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Learning Objectives

¢ Fundamental aspects of spin dynamics

¢ Density matrix description

* Product operator formalism to understand NMR experiments

5.1 Introduction

In the Fourier transform NMR experiment described in Chap. 3, the data was
collected after the application of an RF pulse to a spin system, which was in
equilibrium. Thus, the information that is obtained is essentially steady-state infor-
mation. Much more information about the spin system, energy level diagrams, cross-
relaxation pathways, etc. can be obtained by monitoring transient effects following a
perturbation to the spin system. For this, it is necessary to create a nonequilibrium
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state prior to the application of the observe RF pulse so that the transient phenomena
are reflected in the data that will be collected thereafter. Now, a nonequilibrium state
of the spin system can be created in different ways, depending upon what the specific
interest is. The design of proper experimental schemes suitable for the purpose in
mind requires proper knowledge of the behavior of spins under the influence of
various perturbing forces that may be used. Such an understanding can be most
appropriately obtained by using the most fundamental “density matrix” formalism. It
is impossible to obtain correct and predictable information from vector
representations, as was done in the steady-state case. In this chapter, the focus will
be on developing this “density matrix” formalism from the NMR point of view.

Sections 5.2, 5.3, 5.4, and 5.5 give a formal description of the theory of density
matrix. This involves a fair amount of quantum mechanics and mathematical rigor.
Section 5.6 onward, the product operator formalism provides a convenient tool for
the evaluation of density matrices and density operators applicable to weakly
coupled spin systems. Students who find the initial sections hard to grasp due to
insufficient background can skip to Sect. 5.6 and continue to familiarize themselves
with calculation of evolution of magnetization components through given pulse
sequences. Chapter 6 makes use of these in an extensive manner.

5.2  Density Matrix

We have seen in Chap. 1 that the state of spin can be represented by a wave function
which is of the form

Y(t)=)  Cul(t)Un (5.1)

U,,. 1 constitutes an orthonormal set of basis functions. We also know that in

quantum mechanics, when we make a measurement of an observable of the spin

system, we observe the time average or equivalently the ensemble average of its

value, and this average value of the observable of the spin system is described by the

expectation value of the corresponding operator. The expectation value of operator
A is defined as

<A>=<VYI|A|¥Y> (5.2)
:/‘P*A W de (5.3)

For example, the expectation value of M,, the operator for x-component of the
magnetization, in terms of the functions U, ,, is given by

<MY >=" " Cult) Cult) < Upt|M|Uns > (5.4)
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Or, briefly,

<MY >=" N Cult) Cult) < m|M,n > (5.5)

Since <mlM In> are constants, any variation of M, results essentially from the
changes in the coefficients. These products of coefficients, C,,(1)*C,(f), can be
conveniently arranged in the form of a matrix. It is useful to treat this matrix as
made-up of matrix elements of a time-dependent operator, P(f), operating on the
basis set of functions.

< n|P(t)|m >= C,(t)Cp(2)" (5.6)
In this notation,

<YM >=D" N <nlP(t)lm >< mM|n > (5.7)

Noting that, in general,
> m><m| =1 (5.8)

Equation 5.7 reduces to
<YIMNY >=" N < n|P()Mfn > (5.9)
= Tr {PM,} (5.10)

In other words, the expectation value of M, is given by the trace of the product of
the matrix representations of P and M,.
It is also easy to prove that P is a Hermitian operator:

< n|P(t)|m >=< m|P(t)|n>" (5.11)

When we are dealing with an ensemble of spins, different spins will have different
wave functions in the sense that the coefficients C,’s will be different for the
individual spins. In such a case, one will have to take an ensemble average of
these products to derive an average expectation value of the operator.

<M >=) " 3" Cult) Calt) < m|M,|n > (5.12)

The matrix formed by the ensemble averages of the products C,,(5)*C,(¢) is
represented by another operator, p, which is defined as

<n|pt)|m>=C,(t)"Cy(t) (5.13)

This operator p is called as the “density operator.”
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5.3 Elements of Density Matrix
Matrix element p,,, is as given by Eq. 5.13.

Pum = Ca(t) C(2)" (5.14)

The coefficients C,’s are complex quantities, and hence an ensemble average can
also be written as follows

Cult) Cult)” = | G| € | et (5.15)

where the as represent phases and the |C,,| represents amplitudes.

At thermal equilibrium, by the hypothesis of random phases, all values of « in the
range 0°-360° are equally probable, and hence the ensemble average vanishes for
m # n, that is, all off-diagonal elements vanish. Nonvanishing of off-diagonal
elements implies the existence of phase coherence between states. The diagonal
elements |C,,|* represent the probabilities (populations) given by Boltzmann’s
distribution.

