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Preface

Nuclear magnetic resonance (abbreviated as NMR) has come a long way since its
first observation in the condensed phase in 1946, independently by two groups, one
at Stanford led by Felix Bloch and the other at Massachusetts Institute of Technol-
ogy led by E. M. Purcell. The ensuing years saw many new discoveries such as
chemical shifts, coupling constants, spin echo, nuclear double resonance, Fourier
transform (FT) NMR, multidimensional NMR, magnetic resonance imaging (MRI),
to name a few, which have led to widespread application of NMR in different areas
of science, namely physics, chemistry, biology, and medicine. Present-day research
in NMR is highly interdisciplinary drawing expertise from all the different branches
of science and technology. The frontiers are continually expanding at a breathtaking
pace and it is impossible to foresee the limits, if there are any, for many more years to
come. It has thus become necessary to learn this technique, no matter in which
branch of science one is pursuing research. To be successful in such a situation, the
students will have to be taught mathematics and physics at the undergraduate level,
no matter which branch the students will eventually graduate in, namely physics,
chemistry, or biology. Therefore, many universities are designing curricula keeping
these factors in mind.

NMR can be taught at various levels of complexity depending upon the back-
ground of the students in terms of their training in physics, chemistry, and mathe-
matics. The mathematical rigor can sometimes be compromised for ease of
explanation, and the depth can also be different depending upon the specific area
of research. There are several books already available to cater to those needs. These
are written to address particular categories of students, and accordingly, the styles,
coverage, and technical details vary. As a result, in most modern books, the very
early developments and the fundamental concepts are not covered sufficiently to
provide space for more modern developments. However, for early learners entering
the research field, those details are crucial, otherwise, those will never get clarified
and there will be gaps in the understanding of the students. With this view, this book
is intended for students who wish to pursue PhD in chemistry or biophysics or
structural biology, and who have had reasonable exposure in physics and mathemat-
ics. It deals exclusively with solution state NMR which is also termed as high-
resolution NMR. There is no intention to be exhaustive, but the essential basic
principles are covered in sufficient detail, which will enable the students to read
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more specialized or advanced books at a later stage comfortably to follow more
involved developments.

The book is organized in six chapters: (i) “Basic Principles,” (ii) “Analysis of
High-Resolution NMR Spectra,” (iii) “Fourier Transform NMR,” (iv) “Polarization
Transfer,” (v) “Density Matrix description of NMR,” and (vi) “Multidimensional
NMR.” Mathematical rigor has been kept to the level necessary to explain the
concepts, and the content is designed in such a way that the book can be used as a
textbook for a one-semester graduate course in NMR (60 h). The aim has been to
present the very basic concepts and also some of the exciting modern advances for
applications in chemistry and biology at one place; presently, those who have been
taking my course have to search through various books, many of which are not easily
available or accessible. An appendix is provided at the end to cover some advanced
topics to be more inclusive. For better absorption of the concepts, exercises are given
at the end of each chapter.

The chapters and the contents in the book are organized in such a way as to
indicate chronological evolution of the technique, on one hand, and increasing level
of complexity and mathematical rigor, on the other. The book progresses systemati-
cally in terms of concepts and developments. The students are assumed to have
certain background with regard to mathematics and basic quantum mechanics. The
mathematics background would include calculus, matrices and determinants, differ-
ential equations, and vector algebra. Notwithstanding, some explanations are also
given at relevant places in the book for the benefit of those who did not have
exposure to quantum mechanics.

This book makes no attempt to cover applications of the technique in any great
detail. Since the applications are too wide ranging, we believe no justice can be made
in a book which is intended to be a graduate course to teach the principles of the
technique. Nevertheless, the illustrations chosen to drive the concepts will indicate
the possible applications of the technique. The course will enable the students to
understand the experiments well and interpret the experimental data in a reliable and
meaningful manner. The final chapter, namely “Multidimensional NMR” covers
some experiments developed in my laboratory for application to proteins. These
have not been covered in any book so far, although they have been described in some
review articles.

This book has evolved from teaching over a period of more than 20 years. The
students who have taken this course have established themselves as independent
scientists at reputed institutions and have been pursuing excellent research in
biophysics and structural biology.

Recommended Books for Further Reading

High Resolution NMR by J. A. Pople, W. G. Schnieder, H. S. Bernstein, McGraw
Hill, 1959

Principles of Magnetic Resonance, C. P. Slichter, 3rd ed., Springer, 1990
High Resolution NMR, E. D. Becker, 3rd ed., Elsevier, 2000
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Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,
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ed., Elsevier, 2016
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Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005
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1.1 Nuclear Spin and Magnetic Moments

Atomic nuclei are composed of “protons” and “neutrons” which, in turn, are made
up of fundamental elementary particles called “quarks.” There are two types of
quarks termed as up-quarks and down-quarks. These point-like elementary particles
have intrinsic properties of electric charge and spin angular momentum (or simply
spin). Up-quarks have a charge of +2e/3, while down-quarks have a charge of �e/3;
e refers to the electronic charge. Addition of charges of the quarks making up the
proton (two up-quarks and one down-quark) leads to an electric charge of +1 for the
proton. Similarly, for the neutron (one up-quark and two down-quarks), one gets a
charge of 0. Spin is an intrinsic property of elementary particles, and its direction is
an important degree of freedom. It is sometimes visualized as the rotation of an
object around its own axis (hence the name “spin”), though this notion is somewhat
misguided at subatomic scales because elementary particles are believed to be point
like. However, spin obeys the same mathematical laws as quantized angular
momenta do. Spin angular momentum is represented by a vector, and for either of
the quarks, the component of the spin angular momentum along any axis is always
either +ħ/2 or�ħ/2 , where ħ¼ (h/2π) is the reduced Planck’s constant. Hence, these
particles are said to be spin ½ particles. The spin values for the proton and neutron
are derived by addition of the spins of the constituent quarks as per the principles of
quantum mechanics, and it turns out that both proton and neutron have spin values of
½. These are again vector quantities, and the addition of the contributions of these in
every nucleus which contain different numbers of protons and neutrons, according to
the rules of quantum mechanics, leads to different nuclear states with different spin
quantum numbers, and these can have different energies. The lowest energy state or
the so-called ground state represents the most stable state of the isotope of the
element in question. Any further discussion on these aspects of nuclear structure
and theory is beyond the scope of this book. The spin quantum number of the ground
state mentioned above is often referred to as its intrinsic nuclear spin, which is
represented by the letter I. The corresponding spin angular momentum is represented
by the vector I and has a magnitude given by ħ I I þ 1ð Þ.

For the most stable states of the nuclei (ground state or the lowest energy state),
some empirical rules seem to be valid for the calculation of nuclear spin values:

(i) If the nuclear charge represented by the atomic number is even and if the
isotope number is even, then the spin I takes the value 0.

(ii) If the nucleus has odd mass number (the same as the isotope number), then its
spin will have half-integer values such as 1/2, 3/2, 5/2, etc.

(iii) For odd atomic number and even mass number, the nuclear spin takes the
integral values 1, 2, 3, etc.

Associated with the spin angular momentum, I, the nuclei have another intrinsic
property, namely, magnetic moment, which is a consequence of a complex interplay

2 1 Basic Concepts



of the motions of the particles inside the nucleus. This is also a vector, which is
represented by the symbol μ. Magnetic moment and spin angular momentum of a
nucleus are linearly related.

μ ¼ γI ð1:1Þ
The constant of proportionality, γ, is called gyromagnetic ratio or magnetogyric

ratio, which is a characteristic of the given nucleus. This constant can be positive or
negative; some nuclei have positive γ and some others have negative γ; depending
upon this sign, the magnetic moment and the angular momentum vectors are
oriented in the same direction or in opposite directions. The magnitude of the
magnetic moment is clearly proportional to the magnitude of the spin angular
momentum. The magnetogyric ratios have to be determined experimentally by
resonance absorption techniques to be described later.

