the main applicative functions. It is composed of about 300,000 LOC, most of
which generated automatically from SCADE models. It handles mostly Booleans
and double precision floats. It features bounded loops and bitwise arithmetics,
but no type-punning. The target application is required to meet its specifica-
tions for long missions. Analysis entry points contain loops with several million
iterations to emulate this execution context.

Both analyses run in 5 abstract iterations. The analysis of A runs in 20.4 h
and uses 5.5 GB RAM. The analysis of S runs in 9.7 h and uses 2.7 GB RAM. We
worked with the development and simulation teams to analyze early prototypes,
and incorporate findings into the development cycle. On current versions of both
modules, both analyses report zero alarm related to endianness.

6 Conclusion

We presented a sound static analysis of endian portability for low-level C pro-
grams. Our method is based on abstract interpretation, and parametric in the
choice of a numerical abstract domain. We first presented a novel concrete col-
lecting semantics, relating the behaviors of two versions of a program, running
on platforms with different endiannesses. Then we proposed a joint memory
abstraction, able to infer equivalence relations between little- and big-endian
memories. We introduced a novel symbolic predicate domain to infer relations
between individual bytes of the variables in the two programs, which has near-
linear cost. We implemented a prototype static analyzer, able to scale to large
real-world industrial software, with zero false alarms.

In future work, we aim at extending our analysis to further ABI-related
properties, such as portability between different layouts of C types, or sizes of
machine integers. We also anticipate that our bi-cell sharing approach will benefit
the analysis of patches [14,15] modifying C data-types, even if the two versions
run under the same ABI. Finally, we are considering an industrial deployment



122 D. Delmas et al.

of our endian portability analysis, as a means to address avionics certification
objectives related to simulation fidelity, as mentioned in Sect. 5.3.
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21. Kápl, R., Paŕızek, P.: Endicheck: dynamic analysis for detecting endianness bugs.
In: TACAS 2020. LNCS, vol. 12079, pp. 254–270. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45237-7 15

22. Mahameed, S.: Mellanox, mlx5 RDMA net device support (2017). https://lwn.net/
Articles/720074/

23. Mellanox Technologies: mlx5 core library (2020). https://github.com/torvalds/
linux/tree/master/drivers/net/ethernet/mellanox/mlx5/core
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26. Miné, A.: Abstract domains for bit-level machine integer and floating-point opera-
tions. In: Proceedings of the 4th International Workshop on Invariant Generation
(WING 2012), p. 16. No. HW-MACS-TR-0097, Computer Science, School of Math-
ematical and Computer Science, Heriot-Watt University, UK, June 2012
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Abstract. Abstract interpreters are complex pieces of software: even if
the abstract interpretation theory and companion algorithms are well
understood, their implementations are subject to bugs, that might ques-
tion the soundness of their computations.

While some formally verified abstract interpreters have been written
in the past, writing and understanding them requires expertise in the
use of proof assistants, and requires a non-trivial amount of interactive
proofs. This paper presents a formally verified abstract interpreter fully
programmed and proved correct in the F* verified programming envi-
ronment. Thanks to F* refinement types and SMT prover capabilities
we demonstrate a substantial saving in proof effort compared to previ-
ous works based on interactive proof assistants. Almost all the code of
our implementation, proofs included, written in a functional style, are
presented directly in the paper.

1 Introduction

Abstract interpretation is a theory of sound approximation. However, most of
available abstract interpreters do not formally establish a relation between their
algorithmic theory and implementations. Several abstract interpreters have been
proven correct. The most notable one is Verasco [11], a static analyser of C pro-
grams that has been entirely written, specified and proved in the proof assistant
Coq. However, understanding the implementation and proof of Verasco requires
an expertise with Coq and proof assistants.

Proofs in Coq are achieved thanks to extensive use of proof scripts, that are
very difficult for non expert to read. By contrast with a handwritten proof, a
Coq proof can be very verbose, and often does not convey a good intuition for
the idea behind a proof. Thus, writing and proving sound a static analyzer is
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a complex and time-consuming task: for example, Verasco requires about 17k
lines [11] of manual Coq proofs. Such an effort, however, yields the strongest
guarantees and provides complete trust in the static analyser.

This paper showcases the implementation of a sound static analyser using
the general-purpose functional programming language F�. Equipped with depen-
dent types and built-in SMT solver facilities, F� provides both an OCaml-like
experience and proof assistant capacities. It recently shined with the Project
Everest [1], which delivered a series of formally verified, high-performance, cryp-
tographic libraries: HACL* [16], ValeCrypt [4] and EverCrypt [15]; that are for
instance used and deployed in Mozilla Firefox. While F� can always resort to
proof scripts similar to Coq’s ones, most proof obligations in F� are automati-
cally discharged by the SMT solver Z3 [9].

We present an abstract interpreter equipped with the numerical abstract
domain of intervals, forward and backward analyses of expressions, widening,
and syntax-directed loop iteration. This paper makes the following contributions.

– It demonstrates the ease of use of F� for verified static analysis: we implement
a verified abstract interpreter, and show about 95% of its 527 lines of code
(proof included) directly in the paper.

– As far as we know, it is the first time SMT techniques are used for verifying
an abstract interpreter.

– We gain an order of magnitude in the number of proof lines in comparison
with similar works implemented in Coq.

Related Work. Efforts in verified abstract interpretation are numerous [3,5,8,14],
and go up to Verasco [11], a modular, real-world abstract interpreter verified in
Coq. Blazy et al. [3] and Verasco follow closely the modular design of Astrée [6];
we exhibit a similar modularity on a smaller scale. However, such analysers
require a non-trivial amount of mechanized proofs: in constrast, this paper shows
that implementing a formally verified abstract interpreter with very little man-
ual proofs is possible. So far, verified abstract interpreters have been focused
on concretization-based formalizations. The work of Darais et al. [7] is the only
one to really consider the use of Galois connections. They provide a minimalist
abstract inteperter for imperative language but this interpreter seems very lim-
ited compared to ours. They use the Agda proof assistant which is comparable
to Coq in terms of proof verbosity.

Overview. Section 2 defines IMP, the language our abstract interpreter deals
with, to which is given an operational semantics in Sect. 3. Then Sect. 4 for-
malizes lattices and abstract domains, while Sect. 5 instantiates them with the
abstract domain of intervals. Section 6 derives more specific abstract domains,
for numeric expressions and for memories. The latter is instantiated by Sect. 7,
that implements an abstract weakly-relational memory. Finally, Sect. 8 presents
the abstract interpretation of IMP statements.
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The F� development is available on GitHub1 or as supplementary mate-
rial [2]. The resulting analyser is available online as a web application at https://
w95psp.github.io/verified-abstract-interpreter.

2 IMP: A Small Imperative Language

To present our abstract intrepreter, we first show the language on which it oper-
ates: IMP. It is a simple imperative language, equipped with memories repre-
sented as functions from variable names varname to signed integers, intm . This
presentation lets the reader unfamiliar with F� get used to its syntax: IMP’s F�

definition looks like OCaml; the main difference is the explicit type signatures
for constructors in algebraic data types. IMP has numeric expressions, encoded
by the type expr, and statements stmt. Booleans are represented numerically: 0
represents false, and any other value stands for true. The enumeration binop
equips IMP with various binary operations. The constructor Unknown encodes an
arbitrary number. Statements in IMP are the assignment, the non-deterministic
choice, the sequence and the loop.

type varname = | VA | VB | VC | VD type mem τ = varname τ
type binop = | Plus | Minus | Mult | Eq | Lt | And | Or
type expr = | Const: intm expr | Var: varname expr

| BinOp: binop expr expr expr | Unknown
type stmt = | Assign: varname expr stmt | Assume: expr stmt

| Seq: stmt stmt stmt | Loop: stmt stmt
| Choice: stmt stmt stmt

The type intm is a refinement of the built-in F� type Z: while every integer lives
in the type Z, only those that respect certain bounds live in intm . Numerical
operations (+, - and ×) on machine integers wrap on overflow, i.e. adding one
to the maximal machine integer results in the minimum machine integer. We do
not give the detail of their implementation.

3 Operational Semantics

This section defines an operational semantics for IMP. It is also a good way of
introducing more F� features.

We choose to formulate our semantics in terms of sets. Sets are encoded as
maps from values to propositions prop. Those are logical statements and shouln’t
be confused with booleans. Below, ⊆ quantifies over every inhabitant of a type:
stating whether such a statement is true or false is clearly not computable.
Arbitrarily complex properties can be expressed as propositions of type prop.

In the listing below, notice the greek letters: we use them throughout the
paper. They denote implicit type arguments: for instance, below, ∈ works for
any set set τ , with any type τ . F� provides the propositional operators ∧, ∨
1 https://github.com/W95Psp/verified-abstract-interpreter.

https://w95psp.github.io/verified-abstract-interpreter
https://w95psp.github.io/verified-abstract-interpreter
https://github.com/W95Psp/verified-abstract-interpreter
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and ==, in addition to boolean ones (&&, || and =). We use them below to define
the union, intersection and differences of sets.

type set τ = τ prop let (∈) (x: τ) (s: set τ) = s x
let (∩) s0 s1 = λx x∈s0 ∧ x∈s1 let (\) s0 s1 = λv s0 v ∧ ~(s1 v)
let (∪) (s0 s1: set τ): set τ = λx x ∈ s0 ∨ x ∈ s1

let (⊆) (s0 s1: set τ): prop = ∀ (x: τ). x ∈ s0 =⇒ x ∈ s1

let set_inverse (s: set intm): set intm = λ(i: intm) s (-i)

To be able to work conveniently with binary operations on integers in our seman-
tics, we define lift_binop, that lifts them as set operations. For example, the
set lift_binop (+) a b (a and b being two sets of integers) corresponds to
{va + vb | va ∈ a ∧ vb ∈ b}.

let lift_binop (op: τ τ τ) (a b: set τ): set τ
= λr ∃ (va:τ). ∃ (vb:τ). va ∈ a ∧ vb ∈ b ∧ r == op va vb

unfold let lift op = lift_binop (concrete_binop op)

The binary operations we consider are enumerated by binop. The function
concrete_binop associates these syntactic operations to integer operations. For
convenience, lift maps a binop to a set operation, using lift_binop. This
function is inlined by F� directly when used because of the keyword unfold;
intuitively lift behaves as a macro.

unfold let concrete_binop (op: binop): intm intm intm

= match op with | Plus nadd | Lt ltm | ... | Or orim

The operational semantics for expressions is given as a map from memories
and expressions to sets of integers. Notice the use of both the syntax val
and let for the function osemexpr. The val syntax gives osemexpr the type
mem expr set intm , while the let declaration gives its definition. The seman-
tics itself is uncomplicated: Unknown returns the set of every intm , a constant or a
Var returns a singleton set. For binary operations, we lift them as set operations,
and make use of recursion.

val osemexpr: mem expr set intm

let rec osemexpr m e = λ(i: intm)
match e with | Const x i==x | Var v i==m v | Unknown �

| BinOp op x y lift op (osemexpr m x) (osemexpr m y) i

The operational semantics for statements maps a statement and an initial mem-
ory to a set of admissible final memories. Given a statement s, an initial memory
mi and a final one mf , osemstmt s mi mf (defined below) is a proposition stating
whether the transition is possible.

val osemstmt (s: stmt): mem set mem
let rec osemstmt (s: stmt) (mi mf: mem)

= match s with
| Assign v e ∀w. if v = w then mf v ∈ osemexpr mi e
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else mf w == mi w
| Seq a b ∃ (m1: mem). m1 ∈ osemstmt a mi ∧ mf ∈ osemstmt b m1

| Choice a b mf ∈ (osemstmt a mi ∪ osemstmt b mi)
| Assume e mi == mf ∧ (∃ (x: intm). x �= 0 ∧ x ∈ osemexpr mi e)
| Loop a closure (osemstmt a) mi mf

The simplest operation is the assignment of a variable v to an expression e:
the transition is allowed if every variable but v in mi and mf is equal and the
final value of v matches with the semantics of e. Assuming that an expression is
true amounts to require the initial memory to be such that at least a non-zero
integer (that is, the encoding of true) belongs to osemexpr mi e. The statement
Seq a b starting from the initial memory mi admits mf as a final memory when
there exists (i) a transition from mi to an intermediate memory m1 with statement
a and (ii) a transition from m1 to mf with statement b. The operational semantics
for a loop is defined as the reflexive transitive closure of the semantics of its body.
The closure function computes such a closure, and is provided by F�’s standard
library.

4 Abstract Domains

Our abstract interpreter is parametrized over relational domains. We instantiate
it later with a weakly-relational [6] memory. This section defines lattices and
abstract domains. Such structures are a natural fit for typeclasses [13], which
allow for ad hoc polymorphism. In our case, it means that we can have one
abstraction for lattices for instance, and then instantiate this abstraction with
implementations for, say, sets of integers, then intervals, etc. Typeclasses can be
seen as record types with dedicated dependency inference. Below, we define the
typeclass lattice: defining an instance for a given type equips this type with a
lattice srtucture.

Refinement Types. Below, the syntax x:τ{p x} denotes the type whose inhabi-
tants both belong to τ and satisfy the predicate p. For example, the inhabitant of
the type bot:N{∀(n:N). bot≤n} is 0: it is the (only) smallest natural number.
To typecheck x:τ , F� collects the proof obligations implied by “x has the type
τ”, and tries to discharge them with the help of the SMT solver. If the SMT
solver is able to deal with the proof obligations, then x:τ typechecks. In the case
of “0 is of type bot:N{∀(n:N). bot≤n}”, the proof obligation is ∀(n:N). 0≤n.

Below, most of the types of the fields from the record type lattice are
refined. Typechecking i against the type lattice τ yields a proof obligation
asking (among other things) for i.join to go up in the lattice and for bottom to
be a lower bound. Thus, if “i has type lattice τ” typechecks, it means there
exists a proof that the properties written as refinements in lattice’s definition
hold on i. We found convenient to let bottom represent unreachable states.
Note lattice is under-specified, i.e. it doesn’t require join to be provably a
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least upper bound, since such a property plays no role in our proof of soundness.
This choice follows Blazy and et al. [3].

class lattice τ = { corder: order τ
; join: x:τ y:τ r:τ {corder x r ∧ corder y r}
; meet: x:τ y:τ r:τ {corder r x ∧ corder r y}
; bottom: bot:τ {∀x. corder bot x}; top: top:τ {∀x. corder x top}}

For our purpose, we need to define what an abstract domain is. In our setting, we
consider concrete domains with powerset structure. The typeclass adom encodes
them: it is parametrized by a type τ of abstract values. For instance, consider
itv the type for intervals: adom itv would be the type inhabited by correct
abstract domains for intervals.

Implementing an abstract domain amounts to implementing the following
fields: (i) c, that represents the type to which abstract values τ concretizes;
(ii) adomlat, a lattice for τ ; (iii) widen, a widening operator; (iv) γ, a monotonic
concretization function from τ to set c; (v) order_measure, a measure ensuring
the abstract domain doesn’t admit infinite increasing chains, so that termination
is provable for fixpoint iterations; (vi) meetlaw, that requires meet to be a correct
approximation of set intersection; (vii) toplaw and botlaw, that ensure the lattice’s
bottom concretization matches with the empty set, and similarly for top.

class adom τ = { c: Type; adomlat: lattice τ
; γ: (γ: (τ set c) {∀ (x y: τ). corder x y =⇒ (γ x ⊆ γ y)})
; widen: x:τ y:τ r:τ {corder x r ∧ corder y r}
; order_measure: measure adomlat.corder
; meetlaw: x:τ y:τ Lemma ((γ x ∩ γ y) ⊆ γ (meet x y))
; botlaw: unit Lemma (∀ (x:c). ~(x ∈ γ bottom))
; toplaw: unit Lemma (∀ (x:c). x ∈ γ top)}

Notice the refinement types: we require for instance the monotony of γ. Every
single instance for adom will be checked against these specifications. No instance
of adom where γ is not monotonic can exist. With a proposition p, the Lemma p
syntax signals a function whose outcome is computationally irrelevant, since
it simply produces (), the inhabitant of the type unit. However, it does not
produces an arbitrary unit: it produces an inhabitant of _:unit {p}, that is,
the type unit refined with the goal p of the lemma itself.

For praticity, we define some infix operators for adomlat functions. The syntax
{|...|} lets one formulate typeclass constraints: for example, (�) below ask F�

to resolve an instance of the typeclass adom for the type τ , and name it l. Below,
(�) instantiates the lemma meetlaw explicitly: meetlaw x y is a unit value that
carries a proof in the type system.

let (�) {|l:adom τ|} = l.adomlat.corder
let (�) {|l:adom τ|} (x y:τ): r:τ { corder x r ∧ corder y r

∧ (γ x ∪ γ y) ⊆ γ r } = join x y
let (�) {|l:adom τ|} (x y:τ): r:τ { corder r x ∧ corder r y
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∧ (γ x ∩ γ y) ⊆ γ r }
= let _ = meetlawx y in meet x y

Lemmas are functions that produce refined unit values carrying proofs. Below,
given an abstract domain i, and two abstract values x and y, join_lemma i x y
is a proof concerning i, x and y. Such an instantiation can be manual (i.e.
below, i.toplaw () in top_lemma), or automatic. The automatic instantiation
of a lemma is decided by the SMT solver. Below, we make use of the SMTPat
syntax, that allows us to give the SMT solver a list of patterns. Whenever the
SMT solver matches a pattern from the list, it instantiates the lemma in stake.
The lemma join_lemma below states that the union of the concretization of two
abstract values x and y is below the concretization of the abstract join of x and
y. This is true because of γ’s monotony: we help a bit the SMT solver by giving
a hint with assert. This lemma is instantiated each time a proof goal contains
x � y.

Because of a technical limitation, we cannot write SMT patterns directly in
the meetlaw, botlaw and toplaw fields of the class adom: thus, below we reformulate
them.

let top_lemma (i: adom τ) (let bot_lemma, meet_lemma = ...)
: Lemma (∀ (x: i.c). x ∈ i.γ i.adomlat.top)

[SMTPat (i.γ i.adomlat.top)] = i.toplaw ()
let join_lemma (i: adom τ) (x y: τ)

: Lemma ((i.γ x ∪ i.γ y) ⊆ i.γ (i.adomlat.join x y))
[SMTPat (i.adomlat.join x y)]

= let r = i.adomlat.join x y in assert (γ x ⊆ γ r ∧ γ y ⊆ γ r)

5 An Example of Abstract Domain: Intervals

Until now, the F� code we presented was mostly specificational. This section
presents the abstract domain of intervals, and thus shows how proof obligations
are dealt with in F�. Below, the type itv' is a dependent tuple: the refinement
type on its right-hand side component up depends on low. If a pair �x,y� is of
type itv', we have a proof that x ≤ y.

type itv' = low:intm & up:intm {low≤up} type itv = withbot itv'

The machine integers being finite, itv' naturally has a top element. However,
itv' cannot represent the empty set of integers, whence itv, that adds an
explicit bottom element using withbot. The syntax Val? returns true when a
value is not Bot. For convenience, mk makes an interval out of two numbers,
and itvcard computes the cardinality of an interval. We use it later to define a
measure for intervals. inbounds x holds when x:Z fits machine integer bounds.
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type withbot (a: Type) = | Val: v:a withbot a | Bot
let mk (x y: Z): itv = if inbounds x && inbounds y && x ≤ y

then Val �x,y� else Bot
let itvcard (i:itv):N = match i with | Bot 0 | Val i dsnd i - dfst i + 1

Below, latitv is an instance of the typeclass lattice for intervals: intervals
are ordered by inclusion, the meet and join operations consist in unwrapping
withbot, then playing with bounds. latitv is of type lattice itv: it means for
instance that we have the proof that the join and meet operators respect the
order latitv.corder, as stated in the definition of lattice. Note that here, not
a single line of proof is required: F� transparently builds up proof obligations,
and asks the SMT to discharge them, that does so automatically.

instance latitv: lattice itv =
{ corder = withbotord #itv' (λ�a,b� �c,d� a≥c && b≤d)
; join = (λ(i j: itv) match i, j with

| Bot, k | k, Bot k
| Val �a,b�, Val �c,d� Val �min a c, max b d�)

; meet = (λ(x y: itv) match x, y with
| Val �a,b�, Val �c,d� mk (max a c) (min b d)
| _ Bot); bottom = Bot; top = mk minintm maxintm }

Such automation is possible even with more complicated definitions: for instance,
below we define the classical widening with thresholds. Without a single line of
proof, widen is shown as respecting the order corder.

let thresholds: list intm = [minintm;-64;-32;-16;-8;-4;4;8;16;32...]
let widen_bound_r (b: intm): (r:intm {r>b ∨ b=maxintm}) =

if b=maxintm then b else find' (λ(u:intm) u>b) thresholds
let widen_bound_l (b: intm): (r:intm {r<b ∨ b=minintm}) =

if b=minintm then b else find' (λ(u:intm) u<b) (rev thresholds)
let widen (i j: itv): r:itv {corder i r ∧ corder j r}

= match i, j with | Bot, x | x, Bot x
| Val�a,b�,Val�c,d� Val � (if a≤c then a else widen_bound_l c)

, (if b≥d then b else widen_bound_r d)�

Similarly, turning itv into an abstract domain requires no proof effort. Below
itvadom explains that intervals concretize to machine integers (c = intm), how
it does so (with γ = itvγ ), and which lattice is associated with the abstract
domain (adomlat = latitv). As explained previously, the proof of a proposition
p in F* can be encoded as an inhabitant of a refinement of unit, whence the
“empty” lambdas: we let the SMT solver figure out the proof on its own.

let itvγ: itv set intm = withbotγ (λ(i:itv') x dfst i≤x ∧ x≤dsnd i)

instance itvadom: adom itv = { c = intm ; adomlat = latitv; γ = itvγ

; meetlaw = (λ_ _ ()); botlaw = (λ_ ()); toplaw = (λ_ ())

; widen = widen ; order_measure={f=itvcard;max=sizeintm}}
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5.1 Forward Binary Operations on Intervals

Most of the binary operations on intervals can be written and shown correct with-
out any proof. Our operators handle machine integer overflowing: for instance,
add_overflows returns a boolean indicating whether the addition of two inte-
gers overflows, solely by performing machine integer operations. The refinement
of add_overflows states that the returned boolean r should be true if and
only if the addition in Z differs from the one in intm . The correctness of itvadd
is specified as a refinement: the set of the additions between the concretized
values from the input intervals is to be included in the concretization of the
abstract addition. Its implementation is very simple, and its correctness proved
automatically.

let add_overflows (a b: intm)
: (r: bool {r ⇐⇒ int_arith.nadd a b �= int_m_arith.nadd a b})
= ((b<0) = (a<0)) && abs a > maxintm - abs b

let itvadd (x y: itv): (r: itv {(γ x + γ y) ⊆ γ r})
= match x, y with | Val �a, b�, Val �c, d�

if add_overflows a c || add_overflows b d
then top else Val �a + c, b + d� | _ Bot

However the SMT solver sometimes misses some necessary lemmas. In such cases,
we can either guide the SMT solver by discriminating cases and inserting hints,
or go fully manual with a tactic system à la Coq. Below, the assert uses tactics:
everything within the parenthesis following the by keyword is a computation that
manipulates proof goals. Our aim is to prove that subtracting two numerical sets
a and b is equivalent to adding a with the inverse of b.

Unfortunately, due to the nature of lift_binop, this yields existential quan-
tifications which are difficult for the SMT solver to deal with. After normal-
izing our goal (with compute ()), and dealing with quantifiers and impli-
cations (forall_intro, implies_intro and elim_exists), we are left with
∃y. b (-y) ∧ r=x+y knowing b z ∧ r=x-z given some z as an hypothesis.
Eliminating ∃y with -z is enough to complete the proof.

We sadly had to prove that (not too complicated) fact by hand. This however
shows the power of F�. Its type system is very expressive: one can state arbitrarily
mathematically hard propositions (for which automation is hopeless). In such
cases, one can always resort to Coq-like manual proving to handle hard proofs.

let set_inverse (s: set intm): set intm = λ(i: intm) s (-i)
let lemmainv (a b: set intm)

: Lemma ((a-b) ⊆ (a+set_inverse b)) [SMTPat (a+set_inverse b)]
= assert ((a-b) ⊆ (a+set_inverse b)) by ( compute ();

let _= forall_intro () in let p0 = implies_intro () in
let witX,p1 = elim_exists (binder_to_term p0) in
let witY,p1 = elim_exists (binder_to_term p1) in
let z: Z = unquote (binder_to_term witY) in
witness witX; witness (quote (-z)))
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Notice the SMT pattern: the lemma lemmainv will be instantiated each time
the SMT deals with an addition involving an inverse. Defining the subtraction
itvsub is a breeze: it simply performs an interval addition and an interval inver-
sion. Here, no need for a single line of proof for its correctness (expressed as a
refinement).

let itvinv (i: itv): (r: itv {set_inverse (γ i) ⊆ γ r})
= match i with | Val�lower, upper� Val�-upper, -lower� | _ i

let itvsub (x y:itv): (r: itv {(γ x - γ y) ⊆ γ r}) = itvadd x (itvinv y)

Proving multiplication sound on intervals requires a lemma which is not inferred
automatically:

∀x ∈ [a, b], y ∈ [b, c]. [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)]

In that case, decomposing that latter lemma into sublemmas lemmamin and
lemmamul is enough. Apart from this lemma, itvmul is free of any proof term.

let lemmamin (a b c d: Z) (x: Z{a≤x ∧ x≤b}) (y: Z{c≤y ∧ y≤d})
: Lemma (x×y≥a×c ∨ x×y≥a×d ∨ x×y≥b×c ∨ x×y≥b×d) = ()

unfold let inbtw (x: Z) (l u: Z) = l≤u ∧ x≥l ∧ x≤u
let lemmamul (a b c d x y: Z)

: Lemma (requires inbtw x a b ∧ inbtw y c d)
(ensures x×y ≥ (a×c) `min` (a×d) `min` (b×c) `min` (b×d)

∧ x×y ≤ (a×c) `max` (a×d) `max` (b×c) `max` (b×d))
[SMTPat (x×y); SMTPat (a×c); SMTPat (b × d)]

= lemmamin a b c d x y; lemmamin (-b) (-a) c d (-x) y

let mul_overflows (a b:intm):(r:bool{r�=inbounds (int_arith.nmula b)})
= a �= 0 && abs b > maxintm `divm` (abs a)

let itvmul (x y: itv): r:itv {(γ x × γ y) ⊆ γ r}
= match x, y with

| Val �a, b�, Val �c, d�
let l = (a×c) `min` (a×d) `min` (b×c) `min` (b×d) in
let r = (a×c) `max` (a×d) `max` (b×c) `max` (b×d) in
if mul_overflows a c || mul_overflows a d
|| mul_overflows b c || mul_overflows b d
then top else Val �l, r�

| _ Bot

The forward boolean operators for intervals require no proof at all; here we only
give their type signatures. A function of interest is itv_as_bool: it returns TT
when an interval does not contain 0, FF when it is the singleton 0, Unk otherwise.

let β (x: intm): itv = mk x x
let itveq (x y:itv): r:itv {(γ x `neq ` γ y) ⊆ γ r} =... let itvlt =...
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let itvcγ (i: itv) (x:intm): r:bool {r ⇐⇒ itvγ i x} =...
let itv_as_bool (x:itv): ubool // with type ubool = |Unk|TT|FF

= if β 0=x || Bot?x then FF else if itvcγ x 0 then Unk else TT
let itvandi (x y: itv): (r: itv {(γ x `nand̀ γ y) ⊆ γ r})

= match itv_as_bool x, itv_as_bool y with
| TT, TT β 1 | FF, _ | _, FF β 0 | _, _ mk 0 1

let itvori (x y: itv): (r: itv {(γ x `nor ` γ y) ⊆ γ r}) =...

5.2 Backward Operators

While a forward analysis for expressions is essential, another powerful analysis
can be made thanks to backward operators. Typically, it aims at extracting
information from a test, and at refining the abstract values involved in this test,
so that we gain in precision on those abstract values. Given a concrete binary
operator ⊕, we define ←−⊕ its abstract backward counterpart. Let three intervals
x#, y#, and r#. ←−⊕ x# y# r# tries to find the most precise intervals x## and
y## supposing γ x# ⊕ γ y# ⊆ γ r#. The soundness of ←−⊕ x# y# r# can be
formulated as below. We later generalize this notion of soundness with the type
sound←−op, which is indexed by an abstract domain and a binary operation.

let x##, y## = (
←−⊕) x# y# r# in

∀ x y. (x ∈ γ x# ∧ y ∈ γ y# ∧ op x y ∈ γ r#)
=⇒ (x ∈ γ x## ∧ y ∈ γ y##)

As the reader will discover in the rest of this section, this statement of soundness
is proved entirely automatically against each and every backward operator for
the interval domain. For op a concrete operator, sound←−op itv op is inhabited
by sound backward operators for op in the domain of intervals. If one shows that←−⊕ is of type sound←−op itv (+), it means exactly that ←−⊕ is a sound backward
binary interval operator for (+). The rest of the listing shows how light in proof
and OCaml-looking the backward operations are. Below, we explain how

←−
lt

works: it is a bit complicated because it hides a “←−ge” operator.

let
←−−
add: sound←−op itv nadd = λx y r x � (r-y), y � (r-x)

let
←−−
sub: sound←−op itv nsub = λx y r x � (r+y), y � (x-r)

let
←−−
mul: sound←−op itv nmul = λx y r

let h (i j:itv) = (if j=β 1 then i�r else i) in h x y, h y x
let ←−eq: sound←−op itv neq

= λx y r match itv_as_bool r with | TT x�y,x�y | _ x,y
let (\) (x y: itv): (r: itv {(γ x \ γ y) ⊆ γ r}) =...

let
←−−
and: sound←−op itv nand

= λx y r match itv_as_bool r,itv_as_bool x,itv_as_bool y with
| FF, TT, _ x, y � β 0 | FF, _, TT x � β 0, y
| TT, _, _ x \ β 0, y \ β 0 | _ x, y
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let ←−or: sound←−op itv nor
= λx y r match itv_as_bool r,itv_as_bool x,itv_as_bool y with

| TT,FF,Unk | TT,FF,FF x, y \ β 0 | TT,Unk,FF x \ β 0, y
| FF, _, TT | FF, TT, _ x � β 0, y � β 0 | _ x, y

Let us look at
←−
lt. Knowing whether x < y holds,

←−
lt helps us refining x and y

to more precise intervals. Let x be the interval [0; maxintm ], y be [5; 15] and r be
[0; 0]. Since the singleton [0; 0] represents false,

←−
lt x y r aims at refining x and

y knowing that x < y doesn’t hold, that is, knowing x ≥ y. In this case,
←−
lt finds

x' = [5; maxintm ] and y' = [5; 15]. Indeed, when r is [0; 0], itv_as_bool r equals
to FF. Then we rewrite ¬(x < y) either as y < x+ 1 (when x is incrementable)
or as y−1 < x. In our case, x’s upper bound is maxintm (the biggest intm): x is not
incrementable. Thus we rewrite ¬([0; maxintm ] < [5; 15]) as [6; 16] < [0; maxintm ].

Despite of these different case handling, the implementation of
←−
lt required

no proof: the SMT solver takes care of everything automatically.

let
←−
lttrue (x y: itv)

= match x, y with | Bot, _ | _, Bot x,y
| Val�a,b�, Val�c,d� mk a (min b (d-1)), mk (max (a+1) c) d

let decrementable i=Val?i&&dfst(Val?.v i)>minintm let incr.=...

let
←−
lt: sound←−op itv nlt

= λx y r match itv_as_bool r with | TT
←−
lttrue x y

| FF if incrementable x // x < y ⇐⇒ y > x+1

then let ry, rx =
←−
lttrue y (itvadd x (β 1)) in

itvsub rx (β 1), ry
else if decrementable y // x < y ⇐⇒ y-1 > x

then let ry, rx =
←−
lttrue (itvsub y (β 1)) x in

rx, itvadd ry (β 1)
else x,y | _ x, y

6 Specialized Abstract Domains

Abstract domains are defined in Sect. 4 as lattices equipped with a sound
concretization operation. Our abstract interpreter analyses IMP programs: its
expressions are numerical, and IMP is equipped with a memory. Thus, this
section defines two specialized abstract domains: one for numerical abstractions,
and another one for memory abstractions.

6.1 Numerical Abstract Domains

In the Sect. 5.2, we explain what a sound backward operator is in the case of the
abstract domain of intervals. There, we mention a more generic type sound←−op

that states soundness for such operators in the context of any abstract domain.
We present its definition below:



136 L. Franceschino et al.

type sound←−op (a:Type) {|l:adom a|} (op:l.c l.c l.c)
= ←−op: (a a a (a & a)) {

∀ (x# y# r#: a). let x##, y## = ←−op x# y# r# in
(∀ (x y: l.c). (x ∈ γ x# ∧ y ∈ γ y# ∧ op x y ∈ γ r#)

=⇒ (x ∈ γ x## ∧ y ∈ γ y##))}

We define the specialized typeclass numadom for abstract domains that concretize
to machine integers. A type that implements an instance of numadom should also
have an instance of adom, with intm as concrete type. Whence the fields naadom,
and adomnum. Moreover, we require a computable concretization function cgamma,
that is, a function that maps abstract values to computable sets of machine inte-
gers: intm bool. The β operator lifts a concrete value in the abstract world.
We also require the abstract domain to provide both sound forward and back-
ward operator for every syntactic operator of type binop presented in Sect. 2.
The function abstract_binop maps an operator op of type binop to a sound
forward abstract operator. Its soundness is encoded as a refinement. Similarly,←−−−−−−−−−−−−
abstract binop maps a binop to a corresponding sound backward operator. To
ease backward analysis, gt0 and lt0 are abstractions for non-null positive and
negative integers.

class numadom (a: Type) =
{ naadom: adom a; adomnum: squash (naadom.c == intm)
; cgamma: x#:a x:intm b:bool {b ⇐⇒ x ∈ γ x#}
; abstract_binop: op:_ i:a j:a r:a {lift op (γ i) (γ j) ⊆ γ r}

;
←−−−−−−−−−−−−
abstract binop: (op: binop) sound←−op a (concrete_binop op)

; gt0: x#:a {∀(x:intm). x>0 =⇒ x ∈ γ x#}
; lt0: x#:a {∀(x:intm). x<0 =⇒ x ∈ γ x#}; β: x:intm r:a{x ∈ γ r} }

For a proposition p, the F� standard library defines squash p as the type
_:unit{p}, that is, a refinement of the unit type. This can be seen as a lemma
with no parameter.

Instance for Intervals. The Sect. 5 defines everything required by numadom,
thus below we give an instance of the typeclass numadom for intervals.

instance itv_num_adom: numadom itv = {
naadom = solve; adomnum = (); cgamma = itvcγ ; β = (λ x β x);
abstract_binop = (function | Plus itvadd ... | Or itvori);←−−−−−−−−−−−−
abstract binop = (function | Plus

←−−
add ... | Or ←−or );

lt0 = (mk minintm (-1)); gt0 = (mk ( 1) maxintm) }

6.2 Memory Abstract Domains

From the perspective of IMP statements, an abstract domain for abstract mem-
ories is fairly simple. An abstract memory should be equipped with two opera-
tions: assignment and assumption. Those are directly related to their syntactic
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counterpart Assume and Assign. Thus, memadom has a field assume_ and a field
assign. The correctness of these operations are elegantly encoded as refinement
types.

Let us explain the refinement of assume_: let m#0 an abstract memory, and
e an expression. For every concrete memory m0 abstracted by m#0 , the set of
acceptable final memories osemstmt (Assume e) m0 should be abstracted by
assume_ m#0 e.

class memadom μ = { maadom: adom μ; mamem: squash (maadom.c == mem);
assume_: m#0:μ e:expr m#1:μ

{∀ (m0: mem{m0 ∈ γ m#0}). osemstmt (Assume e) m0 ⊆ γ m#1};

assign: m#0:μ v:varname e:expr m#1:μ

{∀ (m0: mem{m0 ∈ γ m#0}). osemstmt (Assign v e) m0 ⊆ γ m#1}}

7 A Weakly-Relational Abstract Memory

In this section, we define a weakly-relational abstract memory. This abstraction
is said weakly-relational because the entrance of an empty abstract value in the
map systematically launches a reduction of the whole map to Bot. Below we
define an abstract memory (amem) as either an unreachable state (Bot), or a
mapping (map τ) from varname to abstract values τ . The mappings map τ are
equipped with the utility functions mapi, map1 , map2 and fold.

type map τ =... type amem τ = withbot (map τ)
let get': map τ varname τ =... let fold: (τ τ τ) map τ τ =...
let mapi: (varname τ β) map τ map β =...
let map1: (τ β) map τ map β = λf mapi (λ_ f)
let map2: (τ β γ) map τ map β map γ =...

A Lattice Structure. The listing below presents amem instances for the type-
classes order, lattice and memadom. Once again, the various constraints imposed
by these different typeclasses are discharged automatically by the SMT solver.

let amem_update (k: varname) (v: τ) (m: amem τ): amem τ
= match m with | Bot Bot

| Val m Val (mapi (λk' v' if k'=k then v else v') m)
instance amemlat {| l: adom τ |}: lattice (amem τ) =

{ corder = withbotord (λm0 m1 fold (&&) (map2 corder m0 m1))
; join = (λx y match x, y with

| Val x, Val y Val (map2 join x y) | m,Bot | _,m m)
; meet = (λx y match x, y with

| Val x, Val y
let m = map2 (�) x y in
if fold ( || ) (mapi (λ_ v l.adomlat.corder v bottom) m)
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then Bot else Val m
| _ Bot); bottom = Bot; top = ...}

instance amemadom {|l:adom τ|}: adom (amem τ) = { c = mem' l.c
; adomlat=solve; meetlaw=(λ_ _ ()); toplaw=(λ_ ()); botlaw=(λ_ ())
; γ = withbotγ (λm# m fold (∧) (mapi (λv x m v ∈ γ x) m#))
; widen = (λx y match x, y with

| Val x, Val y Val (map2 widen x y) | m,Bot | _,m m)
; order_measure = let {max; f} = l.order_measure in

{ f = (function | Bot 0 | Val m# 1 + fold (+) (map1 f m#))
; max = 1 + max × 4 }}

The rest of this section defines a memadom instance for our memories amem. The
typeclass memadom is an essential piece in our abstract interpreter: it provides the
abstract operations for handling assumes and assignments.

Forward Expression Analysis. We define asemexpr, mapping expressions to
abstract values of type τ . It is defined for any abstract domain, whence the
typeclass argument {|numadom τ|}. The abstract interpretation of an expres-
sion e given m#0 an initial memory is defined below as asemexpr m#0 e . It
is specified via a refinement type to be a sound abstraction of e’s opera-
tional semantics osemexpr m0 e. This function leverages the operators from
the different typeclasses for which we defined instances just above. β:intm τ
and abstract_binop:binop ... come from numadom, while top:τ comes from
lattice.

val get: m:amem τ {Val? m} varname τ let get (Val m) = get' m
let rec asemexpr {|numadom τ|} (m#0: amem τ) (e: expr)

: (r: τ { ∀ (m0: mem). m0 ∈ γ m#0 =⇒ osemexpr m0 e ⊆ γ r })

= if m#0 � bottom then bottom else

match e with | Const x β x | Unknown top | Var v get m#0 v

| BinOp op x y abstract_binop op (asemexpr m#0 x) (asemexpr m#0 y)

Backward Analysis. Our aim is to have an instance for our memory of memadom:
it expects an assume_ operator. Thus, below a backward analysis is defined for
expressions. Given an expression e, an abstract value r# and a memory m#0 ,←−−asem e r# m# computes a new abstract memory. That abstract memory refines
the abstract values held in m#0 as much as possible under the hypothesis that
e lives in r#. The soundness of this analysis is encoded as a refinement on the
output memory. Given any concrete memory m0 and integer v approximated by
r#, if the operational semantics of e at memory m0 contains v, then m0 should
also be approximated by the output memory.

When e is a constant which is not contained in the concretization of the
target abstract value r#, the hypothesis “e lives in r#” is false, thus we translate
that fact by outputting the unreachable memory bottom. In opposition, when e
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is Unknown, the hypothesis brings no new knowledge, thus we return the initial
memory m#0 . In the case of a variable lookup (i.e. e = Var v for some v), we
consider x#, the abstract value living at v. Since our goal is to craft the most
precise memory such that Var v is approximated by r#, we alter m#0 by assigning
x# � r# at the variable v. Finally, in the case of binary operations, we make use
of the backward operators and of recursion. Note that it is the only place where
we need to insert a hint for the SMT solver: we assert an equality by asking F�

to normalize the terms. We state explicitly that the operational semantics of a
binary operation reduces to two existentials: we manually unfold the definition
of osemexpr and lift_binop. The decreases clause explains to F� why and how
the recursion terminates.

let rec ←−−asem {|l:numadom τ|} (e: expr) (r#: τ) (m#0: amem τ)

: Tot (m#1: amem τ { (* decreases: *) m#1 � m#0 ∧ (* soundness: *)

(∀(m0:mem) (v:intm). (v∈γ r# ∧ m0 ∈γ m#0 ∧ v ∈ osemexpr m0 e)

=⇒ m0 ∈ γ m#1)}) (decreases e)

= if m#0 � bottom then bottom else match e with

| Const x if cgamma r# x then m#0 else bottom | Unknown m#0
| Var v let x#: τ = r# � get m#0 v in

if x#�bottom then Bot else amem_update v x# m#0
| BinOp op ex ey let ←−op =

←−−−−−−−−−−−−
abstract binop op in

let x#, y# = ←−op (asemexpr m#0 ex) (asemexpr m#0 ey) r# in

let r#: amem τ = ←−−asem ex x# m#0 � ←−−asem ey y# m#0 in
assert_norm (∀ (m: mem) (v: intm). v ∈ osemexpr m e

⇐⇒ (∃ (x y:intm). x ∈ osemexpr m ex ∧ y ∈ osemexpr m ey
∧ v == concrete_binop op x y));

r#

Iterating the Backward Analysis. While a concrete test is idempotent, it is
not the case for abstract ones. Our goal is to refine an abstract memory under a
hypothesis as much as possible. Since ←−−asem is proven sound and decreasing, we
can repeat the analysis as much as we want. We introduce prefixpoint that
computes a pre-fixpoint. However, even if the function from which we want to
get a prefixpoint is decreasing, this is not a guarantee for termination. The type
measure below associates an order to a measure that ensures termination. Such
a measure cannot be implemented for a lattice that has infinite decreasing or
increasing chains. We also require a maximum for this measure, so that we can
reverse the measure easily in the context of postfixpoints iteration.

type measure #a (ord: a a bool)
= { f: f: (a N) {∀ x y. x `ord` y =⇒ x /== y =⇒ f x < f y}

; max: (max: N {∀ x. f x < max}) }

Let us focus on prefixpoint: given an order � with its measure m, it iterates
a decreasing function f, starting from a value x. The argument r is a binary
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relation which is required to hold for every couple (x, f x). r is also required
to be transitive, so that morally r x (fn x) holds. prefixpoint is specified to
return a prefixpoint y, that is, with r x y holding.

let rec prefixpoint ((�): order τ) (m: measure (�))
(r: τ τ prop {trans r}) (f: τ τ {∀e. f e � e ∧ r e (f e)}) (x:τ)
: Tot (y: τ{r x y ∧ f y == y ∧ y � x}) (decreases (m.f x))
= let x' = f x in if x � x' then x else prefixpoint (�) m r f x'

Below is defined ←−−asem_fp the iterated version of ←−−asem. Besides using
prefixpoint, the only thing required here is to spell out t, the relation we
want to ensure.

let ←−−asem_fp {|numadom τ|} (e:expr) (r:τ) (m#0 :amem τ)
: Tot (m

#
1 : amem τ {(∀ (m0:mem) (v:intm). m

#
1 �m

#
0 ∧

(v∈γ r ∧ m0 ∈γ m
#
0 ∧ v∈osemexpr m0 e) =⇒ m0 ∈γ m

#
1 )})

= let t (m
#
0 m

#
1 : amem τ) = ∀ (m: mem) (v: intm).

(v ∈ γ r ∧ m ∈ γ m
#
0 ∧ v ∈ osemexpr m e) =⇒ m ∈ γ m

#
1 in

prefixpoint corder order_measure t (←−−asem e r) m
#
0

A memadom instance We defined both a forward and backward analysis for expres-
sions. Implementing an memadom instance for amem is thus easy, as shown below.
For any numerical abstract domain τ , amemory_mem_adom provides an memadom,
that is, an abstract domain for memories, providing nontrivial proofs of correct-
ness. Still, this is proven automatically.

instance amemory_mem_adom {| nd: numadom τ |}: memadom (amem τ) =
let adom: adom (amem τ) = amemadom in { maadom = adom; mamem = ()
; assume_ = (λm# e ←−−asem_fp e gt0 m# � ←−−asem_fp e lt0 m#)
; assign = (λm# v e let v#: τ = asemexpr m# e in

if v# � bottom then Bot else amem_update v v# m#)}

8 Statement Abstract Interpretation

Wrapping up the implementation of our abstract interpreter, this section
presents the abstract interpretation of IMP statements. For every memory type μ
that instantiates the typeclass of abstract memories memadom, the abstract seman-
tics asemstmt maps statements and initial abstract memories to final memories.
memadom is defined and proven correct below.

Given a statement s, and an initial abstract memory m#0 , memadom s m#0 is a
final abstract memory so that for any initial concrete memory m approximated by
m#0 and for any acceptable final concrete memory m' considering the operational
semantics, m' is approximated by memadom s m#0 . Here, we give two hints to
the SMT solver: by normalization (assert_norm), we unfold the operational
semantics in the case of choices or sequences. The analysis of an assignment or
an assume is very easy since we already have operators defined for these cases. In
the case of the sequence of two statements, we simply recurse. Similarly, when the
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statement is a choice, we recurse on its two possibilities. Then the two resulting
abstract memories are merged back together. The last case to be handled is the
loop, that is some statement of the shape Loop body. We compute a fixpoint
m#1 for body, by widening: it therefore approximates correctly the operational
semantics of Loop body, since it is defined as a transitive closure. F�’s standard
library provides the lemma stable_on_closure; of which we give a simplified
signature below. The concretization γ m#1 is a set, that is a predicate: we use
this lemma with γ m#1 as predicate p and with the operational semantics as
relation r.

val simplified_stable_on_closure: r:(τ τ prop) p:(τ prop)
Lemma (requires ∀ x y. p x ∧ r x y =⇒ p y)

(ensures ∀ x y. p x ∧ closure r x y =⇒ p y)

let rec asemstmt {| md: memadom μ |} (s: stmt) (m#0: μ)

: (m#1:μ {∀(m m':mem). (m∈γ m#0 ∧ m'∈osemstmt s m) =⇒ m'∈γ m#1})
= assert_norm(∀s0 s1 (m0 mf:mem). osemstmt (Seq s0 s1) m0 mf

== (∃(m1:mem). m1 ∈ osemstmt s0 m0 ∧ mf ∈ osemstmt s1 m1));
assert_norm(∀a b (m0 mf:mem). osemstmt (Choice a b) m0 mf
== (mf ∈ (osemstmt a m0 ∪ osemstmt b m0)));

if m#0 � bottom then bottom

else match s with | Assign v e assign m#0 v e

| Assume e assume_ m#0 e | Seq s t asemstmt t (asemstmt s m#0)

| Choice a b asemstmt a m#0 � asemstmt b m#0
| Loop body let m#1: μ = postfixpoint corder order_measure

(λ(m#:μ) widen m# (asemstmt body m# <: μ))
in stable_on_closure (osemstmt body) (γ m#1) (); m#1

Below we show the definition of postfixpoint, which is similar to prefixpoint.
However, it is simpler because it only ensures its outcome is a postfixpoint.

let rec postfixpoint ((�): order τ) (m: measure (�))
(f: τ τ {∀ x. x � f x}) (x: τ)
: Tot (y: τ{f y == y ∧ (�) x y}) (decreases (m.max - m.f x))
= let x' = f x in if x' � x then x else postfixpoint (�) m f x'

9 Conclusion and Further Works

We presented almost the entire code of our abstract interpreter for IMP. Our
approach to abstract interpretation is concretization-based, and follows the
methodology of [3,11]. While using F�, we did not encountered any issue regard-
ing expressiveness, and additionally gained a lot in proof automatization, to
finally implement a fairly modular abstract interpreter. The table below com-
pares the line-of-proof vs. line-of-code ratio of our implementation compared to
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some of the available verified abstract interpreters. Ours is up to 17 times more
proof efficient. It is very compact, and requires a negligible amount of manual
proofs. This comparison has its limits, since the different formalizations do not
target the same programming languages: [11] and [3] handles the full C language,
while [5] and the curent paper deal with more simple imperative languages. Also,
proof effort usually does not scale linearly.

Code Proof Ratio Feature set

This paper 487 39 0.08 Simple imperative language

Pichardie et al. [5] 3 725 5 020 1.35 Simple imperative language

Verasco [11] 16 847 17 040 1.01 CompCert C langage

Blazy et al. [3] 4 000 3 500 0.87 CompCert C langage

The sources of our abstract interpreter sources are available along with a
set of example programs; building it natively or as a web application is easy,
reproducible2 and automated.

This work is very far from the scope of Verasco which required about four
years of human time [10,12], but our results, which required 3 months of work
with F� expertise, are very encouraging.

Further Work. We aim at following the path of Verasco by adding real-world
features to our abstract interpreter and consider a more realistic target language
such as one of the CompCert C-like input languages. One of the weakenesses of
Verasco is its efficiency. Using Low�, a C DSL for F�, it is possible to write (with
a nontrivial additionnal effort related to Low�) a very efficient C and formally
verified abstract interpreter. This development also opens the path for enriching
F� automation via verified abstract interpretation.
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Abstract. We revisit disjunctive interval analysis based on the Boxes
abstract domain. We propose the use of what we call range decision
diagrams (RDDs) to implement Boxes, and we provide algorithms for
the necessary RDD operations. RDDs tend to be more compact than
the linear decision diagrams (LDDs) that have traditionally been used
for Boxes. Representing information more directly, RDDs also allow for
the implementation of more accurate abstract operations. This comes
at no cost in terms of analysis efficiency, whether LDDs utilise dynamic
variable ordering or not. RDD and LDD implementations are available
in the Crab analyzer, and our experiments confirm that RDDs are well
suited for disjunctive interval analysis.

Keywords: Abstract interpretation · Boxes · Decision diagrams ·
Integer abstract domains

1 Introduction

The perennial challenge in the design of program analyses is to find an appropri-
ate balance between precision and efficiency. A natural way to improve precision
of analysis is to design an abstract domain that supports path-sensitive analysis,
that is, allows for a degree of disjunctive information to be expressed. However,
abstract domains are rarely closed under disjunction, as the cost of disjunctive
closure usually leads to prohibitively expensive analysis.

In this paper we are concerned with the analysis of integer manipulating pro-
cedural programs. The abstract domain studied here is the Boxes domain [11],
applied to Z, the set of integers.1 Assume we are given n integer variables
v1, . . . , vn. A bounds constraint takes one of the forms vi ≤ k or vi ≥ k, where k
is an integer constant. An integer box is any set B ⊆ Z

n that can be expressed
as a (possibly empty) conjunction of bounds constraints. The Boxes domain
consists of any set S ⊆ Z

n which can be written as a finite union
⋃j

i=1 Bi, such
that B1, . . . , Bj are integer boxes. Some examples are given in Fig. 1: (a) shows

1 With a little additional effort, the approach extends to rationals and floating point
numbers.

c© Springer Nature Switzerland AG 2021
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Fig. 1. Examples of Boxes elements.

an integer box, namely x ∈ [1, 4) ∧ y ∈ [2,∞); (b) shows the Boxes element
x ∈ [1, 3) ∨ y ∈ [2, 4); and (c) shows the element

(x ∈ [−20,−9) ∧ y ∈ [−10,−4)) ∨ (x ∈ [5, 11) ∧ y ∈ [10, 21))

Elements of Boxes are generally non-convex sets. The domain is closed under
both (finite) intersection and union, as well as under complement. This clearly
sets Boxes apart from more commonly studied relational abstract domains, such
as zones [20], octagons [21], and convex polyhedra [7]. Note that, while it is a
non-relational abstract domain, Boxes can still express conditional constraints,
such as x ≥ 2 ⇒ (y ≥ 0 ∧ y ≤ 4).

To implement Boxes, Gurfinkel and Chaki [11] proposed the use of linear deci-
sion diagrams (LDDs) [3]. The inspiration for LDDs came from the better known
binary decision diagrams (BDDs) [2]. But in an LDD, a decision node (a non-
terminal node) no longer corresponds to a Boolean variable; instead it holds a
primitive constraint in some theory. As with BDDs, non-terminal nodes in LDDs
always have fan-out 2. LDDs can express any Boolean combination of primitive
constraints, and in the Boxes case, “primitive constraint” means “bounds con-
straint” (only), such as x ≤ 42. LDDs can utilise sharing of sub-structures, which
reduces memory requirements and allows for a canonical representation.

However, LDDs (with primitive constraints taken from some theory T ) come
with a disadvantage: inability to precisely analyse expressions that fall outside
the theory. This happens since many operations rely on a T -solver. With LDD-
boxes, much precision is lost in the context of non-linear2 expressions, as Exam-
ple 1 will show. Moreover, with LDDs, many abstract operations are expensive,
because of the need to preserve a node order that depends not only on vari-
able ordering, but also on logical consequence. Gurfinkel and Chaki [11] define
abstract operations in terms of constraint substitution, a relatively heavyweight
approach which, again, limits transformers to the supported arithmetic fragment.

2 Gurfinkel and Chaki [11] consider a restricted programming language with only linear
expressions and guards.
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Fig. 2. (a) A Boxes state with disjunctive information, and after applying z := x * y

(b) using interval approximation, and (c) using a precise transformer.

Our aim is to improve Boxes analysis through the use of a dedicated data struc-
ture that can support precise analysis, including analysis of programs involving
non-linear operations. As it turns out, our proposed representation of disjunctive
intervals also tends to speed up the analysis of linear programs, mainly because
it allows bounds-propagation to take the place of calls to a theory solver. We use
what we call “range decision diagrams” (RDDs), a variant of multi-valued decision
diagrams (MDDs) [24]. Non-terminal nodes in these structures can have varying
fan-out, each with each edge corresponding to a range of values for some variable.
RDDs also generalize BDDs, but in a different manner to LDDs.

In this paper, we use RDDs in the context of integer predicates. We note
that LDDs have a wider scope: they can support more complex theories. But for
the Boxes application, in which LDDs use monadic predicates only, RDDs have
exactly the same expressiveness as LDDs.

We define RDDs formally in the next section. Until then, we ask the reader
to rely on intuition and the diagrams shown in Fig. 2.

Example 1. To appreciate the limitations flowing from reliance on a theory
solver, consider the Boxes set from Fig. 1(c). Its RDD3 is shown in Fig. 2(a).
Given the statement z := x * y, the LDD approach must collapse the informa-
tion to its non-disjunctive interval form −20 ≤ x < 11∧−10 ≤ y < 21. Since the
theory solver used does not understand multiplication, the analysis engine must
collapse the representation, in order to calculate bounds on the multiplication.
The result is the Boxes element shown in RDD form in Fig. 2(b). A precise trans-
former, on the other hand, computes the possible values of z on each branch in
the diagram, resulting in the much more precise Fig. 2(c) with a better lower
bound for z. 
�

In summary, the benefit of using RDDs for Boxes analysis is improved expres-
siveness and efficiency. We introduce RDDs in Sect. 2, and Sect. 3 provides

3 It is straightforward to translate an RDD to an LDD over bounds constraints, and
vice versa.
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algorithms for the abstract operations. We report on an experimental evalua-
tion in Sect. 4. Related work is discussed in Sect. 5, and Sect. 6 concludes.

2 Range Decision Diagrams

By range we mean an integer interval of form [i, j) (that is, {k ∈ Z | i ≤ k < j}),
[i,∞), or (−∞, i). A set S of ranges is fitting iff every pair I1, I2 ∈ S is disjoint
(I1 ∩ I2 = ∅) and

⋃
S = Z. We assume a given finite set Var of variables. The

set of range decision diagrams, or RDDs, is defined recursively, as follows.

– F and T are RDDs.
– Let M = {(I1, r1), (I2, r2), . . . (In, rn)}, n > 1 be a set of pairs whose first

components are ranges and whose second components are RDDs. If the set
{I | (I, r) ∈ M} is fitting, and v ∈ Var , then 〈v,M〉 is an RDD.

We may sometimes relax the fitting requirement to allow
⋃

S ⊆ Z, in which case
each missing range is understood to be paired with F .

The meaning of an RDD r is a predicate [[r]], defined as follows:

[[F ]] = false
[[T ]] = true

[[〈v,M〉]] =
∨

{[[r]] ∧ v ∈ I | (I, r) ∈ M}

We can view the RDD as a directed acyclic graph in the obvious manner: T
and F are sinks. An RDD 〈v,M〉 has a node labelled v as its root, and for each
(I, r) ∈ M , an edge (with label I) from v to the root of r. We draw graphs so
that arrows point downwards. We will assume a (total) precedence order ≺ on
Var and construct RDDs where the path variables earlier in the ordering always
appear above variables later in the ordering (this condition may be temporarily
violated in algorithms).

In algorithms, it is sometimes useful to utilize a different view of a fit-
ting RDD. We may write a non-sink RDD r as 〈v, [r0, k1, r1, . . . , kn, rn]〉. Here
r0, . . . , rn are RDDs and k1, . . . , kn are the split points, with k1 < k2 < · · · < kn.
The intention is that ri is the co-factor of r with respect to v, over the inter-
val [ki, ki+1), implicitly taking k0 = −∞ and kn+1 = ∞.4 For a fixed variable
ordering this representation is canonical, provided we ensure ri �= ri+1 for all i.

The two views are for presentation only; each is faithful to the data structure
used in implementation. To translate between them, we use two functions ser
and des (for “serialize” and “deserialize”). des takes an RDD representation
〈v, [r0, k1, r1, . . . , kn, rn]〉 in split-point form and turns it into the deserialised
〈v, {((−∞, k1), r′

0), ([k1, k2), r
′
1), . . . , ([kn,∞), r′

n)}〉, where r′
i is the deserialised

form of ri (base cases F and T are left unchanged).
The function ser is its inverse, defined only for fitting RDDs; ser, in partic-

ular, adds edges from v to F for any “missing” intervals.
4 This view explains our tendency to use notation like [3, 4) for what is obviously a

(closed) singleton integer interval.
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Fig. 3. A sequence of better approximations of p(x, y) ≡ 0 ≤ x ∧ x < y.

In diagrams we omit the node F and its incident edges. The (serial form)
RDD 〈x, [F , 0, 〈y, [F , 1, T ]〉, 1, 〈y, [F , 2, T ]〉]〉 is shown in Fig. 3(b). Deserializing
the RDD representation yields

〈

x,

⎧
⎨

⎩

((−∞, 0),F),
((0, 1), 〈y, {((−∞, 1),F), ([1,∞), T )〉),
([1,∞), 〈y, {((−∞, 2),F), ([2,∞), T )〉)

⎫
⎬

⎭

〉

Applying a Boolean operator to RDDs is similar to how that is done for binary
or (classical) multi-valued decision diagrams: we apply the operator pointwise
on the co-factors of the nodes, and collect the result into a new node. However,
unlike usual BDD or MDD operations, the intervals for the children of each
node may not coincide. Thus we must first introduce additional separators that
refine the generated intervals, enabling pointwise application of operators (we
exemplify this in Sect. 3.2).

3 Implementing Boxes with RDDs

We now describe how to implement the Boxes domain with RDDs. Note again
that Boxes forms a Boolean lattice, but not a complete one: there are necessarily
predicates for which there can be no best RDD representation, instead admitting
infinite chains of better and better RDD approximations. Consider the predicate
p(x, y) ≡ 0 ≤ x∧x < y. Figure 3(a) shows an over-approximation, x ≥ 0∧y ≥ 1.
We can separate the case x = 0 from x ≥ 1 and obtain a marginally more precise
over-approximation which excludes the infeasible valuation {x �→ 1, y �→ 1}, see
Fig. 3(b). Indeed, we can split the domain of x arbitrarily often, in each step
obtaining a slightly more precise RDD. Similarly there are infinite ascending
chains of ever closer under-approximations.

Hence, for some arithmetic operations, we cannot hope to define optimal
abstract transformers. In the context of RDDs there is, however, a natural cri-
terion for precision, akin to the concept of interval consistency [1,4] from the
constraint programming literature. Consider a constraint c over set X of vari-
ables. A domain D maps each variable x ∈ X to a set of possible values for x.
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Here we assume that D(x) must be an interval and we say that D is interval
consistent for c, iff, for each variable x ∈ X with D(x) = [�, u], each of the
valuations {x �→ �} and {x �→ u} can be extended to a valuation (over all of
X) satisfying D ∧ c. In this context, the role of bounds-propagation is to narrow
variable domains as far as possible without breaking interval consistency.

For RDDs we need to refine the concept of consistency slightly. Note that
each path ρ through the RDD induces a domain Dρ.

Definition 1. All-paths interval consistency. RDD r is all-paths interval
consistent for constraint c iff, for each path ρ in r, the induced domain Dρ is
interval consistent.

Our abstract operations strive to maintain all-paths interval consistency. Loosely
this means we produce the strongest information that can possibly be inferred
without resorting to speculative introduction of new disjunctive splits. Only
our algorithm for inequality fails to maintain all-paths interval consistency—
Example 5 will show a case of this.

3.1 Lattice Operations

The standard lattice operations are fairly straightforward. �,
,� coincide with
the standard Boolean operators →,∧,∨, and can all be implemented pointwise:
for u �� v, we scan the children of u and v in order, applying �� recursively
to children with overlapping intervals, and rebuild the results into a new node.
As with the corresponding BDD/MDDs operations, these can be performed in
O(|u||v|) time. All lattice operations are optimally precise.

3.2 Variable Hoisting

An operation which will be useful for operators defined below is hoisting (or
interchanging) variables. This is necessary when we would like to construct a
function representing 〈x, [r0, k1, . . . , kn, rn]〉, but where the root of ri is earlier
than x in the precedence order (so just building the node would be malformed).

For this definition, we restrict ourselves to the case where, for all ri, every
variable except (possibly) the root y are before x, so we merely need to inter-
change the decisions for x and y. For RDDs, this is straightforward and detailed
in Fig. 4. We sort all the split points at the second level of the tree, removing
duplicates and create a set I of covering intervals for the variable y. We fill in the
matrix Cofac of cofactors, based on the intervals for y and x. We then construct
a new node for each x interval using Cofac. Finally we construct a new root
linked appropriately to these nodes.

Example 2. Figure 5 shows an almost-ordered RDD, where top levels x2 and x1

must be transposed. Figure 6 shows the matrix of cofactors Cofac[I, I ′] generated
by the algorithm. Figure 7 shows the RDD that results from hoisting. 
�
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function hoist-var(y, 〈x, M〉)
E = sort nodup(

⋃
{{l, u} | ( , 〈x, M ′〉) ∈ M, ([l, u), ) ∈ M ′})

I = [(E[i], E[i + 1]) | i ∈ 1 .. |E| − 1]
for (I, 〈x, M ′〉) ∈ M do

for I ′ ∈ I do
let (Is, r′) be the element in M ′ where Is ⊇ I ′

Cofac[I, I ′] ← r′

for I ′ ∈ I do
rI′ ← 〈y, {(I,Cofac[I, I ′]) | (I, r) ∈ M})〉

return 〈x, {(I ′, rI′) | I ′ ∈ I}〉

Fig. 4. Variable hoisting: How to construct a node rooted at y, representing the decision
structure 〈x, M〉.

x2

x1 x1

BA C D

(−∞, 1)

[1, 11)

[11, ∞)

(−∞, 9)
[9, ∞) (−∞, 4)

[4, 17)
[17, ∞]

Fig. 5. A mis-ordered RDD r.

3.3 Arithmetic Operators

Gurfinkel and Chaki [11] implemented the arithmetic operators for Boxes using
constraint substitution over LDDs. This has some drawbacks, relying as it does
on having a theory solver for a sufficiently expressive theory of arithmetic.
Instead, we construct arithmetic abstract transformers that operate directly on
the RDD representations. Each transformer is formulated as a recursive traver-
sal of the RDD, carrying with it the projection of the operation along the path
to the current node. This makes implementing operators more involved, but it
avoids the need for a (frequently expensive) theory solver and offers more flex-
ibility in terms of expressiveness and the level of precision we can support. As
with conventional BDD operations, we save previously computed results in a
cache to avoid repeated work; nevertheless worst-case complexity of the arith-
metic operators is exponential in the size of the RDD, as each path through the
RDD may yield a different projected arithmetic expression.

Interval Computation. A basic step for many algorithms will be computing the
interval of possible values for an expression E, given RDD r. The pseudo-code
in Fig. 8 shows how to do this. We walk the RDD, substituting each variable as
reached, by its possible intervals, collecting their union. Once all variables in E
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−∞ 4 9 17 +∞
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Fig. 6. Matrix of cofactors used to interchange x1 and x2

x1

x2x2 x2 x2

BA C D
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Legend:

I1 = (−∞, 1)
I2 = [1, 11)
I3 = [11, ∞) I1

I2 ∪ I3

I1

I2 I3

I1 ∪ I2

I3
I1 ∪ I2

I3

Fig. 7. The correctly ordered RDD r′ after hoisting r from Fig. 5.

have been replaced by intervals, we use the function interval(E) to return the
smallest interval containing the possible values of E. In the figure we use ⊥ to
denote the empty interval. min-var(E) produces the variable (from E) with the
earliest precedence (∅ if E is variable-free).

Example 3. Consider computing eval(x*y, r), the possible interval values of the
expression x*y given the RDD r from Fig. 2(a). The initial call generates a call
eval([−20,−9)*y, r′) where r′ is the left child of the root. This in turn gener-
ates a call eval([−20,−9)*[−10,−4), T ) which returns [50, 201). The initial call
generates a second call eval([5, 11)*y, r′′) where r′′ is the right child of the root.
This in turn generates a call eval([5, 11)*[10, 21), T ) which returns [50, 201). The
initial call thus returns the union which is again [50, 201). 
�

Assignments. The abstract transformers for assignments all operate in a similar
manner. Let E[y �→ I] denote the (interval-valued) expression obtained by par-
tially evaluating E assuming y = I. To apply z := E to r = 〈y,E〉, we iterate
over each non-F child (I, r′) of r, recursively applying z := E[y �→ I], and then
rebuild the resulting node.
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function eval(r, E)
match r with

case F ⇒ return ⊥
case T ⇒ return interval(E[v �→ (−∞,+∞) | v ∈ vars(E)])
case 〈x, M〉 ⇒

match min-var(E) with
case ∅ ⇒

return interval(E)
case y where y ≺ x ⇒

return eval(r, E[y �→ (−∞,+∞)])
case y where y � x ⇒

return
⋃

{eval(r′, E) | (I, r′) ∈ M, r′ �= F}
case x ⇒

return
⋃

{eval(r′, E[x �→ I]) | (I, r′) ∈ M, r′ �= F}
end

end

Fig. 8. Evaluating the interval approximation of E on RDD r.

function eval-split(r, E)
match r with

case F ⇒ return F
case T ⇒

I ← interval(E[v �→ (−∞,+∞) | v ∈ vars(E))})
return 〈ε, {(I, T )}〉

case 〈x, M〉 ⇒
match min-var(E) with

case ∅ ⇒
return (ε, {(interval(E), r)}))

case y where y ≺ x ⇒
return eval-split(r, E[y �→ (−∞,+∞))

case y where y � x ⇒
let M ′ = {(I, eval-split(r′, E[y �→ I])) | (I, r′) ∈ M}
return hoist-var(ε, 〈x, M ′〉)

end
end

Fig. 9. Constructing a node, rooted at variable ε, encoding the possible valuations of
E on RDD r. We use hoist-var to percolate the valuations of E up to the root.

Once we reach (or skip) variable z, we have two options. We can compute
the interval I containing the possible values of the residual E, and apply z := I
at the current node. Alternatively, we can construct the resulting RDD as if z
were below all variables in E, then percolate z back up to the correct location.
The latter is the analogue of the substitution-based approach used by Chaki,
Gurfinkel and Strichman [3]; the former is less precise, but reduces the growth
of the RDD. In practice the less precise version loses too much precision. Pseudo-
code for the latter approach is shown in Fig. 9.
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function apply(r, z := E)
match r with

case F ⇒ return F
case T ⇒

I ← interval(E[v �→ (−∞,+∞) | v ∈ vars(E))})
return 〈ε, {(I, T )}〉

case 〈x, C〉 ⇒
if x � z then

r ← eval-split(r, E) � Constructs a node rooted at ε
if x = z then

r ← forget(r, x)
return r[ε �→ z]

else
match min-var(E) with

case ∅ ⇒ � E fully evaluated
return 〈z, {(interval(E), r)}〉

case y where y ≺ x ⇒ � y unconstrained in r
E′ ← E[y �→ (−∞,+∞)]
C′ ← {(I,apply(r′, z := E′)) | (I, r′) ∈ C}

case y where y � x ⇒ � E independent of x
C′ ← {(I,apply(r′, z := E)) | (I, r′) ∈ C}

case x ⇒
C′ ← {(I,apply(r′, z := E[y �→I])) | (I, r′) ∈ C}

end
return 〈x, C′〉

end

Fig. 10. Abstract version of z := E given RDD r, for some arithmetic expression E.

The algorithm in Fig. 10 is instantiated for the cases where E is a linear
expression (

∑
i cixi + I), n-ary product (

∏
i xi × I) or (binary) division (x/y).

In each case, we specialize the generic algorithm slightly:

– For linear expressions, we terminate if some variable in E is skipped (in which
case E, and therefore z, is unconstrained).

– For products, we handle negative, zero, and positive ranges separately, and
apply early termination when some variable is zero or unbounded.

– For division, we again perform case-splits on sign, and terminate early on
zero and unbounded inputs.

Example 4. Consider the RDD in Fig. 11(a). apply(r, z := E) constructs the
RDD shown in Fig. 11(b). For x2 the split points are the extreme values of
3x1 + 8x3 + 10, along the possible paths, that is, 77, 93, 113, and 241; hence the
x2 fan-out of three. In general, for each path ρ of r, apply(r, z := E) constructs
an all-paths interval consistent RDD, introducing an edge for z that is tight with
respect to the projection of E along ρ. For linear expressions, apply constructs
the smallest such RDD (though not for multiplication and division, owing to our
speculative splits on sign). 
�
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Fig. 11. With full splitting, evaluating x2 := 3x1 +8x3 +10 on (a) yields (b). Applying
x3−2x1 ≤ 0 on (a) yields (c), with tightened bounds shown in bold: 1 the downwards
phase finds upper bound 20 for x3; 2 the upwards phase notes the lower bound 8
and 3 uses this information (2x1 ≥ 8) to improve the lower bound on x1.

Arithmetic Constraints. The abstract transformer for an arithmetic constraint
apply(r, E ≤ k) is very similar to that for assignment. Again we traverse the RDD
depth-first, passing the projection of our constraint onto the current valuation,
then reconstruct the result on the way back up. But during reconstruction, we
also return the projection of E onto the variable beneath the current node which
we use to perform bounds-propagation on edge ranges. The pseudo-code is given
in Fig. 12. Each call returns the resulting RDD, together with an upper bound
to be applied to the RDD above. At each node involved in the expression (lines
33–36), we recursively apply the projected constraint along each outgoing edge,
and use the returned upper bound to prune the bounds of the edge.

Example 5. Figure 11(c) shows the effect of applying x3 − 2x1 ≤ 0 to the RDD
from Fig. 11(a). Each node is annotated with C � �, where C is the projected
constraint we constructed in the downward phase, and � the lower-bound which
was returned upwards. 
�

Unlike assignment, apply(r, E ≤ k) does not in general yield an all-paths inter-
val consistent RDD—it (implicitly) introduces splits on the way down, but trim-
leq only uses the returned lower bound on E for pruning, rather than introduc-
ing new splits. A slightly more precise RDD for the case considered in Example 5
would have an additional split point for x1, namely 5. That would bar some spu-
rious solutions, such as Q ∧ x1 = 4 ∧ x3 = 13. An algorithm that maintains
all-paths interval consistency also in the case of inequalities is perfectly possible,
but in practice we find the cost of doing so outweighs any advantage.

Bounds Extraction/Box Hull. The box hull operation takes boxes B and pro-
duces a stick mapping each variable to the smallest interval covering its feasible
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1: function trim-leq(cx + E ≤ k, I, r)
2: ur, r

′ ← apply(r, E ≤ k − cmin(I))
3: Ir ← I ∩ (−∞, ur

c
)

4: if Ir = ∅ then
5: return ∞, (∅, F)
6: else
7: return lr − cmin(I), (Ir, r′)
8: function apply(r, E ≤ k)
9: match r, E with
10: case F , ⇒ return ∞, F
11: case , 0 ⇒ � E fully evaluated
12: if k < 0 then
13: return ∞, F
14: else
15: return 0, r
16: case T , ax ⇒ � One unconstrained variable, can be bounded
17: return −∞, 〈x, {((−∞, k

a
), r)}〉

18: case T , ax + E ⇒ � At least two unconstrained, cannot infer anything
19: return −∞, T
20: case 〈x, M〉, ay + E′ where y ≺ x ⇒ � y currently unconstrained in r,
21: � check if E′ is bounded
22: IE′ ← eval(r, E′)
23: yub ← � k−min IE′

a
�

24: if yub is finite then
25: return −∞, 〈y, {((−∞, yub), r)}〉
26: else
27: return −∞, r

28: case 〈x, M〉, ay + E′ where y � x ⇒ � E independent of x
29: R ← {lc, (I, c′) | (I, c) ∈ M and lc, c

′ = apply(c, E ≤ k)}
30: lr ← min{lc | , (lc, ) ∈ R}
31: r′ ← 〈x, {(I, c′) | , (I, c′) ∈ R}〉
32: return lr, r

′

33: case 〈x, M〉, ax + E′ ⇒
34: R ← {trim-leq(ax + E ≤ k, I, r′) | (I, r′) ∈ M}
35: lc ← min{lc | lc, ∈ R}
36: return lc, 〈x, {(Ic, c′) | , (Ic, c′) ∈ R}〉
37: end

Fig. 12. Applying a constraint
∑

i cixi ≤ k on RDD r. For simplicity, we restrict
consideration to positive ci.

valuations. The box hull algorithm of Gurfinkel and Chaki [11] proceeds by merg-
ing all feasible children of the root node (using �), then recursively building the
hull of the single remaining child. However, while the final result is compact, the
successive joins may cause an exponential growth in the intermediate results.
Instead, we construct the box hull in two stages: we first traverse the RDD to
collect lower and upper bounds of each variable, then construct the hull RDD
directly.
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function lower-bounds(〈x, M〉)
let [d0, k1, . . . , kn, dn] = ser(M)
i0 ← if (d0 = F) then 1 else 0
B ← lower-bounds(di0)
for i ∈ i0 + 1 . . . n do

if di �= F then
B ← lower-bounds-R(di, B)

seen(〈x, M〉) ← true
if d0 = F then

return [(x, k1)|B]
else

return B

function lower-bounds-R(〈r, M〉, B)
let [d0, k1, . . . , kn, dn] = ser(M)
match B with

case [] ⇒
return []

case [(x′, k′)|B′] where x � x′ ⇒
return lower-bounds-R(〈x, M〉, B′)

case [(x′, k′)|B′] ⇒
if seen(〈x, M〉) then

return [(x′, k′)|B′]
seen(〈x, M〉) ← true
for i ∈ 0 . . . n do

if di �= F then
B′ ← lower-bounds-R(di, B

′)
if x = x′ ∧ d0 = F then

return [(x′,min(k′, k1))|B′]
else

return B′

end

Fig. 13. Extracting lower bounds of all variables from RDD 〈x, M〉. Upper bound
extraction is similar. The seen markers are used to avoid re-processing a previously
explored node.

The algorithm for extracting bounds is given in Fig. 13. On the leftmost
feasible path in r, it constructs an ordered list of variables having finite lower
bounds. On the remaining paths, it updates the current set of bounds, removing
any variables that are skipped or are unbounded. This operation takes time linear
in the size of the input RDD. Unfortunately, the operation is not cached across
calls (as we update bounds information in-place, rather than merge bounds from
subgraphs).

3.4 Widening

The last operator we need is a widening, �, to ensure convergence. A standard
approach to constructing a sound widening is based on the notion of stabil-
ity : we decompose the domain into a finite set of individual properties, and
any unstable properties—those which are not preserved (under entailment) from
the previous iteration—are weakened (usually discarded) to eliminate infinite
ascending chains.

If we were working with pure BDDs or classical MDDs (with finite domains),
the join would be sufficient, as there are only finitely many cofactors, and each
cofactor can increase at most once. But with RDDs, a difficulty arises when the
position of a split changes.
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Example 6. Consider the following sequence of iterates:

r0 ≡ 〈x, {((−∞, 0), T ), ([0,+∞),F)}〉
r1 ≡ 〈x, {((−∞, 1), T ), ([1,+∞),F)}〉
ri ≡ 〈x, {((−∞, i), T ), ([i,+∞),F)}〉

If we apply a ‘widening’ pointwise, we get the chain:

w0 = r0 ≡ 〈x, {((−∞, 0), T ), ([0,+∞),F)}〉
w1 = w0�r1 ≡ 〈x, {((−∞, 0), T ), ([0, 1), T �F), ([1,+∞),F)}〉 = r1

w2 = w1�r2 ≡ 〈x, {((−∞, 1), T ), ([1, 2), T �F), ([2,+∞),F)}〉 = r2

wi = wi−1�ri ≡ 〈x, {((−∞, i − 1), T ), ([i − 1, i), T �F), ([i,+∞),F)}〉 = ri

Looking at the result for any one fixed value of x, there are no infinite chains.
But the overall widening sequence is nevertheless an infinite ascending chain. 
�

The problem just exemplified arises when the target of a child remains stable,
but its range shrinks. The widening of Gurfinkel and Chaki [11] handles the
situation by detecting when this has occurred, and instead taking the value of
(one of) its unstable siblings. For Example 6, we notice that the transition to
F was unchanged but its range decreased, so we take the neighbouring T value
instead.

We can adapt the same widening strategy for the RDD representation.
Figure 14 gives the detailed widening algorithm; widen(u, v) is the function that
calculates u�v. As with other lattice operations, we walk over both operands in
lock-step. But as � is asymmetric, the main case of widen(u, v) (lines 34–39)
iterates over the edges of u, and, for each edge, calls widen-edge to compute
the (possibly refined) widening of the corresponding ranges of v. widen-edge
walks over the edges of v applying widening pointwise (lines 12–19), substitut-
ing stable children with their left unstable sibling (line 16). The first edge of
course has no such sibling, so the algorithm starts (lines 5–8) by finding the first
unstable successor if one exists (if not, the entire edge was stable, so it can be
returned)5.

The argument for termination of the widening algorithm is the following.

1. The operator is increasing by construction.
2. Note that (a) it is not possible to have an infinite ascending chain of refined

split positions and (b) for any one (fixed) split position there is no infinite
ascending chain. Namely, each co-factor leads to a finite ascending chain:
whenever a new split location is introduced, the co-factors on both sides
increase strictly.

5 As presented, this differs slightly from [11] in that we select the left sibling as
replacement in widen-edge, where [11] selects the right. We also implemented a
right-biased variant, and differences are minimal.
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1: function widen-edge(x, Mx, [y0, k1, . . . , km, ym])
2: dy ← y0

3: i ← 1
4: d ← x�dy

5: while d = x ∧ i ≤ m ∧ ki < Mx do � Find first unstable child d
6: dy ← yi

7: i ← i + 1
8: d ← x�dy

9: if i > m ∨ km ≥ Mx then � Only one child, no subdivision
10: return [d], [dy, ki, yi, . . . , km, ym]
11: Eout ← [d] � Replace any stable children with d to ensure convergence
12: while i ≤ m ∧ km < Mx do
13: dy ← yi

14: d′ ← x�dy

15: if d′ = x then
16: d′ ← d
17: Eout ← Eout ++[ki, d

′]
18: d ← d′

19: i ← i + 1
20: return (Eout, [dy, ki, yi, . . . , km, ym])
21: function widen(u, v)
22: match (u, v) with
23: case (T , ) ⇒ return T
24: case (F , v) ⇒ return v
25: case (〈x, M〉, v) ⇒
26: let [r0, k1, r1, . . . , kn, rn] = ser(M)
27: let 〈x′, Ev〉 = v
28: if x ≺ x′ then
29: return 〈x, [r0�v, k1, r1�v, . . . , kn, rn�v]〉
30: else if x′ ≺ x then
31: (Eout, ) ← widen-edge(u,+∞, ser(Ev))
32: return 〈x′,des(Eout)〉
33: else
34: Eout ← []
35: for i ∈ 1 . . . n do
36: (E′

i, Ev) ← widen-edge(ri−1, ki, ser(Ev))
37: Eout ← Eout ++E′

i

38: (En, ) ← widen-edge(rn,+∞, ser(Ev))
39: return 〈x,des(Eout ++En)〉
40: end

Fig. 14. Widening on Boxes, adapted to the RDD representation.

4 Experimental Evaluation

We have implemented all the RDD operations required by the Boxes domain,
following the algorithms described in this paper. Apart from the node represen-
tation, the architecture of the underlying RDD package is relatively standard: a
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unique table mapping node structures to canonical representations, and a cache
to record the results of recent computations. The implementation is available at
https://bitbucket.org/gkgange/mdd-boxes.

The evaluation that we now report on has had two aims: First, to compare
scalability of rdd-boxes with the existing ldd-boxes implementation. Second,
to compare precision of the two implementations in order to assess the impact
of the more precise abstract transformers provided by rdd-boxes.

4.1 Experimental Setup

For the evaluation, we integrated our RDD-based implementation of Boxes into
the Crab6 abstract interpreter, which already provides LDD-based Boxes. We
evaluated both implementations on a collection of C programs using Clam7, an
LLVM frontend for Crab.

The programs used for testing were taken from the 2019 Software Verification
Competition. We chose 190 programs from the ControlFlow and Loops cate-
gories. These programs are already annotated with assertions. ControlFlow is
a challenging set of programs for abstract interpretation because the instances
generally require path-sensitive reasoning. However, they do not require a deep
memory analysis. They constitute a good test suite for Boxes because this
abstract domain is expressive enough to prove the majority of assertions. Never-
theless, both rdd-boxes and ldd-boxes needed to use a widening delay of 15 to
produce precise results. The second selected category, Loops, is quite different
from ControlFlow: the programs are much smaller and neither memory anal-
ysis nor path sensitivity is required. However, the majority of programs have
many nested loops or require complex (although typically linear) loop invari-
ants. We used Loops to evaluate the effect of the widening operations in both
implementations.

All experiments have been carried out on a 2.1 GHz AMD Opteron processor
6172 with 32 cores and 64 GB on a Ubuntu 18.04 Linux machine. From those 32
cores, we used 16 cores to run multiple instances of Crab in parallel, but each
instance was executed sequentially.

For rdd-boxes, we statically order variables according to the order in which
they first appear in the program. For ldd-boxes, we used two orderings: the same
static ordering used by rdd-boxes, and the dynamic ordering used by Gurfinkel
and Chaki [11], based on the Cudd library’s CUDD REORDER GROUP SIFT option.

It is important to note that the ldd-boxes library8 does not provide support
for arbitrary linear or tree expressions as other libraries such as Apron [14] do.
ldd-boxes only supports assignments of the form x ← (k1 × y) + [k2, k3] and
linear constraints of the form (k1 × x) relop k2 where k1, k2, k3 are integers,
relop are the standard relational operators {≤,≥, <,>,=, �=}, and x and y are
variables.

6 Available at https://github.com/seahorn/crab.
7 Available at https://github.com/seahorn/clam.
8 Available at https://github.com/seahorn/ldd.

https://bitbucket.org/gkgange/mdd-boxes
https://github.com/seahorn/crab
https://github.com/seahorn/clam
https://github.com/seahorn/ldd
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Fig. 15. Three graphs to compare analysis time in seconds on 190 Control Flow and
Loops programs with timeout of 180 s and memory limit of 8 GB. The marker ● rep-
resents domains finished before exhausting resources, ✖ represents timeout, and ◆

memory-out. The size of a marker reflects the number of scatter points at that loca-
tion.

For all other cases, the abstract interpreter Crab simplifies arbitrary expres-
sions by extracting interval constraints until the simplified expression can be
supported by the ldd-boxes library. The current Crab implementation safely
ignores arithmetic operations with non-unit coefficients. For our benchmarks,
LLVM did not generate any instruction with non-unit coefficients.

4.2 Performance

Figure 15 compares efficiency of the three implementations on the set of SV-
COMP benchmarks. The top part (a) shows the result of static ordering plotted
against that of dynamic ordering for ldd-boxes. Different orderings can have a
significant impact on performance, and there is no clear winner. In the bottom
part, we compare rdd-boxes with ldd-boxes using static (b) and dynamic (c)
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Table 1. Comparing the precision of LDD-boxes with static ordering, LDD-boxes with
dynamic reordering, and two variants of RDD-boxes on SV-COMP programs for which
all the domains terminated with timeout of 180 s and memory limit of 8 GB.

Implementation Programs Total assertions Proven assertions

static ldd-boxes 168 628 497

dynamic ldd-boxes 168 628 494

linear rdd-boxes 168 628 504

rdd-boxes 168 628 510

ordering. Independently of variable ordering, the rdd-boxes analysis tends to
be faster. With a time limit of 180 s, rdd-boxes timed out for 7 programs, while
static and dynamic ldd-boxes timed out for 13 and 12 programs, respectively.

To understand the causes of the performance differences, we manu-
ally inspected several programs. We hypothesize that the main reason why
ldd-boxes and rdd-boxes differ significantly in performance is the above-
mentioned process of interval extraction that takes place in the Crab analyzer.
This interval extraction for ldd-boxes is quite expensive, which sometimes
makes rdd-boxes significantly faster. On the other hand, it may equally make
rdd-boxes slower since rdd-boxes performs optimal transfer functions (which
may introduce more disjunctive splits), while ldd-boxes does not, owing to its
limited API.

4.3 Precision

Table 1 compares the precision of the two ldd-boxes implementations, together
with two variants of rdd-boxes for the SV-COMP test suite: the version used for
our performance evaluation which precisely supports both linear and non-linear
operations, and a variant that only supports linear operations (linear rdd-boxes)
and relies on the Crab analyzer to linearize [22] non-linear expressions.

Column Programs is the total number of programs for which all three imple-
mentations finished without exhausting resources. Total Assertions is the total
number of assertions checked by the analysis, and Proven Assertions is the total
number of proven assertions.

The variable ordering can affect the precision of widening. We believe this
can explain the differences between the ldd-boxes implementations and linear
rdd-boxes. Note that linear rdd-boxes is more precise than the ldd-boxes
implementations, because of a more precise modelling of linear operations. The
precise modelling of non-linear operations in rdd-boxes further improves the
number of proven assertions (510 vs 504)—a relatively small, but, to an end
user potentially significant, gain.

As a baseline comparison, using a traditional convex interval analysis, we were
able to prove 392 of the 628 assertions, that is, 62%. Disjunctive information is,
as expected, critical in the context of program verification.
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5 Related Work

Early examples of disjunctive analysis were primarily found in work on abstract
interpretation of declarative programming languages [15,17] (the “Pos” domain
for groundness dependency analysis of logic programs [17] is a rare example
of an abstract domain for relational analysis that is closed under conjunction
and disjunction). The abstract domain refinement known as “disjunctive com-
pletion” was introduced by Cousot and Cousot [5]. Giacobazzi and Ranzato [9]
explored the fact that different domain “bases” may induce identical disjunc-
tive completions, leading to the concept of a least (or most abstract) disjunctive
basis [9].

Decision diagrams for disjunctive domains are of interest also in symbolic
model checking, for example for analysis of timed automata. In that context,
Strehl and Thiele [25] have made use of “function graphs” which, in their
“reduced” form, correspond to RDDs. Strehl and Thiele capture transition rela-
tions through an additional concept of “interval mapping functions”. Implemen-
tation details are somewhat sparse, but it appears that only simple (linear)
transformations are considered. Join and widening are not of relevance in model
checking applications.

Clock decision diagrams (CDDs) [16] generalise Strehl and Thiele’s function
graphs, by allowing nodes that represent either single (clock) variables X or
differences X −Y . That way, not only bounds can be expressed; it is possible to
use CDDs to express difference constraints such as X = Y and X −Z ∈ [0, 3], so
that CDDs support a limited form of relational analysis. CDDs are not canonical,
and the abstract operations that would be required for program analysis (as
opposed to the clock operations considered in [16]) would seem quite difficult
to implement. For a program analysis tool to achieve the added expressiveness
that is offered by CDDs, it would probably make better sense to use a product
domain that incorporates a standard implementation of Zones [20]. Other BDD
variants have been proposed that have constraints as nodes, such as difference
decision diagrams (DDDs) [23] and EQ-BDDs [10].

Dominant sources of imprecision in classical abstract interpretation are join
points—program points that represent a confluence of flow from several points.
If an analysis is able to distinguish program states based on different execution
traces that lead to a given program point, then imprecise joins can be avoided or
delayed, resulting in greater precision of analysis. Approaches to introduction of
such (limited) disjunctive information include loop unrolling and (flow- or value-
based) trace partitioning [12,19]. The idea that decision tree structures can rep-
resent control flow is reflected in various abstract domains or functors, based on
decision diagrams. Examples include the “segmented decision trees” [6] designed
to support analysis of array processing programs, and the decision structures
used in the FuncTion analyzer [26] for proving termination based on synthesised
ranking functions. Jeannet’s BDDAPRON library [13] provides a broad frame-
work for the implementation of “logico-numeric” abstract domains, supporting
analysis of programs with a mixture of finite-type and numeric variables.
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Regarding interval analysis, the DisInterval abstract domain used in the
Clousot analysis tool [8] allows for a limited amount of disjunctive informa-
tion; while it can express monadic constraints such as |x| > 5, it cannot express
a set such as the one depicted in Fig. 1(b). For fully disjunctive interval analysis,
the most important data structure so far has been the linear decision diagram
(LDD), introduced by Chaki, Gurfinkel and Strichman [3]. The Crab imple-
mentation of Boxes that we use as a baseline corresponds to the proposal by
Gurfinkel and Chaki [11], that is, it uses a restricted form of LDDs, in which
nodes can only be bounds constraints.

For program analysis, Typed Decisions Graphs [18] give an alternate, more
concise representation of BDDs. They might be usable as a direct replacement
for LDDs, but how to extend them to handle RDDs is far from obvious since they
rely on representing a Boolean function to get good compression (by negating
arcs).

6 Conclusion

We have demonstrated the importance of well-chosen data structures for disjunc-
tive interval analysis. Our focus has been on the case of variables with integer
types, but an extension to rationals or floating point numbers is not difficult
(the main added complication is the need to identify split points as left- or
right-included, that is, to distinguish whether a range bound is included or not).

For simplicity, we have also assumed the use of integers of unlimited precision.
It would not be difficult to adapt the algorithms to the case of fixed-width inte-
gers, as the RDD representation is agnostic about the underlying representation
of intervals.

The use of a dedicated data structure (RDDs) for interval sets has led us
to a disjunctive interval analysis that is more efficient than the current LDD-
based alternative. The use of RDDs offers a more precise analysis of non-linear
arithmetic expressions, and it frees us from any dependence on a theory solver.
These advantages explain why we see gains in both precision and speed.

A next natural step is to explore the combination of Boxes with weakly
relational abstract domains. We hypothesize that, in practice, this provides an
avenue to obtain considerably greater expressiveness while still keeping analy-
sis tractable. For example, a product that includes the Zones abstract domain
should produce an efficient program analysis with the expressiveness of clock
decision diagrams [16].
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Abstract. This paper studies the problem of range analysis for feedfor-
ward neural networks, which is a basic primitive for applications such as
robustness of neural networks, compliance to specifications and reacha-
bility analysis of neural-network feedback systems. Our approach focuses
on ReLU (rectified linear unit) feedforward neural nets that present spe-
cific difficulties: approaches that exploit derivatives do not apply in gen-
eral, the number of patterns of neuron activations can be quite large
even for small networks, and convex approximations are generally too
coarse. In this paper, we employ set-based methods and abstract inter-
pretation that have been very successful in coping with similar difficulties
in classical program verification. We present an approach that abstracts
ReLU feedforward neural networks using tropical polyhedra. We show
that tropical polyhedra can efficiently abstract ReLU activation func-
tion, while being able to control the loss of precision due to linear com-
putations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of
ReLU neural networks. We report on a preliminary evaluation of our
approach using a prototype implementation.

1 Introduction and Related Work

Neural networks are now widely used in numerous applications including speech
recognition, natural language processing, image segmentation, control and plan-
ning for autonomous systems. A central question is how to verify that they
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C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 166–190, 2021.
https://doi.org/10.1007/978-3-030-88806-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88806-0_8&domain=pdf
http://orcid.org/0000-0002-3198-1863
http://orcid.org/0000-0001-5624-3755
http://orcid.org/0000-0002-1599-2431
http://orcid.org/0000-0001-7315-4340
https://doi.org/10.1007/978-3-030-88806-0_8


Static Analysis of ReLU Neural Networks with Tropical Polyhedra 167

are correct with respect to some specification. Beyond correctness, we are
also interested in questions such as explainability and fairness, that can in turn
be specified as formal verification problems. Recently, the problem of verifying
properties of neural networks has been investigated extensively under a variety
of contexts. A natural neural network analysis problem is that of range estima-
tion, i.e. bounding the values of neurons on the output layer, or some function
of the output neurons, given the range of neurons on the input layer. A pro-
totypical application of range estimation is the verification of the ACAS Xu -
the next generation collision avoidance system for autonomous aircrafts, which
is implemented by a set of neural networks [23]. Such a verification problem is
translated into a range estimation problem over these neural network wherein
the input ranges concern a set of possible scenarios and the outputs indicate the
possible set of advisories provided by the network [24].