Thus,

where Z is the partition function given by

N

_En

Z: E e *T
n=1

XN: {1—ﬁ+2, (fT)z— ................ } (5.17)

where N is the number of states. Under high-temperature approximation, (f—T) <1,
Z can be approximated ignoring the higher-order terms as

z=3 K —f—T} (5.18)
:’;1 —LT 22: (5.19)

N
For Zeeman interaction, > E, =0
n=1
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Therefore,
N
Z=> 1=N (5.20)
n=1
If 4 is the Hamiltonian and |i> are the eigenstates with eigenvalues 4;
H|i >= i > (5.21)
and
i >= i > (5.22)
Therefore
<jl e'i>=<j| i >= 5;¢" (5.23)

Thus, Eq. 5.16 can be rewritten as

b = <m €2 >
1 i
:ﬁ<m|e 7 |n> (5.24)
Thus,
1 _x
p= Ne T (5.25)

Expanding this in power series, it becomes

2
1 H 1 (H
[)—N{l—ﬁ‘i‘j(ﬁ) T e e e e e e } (526)
Under high-temperature approximation
1 H
For one spin
H = —yhHyl, (5.28)
ForI=1/2,
_ l th()Iz
pP=z (1 + T ) (5.29)

Calculating the matrix element of the operator I, the matrix elements of p will be



174 5 Density Matrix Description of NMR

_1 yhHo\ L, yhHo\ = _
Paa = 2 (1 + 2%T >’p/}/3 - 2 (1 2%T spa/} - p/ia =0 (530)

,0—5(0 1)+ KT 0 —1 (5.31)

For multi-spin systems, the Hamiltonian will be

H o=, + 9, (5.32)

where 7, represents the Zeeman interaction and #; represents the J-coupling
interaction. Under high-field approximation, the contribution from #; will be very
small compared to that from # ., and then the J-coupling can be dropped for the
evaluation of the elements of the density matrix.

Explicitly for the two-spin system AX,

_ 1 7hHOIz
PRI+ 0,020+ 1)y (H KT ) (5.33)

with I, = I(A) + I(X)
The eigenstates of the spin system are aa, af, fa, and f3. With these states, the
matrix elements of p will be

1 ]/hH() A 1 ]/hH() . 1
Paaaa = Z (1 =+ kT) 2Ppppp = 1 (1 - T sPapap = Ppafa = Z (534)

All the remaining elements will be zero.

Thus,
1 0 0 O 1 0 0 O
110 1 0 O yhH, |0 0 O 0
= + 5.35
P=4010 0 1 0| "M |0 0 0 O (5:33)
0 0 0 1 00 0 -1
In general,
1 K
p=7+(Z)k (5.36)
where K = 1o

kT
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5.4 Time Evolution of Density Operator p

An explicit understanding of the performance and characteristic features of an
experiment is derived from the knowledge of the time evolution of the density
operator through the experiment. To calculate this, we start from the relevant time-
dependent Schrodinger equation:

—h dy _
writing
W= chn(t)un (5.38)

where {u, }s constitute the orthonormal basis set of eigenstates.
Substituting Eq. 5.38 in Eq. 5.37, one obtains

— dc” =9y calt)uy (5.39)

i n

Taking the matrix elements with the state u;, one obtains

‘Z den 1 ‘ S=<k| Y H| clt) [n> (5.40)

=" cult) <K[#|n > (5.41)
= )i (5.42)
On the left-hand side, the only nonzero term will be d‘k
Therefore,
—h de
-4 =Y )i (5.43)
Now,
d d %
T < klpim >= T (ckcy,) (5.44)

The ensemble average for the coefficients is implicit in this equation.

dc! m dck
ar T mar

= Ck (545)

From Eq. 5.43
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dc,, i .
=5 (5.46)
Thus, Eq. 5.45 reduces to
d i . i .
T < k|p|m >= h chkcnﬂ-[,,m % chmcn}[k,, (5.47)
i
= > {<Klpln >< n|#|m > — < k|#|n >< n|plm >} (5.48)
= % < klp# — #Hp|m > (5.49)
:%<k|[p,7{]|m> (5.50)
Thus,
dp i
& =pl (5.51)

This is known as Liouville-von Neumann equation of motion for the density
operator.

If the Hamiltonian is explicitly independent of time, then the solution of Eq. 5.51
is given as

plt) = e H11p(0)et" (5.52)

This can be verified by explicit differentiation. Using Eq. 5.52, the off-diagonal
elements of the density matrix can now be explicitly calculated.

< mlp(f)|n >=< m|e ¥ p(0)e’ |n > (5.53)

P = € E <l p(0)|n > (5.54)
Substituting E,, = hv,,, E, = hv,, and @,,, = 2z(v,, — v,), we get
P = €m0 < m|p(0)|n > (5.53)
Now, we also have from Eq. 5.14

< mlpln >= cpc (5.56)
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Cy | eflan—an) (5.57)

:|Cm‘

where the as represent the phases and cs represent the amplitudes, which are
independent of each other. Therefore, the no-vanishing of p,,, implies the existence
of phase coherence between the spins in the states |m> and |n> in the ensemble. At
thermal equilibrium, all phases occur with equal probability which implies that

cmc: =0 (5.58)
Then comparing this with Eq. 5.54,
4

E—Enll < m|p(0)|n >=0 (5.59)

Since the energy-dependent term which is oscillatory in time cannot be zero, it
follows that

< mlp(o)ln >=0 (5.60)

Therefore, all off-diagonal elements of the density matrix vanish at all times. Any
nonvanishing off-diagonal element implies a nonequilibrium state.
Summarizing, the density matrix in the most general case,

B Pl Clzeiwlzt Cl3ei((}13l Clneiwl”t T
Ca1 et P2 o elont ... e e Czneiwz”t
p= : : ' (5.61)
Cnleiwnll aneiw,,zl
L P,

The measured signal in an NMR experiment is given by the expectation value of
the relevant operator M., M,, or M.
For example, for M,,

<M, >=Tr (pM,) = Tr (M,p) (5.62)

For a single spin % system, if p at the start of data collection has some phase
coherence between the two-spin states @ and f and the populations are not equilib-
rium populations, we can write
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P iwot
boe } (5.63)

0=, o

Here we have assumed identical coefficients for the off-diagonal elements.

