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Learning Objectives
• Introducing new dimensions in NMR
• Different types of two- and three-dimensional NMR spectra
• Benefits of multidimensional NMR spectra in terms of resolution enhance-

ment and extractable information

6.1 Introduction

The most significant development in NMR after the discovery of FTNMR is undoubt-
edly multidimensional NMR spectroscopy, although one can say in the retrospective
that FTNMR had already paved the way for its development. The essence of this
statement in more explicit words is that multidimensional NMR exploits the fact that
in FTNMR, the excitation of the spins and detection of their response are separated in
time. The first ideas of extending the dimensionality of NMR to two from the conven-
tional one-dimensional NMR was put forward by Jean Jeener in 1971. The technique
has grown since then, in an explosivemanner, and continues to develop unabatedly. The
tremendous success of these experiments is due to the fact that they permit the display of
pairwise interactions between spins in a given molecule in the form of cross-peaks in a
plane. Quantitative interpretations of these correlations have revealed structural and
dynamical information on such large molecules as proteins and nucleic acids—a
hitherto unthinkable fact. With this, NMR entered the realm of biology, a subject with
an ocean of unsolved problems both at macroscopic and microscopic levels.

This chapter begins by introducing the concepts in a pedagogic manner; progresses
gradually in complexity and rigor, illustrating the explicit calculations in few cases;
and quickly jumps into more complex experiments. In these complex experiments,
used in biomolecular NMR or structural biology, explicit step-by-step calculations are
not shown, but the final results which help to understand the performance of the
experiments are presented. Certainly, the discussion is not exhaustive, but indicative. It
will expose the students to the barrage of developments, so that those who would
continue research in such advanced topics can pursue with the details at a later stage.

A generalized scheme of multidimensional NMR experiment is based on the idea
of “segmentation of time axis,” as shown in Fig. 6.1.

The experimental scheme begins with a “preparation period” during which the
spin system is prepared in a suitable state. It can consist of a simple delay or a
combination of pulses and delays or other kinds of perturbations as desired. For
example, in a simple FTNMR experiment, the single-pulse excitation constitutes the
preparation period during which x-y magnetization is created. A pair of 90� pulses
separated by a constant evolution time constitutes the preparation period for multiple
quantum spectroscopy, etc.

Fig. 6.1 Segmentation of the time axis
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The “evolution periods” t1, t2, . . . .tn are variables and generate (n+1) dimensional
time domain data, which after (n+1) dimensional Fourier transformation yields the (n
+1) dimensional spectrum. The evolution periods help to frequency label the indi-
vidual spins or group of spins with their characteristic single-quantum or multiple-
quantum frequencies. Various types of manipulations with the frequencies are
possible during these periods.

Mns constitute the so-called mixing periods, the most important part of the
experimental scheme. It is the “mixing” which establishes correlations between
frequencies in adjacent evolution periods. Different kinds of correlations can be
established by exploiting different types of interactions between the spins. The most
common types of interactions exploited are J-coupling interactions and through-
space dipolar interactions. Hundreds of pulse sequences have been published till
date. In the following sections, we shall discuss at length the principle and
developments in two-dimensional (2D) NMR, which laid the foundation for
higher-dimensional experiments for specific purposes.

6.2 Two-Dimensional NMR

The details of performing a two-dimensional NMR experiment are shown
schematically in Fig. 6.2.

Fig. 6.2 (a) The segmentation of the time axis for the two-dimensional experiment. (b) Details of
the experiment showing systematic incrementation of the evolution period, t1
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P and M are the preparation and mixing periods, respectively, and t1 and t2 are the
evolution and detection periods, respectively. The experiment involves a collection
of a number of free induction decays for systematically incremented values of t1. The
final data set will thus be a matrix, S(t1, t2). Fourier transformation, with respect to t2,
results in a series of one-dimensional spectra in which the amplitudes and phases of
the signals depend upon the value of t1. Variations of these entities as a function of
time carry the frequency information present during the t1 period (Fig. 6.3), and thus
Fourier transformation of these data along t1 results in a two-dimensional frequency
domain spectrum, S(F1,F2).

S t1, t2ð Þ !FT S F1,F2ð Þ ð6:1Þ

Fig. 6.3 A schematic of the processing of the two-dimensional data, S(t1, t2). Individual FIDs (first
column) collected for different t1 time points are Fourier transformed (second column, F2 spectra).
By taking the intensities at each point on the discrete F2 spectra, we arrive at the t1-dependent
profiles (column 3). These FIDs are then Fourier transformed to generate the spectra along the F1
axis. For illustration, only one line is considered. In both F2 and F1 spectra, one sees intensity
modulations as we move through the frequency axes
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Consider a spin k whose x-y magnetization has been created by the preparation
period, and this magnetization precesses with a frequency ωk during the evolution
period. At the end of the period t1 the magnetization has componentsMk(0) cos ωkt1
and Mk(0) sin ωkt1 along, say the y- and x-axes, respectively; Mk(0) is the magneti-
zation at the beginning of the evolution period. Let us now assume that the mixing
period converts one of the above components (sayMk(0) sin ωkt1) into unobservable
magnetization such as z-magnetization or multiple quantum coherence. From the
remaining, part of the magnetization is transferred to say spin l, which has a
characteristic frequency ωl. The detected signal, as a function of t2, will then have
two contributions.

A ¼ a Mk 0ð Þ cos ωkt1 : cos ωkt2 ð6:2Þ
B ¼ b Mk 0ð Þ cos ωkt1 : cos ωlt2 ð6:3Þ

Here it is assumed that only the y-component of the magnetization is detected
during t2 period; a and b are some coefficients representing the relative
contributions. These equations represent, of course, oversimplification made to
convey the concepts clearly, and we will return to rigorous calculations later
on. The component A, after two-dimensional Fourier transformation, results in a
peak which has the same frequency ωk along both F1 and F2 axis. The component B,
results in a peak which has frequency ωk along F1 and frequency ωl along F2. The
former is called the “diagonal peak” and the latter the “cross-peak” in the
two-dimensional spectrum. A similar description applies to the magnetization
originating from the l spin. A schematic of the resultant two-dimensional spectrum
is shown in Fig. 6.4.

6.3 Two-Dimensional Fourier Transformation in NMR

A two-dimensional frequency spectrum, S(F1, F2), will be generated from a
two-dimensional time domain data set, S(t1, t2), by the two-dimensional Fourier
transformation. This is mathematically represented as

Fig. 6.4 A schematic of a
two-dimensional spectrum
considering two spins k and l.
ωk and ωl represent the
resonance frequencies of the
two spins

6.3 Two-Dimensional Fourier Transformation in NMR 207



S F1,F2ð Þ ¼ F 1ð ÞF 2ð ÞS t1, t2ð Þ ð6:4Þ
where F 1ð Þ and F 2ð Þ represent Fourier transformation operators along the t1 and t2
dimensions, respectively. These have to be carried out independently. Clearly,
two-dimensional FT is a succession of one-dimensional FT.

F in general can be written as

F ¼ F c � iF s ð6:5Þ
where F c and F s represent cosine and sine transforms, respectively, as discussed in
Chap. 3.

S(t1, t2) is in general a complex function represented as

S t1, t2ð Þ ¼ Re S t1, t2ð Þ þ i Im S t1, t2ð Þf g ð6:6Þ
¼ Sr t1, t2ð Þ þ i Si t1, t2ð Þ ð6:7Þ

Similarly,

S F1,F2ð Þ ¼ Sr F1,F2ð Þ þ i Si F1,F2ð Þ ð6:8Þ
Further,

S F1,F2ð Þ ¼ F c
1 � iF s

1 F c
2 � iF s

2 Sr t1, t2ð Þ þ i Si t1, t2ð Þf g ð6:9Þ
From this, it follows

Sr F1,F2ð Þ ¼ F cc Sr t1, t2ð Þf g � F ss Sr t1, t2ð Þf g þ F cs Si t1, t2ð Þf g
þ F sc Si t1, t2ð Þf g ð6:10Þ

Si F1,F2ð Þ ¼ F cc Si t1, t2ð Þf g � F ss Si t1, t2ð Þf g � F cs Sr t1, t2ð Þf g
� F sc Sr t1, t2ð Þf g ð6:11Þ

where

F cc Sr t1, t2ð Þf g ¼
þ1

�1
dt1 cosω1t1

þ1

�1
dt2 cosω2t2 Sr t1, t2ð Þ ð6:12Þ

F ss Sr t1, t2ð Þf g ¼
þ1

�1
dt1 sinω1t1

þ1

�1
dt2 sinω2t2 Sr t1, t2ð Þ ð6:13Þ
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F cs Sr t1, t2ð Þf g ¼
þ1

�1
dt1 cosω1t1

þ1

�1
dt2 sinω2t2 Sr t1, t2ð Þ ð6:14Þ

F sc Sr t1, t2ð Þf g ¼
þ1

�1
dt1 sinω1t1

þ1

�1
dt2 cosω2t2 Sr t1, t2ð Þ ð6:15Þ

Similar equations hold good for Si(t1, t2) as well.
Since for t1 and t2< 0, there is no signal, the transformations will have to be

considered only for the range 0 < t < 1.
The general principles of Fourier transformation discussed in Chap. 3 are appli-

cable here as well, along both axes, F1 and F2 of the two-dimensional spectrum.
Sensitivity and resolutions along the two axes are governed by the same
considerations of sampling rate, acquisition time, data size, zero filling, window
multiplications, etc. The acquisition times along the t1 and t2 directions are generally
represented as t1

max and t2
max, respectively. While increasing t2

max can be simply
accomplished by increasing the size of the FID data, increasing t1

max amounts to
collecting more number of t1 increments, and this contributes dearly to the total
experimental time. Thus, for two-dimensional experiments, it is very essential to
optimize the number of t1 increments and the data need be collected only until that
value of t1 where the signal is present appreciably. The data is not actually collected
during t1, and this decision will have to be taken by calculation, by comparing t1

max

value with the T2 of the spin system, roughly observable from one-dimensional
FIDs. Typically, t1

max is limited to 50–150 ms range depending upon the type of the
experiment.

6.4 Peak Shapes in Two-Dimensional Spectra

The time domain signal (S(t1, t2)) is a superposition of many coherences. Consider-
ing a particular combination of coherences between levels t ! u in t1 domain and
r ! s in t2 domain, the time domain signal for this pair will be

Stu, rs t1, t2ð Þ ¼ Stu,rs 0, 0ð Þe �iωtu�λtuð Þt1f ge �iωrs�λrsð Þt2f g ð6:16Þ
where the λs represent the T2 relaxation rates for the respective coherences.

Define

Ztu,rs ¼ Stu,rs 0, 0ð Þ ð6:17Þ
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Then,

Stu,rs ω1,ω2ð Þ ¼ Ztu,rs
1

iΔωtu þ λtu

1
iΔωrs þ λrs

ð6:18Þ

where

Δωtu ¼ ω1 þ ωtu,Δωrs ¼ ω2 þ ωrs: ð6:19Þ
Equation 6.18 can be rewritten as

Stu,rs ω1,ω2ð Þ ¼ Ztu,rs
λtu

Δωtuð Þ2 þ λtuð Þ2 �
iΔωtu

Δωtuð Þ2 þ λtuð Þ2

� λrs
Δωrsð Þ2 þ λrsð Þ2 �

iΔωrs

Δωrsð Þ2 þ λrsð Þ2 ð6:20Þ

In each of the angular brackets, the first term which is real represents an
absorptive line shape (A), and the second term which is imaginary represents a
dispersive line shape (D).

Thus,

Stu,rs F1,F2ð Þ ¼ Ztu,rs Atu F1ð Þ � iDtu F1ð Þf g Ars F2ð Þ � iDrs F2ð Þf g ð6:21Þ
¼ Ztu,rs ArsAtu � DrsDtuf g � i DtuArs þ AtuDrsf g ð6:22Þ

This indicates that both the real and imaginary parts of the spectrum have mixed
phases, along both the frequency axes. Figure 6.5 shows the appearances of the
peaks for different peaks shapes along the F1 and F2 axes. Absorptive peak shapes
produce the highest resolution in the spectra and thus are preferred.

The time domain signal can be classified into two categories:

(1) The evolution in t1 modulates the phase of the detected signal (e.g., eiωtut1 : f ðt2Þ).
This is called phase modulation.

(2) The evolution in t1 modulates the amplitude of the detected signal (e.g., cosωtut1.
f(t2)). This is called amplitude modulation.

Several methods have been designed to obtain pure absorptive spectra, and the
most common is to perform real Fourier transformation with respect to t1. We show
how absorptive lines can be obtained when the detected signal is amplitude
modulated by evolution during t1.

Consider

Stu,rs t1, t2ð Þ ¼ cosωtut1:e
�iωrst2 :e�λtut1�λrst2 ð6:23Þ

Real cosine Fourier transformation of this data is given by
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Stu,rs ω1,ω2ð Þ ¼
1

0

1

0
Stu,rs t1, t2ð Þ cosω1t1:e

�iω2t2dt1dt2 ð6:24Þ

This leads to

Stu,rs ω1,ω2ð Þ ¼ 1
2

Atu ω1ð Þ þ Atu �ω1ð Þf g Ars ω2ð Þ � iDrs ω2ð Þf g ð6:25Þ

If the real part of the spectrum along ω2 is selected, one can obtain pure absorptive
peak along both frequency axes.

This, however, results in the duplication of peaks at �ωtu, which is artificial. So,
this can be avoided by doing quadrature detection along the t1 axis, as discussed in
the next section.

6.5 Quadrature Detection in Two-Dimensional NMR

Here we need to consider how positive and negative frequencies can be
discriminated in both F1 and F2 dimensions of the two-dimensional experiment.
As far as F2 dimension is concerned, it comes from the detected signal during the t2
time period, and the procedures described in Chap. 3 are applicable here as well.
However, along the F1 dimension, there is a difficulty because the data is not

Fig. 6.5 Peak shapes in the two-dimensional spectra. Top row shows stacked plot representations,
while the bottom row represents the corresponding contour representations of the same peak shapes.
The left peak represents absorptive shape along both the frequency axes. The central picture
represents dispersive line shapes along both the frequency axes, and the right picture represents
absorptive along F2 and dispersive along F1 axes; the reverse is also possible. Such mixed line
shapes are referred to as “mixed phases”
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actually collected during the “t1” period. Different strategies are adopted for this
purpose, by manipulating the way the increments in t1 are adjusted along with the
receiver phases. There are three methods which are known to achieve this, and these
are described in Table. 6.1 (Cavanagh page 323, in this table, the pulse phase refers
to the phase of the pulse immediately prior to the t1 evolution period). For the TPPI
method, the increment Δt1 is half of that in STATES and TPPI-STATES methods.