Another prototypical application concerns the robustness of image classifica-
tion wherein we wish to analyze whether a classification label remains constant
for images in a neighborhood of a given image that is often specified using ranges
over a set of pixels. Robustness is akin to numerical stability analysis, and for
neural nets used as decision procedures (e.g. control of a physical apparatus), this
is a form of decision consistency. It is also linked to the existence or non-existence
of adversarial inputs, i.e. those inputs close to a well classified input data, that
dramatically change the classification [38], and may have dire consequences in
the real world [16].

Many formal methods approaches that have been successfully used in the
context of program verification seem to be successfully leveraged to the case of
neural net verification: proof-theoretic approaches, SMT techniques, constraint
based analyzers and abstract interpretation. In this paper, we are interested in
developing abstract interpretation [10] techniques for feedforward networks with
ReLU activation functions. ReLU feedforward networks can be seen as loop-free
programs with affine assignments and conditionals with affine guards, deciding
whether the corresponding neuron is activated or not. For researchers in program
analysis by abstract interpretation, this is a well known situation. The solutions
range from designing a scalable but imprecise analyses by convexifications of the
set of possible values of each neurons throughout all layers to designing a poten-
tially exponentially complex analysis by performing a fully disjunctive analysis.
In between, some heuristics have been successfully used in program analysis,
that may alleviate the burden of disjunctive analysis, see e.g. [9,28]. Among
classical convex abstractions, the zones [29] are a nice and scalable abstraction,
successfully used in fully-fledged abstract interpretation based static analyzers
[7]. In terms of disjunctive analysis, a compact way to represent a large class of
disjunctions of zones are the tropical polyhedra, used for disjunctive program
analysis in e.g. [3,4]. Tropical polyhedra are, similarly to classical convex poly-
hedra, defined by sets of affine inequalities but where the sum is replaced by
max operator and the multiplication is replaced by the addition.

Zones are interesting for synthesizing properties such as robustness of neural
networks used for classifying data. Indeed, classification relies on determining
which output neuron has the greatest score, translating immediately into zone-
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like constraints. ReLU functions x �→ max(0, x) are tropically linear, hence an
abstraction using tropical polyhedra will be exact. A direct verification of classi-
fication specifications can be done from a tropical polyhedron by computing the
enclosing zone, see [4] and Sect. 2.1. In Fig. 1, we pictured the graph of the ReLU
function y = max(x, 0) for x ∈ [−1, 1] (Fig. 1a), and its abstraction by 1-ReLU
in DeepPoly [36] (Fig. 1b), by a zone (Fig. 1c), and by a tropical polyhedron
(Fig. 1d), which is exactly the graph of the function.
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y

x

(a) Exact

−1 0 1

1

y

x

(b) 1-ReLU (DeepPoly)

−1 0 1
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y

x

(c) Zones

−1 0 1

1

y

x

(d) Tropical polyhedra

Fig. 1. Abstractions of the ReLU graph on [−1, 1]

Unfortunately, (classical) linear functions are tropically non-linear. But con-
trarily to program analysis where we generally discover the function to abstract
inductively on the syntax, we are here given the weights and biases for the full
network, allowing us to design much better abstractions than if directly using
the ones available from the program verification literature.

It was recently proved [42] that the class of functions computed by a feed-
forward neural network with ReLU activation functions is exactly the class of
rational tropical maps, at least when dealing with rational weights and biases.
It is thus natural to look for guaranteed approximants of these rational tropical
maps as abstractions.

Example 1 (Running example). Consider a neural network with 2 inputs x1 and
x2 given in [−1, 1] and 2 outputs. The linear layer is defined by h1 = x1−x2−1,
h2 = x1 +x2 +1 and followed by a ReLU layer with neurons y1 and y2 such that
y1 = max(0, x1 − x2 − 1) and y2 = max(0, x1 + x2 + 1).

The exact range for nodes (h1, h2) is depicted in Fig. 2a in magenta (an
octagon here), and the exact range for the output layer is shown in Fig. 2b in
cyan: (y1, y2) take the positive values of of (h1, h2). In Fig. 2c, the set of values
the linear node h1 can take as a function of x1, is represented in magenta. The
set of values of the output neuron y1 in function of x1 is depicted in Fig. 2d, in
cyan: when x1 is negative, h1 is negative as well, so y1 = 0 (this is the horizontal
cyan line on the left). When x1 is positive, the set of values y1 can take is the
positive part of the set of values h1 can take (pictured as the right cyan triangle).
The line plus triangle is a tropical polyhedron, as we will see in Sect. 2.2.

We want to check two properties on this simple neural network:

(P1): the input is always classified as belonging to the class identified by neuron
y2, i.e. we always have y2 ≥ y1
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Fig. 2. Exact ranges for the neural net of Example 1 on [−1, 1] × [−1, 1]. (P2) is the
complement of the red square in Fig. 2d.

(P2): in the neighborhood [−0.25, 0.25] of 0 for x1, whatever x2 in [−1, 1], the
output y1 is never above threshold 0.5 (unsafe zone materialized in red in
Fig. 2d)

(P2) is a robustness property. We see on the blue part of Fig. 2b (resp. 2d) that
the first (resp. second) property is true.

As we will see in Sect. 3, our tropical polyhedron abstraction is going to give
the exact graph of y1 as a function of x1, in cyan again, Fig. 3b.
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Fig. 3. Abstractions of a simple neural net on [−1, 1] × [−1, 1]. Dashed lines in (b)
enclose the classical convexification.

Therefore we will be able to prove robustness, i.e. (P2): the exact range for
y1 in cyan does not intersect the non complying states, in red. Note that all
classically convex abstractions, whatever their intricacies, will need to extend
the cyan zone up to the dashed line pictured in Fig. 3b, to get the full triangle,
at the very least. This triangle is intersecting the red region making classically
convex abstractions unable to prove (P2).

Our tropical abstraction projected on the y2, y1 coordinates is not exact:
compare the exact range in cyan in Fig. 2b with the abstraction in cyan in Fig. 3a.
However, the cyan region in Fig. 3a is above the diagonal, which is enough for
proving (P1).
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Still, the abstraction has an area 2.5 times larger than the exact range, due
to the tropical linearization of the tropical rational function y1. As with classical
linearizations, a workaround is to make this linearization local, through suitable
subdivisions of the input. We show in Fig. 3c the tropical polyhedric abstraction
obtained by subdividing x1 into two sub-intervals (namely [−1, 0] and [0, 1]): the
cyan part of the picture is much closer to the exact range (1.5 times the exact
area). Subdividing further as in Fig. 3d naturally further improves the precision
(area 1.25 times the exact one).

As we will see in Sect. 2.2, tropical polyhedra are particular unions of zones:
the tropical polyhedra in cyan of Figs. 3a and 3c are composed of just one zone,
but the tropical polyhedron in cyan in Fig. 3d and the tropical polyhedron in
magenta in Fig. 3c are the union of two zones. Finally, the tropical polyhedron
in magenta in Fig. 3d is the union of four zones (generated by 9 extreme points,
or 5 constraints, obtained by joining results from the subdivisions of the inputs).

Contributions. Section 2 introduces the necessary background notions, in par-
ticular tropical polyhedra. We then describe the following contributions:

– Sect. 3 introduces our abstraction of (classical) affine functions from Rm to Rn

with tropical polyhedra. We fully describe internal and external representa-
tions, extending the classical abstractions of assignments in the zone abstract
domain [29] or in the tropical polyhedra domain [4]. We prove correctness
and equivalence of internal and external representations, allowing the use of
the double description method [2].

– Based on the analysis of one layer networks of Sect. 3, we show in Sect. 4 how
to get to multi-layered networks.

– Finally, Sect. 5 describes our implementations in C++ and using polymake
[18] and presents some promising experiments. We discuss the cost and advan-
tages of using the double description or of relying for further abstraction on
either internal or external representations of tropical polyhedra.

Related Work. There exist many approaches to neural networks verification.
We concentrate here on methods and tools designed for at least range over-
approximation of ReLU feedforward networks.

It is natural to consider constraint based methods for encoding the ReLU
function and the combinatorics of activations in a ReLU feedforward neural net.

Determining the range of a ReLU feedforward neural net amounts to solving
min and max problems under sets of linear and ReLU constraints. This can be
solved either by global optimisation techniques and branch and bound mecha-
nisms, see e.g. DeepGo [32]. The encoding of the activation combinatorics can
also be seen as mixed integer linear constraints, and MILP solver used for solv-
ing the range outer-approximation problem, see e.g. [6,39], or both branch and
bound and MILP techniques, like Venus [8]. Similarly, Sherlock [13,14] performs
range analysis using optimization methods (MILP and a combination of local
search and global branch-and-bound approach), and considers also neural nets as
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controllers within a feedback loop. Finally, some of these constraint-based ana-
lyzer improve the solution search by exploiting the geometry of the activation
regions, [26].

A second category of such approaches is based on SMT methods, more specif-
ically satisfiability modulo extensions of linear real arithmetic (encoding also
RELU). The network is encoded in this logics and solvers provide answers to
queries, in particular range over-approximation and robustness, see e.g. Marabou
[25], extending Reluplex [24], and [15,22].

Range estimation for ReLU activated feedforward neural nets can also be
performed using some of the abstract domains [11] that have been designed for
program analysis, and in particular convex domains for numerical program veri-
fication. These include zonotopes [19,34], especially considering that feedforward
neural nets with one hidden layer and ReLU activation functions are known to
be characterizable by zonotopes, see e.g. [42], polyhedra [36], and other sub-
polyhedric or convex abstractions like symbolic intervals [20] used in Neurify
[33] extending Reluval [40] or CROWN-IBP [41].

These abstractions allow to perform range estimation, i.e. to estimate outer
approximations of the values of the output neurons given a set of values for
the input neurons. They also allow to deal with robustness properties around
training data, by proving that the range of the neural net on a small set around
a training point gives the same class of outputs.

The main difficulty with these convex abstract domains is that they tend
to lose too much precision on (non-convex) ReLU functions. Several methods
have been proposed to cope with this phenomenon. The first one is to improve
on the abstraction of ReLU, in particular by combining the abstraction of sev-
eral ReLU functions on the same layer [35]. Another solution that has been
proposed in the literature is to combine abstraction and some level of combina-
torial exploration of the possible neuron activations, in the line of disjunctive
program analysis [9,28]. RefineZono [37] implements methods combining poly-
hedric abstract domains with MILP solvers for encoding ReLU activation and
refining the abstractions, NNENUM [5] uses combinations of zonotopes, stars
sets with case splitting methods, and Verinet [21] uses abstractions similar to
the polyhedric relaxations of DeepPoly, based on symbolic-interval propagation,
with adaptive refinement strategies.

2 Preliminaries and Notations

2.1 Zones

The zone [29] abstraction represents restricted forms of affine invariants
over variables, bounds on variable differences. Let a n-dimensional variable
x = (x1, . . . , xn) ∈ Rn. The zone domain represents invariants of the form
(
∧

1≤i,j≤n xi − xj ≤ ci,j) ∧ (
∧

1≤i≤n ai ≤ xi ≤ bi). A convenient representa-
tion is using difference bound matrices, or DBM. In order to encode interval
constraints seamlessly in this matrix, a special variable x0, which is assumed to
be a constant set to zero, is added to x ∈ Rn. A DBM is then a (n+1)× (n+1)
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square matrix C = (cij), with elements in R∪{+∞}, representing (concretisation
operator) the following set of points in Rn: γ(C) = {(x1, . . . , xn) ∈ Rn| ∀i, j ∈
[0, n], xi − xj ≤ ci,j ∧ x0 = 0}.

For a matrix C that has non-empty concretization, the closure denoted C∗

will be the smallest DBM for the partial order on matrices which represents
γ(C). Formally, a closed zone C = (cij) is such that: ∀k ∈ N,∀(i0, . . . , ik) ∈
[0, n]k+1, ci0,ik ≤ ci0,i1 + · · · + cik−1,ik , ∀i ∈ [0, j], ci,i = 0. Every constraint in a
closed zone saturates the set γ(C).

The best abstraction in the sense of abstract interpretation [11] of a non-
empty set S ⊂ Rn is the zone defined by the closed DBM: (c)ij = sup{xi −
xj | (x1, . . . , xn) ∈ S ∧ x0 = 0}.

Example 2. Consider the region defined as the union of the magenta and cyan
parts of Fig. 3a in Example 1. It is a zone given by the inequalities: (−3 ≤ h1 ≤
1) ∧ (−1 ≤ h2 ≤ 3) ∧ (−4 ≤ h1 − h2 ≤ 0), i.e. given by the following DBM:

⎛

⎝
0 3 1
1 0 0
3 4 0

⎞

⎠

The octagon [30] abstraction is an extension of the zone abstraction, which
represents constraints of the form

(
∧

1≤i,j≤n

±xi ± xj ≤ ci,j) ∧ (
∧

1≤i≤n

ai ≤ xi ≤ bi)

A set of octagonal constraints can be encoded as a difference bound matrix,
similarly to the case of zones, but using a variable change to map octagonal
constraints on zone constraints. For each variable xi, two variables are considered
in the DBM encoding, that correspond respectively to +xi and −xi. Note that
unary (interval) constraints, such as xi ≤ bi, can be encoded directly as xi+xi ≤
2bi, so that no additional variable x0 is needed.

Example 3. The figure below right shows the exact range (the rotated square)
of h1, h2 of Example 1.
It is depicted in gray, as the intersection of two zones,
one in cyan, Z2, and one in olive, Z1. Z1 is the zone
defined in Example 2 and Z2 is the zone defined on
variables (h1,−h2) as follows:

(−3 ≤ h1 ≤ 1) ∧ (−1 ≤ h2 ≤ 3) ∧ (−2 ≤ h1 + h2 ≤ 2)

2.2 Tropical Polyhedra

−2 0 1

2

h2

h1

−2

Tropical polyhedra are similar to ordinary convex polyhedra. Both can be defined
either using affine constraints, known as the external description, or as convex
hulls of extremal points and rays, known as the internal description. The major
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difference is the underlying algebra. Instead of using the classical ring R of coef-
ficients, with ordinary sum and multiplications, we use the so-called max-plus
semiring Rmax. This semiring is based on the set Rmax = R ∪ {−∞}, equipped
with the addition x ⊕ y := max(x, y) and the multiplication x ⊗ y = x + y. This
is almost a ring: we have neutral elements 1 := 0 for ⊗, and 0 = −∞ for ⊕, and
an inverse for ⊗ on Rmax\{0} but not for ⊕. The algebra also fits in with the
usual order ≤ on R, extended to Rmax: x ≤ y if and only if x ⊕ y = y.

Tropical hyperplanes are similar to classical hyperplanes, and defined as the
set of points satisfying

⊕

1≤i≤k

ai ⊗ xi ⊕ c ≤ ⊕

1≤i≤k

bi ⊗ xi ⊕ d.

Now, as in the classical case, tropical polyhedra will be given (externally)
as an intersection of n tropical hyperplanes, i.e. will be given as the location
of points in Rk

max satisfying n inequalities of the form of above. This can be
summarized using matrices A = (aij) and B = (bij), two n × k matrices with
entries in Rmax, and vectors of size k C and D as Ax ⊕ C ≤ Bx ⊕ D.

Still similarly to the case of ordinary convex polyhedra, tropical polyhedra can
also be described internally, as generated by extremal generators (points, rays). A
tropical polyhedron can then be defined as the set of vectors x ∈ Rk

max which can
be written as a tropical affine combination of generators vi (the extreme points)
and rj (the extreme rays) as x =

⊕

i∈I

λiv
i ⊕ ⊕

j∈J

μjr
j with

⊕

i∈I

λi = 1.

Example 4 (Running example). Consider again the zone consisting of the union
of the magenta and cyan parts in Fig. 3a. This is a tropical polyhedron, defined
externally by: max (h1,−3, h2,−1, h2, h1) ≤ max (1, h1, 3, h2, h1 + 4, h2).

It can also be defined internally by the extremal point A, B1 and B2 of
respective coordinates (−3,−1), (1, 1) and (−1, 3), depicted as dots in Fig. 3a.
This means that the points z in this tropical polyhedron have coordinates (h1, h2)
with (h1, h2) = max (λ0 + A, λ1 + B1, λ2 + B2) with max(λ0, λ1, λ2) = 1 = 0,
i.e. all λis are negative or null, and one at least among the λis is zero.

For instance, when λ2 = −∞, z is on the tropical line linking A to B1:
(
h1, h2

)
=
(
max(λ0 − 3, λ1 − 1),max(λ0 − 1, λ1 + 3)

)
(1)

with λ0, λ1 �= 0 and either λ0 = 0 or λ1 = 0. Suppose λ0 = 0, and suppose first
that λ1 ≤ −4: (h1, h2) = (−3,−1) which is point A. Suppose now −4 ≤ λ1 ≤ −2,
then (h1, h2) = (−3, λ1 + 3), which is the vertical line going from A to point
(−3, 1). Finally, suppose −2 ≤ λ1 ≤ 0, (h1, h2) = (λ1 − 1, λ1 + 3) which is the
diagonal going from (−3, 1) to B1. Similarly, one can show that the tropical line
going from B1 to B2 is given by fixing λ0 = −∞ and making vary λ1 and λ2. If
λ0 < 0 then λ1 = 0 and z is point B1.

Now, applying the ReLU operator, which is linear in the tropical algebra,
defines a tropical polyhedron with internal description given by ReLU (in each
coordinate) of extreme points A, B1 and B2, i.e. A′ = (0, 0), B′

1 = B1 = (1, 1)
and B′

2 = (0, 3), see Fig. 3a. Similarly, the zone which gives h1 as a function
of x1, see Fig. 3b, can be seen as a tropical polyhedron with extreme points
(−1,−3), (1, 1) and (1,−1). Applying ReLU to the second coordinate of these
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three extreme points gives three points (−1, 0), (1, 1) and (1, 0) which generate
the tropical polyhedron in cyan of Fig. 3b.

It is also easy to see that after one subdivision, Fig. 3c, the set of values
for (y1, y2) in cyan is a tropical polyhedron with three extreme points A′, B′

1

and B2. After two subdivisions, Fig. 3d, the values of y1 as a function of h1 is
a tropical polyhedron with 4 generators (depicted as dots in Fig. 3d). Note that
the tropical polyhedron of Fig. 3d is the encoding of the union of two zones, one
zone being the classical convex hull of points (0, 0), (0, 1), (0.5, 1.5), (1, 1.5) and
(1, 1), and the other being the classical convex hull of points (0, 1), (0, 2), (0.5, 2)
and (0.5, 1.5).

All tropical polyhedra can thus be described both internally and externally,
and algorithms, although costly, can be used to translate an external description
into an internal description and vice-versa. This is at the basis of the double
description method for classical polyhedra [12] and for tropical polyhedra [2].
Double description is indeed useful when interpreting set-theoretic unions and
intersections, as in validation by abstract interpretation, see [12] again for the
classical case, and e.g. [4] for the tropical case: unions are easier to compute using
the extreme generator representation (the union of the convex hulls of sets of
points is the convex hull of the union of these sets of points) while intersections
are easier to compute using the external representation (the intersection of two
polyhedra given by sets of constraints is given by the concatenation of these sets
of constraints).

In the sequel, we will be using explicitly the max and (ordinary) + operators
in place of ⊕ and ⊗ for readability purposes.

2.3 From Zone to Tropical Polyhedra and Vice-Versa

The following proposition characterizes the construction of tropical polyhedric
abstractions from zones. We show that a zone defined on n variables can be
expressed as the tropical convex hull of n + 1 points.

Proposition 1 (Internal tropical representation of closed zones)
Let Hext ⊂ Rn be the n-dimensional zone defined by the conjunction of the

(n+1)2 inequalities
∧

0≤i,j≤n(xi−xj ≤ ci,j), where ∀i, j ∈ [0, n], ci,j ∈ R∪{+∞}.
Assume that this representation is closed, then Hext is equal to the tropical
polyhedron Hint defined, with internal representation, as the tropical convex hull
of the following extreme points (and no extreme ray):

A = (ai)1≤i≤n := (−c0,1, . . . ,−c0,n),
Bk = (bki)1≤i≤n := (ck,0 − ck,1, . . . , ck,0 − ck,n), k = 1, . . . , n,

Example 5. The zone of Example 2 is the tropical polyedron with the three
extreme generators A, B1 and B2 pictured in Fig. 3a, as deduced from Proposi-
tion 1 above.
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Moreover, we can easily find the best zone (and also, hypercube) that outer
approximates a given tropical polyhedron, as follows [4]. Suppose we have p
extreme generators and rays for a tropical polyhedron H, A1, . . . , Ap, that we
put in homogeneous coordinates in Rn+1 by adding as last component 0 to
the coordinates of the extreme generators, and −∞ to the last component, for
extreme rays, as customary for identifying polyhedra with cones, see e.g. [17].

Proposition 2 [4]. Let A be the matrix of generators for tropical polyhedron
H stripped out of rows consisting only of −∞ entries, and A/A the residuated
matrix which entries are (A/A)i,j = min

1≤k≤p
ai,k − aj,k. Then the smallest zone

containing H is given by the inequalities:

xi − xj ≥ (A/A)i,j for alli, j = 1, . . . , n

(A/A)i,n+1 ≤ xi ≤ −(A/A)n+1,i for alli = 1, . . . , n

Example 6. Consider the graph of the ReLU function on [−1, 1], pictured in
Fig. 1d. It has as generators the two extreme points A1 = (−1, 0) and A2 = (1, 1)
(the graph is the tropical segment from A1 to A2). Homogenizing the coordinates
and putting them in a matrix A (columns correspond to generators), we have

A =

⎛

⎝
−1 1
0 1
0 0

⎞

⎠ and (A/A) =

⎛

⎝
0 −1 −1
0 0 0

−1 −1 0

⎞

⎠

meaning that the enclosing zone is given by −1 ≤ x − y ≤ 0, −1 ≤ x ≤ 1, 0 ≤
y ≤ 1, which is the zone depicted in Fig. 1c.

2.4 Feedforward ReLU Networks

Feedforward ReLU networks that we are considering in this paper are a succes-
sion of layers of neurons, input layer first, a given number of hidden layers and
then an output layer, each computing a certain affine transform followed by the
application of the ReLU activation function:

Definition 1. A n-neurons ReLU network layer L with m inputs is a function
Rm → Rn defined by, a weight matrix W ∈ Mn,m(R), a bias vector b ∈ Rn,
and an activation function ReLU : Rn → Rn given by ReLU(x1, . . . , xn) =
(max(x1, 0), . . . ,max(xn, 0)) so that for a given input x ∈ Rn, its output is
L(x) = ReLU(Wx + b).

Definition 2. A multi-layer perceptron FN is given by a list of network layers
L0, ..., LN , where layers Li (i = 0, . . . , N − 1) are ni+1-neurons layers with ni

inputs. the action of FN on inputs is defined by composing the action of successive
layers: FN = LN ◦ ... ◦ L0.
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3 Abstraction of Linear Maps

3.1 Zone-Based Abstraction

We consider in this section the problem of abstracting the graph Gf = {(x, y) |
y = f(x)} of a linear map f(x) = Wx + b with x ∈ [x1, x1] × . . . [xm, xm]
where W = (wi,j) is a n × m matrix and b a n-dimensional vector, by a tropical
polyhedron Hf . We will treat the case of multilayered networks in Sect. 4.

The difficulty is that linear maps in the classical sense are not linear maps in
the tropical sense, but are rather (generalized) tropical polynomials, hence the
exact image of a tropical polyhedron by a (classical) linear map is not in general
a tropical polyhedron. We begin by computing the best zone abstracting Gf and
then represent it by a tropical polyhedron, using the results of Sect. 2.3. We then
show in Sect. 3.2 that we can improve results using an octagon abstraction.

The tightest zone containing the image of a cube going through a linear layer
can be computed as follows:

Proposition 3 (Optimal approximation of a linear layer by a zone)
Let n,m ∈ N and f : Rm → Rn an affine transformation defined, for all

x ∈ Rm and i ∈ [1, n], by
(
f(x)

)
i

=
∑m

j=1 wi,jxj + bi. Let K ⊂ Rm be an
hypercube defined as K =

∏
1≤j≤m[xj , xj ], with xj , xj ∈ R. Then, the tightest

zone Hf of Rm × Rn containing S :=
{(

x, f(x)
) ∣∣
∣x ∈ K

}
is the set of all

(x, y) ∈ Rm × Rn satisfying
( ∧

1≤j≤m

xj ≤ xj ≤ xj

)
∧

( ∧
1≤i≤n

mi ≤ yi ≤ Mi

)
∧

( ∧
1≤i1,i2≤n

yi1 − yi2 ≤ Δi1,i2

)

∧
( ∧

1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤ Mi − xj − δi,j
)
,

where, for all i, i1, i2 ∈ [1, n] and j ∈ [1,m]:

mi =
∑

wi,j<0

wi,jxj +
∑

wi,j>0

wi,jxj + bi,

Mi =
∑

wi,j<0

wi,jxj +
∑

wi,j>0

wi,jxj + bi,

Δi1,i2 =
∑

wi1,j<wi2,j

(wi1,j − wi2,j)xj +
∑

wi1,j>wi2,j

(wi1,j − wi2,j)xj + (bi1 − bi2),

δi,j =

⎧
⎪⎨

⎪⎩

0, if wi,j ≤ 0
wi,j(xj − xj), if 0 ≤ wi,j ≤ 1
(xj − xj), if 1 ≤ wi,j

The tightest zone is obtained as the conjunction of the bounds xj ≤ xj ≤ xj

on input x, given as hypercube K, the bounds on the yi and yi1 −yi2 obtained by
a direct computation of bounds of the affine transform of the input hypercube
K, and finally the bounds on the differences yi −xj given by a direct calculation.
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Figure 4 shows the three different types of zones that over-approximate the
range of a scalar function f , with f(x) = λx+b, on an interval. When λ < 0, the
best that can be done is to abstract the graph of f by a square, we cannot encode
any dependency between f(x) and x: this corresponds to the case δi,j = 0 in
Proposition 3. The two other cases for the definition of δi,j are the two remaining
cases of Fig. 4: when λ is between 0 and 1, this is the picture in the middle, and
when λ is greater than 1, this is the picture at the right hand side. As we have
seen in Proposition 1 and as we will see more in detail below in Theorem 1,
these zones can be encoded as tropical polyhedra. Only the points A, B and C
are extreme points: D is not an extreme point of the polyhedron as it is on the
tropical segment [AC] (the blue, green and red dashed lines each represent a
tropical segment).

Fig. 4. The 3 cases for approximating the graph of an affine scalar function by a tropical
polyhedron, on domain [a, b].

For f : R2 → R, there are 6 cases, depending on the values of λ1 and λ2. In all
cases, these zones can be represented as tropical polyhedra using only 4 extreme
points and 4 inequalities (instead of 8 and 6 in the classical case), as we will see
in Theorem 1. Figure 5 represents the resulting polyhedron for different values
of λ1 and λ2. Each figure shows the extreme points A, B1, B2 and C, the faces
of the polyhedron (in green), the tropical segments inside the polyhedron (in
red), and the actual graph of f(x) (in blue).We have the corresponding external
description in Theorem 1 below:

Theorem 1. The best zone abstraction Hf of of the graph Gf = {(x1, . . . , xm,
y1, . . . , yn) | xj ≤ xj ≤ xj , yi = fi(x1, . . . , xm)} ⊆ R+n of the linear function
f : Rm → Rn defined in Proposition 3 can be seen as the tropical polyhedron
defined externally with m + n + 1 inequalities, for all i ∈ [1, n] and j ∈ [1,m]:

max(x1 − x1, . . . , xm − xm, y1 − M1, . . . , yn − Mn) ≤ 0 (2)
max(0, y1 − M1 + δ1,j , . . . , yn − Mn + δn,j) ≤ xj − xj (3)

max(0, x1 − x1 + δi,1, . . . , xn − xn + δi,n, y1 − di,1, . . . , yn − di,n) ≤ yi − mi (4)

where dj1,j2 denotes the quantity Δj1,j2 + mj2 for i1 and i2 in [1, n].
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Fig. 5. Over-approximation for λ1 = λ2 = 0.5 (left), λ1 = −0.5 and λ2 = 1.5 (middle),
and λ1 = λ2 = 1.2 (right).

We have the matching internal representation in Theorem 2:

Theorem 2. Hf can also be described, internally, as the tropical convex hull of
m + n + 1 extreme points:

A = (x1, . . . , xm,m1, . . . ,mn)
B1 = (x1, x2, . . . , xm,m1 + δ1,1, . . . ,mn + δn,1) . . .

Bm = (x1, . . . , xm−1, xm,m1 + δ1,m, . . . ,mn + δn,m)
C1 = (x1 + δ1,1, . . . , xm + δ1,m,M1, c1,2, . . . , c1,n) . . .

Cn = (x1 + δn,1, . . . , xm + δn,m, cn,1, . . . , cn,n−1,Mn)

where ci1,i2 = Mi1 − Δi1,i2 for i1 and i2 in [1, n].

Example 7 (Running example). Let us detail the computations for Example 1:
h1 = x1 − x2 − 1, h2 = x1 + x2 + 1. We have respectively, δ1,1 = 2, δ1,2 = 0,
δ2,1 = 2, δ2,2 = 2, Δ1,1 = 0, Δ1,2 = 0, Δ2,1 = 4, Δ2,2 = 0, d1,1 = −3, d1,2 = −1,
d2,1 = 1, d2,2 = −1, m1 = −3, m2 = −1, M1 = 1 and M2 = 3. Hence the
external description for the tropical polyhedron relating values of x1, x2, h1

and h2 are: max(x1 − 1, x2 − 1, h1 − 1, h2 − 3) ≤ 0, max(0, h1 + 1, h2 − 1) ≤
x1 + 1, max(0, h1 − 1, h2 − 1) ≤ x2 + 1, max(0, x1 + 1, x2 − 1, h1 + 3, h2 − 1) ≤
h1 + 3, max(0, x1 + 1, x2 + 1, h1 + 1, h2 + 1) ≤ h2 + 1 which encode all zones
inequalities: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −3 ≤ h1 ≤ 1, −1 ≤ h2 ≤ 3, −2 ≤
h1−x1 ≤ 0, −4 ≤ h1−x2 ≤ 2, 0 ≤ h2−x1 ≤ 2, 0 ≤ h2−x2 ≤ 2, −4 ≤ h1−h2 ≤
0. Note that the zone abstraction of [29] would be equivalent to an interval
abstraction and would not infer the relations between h1, h2, x1 and x2. Now the
internal representation of the corresponding zone is A = (−1,−1,−3,−1), B1 =
(1,−1,−1, 1), B2 = (−1, 1,−3, 1), C1 = (−1,−1, 1, 1), C2 = (−1, 1,−1, 3). The
projections of these 5 extreme points on (h1, h2) give the points (−3,−1), (−1, 1),
(−3, 1), (1, 1), (−1, 3), among which (−3, 1) and (−1, 1) are in the tropical convex
hull of A = (−3,−1), B1 = (1, 1) and B2 = (−1, 3) represented in Fig. 3a.
Indeed (−3, 1) is on the tropical line (AB2) and (−1, 1) whereas (−1, 1) is on
the tropical line (AB1) as a tropical linear combination of −2+B1 and −2+B2:
(−1, 1) = max(−2 + (1, 1),−2 + (−1, 3)).
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Example 8. Consider now function f : R2 → R2 with f(x1, x2) = (0.9x1 +
1.1x2, y2 = 1.1x1 − 0.9x2) on (x1, x2) ∈ [−1, 1]. We have in particular M1 = 2,
M2 = 2, m1 = −2 and m2 = −2. We compute δ1,1 = 1.8, δ1,2 = 2, δ2,1 = 2
and δ2,2 = 0 and we have indeed y1 + 2 ≥ x1 − 1 + δ1,1 = x1 + 0.8, y2 + 2 ≥
x1 − 1+2 = x1 +1, y1 +2 ≥ x2 − 1+ δ2,1 = x1 +1, y2 +2 ≥ x2 − 1 and y1 − 2 ≤
x1 +1−1.8 = x1 −0.8, y2 −2 ≤ x1 +1−2 = x1 −1, y1 −2 ≤ x2 +1−2 = x2 −1,
y2 − 2 ≤ x2 + 1. Overall:

x1 − 1.2 ≤ y1 ≤ x1 + 1.2
x2 − 1 ≤ y1 ≤ x2 + 1
x1 − 1 ≤ y2 ≤ x1 + 1
x2 − 3 ≤ y2 ≤ x2 + 3

We also find d1,1 = −2, d1,2 = 0.2, d2,1 = 0.2 and d2,2 = −2. Hence y1 − d1,2 ≤
y2−m2, i.e. y1−0.2 ≤ y2+2 that is y1−y2 ≤ 2.2. Similarly, we find y2−y1 ≤ 2+0.2
hence −2.2 ≤ y1 − y2 ≤ 2.2.

Fig. 6. Over-approximation for f(x1, x2) = (0.9x1 + 1.1x2, y2 = 1.1x1 − 0.9x2).

These equations can be written as linear tropical constraints as in Theorem 1:

max

⎛

⎜
⎜
⎝

x1 − 1
x2 − 1
y1 − 2
y2 − 2

⎞

⎟
⎟
⎠ ≤ 0, max

⎛

⎝
0

y1 − 0.2
y2

⎞

⎠ ≤ x1 + 1, max

⎛

⎝
0
y1

y2 − 2

⎞

⎠ ≤ x2 + 1

max

⎛

⎜
⎜
⎜
⎜
⎝

0
x1 + 0.8
x2 + 1
y1 + 2

y2 − 0.2

⎞

⎟
⎟
⎟
⎟
⎠

≤ y1 + 2, max

⎛

⎜
⎜
⎜
⎜
⎝

0
x1 + 1
x2 − 1

y1 − 0.2
y2 + 2

⎞

⎟
⎟
⎟
⎟
⎠

≤ y2 + 2
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We now depict in Fig. 6 both the image of f as a blue rotated central square,
and its over-approximation by the convex tropical polyhedron calculated as in
Theorem 1 in green, in the plane (y1, y2). As c1,1 = 2, c1,2 = −0.2, c2,1 = −0.2
and c2,2 = 2, the extremal points are, in the (x1, x2, y1, y2) coordinates:

A =

⎛

⎜
⎜
⎝

−1
−1
−2
−2

⎞

⎟
⎟
⎠ B1 =

⎛

⎜
⎜
⎝

1
−1

−0.2
0

⎞

⎟
⎟
⎠ B2 =

⎛

⎜
⎜
⎝

−1
1
0

−2

⎞

⎟
⎟
⎠ C1 =

⎛

⎜
⎜
⎝

0.8
1
2

−0.2

⎞

⎟
⎟
⎠ C2 =

⎛

⎜
⎜
⎝

1
−1

−0.2
2

⎞

⎟
⎟
⎠

3.2 Octagon Abstractions and (max,+,−) Algebra

As in Sect. 3.1, we consider the abstraction of the image of an hypercube K
of Rm by an affine transformation f : Rm → Rn defined, for all x ∈ Rm and
i ∈ [1, n], by

(
f(x)

)
i
=
∑m

j=1 wi,jxj +bi. But we consider here the abstraction of
this image by an octagon, we will thus add some constraints on sums of variables
to the abstraction computed in Sect. 3.1.

Proposition 4 (Optimal approximation of a linear layer by an
octagon). Let K ⊂ Rm be an hypercube defined as K =

∏
j [xj , xj ], with

xj , xj ∈ R. The tightest octagon of Rm ×Rn containing S :=
{(

x, f(x)
) ∣∣
∣x ∈ K

}

is the set of all (x, y) ∈ Rm × Rn satisfying
( ∧

1≤j≤m

xj ≤ xj ≤ xj

)
∧

( ∧
1≤i≤n

mi ≤ yi ≤ Mi

)
∧

( ∧
1≤i1,i2≤m

yi1 − yi2 ≤ Δi1,i2

)

∧
( ∧

1≤i1,i2≤n

Li1,i2 ≤ yi1 + yi2 ≤ Γi1,i2

)

∧
( ∧

1≤i≤n,1≤j≤m

mi − xj + δi,j ≤ yi − xj ≤ Mi − xj − δi,j

)

∧
( ∧

i,j

mi + xj + γi,j ≤ yi + xj ≤ Mi + xj − γi,j

)

where mi,Mi, δi,j ,Δi1,i2 are defined as in Proposition 3, and

Γi1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

Li1,i2 :=
∑

wi1,j+wi2,j<0

xj(wi1,j + wi2,j) +
∑

wi1,j+wi2,j>0

xj(wi1,j + wi2,j)

γi,j :=

⎧
⎪⎨

⎪⎩

0, if 0 ≤ wi,j

−wi,j(xj − xj), if − 1 ≤ wi,j ≤ 0
(xj − xj), if wi,j ≤ −1
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With the notations of Proposition 4, we have

Proposition 5. Let M be the (classically) linear manifold in Rm × Rn × Rm ×
Rn defined by (x+, y+, x−, y−) ∈ M if and only if x+ + x− = 0 and y+ +
y− = 0. The octagon S defined in Proposition 4 is equal to the intersection
of M with the tropical convex polyhedron generated by the 1 + 2n + 2m points
A,B+

1 , . . . , B+
m, B−

1 , . . . , B−
m, C+

1 , . . . , C+
n , C−

1 , . . . , C−
n , where

A = (x1, . . . , xm,m1, . . . ,mn,−x1, . . . ,−xm,−M1, . . . ,−Mn)

B+
k = (0, x+, y+, x−, y−) with x+

k = xk, x+
j �=k = xj , y+

i = mi + δi,k

x−
k = −xk, x−

j �=k = −xj , y−
i = −Mi + γi,k

B−
k = (0, x+, y+, x−, y−) with x−

k = −xk, x−
j �=k = −xj , y−

i = −Mi + δi,k

x+
k = xk, x+

j �=k = xj , y+
i = mi + γi,k

C+
l = (0, x+, y+, x−, y−) with y+

l = Ml, y+
i�=l = Ml − Δl,i, x+

j = xj + δl,j

y−
l = −Ml, y−

i�=l = Ml − Γl,i, x−
j = −xj + γl,j

C−
l = (0, x+, y+, x−, y−) with y−

l = −ml, y−
i�=l = −ml − Δi,l, x−

j = −xj + δl,j

y+
l = ml, y+

i�=l = −ml + Ll,i, x+
j = xj + γl,j

Example 9 (Running example). For the example network of Example 1, the for-
mulas of Proposition 4 give the constraints:

− 1 ≤ x1 ≤ 1
0 ≤ x1 − h1 ≤ 2
− 4 ≤ x1 + h1 ≤ 2
− 2 ≤ x1 − h2 ≤ 0
− 2 ≤ x1 + h2 ≤ 4

− 1 ≤ x2 ≤ 1
− 2 ≤ x2 − h1 ≤ 4
− 2 ≤ x2 + h1 ≤ 0
− 2 ≤ x2 − h2 ≤ 0
− 2 ≤ x2 + h2 ≤ 4

− 3 ≤ h1 ≤ 1
0 ≤ h2 − h1 ≤ 4
− 2 ≤ h2 + h1 ≤ 2
− 1 ≤ h2 ≤ 3

And the internal description is given by Proposition 5, with the following
extreme points, where coordinates are ordered as (x+

1 , x+
2 , h+

1 , h+
2 , x−

1 , x−
2 ,

h−
1 , h−

2 ):

(−1, −1, −3, −1, −1, −1, −1, −3)

(1, −1, −1, 1, −1, −1, −1, −3)

(−1, 1, −3, 1, −1, −1, 1, −3)

(−1, −1, −3, −1, −1, −1, −1, −3)

(1, −1, 1, 1, −1, 1, −1, −1)

(1, 1, −1, 3, −1, −1, 1, −3)

(−1, −1, −3, −1, 1, −1, 1, −1)

(−1, −1, −1, −1, −1, 1, −1, −1)

(−1, −1, −3, −1, −1, −1, −1, −3)

(−1, 1, −3, 1, 1, −1, 3, −1)

(−1, −1, −1, −1, 1, 1, 1, 1)
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From the extremal points of the octagon abstraction above, we get the extremal
points for (h+

1 , h+
2 ), discarding the non extremal ones: (−3,−1), (1, 1) and

(−1, 3), and for (h+
1 , h−

2 ): (−3,−3), (1,−1) and (−1, 1) (for this last pair of
variables, this gives the zone in cyan of Example 3).

4 Validation of Multi-layered Neural Networks

General Algorithm. The method developed in Sect. 3 is the cornerstone of our
algorithm for analysing neural networks. A ReLU neural net consists of a chain
of two kinds of computations, one which applies a classical linear transformation
to their inputs, and another one one which applies a ReLU. function We have
seen that the affine map transformation can be over-approximated using tropical
polyhedra. ReLU being a tropical affine function, the ReLU transform is exact
in tropical polyhedra. It is thus possible to use tropical polyhedra to represent
reachable states for every node in the network, at least for one layer ReLU
networks.

Example 10. We carry on with Example 1 and complete the final computations
of Example 7. The external representation is given by the tropical linear inequal-
ities of Example 7 together with inequalities max(0, h1) ≤ y1 ≤ max(0, h1) and
max(0, h2) ≤ y2 ≤ max(0, h2). Now the corresponding tropical polyhedron is
generated by the linear tropical operator ReLU on each of the extremal points
A, B1, B2, C1 and C2 and gives the two extra (last) coordinates in the axes
(x1, x2, h1, h2, y1, y2), A′ = (−1,−1,−3,−1, 0, 0), B′

1 = (1,−1,−1, 1, 0, 1), B′
2 =

(−1, 1,−3, 1, 0, 1), C ′
1 = (−1,−1, 1, 1, 1, 1), C ′

2 = (−1, 1,−1, 3, 0, 3). The projec-
tions of theses 5 extreme points on (h1, y2) give the points (0, 0), (0, 1), (1, 1),
(0, 3) among which (0, 1) is in the convex hull of A′ = (0, 0), B′

2 = B2 = (1, 1)
and B′

1 = (0, 3) represented in Fig. 3a.

The polyhedron given by the method of Sect. 3 only gives relations between
2 layers (the input and the first hidden layer). In order to get a polyhedron that
represents the whole network when combining with e.g. another layer, we need
to embed the first polyhedron from a space that represents only 2 layers to a
higher space that represents the complete network, with one dimension per node.
We will then need to intersect the polyhedra generated by each pair of layers
to get the final result. Finally, as we are only interested in the input-output
abstraction of the whole network, we can reduce computing costs by removing
the dimensions corresponding to middle layers once those are calculated.

To this end, we use the following notations. Let L ⊂ {L0, . . . , LN} be a set
of layers, layer i containing ni+1 neurons as in Definition 2. Let n be the sum
of all ni+1, with i such that Li ∈ L and SL ≡ Rn

max be the tropical space in
which we are going to interpret the values of the neurons on layers in L, with
each dimension of SL corresponding to a node of a layer of L.

For L1,L2 ⊂ {L0, . . . , LN}, for H ⊂ SL1 a tropical polyhedron, we denote
by Proj(H,L2) ⊂ SL2 the projection of H onto SL2 when SL2 ⊆ SL1 and let
Emb(H,L2) ⊂ SL2 be the embedding of H into SL2 when SL1 ⊆ SL2 .
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The main steps of our algorithm for over-approximating the values of neurons
in a multi-layer ReLU network are the following:

– We start with an initial tropical polyhedron H0 ⊂ S{L0} that represents the
interval ranges of the input layer L0.

– For each additional layer Li+1:
• Calculate an enclosing hypercube Ci for the nodes of layer Li, given the

current abstraction Hi ⊂ SLi
(Sect. 2.3).

• Calculate the polyhedron Pi+1 representing relationships between layer
Li and the new layer Li+1, for nodes of layer Li taking values in Ci,
as described in Sect. 3: Theorem 1 for the external description, and
Theorem 2 for the internal description

• Let L′
i+1 = Li ∪ {Li+1}. Calculate P ′

i+1 = Emb(Pi+1,L′
i+1) (see below)

• Intersect P ′
i+1 with the projection (using the internal description, see

below) of the previous abstraction Hi to get H′
i+1 = Emb(Hi,L′

i+1)∩P ′
i+1

(using the external description).
• Choose Li+1 ⊃ {Li+1}, and calculate Hi+1 = Proj(H′

i+1,Li+1). Usually,
we would use Li+1 = {L0, Li+1} if we only want relations between the
input and output layers, or Li+1 = {L0, . . . , Li+1} if we want relations
between every layer.

We need now to describe the projection and embedding functions Proj and
Emb. Let L2 ⊂ L1 ⊂ {L0, . . . , LN} be two sets of layers. Let H be a polyhedron
on SL1 . We have H′ = Proj(H,L2) = {(xi)Li∈L2 , (xi)Li∈L1 ∈ H}, i.e. for each
point in H, we only keep the dimensions corresponding to layers in L2, and
discard the other dimensions. Projecting is easy with the internal description of
polyhedron, as we can project the extreme points of H to get generators of H′.
However, we do not have a simple algorithm to project the external description
of a polyhedron.

Let L1 ⊂ L2 ⊂ {L0, . . . , LN} be two sets of layers, and Δ be the sum of
ni+1, the number of neurons of layer Li, for i such that Li ∈ L2 \ L1. Let
H be a polyhedron on SL1 . We note that S2 ≡ S1 × RΔ

max, and thus H′ =
Emb(H,L2) ≡ H × RΔ

max, i.e. we add dimensions corresponding to each node
in L2 which are not in L1, and let points in H′ take any value of Rmax on
these dimensions. Embedding is based on simple matrices concatenations in the
external description, for more details. Embedding using the internal description
is more involved and is explained after exemplifying things on a simple example.

Example 11. We consider the 1-layer neural net of Example 1, and add a second
layer. The new linear layer is defined by u1 = y2 − y1 − 1, u2 = y1 − y2 + 1
and the output neurons are z1 = max(0, u1) = max(0, y2 − y1 − 1) and z2 =
max(0, u2) = max(0, y1 − y2 + 1).

The enclosing cube for the tropical polyhedron H containing the values
of neurons of the first layer L1: y1, y2 of Example 1 is [0, 1] × [0, 3]. The
analysis of the second layer L2, supposing its input belongs to [0, 1] × [0, 3]
gives the constraint (an extract of the external representation of the result-
ing tropical polyhedron H′) −3 ≤ u1 − y1 ≤ 2, −2 ≤ u1 − y2 ≤ −1, −2 ≤
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u2 − y1 ≤ 1, −5 ≤ u2 − y2 ≤ 2, z1 = max(0, u1), z2 = max(0, u2).
The intersection of the embedding Emb(H′, {L0, L1, L2}) with the embedding
Emb(H, {L0, L1, L2}) consists, as we saw above, in concatenating the tropical
constraints, in the common space of variables. This implies in particular that we
add the constraint −3 ≤ y1 − y2 ≤ 0 to the above equations. The intersection
is actually a zone intersection, where we have to normalize the corresponding
DBM. A manual calculation shows that this will make use of the equalities
u2 − y2 = (u2 − y1) + (y1 − y2), u1 − y1 = (u1 − y2) + (y2 − y1). By combining
equations, we get the refined bounds (refined lower bound for the first equation,
refined upper bound for the second equation) −2 ≤ u1−y1 ≤ 2, −5 ≤ u2−y2 ≤ 1.

Embedding a Tropical Polyhedron: Internal Description. In this paragraph,
we embed a polyhedron into a higher dimensional space, using the internal
description.

Suppose H is a tropical polyhedron in Rn (such as Pi in the previous section)
that we want to embed H into a larger space, with an extra coordinate, which
we consider bounded here within [a, b]. So we need to determine a presentation
of the tropical polyedron H′ = H × [a, b].

Supposing we have m extreme points pi for representing H, a naive method
consists in noticing that the family (pi, a), (pi, b) is a generator of H′ and remov-
ing non-extreme points from that list. But that would exhibit poor performance,
as we get m × 2k extreme points for H′′. We can in fact do better:

Theorem 3. The extreme points of H′ are {(pi, a), 1 ≤ i ≤ m}∪{(pi, b), i ∈ I},
where I is a subset of indexes of generators of H, I ⊂ [1,m], such that:

∀i ∈ I,∀j ∈ [1,m] \ {i}, pi ⊕ pj �= pi (5)
∀i ∈ [1,m] \ I,∃j ∈ [1,m] \ {i} s.t. pi ⊕ pj = pi (6)

Passing to the limit, this shows that the extreme points of H×R are (pi,−∞),
i = 1, . . . , m and the extreme rays are (pi, 0), i ∈ I for the smallest I verifying
Eq. (5) and (6). In the current implementation, we do not use extreme rays and
embed H into larger state spaces by using large enough values for a and b.

Checking Properties on ReLU Neural Nets. Given an affine guard

h(x, y) =
m∑

i=1

hixi +
n∑

j=1

h′
jyj + c

where xi, resp. yj are the input, resp. output neurons, we want to determine
whether, for all input values in [−1, 1], we have h(x) ≥ 0 (this can encode
properties (P1) and (P2) of Example 1).

There are two ways to check such properties. The first one, that we have
implemented, is as follows. We abstract the input output relation that the net-
work under analysis encodes, using a tropical polyhedron H as described in
Sect. 4. From this, we derive the smallest zone Z containing H as in Sect. 2.3.
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Finally, we solve the linear programming problem m = min
x,y∈Z

h(x, y) using any

classical algorithm (we used glpk in our prototype). This is enough for checking
(P1) in Example 1 since m ≥ 0 proves our property true, but not (P2). The
second way can be useful to check (P2): here we have no choice but try to solve
m = min

x,y∈H
h(x, y) which is not a convex optimization problem, in any sense

(tropical nor classical). This could be encoded as MILP problem instead.

5 Implementation, Experiments and Benchmarks

Internal, External and Double Description Methods. Overall, we have
developed methods for propagating an outer-approximation of the values that
the different layers of neurons can take, within a MLP with ReLU activation. Let
us discuss the pros and cons of using the internal description, external description
and double description methods:

– The double description method allows for possibly using subdivisions, propa-
gating values in multiple layers and projecting them onto a subset of interest-
ing neurons (e.g. input and output layers), as well as computing an enclosing
zone, for synthesizing classification properties. We have implemented this in
a prototype using Polymake [18], whose results we briefly discuss below.

– The internal description allows for analyzing one layer networks, using sub-
divisions, project onto an interesting subset of neurons, as well as computing
an enclosing zone (Sect. 2.3). We have implemented this method in C++ in a
standalone prototype, nntrop, that takes as input a Sherlock file [14] describ-
ing the one hidden layer neural net to analyze plus a linear formula to be
checked, and returns the tropical abstraction of the values that neurons can
take, its over-approximation by a zone, and whether the linear specification
is satisfied or not.

– The external description allows for analyzing multiple layer networks (see
Sect. 4).

The double description method is much more expensive since the translation
between the internal and external representations may be quite complex.

Experiments and Benchmarks. We briefly compare the computation times
between internal description only and double description in Table 1. For each
example, we indicate in the columns # inp. the number of input neurons, #
out. the number of output neurons, # hid. the number of hidden layers, #
neur. is the total number of neurons (input, output and hidden), t. intern
is the time spent for computing the internal representation and t. double for
the double description of the tropical polyhedron abstracting the corresponding
neural net. Experiments are performed on a simple computer with ArchLinux
and a Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz.

We of course see the influence of a potential exponential complexity for going
back and forth between internal and external descriptions, but also the fact that
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we relied on a perl (interpreted) implementation of tropical polyhedra (the one of
polymake [18], with exact rational arithmetics), which is much slower than the
C++ implementation we wrote for the internal description method (although
the internal description method does work in a twice as big space because it
considers the octagon instead of just zone abstraction).

Table 1. Execution times (internal and double description) on sample networks.

Example # inp. # out. # hid. # neur. t. intern. (s) t. double (s)

running 2 2 0 4 0.006 1.83

running2 2 2 1 6 0.011 4.34

multi 2 8 1 13 0.005 3.9

krelu 2 2 0 4 0.011 1.94

tora modified controller 4 1 1 6 0.005 14.57

tora modified controller 1 4 1 1 105 0.75 815.12

quadcopter trial controller 3 18 1 1 49 0.009 102.54

quadcopter trial controller 1 18 1 1 69 0.2 469.77

quad modified controller 18 1 1 20 0.005 14

car nn controller 2 4 2 1 506 104.75 –

car nn controller 1 4 2 1 506 88.8 –

ex 2 1 5 59 0.195 1682.28

In Table 1, running is the network of Example 1, and running2 is the exten-
sion with an extra layer of Example 11, discussed in great length in these exam-
ples. Example krelu is the running example from [35] that we discuss at the end
of this section, and tora modified controller, tora modified controller 1,
quadcopter trial controller 3, quadcopter trial controller 1, quad mo-
dified controller, car nn controller 2, car nn controller 1 and ex are
examples from the distribution of Sherlock [14]. ex is a multi-layer example for
which the algorithm using only the internal representation does not compute the
intersection of tropical polyhedra between layers (involving the external repre-
sentation), contrarily to the double description prototype. We now discuss some
of these examples below.

Network multi is a simple 2-layer, 13 neurons example with inputs x1, x2,
outputs y1, y2, . . . , y8 and
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Our zone based abstraction returns the following ranges: y1 ∈ [0, 6], y2 ∈
[0, 4], y3 ∈ [0, 4], y4 ∈ [0, 2], y5 ∈ [0, 4], y6 ∈ [0, 2], y5 ∈ [0, 2] and y8 = 0, whereas
the exact ranges for y1 to y7 is [0, 2]. Our algorithm is thus exact for y4, y6, y7
and y8 but not y1, y2, y3 nor y5. This is due to the fact that the zone-based
tropical abstraction does represent faithfully the differences of neuron values,
but not sums in particular. For instance, y2 = max(0, 2x1) which cannot be
represented exactly by our method.

Network krelu is a 2 layer 4 neurons example from [35]. We get the correct
bounds on the outputs: 0 ≤ z1, z2 ≤ 2, as well as relations between the inputs and
the outputs: zj ≤ xi + 1. However, we do not have significant relations between
z1 and z2, as those are not tropically linear. We refer to the results obtained
with 1-ReLU and 2-ReLU in [35]: they both get better relations between z1 and
z2, in particular z1 + z2 ≤ 2 which is not representable in a tropical manner
(except by using an octagon based abstraction, which is outside the scope of
this paper). However 1-ReLU does not keep track of relations between the inputs
and the outputs, and has sub-optimal relations between the outputs, as it cannot
represent the non linear ReLU function exactly. 2-ReLU, on the other hand gets
both the relation between the output variables, and between the inputs and
outputs correct, but is more computationally expensive.

In order to assess the efficiency of the internal
description methods, we have run a number of exper-
iments, with various number of inputs and ouputs
for neural nets with one hidden layer only. The linear
layers are generated randomly, with weights between
-2 and 2. Timings are shown in the figure on the right
(demonstrating the expected complexity, cubical in
the number of neurons), where the x-axis is num-
ber of input neurons, y-axis is the number of output
neurons, and z-axis is time. For 100 inputs and 100
neurons in the hidden layer, the full pipeline (checking the linear specification
in particular) took about 35 s, among which the tropical polyhedron analysis
took 6 s.

6 Conclusion and Future Work

We have explored the use of tropical polyhedra as a way to circumvent the
combinatorial complexity of neural networks with ReLU activation function.
The first experiments we made show that our approximations are tractable when
we are able to use either the internal or the external representations for tropical
polyhedra, and not both at the same time. This is akin to the results obtained in
the classical polyhedron approach, where most of the time, only a sub polyhedral
domain is implemented, needing only one of the two kinds of representations.
It is interesting to notice that a recent paper explores the use of octohedral
constraints, a three-dimensional counterpart of our octagonal representations,
in the search of more tractable yet efficient abstraction for ReLU neural nets
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[31]. This work is a first step towards a hierarchy of approximations for ReLU
MLPs. We have been approximating the tropical rational functions that these
neural nets compute by tropical affine functions, and the natural continuation of
this work is to go for higher-order approximants, in the tropical world. We also
believe that the tropical approach to abstracting ReLU neural networks would
be particularly well suited to verification of ternary nets [27]. These ternary nets
have gained importance, in particular in embedded systems: simpler weights
mean smaller memory needs and faster evaluation, and it has been observed [1]
that they can provide similar performance to general networks.
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37. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: ICLR (2019)

38. Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://arxiv.
org/abs/1312.6199

39. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. https://arxiv.org/abs/1711.07356

40. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. USENIX Security (2018)

41. Zhang, H., et al.: Towards stable and efficient training of verifiably robust neural
networks. In: ICLR (2020)

42. Zhang, L., G.Naitzat, Lim, L.H.: Tropical geometry of deep neural networks. In:
Proceedings of the 35th International Conference on Machine Learning, vol. 80,
pp. 5824–5832. PMLR (2018)

https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356


Exploiting Verified Neural Networks via
Floating Point Numerical Error

Kai Jia(B) and Martin Rinard

MIT CSAIL, Cambridge, MA 02139, USA
{jiakai,rinard}@mit.edu

Abstract. Researchers have developed neural network verification algo-
rithms motivated by the need to characterize the robustness of deep
neural networks. The verifiers aspire to answer whether a neural net-
work guarantees certain properties with respect to all inputs in a space.
However, many verifiers inaccurately model floating point arithmetic but
do not thoroughly discuss the consequences.

We show that the negligence of floating point error leads to unsound
verification that can be systematically exploited in practice. For a pre-
trained neural network, we present a method that efficiently searches
inputs as witnesses for the incorrectness of robustness claims made by a
complete verifier. We also present a method to construct neural network
architectures and weights that induce wrong results of an incomplete
verifier. Our results highlight that, to achieve practically reliable verifi-
cation of neural networks, any verification system must accurately (or
conservatively) model the effects of any floating point computations in
the network inference or verification system.

Keywords: Verification of neural networks · Floating point
soundness · Tradeoffs in verifiers

1 Introduction

Deep neural networks (DNNs) have been successful at various tasks, including
image processing, language understanding, and robotic control [30]. However,
they are vulnerable to adversarial inputs [40], which are input pairs indistin-
guishable to human perception that cause a DNN to give substantially different
predictions. This situation has motivated the development of network verification
algorithms that claim to prove the robustness of a network [3,33,42], specifically
that the network produces identical classifications for all inputs in a perturbation
space around a given input.

Verification algorithms typically reason about the behavior of the network
assuming real-valued arithmetic. In practice, however, the computation of both
the verifier and the neural network is performed on physical computers that use
floating point numbers and floating point arithmetic to approximate the under-
lying real-valued computations. This use of floating point introduces numerical
c© Springer Nature Switzerland AG 2021
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error that can potentially invalidate the guarantees that the verifiers claim to
provide. Moreover, the existence of multiple software and hardware systems for
DNN inference further complicates the situation because different implementa-
tions exhibit different numerical error characteristics. Unfortunately, prior neural
network verification research rarely discusses floating point (un)soundness issues
(Sect. 2).

This work considers two scenarios for a decision-making system relying on
verified properties of certain neural networks: (i) The adversary can present arbi-
trary network inputs to the system while the network has been pretrained and
fixed (ii) The adversary can present arbitrary inputs and also network weights
and architectures to the system. We present an efficient search technique to find
witnesses of the unsoundness of complete verifiers under the first scenario. The
second scenario enables inducing wrong results more easily, as will be shown
in Sect. 5. Note that even though allowing arbitrary network architectures and
weights is a stronger adversary, it is still practical. For example, one may deploy
a verifier to decide whether to accept an untrusted network based on its verified
robustness, and an attacker might manipulate the network so that its nonrobust
behavior does not get noticed by the verifier.

Specifically, we train robust networks on the MNIST and CIFAR10 datasets.
We work with the MIPVerify complete verifier [42] and several inference imple-
mentations included in the PyTorch framework [29]. For each implementation,
we construct image pairs (x0,xadv) where x0 is a brightness-modified natural
image, such that the implementation classifies xadv differently from x0, xadv

falls in a �∞-bounded perturbation space around x0, and the verifier incorrectly
claims that no such adversarial image xadv exists for x0 within the perturba-
tion space. Moreover, we show that if modifying network architecture or weights
is allowed, floating point error of an incomplete verifier CROWN [49] can also
be exploited to induce wrong results. Our method of constructing adversarial
images is not limited to our setting but is applicable to other verifiers that do
not soundly model floating point arithmetic.

We emphasize that any verifier that does not correctly or conservatively
model floating point arithmetic fails to provide any safety guarantee against
malicious network inputs and/or network architectures and weights. Ad hoc
patches or parameter tuning can not fix this problem. Instead, verification tech-
niques should strive to provide soundness guarantees by correctly incorporating
floating point details in both the verifier and the deployed neural network infer-
ence implementation. Another solution is to work with quantized neural networks
that eliminate floating point issues [20].

2 Background and Related Work

Training Robust Networks: Researchers have developed various techniques
to train robust networks [24,26,43,47]. Madry et al. [24] formulates the robust
training problem as minimizing the worst loss within the input perturbation
and proposes training on data generated by the Projected Gradient Descent
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(PGD) adversary. In this work, we consider robust networks trained with the
PGD adversary.

Complete Verification: Complete verification (a.k.a. exact verification) meth-
ods either prove the property being verified or provide a counterexample to dis-
prove it. Complete verifiers have formulated the verification problem as a Sat-
isfiability Modulo Theories (SMT) problem [3,12,17,21,34] or a Mixed Integer
Linear Programming (MILP) problem [6,10,13,23,42]. In principle, SMT solvers
are able to model exact floating point arithmetic [32] or exact real arithmetic [8].
However, for efficiency reasons, deployed SMT solvers for verifying neural net-
works all use inexact floating point arithmetic to reason about the neural net-
work inference. MILP solvers typically work directly with floating point, do not
attempt to model real arithmetic exactly, and therefore suffer from numerical
error. There have also been efforts on extending MILP solvers to produce exact
or conservative results [28,39], but they exhibit limited performance and have
not been applied to neural network verification.

Incomplete Verification: On the spectrum of the tradeoff between complete-
ness and scalability, incomplete methods (a.k.a. certification methods) aspire to
deliver more scalable verification by adopting over-approximation while admit-
ting the inability to either prove or disprove the properties in certain cases.
There is a large body of related research [11,14,26,31,37,45,46,49]. Salman et
al. [33] unifies most of the relaxation methods under a common convex relaxation
framework and suggests that there is an inherent barrier to tight verification via
layer-wise convex relaxation captured by such a framework. We highlight that
floating point error of implementations that use a direct dot product formulation
has been accounted for in some certification frameworks [36,37] by maintaining
upper and lower rounding bounds for sound floating point arithmetic [25]. Such
frameworks should be extensible to model numerical error in more sophisticated
implementations like the Winograd convolution [22], but the effectiveness of this
extension remains to be studied. However, most of the certification algorithms
have not considered floating point error and may be vulnerable to attacks that
exploit this deficiency.

Floating Point Arithmetic: Floating point is widely adopted as an approxi-
mate representation of real numbers in digital computers. After each calculation,
the result is rounded to the nearest representable value, which induces roundoff
error. A large corpus of methods have been developed for floating point analysis
[2,9,38,41], but they have yet not been applied to problems at the scale of neural
network inference or verification involving millions of operations. Concerns for
floating point error in neural network verifiers are well grounded. For example,
the verifiers Reluplex [21] and MIPVerify [42] have been observed to occasion-
ally produce incorrect results on large scale benchmarks [15,44]. However, no
prior work tries to systematically invalidate neural network verification results
via exploiting floating point error.
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3 Problem Definition

We consider 2D image classification problems. Let y = NN (x; W ) denote the
classification confidence given by a neural network with weight parameters W
for an input x, where x ∈ R

m×n×c
[0,1] is an image with m rows and n columns of

pixels each containing c color channels represented by floating point values in
the range [0, 1], and y ∈ R

k is a logits vector containing the classification scores
for each of the k classes. The class with the highest score is the classification
result of the neural network.

For a logits vector y and a target class number t, we define the Carlini-
Wagner (CW) loss [5] as the score of the target class subtracted by the maximal
score of the other classes:

LCW (y, t) = yt − max
i�=t

yi (1)

Note that x is classified as an instance of class t if and only if
LCW (NN (x; W ) , t) > 0, assuming no equal scores of two classes.

Adversarial robustness of a neural network is defined for an input x0 and a
perturbation bound ε, such that the classification result is stable within allowed
perturbations:

∀x ∈ Advε (x0) : L(x) > 0
where L(x) = LCW (NN (x; W ) , t0)

t0 = argmax NN (x0; W )
(2)

In this work we consider �∞-norm bounded perturbations:

Advε (x0) = {x | ‖x − x0‖∞ ≤ ε ∧ minx ≥ 0 ∧ maxx ≤ 1} (3)

We use the MIPVerify [42] complete verifier to demonstrate our attack
method. MIPVerify formulates (2) as an MILP instance L∗ = minx∈Advε(x0) L(x)
that is solved by the commercial solver Gurobi [16]. The network is robust if
L∗ > 0. Otherwise, the minimizer x∗ encodes an adversarial image.

Due to the inevitable presence of numerical error in both the network infer-
ence system and the verifier, the exact specification of NN (·; W ) (i.e., a bit-level
accurate description of the underlying computation) is not clearly defined in (2).
We consider the following implementations included in the PyTorch framework
to serve as our candidate definitions of the convolutional layers in NN (·; W ),
while nonconvolutional layers use the default PyTorch implementation:

– NNC,M (·;W ): A matrix-multiplication-based implementation on x86/64
CPUs. The convolution kernel is copied into a matrix that describes the dot
product to be applied on the flattened input for each output value.

– NNC,C (·;W ): The default convolution implementation on x86/64 CPUs.
– NNG,M (·;W ): A matrix-multiplication-based implementation on NVIDIA

GPUs.
– NNG,C (·;W ): A convolution implementation using the IMPLICIT GEMM algo-

rithm from the cuDNN library [7] on NVIDIA GPUs.
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– NNG,CWG (·;W ): A convolution implementation using the WINOGRAD
NONFUSED algorithm from the cuDNN library [7] on NVIDIA GPUs. It is
based on the Winograd convolution algorithm [22], which runs faster but has
higher numerical error compared to others.

For a given implementation NNimpl (·;W ), our method finds pairs of
(x0, xadv) represented as single precision floating point numbers such that

1. x0 and xadv are in the dynamic range of images:
minx0 ≥ 0, minxadv ≥ 0, maxx0 ≤ 1, and maxxadv ≤ 1

2. xadv falls in the perturbation space of x0: ‖xadv − x0‖∞ ≤ ε
3. The verifier claims that the robustness specification (2) holds for x0

4. The implementation falsifies the claim of the verifier:
LCW (NNimpl (xadv;W ) , t0) < 0

Note that the first two conditions are accurately defined for any implementa-
tion compliant with the IEEE-754 standard [19], because the computation only
involves element-wise subtraction and max-reduction that incur no accumulated
error. The Gurobi solver used by MIPVerify operates with double precision
internally. Therefore, to ensure that our adversarial examples satisfy the con-
straints considered by the solver, we also require that the first two conditions
hold for x′

adv = float64 (xadv) and x′
0 = float64 (x0) that are double precision

representations of xadv and x0.

4 Exploiting a Complete Verifier

We present two observations crucial to the exploitation to be described later.

Observation 1: Tiny perturbations on the network input result in random
output perturbations. We select an image x for which the verifier claims that the
network makes robust predictions. We plot ‖NN (x + δ; W ) − NN (x; W )‖∞
against −10−6 ≤ δ ≤ 10−6, where the addition of x + δ is only applied on the
single input element that has the largest gradient magnitude. As shown in Fig. 1,
the change of the output is highly nonlinear with respect to the change of the
input, and a small perturbation could result in a large fluctuation. Note that
the output fluctuation is caused by accumulated floating point error instead of
nonlinearities in the network because pre-activation values of all the ReLU units
have the same signs for both x and x + δ.

Observation 2: Different neural network implementations exhibit different
floating point error characteristics. We evaluate the implementations on the
whole MNIST test set and compare the outputs of the first layer (i.e., with only
one linear transformation applied to the input) against that of NNC,M. Figure 2
presents the histogram which shows that different implementations usually man-
ifest different error behavior.

Method Overview: Given a network and weights NN (·; W ), we search for
image pairs (x0,x1) such that the network is verifiably robust with respect to
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Fig. 1. Change of logits vector due to small single-element input perturbations for
different implementations. The dashed lines are y = |δ|.

x0, while x1 ∈ Advε (x0) and LCW (NN (x1; W ) , t0) is less than the numeri-
cal fluctuation introduced by tiny input perturbations. We call x0 a quasi-safe
image and x1 the corresponding quasi-adversarial image. Observation 1 sug-
gests that an adversarial image might be obtained by randomly disturbing the
quasi-adversarial image in the perturbation space. Observation 2 suggests that
each implementation has its own adversarial images and needs to be handled
separately. We search for the quasi-safe image by modifying the brightness of a
natural image while querying a complete verifier whether it is near the boundary
of robust predictions. Figure 3 illustrates this process.

Before explaining the details of our method, we first present the follow-
ing proposition that formally establishes the existence of quasi-safe and quasi-
adversarial images for continuous neural networks:

Proposition 1. Let E > 0 be an arbitrarily small positive number. If a con-
tinuous neural network NN (·; W ) can produce a robust classification for some
input belonging to class t, and it does not constantly classify all inputs as class
t, then there exists an input x0 such that

0 < min
x∈Advε(x0)

LCW (NN (x; W ) , t) < E

Let x1 = argminx∈Advε(x0) LCW (NN (x; W ) , t) be the minimizer of the above
function. We call x0 a quasi-safe image and x1 a quasi-adversarial image.

Proof. Let f(x) := minx′∈Advε(x) LCW (NN (x′; W ) , t). Since f(·) is composed
of continuous functions, f(·) is continuous. Suppose NN (·; W ) is robust with
respect to x+ that belongs to class t. Let x− be be any input such that
LCW (NN (x−; W ) , t) < 0, which exists because NN (·; W ) does not constantly
classify all inputs as class t. We have f(x+) > 0 and f(x−) < 0. The Poincaré-
Miranda theorem asserts the existence of x0 such that 0 < f(x0) < E.



Exploiting Verified Neural Networks via Floating Point Numerical Error 197

Fig. 2. Distribution of difference relative to NNC,M of first layer evaluated on MNIST
test images.

Given a particular implementation NNimpl (·;W ) and a natural image xseed

which the network robustly classifies as class t0 according to the verifier, we con-
struct an adversarial input pair (x0, xadv) that meets the constraints described
in Sect. 3 in three steps:

Step 1: We search for a coefficient α ∈ [0, 1] such that x0 = αxseed serves as the
quasi-safe image. Specifically, we require the verifier to claim that the network
is robust for αxseed but not so for α′xseed with 0 < (δ = α − α′) < εr, where
εr should be small enough to allow quasi-adversarial images sufficiently close to
the boundary. We set εr = 10−7. We use binary search to minimize δ starting
from α′ ← 0, α ← 1. We found that the MILP solver often becomes extremely
slow when δ is small, so we start with binary search and switch to grid search
by dividing the best known δ to 16 intervals if the solver exceeds a time limit.

Step 2: We search for the quasi-adversarial image x1 corresponding to x0. We
define a loss function with a tolerance of τ as L(x, τ) := LCW (NN (x; W ) , t0)−
τ , which can be incorporated in any verifier by modifying the bias of the Softmax
layer. We aim to find τ0 and τ1, where τ0 is the minimal confidence of all images
in the perturbation space of x0, and τ1 is slightly larger than τ0 with x1 being
the corresponding adversarial image. Formally:

⎧
⎪⎪⎨

⎪⎪⎩

∀x ∈ Advε (x0) : L(x, τ0) > 0
x1 ∈ Advε (x0)
L(x1, τ1) < 0
τ1 − τ0 < 10−7
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Safe image: xseed

Perturbation 
space

Decision boundary 
assumed by the 
verifierquasi-safe: x0

Perturbation 
space

quasi-adversarial: x1

adversarial: xadv

Fluctuation due 
to numerical error

Decision boundary of 
the implementation

Adjusting 
brightness

Fig. 3. Illustration of our method. Since the verifier does not model the floating point
arithmetic details of the implementation, their decision boundaries for the classification
problem diverge, which allows us to find adversarial inputs that cross the boundary
via numerical error fluctuations. Note that the verifier usually does not comply with
a well defined specification of NN (·; W ), and therefore it does not define a decision
boundary. The dashed boundary in the diagram is just for illustrative purposes.

Note that x1 is produced by the complete verifier as proof of nonrobustness given
the tolerance τ1. The above values are found via binary search with initialization
τ0 ← 0 and τ1 ← LCW (NN (x0; W ) , t0). In addition, we accelerate the binary
search if the verifier can compute the worst objective defined as:

τw = min
x∈Advε(x0)

LCW (NN (x; W ) , t0) (4)

In this case, we initialize τ0 ← τw − δs and τ1 ← τw + δs. We empirically
set δs = 3 × 10−6 to incorporate the numerical error in the verifier so that
L(x0, τw − δs) > 0 and L(x0, τw + δs) < 0. The binary search is aborted if the
solver times out.

Step 3: We minimize LCW (NN (x1; W ) , t0) with hill climbing via applying
small random perturbations on the quasi-adversarial image x1 while projecting
back to Advε (x0) to find an adversarial example. The perturbations are applied
on patches of x1 as described in Algorithm 1.

Algorithm 1. Searching adversarial examples via hill climbing
Input: quasi-safe image x0

Input: target class number t
Input: quasi-adversarial image x1

Input: input perturbation bound ε
Input: a neural network inference implementation NNimpl (·; W )
Input: number of iterations N (default value 1000)
Input: perturbation scale u (default value 2e−7)
Output: an adversarial image xadv or FAILED

for Index i of x0 do � Find the bounds xl and xu for allowed perturbations
xl[i] ← max(nextafter(x0[i] − ε, 0), 0)
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xu[i] ← min(nextafter(x0[i] + ε, 1), 1)
while x0[i] − xl[i] > ε or float64 (x0[i]) − float64 (xl[i]) > ε do

xl[i] ← nextafter(xl[i], 1)
end while
while xu[i] − x0[i] > ε or float64 (xu[i]) − float64 (x0[i]) > ε do

xu[i] ← nextafter(xu[i], 0)
end while

end for

� We select the offset and stride based on the implementation to ensure that
perturbed tiles contribute independently to the output. The Winograd algorithm in
cuDNN produces 9 × 9 output tiles for 13 × 13 input tiles and 5 × 5 kernels.
if NNimpl (·; W ) is NNG,CWG (·; W ) then (offset, stride) ← (4, 9)
else (offset, stride) ← (0, 4)
end if

for i ← 1 to N do
for (h, w) ← (0, 0) to (height(x1), width(x1)) step (stride, stride) do

δ ← uniform(−u, u, (stride − offset, stride − offset))
x′

1 ← x1[:]
x′

1[h + offset : h + stride, w + offset : w + stride] += δ
x′

1 ← max(min(x′
1, xu ), xl )

if LCW (NNimpl (x
′
1; W ) , t) < LCW (NNimpl (x1; W ) , t) then

x1 ← x′
1

end if
end for

end for
if LCW (NNimpl (x1; W ) , t) < 0 then return xadv ← x1

else return FAILED
end if

Experiments: We conduct our experiments on a workstation with an NVIDIA
Titan RTX GPU and an AMD Ryzen Threadripper 2970WX CPU. We train
the small architecture from Xiao et al. [48] with the PGD adversary and the
RS Loss on MNIST and CIFAR10 datasets. The network has two convolutional
layers with 4×4 filters, 2×2 stride, and 16 and 32 output channels, respectively,
and two fully connected layers with 100 and 10 output neurons. The trained
networks achieve 94.63% and 44.73% provable robustness with perturbations of
�∞ bounded by 0.1 and 2/255 on the two datasets, respectively, similar to the
results reported in Xiao et al. [48]. Our code is available at https://github.com/
jia-kai/realadv.

Although our method only needs O(− log ε) invocations of the verifier where
ε is the threshold in the binary search, the verifier still takes most of the time
and is too slow for a large benchmark. Therefore, for each dataset, we test
our method on 32 images randomly sampled from the verifiably robustly clas-
sified test images. All the implementations that we have considered are suc-
cessfully exploited. Specifically, our benchmark contains 32 × 2 × 5 = 320
cases, while adversarial examples are found for 82 of them. The failed cases

https://github.com/jia-kai/realadv
https://github.com/jia-kai/realadv
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Table 1. Number of adversarial examples successfully found for different neural net-
work inference implementations

NNC,M NNC,C NNG,M NNG,C NNG,CWG

MNIST 2 3 1 3 7

CIFAR10 16 12 7 6 25

Fig. 4. The quasi-safe images with respect to which all implementations are successfully
exploited, and the corresponding adversarial images.

correspond to large τ1 values in Step 2 due to verifier timeouts or the discrep-
ancy of floating point arithmetic between the verifier and the implementations.
Let τimpl := LCW (NNimpl (x1; W ) , t) denote the loss of an quasi-adversarial
input on a particular implementation. Algorithm 1 succeeds on all cases with
τimpl < 8.3 × 10−7 (35 such cases in total), while 18 among them have τimpl < 0
due to floating point discrepancy (i.e., the quasi-adversarial input is already an
adversarial input for this implementation). The most challenging case (i.e., with
largest τimpl) on which Algorithm 1 succeeds has τimpl = 3.2× 10−4. The largest
value of τimpl is 3.7. Table 1 presents the detailed numbers for each implemen-
tation. Figure 4 shows the quasi-safe images on which our exploitation method
succeeds for all implementations and the corresponding adversarial images.

5 Exploiting an Incomplete Verifier

The relaxation adopted in certification methods renders them incomplete but
also makes their verification claims more robust to floating point error compared
to complete verifiers. In particular, we evaluate the CROWN framework [49] on our
randomly selected MNIST test images and the corresponding quasi-safe images
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from Sect. 4. CROWN is able to verify the robustness of the network on 29 out of
the 32 original test images, but it is unable to prove the robustness for any of the
quasi-safe images. Note that MIPVerify claims that the network is robust with
respect to all the original test images and the corresponding quasi-safe images.

Incomplete verifiers are still vulnerable if we allow arbitrary network archi-
tectures and weights. Our exploitation builds on the observation that verifiers
typically need to merge always-active ReLU units with their subsequent layers to
reduce the number of nonlinearities and achieve a reasonable speed. The merge
of layers involves computing merged “equivalent” weights, which is different from
the floating point computation adopted by an inference implementation.

We build a neural network that takes a 13 × 13 single-channel input image,
followed by a 5 × 5 convolutional layer with a single output channel, two fully
connected layers with 16 output neurons each, a fully connected layer with one
output neuron denoted as u = max(Wuhu + bu, 0), and a final linear layer that
computes y = [u; 10−7] as the logits vector. All the hidden layers have ReLU
activation. The input x0 is taken from a Gaussian distribution. The hidden layers
have random Gaussian coefficients, and the biases are chosen so that (i) the ReLU
neurons before u are always activated for inputs in the perturbation space of x0

(ii) the neuron u is never activated while bu is the maximum possible value (i.e.,
bu = −maxx∈Advε(x0) Wuhu (x)). CROWN is able to prove that all ReLU neurons
before u are always activated but u is never activated, and therefore it claims
that the network is robust with respect to perturbations around x0. However, by
initializing the quasi-adversarial input x1 ← x0 + ε sign(Wequiv ) where Wequiv

is the product of all the coefficient matrices of the layers up to u, we successfully
find adversarial inputs for all the five implementations considered in this work
by randomly perturbing x1 using Algorithm 1 with a larger number of iterations
(N = 10000) due to the smaller input size.

Note that the output scores can be manipulated to appear less suspicious.
For instance, we can set z = clip(107 · y, −2, 2) as the final output in the above
example so that z becomes a more “naturally looking” classification score in the
range [−2, 2] and its perturbation due to floating point error is also enlarged
to the unit scale. The extreme constants 10−7 and 107 can also be obfuscated
by using multiple consecutive scaling layers with each one having small scaling
factors such as 0.1 and 10.

6 Discussion

We have shown that some neural network verifiers are systematically exploitable.
One appealing remedy is to introduce relaxations into complete verifiers, such
as by verifying for a larger ε or setting a threshold for accepted confidence score.
For example, it might be tempting to claim the robustness of a network for
ε = 0.09999 if it is verified for ε = 0.1. We emphasize that there are no guarantees
provided by any floating point complete verifier currently extant. Moreover, the
difference between the true robust perturbation bound and the bound claimed by
an unsound verifier might be much larger if the network has certain properties.
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For example, MIPVerify has been observed to give NaN results when verifying
pruned neural networks [15]. The adversary might also be able to manipulate
the network to scale the scores arbitrarily, as discussed in Sect. 5. The correct
solution requires obtaining a tight relaxation bound that is sound for both the
verifier and the inference implementation, which is extremely challenging.

A possible fix for complete verification is to adopt exact MILP solvers with
rational inputs [39]. There are three challenges: (i) The efficiency of exactly
solving the large amounts of computation in neural network inference has not
been studied and is unlikely to be satisfactory (ii) The computation that derives
the MILP formulation from a verification specification, such as the neuron bound
analysis in Tjeng et al. [42], must also be exact, but existing neural network
verifiers have not attempted to define and implement exact arithmetic with the
floating point weights (iii) The results of exact MILP solvers are only valid for an
exact neural network inference implementation, but such exact implementations
are not widely available (not provided by any deep learning libraries that we are
aware of), and their efficiency remains to be studied.

Alternatively, one may obtain sound and nearly complete verification by
adopting a conservative MILP solver based on techniques such as directed round-
ing [28]. We also need to ensure all arithmetic in the verifier to derive the MILP
formulation soundly over-approximates floating point error. This is more com-
putationally feasible than exact verification discussed above. It is similar to
the approach used in some sound incomplete verifiers that incorporate float-
ing point error by maintaining upper and lower rounding bounds of internal
computations [36,37]. However, this approach relies on the specific implemen-
tation details of the inference algorithm—optimizations such as Winograd [22]
or FFT [1], or deployment in hardware accelerators with lower floating point
precision such as Bfloat16 [4], would either invalidate the robustness guarantees
or require changes to the analysis algorithm. Therefore, we suggest that these
sound verifiers explicitly state the requirements on the inference implementa-
tions for which their results are sound. A possible future research direction is to
devise a universal sound verification framework that can incorporate different
inference implementations.

Another approach for sound and complete neural network verification is to
quantize the computation to align the inference implementation with the verifier.
For example, if we require all activations to be multiples of s0 and all weights
to be multiples of s1, where s0s1 > 2E and E is a very loose bound of possible
implementation error, then the output can be rounded to multiples of s0s1 to
completely eliminate numerical error. Binarized neural networks [18] are a family
of extremely quantized networks, and their verification [20,27,35] is sound and
complete. However, the problem of robust training and verification of quantized
neural networks [20] is relatively under-examined compared to that of real-valued
neural networks [24,26,42,48].
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7 Conclusion

Floating point error should not be overlooked in the verification of real-valued
neural networks, as we have presented techniques that efficiently find wit-
nesses for the unsoundness of two verifiers. Unfortunately, floating point sound-
ness issues have not received sufficient attention in neural network verification
research. A user has few choices if they want to obtain sound verification results
for a neural network, especially if they deploy accelerated neural network infer-
ence implementations. We hope our results will help to guide future neural
network verification research by providing another perspective on the tradeoff
between soundness, completeness, and scalability.

Acknowledgments. We would like to thank Gagandeep Singh and Kai Xiao for pro-
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Abstract. Deep neural networks are an attractive tool for compressing
the control policy lookup tables in systems such as the Airborne Colli-
sion Avoidance System (ACAS). It is vital to ensure the safety of such
neural controllers via verification techniques. The problem of analyzing
ACAS Xu networks has motivated many successful neural network veri-
fiers. These verifiers typically analyze the internal computation of neural
networks to decide whether a property regarding the input/output holds.
The intrinsic complexity of neural network computation renders such ver-
ifiers slow to run and vulnerable to floating-point error.

This paper revisits the original problem of verifying ACAS Xu net-
works. The networks take low-dimensional sensory inputs with training
data provided by a precomputed lookup table. We propose to prepend
an input quantization layer to the network. Quantization allows efficient
verification via input state enumeration, whose complexity is bounded by
the size of the quantization space. Quantization is equivalent to nearest-
neighbor interpolation at run time, which has been shown to provide
acceptable accuracy for ACAS in simulation. Moreover, our technique
can deliver exact verification results immune to floating-point error if we
directly enumerate the network outputs on the target inference imple-
mentation or on an accurate simulation of the target implementation.

Keywords: Neural network verification · Verification by
enumeration · ACAS Xu network verification

1 Introduction

The Airborne Collision Avoidance System (ACAS) is crucial for aircraft
safety [11]. This system aims to avoid collision with intruding aircraft via auto-
matically controlling the aircraft or advising a human operator to take action.
The ACAS typically takes low-dimensional sensory inputs, including distance,
direction, and speed for the intruder and ownship aircraft, and provides a control
policy which is a valuation for a set of candidate actions such as “weak left” or
“strong right”. Recent work has formulated aircraft dynamics under uncertain-
ties such as advisory response delay as a partially observable Markov decision
process for which dynamic programming can be used to compute values for dif-
ferent actions [10]. The value function computed via dynamic programming is
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often stored in a lookup table with millions of entries [12] that require giga-
bytes of storage. While this table could, in principle, be used to implement the
ACAS, the high storage demand makes it too costly to be embedded in practi-
cal flight control systems. This situation has motivated the development of table
compression techniques, including block compression with reduced floating-point
precision [13] and decision trees [7].

Recently, neural networks have emerged as an efficient alternative for com-
pressing the lookup tables in ACAS Xu (ACAS X for unmanned aircraft) by
approximating the value function with small neural networks. Specifically, Julian
et al. [7] compresses the two-gigabyte lookup table into 45 neural networks with
2.4MB of storage, where each network handles a partition of the input space.

Katz et al. [9] proposes a set of safety properties for the ACAS Xu net-
works, such as that a “strong right” advisory should be given when a nearby
intruder is approaching from the left. These safety properties have served as a
valuable benchmark to motivate and evaluate multiple verification algorithms
[1,9,15,17,19]. Such verifiers typically need to perform exact or conservative
analysis of the internal neural network computation [14,18]. Unfortunately, neu-
ral network verification is an NP-Complete problem [9], and therefore the ver-
ifiers need exponential running time in the worst case and can be very slow in
practice. In particular, Bak et al. [1] recently presented the first verifier that is
able to analyze the properties φ1 to φ4 in the ACAS Xu benchmarks with a time
limit of 10 min for each case, but their verifier still needs 1.7 h to analyze the
property φ7.

In summary, previous techniques perform the following steps to obtain and
verify their neural network controllers for ACAS:

1. Compute a lookup table containing the scores of different actions given sen-
sory states via dynamic programming.

2. Train neural networks to approximate the lookup table.
3. In deployed systems, use the neural networks to provide control advisories.

– At run time, the networks give interpolated scores for states not present
in the original lookup table.

– Neural network verifiers that analyze the internal computing of neural
networks are adopted to check if the networks meet certain safety speci-
fications.

We propose instead to verify neural networks with low-dimensional inputs,
such as the ACAS Xu networks, via input quantization and state enumeration.
Specifically, we prepend a quantization layer to the network so that all the
internal computation is performed on the discretized input space. Our proposed
technique performs the following steps to obtain and verify a quantized neural
network:

1. We take a pretrained network and prepend an input quantization layer to
the network. The input quantization should be compatible with the original
lookup table, i.e., preserving the grid points in the lookup table.
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2. In deployed systems, sensory inputs are first quantized by the input quanti-
zation layer. The original network then computes the scores for the quantized
input.

– At run time, the quantization process is equivalent to nearest-neighbor
interpolation.

– To verify the network for any specification, we enumerate all quantized
states within the constraint of the specification and check if the network
outputs meet the specification.

Our method provides the following desirable features:

1. Our method provides acceptable runtime accuracy for ACAS Xu. Our input
quantization is equivalent to nearest-neighbor interpolation and gives identi-
cal results on the table grid points as the original continuous network. Julian
et al. [7] has shown that nearest-neighbor interpolation on the lookup table
for runtime sensory inputs provides effective collision avoidance advisories in
simulation.

2. Our method enables efficient verification. Verifying the input-quantized net-
works for any safety specification takes nearly constant time bounded by
evaluating the network on all the grid points in the quantized space. Multiple
specifications can be verified simultaneously by evaluating the network on
the grid once and checking the input and output conditions for each prop-
erty. Our method provides a verification speedup of tens of thousands of times
compared to the ReluVal [19] verifier.

3. Many existing verifiers do not accurately model floating-point arithmetic
due to efficiency considerations, thus giving potentially incorrect verification
results [5]. For example, Wang et al. [19] reports that Reluplex [9] occasionally
produces false adversarial examples due to floating-point error. By contrast,
our verification result is exact (i.e., complete and sound) and does not suffer
from floating-point error because we combine input quantization and complete
enumeration of the effective input space. Moreover, input quantization allows
directly verifying on the target implementation or an accurate simulation of
the implementation, and therefore provides trustworthy safety guarantees for
given neural network inference implementations.

4. Our technique allows easily verifying more complicated network architectures,
such as continuous-depth models [2]. Our verification only needs an efficient
inference implementation for the networks. By contrast, extending other neu-
ral network verifiers to new network architectures requires significant effort.

We recommend input quantization for neural networks with low-dimensional
inputs as long as the quantization provides sufficient accuracy for the target
application and the quantization space is small enough to allow efficient enu-
meration. This technique enables efficient, exact, and robust verification and
provides reliable performance on the deployed platform.
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2 Method

We formally describe our input-quantization method. This paper uses bold sym-
bols to represent vectors and regular symbols to represent scalars. The super-
script represents derived mathematical objects or exponentiation depending on
the context.

Let f : R
n �→ R

m denote the computation of a neural network on
n-dimensional input space with n being a small number. We propose to use
a quantized version of the network for both training and inference, defined as

f q(x) := f(q(x)) (1)

where q(x) is the quantization function such that q(x) ∈ S with S being a
finite-sized set. For a specification φ : ∀xP (x) =⇒ R(f(x)) where P (·) and
R(·) are predicates, we verify φ regarding fq by checking:

φq : ∀xq ∈ Sp =⇒ R(f(xq)) (2)
where Sp := {q(x) : P (x)}

Since Sp ⊆ S, the complexity of verifying φq is bounded by |S|.
We quantize each dimension of x independently via q(x) = [q1(x1) . . .

qn(xn)]. Note that if some of the dimensions are highly correlated in some appli-
cation, we can quantize them together to avoid a complete Cartesian product
and thus reduce the size of the quantized space.

In many cases, the input space is uniformly quantized. Previous work has uti-
lized uniform input quantization for neural network verification [4,20] and uni-
form computation quantization for efficient neural network inference [3]. Given
a quantization step si and a bias value bi, we define a uniform quantization
function qi(·) as:

qi(xi) =
⌊

xi − bi

si

⌉
si + bi (3)

where �·	 denotes rounding to the nearest integer.
The values of qi(·) are essentially determined according to prior knowledge

about the target application and may thus be nonuniform. Let Qi = {v1
i , · · · , vk

i }
denote the range of qi(·). We use nearest neighbor for nonuniform quantization:

qi(xi) = argminvj
i
|vj

i − xi| (4)

The ACAS Xu networks are trained on a lookup table L : G �→ R
m, where

the domain G ⊂ R
n is a finite set. We choose the quantization scheme so that

the quantization preserves grid points, formally ∀x ∈ G : q(x) = x. In this
way, the training processes of f(·) and f q(·) are identical. In fact, we directly
prepend q(·) as an input quantization layer to a pretrained network f(·) to
obtain f q(·). Note that we can use a denser quantization than the grid points in
G so that prediction accuracy might get improved by using the neural network
as an interpolator.
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Table 1. Description of horizontal CAS inputs. The last column describes the values
used to generate the lookup table, which are taken from the open-source implementa-
tion of HorizontalCAS [6] and the Appendix VI of Katz et al. [9].

Symbol Description Values in the lookup table

ρ (m) Distance from ownship to intruder 32 values between 0 and 56000 1

θ (rad) Angle to intruder 2 41 evenly spaced values between −π and π

ψ (rad) Heading angle of intruder 2 41 evenly spaced values between −π and π

vown (m/s) Speed of ownship {50, 100, 150, 200}
vint (m/s) Speed of intruder {50, 100, 150, 200}
τ (sec) Time until loss of vertical

separation
{0, 1, 5, 10, 20, 40, 60}

αprev Previous advisory {COC, WL, WR, SL, SR}
1 Distance values are nonuniformly distributed. They are given in the source
code of Julian and Kochenderfer [6]: https://github.com/sisl/HorizontalCAS/blob/
cd72ffc073240bcd4f0eb9164f441d3ad3fdc074/GenerateTable/mdp/constants.jl#L19.
2 Angle is measured relative to ownship heading direction.

3 Experiments

We evaluate our method on checking the safety properties for the ACAS Xu net-
works [9]. Note that accuracy of input-quantized networks in deployed systems
is acceptable since the quantization is equivalent to nearest-neighbor interpola-
tion that has been shown to provide effective collision avoidance advisories in
simulation [7].

Experiments in this section focus on evaluating the runtime overhead of
input quantization and the actual speed of verification by enumerating quan-
tized states. We train two networks of different sizes to evaluate the scalability
of the proposed method.

