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Learning Objectives
• Fundamental aspects of spin dynamics
• Density matrix description
• Product operator formalism to understand NMR experiments

5.1 Introduction

In the Fourier transform NMR experiment described in Chap. 3, the data was
collected after the application of an RF pulse to a spin system, which was in
equilibrium. Thus, the information that is obtained is essentially steady-state infor-
mation. Much more information about the spin system, energy level diagrams, cross-
relaxation pathways, etc. can be obtained by monitoring transient effects following a
perturbation to the spin system. For this, it is necessary to create a nonequilibrium
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state prior to the application of the observe RF pulse so that the transient phenomena
are reflected in the data that will be collected thereafter. Now, a nonequilibrium state
of the spin system can be created in different ways, depending upon what the specific
interest is. The design of proper experimental schemes suitable for the purpose in
mind requires proper knowledge of the behavior of spins under the influence of
various perturbing forces that may be used. Such an understanding can be most
appropriately obtained by using the most fundamental “density matrix” formalism. It
is impossible to obtain correct and predictable information from vector
representations, as was done in the steady-state case. In this chapter, the focus will
be on developing this “density matrix” formalism from the NMR point of view.

Sections 5.2, 5.3, 5.4, and 5.5 give a formal description of the theory of density
matrix. This involves a fair amount of quantum mechanics and mathematical rigor.
Section 5.6 onward, the product operator formalism provides a convenient tool for
the evaluation of density matrices and density operators applicable to weakly
coupled spin systems. Students who find the initial sections hard to grasp due to
insufficient background can skip to Sect. 5.6 and continue to familiarize themselves
with calculation of evolution of magnetization components through given pulse
sequences. Chapter 6 makes use of these in an extensive manner.

5.2 Density Matrix

We have seen in Chap. 1 that the state of spin can be represented by a wave function
which is of the form

Ψ tð Þ ¼
X

m
Cm tð ÞUm,I ð5:1Þ

Um, I constitutes an orthonormal set of basis functions. We also know that in
quantum mechanics, when we make a measurement of an observable of the spin
system, we observe the time average or equivalently the ensemble average of its
value, and this average value of the observable of the spin system is described by the
expectation value of the corresponding operator. The expectation value of operator
A is defined as

< A >¼< Ψ j A j Ψ > ð5:2Þ

¼
Z

Ψ�A Ψ dτ ð5:3Þ

For example, the expectation value of Mx, the operator for x-component of the
magnetization, in terms of the functions Um, I, is given by

< Ψ Mxj jΨ >¼
X

m

X
n
Cm tð Þ�Cn tð Þ < Um,I Mxj jUn,I > ð5:4Þ
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Or, briefly,

< Ψ Mxj jΨ >¼
X

m

X
n
Cm tð Þ�Cn tð Þ < m Mxj jn > ð5:5Þ

Since <m|Mx|n> are constants, any variation of Mx results essentially from the
changes in the coefficients. These products of coefficients, Cm(t)

�Cn(t), can be
conveniently arranged in the form of a matrix. It is useful to treat this matrix as
made-up of matrix elements of a time-dependent operator, P(t), operating on the
basis set of functions.

< n P tð Þj jm >¼ Cn tð ÞCm tð Þ� ð5:6Þ
In this notation,

< Ψ Mxj jΨ >¼
X

m

X
n
< n P tð Þj jm >< m Mxj jn > ð5:7Þ

Noting that, in general, X
m

m >< mj j ¼ 1 ð5:8Þ

Equation 5.7 reduces to

< Ψ Mxj jΨ >¼
X

m

X
n
< n P tð ÞMxj jn > ð5:9Þ

¼ Tr PMxf g ð5:10Þ
In other words, the expectation value ofMx is given by the trace of the product of

the matrix representations of P and Mx.
It is also easy to prove that P is a Hermitian operator:

< n P tð Þj jm >¼< m P tð Þj jn>� ð5:11Þ
When we are dealing with an ensemble of spins, different spins will have different

wave functions in the sense that the coefficients Cn
0s will be different for the

individual spins. In such a case, one will have to take an ensemble average of
these products to derive an average expectation value of the operator.

< Mx >¼
X

m

X
n
Cm tð Þ�Cn tð Þ < m Mxj jn > ð5:12Þ

The matrix formed by the ensemble averages of the products Cm(t)
�Cn(t) is

represented by another operator, ρ, which is defined as

< n j ρ tð Þ j m >¼ Cm tð Þ�Cn tð Þ ð5:13Þ
This operator ρ is called as the “density operator.”
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5.3 Elements of Density Matrix

Matrix element ρnm is as given by Eq. 5.13.

ρnm ¼ Cn tð Þ Cm tð Þ� ð5:14Þ
The coefficients Cn

0s are complex quantities, and hence an ensemble average can
also be written as follows

Cn tð Þ Cm tð Þ� ¼ j Cm

���Cn j e�i αn�αmð Þ ð5:15Þ

where the αs represent phases and the jCmj represents amplitudes.
At thermal equilibrium, by the hypothesis of random phases, all values of α in the

range 0�–360� are equally probable, and hence the ensemble average vanishes for
m 6¼ n, that is, all off-diagonal elements vanish. Nonvanishing of off-diagonal
elements implies the existence of phase coherence between states. The diagonal
elements |Cm|

2 represent the probabilities (populations) given by Boltzmann’s
distribution.

Thus,

ρmn ¼ δmne
�En

kTð Þ
Z

ð5:16Þ

where Z is the partition function given by

Z ¼
XN
n¼1

e�
En
kT

¼
XN
n¼1

1� En

kT
þ 1
2!

En

kT

� �2
� . . . . . . . . . . . . . . . :

� �
ð5:17Þ

where N is the number of states. Under high-temperature approximation, En
kT

� �� 1 ,
Z can be approximated ignoring the higher-order terms as

Z ¼
XN
n¼1

1� En

kT

h i
ð5:18Þ

¼
XN
n¼1

1� 1
kT

XN
n¼1

En ð5:19Þ

For Zeeman interaction,
PN
n¼1

En ¼ 0
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Therefore,

Z ¼
XN
n¼1

1 ¼ N ð5:20Þ

If H is the Hamiltonian and ji> are the eigenstates with eigenvalues λi

H i >¼ λij ji > ð5:21Þ
and

eH i >¼ eλi
		 		i > ð5:22Þ

Therefore

< j j eH i >¼< jj eλi		 		i >¼ δije
λi ð5:23Þ

Thus, Eq. 5.16 can be rewritten as

ρmn ¼ 1
N

< m j e�En=kT j n >

¼ 1
N

< m j e�H
kT j n > ð5:24Þ

Thus,

ρ ¼ 1
N
e�

H
kT ð5:25Þ

Expanding this in power series, it becomes

ρ ¼ 1
N

1� H

kT
þ 1
2!