Table 1.1 lists the nuclear spin values, natural abundance of the isotopes, and
magnetogyric ratios of some of the most commonly used nuclei in chemistry and
biology.

From the general principles of quantum mechanics, the magnitude of the spin
angular momentum is given by the square root of the eigenvalue of the operator, I2.
The x, y, and z Cartesian components of the angular momentum are represented by
the operators Ix, Iy, and Iz, respectively. The I

2 operator commutes with all the three
Cartesian components, Ix, Iy, and Iz. Therefore, I

2 can have common eigenfunctions
with any of the Cartesian components. Although the Ix, Iy, and Iz operators can have
discrete eigenvalues and corresponding eigenfunctions, they do not have common
eigenfunctions since the operators for the Cartesian components themselves do not
commute with each other. This means that all the three components and the
magnitude of the spin angular momentum cannot be well-defined at the same time.
Therefore, the magnitude and orientation of the spin angular momentum vector
should be described using any one pair [I2, Iz] or [I2, Ix] or [I2,
Iy]. Conventionally, it is the [I2, Iz] pair. Once the eigenfunctions for this pair are
chosen, the other Cartesian components Ix and Iy remain undefined. The discrete
eigenvalues of Iz and the corresponding eigenfunctions form the basis for all NMR
discussions. While the eigenvalue of I2 yields the square of the magnitude of the
angular momentum, the eigenvalues of Iz are used to describe the orientation of the
angular momentum vector.

Table 1.1 Nuclear spin and related data on some chosen nuclei

Isotope
Nuclear
spin

Natural
abundance

Magnetogyric ratio
rad s�1T�1

NMR frequency at 11.7433
T (MHz)

1H ½ ~100% 267.522 � 106 �500
2H 1 0.015% 41.066 � 106 �76.753
13C 1/2 1.1% 67.283 � 106 �125.725
15N 1/2 0.37% �27.126 � 106 50.684
14N 1 99.6% 19.338 � 106 �36.132
19F 1/2 ~100% 251.815 � 106 �470.470
31P 1/2 ~100% 108.394 � 106 �202.606

1.1 Nuclear Spin and Magnetic Moments 3



Specifically, for a nucleus with spin I, the Iz component can have only (2I + 1)
values, namely, Iħ, (I � 1)ħ, (I � 2)ħ, (I � 3)ħ,. . .(�I + 1)ħ, �Iħ. All these states
have the same total energy and thus are degenerate. The component values are often
represented as mħ, where the symbol m taking the values �I to +I is called the
“magnetic quantum number” of the state. Thus, for example, for a nucleus with
I ¼ 1/2, the Iz operator would have the eigenvalues (�1/2) and (+1/2). For a nucleus
with I¼ 1,m can have values�1, 0, +1, and so on. These values fix the magnitude of
the z-component of the angular momentum when the nucleus is in one of the
eigenstates. Since the magnitudes of the angular momentum and its component
along the z-axis are not equal in any of the eigenstates, it follows that the angular
momentum vector in the individual eigenstates will be oriented at an angle to the z-

axis, and this angle is different for different states: cos�1 m
IðIþ1Þ

p . In the x-y plane,

there are no restrictions on the orientations for any of the above states. Consequently,
the x and the y components can lie anywhere between �P and +P, where P is the
projection of the angular momentum in the x-y plane for the particular state.

A concept which is exclusive to quantum mechanics is the so-called superposition
of states. At any point in time, in the absence of any external forces, the nucleusmust be
represented by a state which is a superposition of the eigenstates with similar energies.
Presently, all the eigenstates having different m values are degenerate in terms of
energy and thus contribute to the spin state. In other words, the nucleus will behave
as though it has the properties of all the eigenstates. For example, for a spin½ nucleus
which has two eigenstates represented by α and β, the spin state can be written as

ψ tð Þ ¼ Cα j α > þCβ j β > ð1:2Þ
where Cα and Cβ are time-dependent complex coefficients. Due to normalization,
they obey the relation:

Cαj j2 þ Cβ
2 ¼ 1 ð1:3Þ

The modulus squares in Eq. 1.3 represent the probabilities of the spin being in the
respective states. These coefficients vary from spin to spin across the ensemble. The
z-component of the angular momentum of the nuclear spin in such a superposition
state will depend on the coefficients and thus can take any value between the limiting
values (�Iħ to Iħ) across the ensemble. In other words, the angular momentum
vector can have any orientation in space. This is a very general result and holds for
any value of the nuclear spin.

1.2 Nuclear Spins in a Magnetic Field

Let us first look at the behavior of the spins in a classical physics picture. When an
ensemble of nuclear magnetic moments is placed in a static magnetic field Ho, the
magnetic moments tend to orient themselves with respect to the magnetic field
direction. The magnetic moments experience a torque given by (μ3Ho). According
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to the laws of motion, the torque is equal to the rate of change in angular momentum.
Since the magnitude of angular momentum is fixed, the torque causes a change in the
orientation of the angular momentum. This is described by the equation of motion:

dJ=dt=μ3Ho ð1:4Þ

dμ=dt= γ μ3Hoð Þ ð1:5Þ
Classically, the continuous change in the orientation of the vector with time,

moving μ perpendicular to both μ and Ho, would describe what is called a preces-
sional motion. Quantum mechanics tells us (the solution of the time-dependent
Schrödinger equation under the influence of the external field) that the nuclear
spin executes a motion around the direction of the magnetic field, and this is called
the precessional motion. This motion for spins in the two eigenstates of the I ¼ 1/
2 system is depicted in Fig. 1.1 and is referred to as the “Larmor precession.” If the
angular velocity of the vector μ is ω, then the rate of change of μ is also described by
the equation:

dμ=dt=ω3μ ð1:6Þ
Equating 1.4 and 1.6, one obtains

ω ¼ �γHo ð1:7Þ
The negative sign in Eq. 1.7 indicates that the precessional motion occurs in a

clockwise sense (by convention anticlockwise rotation is taken as positive). The
frequency of precession is proportional to the strength of the magnetic field.

Fig. 1.1 Precessional motion
for spins in the two eigenstates
of the I ¼ 1/2 system
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The energy associated with such a motion is the interaction energy between the
magnetic moment and the magnetic field and is given by

E ¼ �μ:Ho ¼ �μ Ho cos θ ¼ �μzHo ð1:8Þ
where θ is the angle between the field and the magnetic moment vector. Clearly, the
interaction energy depends on the orientation of the magnetic moment with respect
to the magnetic field. Thus, for any spin, the different orientations will no longer be
of equal energy, and the degeneracy of orientations in space is then said to be lifted.
If the nuclear spin is I, the (2I + 1) eigenstates will have different energies as
schematically shown in Fig. 1.2. Such a splitting is known as the Zeeman splitting.
Now, consider an ensemble of spins, all of which have I ¼ 1/2 and therefore
constitute a two-level system in the presence of an external magnetic field. Note
that since the different eigenstates have now different energies, the superposition
states will decay into one or the other eigenstate at thermal equilibrium. The various
spins will distribute themselves between the two levels according to Boltzmann
statistics. For each orientation, the sense of rotation is the same, and the spins span a
conical surface in a uniform manner without any specific phase relationship between
the different spins (Fig. 1.3). This is referred to as the “hypothesis of random
phases.” A consequence of this hypothesis is that the net component of magnetiza-
tion in the plane orthogonal to the direction of the magnetic field will be zero. This is
indeed experimentally observed, and this provides credence to the hypothesis of
random phases.