3.1 Experimental Setup

The horizontal CAS problem takes seven inputs as described in Table 1, and
generates one of the five possible advisories: COC (clear of conflict), WL (weak
left), WR (weak right), SL (strong left), and SR (strong right).

Julian et al. [8] proposes to train a collection of neural networks where each
network works with a pair of specific (τ, αprev) values, takes the remaining five
values as network inputs, and approximates the corresponding scores in the
lookup table. Although ACAS only needs to suggest the action with the maxi-
mal score, the network is still trained to approximate the original scores in the
table instead of directly giving the best action because the numerical scores are
used in a Kalman filter to improve system robustness in the face of state mea-
surement uncertainty [8]. In order to maintain the action recommendation of the
original table while reducing score approximation error, Julian et al. [8] adopts
an asymmetric loss function that imposes a higher penalty if the network and
the lookup table give different action advisories.

https://github.com/sisl/HorizontalCAS/blob/cd72ffc073240bcd4f0eb9164f441d3ad3fdc074/GenerateTable/mdp/constants.jl#L19
https://github.com/sisl/HorizontalCAS/blob/cd72ffc073240bcd4f0eb9164f441d3ad3fdc074/GenerateTable/mdp/constants.jl#L19
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Katz et al. [9] proposes a few ACAS Xu safety properties as a sanity check
for the networks trained by Julian et al. [8]. These properties have also served as
a useful benchmark for many neural network verifiers. Although the pretrained
networks of Julian et al. [8] are publicly accessible, the authors told us that
they could not provide the training data or the source code due to regulatory
reasons. They suggested that we use their open-source HorizontalCAS system
[6] to generate the lookup tables to train our own networks. However, Horizon-
talCAS networks differ from the original ACAS Xu networks in that they only
have three inputs by fixing vown = 200 and vint = 185. We modified the source
code of HorizontalCAS to match the input description in Table 1 so that we can
directly use the ReluVal [19] verifier.

We evaluate our method by analyzing the property φ9 proposed in Katz et al.
[9], which usually takes the longest time to verify among all the properties for
many verifiers [9,16,19]. Other properties share a similar form but have different
input constraints and output requirements. Note that property φ9 is the most
compatible with the open-source HorizontalCAS because the input constraints
of other properties are beyond the ranges in Table 1. For example, property φ1

has vown ≥ 1145 but the quantization scheme of vown for the original ACAS Xu
networks is not publicly available.

The specification of φ9 is:
– Description: Even if the previous advisory was “weak right”, the presence

of a nearby intruder will cause the network to output a “strong left” advisory
instead.

– Tested on: the network trained on τ = 5 and αprev = WR
– Input constraints: 2000 ≤ ρ ≤ 7000, −0.4 ≤ θ ≤ −0.14, −3.141592 ≤ ψ ≤

−3.141592 + 0.01, 100 ≤ vown ≤ 150, 0 ≤ vint ≤ 150.

We conduct the experiments on a workstation equipped with two GPUs
(NVIDIA Titan RTX and NVIDIA GeForce RTX 2070 SUPER), 128 GiB of
RAM, and an AMD Ryzen Threadripper 2970WX processor. We train two neural
networks for property φ9 (i.e., with τ = 5 and αprev = WR) with PyTorch.

Our small network has five hidden layers with 50 neurons in each layer, and
our large network has seven hidden layers with 100 neurons in each layer. We
use the ReLU activation.

We implement the nearest-neighbor quantization for ρ via directly indexing
a lookup table. The greatest common divisor of differences between adjacent
quantized ρ values is 5. Therefore, we precompute a lookup table U such that
U�ρ/5� is the nearest neighbor of ρ in the set of quantized values. We use the
torch.index select operator provided by PyTorch to take elements in the
lookup table in a batched manner. Other network inputs use uniform quantiza-
tion as described in Table 1. We implement uniform quantization according to
the Eq. (3).

3.2 Experimental Results

Let yi ∈ R
5 (resp. ŷi ∈ R

5) denote the scores given by the network (resp. the
original lookup table) for the five candidate actions on the ith lookup table entry.
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Table 2. Accuracies achieved by the networks evaluated on the lookup table. For
comparison, Julian and Kochenderfer [6] reports an accuracy of 97.9% for networks
trained only with three out of the five inputs (they fixed vown = 200 and vint = 185).
This table shows that our network achieves sufficient accuracy for practical use.

Metric Small network Large network

Policy accuracy 96.87% 98.54%

Score �1 error 0.052 0.026

Score �2 error 1.3 × 10−3 3.3 × 10−4

Table 3. Comparing verification time (in seconds) for the property φ9 on two methods:
the ReluVal verifier [19] that runs on multiple cores, and exhaustive enumeration in
the quantized input space on a single CPU core. This table shows that verification by
enumerating quantized input states is significantly faster in our case and also more
scalable regarding different network sizes.

Verification method Small network Large network

ReluVal [19] 0.622 171.239

Input quantization - specific 1 0.002 0.002

Input quantization - all 2 0.384 0.866
1 Network is evaluated on the 60 input states that fall within
the input constraint of φ9.
2 Network is evaluated on all the 860,672 input states in a
batched manner. This time is the upper bound for verifying any
first-order specification in the form of ∀xP (x) =⇒ R(f (x)) by
ignoring the time on evaluating predicates P (·) and R(·)

We consider three accuracy measurements, assuming a uniform distribution of
the table index i:

– Policy accuracy is the probability that the network recommends the same
action as the original lookup table. Formally, it is P (argmaxyi = argmax ŷi).

– Score �1 error measures the �1 error of approximated scores, defined as
E(‖yi − ŷi‖1), where ‖x‖1 :=

∑
i |xi|.

– Score �2 error measures the �2 error of approximated scores, defined as
E(‖yi − ŷi‖2), where ‖x‖2 :=

√∑
i x2

i .

Table 2 presents the accuracies achieved by our networks, which shows that
our training achieves comparable results as the HorizontalCAS system [6].

To verify the networks, we prepend them with an input quantization layer
that implements the quantization scheme given in Table 1. To verify any spec-
ification or a set of specifications, we evaluate the network on all the 860, 672
points in the quantized space and check if each input/output pair meets the
specification(s). Evaluating the network on the grid points takes 0.384 s for the
small network and 0.866 s for the large one. We evaluate the network on multi-
ple inputs in a batched manner to benefit from optimized numerical computing
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routines included in PyTorch. Adding the quantization layer incurs about 2%
runtime overhead. We do not do any performance engineering and use the off-
the-shelf implementation provided by PyTorch. Our verification speed can be
further improved by using multiple CPU cores or using the GPU.

We also compare our method with ReluVal [19] on verifying the property
φ9. The input constraint of φ9 consists of only 60 states in the quantized space.
Therefore, we only need to check if the network constantly gives the “weak right’
advisory for all the 60 states to verify φ9. As shown in Table 3, input quantization
significantly reduces the verification time compared to the ReluVal solver.

4 Conclusion

This paper advocates input quantization for the verification of neural networks
with low-dimensional inputs. Our experiments show that this technique is signif-
icantly faster and more scalable than verifiers that analyze the internal compu-
tations of the neural networks on verifying ACAS Xu networks. Moreover, our
method does not suffer from the floating-point discrepancy between the verifier
and the network inference implementation. In general, our method applies to
deterministic floating-point programs that take low-dimensional inputs as long
as the target application tolerates input quantization such that enumerating all
the quantized values takes acceptable time.
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Abstract. Proving properties on programs accessing data structures
such as arrays often requires universally quantified invariants, e.g., “all
elements below index i are nonzero”. In this article, we propose a gen-
eral data abstraction scheme operating on Horn formulas, into which we
recast previously published abstractions. We show that our instantiation
scheme is relatively complete: the generated purely scalar Horn clauses
have a solution (inductive invariants) if and only if the original problem
has one expressible by the abstraction.
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1 Introduction

Static analysis of programs containing unbounded data structures is challenging,
as most interesting properties require quantifiers. Even stating that all elements
of an array are equal to 0 requires them (∀i a[i] = 0), let alone more complex
cases such as Example 1. In general, the satisfiability of arbitrary quantified
properties on unbounded data structures is undecidable [3], thus there is no
algorithm for checking that such properties are inductive, nor inferring them.
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The first step is to select an abstract domain to search for invariants, e.g.,
properties of the form ∀i, P (a[i]) for some predicate P and array a. In this paper,
we describe a transformation from and to Horn clauses such that these properties
may be expressed in the transformed Horn clauses without using quantifiers. For
the array data structure, our scheme can optionally completely remove arrays
from the transformed Horn clauses. This transformation is sound and relatively
complete: the resulting problem, to be fed to a solver for Horn clauses, such as
Eldarica or Z3, has a solution if and only if the original one has one within the
chosen abstract domain. In short, we reduce problems involving quantifiers and
arrays to problems that do not, with no loss of precision with respect to the
abstract domain.

Example 1 (Running example). The following program initializes an array to
even values, then increases all values by one and checks that all values are odd.
We wish to prove that the assertion is verified.

for(k=0; k<N; k++) /* Program point For1 */ a[k] = rand ()*2;
for(k=0; k<N; k++) /* Program point For2 */ a[k] = a[k]+1;
for(k=0; k<N; k++) /* Program point For3 */ assert(a[k] % 2 == 1);

Contributions. (i) an abstraction framework for Horn clauses using unbounded
data structures, that we call data abstraction; (ii) the analysis of a property we
call relative completeness in this framework (iii) and the use of that framework
to handle programs with arrays and its experimental evaluation.

Contents. Section 2 introduces Horn Clauses’ concepts and notations. Sections 3
and 4 expose our data abstraction framework and its relative completeness anal-
ysis. Section 5 considers a data abstraction for arrays. Finally, Sect. 6 proposes a
full algorithm to analyze programs with arrays and its experimental evaluation.

2 Preliminaries: Horn Clauses

2.1 Solving Programs with Assertions Using Horn Clauses

Programs with assertions can be transformed into Horn clauses using tools
such as SeaHorn [9] or JayHorn [14]. The syntax of Horn clauses is recalled in
Definition 2. A basic transformation consists in associating a predicate to each
point of the control flow graph; control edges are inductive relations (clauses),
and assertions A are clauses ¬A → false1.

Example 2 (Example 1 transformed into Horn clauses). All predicates Fori have
arity 3 (1 array and 2 integer parameters) and Clause (4) in bold, will be used
throughout the paper.
1 Tools such as SeaHorn [9] handle richer languages such as LLVM bytecode, but the

generated clauses are more complex and further removed from their initial semantics.
Such clauses fall within our data abstraction framework, but not within the scope
of the experimental evaluation of this paper.
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For1(a, N, 0) (1)

For1(a, N, k) ∧ k < N → For1(a[k � r ∗ 2], N, k + 1) (2)

For1(a, N, k) ∧ k ≥ N → For2(a, N, 0) (3)

F or2(a, N, k) ∧ k < N → F or2(a[k � a[k] + 1], N, k + 1) (4)

For2(a, N, k) ∧ k ≥ N → For3(a, N, 0) (5)

For3(a, N, k) ∧ k < N ∧ a[k]%2 �= 1 → false (6)

For3(a, N, k) ∧ k < N → For3(a, N, k + 1) (7)

Variables are local: the a of Clause 1 is not formally related to the a of Clause 4.

A solution to such a system of Horn clauses is a set of inductive invariants
suitable for proving the desired properties. Horn clause systems can be solved
by tools such as Z3, Eldarica, . . .. A “Sat” answer means that the inductive
invariants exist and thus the program is correct2. “Unsat” means that a coun-
terexample was found, leading to an assertion violation. “Unknown” means the
tool fails to converge on a possible invariant. Finally, the tool may also timeout.

2.2 Horn Clauses and Horn Problems

In our setting, a Horn clause is a boolean expression over free variables and
predicates with at most one positive predicate.

Definition 1 (Expressions expr, positive and negative predicates P ,
models M and semantics expr(vars), �expr�M). In this paper we do not
constrain the theory on which expressions are written, the only constraint being
that the backend solver must handle it. An expression may contain quantifiers,
free variables and predicates. A predicate is a typed name which will be a set
when interpreted in a model.
Expression evaluation: There are two evaluation contexts for expressions:

1. Models, written M: map each predicate to a set of the corresponding domain
2. Environments, written vars, that to each free variable of the expression

associates a value of the corresponding type’s domain �expr�M denotes the
evaluation of an expression expr in a model M, expr(vars) denotes its the
evaluation in the environment vars, �expr(vars)�M denotes joint evaluation.
Furthermore, if an expression value is independent of the model or environ-
ment, we may use it directly as its evaluation.

2 Z3 is both a SMT solver and a tool for solving Horn clauses. In SMT, a “Sat” answer
often means a counterexample trace invalidating a safety property. In contrast, in
Horn solving, “Sat” means a safety property is proved.
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Positive and negative predicates: A predicate instance in a boolean expres-
sion expr is deemed negative (resp. positive) if and only if there is a negation
(resp. no negation) in front of it when expr is in negative normal form.

Definition 2 (Horn Clauses, extended, normalized, satisfiability). A
Horn clause is simply any expression without quantifiers (but with free variables)
containing at most one positive predicate.
Extended Horn clause: a Horn clause which may use quantifiers.
Normalized Horn clause: Normalized Horn clauses are in the form P1(e1) ∧
. . . ∧ Pn(en) ∧ φ → P ′(e′) where:

– e1, . . . , en, φ, e′ are expressions without predicates but with free variables.
– P1, . . . , Pn are the “negative” predicates
– P ′ is the positive predicate or some expression

Satisfiability: A set of Horn clauses C is said to be satisfiable if and only if
∃M,∀C ∈ C, �∀vars, C(vars)�M.
In this paper, we will denote clauses in capital letters: C, sets of clauses in
Fraktur: C, and models in calligraphic: M.

Definition 3 (Notations ite, f [a ← b]).
For a boolean expression b and expressions e1, e2, we define the expression “if-
then-else”, written ite(b, e1, e2), evaluating to e1 when b and to e2 when ¬b.

For a function f ( i.e. an environment) or an array, we define f [a ← b] as
f [a ← b](x) = ite(x = a, b, f(x))

Example 3 (Satisfiability of Example 2). The following model satisfies Exam-
ple 2 with (a,N, k) ∈ N

3.

1. M(For1) = {(a,N, k)|k < N ∧ ∀i < k, a[i]%2 = 0}
2. M(For2) = {(a,N, k)|k < N ∧ ∀i < k, a[i]%2 = 1 ∧ ∀k ≤ i < N, a[i]%2 = 0}
3. M(For3) = {(a,N, k)|k < N ∧ ∀i < N, a[i]%2 = 1}

Horn clauses constrain models in two ways: those with a positive predicate
force the model to be a post-fixpoint of an induction relation; those without are
assertions that force the model to not contain elements violating the assertion.

Horn clauses are the syntactic objects we use to write Horn problems. The-
orem 2 formalizes the link between Horn problems and Horn clauses.

Definition 4 (Horn Problem H, defines fH ,UH). A Horn problem H is
a pair (fH ,UH) where (i) fH is a monotone function over models with order
M1 ≤ M2 ≡ ∀P,M1(P ) ⊆ M2(P ). (ii) UH is a model. It is said to be satisfiable
if and only if lfpfH ≤ UH (where lfp is the least fixpoint operator).

Theorem 1 (Horn problems as a condition on models, defines H(M)).
A Horn problem H is satisfiable if and only if ∃M, fH(M) ≤ M ∧ M ≤ UH ,
also written ∃M,H(M) with H(M) =def fH(M) ≤ M ∧ M ≤ UH .

Remark 1. The proof of this theorem, as well as all other ones of this paper, can
be found in the associated research report [4].
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Theorem 2 (Horn clauses as Horn problems, defines HC).
Let C be a set of Horn clauses. There exists a Horn problem HC, such that for
any model M, HC(M) = ∀C ∈ C, �∀vars, C(vars)�M. Thus, satisfiable(C) ≡
satisfiable(HC).

2.3 Horn Problem Induced by an Abstraction

Static analysis by abstract interpretation amounts to searching for invariants
(i.e., models of Horn clauses in our setting) within a subset of all possible invari-
ants called an abstract domain; elements of that subset are said to be expressible
by the abstraction. We formalize abstraction as a Galois connection [5], that is,
a pair (α, γ) where α denotes abstraction (i.e. simplification) and γ denotes the
semantics (i.e. what the abstraction corresponds to) of abstract elements.

Definition 5 (Models expressible by the abstraction G). We say that a
model M is expressible by an abstraction G if and only if M = γG ◦ αG(M) or
equivalently ∃M#,M = γG(M#).

Example 4 (Models expressible by an abstraction). Consider the model M from
Example 3. This model is expressible by the abstraction G such that ∀P ∈
{For1, For2, For3}:

1. αG(M)(P ) = {(i, a[i], N, k)|(a,N, k) ∈ M(P )}
2. γG(M#)(P ) = {(a,N, k)|∀i, (i, a[i], N, k) ∈ M#(P )}
but not by the abstraction G′ such that ∀P ∈ {For1, For2, For3}:

1. αG′(M)(P ) = {(a[i], N, k)|(a,N, k) ∈ M(P )}
2. γG′(M#)(P ) = {(a,N, k)|∀i, (a[i], N, k) ∈ M#(P )}

The idea is that the abstraction G keeps the relationships between indices and
values (i, a[i]), which is all that is needed for our invariants, whereas G′ forgets
the indices and only keeps information about the values, which is insufficient.
Section 5 details what each abstraction expresses on arrays.

Definition 6 (Abstraction of a Horn problem abs(G,H)). The abstraction
of Horn problem H by a Galois connection G noted abs(G,H), is defined by (i)
fabs(G,H) = αG ◦ fH ◦ γG (ii) Uabs(G,H) = αG(UH).

Theorem 3 (Definition abs(G,H) is correct). For all M#, the following
statements are equivalent (with the notation H(M), where H is a Horn problem
and M a possible model, from Theorem 1): (i) abs(G,H)(M#) (ii) H(γG(M#))
(iii) abs(G,H)(αG ◦ γG(M#)) .

Remark 2. From this theorem, it follows that:

1. abs(G,H) corresponds to the desired abstraction as: H is satisfiable by a
model expressible by the abstraction (γG(M#)) iff abs(G,H) is satisfiable.

2. abs(G,H)(M#) is constructable from H and γG . This will be used in Theo-
rem 5.
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2.4 Horn Clauses Transformations

A transformation is sound if it never transforms unsatisfiable Horn clauses
(incorrect programs) into satisfiable ones (correct programs), complete if it never
transforms satisfiable Horn clauses into unsatisfiable ones. A transformation is
complete relative to an abstraction if it never transforms Horn clauses satisfiable
in the abstract domain into unsatisfiable ones. Together, soundness and rel-
ative completeness state that the transformation implements exactly
the abstraction.

Definition 7 (Soundness, Completeness, Relative completeness). A
transformation alg from Horn clauses to Horn clauses is said to be:

– sound if and only if ∀C,Halg(C) satisfiable ⇒ HC satisfiable.
– complete if and only if ∀C,HC satisfiable ⇒ Halg(C) satisfiable .
– complete relative to G iff ∀C, abs(G,HC) satisfiable ⇒ Halg(C) satisfiable .

Theorem 4 (Soundness with relative completeness is abs). If a trans-
formation alg is sound and complete relative to G, then ∀C,Halg(C) satisfiable ≡
abs(G,HC) satisfiable.

Relative completeness is rarely ensured in abstract interpretation; examples
include some forms of policy iteration, which compute the least inductive invari-
ant in the abstract domain. Widening operators, very widely used, break relative
completeness. Previous works on arrays do not analyze relative completeness.

In this paper, we present a framework to define abstractions on data such
that the relative completeness of transformations is analyzed, and proved when
possible. To do so, our abstraction scheme is divided into two algorithms: (i) one
that computes abs(G,HC) and thus is sound and complete relative to G but uses
extended Horn clauses (i.e. Horn clauses with additional quantifiers); (ii) another
which transforms these extended Horn clauses back into Horn clauses and ensures
soundness and strives to ensure completeness—and is shown to ensure it in
the setting of our tool. When the second algorithm ensures completeness, the
framework provides an abstraction algorithm from Horn clauses to Horn clauses
which is both sound and complete relative to the abstraction.

3 Data Abstraction: Abstracting Horn Clauses

3.1 Implementing Horn Clauses Abstraction

The abstraction on the syntax of Horn clauses is done by choosing a predicate
to abstract. This approach can then be successively used on several predicates.

In this paper, we consider a subset of abstractions we call data abstractions.
The semantics of a predicate is a set of unknown values and an abstraction
is simply a relation in the form of a Galois connection between that set of
unknown values to a “simpler” set of unknown values. The key particularity
of data abstractions is that the abstraction of this set of unknown values is
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defined by the abstraction of its individual elements, the “data”. This allows us
to take advantage of the syntax of Horn clauses because the “data” is simply
the expressions passed as parameters to a predicate. Furthermore, as our goal
is to syntactically modify the Horn clauses, we require that the abstraction can
be encoded by an explicit formula that will be used syntactically during the
transformation.

Definition 8 (Data abstraction σ, defines Fσ, ασ, γσ,GP
σ ).

Let C and A be sets. A data abstraction σ is a function from C to P(A) and we
write Fσ the formula encoding its inclusion relation: Fσ(a#, a) ≡ a# ∈ σ(a)3.

It defines a Galois connection from P(C ) to P(A) as follows: for S ⊆ C ,
S# ⊆ A, ασ(S) =

⋃

a∈S

σ(a) and γσ(S#) = {a ∈ C |σ(a) ⊆ S#}.
This Galois connection can be applied to a predicate P , thus yielding the

Galois connection GP
σ defined by αGP

σ
(M)(P ′) = ite(P ′ = P, ασ(M(P )),M(P ′))

and γGP
σ
(M#)(P ′) = ite(P ′ = P, γσ(M#(P )),M#(P ′)).

Example 5 (Cell1 abstraction of an array).
Cell1 abstracts an array by the set of its cells (i.e. pairs of index and value).
σCell1(a) = {(i, a[i])} FσCell1

((i, v), a) ≡ v = a[i]

Remark 3. This data abstraction σCell1 essentially abstracts a function a from an
arbitrary index type I to an arbitrary value type by its graph {(i, a(i)) | i ∈ I}.
As such, it does not lose information on individual arrays: two functions are
identical if and only if they have the same graph (functional extensionality).

However, the associated ασCell1
is not injective and loses information. This

is essentially because when one takes the superposition of the graphs of two or
more functions, there is no way to recover which part of the graph corresponds
to which function. Consider for example a0 : 0 → 0, 1 → 1 and a1 : 0 → 1, 1 → 0.
Then, ασCell1

({a0, a1}) = {0, 1}×{0, 1}; and thus ασCell1
({a0, a1}) contains not

only a0 and a1, but also the constant arrays 0 and 1.

We now give the syntactic transformation on Horn clauses, so that the Horn
problem induced by the transformed clauses corresponds to the abstraction of
the desired predicate by the given data abstraction. We rely on Theorem 3,
which states how the abstract Horn problem must be constructed and find its
syntactical counterpart. Thus, if P is the predicate to be abstracted by σ, M(P )
must be replaced by (γσ(M(P#)))(expr), where M(P#) is the abstracted set
and P# the “abstract predicate”. Syntactically, this amounts to replacing any
instance of P (expr) by ∀a#, Fσ(a#, expr) → P#(a#).

Algorithm 1 (dataabs(C, P, P#, Fσ)).
Input : C: Horn clauses; P : predicate to abstract; P#: unused predicate; Fσ.
Computation: for each clause C ∈ C, for each P (expr) in C, replace P (expr)
by ∀a#, Fσ(a#, expr) → P#(a#), where a# is a new unused variable.

3 Classically, we denote abstract elements (∈ A) with sharps (#).
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Example 6 (Using Algorithm 1 (to abstract array a (of Example 2 (with Cell1).
Let us define the data abstraction FσCell1 ·σ2

id
(discussed in Sect. 3.2) by:

FσCell1 ·σ2
id

((i, v,N#, k#), (a,N, k)) ≡ v = a[i] ∧ N# = N ∧ k# = k. And
let us execute dataabs(Clauses of Example 2, For2, For2#, FσC e l l1 ·σ2

i d
). The

result for Clause 4: For2(a,N, k) ∧ k < N → For2(a[k � a[k] + 1], N, k + 1) is

(∀(i#, v#, N#, k#), v# = a[i#] ∧ N# = N ∧ k# = k→ For2#(i#, v#, N#, k#)) ∧ k < N

→ (∀(i′#, v′#, N ′#, k′#),v′# = a[k � a[k] + 1][i′#] ∧ N ′# = N ∧ k′# = k + 1

→ For2#(i′#, v′#, N ′#, k′#)) (8)

where a# from Algorithm 1 is named (i#, v#, N#, k#) in the first replacement
and (i′#, v′#, N ′#, k′#) in the second.

Theorem 5 (Algorithm 1 is correct). If P# unused in C,
∀M#,Hdataabs(C,P,P#,Fσ)(M#[P# ← P ]) = abs(GP

σ ,HC)(M#). Thus, the
dataabs algorithm is complete relative to GP

σ .

When given a set of Horn clauses, one can abstract several predicates (i.e.
several program points), perhaps all of them, by applying the abstraction algo-
rithm to them, not necessarily with the same abstraction.

3.2 Combining Data Abstractions

In Example 6, we had to manually adapt the abstraction Cell1 to the predicate
For2 which contained three variables. We define combinators for abstractions
such that those adapted abstractions can be easily defined, and later, analyzed.

Definition 9 (σid, σ⊥, σ1 · σ2, σ1 ◦ σ2 ). These abstractions and combinators
are defined by

1. σid(x) = {x}; Fσid
(x#, x) ≡ x# = x.

2. σ⊥(x) = {⊥}; Fσ⊥(x#, x) ≡ x# = ⊥
3. σ1 · σ2(x1, x2) = σ1(x1) × σ2(x2);Fσ1·σ2((x

#
1 , x#

2 ), (x1, x2)) ≡ Fσ1(x
#
1 , x1) ∧

Fσ2(x
#
2 , x2)

4. σ1 ◦ σ2(x) =
⋃

x#
2 ∈σ2(x2)

σ1(x
#
2 ); Fσ1◦σ2(x

#, x) ≡ ∃x#
2 : Fσ1(x

#, x#
2 ) ∧

Fσ2(x
#
2 , x)

where σid is the “no abstraction” abstraction, σ⊥ abstracts into the unit type
(singleton ⊥) and is used with the · combinator to project a variable out, σ1 · σ2

abstracts pairs by the cartesian product of their abstractions, and σ1◦σ2 emulates
applying σ1 after σ2.

We have given in this section a general scheme for abstracting Horn clauses
using data abstraction and shown its correctness. This scheme transforms Horn
clauses into extended Horn clauses: new quantifiers (∀a#) are introduced which
makes current solvers [12,18] struggle. We shall now see how to get rid of these
quantifiers while retaining relative completeness.
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4 Data Abstraction: Quantifier Removal

4.1 A Quantifier Elimination Technique Parametrized by insts

Contrarily to other approaches that use general-purpose heuristics [2], we design
our quantifier elimination from the abstraction itself, which allows us to analyze
the completeness property of the quantifier elimination algorithm.

The quantifiers introduced by the abstraction scheme are created either by: 1.
The ∀a# of Algorithm 1, which is handled in this paper. 2. Quantifiers within Fσ

(i.e. when abstraction composition is used). In this paper, we only handle exis-
tential quantifiers in prenex position of Fσ which is sufficient for the abstractions
of this paper4.

Quantifiers are generated for each instance of the abstracted predicate, and
to remove the quantifiers, we separate these instances into two classes: 1. The
case when the predicate instance is positive. This case is handled by replac-
ing the quantified variables by free variables, possibly renaming them to avoid
name clashes. This is correct as these quantifiers would be universal quantifiers
when moved to prenex position and thus have same semantics as free variables
when considering the satisfiability of the clauses. 2. The case when the predicate
instance is negative. In this case, when moved to prenex position, the quantifiers
would be existential and thus can not be easily simplified. We use a technique
called quantifier instantiation [2], which replaces a quantifier by that quanti-
fier restricted to some finite set of expressions I called instantiation set (i.e.
∀a#, expr is replaced by ∀a# ∈ I, expr), which, as I is finite, can be unrolled to
remove that quantifier.

Therefore, our quantifier elimination algorithm takes a parameter insts which
returns the instantiation set for each abstracted negative predicate instance; and
eliminates quantifiers according to their types (negative or positive).

Definition 10 (Instantiation set heuristic insts(Fσ, a, ctx)). insts is said
to be an instantiation set heuristic if and only if: 1. insts takes three parameters:
Fσ, the abstraction; a, the variable that was abstracted; ctx, the context in which
the quantifiers are removed. 2. insts(Fσ, a, ctx) returns an instantiation set for
the pair of quantifiers a# (the quantified variable corresponding to the abstraction
of a) and q (the prenex existential quantifiers of Fσ). Thus its type is a set of
pairs of expressions where the first expression is for a# and the second for the
prenex existential quantifiers of Fσ.

To ease the writing of the algorithm, we assume that the input clauses to the
quantifier elimination algorithm have been created using the abstraction scheme
at most once for each predicate (one may use abstraction composition to emulate
applying it twice) on Horn clauses that where initially normalized. Furthermore,
as we will be manipulating existential quantifiers within Fσ, we will define Fσ[q]
such that Fσ(a#, a) = ∃q, Fσ[q]a#, a). In order words, Fσ[q] is Fσ where the

4 In practice this can be expanded by analyzing what the quantifiers within Fσ would
give when moved to prenex position.
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prenex existential quantifiers have been replaced by the value q. We will use ()
as value for q when Fσ has no prenex existential quantifiers.

Algorithm 2 (Quantifier elimination algorithm eliminate).
Input:

– C, an (extended) clause of the form e1 ∧ . . . ∧ en → e′

– insts an instantiation heuristic as in Definition 10

Computation:

1. //We transform quantifiers from the positive instance e′ into free variables
e′

res := free var of positive quantifiers(e′)
2. For i from 1 to n

(a) //We look if ei is the abstraction of a predicate, if it is not, eresi = ei

Let (Fσi , ai, P
#
i ) such that ei = ∀a#, Fσi(a

#, ai) → P#
i (a#)

If impossible, eresi = ei and go to next loop iteration.
(b) //We compute the context for that instance

Let ctxi = eres1 ∧ . . . ∧ eresi−1 ∧ ei+1 ∧ . . . ∧ en → e′
res

(c) //We compute the instantiation set for that abstraction.
Let Ii = insts(Fσi , ai, ctxi)

(d) //We finally compute ei after instantiation
Let eresi =

∧

(a#,q)∈Ii

Fσi [q](a
#, ai) → P#

i (a#)

3. Return eres1 ∧ . . . ∧ eresn → e′
res

Example 7 (Eliminating quantifiers of Clause 8 of Example 6). Let us apply
eliminate on:

∀i#, v#, N#, k#, v# = a[i#] ∧ N# = N ∧ k# = k→ For2#(i#, v#, N#, k#) ∧ k < N

→ ∀i′#, v′#, N ′#, k′#,v′# = a[k � a[k] + 1][i′#] ∧ N ′# = N ∧ k′# = k + 1

→ For2#(i′#, v′#, N ′#, k′#)

In this extended clause, n = 2 an can be decomposed into e1, e2 and e′.
The instantiation algorithm then follows the following steps:

1. Step 1, computes e′
res as given in Clause 9

2. We enter Step 2 with i = 1 and it matches the pattern.
3. We compute the context and call insts (call of Eq. 11). Let us assume it

returns {(k, a[k], N, k), (i′#, a[i′#], N, k)} (which is the value returned by the
instantiation set heuristic we construct later in this paper).

4. We get eres1 as given in Clause 9
5. We enter Step 2 with i = 2 and it does not match the pattern. Thus, eres2 = e2

The final clause is thus

(a[k] = a[k] ∧ N = N ∧ k = k→ For2#(k, a[k], N, k)∧
a[i′#] = a[i′#] ∧ N = N ∧ k = k→ For2#(i′#, a[i′#], N, k)) ∧ k < N

→ v′# = a[k � a[k] + 1][i′#] ∧ N ′# = N ∧ k′# = k + 1→ For2#(i′#, v′#, N ′#, k′#) (9)

where v′#, i′#, N ′#, k′# are new free variables of the clause.
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Simplifying this clause for readability yields:

For2#(k, a[k], N, k) ∧ For2#(i′#, a[i′#], N, k) ∧ k < N

→ For2#(i′#, a[k ← a[k] + 1][i′#], N, k + 1) (10)

The call to insts, which will be studied in Examples 8 and 10, was:

insts(FσCell1 ·σ2
id

, (a, (N, k)), e2 → e′
res)

= insts(FσCell1 ·σ2
id

, (a, (N, k)), k < N → v′# = a[k � a[k] + 1][i′#]

∧N ′# = N ∧ k′# = k + 1→ For2#((i′#, v′#), (N ′#, k′#))) (11)

Theorem 6 (eliminate sound). ∀C, insts,M, �eliminate(C, insts)�M ⇒
�C�M

4.2 Constructing a Good Heuristic insts

To ensure relative completeness, and thus the predictability, of our overall
abstraction (multiple calls to dataabs with different predicates followed by a call
to eliminate), we need eliminate to be complete. The completeness of eliminate
is highly tied to each call to insts, and we therefore define completeness of a call
to insts such that whenever all calls are complete, eliminate is complete.

Definition 11 (Completeness of a call to insts).
We say that a call insts(Fσ, a, ctx) is complete if and only if, for any M, and
any set E of elements of the types of a, 12 implies 13.

∀vars, (∀(a#, q), Fσ[q](a#, a(vars)) ⇒ a# ∈ ασ(E)) ⇒ �ctx(vars)�M (12)

∀vars, (∀((a#, q)) ∈ insts(Fσ, a, ctx)(vars),

Fσ[q](a#, a(vars)) ⇒ a# ∈ ασ(E)) ⇒ �ctx(vars)�M (13)

Remark 4. We always have 13 implies 12; soundness is based on this.

Remark 5. 12 should be understood as the clause before (a#, q) is instantiated:
ασ(E) represents α(M)(P ). Therefore, 12 is similar to ei → ctx (of algorithm
eliminate) which is the currified current state of the clause in the loop. 13 should
be understood as eresi

→ ctx

Theorem 7 (Completeness of insts (implies that of eliminate).
For any C, insts,M, if during execution of eliminate(C, insts) all calls to insts
are complete, then �C�αG(M) = �eliminate(C, insts)�αG(M) where G is such that
∀i, γG(M(P#

i )) = γσi
(P#

i ), with i, P#
i , σi as defined in eliminate.
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Remark 6. We only consider abstract models, that is, αG(M) where G repre-
sents the galois connection after multiple calls to dataabs. The result is then a
consequence of Remark 5.

Although our previous completeness definition of insts correctly captures the
necessary properties for our instantiation algorithm to keep equisatisfiability, it
is too weak to reason on when using combinators (see Sect. 3.2). The desired
property of the instantiation heuristic is what we call strong completeness.

Strong Completeness. The definition of completeness only applies in the con-
text of boolean types, as required by the Algorithm eliminate. However, when
handling the impact of the instantiation of a quantifier, one wishes to handle
that impact with respect to an arbitrarily typed expression. For example, in the
case of combinator σ1 · σ2, the instantiation of the quantifiers generated by the
abstraction σ1 must be aware of its impact on the variables to be abstracted by
σ2. This leads to a definition of strong completeness that allows any expression
type as context parameter of insts, and replaces the satisfiability requirement
of the context by an equality requirement.

Definition 12 (Strong completeness of insts(Fσ, a, ctx)).
insts(Fσ, a, ctx) is said strongly complete if and only if, for any E, vars,M,
∀((a#, q)) ∈ insts(Fσ, a, ctx)(vars), Fσ[q](a#, a(vars)) ⇒ a# ∈ ασ(E)

⇒ ∃vars′, (∀(a#, q), Fσ[q](a#, a(vars′)) ⇒ a# ∈ ασ(E))
∧�ctx(vars)�M = �ctx(vars′)�M

Remark 7. This definition is constructed by contraposing that of completeness.

Theorem 8 (Strong completeness implies completeness).
If ctx is of boolean type,
insts(Fσ, a, ctx) strongly complete ⇒ insts(Fσ, a, ctx) complete

We give now some results that enable to modularly design instantiation
heuristics while remaining (strongly) complete.

Algorithm 3 (insts for finite abstractions). When σ(a) finite and Fσ has
no existential quantifiers insts(Fσ, a, ctx) = {(a#, ()), a# ∈ σ(a)}

Thus insts(Fσid
, a, ctx) = {(a, ())} and insts(Fσ⊥ , a, ctx) = {(⊥, ())}

Algorithm 4 (insts for combinators). We will use @ for tuple concatena-
tion.

insts(Fσ1·σ2 , (a1, a2), ctx) =

let I1 = insts(Fσ1 , a1, (ctx, a2)) in // We want I2 to keep the values of I1 unchanged

let I2 = insts(Fσ2 , a2, (ctx, a1, I1)) in //We return I1 × I2 with the right ordering

// and the abstracted value at the top of the list. .

{((a#
1 , a

#
2 ), q1@q2)|(a#

1 , q1) ∈ I1 ∧ (a
#
2 , q2) ∈ I2}
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insts(Fσ1◦σ2 , a, ctx) =

//We first instantiate σ2

let I2 = insts(Fσ2 , a, ctx) in Itmp := I2; If := ∅
//For each instantiation of σ2 we instantiate with σ1

while Itmp �= ∅
//All orders for picking (q0, q2) are valid

let (q0, q2) ∈ Itmp in Itmp := Itmp − {(q0, q2)}
//We keep the other instantiation sets unchanged

//We also keep “q0 is an abstraction of a” and the global context unchanged

let I(q0,q2) = insts(Fσ1 , q0, (I2 − {(q0, q2)}, If , Fσ2 [q2](q0, a), ctx)) in

//We combine I(q0,q2) with (q0, q2)

If := If ∪ {(a#, (q0@q1@q2))|((a#, q1)) ∈ I(q0,q2)}
return If

//Note : (a#, (q0@q1@q2)) ∈ If ≡ (q0, q2) ∈ I2 ∧ (a#, q1) ∈ I(q0,q2)

//Note : I(q0,q2) depends on If and thus on the picked order

Theorem 9 (Strong Completeness of insts of Algorithms 3 and 4). If σ
is finite, insts(Fσ, a, ctx) is strongly complete. If its recursive calls are strongly
complete, insts(Fσ1·σ2 , (a1, a2), ctx) is strongly complete. If σ1, σ2 are compatible:
∀E �= ∅, ασ2 ◦ γσ2 ◦ γσ1 ◦ασ1 ◦ασ2(E) = γσ1 ◦ασ1 ◦ασ2(E) and its recursive calls
are strongly complete, then insts(Fσ1◦σ2 , a, ctx) is strongly complete.

Remark 8. The compatibility condition is true for our abstractions (Theorem 10).

Example 8 (Using combinator instantiation).
In Example 7, we assumed the result of Call 11:

insts(FσCell1 ·σ2
id

, (a, (N, k)), k < N → v′# = a[k � a[k] + 1][i′#]

∧N ′# = N ∧ k′# = k + 1 → For2#((i′#, v′#), (N ′#, k′#)))

Let us now expand this call further using our combinator construction for insts.

1. We enter the call insts(Fσ1·σ2 , (a1, a2), ctx) with σ1 = σCell1 , σ2 = σ2
id, a1 =

a, a2 = (N, k) and ctx = k < N → v′# = a[k � a[k] + 1][i′#] ∧ N ′# =
N ∧ k′# = k + 1 → For2#((i′#, v′#), (N ′#, k′#))

2. We compute I1 = insts(Fσ1 , a1, (ctx, a2)) As we do not have yet an
instantiation heuristic for σCell1 , let us assume this call returns I1 =
{(k, a[k]), (i′#, a[i′#])}. This call is further expanded in Example 10.

3. We now compute I2 = insts(Fσ2 , a2, (ctx, a1, I1)) But σ2 = σ2
id thus yielding

an embedded call to the · combinator
(a) We enter the call insts(Fσid.σid

, (N, k), (ctx, a1, I1))
(b) We call insts(Fσid

, N, ((ctx, a1, I1), k)), yielding {N}
(c) We call insts(Fσid

, k, ((ctx, a1, I1), N, {N})), yielding {k}
(d) We return {N, k}

4. We return the final result: {((k, a[k]), (N, k)), ((i′#, a[i′#]), (N, k + 1))}
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Note that if the call to the instantiation using Cell1 is strongly complete, then
our final instantiation set is as well. The following call to the instantiation of
Cell1 is studied in Example 10.

insts(Fσ1 , a, (ctx, a2)) =
(
insts(FσCell1

, a, (k < N → v′# = a[k � a[k] + 1][i′#]

∧N ′# = N ∧ k′# = k + 1 → For2#((i′#, v′#), (N ′#, k′#)), (N, k)))
)

(14)

5 Cell Abstraction: A Complete Data Abstraction

To illustrate our data abstraction technique, we show how to handle the cell
abstractions of Monniaux and Gonnord [17].

5.1 Cell Abstractions

Cell abstractions consist in viewing arrays (maps from an index type to a value
type) by a finite number of their cells. However, instead of using cells at specific
fixed indices, such as the first or the last, we use parametric cells (i.e. cells with
a non fixed index). Cell1 of Example 5 corresponds to one parametric cell. In
Definition 13, we extend Cell1 to Celln.

Table 1. Properties specified by cell abstractions

Concrete Abs Abstract property

a[0] = 0 Cell1 i1 = 0 ⇒ v1 = 0

a[n] = 0 Cell1 i1 = n ⇒ v1 = 0

a[0] = a[n] Cell2 (i1 = 0 ∧ i2 = n) ⇒ v1 = v2

∀i, a[i] = 0 Cell1 v1 = 0

∀i, a[i] = i2 Cell1 v1 = i21

∀i, a[n] ≥ a[i] Cell2 i2 = n ⇒ v2 ≥ v1

Definition 13. Cell abstractions Celln.
σCelln(a) = {(i1, a[i1]), . . . , (in, a[in]))} and

FσCelln
(((i1, v1), . . . , (in, vn)), a) ≡ v1 = a[i1] ∧ . . . ∧ vn = a[in].

Many interesting properties can be defined by cell abstractions (Table 1).
Furthermore, our data abstraction framework allows formalizing other existing
array abstractions by compositions of cell abstractions (Example 9).

Example 9. Array abstractions from cell abstractions.
Array smashing : σsmash(a) = {a[i]}. This abstraction keeps the set of values
reached but loses all information linking indices and values. It can be constructed
using Cell1 abstraction in the following way : σsmash ≡ (σ⊥ · σid) ◦ σCell1

5

5 This is a semantic equivalence, not a strict equality: formally (σ⊥ · σid) ◦ σCell1(a)
returns {(⊥, a[i]} instead of {a[i]}.
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Array slicing : [6,8,11] There are several variations, and for readability we
present the one that corresponds to “smashing each slice” and picking the
slices ] − ∞, i[, [i, i], ]i,∞[: σslice(a) = {(a[j1], a[i], a[j3]), j1 < i ∧ j3 > i}. It
can be constructed using Cell1 abstraction in the following way : σslice ≡
(σslice1 · σslice2 · σslice3) ◦ σCell3

6 with σsk
(j, v) = ite(j ∈ slicek, v,⊥)

Theorem 10. The abstractions of Example 9 have strongly complete instantia-
tion heuristics when Celln has.

Remark 9. These abstractions are of the form σ ◦σCelln . Their strong complete-
ness is proven because σ is finite and σCelln always verifies the compatibility
condition of Theorem 9 when left-side composed.

5.2 Instantiating Cell Abstractions

The data abstraction framework requires an instantiation heuristic insts for
Celln. To achieve the strong completeness property, we first compute all “rele-
vant” indices of the abstracted array, that is, indices which when left unchanged
ensure that ctx keeps its value.

Algorithm 5. (relevant(a, expr)). We compute the set of relevant indices of
the array a for expr. This set may contain � which signifies that there are
relevant indices that the algorithm does not handle (and thus the final algorithm
does not ensure strong completeness).

In this algorithm arrayStoreChain(b, I, V ) denotes an array expression equal
to b[i1 ← v1][. . .][in ← vn] with i1, . . . , in ∈ I and v1, . . . , vn ∈ V . n may be 0.

relevant(a, expr) =

//For a a variable avar, return the indices that are “read”

let read avar expr = match expr with

|arrayStoreChain(avar, I, V )[i] → {i} ∪
⋃

(j,v)∈(I,V )

read(avar, j) ∪ read(avar, v)

|∀q, e|∃q, e → map (fun x → ite(q ∈ x, �, x)) read(avar, e) in

|Cons(exprs) →
⋃

expr∈exprs

read(avar, exprs) |avar → {�}

//with Cons an expression constructor or predicate

//Reducing a to a variable avar

match a with

|arrayStoreChain(avar, I, V ) when is var(avar) → I ∪ read(avar, expr)

| → {�}

Remark 10. For readability, the algorithm is kept short, but may be improved
to return � in fewer cases using techniques from [3]
6 As for smashing, this is a semantic equivalence.
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Theorem 11 (relevant(a, expr) is correct). If � /∈ relevant(a, expr) then
∀M, vars, a′, (∀i ∈ relevant(a, expr), a′[i] = a(vars)[i]) ⇒

∃vars′, �expr(vars)�M = �expr(vars′)�M ∧ a(vars′) = a′

We use our relevant indices to construct an instantiation heuristic for Celln.

Algorithm 6 (Instantiation heuristic for Celln).

insts(FσCelln
, a, ctx) =

let R = relevant(a, ctx) in //Compute relevant set

let Ind = ite(R = ∅, , R − {	}) in //Make it non empty and remove 	
// can be chosen as any value of the index type

let I = {(i, a[i])|i ∈ Ind} in(I
n

, ()) // make it a pair index value, make n copies

Theorem 12 (Strong Completeness for cell Abstraction). Any call to
insts(FσCelln

, a, ctx) is strongly complete whenever � /∈ relevant(a, ctx).

Example 10 (Instantiation of Cell1).
In Example 8, we assumed the result of the Call 14:

insts(Fσ1 , a, (ctx, a2))
= insts(FσCell1

, a, (k < N → v′# = a[k � a[k] + 1][i′#]

∧N ′# = N ∧ k′# = k + 1 → For2#((i′#, v′#), (N ′#, k′#)), (N, k)))

Let us use our instantiation heuristic for Cell1 to compute the result of that call.

1. We first compute the relevant set, we obtain R = {k, i′#}
2. It is already non empty and does not contain �, so Ind = R = {k, i′#}
3. We add the value part, yielding I = {(k, a[k]), (i′#, a[i′#])}
4. n = 1, therefore the result is I1 = I = {(k, a[k]), (i′#, a[i′#])}
And the call is complete as the relevant set did not contain �.

6 Implementation and Experiments

In Sects. 3 and 4, we constructed the building blocks to verify programs using an
abstraction technique that strives to ensure relative completeness and in Sect. 5,
we gave a powerful abstraction for arrays. We now combine these sections to
create a tool for the verification of programs with arrays. We benchmark this
tool and compare it to other tools and then analyze the results.

6.1 The Full Algorithm

Our tool uses Algorithm 7 which has for only parameter n. The abstraction used
consists in abstracting each array of each predicate by Celln.
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Algorithm 7 (Full n-Cell Abstraction Algorithm trs(C, n)).
Input: A set of Horn clauses C, n the number of cells
Computation:

1. Abstraction : For each predicate P of C over types t1, . . . , tk
(a) Let σP =

∏

1≤i≤k

ite(isArray(tk), σCelln , σid)

(b) Let P# be an unused predicate.
(c) C := dataabs(C, FP

σ , P, P#)
2. Quantifier elimination : For each clause C ∈ C

C := eliminate(C, insts) //insts is the heuristic discussed in this article
3. Simplification (optional): For each clause C ∈ C

(a) C := simplify(C, insts) //we simplify as in Clause 10
(b) C := Ackermannize(C) /*This step removes possible array writes by

applying read over write axioms. Then if an array a is only used in read
expressions, we eliminate it at quadratic cost [15, §3.3.1]. Note that this
is not possible before abstraction because a is a parameter of predicates.
*/

We implemented this algorithm, and used it on clauses generated by the
Vaphor converter from mini-Java programs to Horn Clauses. The implementa-
tion is publicly available7. Overall the toolchain ensures soundness and relative
completeness due to the strong completeness of our building blocks. To ensure
that within the computation of insts(FσCelln

, a, ctx), relevant(a, ctx) does not
contain �, we rely on the form of clauses generated by the Vaphor converter,
among which: 1. There are no array equalities. 2. There is at most one negative
predicate per clause.

Table 2. Experimental results

#prg n Noabs VapHor Dataabs Dataabs acker
? ≥ 1 ? ≥ 1 ? ≥ 1 ? ≥ 1

Buggy 4 1 4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4
Buggy 4 2 – – – – 4 0 0 4 0 4 0 0 3 1 0 3

NotHinted 12 1 0 11.5 0.5 0 1 11 0 1 0 12 0 12 0 11.83 0.17 0
NotHinted 12 2 – – – – 0 12 0 0 0 12 0 12 0 12 0 0
Hinted 12 1 0 11 1 0 4 8 0 7 8.99 2.84 0.17 11 8.83 3.17 0 12
Hinted 12 2 – – – – 0 12 0 0 0 12 0 0 5.83 6.17 0 6

Columns: corresponds to the abstraction tool. 1. Noabs corresponds to no abstraction
2. Vaphor is the tool by Monniaux & Gonnord 3. Dataabs and Dataabs acker represent
our implementation, with and without Ackermannisation.
Lines: files grouped by category and number of cells
Values: (respectively , ?) correspond to the number of files that where correct (re-
spectively timeout, unknown), averaged over the 3 naming options and the 2 random
seeds). ≥ 1 represents the number of files for which at least one of the naming options
and random seeds returned the correct result.

7 https://github.com/vaphor.

https://github.com/vaphor
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6.2 Experimental Setting and Results

We modified the converter to take into account optional additional invariant
information given by the programmer, in the form of “hints”. These hints are
additional assertion clauses so that the solver may converge more easily to the
desired model. These additional clauses are also abstracted by our abstraction.

Our initial Horn clauses are generated by the converter from programs in
three categories: 1. incorrect programs. 2. correct programs without hints. 3.
correct programs with hints. We then compare our implementation of Algo-
rithm 7 with no abstraction and the abstraction tool of Vaphor on the modified
benchmarks of [17]. Note that the latter tool implements a variant of Celln that
always Ackermannizes in the process. We modified the benchmarks of [7,17] such
that properties are checked using a loop instead of a random access, e.g., they
take i random and assert t[i] = 0 to verify ∀i t[i] = 0, thus enforcing the use
of quantified invariants. This is why Vaphor behaves much more poorly on our
examples than in [17]. The modified benchmarks are available at https://github.
com/vaphor/array-benchmarks.

We use as backend the state of the art solver Z3 version 4.8.8 - 64 bit
with timeout 40s on a laptop computer. Because of issue https://github.com/
Z3Prover/z3/issues/909 that we have witnessed, we launch each benchmark with
3 different naming conventions for predicates in addition to using 2 random seeds.
The results are presented in Table 2. We did not show columns for incorrect
results or errors as there are none.

6.3 Analysis

Abstraction and Solving Timings. Our abstraction is fast: most of it is search &
replace; most of the time is spent in the hand-written simplification algorithm,
which is not the purpose of this paper. The solving time in Z3 is much higher.
It seems that, for correct examples, Z3 either converges quickly (<5 s) or fails
to converge regardless of timeout—only in 18 cases out of 1176 does it solve the
problem between 5 s and the timeout.

Soundness and Relative Completeness. There are no incorrect results, confirming
that all implementations are sound. There are cases where Z3 cannot conclude
“correct” on its own but with enough help (i.e. hints and Ackermannization,
different predicate names, and random seeds) all files are solved as shown by
the hinted, Cell1 line, column ≥ 1 of Dataabs acker. This confirms that our
implementation is relatively complete, as proved in theory.

Tool Comparison. Z3 without abstraction is unable to solve any correct example,
even with hints. We mostly behave better than Vaphor for Cell1 on hinted
examples, perhaps because we create smaller instantiation sets: Vaphor handles
complex clauses greedily, using all indices read as instantiation set.
Cell1 versus Cell2. All our correct examples have invariants expressible by Cell1,
and thus also by Cell2. However, the clauses generated using Cell2 are bigger
and the instantiation set sizes are squared, thus complexifying the clauses and

https://github.com/vaphor/array-benchmarks
https://github.com/vaphor/array-benchmarks
https://github.com/Z3Prover/z3/issues/909
https://github.com/Z3Prover/z3/issues/909
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probably stopping Z3 from converging easily on an invariant. Vaphor, in contrast,
generates fewer instantiations for Cell2 by using σCell2(a) = {(i, a[i], j, a[j]), i <
j}, which explains its better performance on Cell2 buggy examples.
Ackermannizing or not. Ackermannization completely removes arrays from the
clauses, but changes neither the invariants nor the space in which invariants are
sought. Z3 is supposed to handle the theory of arrays natively and should thus be
more efficient than our eager Ackermannization; yet the latter improves results
on non buggy examples.

Overall Results and Z3. Our tool transforms a Horn problem with arrays requir-
ing quantified invariants which lie within the Celln abstraction into an equiva-
lently satisfiable Horn problem which needs neither quantifiers nor arrays. The
non-hinted examples show that this is insufficient to make automatic proofs of
programs with arrays practical, mainly because Z3 struggles to handle these
array free Horn problems. In addition, Z3 sometimes succeeds or not, or even
returns unknown, depending on details in the input (e.g., predicate naming,
randon, Ackermannisation). Further work is needed on integer Horn solvers for
better performance and reduced brittleness.
Benchmarks and Future Work. The current benchmarks are generated from a toy
Java language and have invariants expressible in Cell1. Future work includes (i)
adding new challenging examples which require Cell2 such as sortedness or even
more complex invariants such as “the array content is preserved as a multistage”
[17]; (ii) tackling challenging literature examples [1] in real langages, perhaps
using a front end such as SeaHorn [9].

7 Related Work

Numerous abstractions for arrays have been proposed in the literature, among
which array slicing [6,8,11]. In Example 9 we showed how they are expressible in
our framework. Similarly to Monniaux and Alberti [16] we think that disconnect-
ing the array abstraction from other abstractions and from solving enables using
back-end solvers better. Like Monniaux and Gonnord [17] we use Horn Clauses
to encode our program under verification, but we go a step further by using Horn
Clauses as an intermediate representation to chain abstractions. Furthermore,
our formalization is cleaner for multiple arrays and proves relative completeness.

Our instantiation method is inspired from previous work on solving quan-
tified formulae [2,3,10]. [3] does not consider Horn clauses, that is, expressions
with unknown predicates, but only expressions with quantifiers. [2] has an app-
roach very similar to ours, but without casting it within the framework of data
abstractions; they use trigger-based instantiation. Both instantiation methods of
[2,3] lead to bigger instantiation sets than the one we suggest, yet, contrary to
us, they do not prove completeness. Finally, the technique used in [10] creates
instantiation sets not as pre-processing, but during analysis. Although more gen-
eral, it is highly likely that the technique suffers from the same unpredictability
that Horn solvers have. In our case, we believe that we can tailor the instantiation
set to the abstraction and analyze its precision.



234 J. Braine et al.

Finally, other recent approaches focus on more powerful invariants through
proofs by induction [13]. However, as stated by their authors, their approach is
complementary to ours: theirs is less specialized, and thus has trouble where our
approach may easily succeed, but enables other invariants: our data abstraction
framework may allow abstracting within their induction proofs.

8 Conclusion

We have proposed an approach for the definition, combination and solving of
data abstractions for Horn Clauses. The framework also provides sufficient con-
ditions for (relative) completeness, and prove the result for a large class of array
abstractions. We propose an implementation and experimental evaluation on
classical examples of the literature. Future work include extending the applica-
bility of the framework for other data structures such that trees.
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12. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: FMCAD (2018)
13. Ish-Shalom, O., Itzhaky, S., Rinetzky, N., Shoham, S.: Putting the squeeze on array

programs: loop verification via inductive rank reduction. In: Beyer, D., Zufferey,
D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp. 112–135. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-39322-9 6
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Abstract. We propose a novel framework of program and invariant syn-
thesis called neural network-guided synthesis. We first show that, by
suitably designing and training neural networks, we can extract logical
formulas over integers from the weights and biases of the trained neural
networks. Based on the idea, we have implemented a tool to synthesize
formulas from positive/negative examples and implication constraints,
and obtained promising experimental results. We also discuss an appli-
cation of our method for improving the qualifier discovery in the frame-
work of ICE-learning-based CHC solving, which can in turn be applied to
program verification and inductive invariant synthesis. Another poten-
tial application is to a neural-network-guided variation of Solar-Lezama’s
program synthesis by sketching.

1 Introduction

With the recent advance of machine learning techniques, there have been a lot of
interests in applying them to program synthesis and verification. Garg et al. [6]
have proposed the ICE-framework, where the classical supervised learning based
on positive and negative examples been extended to deal with “implication con-
straints” to infer inductive invariants. Zhu et al. [32] proposed a novel approach
to combining neural networks (NNs) and traditional software, where a NN con-
troller is synthesized first, and then an ordinary program that imitates the NN’s
behavior; the latter is used as a shield for the neural net controller and the
shield (instead of the NN) is verified by using traditional program verification
techniques. There have also been various approaches to directly verifying NN
components [1,8,16,21,30].

We propose yet another approach to using neural networks for program ver-
ification and synthesis. Unlike the previous approaches where neural networks
are used either as black boxes [28,32] or white boxes [8,11], our approach treats
neural networks as gray boxes. Given training data, which typically consist of
input/output examples for a (quantifier-free) logical formula (as a part of a pro-
gram component or a program invariant) to be synthesized, we first train a NN.
c© Springer Nature Switzerland AG 2021
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Fig. 1. A neural network with one hidden layer

We then synthesize a logical formula by using the weights and biases of the
trained NN as hints. Extracting simple (or, “interpretable”), classical1 program
expressions from NNs has been considered difficult, especially for deep NNs; in
fact, achieving “explainable AI” [2] has been a grand challenge in the field of
machine learning. Our thesis here is, however, that if NNs are suitably designed
with program or invariant synthesis in mind, and if the domain of the synthesis
problems is suitably restricted to those which have reasonably simple program
expressions as solutions, then it is actually often possible to extract program
expressions (or logical formulas) by inspecting the weights of trained NNs.

To clarify our approach, we give an example of the extraction. Let us consider
the three-layer neural network shown in Fig. 1. The NN is supposed to work as
a binary classifier for two-dimensional data: it takes a pair of numbers (x1, x2)
as an input, and outputs a single number z, which is expected to be a value
close to either 1 or 0. The NN has eight hidden nodes, and the sigmoid function
σ is used as activation functions for both the hidden and output nodes2. The
lefthand side of Table 1 shows a training data set, where each row consists of
inputs (x1, x2) (−25 ≤ x1, x2 ≤ 25), and their labels, which are 1 if 4x1 + x2 >
0 ∧ 2x1 + 3x2 + 9 < 0. The righthand side of Table 1 shows the weights and
biases of the trained NN. The i-th row shows information about each hidden
node: w1,i, w2,i, and bi (i ∈ {1, . . . , 8}) are the weights and the bias for the links
connecting the two input nodes and the i-th hidden node, and wo,i is the weight
for the link connecting the hidden node and the output node. (Thus, the value
yi of the i-th hidden node for inputs (x1, x2) is yi = σ(bi +w1,ix1 +w2,ix2), and
the output of the whole network is σ(bo +

∑8
i=1 wo,iyi) for some bias bo.) The

rows are sorted according to the absolute value of wo,i. We can observe that the
ratios among w1, w2, b of the first four rows are roughly 2 : 3 : 9, and those of
the last four rows are roughly 4 : 1 : 0. Thus, the value of each hidden node is
close to σ(β(2x1 + 3x2 + 9)) or σ(β(4x1 + x2)) for some β. Due to the property
that the value of the sigmoid function σ(u) is close to 0 or 1 except near u = 0,
we can guess that 2x1 +3x2 +9�0 and 4x1 +x2 �0 (where � ∈ {<,>,≤,≥}) are

1 Since neural networks can also be expressed as programs, we call ordinary programs
written without using neural networks classical, to distinguish them from programs
containing NNs.

2 These design details can affect the efficacy of our program expression extraction, as
discussed later.
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Table 1. Training data (left) and the Result of learning (right)

x1 x2 label

25 25 0

· · ·
25 −21 0

25 −20 1

25 −21 1

· · ·
25 −25 1

24 25 0

· · ·
−25 −25 0

w1,i w2,i bi wo,i

4.037725448 6.056035518 18.18252372 −11.76355457

4.185569763 6.27788019 18.92045211 −11.36994552

3.775603055 5.662680149 16.86475944 −10.83486366

3.928676843 5.892404079 17.63601112 −10.78136634

−15.02299022 −3.758415699 1.357473373 −9.199707984

−13.6469354 −3.414942979 1.145593643 −8.159229278

−11.69845199 −2.927870512 0.8412334322 −7.779587745

−12.65479946 −3.168056249 0.9739738106 −6.938682556

relevant to the classification. Once the relevant atomic formulas are obtained,
we can easily find the correct classifier 4x1 + x2 > 0 ∧ 2x1 + 3x2 + 9 < 0 by
solving the problem of Boolean function synthesis in a classical manner.

We envision two kinds of applications of our NN-guided predicate synthesis
sketched above. One is to an ICE-based learning of inductive program invari-
ants [4,6]. One of the main bottlenecks of the ICE-based learning method (as in
many other verification methods) has been the discovery of appropriate qualifiers
(i.e. atomic predicates that constitute invariants). Our NN-guided predicate syn-
thesis can be used to find qualifiers, by which reducing the bottleneck. The other
potential application is to a new program development framework called oracle-
based programming. It is a neural-network-guided variation of Solar-Lezama’s
program synthesis by sketching [27]. As in the program sketch, a user gives a
“sketch” of a program to be synthesized, and a synthesizer tries to find expres-
sions to fill the holes (or oracles in our terminology) in the sketch. By using our
method outlined above, we can first prepare a NN for each hole, and train the
NN by using data collected from the program sketch and specification. We can
then guess an expression for the hole from the weights of the trained NN.

The contributions of this paper are: (i) the NN-guided predicate synthesis
method sketched above, (ii) experiments that confirm the effectiveness of the pro-
posed method, and (iii) discussion and preliminary experiments on the potential
applications to program verification and synthesis mentioned above.

Our idea of extracting useful information from NNs resembles that of sym-
bolic regression and extrapolation [15,20,23], where domain-specific networks
are designed and trained to learn mathematical expressions. Ryan et al. [22,29]
recently proposed logical regression to learn SMT formulas and applied it to
the discovery of loop invariants. The main differences from those studies are: (i)
our approach is hybrid: we use NNs as gray boxes to learn relevant inequalities,
and combine it with classical methods for Boolean function learning, and (ii) our
learning framework is more general in that it takes into account positive/negative
samples, and implication constraints; see Sect. 4 for more discussion.
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Fig. 2. An overall flow of our synthesis framework

The rest of this paper is structured as follows. Section 2 shows our basic
method for synthesizing logical formulas from positive and negative examples,
and reports experimental results. Section 3 extends the method to deal with
implication constraints in the ICE-learning framework [6], and discusses an appli-
cation to CHC (Constrained Horn Clauses) solving. Section 4 discusses related
work and Sect. 5 concludes the paper. The application to the new framework of
oracle-based programming is discussed in a longer version of this paper [13].

2 Predicate Synthesis from Positive/Negative Examples

In this section, we propose a method for synthesizing logical formulas on integers
from positive and negative examples, and report experimental results. We will
extend the method to deal with “implication constraints” [4,6] in Sect. 3.

2.1 The Problem Definition and Our Method

The goal of our synthesis is defined as follows.

Definition 1 (Predicate synthesis problem with P/N Examples). The
predicate synthesis problem with positive (P) and negative (N) examples (the PN
synthesis problem, for short) is, given sets P,N ⊆ Zk of positive and negative
examples (where Z is the set of integers) such that P ∩ N = ∅, to find a logical
formula ϕ(x1, . . . , xk) such that |= ϕ(v1, . . . , vk) holds for every (v1, . . . , vk) ∈ P
and |= ¬ϕ(v1, . . . , vk) for every (v1, . . . , vk) ∈ N .

For the moment, we assume that formulas are those of linear integer arithmetic
(i.e. arbitrary Boolean combinations of linear integer inequalities); some exten-
sions to deal with the modulo operations and polynomial constraints will be
discussed later in Sect. 2.3.

The overall flow of our method is depicted in Fig. 2. We first (in the NN
training phase) train a NN on a given set of P/N examples, and then (in the
qualifier extraction phase) extract linear inequality constraints (which we call
“qualifiers”) by inspecting the weights and biases of the trained NN, as sketched
in Sect. 1. Finally (in the formula synthesis phase), we construct a Boolean com-
bination of the qualifiers that matches P/N examples. Note that the trained NN
is used only for qualifier extraction; in the last phase, we use a classical algorithm
for Boolean function learning.

Each phase is described in more detail below.
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NN Training. We advocate the use of a four-layer neural network as depicted

in Fig. 3, where the sigmoid function σ(x) =
1

1 + e−x
is used as the activation

functions for all the nodes.
We briefly explain the four-layer neural network; those who are familiar with

neural networks may skip this paragraph. Let us write Ni,j for the j-th node
in the i-th layer, and mi for the number of the nodes in the i-th layer (hence,
m4, which is the number of output nodes, is 1). Each link connecting Ni−1,j and
Ni,k (i ∈ {2, 3, 4}) has a real number called the weight wi,j,k, and each node Ni,j

(i ∈ {2, 3, 4}) also has another real number bi,j called the bias. The value oi,j of
each node Ni,j (i > 1) is calculated from the input values o0,j by the equation:

oi,j = f
(
bi,j +

mi−1∑

k=1

wi,k,j · oi−1,k

)
,

where the function f , called an activation function, is the sigmoid function
σ here; other popular activation functions include ReLU(x) = max(0, x) and

tanh =
ex − e−x

ex + e−x
. The weights and biases are updated during the training phase.

The training data are a set of pairs (di, �i) where di = (o1,1, . . . , o1,m1) is an input
and �i is a label (which is 1 for a positive example and 0 for a negative one). The
goal of training a NN is to adjust the weights and biases to (locally) minimize
the discrepancy between the output o4,1 of the NN and �i for each di. That is
usually achieved by defining an appropriate loss function for the training data,
and repeatedly updating the weights and biases in a direction to decrease the
value of the loss function by using the gradient descent method.

Our intention in choosing the four-layer NN in Fig. 3 is to force the NN to
recognize qualifiers (i.e., linear inequality constraints) in the second layer (i.e.,
the first hidden layer), and to recognize an appropriate Boolean combination
of them in the third and fourth layers. The sigmoid function was chosen as the
activation function of the second layer to make it difficult for the NN to propagate
information on the inputs besides information about linear inequalities, so that
we can extract linear inequalities only by looking at the weights and biases for
the hidden nodes in the second layer. Note that the output of each hidden node
in the second layer is of the form:

σ(b + w1 x1 + · · · + wk xk).

Since the output of the sigmoid function is very close to 0 or 1 except around
b + w1 x1 + · · · + wk xk = 0 and input data x1, . . . , xk take discrete values, only
information about b + w1 x1 + · · · + wk xk > c for small c’s may be propagated
to the second layer. In other words, the hidden nodes in the second layer can be
expected to recognize “features” of the form b+w1 x1 + · · ·+wk xk > c, just like
the initial layers of DNNs for image recognition tend to recognize basic features
such as lines. The third and fourth layers are intended to recognize a (positive)
Boolean combination of qualifiers. We expect the use of two layers (instead of
only one layer) for this task makes it easier for NN to recognize Boolean formulas
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Fig. 3. A Four-Layer neural network

in DNF or CNF3. Notice that the conjunction x1 ∧ · · · ∧ xk and the disjunction
x1 ∨ · · · ∨ xk can respectively be approximated by σ(β(x1 + · · · + xk − 2k−1

2 ))
and σ(β(x1 + · · · + xk − 1

2 )) for a sufficiently large positive number β.
For the loss function of the NN, there are various candidates. In the experi-

ments reported later, we tested the mean square error function (the average of
(oi − �i)2, where oi is the output of NN for the i-th training data, and �i is the
corresponding label) and the mean of a logarithmic error function (the average
of − log(1 − |oi − �i|))4.

Qualifier Extraction. From the trained NN, for each hidden node N2,i in the
second layer, we extract the bias b2,i (which we write w2,0,i below for tech-
nical convenience) and weights w2,1,i, . . . , w2,k,i, and construct integer coef-
ficients c0, c1, . . . , ck such that the ratio cn/cm of each pair of coefficients
is close to w2,n,i/w2,m,i. We then generate linear inequalities of the form
c0+c1x1+· · ·+ckxk > e where e ∈ {−1, 0, 1} as qualifiers. The problem of obtain-
ing the integer coefficients c0, . . . , ck is essentially a Diophantine approximation
problem, which can be solved, for example, by using continued fraction expan-
sion. The current implementation uses the following naive, ad hoc method5. We
assume that the coefficients of relevant qualifiers are integers smaller than a cer-
tain value K (K = 5 in the experiments below). Given w0 + w1x1 + · · · + wkxk,
we pick i > 0 such that |wi| is the largest among |w1|, . . . , |wk|, and normalize
it to the form w′

0 + w′
1x1 + · · · + w′

kxk where w′
j = wj/wi (thus, 0 ≤ |w′

j | ≤ 1 for
j > 0). We then pick −K < nj ,mj < K such that nj/mj is closest to |w′

j |, and
obtain w′

0+(n1/m1)x1+ · · ·+(nk/mk)xk. Finally, by multiplying the expression
with the least common multiple M of m1, . . . ,mk, and rounding Mw′

0 with an
integer c0, we obtain c0 + M(n1/m1)x1 + · · · + M(nk/mk)xk.

If too many qualifiers are extracted (typically when the number of hidden
nodes is large; note that qualifiers are extracted from each hidden node), we

3 According to the experimental results reported later, however, the three-layer NN
as depicted in Fig. 1 also seems to be a good alternative. It is left for future work to
test whether NNs with more than four layers are useful for our task.

4 We actually used − log(max(1 − |oi − �i|, ε)) for a small positive number ε, to avoid
the overflow of floating point arithmetic.

5 We plan to replace this with a more standard one based on continued fraction expan-
sion.
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prioritize them by inspecting the weights of the third and fourth layers, and
possibly discard those with low priorities. The priority of qualifiers obtained from
the i-th hidden node N2,i in the second layer is set to pi =

∑
j |w3,i,jw4,j,1|, The

priority pi estimates the influence of the value of the i-th hidden node, hence
the importance of the corresponding qualifiers.

Formula Synthesis. This phase no longer uses the trained NN and simply applies
a classical method (e.g. the Quine-McCluskey method, if the number of candidate
qualifiers is small) for synthesizing a Boolean formula from a truth table (with
don’t care inputs)6. Given qualifiers Q1, . . . , Qm and P/N examples d1, . . . , dn

with their labels �1, . . . , �n, the goal is to construct a Boolean combination ϕ of
Q1, . . . , Qm such that ϕ(di) = �i for every i. To this end, we just need to construct
a truth table where each row consists of Q1(di), . . . , Qm(di), �i (i = 1, . . . , n), and
obtain a Boolean function f(b1, . . . , bm) such that f(Q1(di), . . . , Qm(di)) = �i

for every i, and let ϕ be f(Q1, . . . , Qm). Table 2 gives an example, where m = 2,
Q1 = x + 2y > 0 and Q2 = x − y < 0. In this case, f(b1, b2) = b1 ∧ b2, hence
ϕ = x + 2y > 0 ∧ x − y < 0.

One may think that we can also use information on the weights of the third
and fourth layers of the trained NN in the formula synthesis phase. Our rationale
for not doing so is as follows.

– Classically (i.e. without using NNs) synthesizing a Boolean function is not so
costly; it is relatively much cheaper than the task of finding relevant qualifiers
in the previous phase.

– It is not so easy to determine from the weights what Boolean formula is
represented by each node of a NN. For example, as discussed earlier, x ∧ y
and x ∨ y can be represented by σ(β(x + y − 3

2 )) and σ(β(x + y − 1
2 )), whose

difference is subtle (only the additive constants differ).
– By only using partial information about the trained NN, we need not worry

too much about the problem of overfitting. Indeed, as discussed later in
Sect. 2.2 and Appendix A.1, a form of overfitting is observed also in our
experiments, but even in such cases, we could extract useful qualifiers.

– As confirmed by the experiments reported later, not all necessary qualifiers
may be extracted in the previous phase; in such a case, trying to extract a
Boolean formula directly from the NN would fail. By using a classical app-
roach to a Boolean function synthesis, we can easily take into account the
qualifiers collected by other means (e.g., in the context of program invariant
synthesis, we often collect relevant qualifiers from conditional expressions in
a given program).

Nevertheless, it is reasonable to use the weights of the second and third layers
of the trained NN as hints for the synthesis of ϕ, which is left for future work.

6 The current implementation uses an ad hoc, greedy method, which will be replaced
by a more standard one for Boolean decision tree construction.
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Table 2. An example of truth tables constructed from qualifiers and examples

di x + 2y > 0 x − y < 0 �i

(1,0) 1 1 1

(1,1) 1 0 0

· · · · · · · · · · · ·
(−2, −1) 0 1 0

(−2, −2) 0 0 0

2.2 Experiments

We have implemented a tool called NeuGuS based on the method described
above using ocaml-torch7, OCaml interface for the PyTorch library, and con-
ducted experiments. The source code of our tool is available at https://github.
com/naokikob/neugus. All the experiments were conducted on a laptop com-
puter with Intel(R) Core(TM) i7-8650U CPU (1.90 GHz) and 16 GB memory;
GPU was not utilized for training NNs.

Learning Conjunctive Formulas. As a warming-up, we have randomly gen-
erated a conjunctive formula ϕ(x, y) of the form A ∧ B where A and B are
linear inequalities of the form ax + by + c > 0, and a, b and c are inte-
gers such that −4 ≤ a, b ≤ 4 and −9 ≤ c ≤ 9 with ab �= 0. We set
P = {(x, y) ∈ Z2 ∩ ([−25, 25] × [−25, 25]) ||= ϕ(x, y)} and N = {(x, y) ∈
Z2 ∩ ([−25, 25] × [−25, 25]) ||= ¬ϕ(x, y)} as the sets of positive and negative
examples, respectively (thus, |P ∪ N | = 51 × 51 = 2601)8. The left-hand side of
Fig. 4 plots positive examples for A ≡ −2x− y +4 > 0 and B ≡ 3x− 4y +5 > 0.
We have randomly generated 20 such formula instances, and ran our tool three
times for each instance to check whether the tool could find qualifiers A and B.
In each run, the NN training was repeated either until the accuracy becomes
100% and the loss becomes small enough, or until the number of training steps
(the number of forward and backward propagations) reaches 30,000. If the accu-
racy does not reach 100% within 30,000 steps or the loss does not become small
enough (less than 10−4), the tool retries the NN training from scratch, up to
three times. (Even if the accuracy does not reach 100% after three retries, the
tool proceeds to the next phase for qualifier discovery.) As the optimizer, we have
used Adam [12] with the default setting of ocaml-torch (β1 = 0.9, β2 = 0.999,
no weight decay), and the learning rate was 0.001. We did not use mini-batch
training; all the training data were given at each training step.

Table 3 shows the result of experiments. The meaning of each column is as
follows:

7 https://github.com/LaurentMazare/ocaml-torch.
8 We have excluded out instances where A or B is subsumed by the other, and those

where the set of positive or negative examples is too small.

https://github.com/naokikob/neugus
https://github.com/naokikob/neugus
https://github.com/LaurentMazare/ocaml-torch
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Fig. 4. Visualization of sample instances: −2x − y + 4 > 0 ∧ 3x − 4y + 5 > 0 (left) and
(2x + y + 1 > 0 ∧ x − y − 9 > 0) ∨ (x + y > 0 ∧ 3x − y − 5 > 0) (right, Instance #10
for (A ∧ B) ∨ (C ∧ D)). The small circles show positive examples, and the white area
is filed with negative examples.

– “#hidden nodes”: the number of hidden nodes. “m1 :m2” means that a four-
layer NN was used, and that the numbers of hidden nodes in the second and
third layers are respectively m1 and m2, while “m” means that a three-layer
(instead of four-layer) NN was used, with the number of hidden nodes being
m.

– “loss func.”: the loss function used for training. “log” means
1
n

n∑

i=1

− log(1 −
|oi − �i|) (where oi and �i are the prediction and label for the i-th example),
and “mse” means the mean square error function.

– “#retry”: the total number of retries. For each problem instance, up to 3
retries were performed. (Thus, there can be 20 (instances) × 3 (runs) ×
3 (retries per run) = 180 retires in total at maximum.)

– “%success”: the percentage of runs in which a logical formula that separates
positive and negative examples was constructed. The formula may not be
identical to the original formula used to generate the P/N examples (though,
for this experiment of synthesizing A ∧ B, all the formulas synthesized were
identical to the original formulas).

– “%qualifiers”: the percentage of the original qualifiers (i.e., inequalities A and
B in this experiment) found.

– “#candidates”: the average number of qualifier candidates extracted from the
NN. Recall that from each hidden node in the first layer, we extract three
inequalities (c0 +c1x1 + · · ·+ckxk > e for e ∈ {0,−1, 1}); thus, the maximum
number of generated candidates is 3m for a NN with m hidden nodes in the
second layer.

– “time”: the average execution time per run. Note that the current implemen-
tation is naive and does not use GPU.

As shown in Table 3, our tool worked quite well; it could always find the original
qualifiers, no matter whether the number of layers is three or four9.
9 We have actually tested our tool also with a larger number of nodes, but we omit

those results since they were the same as the case for 4:4 and 4 shown in the table:
100% success rate and 100% qualifiers found.
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Table 3. Experimental results for learning a conjunctive formula A ∧ B.

#hidden nodes loss func. #retry %success %qualifiers #candidates time (sec.)

4:4 log 0 100% 100% 6.8 27.7

4 log 0 100% 100% 6.7 25.2

Table 4. Experimental results for learning formulas of the form (A ∧ B) ∨ (C ∧ D).

#hidden nodes loss func. #retry %success %qualifiers #candidates time (sec.)

8:8 log 12 93.3% 96.7% 18.6 42.1

8:8 mse 17 86.7% 94.6% 18.1 40.6

16:16 log 0 91.7% 95.8% 26.2 32.9

16:16 mse 3 85.0% 92.5% 26.9 31.7

32:32 log 0 100% 97.9% 38.9 31.1

32:32 mse 15 85.0% 91.7% 40.4 39.9

8 log 156 36.7% 66.3% 21.6 92.4

16 log 54 95.0% 96.7% 37.1 55.8

32 log 2 100% 98.3% 58.5 36.3

Learning Formulas with Conjunction and Disjunction. We have also
tested our tool for formulas with both conjunction and disjunction. We have
randomly generated 20 formulas of the form (A∧B)∨ (C ∧D)10, where A,B,C,
and D are linear inequalities, and prepared the sets of positive and negative
examples as in the previous experiment. The right-hand side of Fig. 4 plots pos-
itive examples for (2x+ y +1 > 0∧x− y − 9 > 0)∨ (x+ y > 0∧ 3x− y − 5 > 0).
As before, we ran our tool three times for each instance, with several variations
of NNs.

The result of the experiment is summarized in Table 4, where the meaning of
each column is the same as that in the previous experiment. Among four-layer
NNs, 32:32 with the log loss function showed the best performance in terms of
the columns %success and %qualifiers. However, 8:8 with the log function also
performed very well, and is preferable in terms of the number of qualifier can-
didates generated (#candidates). As for the two loss functions, the log function
generally performed better; therefore, we use the log function in the rest of the
experiments. The running time does not vary among the variations of NNs; the
number of retries was the main factor to determine the running time.

As for three-layer NNs, the NN with 8 hidden nodes performed quite badly.
This matches the intuition that the third layer alone is not sufficient for recogniz-
ing the nested conjunctions and disjunctions. To our surprise, however, the NN
with 32 hidden nodes actually showed the best performance in terms of %success
and %qualifiers, although #candidates (smaller is better) is much larger than

10 After the generation, we have manually excluded instances that have simpler equiv-
alent formulas (e.g. (x + y > 1 ∧ x + y > 0) ∨ (x − y > 1 ∧ x − y > 0) is equivalent
to x + y > 1 ∨ x − y > 1, hence removed), and regenerated formulas.
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those for four-layer NNs. We have inspected the reason for this, and found that
the three-layer NN is not recognizing (A ∧ B) ∨ (C ∧ D), but classify positive
and negative examples by doing a kind of patchwork, using a large number of
(seemingly irrelevant) qualifiers which happened to include the correct qualifiers
A,B,C, and D; for interested readers, we report our analysis in Appendix A.1.
We believe, however, four-layer NNs are preferable in general, due to the smaller
numbers of qualifier candidates generated. Three-layer NNs can still be a choice,
if program or invariant synthesis tools (that use our tool as a backend for finding
qualifiers) work well with a very large number of candidate qualifiers; for exam-
ple, the ICE-learning-based CHC solver HoIce [4] seems to work well with 100
candidate qualifiers (but probably not for 1000 candidates).

As for the 32:32 four-layer NN (which performed best among four-layer NNs),
only 5 correct qualifiers were missed in total and all of them came from Instance
#10 shown on the right-hand side of Fig. 4. Among the four qualifiers, x−y−9 >
0 was missed in all the three runs, and x + y > 0 was missed in two of the
three runs; this is somewhat expected, as it is quite subtle to recognize the line
x − y − 9 = 0 also for a human being. The NN instead found the qualifiers like
x > 6 and y < −5 to separate the positive and negative examples.

Figure 5 shows the effect of the prioritization of qualifiers, as discussed in
Sect. 2.1. We have sorted the hidden nodes in the second layer based on the
weights of the third and fourth layers, and visualized, in the graph on the left-
hand side, the average number of correct qualifiers (per run) extracted from top
50%, 75%, and 100% of the hidden nodes. The graph on the right-hand side
shows the average number of candidate qualifiers (per run) extracted from top
50%, 75%, and 100% of the hidden nodes. As can be seen in the graphs, while the
number of candidate qualifiers is almost linear in the number of hidden nodes
considered, most of the correct qualifiers were found from top 75% of the hidden
nodes. This justifies our strategy to prioritize qualifier candidates based on the
weights of the third and fourth layers.

Appendix A.2 also reports experimental results to compare the sigmoid func-
tion with other activation functions.

To check whether our method scales to larger formulas, we have also tested
our tool for formulas of the form (A ∧ B ∧ C) ∨ (D ∧ E ∧ F ) ∨ (G ∧ H ∧ I).
where A, . . . , I are linear inequalities of the form ax + by + c > 0, and a and
b are integers such that −4 ≤ a, b ≤ 4 and −30 ≤ c ≤ 30 with ab �= 0. We
set P = {(x, y) ∈ Z2 ∩ ([−30, 30] × [−30, 30]) ||= ϕ(x, y)} and N = {(x, y) ∈
Z2 ∩ ([−30, 30] × [−30, 30]) ||= ¬ϕ(x, y)} as the sets of positive and negative
examples, respectively. We have collected 20 problem instances, by randomly
generating formulas and then manually filtering out those that have a simpler
representation than (A∧B∧C)∨(D∧E∧F )∨(G∧H∧I). Table 5 summarizes the
experimental results. We have used the log function as the loss function. For the
qualifier extraction, we extracted five (as opposed to three, in the experiments
above) inequalities of the form (c0+c1x1+· · ·+ckxk > e for e ∈ {−2,−1, 0, 1, 2})
from each hidden node. The threshold for the loss was set to 10−5, except that
it was set to 10−4 for the three-layer NN with 32 nodes.
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Fig. 5. The number of correct qualifiers discovered (left) and the number of qualifier
candidates generated (right). Most of the correct qualifiers appear in top 50% of the
candidates.

Table 5. Experimental results for learning formulas of the form (A ∧ B ∧ C) ∨ (D ∧
E ∧ F ) ∨ (G ∧ H ∧ I).

#hidden nodes #retry %success %qualifiers #candidates time (sec.)

32 37 83.3% 86.5% 126.6 78.7

32:4 13 78.3% 84.6% 127.3 79.6

32:32 0 70.0% 79.6% 134.1 71.1

64 1 100% 90.2% 126.6 200.1

64:16 0 96.7% 86.7% 204.9 86.1

64:64 0 91.7% 84.1% 215.3 107.6

The result indicates that our method works reasonably well even for this case,
if hyper-parameters (especially, the number of nodes) are chosen appropriately;
how to adjust the hyper-parameters is left for future work. Interestingly, the result
tends to be better for NNs with a smaller number of nodes in the third layer. Our
rationale for this is that a smaller number of nodes in the third layer forces the
nodes in the second layer more strongly to recognize appropriate features.

2.3 Extensions for Non-linear Constraints

We can easily extend our approach to synthesize formulas consisting of non-linear
constraints such as polynomial constraints of a bounded degree and modulo
operations. For that purpose, we just need to add auxiliary inputs like x2, x
mod 2 to a NN. We have tested our tool for quadratic inequalities of the form
ax2+bxy+cy2+dx+ey+f > 0 (where −4 ≤ a, b, c, d, e ≤ 4 and −9 ≤ f ≤ 9; for
ovals, we allowed f to range over [−200, 199] because there are only few positive
examples for small values of f), and their disjunctions. For a quadratic formula
ϕ(x, y), we set P = {(x, y, x2, xy, y2) | (x, y) ∈ Z2 ∩ ([−20, 20] × [−20, 20]), |=
ϕ(x, y)} and N = {(x, y, x2, xy, y2) | (x, y) ∈ Z2 ∩ ([−20, 20] × [−20, 20]), |=
¬ϕ(x, y)} as the sets of positive and negative examples, respectively.

The table below shows the result for a single quadratic inequality. We have
prepared four instances for each of ovals, parabolas, and hyperbolas. As can be
seen in the table, the tool worked very well.
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#hidden nodes loss func. #retry %success %qualifiers #candidates time (sec.)

4 log 0 100% 100% 7.4 22.2

8 log 0 100% 100% 10.7 18.3

We have also prepared six instances of formulas of the form A ∨ B, where
A and B are quadratic inequalities. The result is shown in the table below.
The NN with 32 nodes performed reasonably well, considering the difficulty of
the task. All the failures actually came from Instances #16 and #18, and the
tool succeeded for the other instances. For #16, the tool struggled to correctly
recognize the oval −2x2 − 2xy − 2y2 − 3x − 4y + 199 > 0 (−2x2 − 2xy − 2y2 −
3x − 4y + 197 > 0 was instead generated as a candidate; they differ at only
two points (0, 9) and (0,−11)), and for #18, it failed to recognize the hyperbola
−4x2 − 4xy + y2 + 2x − 2y − 2 > 0.

#hidden nodes loss func. #retry %success %qualifiers #candidates time (sec.)

8 log 5 50% 52.8% 22.1 43.9

16 log 0 44.4% 55.6% 38.6 26.1

32 log 0 66.7% 80.6% 72.1 25.4

3 Predicate Synthesis from Implication Constraints and
Its Application to CHC Solving

We have so far considered the synthesis of logical formulas in the classical setting
of supervised learning of classification, where positive and negative examples are
given. In the context of program verification, we are also given so called impli-
cation constraints [4,6], like p(1) ⇒ p(2), which means “if p(1) is a positive
example, so is p(2)” (but we do not know whether p(1) is a positive or neg-
ative example). As advocated by Garg et al. [6], implication constraints play
an important role in the discovery of an inductive invariant (i.e. an invariant
Inv that satisfies a certain condition of the form ∀x, y.(ψ(Inv , x, y) ⇒ Inv(x));
for a state transition system, ψ(Inv , x, y) is of the form Inv(y) ∧ R(y, x) where
R is the transition relation). As discussed below, our framework of NN-guided
synthesis can easily be adapted to deal with implication constraints. Implication
constraints are also called implication examples below.

3.1 The Extended Synthesis Problem and Our Method

We first define the extended synthesis problem. A predicate signature is a map
from a finite set PVar = {p1, . . . , pm} of predicate variables to the set Nat of
natural numbers. For a predicate signature Ar, Ar(pi) denotes the arity of the
predicate pi. We call a tuple of the form (pi, n1, . . . , nAr(pi)) with nj ∈ Z an
atom, and often write pi(n1, . . . , nAr(pi)) for it; we also write ñ for a sequence
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n1, . . . , nAr(pi) and write pi(ñ) for the atom pi(n1, . . . , nAr(pi)). We write AtomsAr
for the set of atoms consisting of the predicates given by the signature Ar.

Definition 2 (Predicate synthesis problem with Implication Exam-
ples). The goal of the predicate synthesis problem with positive/negative/
implication examples (the PNI synthesis problem, for short) is, given:

1. a signature Ar ∈ PVar → Nat; and
2. a set I of implication examples of the form a1 ∧ · · · ∧ak ⇒ b1 ∨ · · · ∨ b� where

a1, . . . , ak, b1, . . . , b� ∈ AtomsAr, and k + � > 0 (but k or � may be 0)

as an input, to find a map θ that assigns, to each pi ∈ PVar, a logical formula
ϕi(x1, . . . , xAr(pi)) such that |= θa1 ∧ · · · ∧ θak ⇒ θb1 ∨ · · · ∨ θb� holds for each
implication example a1 ∧ · · · ∧ ak ⇒ b1 ∨ · · · ∨ b� ∈ I. Here, for an atom a =
p(n1, . . . , nj), θa is defined as (θp)[n1/x1, . . . , nj/xj ]. We call an implication
example of the form ⇒ b (a ⇒, resp.) as a positive (negative, resp.) example,
and write P ⊆ I and N ⊆ I for the sets of positive and negative examples
respectively.

Example 1. Let Ar = {p �→ 1, q �→ 1} and I be P ∪ N ∪ I ′ where:

P = {⇒ p(0),⇒ q(1)} N = {p(1) ⇒, q(0) ⇒}
I ′ = {p(2) ⇒ q(3), q(3) ⇒ p(4), p(2) ∧ q(2) ⇒, p(3) ∧ q(3) ⇒,

p(4) ∧ q(4) ⇒,⇒ p(2) ∨ q(2),⇒ p(3) ∨ q(3),⇒ p(4) ∨ q(4)}

Then θ = {p �→ x1 mod 2 = 0, q �→ x1 mod 2 = 1} is a valid solution for the
synthesis problem (Ar, I). ��

We generalize the method described in Sect. 2.1 as follows.

1. Prepare a NN Ni for each predicate variable pi. Ni has Ar(pi) input nodes
(plus additional inputs, if we aim to generate non-linear formulas, as discussed
in Sect. 2.3). For an atom a ≡ pi(ñ), we write oa for the output of Ni for ñ
below (note that the value of oa changes during the course of training).

2. Train all the NNs N1, . . . ,Nm together. For each atom pi(ñ) occurring in
implication examples, ñ is used as a training datum for Ni. For each impli-
cation example e ≡ a1 ∧ · · · ∧ ak ⇒ b1 ∨ · · · ∨ b� ∈ I, we define the loss losse

for the example by11:

losse = − log(1 −
k∏

i=1

oai
·

�∏

j=1

(1 − obj )).

The idea is to ensure that the value of losse is 0 if one of oai
’s is 0 or one of

obj ’s is 1, and that the value of losse is positive otherwise. This reflects the

11 In the implementation, we approximated losse by − log max(ε, 1−∏k
i=1 oai ·

∏�
j=1(1−

obj )) for a small positive number ε in order to avoid an overflow of the floating point
arithmetic.
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fact that a1 ∧ · · · ∧ ak ⇒ b1 ∨ · · · ∨ b� holds just if one of ai’s is false or one
of bj ’s is true. Note that the case where k = 0 and � = 1 (k = 1 and � = 0,
resp.) coincides with the logarithmic loss function for positive (negative, resp.)
examples in Sect. 2.1. Set the overall loss of the current NNs as the average
of losse among all the implication constraints, and use the gradient descent
to update the weights and biases of NNs. Repeat the training until all the
implication constraints are satisfied (by considering values greater than 0.5
as true, and those less than 0.5 as false).

3. Extract a set Qi of qualifiers from each trained Ni, as in Sect. 2.1.
4. Synthesize a formula for the predicate pi as a Boolean combination of Qi. This

phase is also the same as Sect. 2.1, except that, as the label �a for each atom
a, we use the prediction of the trained NNs. Note that unlike in the setting
of the previous section where we had only positive and negative examples,
we may not know the correct label of some atom due to the existence of
implication examples. For example, given p(0) ∨ p(1) ⇒ and ⇒ p(0) ∨ p(1),
we do not know which of p(0) and p(1) should hold. We trust the output of
the trained NN in such a case. Since we have trained the NNs until all the
implication constraints are satisfied, it is guaranteed that, for positive and
negative examples, the outputs of NNs match the correct labels. Thus, the
overall method strictly subsumes the one described in Sect. 2.1.

3.2 Preliminary Experiments

We have extended the tool based on the method described above, and tested it
for several examples. We report some of them below.

As a stress test for implication constraints, we have prepared the following
input, with no positive/negative examples (where Ar = {p �→ 1}):

I = {p(2n) ∧ p(2n + 1) ⇒ | n ∈ [−10, 10]}
∪ {⇒ p(2n) ∨ p(2n + 1) | n ∈ [−10, 10]}

The implication examples mean that, for each integer n ∈ [−10, 10], exactly one
of p(2n) and p(2n + 1) is true. We ran our tool with an option to enable the
“mod 2” operation, and obtained {p �→ x1 mod 2 < 1} as a solution (which is
correct; another solution is x1 mod 2 > 0).