Therefore,
1 0 1 Pl ei“"zl
Tr (M.p) = Tr {§ L O} Liwlzt P, (5.64)
l e—iwlzt P2
el ) .
= cos (wyat) (5.66)

Including transverse relaxation, Eq. 5.66 will become
<M, >= cos (wlzt)e”/Tz

This oscillating function of time represents the frequency component of the time
domain signal or the FID.
Extending to two spins,

M, = M\, + M,, and using the eigenstates 1 =| aa >,2 =| aff >,3 =| fa >,
4 =|pp >

The matrix representation of M, is

01 10
1{1 0 0 1
M, = 311 0 0 1 (5.67)
01 10
Assuming a nonequilibrium density operator of the form,
Pl eiwlzt eiw13t einZ
e*i(ulz[ P2 eiwzgt eiwyl
p(t) = g0t g—iont P; elwt (5'68)
e*iwmt e*iwzu e*iw34l P4

Here, w5, @3, @24, and w34 represent the single-quantum coherences; @4 and
wy3 represent double-quantum and zero-quantum coherences, respectively.
The expectation value of M, as per Eq. 5.62 is
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<M, >=Tr (pM,)

0 1 1 0 Pl eiwnt eiwlgl einl
1 1 O 0 l e—iwlzl P2 eiwzg[ eiwui

= Tr § 1 0 0 l e*[mlgt e*l’ﬂ)ﬂ[ }:’3 eiw34f (5'69)
01 1 O et e ot g i34t P,

= cos (w12t) + cos (w3t) + cos (waut) + cos (w3at) (5.70)

Clearly, the off-diagonal elements representing single-quantum coherences are
selected, and this constitutes the frequency component of the free induction decay—
the detected signal. Of course, transverse relaxation causes decay of the signal. The
double-quantum and zero-quantum coherences, even though they are present in the
density operator, are not detected. These constitute a non-observable magnetization.

5.5 Matrix Representations of RF Pulses
We begin with the Liouville equation (5.51) with the Hamiltonian, including the
radio frequency (RF) pulse explicitly:

,7‘[:5'[0+.7'[1(t) (571)

where # is the time-independent part of the Hamiltonian and % (¢), which is time-
dependent, represents the RF pulse.
Substituting Eq. 5.71 in Eq. 5.51, we get

dp _ i _
E_h[p’}q_h[p’}[o—i_}[l(t)] (572)
If # | were nonexistent, the solution would have been

plt) = e ¥

p(0)et’o! (5.73)
Now we define and quantify p* such that
p(1) = e P00 p* (1) el l0! (5.74)

Such a solution satisfies the condition that at r = 0, p and p* are identical.
Differentiating equation (5.74) with respect to time, we get

‘31—’; = % [#0,p] + ¢ 10" ddit eilo! (5.75)



180 5 Density Matrix Description of NMR

:%[P,}[o-i-?ﬁ] (5.76)
From this we get
90" _ 1 ototy gy, ]e it (5.77)
dt h ’
= éeﬁﬂﬂ’(pﬂl — H1p) e W0 (5.78)
— Ii.l{eéﬂotpefﬁ.}[gteé}{ot}[le*éﬂ{ot _ eéﬂo[}[leféﬂgteéﬁotp e*é‘}[nt (579)
i * *
:ﬁ[p ,?{1] (5.80)
where
H = el g oW (5.81)
Atr=0, H| = H, »
The transformation operator ei’*’ represents the rotation about the static field axis

and thus represents the transformation into the rotating frame. Such a representation
is also called the interaction representation. Under resonance condition the evolution
under #, will be negligible. Thus, as we will show, during the high-power short-
duration pulse, the Hamiltonian %] will be identical to #{,. Similarly, p* will also
become identical to p during the pulse.

We now calculate the matrix elements of #7}:

< k|7t |m >=< k| 00370 | i > (5.82)

= & BB < ko) |m > (5.83)

If #1 = #1(0) e~™*!_ which represents the RF pulse, then

< k|7|m >= e EmEnmhow)t < a1, (0)m > (5.84)

Now, (E; — E,, — hwgr) is in the kHz range if “¢#” is in the us range as in an RF
pulse; the time-dependent term in (5.84) will be extremely slowly varying during the
pulse and hence can be effectively considered to be constant. Thus, the matrix
element < k‘.’l-[ ﬂm > can be assumed to be independent of time; in fact, under
resonance condition, (E;, — E,, — hwgg) Will be zero, and there will be no time
dependence at all. In other words, during the time of the pulse, #] can be assumed to
be time-independent and is equal to the amplitude of # ;.
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Under this condition, the solution of Eq. 5.80 can be written as
P (1) = e W p*(0)et! (5.85)

And since p*(0) = p(0), Eq. 5.85 becomes

p(t) = e W0 p(0)et”! (5.86a)

Following the discussion above, under resonance condition, note that for high-
power pulse, resonance condition can be considered to be satisfied for all the
frequencies in the spectrum at the same time; the effective field will be equal to
the RF amplitude; the field along the z-axis will be zero; and thus evolution under the
Hamiltonian # will be negligible. Thus, looking at Eq. 5.74, we can also replace
p*(1) by p(¥) in Eq. 5.86a. Thus, the density operator transformation by the RF pulse
can be described by

p(t) = e #1p(0)et” 1! (5.86b)

If the RF is applied along the x-axis,

.’;‘\[1 = ﬁﬁ] = }/hHl/I\x (587)
The transformation operator e 01" thus becomes e | where p = yHt
represents the rotation about the x-axis by angle f (flip-angle of the RF pulse).
Thus, depending upon the length of the pulse, different rotation angles can be
obtained.