H

kT


 �2

� . . . . . . . . . . . . . . . :

( )
ð5:26Þ

Under high-temperature approximation

ρ ¼ 1
N

1� H

kT

� 
ð5:27Þ

For one spin

H ¼ �γħH0Iz ð5:28Þ
For I ¼ 1/2,

ρ ¼ 1
2

1þ γħH0Iz
kT


 �
ð5:29Þ

Calculating the matrix element of the operator Iz, the matrix elements of ρ will be
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ραα ¼ 1
2

1þ γħH0

2kT


 �
; ρββ ¼ 1

2
1� γħH0

2kT


 �
; ραβ ¼ ρβα ¼ 0 ð5:30Þ

Thus,

ρ ¼ 1
2

1 0

0 1


 �
þ γħH0

4kT
1 0

0 �1


 �
ð5:31Þ

For multi-spin systems, the Hamiltonian will be

H ¼ H z þ H J ð5:32Þ
where H z represents the Zeeman interaction and H J represents the J-coupling
interaction. Under high-field approximation, the contribution from H J will be very
small compared to that from H z , and then the J-coupling can be dropped for the
evaluation of the elements of the density matrix.

Explicitly for the two-spin system AX,

ρ ¼ 1
2I þ 1ð ÞA 2I þ 1ð ÞX

1þ γħH0Iz
kT


 �
ð5:33Þ

with Iz ¼ Iz(A) + Iz(X)
The eigenstates of the spin system are αα, αβ, βα, and ββ. With these states, the

matrix elements of ρ will be

ραα,αα ¼ 1
4

1þ γħH0

kT


 �
; ρββ,ββ ¼ 1

4
1� γħH0

kT


 �
; ραβ,αβ ¼ ρβα,βα ¼ 1

4
ð5:34Þ

All the remaining elements will be zero.
Thus,

ρ ¼ 1
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775þ γħH0

4kT

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

26664
37775 ð5:35Þ

In general,

ρ ¼ 1
Z
þ K

Z

� �
Iz ð5:36Þ

where K ¼ γħH0
kT
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5.4 Time Evolution of Density Operator r

An explicit understanding of the performance and characteristic features of an
experiment is derived from the knowledge of the time evolution of the density
operator through the experiment. To calculate this, we start from the relevant time-
dependent Schrödinger equation:

�ħ
i

dψ
dt

¼ H ψ ð5:37Þ

writing

ψ ¼
X

n
cn tð Þun ð5:38Þ

where {un}s constitute the orthonormal basis set of eigenstates.
Substituting Eq. 5.38 in Eq. 5.37, one obtains

�ħ
i

X
n

dcn tð Þ
dt

un ¼ H
X

n
cn tð Þun ð5:39Þ

Taking the matrix elements with the state uk, one obtains

�ħ
i

< k
X

n

dcn tð Þ
dt

				 				n >¼< k j
X

n
H j cn tð Þ j n > ð5:40Þ

¼
X

n
cn tð Þ < k Hj jn > ð5:41Þ

¼
X

n
cn tð ÞH kn ð5:42Þ

On the left-hand side, the only nonzero term will be dck
dt

Therefore,

�ħ
i

dck
dt

¼
X

n
cn tð ÞH kn ð5:43Þ

Now,

d
dt

< k ρj jm >¼ d
dt

ckc
�
m

� � ð5:44Þ

The ensemble average for the coefficients is implicit in this equation.

¼ ck
dc�m
dt

þ c�m
dck
dt

ð5:45Þ

From Eq. 5.43
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dc�m
dt

¼ i
ħ

X
n
c�nH nm ð5:46Þ

Thus, Eq. 5.45 reduces to

d
dt

< k ρj jm >¼ i
ħ

X
n
ckc

�
nH nm � i

ħ

X
n
c�mcnH kn ð5:47Þ

¼ i
ħ

X
n
< k ρj jn >< n Hj jm > � < k Hj jn >< n ρj jm >f g ð5:48Þ

¼ i
ħ
< k ρH � H ρj jm > ð5:49Þ

¼ i
ħ
< k j ρ,H½ � j m > ð5:50Þ

Thus,

dρ
dt

¼ i
ħ
ρ,H½ � ð5:51Þ

This is known as Liouville-von Neumann equation of motion for the density
operator.

If the Hamiltonian is explicitly independent of time, then the solution of Eq. 5.51
is given as

ρ tð Þ ¼ e�
i
ħH tρ oð Þei

ħH t ð5:52Þ
This can be verified by explicit differentiation. Using Eq. 5.52, the off-diagonal

elements of the density matrix can now be explicitly calculated.

< m ρ tð Þj jn >¼< m e�
i
ħH tρ oð Þei

ħH t
			 			n > ð5:53Þ

ρmn ¼ e
i
ħ En�Emð Þt < m ρ oð Þj jn > ð5:54Þ

Substituting Em ¼ hvm, En ¼ hvn, and ωmn ¼ 2π(vm � vn), we get

ρmn ¼ eiωmnt < m ρ oð Þj jn > ð5:55Þ
Now, we also have from Eq. 5.14

< m ρj jn >¼ cmc�n ð5:56Þ
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¼ j cm
���cn j ei αm�αnð Þ ð5:57Þ

where the αs represent the phases and cs represent the amplitudes, which are
independent of each other. Therefore, the no-vanishing of ρmn implies the existence
of phase coherence between the spins in the states jm> and jn> in the ensemble. At
thermal equilibrium, all phases occur with equal probability which implies that

cmc�n ¼ 0 ð5:58Þ
Then comparing this with Eq. 5.54,

e
i
ħ En�Emð Þt < m ρ oð Þj jn >¼ 0 ð5:59Þ

Since the energy-dependent term which is oscillatory in time cannot be zero, it
follows that

< m ρ oð Þj jn >¼ 0 ð5:60Þ
Therefore, all off-diagonal elements of the density matrix vanish at all times. Any

nonvanishing off-diagonal element implies a nonequilibrium state.
Summarizing, the density matrix in the most general case,

ρ ¼

P1 c12eiω12t c13eiω13t ⋯ ⋯ ⋯ c1neiω1nt

c21eiω21t P2 c23eiω23t ⋯ ⋯ ⋯ c2neiω2nt

⋮

⋮
⋮

⋮

cn1eiωn1t

⋮

⋮
⋮

⋮

cn2eiωn2t

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

Pn

2666666666666666664

3777777777777777775

ð5:61Þ

The measured signal in an NMR experiment is given by the expectation value of
the relevant operator Mx, My, or M�.