We have also tested our tool for several instances of the CHC (Constrained
Horn Clauses) solving problem [3]. A constrained Horn clause is a formula of the
form A1 ∧ · · · ∧ Ak ⇒ A0, where each Ai is a constraint (of linear arithmetic in
this paper) or an atomic formula of the form p(e1, . . . , ek) where p is a predicate
variable. The goal of CHC solving is, given a set of constrained Horn clauses,
to check whether there is a substitution for predicate variables that makes all
the clauses valid (and if so, output a substitution). Various program verifica-
tion problems [3], as well as the problem of finding inductive invariants, can be
reduced to the problem of CHC solving. Various CHC solvers [4,9,14,24] have
been implemented so far, and HoIce [4] is one of the state-of-the-art solvers,
which is based on the ICE-learning framework. As illustrated in Fig. 6, HoIce
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Fig. 6. Inside HoIce

consists of two main components: a teacher and a learner. The learner generates
a candidate solution (a map from predicate variables to formulas) from impli-
cation examples, and the teacher checks whether the candidate solution is valid
(i.e. satisfies all the clauses) by calling SMT solvers, and if not, generates a new
implication example. The learner has a qualifier synthesis engine and combines
it with a method for Boolean decision tree construction [7]. The main bottleneck
of HoIce has been the qualifier synthesis engine, and the aim of our preliminary
experiments reported below is thus to check whether our NN-guided synthesis
method can be used to reduce the bottleneck.

To evaluate the usefulness of our NN-guided synthesis, we have implemented
the following procedure, using HoIce and our NN-guided synthesis tool (called
NeuGuS) as backends.

Step 1: Run HoIce for 10 s to collect implication examples.
Step 2: Run NeuGuS to learn qualifiers.
Step 3: Re-run HoIce with the qualifiers as hints (where the time limit is initially

set to 10 s).
Step 4: If Step 3 fails, collect implication examples from the execution of Step 3,

and go back to Step 2, with the time limit for HoIce increased by 5 s.

In Step 2, we used a four-layer NN, and set the numbers of hidden nodes in the
second and third layers to 4. When NeuGuS returns a formula, the inequality
constraints that constitute the formula as qualifiers are passed to Step 3; other-
wise, all the qualifier candidates extracted from the trained NNs are passed to
Step 3.

We have collected the following CHC problems that plain HoIce cannot
solve.

– Two problems that arose during our prior analysis of the bottleneck HoIce
(plus, plusminus). The problem plusminus consists of the following CHCs.

plus(m,n, r) ∧ minus(r, n, s) ⇒ m = s true ⇒ plus(m, 0,m)
n > 0 ∧ plus(m,n − 1, r) ⇒ plus(m,n, r + 2) true ⇒ minus(m, 0,m)

n > 0 ∧ minus(m,n − 1, r) ⇒ minus(m,n, r − 2)

The above CHC is satisfied for plus(m,n, r) ≡ r = m + 2n,minus(m,n, r) ≡
r = m − 2n. The ICE-based CHC solver HoIce [4], however, fails to solve
the CHC (and runs forever), as HoIce is not very good at finding qualifiers
involving more than two variables.
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– The five problems from the Inv Track of SyGus 2018 Competition (https://
github.com/SyGuS-Org/benchmarks/tree/master/comp/2018/Inv Track,
cggmp2005 variant true-unreach-call true-termination,
jmbl cggmp-new, fib 17n, fib 32, and jmbl hola.07, which are named
cggmp, cggmp-new, fib17, fib32, and hola.07 respectively in Table 6); the
other problems can be solved by plain HoIce, hence excluded out).

– The problem #93 from the code2inv benchmark set used in [22] (93; the other
123 problems can be solved by plain HoIce within 60 s).

– Two problems (pldi082 unbounded1.ml and xyz.ml) from the benchmark
set (https://github.com/nyu-acsys/drift) of Drift [19]12, with a variant
xyz v.ml of xyz.ml, obtained by generalizing the initial values of some vari-
ables.

The implementation and the benchmark set described above are available at
https://github.com/naokikob/neugus.

Table 6 summarizes the experimental results. The experiments were con-
ducted on the same machine as those of Sect. 2.1. We used HoIce 1.8.3 as a
backend. We used 4-layer NNs with 32 and 8 hidden nodes in the second and
third layers respectively. The column ‘#pred’ shows the number of predicates
in the CHC problem, and columns ‘#P’, ‘#N’, and ‘#I’ respectively show the
numbers of positive, negative, and implication examples (the maximum numbers
in the three runs). The column ‘Cycle’ shows the minimum and maximum num-
bers of Step 2 in the three runs. The column ‘Time’ shows the execution time
in seconds (which is dominated by NeuGuS), where the time is the average for
three runs, and ‘-’ indicates a time-out (with the time limit of 600 s). The next
column shows key qualifiers found by NeuGuS. For comparison with our com-
bination of HoIce and NeuGuS, the last column shows the times (in seconds)
spent by Z3 (as a CHC solver) for solving the problems13.

The results reported above indicate that our tool can indeed be used to improve
the qualifier discovery engine of ICE-learning-based CHC solverHoIce, which has
been the main bottleneck of HoIce. With the default option, NeuGuS timed out
for fib32 and xyz. For the problem fib32, the “mod 2” constraint is required. The
row “fib32 -mod2” shows the result obtained by running NeuGuS with the “mod
2” constraint enabled. For the problem xyz, we discovered that the main obstacle
was on the side of HoIce: HoIce (in the first step) finds no negative constraint
for one of the two predicates, and no positive constraint for the other predicate;
thus, NeuGuS returns “true” for the former predicate and “false” for the latter
predicate. We have therefore prepared an option to eagerly collect learning data
by applying unit-propagation to CHCs; the row “xyz -gen” shows the result for
this option; see Appendix B for more detailed analysis of the problem xyz. Larger
experiments on the application to CHC solvers are left for future work.

12 The tool r type was used to extract CHCs. The source programs have been slightly
modified to remove Boolean arguments from predicates.

13 Recall that our benchmark set collects only the problems that plain HoIce cannot
solve: although many of those problems can be solved by Z3 [14] much more quickly,
there are also problems that Z3 cannot solve but (plain) HoIce can.

https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2018/Inv_Track
https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2018/Inv_Track
https://github.com/nyu-acsys/drift
https://github.com/naokikob/neugus
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Table 6. Experimental results on CHC solving

Problem #pred #P #N #I Cycle Time Key qualifiers found Z3

plus 1 29 48 35 1 23.8 x0 + 2x1 + x2 = 0 -

plusminus 2 90 137 42 2 63.2 x0 + 2x1 − x1 = 0 -

cggmp 1 25 95 11 1 20.0 x0 + 2x1 − x2 = 0 0.05

cggmp-new 1 8 97 15 1 24.1 x0 + 2x1 ≥ 40, x0 + 2x1 ≤ 42 0.12

fib17n 1 44 139 35 7–10 349.7 −x0 + x2 − x3 ≥ 0 0.14

fib32 1 42 222 17 - - - -

fib32 -mod2 1 42 222 17 1–3 53.7 x3 mod 2 = 0 -

hola.07 1 78 314 12 2 – 3 72.5 x0 + x1 = 3x2 0.05

codeinv93 1 32 260 23 2 – 3 73.2 −3x0 + x2 + x3 = 0 0.05

pldi082 2 15 42 34 1 24.6 2x0 − x1 − x2 ≥ −2 -

xyz 2 56 6 142 - - - 0.33

xyz -gen 2 251 139 0 3 – 5 185.9 x0 + 2x1 ≥ 0 0.33

xyz v 2 160 303 43 2 – 8 217.3 x0 − x1 − 2x2 + 2x3 ≥ 0 -

4 Related Work

There have recently been a number of studies on verification of neural net-
works [1,8,16,21,30]: see [10] for an extensive survey. In contrast, the end goal
of the present paper is to apply neural networks to verification and synthesis of
classical programs. Closest to our use of NNs is the work of Ryan et al. [22,29] on
Continuous Logic Network (CLN). CLN is a special neural network that imitates
a logical formula (analogously like symbolic regressions discussed below), and it
was applied to learn loop invariants. The main differences are: (i) The shape of
a formula must be fixed in their original approach [22], while it need not in our
method, thanks to our hybrid approach of extracting just qualifiers and using a
classical method for constructing its Boolean combinations. Although their later
approach [29] relaxes the shape restriction, it still seems less flexible than ours
(in fact, the shape of invariants found by their tools seem limited, according to
the code available at https://github.com/gryan11/cln2inv and https://github.
com/jyao15/G-CLN). (ii) We consider a more general learning problem, using
not only positive examples, but also negative and implication examples. This is
important for applications to CHC solving discussed in Sect. 3 and oracle-based
program synthesis discussed in the longer version [13].

Finding inductive invariants has been the main bottleneck of program verifi-
cation, both for automated tools (where tools have to automatically find invari-
ants) and semi-automated tools (where users have to provide invariants as hints
for verification). In particular, finding appropriate qualifiers (sometimes called
features [18], and also predicates in verification methods based on predicate
abstraction), which are atomic formulas that constitute inductive invariants,
has been a challenge. Various machine learning techniques have recently been
applied to the discovery of invariants and/or qualifiers. As already mentioned,

https://github.com/gryan11/cln2inv
https://github.com/jyao15/G-CLN
https://github.com/jyao15/G-CLN
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Garg et al. [6,7] proposed a framework of semi-supervised learning called ICE
learning, where implication constraints are provided to a learner in addition to
positive and negative examples. The framework has later been generalized for
CHC solving [4,5], but the discovery of qualifiers remained as a main bottleneck.

To address the issue of qualifier discovery, Zhu et al. [31] proposed a use of
SVMs (support vector machines). Whilst SVMs are typically much faster than
NNs, there are significant shortcomings: (i) SVMs are not good at finding a
Boolean combination of linear inequalities (like A∧B) as a classifier. To address
the issue, they combined SVMs (to find each qualifier A,B) with the Boolean
decision tree construction [7], but it is in general unlikely that SVMs generate A
and/or B as classifiers when A∧B is a complete classifier (see Fig. 7). (ii) SVMs
do not properly take implication constraints into account. Zhu et al. [31] label the
data occurring only in implication constraints as positive or negative examples
in an ad hoc manner, and pass the labeled data to SVMs. The problem with
that approach is that the labeling of data is performed without considering the
overall classification problem. Recall the example problem in Sect. 3.2 consisting
of implication constraints of the form p(2n)∧p(2n+1) ⇒ and ⇒ p(2n)∨p(2n+1)
for n ∈ [−10, 10]. In this case, there are 221 possible ways to classify data, of
which only two classifications (p(2n) = true and p(2n + 1) = false for all n, or
p(2n + 1) = true and p(2n) = false for all n) lead to a concise classification
of n mod 2 = 0 or n mod 2 = 1. Sharma et al. [25] also applied SVMs to find
interpolants. It would be interesting to investigate whether our approach is also
useful for finding interpolants.

Padhi et al. [17,18] proposed a method for finding qualifiers (features, in
their terminology) based on a technique of syntax-guided program synthesis
and combined it with Boolean function learning. Since they enumerate possible
features in the increasing order of the size of feature expressions ([18], Fig. 5),
we think they are not good at finding a feature of large size (like quadratic
constraints used in our experiment in Sect. 2.3). Anyway, since our technique has
its own defects (in particular, for finding simple invariants, it is too much slower
than the techniques above), our technique should be used as complementary to
existing techniques. Si et al. [26] used neural reinforcement learning for learning
loop invariants, but in a way quite different from ours. Rather than finding
invariants in a data-driven manner, they let NNs to learn invariants from a
graph representation of programs.

Although the goal is different, our technique is also related with the NN-
based symbolic regression or extrapolation [15,20,23], where the goal is to learn
a simple mathematical function expression (like f(x) = sin(x+x2)) from sample
pairs of inputs and outputs. To this end, Martius and Lambert’s method [15]
prepares a NN whose activation functions are basic mathematical functions (like
sin), trains it, and extracts the function from the trained NN. The main difference
of our approach from theirs is to use NNs as a gray (rather than white) box, only
for extracting qualifiers, rather than extracting the whole function computed by
NN. Nevertheless, we expect that some of their techniques would be useful also
in our context, especially for learning non-linear qualifiers.
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Fig. 7. SVM vs NN: Small circles denote positive examples, and the white space is
filled with negative examples. The dashed line shows a linear classifier typically output
by a SVM, while the thick line shows the (complete) classifier output by a NN.

5 Conclusion

We have proposed a novel method for synthesizing logical formulas using neural
networks as gray boxes. The results of our preliminary experiments are quite
promising. We have also discussed an application of our NN-guided synthesis
to program verification through CHC solving. (Another application to program
synthesis through the notion of oracle-based programming is also discussed in a
longer version of this paper [13]). We plan to extend our NN-guided synthesis
tool to enable the synthesis of (i) functions returning non-Boolean values (such as
integers), (ii) predicates/functions on recursive data structures, and (iii) program
expressions containing loops. For (ii) and (iii), we plan to deploy recurrent neural
networks.
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Appendix

A Additional Information for Sect. 2

A.1 On Three-Layer vs Four-Layer NNs

As reported in Sect. 2.2, three-layer NNs with a sufficient number of nodes per-
formed well in the experiment on learning formulas (A ∧ B) ∨ (C ∧ D), contrary
to our expectation. This section reports our analysis to find out the reason.

We used the instance shown on the left-hand side of Fig. 8, and compared
the training results of three-layer and four-layer NNs. To make the analysis
easier, we tried to train the NNs with a minimal number of hidden nodes in
the second layer. For the four-layer-case, the training succeeded for only two
hidden nodes in the second layer (plus eight hidden nodes in the third layer),
and only relevant quantifiers of the form x > c, x < c, y > c, y < c for c ∈
{−2, 1, 0, 1} were generated. In contrast, for the three-layer case, 12 hidden nodes
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were required for the training to succeed. The right-hand side of Fig. 8 shows the
lines bi+wi,xx+wi,yy = 0 (i ∈ {1, . . . , 12}) where wi,x, wi,y and bi are the weights
and bias for the i-th hidden node. We can see that the lines that are (seemingly)
irrelevant to the original formula are recognized by the hidden nodes. Removing
any hidden node (e.g., the node corresponding to line 1) makes the NN fail to
properly separate positive and negative examples. Thus, the three-layer NN is
recognizing positive and negative examples in a manner quite different from the
original formula; it is performing a kind of patchwork to classify the examples.
Nevertheless, even in that patchwork, there are lines close to the horizontal and
vertical lines y = 0 and x = 0. Thus, if we use the trained NN only to extract
qualifier candidates (rather than to recover the whole formula by inspecting also
the weights of the third layer), three-layer NNs can be useful, as already observed
in the experiments in Sect. 2.2.

Fig. 8. Problem instance for learning (x ≥ 0 ∧ y ≥ 0) ∨ (x ≤ 0 ∧ y ≤ 0) (left) and lines
recognized by Three-Layer NNs for problem instance (x ≥ 0 ∧ y ≥ 0) ∨ (x ≤ 0 ∧ y ≤ 0)
(right).

A.2 On Activation Functions

To justify our choice of the sigmoid function as activation functions, we have
replaced the activation functions with ReLU (f(x) = x for x ≥ 0 and f(x) = 0
for x < 0) and Leaky ReLU (f(x) = x for x ≥ 0 and f(x) = −0.01x for x < 0)
and conducted the experiments for synthesizing (A ∧ B) ∨ (C ∧ D) by using the
same problem instances as those used in Sect. 2.2. Here are the results.

activation #nodes #retry %success %qualifiers #candidates time (sec.)

ReLU 32:32 15 18.3% 66.7% 72.4 55.9

Leaky ReLU 32:32 32 61.7% 88.8% 64.4 52.8

sigmoid 32:32 10 85.0% 91.7% 40.4 39.9

In this experiment, we have used the mean square error function as the loss
function (since the log loss function assumes that the output belongs to [0, 1],
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which is not the case here). For comparison, we have re-shown the result for the
sigmoid function (with the mean square error loss function).

As clear from the table above, the sigmoid function performs significantly
better than ReLU and Leaky ReLU, especially in %success (the larger is better)
and #candidates (the smaller is better). This confirms our expectation that
the use of the sigmoid function helps us to ensure that only information about
b + w1 x1 + · · · + wk xk > c for small c’s may be propagated to the output of
the second layer, so that we can find suitable qualifiers by looking at only the
weights and biases for the hidden nodes in the second layer. We do not report
experimental results for the tanh function (tanh(x) = 2σ(x) − 1), but it should
be as good as the sigmoid function, as it has similar characteristics.

A.3 On Biases

As for the biases in the second later, we have actually removed them and instead
added a constant input 1, so that the weights for the constant input play the
role of the biases (thus, for two-dimensional input (x, y), we actually gave three-
dimensional input (x, y, 1)). This is because, for some qualifier that requires a
large constant (like x + y − 150 > 0), adding additional constant inputs such
as 100 (so that inputs are now of the form (x, y, 1, 100)) makes the NN training
easier to succeed. Among the experiments reported in this paper, we added an
additional constant input 10 for the experiments in Sect. 2.3.

Similarly, we also observed (in the experiments not reported here) that, when
the scales of inputs vary extremely among different dimensions (like (x, y) =
(1, 100), (2, 200), ...), then the normalization of the inputs helped the convergence
of training.

B Additional Information for Sect. 3

Here we provide more details about our experiments on the CHC problem xyz,
which shows a general pitfall of the ICE-based CHC solving approach of HoIce
(rather than that of our neural network-guided approach). Here is the source
program of xyz written in OCaml (we have simplified the original program, by
removing redundant arguments).

let rec loopa x z =
if (x < 10) then loopa (x + 1) (z - 2) else z

let rec loopb x z =
if (x > 0) then loopb (x-1) (z+2) else assert(z > (-1))

let main (mm:unit(*-:{v:Unit | unit}*)) =
let x = 0 in let z = 0 in
let r = loopa x z in
let s = 10 in loopb s r
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Here is (a simplified version of) the corresponding CHC generated by r type.

x < 10 ∧ loopa(x + 1, z − 2, r) ⇒ loopa(x, z, r) (1)
x ≥ 10 ⇒ loopa(x, z, z) (2)

x > 0 ∧ loopb(x, z) ⇒ loopb(x − 1, z + 2) (3)
x ≤ 0 ∧ loopb(x, z) ⇒ z > −1 (4)

loopa(0, 0, r) ⇒ loopb(10, r) (5)

When we ran HoIce for collecting learning data, we observed that no pos-
itive examples for loopb and no negative examples for loopa were collected.
Thus NeuGuS returns a trivial solution such as loopa(x, z, r) ≡ true and
loopb(x, z) ≡ false. The reason why HoIce generates no positive examples
for loopb is as follows. A positive example of loopb can only be generated from
the clause (5), only when a positive example of the form loopa(0, 0, r) is already
available. To generate a positive example of the form loopa(0, 0, r), however, one
needs to properly instantiate the clauses (2) and (1) repeatedly; since HoIce
generates examples only lazily when a candidate model returned by the learner
does not satisfy the clauses. In short, HoIce must follow a very narrow sequence
of non-deterministic choices to generate the first positive example of loopb. Neg-
ative examples of loopa are rarely generated for the same reason.

Another obstacle is that even if HoIce can generate a negative counterexam-
ple through clause (5) with a luck, it is only of the form loopa(0, 0, r). Although
further negative examples can be generated through (1), the shape of the result-
ing negative examples are quite limited.
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Abstract. k-CFA provides the most well-known context abstraction for
program analysis, especially pointer analysis, for a wide range of pro-
gramming languages. However, its inherent context explosion problem
has hindered its applicability. To mitigate this problem, selective context-
sensitivity is promising as context-sensitivity is applied only selectively
to some parts of the program. This paper introduces a new approach to
selective context-sensitivity for supporting k-CFA-based pointer analysis,
based on CFL-reachability. Our approach can make k-CFA-based pointer
analysis run significantly faster while losing little precision, based on an
evaluation using a set of 11 popular Java benchmarks and applications.

Keywords: Pointer analysis · Context sensitivity · CFL reachability

1 Introduction

For the programs written in a wide range of programming languages, k-CFA [23]
represents the most well-known context abstraction for representing the calling
contexts of a method in program analysis, especially pointer analysis, where
one remembers only the last k callsites. However, this k-callsite-based context-
sensitive abstraction suffers from the combinatorial explosion of calling contexts.

For k-CFA-based pointer analysis, denoted kcs, different degrees of context-
sensitivity at different program points in a program can have vastly differ-
ent impacts on its precision and efficiency. To mitigate its context explo-
sion problem, selective context-sensitivity is promising, since context-sensitivity
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is applied only selectively to some parts of the program. However, exist-
ing attempts [10,12,16,25], while being applicable to other types of context-
sensitivity, such as object-sensitivity [15] and type-sensitivity [24], are mostly
heuristics-driven. For example, some heuristics used are related to the number
of objects pointed to by some variables and certain pre-defined value-flow pat-
terns found (according to the points-to information that is pre-computed by
Andersen’s (context-insensitve) analysis [3]).

In this paper, we introduce a new approach to selective context-sensitivity in
order to enable kcs to run substantially faster while losing little precision. Our
pre-analysis makes such selections systematically by reasoning about the effects
of selective context-sensitivity on kcs, based on context-free language reacha-
bility, i.e., CFL-reachability. Our key insight is that the effects of analyzing a
given variable/object context-sensitively on avoiding generating spurious points-
to relations (elsewhere in the program) can be captured by CFL-reachability in
terms of two CFLs, LF for specifying field accesses and LC for specifying context-
sensitivity. This correlation is analytical rather than black-box-like as before. By
regularizing LF while keeping LC unchanged, this correlation becomes efficiently
verifiable (i.e., linear in terms of the number of edges in a pointer-assignment-
graph representation of the program, in practice).

In summary, we make the following contributions:

– We introduce a CFL-reachability-based approach, Selectx, for enabling
selective context-sensitivity in kcs, by correlating the context-sensitivity of
a variable/object selected at a program point and its effects on avoiding spu-
rious points-to relations elsewhere (i.e., at other program points).

– We have implemented Selectx in Soot [33] with its source code being
available at http://www.cse.unsw.edu.au/∼corg/selectx.

– We have evaluated Selectx using a set of 11 popular Java benchmarks and
applications. Selectx can boost the performance of kcs (baseline) substan-
tially with little loss of precision. In addition, kcs also runs significantly faster
for these programs overall under Selectx than under Zipper [12] (an exist-
ing heuristics-based approach to selective context-sensitivity) while also being
highly more precise.

The rest of this paper is organized as follows. Section 2 outlines our key
insights and some challenges faced in developing Selectx. Section 3 reviews an
existing CFL-reachability formulation of kcs. Section 4 formulates Selectx for
supporting selective context-sensitivity. Section 5 evaluates Selectx. Section 6
discusses the related work. Finally, Sect. 7 concludes the paper.

2 Challenges

We review briefly the classic k-CFA-based pointer analysis (kcs) and describe
some challenges faced in enabling kcs to support selective context-sensitivity.

http://www.cse.unsw.edu.au/~corg/selectx
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2.1 k-CFA

A context-insensitive pointer analysis, such as Andersen’s analysis [3], uses a
single abstraction for a variable/object. In contrast, a context-sensitive pointer
analysis uses different abstractions for a variable/object for the different calling
contexts of its containing method. Different flavors of context-sensitivity differ
in how the calling contexts of a method (method contexts) and the “calling”
(i.e., allocating) contexts of a heap object (heap contexts) are modeled. In kcs,
a pointer analysis based on k-CFA [23], method and heap contexts are often
represented by their k- and (k − 1)-most-recent callsites, respectively [31].

Context-sensitively, if pt(p) represents the points-to set of a variable/field p,
the points-to relation between p and an object o that may be pointed to by p
can be expressed as follows [15,24]:

(o, c′) ∈ pt(p, c) (1)

where c is the method context (i.e., calling context) of p’s containing method and
c′ is the heap context of o (i.e., the calling context under which o is allocated).
The precision of a context-sensitive pointer analysis is measured by the context-
insensitive points-to information obtained (with all the contexts dropped):

o ∈ pt(p) (2)

which can be more precise than the points-to information obtained directly by
applying a context-insensitive pointer analysis (as failing to analyze each method
for each context separately will conflate the effects of all calls to the method).

Fig. 1. An example for illustrating context sensitivity.

Let us consider a simple program given in Fig. 1. A context-insensitive pointer
analysis, such as Andersen’s analysis [3], models a variable/object without distin-
guishing its contexts, leading to a single abstraction for variable n. As the analysis
cannot filter out unrealizable paths, the parameters and return values of the two
calls to m() are conflated, preventing the analysis from proving that the two calls
can actually return two distinct objects. Thus, pt(v1) = pt(v2) = {o1, o2}, where
o2 ∈ pt(v1) and o1 ∈ pt(v2) are spurious. On the other hand, 1cs will distinguish
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the two calling contexts of m() (by thus modeling n under contexts c1 and c2 with
two different abstractions), yielding pt(v1, [ ]) = pt(n, [c1]) = pt(w1, [ ]) = {o1, [ ]}
and pt(v2, [ ]) = pt(n, [c2]) = pt(w2, [ ]) = {o2, [ ]}, and consequently, the follow-
ing more precise points-to sets, pt(v1) = {o1} and pt(v2) = {o2} (without the
spurious points-to relations o2 ∈ pt(v1) and o1 ∈ pt(v2)).

In this paper, we focus on context-sensitivity, as some other dimensions of
precision, e.g., flow sensitivity [7,28] and path sensitivity [6,29] are orthogonal.

2.2 Selective Context-Sensitivity

Even under k-limiting, kcs must take into account all the calling contexts for
a method (and consequently, all its variables/objects) at all its call sites. As a
result, kcs still suffers from the context explosion problem, making it difficult to
increase its precision by increasing k. However, there are situations where adding
more contexts does not add more precision to kcs. To improve its efficiency
and scalability, some great progress on selective context-sensitivity [10,12,16,25]
has been made, with a particular focus on object-sensitivity [15] and type-
sensitivity [24], two other types of context-sensitivity that are also used in ana-
lyzing object-oriented programs. However, these existing techniques (heuristics-
based by nature) are not specifically tailored to kcs, often failing to deliver the
full performance potentials or suffering from a great loss of precision, in practice.

Why is it hard to accelerate kcs with selective context-sensitivity efficiently
without losing much precision? In Fig. 1, we can see that whether n is context-
sensitive or not ultimately affects the precision of the points-to information com-
puted for v1 and v2. However, n is neither v1 nor v2 and can be far away from
both with complex field accesses on n via a long sequence of method calls in
between. How do we know that making n context-sensitive can avoid some spu-
rious points-to relations that would otherwise be generated for v1/v2?

We may attempt to resort to some heuristics-based rules regarding, e.g., the
alias relations between n and v1/v2. However, such rules often do not admit a
quantitative analysis of their sufficiency and necessity. In many cases, the effects
of these rules on the efficiency and precision of kcs are unpredictable and often
unsatisfactory. Can the correlation between context-sensitivity and the precision
of a pointer analysis be captured to support selective context-sensitivity?

As discussed above, whether a variable/object is context-sensitive or not
often does not affect its own points-to relations, but rather, the points-to
relations of other variables/objects. What are then the conditions for a vari-
able/object n to affect the points-to relation o ∈ pt(v), i.e., that a variable v
points-to o? In general, if a points-to relation holds in a pointer analysis, then it
will also hold in a less precise pointer analysis. Conversely, if a points-to relation
does not hold in a pointer analysis, then it will also not hold in a more precise
pointer analysis.

Let A be a (context-sensitive) k-CFA-based pointer analysis, say, kcs. Let
ACI={n} be its version where only a particular variable/object n in the pro-
gram is analyzed context-insensitively. A sufficient and necessary condition for
requiring n to be analyzed context-sensitively (when examining n in isolation) is:
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∃ o ∈ O, v ∈ V : A =⇒ o /∈ pt(v) ∧ ACI={n} =⇒ o ∈ pt(v) (3)

where O is the set of objects and V is the set of variables in the program.
Consider again Fig. 1. Under A, we have o1 /∈ pt(v2) (o2 /∈ pt(v1)), but

under ACI={n}, we have o1 ∈ pt(v2) and o2 ∈ pt(v1), as described in Sect. 2.1.
According to Eq. (3), there exist o2 and v1 in the program such that

A =⇒ o2 /∈ pt(v1) ∧ ACI={n} =⇒ o2 ∈ pt(v1) (4)

For reasons of symmetry, there also exist o1 and v2 in the program such that

A =⇒ o1 /∈ pt(v2) ∧ ACI={n} =⇒ o1 ∈ pt(v2) (5)

Therefore, n affects the points-to information computed for v1 and v2. Thus, n
should be analyzed context-sensitively in order to avoid the spurious points-to
relations o1 ∈ pt(v2) and o2 ∈ pt(v1) that would otherwise be introduced. All
the other variables/objects in the program can be context-insensitive as they do
not affect any points-to relation computed in the entire program.

Let us modify this program by adding, v1 = w2, at its end (thus causing v1
to point to not only o1 but also o2). Now, if n is context-sensitive (under A),
we will obtain pt(v1) = {o1, o2} and pt(v2) = {o2}. However, if n is context-
insensitive, we will still obtain pt(v1) = pt(v2) = {o1, o2} conservatively. In this
case, there still exist v2 and o1 in the modified program such that Eq. (5) holds.
According to Eq. (3), n must still be context-sensitive.

However, the condition stated in Eq. 3 is impractical to validate: (1) it is
computationally expensive since we need to solve A and ACI={n} for every
variable/object n in the program, and (2) it would have rendered the whole
exercise meaningless since we would have already solved A.

In this paper, we exploit CFL-reachability to develop a necessary condition
that is efficiently verifiable (i.e., linear in terms of the number of edges in the
pointer assignment graph of the program) in order to approximate conservatively
the set of variables/objects that require context-sensitivity. This allows us to
develop a fast pre-analysis to parameterize kcs with selective context-sensitivity
so that the resulting pointer analysis runs substantially more efficiently than
before while suffering only a small loss of precision.

3 Preliminary

3.1 CFL-Reachability Formulation of K-CFA-based Pointer Analysis

CFL-Reachability [19], which is an extension of standard graph reachability, can
be used to formulate a pointer analysis that operates on a graph representation of
the statements in the program. In addition, a context-sensitive pointer analysis
is often expressed as the intersection of two separate CFLs [14,19,26,32], with
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one specifying field accesses and the other specifying method calls. We leverage
such a dichotomy to develop a new approach to selective context-sensitivity.

With CFL-reachability, a pointer analysis operates the Pointer Assignment
Graph (PAG), G = (N,E), of a program, where its nodes represent the vari-
ables/objects in the program and its edges represent the value flow through
assignments. Figure 2 gives the rules for building the PAG for a Java program.
For a method invocation at callsite c, ĉ and

̂

c represent the entry context and exit
context for any callee invoked, respectively. Note that retm represents a unique
return variable in any callee invoked. For a PAG edge, its label above indicates
the kind of its associated statement and its label below indicates whether it is
an inter-context (an edge spanning two different contexts) or intra-context edge
(an edge spanning the same context). In particular, we shall speak of an (inter-
context) entry edge x

assign−−−−→
ĉ

y, where ĉ is an entry context and an (inter-context)

exit edge x
assign−−−−→̂

c
y, where

̂

c is an exit context. During the pointer analysis, we

need to traverse the edges in G both forwards and backwards. For each edge

x
�−→
c

y, its inverse edge is y
�−→
c

x. For a below-edge label ĉ or
̂

c, we have ĉ =
̂

c

and
̂

c = ĉ, implying that the concepts of entry and exit contexts for inter-context
value-flows are swapped if their associated PAG edges are traversed inversely.

A CFL-reachability-based pointer analysis makes use of two CFLs, with one
being defined in terms of only above-edge labels and the other in terms of only
below-edge labels [32]. Let L be a CFL over Σ formed by the above-edge (below-
edge) labels in G. Each path p in G has a string L(p) in Σ∗ formed by concate-
nating in order the above-edge (below-edge) labels in p. A node v in G is said to
be L-reachable from a node u in G if there exists a path p from u to v, known
as L-path, such that L(p) ∈ L.

Let LF be the CFL defined (in terms of above-edge labels) below [22,26]:

flowsto → new flows∗

flowsto → flows
∗
new

flows → assign | store[f ] flowsto flowsto load[f ]
flows → assign | load[f ] flowsto flowsto store[f ]

(6)

If o flowsto v, then v is LF -reachable from o. In addition, o flowsto v iff v flowsto o.
This means that flowsto actually represents the standard points-to relation. As a
result, LF allows us to perform a context-insensitive pointer analysis with CFL-
reachability by solving a balanced parentheses problem for field accesses [19,27].

Let LC be the CFL defined (in terms of below-edge labels) below [14,32]:

realizable → exits entries
exits → exits balanced |

̂

c exits | ε
entries → balanced entries | entries ĉ | ε

balanced → balanced balanced | ĉ balanced

̂

c | ε

(7)

A path p in G is said to be realizable in the traditional sense that “returns” must
be matched with their corresponding “calls” iff it is an LC-path.
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Fig. 2. Statements and their corresponding PAG edges.

Now, kcs can be expressed by reasoning about the intersection of these two
CFLs, i.e., LFC = LF ∩ LC . A variable v points to an object o iff there exists
a path p from o to v in G, such that LF (p) ∈ LF (p is a flowsto-path) and
LC(p) ∈ LC (p is a realizable path). Such a path is referred to as an LFC-path.

Note that this CFL-reachability-based formulation does not specify how the
call graph is constructed. This can be either pre-computed by applying Ander-
sen’s analysis [3] or built on the fly. In Sect. 4, we discuss how this particular
aspect of LFC can cause Selectx not to preserve the precision of kcs.

3.2 Transitivity of LC -Path Concatenation

Given a realizable path p in G, where LC(p) ∈ LC , LC(p) is derived from the
start symbol, realizable, starting with the production realizable → exits entries.
Let us write ex(p) for the prefix of LC(p) that is derived from exits and en(p)
for the suffix of LC(p) that is derived from entries. Let s be a string formed
by some context labels, i.e., some below-edge labels in G. Let can(s) be the
canonical form of s with all balanced parentheses removed from s. For example,
can(

̂

c1ĉ2

̂

c2ĉ3) =
̂

c1ĉ3. Let str(s) return the same string s except that ̂ or
̂

over each label in s has been removed. For example, str(
̂

c1ĉ3) = c1c3. Finally, s
returns the same string s but reversed. For example, c1c3 = c3c1.

There exists an LFC-path p from an object o to a variable v in G iff the
following context-sensitive points-to relation is established:

(o, [str(can(ex(p)))]) ∈ pt(v, [str(can(en(p)))]) (8)
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For brevity, we will write scex(p) as a shorthand for str(can(ex(p))) and scen(p)
as a shorthand for str(can(en(p))).

As a result, any subpath of an LFC -path induces some context-sensitive
points-to relations. Let px,y be a path in G, starting from node x and ending
at node y. Let px1,x2,...,xn

be a path in G from node x1 to node xn that passes
through the intermediate nodes x2, x3, ..., xn−1 in that order, which is naturally
formed by n − 1 subpaths, px1,x2 , px2,x3 , ..., pxn−1,xn

. Consider a flowsto-path:

po,n,v = o
new−−→ x

store[f ]−−−−−→ y
assign−−−−→

ĉ1
z

new−−→ n
new−−→ z

assign−−−−→̂

c2
u

load[f ]−−−−→ v (9)

Let us examine its two subpaths. For one subpath given below:

po,n = o
new−−→ x

store[f ]−−−−−→ y
assign−−−−→

ĉ1
z

new−−→ n (10)

we find that (o, [ ]) ∈ pt(n.f, [c1]), i.e., n.f under context c1 points to o under [ ],
where scex(po,n) = ε and scen(po,n) = c1. From the other subpath:

pn,v = n
new−−→ z

assign−−−−→̂

c2
u

load[f ]−−−−→ v (11)

we find that pt(n.f, [c2]) ⊆ pt(v, [ ]), i.e., v under [ ] points to whatever n.f points
to under context c2, where scex(pn,v) = c2 and scen(pn,v) = ε.

In general, LC-path concatenation is not transitive. In the following theorem.
we give a sufficient and necessary condition to ensure its transitivity. Given two
strings s1 and s2, we write s1 � s2 to mean that one is the prefix of the other.

Theorem 1 (Transitive LC-Path Concatenations). Let px,z be a path in
G formed by concatenating two LC-paths, px,y and py,z. Then px,z is an LC-path
iff scen(px,y) � scex(py,z).

Proof. As LC(px,y) ∈ LC , LC(px,y) = ex(px,y)en(px,y) holds. Simi-
larly, as LC(py,z) ∈ LC , we also have LC(py,z) = ex(py,z)en(py,z).
As px,z is formed by concatenating px,y and py,z, we have LC(px,z) =
ex(px,y)en(px,y)ex(py,z)en(py,z). To show that px,z is an LC-path, it suffices to
show that LC(px,z) ∈ LC . According to the grammar defining LC , LC(px,z) ∈
LC ⇐⇒ en(px,y)ex(py,z) ∈ LC ⇐⇒ can(en(px,y))can(ex(py,z)) ∈ LC ,
where can(en(px,y)) is a sequence of entry contexts ĉ and can(ex(py,x)) is
a sequence of exit contexts

̂

c. By definition, scen(px,y) = str(can(en(px,y)))
and scex(py,z) = str(can(ex(py,z))). Thus, can(en(px,y))can(ex(py,z)) ∈ LC iff
scen(px,y) � scex(py,z).

Let us revisit the flowsto-path po,n,v given in Eq. (9), which is a concatenation
of two LC-paths, po,n and pn,v, where scen(po,n) = c1 and scex(pn,v) = c2. By
Theorem 1, po,n,v is an LC-path iff scen(po,n) � scex(pn,v), i.e., iff c1 = c2.
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4 CFL-Reachability-based Selective Context-Sensitivity

In this section, we introduce Selectx, representing a new approach to selec-
tive context-sensitivity for accelerating kcs. Section 4.1 gives a necessary con-
dition, which is efficiently verifiable, for making a node in G context-sensitive,
based on LFC . Section 4.2 describes the context-sensitivity-selection algorithm
developed for Selectx from this necessary condition for over-approximating the
set of context-sensitive nodes selected. Section 4.3 explains why Selectx may
lose precision (due to the lack of provision for call graph construction in LFC).
Section 4.4 discusses its time and space complexities.

4.1 Necessity for Context-Sensitivity

For the flowsto-path po,n,v given in Eq. (9) discussed in Sect. 3.2, we can see that
whether po,n,v is considered to be realizable depends on whether n is modeled
context-sensitively or not. We can now approximate Eq. (3) in terms of CFL-
reachability. Let P(G) be the set of paths in G. According to Theorem 1, we
can conclude that a node (i.e., variable/object) n in G is context-sensitive only
if the following condition holds:

∃ po,n,v ∈ P(G) :LF (po,n,v) ∈ LF

∧ LC(po,n) ∈ LC ∧ LC(pn,v) ∈ LC

∧ scen(po,n) 
� scex(pn,v)
(12)

where o ranges over the set of objects and v over the set of variables in G.
To understand its necessity, we focus on one single fixed path po,n,v ∈ P(G),

where LF (po,n,v) ∈ LF ∧ LC(po,n) ∈ LC ∧ LC(pn,v) ∈ LC holds. By Theorem 1,
if scen(po,n) 
� scex(pn,v), we will infer o ∈ pt(v) spuriously when n is context-
insensitive (ACI={n} =⇒ o ∈ pt(v)) but o /∈ pt(v) when n is context-sensitive
(A =⇒ o /∈ pt(v)). To understand its non-sufficiency, we note that the same
object may flow to a variable along several flowsto-paths.

Let us consider the program in Fig. 1, with its path po1,n,v2 given below:

o1
new−−→ w1

assign−−−−→
̂c1

n
assign−−−−→̂

c2

v2 (13)

where LF (po1,n,v2) ∈ LF , LC(po1,n) ∈ LC , and LC(pn,v2) ∈ LC . According to Eq.
(12), n must be necessarily context-sensitive in order to avoid generating the spu-
rious points-to relation o1 ∈ pt(v2) along this flowsto-path, since scen(po1,n) = c1
and scex(pn,v2) = c2, where c1 
� c2. All the other variables/objects in this pro-
gram can be context-insensitive, as no such a path exists.

However, computing the CFL-reachability information according to LFC =
LF ∩LC is undecidable [20]. Thus, verifying Equation (12), which is expressed in
terms of LFC , both efficiently and precisely for every node in G is not possible.

Below we over-approximate LFC by regularizing LF and maintaining LC

unchanged, so that the necessary condition stated in Eq. (12) for a node to be
context-sensitive is weakened in the new language LRC = LR ∩ LC .
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Fig. 3. An example for illustrating an over-approximation of LF with LR.

By regularizing LF , we obtain the regular language LR defined below:

flowsto → new flows∗

flowsto → flows
∗
new

flows → assign | store assign
∗
new new

flows → assign | new new assign∗store

(14)

Here, the context-insensitive pointer analysis specified by LR is field-insensitive.
In addition, loads are treated equivalently as assignments, so that load [ ] has
been replaced by assign and load[ ] by assign. Finally, store [ ] and store[ ]
are no longer distinguished, so that both are now represented by store.

It is not difficult to see that LR is a superset of LF . Given LRC = LR ∩ LC ,
the necessary condition in Eq. (12) can now be weakened as follows:

∃ po,n,v ∈ P(G) : LR(po,n,v) ∈ LR

∧ LC(po,n) ∈ LC ∧ LC(pn,v) ∈ LC

∧ scen(po,n) 
� scex(pn,v)
(15)

Let us illustrate this approximation by using the example given in Fig. 3,
which is slightly modified from the example in Fig. 1. In this example, n can be
context-insensitive by Eq. (12) but must be context-sensitive conservatively by
Eq. (15). Consider the following path po1,n,v2 in G:

o1
new−−→ w1

assign−−−−→
̂c1

n
store[f ]−−−−−→ a

new−−→ o3
new−−→ a

assign−−−−→̂

c2

v2 (16)

where LC(po1,n) ∈ LC and LC(pn,v2) ∈ LC . As scen(po1,n) = c1 and scex(pn,v2) =
c2, we have scen(po1,n) 
� scex(pn,v2). It is easy to see that LF (po1,n,v2) 
∈ LF but
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LR(po1,n,v2) ∈ LR (with store[f] being treated as store). Thus, n should be
context-sensitive according to Eq. (15) but context-insensitive according to Eq.
(12), since po1,n,v2 is a flowsto-path in LR but not in LF .

4.2 SELECTX: A Context-Sensitivity Selection Algorithm

We describe our pre-analysis algorithm used in Selectx for finding all context-
sensitive nodes in G, by starting from the necessary condition stated in Eq. (15)
and then weakening it further, so that the final necessary condition becomes
efficiently verifiable. We will then use this final necessary condition as if it were
sufficient to find all the context-sensitive nodes in G. As a result, Selectx
may classify conservatively some context-insensitive nodes as also being context-
sensitive. When performing its pre-analysis on a program, Selectx relies on the
call graph built for the program by Andersen’s analysis [3]. As is standard, all
the variables in a method are assumed to be in SSA form.

Fig. 4. A DFA for accepting LR (with the summary edges shown in dotted lines). Note
that in LR loads are treated equivalently as assignments, so that load [ ] is replaced
by assign and load[ ] by assign. In addition, store [ ] and store[ ] are no longer
distinguished, so that both are now represented by store.

As LR is regular, Figure 4 gives a DFA (Deterministic Finite Automaton),
AR, for accepting this regular language over G = (N,E) (the PAG of the pro-
gram). There are three states: SR = {O,Vf ,Vp}, where O is the start state and
Vf is the accepting state. All the objects in N must stay only in state O. How-
ever, a variable v in N can be in state Vf when it participates in the computation
of flowsto into the variable and state Vp when it participates in the computation
of flowsto from the variable. Therefore, G = (N,E) leads naturally to a stateful
version, GR = (NR, ER), where NR ⊆ N × {O,Vf ,Vp} according to the state
transitions given. For example, if o new−−→ v ∈ E, then (o,O) new−−→ (v,Vf ) ∈ ER,

and if x store[ ]−−−−−→ y ∈ E, then (x,Vf ) store[ ]−−−−−→ (y,Vp) ∈ ER. For a pair of nodes
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n1, n2 ∈ NR, we write tn1,n2 if AR can transit from n1 to n2 in a series of tran-
sitions and p(tn1,n2) for the path traversed in G during these transitions. The
four dotted summary edges (labeled balanced) will be discussed later.

We can now recast Eq. (15) in terms of AR. A node n ∈ NR (with its state
label dropped) is context-sensitive only if the following condition holds:

∃ o ∈ N × {O}, v ∈ N × {Vf} : to,n ∧ tn,v

∧ LC(p(to,n)) ∈ LC ∧ LC(p(tn,v)) ∈ LC

∧ scen(p(to,n)) 
� scex(p(tn,v))
(17)

where to,n∧tn,v holds iff the path consisting of p(to,n) and p(tn,v) is a flowsto-path
in LR. This simplified condition can still be computationally costly (especially
since Selectx is developed as a pre-analysis), as there may be m1 incoming
paths and m2 outgoing paths for n, resulting in scen(p(to,n)) 
� scex(p(tn,v)) to
be verified in m1m2 times unnecessarily.

Instead of verifying scen(p(to,n)) 
� scex(p(tn,v)) for each such possible path
combination directly, we can simplify it into scen(p(to,n)) 
= ε∧scex(p(tn,v)) 
= ε.
As a result, we have weakened the necessary condition given in Eq. (17) to:

∃ o ∈ N × {O}, v ∈ N × {Vf} : to,n ∧ tn,v

∧ LC(p(to,n)) ∈ LC ∧ LC(p(tn,v)) ∈ LC

∧ scen(p(to,n)) 
= ε ∧ scex(p(tn,v)) 
= ε

(18)

This is the final necessary condition that will be used as a sufficient condition
in Selectx to determine whether n requires context-sensitivity or not. As a
result, Selectx can sometimes mis-classify a context-insensitive node as being
context-sensitive. However, this conservative approach turns out to be a good
design choice: Selectx can make kcs run significantly faster while preserving
its precision (if the precision loss caused due to the lack of provision for call
graph construction in LFC is ignored as discussed in Sect. 4.3).

Selectx makes use of the three rules given in Fig. 5 to determine that a
node n ∈ NR (with its state label dropped) is context-sensitive if

n.enflow 
= ∅ ∧ n.exflow 
= ∅ (19)

Each node n ∈ NR in a method m is associated with two attributes, enflow
and exflow : (1) n.enflow represents the set of sink nodes nt of all the inter-context
entry edges ns −→̂

c
nt of m, such that nt can reach n, and (2) n.exflow represents

the set of source nodes ns of all the inter-context exit edges ns −→̂
c

nt of m, such

that n can reach ns. For reasons of symmetry, both attributes are computed in
exactly the same way, except that the information flows in opposite directions.

Therefore, we explain only the parts of the three rules for computing enflow .
In [Inter-Context], we handle an inter-context edge n −→̂

c
n′ by including n′

in n′.enflow, i.e., initializing n′.enflow to include also n′. In [Intra-Context],
we we handle an intra-context edge n −→ n′ by simply propagating the data-flow
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Fig. 5. The rules used in Selectx for realizing selective context-sensitivity for kcs.
Note that all the above-edge labels in the PAG edges are irrelevant.

facts from the source node n to the sink node n′. In [Callsite-Summary], we
perform a standard context-sensitive summary for a callsite, as also done in the
classic IFDS algorithm [21], by introducing a summary edge n′′′ balanced−−−−−→ n′ in
GR = (NR, ER) to capture all possible forms of inter-procedural reachability,
including, for example, a possible summary edge from an argument n′′′ to n′ in
n′ = foo(n′′′, ...), where foo is a callee method being analyzed.

To relate Eq. (18) with Eq. (19), we note that Selectx ensures that

(1) n always lies on a flowsto-paths in LR but the path may not necessarily have
to start from an object as stated by to,n ∧ tn,v in Equation (18) ([Inter-
Context] and [Intra-Context]);

(2) LC(p(to,n)) ∈ LC ∧ LC(p(tn,v)) ∈ LC holds since Selectx performs only
context-sensitive summaries ([Callsite-Summary]); and

(3) scen(p(to,n)) 
= ε ∧ scex(p(tn,v)) 
= ε are checked equivalently as n.enflow 
=
∅ ∧ n.exflow 
= ∅.

Due to (1), Eq. (19) is slightly weaker than Eq. (18). As presented here, Selectx
becomes theoretically more conservative in the sense that it may identify poten-
tially more context-insensitive nodes as being context-sensitive. In practice, how-
ever, the differences between the two conditions are negligible, as almost all the
variables in a program are expected to be well initialized (i.e., non-null) and
all the objects allocated in a (factory) method are supposed to be used outside
(either as a receiver object or with its fields accessed). In our implementation,
however, we have followed Eq. (18). Finally, global variables, which are encoun-
tered during the CFL-reachability analysis, can be handled simply by resetting
its two attributes.

Let us apply these rules to the example in Fig. 1, as illustrated in
Fig. 6. Given the two inter-context entry edges in GR, (w1,Vf )

assign−−−−→
̂c1

(n,Vf ) and (w2,Vf )
assign−−−−→

̂c2
(n,Vf ), we have (n,Vf ).enflow = {(n,Vf )} by



274 J. Lu et al.

Fig. 6. Applying the rules given in Fig. 5 to the example program given in Fig. 1 (rep-
resented by its stateful PAG).

[Inter-Context]. Due to the two inter-context exit edges, (n,Vf )
assign−−−−→̂

c1

(v1,Vf ) and (n,Vf )
assign−−−−→̂

c2

(v2,Vf ), we have (w1,Vf ) balanced−−−−−→ (v1,Vf )

and (w2,Vf ) balanced−−−−−→ (v2,Vf ) by [Callsite-Summary]. Similarly, we obtain
(n,Vf ).exflow ={(n,Vf )}. Thus, n is context-sensitive by Eq. (19). For this exam-
ple program, all the other nodes can be deduced to be context-insensitive.

4.3 Precision Loss

As Selectx selects a node in G to be context-sensitive by using the necessary
condition given in Eq. (18) as a sufficient condition, it is then expected to always
over-approximate the set of context-sensitive nodes in G, and consequently, to
always preserve the precision of any k-CFA-based pointer analysis algorithm like
kcs being accelerated. However, this is not the case, as Selectx may cause the
pointer analysis to sometimes suffer from a small loss of precision due to the
lack of provision in LFC on how the call graph for the program being analyzed
should be constructed during the CFL-reachability-based pointer analysis.

To illustrate this situation, let us consider an example given in Fig. 7. Class A
defines two methods, foo() and bar(). Its subclass B inherits foo() from class A
but overrides bar(). Note that foo() can be regarded as a wrapper method for
bar(), as foo() simply invokes bar() on its “this” variable at line 4. If “this”
is analyzed context-insensitively by kcs, then pt(this, [ ]) = {(o1, [ ]), (o3, [ ])}.
This will cause the two bar() methods to be analyzed at line 4 whenever foo()
is analyzed from each of its two callsites at lines 14 and 17, resulting in the
conflation of o2 and o4 passed into the two bar() methods via their parameters
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Fig. 7. An example for illustrating precision loss incurred when kcs is performed with
selective context-sensitivity prescribed by Selectx due to a lack of a call graph con-
struction mechanism built-into LFC .

at the two callsites. As a result, the two spurious points-to relations o2 ∈ pt(q)
and o4 ∈ pt(p) will be generated. However, if the “this” variable is analyzed
context-sensitively, then the two spurious points-to relations will be avoided.

If we apply Eq. (12) to “this” at line 4, we will conclude that “this” is
context-insensitive due to the existence of only two paths passing through “this”
in G: o1 new−−→ a

assign−−−−→
̂c1

this and o3
new−−→ b

assign−−−−→
̂c2

this. Despite the value-flows

that can continue from “this” along the two paths in the program, LFC itself
is “not aware” of such value-flows, as it does not have a call-graph-construction
mechanism built into its underlying CFL reachability formulation. How to fill
this gap in LFC will be an interesting research topic. Currently, Selectx may
select some variables representing receivers (like “this” at line 4) to be ana-
lyzed context-insensitively, resulting in a small loss of precision (Sect. 5). Note
that this problem does not exist in LFC -based demand-driven pointer analysis
algorithms [19,26], as they combine LFC and a separate call-graph construction
mechanism to compute the points-to information.
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4.4 Time and Space Complexities

Time Complexity. Consider a program P with its PAG being G = (N,E) and
its corresponding stateful version being GR = (NR, ER), where |NR| < 2|N | and
|ER| = |E|. Let P be the maximum number of parameters (including “this” and
the return variable) in a method in P. For each node n, we have |n.enflow| � P
and |n.exflow| � P . Thus, the worst-case time complexity for handling all the
intra-context edges in P is O(P×|E|). As for the inter-context edges, let M be the
number of methods in P and I be the maximum number of inter-context entry
edges per method in G (i.e., GR). In [Callsite-Summary]), n′′ ∈ n.enflow and
n ∈ n′′.exflow can each be checked in O(P ), since |n.enflow| = |n.exflow| = O(P ).
Thus, the worst-case time complexity for producing all the summary edges for
P is O(P × M × I). Finally, the worst-case time complexity for Selectx is
O(P × |E| + P × M × I), which should simplify to O(|E|), since (1) P � |E|,
and (2) M × I represents the number of inter-context entry edges in E.

For real-world programs, their PAGs are sparse. |E| is usually just several
times larger than |N | rather than O(|N |2), making Selectx rather lightweight.

Space Complexity. The space needed for representing G or GR is O(|N |+|E|).
The space needed for storing the two attributes, enflow and exflow , at all the
nodes in GR is O(|N | × P ). Thus, the worst-case space complexity for Selectx
is O(|N | + |E| + |N | × P ), which simplifies to O(|N | + |E|).

5 Evaluation

Our objective is to demonstrate that Selectx can boost the performance of
kcs (i.e., k-CFA-based pointer analysis) with only little loss of precision. To
place this work in the context of existing research efforts to selective context-
sensitivity [10,12,16,25], we also compare Selectx with Zipper [12], a state-
of-the-art pre-analysis that can also support selective context-sensitivity in kcs.

We conduct our evaluation using Java programs in Soot [33], a program
analysis and optimization framework for Java programs, as we expect our find-
ings to carry over to the programs written in other languages. We have imple-
mented kcs (the standard k-CFA-based pointer analysis) based on Spark [11]
(a context-insensitive Andersen’s analysis [3]) provided in Soot. We have also
implemented Selectx in Soot, which performs its pre-analysis for a program
based on the call graph pre-computed for the program by Spark. For Zipper,
we use its open-source implementation [12], which performs its pre-analysis for
a program based on the points-to information pre-computed by Spark.

We have used a set of 11 popular Java programs, including eight benchmarks
from the DaCapo Benchmark suite (v.2006-10-MR2) [4] and three Java applica-
tions, checkstyle, findbugs and JPC, which are commonly used in evaluating
pointer analysis algorithms for Java [9,10,14,25,30,31]. For DaCapo, lusearch
is excluded as it is similar to luindex. We have also excluded bloat and jython,
as 3cs fails to scale either by itself or when accelerated by any pre-analysis.
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We follow a few common practices adopted in the recent pointer analysis
literature [1,2,12,14,17,18,31]. We resolve Java reflection by using a dynamic
reflection analysis tool, TamiFlex [5]. For native code, we make use of the
method summaries provided in Soot. String- and Exception-like objects are
distinguished per dynamic type and analyzed context-insensitively. For the Java
Standard Library, we have used JRE1.6.0 45 to analyze all the 11 programs.

We have carried out all our experiments on a Xeon E5-1660 3.2GHz machine
with 256GB of RAM. The analysis time of a program is the average of 3 runs.

Table 1 presents our results, which will be analyzed in Sects. 5.1 and 5.2.
For each k ∈ {2, 3} considered, kcs is the baseline, z-kcs is the version of kcs
accelerated by Zipper, and s-kcs is the version of kcs accelerated by Selectx.
The results for Spark (denoted ci) are also given for comparison purposes.

As is standard nowadays, kcs computes the points-to information for a pro-
gram by constructing its call graph on the fly. As for exception analysis, we use
Spark’s its built-in mechanism for handling Java exceptions during the pointer
analysis. We wish to point out that how to handle exceptions does not affect
the findings reported in our evaluation. We have also compared s-kcs with ci,
kcs and z-kcs for all the 11 programs by ignoring their exception-handling state-
ments (i.e., throw and catch statements). For each program, the precision and
efficiency ratios obtained by all the four analyses are nearly the same

5.1 kcs vs. s-kcs

In this section, we discuss how Selectx (developed based on CFL-reachability)
can improve the efficiency of kcs with little loss of precision.

Efficiency. We measure the efficiency of a pointer analysis in terms of the
analysis time elapsed in analyzing a program to completion. The time budget
set for analyzing a program is 24 h. For all the metrics, smaller is better.

For k = 2, s-2cs outperforms 2cs by 11.2x, on average. The highest speedup
achieved is 23.5× for hsqldb, for which 2cs spends 244.2 s while s-2cs has cut
this down to only 10.4 s. The lowest speedup is 3.2x for findbugs, which is
the second most time-consuming program to analyze by 2cs. For this program,
Selectx has managed to reduce 2cs’s analysis time from 1007.1 s to 286.2 s,
representing an absolute reduction of 720.9 s.

For k = 3, 3cs is unscalable for all the 11 programs, but Selectx has suc-
ceeded in enabling 3cs to analyze them scalably, in under 31 min each.

Precision. We measure the precision of a context-sensitive pointer analysis as
in [25,26,31], in terms of three metrics, which are computed in terms of the final
context-insensitive points-to information obtained (pt). These are “#Call Edges”
(number of call graph edges discovered), “#Poly Calls” (number of polymorphic
calls discovered), and “#May-Fail Casts” (number of type casts that may fail).

For each precision metric m, let cim, Baselinem and Pm be the results
obtained by Spark, Baseline and P , respectively, where Baseline and P are
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Table 1. Performance and precision of kcs, z-kcs (kcs accelerated by Zipper) and
s-kcs (kcs accelerated by Selectx). The results for ci (i.e., Spark) are also included
for comparison purposes. For all the metrics, smaller is better.

Program Metrics ci 2cs z-2cs s-2cs 3cs z-3cs s-3cs

antlr

Time (secs) 7.1 277.4 11.8 18.1 OoT 51.0 57.3
#Call Edges 56595 54212 54366 54212 - 53768 53233
#Poly Calls 1974 1861 1879 1861 - 1823 1792
#May-Fail Casts 1140 841 862 847 - 794 665

chart

Time (secs) 10.7 712.4 94.4 113.7 OoM 2903.6 1832.9
#Call Edges 75009 71080 71444 71080 - 70718 69579
#Poly Calls 2462 2290 2314 2290 - 2213 2159
#May-Fail Casts 2252 1819 1869 1825 - 1813 1693

eclipse

Time (secs) 7.0 442.5 45.1 51.1 OoM 748.2 621.8
#Call Edges 55677 52069 52142 52071 - 51711 50878
#Poly Calls 1723 1551 1563 1552 - 1507 1473
#May-Fail Casts 1582 1237 1260 1250 - 1231 1135

fop

Time (secs) 5.4 321.1 16.2 20.1 OoM 84.7 96.8
#Call Edges 39653 37264 37457 37264 - 36809 36416
#Poly Calls 1206 1082 1106 1082 - 1038 1005
#May-Fail Casts 919 637 658 643 - 620 573

hsqldb

Time (secs) 5.7 244.2 7.3 10.4 OoM 29.2 42.4
#Call Edges 40714 37565 37751 37565 - 37087 36637
#Poly Calls 1188 1065 1091 1065 - 1032 996
#May-Fail Casts 902 635 657 641 - 616 566

luindex

Time (secs) 6.0 238.0 7.4 10.3 OoM 29.6 46.4
#Call Edges 38832 36462 36649 36462 - 36051 35522
#Poly Calls 1269 1144 1168 1144 - 1112 1075
#May-Fail Casts 921 648 671 654 - 631 574

pmd

Time (secs) 9.2 980.3 266.6 286.8 OoM 3693.6 1374.3
#Call Edges 69148 65877 66053 65877 - 65519 64402
#Poly Calls 2965 2782 2798 2782 - 2729 2608
#May-Fail Casts 2293 1941 1962 1948 - 1901 1778

xalan

Time (secs) 5.6 269.3 14.0 18.4 OoT 71.8 76.0
#Call Edges 44061 40645 40800 40645 - 40189 39756
#Poly Calls 1394 1260 1279 1260 - 1223 1192
#May-Fail Casts 1063 742 763 748 - 724 664

checkstyle

Time (secs) 9.7 1103.0 354.7 317.2 OoT 6851.2 852.7
#Call Edges 79808 74792 74962 74792 - 74367 73236
#Poly Calls 2754 2564 2583 2564 - 2519 2492
#May-Fail Casts 1943 1549 1573 1555 - 1519 1393

findbugs

Time (secs) 10.7 1007.1 286.2 317.0 OoT 5292.9 1806.7
#Call Edges 82958 77133 77159 77133 - 76383 75421
#Poly Calls 3378 3043 3047 3043 - 2952 2943
#May-Fail Casts 2431 1972 2021 1988 - 1955 1821

JPC

Time (secs) 10.4 484.2 70.7 87.6 OoM 1085.5 677.9
#Call Edges 71657 67989 68136 67999 - 67359 66060
#Poly Calls 2889 2667 2693 2669 - 2617 2539
#May-Fail Casts 2114 1658 1696 1666 - 1637 1543
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Table 2. The analysis times of Selectx (secs).

Program antlr chart eclipse fop hsqldb luindex pmd xalan checkstyle findbugs JPC

Selectx 10.6 33.1 12.7 9.1 7.5 8.4 28.7 10.2 31.0 34.7 12.0

two context-sensitive pointer analyses such that P is less precise than Baseline.
We measure the precision loss of P with respect to Baseline for this metric by

(

(cim − Baselinem) − (cim − Pm)
)

(cim − Baselinem)
.

Here, the precision improvement going from ci to Baseline is regarded as 100%.
If Pm = Baselinem, then P loses no precision at all. On the other hand, if
Pm = cim, then P loses all the precision gained by Baseline.

Given the significant speedups obtained, Selectx suffers from only small
increases in all the three metrics measured across the 11 programs due to its
exploitation of CFL-reachability for making its context-sensitivity selections.
On average, the precision loss percentages for “#Call Edges”, “#Poly Calls”,
and “#May-Fail Casts” are only 0.03%, 0.13%, and 2.21%, respectively.

Overhead. As a pre-analysis, Selectx relies on Spark (i.e., Andersen’s pointer
analysis [3]) to build the call graph for a program to facilitate its context-
sensitivity selections. As shown in Tables 1 and 2, both Spark (i.e., a context-
insensitive pointer analysis (ci)) and Selectx are fast. The pre-analysis times
spent by Selectx are roughly proportional to the pointer analysis times spent
by Spark across the 11 programs. Selectx is slightly slower than Spark but
can analyze all the 11 programs in under 40 s each.

The overall overheads from both Spark and Selectx for all the 11 programs
are negligible relative to the analysis times of kcs. In addition, these overheads
can be amortized. The points-to information produced by Spark is often reused
for some other purposes (e.g., used by both Zipper and Selectx here), and
the same pre-analysis performed by Selectx can often be used to accelerate a
range of k-CFA-based pointer analysis algorithms (e.g., k ∈ {2, 3} here).

5.2 Z-kcs vs. s-kcs

We compare Selectx with Zipper [12] in terms of the efficiency and precision
achieved for supporting selective context-sensitivity in kcs. Zipper selects the
set of methods in a program that should be analyzed context-sensitively and
can thus be applied to not only kcs but also other types of context-sensitivity,
such as object-sensitivity [15] and type-sensitivity [24]. Selectx is, however,
specifically designed for supporting kcs i.e., callsite-sensitivity.

Table 1 contains already the results obtained for z-kcs and s-kcs. Figure 8
compares and contrasts all the 5 analyses, 2cs, z-2cs, s-2cs, z-3cs, and s-3cs, in
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Fig. 8. Understanding the efficiency and precision of the five analyses by using the
results obtained from Table 1 for all the 11 programs (normalized to 2cs). How these
scatter graphs are plotted is explained precisely in Sect. 5.2. For each data point plotted,
the lower and further to the right, the better.
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terms of their efficiency and precision across all the 11 programs (normalized
to 2cs), in three scatter graphs, one per precision metric used. Note that 3cs is
unscalable for all the 11 programs. For each metric m, let cim and Am, where
A ∈ {2cs, z−2cs, s−2cs, z−3cs, s−3cs} be the results obtained by Spark and
A, respectively. If m is “analysis time”, then A is plotted at Am/2csm along the
y-axis. If m ∈ {“#Call Edges”, “#Poly Calls”, “#May-Fail Casts”}, then A is
plotted at (cim −Am)/(cim −2csm) along the x-axis. Hence, 2cs appears at (1,1)
(highlighted with a fat dot ) in all the three graphs. Here, cim − Am represents
the absolute number of spurious call edges/poly calls/may-fail casts removed by
A relative to ci. Therefore, when comparing z-kcs and s-kcs, for each k ∈ {2, 3},
the one that is lower is better (in terms of efficiency) and the one that is further
to the right is better (in terms of a precision metric).

As discussed in Sect. 5.1, s-2cs enables 2cs to achieve remarkable speedups
(with ’s appearing below ) at only small decreases in precision (with ’s appear-
ing very close to the left of ) with the percentage reductions being 0.03%, 0.13%,
and 2.21% for “#Call Edges”, “#Poly Calls”, and “#May-Fail Casts”, respec-
tively, on average. On the other hand, z-2cs is slightly faster than s-2cs (by 1.2x,
on average), but its percentage precision reductions over 2cs are much higher,
reaching 5.22%, 12.94%, and 7.91% on average (with ’s being further away from
to the left).

For k = 3, 3cs is not scalable for all the 11 programs. Both Zipper and
Selectx have succeeded in making it scalable with selective context-sensitivity
for all the 11 programs. However, s-3cs is not only faster than z-3cs (by 2.0x on
average) but also more precise (with z-3cs exhibiting the percentage precision
reductions of 16.38%, 16.96%, and 19.57% for “#Call Edges”, “#Poly Calls”,
and “#May-Fail Casts”, respectively, on average, relative to s-3cs). For five out
of the 11 programs, z-3cs is faster than s-3cs, but each of these five programs
can be analyzed by each analysis in less than 2 min. However, s-3cs is faster than
z-3cs for the remaining six programs, which take significantly longer to analyze
each. In this case, s-3cs outperforms z-3cs by 3.0x, on average. A program worth
mentioning is checkstyle, where s-2cs spends 12% more analysis time than
z-2cs, but s-3cs is 8.0x faster than z-3cs due to its better precision achieved.

6 Related Work

This paper is the first to leverage CFL reachability to accelerate kcs with
selective context-sensitivity. There are some earlier general-purpose attempts
[10,12,16,25] that can also be used for accelerating kcs with selective context-
sensitivity.

Like Selectx, “Introspective Analysis” [25] and Zipper [12] rely on per-
forming a context-insensitive pointer analysis to guide their context-sensitivity
selections. “Introspective Analysis” prevents some “bad” parts of a program from
being analyzed context-sensitively based on some empirical threshold-based indi-
cators. Zipper identifies so-called “precision-critical” methods by using classes
as basic units to probe the flow of objects. In this paper, we have compared
Selectx with Zipper in terms of their effectiveness for improving kcs.
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“Data-Driven Analysis” [10] is developed based on similar observations as in
this paper: the effects of a node’s context-sensitivity on the precision of a context-
sensitive pointer analysis can be observed from its impact on the precision of a
client analysis such as may-fail-casting. It applies machine learning to learn to
make context-sensitivity selections. In contrast, Selectx relies CFL-reachability
instead without having to resort to an expensive machine learning process.

In [16], the authors also leverage a pre-analysis to decide whether certain
callsites require context-sensitivity. However, unlike the three techniques [10,12,
25] discussed above and Selectx, which rely on a context-insensitive pointer
analysis to make their context-sensitivity selections, their paper achieves this by
using a program analysis that is fully context-sensitive yet greatly simplified.

There are also other research efforts on accelerating kcs. Mahjong [31]
improves the efficiency of kcs by merging type-consistent allocation sites, tar-
geting type-dependent clients, such as call graph construction, devirtualization
and may-fail casting, but at the expense of alias relations. In [26], the authors
accelerate a demand-driven k-CFA-based pointer analysis (formulated in terms
of CFL-reachability) by adapting the precision of field aliases with a client’s
need.

Eagle [13,14] represents a CFL-reachability-based pre-analysis specifically
designed for supporting selective object-sensitivity [15] with no loss of precision.
Turner [8] goes further to exploit efficiency and precision trade-offs by exploit-
ing also object containment. The pre-analyses discussed earlier [10,12,25] for
parameterizing context-sensitive pointer analysis are also applicable to object-
sensitivity.

7 Conclusion

We have introduced Selectx, a new CFL-reachability-based approach that is
specifically designed for supporting selective context-sensitivity in k-CFA-based
pointer analysis (kcs). Our evaluation demonstrates that Selectx can enable
kcs to achieve substantial speedups while losing little precision. In addition,
Selectx also compares favorably with a state-of-the-art approach that also
supports selective context-sensitivity. We hope that our investigation on CFL-
reachability can provide some insights on developing new techniques for scaling
kcs further to large codebases or pursuing some related interesting directions.
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Abstract. We consider the problem of automatically proving resource
bounds. That is, we study how to prove that an integer-valued resource
variable is bounded by a given program expression. Automatic resource-
bound analysis has recently received significant attention because of a
number of important applications (e.g., detecting performance bugs, pre-
venting algorithmic-complexity attacks, identifying side-channel vulner-
abilities), where the focus has often been on developing precise amor-
tized reasoning techniques to infer the most exact resource usage. While
such innovations remain critical, we observe that fully precise amortiza-
tion is not always necessary to prove a bound of interest. And in fact,
by amortizing selectively, the needed supporting invariants can be sim-
pler, making the invariant inference task more feasible and predictable.
We present a framework for selectively-amortized analysis that mixes
worst-case and amortized reasoning via a property decomposition and
a program transformation. We show that proving bounds in any such
decomposition yields a sound resource bound in the original program,
and we give an algorithm for selecting a reasonable decomposition.

1 Introduction

In recent years, automatic resource-bound analysis has become an increasingly
specialized area of automated reasoning because of a number of important and
challenging applications, including statically detecting performance bugs, pre-
venting algorithmic-complexity attacks, and identifying side-channel vulnera-
bilities. In this paper, we consider the specific problem of proving bounds on
resource usage as follows: given an integer-valued resource variable r that mod-
els resource allocation and deallocation, prove that it is bounded by an expression
eub at any program location—that is, prove assert r ≤ eub anywhere in the pro-
gram. Resource allocations and deallocations can be modeled by (ghost) updates
use r eop to the resource variable r (expressing that resource usage captured by
r increments by e units), and we generically permit updates to be any expres-
sion eop. For example, resource variables can model lengths of dynamically-sized
c© Springer Nature Switzerland AG 2021
C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 286–307, 2021.
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collections like lists and strings (e.g., List.size() or StringBuilder.length() in
Java), and resource updates capture growing or shrinking such collections (e.g.,
List.add(Object), List.remove(Object), or StringBuilder.append(String)).

There are two natural ways to address this problem, by analogy to amortized
computational complexity [36], for which we give intuition here. The first app-
roach views the problem as an extension of the loop bounding problem, that is,
inferring an upper bound on the number of times a loop executes [8,19,20,33–
35,39]. Then to derive upper bounds on resource variables r, multiply the worst-
case, or upper bound, of an update expression eop by an upper bound on the
number of times that update is executed, summed over each resource-use com-
mand use r eop, thereby leveraging the existing machinery of loop bound anal-
ysis [8,9,35]. We call this approach worst-case reasoning, as it considers the
worst-case cost of a given resource-use command for each loop iteration. This
worst-case reasoning approach has two potential drawbacks. First, it presupposes
the existence of loop bounds (i.e., assumes terminating programs), whereas we
may wish to prove resource usage remains bounded in non-terminating, reactive
programs (e.g., Lu et al. [28]) or simply where loop bounds are particularly
challenging to derive. Second, as the terminology implies, it can be overly pes-
simistic because the value of the resource-use expression eop may vary across
loop iterations.

The second approach to resource bound verification is to directly adopt the
well-established method of finding inductive invariants strong enough to prove
assertions [31]. However, directly applying inductive invariant inference tech-
niques (e.g., Chatterjee et al. [12], Colón et al. [13], Dillig et al. [16], Hrushovski
et al. [24], Kincaid et al. [25–27], Sharma et al. [32]) to the resource bounding
can be challenging, because the required inductive invariants are often particu-
larly complex (e.g., polynomial) and are thus not always feasible or predictable
to infer automatically [9,21]. We call this approach fully-amortized reasoning, as
the strongest inductive invariant bounding the resource variable r may consider
arbitrary relations to reason about how the resource-use expression eop may
vary across loop iterations, thereby reasoning about amortized costs across loop
iterations.

The key insight of this paper is that the choice is not binary but rather the
above two approaches are extremal instances on a spectrum of selective amor-
tization. We can apply amortized reasoning within any sequence of resource
updates and then reason about each sequence’s contribution to the overall
resource usage with worst-case reasoning. We show that the decomposition of
the overall resource usage into amortized segments can be arbitrary, so it can
be flexibly chosen to simplify inductive invariant inference for amortized reason-
ing of resources or to leverage loop bound inference where it is possible, easy,
and precise. We then realize this insight through a program transformation that
expresses a particular class of decompositions and enables using off-the-shelf
amortized reasoning engines. In particular, we make the following contributions:

1. We define a space of amortized reasoning based on decomposing resource
updates in different ways and then amortizing resource usage within the
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resulting segments (Sect. 3). Different decompositions select different amorti-
zations, and we prove that any decomposition yields a sound upper bound.

2. We instantiate selective amortization through a program transformation for
a particular class of decompositions and define a notion of non-interfering
amortization segments to suggest a segmentation strategy (Sect. 4).

3. We implemented a proof-of-concept of selective amortization in a tool Brbo
(for break-and-bound) that selects a decomposition and then delegates to an
off-the-shelf invariant generator for amortized reasoning (Sect. 5). Our empir-
ical evaluation provides evidence that selective amortization effectively lever-
ages both worst-case and amortized reasoning.

Our approach is agnostic to the underlying amortized reasoning engine.
Directly applying a relational inductive invariant generator on resource variables,
as we do in our proof-of-concept (Sect. 5), corresponds to an aggregate amortized
analysis, however this work opens opportunities to consider other engines based
on alternative amortized reasoning (e.g., the potential method [22,23]).

2 Overview

Figure 1 shows the core of Java template engine class from the DARPA STAC [15]
benchmarks. The replaceTags method applies a list of templates ts to the input
text using an intermediate StringBuilder resource sb that we wish to bound
globally. In this section, we aim to show that proving such a bound on sb moti-
vates selective amortized reasoning.

At a high-level, the replaceTags method allocates a fresh StringBuilder sb

to copy non-tag text or to replace tags using the input templates ts from the
input text. The inner loop at program point 4 does this copy or tag replace-
ment by walking through the ordered list of tag locations tags to copy the suc-
cessive “chunks” of non-tag text text.substring(p, l) and a tag replacement
rep at program points 6 and 11, respectively (the assume statement at pro-
gram point 5 captures the ordered list of locations property). Then, the leftover
text text.substring(p, text.length()) after the last tag is copied at program
point 11. The outer loop at program point 2 simply does this template-based
tag replacement, and inserts a separator sep (at program point 12), for each
template t. There are four program points where resources of interest are used
(i.e., sb grows in length)—the sb.append(. . .) call sites mentioned here.

The @Bound assertion shown on line 1

#sb ≤ #ts·(#text+ #tags·ts#rep+ #sep)

follows the structure of the code sketched above. The template-based tag replace-
ment is done #ts number of times where #ts models the size of the template list
ts. Then, the length of the tag-replaced text is bounded by the length of text

(i.e., #text) plus a bound on the length of all tag-replaced text #tags · ts#rep
plus the length of the separator sep (i.e., #sep). A bound on each tag replacement
rep is modeled with a variable ts#rep (which we name with ts to indicate its
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private String text;

private List<Pair<Integer,Integer>> tags = . . .text. . .;
public String replaceTags(List<Templated> ts, String sep) {

1 @Bound(#sb ≤ #ts·(#text+ #tags·ts#rep+ #sep)) StringBuilder

sb = new StringBuilder();

2 for (Templated t : ts) {

3 int p = 0;

4 for (Pair<Integer,Integer> lr : tags) {

5 int l = lr.getLeft(); int r = lr.getRight();

assume(p ≤ l ≤ r ≤ #text);

6 sb.append(text.substring(p, l));

7 String rep = . . .t. . .lr. . .; assume(#rep ≤ ts#rep);

8 sb.append(rep);

9 p = r;

10 }

11 sb.append(text.substring(p, text.length()));

12 sb.append(sep);

13 }

return sb.toString();

}

Fig. 1. Motivating selective worst-case and amortized reasoning to analyze a Java tem-
plate engine class (com.cyberpointllc.stac.template.TemplateEngine). An instance
of this class stores some text that may have tags in it to replace with this engine. The
tag locations are stored as an ordered list of pairs of start-end indexes in the tags

field, which is computed from text. Suppose we want to globally bound the size of
the StringBulder sb used by the replaceTags method to apply a list of templates ts.
Let #sb be a resource variable modeling the length of sb (i.e., ghost state that should
be equal to the run-time value of sb.length()). We express a global bound on #sb to
prove with the @Bound annotation—here in terms of resource variables on the inputs
ts, text, tags, and sep.

correspondence to a bound on all tag replacements described by input ts) and
the assume(#rep ≤ ts#rep) statement at program point 7. Thus, a bound on the
length of all tag-replaced text is #tags · ts#rep. Note that the coloring here is
intended to ease tracking key variables but having color is not strictly necessary
for following the discussion.

For explanatory purposes, the particular structure of this bound assertion
also suggests a mix of worst-case and amortized reasoning that ultimately leads
to our selectively-amortized reasoning approach that we describe further below.
Starting from reasoning about the inner loop, to prove that the copying of succes-
sive “chunks” of text is bounded by #text requires amortized reasoning because
the length of text.substring(p, l) at program point 6 varies on each loop itera-
tion. In contrast, we bound the length of all tag-replaced text with #tags · ts#rep
using worst-case reasoning: we assume a worst-case bound on the length of
replacement text rep is ts#rep, so a worst-case bound with #tags number of
tag replacements is #tags · ts#rep. Now thinking about the rest of the body of
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the outer loop at program point 11, the leftover text copy is amortized with
the inner loop’s copying of successive “chunks,” so we just add the length of
the separator #sep. Finally, considering the outer loop, we simply consider this
resource usage bound for each loop iteration to bound #sb with #ts·(. . .) .

The key observation here is that to prove this overall bound on #sb, even
though we need to amortize the calls to sb.append(text.substring(p, l)) at
program point 6 over the iterations of the inner loop, we do not need to amortize
the calls at this same site across iterations of the outer loop. Next, we translate
this intuition into an approach for selectively-amortized resource bounding.

2.1 Decomposing Resource Updates to Selectively Amortize

The resource-bound reasoning from Fig. 1 may be similarly expressed in a numer-
ical abstraction where all variables are of integer type as shown in Fig. 2a. There,
we write use r eop for tracking eop units of resource use in r and x := ∗ for a havoc
(i.e., a non-deterministic assignment). Note that text.substring(p, l) translates
to (l - p). To express checking the global bound, we write assert(#sb ≤ eub)

after each use update. We also note a pre-condition that simply says that all of
the inputs sizes are non-negative. Crucially, observe to precisely reason about
the resource usage #sb across all of these updates to #sb requires a polynomial
loop invariant, as shown at program point 5 in braces {· · · }.

Yet, our informal reasoning above did not require this level of complexity.
The key idea is that we can conceptually decompose the intermingled resource
updates to #sb in any number of ways—and different decompositions select differ-
ent amortizations. In Fig. 2b, we illustrate a particular decomposition of updates
to #sb. We introduce three resource variables #sb1, #sb2, #sb3 that correspond to
the three parts of the informal argument above (i.e., resource use for the non-tag
text at program points 6 and 11, the tag-replaced text at program point 8, and
the separator at program point 12, respectively). Let us first ignore the reset

and ub commands (described further below), then we see that we are simply
accumulating resource updates to #sb into separate variables or amortization
groups such that #sb = #sb1+ #sb2+ #sb3. But we can now bound #sb1, #sb2,
and #sb3 independently and have the sum of the bounds of these variables be a
bound for the original resource variable #sb.

However, precisely reasoning about the resource usage in #sb1 still requires
a polynomial loop invariant with the loop counters i, input #text, and internal
variable p. Following the observation from above, we want to amortize updates
to #sb1 across iterations of the inner loop but not between iterations of the outer
loop. That is, we want to amortize updates to #sb1 in the sequence of resource
uses within a single iteration of the outer loop and then apply worst-case rea-
soning to the resource bound amortized within this sequence. The amortiza-
tion reset reset #sb1 after the initializer of the loop at program point 4 accom-
plishes this desired decoupling of the updates to #sb1 between outer-loop itera-
tions by “resetting the amortization” at each outer-loop iteration. Conceptually,
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global bound eub: #ts·(#text+ #tags·ts#rep+ #sep)
pre-condition: {0≤ #text ∧ 0≤ #tags ∧ 0≤ #ts ∧ 0≤ ts#rep ∧ 0≤ #sep}

1#sb := 0;

2for (i := 0; i < #ts; i++) {

3 p := 0;

4 for (j := 0

; j < #tags; j++) {

5 {#sb≤ (i·#text+p)
+ ((i·#tags+j)·ts#rep)

+ (i·#sep)}

l := *; r := *;

assume(p ≤ l ≤ r ≤ #text);

6 use #sb (l - p);

assert(#sb ≤ eub);
7 #rep := *;

assume(0 ≤ #rep ≤ ts#rep);

8

use #sb #rep;

assert(#sb ≤ eub);
9 p := r;

10 }

11 use #sb (#text - p);

assert(#sb ≤ eub);
12

use #sb #sep;

assert(#sb ≤ eub);
13}

(a) A numerical abstraction of the
replaceTags method from Fig. 1.

1

2for (i := 0; i < #ts; i++) {

3 p := 0;

4 for (j := 0,

reset #sb1; j < #tags; j++) {

5 {#sb1� = i ∧ #sb1∗ ≤ #text ∧ #sb1≤ p ∧
#sb2� = i·#tags+j-1 ∧
#sb2∗ ≤ ts#rep ∧ #sb2≤ ts#rep ∧
#sb3� = i-1 ∧
#sb3∗ ≤ #sep ∧ #sb3≤ #sep}

l := *; r := *;

assume(p ≤ l ≤ r ≤ #text);

6 use #sb1 (l - p);

ub #sb1, #sb2, #sb3 eub
7 #rep := *;

assume(0 ≤ #rep ≤ ts#rep);

8 reset #sb2;

use #sb2 #rep;

ub #sb1, #sb2, #sb3 eub
9 p := r;

10 }

11 use #sb1 (#text - p);

ub #sb1, #sb2, #sb3 eub
12 reset #sb3;

use #sb3 #sep;

ub #sb1, #sb2, #sb3 eub
13}

(b) A resource usage decomposition and
amortized segmentation of (a).

Fig. 2. Decomposing resource usage into amortized segments transforms the required
supporting loop invariant at program point 5 needed to prove the global bound eub
from polynomial to linear.

executions of the reset r mark the boundaries of the amortization segments of
uses of resource r.

The result of this decomposition is the simpler invariant at program point
5 in the transformed program of Fig. 2b, which use some auxiliary summary
variables like #sb1∗ and #sb1�. For every resource variable r, we consider two
summary variables r∗ and r�, corresponding, respectively, to the maximum of r
in any segment and the number of “resetted” r segments so far. Concretely, the
semantics of reset #sb1 is as follows: (1) increment the segment counter variable
#sb1� by 1, thus tracking the number of amortization segments of #sb1 uses;
(2) bump up #sb1∗ if necessary (i.e., set #sb1∗ to max(#sb1∗, #sb1) ), tracking
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the maximum #sb1 in any segment so far; and finally, (3) resets #sb1 to 0 to
start a new segment. As we see at program point 5 in the original and trans-
formed programs of Fig. 2, we have decomposed the total non-tag text piece
(i·#text+p) into #sb1� · #sb1∗+ #sb1 where #sb1� = i , #sb1∗ ≤ #text , and #sb1

≤ p . Intuitively, #sb1� · #sb1∗ upper-bounds the cost of all past iterations of
the outer loop, and the cost of the current iteration is precisely #sb1. Thus,
#sb1� · #sb1∗+ #sb1 is globally and inductively an upper bound for the total non-
tag text piece of #sb. The same decomposition applies to #sb2 and #sb3 where
note that #sb3� = i-1 , counts past segments separated from the current segment
so that #sb3� · #sb3∗+ #sb3 corresponds to (i·#sep) where both the past and cur-
rent are summarized together. Overall, combining the amortization groups and
segments, we have the following global invariant between the original program
and the transformed one:

#sb ≤ (#sb1� · #sb1∗+ #sb1) + (#sb2� · #sb2∗+ #sb2) + (#sb3� · #sb3∗+ #sb3)

To verify a given bound in the transformed program, we simply check that
this expression on the right in the above is bounded by the desired bound expres-
sion using any inferred invariants on #sb1�, #sb1∗, #sb1, etc. This is realized by
the upper-bound check command at, for instance, program point 6 in Fig. 2b:

ub #sb1, #sb2, #sb3 (#ts·(#text+ #tags·ts#rep+ #sep)) .

Here, ub r e asserts that the sum of amortization groups (internally decomposed
into amortization segments) in the set r is bounded from above by e.

2.2 Finding a Selective-Amortization Decomposition

Figure 2b shows a decomposition of updates to #sb into groups (i.e., #sb1, #sb2,
and #sb3) and segments (i.e., with resets) that realize a particular selective amor-
tization. We show that any decomposition into groups and segments is sound in
Sect. 3, but here, we discuss how we find such a decomposition.

Intuitively, we want to use worst-case reasoning whenever possible, maximiz-
ing decoupling of updates and simplifying invariant inference. But some updates
should be considered together for amortization. Thus, any algorithm to select a
decomposition must attempt to resolve the tension between two conflicting goals:
partitioning use updates in the program into more groups and smaller segments,
but also allowing amortizing costs inside larger segments to avoid precision loss.
For example, it is important to use the same accumulation variable #sb1 for the
two locations that contribute to the non-tag text (program points 6 and 11) to
amortize over both use sites. In Sect. 4, we characterize the potential imprecision
caused by worst-case reasoning over segments with a notion of amortization seg-
ment non-interference, which along with some basic restrictions motivates the
approach we describe here.
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In Fig. 3, we show the control-flow graph of the resource-decomposed program
in Fig. 2b without the inserted resets. Node labels correspond to program points
there, except for labels 2∗, 4∗, 13∗ that correspond to unlabeled program points
in the initialization of the for-loops and the procedure exit. Edges are labeled by
a single or a sequence of commands (where we omit keyword assume for brevity
in the figure). Some nodes and edges are elided as . . . that are not relevant for
this discussion. Ignore node colors and the labels below the nodes for now.

Let us consider the class of syntactic selective-amortization transformations
where we can rewrite resource use commands use r e to place uses into separate
amortization groups, and we can insert a reset r′ at a single program location to
partition uses into amortization segments for each group r′. But otherwise, we
make no other program transformation. We then use the notion of segment non-
interference to select a group and segment decomposition under this syntactic
restriction.

Now, the intuition behind amortization segment non-interference is that two
segments for a resource r are non-interfering if under the same “low inputs,” the
resource usage of r is the same in both segments. In Fig. 3, the labels below the
nodes show such low inputs to a particular use site from a particular program
point. For example, under node 4, we show p as a low input for both the use

sites at program points 6 and 11 (ignore the :0s for the moment).
So, an additional parameter in our search space is a partitioning of vari-

ables into “low” and “high” ones (which we note are not distinguished based
on security relevance in the standard use of the non-interference term [1] but
rather on relevance for amortized reasoning). We further fix the low variables in
any segmentation we might use to be the internal variables on which the uses
data-depend. This is based on the intuition that uses that share computation
over internal variables are related for amortization. Because the uses for #sb1 at
program points 6 and 11 share p as an input at, for example, node 4, we place
these use sites in the same group. Then, otherwise the other use sites at program
points 8 and 12 are placed in other groups (namely, #sb2 and #sb3, respectively).

2

6 : ()
11 : ()

2∗

6 : ()
11 : ()

13∗

3

6 : ()
11 : ()

4

6 : (p:0)
11 : (p:0)

4∗

6 : (p:0)
11 : (p:0)

11

6 : ()
11 : (p:�)

5

6 : (p:�)

11 : (p:�)

12

6 : ()
11 : ()

. . . 13

6 : ()
11 : ()

6

6 : (l:�, p:�)

11 : (p:�)

7

6 : (r:�)

11 : (r:�)

. . . 10

6 : (p:�)

11 : (p:�)

i:=0 i≥#ts

i<#ts

p:=0 j:=0

j≥#tags

j<#tags

use #sb1 (#text - p)

p≤l≤r≤#text

l:=*; r:=*;

use #sb1 (l - p)

Fig. 3. Inserting a reset #sb1 to select a segmentation for amortization group #sb1.
We show the program from Fig. 2b here as a control-flow graph.
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The set of variables on which use sites data-depend can be computed by a stan-
dard program slicing [37].

Finally, we insert a single reset for each group to define amortization seg-
ments. So that all use r e commands for a group r are always after some reset r,
we consider program locations that control-dominate all use sites for r. In Fig. 3,
any of the colored nodes control-dominate the two use sites for #sb1. To make
the amortization segments as small as possible (while minimizing precision loss),
we select the most immediate dominator where the low variables can be proven
constant (i.e., the low inputs to the segments will always the same value). Node
4∗ (colored green) is this dominator for the two use sites for #sb1 because p is
always 0 (shown as p:0) and where we insert reset #sb1. We can derive this
constancy property with any numerical abstract domain (here, we show � for
non-constant values from a standard constant propagation analysis for presen-
tation), and we can pessimistically assume other variables to be low and also try
to prove constancy for them to potentially recover some additional precision in
segmentation.

Note that the analyses being applied here are classical ones. What is interest-
ing here is not the analyses per se but their application to selecting amortization
groups and segments to realize selectively-amortized resource bounding.

3 Decomposing Resource Usage

Our technique considers a resource-usage tracking program and splits a sin-
gle resource variable into an arbitrary number of resource decompositions. By
design, resource-usage tracking updates are generic in allowing updates with any
integer-valued expression, enabling modeling non-monotonic resources like list
additions and removals or memory allocation and deallocation. In this section, we
define a core imperative language for resource-usage tracking, formalize selective-
amortized analysis as a program transformation that inserts amortization resets
into decomposed resource-usage tracking variables (Sect. 3.1), and show that
any transformation is sound with respect to bound checks on resource usage
(Sect. 3.2). While we focus on upper-bound checks, we will see that the app-
roach can be easily adapted for lower-bound assertions.

In Fig. 4, we give the core resource-usage tracking language. We consider
an unspecified expression language e, aside from including program variables x
and its value forms v having integers n and booleans b. The command forms
include standard imperative ones like the no-op unit skip, assignment x := e,
and guard condition assume e. The remaining highlighted command forms work
with resources r. In particular, use r e models a resource use where the usage of r
is incremented by the value of e, and ub r e is an upper-bound assertion checking
that the sum of the resources r is upper-bounded by the value of e. We abuse
notation slightly by writing r both for a sequence r1 . . . rn or a set {r1, . . . , rn} of
resources. Selective amortization is realized through resetting resources with the
reset r command that we detail further below. Note that program expressions e
do not contain resources variables r. Finally, programs p are given as control-flow
graphs with edges �−[c]� �′ labeled by commands c between locations �.
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Fig. 4. A core imperative language for resource-usage analysis. Resources r are mod-
eled as integer-valued variables that may increase or decrease (via a use command)
and bound-checked (via an ub assertion command). Selective amortization is realized
through resource resets.

The states σ of a program are pairs 〈�: ρ〉 of locations � and stores ρ. Stores
are finite maps, mapping program variables to values x �→ v, as well as tracking
resources in the remaining highlighted forms. A resource r is a integer-valued
variable r �→ n. For any resource r, we consider two auxiliary resource-usage
summary variables r∗ and r� used in resource resetting to be described later.

A judgment form for evaluating expressions 〈ρ, e〉 ⇓ v stands for “In store ρ,
expression e evaluates to value v.” Similarly, a judgment form 〈ρ, c〉 ⇓ ρ′ stands
for “In store ρ, command c updates the store to ρ′.” In Fig. 4, we elide the
standard rules for skip, assignment x := e, and guard condition assume e and
focus on the resource-manipulating commands.