For one spin, the I, (¢ = x,y,z) operator can be written as
Pauli spin matrices given as

0. = Ll) _ﬂ;axz ﬁ) (])};oy: [? _Ol} (5.88)

The Pauli matrices satisfy the condition:

1

504> Where os are the

ol=0r=0"=1 (5.89)

Using this notation, the operator e~ can be expanded as a series:

o Pl — ef%ax

. 1 Lo\ 2 1 Lo\ 3 1 ANE
=1 _%""*i@) ~3l @) "x*m(?)
. (5.90)

Regrouping the terms,
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= cos <§) — 2il, sin <§)

Putting in matrix notation,

] ) O IR

Thus, for one spin, a 90" x—pulse (f = %), the matrix representation becomes

AN I —i
Rx(2> — _\/E[—i 1 } (5.94)
Similarly, for a 90" y—pulse, we get
T\ = L[]
Ry(z)—e = 2[1 J (5.95)
The matrices for z pulses turn out to be
~ 0 —i ~ 0 -1
Ri() = e = iRy(m) = e = 5.96
R N R F B

The effect of these pulses on the density operator can be explicitly calculated
using the matrix representations. For example, for a density operator represented by
I, the transformation under R, (%) will be

»=R, (%)?Z R (g) (5.97)
O
-3 {Oi (l)] (5.99)

=1, (5.100)
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So clearly, the z-magnetization is rotated onto the negative y-axis, when we apply

a (%), pulse.
Similarly, the transformation under R, (%) on density operator represented by TZ is

given in Box 5.1.

Box 5.1: Density Operator Transformation for the Effect of a (g)y Pulse

on the I, Operator
For Ry (%) pulse, the T, operator will transform as

_ T\~ 1 (7
/’—Ry(z)’zRy (5)

Lol Al -

=1,

1 1[0 1
4 2101 o

So clearly, the z-magnetization is rotated onto the positive x-axis, when we
apply a (’—2’)y pulse.

For a two-spin system, the matrix representations of the operators are calculated
by direct products (Box 5.2).

b . 1 1 —i 1 —i

R, <§> (non — selective) = 3 [—i ) ] ® L J (5.101)

1 =i =i —17

1| —i 1 -1 —i

== 5.102
20— —1 I —i ( )

1 - —i 1]

Similarly,

R, (g) (non — selective) = % [1 _1] 0% E _1] (5.103)
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1 -1 -1 1

1l 1 =1 =1
_ = 5.104
201 -1 1 -1 (5.104)

11 1 1

Box 5.2: The Calculation of the Direct Product Between Two 2 X 2
Matrices
The direct product between two matrices P and Q can be represented as

[ o]

r@o- | | ®lc o)

A B A B
a b
C D C D
A B A B
G d
C C

Using these matrix representations for the pulses and the density operator, the
evolution of the density operator through a multi-pulse experiment can be calculated.

5.6 Product Operator Formalism

In a generalized pulse sequence, as indicated in Fig. 5.1, the density operator
evolution can be calculated as

p(t) = Pye w35 Py premw?im Py () Py eiT Pyl en?em py Tl eiaTipy

(5.105)

This can be essentially broken into two types of transformations occurring
successively.

p = e ¥y & [for free evolution] (5.106)



5.6 Product Operator Formalism 185

p(0) p(t)
time
Fig. 5.1 A schematic of a multi-pulse sequence, which is used to calculate the density operator

evolutions at different time points. P, refer to the pulses, H; refer to the Hamiltonians, and 7, refer to
the time for which the Hamiltonian is operative

and
p" = PpP~" [for pulses] (5.107)

To simplify this calculation, the product operator formalism has been developed
for weakly coupled spin systems. The density operator is expressed as a linear
combination of some basis operators, which constitute a complete set:

p ()= by(t)B; (5.108)
Thus,

p = Z bye W1 B, el [for free evolution] (5.109)

pl= Z byP B, P~ [for pulses] (5.110)

In these two equations, p is the density operator at any particular instance in an
experimental sequence. Thus, it is necessary to understand the transformational
properties of individual By operators.

5.6.1 Basis Operator Sets

The basis operators can be defined in many ways: (i) Cartesian operators, (ii) single-
element basis operators (polarization operators), and (iii) shift basis operators. The
number of basis operator will depend on the number of coupled spins. For one spin,
it will have four operators, which form a complete basis set. These are

Cartesian space; %, I, I, and I,
Single-element operator space; I,, 15, I, I
Shift operator space; % I' T, 1y I = \/EIZ

The corresponding matrix representations of various one-spin operators are given
in Box 5.3.