Referring to Fig. 1.3, the two orientations in the top (parallel to the field) and
bottom (antiparallel to the field) halves are, respectively, the conventional α and β
states. From the expression for interaction energy (Eq. 1.8), the α state has a lower
energy than the β state, and the energy difference between them is equal to 2μ2Ho

(see Eq. 1.9 and Fig. 1.4):

Fig. 1.2 Schematic
representation of (2I + 1)
eigenstates possible for a
nuclear spin I, under the
condition of the Zeeman
splitting
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ΔE ¼ 2μzHo ¼ γHoħ ¼ ωħ ð1:9Þ
In general, for a spin I, the (2I + 1) states will have the energy values

Ei ¼ �μziHo ¼ � mi=Ið ÞμHo;mI ¼ �I, � I � 1ð Þ, � I � 2ð Þ, . . .þ I ð1:10Þ

Ei ¼ �γmiHoħ ð1:11Þ

E ¼ �μHo, � I � 1
I

μHo, � I � 2
I

μHo, . . .þ μHo ð1:12Þ

Fig. 1.3 Schematic
representation of “hypothesis
of random phases” shown for
a spin ½ system

Fig. 1.4 Energy level
diagram of a spin ½ system
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Clearly, the energy levels are equally spaced, the separation being μHo/I. At a
field of 1 Tesla, and for protons, this energy difference is 42.577 MHz (in frequency
units) or 2.82 � 10�13 ergs (in energy units). At ordinary temperatures (even 10 K
can be considered as ordinary temperature), the various energy levels will be
populated as per Boltzmann statistics, and the fractional populations of the individ-
ual states are given by

pi ¼
exp �Ei=kTð Þ

Z
ð1:13Þ

where Z is the partition function, given by the expression

Z ¼
i

exp � Ei

kT
¼

i

1� Ei

kT
þ 1
2!

Ei=kTð Þ2 � 1
3!

Ei=kTð Þ3 þ . . . ð1:14Þ

A simple back of the envelope calculation shows that E/kT is extremely small
(Box 1.1) even at as small temperatures as few degrees Kelvin, and thus the series
expansion in Eq. 1.14 can be terminated at the first power of energy, E.

Box 1.1: Calculation of E
kT

For a spectrometer frequency of 100 MHz, the energy separation for protons is
100 MHz (in frequency units), and the individual energy values will be �50
MHz.

(i) At 300K

E
kT

¼ hv
kT

¼ 6:626� 10�34 � 50� 106

1:38� 10�23 � 300
¼ 8:0� 10�6

(ii) At 10K

E
kT

¼ hv
kT

¼ 6:626� 10�34 � 50� 106

1:38� 10�23 � 10
¼ 2:4� 10�4

For other nuclei, say X, these numbers will be multiplied by γX
γH

and hence

will be even smaller.

Thus,

pi ¼
1� Ei=kTð Þ

i
1� Ei

kT

ð1:15Þ
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This approximation is termed as the “high temperature approximation.” Equation
1.15 gets further simplified since in the denominator

i
Ei ¼ 0. Consequently,

pi ¼
1� Ei=kTð Þ

i
1ð Þ ð1:16Þ

¼ 2I þ 1ð Þ�1 1þ mμHo

IkT
ð1:17Þ

For the two-level case (I ¼ 1/2),

pα ¼
1þ μHo=kTð Þ

2

pβ ¼
1� μHo=kTð Þ

2
ð1:18Þ

Since the populations are different, with the α state being more populated than the
β state, the net magnetization of the ensemble lies parallel to the direction of the
magnetic field. The mean value of the magnetization can be computed as

M ¼ pα � pβ μ ð1:19Þ

¼ μ2Ho=kT ð1:20Þ
If there are N nuclei per unit volume of the sample, the total magnetization per

unit volume will be NM, and the volume susceptibility χ,which is defined as the ratio
of total magnetization per unit volume to applied field, will be

χ ¼ NM=Ho ¼ Nμ2=kT ð1:21Þ
A similar calculation for the general case of the nuclei with spin I yields

χ ¼ N=Ho 2I þ 1ð Þ�1 1þ mμHo=IkTð Þ mμ=I ð1:22Þ

χ ¼ N=Ho I 2I þ 1ð Þð Þ�1 μ mþ μ2Ho=IkT m2 ð1:23Þ

¼ N=Ho I 2I þ 1ð Þð Þ�1 μ2Ho=IkT I I þ 1ð Þ 2I þ 1ð Þ=3 ð1:24Þ

¼ Nμ2 I þ 1ð Þ=3IkT ð1:25Þ
Now, the magnetic susceptibility of a given sample is its characteristic property

and represents the extent to which magnetization can be induced in the sample by an
externally applied magnetic field. The larger the susceptibility of a system, the higher
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is the inducible magnetization and vice versa. Equation 1.25 indicates also that the
susceptibility is a function of temperature. As the temperature of the sample is
increased, the magnetization gets reduced, indicating that the order in the magnetic
orientations in the ensemble also gets reduced.

1.3 Spin-Lattice Relaxation

We have seen that the application of a magnetic field to an ensemble of nuclear spins
causes splitting of the energy levels and also causes a redistribution of the
populations of the individual levels as per Boltzmann statistics. Any change in the
strength of the magnetic field changes the spacing between the energy levels, and
again there must be redistribution with some levels losing populations and the others
gaining populations. What brings about such a redistribution? Clearly, there must be
transitions occurring between the levels, and there must be forces within the system
itself which cause these transitions. We shall return to the mechanistic aspects later,
and at the moment we shall focus on the kinetics of these transitions with some
assumed transition probabilities.

Let us consider a system of spin 1/2 nuclei, so that there are only two energy
levels and the system is simple enough for an illustrative analysis (Fig. 1.5).

Let nα and nβ be the populations of the two states α and β (note that these two will
be equal in the absence of the field), and let Wαβ and Wβα be the transition
probabilities for α to β and β to α transitions, respectively. At equilibrium, the
number of upward transitions equals the number of downward transitions per
second. Thus,

noαWαβ ¼ noβWβα ð1:26Þ

where noα and noβ are the equilibrium populations at any particular field. From
Boltzmann statistics,

noβ
noα

¼ Wαβ

Wβα
¼ exp

�ΔE
kT

ð1:27Þ

Fig. 1.5 Possible transitions
between two energy levels in a
spin ½ system
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¼ 1� 2μzHo=kT under high� temperature approximationð Þ ð1:28Þ
If the populations are disturbed from equilibrium values to nα and nβ, they will

return to equilibrium values according to the following rate equations:

dnα
dt

¼ Wβαnβ �Wαβnα ð1:29Þ

dnβ
dt

¼ Wαβnα �Wβαnβ ð1:30Þ

So,

d nα � nβ
dt

¼ 2 Wβαnβ �Wαβnα ð1:31Þ

Defining the variables N ¼ nα þ nβ ¼ noα þ noβ and n ¼ nα � nβ, one obtains

nα ¼ N þ nð Þ
2

, nβ ¼ N � nð Þ
2

ð1:32Þ

and

dn
dt

¼ Wβα N � nð Þ �Wαβ N þ nð Þ ð1:33Þ

¼ N Wβα �Wαβ � n Wβα þWαβ ð1:34Þ
Further from Eq. 1.27, we find

Wβα �Wαβ

Wβα þWαβ
¼

noα � noβ

noα þ noβ
¼ no

N
ð1:35Þ

or

Wβα �Wαβ ¼ Wβα þWαβ
no

N
ð1:36Þ

Combining Eqs. 1.33 and 1.36, one obtains

dn
dt

¼ Wβα þWαβ no � nð Þ ð1:37Þ

Defining an average transition probability,

W ¼ Wβα þWαβ

2
ð1:38Þ
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Equation 1.37 reduces to

dn
dt

¼ 2W no � nð Þ ð1:39Þ

¼ no � nð Þ
T1

ð1:40Þ

where

T1 ¼ 1
2W

ð1:41Þ

The solution of Eq. 1.40 is easily written as

n� noð Þ ¼ n� noð Þt¼0 exp �t=T1ð Þ ð1:42Þ
If at time t ¼ 0 the system is unmagnetised, then n ¼ 0 and

n ¼ no 1� exp �t=T1ð Þ½ � ð1:43Þ
Equations 1.42 and 1.43 indicate that the population difference approaches the

equilibrium value no with a characteristic time T1 which is called the spin lattice
relaxation time. The inverse of T1 measures the rate at which the system returns to
equilibrium from a perturbed state, after the force is removed.