The E-Use rule captures that the use r e command says to increment r by
the value of e. Note that we write ρ(r) for looking up the mapping of r in store ρ
and assume that any unmapped r maps to 0. That is, we consider all resources
r initialized to 0. The E-UBCheck describes an upper-bound check ub r e on
a set of resources r. Let us first consider a single resource r and assume that
the auxiliary variable r∗ is 0 in the store. Then, the rule simply checks that r is
upper-bounded by the value of e (i.e., like assert r ≤ e). In the next subsection,
we come back to the more general form of the upper-bound check shown in E-

UBCheck, which captures the essence of selectively-amortized resource bounding
through an interaction with resource decomposition and amortization resets.
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Fig. 5. Decomposing resource usage for selective-amortization analysis is described
with a transformation that rewrites commands with a resource decomposition D.
Decompositions D define the amortization groups, while inserted resets determine
the amortization segments.

3.1 Selective Amortization by Decomposition

Recall from Sect. 2 that the essence of selectively-amortized resource bounding is
we want to selectively choose the sequence of resource uses use r e over which we
apply amortized reasoning. To do this, we have two intertwined tools: resource
decomposition r � r into amortization groups and amortization resets reset r
into amortization segments.

A resource decomposition D ::= · | D, r � r is a mapping from a resource r
into a set of decomposed resource-usage tracking variables r. The transformation
takes use r e and rewrites them to use use r′ e for some r′ ∈ r, thus decomposing
all uses of r into separate amortization groups given by r. In Fig. 5, the judgment
form D � c � c′ says, “Under resource decomposition D, command c can be
resource-decomposed to command c′,” stating valid decomposition transforma-
tions. The D-Use rule states exactly this transformation for use r e commands.

Then, within separate amortization groups, resets reset r define the segments
of execution over which to amortize resource uses while applying worst-case
reasoning around them. To see this, consider the E-Reset rule in Fig. 4 where we
can see reset r as corresponding to the following assignments (abusing notation
slightly with assignments and expressions using resource variables):

r� := r� + 1; r∗ := max(r∗, r); r := 0;

That is, the reset r command increments the number of amortization segments
for r seen so far in r�, saves the maximum value of r in any segment so far in
r∗, and resets r to 0 ending the last amortization segment and starting the next
one. So the r∗ resource-usage summary captures the worst-case resource use of r
over all segments, while the r� summary saves the number of such amortization
segments.

These summaries then enables amortized reasoning within segments and
worst-case reasoning around them. To see this, let us consider a one-to-one
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resource decomposition ro � r. Without loss of generality, we assume the orig-
inal program using ro does not have any resets (but the transformed program
with r may). Furthermore, we assume all amortization segments are paths of
the form ρ reset r · · · ρ′ reset r with no other reset r in the middle and that
there are no resource uses use r e before an initial reset r (i.e., all executions
of use r e are either in a segment bracketed by two reset rs or after the last
reset r). Then the following selective-amortization assertion between ro and r
holds globally (in all reachable stores):

ro ≤ r� · r∗ + r

Intuitively, up to the last reset r, there have been r� amortization segments and
the worst-case use of r on all prior segments is r∗, so r� ·r∗ is an upper bound on
the resource use up to the last reset r—thereby using worst-case reasoning on
amortized segments. Then we just add r because the remaining uses use r e since
the last reset have accumulated in r. Note that we thus consider all upper-bound
summaries r∗ initialized to 0 and all segment-counter summaries r� initialized
to −1.

Coming back to the E-UBCheck rule describing the upper-bound check ub r e
in Fig. 4 (for a single resource r), the assertion checks the bound e on exactly this
amortized segments expression (i.e., like assert r� ·r∗+r ≤ e). Then, with respect
to amortization groups, a resource decomposition r � r says that resource uses
to r are distributed over uses to r, so we simply sum over the amortization
groups r (i.e., like assert

(∑
r∈r r� · r∗ + r

) ≤ e).
Thus, the transformation from an upper-bound check ub r e on a resource r

with decomposition r � r yields ub r e as stated in rule D-UBCheck from Fig. 5.
As alluded to above, it is sound to insert resets arbitrarily into the transformed
program corresponding to different amortization segments, which we state with
rule D-Reset. Note that we consider programs p equivalent up to insertions of
skip commands, so we can insert them into the original program as needed.
The remaining non-resource manipulating commands are simply retained as-is
with rule D-Command. For simplicity in presentation, we assume the original
program does not have resets and has only single-resource upper-bound checks
ub r e. Overall, any choice of a resource decomposition D is sound corresponding
to different amortization groups. Again for simplicity, we assume all resources r
in the original program have a mapping in D (e.g., at least have r � r for no
decomposition). We consider soundness in more detail further below.

3.2 Soundness of Group and Segment Decomposition

To consider the soundness of the resource decomposition transformation D �
c � c′, we define program executions or paths π. In Fig. 6, we define paths
π in a slightly non-standard way: they are sequences created by appending a
state π σ or appending a store-command pair π ρ c and are well-formed if they
consist of sequences corresponding to the stores from valid executions of the
commands (as captured by the π ok judgment). Intentionally, we define paths
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Fig. 6. A semantic decomposition is captured with a path transformation D � π � π′

where paths π are sequences of command executions. The path transformation says we
can rewrite according to the command transformation until reaching the same initial
state. That is, choosing amortization groups with any decomposition D and amortiza-
tion segments with any insertions of resets are sound. A syntactic decomposition is
simply a lifting of the command transformation to programs D � p � p′ on the same
control-flow structure.

mostly independent from programs, stripping out locations � except for the last
state 〈�: ρ〉. In most cases, we do not care about the program from which paths
may come from. For example, the path well-formedness judgment π ok ignores
program locations and simply checks that the triples of store ρ, command c, and
store ρ′ are valid executions 〈ρ, c〉 ⇓ ρ′ (rule Ok-Step). Unless otherwise stated,
we assume all paths π are well formed (i.e., π ok holds for any path π).



Selectively-Amortized Resource Bounding 299

The only reason paths mention locations is to define the path semantics �p�σ
of a program p with initial state σ. The path semantics �p�σ is given as: (1)
the judgment form σ →p σ′ defines a transition relation saying, “On program
p, state σ steps to state σ′,” and (2) the path semantics �p�σ collects all finite
(but unbounded) prefixes of the transition system from the initial state σ.

The judgment form D � π � π′ states a selectively-amortized resource
bounding on a path π′ from an original path π. Divorcing paths from programs
emphasizes that semantically, we can choose any amortization grouping with a
choice of the resource decomposition D and select any amortization segmentation
by inserting resets anywhere along the original path π. The D-AppendCommand

rules says that a command along the original path can be rewritten according
to the command transformation D � c � c′. Note that like with programs, we
consider paths π equivalent up to insertions of skip commands, so we can insert
them into the original path as needed.

To talk about resource-decomposed stores along paths, we define ρ �D ρ′

to be stores that are equal on program variables vars(ρ) (excluding resource
variables r) and whose resource-usage tracking variables satisfy the selectively-
amortized assertion from Sect. 3.1 (see Fig. 6 for a detailed definition). Then, the
D-Step rule says that the execution of the last command in π′ must result in a
state σ′ consistent with the semantics of commands (π′ σ′ ok) and with selective
amortization (σ �D σ′). Finally, the D-Init rule simply says that resource-
decomposed paths should start with the same initial state.

We can then consider a more restricted, syntactic class of selectively-
amortized resource-bounding transformations by simply transforming the com-
mands of a program p (i.e., the judgment form D � p � p′ in Fig. 6). To achieve
more semantic selective amortizations, one could, of course, first apply richer
semantics-preserving program transformations to the original program (than
inserting skips) before applying the resource-decomposition transformation.

We can now state the following soundness result.

Theorem 1 (Soundness of Selectively-Amortized Resource Bound-
ing).

1. If D � co � c, 〈ρ, c〉 ⇓ ρ′, and ρo �D ρ, then 〈ρo, co〉 ⇓ ρ′
o with ρ′

o �D ρ′.
2. If D � πo � π and π ok, then πo ok.
3. If D � po � p and π ∈ �p�σ, then there is a πo ∈ �po�σ s.t. D � πo � π.

The key lemma (part 1) states a preservation property that any command decom-
position preserves the selectively-amortized resource-bounding invariant �D (see
the extended version [29] for details).

Verifying Bounds with Selective Amortization. Bound verification by selective
amortization follows directly from the soundness theorem given above. In par-
ticular, given a particular resource composition D and a transformed program
p from the original program po such that D � po � p, simply apply any off-the-
shelf numerical verification or invariant generator to p to try to prove translated
upper-bound assertions ub r e in p.
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In Sect. 4, we describe an approach for selecting a resource decomposition
and inserting amortization resets. However, we note that our key contribution
described here is generically defining the space of selective amortizations.

Lower Bounds. While we focused on upper-bound checks in this section, we see
that the approach can be adapted to lower-bound assertions in a straightforward
manner by introducing a lower-bound resource-usage summary variable, say r†.
This lower-bound summary is analogously updated on reset r with the minimum
resource-usage so far (i.e., like r† := min(r†, r)). We can then translate lower-
bound assertions lb e r in the analogous manner and extend the selectively-
amortized resource bounding invariant �D for lower bounds.

4 Selecting a Decomposition

In this section, we describe a way to select amortization groups (i.e., a resource
decomposition D) and amortization segments (i.e., insertions of amortization
resets) to algorithmically realize selectively-amortized resource bounding. As
alluded to in Sect. 2, there is a tension between creating as many groups and as
short segments as possible to focus amortized reasoning only where it is needed,
simplifying the invariant inference needed to do so, versus not creating too many
groups or too short segments that the needed amortization for precision is lost.
More specifically, the built-in multiplication r�·r∗ we apply for worst-case reason-
ing around segments simplifies the necessary invariants needed to prove bounds
but only if r∗ is sufficiently precise bound on resource usage per segment.

As hinted at in Sect. 3, the space of possible selective amortizations is huge.
Even with some basic restrictions to make this search more feasible, the remain-
ing space of selective amortizations is still large. In the remainder of this section,
we first characterize when the resource-usage summary r∗ is precise based on a
notion of non-interfering amortization segments. Then, we describe the basic
restrictions and their motivations to use segment non-interference to search
within this restricted space.

Non-interfering Amortization Segments. Recall the selective-amortization asser-
tion ro ≤ r� · r∗ + r and the r∗ := max(r∗, r) update for a reset r from
Sect. 3.1. We can see that the difference between the sides of the inequality
(i.e., (r� · r∗ + r) − ro) comes from a difference between the current upper-bound
summary r∗ and the current resource accumulation in r (i.e., r∗−r) on a reset r.
Thus intuitively, we want to insert amortization resets reset r at locations that
would minimize this difference r∗ −r across all such amortization segments. This
observation suggests a definition for segment non-interference:

Definition 1 (Amortization Segment Non-Interference). Consider two
paths π : (ρlo�ρhi) reset r · · · ρ reset r and π′ : (ρlo�ρ′

hi) reset r · · · ρ′ reset r
such that dom(ρhi) = dom(ρ′

hi). That is, we consider two amortization segments
(i.e., paths that start and end in a reset r) and partition the input into low
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variables (i.e., dom(ρlo)) and high variables (i.e., dom(ρhi)). Then, we say seg-
ments π and π′ are non-interfering iff for any (high) stores ρhi and ρ′

hi, and for
any (low) store ρlo, we have that ρ(r) = ρ′(r).

We see that if all pairs of amortization segments are non-interfering for a suitable
partition of variables between high and low variables, then the selective amor-
tization is as precise as the fully amortized solution. Then, we want to balance
making amortization segments as small as possible (in order to simplify invariant
inference and maximize worst-case reasoning) with the smallest set of low input
variables (to maximize non-interference).

Computed Input-Independent Groups and Single Location-Based Segments. Def-
inition 1 suggests an approach to selecting amortization groups and segments
if we fix some basic restrictions: (1) First, we consider syntactic decomposition
transformations D � po � p from the original program po. (2) Second, we con-
sider a single insertion of reset r into the transformed program p that control-
dominates all uses use r e for every resource r. Picking a control-dominating
location � ensures we do not have any use r e before a reset r, and performing
single insertion means we only need to consider segments that start and end at
single location � (where �−[reset r]� �′ ∈ p). (3) Third, we fix the low variables
in any segmentation we consider to be the internal variables on which the uses
data-depends, leaving any remaining variables at the segment start location � to
be high, including the inputs to the entry location of the original program po.
Intuitively, we assume that uses that share computation over internal, low vari-
ables are related for amortization. However, there is still significant flexibility in
choosing the resource decomposition D that defines the amortization groups and
the uses-dominating location � for each resource r in the transformed program
p—it does not have to be the immediate dominator of the uses.

As we want to create more groups to simplify invariant inference, let us
first consider the resource decomposition D such that each syntactic use r e
in po is translated to a unique resource variable and thus placed in a distinct
group (i.e., such that |D(r)| = | { (�, e, �′) | �−[use r e]� �′ ∈ po } |). However, to
find cases where distinct groups are potentially insufficient, we consider pos-
sibly merging use sites pairwise (i.e., �1 −[use r1 e1]� �′

1 and �2 −[use r2 e2]� �′
2

in the transformed program p). Suppose we were to merge groups r1 and r2,
then let us consider the immediate dominator � of locations �1 and �2, which
defines the possible amortization segments starting from and ending at location
�. Considering this potential segmentation and the shared low input variables
that may affect the value of both r1 and r2 and if the values of these low input
variables may change in the segment, then we want to merge these groups based
on restriction (3) above (otherwise, they are computed input independent). We
can then approximate this criteria with standard, backwards data-dependency
slices [37] from the uses use r1 e1 and use r2 e2.

Once we have fixed a resource decomposition D defining amortization groups,
selecting a location � to insert each reset r for each r in the transformed program
p is fairly straightforward. Following segment non-interference, for any use sites
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sharing the same resource r (i.e., L = { � | �−[use r e]� �′ ∈ p }), find the most
immediate dominator of L where we can prove that the low input variables are
constant (i.e., call this use-dominating location �, then we have that ρ(xlo) = n
for some n, for all low input variables xlo, in all reachable states 〈�: ρ〉). If we
can prove that the low input variables are constant in the program up to the
amortization segment entry location �, then we satisfy segment non-interference
(up to non-determinism within segments).

Note that because of the tension between precision from simplifying invari-
ant inference versus from amortization, selecting a decomposition is necessarily
heuristic. Section 3 shows that picking any decomposition is sound, and Sect. 5
offers evidence that the principled heuristic described here provides a benefit.

5 Empirical Evaluation

Selective amortization represents a large space of possible approaches between
worst-case and fully amortized reasoning. Here we attempt to provide evidence
that selective amortization provides a benefit when compared with the two
extremes, even with simply the heuristic decomposition strategy described in
Sect. 4. It is this specific selective amortization strategy that we consider here
in our experiments. We consider the following research question on Effective-
ness: Can selective amortization improve the number of verified programs when
compared with the worst-case and fully-amortized extremes?

Effectiveness. In Table 1, we summarize the comparison between selective amor-
tization and the two extremes with the most precise configuration in each cat-
egory bolded. For each category, we list the number of programs (num) and
the total lines of code (loc). To test the effect of slightly weaker bound asser-
tions, we consider two sets of assertions: for the most precise bounds and by

Table 1. Verifying with worst-case (Wor), fully-amortized (Ful), and selectively-
amortized (Sel) with two sets of assertions: the most precise bounds and constant-
weakened ones. For each configuration, we give the number of assertions proven (n)
and the total verification time in seconds (s).

Most precise bounds Constant-weakened bounds

Wor Ful Sel Wor Ful Sel

Category num loc (n) (s) (n) (s) (n) (s) (n) (s) (n) (s) (n) (s)

lang3 20 667 12 175.7 8 44.2 12 249.5 14 302.7 14 89 14 252
stringutils 10 390 2 12.9 4 196.5 4 176.2 4 101.3 5 209 6 264.3
guava 3 90 0 0 1 7.6 0 0 2 18.3 3 30 3 73.3
stac 3 122 2 118.6 2 23 3 101.1 2 126.6 2 22.5 3 105.2
generated 200 3633 139 1510.2 43 198.3 175 1779.5 140 1567.8 69 325.3 180 1852.2

Total 236 4902 155 1817.4 58 469.6 194 2306.3 162 2116.7 93 675.8 206 2547
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relaxing the constant coefficients from the most precise bounds. For each con-
figuration, we applied the same verification tools after transformation with our
tool Brbo [30] implemented in 6,000 lines of Scala, using Z3 [14] for SMT solv-
ing and ICRA [27] as an off-the-shelf invariant generator. For the two sets of
bound assertions, 194 and 206 programs, respectively, were verified for the selec-
tive amortization configuration—more than the number with either extreme.
The improvement over worst-case reasoning comes from amortizing the costs
over multiple commands, while the improvement over fully-amortized reason-
ing comes from amortizing the costs over subprograms that are smaller than the
whole program, so that inferring invariants becomes more manageable for ICRA.

The verification time in Table 1 consists of selecting amortizations, realiz-
ing amortizations via program transformations, and verifying bound assertions
on the transformed programs, which include invariant generation. We observed
that selecting amortizations and realizing them via program transformations
consumed negligible amounts of time; invariant generation took up more than
95% of the total time. Selecting amortizations based on the approach described
in Sect. 4 is fast because the selection only requires simple data- and control-
dependency analysis.

As noted above, these experiments consider the specific decomposition strat-
egy described in Sect. 4 on the original benchmarks, even though we show in
Sect. 3 that picking any decomposition is sound. But as alluded to in Sect. 3,
programs can be transformed in semantics-preserving ways that then expose dif-
ferent possible decompositions (to either the strategy described in Sect. 4 or even
some other one). Others have made similar observations; for example, semantic
program transformations that split a loop into multiple phases [32] may simplify
the invariant generation by reducing the need for disjunctive invariants. Indeed,
it may strike the best balance between scalability and precision if we can effec-
tively perform different semantic transformations based on the precision we need
for proving some desired bounds.

Benchmarks. We developed this benchmark suite specifically for the resource
bounding problem (as it differs from, for example, the loop bounding problem).
In particular, we collected code from 36 real-world programs (from 4 libraries
or suites) that use StringBuilder. Furthermore, we created a suite of 200 syn-
thetic programs generated by randomly nesting and sequencing two common
loop idioms that are extracted from actual Java programs.

6 Related Work

Loop Bound Analysis and Worst-Case Reasoning. A large body of work has
addressed bounding the number of loop iterations in imperative numeric pro-
grams [8,10,11,19–21,33,35,39]. These techniques rely on ranking functions to
quantitatively track the changes in the rankings of states. The loop bounding
problem can be seen as a special case of the resource bounding problem where the
resource of interest is loop iteration, and the cost of each “use” (i.e., iteration)
is a constant 1. Or in other words, the loop bounding problem can be extended
to address the resource bounding problem, if one adopts what we call worst-case
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reasoning to fix a constant upper bound for each resource use. There are works
that essentially take this perspective to apply loop bound analysis for invariant
inference [8,9,35].

Worst-case execution time (WCET) analysis [38] is an area of study that
attempts to automatically infer time bounds for machine code, considering pre-
cise models of hardware architectures. It can be seen as another instance of
worst-case reasoning, focusing on defining precise worst-case bound models for
instructions but generally assuming loop bounds are given or easy to derive.

Our approach is partly inspired by Gulwani et al. [21] that describes a loop
bound analysis because we also rely on a program transformation to simplify the
forms of the needed inductive invariants. At the same time, we improve on this
work by first generalizing the reasoning of loop iterations to general resources,
which can change in a non-trivial (i.e., non-monotonic and non-constant) way,
and then introduce selective amortization that mixes in amortized reasoning
from the next category of papers to address these challenges.

(Fully-)Amortized Reasoning. Several lines of work employ a number of dif-
ferent techniques to precisely reason about resource usage over full executions
(i.e., attempt to perform fully-amortized reasoning). The COSTA project [2–6],
which adopts the recurrence relation approach, reasons about resource usage
by first abstracting program semantics into a set of recurrence relations and
then finding closed-form solutions to these recurrence relations. The RAML
project [22,23] analyzes the resource usage of functional programs with the
potential method. This approach encodes the changes of a potential with linear
programming constraints over the unknown coefficients of pre-determined bound
templates. Carbonneaux et al. [10,11] adapts this approach to numerical impera-
tive programs. Atkey [7] (and improvements [17,18]) develop expressive program
logics that extend type-based amortized resource analysis with resource reason-
ing over heap data structures. The above approaches can be viewed as instances
of fully-amortized reasoning, because it is in an amortized manner that they
encode the sum of the resource usage into systems of constraints [2–6,10,11]
or perform deductive proofs that amortize costs [7,17,18]. The key challenge in
fully-amortized reasoning is to infer complex inductive invariants, which are the
solutions of the constraint systems in, for example, COSTA and RAML. Instead,
our approach may simplify the forms of the required invariants by decompos-
ing the resource usage into groups and segments of amortized costs. Since our
approach is agnostic to the underlying amortized reasoning engine, any fully-
amortized reasoning approach, such as the above ones, can potentially be used
in place of the relational inductive invariant generator applied in this paper.

7 Conclusion

In this paper we address the problem of automatically proving resource bounds,
where resource usage is expressed via an integer-typed variable. We present a
framework for selectively-amortized reasoning that mixes worst-case and fully
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amortized reasoning via a property decomposition and a program transforma-
tion. We show that proving bounds in any such decomposition yields a sound
resource bound in the original program, and we give an algorithm for selecting an
effective decomposition. Our empirical evaluation provides evidence that selec-
tive amortization effectively leverages both worst-case and amortized reasoning.
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Abstract. We present Libra, an open-source abstract interpretation-
based static analyzer for certifying fairness of ReLU neural network clas-
sifiers for tabular data. Libra combines a sound forward pre-analysis
with an exact backward analysis that leverages the polyhedra abstract
domain to provide definite fairness guarantees when possible, and to oth-
erwise quantify and describe the biased input space regions. The anal-
ysis is configurable in terms of scalability and precision. We equipped
Libra with new abstract domains to use in the pre-analysis, includ-
ing a generic reduced product domain construction, as well as search
heuristics to find the best analysis configuration. We additionally set up
the backward analysis to allow further parallelization. Our experimen-
tal evaluation demonstrates the effectiveness of the approach on neural
networks trained on a popular dataset in the fairness literature.

Keywords: Fairness · Neural networks · Reduced abstract domain
products · Abstract interpretation · Static analysis

1 Introduction

Nowadays, machine learning software has an ever increasing societal impact by
assisting or even automating decision making in fields such as social welfare,
criminal justice, and even health care. At the same time, a number of recent
cases have shown that such software may reproduce, or even reinforce, bias
directly or indirectly present in the training data [3,16,17,23]. In April 2021,
the European Commission proposed a first legal framework on machine learning
software – the Artificial Intelligence Act [10]—which imposes strict requirements
to minimize the risk of discriminatory outcomes. In this context, methods and
tools for certifying fairness or otherwise detecting bias are extremely valuable.
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In this paper we present Libra, an open-source static analyzer based on
abstract interpretation [5] for certifying fairness of neural networks. Libra cur-
rently supports neural networks with ReLU activations [21], trained for classi-
fication of tabular data (e.g., stored in Excel files or relational databases). It
is designed to certify that the classification is independent of the values of the
inputs that are considered (directly or indirectly) sensitive to bias [12]. This
fairness notion is global, relative to the entire input space (or a targeted subset
of it), and our analysis is able to quantify the detected bias. The choice of the
sensitive inputs is up to the user of the tool.

The static analysis run by Libra combines a cheap and sound forward pre-
analysis with an expensive and exact backward analysis. The pre-analysis iter-
atively partitions the input space of the neural network into independent par-
titions that satisfy the configured resource requirements. Then, the backward
analysis attempts to certify fairness for each of these partitions, and otherwise
quantifies and reports their biased (sub)regions.

The pre-analysis can be configured to use any of the abstract domains imple-
mentations that Libra is equipped with. A preliminary version of Libra devel-
oped by Urban et al. [25] was equipped with the boxes [4], symbolic [18], and
the deeppoly [24] abstract domains. In our tool, we additionally implemented
the neurify [26] abstract domain, and a generic reduced product domain con-
struction [6] to combine any of these domains together. To the best of our knowl-
edge, we are the first to explore and demonstrate the merits of reduced products
of abstract domains for analyzing neural networks.

Libra can be further configured in terms of scalability and precision to adapt
to the available resources (e.g., computation time or CPUs). We have addition-
ally equipped Libra with a configuration auto-tuning mechanism to find the
best analysis configuration according to a given search strategy. Finally, we set
up the backward analysis to allow further parallelization and thus reduce idle
times that were hindering the effective exploitation of multi-core architectures.

In our experimental evaluation we evaluate Libra on neural networks trained
on a popular dataset and we demonstrate its effectiveness. In particular, we show
that Libra (configured to use the product domain) outperforms its preliminary
version [25] in terms of both precision and running time.

2 Tool Architecture

Libra is written in Python. Its codebase is open-source on GitHub1.
Figure 1 shows an overview of Libra’s architecture. The tool takes as input

a neural network and a specification of its input space and fairness requirements
(cf. Sect. 2.1). The front-end (cf. Sect. 2.2) takes care of parsing the neural net-
work and its specification, building an equivalent control flow graph structure,
and passing it to the analysis engine (cf. Sect. 2.3). The analysis can be con-
figured to use different (combinations of) abstract domains (cf. Sect. 2.4), and

1 https://github.com/caterinaurban/Libra.git.

https://github.com/caterinaurban/Libra.git
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Fig. 1. Overview of Libra.

to be run incrementally to adapt to the available resources (e.g., computation
time or CPUs). The tool outputs a partition of the neural network input space
into regions that are certified to be fair, regions that are biased, and regions
that could not be analyzed (if any) because the analysis exceeded the available
resources (cf. Sect. 2.5). In the rest of the section, we provide more details on
each tool component and configuration options.

2.1 Tool Input

Libra expects as input a feed-forward neural network with ReLU activation
functions (i.e., ReLU(x) = max(0, x) [21]) trained for classification of tabular
data. The neural network should be written as a Python program: affine layer
transformations are modeled by variable assignments, and ReLU activations are
modeled by calls to a ReLU function (i.e., a call ReLU(x) models the ReLU
activation applied to the neuron represented by the variable x). Figure 2 depicts
a toy network expressed in Python syntax. Specifically, the network is composed
by two input neurons x0,1 and x0,2, two output neurons x3,1 and x3,2 (one for
each class in the output classification), and two hidden layers in between—each
one with two hidden neurons. Lines 1, 2, 5, 6, 9, and 10 show affine computations,
while 3, 4, 7, and 8 apply the activation functions. The output class of the network
is determined by the output neuron with the maximum value. The codebase of
Libra contains a script to automatically generate such input format from neural
networks trained using the Keras framework (https://keras.io).

In addition, Libra requires a specification of the neural network input space
and fairness requirements. Libra supports both continuous input data features
as well as one-hot encoded categorical data features. Thus, the input specification

https://keras.io
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Fig. 2. Toy neural network.

should define which input variables correspond to continuous and categorical
data. Additionally, it should indicate which inputs should be considered sensitive
to bias by the analysis. In our example in Fig. 2, we consider both inputs as
continuous, i.e., x0,1, x0,2 ∈ [0, 1], and x0,2 as sensitive to bias.

2.2 Front-End

The front-end of Libra parses the neural network and its specification and gen-
erates a control flow graph (CFG) structure to be given to the analysis engine.
More specifically, the CFG Generator builds an acyclic graph which is essentially
a sequence of nodes alternating between nodes of type affine and nodes of type
ReLU, i.e., nodes grouping the affine transformations performed by a neural net-
work layer, or nodes grouping the ReLU activations applied to a neural network
layer. The entry node of the CFG is annotated with assumptions restricting the
range of values of the input features (i.e., by default, features are assumed to
be normalized in the range [0, 1]). For categorical features, the One-Hot Han-
dler imposes additional constraints restricting the values of the corresponding
individual inputs to be either 0 or 1, and their sum to be 1. Figure 3 shows the
control flow graph corresponding to the toy network in Fig. 2. The caption of
each node shows which line of code it represents.

Fig. 3. Control flow graph for the toy network in Fig. 2.
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2.3 Analysis Engine

Libra’s analysis engine walks over the CFG in two phases: a forward pre-
analysis, starting from the entry node of the CFG, followed by a backward anal-
ysis starting from the exit node of the CFG. Both analysis phases use a standard
worklist algorithm [22] implemented using a FIFO queue. At each step, a CFG
node is extracted from the worklist and its associated instructions are interpreted
in an abstract domain (cf. Sect. 2.4) to update the current value of the analysis.
All successor or predecessor nodes—depending on the analysis direction—are
then put into the worklist. Each node is explored exactly once each iteration.
The analysis terminates once the worklist is empty. In our example, cf. Fig. 2,
the forward analysis visits the CFG nodes in the order from n0, n1, . . . , up to
n5, while the backward analysis visits the node in the reverse order, i.e., from
n5, n4, . . . , down to n0.

The forward pre-analysis is performed by the Forward Iterator. The pre-
analysis begins with a value representing the entire neural network input space
in a chosen abstract domain. This value is then propagated through the neural
network. If the resulting output value implies that the network always produces
a unique classification outcome, then fairness is trivially guaranteed as there is
no way to discriminate between input data. Otherwise, there are two possibilities
depending on how many ReLUs of the neural network are found to not have a
fixed activation status (i.e., ReLU(x) is always active when x ≥ 0 and always
inactive when x < 0). If this number exceeds a chosen upper bound U, the
pre-analysis bisects the input space along any of the non-sensitive dimensions
(randomly chosen) and proceeds again on the resulting partitions. Instead, if
the number of non-fixed ReLUs does not exceed U, the input space (partition)
is deemed feasible and passed to the backward analysis along with its associated
ReLU activation pattern. In our example, let the abstract domain be the boxes
domain [4], which simply tracks the interval of possible values for each neuron in
the neural network, and let U = 2. At first, the pre-analysis starts from the entire
input space I, i.e., x0,1, x0,2 ∈ [0, 1]. By propagating these interval values through
the CFG, the analysis finds that the ReLUs at x1,1, x1,2, and x2,2 are non-fixed
while x2,1 is always active. Since the number of non-fixed ReLUs exceed the
upper bound U, the analysis bisects the input space along the only non-sensitive
dimension x0,1, yielding two partitions I1 (x0,1 ∈ [0, 0.5] and x0,2 ∈ [0, 1]) and
I2 (x0,1 ∈ [0.5, 1] and x0,2 ∈ [0, 1]). By running the pre-analysis from I1 and I2,
we find that I1 is feasible since only the ReLU at x1,1 is non-fixed (and all other
activations are always active), while I2 must be divided further.

To ensure termination, bisection may continue until the partition size
becomes smaller than a chosen lower bound L. In such a case, the parti-
tion is excluded by the analysis as it exceeds the available resources. Contin-
uing our example, let L = 0.25. The forward pre-analysis splits I2 into I2,1
(x0,1 ∈ [0.5, 0.75] and x0,2 ∈ [0, 1]) and I2,2 (x0,1 ∈ [0.75, 1] and x0,2 ∈ [0, 1]).
Now, the pre-analysis concludes that I2,1 is feasible, with only the ReLUs at
x1,1 and x2,2 being non-fixed. Instead I2,2 is excluded, since only the ReLU at
x1,2 is fixed and the partition size (along the non-sensitive dimension x0,1) has
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reached the lower bound L. Thus, only 75% of the input space is considered by
the backward analysis.

The configuration of the pre-analysis (i.e., choices of an abstract domain,
lower bound L, and upper bound U) allows trading-off between precision and
scalability of the approach (cf. Table 2 in Sect. 3). Ultimately however, the opti-
mal configuration largely depends on the analyzed neural network [25]. For this
reason, we have equipped Libra with a configuration auto-tuning mechanism,
which dynamically updates the lower bound and upper bound configuration
according to a chosen search heuristic. By default, whenever an input partition
exceeds the current configuration, the pre-analysis alternates between increasing
the upper bound by one, up to a maximum upper bound Umax, and halving
the lower bound, down to a minimum lower bound Lmin. Other bound update
patterns are configurable (e.g., by updating both bounds at the same time, or
performing multiple increments to the upper bound before halving the lower
bound, etc.). In our example, let Umax = 3, the pre-analysis can thus further
increase the upper bound to U = 3. Therefore, also I2,2 becomes feasible (with
the ReLUs at x1,1, x1,2, and x2,2 non-fixed).

The Backward Iterator takes care of performing the backward analysis inde-
pendently for each feasible partition and associated ReLU activation pattern.
Specifically, the backward analysis starts with different polyhedra abstract
domain values [7], each representing a possible classification outcome of the
neural network. In our example, the possible classification outcomes2 are repre-
sented by the polyhedra x32 < x31 and x31 < x32. These values are then prop-
agated backwards through the network, taking the current activation pattern
into account to prune away unfeasible execution paths, and otherwise splitting
polyhedra into two at each non-fixed ReLU in order to retain maximum pre-
cision (by analyzing their possible activations separately). Ultimately, for each
partition, this yields a disjunction of polyhedra covering the inputs that lead to
each possible output classification. We can then project away the value of the
sensitive inputs and check for intersections between polyhedra leading to differ-
ent classifications: any non-empty intersection is a region of the input space in
which bias is definitely present, as all points in the region represent data that
only differ in the values of the sensitive inputs and lead to different classification
outcomes. Otherwise, if no intersection can be found, the input space partition
is certified to be fair. In our example, the analysis concludes that the classifi-
cation within I1 is fair, while it is biased within I2,1 and I2,2. Inside the biased
intersections, the neural network returns different output classes for inputs that
only differ in the sensitive features (i.e., they have the same value for x0,1 and
different values for x0,2).

In the preliminary version of Libra [25], feasible partitions are first grouped
by activation pattern, i.e., activation patterns that fix more ReLUs are merged
with those that fix fewer ReLUs. This way, in principle, the amount of work that
the backward analysis has to do is reduced: it only needs to run once for each
activation pattern, and can then perform all the checks for bias on each feasible

2 For simplicity, we ignore ties as they can always be broken arbitrarily.
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Fig. 4. Former task scheduling Fig. 5. Current task scheduling

partition. In practice, the implementation prevents the parallelization of all bias
checks3, which are thus run sequentially. This hinders the preliminary version of
Libra from exploiting multi-core architectures effectively. In the current version
of Libra, we optimize the backward analysis in order to possibly repeat the
analysis for the same activation pattern but allowing it to parallelize the bias
checks. Figures 4 and 5 compare the previous and current backward analysis
task scheduling on the same analysis instance. Each row in the Gantt diagrams
shows computations of the same thread. Blue bars stand for activation pattern
computations, while red bars indicate bias check computations. As shown in
Fig. 4, the running time was determined almost completely by the task with
the most associated bias checks, leaving all the other threads idle from the very
beginning. The diagram in Fig. 5 is more compact, meaning that threads are
always running jobs uniformly. Consequently, the backward analysis running
time decreases from about 22 to only 5 min.

2.4 Abstract Domains

Different abstract domains can be used by Libra’s forward pre-analysis. A pre-
liminary version of Libra [25] was equipped with the boxes [4], symbolic
[18,27], and the deeppoly [24] abstract domains. We additionally implemented

3 This is solely for technical reasons as the serialization of abstract domain elements
is not available for the polyhedra domain implementation that Libra relies on. We
plan to address this shortcoming as part of our future work.
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the neurify [26] abstract domain, and a generic reduced product domain con-
struction [6] to combine any of these domains together.

Fig. 6. Naive convex approxima-
tion of a ReLU activation.

The boxes domain simply uses interval
arithmetic [13] to compute concrete lower and
upper bound estimations l and u for the value
of each neuron x in the neural network. The
symbolic domain combines boxes with sym-
bolic constant propagation [20]: in addition to
being bounded by concrete lower and upper
bounds, the value of each neuron x is repre-
sented symbolically as a linear combination of
the input neurons and the value of the non-

fixed ReLUs in previous layers. Specifically, given x bounded by l < 0 and
u > 0, ReLU(x) is represented by a fresh symbolic variable bounded by 0 and u
(cf. Fig. 6). By retaining variable dependencies, symbolic representations yield a
tighter over-approximation of the value of each neuron in the network.

Fig. 7. DEEPOLY’s convex approximations of a ReLU activation.

The deeppoly domain associates to each neuron x of a neural network con-
crete lower and upper bounds l and u as well as symbolic bounds expressed as
linear combinations of neurons in the preceding layer of the network. The con-
crete bounds are computed by back-substitution of the symbolic bounds up to
the input layer. Non-fixed ReLUs are over-approximated by partially retaining
dependencies with preceding neurons using the tighter convex approximation
between those shown in Fig. 7 (i.e., the approximation shown on the left when
u ≤ −l, and the approximation shown on the right otherwise).

Fig. 8. Neurify’s approximation of
a ReLU activation.

The neurify domain similarly maintains
symbolic lower and upper bounds low and up
for each neuron x of neural network. Unlike
deeppoly, concrete lower and upper bounds
are computed for each symbolic bound: llow
and ulow for the symbolic lower bound, and
lup and uup for the symbolic upper bound.
The over-approximation of non-fixed ReLUs is
done independently for each symbolic bound,
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i.e., for the low bound if llow < 0 < ulow, and for the up bound if lup < 0 < uup.
Figure 8 shows the approximation for l = llow = lup and u = ulow = uup.
In general, the slope of the symbolic constraints will differ through successive
approximation steps.

Finally, the Product Builder provides a parametric interface for constructing
the product of any of the above domains. The reduction function consists in an
exchange of concrete bounds between domains. In particular, this allows deter-
mining tighter lower and upper bound estimations for each neuron in the network
and thus reducing the over-approximation error introduced by the ReLUs. New
abstract domains only need to implement the interface to share bounds infor-
mation to enable their combination with other domains by the Product Builder.

For the backward analysis, as mentioned, Libra uses the disjunctive polyhe-
dra domain [7]. Its implementation relies on the Apron domain library [14].

2.5 Tool Output

Libra outputs which partitions of the input space could be analyzed and which
were excluded because they exceeded the configuration of the pre-analysis. For all
partitions that could be analyzed, it reports which (sub)regions could be certified
to be fair and which were found to be biased. Libra also reports the percentage
of the input space that was analyzed and (an estimate of) the percentage that
was found biased. To obtain the latter, we simply use the size of a box wrapped
around each biased region. More precise but also costlier solutions exist [1].

In our example, the analysis could analyze the entire input space, certifying
partition I1 to be fair and finding bias within I2,1 and I2,2. In particular, the
analysis determines that bias occurs for 0.53 < x0,1 ≤ 0.75 within I2,1 and for
0.75 ≤ x0,1 < 1 within I2,2, which amounts to 45.76% of the entire input space.

3 Experimental Evaluation

To demonstrate the effectiveness of Libra, we evaluated it on neural networks
trained on the Adult dataset4 from the UCI Machine Learning Repository. The
dataset assigns to individuals a yearly income greater or smaller than $50k based
on personal attributes such as education and occupation but also gender, marital
status, or race. We set Libra to use gender as sensitive input feature.

We show below the experimental results on the smaller neural networks used
by Urban et al. [25], which better demonstrate the benefits of our implementation
compared to its preliminary version. In practice, Urban et al. [25] have already
shown that the approach can scale to much larger networks with sizes on par
with the literature on fairness certification, e.g., [19,28]. The neural networks
were trained with Keras for 50 iterations, using the RMSprop optimizer with
the default learning rate, and categorical cross-entropy as the loss function. All
networks are open source as part of Libra.

4 https://archive.ics.uci.edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
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Table 1. Comparison of different neural networks

|m| boxes symbolic deeppoly neurify product

96.81% 98.72% 98.37% 98.51% 99.44% input
10

6m 32s 4m 52s 3m 23s 4m 27s 4m 40s time

69.10% 76.70% 66.39% 64.58% 77.29% input
12

4m 53s 2m 27s 2m 0s 1m 31s 2m 30s time

41.01% 56.11% 56.10% 53.06% 68.23% input
20

4m 8s 9m 7s 3m 43s 3m 53s 8m 9s time

0.35% 34.72% 38.69% 41.22% 51.18% input
40

1m 3s 7m 2s 37m 16s 10m 33s 38m 27s time

1.74% 43.78% 51.21% 50.59% 55.53% input
45

50s 3m 42s 5m 14s 5m 10s 6m 22s time

The experiments were conducted on the Inria Paris cleps infrastructure, on a
machine with two 16-core Intel® Xeon® 5218 CPU @ 2.4 GHz, 192 GB of RAM,
and running CentOS 7.7. with linux kernel 3.10.0. For each experiment, we report
the average results of five executions to account for the effect of randomness in
the input space partitioning done by the forward pre-analysis (cf. Sect. 2).

3.1 Effect of Neural Network Structure on Precision and Scalability

The precision and scalability of Libra’s analysis depend on the analyzed neural
network. Table 1 shows the result of running Libra on different neural networks
with different choices for the abstract domain used by the pre-analysis. Column
|m| refers to the analyzed neural network by the number of its ReLU activations.
From top to bottom, the neural networks have the following number of hidden
layers and nodes per layer: 2 and 5, 4 and 3, 4 and 5, 4 and 10, and 9 and
5. We configured the pre-analysis with lower bound L = 0.5 and upper bound
U = 5. Each column shows the chosen abstract domain. We show here the
results for boxes, symbolic, deeppoly, neurify, and the reduced product
deeppoly+neurify+symbolic (i.e., product in the Table 1), which is the
most precise of all possible reduced products. The input rows show the average
input-space coverage, that is, the average percentage of the input space that
Libra was able to analyze with the chosen pre-analysis configuration. The time
rows show the average running time.

For all neural networks, product achieves the highest input-space coverage,
an improvement of up to 12.49% over the best coverage obtained with only
the abstract domains available in the preliminary version of Libra [25] (i.e.,
with respect to the deeppoly domain for |m| = 40). Interestingly, such an
improvement comes at the cost of a very modest increase in running time (i.e.,
just over 1 minute). Indeed, using a more precise abstract domain for the pre-
analysis generally results in fewer input space partitions being passed to the
backward analysis and, in turn, this reduces the overall running time.
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Table 2. Comparison of different pre-analysis configurations

L U boxes symbolic deeppoly neurify product

37.88% 48.78% 49.01% 46.49% 59.20% input
3

36s 42s 1m 35s 32s 1m 58s time

41.01% 56.11% 56.15% 53.06% 68.23% input
0.5

5
4m 8s 9m 10s 3m 47s 3m 57s 8m 16s time

70.62% 83.63% 81.82% 81.40% 87.04% input
3

5m 49s 5m 55s 5m 20s 5m 20s 7m 12s time

83.06% 91.67% 91.58% 92.33% 95.48% input
0.25

5
26m 43s 21m 8s 22m 8s 25m 54s 21m 58s time

For the smallest neural networks (i.e., |m| ∈ {10, 12, 20}), the symbolic
abstract domain is the second best choice in terms of input-space coverage. This
is likely due to the convex ReLU approximations of deeppoly and neurify
which in some case produce a negative lower bound (cf. Fig. 7 and 8), while
symbolic always sets the lower bound to zero (cf. Fig. 6).

Finally, for the largest neural networks (i.e., |m| ∈ {40, 45}), it is the structure
of the network (rather than its number of ReLU activations) that impacts the
precision and scalability of the analysis: for the deep but narrow network (i.e.,
|m| = 45), Libra achieves a higher input-space coverage in a shorter running
time than for the shallow but wide network (i.e., |m| = 40).

3.2 Precision-vs-Scalability Tradeoff

The configuration of Libra’s pre-analysis allows trading-off between precision
and scalability. Table 2 shows the average results of running Libra on the neu-
ral network with 20 ReLUs with different lower and upper bound configurations,
and different choices for the abstract domain used by the pre-analysis. Columns
L and U show the configured lower and upper bounds. We tried L ∈ {0.5, 0.25}
and U ∈ {3, 5}. We again show the results for the boxes, symbolic, deeppoly,
neurify abstract domains, and the most precise reduced product domain deep-
poly+neurify+symbolic (i.e., product in Table 2).

As expected, decreasing the lower bound L or increasing the upper bound U
improves the input-space coverage (input rows) and increases the running time
(time rows). We obtain an improvement of up to 12.44% by increasing U from 3
to 5 (with L = 0.25 and boxes), and up to 42.05% by decreasing L from 0.5 to
0.25 (with U = 5 and boxes). The smaller is L and the larger is U, the higher is
the impact on the running time. Once again, for all lower and upper bound con-
figurations, deeppoly+neurify+symbolic achieves the highest input-space
coverage, improving up to 12.08% over the best coverage obtained with only the
abstract domains available in the preliminary version of Libra (i.e., with respect
to deeppoly with L = 0.5 and U = 5). The improvement is more important for
configurations with larger lower bounds.
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Fig. 9. Comparison of running times for different number of CPUs

Notably, Table 2 shows that none among the symbolic, deeppoly, and
neurify abstract domains is always more precise than the others. There are
cases where even symbolic (implemented by [27]) outperforms neurify (imple-
mented by [26] which is the successor of [27] and is believed to be strictly supe-
rior to its predecessor), e.g., configuration L = 0.5 and U = 5. We thus argue
for using reduced products of abstract domains also in other contexts beyond
fairness certification, e.g., verifying local robustness [18,24, etc.] or verifying
functional properties of neural networks [15].

3.3 Leveraging Multiple CPUs

The optimal pre-analysis configuration in terms of precision or scalability
depends on the analyzed neural network. In order to push Libra to its lim-
its and obtain 100% input-space coverage on the neural network with 20 ReLUs,
we used the new configuration auto-tuning mechanism starting with L = 1 and
U = 0 (i.e., the most restrictive lower and upper bound configuration) and set-
ting Lmin = 0 and Umax = 20 (i.e., the most permissive configuration). For
all choices of abstract domains, the pre-analysis eventually stabilizes with lower
bound L = 0.015625 and upper bound U = 6.

Figure 9 compares the average running times for boxes, symbolic, deep-
poly, neurify, and the reduced product deeppoly+neurify+symbolic (i.e.,
product) as a function of the number of available CPUs. With product we
obtained a running time improvement of 14.39% over symbolic, i.e., the fastest
domain available in the preliminary version of Libra (a minimum improve-
ment of 11.54% with 16 CPUs, and a maximum improvement of 18.24% with 64
vCPUs). As expected, adding more CPUs always improves Libra running time.
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Table 3. Comparison of different number of CPUs

|cpu| boxes symbolic deeppoly neurify product

100% 100% 100% 100% 100% input

4.55% 5.23% 5.20% 5.11% 5.42% bias4

19h 20m 0s 7h 38m 43s 7h 54m 35s 8h 19m 36s 6h 43m 28s time

100% 100% 100% 100% 100% input

4.41% 5.16% 5.12% 5.18% 5.46% bias8

10h 37m 28s 4h 13m 27s 4h 16m 13s 4h 24m 13s 3h 34m 38s time

100% 100% 100% 100% 100% input

4.56% 5.19% 5.12% 5.20% 5.34% bias16

6h 3m 23s 2h 20m 37s 2h 27m 31s 2h 30m 4s 2h 4m 9s time

100% 100% 100% 100% 100% input

4.50% 5.11% 5.10% 5.10% 5.37% bias32

4h 5m 16s 1h 33m 16s 1h 37m 40s 1h 39m 19s 1h 19m 23s time

100% 100% 100% 100% 100% input

4.51% 5.11% 5.20% 5.16% 5.37% bias64

3h 37m 9s 1h 28m 38s 1h 29m 26s 1h 31m 28s 1h 12m 21s time

The most limited improvement in running time that occurs between 32 CPUs and
64 vCPUs is likely due to the use of hyperthreading as context switches between
processes running intense numeric computations produce more overhead.

Table 3 additionally shows the estimated percentage of bias detected with
each abstract domain, i.e., Libra is able to certify fairness for about 95% of
the neural network input space. Note that, the bias estimate depends on the
partitioning of the input space computed by the pre-analysis, cf. Sect. 2. This
explains the different percentages found even by runs with the same abstract
domain. Within the same column, the difference is at most 0.14% on average.

Finally, we remark that the new auto-tuning mechanisms is essential for
scalability. We tried repeating this experiment by directly running Libra with
the configuration at which auto-tuning stabilizes, i.e., L = 0.015625 and U = 6.
After six days it still had not completed and we had to interrupt it.

4 Conclusion and Future Work

In this paper, we presented our static analyzer Libra for certifying that ReLU-
based neural network classifiers are independent of their input values that are
sensitive to bias. In particular, we focused on the new release features of Libra:
new abstract domains, including a generic reduced product domain construction,
a configuration auto-tuning mechanism for finding the optimal configuration for
Libra’s forward pre-analysis, and a tasks scheduling optimization to leverage
all the available CPUs for Libra’s backward analysis. With our experimental
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evaluation, we showed that Libra outperforms its preliminary version [25] in
precision as well as, for equal precision, in running time.

It remains for future work to implement support for other activation functions
than ReLUs. It would also be straightforward to adapt Libra to support other
fairness notions such as individual fairness [9]. Moreover, we plan to design and
equip Libra with a smarter reduced product between domains, able to also
exchange symbolic bounds along with the concrete bounds. Finally, we intend to
extend our approach to other machine learning models, such as support vector
machines [8] or decision tree ensembles [2,11].

Acknowledgement. The authors are grateful to the anonymous reviewers for their
constructive comments and advice, and to the cleps infrastructure from the Inria of
Paris for providing resources and support.
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Abstract. Modern programs are increasingly multilanguage, to benefit
from each programming language’s advantages and to reuse libraries.
For example, developers may want to combine high-level Python code
with low-level, performance-oriented C code. In fact, one in five of the
200 most downloaded Python libraries available on GitHub contains C
code. Static analyzers tend to focus on a single language and may use
stubs to model the behavior of foreign function calls. However, stubs are
costly to implement and undermine the soundness of analyzers. In this
work, we design a static analyzer by abstract interpretation that can
handle Python programs calling C extensions. It analyses directly and
fully automatically both the Python and the C source codes. It reports
runtime errors that may happen in Python, in C, and at the interface. We
implemented our analysis in a modular fashion: it reuses off-the-shelf C
and Python analyses written in the same analyzer. This approach allows
sharing between abstract domains of different languages. Our analyzer
can tackle tests of real-world libraries a few thousand lines of C and
Python long in a few minutes.

Keywords: Formal methods · Static analysis · Abstract
interpretation · Dynamic programming language · Multilanguage
analysis

1 Introduction

Modern programs are increasingly multilanguage. This allows developers to com-
bine the strengths of different languages and reuse libraries written in other lan-
guages. A host language may call a guest language through an interface; this
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interface is also called a boundary. The guest language is frequently C and is
usually referred to as native code or native C. In this paper, the host language
is Python, and the guest language is C. This work supports the Python API
[40] as the interoperability mechanism between Python and C.1 Using native C
modules in Python is frequent as it allows writing high-level Python code, itself
calling efficient C code. As a matter of fact, one in five of the 200 most down-
loaded Python libraries available on GitHub contains C code. Although useful,
multilanguage programs generate additional sources of bugs. Indeed, developers
need to take into account different safety mechanisms and memory representa-
tions. Python is safe to the extent that runtime errors in pure Python programs
are encapsulated into exceptions, which can be caught later on. This safety
property breaks when C modules are used since a runtime error in C may irre-
mediably terminate the program or create an inconsistent state. Python and C
also have different representations. For example, Python integer objects use at
least 24 bytes of memory and have unlimited precision, while C integers have
fixed lengths (generally ranging from 8 to 64 bits) and can suffer from overflows.

Static analysis aims at inferring program properties (e.g., the absence of
runtime errors) by analyzing programs without executing them. Static analyzers
tend to focus on analyzing one language at a time. They may use stubs to model
the behavior of calls to other languages. These stubs may be time-consuming
to implement if written by hand. They can undermine the soundness of the
analyses since the actual code is not analyzed, and the stubs may be imprecise or
wrong. For example, our previous work developing a type analysis for Python [33]
uses official Python type annotations (defined by PEP 484 [39]) as stubs. While
this analysis tracks uncaught Python exceptions, these type annotations do not
declare which exceptions may be raised, thus adding an unchecked assumption
to the soundness property [33, Section 6.2].

We aim at analyzing both the native C code and the Python code (including
callbacks to Python code from the native side) within the same analyzer, called
Mopsa [18]. We perform a precise, flow, and context-sensitive value analysis by
abstract interpretation. Our analyzer works by induction on the syntax and
switches from one language to the other just as the concrete program execution
does. We present a multilanguage static analysis built upon pre-existing value
static analyses by abstract interpretation [9] of C [37] and Python [33,34]. It
detects runtime errors in the native C code (invalid pointer operations, invalid
memory accesses, integer overflows), in the Python code (raised exceptions),
and at the boundary between the languages. The underlying address allocation
and numeric abstractions are shared. A few multilanguage static analyses exist,
and focus mostly on analyzing Java and C ([12–14,22,43,45], cf. Sect. 6). They
compute summaries of the effects of native code on the chosen abstract property
in a bottom-up fashion. Those effects are then translated into the host language,
where a standard analyzer for the host language can then be used. The use of

1 Other interoperability mechanisms such as the ctypes from the standard library,
the cffi library, the cython project, or the swig project all use code using this API
or generate code targetting this API. We could thus analyze this generated code.
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summaries to convey the abstract meaning of functions makes it easier to rely on
independent analyzers for each language. However, the language and properties
we target require precise context-sensitive value analyses that are difficult to
perform bottom-up. Since Python is a dynamic programming language with a
flexible semantics, it is not possible to analyze programs precisely in a context-
insensitive fashion. Additionally, a precise description of the Python heap at a
native call is mandatory to analyze the called C code, check for pointer errors,
and infer effects. We believe the approach described in this paper is general and
could be extended to other multilanguage settings, such as the analysis of Java
and C through the JNI.

Contributions.

– We define a multilanguage semantics for Python programs with native C
modules using the Python C API.

– We show how to lift analyses of Python and C into the multilanguage set-
ting. The underlying address allocation and numeric abstractions are shared,
paving the way for relational invariants between Python and C variables.

– We built an implementation on top of an existing static analysis platform
called Mopsa that was previously used to design independent analyses for C
and for Python. We added support for multilanguage C/Python programs by
only adding domains modeling the boundary. We reuse the previous domains
analyzing C and Python off-the-shelf. Thanks to this construction, we can
detect runtime errors at the boundary, but also in the Python code and in
the native C code.

– We evaluate our approach on six real-world libraries found on GitHub. We
show that we can scale to libraries of 5,800 combined lines of Python and C
code within five minutes.

Artifact. An artifact [35] is available alongside this article. The artifact makes
Table 2 and the claim about the percentage of Python packages containing C
code on Github (made in Sect. 1) reproducible. The example codes displayed in
Fig. 1 and Fig. 12 are provided in the artifact, along with instructions to run
our analyzer on them. The source code of the modified version of Mopsa is also
included. We plan on merging our changes into the public version of Mopsa [19].

Limitations. Our concrete semantics is high-level and makes the assumption
that builtin Python objects are only manipulated through the API in C (this
assumption is verified by our analyzer). The garbage collection based on reference
counting is not supported by our semantics. Thus, we cannot detect dealloca-
tions that are performed too soon or that are not performed at all. There is
no formal soundness proof that our concrete semantics effectively models the
behavior of the Python interpreter. Potential runtime errors in the API imple-
mentation modeled by our concrete semantics as builtins cannot be detected.2

2 However, half of the API supported by our implementation uses the original C
implementation, which is analyzed and where runtime errors would be detected.
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Our implementation supports relational analyses, but those do not scale to real-
world examples (thus, we use intervals for the numeric abstraction by default).
These limitations could be removed in future work.

Outline. We start by showing a self-contained motivating example in Sect. 2,
giving insights on how native C modules are defined and how they work with
Python. We define the concrete semantics of these multilanguage programs in
Sect. 3, and explain the abstractions performed in Sect. 4. Section 5 presents our
implementation and the analysis results. We discuss related work in Sect. 6 and
conclude in Sect. 7.

2 An Extension Module Example

This section provides an in-depth motivating example. We show how to define
a native C extension module, and how it can be used by a Python client code.
We end the section by discussing which errors may happen.

When developers want to run native C code in Python, they define native C
extension modules using the Python API. These modules may contain attributes,
methods, and classes, just as any other Python module. However, these methods
and classes are now written in C. API functions are denoted by the Py prefix (and
written in magenta in the listings). The semantics of some of these functions are
described formally in Sect. 3.

Counter Module, Viewed from Python. Our example is a C module defin-
ing a Counter class, alongside some client code in Python. This example is
self-contained and shown in Fig. 1. From a high-level point of view, the counter
module defines a Counter class. Instances of Counter can be created (count.py,
line 4); their internal counter can be incremented using the incr method, which
takes an optional integer argument being the increment (lines 6–7); they also
have a read-only attribute counter returning their current value (line 8).

Counter, Viewed from C. In C, instances of Counter will be stored using
the CounterO struct. This struct starts with a PyObject ob_base field. All
Python objects are represented as PyObjects in C. Putting the PyObject as the
first field in the Counter structure allows casting to and from Python objects.3

The PyObject definition is part of the API and shown in Fig. 2. Its fields are a
reference counter for the garbage collector and a pointer to the class to which it
belongs. PyTypeObject is Python’s type object, from which all classes derive.
The second field of CounterO is the instance’s data: an integer count, not directly
exposed to Python.

The Counter class’ specification is defined lines 52–59. It has three methods
stored in the Py_tp_new, Py_tp_init, and Py_tp_methods fields. It also defines
3 According to the ISO C reference, “a pointer to a structure object, suitably con-

verted, points to its initial member, and vice versa”.
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count.py
1 import counter
2 import random
3
4 c = counter.Counter()
5 p = random.randrange(128)
6 c.incr(2**p-1)
7 c.incr()
8 r = c.counter

counter.c
9 #include <Python.h>

10 #include "structmember.h"
11
12 typedef struct {
13 PyObject ob_base;
14 int count;
15 } CounterO;
16
17 static PyObject*
18 CounterIncr(CounterO *self, PyObject *args)
19 {
20 int i = 1;
21 if(!PyArg_ParseTuple(args, "|i", &i))
22 return NULL;
23 self->count += i;
24 Py_RETURN_NONE;
25 }
26
27 static int
28 CounterInit(CounterO *self, PyObject *args,
29 PyObject *kwds)
30 {
31 self->count = 0;
32 return 0;
33 }
34
35 static PyMethodDef CounterMethods[] = {
36 {"incr", (PyCFunction) CounterIncr,
37 METH_VARARGS, ""}, {NULL}
38 };

counter.c
40 static PyMemberDef CounterMembers[] = {
41 {"counter", T_INT, offsetof(CounterO,
42 count), READONLY, ""}, {NULL}
43 };
44
45 static PyType_Slot CounterTSlots[] = {
46 {Py_tp_new, PyType_GenericNew},
47 {Py_tp_init, CounterInit},
48 {Py_tp_methods, CounterMethods},
49 {Py_tp_members, CounterMembers}, {0, 0}
50 };
51
52 static PyType_Spec CounterTSpec = {
53 .name = "counter.Counter",
54 .basicsize = sizeof(CounterO),
55 .itemsize = 0,
56 .flags = Py_TPFLAGS_DEFAULT
57 | Py_TPFLAGS_BASETYPE,
58 .slots = CounterTSlots
59 };
60
61 static struct PyModuleDef countermod = {
62 PyModuleDef_HEAD_INIT, .m_name = "counter",
63 .m_methods = NULL, .m_size = -1
64 };
65
66 PyMODINIT_FUNC
67 PyInit_counter(void)
68 {
69 PyObject *m = PyModule_Create(&countermod);
70 if(m == NULL) return NULL;
71 PyObject* CounterT =
72 PyType_FromSpec(&CounterTSpec);
73 if(CounterT == NULL || PyModule_AddObject(
74 m, "Counter", CounterT) < 0) {
75 Py_DECREF(m);
76 return NULL;
77 }
78 return m;
79 }

Fig. 1. Example of a Python client program alongside a C counter module

1 typedef struct PyObject {
2 Py_ssize_t ob_refcnt;
3 struct PyTypeObject *ob_type;
4 } PyObject;
5
6 typedef PyObject *(*PyCFunction)
7 (PyObject *, PyObject *);
8 typedef int (*initproc)
9 (PyObject *, PyObject *, PyObject *);

10
11 typedef struct PyMethodDef {
12 const char *ml_name; PyCFunction ml_meth;
13 int ml_flags; const char *ml_doc;
14 } PyMethodDef;
15
16 typedef struct PyMemberDef {
17 const char *name; int type;

18 Py_ssize_t offset; int flags;
19 const char *doc;
20 } PyMemberDef;
21
22 typedef struct PyTypeObject {
23 PyObject ob_base;
24 const char *tp_name;
25 Py_ssize_t tp_basicsize;
26 Py_ssize_t tp_itemsize;
27 unsigned long tp_flags;
28 struct PyMethodDef *tp_methods;
29 struct PyMemberDef *tp_members;
30 struct PyTypeObject *tp_base;
31 PyObject *tp_dict;
32 initproc tp_init;
33 newfunc tp_new;
34 } PyTypeObject;

Fig. 2. Extract of Python’s API header files
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Table 1. Python Counter structure summary

Attribute Encapsulating object Underlying wrapper Underlying C definition

__new__ builtin_function tp new wrapper PyType GenericNew

__init__ wrapper_descriptor wrap init CounterInit

incr method_descriptor ∅ CounterIncr

counter member_descriptor ∅ CounterMembers[0]

a special attribute member counter lines 41–42. The PyTypeObject structure is
synthesized from the specification by PyType_FromSpec (line 72). These methods
and members are lifted to become Python attributes and methods when the class
is initialized (in PyType FromSpec). Other fields are defined in the PyTypeObject
structure. tp_basicsize, tp_itemsize define the size (in bytes) of instances.
tp_flags is used to perform fast instance checks for builtin classes. tp_base
points to the parent of the class. tp_dict is the class’ dictionary used by Python
to resolve attribute accesses (created during class initialization).

Module Import. When executing the import counter statement, the C func-
tion PyInit_counter is called. This function starts by creating a module whose
name (line 62) is counter with no methods attached to it (line 63). Then, the
CounterT class is created (lines 71–72), and the class is bound to the module
(lines 73–74). Python uses a reference-counting-based garbage collector, which
has to be manually handled using the Py INCREF and Py DECREF macros in C.
If no errors have been encountered, the module object is returned at the end of
the function, and counter will now point to this module in Python.

Class Initialization. The call to PyType FromSpec creates the Counter class
from its specification. The function PyType FromSpec starts by creating the
PyTypeObject and fills its fields according to the specification. This structure is
then passed to PyType Ready which populates the tp_dict field of the class. This
field is the class’ dictionary used by Python to resolve attribute accesses. Before
this call, the attribute counter and the methods __new__, __init__, and incr
do not exist on the Python side. We explain how these C functions are encap-
sulated into Python objects by PyType Ready. The prototype of C functions
for Python is PyCFunction (Fig. 2, line 6). Some signature adaptations may be
needed for specific kinds of functions. For example, initialization methods (such
as CounterInit) return a C int by convention. Thus, CounterInit will be
wrapped into a function called wrap init, which behaves as a PyCFunction. It
is then encapsulated into a builtin Python descriptor object. Upon a call to this
object, this descriptor performs pre- and post-call checks (described in Sect. 3).
Continuing our example, wrap init will be stored into an instance of the builtin
wrapper_descriptor object. These descriptors are then added to the class dic-
tionary. Table 1 describes the three other fields.
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Counter Creation. When a new instance of Counter is created (line 4), Python
starts by allocating it by calling Counter.__new__. This call will eventually
be resolved into PyType GenericNew (from tp_new), allocating the object and
initializing the necessary fields (such as ob_refcnt and ob_type of PyObject).
Then, Counter.__init__ is called and the C function CounterInit ends up
being called. It initializes the count field of the CounterO struct to 0.

Counter Increment. When the incr function is called, it is resolved through
Python’s attribute accesses into CounterIncr. CounterIncr uses the standard
Python function prototype, corresponding to PyCFunction (Fig. 2). Its first argu-
ment is the object instance (here, the instance stored in variable c), and the
second argument is a tuple of the arguments passed to the function (for the call
at line 6 it is a tuple of length one containing 2**p-1, and an empty one for
the second call at line 7). PyArg ParseTuple is a helper C function from the
Python API converting the Python arguments wrapped in the tuple into C val-
ues.4 It uses a format string to describe the conversion. The | character separates
mandatory arguments from the optional ones, while i signals a conversion from
a Python integer to a C int. Internally, the conversion is done from a Python
integer to a long (which may fail with an exception since Python integers are
unbounded), which is then cast to an int if size permits (otherwise, another
exception is set). In the first call to CounterIncr, i will be assigned 2**p-1 if
the conversion is successful. In the second call, i will keep its default value, 1.
The internal value of the counter is then incremented by i, and then Python’s
None value is returned.

Counter Access. Thanks to the complex semantics of Python, attribute
accesses can actually hide calls to custom getter and setter functions through the
descriptor protocol [33, Figure 6]. In our case, PyType Ready takes the member
declaration lines 40–43, and creates those custom getters and setters through
a member_descriptor builtin object. The access to attribute counter at line
8 calls the getter of this member_descriptor object. This getter accesses the
count field of the CounterO struct and converts the C integer into a Python
integer. The READONLY flag in the declaration ensures that any call to the setter
function raises an exception. These member descriptors are supported by our
analysis.

What Can Go Wrong? Depending on the chosen value of p the result r
will range from (i) the expected value (r = 2p when 0 ≤ p ≤ 30), (ii) conversion
errors raised as OverflowError exceptions (with messages depending on whether
p ≤ 62), (iii) a silent integer overflow on the C side, causing a wrap-around
which is an unexpected behavior for Python developers (r = −231 for p = 31).
All these errors are due to different representations between the builtin values
of the language. The C integer overflow does not interrupt the execution. This
4 Py BuildValue is the converse function translating C values to Python ones.
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motivates the creation of our analysis targeting all kinds of runtime errors in
both host and guest languages as well as at the boundary. Our analysis infers all
reachable C and Python values, as well as raised exceptions in order to detect
these runtime errors. In this example, our analyzer is able to detect all these
cases. Our analyzer is also able to prove that the program is safe when p ranges
between 0 and 30.

Common Bugs at the Boundary. We refer the reader to the work of Hu and
Zhang [16] for an empirical evaluation of bugs at the boundary between Python
and C. The most frequent bugs happening at the boundary are:

– mismatches between a returned NULL and the exception being set in C (NULL
should be returned by Python C functions if and only if an exception has
been set – cf. Fig. 8 in the next section),

– mismatches between the C and Python datatypes during conversion (in calls
to PyArg ParseTuple, PyLong FromLong),

– integer overflows during conversions from arbitrary-precision Python integers
to C,

– reference-counting errors (not supported by our analyzer).

3 Concrete Semantics

This section defines the semantics of the interface between Python and C. It is
built upon the semantics of each language. Our goal is to delegate most of the
work to the semantics of each language, each used in a black-box fashion. This
delegation will also simplify our implementation as we will reuse the analyses of
Python and C in a similar black-box fashion.

A key assumption of our semantics is that builtin Python objects (such as
integers and dictionaries) can only be accessed from C through the API provided
by the interpreter. As such, any access to the builtins through the C API can be
encoded as a call back to the Python language. Thus, each language will have
complementary representations of Python objects. Each language has a view of
any Python object. Accesses to the other view are done by switching language.
To illustrate this representation on our running example, the int count field
from a Counter instance is only exposed from the C. It is possible to read the
counter’s value from Python. This can only be done by calling a C function
performing the conversion of the C integer into a Python integer. This object
is new and independent from the C integer. Hence, only C code directly deref-
erences the field value from the object memory. Conversely, an attribute that
is dynamically added to a Python object is stored in the instance’s dictionary.
This dictionary is opaque from C. Accessing it through the C language using the
API will ultimately be evaluated as a Python attribute access in our semantics.
As illustrated in these examples, mutable parts of the objects are not directly
available through both languages. There is thus no need to perform systematic
state reductions when switching from one language to the other.
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Our concrete semantics defines the operators working at the boundary. These
operators allow switching from one language to another or converting the value
of one language to the other. We define how Python may call C functions, and
how C may perform callbacks to Python objects. We also define conversions
between Python integers and C longs. API functions working on other builtin
datatypes (such as floats, strings, lists, ...) exist and are supported by our anal-
ysis. They are similar to the integer case and are not described in this article.
The definitions of these operators rely on calls to boundary functions between
the two languages. These boundaries ensure that objects have the correct shape
in the other language state. The boundary from C to Python also checks that
only valid Python objects are passed back.

We define the state on which each semantics operates. In the following,
Python-related states and expressions will be written in green. C-related states
and expressions will be in orange. We reuse the states defined in the work of
Monat et al. [33] for Python and Ouadjaout and Miné [37] for C. A set of heap
addresses Addr (potentially infinite) is common to the states. Previous works
[11,33,37] define the semantics of Python and C.

Python State (Fig. 3). Python objects are split into a nominal part and a
structural part. The nominal part ObjN can be a builtin object such as an
integer (we omit other builtins for the sake of concision), a function, a class, or
an instance (defined by the address of the class from which it is instantiated).
The structural part ObjS maps attribute names to their contents’ addresses.
A state Σp consists of an environment and a heap. The environment Ep maps
variable identifiers Idp to addresses (or LocalUndef for local variables with an
undefined value). The heap Hp maps addresses to objects. Given a state σp ∈ Σp,
we write as σ.εp its environment and σ.ηp its heap. Following Fromherz et al. [11],
the state is additionally tagged by a flow token to handle non-local control-flow:
cur represents the current flow on which all instructions that do not disrupt the
control flow operate (e.g., assignments, but not raise); exn collects the states
given by a raised exception. exn is indexed by the address of the exception object,
so each exception will be kept separate. These continuation-tagged states are
standard in abstract interpreters working by induction on the syntax to model
non-local control-flow. Evaluating an expression e through Ep� e � in a given state
yields a Python value in a new state. This value may be ⊥ if the evaluation fails.
We use letb v, σ = f(e) in body as syntactic sugar for let r, σ = f(e) in if r �=
⊥ then body else ⊥, σ.

C State (Fig. 4). The memory is decomposed into blocks Base which are
either variables Idc or heap addresses Addr. Each block is decomposed into
scalar elements (machine integers, floats, pointers). �b, o, τ� denotes the memory
region in block b, starting at offset o and having type τ . C values Valuec are
either machine numbers MNum, or pointers Ptr defined by their block and
offset. Additionally, pointers can be NULL or invalid. The state Σc consists of
an environment and a heap. The environment Ec maps scalar elements to values.
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ObjN def= int(i ∈ Z) ∪ Fun(f)

∪ Class(c) ∪ Inst(a ∈ Addr)

ObjS def= string ⇀ Addr

Valuep
def= Addr

Fp
def= { cur , exn a ∈ Addr }

Ep
def= Idp ⇀ Addr ∪ LocalUndef

Hp
def= Addr ⇀ ObjN × ObjS

Σp
def= Fp × Ep × Hp

Ep expr : Σp → Valuep⊥ × Σp

Sp stmt : Σp → Σp

Fig. 3. Concrete Python State

Cells
def= { b, o, t | b ∈ Base, t: scalar

type, 0 ≤ o ≤ sizeof(b) − sizeof(t) }
Ptr

def= (Base × Z) ∪ { NULL, invalid }
Base def= Idc ∪ Addr

Valuec
def= MNum ∪ Ptr

Ec
def= Cells ⇀ Valuec

Hc
def= Addr ⇀ ident × N

Σc
def= Ec × Hc

Ec expr : Σc → Valuec
⊥ × Σc

Sc stmt : Σc → Σc

Fig. 4. Concrete C State

Σ = Σp × Σc

p↪→c : Valuep × Σ → Valuec × Σ

c↪→p : Valuec × Σ → Valuep
⊥ × Σ

Ep×c exprp : Σ → Valuep
⊥ × Σ

Ep×c exprc : Σ → Valuec
⊥ × Σ

Fig. 5. Combined State

The heap Hc maps addresses to the type of allocated resource and their size. The
type of allocated resource is Malloc when the standard C library malloc is used5.
The Python allocator (called by PyType_GenericNew) will create resources of
type PyAlloc, ensuring that: (i) Python objects are well constructed by the
correct allocator (ii) the C code cannot access these “opaque” objects and needs
to use the API.

Combined State (Fig. 5). Two new kinds of nominal objects are added to
Python: CFun f for Python functions defined in C, CClass c for Python classes
defined in C (where f and c denote the name of the underlying C function or
class declaration). The combined state used for the multilanguage semantics is
the product of the Python and C states, written Σ. Note that each state may
reference addresses originally allocated by the other language (in the running
example, the Python variable c points to the address of the Counter instance,
which has been allocated on the C side by PyType_GenericNew). In the following,
we define two boundary functions converting a Python value into a C value and
conversely (written p↪→c and c↪→p). The multilanguage semantics E

p×c
� · � is

5 Other resources (such as file descriptors) can also be defined [37].
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defined over Python and C expressions. It operates over the whole state Σ and
its return value matches the language of the input expression. We define the
semantics of some builtins working at the boundary between Python and C,
which require the whole state. For expressions not working at the boundary, the
multilanguage semantics defaults to the usual Python or C semantics:

E
p×c

� exprp �(σp, σc) = Ep� exprp �(σp), σc

Ep×c� exprc �(σp, σc) = σp,Ec� exprc �(σc)

p↪→c(vp, σp, σc) =

if vp ∈ σ.ηc then (vp, 0), σp, σc else
letb typ, σp = Ep type(vp) σp in
letb (tyc, 0), σp, σc = p↪→c(typ, σp, σc) in
let σc = Sc vp->ob_type = tyc σc in
let σp, σc =

if σp(vp) = Class(c) then
let σc = σ.εc, σ.ηc[vp �→ PyAlloc, sizeof(PyTypeObject)] in
Ep×c PyType_Ready(vp) (σp, σc)

else σp, (σ.εc, σ.ηc[vp �→ PyAlloc, sizeof(PyObject)])
in (vp, 0), σp, σc

Fig. 6. Python to C value boundary

c↪→p(vc, σp, σc) =

if vc �∈ Addr × { 0 } || σ.ηc(fst vc) �= (PyAlloc, _) then ⊥, σp, σc else
let v = fst vc in
if v ∈ σ.ηp then v, σp, σc else
letb tyc, σc = Ec ((PyObject*)v)->ob_type σc in
letb typ, σp, σc = c↪→p(tyc, σp, σc) in
let σp = σ.εp, σ.ηp[v �→ Inst(typ), ∅] in v, σp, σc

Fig. 7. C to Python value boundary
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Boundary Functions. Boundary functions ensure that Python objects are cor-
rectly represented in the heap of each language. The C to Python boundary also
ensures that only Python objects are passed back to Python. These functions do
not convert values from one language to another. This kind of conversion is han-
dled by builtin conversion functions such as PyLong_AsLong, PyLong_FromLong
for Python integer to C long conversion. These boundary functions are lazy and
shallow: (i) only objects switching languages are passed through those bound-
aries, (ii) an object that has already been converted does not need to be converted
again (i.e., when its address is already in the other language’s heap).

The boundary from Python to C is described in Fig. 6. The boundary is
first applied recursively to the class of the object (using the type operator of
Python). Then, the ob_type field of the object is initialized to point to its class.
The last step performed is to update the heap: the object has been allocated by
Python, and has the size of PyObject (if the object is a class, it has the size of
PyTypeObject, and we call the class initializer afterward).

The converse boundary (Fig. 7) starts by checking that the value is a heap
allocated Python object, allocated with resource type PyAlloc. It calls itself
recursively on the class of the object (using the ob_type field in C). The Python
heap is updated with the converted object.

C Call from Python (Fig. 8). The semantics of C function calls from Python
is shown in Fig. 8. The function in_check enforces that e1 should be an instance
of the class to which f is bound. Otherwise, a TypeError exception is raised.
C functions callable from Python can only have two arguments (cf. the type of
PyCFunction, Fig. 2, line 6). Thus, the Python arguments are split into the first
one e1 and the other ones, bundled in a tuple. The boundary from Python to
C is applied to e1, and to the tuple containing the other arguments. Then, the
C function is evaluated using the standard C semantics. Afterward, out_check
ensures that the function returned NULL if and only if an exception has been set
in the interpreter state. Otherwise, a SystemError exception is raised. Finally,
the C value is passed through the boundary function.

Ep×c (CFun f)(e1, e2, . . . , en) (σp, σc) =

letb σp = in_check(CFun f, e1, σp) in
letb c1, σp, σc = p↪→c(e1, σp, σc) in
letb p2, σp = Ep tuple(e2, . . . , en) σp in
letb c2, σp, σc = p↪→c(p2, σp, σc) in
letb cf , σc = Ec f(c1, c2) σc in
letb cf , σc = out_check(cf , σc) in
c↪→p(cf , σp, σc)

Fig. 8. C call from Python



A Multilanguage Static Analysis of Python Programs with C Extensions 335

Ep×c PyObject_CallObject(f, a) (σp, σc) =

letb fp, σp, σc = c↪→p(f, σp, σc) in
letb ap, σp, σc = c↪→p(a, σp, σc) in
let rp, σp = Ep fp(∗ap) σp in
if σp = (cur , _, _) then p↪→c(rp, σp, σc)

else let exn e, εp, ηp = σp in
letb ec, σp, σc = p↪→c(e, (cur , εp, ηp), σc) in
NULL, σp,Sc PyErr_SetNone(ec) σc

Fig. 9. Python call from C

Python Call from C (Fig. 9). Calls back to Python from the C code are pos-
sible using the PyObject_CallObject function. The first argument is the object
being called. The second argument is a tuple containing all the parameters. These
two arguments are first passed through the C to Python boundary. Then, we
use the Python semantics to evaluate the call (the * operator in Python unpacks
the tuple into the arguments of the variadic function). If the call is successful
(i.e., the execution is normal, shown by flow token cur), the converse boundary
function is applied. If an exception has been raised during the evaluation of the
Python call, we revert to the cur flow token and pass the exception object e
through the boundary. The result of the call will be NULL, and the exception will
be set on the C side by calling PyErr_SetNone.

Python Exceptions in C. Python exceptions may be raised from the C code
using the PyErr_SetNone builtin. In the Python interpreter, this sets a flag
in a structure describing the interpreter’s state. We model this by setting a
global variable exc with the Python object passed as an argument. Additional
functions such as PyErr_Occurred checking if an exception has been raised and
PyErr_Clear removing raised exceptions are modeled by accessing and setting
this same global variable.

Conversion Builtins of the API. We show conversion functions from C long
to Python integers and back in Fig. 10. Converting a C long of value vc to a
Python integer is done by calling the integer constructor in the Python semantics,
and applying the boundary afterwards. To perform the other conversion, we
apply the boundary function to the C value. Then, we check if the corresponding
Python value vp is an integer by looking into the Python heap. If that is the
case, we check that this integer fits in a C long (Python integers are unbounded).
Otherwise we raise an OverflowError and the function returns −1. A TypeError
exception is raised and the function returns −1 if the object is not an integer.

Thanks to the definition of builtins such as PyLong_AsLong, other builtins
calling this function can be analyzed directly using their source code from the
Python interpreter’s implementation. For example, when PyArg_ParseTuple
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Ep×c PyLong_FromLong(vc) (σp, σc) = p↪→c (Ep int(vc) (σp), σc)

Ep×c PyLong_AsLong(vc) (σp, σc) =

let vp, σp, σc = c↪→p(vc, σp, σc) in
if σ.ηp = int(i) then

if i ∈ [−263, 263 − 1] then i, σp, σc

else − 1, σp,Sc PyErr_SetNone PyExc_OverflowError( ) σc

else − 1, σp,Sc PyErr_SetNone(PyExc_TypeError) σc

Fig. 10. Conversion from Python builtin integers to C long

1 long ival = PyLong_AsLong(obj);
2 if(ival == -1 && PyErr_Occurred()) {
3 return 0;
4 } else if (ival > INT_MAX) {
5 PyErr_SetString(PyExc_OverflowError,
6 "signed integer is greater than maximum");
7 return 0;
8 }

10 else if (ival < INT_MIN) {
11 PyErr_SetString(PyExc_OverflowError,
12 "signed integer is less than minimum");
13 return 0;
14 } else {
15 *result = ival;
16 return 1;
17 }

Fig. 11. Python integer to C int conversion as done by PyArg_ParseTuple

encounters an 'i' char in its conversion string, it executes the code shown in
Fig. 11.6 As explained in our example from Sect. 2, it first calls PyLong_AsLong
and converts the long to int checking for additional overflows. Our analyzer is
able to analyze this piece of code directly. In our implementation, about half of
the builtins use the original C implementation; their code is around 650 lines
long.

Threats to Validity. Our goal is to analyze Python programs with native C
modules and detect all runtime errors that may happen. Assuming that those
C modules use Python’s API rather than directly modify the internal represen-
tation of builtins seems reasonable when analyzing third-party modules. This is
the recommended approach for developers, as it eases maintenance of the code-
base since API changes are not frequent and documented. Our analysis is able
to detect if a program does not use the Python API and tries to modify a builtin
Python object directly.

This concrete semantics is already high-level. A lower-level semantics where
implementation details of builtins are exposed would be much more complex. It
would not benefit our analysis, which aims at detecting runtime errors in the
user’s codebase. We have established this semantics by reading the code of the
reference Python interpreter. Proving that our semantics is a sound abstraction
of such lower-level semantics is left as future work.

6 PyArg_ParseTuple is defined as stub (just as PyLong_AsLong is), but the case of
integers is delegated to the interpreter’s implementation shown in Fig. 11.
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4 Abstract Semantics

Concrete states use numeric values in different places (e.g., the C state has
machine numbers, pointer offsets and resource sizes). All these values will be
centralized in a common numeric domain in the abstract state. This central-
ization allows expressing invariants between all those numeric variables, pos-
sibly improving the precision. We show a generic construction of the abstract
multilanguage state. We assume the abstract semantics of Python and C are
provided through E#

p � · �,E#
c � · �. These can be instantiated in practice using

previous works [34,37]. We assume that each language’s abstract state relies
on an address allocation abstraction (such as the callsite abstraction or the
recency abstraction [2]) and a numeric abstraction (such as intervals, octagons,
. . . ). We write Σ�

u the cartesian product of these two abstractions. The abstract
Python (resp. C) state can then be decomposed as a product Σ�

p = Σ̃�
p × Σ�

u

(resp. Σ�
c = Σ̃�

c ×Σ�
u). The multilanguage abstract state consists in the cartesian

product of the Python and C abstract states, where the address allocation and
numeric states are shared: Σ�

p×c = Σ̃�
p × Σ̃�

c × Σ�
u.

Just as the concrete semantics builds upon the underlying C and Python
semantics, so does our abstract semantics. The abstract semantics of the bound-
ary operators is structurally similar to the concrete ones (each concrete operator
is replaced with its abstract counterpart). We show this transformation on the
abstract semantics of PyLong FromLong (to be compared with Fig. 10).

E#
p×c

�PyLong FromLong(vc) �(σ�
p, σ

�
c) = p↪→c

�
(
E#

p � int(vc) �(σ�
p), σ

�
c

)

Sharing the address allocation and numeric abstractions allows expressing
relational invariants between the languages. In the example in Fig. 12, a non-
relational analysis would be able to infer that 0 ≤ i ≤ 99, but it cannot infer
that the number of calls to incr is finite. It would thus infer that −231 ≤ r <
231, report an overflow error and be unable to prove the assertion at the end.
Note that the value of r originates from the C value of the count field in the
instance defined in c. With a relational analysis where C and Python variables
are shared in the numeric domains, it is possible to infer that num(@int) + 1 =
num(�@Counter, 16, s32�). num(@int) is the numeric value of the integer bound
to i. num(�@Counter, 16, s32�) is the numeric value of the Counter instance
(i.e., the value of count in the Counter struct, here represented as the cell [31]
referenced by the Counter instance, at offset 16 being a 32-bit integer). Our

rel_count.py
1 c = counter.Counter()
2 for i in range(randint(1, 100)):
3 c.incr()
4 r = c.counter
5 assert(r == i+1)

Fig. 12. Example code where relationality between C and Python improves precision
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analyzer is able to prove that the assertion holds using the octagon abstract
domain [32].

Soundness. Assuming the underlying abstract semantics of Python and C are
sound, the only cases left in the soundness proof are those of the operators
working at the boundary. Since the abstract semantics of those operators is in
point-to-point correspondence with the concrete semantics, the soundness proof
is straightforward.

5 Experimental Evaluation

Implementation. We have implemented our multilanguage analysis within the
open-source, publicly-available static analysis framework called Mopsa [18,19].
A specific feature of Mopsa is to provide loosely-coupled abstract domains that
the user combines through a configuration file to define the analysis. We were
able to reuse off-the-shelf value analyses of C programs [37] and Python programs
[34] already implemented into Mopsa. The only modification needed was to add
a multilanguage domain, implementing the semantics of the operators at the
boundary, just as our semantics (both concrete and abstract) do.

The configuration for the multilanguage analysis is shown in Fig. 13. A
configuration is a directed acyclic graph, where nodes are either domains or

CPython

×

Py.program Py.desugar Py.exceptions

Py.libraries Py.objects Py.data_model

×
Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program C.desugar C.goto

C.stubs C.libraries

∧
C.cells C.strings

◦

×
C.machineNum C.pointers

◦

U.intraproc U.loops U.interproc

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Fig. 13. Multilanguage configuration in Mopsa
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domain combinators. Domains can have their own local abstract state. The global
abstract state is the product of these local states. Domains can also be itera-
tors over language constructions. Each analyzed expression (or statement) flows
from the top domain of the configuration to the bottom until one domain han-
dles it. The multilanguage domain is at the top. It dispatches statements not
operating at the boundary to the underlying Python or C analysis. The Python
and C analyses are in a cartesian product, ensuring that when a statement goes
through them, it will be handled by only one of the two sub-configurations. An
example of stateful domain is “C.pointers”, which keeps points-to information.
“Py.exceptions” is an example of iterator domain. It handles the raise and try
operators of Python. Both Python and C analyses share an underlying “uni-
versal” analysis, to which they can delegate some statements. This “universal”
part provides iterators for intra- and inter-procedural statements, as well as the
address allocation and numeric abstractions. The numeric abstraction displayed
here only uses intervals, but it can be changed to a reduced product between a
relational domain and intervals, for example.

This multilanguage domain consists in 2,500 lines of OCaml code (measured
using the cloc tool), implementing 64 builtin functions such as the ones pre-
sented in the concrete semantics. This is small compared to the 11,700 lines of
OCaml for the C analysis and 12,600 lines of OCaml for the Python analysis.
These domains rely on “universal” domains representing 5,600 lines of OCaml
and a common framework of 13,200 lines of OCaml. We also reuse the C imple-
mentation of 60 CPython functions as-is.

Corpus Selection. In order to perform our experimental evaluation, we
selected six popular Python libraries from GitHub (having in average 412
stars). These libraries are written in C and Python and do not have external
dependencies. The noise library [10] aims at generating Perlin noise. Libraries
levenshtein, ahocorasick, cdistance [15,30,36] implement various string-
related algorithms. llist [17] defines linked-list objects (both single and double
ones). bitarray [41] provides an implementation for efficient arrays of bits. Our
analysis is context-sensitive in order to perform a precise value analysis. Thus,
we needed some client code to analyze those libraries. We decided to analyze the
tests defined by those libraries: they should cover most usecases of the library,
and ensure that the transition between Python and C are frequent, which is
ideal to stress-test our analysis. Some libraries (noise, bitarray, and llist)
come with example programs with less than 50 lines of code that we analyze
within 15 s. We have not been able to find applications with a well-defined entry
point using those libraries (or they had big dependencies such as numpy). Our
experimental evaluation thus focuses on the analysis of the libraries’ tests.

Analysis Results. We show the results of our analysis in Table 2. The column
|C| (resp. |Py|) shows the lines of code in C (resp. Python), measured using
the cloc tool. The Python code corresponds mainly to the tests. It may also
wrap C classes in custom classes. For example, frozenbitarray is defined in

https://github.com/caseman/noise
https://github.com/ztane/python-Levenshtein/
https://github.com/WojciechMula/pyahocorasick
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/caseman/noise
https://github.com/ilanschnell/bitarray
https://github.com/ajakubek/python-llist
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Table 2. Analysis results of libraries using their unit tests

Library |C| |Py| Tests c p Assert. Py�C

noise 722 675 15/15 19s 99.6% (4952) 100.0% (1738) 0/21 6.6
ahocorasick 3541 1336 46/92 59s 93.1% (1785) 98.0% (4937) 30/88 5.4
levenshtein 5441 357 17/17 1.6m 79.9% (3106) 93.2% (1719) 0/38 2.7
cdistance 1433 912 28/28 1.9m 95.3% (1832) 98.3% (11884) 88/207 8.6
llist 2829 1686 167/194 4.3m 99.0% (5311) 98.8% (30944) 235/691 51.7
bitarray 3244 2597 159/216 4.6m 96.3% (4496) 94.6% (21070) 97/374 14.9

Python, on top of the bitarray class. The “tests” column shows the number
of tests we are able to analyze, compared to the total number of tests defined
by the library. The column shows the time taken to analyze all the tests.
Columns (resp. ) show the selectivity of our analysis – the number of safe
operations compared to the total number of runtime error checks, the latter being
also displayed in parentheses – performed by the analyzer for C (resp. Python).
The selectivity is computed by Mopsa during the analysis. The C analysis checks
for runtime errors including integer overflows, divisions by zero, invalid memory
accesses and invalid pointer operations. The Python analysis checks also for
runtime errors, which include the AttributeError, TypeError, ValueError
exceptions. Runtime errors happening at the boundary are considered as Python
errors since they will be raised as Python SystemError exceptions. The second to
last column shows the number of functional properties (expressed as assertions)
defined by the tests that our analyzer is able to prove correct automatically. The
last column shows the number of transitions between the analyzed Python code
and the C code, averaged per test.

We observe that Mopsa is able to analyze these libraries in a few minutes
with high selectivity for the detection of Python and C runtime errors. Our
analysis is able to detect some bugs that were previously known. For example, the
ahocorasick module forgets to initialize some of its iterator classes, and some
functions of the bitarray module do not set an exception when they return an
erroneous flag, raising a SystemError exception. We have not manually checked
if unknown bugs were detected by our analysis. We have instrumented Mopsa
to display the number of crossings (from Python to C, or C to Python). The
average number of crossings per test is shown in the last column of Table 2.
The minimal number of crossings is one per test. Thus these tests seem correct
to benchmark our approach since they all alternate calls to native C code and
Python code.

The multilanguage analysis is limited by the current precision level of the
underlying C and Python analyses but would naturally benefit immediately from
any improvements in these. However, we focused on the multilanguage domains
only in this study. We leave as future work the improvements required indepen-
dently on the C and Python analyses for our benchmarks. We now describe a
few areas where the analysis could benefit from improvements. Mopsa is unable
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to support some tests for now, either because they use unsupported Python
libraries or because the C analysis is too imprecise to resolve some pointers.
The unsupported tests of the ahocorasick analysis are due to imprecisions in
the C analysis, which is not able to handle a complex trie data structure being
stored in a dynamic array and reallocated over and over again. In llist, some
tests use the getrefcount method of the sys which is unsupported (and related
to CPython’s reference-based garbage collector, which we do not support). In
addition, some tests make pure-Python classes inherit from C classes: this is cur-
rently not supported in our implementation, but it is an implementation detail
that will be fixed. For the bitarray tests, tests are unsupported because they
use the unsupported pickle module performing object serialization, or they use
the unsupported sys.getsizeof method, or they perform some unsupported
input-output operations in Python. In addition, the C analysis is too imprecise
to resolve some pointers in 18 tests.

The selectivity is lower in the C analysis of levenshtein, where dynamic
arrays of structures are accessed in loops: the first access at tab[i].x may raise
an alarm and continue the analysis assuming that i is now a valid index access.
However, subsequent accesses to tab[i].y, tab[i].z will also raise alarms as
the non-relational numeric domain is unable to express that i is a valid index
access. Proving the functional properties is more challenging, and not the main
goal of our analysis, which aims detecting runtime errors. For example, the asser-
tions of the noise library check that the result of complex, iterative non-linear
arithmetic lies in the interval [−1, 1]. Some assertions in the llist or bitarray
library aim at checking that converting their custom container class to a list
preserves the elements. Due to the smashing abstraction [3] of the Python lists,
we cannot prove these assertions.

6 Related Work

Native Code Analysis. Some works focus on analyzing native C code in the
context of language interoperability, without analyzing the host language. Tan
and Croft [42] perform an empirical study of native code use in Java and provide
a classification by bug patterns; a similar study has been performed by Hu and
Zhang [16] for the Python/C API. Kondoh and Onodera [20] check that native
calls to Java methods should handle raised exceptions using a typestate analy-
sis. Li and Tan [23] ensure that the native control-flow is correctly interrupted
when a Java exception is raised. The work of Li and Tan [24,25] infers which
Java exceptions may be raised by JNI code, allowing the exception type-safety
property of Java programs to be extended to the JNI. CpyChecker [27] is a GCC
plugin searching for common erroneous patterns in C code using the CPython
API. Two works [26,28] aim at detecting reference counting errors in C code
using the CPython API. Brown et al. [4] define specialized analyses for specific
patterns of C++ interoperability that may jeopardize type or memory safety of
JavaScript. Contrary to these works, we analyze both host and guest languages.

https://github.com/WojciechMula/pyahocorasick
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/ztane/python-Levenshtein/
https://github.com/caseman/noise
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray


342 R. Monat et al.

Multilanguage Semantics. The seminal work of Matthews and Findler [29]
defines the first semantics of multilanguage systems, using the notion of bound-
aries to model conversion between languages. Buro and Mastroeni [7] general-
ize this construction using an algebraic framework. We use a similar notion of
boundary in our concrete semantics.