186 5 Density Matrix Description of NMR

Box 5.3: Matrix Representations of the Operators I, I, 1y r,i,l, and Ig
for the Case of One Spin §

; 1[1 0'1 1[0 1]1 1,[0 —1]1+ [o 1}
=3 sy =3 s Iy =351 AT = ;
c2lo -1 2l o7 %1 o 0 0
~ [oo]
I:
10

L1 0], 00
““lo ol |o 1

For n spins, in a coupled network, there will be 4" elements in the basis operator
sets. For example, for 2 spins, there will be a total of 16 operators. For the Cartesian

space, these are

E

L, Iiy, Ligy Iox, Doy, 1o,

201 dox, 2 1112y, 21 141>,

2y Do, 21Dy, 2111

2110y, 2 .1y, 201 D,

For three spins, labeled as AMQ, the Cartesian operator sets would be
E
Lip, Ivp. 1oy p =2x,v,z (atotal of 9 operators)
2apIyr, 2Lvpl o, 2Uapl g, po7r =X,z (a total of 27 operators)
AL apIyrd s p,r,s =x,v,z (atotal of 27 operators)

Similar products can be written for other types of basis sets as well.
Matrix representations for all these operators can be derived, and these are

explicitly listed in Table 5.1.
For one spin, the Cartesian space representations are

E—l[l 0]1—1[0 1_~1—1[0 _i]J—lF 0} (5.111)
200 172 oY 20 0t 2[00 -1 '

For two spins, k and /,




5.6 Product Operator Formalism 187

L ——— |
r 1T 1T 1
C° 2 Tlo~cooo ~o|t o000
~ o o oo o o ™
S o — o | IoToo
© T o QP oo o o0
I [ o o =~ o
- O 0 oo o oot o o0 o o
L 1L 1L ] ]
—le —ley —len —leN
Il Il Il Il
N N = &
~ ~ ~ ~
~ ~ ~ ~
S Q S S
T 1T 1
| |

—i
0
0
0

00

— —I —I —l
I I Il Il
g & : =
= =~ =
Q Q Q
=)
Q
12}
w
>
w
Ele o o i 11— o o ©
& e ™ o oo o o
b3 | |
EOOTOTOOOOOO'NO—'OO
<
o |~ 0 ool —9o
Lo~ o oo oo ~|I
» c o o —
5 |— o o olo o ~ o|lo ~ o o I
EI 1L 1L 1L 1
g —len —lev —ley —ley
5 Il \[ H' U
v . = =
S ~ = = =
= <
s} =~
2 S
a.
b
S
72}
=
2
=
<
I}
= 1 r 1T 1T ]
Qoo o0 o -0 o0 — O~ 0 OO
[0}
-
gl o —9ol—mocoooc oo —~o —~ o0
-
_éo—ooooo~~ooooo~o
E
gl—ooolooﬁoo—oooOOvﬂ
. )| 1 )| 1 )
—la —l —len —len
= Il
" | \L L \L
9 ~ = = =
) ]
< IN]
'—



188 5 Density Matrix Description of NMR

Similarly, for two spin products, for example, 2/,/;,, the matrix representation
can be calculated as

170 1 0 —i
Ul = >
b 2[1 0}®[i 0}

The complete list of matrix representations for two spins is given in Table 5.1.
By examining the matrix representations, the following points become evident.

1. I, operator represents the populations and the z-magnetizations.

2. I, and I, operators in a multi-spin system represent in-phase single-quantum
coherences along the x- and y-axes, respectively.

3. 2Id;, and 2Ii,1,;. represent single-quantum coherences of k spin antiphase with
respect to [ along the x- and y-axes, respectively. Similar interpretations hold
good for the [ spin single-quantum coherences.

4. 2y, 2 01y, 2,y and 211,15, represent mixtures of double-quantum and zero-
quantum coherences, and suitable combinations of these represent pure double-
quantum and single-quantum coherences.

21 d) + 21,1, Tepresents the x-component of zero-quantum coherence.
21 dyy, — 21,0, Tepresents the y-component of zero-quantum coherence.
2l — 20,0, represents the x-component of double-quantum coherence
21 dyy + 214, 1), represents the y-component of double-quantum coherence.
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5. 21,1, represents two-spin zz-order.

A pictorial representation of these coherences on the energy level diagram of a
two-spin system is shown in Fig. 5.2.

Operator

llrk;vf:

2lpxy,

2Lyl

Energy Levels

4
5 fﬁkﬁ: ,
apfy a
' fﬁx 1
aga;

i

k

5 BiBi \ X
akﬁi\ : ﬁ,;ai

apa;

Lf ﬁkﬁi i
ayp , /ﬁka;

apa)

ayp ] /ﬁkcx;
ey
4

) BB

agf i /@
aa

Spectrum
24

13

1

3

13

Fig. 5.2 Schematic drawings on the energy levels in a two-spin system (middle) to indicate the
transitions represented by the individual operators on the left, and the corresponding spectra for
different operators are shown on the right. Upward arrows indicate positive signals, and downward

arrows indicate negative signals
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Operator Energy Levels Spectrum
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Fig. 5.3 Pictorial representations of the transitions represented by two-spin and three-spin product
operators in a three-spin system (k, /, m) on the energy level diagram. In both cases, the operators
represent the magnetization of & spin, and the spectrum on the right shows these four transitions.
Upward arrows in the energy level diagram indicate positive signal, and downward arrows indicate
negative signals. Different color codes are used to represent transitions belonging to the three spins.
Note that arrows have been drawn for / and m spins as well for completeness, but the operators do
not represent these transitions in any manner

Similar interpretations will hold good for two-spin and three-spin products in
three-spin systems and other higher spin systems.

For example, a basis operator of type 4l4.Jp.lp. represents a single-quantum
coherence of A spin along the x-axis antiphase with respect to both M and Q spins.

Pictorial representations of a two-spin product in a three-spin system and a three-
spin product in the three-spin system are shown in Fig. 5.3.