For example, for Mx,

< Mx >¼ Tr ρMxð Þ ¼ Tr Mxρð Þ ð5:62Þ
For a single spin 1

2 system, if ρ at the start of data collection has some phase
coherence between the two-spin states α and β and the populations are not equilib-
rium populations, we can write
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ρ tð Þ ¼ P1 eiω12t

e�iω12t P2

� �
ð5:63Þ

Here we have assumed identical coefficients for the off-diagonal elements.
Therefore,

Tr Mxρð Þ ¼ Tr
1
2

0 1

1 0

� �
P1 eiω12t

e�iω12t P2

� �� 
ð5:64Þ

¼ tr
1
2

e�iω12t P2

P1 eiω12t

� �� 
ð5:65Þ

¼ cos ω12tð Þ ð5:66Þ
Including transverse relaxation, Eq. 5.66 will become

< Mx >¼ cos ω12tð Þe�t=T2

This oscillating function of time represents the frequency component of the time
domain signal or the FID.

Extending to two spins,

Mx ¼ M1x þM2x, and using the eigenstates 1 ¼j αα >, 2 ¼j αβ >, 3 ¼j βα >,

4 ¼j ββ >

The matrix representation of Mx is

Mx ¼ 1
2

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

26664
37775 ð5:67Þ

Assuming a nonequilibrium density operator of the form,

ρ tð Þ ¼

P1 eiω12t eiω13t eiω14t

e�iω12t P2 eiω23t eiω24t

e�iω13t

e�iω14t

e�iω23t

e�iω24t

P3

e�iω34t

eiω34t

P4

266664
377775 ð5:68Þ

Here, ω12, ω13, ω24, and ω34 represent the single-quantum coherences; ω14 and
ω23 represent double-quantum and zero-quantum coherences, respectively.

The expectation value of Mx as per Eq. 5.62 is
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< Mx >¼ Tr ρMxð Þ

¼ Tr
1
2

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

26664
37775

P1 eiω12t eiω13t eiω14t

e�iω12t P2 eiω23t eiω24t

e�iω13t

e�iω14t

e�iω23t

e�iω24t

P3

e�iω34t

eiω34t

P4

266664
377775

8>>>><>>>>:

9>>>>=>>>>; ð5:69Þ

¼ cos ω12tð Þ þ cos ω13tð Þ þ cos ω24tð Þ þ cos ω34tð Þ ð5:70Þ
Clearly, the off-diagonal elements representing single-quantum coherences are

selected, and this constitutes the frequency component of the free induction decay—
the detected signal. Of course, transverse relaxation causes decay of the signal. The
double-quantum and zero-quantum coherences, even though they are present in the
density operator, are not detected. These constitute a non-observable magnetization.

5.5 Matrix Representations of RF Pulses

We begin with the Liouville equation (5.51) with the Hamiltonian, including the
radio frequency (RF) pulse explicitly:

H ¼ H 0 þ H 1 tð Þ ð5:71Þ
where H 0 is the time-independent part of the Hamiltonian and H 1 tð Þ, which is time-
dependent, represents the RF pulse.

Substituting Eq. 5.71 in Eq. 5.51, we get

dρ
dt

¼ i
ħ
ρ,H½ � ¼ i

ħ
ρ,H 0 þ H 1 tð Þ½ � ð5:72Þ

If H 1 were nonexistent, the solution would have been

ρ tð Þ ¼ e�
i
ħH 0tρ oð Þei

ħH 0t ð5:73Þ
Now we define and quantify ρ� such that

ρ tð Þ ¼ e�
i
ħH 0tρ� tð Þei

ħH 0t ð5:74Þ
Such a solution satisfies the condition that at t ¼ 0, ρ and ρ� are identical.

Differentiating equation (5.74) with respect to time, we get

dρ
dt

¼ � i
ħ
H 0, ρ½ � þ e�

i
ħH 0t dρ

�

dt
e
i
ħH 0t ð5:75Þ
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¼ i
ħ
ρ,H 0 þ H 1½ � ð5:76Þ

From this we get

dρ�

dt
¼ i

ħ
e
i
ħH 0t ρ,H 1½ �e� i

ħH 0t ð5:77Þ

¼ i
ħ
e
i
ħH 0t ρH 1 � H 1ρð Þ e� i

ħH 0t ð5:78Þ

¼ i
ħ
fei

ħH 0tρe�
i
ħH 0te

i
ħH 0tH 1e

� i
ħH 0t � e

i
ħH 0tH 1e

� i
ħH 0te

i
ħH 0tρ e�

i
ħH 0t ð5:79Þ

¼ i
ħ

ρ�,H �
1

� � ð5:80Þ

where

H �
1 ¼ e

i
ħH 0tH 1e

� i
ħH 0t ð5:81Þ

At t ¼ 0, H �
1 ¼ H 1

The transformation operator e
i
ħH 0t represents the rotation about the static field axis

and thus represents the transformation into the rotating frame. Such a representation
is also called the interaction representation. Under resonance condition the evolution
under H 0 will be negligible. Thus, as we will show, during the high-power short-
duration pulse, the Hamiltonian H �

1 will be identical to H 1. Similarly, ρ� will also
become identical to ρ during the pulse.

We now calculate the matrix elements of H �
1:

< k H �
1

		 		m >¼< k j ei
ħH 0tH 1e

� i
ħH 0t j m > ð5:82Þ

¼ e
i
ħ Ek�Emð Þt < k H 1j jm > ð5:83Þ

If H 1 ¼ H 1 0ð Þ e�iωRFt, which represents the RF pulse, then

< k H �
1

		 		m >¼ e
i
ħ Ek�Em�ħωRFð Þt < k H 1 0ð Þj jm > ð5:84Þ

Now, (Ek � Em � ħωRF) is in the kHz range if “t” is in the μs range as in an RF
pulse; the time-dependent term in (5.84) will be extremely slowly varying during the
pulse and hence can be effectively considered to be constant. Thus, the matrix
element < k H �

1

		 		m > can be assumed to be independent of time; in fact, under
resonance condition, (Ek � Em � ħωRF) will be zero, and there will be no time
dependence at all. In other words, during the time of the pulse, H �

1 can be assumed to
be time-independent and is equal to the amplitude of H 1.
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Under this condition, the solution of Eq. 5.80 can be written as

ρ� tð Þ ¼ e�
i
ħH 1tρ� 0ð Þei

ħH 1t ð5:85Þ
And since ρ�(0) ¼ ρ(0), Eq. 5.85 becomes

ρ� tð Þ ¼ e�
i
ħH 1tρ 0ð Þei

ħH 1t ð5:86aÞ
Following the discussion above, under resonance condition, note that for high-

power pulse, resonance condition can be considered to be satisfied for all the
frequencies in the spectrum at the same time; the effective field will be equal to
the RF amplitude; the field along the z-axis will be zero; and thus evolution under the
Hamiltonian H 0 will be negligible. Thus, looking at Eq. 5.74, we can also replace
ρ�(t) by ρ(t) in Eq. 5.86a. Thus, the density operator transformation by the RF pulse
can be described by

ρ tð Þ ¼ e�
i
ħH 1tρ 0ð Þei

ħH 1t ð5:86bÞ
If the RF is applied along the x-axis,

bH 1 ¼ μ
!
:H
!

1 ¼ γħH1bIx ð5:87Þ

The transformation operator e�
i
ħH 1t thus becomes e�iβbIx , where β ¼ γH1t

represents the rotation about the x-axis by angle β (flip-angle of the RF pulse).
Thus, depending upon the length of the pulse, different rotation angles can be
obtained.

For one spin, the Iq (q ¼ x, y, z) operator can be written as 1
2 σq, where σs are the

Pauli spin matrices given as

σz ¼
1 0

0 �1

� �
; σx ¼

0 1

1 0

� �
; σy ¼

0 �i

i 0

� �
ð5:88Þ

The Pauli matrices satisfy the condition:

σz
2 ¼ σy

2 ¼ σx
2 ¼ 1 ð5:89Þ

Using this notation, the operator e�iβbIx can be expanded as a series:

e�iβbIx ¼ e�
iβ
2σx

¼ 1� iβ
2
σx þ 1

2!
iβ
2


 �2

� 1
3!

iβ
2


 �3

σx þ 1
4!

iβ
2


 �4

� . . . . . . . . . . . . . . . ð5:90Þ
Regrouping the terms,
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e�iβbIx ¼ 1� 1
2!

β
2


 �2

þ 1
4!

β
2


 �4

þ . . .

 !
� i

β
2
� 1
3!

β
2


 �3

� . . .

 !
σx ð5:91Þ

¼ cos
β
2


 �
� iσx sin

β
2


 �
ð5:92Þ

¼ cos
β
2


 �
� 2iIx sin

β
2


 �
Putting in matrix notation,

e�iβIx ¼ cos
β
2


 �
1 0

0 1

� �
� i sin

β
2


 �
0 1

1 0

� �
ð5:93Þ

Thus, for one spin, a 90
�
x�pulse (β ¼ π

2), the matrix representation becomes

Rx
π
2

� �
¼ e�iπ2

bIx ¼ 1ffiffiffi
2

p 1 �i

�i 1

� �
ð5:94Þ

Similarly, for a 90
�
y�pulse, we get

Ry
π
2

� �
¼ e�iπ2

bIy ¼ 1ffiffiffi
2

p 1 �1

1 1

� �
ð5:95Þ

The matrices for π pulses turn out to be

Rx πð Þ ¼ e�iπbIx ¼ 0 �i

�i 0

� �
;Ry πð Þ ¼ e�iπbIy ¼ 0 �1

1 0

� �
ð5:96Þ

The effect of these pulses on the density operator can be explicitly calculated
using the matrix representations. For example, for a density operator represented bybIz, the transformation under Rx

π
2

� �
will be

ρ ¼ Rx
π
2

� �bIz R�1
x

π
2

� �
ð5:97Þ

¼ 1
4

1 �i

�i 1

� �
1 0

0 �1

� �
1 i

i 1

� �
ð5:98Þ

¼ 1
2

0 i

�i 0

� �
ð5:99Þ

¼ �bIy ð5:100Þ
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So clearly, the z-magnetization is rotated onto the negative y-axis, when we apply
a π

2

� �
x pulse.

Similarly, the transformation under Ry
π
2

� �
on density operator represented bybIz is

given in Box 5.1.

Box 5.1: Density Operator Transformation for the Effect of a π
2

� �
y
Pulse

on the bIz Operator
For Ry

π
2

� �
pulse, the bIz operator will transform as

ρ ¼ Ry
π
2

� �bIz R�1
y

π
2

� �
¼ 1

4
1 �1

1 1

� �
1 0

0 �1

� �
1 �1

1 1

� �
¼ 1

2
0 1

1 0

� �
¼ bIx

So clearly, the z-magnetization is rotated onto the positive x-axis, when we
apply a π

2

� �
y
pulse.

For a two-spin system, the matrix representations of the operators are calculated
by direct products (Box 5.2).

Rx
π
2

� �
non� selectiveð Þ ¼ 1

2
1 �i

�i 1

� �O 1 �i

�i 1

� �
ð5:101Þ

¼ 1
2

1 �i �i �1

�i 1 �1 �i

�i �1 1 �i

�1 �i �i 1

26664
37775 ð5:102Þ

Similarly,

Ry
π
2

� �
non� selectiveð Þ ¼ 1

2
1 �1

1 1

� �O 1 �1

1 1

� �
ð5:103Þ
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¼ 1
2

1 �1 �1 1

1 1 �1 �1

1 �1 1 �1

1 1 1 1

26664
37775 ð5:104Þ

Box 5.2: The Calculation of the Direct Product Between Two 2 3 2
Matrices
The direct product between two matrices P and Q can be represented as

P ¼ a b

c d

� �
,Q ¼ A B

C D

� �

P
O

Q ¼ a b

c d

� �O A B

C D

� �

¼
a

A B

C D

" #
b

A B

C D

" #

c
A B

C D

" #
d

A B

C D

" #
2666664

3777775
Using these matrix representations for the pulses and the density operator, the

evolution of the density operator through a multi-pulse experiment can be calculated.

5.6 Product Operator Formalism

In a generalized pulse sequence, as indicated in Fig. 5.1, the density operator
evolution can be calculated as

ρ tð Þ ¼ P4e
� i

ħH 3τ3P3e
� i

ħH 2τ2P2e
� i

ħH 1τ1P1ρ 0ð Þ P1
�1e

i
ħH 1τ1P2

�1e
i
ħH 2τ2P3

�1e
i
ħH 3τ3P4

�1

ð5:105Þ
This can be essentially broken into two types of transformations occurring

successively.