Multilanguage Analyses. Buro et al. [6] define a theory based on abstract
interpretation to combine analyses of different languages, and show how to lift
the soundness property to the multilanguage setting. They provide an example
of multilanguage setting where they combine a toy imperative language with a
bit-level arithmetic language. The notion of boundary functions used in their
work performs a full translation from the state of one language to the other.
Our semantics works on the product of the states, although it can be seen as
an abstraction of the semantics of C and Python, where the boundary performs
a full state conversion (but the boundary from Python to C would be a con-
cretization). From an implementation standpoint, our approach avoids costly
state conversions at the boundary and allows sharing some abstract domains.

Chipounov et al. [8] perform symbolic execution of binaries, thus avoiding
language considerations. Their approach is extended by the work of Bucur et al.
[5], which supports any interpreted language by performing symbolic execution
over the interpreter. Our approach is more costly to implement since we do not
automatically lift the interpreter’s code to obtain our analyzer. Thanks to its
higher-level, we think our approach should be more precise and efficient.

The next works perform multilanguage analyses by translating specific effects
of what native functions do (they usually generate a summary using a bottom-
up analysis) to the host language. This allows removing the native code and
use existing analyses of the host language. Tan and Morrisett [43] compile C
code into an extended JVML syntax form, allowing the use of the bug-finding
tool Jlint afterwards. Furr and Foster [12–14] perform inference of OCaml and
Java types in C FFI code, which they crosscheck with the types used in the
client OCaml/Java code. They assume there are no out-of-bounds accesses and
no type casting in the C code. An inter-language, bottom-up taint analysis for
Java and native binary code in the setting of Android applications is proposed
by Wei et al. [45]. Lee et al. [22] aim at detecting wrong foreign function calls
and mishandling of Java exceptions in Java/JNI code. They extract summaries
of the Java callbacks and field accesses from the JNI code using Infer, transform
these summaries into Java code, and call the FlowDroid analyzer on the whole.
Contrary to these works, our analyzer supports both languages, and it switches
between languages just as the real code does. The properties we target require
precise context-sensitive value analyses that are difficult to perform bottom-up.

Library Analyses. Previous work aim at analyzing libraries with no access to
their client code [1,38] using a “most-general client”. The work of Kristensen and
Møller [21] refines the notion of most-general client in the setting of dynamic
programming languages. However, it focuses on libraries where functions are
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typed. Python libraries are not explicitly typed. Extending their work to our
untyped, multilanguage setting is left as future work.

7 Conclusion

This article presents a multilanguage analysis able to infer runtime errors in
Python code using native C extensions. Our analyzer is able to reuse value anal-
yses of Python and C off-the-shelf. It shares the address allocation and numeric
abstractions between the Python and C abstract domains. We are able to ana-
lyze within a few minutes real-world Python libraries written in C and having
up to 5,800 lines of code. To the best of our knowledge, we have implemented
the first static analyzer able to soundly detect runtime errors in multilanguage
programs.

Future work includes extending our implementation to analyze the standard
Python library and large Python applications. This will require handling more
dependencies, having a relational analysis that scales, and addressing the pre-
cision limitations of the underlying C and Python analyses. We plan to instru-
ment our implementation to verify (or infer) type annotations of the standard
library provided in the typeshed [44] project. It would also be interesting to
target multilanguage-specific safety properties (such as correct garbage collec-
tion counts). Another future work is to try our approach in other multilanguage
settings (such as Java/C).
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15. Haapala, A., Määttä, E., Jonatas, C.D., Ohtamaa, M., Necas, D.: Leven-
shtein Python C extension module (2021). https://github.com/ztane/python-
Levenshtein/. Accessed April 2021

16. Hu, M., Zhang, Y.: The Python/C API: evolution, usage statistics, and bug
patterns. In: SANER. IEEE (2020). https://doi.org/10.1109/SANER48275.2020.
9054835
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Abstract. Many real-world problems such as internet routing are actu-
ally graph problems. To develop efficient solutions to such problems, more
and more parallel graph algorithms are proposed. This paper discusses
the mechanized verification of a commonly used parallel graph algorithm,
namely the Bellman–Ford algorithm, which provides an inherently par-
allel solution to the Single-Source Shortest Path problem.

Concretely, we verify an unoptimized GPU version of the Bellman–
Ford algorithm, using the VerCors verifier. The main challenge that we
had to address was to find suitable global invariants of the graph-based
properties for automated verification. This case study is the first deduc-
tive verification to prove functional correctness of the parallel Bellman–
Ford algorithm. It provides the basis to verify other, optimized implemen-
tations of the algorithm. Moreover, it may also provide a good starting
point to verify other parallel graph-based algorithms.

Keywords: Deductive verification · Graph algorithms · Parallel
algorithms · GPU · Bellman–Ford · Case study

1 Introduction

Graph algorithms play an important role in computer science, as many real-world
problems can be handled by defining suitable graph representations. This makes
the correctness of such algorithms crucially important. As the real-world prob-
lems that we represent using graphs are growing exponentially in size—think for
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example about internet routing solutions—we need highly efficient, but still cor-
rect(!), graph algorithms. Massively parallel computing, as supported on GPUs
for example, can help to obtain the required efficiency, but also introduces extra
challenges to reason about the correctness of such parallel graph algorithms.

In the literature, several verification techniques to reason about the correct-
ness of massively parallel algorithms have been proposed, see e.g. [5,7,11,25,26].
This paper uses such a verification technique to develop a mechanized proof of
a parallel GPU-based graph algorithm. Our verification is based on deductive
program verification, using a permission-based separation logic for GPU pro-
grams [7] as implemented in the VerCors program verifier [6]. In VerCors, the
program to be verified is annotated with a specification, as well as intermedi-
ate (invariant) properties. From these annotations, suitable proof obligations are
generated, which can then be discharged with Z3. Given the annotated program,
the verification process is fully automatic.

The concrete graph algorithm that we study here is the Bellman–Ford algo-
rithm [3,15], a solution for the Single-Source Shortest Path (SSSP) problem.
This algorithm computes the shortest distance from a specific vertex to all other
vertices in a graph, where the distance is measured in terms of arc weights.
Other solutions exist for this problem, such as Dijkstra’s shortest path algo-
rithm [14]. However, the Bellman–Ford algorithm is inherently parallel, which
makes it suitable to be used on massively parallel architectures, such as GPUs.

In this paper, we prove race freedom, memory safety and functional cor-
rectness of a standard parallel GPU-based Bellman–Ford algorithm. This cor-
rectness proof can be used as a starting point to also derive correctness of
the various optimized implementations that have been proposed in the litera-
ture [1,9,18,20,32,34]. Moreover, this work and the experiences with automated
reasoning about GPU-based graph algorithms will also provide a good starting
point to verify other parallel GPU-based graph algorithms.

To the best of our knowledge, there is no similar work in the literature on the
automated mechanized verification of parallel GPU-based graph algorithms—
Bellman–Ford in particular. Previous works on graph algorithm verification
either target sequential algorithms, or abstractions of concurrent non-GPU-
based algorithms. Furthermore, most previous works on GPU program veri-
fication focus on proving memory safety/crash and race freedom, but not on
functional correctness. In contrast, we prove functional correctness of the GPU-
based Bellman–Ford algorithm.

The main challenge that we had to address in this work, was to find the
suitable global invariants to reason about the graph-based algorithm, and in
particular to make those amenable to mechanized verification. Therefore, we
first outline the manual correctness proof, and then discuss how we formalized
this proof in VerCors. As mentioned before, the Bellman–Ford algorithm is inher-
ently parallel, and our proof indeed demonstrates this.

Organization. Section 2 discusses the Bellman–Ford algorithm, and also gives
a brief introduction to the VerCors verifier. Section 3 discusses the manual proof
of the algorithm, in particular introducing all the necessary invariants. Section 4
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Fig. 1. Pseudo-code implementation of the (sequential) Bellman–Ford algorithm.

continues with the formal proof by encoding the informal proof into the Ver-
Cors verifier. Section 5 explains the evaluation and lessons learned from this
case study. Section 6 discusses related work and Sect. 7 concludes the paper.

2 Background

This section describes the (parallel) Bellman–Ford algorithm (Sect. 2.1), and gives
a brief introduction on deductive code verification with VerCors (Sect. 2.2).

2.1 The Bellman–Ford Algorithm

A directed weighted graph G = (V,A,w) is a triple consisting of a finite set V
of vertices, an binary arc relation A ⊆ V × V , and a weight function w : A → N

over arcs. In the remainder of this paper we assume that A is irreflexive, since we
do not consider graphs that contain self-loops. The source and destination of any
arc a = (u, v) ∈ A is defined src(a) � u and dst(a) � v, respectively. Any finite
arc sequence P = (a0, a1, . . . , an) ∈ A∗ is a path in G if dst(ai) = src(ai+1) for
every 0 ≤ i < n. We say that P is an (u, v)-path if src(a0) = u and dst(an) = v,
under the condition that 0 < n. The length of P is denoted |P | and defined to be
n+1. The weight of any path P is denoted w(P ), with w overloaded and lifted to
sequences of arcs A∗ → N as follows: w(a0, a1, . . . , an) � Σn

i=0w(ai). Any path
P is simple if all its vertices are unique. Finally, any (u, v)-path P is a shortest
(u, v)-path in G if for every (u, v)-path Q in G it holds that w(P ) ≤ w(Q).

The Bellman–Ford algorithm [3,15] solves the Single-Source Shortest Path
(SSSP) problem: given any input graph G = (V,A,w) and vertex s ∈ V , find for
any vertex v ∈ V reachable from s the weight of the shortest (s, v)-path. Figure 1
shows the algorithm in pseudo-code. It takes as input a graph G and starting
vertex s. The idea is to associate a cost to every vertex v, which amounts to
the weight of the shortest (s, v)-path that has been found up to round i of the
algorithm. Initially, s has cost 0 (line 3), while all other vertices start with cost
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∞ (line 4). Then the algorithm operates in |V | − 1 rounds (line 5). In every
round i, the cost of vertex v is relaxed on lines 7–8 in case a cheaper possibility
of reaching v is found. After |V | − 1 such rounds of relaxations, the weights of
the shortest paths to all reachable vertices have been found, intuitively because
no simple path can contain more than |V | − 1 arcs.

The Bellman–Ford algorithm can straightforwardly be parallelized on a GPU,
by executing the iterations of the for-loop on line 6 in parallel, thereby exploiting
that arcs can be iterated over in arbitrary order. Such a parallelization requires
lines 7–8 to be executed atomically, and all threads to synchronize (by a possibly
implicit barrier) between every iteration of the round loop.

This paper demonstrates how VerCors is used to mechanically verify sound-
ness and completeness of the parallelized version of the Bellman–Ford algorithm.
Soundness in this context means that, after completion of the algorithm, for any
v ∈ V such that cost[v] < ∞ it holds that there exists a shortest (s, v)-path
P such that cost[v] = w(P ). The property of completeness is that, for any v
if there exists an (s, v)-path P after completion of the algorithm, it holds that
cost[v] < ∞. In addition to soundness and completeness we also use VerCors to
verify memory safety and race-freedom of parallel Bellman–Ford.

2.2 The VerCors Verifier

VerCors [6] is an automated, SMT-based code verifier specialized in reasoning
about parallel and concurrent software. VerCors takes programs as input that
are annotated with logical specifications, and can automatically verify whether
the code implementation adheres to these specifications. The specifications are
formulated in a Concurrent Separation Logic (CSL) that supports permission
accounting, and are annotated as pre/postconditions for functions and threads,
and invariants for loops and locks [2,7]. However, to keep the paper accessible,
this paper describes the formalization independent of specific knowledge of CSL,
and explains any further necessary details whenever needed.

3 Approach

Our strategy for verifying parallel Bellman–Ford is to first construct an infor-
mal pen-and-paper proof of its correctness, and then to encode this proof in
VerCors to mechanically check all proof steps. This section elaborates on the
(informal) correctness argument of Bellman–Ford, after which Sect. 4 explains
how this argument is encoded in, and then confirmed by, VerCors.

Postconditions. Proving correctness of parallel Bellman–Ford amounts to proving
that the following three postconditions hold after termination of the algorithm,
when given as input a graph G = (V,A,w) and starting vertex s ∈ V :

∀v . cost[v] < ∞ =⇒ ∃P .Path(P, s, v) ∧ w(P ) = cost[v] (PC1)
∀v . (∃P .Path(P, s, v)) =⇒ cost[v] < ∞ (PC2)

∀v . cost[v] < ∞ =⇒ ∀P .Path(P, s, v) =⇒ cost[v] ≤ w(P ) (PC3)
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The predicate Path(P, u, v) expresses that P is an (u, v)-path in G.
These three postconditions together express that cost characterizes reach-

able states as well as shortest paths. PC1 and PC2 imply soundness and com-
pleteness of reachability: cost[v] < ∞ if and only if v is reachable from s. PC3
additionally ensures that cost contains the weights of all shortest paths in G.

Invariants. Our approach for proving the three postconditions above is to intro-
duce round invariants: invariants for the loop on line 5 in Fig. 1 that should hold
at the start and end of every round i for each thread. The proposed (round)
invariants are:

∀v . cost[v] < ∞ =⇒ ∃P .Path(P, s, v) ∧ w(P ) = cost[v] (INV1)
∀v . (∃P .Path(P, s, v) ∧ |P | ≤ i) =⇒ cost[v] < ∞ (INV2)

∀v . cost[v] < ∞ =⇒ ∀P .Path(P, s, v) ∧ |P | ≤ i =⇒ cost[v] ≤ w(P ) (INV3)

One can prove that the round invariants imply the postconditions after ter-
mination of the round loop, as then i = |V | − 1. PC1 immediately follows from
INV1 without additional proof. Proving that PC2 and PC3 follow from INV2 and
INV3 resp. requires more work since these postconditions quantify over paths of
unbounded length.

Therefore, we introduce an operation simple(P ) that removes all cycles from
any given (u, v)-path P , and gives a simple (u, v)-path, which makes it easy to
establish the postconditions. The three main properties of simple that are needed
for proving the postconditions are |simple(P )| ≤ |V | − 1, |simple(P )| ≤ |P |, and
w(simple(P )) ≤ w(P ) for any P . The latter two hold since simple(P ) can only
shorten P . Here we detail the proof for PC3; the proof for PC2 is similar.

Lemma 1. If i = |V | − 1 then INV3 implies PC3.

Proof. Let v be an arbitrary vertex such that cost[v] < ∞, and P be an arbitrary
(s, v)-path. Then cost[v] ≤ w(P ) is shown by instantiating INV3 with v and
simple(P ), from which one can easily prove cost[v] ≤ w(simple(P )) ≤ w(P ). ��
Preservation of Invariants. However, proving that each round of the algorithm
preserves the round invariants is significantly more challenging. It is non-trivial
to show that validity of invariants INV1–INV3 at round i + 1 follows from their
validity at round i combined with the contributions of all threads in round i. An
additional difficulty is that cost relaxations are performed in arbitrary order.

Our approach was to first work out the proof details in pen-and-paper style,
and to later encode all proof steps in VerCors. We highlight one interesting case:

Lemma 2. Every iteration of the loop on lines 5–10 in Fig. 1 preserves INV3.

Proof (outline). Suppose that INV1–INV3 hold on round i, that i < |V |−1, and
that all cost relaxations have happened for round i (i.e., lines 6–9 have been fully
executed). We show that INV3 holds for i + 1. We write old(cost[v]) to refer to
the “old” cost that any v had at the beginning of round i.
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We create a proof by contradiction. Suppose that there exists a vertex v and an
(s, v)-path P such that cost[v] < ∞, |P | ≤ i + 1, and w(P ) < cost[v]. It must
be the case that |P | = i + 1, since otherwise, if |P | < i + 1, then INV1 and INV2
together would imply that old(cost[v]) < w(P ), which is impossible since vertex
costs can only decrease. So P consists of at least one arc. Let a be the last arc
on P so that dst(a) = v, and let P ′ be the path P but without a, so that P ′ is
an (s, src(a))-path of length i. Let us abbreviate src(a) as v′. Instantiating INV2
and INV3 with v′ and P ′ gives old(cost[v′]) < ∞ and old(cost[v′]) < w(P ′).

Let us now consider what a’s thread could have done in round i. When this
thread got scheduled it must have observed that v′ and v had some intermediate
costs, which we refer to as obsv′ and obsv, respectively, for which it holds that
cost[v′] ≤ obsv′ ≤ old(cost[v′]) and cost[v] ≤ obsv ≤ old(cost[v]). And since

obsv′ + w(a) ≤ old(cost[v′]) + w(a) ≤ w(P ′) + w(a) = w(P ) < cost[v] ≤ obsv

we know that a’s thread must have updated the cost of v to be obsv′ + w(a) in
its turn. Since v’s cost might have decreased further in round i by other threads,
we have cost[v] ≤ obsv′ + w(a) ≤ w(P ), which contradicts w(P ) < cost[v]. ��

This proof outline emphasizes the non-triviality of verifying the Bellman–
Ford algorithm using automated code verifiers. Interestingly, also all other invari-
ant preservation proofs have been performed as a proof by contradiction.

4 Proof Mechanization

So far the correctness argument of parallel Bellman–Ford has been presented
at the abstract level of mathematical definitions and pseudocode. This section
discusses how this abstract reasoning translates to the GPU version of Bellman–
Ford, by formalizing its correctness proof in VerCors. This required (i) encoding
all specifications introduced in Sect. 3 into the VerCors specification language,
(ii) adding additional permission specifications to guarantee memory safety, and
(iii) using these specifications to formulate pre- and postconditions, as well as
loop and lock invariants for the algorithm encoding. For step (i), the main chal-
lenge was to give these specifications in terms of concrete GPU data types, rather
than mathematical structures (e.g., defining a graph representation in C arrays
instead of mathematical sets). Furthermore, GPU memory (as a scarce resource)
imposes more restrictions on how to represent large graphs in an efficient way
(e.g., using a one-dimensional array instead of matrices, and assigning threads
to arcs instead of vertices). For step (iii), the main challenge was to encode the
lemmas and their proofs, as introduced in Sect. 3. We use lemma functions for
this, which are pure functions whose function specification corresponds to the
lemma property. The challenge was to encode the proofs of these lemmas in Ver-
Cors, as discussed in more detail below. The end result of our verification effort
is the first machine-checked proof of a GPU version of parallel Bellman-Ford.
The remainder of this section elaborates on the formalization of the informal
specifications and proof outlines in VerCors, and on how these are used to verify
the concrete GPU host and kernel code.
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Fig. 2. The simplified GPU version of Bellman-Ford, annotated with VerCors speci-
fications. The total number of threads (tid) is the same as the number of arcs (A).

Proof Outline and Specification Encoding. Figure 2 presents a simplified1

overview of our specification of parallel Bellman–Ford. Lines 1–7 and lines 8–31
show the annotated CPU host code and GPU kernel code, respectively. Observe
that the algorithm uses a representation of directed weighted graphs that is
typical for GPU implementations: using three C arrays, src, dst and w.

On line 8 in the specification we require (and ensure)2 that these three
arrays indeed form a graph, by means of the predicate Graph(V, A, src, dst, w),

1 Various details have been omitted for presentational clarity. We highlight only the
most interesting aspects of the specification. The full specification is available at [31].

2 The keyword context is an abbreviation for both requires and ensures.
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Fig. 3. The Graph predicate, that determines whether src, dst and w form a graph.

as defined in Fig. 3. The integer V represents the total number of vertices, and A
the total number of arcs. Then any index a ∈ [0, A) represents an arc from src[a]
to dst[a] with weight w[a]. Similarly, any index v ∈ [0, V) represents a vertex in
the graph such that cost[v] is the current cost assigned to v by the algorithm.
The integer s, with 0 ≤ s < V, is the starting vertex. This representation can
handle large graphs on GPU memory, and by assigning threads to arcs more
parallelism and hence more performance can be obtained.

Lines 10–15 and 19–25 contain the VerCors encoding of the postconditions
and round invariants introduced in Sect. 3, respectively. These encodings are
defined over various other predicates such as Path and Weight, whose definitions
are the same in spirit as the one of Graph.

Verifying Memory Safety. Verifying data-race freedom requires explicitly spec-
ifying ownership over heap locations using fractional permissions, in the style
of Boyland [8]. Fractional permissions capture which heap locations may be
accessed by which threads. We use the predicate \pointer((S0, . . . , Sn), �, π) to
indicate that all array references S0, . . . , Sn have length �, and that the current
thread has permission π ∈ (0, 1] for them3. We often use the keywords read and
write instead of concrete fractional values to indicate read or write access.

Lines 9 and 18 indicate that initially and in each iteration of the algorithm we
have read permission over all locations in src, dst and w. Moreover, we also have
write permission over all locations in cost. Within the kernel, threads execute in
parallel, meaning that the updates to cost have to be done atomically (line 6)4.
The kernel invariants specify shared resources and properties that may be used
by a thread while in the critical section. After leaving the critical section, the
thread should ensure all the kernel invariants are re-established (see [2] for more
details).

The kernel invariants on lines 1 and 2 specify that each thread within the
critical section has read permission over all locations in src, dst and w (line 1)
and write permission in cost (line 2). Note that the atomic operations execute in
an arbitrary order, but as there always is at most one thread within the critical
section, this is sufficient to guarantee data-race freedom.

Lemma Functions. As mentioned above, to show the preservation of INV1, INV2
and INV3 we apply the corresponding lemmas at the end of the loop (line 28).

3 To specify permissions over a specific location idx of an array S we use
\pointer index(S, idx , π), where idx is a proper index in S.

4 atomicMin() is a built-in GPU function that compares its two arguments and assigns
the minimum one to the first argument.
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Fig. 4. The (simplified) VerCors encoding of Lemma 2.

Note that these invariants must hold in the kernel as well (line 3). Similarly, to
establish PC1, PC2 and PC3 we apply the corresponding lemmas after termina-
tion of the loop when i = |V | − 1 (line 30).

All the proofs of the lemmas mentioned in Sect. 3 that show the preserva-
tion of the round invariants and establishment of postconditions are encoded
in VerCors as lemma functions [16,35]. Lemma functions have specifications
that capture the desired property, while the proof is encoded as a side effect-
free imperative program. Most of our lemmas (e.g., the proof of Lemma 2) were
proven by contradiction. Proving a property φ by contradiction amounts to prov-
ing ¬φ ⇒ false. Therefore, to show preservation of, e.g., INV3 (Lemma 2), we
proved that (INV1(i)∧ INV2(i)∧ INV3(i) ∧ φ(i) ∧ ¬ INV3(i + 1)) ⇒ false, with
φ(i) describing the contributions of all threads in round i.

Lemma 4 shows how the VerCors encoding of Lemma 2 looks, where the
lemma is implicitly quantified over the function parameters: iteration round i,
vertex v, and path P . The function body encodes all proof steps. The main
challenge was finding the precise assertions that explicitly describe all the steps
from the informal proof. In particular, we had to prove various auxiliary lemmas
such as lemma-transitivity (line 20), which models the transitivity property
of paths along with its weight, and which required an induction over paths in
its proof.
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5 Evaluation and Discussion

Evaluation. The algorithm encoding and its specification consists of 541 lines
of code. Of these 541 lines, 30 are for the encoding of the algorithm (5.5%)
and the remaining 511 are specification (94.5%). The specification part can be
subdivided further: of the 511 lines, 6.1% is related to permissions, 30.7% to
invariant preservation proofs, 45.1% to proofs for establishing the postconditions,
and 18.1% to definitions (e.g., of graphs and paths) and proving basic properties.

The total verification effort was about six weeks. Most of this time was spent
on the mechanization aspects: spelling out all the details that were left implicit
in the the pen-and-paper proof. The fully annotated Bellman–Ford implementa-
tion takes about 12 min to verify using VerCors on a Macbook Pro (early 2017)
with 16 GB RAM, and an Intel Core i5 3.1 GHz CPU.

Discussion. In order to understand what verification techniques are suitable and
effective for verifying parallel algorithms, we need the experience from different
non-trivial case studies such as the one in this paper. Therefore, the value of this
case study is more than just the verification of Bellman–Ford.

This case study confirms the importance of lemma functions in verifying non-
trivial case studies, and in particular for encoding proofs by contradiction, which
are common in the context of graphs. This paper also gives a representation of
graphs that is suitable for GPU architectures, and can form the foundation of
other verifications. Finally, we learned that deductive code verifiers are powerful
enough to reason about non-trivial parallel algorithms—but they cannot do this
yet without the human expertize to guide the prover.

6 Related Work

The work that is closest to ours is by Wimmer et al. [39], who prove correct-
ness of a sequential version of the Bellman–Ford algorithm using Isabelle. Their
proof strategy is different from ours: they use a framework from Kleinberg and
Tardos [21] to refine a correct recursive function into an efficient imperative
implementation. They first define Bellman–Ford as a recursive function that
computes the shortest distances between all vertices using dynamic program-
ming, and then use Isabelle to prove that it returns the shortest path. Then
this recursive function is refined into an efficient imperative implementation (see
the proof in [36]). However, this imperative implementation cannot be naturally
parallelized. Moreover, because of the refinement approach, their correctness
arguments are different from ours and do not depend on property preservation,
which makes them unsuitable for standard deductive code verification.

In the literature there is ample work on the verification of other sequential
graph algorithms. Some of these verifications are fully automatic, while others
are semi-automatically done by interactive provers. Lammich et al. [23,24] pro-
pose a framework for verifying sequential DFS in Isabelle [19]. Chen et al. [10]
provide a formal correctness proof of Tarjan’s sequential SCC algorithm using
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three (both automated and interactive) proof systems: Why3 [38], Coq [12] and
Isabelle. There is also a collection of verified sequential graph algorithms in
Why3 [37]. Van de Pol [29] verified the sequential Nested DFS algorithm in
Dafny [13]. Guéneau et al. [17] improved Bender et al.’s [4] incremental cycle
detection algorithm to turn it into an online algorithm. They implemented it in
OCaml and proved its functional correctness and worst-case amortized asymp-
totic complexity (using Separation logic combined with Time Credits).

In contrast, there is only limited work on the verification of concurrent graph
algorithms. Raad et al. [30] verified four concurrent graph algorithms using a
logic without abstraction (CoLoSL), but their proofs have not been automated.
Sergey et al. [33] verified a concurrent spanning tree algorithm using Coq.

As far as we are aware, there is no work on automated code verification of
massively parallel GPU-based graph algorithms. Most similar to our approach
is the work by Oortwijn et al. [27,28], who discuss the automated verification of
the parallel Nested Depth First Search (NDFS) algorithm of Laarman et al. [22].
Although they are the first to provide a mechanical proof of a parallel graph
algorithm, their target is not massively parallel programs on GPUs.

7 Conclusion

Graph algorithms play an important role in solving many real-world problems.
This paper shows how to mechanically prove correctness of the parallel Bellman–
Ford GPU algorithm, with VerCors. To the best of our knowledge, this is the
first work on automatic code verification of this algorithm.

Since we prove the general classic Bellman–Ford algorithm without applying
GPU optimization techniques, we plan to investigate how to reuse the current
proof for the optimized implementations. Moreover, we also would like to inves-
tigate how we can generate part of the annotations automatically.
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Abstract. We give thread-modular non-relational value analyses as
abstractions of a local trace semantics. The semantics as well as the
analyses are formulated by means of global invariants and side-effecting
constraint systems. We show that a generalization of the analysis pro-
vided by the static analyzer Goblint as well as a natural improvement
of Antoine Miné’s approach can be obtained as instances of this general
scheme. We show that these two analyses are incomparable w.r.t. pre-
cision and provide a refinement which improves on both precision-wise.
We also report on a preliminary experimental comparison of the given
analyses on a meaningful suite of benchmarks.
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1 Introduction

In a series of papers starting around 2012, Antoine Miné and his co-authors devel-
oped methods for abstract interpretation of concurrent systems [10–12,20,21],
which can be considered the gold standard for thread-modular static analysis of
these systems. The core analysis from [10] consists of a refinement of data flow
which takes schedulability into account by propagating values written before
unlock operations to corresponding lock operations—provided that appropriate
side-conditions are met. Due to these side-conditions, more flows are generally
excluded than in approaches as, e.g., [4,13]. An alternative approach, suggested
by Vojdani [22,23], is realized in the static analyzer Goblint. This analysis
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is not based on data flows. Instead, for each global g, a set of mutexes that
definitely protect accesses to g is determined. Then side-effects during the anal-
ysis of the threads’ local states are used to accumulate an abstraction of the set
of all possibly written values. This base approach then is enhanced by means of
privatization to account for exclusive manipulations by individual threads. This
approach is similar to the thread-local shape analysis of Gotsman et al. [6], which
infers lock-invariants [16] by privatizing carved-out sections of the heap owned
by a thread. Despite its conceptual simplicity and perhaps to our surprise, it
turns out the Vojdani style analysis is not subsumed by Miné’s approach but
is incomparable. Since Miné’s analysis is more precise on many examples, we
highlight only non-subsumption in the other direction here.

Example 1. We use sets of integers for abstracting int values. Consider the fol-
lowing concurrent program with global variable g and local variables x and y,
and assume here that g is initialized to 0:

Program execution starts at program point main where, after creation of
another thread t1 and locking of the mutexes a and b, the value of the global
g is read. The created thread, on the other hand, also locks the mutexes a and
b. Then, it writes to g the two values 42 and 17 where mutex a is unlocked
in-between the two writes, and mutex b is unlocked only in the very end.

According to Miné’s analysis, the value {42} is merged into the local state at
the operation lock(a), while the value {17} is merged at the operation lock(b).
Thus, the local x receives the value {0, 17, 42}.

Vojdani’s analysis, on the other hand, finds out that all accesses to g are
protected by the mutex b. Unlocking of a, therefore, does not publish the inter-
mediately written value {42}, but only the final value {17} at unlock(b) is
published. Therefore, the local x only receives the value {0, 17}. ��

The goal of this paper is to better understand this intriguing incomparabil-
ity and develop precision improvements to refine these analyses. We concentrate
only on the basic setting of non-relational analysis and a concurrent setting
without precise thread ids. We also ignore add-ons such as thread priorities or
effects of weak memory, which are of major concern in [1,5,20,21]. As a common
framework for the comparison, we use side-effecting constraint systems [2]. Con-
straint systems with side-effects extend ordinary constraint systems in that dur-
ing the evaluation of the right-hand side of one unknown, contributions to other
unknowns may also be triggered. This kind of formalism allows combining flow-
and context-sensitive analysis of the local state with flow- and context-insensitive
analysis of globals. Within the analyzer Goblint, this has been applied to the
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analysis of multi-threaded systems [22,23]. While in Goblint a single unknown
is introduced per global, we show how to express Miné’s analysis in this formal-
ism using multiple unknowns per global.

To prove the given thread-modular analyses correct, we rely on a trace seman-
tics of the concurrent system. Here, we insist on maintaining the local views of
executing threads (ego threads) only. The idea of tracking the events possibly
affecting a particular local thread configuration goes back to [9] (see also [19]),
and is also used extensively for the verification of concurrent systems via separa-
tion logic [3,14,15,18]. Accordingly, we collect all attained local configurations
of threads affecting a thread-local configuration ū of an ego thread into the local
trace reaching ū. A thread-local concrete semantics was also used in Mukherjee
et al. [13] for proving the correctness of thread-modular analyses. The semantics
there, however, is based on interleaving and permits stale values for unread glob-
als. In contrast, we consider a partial order of past events and explicitly exclude
the values of globals from local traces. These are instead recovered from the local
trace by searching for the last preceding write at the point when the value of the
global is accessed. We show that the set of all local traces can conveniently be
described by the least solution of a side-effecting constraint system which is of
a form quite similar to the ones used by the analyses and thus well-suited for
proving their correctness.

Having formulated both the analyses of Miné [10] and Vojdani [22,23] by
means of side-effecting constraint systems, our contributions thus can be sum-
marized as follows:

– we provide enhancements of each of these analyses which significantly increase
their precision—but still are incomparable;

– since both analyses are expressed within the same framework, these improved
versions can be integrated into one combined analysis;

– we prove the new analyses correct relative to a concrete local trace semantics
of concurrent programs;

– we provide implementations of the new analyses to compare their precision
and efficiency.

The paper is organized as follows. After a brief introduction into side-effecting
constraint systems in Sect. 2, we introduce our toy language for which the con-
crete local trace semantics as well as the analyses are formalized and indicate its
operational semantics (Sect. 3). Our analyses then are provided in Sect. 4, while
their correctness proofs are deferred to an extended version [17]. The experimen-
tal evaluation is provided in Sect. 5. Section 6 finally concludes.

2 Side-Effecting Systems of Constraints

In [2], side-effecting systems of constraints are advocated as a convenient frame-
work for formalizing the accumulation of flow- (and possibly also context-) sensi-
tive information together with flow- (as well as context-) insensitive information.
Assume that X is a set of unknowns where for each x ∈ X, Dx is a complete lattice
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of possible (abstract or concrete) values of x. Let D denote the disjoint union of
all sets Dx. Let X⇒D denote the set of all mappings η : X → D where η x ∈ Dx.
Technically, a (side-effecting) constraint takes the form x � fx where x ∈ X is
the left-hand side and the right-hand side fx : (X⇒D) → ((X⇒D)×Dx) takes a
mapping η : X⇒D, while returning a collection of side-effects to other unknowns
in X together with the contribution to the left-hand side.

Let C denote a set of such constraints. A mapping η : X⇒D is called solution
of C if for all constraints x � fx of C, it holds for (η′, d) = fx η that η � η′ and
η x � d; that is, all side-effects of the right-hand side and its contribution to
the left-hand side are accounted for by η. Assuming that all right-hand sides are
monotonic, the system C is known to have a least solution.

3 A Local Trace Semantics

Let us assume that there are disjoint sets X ,G of local and global variables which
take values from some set V of values. Values may be of built-in types to compute
with, e.g., of type int, or a thread id from a subset I ⊆ V. The latter values
are assumed to be abstract, i.e., can only be compared with other thread ids for
equality. We implicitly assume that all programs are well-typed; i.e., a variable
either always holds thread ids or int values. Moreover, there is one particular
local variable self ∈ X holding the thread id of the current thread which is only
implicitly assigned at program start or when creating the thread. Before program
execution, global variables are assumed to be uninitialized and will receive initial
values via assignments from the main thread, while local variables (except for
self) may initially have any value. Finally, we assume that there is a set M of
mutexes. A local program state thus is a mapping σ : X → V where σ self ∈ I.
Let Σ denote the set of all local program states.

Let A denote the set of actions. Each thread is assumed to be represented by
some control-flow graph where each edge e is of the form (u,A, u′) for program
points u, u′ and action A. Let N and E denote the sets of all program points
and control-flow edges. Let T denote a set of local traces. A local trace should
be understood as the view of a particular thread, the ego thread, on the global
execution of the system. Each t ∈ T ends at some program point u with local
state σ where the ego thread id is given by σ self. This pair (u, σ) can be extracted
from t via the mapping sink : T → N ×Σ. For a local trace t and local variable x,
we also write t(x) for the result of σ(x) if sink t = (u, σ). Likewise, the functions
id : T → I and loc : T → N return the thread id and the program point of the
unique sink node, respectively.

We assume that there is a set init of initial local traces 0σ with sink0σ =
(u0, σ) where u0 and σ are the start point and initial assignment to the local
variables of the initial thread, respectively. In particular, σ self = 0 for the initial
thread id 0 . For every local trace that is not in init and where the ego thread
has not just been started, there should be a last action in A executed by the ego
thread. It can be extracted by means of the function last : T → A ∪ {⊥}. For
local traces in init or local traces where the ego thread has just been started, last
returns ⊥. For realizing thread creation, we make the assumption that starting
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from (u, σ), there is at most one outgoing edge at which a thread is created.
For convenience, we also assume that each thread execution provides a unique
program point u1 at which the new thread is meant to start where the local state
of the created thread agrees with the local state before thread creation – only
that the variable self receives a fresh value. Accordingly, we require a function
new : N → T → 2T so that newu1 t either returns the empty set, namely, when
creation of a thread starting at point u1 is not possible for t, or a set {t1} for a
single trace t1 if such thread creation is possible. In the latter case,

last(t1) = ⊥, sink(t1) = (u1, σ1)

where for sink(t) = (u, σ), σ1 = σ ⊕ {self �→ ν(t)} for some function ν : T → I
providing us with a fresh thread id. As thread ids are unique for a given creation
history in T , we may identify the set I with T and let ν be the identity function.

For each edge e = (u,A, u′), we also require an operation �e� : T k → 2T

where the arity k for different actions may vary between 1 and 2 according
to the arity of operations A at the edges and where the returned set either is
empty (i.e., the operation is undefined), singleton (the operation is defined and
deterministic), or a larger set (the operation is non-deterministic, e.g., when
reading unknown input). This function takes a local trace and extends it by
executing the action corresponding to edge e, thereby incorporating the matching
trace from the second argument set (if necessary and possible). In particular for
t ∈ �e�(t0, . . . , tk−1), necessarily,

loc(t0) = u, last(t) = A and loc(t) = u′ (1)

The set T of all local traces is the least solution of the constraints

T ⊇ fun → (∅, init)
T ⊇ fun T → (∅, newu1 T ), (u1 ∈ N )
T ⊇ fun T → (∅, �e�(T , . . . , T )), (e ∈ E)

(2)

where sets of side-effects are empty. Here (and subsequently), we abbreviate
for functions f : T k → 2T and subsets T0, . . . , Tk−1 ⊆ T , the longish formula⋃

{f(t0, . . . , tk−1) | t0 ∈ T0, . . . , tk−1 ∈ Tk−1} to f(T0, . . . , Tk−1).
The constraint system (2) globally collects all local traces into one set T . It

serves as the definition of all (valid) local traces (relative to the definitions of the
functions �e� and new) and thus, as our reference trace semantics. Subsequently,
we provide a local constraint system for these traces. Instead of collecting one big
set, the local constraint system introduces unknowns [u], u ∈ N , together with
individual constraints for each control-flow edge e ∈ E . The value for unknown [u]
is meant to collect the set of those local traces t that reach program point u (i.e.,
loc(t) = u), while the constraints for edges describe the possible relationships
between these sets—quite as for the trace semantics of a sequential program-
ming language. In order to deal with concurrency appropriately, we additionally
introduce unknowns [m],m ∈ M for mutexes. These unknowns will not have
right-hand sides on their own but receive their values via side-effects. In general,
we will have the following constraints
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[u0] ⊇ fun → (∅, init)
[u′] ⊇ �u,A�, ((u,A, u′) ∈ E) (3)

where the concrete form of the right-hand side �u,A� depends on the action A
of the corresponding edge e = (u,A, u′). In the following, we detail how the
constraints corresponding to the various actions are constructed.

3.1 Thread Creation

Recall that we assume that within the set X of local variables, we have one
dedicated variable self holding the thread id of the ego thread. In order to deal
with thread creation the set A of actions provides the x = create(u1); operation
where u1 is a program point where thread execution should start, and x is a
local variable which is meant to receive the thread id of the created thread. The
effect of create is modeled as a side-effect to the program point u1. This means
for a program point u:

�u, x = create(u1)� η = let T = �e�(η [u]) in
({[u1] �→ newu1 (η [u])}, T )

3.2 Locking and Unlocking

For simplicity, we only consider a fixed finite set M of mutexes. If instead a
semantics with dynamically created mutexes were to be formalized, we could
identify mutexes, e.g., via the local trace of the creating thread (as we did for
threads). For a fixed set M of mutexes, the set A of actions provides operations
lock(a) and unlock(a), a ∈ M, where these operations are assumed to return no
value, i.e., do always succeed. Additionally, we assume that unlock(a) for a ∈ M
is only called by a thread currently holding the lock of a, and that mutexes
are not re-entrant; i.e., trying to lock a mutex already held is undefined. For
convenience, we initialize the unknowns [a] for a ∈ M to init. Then we set

�u, lock(a)� η = (∅, �e�(η [u], η [a]))

�u, unlock(a)� η = let T = �e�(η [u]) in
({[a] �→ T}, T )

3.3 Local and Global Variables

Expressions r occurring as guards as well as non-variable right-hand sides of
assignments may refer to local variables only. For these, we assume an evalua-
tion function � . � so that for each σ : X → V, �r�σ returns a value in V. For
convenience, we here encode boolean values as integers where 0 denotes false
and every non-zero value true. This evaluation function � . � allows defining the
semantics �e� of a control-flow edge e whose action A is either a guard or an
assignment to a local variable. Since no side-effect is triggered, we have

�u,A� η = (∅, �e�(η [u]))
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For reading from and writing to globals, we consider the actions g = x; (copy
value of the local x into the global g) and x = g; (copy value of the global g
into the local x) only. Thus, g = g + 1; for global g is not directly supported by
our language but must be simulated by reading from g into a local, followed by
incrementing the local whose result is eventually written back into g.

We assume for the concrete semantics that program execution is always
sequentially consistent, and that both reads and writes to globals are atomic.
The latter is enforced by introducing a dedicated mutex mg ∈ M for each global
g which is acquired before g is accessed and subsequently released. This means
that each access A to g occurs as .

Under this proviso, the current value of each global g read by some thread
can be determined just by inspection of the current local trace. We have

�u, x = g� η = (∅, �e�(η [u]))
�u, g = x� η = (∅, �e�(η [u]))

i.e., both reading from and writing to global g is a transformation of individual
local traces only.

3.4 Completeness of the Local Constraint System

With the following assumption on �e� in addition to Eq. (1),

– The binary operation �(u, lock(a), u′)�(t0, t1) only returns a non-empty set if
t1 ∈ init ∨ last(t1) = (unlock(a)), i.e., locking only incorporates local traces
from the set init or local traces ending in a corresponding unlock(a)

We obtain:

Theorem 1. Let T denote the least solution of the global constraint system (2),
and η denote the least solution of the local constraint system (3). Then

1. η [u] = {t ∈ T | loc(t) = u} for all u ∈ N ;
2. η [a] = init ∪ {t ∈ T | last(t) = (unlock(a))} for all a ∈ M.

In fact, Theorem 1 holds for any formalism for traces matching these assump-
tions. Before detailing an example trace formalism in Sect. 3.5, we proceed with
an intuitive example.

Example 2. Consider the following program and assume that execution starts at
program point u0.
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In this example, one of the traces in the set init of initial local traces is the
trace 0σ with sink 0σ = (u0, σu0) = (u0, {x �→ 0 , self �→ 0}); i.e., local variable
x has value 0, y has value 0, and the initial thread has thread id 0. One of the
traces reaching program point u1 is t which is obtained by prolonging 0σ where
sink t = (u1, σu1) = (u1, {x �→ 1 , self �→ 0}). We abbreviate ūk for (uk, σuk

)
and show traces as graphs (Fig. 1). Since �lock(mg)� is a binary operation, to
compute the set of local traces reaching u2, not only the local traces reaching its
predecessor u1 but also those traces stored at the constraint system unknown
[mg] need to be considered.

Figure 1 shows all local traces starting with ū0 stored at [mg], i.e., all local
traces in which the last action of the ego thread is unlock(mg) (that start with
ū0). Out of these, traces (a) and (c) are compatible with t. Prolonging the
resulting traces for the following assignment and unlock operations leads to
traces (b) and (d) reaching the program point after the unlock(mg) in this thread.
Therefore, (b) and (d) are among those traces that are side-effected to [mg].

3.5 Example Formalism for Local Traces

The concrete concurrency semantics imposes restrictions onto when binary
actions are defined. In particular, binary operations �e� may only be defined
for a pair (t0, t1) if certain parts of t0 and t1 represent the same computation. In
order to make such restrictions explicit, we introduce a concrete representation
of local traces.

A raw (finite) trace of single thread i ∈ I is a sequence λ = ū0a1 . . . ūn−1anūn

for states ūj = (uj , σj) with σj self = i, and actions aj ∈ A corresponding to the
local state transitions of the thread i starting in configuration ū0 and executing
actions aj . In that sequence, every action lock(m) is assumed to succeed, and
when accessing a global g, any value may be read. We may view λ as an acyclic
graph whose nodes are the 3-tuples (j, uj , σj), j = 0, . . . , n, and whose edges are
((j − 1, uj−1, σj−1), aj , (j, uj , σj)), j = 1, . . . , n. Let V (λ) and E(λ) denote the
set of nodes and edges of this graph, respectively.

Let Λ(i) denote the set of all individual traces for thread i, and Λ the union
of all these sets.

A raw global trace of threads is an acyclic graph τ = (V, E) where V =⋃
{V (λi) | i ∈ I} and E =

⋃
{E(λi) | i ∈ I} for a set I of thread ids and

raw local traces λi ∈ Λ(i). On the set V, we define the (immediate) program
order as the set of all pairs ū →p ū′ for which there is an edge (ū, a, ū′) in E . In
order to formalize our notion of local traces, we extend the program order to a
causality order which additionally takes the order into account in which threads
are created as well as the order in which mutex locks are acquired and released.

For a ∈ M, let a+ ⊆ V denote the set of nodes ū where an incoming edge
is labeled lock(a), i.e., ∃x (x, lock(a), ū) ∈ E , and a− analogously for unlock(a).
On the other hand, let C denote the set of nodes with an outgoing edge labeled
x′ = create(u1) (for any local variable x′ and program point u1). Let S denote
the set of minimal nodes w.r.t. to →p, i.e., the points at which threads start and
let 0 the node (0, u0, σ0) where σ0 self = 0.
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Fig. 1. Local traces of Example 2 starting with ū0 stored at [mg].

A global trace t then is represented by a tuple (τ,→c, (→a)a∈M) where τ is a
raw global trace and the relations →c and →a (a ∈ M) are the create and locking
orders for the respective mutexes. The causality order ≤ of t then is obtained
as the reflexive and transitive closure of the union →p ∪ →c ∪

⋃
a∈M →a. These

orders should satisfy the following properties.

– Causality order ≤ should be a partial order with unique least element
(0, u0, σ0) where σ0 self = 0;

– Create order: →c⊆ C × (S \ {0}): ∀s ∈ (S \ {0}) : |{z | z →c s}| = 1,
i.e., every thread except the initial thread is created by exactly one create(...)
action and ∀x : |{z | x →c z}| ≤ 1, i.e., each create(...) action creates at most
one thread. Additionally, for ((j−1, uj−1, σj−1), x = create(v), (j, uj , σj)) ∈ E
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and (j − 1, uj−1, σj−1) →c (0, v, σ′
0): σ′

0 = σj−1 ⊕ {self �→ i′} for some thread
id i′ where σj x = i′, i.e., the creating and the created thread agree on the
thread id of the created thread and the values of locals.

– Locking order: ∀a ∈ M :→a⊆ (a− ∪ 0) × a+: ∀x : |{z | x →a z}| ≤ 1 and
∀y : |{z | z →a y}| = 1, that is, for a mutex a every lock is preceded by
exactly one unlock (or it is the first lock) of a, and each unlock is directly
followed by at most one lock.

– Globals: Additionally, the following consistency condition on values read
from globals needs to hold: For ((j − 1, uj−1, σj−1), x = g, (j, uj , σj)) ∈ E ,
there is a maximal node (j′, uj′ , σj′) w.r.t. to the causality order ≤ such
that ((j′ − 1, uj′−1, σj′−1), g = y, (j′, uj′ , σj′)) ∈ E and (j′, uj′ , σj′) ≤ (j −
1, uj−1, σj−1). Then σj x = σj′−1 y, i.e., the value read for a global is the last
value written to it.

A global trace t is local if it has a unique maximal element ū = (j, u, σ) (w.r.t ≤).
Then in particular, sink(t) = (u, σ). The function last extracts the last action A
of the ego thread (if there is any) and returns ⊥ otherwise. The partial functions
newu for program points u and �e� for control-flow edges e then are defined by
extending a given local trace appropriately.

4 Static Analysis of Concurrent Programs

In the following, we present four analyses which we will compare for precision
and efficiency. In the present paper, we are only interested in non-relational
analyses. Also, we concentrate on mutexes only and hence do not track thread
ids. In the same way as in Miné’s paper, the precision of all presented analyses
could be improved by tracking (abstract or concrete) thread ids. Also, weak
memory effects at asynchronous memory accesses are ignored.

The first analysis (Protection-Based Reading) is an improved version of Voj-
dani’s analysis [22,23], while the second analysis (Lock-Centered Reading) is
an improved version of the analysis proposed by Miné [10]. The first analysis
assumes that for each global g, some set M[g] of mutexes exists which is held
at each write operation to g and maintains a private copy of the global as long
as one of the mutexes from M[g] is known to be held. Since the assumption of
non-empty program-wide protecting locksets is rather restrictive, we present a
third analysis (Write-Centered Reading) which lifts this extra assumption and
thus strictly subsumes Protection-Based Reading. Interestingly, Write-Centered
Reading and Lock-Centered Reading are still incomparable. We therefore sketch
a fourth analysis which is more precise than either of them.

Throughout this section, we assume that D is a complete lattice abstracting
sets of values of program variables.

4.1 Protection-Based Reading

The original analysis proposed by Vojdani [22,23] and implemented in the Gob-
lint system assumes that for each global g, there is a set of mutexes definitely
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held whenever g is accessed. The best information about the values of g visible
after acquiring a protecting lock is maintained in a separate unknown [g]. The
value of the unknown [g] for the global g is eagerly privatized: It is incorporated
into the local state for a program point and currently held lockset whenever g
first becomes protected, i.e., a mutex protecting g is acquired while none was
held before. As long as one of these protecting mutexes is held, all reads and
writes refer to this local copy of the global and this copy can be destructively
updated. It is only when no mutex protecting g is held anymore that the value
of the local copy is published to the unknown [g]. This base analysis setting is
enhanced in three ways:

– Instead of assuming a set of mutexes protecting both reading and writing of
g, we now just assume a set of mutexes definitely held at each write. While
this does not necessarily lead to an improvement in precision, it allows for
analyzing interesting patterns where, e.g., only a subset of mutexes is acquired
for reading from a global, while a superset is held when writing to it.

– Besides the unknown [g] for describing the possible values of the global g
for protected accesses, another unknown [g]′ is introduced for the results of
unprotected read accesses to g.

– Instead of incorporating the value of the global g stored at [g] into the local
state at each lock operation of a mutex from the protecting set, the local state
for a program point and currently held lockset only keeps track of the values
written by the ego thread. At a read operation x = g, the value of global g
is assigned to the local variable x. For that the analysis relies on the value
stored at unknown [g] together with the value of g stored in the local state,
unless the ego thread has definitely written to g since acquiring a protecting
mutex and not yet released all protecting mutexes since then.

Recall that M : G → 2M maps each global g to the set of mutexes definitely
held when g is written to. Due to our atomicity assumption, the set M[g] is non-
empty, since mg ∈ M[g] always holds. For the moment, we assume this mapping
to be given. The unknown [g]′ stores an abstraction of all values ever written to
g, while the unknown [g] stores an abstraction of all values that were written
last before releasing a protecting mutex of g other than mg. For each pair (u, S)
of program point u and currently held lockset S, on the other hand, the analysis
maintains (1) a set P of definitely written globals g since a protecting mutex of
g has been acquired and not all protecting mutexes have been released, together
with (2) a variable assignment σ : X ∪ G → D of potential descriptions of values
for local or global variables.

In case one of the mutexes in M[g] is definitely held, after a write to variable
g, all processing on g is performed destructively on the local copy. Immediately
after the write to g (at the unlock(mg)) the value of the updated local copy is
merged into [g]′ via a side-effect. On the other hand, the value of that copy must
be merged into the value of [g] only when it no longer can be guaranteed that
all other protecting mutexes (M[g] \ mg) are held.
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We start by giving the right-hand-side function for the start state at program
point u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] � init� where

init� = let σ = {x �→ � | x ∈ X} ∪ {g �→ ⊥ | g ∈ G} in
(∅, (∅, σ))

Now, consider the right-hand side [v, S′] � �[u, S], A�� for the edge e = (u,A, v)
of the control-flow graph and appropriate locksets S, S′. Consider the right-hand
side for a thread creation edge. For this, we require a function ν� u (P, σ)u1 that
returns the (abstract) thread id of a thread started at an edge originating from
u in local state (P, σ), where the new thread starts execution at program point
u1. Since we do not track thread ids, ν� may return � whereby all variables
holding thread ids are also set to �.

�[u, S], x = create(u1)��η = let (P, σ) = η [u, S] in
let i = ν� u (P, σ)u1 in
let σ′ = σ ⊕ ({self �→ i} ∪ {g �→ ⊥ | g ∈ G}) in
let ρ = {[u1, ∅] �→ (∅, σ′)} in
(ρ, (P, σ ⊕ {x �→ i}))

This function has no effect on the local state apart from setting x to the abstract
thread id of the newly created thread, while providing an appropriate initial state
to the startpoint of the newly created thread. For guards and computations on
locals, the right-hand-side functions are defined in the intuitive manner—they
operate on σ only, leaving P unchanged.

Concerning locking and unlocking of mutexes a, the lock operation does not
affect the local state, while at each unlock, all local copies of globals g for which
not all protecting mutexes are held anymore, are published via a side-effect to
the respective unknowns [g] or [g]′. Moreover, globals for which none of the
protecting mutexes are held anymore, are removed from P :

�[u, S], lock(a)��η = (∅, η [u, S])
�[u, S], lock(mg)��η = (∅, η [u, S])
�[u, S], unlock(mg)��η = let (P, σ) = η [u, S] in

let P ′ = {h ∈ P | ((S \ {mg}) ∩ M[h]) �= ∅} in
let ρ = {[g]′ �→ σ g} ∪ {[g] �→ σ g | M[g] = {mg}} in
(ρ, (P ′, σ))

�[u, S], unlock(a)��η = let (P, σ) = η [u, S] in
let P ′ = {g ∈ P | ((S \ {a}) ∩ M[g]) �= ∅} in
let ρ = {[g] �→ σ g | a ∈ M[g]} in
(ρ, (P ′, σ))

for a �∈ {mg | g ∈ G}. We remark that the locksets S′ of the corresponding left-
hand unknowns now take the forms of S′ = S∪{a}, S′ = S∪{mg}, S′ = S\{mg}
and S′ = S \ {a}, respectively. Recall that the dedicated mutex mg for each
global g has been introduced for guaranteeing atomicity. It is always acquired
immediately before and always released immediately after each access to g. The
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special treatment of this dedicated mutex implies that all values written to g are
side-effected to the unknown [g]′, while values written to g are side-effected to
the unknown [g] only when unlock is called for a mutex different from mg.

For global g and local x, we define for writing to and reading from g,

�[u, S], g = x��η = let (P, σ) = η [u, S] in
(∅, (P ∪ {g}, σ ⊕ {g �→ (σ x)}))

�[u, S], x = g��η = let (P, σ) = η [u, S] in
if (g ∈ P ) then

(∅, (P, σ ⊕ {x �→ (σ g)}))
else if (S ∩ M[g] = {mg}) then

(∅, (P, σ ⊕ {x �→ σ g � η [g]′})
else (∅, (P, σ ⊕ {x �→ σ g � η [g]}))

Altogether, the resulting system of constraints C1 is monotonic (given that
the right-hand-side functions for local computations as well as for guards are
monotonic)—implying that the system has a unique least solution, which we
denote by η1. We remark that for this unique least solution η1, η1 [g] � η1 [g]′

holds.

Example 3. Consider, e.g., the following program fragment and assume that
M[g] = {a,mg} and that that we use value sets for abstracting int values.

Then after unlock(b), the state attained by the program (where variable self
is omitted for clarity of presentation) is

s1 = ({g}, {g �→ {5}, x �→ �})

where [g]′ has received the contribution {5} but no side-effect to [g] has been
triggered. The read of g in the subsequent assignment refers to the local copy.
Accordingly, the second write to g and the succeeding unlock(mg) result in the
local state

s2 = ({g}, {g �→ {6}, x �→ {5}})

with side-effect {6} to [g]′ and no side-effect to [g]. Accordingly, after unlock(a),
the attained state is

s3 = (∅, {g �→ {6}, x �→ {5}})

and the value of [g] is just {6} – even though g has been written to twice. We
remark that without separate treatment of mg, the value of {5} would immedi-
ately be side-effected to [g]. ��
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Theorem 2. Protection-Based Reading is sound w.r.t. the trace semantics.

Proof. In the extended version of this paper [17, Section 5.3] we show that
this analysis computes an abstraction of the result of the analysis presented
in Sect. 4.3, which we then prove to be sound with respect to the trace semantics
in [17, Section 5.2] . ��

Thus, we never remove any values from the variable assignment for a local state.
An implementation may, however, in order to keep the representation of local
states small, additionally track for each program point and currently held lockset,
a set W of all globals which possibly have been written (and not yet published)
while holding protecting mutexes. A local copy of a global g may then safely be
removed from σ if g /∈ P ∪ W . This is possible because for each g /∈ P ∪ W , σ g
has already been side-effected and hence already is included in η [g] and η [g]′,
and thus σ g need not be consulted on the next read of g.

As presented thus far, this analysis requires the map M : G → 2M to be
given beforehand. This map can, e.g., be provided by some pre-analysis onto
which the given analysis builds. Alternatively, our analysis can be modified to
infer M on the fly. For that, we consider the M[g] to be separate unknowns of
the constraint system. They take values in the complete lattice 2M (ordered by
superset) and are initialized to the full set of all mutexes M. The right-hand-side
function for writes to global g then is extended to provide the current lockset as
a contribution to M[g]. This means that we now have:

�[u, S], g = x��η = let (P, σ) = η [u, S] in
({M[g] �→ S}, (P ∪ {g}, σ ⊕ {g �→ (σ x)}))

There is one (minor) obstacle, though: the right-hand-side function for control-
flow edges with unlock(a) is no longer monotonic in the unknowns M[g], g ∈ G: If
M[g] shrinks to no longer contain a, unlock(a) will no longer produce a side-effect
to the unknown [g], whereas it previously did.

Another practical consideration is that, in order to further improve efficiency,
it is also possible to abandon state-splitting according to held locksets—at the
cost of losing some precision. To this end, it suffices to additionally track for each
program point a set S̄ of must-held mutexes as part of the local state from the
lattice 2M (ordered by superset), and replace S with S̄ in all right-hand sides.

4.2 Lock-Centered Reading

The analysis by Miné from [10], when stripped of thread ids and other features
specific to real-time systems such as Arinc653 and reformulated by means of
side-effecting constraint systems, works as follows: It maintains for each pair
(u, S) of program point u and currently held lockset S, copies of globals g whose
values are weakly updated whenever the lock for some mutex a is acquired. In
order to restrict the set of possibly read values, the global g is split into unknowns
[g, a, S′] where S′ is a background lockset held by another thread immediately
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after executing unlock(a). Then only the values of those unknowns [g, a, S′] are
taken into account where S ∩ S′ = ∅.

For a more detailed discussion and our side-effecting formulation of Miné’s
analysis see [17, Appendix A]. We identify two sources of imprecision in this
analysis. One source is eager reading, i.e., reading in values of g at every lock(a)
operation. This may import the values of too many unknowns [g, a, S′] into the
local state. Instead, it suffices for each mutex a, to read values at the last lock(a)
before actually accessing the global.

Let UM denote the set of all upward-closed subsets of M, ordered by subset
inclusion. For convenience, we represent each non-empty value in UM by the set
of its minimal elements. Thus, the least element of UM is ∅, while the greatest
element is given by the full power set of mutexes (represented by {∅}).

We now maintain a map L : M → UM in the local state that tracks for each
mutex a all minimal background locksets that were held when a was acquired
last. This abstraction of acquisition histories [7,8] allows us to delay the reading
of globals until the point where the program actually accesses their values. We
call this behavior lazy reading.

The other source of imprecision is that each thread may publish values it has
not written itself. In order to address this issue, we let σ g only maintain values
the ego thread itself has written.

A consequence of lazy reading is that values for globals are now read from
the global invariant at each read. In case the ego thread has definitely written to
a variable and no additional locks have occurred since, only the local copy needs
to be read. To achieve that, we introduce an additional map V : M → 2G . For
mutex a, V a is the set of global variables that were definitely written since a
was last acquired. In case that a has never been acquired by the ego thread, we
set V a to the set of all global variables that have definitely been written since
the start of the thread.

We start by giving the right-hand-side function for the start state at program
point u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] � init� where

init� = let V = {a �→ ∅ | a ∈ M} in
let L = {a �→ ∅ | a ∈ M} in
let σ = {x �→ � | x ∈ X} ∪ {g �→ ⊥ | g ∈ G} in
(∅, (V,L, σ))

Next, we sketch the right-hand-side function for a thread creation edge.

�[u, S], x = create(u1)��η = let (V,L, σ) = η [u, S] in
let V ′ = {a �→ ∅ | a ∈ M} in
let L′ = {a �→ ∅ | a ∈ M} in
let i = ν� u (V,L, σ)u1 in
let σ′ = σ ⊕ ({self �→ i} ∪ {g �→ ⊥ | g ∈ G}) in
let ρ = {[u1, ∅] �→ (V ′, L′, σ′)} in
(ρ, (V,L, σ ⊕ {x �→ i}))

This function has no effect on the local state apart from setting x to the abstract
thread id of the newly created thread, while providing an appropriate initial state
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to the startpoint of the newly created thread. For guards and computations on
locals, the right-hand-side functions are once more defined in the obvious way.

Locking a mutex a resets V a to ∅ and updates L, whereas unlock side-effects
the value of globals to the appropriate unknowns.

�[u, S], lock(a)��η = let (V,L, σ) = η [u, S] in
let V ′ = V ⊕ {a �→ ∅} in
let L′ = L ⊕ {a �→ {S}} in
(∅, (V ′, L′, σ))

�[u, S], unlock(a)��η = let (V,L, σ) = η [u, S] in
let ρ = {[g, a, S \ {a}] �→ σ g | g ∈ G} in
(ρ, (V,L, σ))

The right-hand-side function for an edge writing to a global g then consists of
a strong update to the local copy and addition of g to V a for all mutexes a.
For reading from a global g, those values [g, a, S′] need to be taken into account
where a is one of the mutexes acquired in the past and the intersection of some
set in La with the set of mutexes S′ held while publishing is empty.

�[u, S], g = x��η = let (V, L, σ) = η [u, S] in
let V ′ = {a �→ (V a ∪ {g}) | a ∈ M} in
(∅, (V ′, L, σ ⊕ {g �→ (σ x)}))

�[u, S], x = g��η = let (V, L, σ) = η [u, S] in
let d =

⊔{η[g, a, S′] | a ∈ M, g �∈ V a, B ∈ L a, B ∩ S′ = ∅} in
(∅, (V, L, σ ⊕ {x �→ σ g 
 d}))

In case that La = ∅, i.e., if according to the analysis no thread reaching u with
lockset S has ever locked mutex a, then no values from [g, a, S′] will be read.

Theorem 3. Lock-Centered Reading is sound w.r.t. to the trace semantics.

Proof. The proof is deferred to the extended version [17, Section 5.1]. The central
issue is to prove that when reading a global g, the restriction to the values of
unknowns [g, a, S′] as indicated by the right-hand-side function is sound (see [17,
Proposition 2]). ��

4.3 Write-Centered Reading

In this section, we provide a refinement of Protection-Based Reading which aban-
dons the assumption that each global g is write-protected by some fixed set of
mutexes M[g]. In order to lift the assumption, we introduce the additional data-
structures W,P : G → UM to be maintained by the analysis for each unknown
[u, S] for program point u and currently held lockset S. The map W tracks for
each global g the set of minimal locksets held when g was last written by the
ego thread. At the start of a thread, no global has been written by it yet; hence,
we set W g = ∅ for all globals g. The map P on the other hand, tracks for each
global g all minimal locksets the ego thread has held since its last write to g. A
global g not yet written to by the ego thread is mapped to the full power set
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of mutexes (represented by {∅}). The unknowns for a global g now are of the
form [g, a, S, w] for mutexes a, background locksets S at unlock(a) and minimal
lockset w when g was last written.

We start by giving the right-hand-side function for the start state at program
point u0 ∈ N with the empty lockset ∅, i.e., [u0, ∅] � init� where

init� = let W = {g �→ ∅ | g ∈ G} in
let P = {g �→ {∅} | g ∈ G} in
let σ = {x �→ � | x ∈ X} ∪ {g �→ ⊥ | g ∈ G} in
(∅, (W,P, σ))

Next comes the right-hand-side function for a thread creating edge.

�[u, S], x = create(u1)��η = let (W,P, σ) = η [u, S] in
let W ′ = {g �→ ∅ | g ∈ G} in
let P ′ = {g �→ {∅} | g ∈ G} in
let i = ν� u (W,P, σ)u1 in
let σ′ = σ ⊕ ({self �→ i} ∪ {g �→ ⊥ | g ∈ G}) in
let ρ = {[u1, ∅] �→ (W ′, P ′, σ′)} in
(ρ, (W,P, σ ⊕ {x �→ i}))

This function has no effect on the local state apart from setting x to the abstract
thread id of the newly created thread while providing an appropriate initial state
to the startpoint of the newly created thread. For guards and computations
on locals, the right-hand-side functions are once more defined intuitively—they
operate on σ only, leaving W and P unchanged. While nothing happens at
locking, unlocking now updates the data-structure P and additionally side-effects
the current local values for each global g to the corresponding unknowns.

�[u, S], lock(a)��η = (∅, η [u, S])
�[u, S], unlock(a)��η = let (W,P, σ) = η [u, S] in

let P ′ = {g �→ P g � {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w] �→ σ g | g ∈ G, w ∈ W g} in
(ρ, (W,P ′, σ))

When writing to a global g, on top of recording the written value in σ, W g and
P g are set to the set {S} for the current lockset S. When reading from a global
g, now only values stored at η [g, a, S′, w] are taken into account, provided

– a ∈ S, i.e., a is one of the currently held locks;
– S ∩S′ = ∅; i.e., the intersection of the current lockset S with the background

lockset at the corresponding operation unlock(a) after the write producing
the value stored at this unknown is empty;

– w ∩ S′′ = ∅ for some S′′ ∈ P g, i.e., the background lockset at the write
producing the value stored at this unknown is disjoint with one of the locksets
in P g. This excludes writes where the ego thread has since its last thread-
local write always held at least one of the locks in w. In this case, that write
can not have happened between the last thread-local write of the reading ego
thread and its read;
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– a /∈ S′′′ for some S′′′ ∈ P g, i.e., a has not been continuously held by the
thread since its last write to g.

Accordingly, we define

�[u, S], g = x��η = let (W,P, σ) = η [u, S] in
let W ′ = W ⊕ {g �→ {S}} in
let P ′ = P ⊕ {g �→ {S}} in
(∅, (W ′, P ′, σ ⊕ {g �→ (σ x)}))

�[u, S], x = g��η = let (W,P, σ) = η [u, S] in
let d = σ g �

⊔
{η[g, a, S′, w] | a ∈ S, S ∩ S′ = ∅,

∃S′′ ∈ P g : S′′ ∩ w = ∅,
∃S′′′ ∈ P g : a /∈ S′′′} in

(∅, (W,P, σ ⊕ {x �→ d}))

Example 4. We use integer sets for abstracting int values. Consider the following
concurrent program with global variable g and local variables x, y, and z:

At the read x = g, the current lockset is {a, b, c,mg} and in the local state
P g = {{c}}. The only unknown where all conditions above are fulfilled is the
unknown [g, b, ∅, {b,mg}] which has value {17}. Hence this is the only value read
from the unknowns for g and together with the value {31} from σ g the final value
for x is {17, 31}. This is more precise than either of the analyses presented thus
far: Protection-Based Reading cannot exclude any values of x as M[g] = {mg},
and thus has {17, 31, 42, 59} for x. Lock-Centered Reading has V c = {g} at the
read. This excludes the write by t2 and thus results in {17, 31, 42} for x. ��

Theorem 4. Write-Centered Reading is sound w.r.t. the local trace semantics.

The complete proof is deferred to the extended version [17, Section 5.3], we only
outline some key steps here. The first step is to ensure that the concrete and
the abstract constraint system share the same set of unknowns and that their
side-effects are comparable.

Let the constraint system for the analysis be called C3. We construct from
the constraint system C for the concrete semantics a system C′ such that its set
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of unknowns matches the set of unknowns of C3: Each unknown [u] for program
point u is replaced with the set of unknowns [u, S], S ⊆ M, while the unknown
[a] for a mutex a is replaced with the set of unknowns [g, a, S, w], g ∈ G, S ⊆
M, w ⊆ M. Accordingly, the constraint system C′ consists of these constraints:

[u0, ∅] ⊇ fun → (∅, init)
[u′, S ∪ {a}] ⊇ �[u, S], lock(a)�′ (u, lock(a), u′) ∈ E , a ∈ M
[u′, S \ {a}] ⊇ �[u, S], unlock(a)�′ (u, unlock(a), u′) ∈ E , a ∈ M
[u′, S] ⊇ �[u, S], A�′ (u,A, u′) ∈ E ,∀a ∈ M :

A �= lock(a), A �= unlock(a)

where the right-hand-side functions for reading and writing remain unmodified
and the other right-hand-side functions (relative to the semantics �e� of control-
flow edges e) are given by

�[u, S], x = create(u1)�
′ η′ = let T = �e�(η′ [u, S]) in

({[u1, ∅] �→ newu1 (η′ [u, S])}, T )
�[u, S], lock(a)�′ η′ = let T ′ =

⋃{η′ [g, a, S′, w] | g ∈ G, S′ ⊆ M, w ⊆ M} in
(∅, �e�(η′ [u, S], T ′))

�[u, S], unlock(a)�′ η′ = let T = �e�(η′ [u, S]) in
let ρ = {[g, a, S \ {a}, w] �→ {t} | t ∈ T, g ∈ G, w ⊆ M,

((last tl writeg t = (ū, g = x, ū′) ∧ Lt[ū
′] ⊆ w)

∨(last tl writeg t = ⊥))} in
(ρ, T )

where last tl writeg extracts the last thread-local write to g, or returns ⊥ if none
exists and Lt[ū] denotes the lockset held by the ego thread at program point ū.
In contrast to the right-hand-side functions of C, the new right-hand sides now
also re-direct side-effects to appropriate more specific unknowns [g, a, S′, w], g ∈
G, a ∈ M, S′ ⊆ M, w ⊆ M. For a mapping η from the unknowns of C to 2T , we
construct a mapping split[η] from the unknowns of C′ to 2T by

split[η][u, S] = η[u] ∩ TS for u ∈ N , S ⊆ M
split[η][g, a, S, w] = η[a] ∩ {t ∈ TS | for g ∈ G, a ∈ M, S ⊆ M, w ⊆ M

(last tl writeg t = (ū, g = x, ū′) ∧ Lt[ū′] ⊆ w)
∨ (last tl writeg t = ⊥)}

where TS denotes the set of local traces in which the ego thread holds lockset S
at the sink. Thus,

η[u] =
⋃

{split[η][u, S] | S ⊆ M} for u ∈ N
η[a] =

⋃
{split[η][g, a, S, w] | g ∈ G, S ⊆ M, w ⊆ M} for a ∈ M

Proposition 1. The following two statements are equivalent:

– η is the least solution of C
– split[η] is the least solution of C′.
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Proof. The proof of Proposition 1 is by fixpoint induction. ��

Our goal is to relate post-solutions of C′ and C3 to each other. While the sets of
unknowns of these systems are the same, the side-effects to unknowns are still
not fully comparable. Therefore, we modify the side-effects produced by C3 for
unlock operations to obtain yet another constraint system C′

3. All right-hand-side
functions remain the same except for unlock(a) which is now given by:

�[u, S], unlock(a)��
3′η′

3 = let (W,P, σ) = η [u, S] in
let P ′ = {g �→ P g � {S \ {a}} | g ∈ G} in
let ρ = {[g, a, S \ {a}, w] �→ σ g |

g ∈ G, w′ ∈ W g,w′ ⊆ w} in
(ρ, (W,P ′, σ))

Instead of only side-effecting to minimal sets w′ of locks held on a write to
g, the value now is side-effected to all supersets w of such minimal elements.
This modification of the constraint system only changes the values computed
for globals, but not those for program points and currently held locksets: Upon
reading, all [g, a, S, w] are consulted where there is an empty intersection of w
and some P g. If this is the case for w, it also holds for w′ ⊆ w. Accordingly,
the values additionally published to [g, a, S, w], are already read from [g, a, S, w′]
directly in C3. More formally, let η3 be a post-solution of C3, define η′

3 by

η′
3 [u, S] = η3 [u, S] for u ∈ N , S ⊆ M

η′
3 [g, a, S, w] =

⊔
{η3 [g, a, S, w′] | w′ ⊆ w} for g ∈ G, a ∈ M, S ⊆ M, w ⊆ M

Proposition 2. η′
3 as constructed above is a post-solution of C′

3.

Proof. The proof of Proposition 2 is by verifying for each edge (u,A, v) of the
control-flow graph, each possible lockset S, and η′

3 as constructed above, that
�[u, S], A��

3′ η′
3 � (η′

3, η
′
3 [v, S′]) holds. ��

It thus remains to relate post-solution of C′ and C ′
3 to each other. As a first

step, we define a function β that extracts from a local trace t for each global
g the minimal lockset W g held at the last thread-local write to g, as well as
all minimal locksets P g since the last thread-local write to g. Additionally, it
extracts a map σ that contains the values of the locals at the sink of t as well as
the last-written thread-local values of globals. Thus, we define

β t = (W,P, σ) where
W = {g �→ {Lt[ū′]} | g ∈ G, ( , g = x, ū′) = last tl writeg t}

∪ {g �→ ∅ | g ∈ G,⊥ = last tl writeg t }
P = {g �→ min lockset since t ū′ | g ∈ G, ( , g = x, ū′) = last tl writeg t}

∪ {g �→ {∅} | g ∈ G,⊥ = last tl writeg t }
σ = {x �→ {t(x)} | x ∈ X} ∪ {g �→ ∅ | g ∈ G,⊥ = last tl writeg t}

∪ {g �→ {σj−1 x} | g ∈ G, ((j − 1, uj−1, σj−1), g = x, ) = last tl writeg t}
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where min lockset since extracts the upwards-closed set of minimal locksets the
ego thread has held since a given node. The abstraction function β is used to
specify concretization functions for the values of unknowns [u, S] for program
points and currently held locksets as well as for unknowns [g, a, S, w].

γu,S(P �,W �, σ�) = {t ∈ TS | loc t = u, β t = (W,P, σ),
σ ⊆ γD ◦ σ�,W � W �, P � P �}

where ⊆,� are extended point-wise from domains to maps into domains. More-
over,

γg,a,S,w(v) = {t ∈ TS | last t = unlock(a),
(( , , σj−1), g = x, ū′) = last tl writeg t,
σj−1 x ∈ γD(v), w ⊆ Lt[ū′]}

∪ {t ∈ TS | last t = unlock(a), last tl writeg t = ⊥}

where γD : D → 2V is the concretization function for abstract values in D. Let
η′
3 be a post-solution of C′

3. We then construct from it a mapping η′ by:

η′[u, S] = γu,S(η′
3 [u, S]) for u ∈ N , S ⊆ M

η′[g, a, S, w] = γg,a,S,w(η′
3 [g, a, S, w]) for g ∈ G, a ∈ M, S ⊆ M, w ⊆ M

Altogether, the correctness of the constraint system C3 follows from:

Theorem 5. Every post-solution of C3 is sound w.r.t. the local trace semantics.

Proof. Recall from Proposition 1, that the least solution of C′ is sound w.r.t.
the local trace semantics as specified by constraint system C. By Proposition 2,
it thus suffices to prove that the mapping η′ as constructed above, is a post-
solution of the constraint system C′. For that, the central issue is to prove that
when reading a global g, the restriction to the values of unknowns [g, a, S′, w] as
indicated by the right-hand-side function is sound (see [17, Proposition 4]).

Having shown that, we verify by fixpoint induction that for the i-th approxi-
mation ηi to the least solution split[η] of C′, ηi ⊆ η′ holds. To this end, we verify
for the start point u0 and the empty lockset, that

(∅, init) ⊆ (η′, η′ [u0, ∅])

holds and for each edge (u,A, v) of the control-flow graph and each possible
lockset S, that

�[u, S], A�′ ηi−1 ⊆ (η′, η′ [v, S′])

holds. ��

Protection-Based Reading from Sect. 4.1 is shown to be an abstraction of this
analysis in [17, Section 5.1].

The analyses described in this section and in Sect. 4.2 are both sound, yet
incomparable. This is evidenced by Example 4, in which Write-Centered is more
precise than Lock-Centered Reading, and [17, Example 5] where the opposite
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is the case. To obtain an analysis that is sound and more precise than Write-
Centered and Lock-Centered Reading, both can be combined. For the combina-
tion, we do not rely on a reduced product construction, but instead directly
exploit the information of the simultaneously tracked data-structures V,W,P ,
and L together for improving the sets of writes read at read operations. A
detailed description of this analysis is deferred to [17, Section 4.4].

5 Experimental Evaluation

We have implemented the analyses described in the previous sections as well as
the side-effecting formulation of Miné’s analysis (see [17, Appendix A]) within the
static analyzer framework Goblint, which analyzes C programs. For Protection-
Based Reading, we implemented the variant that does not require prior infor-
mation on the locksets M[g] protecting globals g, but instead discovers this
information during the analysis. The solvers in Goblint can handle the non-
monotonicity in the side-effects this entails.

For experimental evaluation, we use six multi-threaded Posix programs
from the Goblint benchmark suite1 and seven large SV-Comp benchmarks in
c/ldv-linux-3.14-races/ from the ConcurrencySafety-Main category2.
The programs range from 1280 to 12778 physical LoC, with logical LoC3 being
between 600 and 3102. The analyses are performed context-sensitively with a
standard points-to analysis for addresses and inclusion/exclusion sets as the
domain for integer values. The evaluation was carried out on Ubuntu 20.04.1
and OCaml 4.11.1, running on a standard Amd Epyc processor.

We analyzed each of the programs with each of the analyses where the
required analysis times are presented in Fig. 2. On smaller programs, Protection-
Based Reading is almost twice as fast as the others, which have very similar
running times. On larger programs, the differences are much larger: Protection-
Based Reading there is up to an order of magnitude faster, while the running
times of the remaining analyses grow with their sophistication.

Since the analyses use different local and global domains, their precision
cannot be compared directly via the constraint system solutions. Instead, we
record and compare the observable behavior in the form of abstract values of
global variables read at program locations. Our comparison reveals that, for
11 out of 13 programs, all analyses are equally precise. For the remaining two
programs, pfscan and ypbind, all but Miné’s analysis are equally precise, while
Miné’s was less precise at 6% and 16% of global reads, respectively.

Thus our experiments indicate that Protection-Based Reading offers sufficient
precision at a significantly shorter analysis time, while the more involved Lock-
and Write-Centered Reading do not offer additional precision. Moreover, the
incomparability identified in the introduction can in fact be observed on at least
some real-world programs. Still, more experimentation is required as the selection
1 https://github.com/goblint/bench.
2 https://github.com/sosy-lab/sv-benchmarks.
3 Only lines with executable code, excluding struct and extern function declarations.

https://github.com/goblint/bench
https://github.com/sosy-lab/sv-benchmarks
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Fig. 2. Analysis times per benchmark program (logical LoC in parentheses).

of benchmarks may be biased towards programs using quite simple protection
patterns. Also, only one particular value domain for globals was considered.

6 Conclusion

We have provided enhanced versions of the analyses by Miné [10] as well as by
Vojdani [22,23]. To Miné’s original analysis, we added lazy reading of globals and
restricting local copies of globals to the values written by the ego thread. Voj-
dani’s approach was purged of the assumption of common protecting mutexes,
while additionally, background locksets are taken into account to exclude cer-
tain written values from being read. For a better comparison, we relied on side-
effecting constraint systems as a convenient framework within which all analy-
ses could be formalized. That framework also enabled us to specify a concrete
semantics of local traces w.r.t. which all analyses could be proven correct. We
also provided an implementation of all these analyses and practically compared
them for precision and efficiency. Interestingly, the simplest of all analyses still
provided decent precision while out-performing the others.

The given comparison and enhancements refer just to the first and most
fundamental analysis introduced by Miné. We would therefore like to address
possible extensions to relational analyses in future work. Also, we would like to
explore how the framework can be extended so that weak memory effects can
conveniently be taken into account.
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Abstract. We present a thread-modular abstract interpretation
(TMAI) technique to verify programs under the release-acquire (RA)
memory model for safety property violations. The main contributions
of our work are: we capture the execution order of program statements
as an abstract domain, and propose a sound upper approximation over
this domain to efficiently reason over RA concurrency. The proposed
domain is general in its application and captures the ordering relations
as a first-class feature in the abstract interpretation theory. In particular,
the domain represents a set of sequences of modifications of a global vari-
able in concurrent programs as a partially ordered set. Under the upper
approximation, older sequenced-before stores of a global variable are for-
gotten and only the latest stores per variable are preserved. We establish
the soundness of our proposed abstractions and implement them in a pro-
totype abstract interpreter called PRIORI. The evaluations of PRIORI on
existing and challenging RA benchmarks demonstrate that the proposed
technique is not only competitive in refutation, but also in verification.
PRIORI shows significantly fast analysis runtimes with higher precision
compared to recent state-of-the-art tools for RA concurrency.

1 Introduction

We investigate the problem of verifying programs with assertions executing under
the release-acquire (RA) fragment of the C11 standard [15] where every store is
a release write and every load is an acquire read. The reachability problem under
the RA model (with compare-and-swap) has been recently shown to be undecid-
able [1]. The model is described axiomatically and correctness of programs under
the model is defined by acyclicity axioms, which can appear obscure.

Notwithstanding the undecidability result, RA model is still one of the cleaner
subsets of the C11 standard with relatively well-behaved semantics and has been
a subject of active study in recent times [1,4,18,19,23,34]. An incomplete but
intuitive understanding of RA concurrency is usually provided through reorder-
ings – the redordering of an acquire load (or release store) with any access that
follow (or precede) it in program order is disallowed. The RA model indeed pro-
vides weaker guarantees than SC, which allows for the construction of high per-
formance implementations (e.g., read-copy-update synchronisation [34]) without
making programmability overly complex.
c© Springer Nature Switzerland AG 2021
C. Drăgoi et al. (Eds.): SAS 2021, LNCS 12913, pp. 384–404, 2021.
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However, as noted in [23], RA programs can produce counter-intuitive out-
comes that are unexplainable via interleaving of instructions. Consider the exam-
ple execution graph (or just execution) of a 4-threaded program (IRIW) in Fig. 1.
It shows through appropriate reads-from (rf), sequence-before (sb) and data/con-
trol dependency (dep) edges that the property P can evaluate to false under RA

model (i.e., r1 = r3 = 1, r2 = r4 = 0). However, when the execution is inter-
preted under interleaving execution semantics (such as in SC, TSO, and PSO),

Fig. 1. IRIW execution graph with reads-from
(rf) and sequence-before (sb) edges

the property is evidently valid
because of a total ordering
between a and b (i.e., a before b
or vice-versa). Nonetheless, there
are some fascinating aspects of
RA semantics – (i) a total order
on the stores of each global mem-
ory location (called the modifi-
cation order) that restricts loads
reading from overwritten stores,
and (ii) when a load instruction
of a thread t observes (or syn-

chronizes with) a store from another thread t′, then all the prior stores observed
by t′ up to the synchronizing store also become observable to t. It is worth not-
ing that this lack of immediate global visibility of updates, as mentioned in (ii)
above, makes programs under RA semantics naturally amenable to localized or
thread-modular reasoning, which is a well-considered area of research.

Thread-modular approaches are known to be sound for safety properties [13].
The basic idea behind thread-modular reasoning is to verify each thread sepa-
rately with an environment assumption to model the effects of the execution of
other threads. The environment assumption of each thread is usually specified
by a relation (referred to as interference relation in this paper), which includes
all the stores to global memory of other threads that may affect the loads of the
thread. The analysis proceeds iteratively until for each thread the effects of its
environment assumption on its operations reach a fix-point. As a model check-
ing approach, they were first introduced for programs under SC semantics [10].
In the recent past, several thread-modular contributions [21,22,26,32,33] have
been presented in the context of verifying programs under weak memory models
such as TSO, PSO and RMO. However, in our observation, prior proposals run
into fundamental limitations when applying them to RA or other non-multicopy-
atomic memory models such as ARMv7 and POWER.

Techniques presented in [32,33] model store buffers to analyze TSO and
PSO programs. Evidently, RA program behaviors cannot be simulated using
store buffers [23]. Thus, extending these contributions is not feasible with-
out re-modeling for the operational semantics of RA [18]. Contributions such
as Watts [21] and FruitTree [22] extend TMAI with lightweight flow- and
context-sensitivity. However, they do not capture inter-thread ordering depen-
dencies beyond two threads. Finally, the abstract interpretation technique used
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in DUET [9] is neither thread-modular nor geared for RA programs. While DUET

performs analysis with an unbounded number of threads, it may infer gross over-
approximations on some simple programs. Consider the following program where
initially x = 0 : a : x + + b : x + +. DUET will infer the value x = ∞ at ter-
mination. FruitTree [22] also suffers from the same imprecision, though it does
not terminate.

Contributions and Outline: In this paper, (C1) as our first contribution, we
propose a TMAI technique (see Sect. 7) for RA programs using a novel abstract
domain which is based on partial orders (PO). The proposed domain succinctly
captures abstract ordering dependencies among instructions in a program (see
Sect. 6). While the use of partial orders to analyze concurrency is well-known,
to the best of our knowledge this is the first work that formulates the ordering
information as an abstract domain. In particular, we model the concrete program
semantics as a set of total orders on stores per global variable, also known as
modification order (mo)(see Sect. 5). A collection of mos are then represented as
a PO domain. Notably, the use of PO domain has the following merits: (M1)
PO domain is general in its scope and is applicable beyond RA concurrency (see
Sect. 6.1 and Sect. 6.4). (M2) Introduction of ordering information as a first-
class object in abstract interpretation theory permits further abstractions or
refinements on the object, an instance of which is presented in contribution
(C2).

(C2) We present an abstract upper approximation of PO domain (see Sect. 6.3)
where only the latest stores per thread per variable are preserved and all the older
sb-ordered stores are forgotten.

(C3) Furthermore, to establish that our analysis preserves soundness and is
terminating, we show that (i) the lattice corresponding to the abstract semantics
is complete, (ii) establish a Galois connection between the concrete and PO

domains, (iii) prove that the abstract upper approximation is sound, and (iv)
provide a widening operator to ensure termination of the analysis

(C4) Finally, we implement our proposal in a prototype tool called PRIORI,
and demonstrate its effectiveness in refutation and verification of RA programs
by comparison with recent state-of-the-art tools in the RA domain (see Sect. 8).

We present related work in Sect. 2 followed by an intuitive account of our
contributions with the help of examples in Sect. 3.

2 Related Work

Weak memory models, in particular C11 model, have been topics of active
research in recent years. Many studies have provided proof and logic frame-
works [8,24,35,36] and recommended strengthening the C11 models [18,23].
Many existing contributions have proposed stateless model checking algorithms
for RA programs using state-reduction techniques such as dynamic partial order
reduction or event structures [2,19,20,25,28,38].

In contrast, there have been relatively fewer investigations of RA concur-
rency using symbolic analysis. While some works have explored using TMAI
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(which have already been discussed in Sect. 1), others have proposed BMC as
solutions to verify programs under models such as TSO, PSO and RMO.

Bounded Model Checking. BMC contributions in [1,3,12] operate by plac-
ing a bound on the number of loop unrollings or on the number of contexts or
both. Dartagnan [12] is a BMC framework that offers support for parameter-
ized reasoning over memory models. While, in principle, Dartagnan can perform
bounded reasoning of RA programs, it currently does not support RA semantics.

VBMC [1], a recent BMC solution for RA concurrency, works with an addi-
tional bound on the number of views in a RA program – a view of a thread is
a collection of timestamps of the latest stores it has observed for each variable.
A view-switch takes place when a load operation in a thread, say t2, reads from
a store in a thread, t1, with a timestamp higher than that of any variable in
the view of t2. While efficient in refutation, VBMC fails to discover property
violations in programs which are parametric in the number of readers where the
number of view-switches required is beyond the default bound of two (see [30]
for a detailed discussion).

PO Encodings and Unfoldings. The use of partial order encodings is diverse
and rich in areas of concurrent program verification and testing. The works in
[11,14,37] use partial order encodings in dynamic verification tools to predic-
tively reason about multithreaded and message-passing programs. Partial order
encoding presented in [3] relies on the axiomatic semantics of memory models
such as SC, Intel X86 and IBM POWER and is implemented in a BMC tool.
The contributions in [29] and [17] use unfolding semantics to verify and test SC

programs, respectively.
A recent study (POET [31]) combines unfolding semantics with abstract inter-

pretation. The solution they have proposed is elegant and close to our proposal,
but with several fundamental differences: (D1) POET defines the unfolding under
a variant of the independence relation used in the partial order reduction the-
ory [5]. Evidently, the independence relation assumes an interleaving model of
computation. While unfoldings can capture true concurrency, the independence
relation fundamentally limits their general applicability and restricts POET ’s
application to only those memory models that can be explained with inter-
leavings. As a result, we have found POET ’s technique to be unsound for RA

programs. (D2) POET uses unfoldings as an auxiliary object which is external to
the abstract interpretation theory. Thus, it is not straightforward to define fur-
ther abstractions on the unfolding object once created. On the contrary, in our
proposal, the PO domain is treated as a first-class object of the abstract inter-
pretation theory, which is open to further abstractions as is witnessed in our
contribution (C2). (D3) POET is not thread-modular and navigates an unfold-
ing object of an entire program which is much larger than the PO domains
maintained per location per variable in our technique.



388 D. Sharma and S. Sharma

3 Overview

We provide an overview of thread-modular analysis using PO domain with the
help of small examples.

Let a and b be load and store operations, respectively from different threads
to a global memory location. The store b is then called an interference for load
a (denoted by a→rf b, since b can potentially read from a).

3.1 Thread Modular Analysis with Partial Order Domain

Consider the message passing program (MP) shown below on the left. Under RA

semantics if r1 = 1, then r2 = 0 is infeasible. Thus, property P is known to be
valid.

(MP)
a : x := 1 c : r1 := y
b : y := 1 d : r2 := x
P : r1 = 1 =⇒ r2 = 1

xinit := 0 yinit := 0

a : x := 1

b : y := 1

c : r1 := y

d : r2 := x

( a , )

( a , b )

( a , b )

( a , b )

rf
sb sb

hb

Program State. Let poset POx and Vx represent the partial order on the
observed stores and the abstract value of variable x ∈ V where V is the set of all
shared variables in a program. We present the program state (or just state) at
each program location (or just location) as a tuple (Πx∈VPOx,Πx∈VVx), where
Π is a cartesian product operator defined over indexed family of sets. Consider
an execution of (MP) shown above on the right. At location a, the state in
components is: POx = ({a}, ∅), POy = (∅, ∅), Vx = {1}, Vy = ∅ (Note that the
second argument of a poset is the ordering relation). For brevity, we only show
the posets of variables (as location-labeled Hasse diagram in a box) and suppress
the abstract value in the above and future illustrations.

Interferences. Consider the above MP example again. Thread 1 has no loads;
therefore, has no computable interferences. In thread 2, the set of interferences
at locations c and d are {b→rfc, ctx→rfc} and {a→rfd, ctx→rfd}, respectively.
Note that ctx refers to a special label representing context – i.e., in the absence of
any interfering stores, a load instruction will either read from the latest preceding
po (program order) store or from the store values that have traveled embedded
in the program states up to that load instruction.

TMAI. In the first iteration, the states of thread 1 are computed as shown
in the above illustration for locations a and b. In thread 2, in the absence of
any interefering store, the states are computed with the information from ctx,
where POx and POy are empty. Therefore, both at c and d we have: POx =
(∅, ∅), POy = (∅, ∅).

In the second iteration, the interference b→rfc is applied, and the effects of
all the instructions prior to b from thread 1 are carried to c and d. Thus, at c, we
have: POx = ({a}, ∅), POy = ({b}, ∅). As a result, the effect of a, which is avail-
able at c is now also available at d (since it is now part of ctx of thread 2). Thus,
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the application of interference a→rfd becomes redundant. As a matter of fact, the
interference a→rfd turns out to be infeasible at d. This is because extending the
POx at d with the POx at a (by taking the meet of the two orders, see Sect. 6.1)
breaks the acyclicity of POx at d – one can visualise this by adding an edge from
a to itself in the Hasse diagram of the resulting order). In general, to address this
issue of invalid application of effects at a state, we introduce the valid extensional-
ity check (see Sect. 6.1). Thus, maintaining states this way avoids the need to per-
form expensive interference infeasibility checks. Notably, such expensive checks
are used by other techniques for precision, such as FruitTree [22].

After two iterations, a fix-point is reached. We can now observe that at
d there is only a single state reachable when r1 = 1, which is: (POx, Vx) =
(({a}, ∅), 1), (POy, Vy) = (({b}, ∅), 1). Thus the property P is shown to be valid
by our analysis.

3.2 Over-Approximating PO Domain

Posets are history-preserving and their use lends precision to our analysis, how-
ever, at the expense of possibly maintaining many posets. We show through
a simple example that with further abstraction of forgetting older sb-ordered
stores in the posets (see C2) one can obtain succinct posets, thereby resulting in

a

d
b

a d
b d

b

Fig. 2. Two posets and an
abstract poset

fewer abstract states, in many scenarios. Consider the
two example posets (leftmost and center) on vari-
able x denoting two distinct states at a location in
a program as shown in Fig. 2. Assume that stores a
and b are sb-ordered and store d is from a different
thread. By forgetting the older sb-ordered store a, a
smaller abstract POx is obtained, which is shown as

the rightmost poset in the figure. Notice that for two distinct states with dif-
fering posets at a location, the same abstract poset is obtained; consequently a
single abstract state. This results in a smaller abstract state graph. However, if
the value of store at a was read in a variable that affected an assertion, then the
over-approximated abstract state could result in a loss of precision leading to a
possible false positive. A detailed example program corresponding the illustrated
example posets can be found in extended version of the paper in [30].