5.6.2 Time Evolution of Cartesian Basis Operators

5.6.2.1 Free Evolution Under the Influence of the Hamiltonian
The isotropic Hamiltonian for weakly coupled spin systems in liquids in units of 7 is

H = Zwklzk + ZZﬂjklIzkIzl (5 1 12)
k k<l

The first term represents the chemical shifts, and the second term represents the
scalar couplings.
For a basis operator Bj, the evolution under the Hamiltonian is given by
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By = e "B (5.113)

k<l k k<l

—i (kalzk+22ﬁ'~]kllzklzl)t i (Zﬂ}k11k+22”Jkllzklzl>t
— e % B,e (5.114)

Since the two parts of the Hamiltonian commute with each other, the terms in
Eq. 5.114 can be shuffled without affecting the results.

—i (ZZHJHIZ;JZ,)I =iy oyt iy ol i<22n1k,lzkl;,>z
By=e \H e * Bse * e\ (5.115)

The central portion inside the bracket represents the evolution under chemical
shift, and the outer terms represent the evolution under coupling. The two can be
handled separately. One may also note that this order of evolutions can be
interchanged because the two parts of the Hamiltonian commute with each other.

5.6.2.2 Chemical Shift Evolution
As an example, let us consider the evolution of the basis operator By, = I,
representing the k spin magnetization.

So,

A e [ (5.116)

From Eq. 5.92, this turns out to be
By = {cos (%kt) — 2isin (%kt)lkz} Ikx{ cos (%kt) — 2isin (%kt)lkz} (5.117)

= 05> (%) e+ 4sin? (%L0) fieliadie — i5in (gt e i (5.118)

The product ;I I, can be evaluated by individual matrix multiplication and
turns out to be

P LA LT COR | ) I A I P
“RET8lo —1f[1 oflo —1] " 8|-1 o) 4

Thus, Eq. 5.118 reduces to

B, = cosz(%kt)lkx - sinz(%"’)lkx + sin (oxt) Iy (5.120)

= cos (wxt) ] + sin (wt)ly (5.121)
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5.6.2.3 Scalar Coupling Evolution
For the basis operator I, the evolution can be written as

Bg — 67i2”jk,1’{21[:t1k'v( eiZan,I,q[;,t (5122)
As shown in Box 5.4,
o 2muliclit — oo (#) _ 4i sin (@)Ikzllz (5.123)

Box 5.4: Explicit Derivation of Eq. 5.123
Let I;I;, = ;A and 2zJyyt = f8

1 0 0 0

1 0 1 0 0 -1 0 0
A:

[o —1]®{0 —1] 0 0 -1 0

0 0 0 1

A2

S o o =
S = O O
- o o O

S o = O

. . o\ 2 42 .o\ 3 43
e*lZﬂjkl(A/ﬁl)l — 1 _ %A + <lﬂ> A_!i (ﬁ) A_+ .

Substituting Eq. 5.123 into Eq. 5.122,

Bg’ = {cos (#) — 4i sin ( Jzklt)lk&llg} Ikx{ cos (”12]‘] ) + 4i sin (JT)I,QI,-}

(5.124)
After some algebra (Box 5.5) similar to that in the calculation of shift evolution
(5.119),
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B¢ = Iy, cos (mlyt) + 20,1, sin (xJt) (5.125)

Box 5.5: Explicit Derivation of Eq. 5.125
B§ = {cos (#) — 4i sin (#)Ikzllz} Ikx{ cos (#) + 4i sin (#)Ikzllz}

7wt . iyt . .
= (cosz(%) LI — s1n2<Tkl) Ikx) — 2isin (mdyt) [z, L) L1z

B = I, cos (myt) + 2Ly I, sin (zJyt)

Similar calculations starting with other basis operators reveal that they form
rotation groups, as indicated in Fig. 5.4. In Fig. 5.4a, operators I, I,, and I, form a
group, which means they transform among themselves. For example, I, and I,
interconvert under the influence of free evolution (I, operator). In Fig. 5.4b, operator
terms 21 l;;, 21, I}, and I, form a rotation group under J-coupling evolution (21j/;,
operator). [, and 2/, interconvert among themselves under the influence of
J-coupling evolution. Similarly, 21;.1;,, 2I;,I;,, and I, form a rotation group under
J-coupling evolution (21;.1;, operator). Iy, and 21;./;, interconvert among themselves
under the influence of J-coupling evolution.

For example,

J—coupling evolution

I, — I cos (mJyt) + 21111, sin (ﬂ]kzt)

J—coupling evolution

Iky — Iky cosS (ﬂJkll‘) — 2I 0, sin (ﬂ]k]t)

J—coupling evolution

201y, — 2111}, cos (ﬂJklt) + Iy sin (ﬂ]kﬂ)

J—coupling evolution

Zlkyllz — Zlkyllz cos (ﬂ'Jkll‘) — I, sin (ﬂ'Jkll‘) (5 126)

5.6.2.4 Rotation by Pulses
This is represented by the transformation:

RBR,' q=xy (5.127)
We describe here a few cases:

@ By=1,
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Fig. 5.4 (a) The free evolution of magnetization under Zeeman Hamiltonian (chemical shift
evolution) and (b) scalar coupling evolutions. In either case, the Hamiltonian is represented along
the z-axis, and the x- and y-axes represent the operators resulting from the respective evolutions. In
each figure, the operators involved form rotation groups. See text for explicit transformations

For a 90, pulse, the transformation will be

Eflﬁ_Ll_illoLli_lOi__
R’“(z)’ZRx (2)_\@[_,~ 1]2[0 —1v2li 1) 2[-i o] h
Thus,
L2 (5.128)
(i) B,=1,

For a 90, pulse, the transformation will be

O R I H S A M A R
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Thus,

L3, (5.129)

(iii)) By =1,

For a 90, pulse, the transformation will be

R)g(E)Ifol(E) 1{ 1. —l}l[o 1]1{1. i] 1[0 1] o
270 \2) 2= 1 201 0 )v2Li 1] 2[1 0

Thus, I, is invariant under R, pulse.