6.6 Types of Two-Dimensional NMR Spectra

The known two-dimensional NMR experiments can be broadly classified into three
categories:

(i) Resolution/separation experiments
(ii) Correlation experiments
(iii) Multiple-quantum experiments

Table 6.1 Protocols for data collection in the three methods of quadrature detection along the
F1 axis

(a) TPPI (time proportional phase incrementation)

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)Δ x x

(4k + 2) t1(0) + (4k + 1)Δ y x

(4k + 3) t1(0) + (4k + 2)Δ �x x

(4k + 4) t1(0) + (4k + 3)Δ �y x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.

(b) States

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)2Δ x x

(4k + 2) t1(0) + (4k)2Δ y x

(4k + 3) t1(0) + (4k + 1)2Δ x x

(4k + 4) t1(0) + (4k + 1)2Δ y x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.

(c) States-TPPI

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)2Δ x x

(4k + 2) t1(0) + (4k)2Δ y x

(4k + 3) t1(0) + (4k + 1)2Δ �x �x

(4k + 4) t1(0) + (4k + 1)2Δ �y �x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.
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Hybrid experiments have also been devised which use some of the ideas in two
different classes of experiments.

6.6.1 Two-Dimensional Resolution/Separation Experiments

The primary aim in these experiments is to separate the different interactions in the
Hamiltonian. In high-resolution NMR, this amounts to the separation of the Zeeman
(Hz) and the coupling Hamiltonians (HJ).

H ¼ Hz þHJ ð6:26Þ
Different strategies can be defined depending upon the nature of the information

required in the final spectrum.

6.6.1.1 Two-Dimensional Heteronuclear Separation Experiments
Figure 6.6 illustrates such a concept (pulse sequences a and b). In (a), the F2 axis of
the final spectrum contains both 13C chemical shift and 13C-1H coupling informa-
tion, whereas the F1 axis contains only the 13C chemical shift information. In (b), the
reverse occurs, i.e., the F1 axis has both 13C chemical shift and 13C-1H coupling
constants, while the F2 axis has only 13C chemical shift information. This was the
first two-dimensional experiment ever recorded. Figure 6.7 shows an experimental
spectrum corresponding to Fig. 6.6b.

Figure 6.8 illustrates another situation where the F1 axis has only scalar coupling
constants and the F2 axis has the chemical shift information. This represents a
complete separation of the coupling and chemical shift Hamiltonians along the
two axes.

The product operator description of the experiment is explicitly given in the
following paragraphs.

The density operator (ρ) terms at the time points 1 to 3 indicated in Fig. 6.8 are

ρ1 ¼ Cz ð6:27Þ
ρ2 ¼ �Cy ð6:28Þ

ρ3 ¼ �½Cy cos πJHCt1 � 2Cx Hz sin πJ HCt1� ð6:29Þ
The terms Cx, Cy, and Cz refer to the x-, y-, and z-components of the 13C

magnetization. And 2CxHz represents x-magnetization of carbon antiphase with
respect to proton. In Eq. 6.29, the second term does not lead to observable magneti-
zation in t2 because of proton decoupling. The first term evolves under chemical shift
only during t2.

Therefore,
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Cy !H Z ½Cy cosωCt2 � Cx sinωCt2� ð6:30Þ
Then, assuming y-detection, the density operator at time point 4 in Fig. 6.8 is

ρ4 ¼ Cy cosωCt2 cosπJHCt1 ð6:31Þ
This leads to exclusively coupling information along t1 and chemical shift

information along t2.
The experimental spectrum corresponding to this pulse scheme is shown in

Fig. 6.9.

6.6.1.2 Two-Dimensional Homonuclear Separation Experiments
Figure 6.10 shows a pulse scheme for obtaining the separation of interactions in
homonuclear systems. This is often referred to as two-dimensional J-resolved

Fig. 6.6 Two-dimensional experiments, where the 13C chemical shift and 13C-1H coupling
constants are separated on the F1 and F2 dimensions. In (a) the F2 axis has both chemical shifts
and coupling constants, while the F1 axis has only chemical shifts. The reverse is true in (b)
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(JRES) experiment. The pulse sequence can be analyzed using the product operator
formalism.

For a weakly coupled two-spin system (k and l, I ¼ 1/2), the density operator
terms at different time points along the pulse sequence are

ρ1 ¼ Ikz þ Ilz ð6:32Þ

Fig. 6.7 Experimental spectrum demonstrating the scheme in Fig. 6.6b. (Reproduced from
J. Chem. Phys. 63, 5490 (1975), with the permission of AIP Publishing)

Fig. 6.8 Schematic of 13C chemical shift and 13C-1H scalar coupling separation in the
two-dimensional spectrum. The F2 axis displays 13C chemical shifts, while the F1 axis displays
the multiplicity at each carbon site. See text for more details
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ρ2 ¼ � Iky þ Ily ð6:33Þ
During the next spin echo period chemical shifts are refocused, and thus spins

evolve under the scalar coupling Hamiltonian (HJ) only. Explicitly the evolutions of
product operators are shown for spin k only. Similar calculations apply for the spin
l as well. Now, ρ2 evolves under scalar coupling during the spin echo (t1) and during
the detection period t2, thus for the total time period t1+t2.

Fig. 6.9 Experimental
two-dimensional J-resolved
NMR spectrum of cholesterol
displaying the separation of
13C chemical shift and 13C-1H
scalar coupling, along the F2
and F1 dimensions,
respectively. (Reproduced
from J. Magn. Reson. 29, 587
(1978), with the permission
from Elsevier Publishing)

Fig. 6.10 Schematic of the
two-dimensional J-resolved
pulse sequence. Numbers 1–4
indicate the time points at
which the density operators
are calculated (see text)
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�Iky !H J �Iky cos πJkl t1 þ t2ð Þ þ 2IkxIlz sin πJkl t1 þ t2ð Þ ð6:34Þ
In this equation the second term which represents antiphase magnetization is not

observable during t2 period. So, considering the chemical shift evolution of the first
term during t2, one gets

� cos πJkl t1 þ t2ð ÞIky !H z � cos πJkl t1 þ t2ð Þ Iky cosωkt2 � Ikx sinωkt2 ð6:35Þ
Assuming y-detection, the signal is proportional to

� cos πJkl t1 þ t2ð Þ cosωkt2 ð6:36Þ
¼ � cos πJklt1 cos πJklt2 � sin πJklt1 sin πJklt2f g cosωkt2 ð6:37Þ

We see that along the t2 axis, there are both chemical shifts and coupling
constants, whereas along the t1 axis, there is only scalar coupling information.
This results in a spectrum of the type shown in Fig. 6.11. The peaks align themselves
at an angle of 45� with respect to the F2 axis. The detected signal has both cosine and
sine modulations along both t1 and t2 axes. The cosine modulation results in an
absorptive shape, while the sine modulation results in dispersive line shape, after
Fourier transformation. Thus, the peaks will have mixed phases. This requires a
magnitude mode calculation of the spectra. Such calculation can be extended to
multi-spin systems as well. An experimental spectrum demonstrating these features
is shown in Fig. 6.12.

In Figs. 6.11 and 6.12, we notice that the coupling information is present along
both axes, and it would be desirable to have a complete separation of the chemical
shift and coupling information. This can be achieved by performing a shearing
transformation on the peaks as indicated schematically in Fig. 6.13.

Fig. 6.11 Schematic two-dimensional JRES for a two-spin system. Projection shown on the top
represents the one-dimensional spectrum
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Figure 6.14 shows the result of a shearing transformation in an experimental
spectrum of a multi-spin system demonstrating the complete separation of the
chemical shift and scalar coupling information along the F2 and F1 axes,
respectively.

Fig. 6.12 A section of the
experimental
two-dimensional JRES
spectrum for a multi-spin
system, artemisinin

Fig. 6.13 Shearing transformation on the peaks in the two-dimensional J-resolved spectrum. The
shearing transformation eliminates the coupling information along the F2 (horizontal axis, bottom
picture)
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Interestingly, the projection of the spectrum on the F2 axis shows a completely
homodecoupled spectrum of the spin system. This is an interesting way of achieving
broadband homonuclear decoupling in complex spin systems. Along the F1 axis, the
resolution is sufficiently high because of the small spectral width; therefore, the
coupling constants can be measured very precisely. Further, because of the spin echo
in the t1 period, the external magnetic field inhomogeneity effects of line broadening
are eliminated, which enhances the resolution along the F1 dimension. This tech-
nique has been extremely useful in separating out the multiplets in complex spin
systems and measure accurately the various coupling constants.

6.6.2 Two-Dimensional Correlation Experiments

These experiments are designed to correlate two frequencies in a given
one-dimensional spectrum with regard to various interactions between the spin
systems in a molecule under consideration. The very first experiment in this context
was proposed by Jean Jeener. This experiment has been popularly known as
correlated spectroscopy or COSY.

Fig. 6.14 A section of the
experimental spectrum of
artemisinin demonstrating the
effect of shearing
transformation
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6.6.2.1 The COSY Experiment
The pulse sequence for the COSY experiment is shown in Fig. 6.15.

Here the first pulse acts as the preparation period which is followed by the
evolution period t1. The second pulse acts as the mixing period of the generalized
scheme given in Fig. 6.1. The detailed mathematical analysis of the working of this
pulse sequence is described in the following paragraphs.

COSY of Two Spins
Consider a system of two weakly coupled spins, k and l (with I ¼ 1/2). They are
J-coupled with a coupling constant of Jkl. The density operator of the spin system at
the beginning of the experiment, ρ1, is

ρ1 ¼ Ikz þ Ilz ð6:38Þ
For illustration, we calculate the evolution of Ikz through the pulse sequence

explicitly, and the same can be extrapolated to Ilz, as well.

Following the convention of rotations described in Chap. 5, the density operator
ρ2 at time point 2 in the pulse sequence, for the spin k, is

ρ2 ¼ �Iky ð6:39Þ
This evolves under the Zeeman Hamiltonian (ωkIkz), for a period t1 yielding the

density operator ρ3, at time point 3 in the pulse sequence.

ρ3 ¼ � Iky cosωkt1 � Ikx sinωkt1 ð6:40Þ
Next, considering evolution under the J�coupling Hamiltonian (2πJklIkzIlz), the

density operator will be ρ3
0:

Fig. 6.15 Schematic pulse
sequence of the COSY
experiment. Numbers 1–5
indicate the time points at
which the density operator
calculations are reported (see
text)
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ρ3
0 ¼ � Iky cos πJklt1 � 2IkxIlz sin πJklt1 cosωkt1

� Ikx cos πJklt1 þ 2IkyIlz sin πJklt1 sinωkt1g ð6:41Þ
The last pulse transforms these operators to yield a density operator ρ4, at time

point 4 of the pulse sequence.

ρ4 ¼ � Ikz cos πJklt1 þ 2IkxIly sin πJklt1 cosωkt1

� Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1g ð6:42Þ
Since the data is collected soon after, one needs to look at only those terms in the

density operator which are observable as per definitions given in Chap. 5 (Tr[IxB(-
s) 6¼ 0). Thus, the observable part of ρ4 is ρ4

obs:

ρ4
obs ¼ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1g ð6:43Þ

The first term in Eq. 6.43 which represents x-magnetization of the k spin evolves
during the t2 period with frequencies characteristic of k spin. Therefore, this will
produce a diagonal peak (F1¼ F2¼ ωk) in the final two-dimensional spectrum. The
second term which represents y-magnetization of l spin evolves during the t2 period
with frequencies characteristic of l spin. Therefore, this term will produce a “cross-
peak” (F1 ¼ ωk; F2 ¼ ωl). Both these peaks will have fine structures, which contain
the coupling information.

We now calculate the evolution of the terms in Eq. 6.43 during the t2 time period.
Here again both chemical shift and coupling evolutions have to be considered
explicitly.

The first (diagonal peak) term in Eq. 6.43:

Chemical shift evolution leads to the density operator ρ5d given by

ρ5d ¼ Ikx cosωkt2 þ Iky sin ωkt2 f d t1ð Þ ð6:44Þ
where fd(t1) ¼ cos πJklt1 sin ωkt1.

Evolution under coupling generates the density operator ρ5d
0 given by

ρ5d
0 ¼ Ikx cos πJklt2 þ 2IkyIlz sin πJklt2 cos ωkt2

þ Iky cos πJklt2 � 2IkxIlz sin πJklt2 sin ωkt2g f d t1ð Þ ð6:45Þ
Assuming that we measure the y-magnetization, the observable signal is given by

Tr[ρ5d
0Iky].

Tr ρ5d
0Iky ¼ cos πJklt2 sin ωkt2 f d t1ð Þ
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¼ cos πJklt2 sin ωkt2 cos πJklt1 sinωkt1 ð6:46Þ
Explicitly this will lead to the following terms:

Tr ρ5d
0Iky ¼ 1

4
sin ωk þ πJklð Þt2 þ sin ωk � πJklð Þt2g sin ωk þ πJklð Þt1ff

þ sin ωk � πJklð Þt1g ð6:47Þ
This contributes to the detected FID.
The two-dimensional real Fourier transformation along the t1 and t2 dimensions

leads to four peaks with a dispersive line shapes at the following frequencies (Hz).