ρ0 ¼ e�
i
ħH tρ e

i
ħH t for free evolution½ � ð5:106Þ
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and

ρ00 ¼ PρP�1 for pulses½ � ð5:107Þ
To simplify this calculation, the product operator formalism has been developed

for weakly coupled spin systems. The density operator is expressed as a linear
combination of some basis operators, which constitute a complete set:

ρ tð Þ ¼
X

bs tð ÞBs ð5:108Þ

Thus,

ρ0 ¼
X

bse
� i

ħH tBs e
i
ħH t for free evolution½ � ð5:109Þ

ρ00 ¼
X

bsP Bs P
�1 for pulses½ � ð5:110Þ

In these two equations, ρ is the density operator at any particular instance in an
experimental sequence. Thus, it is necessary to understand the transformational
properties of individual Bs operators.

5.6.1 Basis Operator Sets

The basis operators can be defined in many ways: (i) Cartesian operators, (ii) single-
element basis operators (polarization operators), and (iii) shift basis operators. The
number of basis operator will depend on the number of coupled spins. For one spin,
it will have four operators, which form a complete basis set. These are

Cartesian space; E2, Ix, Iy, and Iz
Single-element operator space; Iα, Iβ, I

+, I�

Shift operator space; Effiffi
2

p , I+, I�, I0; I0 ¼
ffiffiffi
2

p
Iz

The corresponding matrix representations of various one-spin operators are given
in Box 5.3.

Fig. 5.1 A schematic of a multi-pulse sequence, which is used to calculate the density operator
evolutions at different time points. Ps refer to the pulses, Ηs refer to the Hamiltonians, and τs refer to
the time for which the Hamiltonian is operative
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Box 5.3: Matrix Representations of the Operators Iz, Ix, Iy, I
+, I2, Iα, and Iβ

for the Case of One Spin 1
2

Iz ¼ 1
2

1 0

0 �1

� �
; Ix ¼ 1

2

0 1

1 0

� �
; Iy ¼ 1

2 i
0 �1

1 0

� �
; Iþ ¼ 0 1

0 0

� �
;

I� ¼ 0 0

1 0

� �
Iα ¼

1 0

0 0

� �
; Iβ ¼

0 0

0 1

� �

For n spins, in a coupled network, there will be 4n elements in the basis operator
sets. For example, for 2 spins, there will be a total of 16 operators. For the Cartesian
space, these are

E

I1x, I1y, I1z, I2x, I2y, I2z

2I1xI2x, 2I1xI2y, 2I1xI2z

2I1yI2x, 2I1yI2y, 2I1yI2z

2I1zI2x, 2I1zI2y, 2I1zI2z

For three spins, labeled as AMQ, the Cartesian operator sets would be

E

IAp, IMp, IQp p ¼ x, y, z a total of 9 operatorsð Þ
2IApIMr, 2IMpIQr, 2IApIQr p, r ¼ x, y, z a total of 27 operatorsð Þ

4IApIMrIQs p, r, s ¼ x, y, z a total of 27 operatorsð Þ
Similar products can be written for other types of basis sets as well.
Matrix representations for all these operators can be derived, and these are

explicitly listed in Table 5.1.
For one spin, the Cartesian space representations are

E ¼ 1
2

1 0

0 1

� �
; Ix ¼ 1

2
0 1

1 0

� �
; Iy ¼ 1

2
0 �i

i 0

� �
; Iz ¼ 1

2
1 0

0 �1

� �
ð5:111Þ

For two spins, k and l,

E ¼ 1
2

1 0

0 1

� �O 1 0

0 1

� �
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Ikx ¼ 1
2

0 1

1 0

� �O 1 0

0 1

� �

Ilx ¼ 1
2

1 0

0 1

� �O 0 1

1 0

� �

Iky ¼ 1
2

0 �i

i 0

� �O 1 0

0 1

� �

Ily ¼ 1
2

1 0

0 1

� �O 0 �i

i 0

� �

Ikz ¼ 1
2

1 0

0 �1

� �O 1 0

0 1

� �

Ilz ¼ 1
2

1 0

0 1

� �O 1 0

0 �1

� �
Similarly, for two spin products, for example, 2IkxIly, the matrix representation

can be calculated as

2IkxIly ¼ 1
2

0 1

1 0

� �O 0 �i

i 0

� �
The complete list of matrix representations for two spins is given in Table 5.1.
By examining the matrix representations, the following points become evident.

1. Iz operator represents the populations and the z-magnetizations.
2. Ix and Iy operators in a multi-spin system represent in-phase single-quantum

coherences along the x- and y-axes, respectively.
3. 2IkxIlz and 2IkyIlz represent single-quantum coherences of k spin antiphase with

respect to l along the x- and y-axes, respectively. Similar interpretations hold
good for the l spin single-quantum coherences.

4. 2IkxIly, 2IkyIlx, 2IkxIlx, and 2IkyIly represent mixtures of double-quantum and zero-
quantum coherences, and suitable combinations of these represent pure double-
quantum and single-quantum coherences.

2IkxIlx + 2IkyIly represents the x-component of zero-quantum coherence.
2IkxIly � 2IkyIlx represents the y-component of zero-quantum coherence.
2IkxIlx � 2IkyIly represents the x-component of double-quantum coherence
2IkxIly + 2IkyIlx represents the y-component of double-quantum coherence.
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5. 2IkzIlz represents two-spin zz-order.

A pictorial representation of these coherences on the energy level diagram of a
two-spin system is shown in Fig. 5.2.

Fig. 5.2 Schematic drawings on the energy levels in a two-spin system (middle) to indicate the
transitions represented by the individual operators on the left, and the corresponding spectra for
different operators are shown on the right. Upward arrows indicate positive signals, and downward
arrows indicate negative signals
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Similar interpretations will hold good for two-spin and three-spin products in
three-spin systems and other higher spin systems.

For example, a basis operator of type 4IAxIMzIQz represents a single-quantum
coherence of A spin along the x-axis antiphase with respect to both M and Q spins.

Pictorial representations of a two-spin product in a three-spin system and a three-
spin product in the three-spin system are shown in Fig. 5.3.

5.6.2 Time Evolution of Cartesian Basis Operators

5.6.2.1 Free Evolution Under the Influence of the Hamiltonian
The isotropic Hamiltonian for weakly coupled spin systems in liquids in units of ħ is

H ¼
X
k

ωkIzk þ
X
k<l

2πJklIzkIzl ð5:112Þ

The first term represents the chemical shifts, and the second term represents the
scalar couplings.