For multi-spin basis operators, the effects of pulses can be applied to individual
spins.

For example,

90, (k)+90, (1
21l Y gy, (5.130)

This represents the conversion of antiphase x-magnetization of k spin into a
mixture of zero- and double-quantum coherences.

90, (k)+90, (1
2l ey =2y (5.131)

This represents the conversion of antiphase y-magnetization of k spin into
antiphase y-magnetization spin 1. This is referred to as the coherence transfer from
spin k to spin 1. In general, it is seen that the application of RF pulses to antiphase
magnetization in multi-spin systems causes coherence transfer among the spins. This
forms the basis of many multi-pulse experiments in homo- and heteronuclear multi-
spin systems.

The effects of various transformations under the influence of pulses are
schematically shown in Fig. 5.5.

5.6.2.5 Calculation of the Spectrum of a J-Coupled Two-Spin System
In this section, we illustrate the calculation of the spectrum of a simple two-spin
system, kI, in the standard FTNMR experiment (Fig. 5.6), using the product operator
formalism.

To begin with the system is in equilibrium, and this is represented by the
equilibrium density operator, p (see Eq. 5.36), which is proportional to I, operator.

poxcl, =1+ 1 (5132)

This represents magnetization along the z-axis. On application of a 90, pulse, the
magnetization rotates to —y-axis (see Fig. 5.5).
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-1, -1,

Fig. 5.5 The effect of 90°, and 90°, pulses on different magnetization components. The bigger
circle indicates the rotation of magnetization components, while the smaller circle indicates the axis
along which the pulse is applied

Fig. 5.6 One pulse FT-NMR 9Q¢
X

experiment
| FID

Iy =—(ly +1y) (5.133)

This will then evolve under chemical shift and J-coupling Hamiltonians. Both the
spins evolve independently and can thus be treated independently. Considering the
k spin, chemical shift evolution for time # leads to (ignoring the negative sign in the
beginning) (see Fig. 5.4a)

Iky — Iky coS (a)kt) — I, sin (wkt) (5134)

Under J-coupling Hamiltonian, 21/, (see Fig. 5.4b and Eq. 5.126), the I}, and I,
operators evolve, leading to

{ [Iky cos wJyt — 2. I, sin ﬂJkll} COS Wit — [Ikx cos wJyt + 2Ikyllz sin ﬂjkll] sin a)kt}
(5.135)

As discussed earlier only the first term and the third terms in Eq. 5.135 are
observable and contribute to the spectrum. If we observe only the y-magnetization,
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then we need to consider the first term only. After taking the trace with I, the signal
(FID) will be represented by the time-dependent coefficients of this term. This is
given by

signal = cos (wyt) cos (nJyt) (5.136)

Including transverse relaxation in the FID, the signal will be

signal = cos(wyt)cos(zJ yt)e /T (5.137)
Substituting, w; = 27av;

signal = cos(2zvyt)cos(zyt)e /T (5.138)

signal = %{cos(Zﬂvkt + mlut) + cos(2avit — wJit) e T (5.139)

After the real (or cosine) Fourier transformation, this leads to absorptive spectral
lines at (v + %) and (v, — ).
Similarly, startmg from the z-magnetization of the / spin, the final signal will be

signal = cos(2zvt)cos(zyt)e /T (5.140)

signal = %{cos(valt + mlt) + cos(2avit — alyt) ye T (5.141)

Thus, for spin /, we will obtain absorptive signals at (v; + %) and (v; — 22).
Thus, in the final spectrum (Fig. 5.7), we will get the doublets of k and / spins.

Ju

T4 and (v~ 24) (5.142)

Ju
and (v + 2) (vi+ 3

Spectrallines : (v, + %)

If we choose to observe the x-component of the signal in Eq. 5.135 and perform
the same cosine transformation, we get the same four signals but with dispersive line
shapes.

J'k: J'm " +% " _’1‘2‘_’
I
’\ ,jL -
Vi

Fig. 5.7 A schematic of the J-coupled spectrum for a two-spin system, where v; and v; are the
frequencies of k and / spins, respectively, and Jy, is the J-coupling between k and / spins
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5.7 Summary

* The concept of density matrix description of NMR is described with some
mathematical rigor.

e The product operator formalism which provides a simple and easy-to-handle
description of density operator calculations for NMR pulse sequences is
presented.

* A simple calculation for a two-spin system is presented as an illustration.

5.8  Further Reading

* Principles of Magnetic Resonance, C. P. Slichter, 3 ed., Springer, 1990

* Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,
A. Wokaun, Oxford, 1987

¢ Spin Dynamics, M. H. Levitt, pnd ed., Wiley 2008

¢ Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005

e Protein NMR Spectroscopy, J. Cavanagh, N. Skelton, W. Fairbrother,
M. Rance, A, Palmer III, 2™ ed., Elsevier, 2006

5.9 Exercises

5.1 For a three-spin system (I = 1/2), the density operator has
(a) 9 elements
(b) 6 elements
(c) 64 elements
(d) 3 elements
5.2 If p is the density operator, the expectation value of M, operator is given by
(@) Tr(M.)
(b) Tr(M,)’
(©) Tr(M,p)
() Tr{(M)°p)
5.3 Equilibrium density operator
(a) is related to I, operator
(b) is related to I, operator
(c) is related to I, operator
(d) has no relation to angular momentum operators
5.4 The hypothesis of random phases leads to the following in the equilibrium
density operator.
(a) Diagonal elements in the density operator become zero.
(b) Off-diagonal elements in the density operator become zero.
(c) Both diagonal and off-diagonal elements become zero.
(d) It has no effect on the diagonal and off-diagonal elements of the density
operator.
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5.5 For a two-spin system (I = 1/2), which of the following is true?