F1,F2ð Þ ¼ vk þ Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vk � Jkl
2

; positive, dispersive

vk � Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk � Jkl
2

, vk � Jkl
2

; positive, dispersive ð6:48Þ

This results in a fine structure for the diagonal peak as indicated in Fig. 6.16.
The second (cross-peak) term in Eq. 6.43:

Here, let us consider the J-evolution first. This leads to the density operator ρ5c:

ρ5c ¼ 2IkzIly cos πJklt2 � Ilx sin πJklt2 f c t1ð Þ ð6:49Þ
f c t1ð Þ ¼ sin πJklt1 sin ωkt1 ð6:50Þ

Next, considering the shift evolution, we get ρ5c
0 as

ρ5c
0 ¼ 2Ikz Ily cosωlt2 � Ilx sinωlt2 cos πJklt2

� Ilx cosωlt2 þ Ily sinωlt2 sin πJklt2g f c t1ð Þ ð6:51Þ
Again, assuming that we measure the y-magnetization, the observable signal is

given by Tr[ρ5c
0Ily]:

Tr ρ5c
0Ily ¼ sinωlt2 sin πJklt2 sinωkt1 sin πJklt1 ð6:52Þ

This leads to four absorptive peaks at the following coordinates.
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F1,F2ð Þ ¼ vk þ Jkl
2

, vl þ Jkl
2

; positive, absorptive

vk þ Jkl
2

, vl � Jkl
2

; negative, absorptive

vk � Jkl
2

, vl � Jkl
2

; positive, absorptive

vk � Jkl
2

, vl þ Jkl
2

negative, absorptive ð6:53Þ

Similar expressions can be derived to obtain the peak list starting from the l spin
magnetization. Thus, the overall two-dimensional spectrum for the k� l spin system
will look as shown in Fig. 6.17.

Figure 6.18 shows the phase-sensitive experimental spectrum of an AX sub-spin
system of curcumin dissolved in CDCl3.

COSY of Three Spins
The detailed calculation shown for the two-spin system can be extrapolated to three-
spin systems as well. The following considerations will help in arriving at the
appropriate fine structures of the peaks.

(i) The spectrum will have cross-peaks displaying the nature of the coupling
network. For example, for a linear AMX system, there will be cross-peaks
from A to M and M to X on one-side of the diagonal and M to A and X to M

Fig. 6.16 Typical fine
structure of the diagonal peaks
in the COSY spectrum. They
have in-phase dispersive line
shapes along both
frequency axes
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on the other side of the diagonal. All the three diagonal peaks will be present.
However, there will be no A to X and X to A cross-peaks, as there is no coupling
between A and X spins. Likewise, for a triangular coupling network, where all
the three coupling constants are nonzero, there will be A to M, A to X, M to X,
M to A, X to A, and X to M cross-peaks. Figure 6.19 shows the expected COSY
spectra for linear and triangular coupling networks.

(ii) Each cross-peak in the COSY spectrum arises as a result of the evolution under
one particular coupling constant. For example, in an AMX spin system, the A to
M (or M to A) cross-peak will result from the coupling JAM. This coupling
constant leads to a splitting where lines will have positive and negative signs,
and this is called active coupling. The other coupling, for example, A to X, if it is
nonzero, leads to in-phase splitting and is called the passive coupling. Accord-
ingly, the fine structures in the cross-peaks will depend upon the relative
magnitudes of the active and passive couplings. Figure 6.19 shows the fine
structures for the A(F2) to M(F1) cross-peak for two different cases of JAM and
JAX coupling constants in the linear AMX spin system (Fig. 6.20).
Continuing along the same lines, the fine structure in the A(F1) to M(F2) cross-
peak can be calculated, and this is shown in Fig. 6.21.

For the triangular coupling network of the three spins A, M, and X, the fine
structures can be calculated for the individual cross-peaks following the same
procedure described. This is explicitly shown for the A to M cross-peak in
Fig. 6.22 for a particular choice of magnitudes of coupling constants. Notice
once again that in this cross-peak, JAM is the active coupling, while JMX and JAX
are passive couplings.

Fig. 6.17 Schematic COSY
NMR spectrum of a weakly
coupled two-spin system. The
cross-peaks have antiphase
(+ and �) character and
absorptive line shapes along
both F2 and F1 axes. The
diagonal peaks have in-phase
dispersive line shapes along
both axes

224 6 Multidimensional NMR Spectroscopy



Disadvantages of COSY
The COSY experiment has the following disadvantages.

(i) The dispersive line shapes in the diagonal peaks produce long tails which
hamper the resolution in the spectra. The cross-peaks which lie close to the
diagonal would get masked out.

(ii) The diagonal peak has in-phase components, while the cross-peak has antiphase
components. The resolution in the F1 dimension is determined by the number of
increments one can acquire along the t1 dimension, and this will be limited by
the machine time. In that scenario, because of poor resolution along the F1
dimension, the peak intensities cancel because of the positive/negative character
of the components in the cross-peak. On the other hand, the components in the
diagonal peaks coadd because of the in-phase character. This results in huge
diagonal peaks and tiny cross-peaks in the event of insufficient resolution in the
spectrum.

Fig. 6.18 (a) Phase-sensitive COSY spectrum of curcumin (AX sub-spin system) and (b) blowups
of the cross- (right) and diagonal peaks (left). Horizontal cross-sections through the peaks at the
gray- and green-colored lines are shown on the top
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6.6.2.2 Double-Quantum-Filtered COSY (DQF-COSY)
This experiment was designed to circumvent the limitations of the COSY experi-
ment. The pulse sequence for the DQF-COSY is shown in Fig. 6.23.

The pulse sequence is similar to that of COSY up to the second pulse but for the
fact that the phases (ϕ) of these two pulses need to be cycled and the data coadded or
subtracted as discussed in the following. The scheme involves acquiring four
transients with the pulse phase (ϕ) and the receiver phase (θ) incremented with
every transient. This is indicated in Table 6.2.

The experiment can be analyzed in the same manner as was done for COSY.
Considering a system of two weakly coupled spins (k, l), the density operator
calculation follows the same steps as for COSY, and we rewrite the density operator
at time point 4 of the pulse sequence:

ρ4 ϕ ¼ xð Þ ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1 ð6:54Þ

Here the first two pulses are considered to be applied along the x axis (ϕ ¼ x).
Repeating such an exercise with ϕ¼ y leads to the following density operator ρ4 (y):

ρ4 ϕ ¼ yð Þ ¼ �Ikz cos πJklt1 þ 2IkyIlx sin πJklt1 cosωkt1
þ Iky cos πJklt1 þ 2IkzIlx sin πJklt1 sinωkt1 ð6:55Þ

Similar calculations with ϕ ¼ �x and ϕ ¼ �y lead to the following density
operators.

Fig. 6.19 Schematic appearance of the COSY spectrum for a system of three spins, AMX. The
coupling patterns are shown on the top
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ρ4 ϕ ¼ �xð Þ ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ �Ikx cos πJklt1 þ 2IkzIly sin πJklt1 sinωkt1 ð6:56Þ

ρ4 ϕ ¼ �yð Þ ¼ �Ikz cos πJklt1 þ 2IkyIlx sin πJklt1 cosωkt1
þ �Iky cos πJklt1 � 2IkzIlx sin πJklt1 sinωkt1 ð6:57Þ

Fig. 6.20 (a) Fine structure in the one-dimensional spectrum for a linear AMX system. (b)
Splitting patterns in the A-M cross-peak due to active and passive couplings for the M spin for
two different cases of relative magnitudes of active and passive couplings. (c) The final fine
structure in the cross-peak A(F2) to M(F1) in the COSY spectrum for the two cases considered
in (b). Note that this peak lies in the lower triangle in the two-dimensional spectrum (Fig. 6.19)

Fig. 6.21 Schematic fine structure in the A(F1) to M(F2) cross-peak. Note that this peak lies in the
upper triangle in the two-dimensional spectrum (Fig. 6.19)
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As per the receiver phase cycling the data is added or subtracted and then, the
resultant density operator will be

ρ4 ¼ ρ4 ϕ ¼ xð Þ � ρ4 ϕ ¼ yð Þ þ ρ4 ϕ ¼ �xð Þ � ρ4 ϕ ¼ �yð Þ ð6:58Þ
¼ �4 IkyIlx þ IkxIly sin πJklt1 cosωkt1 ð6:59Þ

The operators in Eq. 6.59 represent pure double-quantum coherences.

Fig. 6.22 (a) Schematic of triangular J-coupling network in the weakly coupled AMX system. (b)
The splitting pattern of A and M spins due to active and passive coupling constants for a particular
choice of their relative magnitudes. (c) Fine structure in the A to M cross-peak in the lower triangle
of the COSY spectrum for the choice of coupling constants as in (b)

Fig. 6.23 Schematic of the
DQF-COSY pulse sequence.
Here, ϕ and θ refer to the
phases of the pulses and the
receiver, respectively. See text
for more details. Numbers 1–5
indicate the time points at
which the density operators
are reported in the text

Table 6.2 Phase cycling
for DQF-COSY pulse
sequence

Scan no. Pulse phase (ϕ) Receiver phase (θ)

1 x +

2 y �
3 �x +

4 �y �
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The third 90x pulse in the pulse sequence converts these terms into observable
single-quantum coherences. The corresponding density operator ρ5 will be

ρ5 ¼ �4 IkzIlx þ IkxIlzð Þ sin πJklt1 cosωkt1 ð6:60Þ
This now consists of antiphase magnetizations of both k and l spins with the same

phase. They will evolve during the t2 period into in-phase magnetizations of k and
l spins, whereby it becomes observable. Rewriting Eq. 6.60,

ρ5 ¼ �4 IkzIlx þ IkxIlzð Þ f t1ð Þ ð6:61Þ
f t1ð Þ ¼ sin πJklt1 cosωkt1 ð6:62Þ

Now evolve ρ5 under H J and H z sequentially during t2,

ρ5 !
H J �2 2IkzIlx cos πJklt2ð Þ þ Ily sin πJklt2ð Þ

þ 2IkxIlz cos πJklt2ð Þ þ Iky sin πJklt2ð Þ gf t1ð Þ ð6:63Þ
The antiphase terms 2IkzIlx and 2IkxIlz are not observable and hence will not be

considered further. The other terms will be evolved under the H z.

!H z �2 Ily cosωlt2 � Ilx sinωlt2 sin πJklt2ð Þ
þ Iky cosωkt2 � Ikx sinωkt2 sin πJklt2ð Þ�gf t1ð Þ ð6:64Þ

Assuming y-detection, we have the following signal:

Signal Sð Þ ¼ �2 cosωlt2 sin πJklt2ð Þ þ cosωkt2 sin πJklt2ð Þ½ � sin πJklt1 cosωkt1

ð6:65Þ
In this expression, the first term leads to the cross-peak, while the second term

leads to the diagonal peak in the spectrum.

(a) Cross-peak

cosωlt2 sin πJklt2ð Þ sin πJklt1 cosωkt1

¼ 1
4

sin ωk þ πJklð Þt1 � sin ωk � πJklð Þt1½ �:
sin ωl þ πJklð Þt2 � sin ωl � πJklð Þt2½ � ð6:66Þ

¼ þ sin ωk þ πJklð Þt1 sin ωl þ πJklð Þt2
� sin ωk þ πJklð Þt1 sin ωl � πJklð Þt2
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� sin ωk � πJklð Þt1 sin ωl þ πJklð Þt2
þ sin ωk � πJklð Þt1 sin ωl � πJklð Þt2 ð6:67Þ

This leads to the following peaks.

F1,F2ð Þ ¼ vk þ Jkl
2

, vl þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vl � Jkl
2

; negative, dispersive

vk � Jkl
2

, vl þ Jkl
2

; negative, dispersive

vk � Jkl
2

, vl � Jkl
2

; positive, dispersive ð6:68Þ

A 90� phase shift will produce absorptive line shape for all the four peaks.

(b) Diagonal peak

cosωkt2 sin πJklt2ð Þ sin πJklt1 cosωkt1

¼ 1
4

sin ωk þ πJklð Þt1 � sin ωk � πJklð Þt1½ �:
sin ωk þ πJklð Þt2 � sin ωk � πJklð Þt2½ � ð6:69Þ

¼ þ sin ωk þ πJklð Þt1 sin ωk þ πJklð Þt2
� sin ωk þ πJklð Þt1 sin ωk � πJklð Þt2
� sin ωk � πJklð Þt1 sin ωk þ πJklð Þt2
þ sin ωk � πJklð Þt1 sin ωk � πJklð Þt2 ð6:70Þ

This leads to the following peaks:

F1,F2ð Þ ¼ vk þ Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vk � Jkl
2

; negative, dispersive

vk � Jkl
2

, vk þ Jkl
2

negative, dispersive

vk � Jkl
2

, vk � Jkl
2

; positive, dispersive ð6:71Þ

A 90� phase shift will produce absorptive line shape for all the four peaks.
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Thus, the final spectrum for the two-spin system will appear as shown in
Fig. 6.24. Clearly, the DQF-COSY spectrum shows better resolution than the
COSY spectrum and is pretty clean in both the diagonal and cross-peaks.

6.6.2.3 Total Correlation Spectroscopy (TOCSY)
The COSY and the DQF-COSY resulted in fine structures in diagonal as well as
cross-peaks. The DQF-COSY circumvented the shortcomings of COSY with respect
to the diagonal. However, the fine structures still retain the antiphase nature of the
components in the cross-peaks. In essence, this amounts to a differential transfer of
magnetization between the spins. The antiphase character results in the cancellation
of component intensities in the cross-peaks in the absence of sufficient resolution.
This problem is circumvented by total correlation spectroscopy (TOCSY) which
results in in-phase components and thus achieves net transfer of magnetization
between the spins. The pulse sequence for the TOCSY experiment is shown in
Fig. 6.25.

The pulse sequence starts with a 90� pulse, which creates transverse magnetiza-
tion which then evolves during the period t1 with characteristic frequencies. The
so-called mixing here consists of a strong RF field or a train of pulses (often referred
to as composite pulses) during which time the spins are locked in the rotating frame
in the transverse plane along the x or the y-axis. During the spin lock transfer of
coherence occurs among the J-coupled spins. For a two-spin system, k and l (spin
1/2), the effective Hamiltonian during the mixing period consists only of the
J-coupling Hamiltonian, and the Zeeman interactions are eliminated. This Hamilto-
nian is given by

H e ¼ 2πJIk:Il ð6:72Þ

Fig. 6.24 Comparison of COSY and DQF-COSY spectra for a two-spin system. + and � indicate
positive and negative signs of the peak components, respectively
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¼ 2πJ IkzIlz þ IkxIlx þ IkyIly ð6:73Þ
The evolution of the magnetization components under the influence of this

Hamiltonian is given by the following equation:

Ikx !H et Ikx
1þ cos 2πJt

2
þ Ilx

1� cos 2πJt
2

þ IkyIlz � IlyIkz sin 2πJt

ð6:74Þ
Complete transfer of magnetization will occur for time t¼ 1/2J. This is in contrast

to INEPT transfer of coherence where a complete transfer requires a time t ¼ 1/J; in
the INEPT, the transfer occurs in two steps: the first step involving a spin-echo of
period 1/2J causes antiphase transfer, and in the second step, a second spin echo of
period 1/2J causes refocusing to generate in-phase magnetization (Ikx ! 2IlyIkz!
Ilx).