For a basis operator Bs, the evolution under the Hamiltonian is given by

Fig. 5.3 Pictorial representations of the transitions represented by two-spin and three-spin product
operators in a three-spin system (k, l, m) on the energy level diagram. In both cases, the operators
represent the magnetization of k spin, and the spectrum on the right shows these four transitions.
Upward arrows in the energy level diagram indicate positive signal, and downward arrows indicate
negative signals. Different color codes are used to represent transitions belonging to the three spins.
Note that arrows have been drawn for l and m spins as well for completeness, but the operators do
not represent these transitions in any manner
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B0
S ¼ e�iH tBse

iH t ð5:113Þ

¼ e
�i

P
k

ωkIzkþ
P
k<l

2πJklIzkIzl


 �
t

Bse
i
P
k

ωkIzkþ
P
k<l

2πJklIzk Izl


 �
t

ð5:114Þ
Since the two parts of the Hamiltonian commute with each other, the terms in

Eq. 5.114 can be shuffled without affecting the results.

B0
S ¼ e

�i
P
k<l

2πJklIzk Izl


 �
t

e
�i
P
k

ωkIzk t

Bse
i
P
k

ωkIzk t
 !

e
i
P
k<l

2πJklIzk Izl


 �
t

ð5:115Þ

The central portion inside the bracket represents the evolution under chemical
shift, and the outer terms represent the evolution under coupling. The two can be
handled separately. One may also note that this order of evolutions can be
interchanged because the two parts of the Hamiltonian commute with each other.

5.6.2.2 Chemical Shift Evolution
As an example, let us consider the evolution of the basis operator Bs ¼ Ikx
representing the k spin magnetization.

So,

B0
S ¼ e�iωkIzk tIkxe

iωkIzk t ð5:116Þ
From Eq. 5.92, this turns out to be

B0
S ¼ cos

ωkt
2

� �
� 2i sin

ωkt
2

� �
Ikz

n o
Ikx cos

ωkt
2

� �
� 2i sin

ωkt
2

� �
Ikz

n o
ð5:117Þ

¼ cos 2
ωkt
2

� �
Ikx þ 4 sin 2 ωkt

2

� �
IkzIkxIkz � i sin ωktð Þ Ikz, Ikx½ � ð5:118Þ

The product IkzIkxIkz can be evaluated by individual matrix multiplication and
turns out to be

IkzIkxIkz ¼ 1
8

1 0

0 �1

� �
0 1

1 0

� �
1 0

0 �1

� �
¼ 1

8
0 �1

�1 0

� �
¼ � 1

4
Ikx ð5:119Þ

Thus, Eq. 5.118 reduces to

B0
S ¼ cos 2

ωkt
2

� �
Ikx � sin 2 ωkt

2

� �
Ikx þ sin ωktð ÞIky ð5:120Þ

¼ cos ωktð ÞIkx þ sin ωktð ÞIky ð5:121Þ
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5.6.2.3 Scalar Coupling Evolution
For the basis operator Ikx, the evolution can be written as

B00
S ¼ e�i2πJklIkzIlztIkx e

i2πJklIkzIlzt ð5:122Þ
As shown in Box 5.4,

e�i2πJklIkzIlzt ¼ cos
πJklt
2

� �
� 4i sin

πJklt
2

� �
IkzIlz ð5:123Þ

Box 5.4: Explicit Derivation of Eq. 5.123
Let IkzIlz ¼ 1

4A and 2πJklt ¼ β

A ¼ 1 0

0 �1

� �O 1 0

0 �1

� �
¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

26664
37775

A2 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775

e�i2πJklðA=4Þt ¼ 1� iβ
4
Aþ iβ

4


 �2
A2

2!
� iβ

4


 �3
A3

3!
þ . . .

¼ 1� iβ
4
Aþ iβ

4


 �2
1
2!
� iβ

4


 �3
A
3!
þ . . .

¼ cos
πJklt
2

� �
� 4i sin

πJklt
2

� �
IkzIlz

Substituting Eq. 5.123 into Eq. 5.122,

B00
S ¼ cos

πJklt
2

� �
� 4i sin

πJklt
2

� �
IkzIlz

n o
Ikx cos

πJklt
2

� �
þ 4i sin

πJklt
2

� �
IkzIlz

n o
ð5:124Þ

After some algebra (Box 5.5) similar to that in the calculation of shift evolution
(5.119),
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B00
S ¼ Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ ð5:125Þ

Box 5.5: Explicit Derivation of Eq. 5.125

B00
S ¼ cos

πJklt
2

� �
� 4i sin

πJklt
2

� �
IkzIlz

n o
Ikx cos

πJklt
2

� �
þ 4i sin

πJklt
2

� �
IkzIlz

n o

¼ cos 2
πJklt
2

� �
Ikx � sin 2 πJklt

2

� �
Ikx

� �
� 2i sin πJkltð Þ Ikz, Ikx½ �Ilz

B00
S ¼ Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ

Similar calculations starting with other basis operators reveal that they form
rotation groups, as indicated in Fig. 5.4. In Fig. 5.4a, operators Ix, Iy, and Iz form a
group, which means they transform among themselves. For example, Ix and Iy
interconvert under the influence of free evolution (Iz operator). In Fig. 5.4b, operator
terms 2IkzIlz, 2IkyIlz, and Ikx form a rotation group under J-coupling evolution (2IkzIlz
operator). Ikx and 2IkyIlz interconvert among themselves under the influence of
J-coupling evolution. Similarly, 2IkzIlz, 2IkxIlz, and Iky form a rotation group under
J-coupling evolution (2IkzIlz operator). Iky and 2IkxIlz interconvert among themselves
under the influence of J-coupling evolution.