4 Preliminaries

RA Semantics. Given a multithreaded program P :=‖i∈Tid Pi, where Tid =
{1, . . . , n} is the set of thread ids and ‖ is a parallel composition operator. Let V,
and L be the set of shared variables and set of program locations, respectively.
We use (�, i) to denote the event corresponding to the ith occurrence of program
instruction labeled �. Let St, Ld and RMW be the set of all store, load and rmw
(read-modify-write) events from P , respectively. We denote relations sequenced-
before and reads-from of RA model [4,24] by →sb and →rf , respectively. The
notation a→sbb and s→rf l represents (a, b) ∈ →sb and (s, l) ∈ →rf , respectively.
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The happens-before (hb) relation for RA concurrency is defined as a transitive
closure (→rf ∪ →sb)+. Let (Mx,�Mx

) denote the modification order (mo) over a
set of store and rmw events Mx ⊆ St∪RMW to a memory location x in a program
execution. As defined in [4,24], every valid RA program execution must have a
mo that is consistent with hb.

Loset. The total ordering relation �Mx
is a relation between every pair of stores

w1, w2 ∈ Mx in a program execution (alternatively represented as w1�Mx
w2). We

alternatively refer to a modification order as a loset (linearly ordered set). Let MS

be the the set of all possible linear orderings over the set S ⊆ St∪RMW. Let L(S,�)
be a function that gives all possible linearizations of elements in S ⊆ St∪RMW that
respect the set of ordering constraints � (note the difference with � ). For example
L({a, b}, ∅) will result in {{(a, b)}, {(b, a)}}. Similarly, L({a, b, c}, {(a, b), (a, c)})
will produce: {(a, b), (a, c), (b, c)} and {(a, b), (a, c), (c, b)}.

Interference. Following the description of interferences in Sect. 3, we define
interference as a relation I ⊆ Tid × Ld × (St ∪ RMW) such that I(t)(ld) def=
ctx ∪ St ∪ RMW, ctx is the store in the program state at some label in pre(ld)
for thread t. We define pre(ld) as the set of labels immediately preceding ld in
sb order.

5 Concrete Semantics

We consider the set of mo losets per global variable as concrete semantics of a
program. Evidently, the set of mo losets is already a sound over-approximation
of the set of concrete executions (see Definition 5 in [24]). Thus, considering the
set of mo losets as concrete program semantics does not break the soundness of
our analysis framework [7]; in fact, it serves the purpose of keeping the concrete
semantics expressible enough while maintaining the ease of further abstractions.

5.1 Modification Orders as Posets

We define the concrete/collecting semantics by the set T such that each element
t ∈ T is a subset of MS where and

be two elements of T , where denotes a set of losets over
S i.e. . Two elements t1, t2 ∈ T are related by an ordering
relation ⊆• , denoted by t1 ⊆• t2. The definition of the ordering relation is as follows.

Definition 1.

We extend the set T with a special element ⊥T such that ∀t ∈ T . ⊥T ⊆• t. Each
element in T is a set of mo losets that represents a set of (possibly partial) exe-
cutions. For instance, t1 in Fig. 3a is an over-approximation of all the executions
whose mos satisfy either m11 or m12. Note t1 ⊆• t2, which means that the set of
executions corresponding to t2 is larger than the set of executions corresponding
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Fig. 3. Orderings over T , P

to t1. We infer that t1 gives us more precise information on execution possibil-
ities than t2 for the same program. Similarly, in Fig. 3a element t3 is ordered
below t4. The set of executions having m41 as a part of their mo is larger than
set of executions having m31 as part of their mo.

The element ⊥T represents a set in which all modification orders are inconsis-
tent, and hence represents an invalid execution. Likewise, we introduce element
�T = (∅, ∅) in the T representing an empty set of constraints, which is equiva-
lent to the set of all valid executions. By definition, �T is ordered above all the
elements T in the ⊆• . We establish that T is a poset under the relation ⊆• .

Lemma 1. (T ,⊆•), is a poset.1

6 Abstract Semantics

We present a two-layered abstraction to arrive at final abstract RA program
semantics. In particular, (i) the set of mo losets of a program is abstracted in to
PO domains, and (ii) the PO domains are further over-approximated, where for
each variable all stores older than the latest store under sb ordering in its poset
are forgotten. Further, we demonstrate that abstract semantics produced in step
(i) from above forms a complete lattice and establish a Galois connection between
the concrete and abstract domains.

6.1 Mo Posets as Lattices

In this section we define a lattice over P which is the set of all partial orders.
We use the terms mo poset and PO domain interchangeably for this lattice.

We combine two or more mo losets and respresent them as a collection of
partial orders. For instance, consider mo losets p1 and p2 (shown in Fig. 3b) in
P. These can be combined in the following two ways: (i) the orderings in p1 and
p2 are both present in the combination (the binary operator is denoted by � and
1 Proofs of all lemmas and theorems in this article are available in the extended version

at [30].
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the resulting element is denoted by p�), or (ii) common orderings in p1 and p2
on the common elements are present in the combination (the binary operator is
denoted by  and the resulting element is denoted by p�). After the application
of step (i), we note that the pairs (a, b) or (b, a) are not in the relation p1 � p2.
Similarly, after the application of step (ii), we note that all those executions that
contain c are included in p�. Also, note that p�, p� ∈ P. Going forward we define
the following operations over the elements in a set of partial orders:

Less (p1 � p2): An ordering relation among two partial orders p1 = (Mx,�1)
and p2 = (Nx,�2), p1, p2 �= ⊥ is defined as following: p1 � p2 ⇐⇒ Mx ⊇
Nx ∧ a �2 b =⇒ a �1 b) and ∀p ∈ P,⊥ � p

Is Consistent (p1 ↑ p2): Two partial orders are consistent with each other if
they do not contain any conflicting pair and ⊥ is not consistent with any
element. Formally, ⊥↑p2

def= false, p1 ↑⊥ def= false and ∀p1, p2 �= ⊥, p1 ↑p2
def=

∀a, b ∈ Mx ∪ Nx . a �= b, (a, b) ∈ �1 =⇒ (b, a) /∈ �2. We denote inconsistent
partial orders using the notation p1 �

p2.
Is Valid Extension (p�st): A store event st is a valid extension of the partial

order p = (Mx,�) iff there is no instruction ordered after st in the ordering
relation �. Formally, p � st

def= ∀a ∈ Mx, (st, a) /∈ �. A invalid extension of
a partial order p by a store st is denoted by p � st).

Append (p ♦ st): Appends the store operation st at the end of modification
order p = (Mx,�) if st is a valid extension of p i.e. p ♦ st

def= if p � st then
(Mx ∪ {st},� ∪ {(a, st) | a ∈ Mx}) else ⊥.

Meet (p1 �p2): The meet of two partial orders p1 = (Mx,�1) and p2 = (Nx,�2)
is defined as: p1 � p2

def= if p1 ↑ p2 then (Mx ∪ Nx,�1 ∪ �2) else ⊥.
Join (p1  p2): The join of two partial order p1 = (Mx,�1) and p2 = (Nx,�2),

p1, p2 �= ⊥ is defined as the intersection of common ordered pairs in the
partial orders, i.e., p1  p2

def= (Mx ∩ Nx,�1 ∩ �2). We define ⊥  p2
def= p2

and p1  ⊥ def= p1.
Widening (p1 ∇ p2): The widening operator over two partial orders p1 = (Mx,

�1) and p2 = (Nx,�2), p1, p2 �= ⊥ is defined as p1 ∇ p2
def= (Qx,�), where

Qx = {a | a = (�, i) ∈ Mx ∩ Nx ∧ �b = (�, j) ∈ Mx ∩ Nx . j < i} and
�= {(a, b) | (a, b) ∈�1 ∩ �2 ∧ a, b ∈ Qx}. We define ⊥ ∇ p2

def= p2 and
p1 ∇ ⊥ def= p1.

Lemma 2. The operators  and � define the lub and glb of any two elements
of P, respectively.(See footnote 1)

Lemma 3. (P,�,,�,⊥,�) is a complete lattice, where P is set of all possible
partial orders over elements of set St∪ RMW, � is defined as empty poset, and ⊥ is
a special element that is ordered below all the elements of P in �.(See footnote 1)

The proof of Lemma 3 follows from Lemma 2, the definition of  and � operations
of P, and standard properties of operators.
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Lemma 4. The binary operation ∇ defines a widening operator over the ele-
ments of the lattice (P,�,,�,⊥,�).(See footnote 1)

We explain the widening operator ∇ using an example. Recall that each
element of lattice P is a partial order over program events. Let p = (Qx,�) =
p1 ∇ p2, then the set of events in p maintains the earliest occurrence of common
events in Mx and Nx corresponding to p1 and p2, respectively. Consider the
events e2 = (�, 2) and e3 = (�, 3), which are generated by the same program
instruction labeled �. If both p1 and p2 contain the ordering e2 and e3, then the
result of widening will contain the earliest occurrence of an event from �, i.e.,
e2 so long as e1 = (�, 1) /∈ Mx ∩ Nx. The set of orderings � is defined over the
elements of Qx. Hence no ordering involving e3 in this example will be in �.

Given a monotone function f : P → P, consider the chain f0
∇, f1

∇, f2
∇ . . .

with f0
∇ = ⊥ and f i

∇ = f i−1
∇ ∇ f(f i−1

∇ ) for some i > 0. An essential requirement
on ∇ for it to be a widening operator is that the above chain must stabilize, i.e.,
f(fn

∇) � fn
∇ for some n > 0. It means that the function f is reductive at fn

∇. We
show in the proof of Lemma 4 that our defined operator ∇ is indeed a widening
operator. Using Tarski’s fixpoint theorem, it follows that lfp(f) � fn

∇, where
lfp(f) is the least fixed point of f . As a result, fn

∇ is a sound over-approximation
of f , which guarantees termination of analysis with infinite lattices having infinite
ascending chains.

Definition 2. The abstraction function α : T → P is defined as α(⊥T ) def= ⊥
and ∀t �= ⊥T , α(t) def= (Mx,�) for some given Mx = S, and
�=

⋂
�i.

Definition 3. The concretization function γ : P → T is defined as γ(⊥) def= ⊥T
and ∀p �= ⊥, for some p = (Mx,�) given S = Mx

and is set of all possible linearizations of � i.e. .

Having defined the abstraction and concretization operators, we can now estab-
lish the Galois connection between the poset T and the lattice P.

Theorem 1. (T ,⊆•) −−−→←−−−
α

γ
(P,�,,�,⊥,�).(See footnote 1)

We lift the result from Theorem 1 to the product lattices of all the program
variables. Theorem 2 articulates that the Galois connection between concrete
and abstract product lattices is preserved.

Theorem 2. The correspondence between
∏

x∈V Px and
∏

x∈V Tx is a Galois
connection.(See footnote 1)

It is worthwhile to note that lattice P is not tied to the RA semantics. As such,
the PO domain is not specific to any memory model. We present a discussion
in Sect. 6.4, on the applicability of PO domain beyond RA semantics. Below, we
give a description of transfer functions for the operations in RA programs.
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Fig. 4. Transfer functions for RA programs. AI((�1, mo1, mo2), (�2, mo2, m2))
def
=

(�1, (mo1 ♦ �2) � mo2, m1 � m2); AI applies the interference from (�2, mo2, m2) to the
memory and mo poset state of (�1, mo1, mo2).

6.2 Abstract Semantics of RA Programs

The values of shared variables in the program can be abstracted to any known
numeric abstract domain such as interval, octagon, or polyhedra. Let V

� repre-
sents the set of values in the chosen abstract domain. Let M : V → V

� define
the memory state of a program. Let M : V → P represent a map from shared
variables to corresponding elements in the abstract mo poset lattice P. We abuse
notations ♦,,�,∇, ↑, and � to represent the corresponding pointwise-lifted
operators for M. For instance, the pointwise lifting of ♦ appends the stores of
variable v only to its modification order (i.e., M(v)); the modification orders
M(v′) for variables v′ �= v remain unchanged. The pointwise lifting for other
operators is straighforward. From Theorem 2, it follows that M along with the
pointwise lifted operators constitute the sought abstract domain.

Let Σ ⊆ L × (M × M) represents the set of all reachable program states. The
transfer functions for operations ld, st and rmw are defined in Fig. 4. The transfer
functions of lock and unlock operations have been omitted for the brevity. Since we
assume the SSA representation of programs, arithmetic operations only modify the
thread local variables. As a result, M remains unchanged. The effects of arithmetic
operations on shared variables is captured via numeric abstract domains. Thus,
the transfer functions for such operations are excluded from our presentation. The
semantic definitions in Fig. 4 are parameterized in terms of the set of currently
explored reachable program states, S ⊆ Σ, at a some point during the analysis.

Consider the load rule which, defines the semantics of a load operation. A load
of a shared variable x at � is performed at program state(s) S using the follow-
ing steps. Let st be an interfering instruction for �. Each explored program state
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(st,mos,ms) at instruction label st is considered as an interference and analyzed
with the set of program states at label pre(�) using the function AI (defined in the
caption of Fig. 4). When the interference from program state (�2,mo2,m2) is suc-
cessfully applied to the program state (�1,mo1,mo2) by function AI (the load at
�1 reads from the store at �2), then as a result �2 is appended in the partial order at
�1, i.e., mo1. For all other events prior to �1 and �2 , the precise ordering informa-
tion among them is computed by taking the meet of mo1 and mo2, i.e., mo1 �mo2
(because the ordering of such events must be consistent with both mo1 and mo2).

In the state at �1, the value of variables other than interfering variable x
can come from either m1 or m2. The function AI joins the maps m1 and m2

to obtain all feasible values for such variables. To compute  on memory val-
ues, one can choose abstract domains such as intervals or octagons. Let AI
return (pre(�),mo′,m′′) when the interference is applied from (st,mos,ms) to
(pre(�),mol,ml). The value of variable x read by the load operation � in the
program state (pre(�),mo′,m′′) will be the same as the value of variable x in
the interfering program state ms(x). Thus, we substitute m′′(x) with ms(x) to
construct the reachable program state (�,mo′,m′).

Finally, the resulting state at � is combined with the currently existing states
by the + operator. The operator + performs instruction-wise join of states, i.e., it
joins the memory state of two states if their instruction labels and mo posets are
the same. It also joins the mo poses if the instruction label and the memory states
are the same, otherwise, it leaves the two states as is. Formally, the operation
+ replaces any two program states (say (�1,mo1,m1) and (�2,mo2,m2)), with a
single program state (�1,mo1,m), where m = m1  m2, if mo1 = mo2 ∧ �1 = �2,
and with (�1,mo,m1), where mo = mo1  mo2, if m1 = m2 ∧ �1 = �2.

Transfer functions for rmw and store can be interpreted in a similar way.
Readers may note that, in general, two successful RMW operations will never read
from the same store as is assumed in our rule. However, our definition is sound
(and simple to understand); we provide a more precise definition in Sect. 7.2,
which is also implemented in PRIORI.

6.3 Abstracting the Abstraction: Approximating Mo Posets

We leverage the ordering rules of the RA memory model to further abstract
the modification orders. Let p

def= (Qx,�), p1
def= (Mx,�1), p2

def= (Nx,�2), pa
def=

(Ax,�a) be some elements in P. We shall use these definitions whenever p, p1, p2
and pa appear in definitions and predicates below.

Our abstraction function α� : P → P can be defined as follows: α�(⊥) = ⊥
and ∀p �= ⊥, α�(p) def= (Ax,�a), where Ax = Qx \ {a | ∃b ∈ Qx . a→sbb ∧ a �= b}
and �a=� \{(a, b) | (a, b) ∈� ∧(a /∈ Ax ∨ b /∈ Ax)}.

Soundness of α� Abstraction: Let relation β ∈ ℘(P × P), where ℘ denotes
power set, be defined as ∃p1, p2 ∈ P, (p1, p2) ∈ β ⇐⇒ p1 = ⊥∨ (Nx ⊆ Mx \{a |
∃b ∈ Mx . a→sbb ∧ a �= b} ∧ �2⊆�1). Through Lemma 5 we establish that our
definition of β indeed provides a soundness relation.
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Lemma 5. (p1, p2) ∈ β =⇒ p1 � p2.(See footnote 1)

Lemma 6. Abstract soundness assumption holds under β, i.e., ∀p, p1, p2 ∈ P.
(p, p1) ∈ β ∧ p1 � p2 =⇒ (p, p2) ∈ β. (See footnote 1)

In other words, Lemma 6 allows us to conclude that if p1 is a sound over-
approximation of p, then every element ordered above p1 in lattice P is also a
sound over-approximation of p under β. We shall use Lemmas 5–6 to establish
the soundness of α� in the theorem below.

Theorem 3. Abstraction relation α� is minimal sound abstraction under sound-
ness relation β, i.e., (p1, p2) ∈ β ⇐⇒ α�(p1) � p2.(See footnote 1)

The proof of Theorem 3 is obtained by a straightforward application of the
definitions of α�, β and Lemma 6.

We redefine some of the operations described in Sect. 6.1 in order to assist
with the computation of transfer functions under the α� abstraction:

Is Consistent (p1 ↑ p2): ⊥ ↑ p2
def= false, p1 ↑ ⊥ def= false and ∀p1, p2 �= ⊥

p1 ↑ p2
def= ∀a, b ((a, b) ∈ �1 =⇒ ∀b→sbc . (c, a) /∈ �2) ∧ ((a, b) ∈ �2

=⇒ ∀b→sbc . (c, a) /∈ �1). Note that →sb is reflexive. As before, we use the
notation p1 �

p2 when p1 and p2 are inconsistent.
Is Valid Extension (p � st): p � st

def= ∀a(st, a) /∈ � ∧�b ∈ Qx . st→sbb. We
use the notation p � st to indicate that st is not a valid extension of p.

Append ( p♦st): If st is a valid extension of p, then append the store operation
st at the end of partial order p and delete the older instructions, if any, i.e.
p♦st def= if p�st then (Qx∪st\{a | a→sbst},� ∪ {(a, st) | a ∈ Qx} \ {(a, b) |
(a→sbst ∧ a �= st) ∨ (b→sbst ∧ b �= st)}) else ⊥.

Over-Approximating the Semantics of RA Programs
We use the modified definitions of ♦, ↑,

�
,� and � operators to perform analysis

under α� abstraction. The semantics of st, ld and rmw operations and the set of
all program states Σ remain the same as under α�, as defined in Sect. 6.2.

6.4 Posets as a Generic Abstraction

In this section, we discuss the possibility of using the lattice (P,�,,�,⊥,�)
as a generic abstraction, and using it for reasoning memory models other than
RA. As a first step, we reinvestigate how we define the collecting semantics for
programs under non-RA memory models. The mo losets may not be best suited
collecting semantics to reason over programs under other memory models.

Consider, for instance, the TSO model. The collecting semantics for TSO
model require an ordering over all the events of shared variables in the program,
except among the store-load pairs of different variables from the same thread.
Thus, using losets as concrete semantics over loads and stores of all the shared
variables in which the store-load pair of different variables in a thread can appear
in any order will suffice. This allows us to capture rfe (reads-from-external,
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Algorithm 1: TMAI
Data: Tid is the set of threads in the program

1 Function ThreadModularAnalysis(Tid):
// Initialization

2 σ ← φ;
3 I ← GetInterfs(Tid) ;
4 repeat
5 S ← σ;
6 foreach t ∈ Tid do
7 σ ← σ �+ SeqAI(t, S, I(t))

8 until S = σ;

rfe=rf \ po) in the loset. Similarly, considering the PSO model the concrete
semantics containing one loset per variable containing all the load and store
events of that variable will suffice.

Note that once the collecting semantics is suitably fixed, then formal objects
such as (T ,⊆•), (P,�,,�,⊥,�), and functions α and γ can be used in the
analysis without requiring any change. However, designing α� for other memory
models may require careful analysis, and is left as future work.

7 Thread-Modular Abstract Interpretation

7.1 Analysis Algorithms

We present Algorithm 1 in which procedure ThreadModularAnalysis analyzes
the entire program by considering one thread at a time. The analysis begins with
the initialization of the set of explored program states (line 2). For each thread
t ∈ Tid, relation I(t) is computed (line 3) according to the definition in Sect. 4.
Each thread is analyzed under all possible interferences in I until a fixed point is
reached (lines 4–8). The function SeqAI(t,S, I(t)) is a standard work-list based
sequential abstract interpretation over a single thread [27]. Our work adapts this
analysis by replacing the transfer functions with the ones given in Sect. 6.2. The
function returns a set of states for all the locations in the thread t. The operator
+ performs instruction-wise join (explained in Sect. 6.2) of environments in the
existing (σ, line 5) and the newly computed program states (SeqAI(t,S, I(t))).
The details of RA memory model, interferences, abstractions and semantics of
transfer functions are all embedded in line 7 of the algorithm.

7.2 A Note on Precision

When the older sb-ordered stores are forgotten in a mo poset and those program
states having the same mo poset are combined, it results in the merging of multi-
ple program executions into a single over-approximation. In theory, it is possible
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that one or more forgotten (older) stores were critical to prove the property. We
can achieve higher precision if we can discern such critical stores and preserve
the ordering constraints over such stores in the mo posets.

In our study, we found that many benchmarks that model mutual exclusion
under the RA memory model use rmw instructions as synchronization fences.
These rmw events are instances of critical stores, and we flag them as such and
preserve all the older rmw instructions in �x.

Updated Semantics of RMW The semantics of RMW given in Fig. 4 (for a
shared variable x), while sound, are not precise according to RA semantics. We
update the semantics in the following way: the consistency check of two elements
p1 = (Mx,�Mx

) and p2 = (Nx,�Nx
) will return true iff p1 ↑ p2 ∧ ∀rmw1 ∈

p1, rmw2 ∈ p2, ((rmw1, rmw2) ∈�Mx
∨(rmw1, rmw2) ∈�Nx

∨(rmw2, rmw1) ∈�Mx

∨(rmw2, rmw1) ∈�Nx
). The mentioned update prohibits the combination of those

two partial orders such that if they were to be combined then the rmw events no
longer remain in a total order.

7.3 Loops and Termination

Widening [6] is generally used to handle non-terminating loops or to accelerate
fix-point computation in programs. Consider a loop that contains store opera-
tions. The value to be stored can be over-approximated using widening. Since mo
posets contain abstracted execution histories, adding a store event in posets at
least once for each store instruction within the loop will suffice to inform that the
store has occurred at least once in the execution. However, one can always choose
to add different events corresponding to the same store instruction depending
on the precision requirement and then widen using ∇, as necessary.

Note that one can use widening after analyzing some fixed n iterations of
a program loop. In particular, widening is applied in the transfer function for
store and rmw in function SeqAI.

8 Implementation and Evaluation

In this section, we discuss the details of PRIORI’s implementation and evaluation.
In the absence of TMAI tools for RA programs, we have shown the comparison
of PRIORI with the existing tools designed for the RA memory model. VBMC [1]
is the most recent BMC technique among these tools. Other static tools such as
Cppmem and Herd are not designed as verification tools. Cppmem is designed
to help investigate possible ordering relations in programs under the C/C++11
memory model. It computes all the relations of all possible executions. Herd is
designed to generate litmus tests for different memory models or to simulate a
memory model. Both of these tools are relatively very slow compared to existing
verification or bug-finding tools. We have also compared PRIORI with dynamic
tools such as CDSChecker [28], Tracer [2], and RCMC [19] to evaluate how
well PRIORI performs as a refutation tool; although the input coverage guarantee
of PRIORI and dynamic checkers is quite different.
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8.1 Implementation

PRIORI is implemented as an LLVM Compiler analysis pass written in C++
(code size ∼5.4KLOC). PRIORI uses the Apron library [16] for manipulating the
variable values in octagon and interval numerical abstract domains. PRIORI takes
as input an LLVM IR of an RA program compiled with -O1 flag, and analyzes
user assertions in programs; if assertions are not provided, then it can generate
the set of reachable program states at load operations for further reasoning. In
addition to the transfer functions in Fig. 4, PRIORI supports lock and unlock
operations. PRIORI currently does not support dynamic thread creation and
non-integer variables. Function calls in the program are inlined.

Handling Loops: PRIORI provides support for loops in three ways: (i) by using
the assume clause, (ii) by unrolling the loops, and (iii) by a combination of
assume clause and loop unrolling. The assume clause is useful in modeling spin-
wait loops in programs. The option of unrolling loops is used when either the
assume clause is inadequate (such as in non-terminating loops), or when we have
a fixed number of iterations in the loop (such as counting loops).

Experimental Setup: We have used Ubuntu 16.04 machine with Intel(R)
Xeon(R) 3.60 GHz CPU and 32 GB of RAM. The listed analysis time for each
benchmark is an average of four runs. The analysis times reported are in seconds.

8.2 Summary of Benchmarks

Benchmarks from Tracer: The benchmarks from Tracer [2] are known to
have no assertion violations. We craft an unfenced version of the dijkstra
benchmark to introduce assertion-violating behaviors in it. CO-2+2W benchmark
has no interferences; we use this benchmark to distinguish the performance of
interference-based PRIORI and non-interference-based VBMC and Poet. The
benchmark fibonacci has a high number of load and store operations, and is
used to stress-test interference-based techniques.

Benchmarks from VBMC: The benchmarks from VBMC [1] are divided into
two categories: (i) the first category has benchmarks with assertion violations
with respect to the RA memory model, and (ii) the second category consists the
same benchmarks with appropriate fences inserted to ensure mutual exclusion
under RA semantics.

Driver Benchmarks: The benchmarks ib700wdt and keybISR are Linux
device drivers taken from [9,21,22]. We have modified these benchmarks to use
C11 constructs. The program ib700wdt simulates multiple writers accessing a
buffer and one closer that closes the buffer. The benchmark keybISR is an inter-
rupt service routine for the keyboard.

8.3 Observations

Comparison of PRIORI with VBMC: Tables 1 and 2 show the performance
comparison of PRIORI and VBMC for discovering assertion violations and prov-
ing programs correct, respectively. VBMC with the view-bound of two, which is
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Table 1. Comparison for bug hunting

Name PRIORI VBMC CDS Tracer RCMC

T #It T VS

peterson3 0.12 3 0.55 3 0.01 0.01 0.05

10R1W 0.02 2 3.99 10 0.01 0.01 0.03

15R1W 0.03 2 24.45 15 0.02 0.01 0.03

szymanski(7) 0.06 1 6.58 2 TO TO TO

fmax(2,7) 1.00 2 × - 0.15 0.05 TO

TO: Timeout (10 min), ×: Did not run

Table 2. Comparison for proof of correctness.

Name PRIORI VBMC CDS Tracer RCMC

T #It T

CO-2+2W(5) 0.01 3 0.32 0.01 0.01 17.26

CO-2+2W(15) 0.02 3 1.29 0.02 0.01 TO

dijkstra fen 0.10 5 206.70† 0.01 0.01 0.03

burns fen 0.02 4 37.37† 0.02 0.01 0.02

peterson fen 0.10 6 44.12† 0.02 0.01 0.03

tbar 0.04 6 18.58 0.02 0.01 0.14

hehner c11 0.03 6 107.16† 0.07 0.02 0.04

red co 20 0.04 3 31.47 23.32 0.13 TO

exp bug 6 0.45 6 × 97.13 0.96 37.82

exp bug 9 0.57 6 × TO 2.98 437.47

stack true(12) 0.06 4 × TO 589.81 TO

ib700wdt (1) 0.01 3 31.73 0.01 0.01 0.02

ib700wdt (20) 0.05 3 TO 0.01 0.01 TO

ib700wdt (40) 0.07 3 TO 0.01 0.01 TO

keybISR 0.01 4 0.01 0.01 0.01 0.03

fibonacci 0.11† 5 310.75 TO 56.4 20.61

lamport fen 0.17† 4 431.40 0.09 0.03 0.04

†: False positive, TO: Timeout (10 min), ×: Did not run

the same bound used in [1], is insufficient to prove the properties in the program
correct. We increase the view bound one at a time and report the cumulative
time. PRIORI found the assertion violations in benchmarks of Table 1 in better
time than VBMC. It is worth noting that in peterson3, 10R1W, and 15R1W,
VBMC could not find the violation with the tool’s default bound of two.

The results of VBMC can be considered proof only if view bounding is relaxed
and the unwiding assertions (in CBMC) hold. However, we could not find an
option in VBMC to disable view bounding. Thus, we made a decision to run
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VBMC with a view-bound of 500 (assuming it to be sufficiently large) for the
benchmarks in Table 2. The results in Table 2 illustrate that the runtimes of
PRIORI are consistently better than that of VBMC. VBMC was unable to analyze
benchmarks marked with ×, since they have mutex lock/unlock operations.

Many of the mutual exclusion benchmarks have fences, which are imple-
mented with rmw operations. These rmw operations are critical in order to prove
the property. As a matter of fact, PRIORI produces false positives without the
improvements discussed in Sect. 7.2. Identifying rmw operations as critical oper-
ations and not deleting older sb-ordered rmw operations enables PRIORI to attain
the sought precision.

False Positives in PRIORI. The last two rows in Table 2 shows the false pos-
itive results produced by PRIORI. Our technique combines the states of dif-
ferent executions (having the same abstract modification order) into a single
abstracted program state. This results in an over-approximation of values lead-
ing to the observed false positives in fibonacci and lamport fen benchmarks.
For instance, the false positive in lamport fen is caused by two different branch
conditions (which cannot be true simultaneously in any concrete state) evaluat-
ing to true under the abstracted program states.

Comparison of PRIORI with Dynamic Tools: The results in Table 1 indi-
cate that PRIORI performs competitively or faster than dynamic tools on these
benchmarks. Evidently, most of the executions of these benchmarks are buggy.
Hence, the probability of dynamic analyses finding the first explored execution
to be buggy is very high, leading to their considerably fast analysis times. The
results in Table 2 show the analysis time over non-buggy benchmarks.

Comparison of PRIORI with Poet: Poet is unsound under the RA model
and reports false negatives in most of the benchmarks from Table 1. The elapsed
time when Poet produced sound results is as follows: (i) TO for Poet on on
10R1W and 15R1W while PRIORI analyzes them in ∼0.03 s, and (ii) Poet takes
80.43 s seconds on fmax(2,7), while PRIORI analyzes the benchmark in ∼1 s.

9 Conclusions

We have presented a thread modular analysis technique for RA programs that
uses partial orders over the set of totally ordered stores as abstract domains.
We showed that the abstract domain forms a complete lattice and further estab-
lished a Galois correspondence between the set of modification orders and the
abstract domain. By forgetting the sb-ordered older stores, we provided a sound
overapproximation on the abstract domain, which is shown to be sound for RA

programs. We implemented our proposal in a tool called PRIORI, and demon-
strated its effectiveness in not only finding bugs, but also for proving program
properties. Our experimental results revealed that PRIORI attains a high degree
of precision with significantly low analysis runtimes in comparison to other tools
for RA concurrency.
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Abstract. Despite the recent advance of automated program verifica-
tion, reasoning about recursive data structures remains as a challenge for
verification tools and their backends such as SMT and CHC solvers. To
address the challenge, we introduce the notion of symbolic automatic
relations (SARs), which combines symbolic automata and automatic
relations, and inherits their good properties such as the closure under
Boolean operations. We consider the satisfiability problem for SARs,
and show that it is undecidable in general, but that we can construct a
sound (but incomplete) and automated satisfiability checker by a reduc-
tion to CHC solving. We discuss applications to SMT and CHC solving
on data structures, and show the effectiveness of our approach through
experiments.

1 Introduction

The recent advance of automated or semi-automated program verification tools
owes much to the improvement of SMT (Satisfiability Modulo Theory) and CHC
(Constrained Horn Clauses) solvers. The former [1,23] can automatically check
the satisfiability of quantifier-free formulas modulo background theories (such
as linear integer arithmetic), and the latter [6,17,20] can automatically reason
about recursively defined predicates (which can be used to model loops and
recursive functions). Various program verification problems can be reduced to
CHC solving [3]. The current SMT and CHC solvers are, however, not very good
at reasoning about recursive data structures (such as lists and trees), compared
with the capability of reasoning about basic data such as integers and real num-
bers. Indeed, improving the treatment of recursive data structures has recently
been an active research topic, especially for CHC solvers [6,9,13,28].

In the present paper, we propose an automata-based approach for checking
the satisfiability of formulas over recursive data structures. (For the sake of sim-
plicity, we focus on lists of integers; our approach can, in principle, be extended
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Fig. 1. Examples of synchronous, symbolic and symbolic synchronous automaton.

for more general data structures). More precisely, we introduce the notion of
symbolic automatic relations, which is obtained by combining automatic rela-
tions [4] and symbolic automata [8,29,30].

A k-ary automatic relation is a relation on k words1 that can be recognized
by a finite state automaton that reads k words in a synchronous manner (so,
given k words, x01 · · · x0m, . . . , x(k−1)1 · · · x(k−1)m, the automaton reads a tuple
(x0i, . . . , x(k−1)i) at each transition; if the input words have different lengths,
the special padding symbol � is filled at the end). For example, the equality
relation on two words over the alphabet {a, b} is an automatic relation, since
it is recognized by the automaton with a single state q (which is both initial
and accepting) with the transition δ(q, (a, a)) = q and δ(q, (b, b)) = q. By using
automatic relations, we can express and manipulate relations on data structures.

Since data structures typically contain elements from an infinite set, we
extend automatic relations by using symbolic automata. Here, a symbolic
automaton is a variation of finite state automaton whose alphabet is possibly
infinite, and whose transition is described by a formula over elements of the
alphabet. For example, Msymb on Fig. 1 is a symbolic automaton that accepts
the sequences of integers in which positive and negative integers occur alter-
nately, and the first element is a positive integer. The symbolic automatic rela-
tions introduced in this paper are relations recognized by symbolic automata
that read input words (over a possibly infinite alphabet) in a synchronous man-
ner. For example, consider the binary relation:

R< = {(l01 · · · l0n, l11 · · · l1n) ∈ Z
∗ × Z

∗ | l0i < l1i for every i ∈ {1, . . . , n}}.
It is a symbolic automatic relation, as it is recognized by the symbolic syn-
chronous automaton M< on Fig. 1 (where l0 and l1 are bound to l0i and l1i at
the i-th transition step).

Symbolic automatic relations (SARs) inherit good properties of automatic
relations and symbolic automata: SARs are closed under Boolean operations,
and the emptiness problem of SAR (the problem of deciding whether R = ∅,
given the representation of a SAR R) is decidable if the underlying theory (e.g.
linear integer arithmetic) used for representing transitions is decidable.

We are interested in the satisfiability problem for SARs, i.e., the problem of
checking whether a given existentially-quantified formula (obtained by extend-
ing the signature of linear integer arithmetic with SARs and list construc-
tors/destructors) is satisfiable. For example, whether R<(X,Y ) ∧ R<(Y,X)
1 We use “lists”, “words”, and “sequences” interchangeably.
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is satisfiable (the answer is “No”) is an instance of the problem. The class of
existentially-quantified formulas considered in the satisfiability problem is reason-
ably expressive. For example, although the sortedness predicate sorted(X) and the
predicate nth(X, i, x) (the i-th element of X is x) are themselves not automatic
relations, we can allow those predicates to occur in the formulas, as explained
later. (Unfortunately, however, we cannot express the “append” relation.)

We first show that the satisfiability problem for SARs is undecidable, unfor-
tunately. The proof is based on a reduction from the undecidability of the halting
problem for Minsky machines (or, two-counter machines). Next, we show that
the satisfiability problem for SARs can be reduced to the satisfiability problem
for Constrained Horn Clauses (CHCs) over integers (without lists). Thanks to
the recent development of efficient CHC solvers [6,17,20], we can thus obtain a
sound, automated (but incomplete) procedure for solving the satisfiability prob-
lem for SARs. We show, through experiments, that our reduction is effective, in
that the combination of our reduction with off-the-shelf CHC solvers can solve
the satisfiability problem for various formulas over lists that cannot be solved
by state-of-the-art SMT solvers such as Z3 and CVC4.

Besides the above-mentioned improvement of SMT solvers on recursive data
structures, we also have in mind an application to CHC solving (indeed, improv-
ing CHC solvers was the original motivation of our work). The goal of CHC
solving is to check whether a given set of CHCs has a model (interpretations for
predicate variables that make all the clauses valid). Many of the CHC solvers
prove the satisfiability of given CHCs by constructing an actual model. The
main problem on such CHC solvers in dealing with recursive data structures is
that the language for describing models is too restrictive: especially, it cannot
express recursively defined predicates on recursive data structures (apart from
some built-in predicates such as the “length” predicate). Our symbolic auto-
matic relations can be used to enhance the expressive power of the language. The
above-mentioned procedure for the SAR satisfiability problem can be directly
applied to an ICE-based CHC solver like HoIce [6]. HoIce consists of a learner,
which constructs a candidate model, and a teacher, which checks whether the
candidate is indeed a model. Our procedure can be used by the teacher, when
a given candidate is described by using symbolic automatic relations. Later in
the paper, we give examples of CHCs whose models can only be expressed by
using symbolic automatic relations, and show through experiments that our pro-
cedure can indeed be used for checking the validity of models described by using
symbolic automatic relations.

Our contributions are: (i) introduction of symbolic automatic relations and
discussions of applications to SMT and CHC solving; (ii) a proof of the unde-
cidability of the satisfiability problem on SARs; (iii) a sound (but incomplete)
decision procedure for the satisfiability problem on SARs, via a reduction to
CHC solving on integers (iv) an implementation and experiments to confirm the
effectiveness of the above decision procedure.
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The rest of this paper is structured as follows. Section 2 briefly reviews the
notions used in many-sorted first-order logic. Section 3 defines symbolic auto-
matic relations and demonstrates how they can be used to express predicates
over lists. Section 4 shows that the satisfiability problem for SARs is undecidable.
Section 5 shows a reduction from the satisfiability problem for SARs to CHC solv-
ing, and Sect. 6 reports experimental results. Section 7 discusses related work and
Sect. 8 concludes the paper. Omitted proofs and the details of the experiment
are found in an extended version [26].

2 Preliminaries

This section introduces basic notions and notations used in the sequel.

Notations. Given a set S, we write S∗ for the set of all finite sequences over S. A
word w ∈ S∗ is either written as w = a1 · · · an or w = [a1, . . . , an], where ai ∈ S;
the empty word is denoted as ε or [ ]. The set of integers is written as Z.

2.1 FOL with List

Syntax. A (multi-sorted) signature is a triple (Ty,Fn,Pd), where Ty is a
set of sorts (aka types), Fn is a set of (typed) function symbols, and Pd is a
set of (typed) predicate symbols. There are two signatures that play impor-
tant roles in this paper: the signature of integer arithmetic and the signa-
ture for integer lists. We define the signature of integer arithmetic τint as
({Int},Fnint,Pdint). The set Fnint contains the function symbols for integer
arithmetic such as 0, s,+ and Pdint contains the predicates for integer arith-
metic such as =int, <,≤; the precise definition is not important. The signature of
integer lists is defined by τlist

def= ({Int ,List Int},Fnint∪Fnlist,Pdint∪{=list}),
where Fnlist

def= {nil , cons , head , tail}. Here, nil and cons have type List Int and
(Int ,List Int) → List Int and their intended meanings are the empty list and
the “cons function”, respectively. As the name suggests, head : List Int → Int
and tail : List Int → List Int will be interpreted as head and tail functions.

The set of terms and the set of formulas over a signature τ = (Ty,Fn,Pd)
is defined as follows:

t ::= x | f(t1, . . . , tn)
ϕ ::= � | ⊥ | P (t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∀xϕ | ∃xϕ

where x ranges over the denumerable set of variables, f ranges over Fn and P
ranges over Pd. In what follows, we only consider well-typed formulas; we omit
the definition of typing rules as they are standard.

Let us set some notational conventions for terms and formulas over the sig-
nature τlist (or τint). We use X,Y,Z, . . . to range over the set of variables of type
List Int and x, y, z, . . . to range over the set of variables of type Int . A term is
called an integer term if it has type Int and is called a list term if it has type



Symbolic Automatic Relations 409

List Int . We use T and t to range over the set of list terms and integer terms,
respectively. We write x̃ (resp. ˜X) to represent a possibly empty sequence of
integer variables (resp. list variables); ˜t and ˜T are defined similarly.

Semantics. A model M (or structure) over a signature τ = (Ty,Fn,Pd) is
a triple ((Uι)ι∈Ty, (fM)f∈Fn, (PM)P∈Pd), where each Uι is a non-empty set
called a universe, fM is a function over the universes, PM is a relation over the
universes. If f has type (ι1, . . . , ιn) → ιn+1 then fM is a function from Uι1 ×· · ·×
Uιn

to Uιn+1 ; the same applies to RM. We write (Z, (fZ)f∈Fnint , (P
Z)P∈Pdint)

or simply Z for the standard model of integer arithmetic. The standard model
for integer lists Mlist is a model over τlist such that UInt

def= Z and UList Int
def=

Z
∗; fMlist

def= fZ for f ∈ Fnint; PMlist
def= PZ for P ∈ Pdint; =Mlist

list is the
diagonal relation on Z

∗; and the interpretations for symbols in Fnlist are defined
in a natural way. Formally, interpretations for symbols in Fnlist is defined by
nilMlist def= ε; consMlist(i, w) = iw; headMlist(iw) def= i and headMlist(ε) def= 0;
and tailMlist(iw) def= w and tailMlist(ε) def= ε, where i ∈ Z and w ∈ Z

∗.2

The semantics of terms and formulas are defined in the standard way. Let τ
be a signature and M be a model over τ . An assignment α in M maps variables
of type ι to elements of the universe associated with ι. A triple (t,M, α) of a term
with type ι, a model and an assignment determines an element of the universe
associated with ι, which we write as �t�M,α. Similarly, a triple (ϕ,M, α), where
ϕ is a formula, determines whether the satisfaction relation M, α |= ϕ holds.
We omit the precise definitions of �t�M,α and the satisfaction relation as they
are defined as usual. Since the truth or falsity of M, α |= ϕ depends only on
the values of α for free variables of ϕ, we may write M, [x̃ → ã] |= ϕ if the free
variables of ϕ are among x̃ = x1, . . . , xn and ã = α(x1), . . . , α(xn). We say that
a formula ϕ is satisfiable in M if there is an assignment α such that M, α |= ϕ
and ϕ is satisfiable if there is a model M in which ϕ is satisfiable. A formula ϕ
is valid in M if M, α |= ϕ holds for all assignments α; ϕ is valid if it is valid in
all the models. Two formulas ϕ1 and ϕ2 are M-equivalent if, for all assignments
α, M, α |= ϕ1 if and only if M, α |= ϕ2.

3 Symbolic Automatic Relations

In this section, we introduce the notion of symbolic automatic relations. We first
introduce the notion of a symbolic synchronous automaton in Sect. 3.1, which
is a special kind of symbolic automaton [8], which serves as the representation
of a symbolic automatic relation. We then define symbolic automatic relations
in Sect. 3.2. For the sake of simplicity we consider symbolic automatic relations
on integer sequences (or, lists of integers). It would not be difficult to extend
them to deal with tree-structured data, by using (symbolic, synchronous) tree
automata; see also Remark 3.
2 Note that headMlist and tailMlist are defined as total functions. This matches the

behaviors of the existing SMT solvers such as Z3 or CVC4.



410 T. Shimoda et al.

3.1 Symbolic Synchronous Automata

We first extend the model Z by adding the special padding symbol �, which will
be used in the definition of symbolic synchronous automata.

Definition 1 (Partial model for integer arithmetic). A partial model for
integer arithmetic (Z�, (fZ�)f∈Fnint , (P

Z�)P∈Pdint) is a model over the signature

τint∪{�}
def= ({Int},Fnint,Pdint ∪ {pad}), where

– the universe Z� is Z ∪ {�}, where � /∈ Z is called a padding symbol,
– for every k-ary function symbol f , fZ�(a1, . . . , ak) def= fZ(a1, . . . , ak) if ai ∈

Z for all 1 ≤ i ≤ k and fZ�(a1, . . . , ak) def= � otherwise, and
– for every P ∈ Pdint, PZ� def= PZ and padZ� def= {�}.
By abuse of notation, we may write Z� to denote the partial model for integers.

Remark 1. The semantics of the negation ¬ is a little tricky for the partial model.
For example, the interpretation of x < y is different from ¬(x ≥ y): “1 < �” is
false but “¬(1 ≥ �)” is true.

Definition 2 (Symbolic synchronous automaton). A k-ary symbolic syn-
chronous nondeterministic finite automaton with n parameters3 x̃ = x0, . . . , xn−1

((k, n)-ary ss-NFA for short) is a quadruple M(x̃) = (Q, I, F,Δ) where

– Q is a finite set of states,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states,
– Δ ⊆ Q×Ψ x̃

k ×Q is a finite set of transitions. Here Ψ x̃
k is a subset of formulas

over the signature τint∪{�} containing only formulas, whose free variables are
among l0, . . . , lk−1, x0, . . . , xn−1.

Intuitively, the free variables li are bound to the i-th input at each transition step
and xi are bound to integer values that do not change at each step. Formally,
for ˜j = (j0, . . . , jn−1) ∈ Z

n and a = (i0, . . . , ik−1) ∈ Z
k
�, an a-transition of M(˜j)

is a transition q
ϕ−→ q′ such that Z�, [x̃ → ˜j, l0 → i0, . . . , lk−1 → ik−1] |= ϕ. This

a-transition is denoted as q
a−→M(˜j) q′ (or q

a−→ q′ when M(˜j) is clear from the
context).

A (k, n)-ary ss-NFA M(x̃) = (Q, I, F,Δ) is effective if

{(i0, . . . , ik−1, j0, . . . , jn−1) ∈ Z
k
� × Z

n | Z�, [˜l → ˜i, x̃ → ˜j] |= ϕ}

is a decidable set for all q
ϕ−→ q′ ∈ Δ. We sometimes call a (k, 0)-ary ss-NFA

just a k-ary ss-NFA.

The existence of parameters allows us to use ss-NFAs as representations of
relations that take not only words but also integers as arguments.
3 The parameters x̃ are “bound variables” and we identify “α-equivalent” automata.
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M1

q

¬(l0 > l1)

M2(x)

q0 q1

l0 = l1 + 1

l0 = 0 ∧ l2 = x

M3(x)

q0 q1

∨ l0 < 0

l0 > 0 ∧ l0 = l1 + 1

(l0 = 0 ∧ l2 �= x)

Fig. 2. Examples of ss-NFAs.

Definition 3 (Language of ss-NFA). Let M(x̃) = (Q, I, F,Δ) be a (k, n)-ary
ss-NFA and ˜j ∈ Z

n. A word w ∈ (Zk
�)∗ is accepted by M(˜j) if

– w = ε and I ∩ F �= ∅, or
– w = a1 · · · am and for all 1 ≤ i ≤ m, there exist transitions qi

ai−→M(˜j) qi+1

such that q1 ∈ I and qm+1 ∈ F .

A word accepted by M(˜j) is called an accepting run of M(˜j). The language
accepted by M(˜j), denoted L(M(˜j)), is the set of words accepted by M(˜j). We
also write L(M(x̃)) for the relation {(w,˜j) | w ∈ L(M(˜j))}.
Example 1. Consider the ss-NFAs in Fig. 2. The automaton M1 is formally
defined as a 2-ary ss-NFA without parameter M1

def= ({q}, {q}, {q}, {(q,¬(l0 >
l1), q)})). The automaton M2(x) is a 3-ary ss-NFA, with one parameter x, defined
by M2(x) def= ({q0, q1}, {q0}, {q1},Δ), where Δ

def= {(q0, l0 = l1 +1, q0), (q0, l0 =
0 ∧ l2 = x, q1), (q1,�, q1)}; the automaton M3(x) can be formally described in
a similar manner. These automata will be used to define predicates sorted(X)
and nth(i, x,X) later in this section.

The acceptance language of M2(x), i.e. L(M2(x)) ⊆ Z
3
� × Z, is given as

⎧

⎨

⎩

⎛

⎝

⎡

⎣

a01

a11

a21

⎤

⎦ · · ·
⎡

⎣

a0n

a1n

a2n

⎤

⎦ , j

⎞

⎠

∣

∣

∣

∣

∣

∣

∃m. 1 ≤ m ≤ n ∧ a0m = 0 ∧ a2m = j

∧ (∀i. 1 ≤ i < m =⇒ a0i = a1i + 1)

⎫

⎬

⎭

.

��
We introduce some terminology on ss-NFAs. A (k, n)-ary ss-NFA M(x̃) =

(Q, I, F,Δ) is deterministic if |I| = 1 and for all transitions q
ϕ1−→ q1 and q

ϕ2−→ q2,
if ϕ1 ∧ ϕ2 is satisfiable in Z� then q1 = q2. A state q of M(x̃) is called complete
if for all a ∈ Z

k
� and ˜j ∈ Z

n there exists an a-transition q
a−→M(˜j) q′ for some q′.

A ss-NFA M(x̃) is complete if all states of M(x̃) are complete.
Since ss-NFA are just a special kind of symbolic automata and symbolic

automata can be determinized and completed, it can be shown that ss-NFAs are
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closed under Boolean operations using variants of the complement construction
and the product construction of standard automata.4

Proposition 1. (Closure under boolean operations [30]). Given (k, n)-
ary ss-NFAs M1(x̃) and M2(x̃), one can effectively construct ss-NFAs M c

1 (x̃)
and (M1 ×M2)(x̃) such that L(M c

1 (x̃)) = ((Zk
�)∗ ×Z

n)\L(M1(x̃)) and L((M1 ×
M2)(x̃)) = L(M1(x̃)) ∩ L(M2(x̃)). Moreover, if M1(x̃) and M2(x̃) are effective,
so are M c

1 (x̃) and (M1 × M2)(x̃). ��

3.2 Symbolic Automatic Relations

A symbolic automatic relation (SAR) is basically an acceptance language of a
ss-NFA, but not every acceptance language of a ss-NFA is a SAR. Recall that
a run of a k-ary ss-NFA is a word w ∈ (Zk

�)∗ and thus it does not necessarily
correspond to tuples of words over Z since the “padding symbol” can appear at
any position of w. In order to exclude such “invalid inputs”, we first define the
convolution operation, which converts a tuple of words to a word of tuples.

Definition 4 (Convolution). Given k words w0, ..., wk−1 ∈ Z
∗, with wi =

ai1 · · · aili and l = max(l0, ..., lk−1), the convolution of words w0, ..., wk−1,
denoted as c(w0, ..., wk−1), is defined by

c(w0, ..., wk−1)
def=

⎡

⎢

⎣

a′
01
...

a′
(k−1)1

⎤

⎥

⎦
· · ·

⎡

⎢

⎣

a′
0l
...

a′
(k−1)l

⎤

⎥

⎦
∈ (

Z
k
�

)∗
and c() def= ε

where a′
ij = aij if j ≤ li and a′

ij = � otherwise. The padding symbol is appended
to the end of some words wi to make sure that all words have the same length.

We write Z
⊗k for the set of convoluted words, i.e. Z⊗k def= {c(w0, . . . , wk−1) |

(w0, . . . , wk−1) ∈ (Z∗)k}. This set can be recognized by a ss-NFA.

Proposition 2. Let k and n be natural numbers. Then there is a (k, n)-ary
ss-NFA M(x̃) such that L(M(x̃)) = Z

⊗k × Z
n. ��

Because of this proposition, there is not much difference between ss-NFAs that
only take convoluted words as inputs and ss-NFAs that take any word w ∈ (Zk

�)∗

as inputs. Given a ss-NFA M(x̃), we can always restrict the form of inputs by
taking the product with the automaton that recognizes Z

⊗k × Z
n.

Definition 5 (Symbolic automatic relation). A relation R ⊆ (Z∗)k ×Z
n is

called a (k, n)-ary symbolic automatic relation (SAR) if {(c(w0, . . . , wk−1),˜j) |
(w0, . . . , wk−1,˜j) ∈ R} = L(M(x̃)) for some (k, n)-ary ss-NFA M(x̃); in this
case, we say that R is recognized by M(x̃).
4 The fact that determinization is possible and that symbolic automata are closed

under boolean operations were originally shown for symbolic automata without
parameters [30], but the existence of parameters does not affect the proof.



Symbolic Automatic Relations 413

Given a (k, n)-ary ss-NFA M(x̃), the (k, n)-ary SAR represented by M(x̃),
denoted as R(M(x̃)), is defined as {(w0, . . . , wk−1,˜j) | (c(w0, . . . , wk−1),˜j) ∈
L(M(x̃))}. Note that R(M(x̃)) is indeed a SAR because R(M(x̃)) is recognized
by the product of M(x̃) and the automaton that recognizes Z

⊗k × Z
n.

3.3 Expressing Predicates on Lists

We demonstrate that various predicates over lists can be expressed as logical
formulas obtained by extending the signature τlist with SARs. Moreover, we
show that those predicates belong to a class of formulas called Σsar

1 -formulas.
We are interested in Σsar

1 -formulas because, as we shall see in Sect. 6, checking
whether a simple Σsar

1 -formula is satisfiable can often be done automatically.
Henceforth, we allow SARs to appear in the syntax of formulas. Formally,

we consider formulas over τsar, where τsar is defined as the signature obtained
by adding predicate symbols of the form RM(x̃), which we also call SAR, to the
signature τlist. Here the subscript M(x̃) represents ss-NFAs. In what follows, the
term “formula” means a formula over the signature τsar, unless the signature is
explicitly specified. The predicate symbols RM(x̃) are interpreted symbols. We
consider a fixed model M in which every predicate symbol of the form RM(x̃) is
interpreted as the symbolic automatic relation represented by M(x̃) and other
symbols are interpreted as in Mlist.

Definition 6. A formula ϕ is a Δsar
0 -formula if one can effectively construct

a formula RM(x̃)( ˜T ,˜t) (where RM(x̃) is a SAR) that is M-equivalent to ϕ. A
formula ϕ is a Σsar

1 -formula if one can effectively construct a formula of the
form ∃x̃∃ ˜Xϕ0 that is M-equivalent to ϕ and ϕ0 is a Δsar

0 -formula. We say that
a formula ϕ is a Δsar

1 -formula if both ϕ and ¬ϕ are Σsar
1 -formulas.

Example 2. Let us consider the predicate sorted(X), which holds just if X is
sorted in ascending order. The predicate sorted can be defined as a Δsar

0 -formula,
by sorted(X) def= RM1(X, tail(X)), where M1 is the ss-NFA used in Example 1.

The predicate nth(i, x,X), meaning that “the i-th element of X is x”, can be
defined as a Δsar

1 -formula. To show this, we use the automata M2 and M3 used in
Example 1. We can define nth by nth(i, x,X) def= ∃Y. RM2(x)(cons(i, Y ), Y,X, x).
In this definition, the list represented by Y works as a “counter”. Suppose that
cons(i, Y ) is interpreted as w0 and assume that the first n transitions were all
q0

l0=l1+1−−−−−→ q0. Then we know that the list w0 must be of the form [i, (i −
1), . . . (i − n), . . .], which can be seen as a decrementing counter starting from i.
The transition from q0 to q1 is only possible when the counter is 0 and this allows
us to “access to the i-th element” of the list represented by X. The negation
of nth(i, x,X) can be defined as ∃Y.RM3(x)(cons(i, Y ), Y,X, x). Using the same
technique, we can define the predicate length(X, i) (“the length of X is i”) as a
Δsar

1 -formula.
��
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The following proposition and example are useful for constructing new exam-
ples of Σsar

1 -formulas.

Proposition 3. The class of Δsar
0 -formulas and Δsar

1 -formulas are closed under
boolean operations.

Proof. The fact that Δsar
0 -formulas are closed under boolean operations follows

from the fact that ss-NFAs are closed under boolean operations (Proposition 1)
and that the set of convoluted words is a language accepted by a ss-NFA (Propo-
sition 2).

By the definition of Δsar
1 -formulas, Δsar

1 -formulas are clearly closed under
negation. Given formulas ∃x̃∃ ˜Xϕ1 and ∃ỹ∃˜Y ϕ2, where ϕ1 and ϕ2 are Δsar

0 -
formulas, (∃x̃∃ ˜Xϕ1)∧(∃ỹ∃˜Y ϕ2) is equivalent to ∃x̃ỹ∃ ˜X ˜Y (ϕ1∧ϕ2). Since ϕ1∧ϕ2

is a Δsar
0 -formula, it follows that Δsar

1 -formulas are closed under conjunction. ��
Example 3. Every arithmetic formula, i.e. a formula over the signa-
ture τint, is a Δsar

0 -formula. Given an arithmetic formula ϕ whose
free variables are x0, . . . , xk−1, we can construct a M-equivalent for-
mula RMϕ

([x0], . . . , [xk−1]), where [xi]
def= cons(xi,nil) and Mϕ

def=
({q0, q1}, {q0}, {q1}, {(q0, ϕ[l0/x0, . . . , lk−1/xk−1], q1)}). Similar transformation
works even if a formula of the form head(X) appears inside a formula ϕ of
type Int .

Equality relation on two lists is also a Δsar
0 -formula because it can be

described by a ss-NFA. ��
Thanks to Proposition 3 and Example 3, we can now write various specifi-

cation over lists as (negations of) closed Σsar
1 -formulas. For example, consider

the following formula that informally means “if the head element of a list sorted
in ascending order is greater or equal to 0, then all the elements of that list is
greater or equal to 0”:

ϕ
def= ∀x. ∀i. ∀X. X �= nil ∧ sorted(X) ∧ head(X) ≥ 0 ∧ nth(i, x,X) =⇒ x ≥ 0

The negation of ϕ is a Σsar
1 -formula because sorted(X) and nth(i, x,X) are Δsar

1 -
formulas as we saw in Example 2. Note that the validity of ϕ can be checked by
checking that ¬ϕ is unsatisfiable, which can be done by a satisfiability solver for
Σsar

1 -formulas.

3.4 An Application to ICE-Learning-Based CHC Solving with Lists

We now briefly discuss how a satisfiability solver for Σsar
1 -formulas may be used

in the teacher part of ICE-learning-based CHC solvers for lists. As mentioned
in Sect. 1, ICE-learning-based CHC solvers [6,12] consist of a learner, which
constructs a candidate model, and a teacher, which checks whether the candidate
is indeed a model, i.e., whether the candidate model satisfies every clause. Each
clause is of the form

∀x̃.∀ ˜X.A1 ∧ · · · ∧ An =⇒ B



Symbolic Automatic Relations 415

where A1, . . . , An and B are either primitive constraints or atoms of the form
P (t1, . . . , tk) where P is a predicate variable. Assuming that the learner returns
an assignment θ of Δsar

1 -formulas to predicate variables, the task of the teacher
is to check that

ϕ := ∀x̃.∀ ˜X.θA1 ∧ · · · ∧ θAn =⇒ θB

is a valid formula for each clause ∀x̃.∀ ˜X.θA1 ∧ · · · ∧ θAn =⇒ θB. The negation
of ϕ can be expressed as a closed Σsar

1 -formula ∃x̃.∃ ˜X.RM(ỹ)( ˜T ,˜t). By invoking
a satisfiability solver for a Σsar

1 -formulas we can check whether RM(ỹ)( ˜T ,˜t) is
unsatisfiable, which is equivalent to checking if ϕ is valid. If RM(ỹ)( ˜T ,˜t) is satisfi-
able, then ϕ is invalid. In this case, the teacher should generate a counterexample
against ϕ.

Example 4. Let us consider the following set of constrained horn clauses:

P (X) ⇐ X = nil ∨ X = cons(x, nil)
P (cons(x, cons(y,X))) ⇐ x ≤ y ∧ P (cons(y,X))
Q(cons(0,X)) ⇐ � Q(cons(x,X)) ⇐ Q(X) ⊥ ⇐ P (cons(1,X)) ∧ Q(X)

A model of this set of CHCs is P (X) → sorted(X), Q(X) → hasZero(X), where
sorted is the predicate we have seen in Example 2 and hasZero(X) is a predicate
that holds if 0 appears in the list X. It is easy to check that hasZero is a Δsar

0 -
formula. Hence, if there is a learner part, which is yet to be implemented, that
provides sorted and hasZero as a candidate model, then a satisfiability solver for
Σsar

1 -formulas can check that this candidate model is a valid model. ��
Remark 2. As discussed later in Sect. 5, the satisfiability problem for SARs is
solved by a reduction to CHC solving without data structures. Thus, combined
with the translation above, we translate a part of the problem of solving CHCs
with data structures to the problem of solving CHCs without data structures.
This makes sense because solving CHCs without data structures is easier in
practice (although the problem is undecidable in general, even without data
structures). One may wonder why we do not directly translate CHCs with data
structures to those without data structures, as in [9,10]. The detour through
SARs has the following advantages. First, it provides a uniform, streamlined
approach thanks to the closure of SARs under Boolean operations. Second, SARs
serve as certificates of the satisfiability of CHCs.

4 Undecidability Result

This section shows that the satisfiability problem for SARs is undecidable in
general. The satisfiability problem for SARs is the problem of deciding whether
there is an assignment α such that M, α |= ϕ, given a τsar-formula ϕ. We prove
that the satisfiability problem is undecidable even for the class of Δsar

0 -formulas,
by reduction from the halting problem for two-counter machines.
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Definition 7. (Minsky’s two-counter machine [22]). Minsky’s two-counter
machine consists of (i) two integer registers r0 and r1, (ii) a set of instructions,
and (iii) a program counter that holds a non-negative integer. Intuitively, the
value of the program counter corresponds to the line number of the program
currently being executed.

A program is a pair P = (Line,Code), where Line is a finite set of non-
negative integers such that 0 ∈ Line and Code is a map from a finite set of
non-negative integers to Inst, the set of instructions. The set Inst consists of:

– inc(i, j): Increment the value of register ri and set the program counter to
j ∈ Line.

– jzdec(i, j, k): If the value of register ri is positive, decrement it and set the
program counter to j ∈ Line. Otherwise, set the program counter to k ∈ Line.

– halt: Stop operating.

Initially, r0, r1 and the program counter are all set to 0. Given a program P =
(Line,Code) the machine executes Code(i), where i is the value of the program
counter until it executes the instruction halt.

Given a program P we simulate its execution using a formula of the form
RM (X0,X1, tail(X0), tail(X1)). The states and edges of M are used to model
the control structure of the program, and the list variables X0 and X1 are used
to model the “execution log” of registers r0 and r1, respectively.

Theorem 1 (Undecidability of satisfiability of SARs). Given a k-ary
symbolic automatic relation RM represented by an effective (k, 0)-ary ss-NFA
M and list terms T1, . . . , Tk, it is undecidable whether RM (T1, . . . , Tk) is satis-
fiable in M.

Proof. We show that for a given program P = (Line,Code), we can effec-
tively construct a SAR RMP

that satisfies “P halts iff there are assignments
for X0 and X1 that satisfy RMP

(X0,X1, tail(X0), tail(X1))”. Intuitively, Xi

denotes the “execution log of ri”, i.e., the sequence of values taken by ri in
a terminating execution sequence of P , and RMP

takes as arguments both Xi

and tail(Xi) to check that Xi represents a valid sequence. The ss-NFA MP is
defined as (Q, I, F,Δ), where Q

def= {qi | i ∈ Line} ∪ {qaccept}, I
def= {q0}, and

F
def= {qaccept}. We define the set of transitions so that MP has a transition

qi
(c0,c1,c′

0,c′
1)−−−−−−−−→ qj iff the two-counter machine has a transition from the config-

uration (i, c0, c1) (where i is the current program pointer and ci is the value
of ri) to (j, c′

0, c
′
1). We also add transition from qi to the final state qaccept if

Code(i) = halt. Formally, Δ is defined as the smallest set that satisfies the
following conditions:

– (qi, l
′
r = lr + 1 ∧ l1−r = l1−r, qj) ∈ Δ if Code(i) = inc(r, j).

– (qi, lr > 0 ∧ l′r = lr − 1 ∧ l′1−r = l1−r, qj), (qi, lr = 0 ∧ l′0 = l0 ∧ l′1 = l1, qk) ∈ Δ
if Code(i) = jzdec(r, j, k).

– (qi, pad(l′0) ∧ pad(l′1), qaccept) ∈ Δ if Code(i) = halt.
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Here, we have written l′0 and l′1 for l2 and l3.
Based on the intuitions above, it should be clear that P halts and the

execution log of ri obtained by running P is wi, if and only if MP accepts
c(w0, w1, w

′
0, w

′
1), where w′

i is the tail of wi. Thus, P halts if and only if RMP
is

satisfiable. Since the halting problem for two-counter machines is undecidable,
so is the satisfiability of RM .

��

5 Reduction to CHC Solving

This section describes the reduction from the satisfiability problem of SARs
to CHC solving, whose constraint theory is mere integer arithmetic. Precisely
speaking, the reduction works for a fragment of τsar-formulas, namely the Σsar

1 -
formulas. This section starts with a brief overview of the reduction. We then
give the formal definition and prove the correctness of the reduction.

5.1 Overview

Let us first present intuitions behind our reduction using an example. Con-
sider the predicate nth we defined in Example 2. Let i be a non-negative inte-
ger constant, and suppose that we wish to check whether nth(i, x,X) is satisfi-
able, i.e., whether ∃x∃X.nth(i, x,X) holds. We construct a set of CHCs Π such
that M |= ∃x∃X.nth(i, x,X) iff Π is unsatisfiable. That is, we translate the
Δsar

0 -formula RM2(x)(cons(i, Y ), Y,X, x) preserving its satisfiability. The follow-
ing CHCs are obtained by translating RM2(x)(cons(i, Y ), Y,X, x).

q0(v0, v1, v2, x) ⇐ v0 = i (1)

q0(v0, v1, v2, x) ⇐ q0(u0, u1, u2, x) ∧ u0 = u1 + 1 ∧ v0 = u1 ∧ ¬ϕend (2)

q1(v0, v1, v2, x) ⇐ q0(u0, u1, u2, x) ∧ u0 = 0 ∧ u2 = x ∧ v0 = u1 ∧ ¬ϕend (3)

q1(v0, v1, v2, x) ⇐ q1(u0, u1, u2, x) ∧ v0 = u1 ∧ ¬ϕend (4)

⊥ ⇐ q1(u0, u1, u2, x) ∧ ϕend (5)

Here ϕend
def=

∧

j∈{0,1,2} pad(uj). The predicate q corresponds to the state q and
q(v0, v1, v2, x) intuitively means “there exists an assignment α for X,Y and x
such that given (cons(i, α(Y )), α(Y ), α(X)) as input, M2(α(x)) visits state q,
with the next input letters being (v0, v1, v2)”. The clause (1) captures the fact
that M2(α(x)) is initially at state q0, with the first element v0 of the initial
input is i. The clauses (2), (3), and (4) correspond to transitions q0

l0=l1+1−−−−−→ q0,
q0

l1=0∧l2=x−−−−−−−→ q1, and q1
	−→ q1 respectively. The constraints in the bodies of

those clauses consist of: (i) the labels of the transitions (e.g., u0 = u1 +1 in (2)),
(ii) the equation u1 = v0, which captures the co-relation between the arguments
cons(i, Y ) and Y of RM2(x), (iii) ¬ϕend indicating that there is still an input to
read. The last clause (5) captures the acceptance condition: a contradiction is
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derived if M2(x) reaches the final state q1, having read all the inputs. It follows
from the intuitions above that the set of CHCs above is unsatisfiable, if and only
if, RM2(x)(cons(i, Y ), Y,X, x) is satisfiable.

5.2 Translation

We now formalize the translation briefly discussed in the previous subsection.
To simplify the definition of the translation, we first define the translation
for terms in a special form. Then we will show that every term of the form
RM (T1, . . . , Tk, t1, . . . , tn) can be translated into the special form, preserving
the satisfiability (or the unsatisfiability).

Definition 8. Let L be a set of list terms. Then L is

– cons-free if for all T ∈ L, T is of the form nil or tailn(X).
– gap-free if tailn(X) ∈ L implies tailm(X) ∈ L for all 0 ≤ m ≤ n.

Here tailm(X) is defined by tail0(X) def= X and tailm+1(X) def= tail(tailm(X)).
We say that a formula of the form RM(x̃)(T1, . . . , Tk, t1, . . . , tn) is normal if

{T1, . . . , Tk} is cons-free and gap-free, and every ti is an integer variable.

Definition 9. Let RM(x̃) be a (k, n)-ary SAR, where M(x̃) = (Q, I, F,Δ), ˜T
def=

T0, . . . , Tk−1 be list terms and ỹ
def= y0, . . . , yn−1 be integer variables. Suppose

that RM(x̃)( ˜T , ỹ) is normal. Then the set of CHCs translated from RM(x̃)( ˜T , ỹ),
written �RM(x̃)( ˜T , ỹ)�, consists of the following clauses:

1. The clause (written �p
ϕ−→ q�):

q(v0, . . . , vk−1, x̃) ⇐ p(u0, . . . , uk−1, x̃) ∧ ϕ[u0/l0, . . . , uk−1/lk−1]

∧ϕshift ∧ ϕpad ∧ ¬ϕend

for each p
ϕ−→ q ∈ Δ.

2. The clause

q(v0, . . . , vk−1, x̃) ⇐ ϕnil ∧ ϕtail(nil) ∧ x̃ = ỹ

for each q ∈ I.
3. The clause:

⊥ ⇐ q(u0, . . . , uk−1, x̃) ∧ ϕend

for each q ∈ F .

Here the definitions and the informal meanings of ϕend, ϕshift, ϕpad, ϕnil and
ϕtail(nil) are given as follows:
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ϕend
def
=

∧

i∈{0,...,k−1}
pad(ui) “there is no letter to read”

ϕshift
def
=

∧

{vi = uj ∨ (pad(vi) ∧ pad(uj)) | Ti = tailm(X), Tj = tailm+1(X)}
“the l-th element of the list represented by tailm+1(X) is

the (l + 1)-th element of the list represented by tailm(X)”

ϕpad
def
=

∧

i∈{0,...,k−1}
pad(ui) ⇒ pad(vi)

“if a padding symbol � is read, then the next input is also �”

ϕnil
def
=

∧

{pad(vi) | Ti = nil}
“there is no letter to read from an empty list”

ϕtail(nil)
def
=

∧

{pad(vi) ⇒ pad(vj) | Ti = tailm(X), Tj = tailm+1(X)}
“if there is no letter to read from the input represented by tailm(X)

then there is nothing to read from the input represented by tailm+1(X)”

We next show that we can assume that RM(x̃)( ˜T ,˜t) is normal without loss
of generality. First, observe that ensuring that ˜T is gap-free is easy. If ˜T is
not gap-free then we just have to add additional inputs, corresponding to the
list represented by tailn(X), to the automaton M(x̃) and ignore those inputs.
Ensuring that ˜t is a sequence of integer variables is also easy. If t is not an integer
variable, then we can embed t to the transitions of the automaton and add the
free variables of t to the parameter or as inputs of the automaton. Therefore,
the only nontrivial condition is the cons-freeness:

Lemma 1. Let RM(x̃) be a (k, n)-ary SAR, ˜T
def= T1, . . . , Tk be list terms and

˜t
def= t1, . . . , tn be integer terms. Then we can effectively construct a (k, n +

m)-ary ss-NFA M ′(x̃, x̃′), list terms ˜T ′ def= T ′
1, . . . , T

′
k and integer terms ˜t′ def=

t′1, . . . , t
′
n+msuch that (1) RM(x̃)( ˜T ,˜t) is satisfiable in M iff RM ′(x̃,x̃′)(˜T ′, ˜t′) is

satisfiable in M and (2) {T ′
1, . . . , T

′
k} is cons-free. ��

Instead of giving a proof, we look at an example. Consider the formula
ϕ

def= RM2(x)(cons(1, cons(t, Y )), cons(0, Y ),X, x), where M2(x) is the automa-
ton given in Example 1. We explain how to remove cons(t, ·) from the first
argument; by repeating this argument we can remove all the “cons”. Let ϕ′ be a
formula defined as RM ′

2(x,y)(cons(1, Y ), cons(0, tail(Y )),X, x, t), where M ′
2(x, y)

is the ss-NFA in Fig. 3. Then it is easy to see that ϕ is satisfiable in M iff
ϕ′ is satisfiable in M. If M, α |= ϕ with α(Y ) = w and �t�M,α = i then
M, α[Y → iw] |= ϕ′; the opposite direction can be checked in a similar manner.
The idea is to embed the information that “the second element is t” into the
ss-NFA by replacing l0 with y in the edges that corresponds to the “second step”
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M ′
2(x, y)

q00 q01

q11

q0 q1
l0 = l1 + 1

l0 = 0 ∧ l2 = x

y = l1 + 1

y = 0 ∧ l2 = x

l0 = l1 + 1

l0 = 0 ∧ l2 = x

Fig. 3. The ss-NFA used to explain the idea behind Lemma 1.

and passing t as the actual argument. Note that we had to “unroll the ss-NFA
M2(x)” to ensure that the transition that contains y is used at most once.

Remark 3. We have so far considered symbolic automatic relations on lists. We
expect that the reduction above can be extended to deal with symbolic automatic
relations on tree structures, as follows. Let us consider a (symbolic, synchronous)
bottom-up tree automaton, with transitions of the form

〈l1, . . . , lk, x1, . . . , xn〉(q1, . . . , qm), ϕ → q,

which means “when the current node is labeled with 〈l1, . . . , lk, x1, . . . , xn〉 and
the i-th child has been visited with state qi, then the current node is visited with
state q if l1, . . . , lk, x1, . . . , xn satisfy ϕ”. To reduce the satisfiability problem to
CHCs on integers, it suffices to prepare a predicate q for each state q, so that
q(l1, . . . , lk, x1, . . . , xn) holds just if there exists an input that allows the automa-
ton to visit state q after reading 〈l1, . . . , lk, x1, . . . , xn〉. As for the definition of
“normal form”, it suffices to replace tail(T ) with childi(T ) (which denotes the
i-th child of tree T ), and define the cons-freeness and gap-freeness conditions
accordingly. The formalization of the extension is left for future work.

5.3 Correctness

The correctness of the translation is proved by associating a derivation of ⊥ to
an accepting run and vice versa.

We first define the notion of derivations for CHCs, as a special case of the
SLD resolution derivation [21]. Since the system of CHCs obtained by translating
a Δsar

0 -formula is linear, which means that each clause contains at most one
predicate in the body, we specialize the notion of derivations for linear CHCs.

Definition 10 (Derivation). A derivation state (or simply a state) is a pair
〈A | ψ〉, where A is either � or P (˜t), i.e. an uninterpreted predicate symbol P
applied to terms ˜t, and ψ is a constraint. Let C be a linear constrained horn
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clause of the form P (˜t1) ⇐ A ∧ ψ′, where A is either � or formula of the form

Q(˜t2) and ψ′ is a constraint. Then we write 〈P (˜t) | ψ〉 (C,θ)� 〈θA | θ(ψ ∧ ψ′)〉, if
P (˜t) and P (˜t1) are unifiable by a unifier θ.

Let Π be a system of linear CHCs, i.e. a finite set of linear constrained horn
clauses. A derivation from state S0 with respect to Π is a finite sequence of the

form S0
(C1,θ1)� S1

(C2,θ2)� · · · (Cn,θn)� Sn such that (i) Ci ∈ Π for all i and (ii) Sn

is of the form 〈� | ψ〉 such that ψ is a constraint that is satisfiable in Z�.

Now we are ready to prove the correctness of the translation. Due to the lack
of space we only sketch the proof; a detailed version is in [26].

Theorem 2. Let RM(x̃) be a (k, n)-ary SAR, and suppose that RM(x̃)( ˜T , ỹ) is
normal. Then RM(x̃)( ˜T , ỹ) is satisfiable in M iff �RM(x̃)( ˜T , ỹ)� is unsatisfiable
modulo Z�.

Proof (Sketch). Suppose that M(x̃) = (Q, I, F,Δ), ˜T = T0, . . . , Tk−1, ỹ =
y0, . . . , yn−1 and let Π

def= �RM(x̃)( ˜T , ỹ)�. By the completeness of the SLD reso-
lution, it suffices to show that RM(x̃)( ˜T , ỹ) is satisfiable if and only if there is a
derivation starting from 〈q(ũ, x̃) | ϕend〉 with respect to Π for some q ∈ F . We
separately sketch the proof for each direction.

(Only if) Since RM(x̃)( ˜T , ỹ) is satisfiable, there exists an assignment α such

that M, α |= RM(x̃)( ˜T , ỹ). Let wi
def= �Ti�M,α for each i ∈ {0, . . . , k − 1}, ji

def=

α(yi) for i ∈ {0, . . . , n−1} and ˜j
def= j0, . . . , jn−1. Because M, α |= RM(x̃)( ˜T , ỹ),

we have an accepting run of M(˜j), q0
a0−→ q1

a2−→ · · · am−1−−−→ qm, where the run
a0a2 · · · am−1 is c(w0, . . . , wk−1). From this run, we can construct a derivation

〈qm(ũ, x̃) |ϕend〉ξm−1� 〈qm−1(am−1,˜j) | ψm−1〉 ξm−2� · · · ξ0�〈q0(a0,˜j) | ψ0〉 (C,θ)� 〈� | ψ〉

where ξi = (Ci, θi). Here, qi(ai,˜j) means the predicate symbol qi applied to
constants that represent the elements of ai and ˜j. In particular, the derivation can
be constructed by taking the clause that corresponds to the transition qi

ai−→ qi+1

for the clause Ci.
(If) By assumption, there is a derivation

〈qm(ũ, x̃) | ψm〉 (Cm,θm)� · · · (C1,θ1)� 〈q0(ũ, x̃) | ψ0〉 (C0,θ0)� 〈� | ψ〉

where ψm = ϕend. We construct an accepting run of M(x̃) using an assignment
in Z� and the unifiers. Take an assignment α such that Z�, α |= ψ, which exists
because ψ is satisfiable in Z�. Let θ≤i

def= θ0 ◦ θ1 ◦ · · · ◦ θi. We define aij ∈ Z�,

where 0 ≤ i ≤ m and 0 ≤ j ≤ k − 1, by aij
def= �θ≤i(uj)�Z�,α and set ai

def=

(ai0, . . . , aik−1). We also define ji
def= �θ0(xi)�M,α and write ˜j for j0, . . . , jn. Then

we can show that a0a1 · · · am−1 is an accepting run of M(˜j). Moreover, we can
show that a0a1 · · · am−1 can be given as a convolution of words c(w0, . . . , wk−1)
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by using the constraint ¬ϕend that appears in clauses corresponding to transition
relations. Finally, we can show that there is an assignment β in M such that
�Ti�M,β = wi for every i ∈ {0, . . . , k − 1} by using the cons-freeness and gap-
freeness, and the constraints ϕshift, ϕnil and ϕtail(nil). ��

The correspondence between resolution proofs and accepting runs should
allow us to generate a witness of the satisfiability of RM(x̃)( ˜T , ỹ). A witness of
the satisfiability is important because it serves as a counterexample that the
teacher part of an ICE-based CHC solver provides (cf. Sect. 3.4). Since some
CHC solvers like Eldarica [17] outputs a resolution proof as a certificate of
the unsatisfiability, it should be able to generate counterexamples by using these
solvers as a backend of the teacher part. The formalization and the implemen-
tation of this counterexample generation process are left for future work.

6 Experiments

We have implemented a satisfiability checker for Δsar
1 -formulas. An input of

the tool consists of (i) definitions of Δsar
1 -predicates (expressed using ss-NFA),

and (ii) a Δsar
1 -formula consisting of the defined predicates, list constructors

and destructors, and integer arithmetic. For (i), if a predicate is defined using
existential quantifiers, both the definitions of a predicate and its negation should
be provided (recall nth in Example 1); we do not need to provide the predicates
in normal forms because our tool automatically translates the inputs into normal
forms. The current version of our tool only outputs SAT, UNSAT, or TIMEOUT
and does not provide any witness of the satisfiability. We used Spacer [20],
HoIce [6], and Eldarica [17] as the backend CHC solver (to solve the CHC
problems obtained by the reduction in Sect. 5). The experiments were conducted
on a machine with AMD Ryzen 9 5900X 3.7 GHz and 32 GB of memory, with
a timeout of 60 s. The implementation and all the benchmark programs are
available in the artifact [25]. Detailed experimental results are also shown in [26].

We have tested our tool for three benchmarks. All the ss-NFAs used in
the benchmarks are effective; in fact, all the formulas appearing as the labels
of transitions are formulas in quantifier-free linear integer arithmetic. The first
benchmark “IsaPlanner” is obtained from the benchmark [18] of IsaPlanner [11],
which is a proof planner for the interactive theorem prover Isabelle [24]. We man-
ually converted the recursively defined functions used in the original benchmark
into SARs. The second benchmark “SAR SMT” consists of valid/invalid formu-
las that represent properties of lists.

Each instance of the third benchmark “CHC” consists of (i) CHCs on data
structures and (ii) a candidate model (given as a map from predicate variables
to Δsar

1 -formulas); the goal is to check that the candidate is a valid model for the
CHCs (which is the task of the “teacher” part of ICE-based CHC solving [6]).
This benchmark includes CHCs obtained by a reduction from the refinement
type-checking problem for functional programs [15,27,28,31]. For many of the
instances in the benchmark set, symbolic automatic relations are required to
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Table 1. Summary of the experimental results

Benchmark IsaPlanner SAR SMT CHC All

#Instances 15 (15/0) 60 (47/13) 12 (12/0) 87 (74/13)

Ours-Spacer

#Solved 8 (8/0/0) 43 (30/13/0) 8 (8/0/0) 59 (46/13/0)

Average time 0.995 0.739 1.981 0.942

Ours-HoIce

#Solved 14 (14/0/1) 55 (42/13/0) 11 (11/0/0) 80 (67/13/1)

Average time 7.296 4.498 6.584 5.275

Ours-Eldarica

#Solved 14 (14/0/0) 59 (46/13/2) 12 (12/0/0) 85 (72/13/2)

Average time 4.539 2.441 11.078 4.006

Z3 (rec)

#Solved 5 (5/0/0) 32 (19/13/0) 1 (1/0/0) 38 (25/13/0)

Average time 0.023 0.022 0.017 0.022

CVC4 (rec)

#Solved 5 (5/0/0) 32 (19/13/0) 3 (3/0/0) 40 (27/13/0)

Average time 0.014 0.015 0.050 0.017

Z3 (assert)

#Solved 7 (7/0/0) 20 (20/0/0) 3 (3/0/0) 30 (30/0/0)

Average time 0.018 0.018 0.022 0.019

CVC4 (assert)

#Solved 6 (6/0/0) 19 (19/0/0) 3 (3/0/0) 28 (28/0/0)

Average time 0.057 0.008 0.015 0.019

express models. For example, the set of CHCs given in Example 4 is included in
the benchmark.

To compare our tool with the state-of-the-art SMT solvers, Z3 (4.8.11) [23]
and CVC4 (1.8) [1], which support user-defined data types and recursive func-
tion definition, we manually translated the instances to SMT problems that use
recursive functions on lists. We tested two different translations. One is to trans-
late the Δsar

1 -predicates (such as nth) directly into recursive functions by using
define-fun-rec, and the other is to translate the predicates into assertions, like
(assert (forall ...)), that describe the definition of functions.

Table 1 summarizes the experimental results. In the first column, “Ours-
XXX” means our tool with the underlying CHC solver XXX, “(rec)” means
the translation to recursive functions, and “(assert)” means the translation to
assertions. The row “Benchmark” shows the names of the benchmarks. The
column “All” show the summary of the all benchmarks. The row “#Instances”
shows the number of instances in the benchmark, and the first two numbers in
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the parentheses show the numbers of valid and invalid instances respectively,
and the last number in the parentheses shows the number of solved instances
that were not solved by the other tools. The row “#Solved” shows the number
of solved instances, and the numbers in the parentheses are the same as ones in
“#Instances”. The row “Average time” shows the average running time of the
solved instances in seconds.

Ours-Eldarica successfully verified all the instances except two. Since one
of them needs non-linear properties on integers such as x ≥ y × z, the reduced
CHC problem cannot be proved by the underlying CHC solvers used in the
experiments. The other one is proved by Ours-HoIce. As shown in the rows
“Z3” and “CVC4”, many of the problems were not verified by the SMT solvers
regardless of the way of translation. Especially, they did not verify most of the
instances that require inductions over lists. Moreover, all the invalid instances
translated by using assertions were not verified by Z3 nor CVC4, while those
translated by using recursive functions were verified by Z3 and CVC4.

We explain some benchmark instances below. The instance “prop 77” in
IsaPlanner benchmark is the correctness property of insert function of insertion
sort. That is, if a list X is sorted and a list Y is X with some integer inserted by
insert , then Y is sorted. As stated above, we manually converted the recursively
defined functions into SARs. As an example, we now describe how to translate
insert function into a SAR. The original insert function is defined as follows
(written in OCaml-like language):

let rec insert(x, y) = match y with
| [] -> x :: []
| z::xs -> if x <= z then x::y else z::insert(x, xs)

We first translate it into the following recursively defined predicate.

let rec insert’(x, ys, rs) = match ys, rs with
| [], r::rs’ -> x = r && ys = rs’
| y::ys’, r::rs’ when x <= y -> x = r && ys = rs’
| y::ys’, r::rs’ when x > y -> y = r && insert’(x, ys’, rs’)
| _ -> false

The predicate insert’(x,ys,rs) means that insert(x,ys) returns rs. We
can now translate it into a SAR. To express this predicate, we need two
states—one for insert’ and one for equality of lists (ys = rs’). In addition,
to check the equality of ys and the tail of rs, we need a one-shifted list of
ys that has a dummy integer 0 in its head, i.e., cons(0, ys). Hence, predi-
cate insert(x,X, Y ) (which means Y is X with x inserted) can be expressed
as RMins(x)(cons(0,X),X, Y ) where Mins(x) is shown in Fig. 4. The transition
from q0 to q0 corresponds to the third case of the pattern matching of insert’,
and the transition from q0 to q1 corresponds to the first two cases.

The instance “prefix trans” in SAR SMT benchmark is the transitivity prop-
erty of predicate prefix . The predicate prefix takes two lists, and it holds if the
first argument is the prefix of the second argument. The transitivity of prefix
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Mins(x)

q0 q1

l1 = l2

x = l2 ∧ (x ≤ l1 ∨ pad(l1))

l0 = l2

Fig. 4. The ss-NFA for function insert .

is that, if prefix (X,Y ) and prefix (Y,Z), then prefix (X,Z) holds. The instance
“sorted” in CHC benchmark is the problem explained in Example 4. All the
instances explained here were solved by our tool, while neither Z3 nor CVC4
verified them.

7 Related Work

Although both automatic relations/structures [4,14,19] and symbolic automata
[8,29,30] and their applications to verification have been well studied, the com-
bination of them is new to our knowledge, at least in the context of program
verification. D’Antoni and Veanes [7] studied the notion of extended symbolic
finite automata (ESFA) which take a single word as an input, but read multi-
ple consecutive symbols simultaneously. ESFA is related to our symbolic auto-
matic relations in that the language accepted by ESFA can be expressed as
{w | R(w, tail(w), . . . , tailk−1(w))} using a symbolic automatic relation R.

Haudebourg [16, Chapter 6] recently applied tree automatic relations to CHC
solving. Since he uses ordinary (i.e. non-symbolic) automata, his method can only
deal with lists and trees consisting of elements from a finite set.

As mentioned in Sect. 1, the current SMT solvers do not work well for recur-
sive data structures. In the case of lists, one may use decidable theories on arrays
or inductive data types [2,5]. The decidable fragments of those theories are lim-
ited. Our procedure is necessarily incomplete (due to the undecidability of the
satisfiability problem), but can be used as complementary to the procedures
implemented in the current SMT solvers, as confirmed by the experiments. We
have focused on lists in this paper, but our approach can be extended to deal
with more general recursive data structures, by replacing automatic relations
with tree automatic ones.

There are other approaches to solving CHCs on recursive data structures.
Unno et al. [28] proposed a method for automatically applying induction on data
structures, and De Angelis et al. [9,10] proposed a method based on fold/unfold
transformation. An advantage of our approach is that we can generate a symbolic
automatic relation as a certificate of the satisfiability of CHCs. To make a proper
comparison, however, we have to devise and implement a missing component –
a procedure for automatically generating a candidate model (recall that we have
given only a procedure for checking the validity of a candidate model).
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8 Conclusion

We have introduced the notion of symbolic automatic relations (SARs) and con-
sidered the satisfiability problem for SARs, with applications to SMT and CHC
solving on recursive data structures in mind. We have shown that the satisfiabil-
ity problem is undecidable in general, but developed a sound (but incomplete)
procedure to solve the satisfiability problem by a reduction to CHC solving on
integers. We have confirmed the effectiveness of the proposed approach through
experiments. We plan to implement an ICE-based CHC solver based on the
proposed approach. To that end, we need to implement a learner’s algorithm
to automatically discover appropriate SARs, following the approach of Haude-
bourg [16].
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Abstract. Solidity smart contracts are programs that manage up to
2160 users on a blockchain. Verifying a smart contract relative to all users
is intractable due to state explosion. Existing solutions either restrict
the number of users to under-approximate behaviour, or rely on manual
proofs. In this paper, we present local bundles that reduce contracts with
arbitrarily many users to sequential programs with a few representative
users. Each representative user abstracts concrete users that are locally
symmetric to each other relative to the contract and the property. Our
abstraction is semi-automated. The representatives depend on commu-
nication patterns, and are computed via static analysis. A summary for
the behaviour of each representative is provided manually, but a default
summary is often sufficient. Once obtained, a local bundle is amenable
to sequential static analysis. We show that local bundles are relatively
complete for parameterized safety verification, under moderate assump-
tions. We implement local bundle abstraction in SmartACE, and show
order-of-magnitude speedups compared to a state-of-the-art verifier.

1 Introduction

Solidity smart contracts are distributed programs that facilitate information
flow between users. Users alternate and execute predefined transactions, that
each terminate within a predetermined number of steps. Each user (and con-
tract) is assigned a unique, 160-bit address, that is used by the smart contract
to map the user to that user’s data. In theory, smart contracts are finite-state
systems with 2160 users. However, in practice, the state space of a smart contract
is huge—with at least 22

160
states to accommodate all users and their data (con-

servatively counting one bit per user). In this paper, we consider the challenge
of automatically verifying Solidity smart contracts that rely on user data.
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Fig. 1. A smart contract that implements a simple auction.

Fig. 2. A harness to verify Prop. 1 (ignore the highlighted lines) and Prop. 2.

A naive solution for smart contract verification is to verify the finite-state sys-
tem directly. However, verifying systems with at least 22

160
states is intractable.

The naive solution fails because the state space is exponential in the number of
users. Instead, we infer correctness from a small number of representative users
to ameliorate state explosion. To restrict a contract to fewer users, we first gen-
eralize to a family of finite-state systems parameterized by the number of users.
In this way, smart contract verification is reduced to parameterized verification.

For example, consider Auction in Fig. 1 (for now, ignore the highlighted lines).
In Auction, each user starts with a bid of 0. Users alternate, and submit increas-
ingly larger bids, until a designated manager stops the auction. While the auc-
tion is not stopped, a non-leading user may withdraw their bid1. Auction satisfies
Prop. 1: “Once stop() is called, all bids are immutable.” Prop. 1 is satisfied
since stop() sets stopped to true, no function sets stopped to false, and while
stopped is true neither bid() nor withdraw() is enabled. Formally, Prop. 1 is
initially true, and remains true due to Prop. 1b: “Once stop() is called, stopped
remains true.” Prop. 1 is said to be inductive relative to its inductive strength-
ening Prop. 1b. A Software Model Checker (SMC) can establish Prop. 1 by an
exhaustive search for its inductive strengthening. However, this requires a bound
on the number of addresses, since a search with all 2160 addresses is intractable.

A bound of at least four addresses is necessary to represent the zero-account
(i.e., a null user that cannot send transactions), the smart contract account, the
manager, and an arbitrary sender. However, once the arbitrary sender submits
a bid, the sender is now the leading bidder, and cannot withdraw its bid. To
enable withdraw(), a fifth user is required. It follows by applying the results
of [20], that a bound of five addresses is also sufficient, since users do not read

1 For simplicity of presentation, we do not use Ether, Ethereum’s native currency.
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each other’s bids, and adding a sixth user does not enable additional changes to
leadingBid [20]. The bounded system, known as a harness, in Fig. 2 assigns the
zero-account to address 0, the smart contract account to address 1, the manager
to address 2, the arbitrary senders to addresses 3 and 4, and then executes an
unbounded sequence of arbitrary function calls. Establishing Prop. 1 on the
harness requires finding its inductive strengthening. A strengthening such as
Prop. 1b (or, in general, a counterexample violating Prop. 1) can be found by
an SMC, directly on the harness code.

The above bound for Prop. 1 also works for checking all control-reachability
properties of Auction. This, for example, follows by applying the results of [20].
That is, Auction has a Small Model Property (SMP) (e.g., [1,20]) for such prop-
erties. However, not all contracts enjoy an SMP. Consider Prop. 2: “The sum
of all active bids is at least leadingBid.” Auction satisfies Prop. 2 since the
leading bid is never withdrawn. To prove Auction satisfies Prop. 2, we instru-
ment the code to track the current sum, through the highlighted lines in Fig. 1.
With the addition of _sum, Auction no longer enjoys an SMP. Intuitively, each
user enables new combinations of _sum and leadingBid. As a proof, assume that
there are N users (other than the zero-account, the smart contract account, and
the manager) and let SN = 1 + 2 + · · · + N . In every execution with N users, if
leadingBid is N + 1, then _sum is less than SN+1, since active bids are unique
and SN+1 is the sum of N + 1 bids from 1 to N + 1. However, in an execu-
tion with N + 1 users, if the i-th user has a bid of i, then leadingBid is N + 1
and _sum is SN+1. Therefore, increasing N extends the reachable combinations
of _sum and leadingBid. For example, if N = 2, then S3 = 1 + 2 + 3 = 6. If
the leading bid is 3, then the second highest bid is at most 2, and, therefore,
_sum ≤ 5 < S3. However, when N = 3, if the three active bids are {1, 2, 3}, then
_sum is S3. Therefore, instrumenting Auction with _sum violates the SMP of the
original Auction.