Now, why is T1 called the spin-lattice relaxation time? What is a lattice and what
is its role in the relaxation process? To answer these questions, we ask another
question: Where does the energy released by the spin system in the process of
adjustment of populations go? Or if the spin system has to absorb energy, where
does it come from? These questions suggest that there must be a sink or a reservoir
which we call the lattice and there must be coupling between the spin system under
consideration and the reservoir. What this means is that if the spin system loses
energy, the reservoir gains energy and vice versa. This is schematically indicated in
Fig. 1.6. It implies that the lattice should have energy levels identical to those of the
spin system and there must be magnetic interaction between the lattice and the spin
system to cause the energy transfer. Thus, the lattice plays a dominant role in
bringing about relaxation and helps to maintain a population difference which is
so crucial for the absorption of energy from an external source and hence for the
observation of the NMR signal. In fact, some of the very first experiments on the
NMR phenomenon were unsuccessful, because the system chosen had such a long
relaxation time that the continuous absorption of energy from the external source did
not occur and the signal could not be detected. The relaxation time is a characteristic
property of the sample and depends on a variety of experimental conditions such as
temperature, viscosity of the solution, concentration of the material, size of the
molecule, etc. The relaxation time also depends upon the efficiency of coupling
between the spin system and the lattice, and this in turn depends upon the nature of
the interactions between the spins in the system and the spins in the lattice. This
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subject has been investigated in detail by several authors and described in several
books. A complete analysis of the relaxation phenomenon is beyond the scope of this
book, although a qualitative description will be provided in later sections.

1.4 Spin Temperature

We have said before that the distribution of spins between various energy levels of a
spin system is dictated by Boltzmann statistics. Naturally, temperature has a defini-
tive role in determining this population distribution. If the system is at thermal
equilibrium with the surroundings, the populations will be as per the temperature
of the environment. However, if the system is not at equilibrium with the environ-
ment, the populations will not correspond to equilibrium values, and under those
conditions, the distribution may be described by a virtual temperature which is
referred to as the spin temperature of the system. Explicitly, if nα and nβ are the
populations of α and β states, respectively, at any nonequilibrium condition, then a
temperature Ts can be defined which satisfies the equation

nα
nβ

¼ exp 2μzHo=kTs ð1:44Þ

Ts is called the spin temperature of the system. When the system reaches equilibrium,
Ts becomes equal to the thermal temperature T. Spin temperature is a measure of how
far the system is away from equilibrium. If somehow the populations of the two
states α and β are made equal, the spin temperature becomes infinity and this is called
saturation. If the upper state has a higher population than the lower state, i.e., if there
is a population inversion, then the spin temperature is said to be negative. Table 1.2
lists a few temperature values and their correlation with the populations
(N ¼ nα � nβ).

Fig. 1.6 Schematic representation of spin and lattice systems with comparable energy levels
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We notice that the population changes are really very small over a wide tempera-
ture range, and this is a consequence of the fact that we are dealing with small energy
differences falling in the radio frequency regime or less than a calorie in energy units.

1.5 Resonance Absorption of Energy and the NMR Experiment

The behavior of nuclear spins in the presence of a magnetic field indicates that if the
precessional frequencies can be measured in some way, they provide valuable
information about the magnetic moments of the nuclei. The question therefore is
how to measure these frequencies. Let us consider an experiment schematically
described in Fig. 1.7.

For simplicity, we consider a spin 1/2 system; however, the principles are valid
for other spin systems as well. First a static field Ho is applied to create precessional
motions in the spin system. Then another rotating field of amplitude H1 is applied in
a plane orthogonal to the direction of the Ho field. Let ωi and ωo be the rotational
frequencies of the nucleus and the H1 field, respectively. If one sits on the rotating
field—this is called transforming into the rotating frame—and looks at the nucleus,
the precessional frequency appears to be (ωi� ωo) if the two motions are in the same
sense and to be (ωi + ωo) if they have opposite senses. We consider the former
situation for our discussion here. If we can change the value of ωo continuously, we
will reach a situation when ωi ¼ ωo, and this is termed as “resonance.” Under this
condition, the nucleus appears to be stationary to the observer. The magnetic
moment and the field H1 interact strongly causing some changes in the energy of
the spin system. In other words, the nuclear spin system would absorb energy, and
this is monitored in the NMR experiment in an indirect manner. A further conse-
quence of the resonance condition is that the nucleus does not see theHo field at all in
the rotating frame of reference. The only visible field then is the H1 field, and the
nuclear spins will tend to tilt towards this field. If the H1 field is applied for a long
time, the nuclear spins will get completely realigned with respect to the H1 field, and
the time taken for such a realignment will be determined by the relaxation times.
This is often termed as locking the spins along the direction of the H1 field.

The resonance absorption of energy described above can also be described in an
alternative manner with the help of energy level diagrams. This description is in fact
easier to visualize and better for quantifications, particularly in more complex
systems with higher spin values or in an ensemble of different spins resulting in a
multilevel system. Referring to Fig. 1.4 of a simple two-level system of spin 1/2,
resonance condition means the application of an electromagnetic radiation with the

Table 1.2 Spin
temperatures and
populations

Temperature (K )
nα
nβ

nα�nβð Þ
N � 104

1 1.0206 101.95

10 1.00204 18.961

300 1.000068 3.400

�10 0.99796 �10.1896
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frequency of ωo (radians/sec) or ωo/2π (cycles/ sec or Hertz) whose energy
corresponds to the separation between the energy levels. If the spin system has
many energy levels with different separations, then the resonance condition for
absorption of energy will be satisfied for more than one frequency values.

We notice from the previous descriptions (Eqs. 1.7 and 1.9) that the precessional
frequency in a field Ho is equal to the separation between the two levels caused by
the field. Thus, the resonance conditions in the two treatments are the same. The
former treatment is termed as classical description and the latter as quantum
mechanical description. An apparent discrepancy arises in the two treatments of
resonance absorption, and this must be clarified. In the classical treatment, we
considered a rotating field which can be represented as H1 exp (iωot), whereas in
the other treatment, we considered an electromagnetic radiation whose magnetic
vector is represented as H1 cos (ωot). A careful inspection reveals that both of them
are essentially equivalent. The oscillating field H1 cos (ωot) can be conceived of as a
combination of two rotating fields going in opposite directions.

2 H1 cos ωotð Þ ¼ H1 exp iωotð Þ þ H1 exp �iωotð Þ ð1:45Þ
The particular component which goes in the same direction as nuclear precession

contributes to resonance absorption of energy, while the other does not. Thus, in all
future considerations, we shall consider the oscillating field which is what is
generated by the electronics in the NMR experiment.