A similar equation can be written for the evolution of Ilx:

Ilx !H et Ilx
1þ cos 2πJt

2
þ Ikx

1� cos 2πJt
2

þ IlyIkz � IkyIlz sin 2πJt ð6:75Þ

The addition of Eqs. 6.74 and 6.75 leads to the following:

Ikx þ Ilxð Þ !H et Ikx þ Ilxð Þ ð6:76Þ
This implies that the total x-magnetization is conserved through the mixing

sequence, and there is in-phase transfer (Ikx ! Ilx and vice versa), retaining the
phase of the magnetization, i.e., Ikx ! Ilx, Iky ! Ily, and Ikz ! Ilz. Therefore, this
mixing is termed as isotropic mixing, and the Hamiltonian is termed as isotropic
Hamiltonian. After the mixing the magnetization components are detected in the t2
time period. Two-dimensional Fourier transformation of the collected signal results
in a two-dimensional spectrum.

Detailed calculations for multi-spin systems show that the general conclusions
derived for the two-spin systems are valid for multi-spin systems as well. However,
an interesting feature of this experiment is the following. Considering a linear three-
spin system (AMX), where there is no coupling between the spins A and X, it turns
out that there will be a cross-peak between the spins A and X, provided both AM

Fig. 6.25 Pulse sequence for
the TOCSY experiment
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coupling and MX coupling are nonzero. Thus, the TOCSY experiments relays
magnetization through the network of coupled spins, providing valuable information
about the coupling network in a given molecule. An experimental TOCSY spectrum
is shown in Fig. 6.26.

Such a spectrum will enable to distinguish between a linear three-spin system,
AMX, and a mixture of two two-spin systems AM and M'X with accidental
degeneracy of the M and M0 chemical shifts. In the latter case, there will be no
cross-peak between A and X spins in the TOCSY spectrum, whereas the COSY or
DQF-COSY will not be able to distinguish between these two situations.

6.6.2.4 Two-Dimensional Nuclear Overhauser Effect Spectroscopy
(2D-NOESY)

This experiment represents an extension of the one-dimensional transient NOE to
two dimensions. The pulse sequence for this is given in Fig. 6.27a. τm here is called
the mixing time during which transfer of magnetization happens through dipolar
interactions or the NOE effect. For uncoupled spin systems, the spin dynamics

Fig. 6.26 Experimental TOCSY spectrum of erythromycin-A

6.6 Types of Two-Dimensional NMR Spectra 233



through the pulse sequence leading to transfer of magnetization is schematically
shown in Fig. 6.27b.

For coupled spin systems, the pulse sequence can be analyzed by following the
product operator formalism, as in the case of COSY. For a two-spin system, k and
l (spin ¼ 1/2), the density operator at time point 4 in the pulse sequence is given by

ρ4 ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1 ð6:77Þ

As demonstrated in the case of DQF-COSY, a phase cycling scheme is utilized to
retain only the first term in Eq. 6.33. This is indicated in Table 6.3.

During the following period τm, transfer of z-magnetization occurs from spin k to
spin l, as per the dipolar coupling-mediated relaxation of the spins (refer to Chap. 4).
The final 90� pulse converts the z-magnetization into transverse magnetization for
detection.

Since the transfer of magnetization during the mixing time is never complete,
there will be magnetization components of both k and l spins (coupled or uncoupled)
evolving during the detection period. These result in the diagonal and cross-peaks,
respectively. Both diagonal and cross-peaks will have fine structure if the spins are
J-coupled and the components will have in-phase character.

In multi-spin systems, transfer of magnetization will be governed by the relaxa-
tion matrix, as discussed in Chap. 4. There will be cross-peaks between every two

Fig. 6.27 (a) Pulse sequence of NOESY experiment. (b) Schematic of magnetization transfer
between two spins (k and l ). Numbers 1–6 are time points along the pulse sequence to facilitate
discussion in the text
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spins which have dipolar coupling contributing to their relaxation. Thus, the NOESY
spectrum represents the network of dipolar-coupled spins in a given molecule. The
cross-peak intensities will depend upon respective cross-relaxation rates for short
mixing times compared to the spin-lattice relaxation time (T1). These, in turn, are
proportional to the inverse sixth power of the internuclear distances; in a sense the
cross-peak intensities reflect the NOEs observed in a transient NOE experiment (see
Chap. 4). Thus, the NOESY spectrum reflects the distance matrix representing the
three- dimensional structure of a given molecule. An illustrative experimental
spectrum is shown in Fig. 6.28.

Table 6.3 Phase cycling
for NOESY pulse sequence
given in Fig. 6.27a

Scan ϕ Receiver

1 x +

2 y +

3 �x +

4 �y +

Fig. 6.28 Experimental NOESY spectrum of erythromycin-A
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The NOESY pulse sequence also reflects transfer of magnetization through
chemical exchange mechanism. During the mixing time, transfer of z-magnetization
can also happen via chemical exchange process, wherever it is present. Thus, in such
situations, the cross-peak and diagonal peak intensities can also be monitored as a
function of the mixing time to derive the exchange rates. For a symmetrical two-site
exchange A$ B, with equal populations at the two sites, equal spin-lattice relaxation
rates, and equal transverse relaxation rates, the intensities of the diagonal (aAA, aBB)
and cross-peaks (aAB, aBA) are given by the following equations:

aAA τmð Þ ¼ aBB τmð Þ ¼ 1
2

1þ e�2kτm e�τm=T1 ð6:78Þ

aAB τmð Þ ¼ aBA τmð Þ ¼ 1
2

1� e�2kτm e�τm=T1 ð6:79Þ

where k is the exchange rate and T1 is the spin-lattice relaxation time. Equilibrium
magnetization at the two sites is assumed to be the same. Figure 6.29 shows the
dependence of the diagonal and cross-peak intensities on the mixing time.

The ratio of diagonal-to-cross-peak intensities will be

aAA
aAB

¼ 1þ e�2kτm

1� e�2kτm
ð6:80Þ

For short mixing times (kτm � 1),Eq. 6.80 reduces to

aAA
aAB

¼ 1� kτm
kτm

ð6:81Þ

Thus, by monitoring the intensity ratios as a function of τm, the exchange rates
can be calculated.

6.6.2.5 Two-Dimensional ROESY
ROESY represents the Overhauser experiment in the rotating frame (ROE). The
pulse sequence for this experiment is given in Fig. 6.30.

Here, the mixing process and the consequent magnetization transfer is brought
about by low-power spin lock on the transverse magnetization. The magnetization
transfer (Ikx ! Ilx) occurs via transverse cross-relaxation, and the evolution of the
magnetization components during the mixing time (τm) can be shown to be as
follows.

IkxðτmÞ ¼ ð1� τm
T2

Þ sinðωkt1ÞI0kz � στm sinðωlt1ÞI0lz ð6:82Þ

IlxðτmÞ ¼ ð1� τm
T2

Þ sinðωlt1ÞI0lz � στm sinðωkt1ÞI0kz ð6:83Þ

236 6 Multidimensional NMR Spectroscopy



In both these equations, the first term produces the diagonal peak in the end, and
the second term produces the cross-peak. In the initial rate limit, i.e., τm

T2
� 1, the

diagonal peaks are positive, and the cross-peaks will be negative.
Table 6.4 shows the results of detailed calculations of the intensities as a function

of spectrometer frequency (ωo), correlation times (τc) of molecular tumbling, and
chemical exchange rates (k) for ROESY and NOESY spectra. It is seen that the
ROESY spectrum allows the discrimination of ROE and chemical exchange peaks,
whereas NOESY will have ambiguities.

The ROESY experiment has some additional advantages in comparison to the
NOESY, especially for molecules with ω0τc~1. In such situations, the NOESY
spectrum does not show magnetization transfer.

6.6.2.6 Application of Two-Dimensional Homonuclear Experiments
in Structural Analysis of Small Organic Molecules: A Case Study
of Artemisinin

The combined utilization of two-dimensional homonuclear NMR spectra, viz.,
DQF-COSY, TOCSY, and NOESY, helps in solving structures of molecules.
Figure 6.31 represents the homonuclear two-dimensional NMR spectra recorded
on artemisinin molecule (Fig. 6.31d). The chemical shift correlations obtained from

Fig. 6.29 Diagonal (brown
line) and cross-peak (green
line) intensities in the
presence of chemical
exchange as a function of
mixing time

Fig. 6.30 Pulse sequence for two-dimensional ROESY experiment
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the DQF-COSY (Fig. 6.31a) are useful for identifying the scalarly coupled spin pairs
of artemisinin; for example, correlations with the spin 9 allow to get the chemical
shift assignments of 8 and for one of the methyl groups. In contrast, the correlations
from spin 9 in the TOCSY (Fig. 6.31b) spectrum facilitate monitoring the relayed
spin network up to 4–5 bonds. In the present case, from spin 9 to spin 7, TOCSY
correlations are observed. Besides, spatial information obtained from the NOESY
spectrum (Fig. 6.31c) enables to obtain the three-dimensional structure of
artemisinin molecule. The observed NOE correlations between the spin pairs,
12-500, 12-6, 12-80, and 8a-5a, confirm the given structure for artemisinin molecule
(Fig. 6.31d).

6.6.3 Two-Dimensional Heteronuclear Correlation Experiments

Coherence transfer can also be effected between two different types of nuclear
species, say I and S. Such experiments are referred to as heteronuclear correlation
experiments. A variety of heteronuclear experiments can be designed, since the RF
pulses can be applied selectively to either of the species and heteronuclear broad-
band decoupling can be incorporated without any constraints. Heteronuclear
experiments have particular advantages:

(i) Increased sensitivity of indirect detection as evidenced in the INEPT pulse
sequence.

(ii) The possibility of unraveling overlapping I resonances by exploiting the chem-
ical shifts of the S spins and vice versa.

(iii) The correlation of chemical shifts of different nuclear species would facilitate
assignments in complex systems.

In most cases, one of the two nuclear species is a rare nucleus (S) such as 13C,
15N, etc., while the other nucleus is usually a more sensitive species (I ) such as 1H,
19F, etc.

6.6.3.1 Heteronuclear COSY
The simplest I-S correlation experiment (considering I¼ 1H and S¼ 13C) is depicted
in Fig. 6.32. This pulse sequence is very similar to the homonuclear COSY, except

Table 6.4 Comparison of cross-peak and diagonal peak signs in NOESY and ROESY spectra for
different molecular tumbling rates and chemical exchange

Condition

NOESY ROESY

Diagonal peak Cross-peak Diagonal peak Cross-peak

ω0τc � 1 + � + �
ω0τc~1 + 0 + �
ω0τc � 1 + + + �
Chemical exchange (k) + + + +
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the first 90� pulse is selective to only I spin. During the t1 period, therefore, there are
only I spin coherences. The pair of pulses on I and S, at the end of t1 transfers
coherence partially to the S spin. The magnetization is finally detected on the S spin.
Thus, the two-dimensional spectrum will have only I-S correlation peaks, which
retain the fine structure as in the COSY spectrum. Such a spectrum for two spins is
schematically shown in Fig. 6.33. It has the antiphase property along both
dimensions, and the separation between the components is equal to the coupling
constant.

Fig. 6.31 Two-dimensional homonuclear correlation spectra DQF-COSY (a), TOCSY (b), and
NOESY (c) recorded on artemisinin molecule dissolved in DMSO-D6 solvent. The combined
utilization of all these spectra resulted in the given structure for artemisinin molecule (d). The
green-colored lines are useful to track the chemical shift correlations, whereas the red-colored
arrows are the NOE correlations
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Fig. 6.32 Pulse sequence for
1H-13C correlation experiment
with carbon detection. Hz is
the starting 1H magnetization,
and 2CyHz represents the

13C
magnetization component at
the beginning of detection

Fig. 6.33 Schematic
spectrum from the pulse
sequence in Fig. 6.31. Orange
and green symbols indicate
positive and negative signs,
respectively
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In most of these experiments, the correlation is established between nuclei, which
are directly bonded. These one-bond coupling constants are usually very high, for
example, J1H�13C ~ 120–160 Hz and J1H�15N ~ 90–100 Hz. While this enables a
very efficient transfer of coherence, the large overall width of the cross-peak
hampers the resolution in the spectra. Since the one-bond coupling constant does
not add too much value for structural information of the molecules, it would be
desirable to remove this coupling constant information from the spectrum. This is
partially achieved by the pulse sequence shown in Fig. 6.34. In the pulse sequence,
an additional spin echo block is added to refocus the S spin antiphase magnetization
so that during detection of Smagnetization, the I spins can be decoupled. This results
in the collapse of the fine structure along the detection axis (F2), which is shown in
Fig. 6.34. The components here will have twice the intensity as compared to
Fig. 6.32.

A further improvement can be achieved by eliminating the coupling information
altogether. This can be achieved in more than one ways (Fig. 6.35).