For example,

Ikx !J�coupling evolution
Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ

Iky !J�coupling evolution
Iky cos πJkltð Þ � 2IkxIlz sin πJkltð Þ

2IkxIlz !J�coupling evolution
2IkxIlz cos πJkltð Þ þ Iky sin πJkltð Þ

2IkyIlz !J�coupling evolution
2IkyIlz cos πJkltð Þ � Ikx sin πJkltð Þ ð5:126Þ

5.6.2.4 Rotation by Pulses
This is represented by the transformation:

RqBsR
�1
q q ¼ x, y ð5:127Þ

We describe here a few cases:

(i) Bs ¼ Iz
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For a 90x pulse, the transformation will be

Rx
π
2

� �
Iz R

�1
x

π
2

� �
¼ 1ffiffiffi

2
p 1 �i

�i 1

� �
1
2

1 0

0 �1

� �
1ffiffiffi
2

p 1 i

i 1

� �
¼ 1

2
0 i

�i 0

� �
¼ �Iy

Thus,

Iz !90x �Iy ð5:128Þ

(ii) Bs ¼ Iy

For a 90x pulse, the transformation will be

Rx
π
2

� �
Iy R

�1
x

π
2

� �
¼ 1ffiffiffi

2
p 1 �i

�i 1

� �
1
2

0 �i

i 0

� �
1ffiffiffi
2

p 1 i

i 1

� �
¼ 1

2
1 0

0 �1

� �
¼ Iz

Fig. 5.4 (a) The free evolution of magnetization under Zeeman Hamiltonian (chemical shift
evolution) and (b) scalar coupling evolutions. In either case, the Hamiltonian is represented along
the z-axis, and the x- and y-axes represent the operators resulting from the respective evolutions. In
each figure, the operators involved form rotation groups. See text for explicit transformations
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Thus,

Iy !90x Iz ð5:129Þ

(iii) Bs ¼ Ix

For a 90x pulse, the transformation will be

Rx
π
2

� �
Ix R

�1
x

π
2

� �
¼ 1ffiffiffi

2
p 1 �i

�i 1

� �
1
2

0 1

1 0

� �
1ffiffiffi
2

p 1 i

i 1

� �
¼ 1

2
0 1

1 0

� �
¼ Ix

Thus, Ix is invariant under Rx pulse.
For multi-spin basis operators, the effects of pulses can be applied to individual

spins.
For example,

2IkxIlz !90x kð Þþ90x lð Þ �2IkxIly ð5:130Þ
This represents the conversion of antiphase x-magnetization of k spin into a

mixture of zero- and double-quantum coherences.

2IkyIlz !90x kð Þþ90x lð Þ �2IkzIly ð5:131Þ
This represents the conversion of antiphase y-magnetization of k spin into

antiphase y-magnetization spin l. This is referred to as the coherence transfer from
spin k to spin l. In general, it is seen that the application of RF pulses to antiphase
magnetization in multi-spin systems causes coherence transfer among the spins. This
forms the basis of many multi-pulse experiments in homo- and heteronuclear multi-
spin systems.

The effects of various transformations under the influence of pulses are
schematically shown in Fig. 5.5.

5.6.2.5 Calculation of the Spectrum of a J-Coupled Two-Spin System
In this section, we illustrate the calculation of the spectrum of a simple two-spin
system, kl, in the standard FTNMR experiment (Fig. 5.6), using the product operator
formalism.

To begin with the system is in equilibrium, and this is represented by the
equilibrium density operator, ρ (see Eq. 5.36), which is proportional to Iz operator.

ρ / Iz ¼ Ikz þ Ilz ð5:132Þ
This represents magnetization along the z-axis. On application of a 90x pulse, the

magnetization rotates to –y-axis (see Fig. 5.5).
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�Iy ¼ � Iky þ Ily
� � ð5:133Þ

This will then evolve under chemical shift and J-coupling Hamiltonians. Both the
spins evolve independently and can thus be treated independently. Considering the
k spin, chemical shift evolution for time t leads to (ignoring the negative sign in the
beginning) (see Fig. 5.4a)

Iky ! Iky cos ωktð Þ � Ikx sin ωktð Þ ð5:134Þ
Under J-coupling Hamiltonian, 2IkzIlz (see Fig. 5.4b and Eq. 5.126), the Iky and Ikx

operators evolve, leading to

Iky cos πJklt � 2IkxIlz sin πJklt
� �

cosωkt � Ikx cos πJklt þ 2IkyIlz sin πJklt
� �

sinωkt
� �

ð5:135Þ
As discussed earlier only the first term and the third terms in Eq. 5.135 are

observable and contribute to the spectrum. If we observe only the y-magnetization,

Fig. 5.5 The effect of 90�x and 90�y pulses on different magnetization components. The bigger
circle indicates the rotation of magnetization components, while the smaller circle indicates the axis
along which the pulse is applied

Fig. 5.6 One pulse FT-NMR
experiment
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then we need to consider the first term only. After taking the trace with Iky, the signal
(FID) will be represented by the time-dependent coefficients of this term. This is
given by

signal ¼ cos ωktð Þ cos πJkltð Þ ð5:136Þ
Including transverse relaxation in the FID, the signal will be

signal ¼ cosðωktÞcosðπJkltÞe�t=T2k ð5:137Þ
Substituting, ωk ¼ 2πvk

signal ¼ cosð2πvktÞcosðπJkltÞe�t=T2k ð5:138Þ

signal ¼ 1
2
fcosð2πvkt þ πJkltÞ þ cosð2πvkt � πJkltÞge�t=T2k ð5:139Þ

After the real (or cosine) Fourier transformation, this leads to absorptive spectral
lines at ðvk þ Jkl

2 Þ and ðvk � Jkl
2 Þ.

Similarly, starting from the z-magnetization of the l spin, the final signal will be

signal ¼ cosð2πvltÞcosðπJkltÞe�t=T2l ð5:140Þ

signal ¼ 1
2
fcosð2πvlt þ πJkltÞ þ cosð2πvlt � πJkltÞge�t=T2l ð5:141Þ

Thus, for spin l, we will obtain absorptive signals at ðvl þ Jkl
2 Þ and ðvl � Jkl

2 Þ.
Thus, in the final spectrum (Fig. 5.7), we will get the doublets of k and l spins.

Spectrallines : ðvk þ Jkl
2
Þ and ðvk þ Jkl

2
Þ; ðvl þ Jkl

2
Þ and ðvl � Jkl

2
Þ ð5:142Þ

If we choose to observe the x-component of the signal in Eq. 5.135 and perform
the same cosine transformation, we get the same four signals but with dispersive line
shapes.

Fig. 5.7 A schematic of the J-coupled spectrum for a two-spin system, where vk and vl are the
frequencies of k and l spins, respectively, and Jkl is the J-coupling between k and l spins
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5.7 Summary

• The concept of density matrix description of NMR is described with some
mathematical rigor.

• The product operator formalism which provides a simple and easy-to-handle
description of density operator calculations for NMR pulse sequences is
presented.

• A simple calculation for a two-spin system is presented as an illustration.