The application of the radio frequency (RF) field to the system of spins precessing
in a static field has another effect, namely, the creation of a phase coherence between

Fig. 1.7 Schematic representation of resonance condition. Left: Spins in the α and β states precess
with a frequency ωi in the anticlockwise direction. The RF with frequency ωo and amplitude H1 is
applied along the x-axis. Right: Transforming into then rotating frame. The RF is broken into two
rotating fields going in clockwise (top) and anticlockwise (bottom) directions; the observer is
considered to be rotating with RF. The precessional frequency of the spin seen by the observer
will be (ωi + ωo) in the top picture and with frequency (ωi � ωo) in the bottom picture. If ωi ¼ ωo,
then it appears to be static in the bottom picture, and this is called resonance condition
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the spins. Going into the rotating frame of the RF, the apparent precessional
frequency of the spin will be

ωr ¼ ωi � ωoð Þ ð1:46Þ
where ωi is the magnitude of the precessional frequency of the spin in the laboratory
frame. Converting into equivalent fields for ωr and ωi, we find, for the magnitude of
apparent precessional frequency,

γHr ¼ γHi � ωo ¼ γ Hi � ωo

γ
ð1:47Þ

or Hr ¼ Hi � ωo

γ
ð1:48Þ

In this frame, the interaction energy between the spin and the field Hr is given by

Er ¼ �μzHr ð1:49Þ
For a state with magnetic quantum number m,

Em
r ¼ �γmħHr ð1:50Þ

¼ �γmħ ðHi � ωo

γ
Þ ð1:51Þ

¼ Em
L þ mħωo ð1:52Þ

where Em
L is the energy in the laboratory frame. Now remember that we are dealing

with magnitudes for RF frequencies as well as precession frequencies. The energy
level diagram in the rotating frame would look as shown in Fig. 1.8.

At the resonance condition, ωi ¼ ωo, and then the two energy levels merge as if
there were no magnetic field along the z-axis at all. This is the same conclusion as we
noted earlier in the classical description. If we now include the small RF field, the
total field in the rotating frame will be along this RF field. Now the question will be:
Will the populations readjust to H1 field? As this energy difference will be almost
zero, this relaxation process will take extremely long time, and one does not apply
the RF field for so long. However, the spins will interact with this field, and the total
magnetization vector tips away from the z-axis, creating in the process a magnetiza-
tion component in the x-y plane (Fig. 1.9).

Comparing this with the equilibrium situation, a finite x-y magnetization implies
the creation of a phase coherence between the spins. This treatment can be easily
generalized to off-resonance conditions as well by explicitly calculating the effective
field in the rotating frame. Since the effective field is always away from the z-axis, it
is clear that the application of an RF always creates a phase coherence between the
spins. As soon as the RF is removed, spins start dephasing, resulting in the loss of the
phase coherence, i.e., the magnetization or the coherence decays.
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1.5.1 The Basic NMR Spectrometer

Figure 1.10 shows the essential components of the basic NMR spectrometer. The
magnet provides the main magnetic field Ho. The sample tube sits vertically in the
magnet with the transmitter/receiver RF coil surrounding the tube. There is an RF
source which produces the required RF field at a desired frequency. The receiver
detects the absorption of energy at resonance in the form of an induced voltage due
to the creation of transverse magnetization when the resonance condition is satisfied.
The detected signal (voltage) is amplified by an amplifier and fed to a recorder for
display. The magnet system also has a field-frequency lock which helps to correct for
variations in the field due to instabilities in the generated magnetic field. This allows
to maintain a constant magnetic field throughout the NMR experiment.
Technologically, it is very difficult to construct magnets which produce highly
homogeneous fields over wide volume ranges. Inhomogeneities in the field cause
variations in the resonance absorption frequencies for the same species and produce
broad lines—a feature which is undesirable for high-resolution NMR spectroscopy.
Thus, in order to correct for such inhomogeneities, there is a so-called shim system

Fig. 1.8 Schematic
representation of laboratory
and rotating frame energy
levels

Fig. 1.9 The effect of external RF field on flipping of the spins. HL and HR refer to the amplitudes
of the static field and the RF field in the rotating frame. The Heff is the vector addition of these two
fields. The spins tend to align with the effective field. Under resonance condition, HL will be zero
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which is a set of current carrying coils producing small magnetic fields in different
directions. The magnetic fields produced by these coils can be adjusted so as to
effectively cancel the main field inhomogeneities. Thus, adjusting the shim system is
an important and crucial step for obtaining a good NMR spectrum.

1.6 Kinetics of Resonance Absorption

As in the case of lattice-induced transitions, one can write rate equations for
stimulated transitions caused by the radio frequency (RF) field:

dn
dt

¼ P nβ � nα ð1:53Þ

where P is the RF-induced transition probability. By explicit quantum mechanical
calculations, P can be shown to be the same for both upward and downward
transitions and is given by

P ¼ 1=4ð Þ γ2H1
2 ð1:54Þ

Using the definitions in Eq. 1.32,

Fig. 1.10 Schematic representation of an NMR spectrometer with different components. The left
portion represents a superconducting magnet, and the right portion represents the electronics
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dnα
dt

¼ 1
2

dn
dt

¼ �Pn ð1:55Þ

or,

dn
dt

¼ �2Pn ð1:56Þ

The solution of Eq. 1.56 can be readily written as

n tð Þ ¼ n 0ð Þ e �2Ptð Þ ð1:57Þ
where n(0) is the population difference at time t ¼ 0. Since every stimulated
transition results in either absorption of energy (α ! β) or emission of energy
(β ! α), the net rate of upward transition determines the net rate of energy
absorption from the RF field. This is given by

dE
dt

¼ nαP Eβ � Eα � nβP Eβ � Eα ð1:58Þ

¼ nPΔE ð1:59Þ

¼ PΔEn 0ð Þe �2Ptð Þ ð1:60Þ
Equation 1.60 indicates that if the RF is applied for a long time, the rate of energy

absorption goes to zero, and then no more energy will be absorbed by the system
from the RF. Explicitly, integrating Eq. 1.60,

dE ¼ PΔEn 0ð Þe �2Ptð Þdt ð1:61Þ

E ¼ PΔEn 0ð Þ �1=2Pð Þ e �2Ptð Þ t

0
ð1:62Þ

E ¼ ΔEn 0ð Þ
2

1� e �2Ptð Þ ð1:63Þ

Figure 1.11a, b shows plots of dE/dt and E vs t as per Eqs. 1.60 and 1.63,
respectively. It is seen from Fig. 1.11b that after some time, there is no more
absorption of energy, and this means the NMR signal will disappear.

In reality however, we continuously observe the signal. There must be therefore
some other factors which are continuously restoring the population difference
between the two levels. This is not hard to see; it is the spin-lattice relaxation
which we have discussed a little earlier in the previous sections. The effects of
relaxation have not been explicitly included in the above calculations. On including
these effects, Eq. 1.56 gets modified to
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dn
dt

¼ �2Pn� n� noð Þ
T1

ð1:64Þ

The solution of this equation can be easily obtained and is given by

nðtÞ ¼ ðn
s
Þ ½ðs� 1Þeð�st=T1Þ þ 1� ð1:65Þ

where

s ¼ 1þ 2PT1ð Þ ð1:66Þ
At equilibrium or steady state,

dn
dt

¼ 0 ð1:67Þ

and

2Pn0 ¼ no � n0ð Þ
T1

ð1:68Þ

or

n0 ¼ no

1þ 2PT1ð Þ ð1:69Þ

where n0 is the steady-state population difference in the presence of the RF field. The
rate of energy absorption is then

dE
dt

¼ n0PΔE ¼ noΔEP
1þ 2PT1ð Þ ð1:70Þ

If 2PT1 � 1, the rate of energy absorption will not go to zero, and there will be
sustained signal in the experiment. On the other hand, if 2PT1� 1, the rate dE/dt can

Fig. 1.11 Dependence of (a) dE/dt and (b) E on t
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become very small, and the signal intensity will be very low. Thus, the denominator
(1 + 2PT1) in Eq. 1.70 plays a very important role in signal observation and is termed
the saturation factor. This depends both on the strength of the RF field and the
relaxation time T1 of the system. If T1 is long, the system will get saturated even at
low RF fields causing problems in signal detection. Conversely, for short T1 systems,
high powers can be used safely without causing significant saturation.