(A) The HETCOR Pulse Sequence

The pulse sequence for the HETCOR experiment (considering I ¼ 1H and
S ¼ 13C) is shown in Fig. 6.36. It begins with the excitation of the I spin magnetiza-
tion by a nonselective 90� pulse. Then this magnetization evolves during the t1
period during which the I-S coupling is removed by the application of 180� pulse to
the S spin in the middle of the t1 period. Thus, during t1, the I spins are labelled by
their characteristic frequencies. Following the t1 period, a spin echo block [τ1 �

Fig. 6.34 Pulse sequence for 1H-13C correlation with carbon detection and proton decoupling
during acquisition. Magnetization components at few time points along the sequence are indicated
in cyan. BB implies broadband and J is the one-bond 1H-13C coupling constant
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180 (I, S)� τ1] is introduced during which I spin magnetization evolves under the I-
S coupling and generates antiphase I spin magnetization. The pair of 90� (I, S) pulses
at the end of the spin echo causes coherence transfer to the S spin, resulting in

Fig. 6.35 Schematic 1H-13C
correlation spectrum from the
pulse sequence given in
Fig. 6.34. Orange and green
symbols indicate positive and
negative signs, respectively

Fig. 6.36 Pulse sequence for the HETCOR experiment, which incorporates 1H-13C decoupling
along both F1 and F2 axes
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antiphase S spin magnetization. The delay τ1 (τ1 ¼ 1/4JIS) can be adjusted to cause
near-complete transfer to the S spin. Then the antiphase S magnetization evolves
during the following spin echo period, [τ2�180 (I, S)�τ2], to produce in-phase
S spin magnetization. This magnetization is detected during t2, while I spins are
simultaneously decoupled. Thus, the resulting spectrum has only one peak for an I-S
pair, as shown in Fig. 6.37. The signal-to-noise ratio (SNR) in this experiment is

SNR / γIðγSÞ
3
2 ð6:84Þ

(B) The HSQC Pulse Sequence

This experiment improves upon the HETCOR experiment. The pulse sequence
for the HSQC (heteronuclear single-quantum correlation) is depicted in Fig. 6.38.
The experiment starts with an INEPT (refer to Sect. 4.7 in Chap. 4) block which
achieves the transfer of I spin magnetization to S spin (Iz ! 2IzSy). This S spin
magnetization is antiphase in character with respect to the coupled I spin and evolves
during the following t1 period under chemical shift Hamiltonian. Evolution under the
I-S coupling is eliminated because of the 180� pulse applied to the I spin in the
middle of the t1 period. Thus, during the t1 period, the S spins are labeled by their
characteristic frequencies. The subsequent pair of 90� pulses on I and S transfers the
magnetization back to the I spin as antiphase magnetization (2IzSy ! 2IySz). This
antiphase Imagnetization is then refocused during the next spin echo block, [τ2�180
(I, S) �τ2], to generate in-phase I magnetization (Ix). This in-phase magnetization
then evolves during t2 with characteristic I spin frequencies, while the I-S coupling is
removed by broadband S spin decoupling. Thus, the resultant spectrum has a single
peak for an I-S pair, as shown Fig. 6.39.

The differences between the experiments A (HETCOR) and B (HSQC) are the
following.

Fig. 6.37 Schematic
HETCOR spectrum. The
peaks do not have any fine
structure
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(i) In A, S spin magnetization is detected, whereas in B, I spin magnetization is
detected. This has an impact on sensitivity, since the latter is proportional to γ3/2

of the detected nucleus. Therefore, if I spin is 1H and S spin is 13C, then the

HSQC experiment has a sensitivity gain of γH
γC

3=2
. This is a factor of 8, which

is a substantial gain in terms of the signal-to-noise ratio, which in turn amounts a
gain by factor of 64 in terms of the experimental time. Similarly, for S¼ 15N and
I ¼ 1H, the gain will be a factor of ~1000, in terms of experimental time.

(ii) In A, the detected signal will have S frequencies, whereas in B, the detected
signal will have I frequencies. The spectral range of S spin (13C, ~140 ppm) is
much larger compared to that of the I spin (1H, ~10 ppm). Therefore, the

Fig. 6.38 Pulse sequence for the HSQC experiment. Narrow and wide rectangles indicate 90� and
180� pulses, respectively. Unless mentioned all the pulses are applied along the x-axis. Relevant
magnetization components at certain time points are indicated in cyan

Fig. 6.39 Schematic
appearance of the HSQC
spectrum. The peaks do not
have any fine structure
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chemical shift dispersion along the detection axis will be higher in A as
compared to that in B, even considering that the γH is four times γC.

(C) The HMQC Pulse Sequence

This experiment achieves coherence transfer from spin I to spin S via multiple
quantum coherences; hence, this is termed as heteronuclear multiple-quantum
coherence (HMQC) transfer experiment. The pulse sequence for HMQC is shown
in Fig. 6.40.

In Fig. 6.40, the spin I is taken to represent the abundant species, and the spin S is
taken to represent the rare heteronucleus (13C (1.1% abundant)/15N (0.37% abun-
dant)). In the case of protons which are coupled 12C or 14N, the signals coming from
these have to be eliminated. This is achieved by phase cycling the receiver (+x, �x)
in consecutive scans, while the phase of the first 90� pulse on I spin remains as +x.

The experiment can be analyzed using the product operator formalism, and the
flow of the magnetization can be described for a I-S two-spin system. The first 90�

pulse along the x-axis creates transverse magnetization of the I spin:

Iz ! �Iy ð6:85Þ
The chemical shift evolution of the Imagnetization is refocused by the 180� pulse

kept at the middle of the entire evolution period before the start of the detection.
Hence, this evolution need not be calculated. When the τ period is set equal to 1/2JIS,

Fig. 6.40 Pulse sequence for the HMQC experiment. Relevant magnetization components at
certain time points are indicated in cyan. The I spin pulses are applied along x-axis. The pulses
on the S spin and the receiver are phase cycled as indicated
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the I spin magnetization gets transferred entirely to multiple-quantum IS coherence
(double-quantum + zero-quantum) after the application of 90� x-pulse on the S spin.

�Iy ! �2IxSy ð6:86Þ
As described earlier, this multiple quantum coherence does not evolve under the

influence of J-coupling between I and S. Since the I spin chemical shift is refocused
by the 180� pulse in the middle of the t1 period, we need to calculate the chemical
shift evolution of the S spin only. Thus,

�2IxSy ! �2Ix Sy cos ωst1ð Þ � Sx sin ωst1ð Þ ð6:87Þ
The last 90� x-pulse on the S spin converts a part of this magnetization into a

single-quantum coherence.

�2Ix Sy cos ωst1ð Þ � Sx sin ωst1ð Þ ! �2IxSz cos ωst1ð Þ þ 2IxSx sin ωst1ð Þ ð6:88Þ
The first term in Eq. 6.88 on the right-hand side is the single-quantum I spin

magnetization antiphase with respect to S, and the second term represents multiple
quantum coherence which does not lead to observable signal. During the following τ
period, the antiphase I magnetization gets refocused into in-phase magnetization.

�2IxSz cos ωst1ð Þ ! �Iy cos ωst1ð Þ ð6:89Þ
During the detection period t2, the I spin is decoupled from S spin and thus will

only have chemical shift evolution. Thus, we will only have one cross-peak between
I and S, as shown in Fig. 6.41. From explicit product operator calculations, the
intensity of the cross-peaks in the final spectrum turns out to be proportional to [sin
(πJISτ)]

2.
In the examples shown, we have considered one I spin and one S spin. However,

in real systems, there will be situations where an S spin is J-coupled to more than one
I spin species, which may be scalarly coupled among themselves. Assuming I and

Fig. 6.41 Schematic HMQC
spectrum for I-S spin systems
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K are two such spins of the same nuclear species, a similar calculation will lead to the
following observable operator at the start of the detection period.

ρ0 t1ð Þ ¼ �Iy cos ωSt1ð Þ cos πJIKt1ð Þ þ 2IxKz cos ωSt1ð Þ sin πJIKt1ð Þ ð6:90Þ
This indicates the following:

(i) There will be splitting along the indirect dimension (F1) due to JIK.
(ii) The sum of cosine-cosine and cosine-sine products in Eq. 6.90 results in the

superposition of in-phase absorptive and antiphase dispersive line shapes along
the F1 axis; this results in mixed phases.

After considering the evolution of I spin magnetization terms in Eq. 6.90 during
the following t2 period, the observable part of the density operator will be

ρ00 t2ð Þ ¼ f 0 t1ð Þ Iy cos ωI t2ð Þ cos πJIKt2ð Þ � Ix sin ωI t2ð Þ cos πJIKt2ð Þ
þ f 00 t1ð Þ Iy cos ωI t2ð Þ sin πJIKt2ð Þ � Ix sin ωI t2ð Þ sin πJIKt2ð Þ ð6:91Þ

where

f 0 t1ð Þ ¼ cos ωSt1ð Þ cos πJIKt1ð Þ and f 00 t1ð Þ ¼ cos ωSt1ð Þ sin πJIKt1ð Þ
If we assume the detection of y-magnetization, the resultant signal will be

Signal ¼ cos ωI t2ð Þ cos πJIKt2ð Þ f 0 t1ð Þ þ sin πJIKt2ð Þ f 00 t1ð Þ½ �

¼ cos ωI þπJIKð Þt2þ cos ωI �πJIKð Þt2½ � f 0 t1ð Þþ sin ωI þ JIKð Þt2� sin ωI �πJIKð Þt2½ � f 00 t1ð Þ
ð6:92Þ

From this it follows that there will be splitting along the direct dimension (F2) due
to JIK. Further, there will be superposition of in-phase absorptive and antiphase
dispersive line shapes along the detection axis (F2), which results in mixed phases.

The dispersive component of the signal can be purged by inserting a 90� y-pulse
on I spin prior to the detection period. The antiphase I spin operator is converted into
antiphase k spin operator (2IxKz! 2IzKx). This results in a cross-peak between K and
S spins. If the k spin is not coupled to S spin, this can lead to a confusion with regard
to the correlations, though it will have antiphase components as against in-phase
components in the I-S cross-peak. These complications do not occur in the HSQC
spectra.

6.6.3.2 Heteronuclear Multiple Bond Correlation (HMBC)
The heteronuclear correlation experiments, HSQC, HETCOR and HMQC, rely on
the transfer of coherences based on one-bond coupling constants. Often it is neces-
sary to establish correlations via multiple bond coupling constants for unambiguous
resonance assignments and structure elucidations. If one has to optimize the coher-
ence transfer to reflect these correlations, the delay τ has to be chosen to be 1

2J longIS

,
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where I and S are spins separated by multiple bonds. These coupling constants are
much smaller compared to one-bond couplings, and there is also a large variation in
these couplings (1–15 Hz). Simultaneous optimization with respect to all these
couplings is not possible. As discussed earlier for HMQC, the intensity of the

cross-peaks in the final spectrum turns out to be proportional to sin πJ longIS τ
2
.

Figure 6.42 shows the variation in the intensities with τ for three different values of
long-range couplings (2 Hz, 7 Hz, and, 12 Hz).

From this, it can be seen that the smaller the coupling, the larger is the required
delay. In such a situation, relaxation also plays an important role in determining the
intensity of the cross-peak. Figure 6.43 shows a pulse sequence designed to circum-
vent some of these problems. This experiment is referred to as heteronuclear multiple
bond correlation (HMBC). It differs from the HMQC pulse sequence in only one
sense; i.e., the last refocusing τ period (Fig. 6.40) is eliminated, and accordingly, the
decoupling of S spin has also been removed, while this saves on the relaxation loss

and the intensity will be proportional to sin πJ longIS τ (Fig. 6.44), which is better

than sin πJ longIS τ
2
dependence. This results in an antiphase splitting of the cross-

peak along the detection dimension.

6.6.4 Combination of Mixing Sequences

Depending upon the desired information in the two-dimensional spectrum, it is
possible to design pulse sequences, which have a mix of different types of coherence
transfer steps discussed in the previous sections. For example, HSQC can be
combined with TOCSY or COSY or NOESY transfer, HMQC can be combined
with TOCSY or COSY or NOESY, etc. Some typical pulse sequences to achieve
these features are shown in Fig. 6.45. The corresponding spectra are shown in
Fig. 6.46.

Fig. 6.42 Peak intensities in
HMQC experiment as a
function of the long-range
coupling constant while
assuming the T2 relaxation
value equal to 1 s
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6.7 Three-Dimensional NMR

The ideas discussed in the context of two-dimensional NMR can be extended to
include another dimension resulting in a three-dimensional spectrum. A schematic of
such an experiment is indicated in Fig. 6.47.

This consists of a preparation period, two evolution periods (t1 and t2), two
mixing periods (M1 and M2), and a direct detection period (t3). The resulting time

Fig. 6.43 Pulse sequence for the HMBC experiment

Fig. 6.44 A comparison of
intensities in HMQC and
HMBC spectra for a small
J-value (7 Hz) while assuming
the T2 relaxation value equal
to 1 s
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domain data, S(t1, t2, t3), after three-dimensional Fourier transformation produces a
three-dimensional frequency domain spectrum, S(F1,F2,F3).

S t1, t2, t3ð Þ !3D�FT
S F1,F2,F3ð Þ ð6:93Þ

A variety of three-dimensional spectra can be generated by choosing appropriate
mixing sequences, M1 and M2. For example, if M1 is chosen to result in a HSQC
type of the transfer of coherence with its independent evolution period t1, and M2 is
chosen to result in a TOCSY type of transfer with the evolution period t2, then in the
end, we generate a three-dimensional HSQC-TOCSY spectrum, schematically
shown in Fig. 6.48.

Fig. 6.45 Pulse sequences combining (a) HSQC with TOCSY and (b) HSQC with NOESY
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Similar combinations can be made with COSY, TOCSY, NOESY, HSQC,
HMQC, HMBC, etc., to generate a variety of three-dimensional spectra.

A large variety of three-dimensional spectra have been designed for biomolecular
applications, especially proteins. These differ in magnetization transfer pathways
along the protein chain. While these are covered in several elegant monographs,
some of these are indicated in Fig. 6.49, wherein the pathways of magnetization
transfer through the chain are indicated.

These rely on the transfer of magnetization via evolution under the influence of
one- and two-bond couplings along the polypeptide chain. These coupling constants
are independent of the amino acid sequence in the chain, and their typical values are
shown in Fig. 6.50.

In the following, we describe briefly a few experiments to demonstrate the
analysis of these pulse sequences, in general. All these experiments require proteins
uniformly enriched in 13C and 15N isotopes. These are routinely achieved by
standard techniques in recombinant protein production. These experiments also
require spectrometers equipped with three independent channels, 1H, 13C, and 15N.