Despite the absence of such an SMP, each function of Auction interacts with
at most one user per transaction. Each user is classified as either the zero-
account, the smart contract, the manager, or an arbitrary sender. In fact, all
arbitrary senders are indistinguishable with respect to Prop. 2. For example,
if there are exactly three active bids, {2, 4, 8}, it does not matter which user
placed which bid. The leading bid is 8 and the sum of all bids is 14. On the
other hand, if the leading bid is 8, then each participant of Auction must have a
bid in the range of 0 to 8. To take advantage of these classes, rather than analyze
Auction relative to all 2160 users, it is sufficient to analyze Auction relative to
a representative user from each class. In our running example, there must be
representatives for the zero-account, the smart contract account, the manager,
and an (arbitrary) sender. The key idea is that each representative user can
correspond to one or many concrete users.

Intuitively, each representative user summarizes the concrete users in its class.
If a representative’s class contains a single concrete user, then there is no dif-
ference between the concrete user and the representative user. For example, the
zero-account, the smart contract account, and the manager each correspond to
single concrete users. The addresses of these users, and in turn, their bids, are
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known with absolute certainty. On the other hand, there are many arbitrary
senders. Since senders are indistinguishable from each other, the precise address
of the representative sender is unimportant. What matters is that the represen-
tative sender does not share an address with the zero-account, the smart contract
account, nor the manager. However, this means that at the start of each transac-
tion the location of the representative sender is not absolute, and, therefore, the
sender has a range of possible bids. To account for this, we introduce a predicate
that is true of all initial bids, and holds inductively across all transactions. We
provide this predicate manually, and use it to over-approximate all possible bids.
An obvious predicate for Auction is that all bids are at most leadingBid, but this
predicate is not strong enough to prove Prop. 2. For example, the representa-
tive sender could first place a bid of 10, and then (spuriously) withdraw a bid of
5, resulting in a sum of 5 but a leading bid of 10. A stronger predicate, that is
adequate to prove Prop. 2, is given by θU : “Each bid is at most leadingBid. If

a bid is not leadingBid, then its sum with leadingBid is at most _sum.”
Given θU , Prop. 2 can be verified by an SMC. This requires a new harness,

with representative, rather than concrete, users. The new harness, Fig. 2 (now
including the highlighted lines), is similar to the SMP harness in that the zero-
account, the smart contract account, and the manager account are assigned
to addresses 0, 1, and 2, respectively, followed by an unbounded sequence of
arbitrary calls. However, there is now a single sender that is assigned to address 3
(line 15). That is, the harness uses a fixed configuration of representatives in
which the fourth representative is the sender. Before each function call, the
sender’s bid is set to a non-deterministic value that satisfies θU (lines 6–10). If
the new harness and Prop. 2 are provided to an SMC, the SMC will find an
inductive strengthening such as, “The leading bid is at most the sum of all bids.”

The harness in Fig. 2 differs from existing smart contract verification tech-
niques in two ways. First, each address in Fig. 2 is an abstraction of one or
more concrete users. Second, msg.sender is restricted to a finite address space by
lines 13 to 15. If these lines are removed, then an inductive invariant must con-
strain all cells of bids, to accommodate bids[msg.sender]. This requires quan-
tified invariants over arrays that is challenging to automate. By introducing
lines 13 to 15, a quantifier-free predicate, such as our θU , can directly constrain
cell bids[msg.sender] instead. Adding lines 13–15 makes the contract finite state.
Thus, its verification problem is decidable and can be handled by existing SMCs.
However, as illustrated by Prop. 2, the restriction on each user must not exclude
feasible counterexamples. Finding such a restriction is the focus of this paper.

In this paper, we present a new approach to smart contract verification. We
construct finite-state abstractions of parameterized smart contracts, known as
local bundles. A local bundle generalizes the harness in Fig. 2, and is constructed
from a set of representatives and their predicates. When a local bundle and a
property are provided to an SMC, there are three possible outcomes. First, if a
predicate does not over-approximate its representative, a counterexample to the
predicate is returned. Second, if the predicates do not entail the property, then a
counterexample to verification is returned (this counterexample refutes the proof,
rather than the property itself). Finally, if the predicates do entail the property,
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then an inductive invariant is returned. As opposed to deductive smart contract
solutions, our approach finds inductive strengthenings automatically [17,44]. As
opposed to other model checking solutions for smart contracts, our approach is
not limited to pre- and post-conditions [21], and can scale to 2160 users [24].

Key theoretical contributions of this paper are to show that verification with
local bundle abstraction is an instance of Parameterized Compositional Model
Checking (PCMC) [31] and the automation of the side-conditions for its appli-
cability. Specifically, Theorem 3 shows that the local bundle abstraction is a
sound proof rule, and a static analysis algorithm (PTGBuilder in Sect. 4) com-
putes representatives so that the rule is applicable. Key practical contributions
are the implementation and the evaluation of the method in a new smart con-
tract verification tool SmartACE, using SeaHorn [15] for SMC. SmartACE
takes as input a contract and a predicate. Representatives are inferred automat-
ically from the contract, by analyzing the communication in each transaction.
The predicate is then validated by SeaHorn, relative to the representatives. If
the predicate is correct, then a local bundle, as in Fig. 2, is returned.

The rest of the paper is structured as follows. Section 2 reviews parameter-
ized verification. Section 3 presents MicroSol, a subset of Solidity with network
semantics. Section 4 relates user interactions to representatives. We formalize user
interactions as Participation Topologies (PTs), and define PT Graphs (PTGs)
to over-approximate PTs for arbitrarily many users. Intuitively, each PTG over-
approximates the set of representatives. We show that a PTG is computable for
every MicroSol program. Section 5 defines local bundles and proves that our app-
roach is sound. Section 6 evaluates SmartACE and shows that it can outperform
VerX, a state-of-the-art verification tool, on all but one VerX benchmark.

2 Background

In this section, we briefly recall Parameterized Compositional Model Checking
(PCMC) [31]. We write u = (u0, . . . , un−1) for a vector of n elements, and ui for
the i-th element of u. For a natural number n ∈ N, we write [n] for {0, . . . , n−1}.

Labeled Transition Systems. A labeled transition system (LTS), M , is a tuple
(S, P, T, s0), where S is a set of states, P is a set of actions, T : S × P → 2S

is a transition relation, and s0 ∈ S is an initial state. M is deterministic if T is
a function, T : S × P → S. A (finite) trace of M is an alternating sequence of
states and actions, (s0, p1, s1, . . . , pk, sk), such that ∀i ∈ [k] · si+1 ∈ T (si, pi+1).
A state s is reachable in M if s is in some trace (s0, p1, . . . , sk) of M ; that is,
∃i ∈ [k+1] ·si = s. A safety property for M is a subset of states (or a predicate2)
ϕ ⊆ S. M satisfies ϕ, written M |= ϕ, if every reachable state of M is in ϕ.

Many transition systems are parameterized. For instance, a client-server
application is parameterized by the number of clients, and an array-manipulating
program is parameterized by the number of cells. In both cases, there is a single
2 Abusing notation, we refer to a subset of states ϕ as a predicate and do not distinguish

between the syntactic form of ϕ and the set of states that satisfy it.
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control process that interacts with many user processes. Such systems are called
synchronized control-user networks (SCUNs) [31]. We let N be the number of
processes, and [N ] be the process identifiers. We consider SCUNs in which users
only synchronize with the control process and do not execute code on their own.

An SCUN N is a tuple (SC , SU , PI , PS , TI , TS , c0, u0), where SC is a set of
control states, SU a set of user states, PI a set of internal actions, PS a set
of synchronized actions, TI : SC × PI → SC an internal transition function,
TS : SC ×SU ×PS → SC ×SU a synchronized transition function, c0 ∈ SC is the
initial control state, and u0 ∈ SU is the initial user state. The semantics of N are
given by a parameterized LTS, M(N) := (S, P, T, s0), where S := SC × (SU )N ,
P := PI ∪ (PS × [N ]), s0 := (c0, u0, . . . , u0), and T : S × P → S such that:
(1) if p ∈ PI , then T ((c,u), p) = (TI(c, p),u), and (2) if (p, i) ∈ PS × [N ], then
T ((c,u), (p, i)) = (c′,u′) where (c′,u′

i) = TS(c,ui, p), and ∀j ∈ [N ]\{i}·u′
j = uj .

Parameterized Compositional Model Checking (PCMC). Parameterized systems
have parameterized properties [16,31]. A k-universal safety property [16] is a
predicate ϕ ⊆ SC × (SU )k. A state (c,u) satisfies predicate ϕ if ∀{i1, . . . , ik} ⊆
[N ] · ϕ(c,ui1 , . . . ,uik). A parameterized system M(N) satisfies predicate ϕ if
∀N ∈ N · M(N) |= ϕ. For example, Prop. 1 (Sect. 1) of SimpleAuction (Fig. 1)
is 1-universal: “For every user u, if stop() has been called, then u is immutable.”

Proofs of k-universal safety employ compositional reasoning, e.g., [2,16,31,33].
Here, we use PCMC [31]. The keys to PCMC are uniformity—the property that
finitely many neighbourhoods are distinguishable—and a compositional invari-
ant—a summary of the reachable states for each equivalence class, that is closed
under the actions of every other equivalence class. For an SCUN, the compositional
invariant is given by two predicates θC ⊆ SC and θU ⊆ SC × SU satisfying:

Initialization. c0 ∈ θC and (c0, u0) ∈ θU ;
Consecution 1. If c ∈ θC , (c, u) ∈ θU , p ∈ PS , and (c′, u′) ∈ TS(c, u, p), then

c′ ∈ θC and (c′, u′) ∈ θU ;
Consecution 2. If c ∈ θC , (c, u) ∈ θU , p ∈ PC , and c′ = TI(c, p), then c′ ∈ θC

and (c′, u) ∈ θU ;
Non-Interference. If c ∈ θC , (c, u) ∈ θU , (c, v) ∈ θU , u 	= v, p ∈ PS , and

(c′, u′) = TS(c, u, p), then (c′, v) ∈ θC .

By PCMC [31], if ∀c ∈ θC · ∀{(c, u1), . . . , (c, uk)} ⊆ θU · ϕ(c, u1, . . . , uk), then
M |= ϕ. This is as an extension of Owicki-Gries [33], where θC summarizes the
acting process and θU summarizes the interfering process. For this reason, we
call θC the inductive invariant and θU the interference invariant.

3 MicroSol: Syntax and Semantics

This section provides network semantics for MicroSol, a subset of Solidity3. Like
Solidity, MicroSol is an imperative object-oriented language with built-in commu-
nication operations. The syntax of MicroSol is in Fig. 3. MicroSol restricts Solid-
ity to a core subset of communication features. For example, MicroSol does not
3 https://docs.soliditylang.org/

https://docs.soliditylang.org/


Compositional Verification of Smart Contracts 435

Fig. 3. The formal grammar of the MicroSol language.

include inheritance, cryptographic operations, or mappings between addresses. In
our evaluation (Sect. 6), we use a superset of MicroSol, called MiniSol (see the
extended version [42]), that extends our semantics to a wider set of smart con-
tracts. Throughout this section, we illustrate MicroSol using Auction in Fig. 1.

A MicroSol smart contract is similar to a class in object-oriented program-
ming, and consists of variables, and transactions (i.e., functions) for users to
call. A transaction is a deterministic sequence of operations. Each smart con-
tract user has a globally unique identifier, known as an address. We view a smart
contract as operating in an SCUN: the control process executes each transac-
tion sequentially, and the user processes are contract users that communicate
with the control process. Users in the SCUN enter into a transaction through
a synchronized action, then the control process executes the transaction as an
internal action, and finally, the users are updated through synchronized actions.
For simplicity of presentation, each transaction is given as a global transition.

A constructor is a special transaction that is executed once after contract
creation. Calls to new (i.e., creating new smart contracts) are restricted to con-
structors. Auction in Fig. 1 is a smart contract that defines a constructor (line 6),
three other functions (lines 8, 17, and 25), and four state variables (lines 2–3).

MicroSol has four types: address, numeric (including bool), mapping, and con-
tract reference. Address variables prevent arithmetic operations, and numeric vari-
ables cannot cast to address variables. Mapping and contract-reference variables
correspond to dictionaries and object pointers in other object-oriented languages.
Each typed variable is further classified as either state, input, or local. We use role
and data to refer to state variables of address and numeric types, respectively.
Similarly, we use client and argument to refer to inputs of address and numeric
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types, respectively. In Auction of Fig. 1, there is 1 role (manager), 2 contract data
(leadingBid and stopped), 1 mapping (bids), 1 client common to all transactions
(msg.sender), and at most 1 argument in any transaction (amount).

Note that in MicroSol, user denotes any user process within a SCUN. A
client is defined relative to a transaction, and denotes a user passed as an input.

Semantics of MicroSol. Let C be a MicroSol program with a single transaction tr
(see the extended version [42] for multiple transactions). An N -user bundle is an
N -user network of several (possibly identical) MicroSol programs. The semantics
of a bundle is an LTS, lts(C, N) := (S, P, f, s0), where SC := control(C, [N ]) is the
set of control states, SU := user(C, [N ]), is the set of user states, s⊥ is the error
state, S ⊆ (SC ∪ {s⊥})×(SU )N is the set of LTS states, P :=action(C, [N ]) is the
set of actions, f : S×P → S is the transition function, and s0 is the initial state.
We assume, without loss of generality, that there is a single control process4.

Let D be the set of 256-bit unsigned integers. The state space of a smart
contract is determined by the address space, A, and the state variables of C. In
the case of lts(C, N), the address space is fixed to A = [N ]. Assume that n, m, and
k are the number of roles, data, and mappings in C, respectively. State variables
are stored by their numeric indices (i.e., variable 0, 1, etc.). Then, control(C,A) ⊆
An × D

m and user(C,A) ⊆ A × D
k. For c = (x,y) ∈ control(C,A), role(c, i) = xi

is the i-th role and data(c, i) = yi is the i-th datum. For u = (z,y) ∈ user(C,A),
z is the address of u, and map(u) = y are the mapping values of u.

Similarly, actions are determined by the address space, A, and the input
variables of tr . Assume that q and r are the number of clients and arguments
of tr , respectively. Then action(C,A) ⊆ Aq × D

r. For p = (x,y) ∈ action(C,A),
client(p, i) = xi is the i-th client in p and arg(p, i) = yi is the i-th argument in
p. For a fixed p, we write fp(s,u) to denote f((s,u), p).

The initial state of lts(C, N) is s0 := (c,u) ∈ control(C, [n]) × user(C, [n])N ,
where c = (0,0), ∀i ∈ [N ] · map(ui) = 0, and ∀i ∈ [N ] · id(ui) = i. That is, all
variables are zero-initialized and each user has a unique address.

An N -user transition function is determined by the (usual) semantics of tr ,
and a bijection from addresses to user indices, M : A → [N ]. If M(a) = i, then
address a belongs to user ui. In the case of lts(C, N), the i-th user has address
i, so M(i) = i. We write f := �C�M, and given an action p, fp updates the state
variables according to the source code of tr with respect to M. If an assert fails
or an address is outside of A, then the error state s⊥ is returned. If a require

fails, then the state is unchanged. Note that f preserves the address of each user.
For example, lts(Auction, 4) = (S, P, f, s0) is the 4-user bundle of Auction.

Assume that (c,u) is the state reached after evaluating the constructor. Then
role(c, 0) = 2, data(c, 0) = 0, data(c, 1) = 0, and ∀i ∈ [4] · map(ui)0 = 0. That is,
the manager is at address 2, the leading bid is 0, the auction is not stopped, and
there are no active bids. This is because variables are zero-indexed, and stopped

4 Restrictions place on new ensure that the number of MicroSol smart contracts in a
bundle is a static fact. Therefore, all control states are synchronized, and can be
combined into a product machine.
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Fig. 4. A PT of Auction contrasted with a PTG for Auction.

is the second numeric variable (i.e., at index 1). If the user at address 3 placed a
bid of 10, this corresponds to p ∈ P such that client(p, 0) = 3 and arg(p, 0) = 10.
A complete LTS for this example is in the extended version [42].

Limitations of MicroSol. MicroSol places two restrictions on Solidity. First,
addresses are not numeric. We argue that this restriction is reasonable, as address
manipulation is a form of pointer manipulation. Second, new must only appear
in constructors. In our evaluation (Sect. 6), all calls to new could be moved into a
constructor with minimal effort. We emphasize that the second restriction does
not preclude the use of abstract interfaces for arbitrary contracts.

4 Participation Topology

The core functionality of any smart contract is communication between users.
Usually, users communicate by reading from and writing to designated mapping
entries. That is, the communication paradigm is shared memory. However, it is
convenient in interaction analysis to re-imagine smart contracts as having ren-
dezvous synchronization in which users explicitly participate in message passing.
In this section, we formally re-frame smart contracts with explicit communica-
tion by defining a (semantic) participation topology and its abstractions.

A user u participates in communication during a transaction f whenever the
state of u affects execution of f or f affects a state of u. We call this influence. For
example, in Fig. 1, the sender influences withdraw on line 19. Similarly, withdraw
influences the sender on line 22. In all cases, the influence is witnessed by the
state of the contract and the configuration of users that exhibit the influence.

Let C be a contract, N ∈ N be the network size, (S, P, f, s0) = lts(C, N), and
p ∈ P . A user with address a ∈ N influences transaction fp if there exists an
s, r, r′ ∈ control(C, [N ]), u,u′,v,v′ ∈ user(C, [N ])N , and i ∈ [N ] such that:

1. id(ui) = a;
2. ∀j ∈ [N ] · (uj = vj) ⇐⇒ (i 	= j);
3. (r,u′) = fp(s,u) and (r′,v′) = fp(s,v);
4. (r = r′) ⇒ (∃j ∈ [N ] \ {i} · u′

j 	= v′
j

)
.

That is, there exists two network configurations that differ only in the state of
the user ui, and result in different network configurations after applying fp. In
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practice, fp must compare the address of ui to some other address, or must
use the state of ui to determine the outcome of the transaction. The tuple
(s,u,v) is a witness to the influence of a over transaction fp. A user with address
a ∈ N is influenced by transaction fp if there exists an s, s′ ∈ control(C, [N ]),
u,u′ ∈ user(C, [N ])N , and i ∈ [N ] such that:

1. id(ui) = a;
2. (s′,u′) = fp(s,u);
3. u′

i 	= ui.

That is, fp must write into the state of ui, and the changes must persist after
the transaction terminates. The tuple (s,u) is a witness to the influence of
transaction fp over user a.

Definition 1 (Participation). A user with address a ∈ N participates in
a transaction fp if either a influences fp, witnessed by some (s,u,v), or fp
influences a, witnessed by some (s,u). In either case, s is a witness state.

Smart contracts facilitate communication between many users across many
transactions. We need to know every possible participant, and the cause of their
participation—we call this the participation topology (PT). A PT associates each
communication (sending or receiving) with one or more participation classes,
called explicit, transient, and implicit. The participation is explicit if the partic-
ipant is a client of the transaction; transient if the participant has a role during
the transaction; implicit if there is a state such that the participant is neither a
client nor holds any roles. In the case of MiniSol, all implicit participation is due
to literal address values, as users designated by literal addresses must participate
regardless of clients and roles. An example of implicit participation is when a
client is compared to the address of the zero-account (i.e., address(0)) in Fig. 1.

Definition 2 (Participation Topology). A Participation Topology of a
transaction fp is a tuple pt(C, N, p) := (Explicit ,Transient , Implicit), where:

1. Explicit ⊆ N × [N ] where (i, a) ∈ Explicit iff a participates during fp, with
client(p, i) = a;

2. Transient ⊆ N × [N ] where (i, a) ∈ Transient iff a participates during fp, as
witnessed by a state s ∈ control(C, [N ]), where role(s, i) = a;

3. Implicit ⊆ [N ] where a ∈ Implicit iff a participates during fp, as witnessed
by a state s ∈ control(C, [N ]), where ∀i ∈ N, role(s, i) 	= a and client(p, i) 	= a.

For example, Fig. 4a shows a PT for any function of Fig. 1 with 4 users.
From Sect. 1, it is clear that each function can have an affect. The zero-account
and smart contract account are both implicit participants, since changing either
account’s address to 3 would block the affect of the transaction. The manager
is a transient participant and the sender is an explicit participant, since the
(dis)equality of their addresses is asserted at lines 9, 18, and 26.

Definition 2 is semantic and dependent on actions. A syntactic summary of
all PTs for all actions is required to reason about communication. This summary
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is analogous to over-approximating control-flow with a “control-flow graph” [3].
This motivates the Participation Topology Graph (PTG) that is a syntactic over-
approximation of all possible PTs, independent of network size. A PTG has a
vertex for each user and each action, such that edges between vertices represent
participation classes. In general, a single vertex can map to many users or actions.

PTG edges are labeled by participation classes. For any contract C, there are
at most m explicit classes and n transient classes, where n is the number of roles,
and m is the maximum number of clients taken by any function of C. On the
other hand, the number of implicit classes is determined by the PTG itself. In
general, there is no bound on the number of implicit participants, and it is up to a
PTG to provide an appropriate abstraction (i.e., L in Definition 3). The label set
common to all PTGs is AP(C) := {explicit@i | i ∈ [n]} ∪ {transient@i | i ∈ [m]}.

Definition 3 (Participation Topology Graph). Let L be a finite set of
implicit classes, V � N be finite, E ⊆ V × V , and δ ⊆ E × (AP(C) ∪ L). A PT
Graph for a contract C is a tuple ((V,E, δ), ρ, τ), where (V,E, δ) is a graph labeled
by δ, ρ ⊆ action(C, N)×V , and τ ⊆ action(C, N)×N×V , such that for all N ∈ N

and for all p ∈ action(C, [N ]), with pt(C, N, p) = (Explicit ,Transient , Implicit):

1. If (i, a) ∈ Explicit, then there exists a (p, u) ∈ ρ and (p, a, v) ∈ τ such that
(u, v) ∈ E and δ ((u, v), explicit@i);

2. If (i, a) ∈ Transient, then there exists a (p, u) ∈ ρ and (p, a, v) ∈ τ such that
(u, v) ∈ E and δ ((u, v), transient@i);

3. If a ∈ Implicit, then there exists a (p, u) ∈ ρ, (p, a, v) ∈ τ , and l ∈ L such
that (u, v) ∈ E and δ ((u, v), l).

In Definition 3, τ and ρ map actions and users to vertices, respectively. An
edge between an action and a user indicates the potential for participation. The
labels describe the potential participation classes. As an example, Fig. 4b is a
PTG for Fig. 1, where all actions map to sc, the zero-account maps to vertex 0,
the smart contract account maps to vertex 1, and all other users map to �. The
two implicit classes have the label implicit@0 and implicit@1, respectively.

Theorem 1. Let C be a contract with a PTG (G, ρ, τ), G = (V,E, δ), and δ ⊆
E × (AP(C) ∪ L). Then, for all N ∈ N and all p ∈ action(C, [N ]), pt(C, N, p) =
(Explicit ,Transient , Implicit) is over-approximated by (G, ρ, τ) as follows:

1. If Explicit(i, a), then ∃(u, v) ∈ E · ρ(p, u) ∧ τ(p, a, v) ∧ δ ((u, v), explicit@i);
2. If Transient(i, a), then ∃(u, v) ∈ E ·ρ(p, u)∧τ(p, a, v)∧δ ((u, v), transient@i);
3. If Implicit(a), then ∃(u, v) ∈ E · ∃l ∈ L · ρ(p, u) ∧ τ(p, a, v) ∧ δ ((u, v), l).

For any PT, there are many over-approximating PTGs. The weakest PTG
joins every user to every action using all possible labels and a single implicit
class. Figure 4b, shows a simple, yet stronger, PTG for Fig. 1. First, note that
there are two implicit participants, identified by addresses 0 and 1, with labels
implicit@0 and implicit@1, respectively. Next, observe that any arbitrary user
can become the manager. Finally, the distinctions between actions are ignored.
Thus, there are three user vertices, two which are mapped to the zero-account
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and smart contract account, and another mapped to all other users. Such a PTG
is constructed automatically using an algorithm named PTGBuilder.

PTGBuilder takes a contract C and returns a PTG. The implicit classes are
L := {implicit@a | a ∈ N}, where implicit@a signifies implicit communication
with address a. PTG construction is reduced to taint analysis [23]. Input address
variables, state address variables, and literal addresses are tainted sources. Sinks
are memory writes, comparison expressions, and mapping accesses. PTGBuilder

computes (Args,Roles ,Lits), where (1) Args is the set of indices of input vari-
ables that propagate to a sink; (2) Roles is the set of indices of state variables
that propagate to a sink; (3) Lits is the set of literal addresses that propa-
gate to a sink. Finally, a PTG is constructed as (G, ρ, τ), where G = (V,E, δ),
ρ ⊆ action(C, N) × V , τ ⊆ action(C, N) × N × V , sc, and � are unique vertices:

1. V := Lits ∪ {sc, �} and E := {(sc, v) | v ∈ V \{sc}};
2. δ := {(e, explicit@i) | e ∈ E, i ∈ Args} ∪ {(e, transient@i) | e ∈ E, i ∈ Roles} ∪

{((sc, a), transient@a) | a ∈ Lits};
3. ρ := {(p, sc) | p ∈ action(C, N)};
4. τ :={(p, a, �) | p ∈ action(C, N), a ∈ N\Lits}∪{(p, a, a) | p ∈ action(C, N), a ∈ Lits}.

PTGBuilder formalizes the intuition of Fig. 4b. Rule 1 ensures that every lit-
eral address has a vertex, and that all user vertices connect to sc. Rule 2 over-
approximates explicit, transient, and implicit labels. The first set states that if
an input address is never used, then the client is not an explicit participant. This
statement is self-evident, and over-approximates explicit participation. The sec-
ond and third set make similar claims for roles and literal addresses Rules 3 and 4
define ρ and τ as expected. Note that in MicroSol, implicit participation stems
from literal addresses, since addresses do not support arithmetic operations, and
since numeric expressions cannot be cast to addresses.

By re-framing smart contracts with rendezvous synchronization, each transac-
tion is re-imagined as a communication between several users. Their communica-
tion patterns are captured by the corresponding PT. A PTG over-approximates
PTs of all transactions, and is automatically constructed using PTGBuilder. This
is crucial for PCMC as it provides an upper bound on the number of equivalence
classes, and the users in each equivalence class (see the extended version [42]).

5 Local Reasoning in Smart Contracts

In this section, we present a proof rule for the parameterized safety of MicroSol pro-
grams. Our proof rule extends the existing theory of PCMC. The section is struc-
tured as follows. Section 5.1 introduces syntactic restrictions, for properties and
interference invariants, that expose address dependencies. Section 5.2, defines local
bundle reductions, that reduce parameterized smart contractmodels to finite-state
models. We show that for the correct choice of local bundle reduction, the safety
of the finite-state model implies the safety of the parameterized model.

5.1 Guarded Properties and Split Invariants

Universal properties and interference invariants might depend on user addresses.
However, PCMC requires explicit address dependencies. This is because address
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dependencies allow predicates to distinguish subsets of users. To resolve this, we
introduce two syntactic forms that make address dependencies explicit: guarded
universal safety properties and split interference invariants. We build both forms
from so called address-oblivious predicates that do not depend on user addresses.

For any smart contract C and any address space A, a pair of user configura-
tions, u,v ∈ user(C,A)k, are k-address similar if ∀i ∈ [k] ·map(ui) = map(vi). A
predicate ξ ⊆ control(C,A) × user(C,A)k is address-oblivious if, for every choice
of s ∈ control(C,A), and every pair of k-address similar configurations, u and v,
ξ(s,u) ⇐⇒ ξ(s,v). Prop. 1 and Prop. 2 in Sect. 1 are address-oblivious.

A guarded k-universal safety property is built from a single k-user address-
oblivious predicate. The predicate is guarded by constraints over its k user
addresses. Each constraint compares a single user’s address to either a literal
address or a role. This notion is formalized by Definition 4, and illustrated in
Example 1.

Definition 4 (Guarded Universal Safety). For k ∈ N, a guarded k-
universal safety property is a k-universal safety property ϕ, given by a tuple
(L,R, ξ), where L � N × [k] is finite, R � N × [k] is finite, and ξ is an address-
oblivious k-user predicate, such that:

ϕ (s,u) :=

⎛

⎝

⎛

⎝
∧

(a,i)∈L

a = id(ui)

⎞

⎠ ∧
⎛

⎝
∧

(i,j)∈R

role(s, i) = id(uj)

⎞

⎠

⎞

⎠ ⇒ ξ(s,u)

Note that AL := {a | (a, i) ∈ L} and AR := {i | (i, j) ∈ R} and define the literal
and role guards for ϕ.

Example 1. Consider the claim that in Auction of Fig. 1, the zero-account cannot
have an active bid. This claim is stated as Prop. 3: For each user process u, if
id(u0) = 0, then map(u0)0 = 0. That is, Prop. 3 is a guarded 1-universal safety
property ϕ1(s,u) := (0 = id(u0)) ⇒ (map(u0)0 = 0). Following Definition 4, ϕ1

is determined by (L1, ∅, ξ1), where L1 = {(0, 0)} and ξ1(s,u) := map(u0)0 = 0.
The second set is ∅ as there are no role constraints in Prop. 3. If a state (s,u)
satisfies ϕ1, then ∀{i} ⊆ [N ] · ϕ1(s, (ui)). Note that u is a singleton vector, and
that ϕ1 has 1 literal guard, given by {0}. �

The syntax of a split interference invariant is similar to a guarded safety
property. The invariant is constructed from a list of address-oblivious predi-
cates, each guarded by a single constraint. The final predicate is guarded by
the negation of all other constraints. Intuitively, each address-oblivious predi-
cate summarizes the class of users that satisfy its guard. The split interference
invariant is the conjunction of all (guarded predicate) clauses. We proceed with
the formal definition in Definition 5 and a practical illustration in Example 2.

Definition 5 (Split Interference Invariant). A split interference invariant
is an interference invariant θ, given by a tuple (AL,AR, ζ, μ, ξ), where AL =
{l0, . . . , lm−1} � N is finite, AR = {r0, . . . , rn−1} � N is finite, ζ is a list of
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m address-oblivious 1-user predicates, μ is a list of n address-oblivious 1-user
predicates, and ξ is an address-oblivious 1-user predicate, such that:

ψLits(s,u) :=

(
m−1∧

i=0

id(u0) = li

)

⇒ ζi(s,u)

ψRoles(s,u) :=

(
n−1∧

i=0

id(u0) = role(s, ri)

)

⇒ μi(s,u)

ψElse(s,u) :=

((
m−1∧

i=0

id(u0) 	= li

)

∧
(

n−1∧

i=0

id(u0) 	= role(s, ri)

))

⇒ ξ(s,u)

θ(s,u) := ψRoles(s,u) ∧ ψLits(s,u) ∧ ψElse(s,u)

Note that AL and AR define literal and role guards of θ, and that |u| = 1.

Example 2. To establish ϕ1 from Example 1, we require an adequate interference
invariant such as Prop. 4: The zero-account never has an active bid, while all
other users can have active bids. That is, Prop. 4 is a split interference invariant:

θ1(s,u):= (id(u0) = 0 ⇒ (map(u0))0 = 0) ∧ (id(u0) 	= 0 ⇒ (map(u0))0 ≥ 0)

Following Definition 5, θ1 is determined by Inv = (AL, ∅, (ξ1), ∅, ξ2), where
AL = {0}, ξ1 is defined in Example 1, and ξ2(s,u) := map(u0)0 ≥ 0. The two
instances of ∅ in Inv correspond to the lack of role constraints in θ1. If Inv is
related back to Definition 5, then ψRoles(s,u) := �, ψLits(s,u) := (id(u0) = 0) ⇒
(map(u0)0 = 0), and ψElse(s,u) := (id(u0) 	= 0) ⇒ (map(u0)0 ≥ 0). �

5.2 Localizing a Smart Contract Bundle

A local bundle is a finite-state abstraction of a smart contract bundle. This
abstraction reduces smart contract PCMC to software model checking. At a high
level, each local bundle is a non-deterministic LTS and is constructed from three
components: a smart contract, a candidate interference invariant, and a neigh-
bourhood. The term candidate interference invariant describes any predicate
with the syntax of an interference invariant, regardless of its semantic interpre-
tation. Sets of addresses are used to identify representatives in a neighbourhood.

Let A be an N -user neighbourhood and θU be a candidate interference invari-
ant. The local bundle corresponding to A and θU is defined using a special
relation called an N -user interference relation. The N -user interference relation
(for θU ) sends an N -user smart contract state to the set of all N -user smart
contract states that are reachable under the interference of θU . A state is reach-
able under the interference of θU if the control state is unchanged, each address
is unchanged, and all user data satisfies θU . For example, lines 6–10 in Fig. 2
apply a 4-user interference relation to the states of Auction. Note that if the
interference relation for θU fails to relate (s,u) to itself, then (s,u) violates θU .
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Definition 6 (Interference Relation). Let N ∈ N, C be a contract, S =
control(C, N) × user(C, N)N , and θU be a split candidate interference invariant.
The N -user interference relation for θU is the relation g : S → 2S such that
g(c,u) := {(c,v) ∈ S | ∀i ∈ [N ] · id(ui) = id(vi) ∧ θU (s,vi)}.

Each state of the local bundle for A and θU is a tuple (s,u), where s is a
control state and u is an N -user configuration. The N users in the local bundle
correspond to the N representatives in A, and therefore, the address space of
the local bundle can be non-consecutive. The transition relation of the local
bundle is defined in terms of the (global) transaction function f . First, the
transition relation applies f . If the application of f is closed under θU , then the
interference relation is applied. Intuitively, θU defines a safe envelop under which
the interference relation is compositional.

Definition 7 (Local Bundle). Let C be a contract, A = {a0, . . . , aN−1} ⊆
N be an N -user neighbourhood, θU be a candidate split interference invariant,
and g be the N -user interference relation for θU . A local bundle is an LTS
local(C,A, θU ) := (S, P, f̂ , s0), such that S := control(C,A) × user(C,A)N , P :=
action(C,A), s0 := (c0,u), c0 := (0,0), ∀i ∈ [N ] · id(ui) = ai ∧map(ui) = 0, and
f̂ is defined with respect to M : A → [N ], M(ai) = i, such that:

f̂((s,u), p) :=

{
g(s′,u′) if (s′,u′) = �C�M((s,u), p) ∧ (s′,u′) ∈ g(s′,u′)
�C�M((s,u), p) otherwise

Example 3. We briefly illustrate the transition relation of Definition 7 using
Auction of Fig. 1. Let A1 = {0, 1, 2, 3} be a neighbourhood, θ1 be as in Example
2, g be the 4-user interference relation for θ1, and (S, P, f̂ , s0) = local(C,A1, θ1).
Consider applying f̂ to (s,u) ∈ S with action p ∈ P , such that s = {manager �→
2; leadingBid �→ 0}, ∀i ∈ [4] · map(ui) = 0, and p is a bid of 10 from a sender at
address 3.

By definition, if (s′,v) = f(s,u, p), then the leading bid is now 10, and
the bid of the sender is also 10, since the sender of p was not the manager
and the leading bid was less than 10. Clearly (s′,v) ∈ g(s′,v), and therefore,
g(s′,v) = f̂ ((s,u), p). A successor state is then selected, as depicted in Fig. 5a.
This is done by first assigning an arbitrary bid to each representative, and then
requiring that each bid satisfies θ1 relative to s′. In Fig. 5a, a network is selected
in which ∀i ∈ [4] · id(vi) = i. As depicted in Fig. 5a, θ1 stipulates that the
zero-account must satisfy ξ1 and that all other users must satisfy ξ2.

In Fig. 5b, a satisfying bid is assigned to each user. The choice for d0 was fixed
since ξ1(s,v0) entails d0 = 0. For d1 to d3, any non-negative value could have
been selected. After the transaction is executed, map(u′

0)0 = 0, map(u′
1)0 = 1,

map(u′
2)0 = 2, map(u′

3)0 = 3, and s′ = {manager �→ 2; leadingBid �→ 10}. Then
(s′,u′) ∈ f̂(s,u), as desired. Note that (s′,u′) is not reachable in lts(C, 4). �

Example 3 motivates an important result for local bundles. Observe that
(s′,u′) |= θ1. This is not by chance. First, by the compositionality of θ1, all user
configurations reached by local(C,A1, θ1) must satisfy θU . Second, and far less
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Fig. 5. The local bundle for Auction in Fig. 1, as defined by A1 and θ1 in Example 3.

obviously, by choice of A1, if all reachable user configurations satisfy θ1, then θ1
must be compositional. The proof of this result relies on a saturating property
of A1.

A neighbourhood A is saturating if it contains representatives from each par-
ticipation class of a PTG, and for all role guards (AR � N) and literal guards
(AL ⊆ N) of interest. Intuitively, each participation class over-approximates an
equivalence class of C. The number of representatives is determined by the equiv-
alence class. In the case of PTGBuilder, a saturating neighbourhood contains one
address for each participation class. For an implicit class, such as implicit@x, x
is literal and must appear in the neighbourhood. All other addresses are selected
arbitrarily. The saturating property of A1 is depicted in Fig. 5b by the corre-
spondence between users and participation classes (AR = ∅, AL = {0}).

Definition 8 (Saturating Neighbourhood). Let AR,AL ⊆ N, C be a con-
tract, (G, ρ, τ) be the PTGBuilder PTG of C, and G = (V,E, δ) such that AR

and AL are finite. A saturating neighbourhood for (AR,AL, (G, ρ, τ)) is a set
AExp ∪ ATrans ∪ AImpl s.t. AExp,ATrans,AImpl ⊆ N are pairwise disjoint and:

1. |AExp| = |{i ∈ N | ∃e ∈ E · δ (e, explicit@i)}|,
2. |ATrans| = |{i ∈ N | ∃e ∈ E · δ (e, transient@i)} ∪ AR|,
3. AImpl = {x ∈ N | ∃e ∈ E · δ (e, implicit@x)} ∪ AL.

A saturating neighbourhood can be used to reduce compositionality and k-
safety proofs to the safety of local bundles. We start with compositionality. Con-
sider a local bundle with a neighbourhood A+, where A+ contains a saturating
neighbourhood, the guards of θU , and some other address a. The neighbourhood
A+ contains a representative for: each participation class; each role and literal
user distinguished by θU ; an arbitrary user under interference (i.e., a). We first
claim that if θU is compositional, then a local bundle constructed from θU must
be safe with respect to θU (as in Example 3). The first claim follows by induc-
tion. By Initialization (Sect. 2), the initial users satisfy θU . For the inductive
step, assume that all users satisfy θU and apply f̂p. The users that participate
in f̂p maintain θU by Consecution (Sect. 2). The users that do not participate
also maintain θU by Non-Interference (Sect. 2). By induction, the first claim
is true. We also claim that for a sufficiently large neighbourhood—say A+—the
converse is also true. Intuitively, A+ is large enough to represent each equiva-
lence class imposed by both the smart contract and θU , along with an arbitrary
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user under interference. Our key insight is that the reachable control states of
the local bundle form an inductive invariant θC . If the local bundle is safe, then
the interference relation is applied after each transition, and, therefore, the local
bundle considers every pair of control and user states (c, u) such that c ∈ θC
and (c, u) ∈ θU . Therefore, the safety of the local bundle implies Initialization,
Consecution, and Non-Interference. This discussion justifies Theorem 2.

Theorem 2. Let C be a contract, G be a PTG for C, θU be a candidate split
interference invariant with role guards AR and literal guards AL, A be a sat-
urating neighbourhood for (AR,AL, G), a ∈ N\A, and A+ = {a} ∪ A. Then,
local(C,A+, θU ) |= θU if and only if θU is an interference invariant for C.

Next, we present our main result: a sound proof rule for k-universal safety.
As in Theorem 2, 3 uses a saturating neighbourhood A+. This proof rule proves
inductiveness, rather than compositionality, so A+ does not require an arbitrary
user under interference. However, a k-universal property can distinguish between
k users at once. Thus, A+ must have at least k arbitrary representatives.

Theorem 3. Let ϕ be a k-universal safety property with role guards AR and
literal guards AL, C be a contract, θU be an interference invariant for C, G be
a PTG for C, A = AExp ∪ ATrans ∪ AImpl be a saturating neighbourhood for
(AR,AL, G). Define A+ ⊆ N such that A ⊆ A+ and |A+| = |A| + max(0, k −
|AExp|). If local(C,A+, θU ) |= ϕ, then ∀N ∈ N · lts(C, N) |= ϕ.

Theorem 3 completes Example 2. Recall (ϕ1, θ1,A1) from Example 3. Since
ϕ1 is 1-universal and A1 has one explicit representative, it follows that A+ = A1∪
∅. Using an SMC, local(C,A+

1 , θ1) |= ϕ1 is certified by an inductive strengthening
θ∗
1 . Then by Theorem 3, C is also safe for 2160 users. Both the local and global

bundle have states exponential in the number of users. However, the local bundle
has 4 users (a constant fixed by C), whereas the global bundle is defined for any
number of users. This achieves an exponential state reduction with respect to
the network size. Even more remarkably, θ∗

1 must be the inductive invariant
from Sect. 2, as it summarizes the safe control states that are closed under
the interference of θ1. Therefore, we have achieved an exponential speedup in
verification and have automated the discovery of an inductive invariant.

6 Implementation and Evaluation

We implement smart contract PCMC as an open-source tool called SmartACE,
that is built upon the Solidity compiler. It works in the following automated
steps: (1) consume a Solidity smart contract and its interference invariants; (2)
validate the contract’s conformance to MiniSol; (3) perform source-code analysis
and transformation (i.e., inheritance inlining, devirtualization, PTGBuilder); (4)
generate a local bundle in LLVM IR; (5) verify the bundle using SeaHorn [15].
In this section, we report on the effectiveness of SmartACE in verifying real-
world smart contracts. A full description of the SmartACE architecture and of
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Table 1. Experimental results for SmartACE. All reported times are in seconds.

Contracts SmartACE VerX

Name Prop. LOC Time Inv. Size Users Time

Alchemist 3 401 7 0 7 29

ERC20 9 599 12 1 5 158

Melon 16 462 30 0 7 408

MRV 5 868 2 0 7 887

Overview 4 66 4 0 8 211

PolicyPal 4 815 26 0 8 20,773

Zebi 5 1,209 8 0 7 77

Zilliqa 5 377 8 0 7 94

Brickblock 6 549 13 0 10 191

Crowdsale 9 1,198 223 0 8 261

ICO 8 650 371 0 16 6,817

VUToken 5 1,120 19 0 10 715

Mana 4 885 — — — 41,409

Fund 2 38 1 0 6 —

Auction 1 42 1 1 5 —

QSPStaking 4 1,550 3 7 8 —

each case study is beyond the scope of this paper. Both SmartACE and the case
studies are available5. Our evaluation answers the following research questions:

RQ1: Compliance. Can MiniSol represent real-world smart contracts?
RQ2: Effectiveness. Is SmartACE effective for MiniSol smart contracts?
RQ3: Performance. Is SmartACE competitive with other techniques?

Benchmarks and Setup. To answer the above research questions, we used a
benchmark of 89 properties across 15 smart contracts (see Table 1). Contracts
Alchemist to Mana are from VerX [34]. Contracts Fund and Auction were added
to offset the lack of parameterized properties in existing benchmarks. The
QSPStaking contract comprises the Quantstamp Assurance Protocol6 for which
we checked real-world properties provided by Quantstamp. Some properties
require additional instrumentation techniques (i.e., temporal [34] and aggre-
gate [17] properties). Aggregate properties allow SmartACE to reason about
the sum of all records within a mapping. In Table 1, Inv. Size is the clause
size of an interference invariant manually provided to SmartACE and Users is
the maximum number of users requested by PTGBuilder. All experiments were
run on an Intel® Core i7® CPU @ 2.8 GHz 4-core machine with 16 GB of
RAM on Ubuntu 18.04.
5 https://github.com/contract-ace
6 https://github.com/quantstamp/qsp-staking-protocol

https://github.com/contract-ace
https://github.com/quantstamp/qsp-staking-protocol
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RQ1: Compliance. To assess if the restrictions of MiniSol are reasonable, we find
the number of compliant VerX benchmarks. We found that 8 out of 13 bench-
marks are compliant after removing dead code. With manual abstraction, 4 more
benchmarks complied. Brickblock uses inline assembly to revert transactions
with smart contract senders. We remove the assembly as an over-approximation.
To support Crowdsale, we manually resolve dynamic calls not supported by
SmartACE. In ICO, calls are made to arbitrary contracts (by address). However,
these calls adhere to effectively external callback freedom [12,34] and can be omit-
ted. Also, ICO uses dynamic allocation, but the allocation is performed once. We
inline the first allocation, and assert that all other allocations are unreachable.
To support VUToken, we replace a dynamic array of bounded size with variables
corresponding to each element of the array. The function _calcTokenAmount iter-
ates over the array, so we specialize each call (i.e.,_calcTokenAmount_{1,2,3,4})
to eliminate recursion. Two other functions displayed unbounded behaviour (i.e.,
massTransfer and addManyToWhitelist), but are used to sequence calls to other
functions, and do not impact reachability. We conclude that the restrictions of
MiniSol are reasonable.

RQ2: Effectiveness. To assess the effectiveness of SmartACE, we determined
the number of properties verified from compliant VerX contracts. We found
that all properties could be verified, but also discovered that most properties
were not parameterized. To validate SmartACE with parameterized properties,
we conducted a second study using Auction, as described on our development
blog7. To validate SmartACE in the context of large-scale contract develop-
ment, we performed a third study using QSPStaking. In this study, 4 properties
were selected at random, from a specification provided by Quantstamp, and val-
idated. It required 2 person days to model the environment, and 1 person day
to discover an interference invariant. The major overhead in modeling the envi-
ronment came from manual abstraction of unbounded arrays. The discovery of
an interference invariant and array abstractions were semi-automatic, and aided
by counterexamples from SeaHorn. For example, one invariant used in our
abstraction says that all elements in the array powersOf100 must be non-zero.
This invariant was derived from a counterexample in which 0 was read spuriously
from powersOf100, resulting in a division-by-zero error. We conclude that Smar-
tACE is suitable for high-assurance contracts, and with proper automation, can
be integrated into contract development.

RQ3: Performance. To evaluate the performance of SmartACE, we compared
its verification time to the reported time of VerX, a state-of-the-art, semi-
automated verification tool. Note that in VerX, predicate abstractions must
be provided manually, whereas SmartACE automates this step. VerX was
evaluated on a faster processor (3.4GHz) with more RAM (64GB)8. In each case,
SmartACE significantly outperformed VerX, achieving a speedup of at least

7 http://seahorn.github.io/blog/
8 We have requested access to VerX and are awaiting a response.

http://seahorn.github.io/blog/
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10x for all but 2 contracts9. One advantage of SmartACE is that it benefits from
state-of-the art software model checkers, whereas the design of VerX requires
implementing a new verification tool. In addition, we suspect that local bundle
abstractions obtained through smart contract PCMC are easier to reason about
than the global arrays that VerX must quantify over. However, a complete
explanation for the performance improvements of SmartACE is challenging
without access to the source code of VerX. We observe that one bottleneck
for SmartACE is the number of users (which extends the state space). A more
precise PTGBuilder would reduce the number of users. Upon manual inspection
of Melon and Alchemist (in a single bundle), we found that user state could be
reduced by 28%. We conclude that SmartACE can scale.

7 Related Work

In recent years, the program analysis community has developed many tools for
smart contract analysis. These tool range from dynamic analysis [19,43] to static
analysis [5,13,25–27,30,32,39,40] and verification [17,21,29,34,38,41]. The lat-
ter are most related to SmartACE since their focus is on functional correctness,
as opposed to generic rules (e.g., the absence of reentrancy [14] and integer over-
flows). Existing techniques for functional correctness are either deductive, and
require that most invariants be provided manually (i.e., [17,41]), or are automated
but neglect the parameterized nature of smart contracts (i.e., [28,29,34,38]). The
tools that do acknowledge parameterization employ static analysis [5,25]. In con-
trast, SmartACE uses a novel local reasoning technique that verifies parameter-
ized safety properties with less human guidance than deductive techniques.

More generally, parameterized systems form a rich field of research, as out-
lined in [4]. The use of SCUNs was first proposed in [11], and many other mod-
els exist for both synchronous and asynchronous systems (e.g., [9,36,37]). The
approach of PCMC is not the only compositional solution for parameterized ver-
ification. For instance, environmental abstraction [6] considers a process and its
environment, similar to the inductive and interference invariants of SmartACE.
Other approaches [10,35] generalize from small instances through the use of rank-
ing functions. The combination of abstract domains and SMPs has also proven
useful in finding parameterized invariants [2]. The addresses used in our analysis
are similar to the scalarsets of [18]. Most compositional techniques require cut-
off analysis—considering network instances up to a given size [7,20,22]. Local
bundles avoid explicit cutoff analysis by simulating all smaller instances, and is
similar to existing work on bounded parameterized model checking [8]. Smar-
tACE is the first application of PCMC in the context of smart contracts.

8 Conclusions

In this paper, we present a new verification approach for Solidity smart contracts.
Unlike many of the existing approaches, we automatically reason about smart
9 We compare the average time for VerX to the total evaluation time for SmartACE.
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contracts relative to all of their clients and across multiple transaction. Our
approach is based on treating smart contracts as a parameterized system and
using Parameterized Compositional Model Checking (PCMC).

Our main theoretical contribution is to show that PCMC offers an expo-
nential reduction for k-universal safety verification of smart contracts. That is,
verification of safety properties with k arbitrary clients.

The theoretical results of this paper are implemented in an automated Solid-
ity verification tool SmartACE. SmartACE is built upon a novel model for
smart contracts, in which users are processes and communication is explicit.
In this model, communication is over-approximated by static analysis, and the
results are sufficient to find all local neighbourhoods, as required by PCMC.
The underlying parameterized verification task is reduced to sequential Soft-
ware Model Checking. In SmartACE, we use the SeaHorn verification frame-
work for the underlying analysis. However, other Software Model Checkers can
potentially be used as well.

Our approach is almost completely automated – SmartACE automatically
infers the necessary predicates, inductive invariants, and transaction summaries.
The only requirement from the user is to provide an occasional interference
invariant (that is validated by SmartACE). However, we believe that this step
can be automated as well through reduction to satisfiability of Constrained Horn
Clauses. We leave exploring this to future work.
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Abstract. Data-flow analyzers (DFAs) are widely deployed in many
stages of software development, such as compiler optimization, bug detec-
tion, and program verification. Automating their synthesis is non-trivial
but will be practically beneficial. In this paper, we propose DFASy,
a framework for the automatic synthesis of DFAs. Given a specifica-
tion consisting of a control flow graph and the expected data-flow facts
before and after each of its nodes, DFASy automatically synthesizes a
DFA that satisfies the specification, including its flow direction, meet
operator, and transfer function. DFASy synthesizes transfer functions
by working with a domain-specific language that supports rich data-flow
fact extraction operations, set operations, and logic operations. To avoid
exploding the search space, we introduce an abstraction-guided pruning
technique to assess the satisfiability of partially instantiated candidates
and drop unsatisfiable ones from further consideration as early as possi-
ble. In addition, we also introduce a brevity-guided pruning technique to
improve the readability and simplicity of synthesized DFAs and further
accelerate the search. We have built a benchmark suite, which consists
of seven classic (e.g., live variable analysis and null pointer detection)
and seven custom data-flow problems. DFASy has successfully solved
all the 14 data-flow problems in 21.8 s on average, outperforming signif-
icantly the three baselines compared. Both DFASy and its associated
benchmark suite have been open-sourced.

Keywords: Program synthesis · Data flow analysis · DSL

1 Introduction

Data-flow analysis has many applications, including compiler optimization [2,
10,52], bug detection [4,20,47,50] and program verification [13,27]. However,
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creating data-flow analyzers (DFAs) can be non-trivial, as it requires DFA-related
expertise, domain-specific knowledge, and handling of corner cases. Without an
automated tool to assist, manually-designed DFAs may be suboptimal, hinder-
ing their wide adoption [9]. Program synthesis [18], which aims at automatically
finding programs that satisfy user intent, has made much progress in many areas,
including program suggestion [19,53], program repair [28,39,51] and data wran-
gling [17]. Despite this, automatic synthesis of DFAs is relatively unexplored.

Problem Statement. Given an input-output specification consisting of a con-
trol flow graph (CFG) as input and the data-flow facts expected before and after
its nodes as output (obtained manually or by code instrumentation [9]), we aim
to automatically synthesize a DFA (including its flow direction, meet operator
and transfer function) that satisfies the specification. We consider a family of
widely used data-flow problems, known as the gen-kill problems. We focus on
synthesizing intra-procedural and path-insensitive DFAs. However, our synthe-
sized DFAs can also be deployed in an inter-procedural and/or path-sensitive
setting, once they are integrated with an IFDS/IDE framework [36,37] and an
SMT solver [8]. To the best of our knowledge, this is the first study on synthesiz-
ing general-purpose DFAs (from input-output examples). Previously, attempts
have beem made to synthesize static analysis rules but pre-defined client-specific
rule templates [9] or relations [38] are required.

Automatic synthesis of DFAs can be practically beneficial. For the DFAs used
in, say, compilers, where correctness is required, automated DFA-creating tools
can help uncover tricky corner-case bugs in state-of-the-art hand-crafted DFAs,
such as Facebook’s Flow [9], and produce quickly a reference implementation
with several input-output examples. In the cases where some correctness can be
sacrificed (including bug detection), we envisage that automated tools can be
used to generate customized DFAs that can tolerate a certain degree of false
negatives and false positives (prescribed by the input-output examples given).

Challenges. There are three challenges in synthesizing DFAs. First, existing
program synthesis tasks usually handle common data types such as integers and
strings while our DFA synthesis task focuses mainly on program elements (e.g.,
variables, constants, and expressions). A simple-minded approach that synthe-
sizes a DFA from fully-fledged languages like C and Java would explode the
search space. Second, a DFA synthesizer is expected to have balanced expressiv-
ity [18] in order to generate a variety of DFAs efficiently. Finally, a DFA synthe-
sizer should generate simple DFAs to facilitate readability and maintainability,
making it necessary to consider not only its correctness but also its brevity.

Our Solution. We propose DFASy, a framework for the automatic synthesis
of DFAs. Given a CFG and the expected data-flow facts for its nodes, DFASy
iteratively generates and validates DFA candidates and outputs the simplest
satisfying DFA. Specifically, DFASy aims at finding the three components for a
specification-satisfying DFA: its flow direction, meet operator, and transfer func-
tion. To generate a transfer function, we use a domain-specific language (DSL)
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Fig. 1. A motivating example: reaching definitions.

that supports a set of common data-flow fact extraction operations, set oper-
ations, and logic operations. To accelerate the search, we propose two pruning
techniques: (1) abstraction-guided pruning that first evaluates partially instan-
tiated DFA candidates from their abstract semantics and then removes unsatis-
fiable candidates as early as possible, and (2) brevity-guided pruning that evalu-
ates the brevity of each DFA candidate with a cost function and keeps only the
simplest among the semantically-equivalent DFA candidates.

We have built a benchmark suite consisting of 7 classic (e.g., live variable
analysis and null pointer detection) and 7 custom data-flow problems. Our eval-
uation shows that DFASy can successfully solve all the 14 DFA problems in
21.8 s, on average, with abstraction- and brevity-guided pruning techniques, out-
performing significantly the three baselines.

Contributions. Our main contributions are: (1) a framework, DFASy, for
synthesizing DFAs by examples, (2) A DSL for describing transfer functions,
supporting data-flow fact extractions, set operations, and logic operations, (3)
The abstraction- and brevity-guided pruning techniques for accelerating the
search for the simplest satisfying DFAs, and (4) an evaluation of DFASy with a
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benchmark suite consisting of 7 classic and 7 custom DFA synthesis problems and
an open-source implementation (http://www.cse.unsw.edu.au/∼corg/dfasy/).

2 Motivation

We illustrate DFASy’s key design choices in synthesizing a classic DFA, “reach-
ing definitions”, which statically determines the definitions that may reach a
given statement. Figure 1(a) gives a CFG as an input. Figure 1(b) gives the
expected data-flow facts for each node as an output, expressed in terms of the
sets of reaching statements before and after the node. We use a value set to
represent the data-flow facts at a program point. For example, the value sets
before and after node n3 are expressed as {n0, n1} and {n0, n3}, respectively. As
b is re-defined in n3, its previous definition in n1 is removed on entry of n3 and
the new definition in n3 is added on exit of n3.

Figure 1(c) gives the DFA synthesized by DFASy, including a forward flow
direction, a union meet operator, and a transfer function that takes an input
value set sin and a node n, and gives an output value set sout. We repre-
sent a transfer function in the gen-kill form [2] in terms of two sub-functions,
gen(n, s) and kill(n, s). When propagating the reaching definitions from sin to
sout, kill(n, s) filters out the statements that define the same variable that is
re-defined in node n and gen(n, s) generates a new reaching definition in n (if
any). We use def(n) to represent the variable defined in node n. To synthesize
such a transfer function, DFASy works with a DSL that supports the following
three kinds of operations:

– Data-Flow Fact Extractions. Different DFAs operate on different data-
flow facts, e.g., whether a variable is defined in a statement in “reaching
definitions”. We will handle this by making use of rich attention functions, i.e.,
functions that extract facts from program elements. In “reaching definitions”,
for example, def(n) extracts the defined variable from node n.

– Set Operations. Transfer functions mostly operate on value sets, e.g., kill
and gen work with the set difference and union, respectively.

– Logic Operations. To handle branching, we need logic operators (e.g., or
and not) and relation operators (e.g., set equal and subset).

DFASy works with a common generate-and-validate workflow, which first
generates fully instantiated DFA candidates and then validates them with
respect to the given specification. However, a DSL that supports the set of rich
operations required as discussed above will inevitably explode the search space.
To overcome this problem, we introduce the following two pruning techniques:

– Abstraction-Guided Pruning. Before producing a fully instantiated
DFA, we validate each partially instantiated DFA by checking if an over-
approximation of its data-flow facts (based on abstract semantics) will poten-
tially yield the data-flow facts expected at every CFG node, and discard it, and
consequently, prune all the concrete DFAs it may induce later during the search

http://www.cse.unsw.edu.au/~corg/dfasy/
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Fig. 2. A simple Java-like language for describing the nodes in a CFG. ℘(s) is the
power set of a set s and o is the abstract object created at an allocation-site.

if this is not the case. For example, we will discard a DFA candidate with an
uninstantiated gen but a fully instantiated kill: kill(n3, {n0, n1})={n0, n1}. In
this case, we will build an abstract gen by assuming that a gen function can
only generate new facts but cannot remove any old facts. We can then infer
that gen(n3, {n0, n1}) must contain at least n0 and n1, causing the expected
set of facts {n0, n3} at node n3 to be unsatisfiable.

– Brevity-Guided Pruning. We propose a cost function to estimate the
brevity of a DFA candidate and keep only the one with the lowest cost
among all the semantically equivalent candidates. For example, we discard
gen′, which is the same as gen, except that gen′ uses def(n) ∩ def(n) �= ∅ as
the guarding condition for s ∪ {n} but gen uses a simpler one, def(n) �= ∅,
instead.

With our abstraction- and brevity-guided pruning techniques, DFASy has
successfully synthesized the DFA in Fig. 1(c) in 12 s by pruning over 99% of the
candidates before validation.

3 Approach

We formalize our synthesis task (Sect. 3.1) and introduce a DSL with syntactic
templates for building gen-kill transfer functions (Sect. 3.2). We then describe our
abstraction-guided (Sect. 3.3) and brevity-guided (Sect. 3.4) pruning techniques.
Finally, we give a synthesis algorithm (Sect. 3.5).
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3.1 Problem Definition

Synthesis of DFAs. Given a specification (G,R), where G = (N,E) is a CFG
as input and R gives the expected data-flow facts at its nodes as output, our
synthesis task aims to find a DFA D that satisfies the specification on G, i.e.,
D(G) = R. For each node n in G, the expected data-flow facts are expressed as
a pair, (rB

n , rA
n ), where rB

n is a value set containing the facts available just before
n and rA

n is a value set containing the facts just after n.
Figure 2 gives a simple Java-like language for describing the nodes in G. A

node represents a conditional expression (cond) or a statement (stmt). Both
relational and arithmetic expressions are supported (expr). Standard constants
(const), null, integer literals and Boolean values, are allowed. For an allocation-
site abstraction at line i, oi denotes the abstract object created. All program
elements, including the keyword new, belong to the Value type.

We define a DFA as a triple, D = (Γ,Δ,Θ) [2], consisting of a flow direction Γ
(⇓ (forward) or ⇑ (backward)), a meet operator Δ (∪ (union) or ∩ (intersection)),
and a transfer function Θ that transforms a value set at a node into another.

Iterative Algorithm. We use the standard iterative algorithm from a standard
textbook [2] to run a DFA at each CFG node n ∈ N as follows:

sI,Γ
n = Δ

n′∈SrcΓ (n)
sO,Γ

n′ , sO,Γ
n = Θ(n, sI,Γ

n ) (1)

where sI,Γ
n and sO,Γ

n denote the input and output value sets of n along the flow
direction Γ , respectively. The signature of Δ is ℘(ValueSet) → ValueSet. SrcΓ

returns a set of predecessors (successors) of n in G if Γ is forward (backward):

SrcΓ (n) =

{
{n′ | (n′, n) ∈ E} if Γ = ⇓
{n′ | (n, n′) ∈ E} if Γ = ⇑ (2)

Once a fixpoint has been reached, we check whether the synthesized DFA
generates the data-flow facts as expected as follows:

D(G) = R ⇔ ∀n ∈ N, sI,Γ
n = rI,Γ

n ∧ sO,Γ
n = rO,Γ

n (3)

where rI,Γ
n and rO,Γ

n are mapped from rB
n and rA

n by:

rI,⇓
n = rB

n , rO,⇓
n = rA

n , rI,⇑
n = rA

n , rO,⇑
n = rB

n (4)

3.2 Syntax-Guided Synthesis

Domain Specific Language. Figure 3 introduces a DSL for synthesizing trans-
fer functions and Fig. 4 gives its semantics.

A transfer function Θ takes a node n and a value set s as input and operates
on s in terms of a set expression S. It also supports compound functions so that
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Fig. 3. A DSL for synthesizing transfer functions (where Node, Value and ValueSet
are defined in Fig. 2).

we can turn it into a gen-kill form. Common set operations on S are supported,
such as union (∪), difference (−), guarded, i.e., conditional set operation (if),
element filtering operation (filter) and feature extraction function (A).

A Boolean expression B can be built in terms of binary (��) and unary (�)
relational functions (operators) on sets and logic functions ∧, ∨ and ¬. There are
four binary functions for describing relations between sets: equality (eq), subset
(sub), superset (sup), and non-disjointness (ovlp). Three unary functions can be
used to check if a set is empty (mty), or contains only null (isnul) or new (isnew).

An attention function A allows us to extract data-flow facts from a program
element. The simplest one is id, which returns a singleton containing only the
input fact. The other three functions are used for extracting facts based on roles
(R), types (T), and both (R � T). A role-based attention function extracts facts
according to their roles, including the right-hand value of an assignment (right),
the base object of a field reference (base), the defined variable of an assignment
(def), and the used values of an assignment or conditional expression (use). A
type-based attention function T works similarly but focuses on fact types, such as
variables (var), field references (fldref), constants (const), and expressions (expr).

Example 1. Given a node n : v1 = v2 + 3, the sets of facts extracted from n
with several attention function are given below:

var(n) = {v1, v2} def(n) = {v1} use(n) = {v2, 3, v2 + 3}
expr(n) = {v2 + 3} const(n) = {3} (var + const) � use(n) = {v2, 3}

Syntactic Templates. If we use the DSL in Fig. 3 directly, the search space for
all possible DFA candidates will be infinite. To work with a finite search space,
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Fig. 4. Semantics of the DSL given in Fig. 3. F , S, B, and A denote the semantics
of transfer functions, set expressions, Boolean expressions, and attention functions,
respectively. pts(v) represents the points-to set of variable v.

we will adopt the syntactic templates in Fig. 5 to formulate Θ in the gen-kill form
in terms of two auxiliary transfer functions, kill and gen. A non-terminal with a
wary line (e.g., Θ̃) is constrained to be expanded by using only the productions,
i.e., syntactic templates in Fig. 5. However, a free non-terminal (e.g., A, which
represents an attention function) can be expanded according to the productions
in Fig. 3. In particular, Θ̃ constrains Θ to be in the gen-kill form, where kill filters
out some old data-flow facts from s based on a Boolean expression B̃k and gen
adds some new data-flow facts extracted in A(n) to s subject to B̃g. Note that
the right operands of �� in B̃k1 and B̃g1 are different, since kill is responsible for
filtering out some data-flow facts in s but gen is not.

These syntactic templates, which serve to drive the automatic synthesis of
gen-kill transfer functions, require no task-specific knowledge. Despite the con-
straints imposed, the search space, which contains over 2.08 × 1019 DFA candi-
dates is still huge. This estimate is obtained based on the productions in Figs. 3
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Fig. 5. Syntactic templates for transfer functions.

and 5 with the understanding that, when deriving an attention function by apply-
ing T := T1 + T2 and R := R1 + R2 recursively, each terminal attention function
(e.g., var and def) needs to appear at most once.

3.3 Abstraction-Guided Search Space Pruning

Our first pruning technique works by dropping partially instantiated DFA candi-
dates from further consideration if their fully instantiated DFAs will never satisfy
the specification given. This is achieved by checking, across all the CFG nodes
individually, if an over-approximation of their data-flow facts (based on abstract
semantics) may potentially yield the expected data-flow facts. We write Pn(D)
to mean that a DFA candidate, D, is unsatisfiable and thus pruned. Specifically,
the three components of a DFA can be individually pruned, as discussed sepa-
rately below. For example, Pn(⇓,∪) indicates that all the DFA candidates with
the forward flow direction and the union meet operator can be ignored.

Pruning Flow Directions. To drop an unsatisfiable flow direction during the
search, we define two abstract DFAs, ÈD⇓ with the forward flow direction and
ÈD⇑ with the backward direction:

ÈD⇓ = (⇓, ÁΔ, ÁΘ), ÈD⇑ = (⇑, ÁΔ, ÁΘ) (5)

where ÁΔ denotes an abstract meet operator and ÁΘ denotes an abstract transfer
function, with both being defined as follows:

ÁΔ : λS.{
⋃
s∈S

s,
⋂
s∈S

s}

ÁΘ : λn s.℘(s ∪ (id + def + use + base)(n))
(6)

where their signatures are ℘(ValueSet) → ℘(ValueSet) and Node ×
ValueSet → ℘(ValueSet), respectively. ÁΔ includes both the union and
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intersection of all the sets in s and ÁΘ returns all the possible value sets that
can be produced from s at node n.

Instead of running the iterative algorithm given in Eq. 1, we run ÍDΓ , where
Γ ∈ {⇓,⇑}, at each node n ∈ N individually:

ÊsI,Γ
n = ÁΔ

n′∈SrcΓ (n)
rO,Γ
n′ , ÊsO,Γ

n = ÁΘ(n, rI,Γ
n ) (7)

where rI,Γ
n and rO,Γ

n are obtained from Eq. 4.
Then we use the following rule, [Ab-Γ], to prune an unsatisfiable flow direc-

tion if the above over-approximate analysis along this direction fails to produce
some data-flow fact(s) expected.

Rule [Ab-Γ]. For a flow direction Γ ∈ {⇑,⇓}, we have:

∃ n ∈ N, rI,Γ
n /∈ ÊsI,Γ

n ∨ rO,Γ
n /∈ ÊsO,Γ

n =⇒ Pn(Γ )

Example 2. When synthesizing the reaching definitions in Fig. 1, the backward
flow direction ⇑ can be pruned. We find that

rI,⇑
n4

= rA
n4

= {n0, n4}, rO,⇑
n4

= rB
n4

= {n0, n1, n3}
ÊsI,⇑
n4

= ÁΔ
n′∈Src⇑(n4)

rO,⇑
n′ = {rO,⇑

n5
} = {rB

n5
} = {{n0, n4}}

ÊsO,⇑
n4

= ÁΘ(n4, {n0, n4}) = ℘({n0, n4, b, b + 1, 1})

According to [Ab-Γ], we have rO,⇑
n4

/∈ ÊsO,⇑
n4

=⇒ Pn(⇑).

Pruning Meet Operators. Given a plausible flow direction Γ , we apply the
following rule to prune a meet operator Δ.

Rule [Ab-Δ]. For a meet operator Δ ∈ {∪,∩}, we have:

∃ n ∈ N, rI,Γ
n �= sI,Γ

n =⇒ Pn(Γ,Δ)

where sI,Γ
n = Δ

n′∈SrcΓ (n)
rO,Γ
n′ . As before, the expected data-flow facts given in

rI,Γ
n and rO,Γ

n′ are obtained from Eq. 4.

Example 3. Consider the example in Fig. 1. If ⇓ is considered, the intersection
meet operator ∩ can be pruned. We find that

rI,⇓
n4

= rB
n4

= {n0, n1, n3}, Src⇓(n4) = {n2, n3}
sI,⇓

n4
= ∩

n∈Src⇓(n4)
rO,⇓
n = rO,⇓

n2
∩ rO,⇓

n3
= rA

n2
∩ rA

n3
= {n0}

According to [Ab-Δ], we have rI,⇓
n4

�= sI,⇓
n4

=⇒ Pn(⇓,∩).
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Pruning Transfer Functions. We consider the following two forms of partially
instantiated transfer functions:

Θg : λn s.kill(n, gen(n, s)) Θk : λn s.gen(n, kill(n, s)) (8)

In the gen-before-kill (kill-before-gen) form above, when its sub-function gen (kill)
is instantiated, we will build an abstract transfer function ÁΘg (ÁΘk) given below
by replacing its other sub-function kill (gen) with an abstract version Ëkill (Ígen):

ÁΘg : λn s.Ëkill(n, gen(n, s)) ÁΘk : λn s.Ígen(n, kill(n, s)) (9)

With ÁΘ given in Eq. 6, Ëkill and Ígen are defined as:

Ëkill : λn s.℘(s) Ígen : λn s.{s ∪ s′ | s′ ∈ ÁΘ(n, ∅)} (10)

In Eqs. 9 and 10, each of the four abstract functions has the same signature:
Node × ValueSet → ℘(ValueSet). Thus, for each node n, Ëkill (Ígen) returns
the set of all possible value sets that can be obtained from a given value set s
due to a kill (gen) operation.

Rule [Ab-Θ]. For Θi ∈ {Θk, Θg} defined in Eq. 8, we have:

∃ n ∈ N, rO,Γ
n /∈ ÁΘi(n, rI,Γ

n ) =⇒ Pn(Γ,Θi)

Example 4. When synthesizing the reaching definitions in Fig. 1, we will prune
a partially instantiated gen-before-kill DFA candidate with the forward direction
and a transfer function Θg, in which gen(n4, r

I,⇓
n4

) = {n0, n1, n3}, where rI,⇓
n4

=
rB
n4

={n0, n1, n3}, but kill is uninstantiated and thus abstracted as Ëkill. Since

rO,⇓
n4

= rA
n4

= {n0, n4}, ÁΘg(n4, r
I,⇓
n4

) = Ëkill(n4, {n0, n1, n3}) = ℘({n0, n1, n3})

we have rO,⇓
n4

/∈ ÁΘg(n4, r
I,⇓
n4

) =⇒ beenconsideredyet.PruningPn(⇓, Θg) accord-
ing to [Ab-Θ].

Example 5. Similarly, a DFA candidate that has a kill-before-gen transfer
function Θk, in which kill(n4, r

I,⇓
n4

) = {n3} but gen is uninstantiated and thus
abstracted as Ígen will be pruned by [Ab-Θ]:

rO,⇓
n4

= rA
n4

= {n0, n4}, ÁΘ(n4, ∅) = ℘({n4, b, b + 1, 1})
ÁΘk(n4, r

I,⇓
n4

) = Ígen(n4, {n3}) = {rI,⇓
n4

∪ s|s ∈ ÁΘ(n4, ∅)}
= {{n0, n4} ∪ s | s ∈ ℘({n4, b, b + 1, 1})}

rO,⇓
n4

/∈ ÁΘk(n4, r
I,⇓
n4

) =⇒ Pn(⇓, Θk)

3.4 Brevity-Guided Search Space Pruning

Our second pruning technique works with a cost function (Sect. 3.4), which esti-
mates the cost (brevity) of each DFA candidate, to select the simplest satisfying
solution, i.e., the satisfying DFA with the smallest cost, and accelerate the search
(Sect. 3.4).
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Cost Estimation. We assume reasonably that a DFA spends nearly all its anal-
ysis time on evaluating its transfer function. The cost Cst of a transfer function
Θ depends mainly on the number of its constituent relational functions (e.g., ��
and �) and attention functions (e.g., def and use). Formally, Cst is defined as:

Cst(Θ)=
∑

Ai∈fA(Θ)

Cst(Ai)+
∑

��i∈f��(Θ)

Cst(��i)+
∑

�i∈f�(Θ)

Cst(�i)

where fA, f�� and f� return a set of attention functions A, binary operators ��,
and unary operators � appearing in Θ, respectively.

We set the cost of an atomic attention function A to 1 (e.g., Cst(id) = 1) and
compute the cost of a compound one A by:

Cst(R × T) = Cst(R) + Cst(T)
Cst(R1 + R2) = Cst(R1) + Cst(R2)
Cst(T1 + T2) = Cst(T1) + Cst(T2)

In principle, the simpler an attention function, the lower its cost. We treat
four different binary relational operators �� in Fig. 3 differently since they have
different amounts of information entropy. For example, if two sets are equal, they
are also subsets (supersets) of each other. Thus, their costs are estimated to be:

Cst(sub) = Cst(sup) = 1, Cst(ovlp) = 1+, Cst(eq) = 1−

where we use 1.01 and 0.99 to implement 1+ and 1−, respectively.
We set the cost of every unary relational operator � in Fig. 3 to 1− (e.g.,

Cst(mty) = 1−), which is also implemented as 0.99.

Example 6. The cost of Θ in Fig. 1(c) is estimated as:

Θ : λn s.gen(n, kill(n, s))
kill : λn s.s − filter(λx.def(x) eq def(n), s)
gen : λn s.s ∪ if(¬mty def(n), id(n))

Cst(Θ) = 3 · Cst(def) + Cst(eq) + Cst(mty) + Cst(id) = 3 + 1− + 1− + 1 = 5.98

Search Acceleration. For a partially instantiated transfer function Θ, we use
Cst to calculate the cost of its already instantiated components, which represents
the lower bound for the cost of Θ once its fully instantiated. Such lower bound
cost estimation can be used to accelerate the search with branch-and-cut [30].

Rule [Br-Θ]. Let Θp be a fully instantiated transfer function satisfying the
specification given. A (fully or partially instantiated) transfer function Θ will be
ignored if it does not cost less than Θp:

Cst(Θ) � Cst(Θp) =⇒ Pn(Θ)

However, this rule is used only after a satisfying Θ has been found. Therefore, we
also rely on two additional rules, [Br-A] and [Br-gk], on attention functions
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and gen/kill functions, respectively, to prune those DFA candidates that are
functionally equivalent to some others but are not computationally cheaper.
Rule [Br-A]. For a given attention function A, we have:

∃ A
′ ∈ AttnFunc − {A}, (∀x ∈ Value, A(x) = A

′(x))

∧ Cst(A) ≥ Cst(A′) =⇒ Pn(A)
(11)

For a given synthesis problem (specified by a CFG as input and the expected
data-flow facts at its nodes as output), the domain of x, Value, will be deter-
mined by the actual specification given.

Example 7. A : var � (def + use) will be pruned by [Br-A] since

(∀x∈Value, A(x)=var(x)) ∧ Cst(A)>Cst(var)

Rule [Br-gk]. Let F be the set of fully instantiated gen/kill functions of the
form defined in Fig. 5. For a given gen/kill function f ∈ F, we have:

∃ f′ ∈ F − {f}, (∀ n × s ∈ Node × ValueSet, f(n, s) = f′(n, s))

∧ Cst(f)≥Cst(f′) =⇒ Pn(f)
(12)

Example 8. Let gen and gen′ be the two gen functions given below. Accord-
ing to [Br-gk], gen can be pruned, since gen′ is functionally equivalent but
computationally cheaper (to evaluate):

gen : λn s.s ∪ if(¬mty def(n) ∧ ¬mty use(n), id(n))
gen′ : λn s.s ∪ if(¬mty def(n), id(n))

Pruning gen (when it is fully instantiated) can significantly reduce the search
space for a gen-before-kill transfer function since kill hasn’t been considered yet.
Pruning gen even earlier will be ineffective due to the lack of information available
about a partially instantiated gen. The reasoning applies to the kill pruning.

3.5 The DFASY Synthesis Algorithm

As shown in Algorithm 1, DFASy takes a specification consisting of a CFG G
and the expected data-flow facts in R at its nodes as input and returns a DFA
Dbest that satisfies this specification as output. Its main search loop appears in
lines 6–14, processing each DFA candidate D in the worklist in turn. D is pruned
if it satisfies any pruning rule introduced in Sects. 3.3 and 3.4 (line 8). If D is
fully instantiated, we run the iterative algorithm given in Eq. 1 to validate it and
update Dbest, if necessary (lines 9–11). Otherwise, we call Derive() to continue
instantiating D (lines 13–14).

Derive() takes a partially instantiated DFA D = (Γ,Δ,Θ) and returns a set
of DFAs that are further instantiated from it. We handle its flow direction Γ
and its meet operator Δ in lines 18–20 and lines 21–23, respectively. To handle
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Algorithm 1: DFASy

Input: G (CFG) and R (Expected Data-Flow Facts)
Output: Dbest (DFA)

1 Function DFASy(G, R)
2 workList ← ∅ // an empty stack;
3 D ← an uninstantiated DFA; cmin ← +∞; workList.push(D);
4 while workList �= ∅ do
5 D ← workList.pop();
6 if D satisfies any pruning rule then continue;
7 if D is fully instantiated then
8 if D (G) = R and Cst(D) < cmin then
9 cmin ← Cst(D); Dbest ← D;

10 else
11 foreach D′ in Derive (D) do
12 workList.push(D′)
13 return Dbest;

14 Function Derive(D) // D = (Γ, Δ, Θ)
15 sD ← ∅;
16 if Γ is not initialized then
17 D⇓ ← (⇓, Δ, Θ); D⇑ ← (⇑, Δ, Θ); Add D⇓ and D⇑ to sD;
18 else if Δ is not initialized then
19 D∪ ← (Γ, ∪, Θ); D∩ ← (Γ, ∩, Θ); Add D∪ and D∩ to sD;
20 else
21 Let N be the first non-terminal symbol in Θ;
22 foreach production N := X1...Xn do
23 DΘ ← (Γ, Δ, Θ); Substitute X1...Xn for N in Θ; Add DΘ to sD;

24 return sD;

its transfer function Θ (lines 24–29), we instantiate it further by adopting a
leftmost derivation according the productions given in Figs. 3 and 5, with the
understanding that, in the gen-before-kill (kill-before-gen) form, gen (kill) will
be applied first and thus considered to appear conceptually on the left of kill
(gen). As a result, the instantiation process of each DFA can be represented
by a so-called derivation tree, showing how its non-terminals are expanded in a
top-down, left-to-right fashion.

Example 9. Figure 6 gives a simplified derivation tree for the transfer function
in Fig. 1(c) (by continuing from Example 6). Such a depth-first search allows us
to apply pruning rules as early as possible. As discussed in Example 5, we may
make a pruning attempt after kill has been fully instantiated, i.e., after the 7-th
non-terminal symbol A2 has been fully derived.

4 Evaluation

We show that DFASy, assisted with its pruning techniques, is highly effective
in synthesizing a range of DFAs satisfying their given specifications. We have



Automatic Synthesis of Data-Flow Analyzers 467

Fig. 6. The simplified derivation tree of the transfer function in Fig. 1(c). The number
i in blue indicates that the corresponding non-terminal is the i-th one derived. (Color
figure online)

verified manually the correctness of the DFAs generated for the DFA problems
considered. Thus, our evaluation aims to answer the following research questions:

– RQ1: Is DFASy effective in synthesizing DFAs?
– RQ2: Is DFASy’s abstraction-guided pruning effective?
– RQ3: Is DFASy’s brevity-guided pruning effective?

We also include a case study on the null pointer detection problem.

4.1 Implementation

We have implemented DFASy and the DSL given in Fig. 3 for specifying transfer
functions in Java. We use Soot [48] to construct a CFG in its built-in Jimple IR
and run the iterative algorithm given in Eq. 1 on the CFG for validation purposes.
The points-to information required by some DFA problems is obtained by a flow-
sensitive intra-procedural algorithm. Different pointer analysis algorithms [21,
23,40,44–46] may be applied since it is orthogonal to the DFA synthesis problem
considered in this paper.

DFASy is multi-threaded. There is one thread dedicated for handling every
possible combination of flow directions ({⇑,⇓}), meet operators ({∪,∩}) and
transfer function templates ({gen-before-kill, kill-before-gen}). Thus, the maxi-
mum number of threads used is 8.

Our experiments are done on a machine with 4 Intel R© Xeon R© Gold E5-2637
CPUs equipped with 8GB memory, running Ubuntu 16.04. The time budget for
solving each DFA problem is 1 h. We repeat each experiment 5 times and report
the average.

4.2 Dataset

Table 1 gives our dataset consisting of 14 DFA problems, with three requiring
the points-to information (as indicated). We have collected seven classic DFA
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Table 1. A dataset with 7 classic and 7 custom DFA synthesis problems. For each
CFG, #Node is the number of nodes in the CFG.

Problem Description #Node Pointer analysis
needed beforehand?

Classic DFA problems

ReachDef Reaching definitions 9

LiveVar Live variables 9

AvailExpr Available expressions 12

BusyExpr Very busy expressions 14

NullCheck Null pointer detection 20 ✓

NonnullCheck Non-null pointer verification 18 ✓

InitVar Variable initialization 8

Custom DFA problems

DerefObj Detecting dereferenced objects 12 ✓

AE-Const Detecting available expressions with
some constant operands

13

AE-NoConst Detecting available expressions
without constant operands

14

BE-Const Detecting very busy expressions with
some constant operands

14

BE-NoConst Detecting very busy expressions
without constant operands

14

RF-Expr Detecting reaching definitions with
each’s RHS being an expr (Fig. 2)

9

RF-Const Detecting reaching definitions with
each’s RHS being a const (Fig. 2)

9

problems from different application domains, including compiler optimization,
bug detection, and program verification. The other seven custom DFA problems
are variations of these classic problems. For each DFA problem, we obtain its
specification (G,R) for synthesizing an satisfying DFA as follows. We first man-
ually implement an oracle DFA Do to solve the problem. We then create G (with
its nodes described in the Java-like language in Fig. 2), based on a number of
representative CFGs given in standard text [2] and real code, by adding nodes,
if necessary, to cover corner cases. Finally, we run Do over G to obtain R. In
Table 1, the number of CFG nodes for each problem is given.

There are two caveats about how input-output examples are interpreted in
the DFA synthesis problem. First, we use one CFG for each DFA problem. Even
if several CFGs are used, they can be conceptually regarded as just one CFG,
since all the CFGs can be merged into one by adding a pseudo entry (exit) node
and connecting it with the existing entry (exit) nodes. Second, a specification
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(G,R) can also be understood as consisting of as many input-output examples
as the number of nodes in G (in the form of (rB

n , rA
n ) for each node n).

Our implementation for DFASy and the dataset used are publicly available
(http://www.cse.unsw.edu.au/∼corg/dfasy/).

4.3 Baselines

Since DFASy is the first tool to synthesize general-purpose DFAs, we have
designed three baselines to evaluate the effectiveness of its abstraction- and
brevity-guided pruning techniques as follows: (1) DFASy-naive: a version of
DFASy without applying either abstraction- or brevity-guided pruning tech-
nique, (2) DFASy-ab: a version of DFASy with abstraction-guided pruning
only, and (3) DFASy-br: a version of DFASy with brevity-guided pruning
only.

4.4 Results and Analysis

RQ1. DFASy’s Overall Effectiveness. Table 2 compares DFASy with the
three baselines on solving the 14 DFA synthesis problems. DFASy has success-
fully found the simplest DFA solution for each DFA problem in 21.8 s, on average.
Due to the abstraction- and brevity-guided pruning techniques used, its search
space has been reduced from 2.08 × 1019 (Sect. 3.2) to 1736232, on average. For
the most time-consuming problem, NullCheck, DFASy spends 111.6 s only and
has validated 1.5 × 107 (fully instantiated) candidates.

DFASy-naive fails to synthesize any DFA due to the search space explosion
problem. Under one-hour time budget, DFASy-naive has explored only 4.8×108

candidates, on average, for each DFA problem, which is still more than 10 orders
of magnitude away from the number of candidates (2.08 × 1019) to be explored.

By applying abstraction-guided pruning alone, DFASy-ab has found some
plausible, i.e., satisfying DFAs in 9 out of the 14 DFA problems, but not the sim-
plest solution in any case. By applying brevity-guided pruning only, DFASy-br
has successfully found the simplest solutions in 12 out of the 14 DFA problems,
but significantly more costly than DFASy (with an average slowdown of 81.8x
on each of these 12 problems and time outs on NullCheck and NonullCheck). We
analyze both pruning techniques below.

RQ2. Effectiveness of Abstraction-Guided Pruning. As shown in Table 2,
DFASy-ab has found plausible solutions in 9 DFA problems by validating
4.1×108 DFA candidates per problem, on average. On the other hand, DFASy-
naive cannot find any plausible solution but has validated even more DFA can-
didates per problem, on average. This suggests that many partially instantiated
but unsatisfiable candidates have been pruned by the three rules introduced in
Sect. 3.3, [Ab-Γ], [Ab-Δ] and [Ab-Θ].

To analyze quantitatively the contribution by each of these three pruning
rules, we run DFASy and report the number of times each rule is applied during

http://www.cse.unsw.edu.au/~corg/dfasy/
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Fig. 7. Analyzing 3 abstraction-guided and 3 brevity-guided pruning rules in the 7
classic DFA problems. The x axis represents how many times a rule is used. The y axis
represents the percentage of DFA candidates pruned over the total (2.08 × 1019).

the search and the number/percentage of DFAs pruned for the 7 classic DFA
problems in Fig. 7. Rule [Ab-Γ], which aims to prune an unsatisfiable flow
direction, can eliminate half of the DFA candidates by acting only once, for
all the 7 DFA problems except for LiveVar. [Ab-Γ] is inapplicable to LiveVar,
since every live (i.e., used) variable in a backward analysis can also be treated
as a defined variable in a forward analysis. Fortunately, [Ab-Δ] comes into play
in pruning both the forward direction and the meet operator for LiveVar. In
addition, [Ab-Δ] has also eliminated one-quarter of the candidates in each of
the other 6 DFA problems by acting only once. Finally, [Ab-Θ] is the most
frequently used among the three pruning rules, as it is applied to uninstantiated
transfer functions. For each DFA problem, the number of candidates pruned is
in the order of at least 1014.
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RQ3. Effectiveness of Brevity-Guided Pruning. This pruning technique
allows DFASy to work with branch-and-cut [30] by selecting the simplest DFA
among the semantically equivalent candidates (Sect. 3.4). As shown in Table 2,
DFASy-br can accelerate the search dramatically by solving 12 out of the 14
DFA problems.

Figure 7 also analyzes the effectiveness of its three rules, [Br-Θ], [Br-A] and
[Br-gk]. Overall, [Br-A] is the most frequently used, pruning the most candi-
dates, since attention functions are frequently used in transfer functions (Fig. 5).
[Br-Θ] and [Br-gk] also make considerable contributions to the search space
pruning. Once a plausible solution Θp is found, [Br-Θ] will be used continuously
to filter out the transfer functions that cost no less than Θp. [Br-gk], which is
applied only to fully instantiated gen and kill, is the least frequently used, but
has also effectively pruned more than 1010 candidates for each DFA problem.

4.5 Case Study: Null Pointer Detection

We discuss NullCheck illustrated in Fig. 8, All the other synthesized DFAs can
be reproduced (https://sites.google.com/view/dfasy).

This DFA problem aims to find a DFA for detecting the null pointers at each
CFG node in Fig. 8(a), e.g., the null pointer x after n1 and the four null pointers,
x, y, o1.f and z, after n9, as expected in Fig. 8(b). DFASy has successfully
synthesized a DFA as a forward analysis shown in Fig. 8(c), by making use of the
points-to information already computed (to handle also aliases), as formalized
in Fig. 4.

Let us examine this DFA in more detail. When analyzing a node, its kill
function filters out whatever is defined at the node (even in terms of null)
but its gen function will discover any new null pointer found at the node. For
example, when node n1 is analyzed, x is detected by gen as a new null pointer
at its exit, since isnul right(n1) is true, i.e., right(n1) = {null}. Later, when n4

is encountered, the null pointer x is filtered out by kill, and at the same time,
cannot be possibly re-generated by gen, since q is neither null itself nor appears
as a null pointer already at its entry.

4.6 Discussions

As evaluated earlier, DFASy is quite efficient due to its abstraction- and brevity-
guided pruning techniques used. However, DFASy currently adopts a naive
depth-first search strategy (Fig. 6), which can be further optimized by incor-
porating some advanced search techniques like genetic programming [6]. One
possible heuristic (fitness) function for guiding the search is to rely on the num-
ber of expected data-fact facts satisfied by each DFA candidate.

In DFASy, we have implemented a number of attention functions or oper-
ators for synthesizing general-purpose DFAs. However, we can extend DFASy
easily by adding client-specific functions or operators, including, for example, a
unary operator issrc to define the sources of taints to facilitate taint analysis.

https://sites.google.com/view/dfasy
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Fig. 8. A case study: null pointer detection (NullCheck).

5 Related Work

5.1 Synthesis by Examples

Program synthesis has a wide range of applications, including data wrangling
[16,17], code suggestion [19,32,35,53], program repair [28,39,51], and concurrent
programming [11,25,49]. In this paper, DFASy aims at synthesizing general-
purpose data-flow analyzers automatically. Since the intent specifications are
usually unavailable or expressed in a natural language, most synthesis systems
work with programming-by-example (PBE), thereby defining synthesis problems
by input-output examples [18,29,33,34]. Several advanced techniques have been
proposed to guide the search. In [14,15,29,33], type systems are proposed to
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prune ill-typed programs. Katz and Peled [24] exploit genetic programming to
guide their synthesis. Smith and Albarghouthi [41] reduce the search space by
equivalence reduction. So and Oh [42] use static analysis to accelerate the search.
Balog et al. [5] guide their synthesis with deep learning. DFASy proposed in
this paper is also a PBE system, equipped with abstraction- and brevity-guided
pruning techniques to guide the search.

5.2 Synthesis by Templates

Restricting the search space by syntactic templates is one of key ideas in mod-
ern program synthesis [3,18]. Sketch [43] allows programmers to provide a
high-level structure for an intended program. In addition, the DSLs, which are
designed to reason about code patterns or templates for a specific task, can
also be effective to restrict the search space. For example, FlashFill DSL [16]
focuses on string operations in spreadsheets, FlashExtract DSL [26] is pro-
posed to synthesize programs that can return an instance of an expected data
structure from a large string, and FlashRelate DSL [7] include programs that
can extract a relational table from a spreadsheet. QBS [12] synthesizes optimized
database-backed applications with a subset of the SQL DSL. Panchekha and Tor-
lak [31] synthesize spreadsheet styles from layout constraints with a CSS-specific
DSL. In this paper, we have introduced a DSL for synthesizing transfer functions
for data-flow analyzers. In addition, we use syntactic templates to guide their
synthesis in the gen-kill form.

5.3 Data-Flow Analysis

A range of data-flow analysis algorithms have been proposed for supporting
compiler optimization [2,10,52], bug detection [20,22,47,50], and program ver-
ification [13,27]. Reps et al. [36] introduce an efficient framework for solving
the IFDS data-flow problem and generalize it into the IDE framework [37]. The
IFDS/IDE algorithm has been implemented in a number of program analysis
frameworks, such as Wala [1], Soot [48] and FlowDroid [4]. In this paper,
DFASy aims at automatically synthesizing DFAs, including its three compo-
nents, which can be directly integrated into these existing data-flow analysis
frameworks.

5.4 Synthesis of Static Analysis Rules

Recently, several approaches have been proposed to synthesize rules for static
analysis. Bielik et al. [9] use the ID3 algorithm to synthesize rules for pointer
analysis and allocation site analysis for JavaScript. Si et al. [38] use syn-
tactic templates to guide the synthesis of rules in Datalog programs. These
approaches require pre-defined templates or relations for specific tasks. In this
paper, DFASy is equipped with different data-flow fact extraction functions to
synthesize general-purpose DFAs.
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6 Conclusion

In this paper, we have introduced DFASy, a framework for synthesizing general-
purpose DFAs by examples. To facilitate its automatic synthesis, we have also
proposed a DSL that focuses main on data-flow fact extractions, set opera-
tions, and logic operations. To accelerate the search and find the simplest DFAs,
we have designed abstraction- and brevity-guided pruning techniques. We have
developed a benchmark suite consisting of 14 DFA synthesis problems for eval-
uation purposes. DFASy has successfully solved all the problems in 21.8 s, on
average, outperforming significantly the three baselines compared.
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