5.8 Further Reading

• Principles of Magnetic Resonance, C. P. Slichter, 3rd ed., Springer, 1990
• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,

A. Wokaun, Oxford, 1987
• Spin Dynamics, M. H. Levitt, 2nd ed., Wiley 2008
• Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005
• Protein NMR Spectroscopy, J. Cavanagh, N. Skelton, W. Fairbrother,

M. Rance, A, Palmer III, 2nd ed., Elsevier, 2006

5.9 Exercises

5.1 For a three-spin system (I ¼ 1/2), the density operator has
(a) 9 elements
(b) 6 elements
(c) 64 elements
(d) 3 elements

5.2 If ρ is the density operator, the expectation value of Mx operator is given by
(a) Tr(Mx)
(b) Tr(Mx)

2

(c) Tr(Mxρ)
(d) Tr{(Mx)

2ρ}
5.3 Equilibrium density operator

(a) is related to Iz operator
(b) is related to Ix operator
(c) is related to Iy operator
(d) has no relation to angular momentum operators

5.4 The hypothesis of random phases leads to the following in the equilibrium
density operator.
(a) Diagonal elements in the density operator become zero.
(b) Off-diagonal elements in the density operator become zero.
(c) Both diagonal and off-diagonal elements become zero.
(d) It has no effect on the diagonal and off-diagonal elements of the density

operator.
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5.5 For a two-spin system (I ¼ 1/2), which of the following is true?
(a) Iz j αα > ¼ j αα>
(b) Ix j αα > ¼ j αα>
(c) Iy j αα > ¼ j αα>
(d) Iz j αα > ¼ j αβ>

5.6 For a spin with I ¼ 5/2, the partition function is
(a) 5/2
(b) 3/2
(c) 6
(d) 4

5.7 An FID arises from
(a) diagonal elements of a density operators
(b) single-quantum coherences in the density operators
(c) zero-quantum coherences in the density operators
(d) multiple-quantum coherences in the density operators

5.8 The off-diagonal elements of the density matrix represent
(a) the time evolution of isolated spins in the energy levels
(b) deviations from equilibrium populations
(c) the phase coherence of the spins in different energy levels
(d) the populations of the spins in individual energy levels

5.9 An RF pulse with a flip angle β applied along the x-axis is represented by
(a) βIx
(b) e�iβIx

(c) β(Ix)
2

(d) β2(Ix)
2

5.10 For a spin with precessional frequency ωi, the field along z-axis in the rotating
frame under resonance condition is
(a) H0

(b) 0
(c) ωi

γ

(d) H1

5.11 For a single spin (I¼ 1/2), the matrix representation of π pulse along the y-axis
is given by

(a)
0 �1

�i 0

� �
(b)

1 �1

�i 1

� �
(c)

1 �1

1 1

� �
(d)

0 �1

1 0

� �
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5.12 The basis operator 2IkxIlz represents
(a) in-phase magnetization of l spin
(b) x-magnetization of k spin anti phase with represent to l spin
(c) in-phase magnetization of k spin
(d) z-magnetization of l spin

5.13 (2IkxIly + 2IkyIlx) represents
(a) zero-quantum coherence of spin k and l
(b) double-quantum coherence of spin k and l
(c) mixture of double-quantum and zero-quantum coherences
(d) total k spin magnetization

5.14 For a system of three spins (I ¼ 1/2), the total number of basis operator is
(a) 9
(b) 27
(c) 64
(d) 81

5.15 In a three-spin system (I ¼ 1/2), the operator term IkxIlzImz represents
(a) z-magnetization of l spin
(b) z-magnetization of m spin
(c) in-phase x-magnetization of k spin
(d) x-magnetization of k spin antiphase to m and l spins

5.16 In a two-spin system k, l, the Ikx operator evolves under the J-coupling
Hamiltonian for a time t to produce
(a) y-magnetization of k spin
(b) y-magnetization of k spin antiphase to l spin
(c) x-magnetization of k spin antiphase to l spin
(d) double-quantum coherence between k and l spin

5.17 Which combination of the operators form a rotation group?
(a) Ikx, Iky, 2IkxIlz
(b) Ikx, 2IkyIlz, 2IkzIlz
(c) Ikx, 2IkxIlz, 2IkyIlz
(d) Ikx, Ilz, 2IkyIlz

5.18 The coherence transfer from k spin to l spin occurs due to
(a) evolution under chemical shift
(b) evolution under J-coupling
(c) application of RF pulse along the y-axis to k spin
(d) application of RF pulse to anti phase magnetization of k spin

5.19 An RF pulse applied along the x-axis causes
(a) magnetization to align along the x-axis
(b) rotation of the magnetization in the x-z plane
(c) rotation of the magnetization in the y-z plane
(d) rotation of the magnetization in the x-y plane

5.20 Which combination of the operators form a rotation group?
(a) Ikx, Iky, Ikz
(b) Ikx, Iky, 2IkzIlz
(c) Ikz, Ilz, Iky
(d) 2IkxIlz, 2IkyIlz, 2IkzIlz
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5.21 Which of the following statement is true?
(a) 2IkxIly represents a pure double-quantum coherence.
(b) 2IkxIlz is an observable operator.
(c) 2IkyIlz evolves under coupling to produce 2IkxIlz.
(d) Ikx and Iky are observable operators.

5.22 A spin echo arises because of
(a) refocusing of chemical shifts
(b) refocusing of coupling constants
(c) inhomogeneity in the main field
(d) inaccuracy in RF pulses

5.23 In a spin echo experiment, refocusing of coupling evolution occurs when
(a) the spin echo period is equal to 1/4J
(b) the spin echo period is equal to 1/2J
(c) the spin echo period is equal to 1/J
(d) the spin echo period is equal to 1/3J

5.24 In the given pulse sequence, at the beginning of the detection, which of the
following statement is true?

(a) Coupling between k and l spins is effectively refocused.
(b) Chemical shift evolution of l spin is refocused.
(c) Chemical shift evolution of k spin is refocused.
(d) Magnetization of k spin is inverted.

5.25 In a C-H INEPT experiment, magnetization is transferred from proton to
carbon, which of the following operator transformation is valid?
(a) Hx ! HzCy

(b) Hx ! HxCy

(c) Hx ! HzCz

(d) Hx ! HxCz

5.26 Calculate the matrix representations of the operators, 2IxSy and 2IzSz,in the
eigenbasis of the weak coupling Hamiltonian.

5.27 Prove the commutator relationship: 2IαSα0 , 2IβSβ0
� � ¼ 0, if α 6¼ α0 and β 6¼ β0

simultaneously. α, α0 and β, β’ can be x, y, or z.
5.28 Calculate the effect of (a) Rx(π) and (b) Ry(π) pulses on the density operator

represented by bIz using matrix representations.
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