Fig. 6.46 Spectra of (a) HSQC-TOCSY and (b) HSQC-NOESY recorded on strychnine. It is
adapted from the Bruker website

Fig. 6.47 A schematic of a
three-dimensional experiment
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6.7.1 The CT-HNCA Experiment

Figure 6.51 shows the pulse sequence for the constant time (CT)-HNCA experiment.
The flow of magnetization through the pulse sequence is schematically shown in

Eq. 6.94:

HN
i ! Ni t1ð Þ ! Cα i, i� 1ð Þ t2ð Þ ! Ni ! HN

i t3ð Þ ð6:94Þ
It starts with the 1H magnetization, Hz, and the evolution of this magnetization

through the pulse sequence can be calculated using the product operator formalism.
At time point “a,” after the first INEPT transfer from amide proton (HN

i ) to Ni along
the backbone, the density operator is given by

ρa ¼ �2HN
izNiy ð6:95Þ

HN
iz refers to z-magnetization of the amide proton (HN

i ) of the i
th residue along the

polypeptide chain, and Niy refers to the y-component of the backbone 15N spin of the
ith residue. Thus, this operator represents antiphase 15N magnetization with respect
to the amide proton (HN

i ).
Following this, the 15N magnetization evolves for a constant time period T under

different Hamiltonians:

Fig. 6.48 Schematic of
three-dimensional HSQC-
TOCSY spectrum. The
TOCSY relay is seen along
the F2 axis in the three-
dimensional spectrum
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(i) Under the influence of 15N chemical shifts for a period t1.

�2HN
izNiy ! �2HN

izðNiy cos ðωNi t1Þ � Nix sin ðωNi t1ÞÞ ð6:96Þ

Fig. 6.49 Schematic of magnetization transfer pathways in HNCA, HN(CO)CA, HNCO, HN
(CA)CO, CBCA(CO)NH, and CBCANH experiments. Red arrows identify magnetization transfers
during the pulse sequence, and the atoms enclosed in cyan circles are the nuclei participating the
transfer process

Fig. 6.50 One- and
two-bond coupling constants
relevant for magnetization
transfers shown in Fig. 6.48
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(ii) Evolution under the influence of 15N-1H coupling is effectively refocused and
15N magnetization remains anti-phase with respect to 1H.

(iii) Under the influence of one-bond (Ni � Cα
i ) and two-bond (Ni � Cα

i�1ð Þ )
couplings for the period T.

(iv) Evolution under 15N-13CO coupling is removed by the application of 180�

band-selective pulse to the 13CO spins and also to 15N.
During the period t1

2 � π COð Þ � t1
2 , decoupling happens due to the 180� pulse

on the carbonyl spins.
During the next period, T

2 � t1
2 � π 15N � T

2 � t1
2 , decoupling happens

due to the 180� pulse on 15N.

Thus, at time point “b,” the density operator is given by

ρb ¼ 4HN
izNixC

α
izΓ1 Tð Þ þ 4HN

izNixC
α
i�1ð ÞzΓ2 Tð Þ cos ωNi t1ð Þ ð6:97Þ

where

Γ1 Tð Þ ¼ sin π1JCαNT cos π2JCαNT ð6:98Þ

Fig. 6.51 Pulse sequence for the constant time (CT)-HNCA experiment. Narrow and wide
rectangular bars represent 90� and 180� pulses, respectively. Pulses are applied along the x-axis
unless indicated otherwise. The phase cycles ϕ1–ϕ3 are as follows: ϕ1¼ x and�x; ϕ2¼ 4(x), 4( y),
4(�x), and 4(�y); and ϕ3¼ 2(x) and 2(�x). ϕrec¼ x,�x,�x, x,�x, x, x, and�x. The period τ¼ 1/
4JNH. T represents the constant time period, which is typically 22–25 ms. Broadband decoupling of
15N is achieved using standard composite decoupling. Alphabets a–e identify time points discussed
in the text
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Γ2 Tð Þ ¼ cos π1JCαNT sin π2JCαNT ð6:99Þ
Γ1(T ) and Γ2(T ) represent transfer efficiencies, which are seen to be dependent on

the constant time period T and the magnitudes of the coupling constants. In this
calculation relaxation has been ignored. However, relaxation will be occurring
which causes an exponential decay (exp(�RNT ), where RN is the transverse relaxa-
tion rate of 15N magnetization. Therefore, the constant time period T has to be
properly optimized for the efficient transfer of magnetization without losing too
much signal.

The first term in Eq. 6.97 represents 15N magnetization of the ith residue,
antiphase with respect to HN and Cα of the ith residue. The second term represents
15N magnetization of the ith residue antiphase with respect to HN of the ith residue
and Cα of the (i�1)th residue. Thus, a sequential correlation between i and (i�1)
residues is created. Following the application of a pair of 90� pulses to 15N and Cα

spins at the end of the T period results in the density operator at time point “c”:

ρc ¼ 4HN
izNizC

α
iyΓ1 Tð Þ þ 4HN

izNizC
α
i�1ð ÞyΓ2 Tð Þ cos ωNi t1ð Þ ð6:100Þ

Now the magnetization is on Cα of “i” (first term in 6.100) and (i�1) (second term
in 6.100) residues. This magnetization evolves for the t2 period under the influence
of Cα chemical shifts. All the coupling evolutions (except Cα � Cβcoupling) are
eliminated by simultaneous 180� pulses on CO, 15N, and 1H channels. At the end of
the t2 evolution (i.e., at time point “d”), the relevant density operator is given by

ρd ¼ 4HN
izNizC

α
iy cos ωCα

i
t2 Γ1 Tð Þþ4HN

izNizC
α
i�1ð Þy cos ωCα

i�1
t2 Γ2 Tð Þ cos ωNi

t1 :cos πJCαCβ t2

ð6:101Þ

This magnetization is then transferred back to the coupled 15N spins by the
simultaneous application of 90� pulses on Cα and 15N. The 15N magnetization
which is antiphase with Cα and also 1H then evolves for the constant time period
T to refocus the antiphase character with respect to 15N. At the end of the T period,
we have 15N magnetization which is antiphase with respect to coupled HN spins. A
pair of 90� pulse on 15N and 1H’s at this point transfers the magnetization to amide
protons. This proton magnetization is antiphase with respect to the 15N, and during
the next INEPT block gets refocused to produce in-phase amide proton magnetiza-
tion. The relevant density operator at this point “e” is given by

ρe ¼ HN
ix cos ωCα

i
t2 Γ1 Tð Þ þ cos ωCα

i�1
t2 Γ2 Tð Þ cos ωNi t1ð Þ: cos πJCαCβ t2ð Þ

ð6:102Þ
This proton magnetization is then detected during the time t3, while

15N is
decoupled in a broadband fashion. Thus, the resulting three-dimensional spectrum
can be represented by
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S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 Cαð Þ,F3 HN ð6:103Þ

This is schematically shown in Fig. 6.52a. The F2–F3 cross-section plane at
particular 15Ni along F1 through this three-dimensional spectrum is shown in
Fig. 6.52b. It is clearly seen that this experiment allows establishing correlations
between two neighboring amino acid residues, which allows sequential walk along
the polypeptide chain as indicated in Fig. 6.53. Each strip shows correlations
between the amide protons of a particular residue, say i, to the 15N of the same
residue i (self-peak) and to the 15N of the previous residue i�1 (sequential peak).
Typically, the self-peak has slightly higher intensity than the sequential peak.

In practical terms one has to scan through the 15N planes along the F1 axis to find
HN

–Cα correlation peaks at the appropriate chemical shifts to establish such
connectivities. While this works elegantly when the chemical shift dispersions are
very good, difficulties arise when there are degeneracies in the chemical shifts. This
happens particularly for Cα chemical shifts in disordered and flexible regions of
proteins, and sequential connectivities become ambiguous. Several other three-
dimensional experiments have been designed to circumvent such problems, and
these have been described in great details in many other books (see, e.g., Cavanagh
et al., protein NMR spectroscopy). We describe one particular development which
has not been covered in any book. Even here, we restrict to the very basic technique
(Sanjay et al. 2001); several additions, improvements, and enhancements have been
published in the literature.

Fig. 6.52 (a) Schematic spectrum of three-dimensional CT-HNCA. (b) The F2–F3 cross-section
at a particular 15N chemical shift along F1. Different colors are used to distinguish between the
residues, and larger and smaller circles indicate self- and sequential correlations
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6.7.2 The HNN Experiment

This experiment is derived by simple modification of the HNCA, and the pulse
sequence is shown in Fig. 6.54. It follows the magnetization transfer pathway shown
in Fig. 6.55.

The basic differences with respect to the HNCA are: (i) Both the F1 and F2 axes
have 15N chemical shifts, whereas in HNCA F1 has 15N and F2 has Cα chemical
shifts, and (ii) an additional coherence transfer step is included to transfer the
magnetization to the neighboring residues (i ! i�1, i ! i+1). The periods 2TN
and 2τCN in Fig. 6.54 are constant time periods during which magnetization transfers
take place. In the first 2TN period, the transfer happens from 15N of residue “i” to Cα

spins of residues “i” and (i�1). During the 2τCN constant time period, magnetization
transfer occurs from Cα of “i” residue to 15N of i and i+1 residues; likewise, the
transfer also occurs from Cα of (i�1) the residue to 15N of i and (i�1) residues. Thus,
a sequential correlation gets established between three consecutive residues, i�1, i,
and i+1. The constant time periods, 2TN and 2τCN, are adjusted to be around
22–30 ms. The z-field gradients used in the pulse sequence destroy the unwanted
transverse components of the magnetization at different stages. Just before the

Fig. 6.53 Sequential walk through the polypeptide chain from residues i to i�4. Selected F2–F3
strips at F1 chemical shifts indicated on the top are aligned to show the sequential connectivities
through the polypeptide sequence
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Fig. 6.54 Pulse sequence for the HNN experiment. Narrow (hollow) and wide (filled black)
rectangular bars represent nonselective 90� and 180� pulse, respectively. Narrow lobe (light blue)
and wide lobe (gray) on carbon channel indicate selective 90� and 180� pulse, respectively. Unless
indicated otherwise, the pulses are applied with phase x. Proton decoupling using the Waltz-16
decoupling sequence with field strength of 6.25 kHz is applied during most of the t1 and t2 evolution
periods, and 15N decoupling using the Garp-1 sequence with field strength 0.9 kHz is applied during
acquisition. The 13C carrier frequency for pulses, respectively, on 13Cα and 13CO channels are set at
54.0 ppm and 172.5 ppm. The strengths of the 13Cα pulses (standard Gaussian cascade Q3 (180�)
and Q5 (90�) pulses) are adjusted so that they cause minimal excitation of carbonyl carbons. The
180� 13CO-shaped pulse (width 200 μs) had a standard Gaussian cascade Q3 pulse profile with
minimal excitation of 13Cα. The delays are set to λ¼ 2.7 ms, κ¼ 5.4 ms, δ¼ 2.7 ms. The delay τCN
used for the evolution of one-bond and two-bond 13Cα� 15Ncoupling is around 12–16 ms and must
be optimized. The values for the individual periods containing t1 are A¼ t1/2, B¼ TN, and C¼ TN–
t1/2. The values for the individual period containing t2 are D ¼ TN–t1/2, E ¼ TN, and F ¼ t1/2. The
delay 2TN is set to 24–28 ms. Phase cycling for the experiment isΦ1¼ 2(x), 2(–x);Φ2¼Φ3¼ x, –x;
Φ4 ¼ x; and Φ5 ¼ 4(x), 4(–x) and receiver ¼ 2(x), 4(–x), and 2(x). Frequency discrimination in t1
and t2 is achieved using states-TPPI phase cycling of Φ1 and Φ4, respectively, along with the
receiver phase. The gradient (sine-bell shaped; 1 ms) levels are optimized between 30% and 80% of
the maximum strength of 53 G/cm in the z-direction. These destroy the unwanted transverse
magnetization components

Fig. 6.55 A schematic of magnetization transfer pathway through the HNN pulse sequence
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detection, the Watergate pulse block is used to achieve an efficient water
suppression.

The experiment can be analyzed in detail using the product operator formalism.
Considering a chain of four residues, i�2 to i+1 along the polypeptide chain, the
intensities of the diagonal Idi ;F1 ¼ F2 ¼ Ni, F3 ¼ HN

i and cross-peaks
( Ici�1;F1 ¼ Ni, F2 ¼ Ni�1,F3 ¼ HN

i�1 and Iciþ1;F1 ¼ Ni, F2 ¼ Niþ1, F3 ¼
HN

iþ1Þ) in the F2–F3 plane of the HNN spectrum turn out to be

Id ¼ � E2
1E3E9K

d
i1 þ E2

2E5E10K
d
i2 ð6:104Þ

Ici�1 ¼ E1E4E7E9K
c
i�1

Iciþ1 ¼ E2E6E8E10K
c
iþ1 ð6:105Þ

where

E1 ¼ cos piTN sin qi�1TN

E2 ¼ sin piTN cos qi�1TN

E3 ¼ cos pi�1τCN cos qi�1τCN

E4 ¼ sin pi�1τCN sin qi�1τCN

E5 ¼ cos piτCN cos qiτCN

E6 ¼ sin piτCN sin qiτCN

E7 ¼ sin pi�1TN cos qi�2TN

E8 ¼ cos piþ1TN sin qiTN

E9 ¼ cos ni�1τCN

E10 ¼ cos niτCN ð6:106Þ
and

pi ¼ 2π1J Cα
i � Ni ; qi ¼ 2π2J Cα

i � Niþ1 ; ni ¼ 2π1J Cα
i � Cβ

i ð6:107Þ

Kd
i1 ¼ exp �4TNR

N
2i � 2τCNR

α
2,i�1

Kd
i2 ¼ exp �4TNR

N
2i � 2τCNR

α
2i

Kc
i�1 ¼ exp �2TN RN

2i þ RN
2,i�1 � 2τCNR

α
2,i�1

6.7 Three-Dimensional NMR 259



Kc
iþ1 ¼ exp �2TN RN

2i þ RN
2,iþ1 � 2τCNR

α
2i ð6:108Þ

1J and 2J represent one-bond and two-bond N-Cα coupling constants and RN
2 and Rα

2’s
are the various 15N and Cα transverse relaxation rates, respectively.