1.7 Selection Rules

Until now we considered resonance absorption of energy by a simple ensemble of
spins with two energy levels. Although the general discussion applies to more
complex spin systems as well, some additional comments need to be made explicitly.
It turns out that the stimulated transitions obey a certain selection rule and this
follows from the explicit formula for the transition probability, which is given as
follows:

P ¼ γ2H1
2 < m0j jIx m >j j2 ð1:71Þ

where m and m0 are the m values of Eq. 1.11 for the final and initial states of the
transition, respectively. Here the RF is assumed to be applied along the x�direction,
and hence the Ix operator appears in Eq. 1.71. The effects of the operator Ix or Iyon
the spin states can be calculated as indicated in Box 1.2. Here, I+ and I� are called the
raising and lowering operators. The I+ operator operating on the state jI,m> produces
the spin state jI, m + 1>. Therefore, it is called raising operator. Likewise, the
lowering operator, I�operating on the spin state jI, m> produces the state jI, m � 1>.

Box 1.2: The Relationship Between (Ix, Iy) and (I+, I2) Operators
and the Effect of I+, I2 Operators on Spin-State jI, m>

Ix ¼ Iþ þ I�

2
, Iy ¼ Iþ � I�

2i

Iþ ¼ jI,m > ħ ðI � mÞðI þ mþ 1ÞjI,mþ 1 >

I� ¼ jI,m > ħ ðI þ mÞðI � mþ 1ÞjI,m� 1 >

A more general situation would be to consider the RF to be applied anywhere in
the transverse plane (with respect to the external field); however, the conclusions
regarding the selection rule will not be affected by such a consideration. Equation
1.71 is symmetrical with regard to interchange of m and m0. The quantum mechani-

cal matrix element < m0 Ix m > vanishes unless
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j m� m0 j¼ 1 ð1:72Þ
and this puts a condition on the allowed transitions. Thus, for a I ¼ 1 system, with
three equally spaced energy levels, there will be only two transitions which will be
degenerate as shown in Fig. 1.12. The transition from the m¼ 1 state to the m¼ � 1
state is a disallowed transition. The symmetry of Eq. 1.71 indicates that the transition
probability will be the same for upward and downward transitions.

Individual (2I+1) eigenstates are orthogonal to each other.

1.8 Line Widths

According to Eq. 1.71, resonance absorption should occur at a single sharp fre-
quency given by

v ¼ j Em � Em0 j
h

ð1:73Þ

However, this never happens in practice, and there is always a width for the
resonance line; that is, resonance absorption occurs over a certain range of
frequencies around the central frequency. The intensity of the signal is of course
maximum at the central frequency and decreases as one moves away from it. The
width of the resonance line at half of its maximum height is called its line width.
Now, what is the origin of this line width? The fundamental reason for the width of a
resonance line is the finite lifetime of a spin in the upper state of the spin system, and
this follows from the quantum mechanical uncertainty principle:

ΔEΔt � ħ ð1:74Þ
where h is the Planck’s constant. Δt is the uncertainty in time (can be chosen to be as
much as the lifetime of the state), and this defines the uncertainty in the energy of the
state. This leads to an uncertainty in the energy of absorption and thus to the width of

Fig. 1.12 Zeeman splitting
in a spin system of I ¼ 1
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a line. There are several factors contributing to the width of a line, and these will be
discussed in brief in the following paragraphs.

(a) Spontaneous emission: Every transition has an intrinsic width due to a phenom-
enon called spontaneous emission. This is a phenomenon which arises due to
interaction of electromagnetic radiation with matter, in general, and depends on
a variety of factors such as the energy of the transition, intensity of the radiation,
etc. In the case of NMR, however, spontaneous emission is weak (transition

probability ¼ 3 8π2γ2ð Þ
λ3

~10�25 sec �1) and thus does not contribute significantly to

the line widths.
(b) Width due to spin-lattice relaxation: The transitions induced by the lattice also

limit the lifetimes of both the upper and the lower states of the two-level system.
The contribution of this to the width is then dependent on the efficiency of
interaction between the spin system and the lattice in causing the transitions.
This, in turn, depends on the molecular motions and the magnetic field
fluctuations caused by the tumbling of the spins in the lattice. The longer the
spin-lattice relaxation time, the shorter the line width and vice versa.

(c) Spin-spin interactions or magnetic dipole broadening: The spins in each state
interact with each other. If the lifetime of the state is long, then such a dipole-
dipole interaction causes further splitting of the closely spaced levels, and
transitions can occur from any of these levels. This results in many transitions
with slightly different frequencies which are not resolved and contribute to an
overall broadening of the resonance line. This mechanism contributes the
maximum to the line widths and is particularly dominating in solids and viscous
liquids. Different frequencies would lead to dephasing of the transverse magne-
tization or in other words, loss of phase coherence created by the application of
radio frequency (RF).

(d) Magnetic field inhomogeneity effects: If the field over the volume of the sample
is not homogeneous, different spins in different volume regions absorb energy at
different frequencies, resulting in an overall broadening of the line.

(e) Electric quadrupole effects: The nuclei with spin >1/2 have quadrupole
moments which is a consequence of the nonspherical shape of the nucleus.
These quadrupole moments interact with the electric field gradients at the
nucleus and cause spin-lattice relaxation. Thus, the lifetimes get altered and
eventually lead to the broadening of the lines.

The net effect of line broadening is that the spins have different precessional
frequencies. This manifests in the decay of x-y magnetization whenever it is created
by the application of the RF as described earlier. Taking into account all the above
factors leading to broad lines, the definition of transition probability has to be
modified so as to show dependence on frequency and is given as
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P ¼ 1=4ð Þ γ2H1
2g vð Þ ð1:75Þ

where g(v) is referred to as the line shape function.

1.9 Bloch Equations

Considering the effects of spin-lattice and spin-spin relaxations in causing line
widths, Felix Bloch obtained explicit expressions for the line shape function.
These are described below in a qualitative fashion.

Felix Bloch wrote a set of phenomenological equations with macroscopic mag-
netization M to describe the NMR phenomenon:

dM
dt

¼ γ M �Heffð Þ ð1:76Þ

where M is a vector representing the total magnetization

M ¼ Mx,My,Mz ð1:77Þ
Mx, My, and Mz are the components of M along x-, y-, and z-axes, respectively, and
H is the total magnetic field. It consists of the static field Ho and a rotating field
H1 exp (�iωt) (without any loss of generalizations, the oscillating field is conve-
niently replaced by a rotating field for easier explanation of the behavior of the spin
system and the NMR phenomenon). In the absence of the RF field, the macroscopic
magnetization vectorM is aligned along the z-axis. When RF is applied, the vector M
slowly tilts towards the new effective field direction and eventually aligns along its
direction. Now, since the RF is a rotating field, the effective field also rotates and
consequently the magnetization vector also rotates with its x and y components
oscillating in time with the frequency of the RF (Fig. 1.13).