@ L |aa> = | ao>
®) L |aa> = | aa>
© I|aa> = | ao>

@ L|aa> = | ap>
5.6 For a spin with I = 5/2, the partition function is
(a) 52
(b) 32
(c) 6
d) 4
5.7 An FID arises from
(a) diagonal elements of a density operators
(b) single-quantum coherences in the density operators
(c) zero-quantum coherences in the density operators
(d) multiple-quantum coherences in the density operators
5.8 The off-diagonal elements of the density matrix represent
(a) the time evolution of isolated spins in the energy levels
(b) deviations from equilibrium populations
(c) the phase coherence of the spins in different energy levels
(d) the populations of the spins in individual energy levels
5.9 An RF pulse with a flip angle f applied along the x-axis is represented by
(@) pl,
(b) e*i/}IX
(©) AU’
d) p)?
5.10 For a spin with precessional frequency w;, the field along z-axis in the rotating
frame under resonance condition is

(@) Ho
(b) O
(© %
(d) H;
5.11 For a single spin (I = 1/2), the matrix representation of x pulse along the y-axis
is given by
@ [0 -1 }
a
l—i O
) (1 -1 }
=i 1
© 1 —1]
c
11 1
@ [0 —1 ]
11 0
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5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5 Density Matrix Description of NMR

The basis operator 21/, represents

(a) in-phase magnetization of / spin

(b) x-magnetization of k spin anti phase with represent to [ spin
(c) in-phase magnetization of k spin

(d) z-magnetization of / spin

Qlidyy, + 21, 1;,) represents

(a) zero-quantum coherence of spin k and /

(b) double-quantum coherence of spin k and /

(c) mixture of double-quantum and zero-quantum coherences
(d) total k spin magnetization

For a system of three spins (/ = 1/2), the total number of basis operator is
@ 9

(b) 27

(c) 64

(d) 81

In a three-spin system (I = 1/2), the operator term I, /;.1,,,, represents
(a) z-magnetization of / spin

(b) z-magnetization of m spin

(c) in-phase x-magnetization of k spin

(d) x-magnetization of k spin antiphase to m and [ spins

In a two-spin system k, I, the I;, operator evolves under the J-coupling
Hamiltonian for a time ¢ to produce

(a) y-magnetization of k spin

(b) y-magnetization of k spin antiphase to [ spin

(c) x-magnetization of k spin antiphase to / spin

(d) double-quantum coherence between k and / spin

Which combination of the operators form a rotation group?

@) i, Iy, 20,

(®) I, 2Ll 2Ui A,

(C) Ikx’ ZIkxIlz’ ZIkyIlz

(d) Ikxv Ilz’ 2'Ikyllz

The coherence transfer from k spin to / spin occurs due to

(a) evolution under chemical shift

(b) evolution under J-coupling

(c) application of RF pulse along the y-axis to k spin

(d) application of RF pulse to anti phase magnetization of k spin
An RF pulse applied along the x-axis causes

(a) magnetization to align along the x-axis

(b) rotation of the magnetization in the x-z plane

(c) rotation of the magnetization in the y-z plane

(d) rotation of the magnetization in the x-y plane

Which combination of the operators form a rotation group?

(a) Ikx’ Iky’ Ikz

() T iy, 2Ui A,

(©) Ikzv Ilz’ Iky

(d) 2hdy, 210, 21k,
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5.21 Which of the following statement is true?
(a) 2}, represents a pure double-quantum coherence.
(b) 2I,1I;, is an observable operator.
(c) 2I ;. evolves under coupling to produce 21, J;..
(d) Iy and I, are observable operators.
5.22 A spin echo arises because of
(a) refocusing of chemical shifts
(b) refocusing of coupling constants
(c) inhomogeneity in the main field
(d) inaccuracy in RF pulses
5.23 In a spin echo experiment, refocusing of coupling evolution occurs when
(a) the spin echo period is equal to 1/4J
(b) the spin echo period is equal to 1/2J
(c) the spin echo period is equal to 1/J
(d) the spin echo period is equal to 1/3J
5.24 In the given pulse sequence, at the beginning of the detection, which of the
following statement is true?

90,
2
4
g,

k-spin ]~

Detection

A
v

LI S
180,

I-spin

(a) Coupling between k and [ spins is effectively refocused.
(b) Chemical shift evolution of [ spin is refocused.
(c) Chemical shift evolution of k spin is refocused.
(d) Magnetization of k spin is inverted.
5.25 In a C-H INEPT experiment, magnetization is transferred from proton to
carbon, which of the following operator transformation is valid?
(a) H,— H,C,
(b) H, — H,C,
(©) H,— HC,
(d) Hy— HC,
5.26 Calculate the matrix representations of the operators, 27,8, and 2I.S_in the
eigenbasis of the weak coupling Hamiltonian.
5.27 Prove the commutator relationship: [2/,Sw,214Sy] =0, if a # o’ and f # f'
simultaneously. a, o and B, can be X, y, or z.
5.28 Calculate the effect of (a) R(x) and (b) R(x) pulses on the density operator

represented by Yz using matrix representations.
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