This data after three-dimensional Fourier transformation yields the three-
dimensional NMR spectrum.

S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 15N ,F3 HN ð6:109Þ

Equation 6.104 (Id) gives rise to the diagonal peak (F1 ¼ F2 ¼ Ni, F3 ¼ HN
i ) in

the three-dimensional spectrum. The first term in Eq. 6.105 yields the cross-peak
(Ici�1;F1 ¼ Ni, F2 ¼ Ni�1, F3 ¼ HN

i�1Þ . The second term in Eq. 6.105 yields
another cross-peak Iciþ1;F1 ¼ Ni, F2 ¼ Niþ1, F3 ¼ HN

iþ1 ). A schematic repre-
sentation of the three-dimensional spectrum is shown in Fig. 6.56a, and in
Fig. 6.56b, c are shown, respectively, the F1 � F3 plane at F2 ¼ Ni and F2 � F3
plane at F1 ¼ Ni.

Fig. 6.56 (a) Schematic representation of the three-dimensional spectrum of HNN. (b) Schematic
representation of F1 � F3 plane at a particular F2 ¼ Ni. (c) Schematic representation of F2 � F3
plane at F1¼ Ni. Cyan peaks are self-peaks (F2¼ F1¼ Ni), and the red peaks are sequential peaks
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Clearly, the F2 � F3 plane at a particular F1 ¼ Ni is a triplet filter through the
HSQC spectrum displaying exclusively the peaks of three consecutive residues (i�1,
i, i+1) along the polypeptide chain. The orthogonal F1 � F3 plane at a particular
F2 ¼ Ni shows correlations from the amide proton of residue “i” to the 15N of
residues i�1, i, and i+1. This feature eliminates the need to scan through the 15N
planes as in the HNCA experiment to establish sequential correlations.

Figure 6.57 shows the coherence transfer efficiencies and consequent intensities
of the diagonal and cross-peaks with and without including relaxation. These curves
indicate the optimum value to be chosen for the 2τCN period. As mentioned earlier, a
value of 22–30 ms turns out to be the optimum choice, which gives reasonable
intensities for both the diagonal and the cross-peaks.

The HNN experiment has an additional interesting feature in the patterns of
peaks. The diagonal and cross-peaks will have different combinations of positive
and negative signs depending upon the nature of the residues in the triplet sequence
represented by the chosen plane. This feature arises because of the fact that during
the 2τCN period, the magnetization on Cα evolves under the influence of Cα � Cβ

coupling; the coefficients E9 and E10 which reflect this coupling evolution contrib-
ute to the change in sign patterns of the diagonal and cross-peaks. Since the glycine

Fig. 6.57 Plots of the HNN coherence transfer efficiencies. The transfer functions for the diagonal
peak Id and the cross-peaks Ici�1, I

c
iþ1 . Here, (a) is for the transfer efficiencies calculated with

relaxation terms, while (b) is for calculations without the relaxation terms. The transfer efficiency is
plotted as a function of τCN. The plots were calculated by using, JCαCβ , JCαCO, and JNCO values of
35, 55, and 15 Hz, respectively. The 1JCαN , and 2JCαN values have been chosen to be 10.5 and
8.5 Hz, respectively. The value of TN used in the transfer functions for HNN was 14.0 ms. Thick and
dotted lines represent diagonal and sequential peaks, respectively. The vertical red line indicates the
optimum choice for the τCN value. For this choice, the diagonal and cross-peaks have opposite
signs. (Reproduced from Journal of Magnetic Resonance. 181, 21 (2006), with the permission of
Elsevier Publishing)
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residues do not have a Cβ carbon, they appear distinctly and generate different peak
patterns depending upon the position of the glycine in the triplet sequence. Four
different cases of triplet amino acid sequences can be considered: (i) XGZ, (ii) GYZ,
(iii) G’GZ, and (iv) ZXY, where X, Y, and Z can be any amino acid residue other
than glycine and proline and G is glycine. The cases (i)–(iii) are special cases
containing glycine in the triplet sequence, and case (iv) is a general case. For the
three special cases (i) to (iii), the relevant density operators before the start of
detection are given by the following:
(i) -XGZ-: In this case the Cα � Cβ couplings are absent and hence E10 ¼ 1. Thus,

the transfer efficiencies are as follows:

Id ¼ � E2
1E3E9K

d
i1 þ E2

2E5K
d
i2 ð6:110Þ

Ici�1 ¼ E1E4E7E9K
c
i�1

Iciþ1 ¼ E2E6E8K
c
iþ1 ð6:111Þ

(ii) -GYZ-: In this case Cα � Cβ coupling of the (i�1)th residue vanishes and hence
E9¼1. The transfer efficiencies can be written as follows:

Id ¼ � E2
1E3K

d
i1 þ E2

2E5E10K
d
i2 ð6:112Þ

Ici�1 ¼ E1E4E7K
c
i�1

Iciþ1 ¼ E2E6E8E10K
c
iþ1 ð6:113Þ

(iii) -G’GZ-: Here both E10 and E9 terms become unity, and the equations can be
written as:

Id ¼ � E2
1E3K

d
i1 þ E2

2E5K
d
i2 ð6:114Þ

Ici�1 ¼ E1E4E7K
c
i�1

Iciþ1 ¼ E2E6E8K
c
iþ1 ð6:115Þ

The calculated peak patterns in F1–F3 planes for various combinations of triplets
of sequences involving a glycine residue at different positions in the triplet are
shown in Fig. 6.58. If there is a proline residue at either (i�1) or (i+1) position in
the triplet, the corresponding peak will not appear in the spectrum.
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6.7.3 The Constant Time HN(CO)CA Experiment

The HNCA experiment described earlier establishes the correlation between residue
“i” and (i�1) along the polypeptide chain. A particular cross-section plane along the
15N axis shows peaks between amide protons of residue “i” and Cα carbons of
residues i and i�1. However, a priori, it is not possible to identify the i and i�1 peak
individually, unambiguously. The HN(CO)CA experiment has been designed to
circumvent this problem by adopting a different magnetization transfer pathway,
which allows the flow of magnetization through the pulse sequence in one direction
along the polypeptide chain. This is as indicated in Eq. 6.116.

Fig. 6.58 Schematic patterns in the F1–F3 planes at the F2 chemical shift of the central residue in
the triplets mentioned on the top of each panel, in the HNN spectra for various special triplet
sequences. X, Z, and Z’ are any residue other than glycine (G) and proline (P). Squares are the
diagonal peaks and circles are the sequential peaks. Filled and open symbols represent positive and
negative signals, respectively. In all cases, the peaks are aligned at the F3 (HN) chemical shift of the
central residue
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HN
i ! Ni t1ð Þ ! CO i� 1ð Þ ! Cα i� 1ð Þ t2ð Þ ! CO i� 1ð Þ ! Ni

! HN
i t3ð Þ ð6:116Þ

Figure 6.59 shows the pulse sequence of the CT-HN(CO)CA experiment.
The experiment can be analyzed by the product operator formalism as for other

experiments. The experiment starts with an initial INEPT transfer from HN
i to Ni of

residue i. At time point a, in the pulse sequence, the relevant density operator is

ρa ¼ �2HN
izNiy ð6:117Þ

This antiphase magnetization of Ni is refocused to in-phase magnetization, which
then evolves under coupling toCO( i� 1) exclusively for the period δ1 + δ2 + δ3¼ 2δ1.
This is normally adjusted between 1

2JNCO
and 1

3JNCO
and most often it is set to 1

3JNCO
.

Note, Cα is decoupled by the application 180� pulses on Cα channel and the 15N
channel. Ni-magnetization also evolves under Ni-chemical shifts leading to fre-
quency labeling in the time period t1. The relevant density operator at point b in
the pulse sequence is given by

Fig. 6.59 Pulse sequence for the CT-HN(CO)CA experiment. Wide and narrow rectangles

indicate 180� and 90� pulses, respectively. Typically, the delays are 2δ1 	 22 ms 	 1
3JNCO

,

2δ3 	 1
2JNH

, δ2 ¼ (δ1 � δ3), and δ4 in the range 1
3JCαCO

to 1
2JCαCO

. Unless mentioned, the pulse phases

are along the x-axis. The phase cycles mentioned are ϕ1 ¼ x, �x; ϕ2 ¼ 4(x), 4( y), 4(�x), 4(�y);
ϕ3 ¼ 2(x), 2(�x). and ϕrec ¼ x, �x, �x, x, �x, x, x, �x. Quadrature detection in the t1 and t2
dimensions is achieved by incrementing independently the phases ϕ1 and ϕ3, respectively, along
with the receiver phase, as in a states-TPPI manner
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ρb ¼ 2 NiyCO i�1ð Þz cos ωNi t1ð Þ sin 2πJNCOδ1ð Þ sin 2πJNHδ3ð Þ ð6:118Þ
The simultaneous application of 90� pulses on CO and 15N channels at this point

causes transfer into antiphase CO magnetization, and the relevant density operator at
time point c is given by

ρc ¼ �2 NizCO i�1ð Þy cos ωNi t1ð Þ sin 2πJNCOδ1ð Þ sin 2πJNHδ3ð Þ ð6:119Þ
This magnetization then evolves under Cα coupling for the period δ4, and it is

transferred to Cα(i � 1), which is then frequency labeled during the period t2. At the
end it is back transferred to CO(i�1), which continues to evolve under the Cα � CO
coupling, for the next δ4 period, and at time point d, the relevant density operator is

ρd ¼�2NizCO i�1ð Þy cos ωNi
t1 cos ωCα

i�1
t2 cos πJ

CαCβ t2 sin2 πJCαCOδ4 sin 2πJNCOδ1 sin 2πJNHδ3

ð6:120Þ

Magnetization is now on CO(i�1). During the subsequent part of the pulse
sequence, the magnetization retraces the path evolving under the various couplings,
and at time point e, the relevant density operator leading to observable magnetization
is given by

ρe¼HN
ix cos ωNi

t1 cos ωCα
i�1

t2 cos πJCαCβ t2 sin2 πJCαCOδ4 sin2 2πJNCOδ1 sin2 2πJNHδ3

ð6:121Þ

The amide proton magnetization is then detected during “t3” under 15N
decoupling.

After three-dimensional Fourier transformation, this leads to a spectrum
schematically shown in Fig. 6.60.

Fig. 6.60 (a) Schematic
spectrum of three-dimensional
CT-HN(CO)CA. (b) The
F2-F3 cross-section at a
particular 15N chemical shift
along F1. Here only the
sequential connections i to
(i�1) are seen. Different
colors are used to distinguish
between the residues
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6.7.4 The HN(C)N Experiment

This is a counter part of HNN in the same manner as HN(CO)CA is a counter part of
the HNCA experiment, providing the directionality to the sequential assignment
process of the backbone atoms along the polypeptide chain. The pulse sequence for
this experiment is shown in Fig. 6.61, and the magnetization transfer pathway is
shown in Fig. 6.62.

Note that the flow of the magnetization is similar to that in HN(CO)CA till the
point reaches Cα( i � 1). The Cα

’s are not frequency labeled, and the magnetization
is transferred directly to the 15N of residues i and (i�1). This involves an additional

Fig. 6.61 Pulse sequence for the HN(C)N experiment. Narrow (hollow) and wide (filled black)
rectangular bars represent nonselective 90� and 180� pulse, respectively. Narrow lobe (light blue)
and wide lobe (gray) on carbon channel indicate selective 90� and 180� pulse, respectively. Unless
indicated otherwise, the pulses are applied with phase x. Proton decoupling using the Waltz-16
decoupling sequence with field strength of 6.25 kHz is applied during most of the t1 and t2 evolution
periods, and 15N decoupling using the Garp-1 sequence with field strength 0.9 kHz is applied during
acquisition. The 13C carrier frequency for pulses, respectively, on 13Cα and 13CO channels are set at
54.0 ppm and 172.5 ppm. The strength of the 13Cα pulses (standard Gaussian cascade Q3 (180�) and
Q5 (90�) pulses) is adjusted so that they cause minimal excitation of carbonyl carbons. The 180�
13CO-shaped pulse (width 200 μs) had a standard Gaussian cascade Q3 pulse profile with minimal
excitation of 13Cα. The delays are set to λ¼ 2.7 ms, κ ¼ 5.4 ms, δ ¼ 2.7 ms. The delay τCN used for
the evolution of one-bond and two-bond 13Cα � 15Ncoupling is around 12–16 ms and must be
optimized. The delay τC in the pulse sequence used for 13Cα � 13C' (refers to carbonyl, CO, carbon)
coupling evolution is 4.5 ms. The values for the individual periods containing t1 are A ¼ t1/2, B ¼
TN, and C ¼ TN–t1/2. The values for the individual period containing t2 are D ¼ TN � t1/2, E ¼ TN,
and F¼ t1/2. The delay 2TN is set to 24–28 ms, and Δ¼ τCN� τC. Phase cycling for the experiment
is Φ1 ¼ 2(x), 2(–x); Φ2 ¼ Φ3¼ x, –x; and Φ4 ¼ x; Φ5¼ 4(x), 4(–x) and receiver ¼ 2(x), 4(–x), 2(x).
The frequency discrimination in t1 and t2 has been achieved using states-TPPI phase cycling of Φ1

and Φ4, respectively, along with the receiver phase. The gradient (sine bell shaped; 1 ms) levels are
optimized between 30% and 80% of the maximum strength of 53 G/cm in the z-direction. These
destroy the unwanted transverse magnetization components
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transfer period, 2τCN. The
15N are frequency labeled in the evolution time t2, and

finally the magnetization is transferred to amide protons of residues i and (i�1),
which are then detected during the detection period t3.