The explicit behavior of the various components can be described by expanding
the vector Eq. 1.76 as follows:

d i
!
Mx þ j

!
My þ k

!
Mz

dt
¼ γ i

!
Mx þ j

!
My þ k

!
Mz

� i
!
Hx þ j

!
Hy þ k

!
Hz ð1:78Þ

where i
!
, j
!
, and k

!
are the unit vectors along the x, y, and z directions, respectively.

Substituting Hx ¼ H1 cos ωt and Hy ¼ � H1 sin ωt, one obtains

dMx

dt
¼ γ MyHo þMzH1 sin ωt ð1:79Þ
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dMy

dt
¼ γ MzH1 cos ωt �MxHoð Þ ð1:80Þ

dMz

dt
¼ γ �MxH1 sin ωt �MyH1 cosωt ð1:81Þ

These do not include effects of relaxation, which we know also affect the rates of
changes of net magnetization of the system and consequently attainment of the
steady-state condition. Since the effect of relaxation is to reduce the excess magneti-
zation above equilibrium values, Bloch added two empirical terms considering
relaxations as first-order processes. Thus, the modified equations including the
effects of relaxations were written as

dMx

dt
¼ γ MyHo þMzH1 sin ωt �Mx

T2
ð1:82Þ

dMy

dt
¼ γ MzH1 cos ωt �MxHoð Þ �My

T2
ð1:83Þ

dMz

dt
¼ γ �MxH1 sin ωt �MyH1 cos ωt � Mz �Moð Þ

T1
ð1:84Þ

Here T2 is a new relaxation time constant introduced to describe the decay of the
transverse magnetization in analogy with the time constant T1 which characterizes
the decay of the excess z- magnetization. Here, Mo is the equilibrium z-magnetiza-
tion. The solutions of Eqs. 1.82–1.84 are best obtained by going into the rotating
frame of the RF. In this frame, the effective field is stationary, and consequently the
magnetization vector is also stationary. Thus, explicit time dependence will be
eliminated from the equations, and the equations assume simpler forms. If u

! and

v
! are the components of the M

!
vector along and orthogonal to the RF direction

(Fig. 1.14), then

Fig. 1.13 Tilting of the magnetization (M ) towards the effective magnetic field, Heff
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Mx ¼ u cosωt � v sin ωt;My ¼ �u sin ωt � v cos ωt ð1:85Þ
Substituting these in Eqs. 1.82–1.84, one obtains

du
dt

þ u
T2

þ ωo � ωð Þv ¼ 0 ð1:86Þ

dv
dt

þ v
T2

� ωo � ωð Þuþ γH1Mz ¼ 0 ð1:87Þ

dMz

dt
þ Mz �Moð Þ

T1
� γH1v ¼ 0 ð1:88Þ

At steady state, which is what we need to consider for resonance absorption of
energy, all the time derivatives in Eqs. 1.86–1.88 must vanish. This leads to the
following solutions:

u ¼ Mo
γH1T2

2 ωo � ωð Þ
1þ T2

2 ωo � ωð Þ2 þ γ2H1
2T1T2

ð1:89Þ

v ¼ �Mo
γH1T2

1þ T2
2 ωo � ωð Þ2 þ γ2H1

2T1T2

ð1:90Þ

Mz ¼ Mo
1þ T2

2 ωo � ωð Þ2
1þ T2

2 ωo � ωð Þ2 þ γ2H1
2T1T2

ð1:91Þ

The experimental setup can be designed to observe either the u component or the
v component of the magnetization in the rotating frame. Under resonance conditions,
i.e., ω ¼ ωo, Eq. 1.91 reduces to

Fig. 1.14 Transverse
components of the magnetic
moment in laboratory frame
(Mx and My) and RF frame
(u and v) are depicted in black
and blue lines, respectively
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Mz ¼ Mo
1

1þ γ2H1
2T1T2

ð1:92Þ

Comparing this with Eq. 1.69, we recognize that the denominator in Eq. 1.92 is
the saturation factor, and one obtains for P:

P ¼ γ2H1
2 T2

2
ð1:93Þ

Thus, at resonance, comparing with Eq. 1.75,

g vð Þ½ �ωo¼ω ¼ 2T2 ð1:94Þ

Under conditions of no saturation γ2H1
2T1T2 � 1, the observed signals (u and

v components) will have the line shapes as shown in Fig. 1.15, and the functional
forms are

v � 2T2

1þ T2
2 ωo � ωð Þ2 ð1:95Þ

u � ωo � ωð Þ
1þ T2

2 ωo � ωð Þ2 ð1:96Þ

In Eq. 1.95, the term 2T2 is kept for consistency with Eq. 1.94.
These line shapes are referred to as absorptive and dispersive line shapes,

respectively. In the absorptive line shape, the signal is maximum at the resonance
frequency and dies off at the ends. In contrast, in the dispersive line shape, the signal
has zero intensity at the resonance position and shows a maximum and a minimum at
symmetrical positions away from the resonance. The maximum and minimum occur
at frequencies at which the signal intensity is half of its maximum in the absorptive
line shape. It is also seen that the dispersive line shape has longer tails on both sides,
in the sense that the signal is still present at frequencies at which the absorptive

Fig. 1.15 ω-dependent line-
shapes of [g(v)]v and [g(v)]u
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signal has already vanished. The total area under a dispersive line shape is zero in
contrast to the maximum value for an absorptive line shape. It is a common practice
to represent NMR spectra as consisting of absorptive lines; however, under special
circumstances such as for “field frequency locks,” dispersive line shapes are used. In
practice, the observed line shapes deviate slightly from the two line shapes shown in
Fig. 1.15, and this is a consequence of the phenomenological nature of the Bloch
equations.

The intensity of the absorption signal can be obtained by integrating Eq. 1.90.
One finds that the area under the curve (A) which represents the total signal intensity
is given by

A / χoH1

1þ γ2H1
2T1T2

1=2
ð1:97Þ

and the height of the peak (h) can be derived by putting ωo ¼ ω in Eq. 1.90:

h / χoH1T2

1þ γ2H1
2T1T2

� χoH1T2 under conditions of low RF powerð Þ ð1:98Þ
where χo is the equilibrium magnetic susceptibility of the system. This indicates that
peak heights of two lines in a given spectrum can be compared only if their T2’s
(or line widths) are identical. The dependence of the intensity on the susceptibility
indicates that the intensity is proportional to the number of nuclei per unit volume of
the sample which absorb energy at that frequency and also on the square of the
magnetic moment of the nucleus. These observations lead to the fact that NMR
signal intensities can be used to measure the number of nuclei of any particular type
in a given sample.

1.10 More About Relaxation

We now return to the question: What brings about the phenomenon of relaxation?
How does the magnetization in a perturbed system return to its equilibrium value?
We have to consider here two types of relaxations introduced before, namely, spin-
lattice relaxation, also referred to as longitudinal relaxation (T1), and spin-spin
relaxation, also referred to as transverse relaxation (T2). It is easily realized that
longitudinal relaxation has to do with the populations of the spins in the different
energy levels, and the transverse relaxation dealing with x-y magnetization has to do
with the phase coherence of the precessing magnetization components in the ensem-
ble. As we have already seen before, spin-lattice relaxation is brought by tight
coupling between the spin system and the lattice, and the latter must produce rotating
fields with appropriate frequencies. Transverse relaxation representing the decay of
x-y magnetization must somehow come from random time-dependent changes in
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frequencies of precessing spins resulting in the loss of phase coherence between
them. Notice however that T2 relaxation does not change the populations of the
energy levels and is thus energy conserving. Therefore, this phenomenon can be
considered as an entropy effect since the loss of phase coherence between the spins
amounts actually to the loss of magnetic order in the spin system. Now, random
fluctuations in precession frequencies must imply random fluctuations in the energy
values of the energy levels. How do these changes come about? Note that there will
be no change in the average energy of a given energy level. Extending the logic
further, any change in the value of the energy of a level must come from magnetic
interactions with other spins in the system, and these interactions must be fluctuating
in time so as to cause fluctuations in the energy values. Thus, it boils down to the fact
that T2 relaxation is caused by fluctuating magnetic fields in the spin system. The
same kind of fluctuations are responsible for coupling between the spin system and
the lattice and lead to T1 relaxation as well. Thus, the fundamental mechanisms of
both T1 and T2 relaxations are essentially the same.