The experiment can be analyzed using the product operator as has been done in
the previous cases. The final relevant density operator at the start of the detection (t3)
is given by

σ f ¼ 2HizNiy cos ωNi t2ð ÞΓ2Γ4 � 2H i�1ð ÞzN i�1ð Þy cos ωN i�1ð Þ t2 Γ3Γ5

sin 2πJCαCOτCð ÞΓ6Γ1 cos ωNi t1ð Þ ð6:122Þ
where

Γ1 ¼ sin 2πJCαCOτCð Þ sin 2πJNCOTNð Þ

Γ2 ¼ sin 2π2JCαNτCN cos 2π1JCαNτCN

Γ3 ¼ sin 2π1JCαNτCN sin 2π2JCαNτCN

Γ4 ¼ cos 2π1JCαNTN sin 2π2JCαNTN

Γ5 ¼ sin 2π1JCαNTN cos 2π2JCαNTN

Γ6 ¼ cos 2πJCαCβ τCNð Þ ð6:123Þ
τC, τCN, and 2TN ¼ A + B + C¼ D + E + F are the delays as indicated in the pulse

sequence. The resultant data after the three-dimensional Fourier transformation
yields the three-dimensional HN(C)N spectrum.

S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 15N ,F3 HN ð6:124Þ

The first term in Eq. (6.122) gives rise to the diagonal peak (F1 ¼ F2 ¼ 15Ni,
F3¼ HNi) in the three-dimensional spectrum. The second term yields the cross-peak
(F1 ¼ 15Ni, F2 ¼ 15N(i�1), and F3 ¼ HNi�1). A schematic representation of the

Fig. 6.62 Schematic of magnetization transfer pathway through the HN(C)N pulse sequence. Here
C’ refers to carbonyl (CO) carbon
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three-dimensional spectrum is shown in Fig. 6.63a, and in Figs. 6.63b and 6.63c, the
F1–F3 plane at F2¼ 15Ni and the F2–F3 plane at F1¼ 15Ni are shown, respectively.

Clearly, both the F1–F3 and F2–F3 cross-section planes provide directionality in
sequential connections from the residue “i.” The peaks also carry sign patterns as in
the case of HNN experiment. The transfer efficiencies will be dictated by various
coefficients (Γ0s) in the respective terms. The different delays (τC, τCN, TN) have to be
optimized as before in the case of HNN. τc is generally set to ~4.5 ms, and τCN and
TN are typically set to ~12–15 ms.

Here again, the glycine residues make a special contribution because of the lack
of Cβ carbon and consequent absence of evolution under Cα � Cβ coupling. This
results in special patterns for glycine residues as well as for those which are adjacent
to glycines. Considering the various possibilities of triplets of residues involving
glycines, the expected peak patterns can be calculated as in the case of HNN. These
are shown schematically in Fig. 6.64.

Fig. 6.63 (a) Schematic representation of the three-dimensional spectrum of HN(C)N. (b) Sche-
matic representation of F1 � F3 plane at a particular F2 ¼ Ni. (c) Schematic representation of
F2 � F3 plane at F1 ¼ Ni
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The special features in the peak patterns in the HN(C)N and HNN spectra
generate the so-called checkpoints which help greatly for sequential resonance
assignments in proteins. Sections of experimental HN(C)N and HNN spectra
demonstrating the sequential walk through a stretch of polypeptide chain are
shown in Fig. 6.65a, b, respectively.

In the HNN and HN(C)N experiments, glycine residues served to provide
checkpoints for sequential resonance assignments. Simple modifications of these
experiments have been described where alanines and serines/threonines also produce
distinctive peak patterns, similar to glycines. These experiments have provided the
foundation for many more developments, which have enabled rapid and unambigu-
ous assignments in different kinds of protein systems, including folded, unfolded,
intrinsically disordered, and partially folded proteins. A complete description of

Fig. 6.64 Schematic patterns in the F1–F3 planes at the F2 chemical shift of the central residue in
the triplets mentioned on the top of each panel, in the HN(C)N spectra for various special triplet
sequences. X, Z, and Z’ are any residue other than glycine (G) and proline (P). Squares are the
diagonal peaks and circles are the sequential peaks. Filled and open symbols represent positive and
negative signals, respectively. In all cases the peaks are aligned at the F3 (HN) chemical shift of the
central residue
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these is beyond the scope of this book. The intention here has been only to give a
flavor of the possibilities.

6.8 Summary

• The principles of multidimensional NMR are described.
• Different types of two-dimensional NMR are presented. The discussion is limited

to some commonly used experiments.
• Illustrative elaborate product operator calculations are shown for some standard

experiments. Some three-dimensional experiments are also described in some
detail as illustrations.

6.9 Further Reading

• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,
A. Wokaun, Oxford, 1987

• High Resolution NMR Techniques in Organic Chemistry, T. D. W. Claridge, 3rd

ed., Elsevier, 2016
• NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry,

H. Günther, 3rd ed., Wiley, 2013
• Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005
• Protein NMR Spectroscopy, J. Cavanagh, N. Skelton, W. Fairbrother,

M. Rance, A, Palmer III, 2nd ed., Elsevier, 2006

Fig. 6.65 (a) An illustrative stretch of sequential walk through the HN(C)N (a) and HNN (b)
spectra of ubiquitin protein (1.6 mM, 76 aa). A sequential peak in one plane joins the diagonal peak
in the adjacent plane on the right. Note that the panels of G10 and K11 constitute the checkpoints in
this sequential walk. The numbers at the top and bottom in each panel A and B identify the F2 (

15N)
and F3 (

1HN) chemical shifts, which help in the identification of the diagonal peaks. Black and red
contours represent the positive and negative peaks, respectively
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6.10 Exercises

6.1 In a two-dimensional NMR experiment, which of the following statement is
correct?
(a) Data is explicitly collected during two independent time variables t1 and t2.
(b) Data is explicitly collected only during t2.
(c) Data is explicitly collected only during t1.
(d) The spectrum is generated by frequency selective excitations along the two

frequency axes (F1 and F2).
6.2 Fourier transformation of a complex NMR signal S (t1, t2) leads to

(e) absorptive line shapes along both frequency axes
(f) dispersive line shapes along both frequency axes
(g) absorptive line shape along F1 and dispersive line shape along F2

(h) mixed line shape along both frequency axes
6.3 If SW is the spectral width along the F1 dimension of the two-dimensional

spectrum and carrier is placed at the center of the spectrum, then in the TPPI
method of quadrature detection, the dwell time along t1 dimension is equal to
(a) 1 SW
(b) 1/2 SW
(c) 1/4 SW
(d) 2 SW

6.4 Given the pulse sequence,

the F2 axis of the two-dimensional spectrum for the molecule CH3-CH2-CH2-Cl will
show

(a) 3 singlets
(b) 2 triplets and 1 quartet
(c) 1 quartet and 1 triplet
(d) 1 quartet and quintet
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6.5 In a heteronuclear (C-H) spin echo experiment shown in the figure, the F1 axis
displays

(a) carbon multiplets (JCH) orthogonal to F2 axis
(b) no multiplets
(c) multiplets tilted by 45� with respect to F2 axis
(d) fine structure along with chemical shift of individual carbon nuclei

6.6 In a homonuclear two-dimensional J-resolved spectrum,
(a) F1 axis has chemical shifts and F2 axis has coupling constants
(b) F1 axis has coupling constants and F2 axis has chemical shifts and

coupling constants
(c) F1 axis has coupling constants and F2 axis has chemical shifts
(d) F1 axis has chemical shifts and coupling constants and F2 axis has

chemical shifts
6.7 In a two-dimensional homonuclear J-resolved experiment, the peaks have

(a) absorptive line shape along F1 and dispersive line shape along F2

(b) absorptive line shape along both F1 and F2

(c) dispersive line shape along both F1 and F2

(d) mixed line shapes along both F1 and F2

6.8 In a two-dimensional homonuclear COSY experiment, which of the following
is correct?
(a) Cross-peak arises due to magnetization transfer mediated by dipolar

interaction.
(b) Cross-peak arises due to magnetization transfer mediated by J-coupling

interaction.
(c) Diagonal peak arises due to magnetization transfer mediated by dipolar

interaction.
(d) Diagonal peak arises due to magnetization transfer mediated by J-coupling

interaction.
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6.9 Diagonal peaks in a COSY spectrum
(a) have no fine structure
(b) have fine structure with dispersive line shape along both frequency axes
(c) have fine structure with absorptive line shape along F1 axis and dispersive

line shape along F2 axis
(d) have fine structure with dispersive line shape along F1 axis and absorptive

line shape along F2 axis
6.10 The diagonal peak for a two-spin system (I¼ 1/2) in a two-dimensional COSY

spectrum will have the fine structure

(a)
þ �
� þ

(b)
þ þ
þ þ

(c)
þ �
þ �

(d)
þ þ
� �

6.11 The cross-peak for a two-spin system (I ¼ 1/2) in a two-dimensional COSY
spectrum will have the fine structure

(a)
þ �
� þ

(b)
þ þ
þ þ

(c)
� �
� �

(d)
þ þ
� �

6.12 In the cross-peak in a two-dimensional COSY spectrum, the line shapes along
the F1 and F2 dimension will be (abs: absorptive line shape; dis: dispersive line
shape)

(a)
abs dis

dis abs

(b)
abs abs

dis dis

(c)
dis abs

dis abs

(d)
abs abs

abs abs
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6.13 In a two-dimensional COSY spectrum, for a linear AMX spin system, with
JAM> JMX, the M spin fine structure in the AM cross-peak is
(a) [+ � + �]
(b) [ + + � �]
(c) [+� � +]
(d) [+ + + +]

6.14 In a two-dimensional COSY spectrum of a three-spin AMX system, the fine
structure in a cross peak
(a) is determined by the relative magnitude of the chemical shifts
(b) is determined by the relative magnitudes of the active and passive coupling

constants
(c) does not depend upon the signs of the coupling constants
(d) is entirely determined by the passive couplings

6.15 In a DQF-COSY spectrum of a two-spin system (I ¼ 1/2),
(a) both the diagonal and cross peak have the same fine structure and line

shapes
(b) the diagonal peak has antiphase structure and dispersive line shape, while

the cross peak has antiphase structure and absorptive line shape
(c) both the diagonal and cross peak have in-phase structure and absorptive

line shape
(d) the diagonal has in-phase structure and dispersive line shape and cross

peak have antiphase structure and absorptive line shape
6.16 Phase cycling in the DQF-COSY experiment

(a) helps to improve the signal-to-noise ratio
(b) helps in selection of coherence transfer pathway
(c) helps to remove artefacts of pulse imperfections
(d) helps to improve the resolution in the spectrum

6.17 In a two-dimensional NOESY experiment, the cross peak arises
(a) between J-coupled protons
(b) between protons coupled by dipolar interaction
(c) between chemically equivalent protons
(d) between magnetically equivalent protons

6.18 The intensity of a cross-peak between two protons separated by distance “r,” in
a two-dimensional NOESY spectrum, is proportional to
(a) r
(b) 1/r
(c) 1/r3

(d) 1/r6

6.19 The CT-COSY experiment achieves
(a) homonuclear broadband decoupling along the F1 dimension
(b) homonuclear broadband decoupling along the F2 dimension
(c) selective decoupling along the F1 dimension
(d) selective decoupling along the F2 dimension
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6.20 In CT-COSY experiment,
(a) J-coupling evolution does not occur during the t1 period
(b) J-coupling evolution occurs for the same time Δ for all the t1 increments
(c) chemical shift evolves through the constant time Δ
(d) J-coupling evolution occurs for the periods Δ�t1, and the chemical shift

evolution occurs for the period t1
6.21 In the following pulse sequence,

(a) chemical shifts appear scaled up in the indirect dimension
(b) J-values appear scaled up in the indirect dimension
(c) J-values appear scaled down in the indirect dimension
(d) both J-values and chemical shift are scaled up in the indirect dimension

6.22 In the given pulse sequence,

(a) chemical shifts are scaled up in the indirect dimension
(b) chemical shifts appear scaled down in the indirect dimension
(c) J-values appear scaled up in the indirect dimension
(d) J-values appear scaled down in the indirect dimension

6.23 In the TOCSY experiment, which of the following statements are true?
A. There is in-phase transfer of coherence.
B. There is relay of magnetization.
C. Transfer efficiency is worse than that in INEPT transfer.
D. Spin lock leads to isotropic Hamiltonian.
(a) All the statements are true.
(b) A, B, C are true.
(c) A, B, D are true.
(d) B, C, D are true.

6.24 In heteronuclear COSY experiment with the pulse sequence

90x
1H � t1 � 90x

1H, 13C � t2 � acquisitionð Þ,
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which of the following is true?
(a) The C-H cross-peak has no fine structure.
(b) The C-H cross-peak has fine structure along F2 alone.
(c) The C-H cross-peak has fine structure along F1 alone.
(d) The C-H cross-peak has fine structure along both F1 and F2.

6.25 In a HSQC spectrum, which of the following statements are true?
A. There is no fine structure in the cross peaks
B. Signal-to-noise is much superior compared to direct X detection experiment
C. Signal-to-noise ratio is inferior to direct X detection experiment
D. Cross-peaks have fine structure along the F1 axis
(a) A and B
(b) B and C
(c) C and D
(d) only A

6.26 In the HMQC spectrum, identify the correct statement.
(a) The HX cross-peaks have no fine structure,
(b) The HX cross-peaks have mixed phases resulting from H-H coupling

evolutions,
(c) The resolution is superior compared to HSQC spectrum,
(d) The experiment takes less time than HSQC,

6.27 In a two-dimensional HSQC-TOCSY spectrum,
(a) TOCSY causes relay along the F2 axis.
(b) TOCSY causes relay along the F1 axis.
(c) TOCSY leads to amplitude alteration HX cross peaks.
(d) TOCSY leads to a phase alteration of HX cross peaks.

6.28 For a three-dimensional NMR experiment, recorded with 256, 512, and1024
data points along the t1, t2, and t3 axes, respectively, with acquisition time of
0.2 s and relaxation delay of 1 s, the total acquisition time with four scans for
each FID will be approximately
(a) 1.5 days
(b) 3.5 days
(c) 7.3 days
(d) 11 days

6.29 In a three-dimensional experiment,
(a) the evolution time t1 and t2 are incremented simultaneously
(b) the evolution time t1 and t2 are incremented independently
(c) t1 is increment synchronously with t3
(d) t2 is increment synchronously with t3

Reference

Sanjay C. Panchal, Neel S. Bhavesh, and Ramakrishna V. Hosur (2001) Improved 3D triple
resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C,
15N) labeled proteins: Application to unfolded proteins. J Biomol NMR 20:135–147
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