Fluctuating magnetic fields are caused by motions of spins, both in the lattice and
in the spin system itself. Every magnetic dipole creates magnetic flux lines around it,
and the field varies in both magnitude and direction along these flux lines. Therefore,
these fields influence other dipoles in the vicinity, and this varies with distance and
relative orientations. The maximum field created by a magnetic dipole with a
magnetic moment μ, at a distance R, is 2μ=R3 , and this happens to be along the
direction of the dipole itself. For a proton, this is 57 Gauss for a distance of 1Å,
which is quite a large field indeed. The field at any point due to a dipole keeps
fluctuating, both due to translational motions in the solution and also due to
precessional motion of the spin. The latter however may not cause too large a change
in the distance R if we consider the dipole to be too tiny. If the fluctuations are slow,
compared to the lifetime of the states, there will be no averaging effect, and then
instead of all nuclei experiencing the same field H, different nuclei in a sample will
experience different fields and absorb energy at different frequencies within the
above range. This leads to the broadening of the lines. On the other hand, if the
fluctuations are faster, they behave like oscillating fields and induce transitions. This
phenomenon is pictorially represented in Fig. 1.16.

Every nucleus has magnetic field flux lines around it, and as the nucleus precesses
around the field Ho, the flux lines also move with it in a conical fashion. Note that
reorientational or tumbling motion of the nucleus in a liquid does not change the
orientation of the spin since this is dictated by the main magnetic field orientation
and the value of the spin I of the nucleus. Thus, every precessing spin produces a
rotating field which has components along the Ho direction and also in the transverse
plane. Translational motions of the spins cause variations in the strength of the field
at the site of any spin. Thus, there will be fluctuations in both z- and x-y-components
of the fields at any particular nucleus. The fluctuations in the z-components are
governed by the rates of translational motions within the liquid, and those in the x-y
plane are governed by both precessional motions and translational motions of the
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spins. The former cause fluctuations in energy levels and thus contribute to line
widths as discussed before. The fluctuations in the x-y plane behave like fluctuating
RF fields with different frequencies and thus cause transitions between the nuclear
energy levels.

A better and more rigorous insight into the transitions caused by the fluctuating
fields is obtained by Fourier analyzing the fluctuations into its component
frequencies. Figure 1.17 shows a pictorial representation of the fluctuating magnetic
field in the x-y plane as a function of time.

If h(t) is the fluctuating field about a mean value, zero, due to random motions of
the spins, the frequency distribution of the fluctuations in a time interval (�T,T ) is
given by the Fourier transform:

HTðωÞ ¼
T

�T

hðtÞ e�iωtdt ð1:99Þ

HT(ω) is itself a random quantity and if one takes an ensemble average, it vanishes.
However, its square does not vanish and reflects the power distribution in the
fluctuations. This is referred to as the spectral density function J (ω) and is defined
mathematically as follows:

Fig. 1.16 Schematic
representation of fluctuating
magnetic fields due to the
motion of dipoles. The flux
lines created by one dipole at
the site of another dipole are
shown. R is the average
distance between two
precessing dipoles, for the
same physical locations of the
two. This keeps fluctuating as
the dipole move in solution,
and accordingly the magnetic
fields also keep fluctuating

Fig. 1.17 Pictorial
representation of the
fluctuating magnetic field in
the x-y plane as a function
of time
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J ωð Þ ¼ lim
T!1

1
2T

HT
	 ωð ÞHT ωð Þ ð1:100Þ

The horizontal bar indicates an ensemble average. The 	 indicates the complex
conjugate. It follows that if there is some power J(ω) at the resonance frequency of a
nucleus, then the fluctuations will induce those transitions. Now, it is logical to
expect that the spectral density function J(ω) would be related to the nature of the
fluctuations in h(t); in other words, it would depend upon whether the fluctuations
have any correlations in time. This is also referred to as memory and will influence
the frequency distributions and thus the power distribution in the fluctuations. The
memory is described in terms of a correlation function G(τ) defined as an ensemble
average as follows:

G τð Þ ¼ h t þ τð Þ	h tð Þ ð1:101Þ
where the average is over time t. The 	 represents the complex conjugate. If the
memory is short, G(τ) dies away quickly and vice versa, implying that G(τ) has to be
a monotonically decaying function. Considering memory as some sort of a coher-
ence in the motions, its decay must come from interactions between the coherent
field components and thus can be considered to follow a first-order process. In other
words, G(τ) can be described as an exponentially decaying function:

G τð Þ ¼ h	 tð Þh tð Þe �jτj=τcð Þ ð1:102Þ
where τc is a characteristic time called the correlation time. It is a measure of the
rapidity of the fluctuations or of the extent of correlation in the reorientational
motions in the ensemble. Now, since J(ω) is related to the fluctuations h(t) by a
Fourier relation and G(τ) reflects the memory in the fluctuations h(t), it follows
intuitively that both these functions are also related, and it has been shown that they
are indeed Fourier transforms of each other; they form a Fourier pair.

J ωð Þ ¼ G τð Þe �iωτð Þdτ ð1:103Þ

For an exponentially decaying G(τ), J(ω) turns out to be

J ωð Þ ¼ h	 tð Þh tð Þ 2τc
1þ ω2τc2

¼ k
τc

1þ ω2τc2
ð1:104Þ

Figure 1.18 shows graphically the nature of J(ω) as a function of ω.
It is seen that the plot of J(ω) vs ω resembles a Lorentzian absorptive line, and

depending upon the correlation time, the power distribution will be flat over different
frequency ranges. In liquids, τcs are of the order of 10�10to 10�13, indicating that
over a wide range of frequencies, namely, 1010 to 1013, the power is uniform and
thus can cause transitions for all such resonance frequencies. This covers the
frequency ranges encountered in nuclear magnetic resonance and electron spin
resonance techniques; in the latter case, one is talking about the transitions between
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the electron spin levels. In Fig. 1.19, J(ω) is plotted for three different values of ωoτc
to bring out these points in greater detail.

ωoτc� 1 corresponds to fast motions, ωoτc� 1 corresponds to slow motion, and
ωoτc¼ 1 corresponds to intermediate molecular motion. Now, we have said that J(ω)
represents the spectral density distribution, and therefore its integral represents the
total molecular power in the system. Integrating Eq. 1.104, writing K for the
ensemble average in the expression, we find

J ωð Þdω ¼ K
π
2

ð1:105Þ

It is clear that the total molecular power in a system is constant and is independent
of the correlation time. In other words, experimental conditions such as temperature,
viscosity, pressure, etc. do not influence the total molecular power in the spin
system. We notice from Fig. 1.19 that for fast motions, the power is distributed
over a wide range of frequencies and likewise for slow motions, the power is
concentrated in low-frequency motions. Since the total power is constant, it follows,
as is evident in the figure, that the available molecular power at lower frequencies is
much higher in a system with slow molecular motions than in a system with fast
molecular motions. Since the rate of transitions between the energy levels is propor-
tional to the molecular power available at the resonance frequency, it is obvious from

Fig. 1.18 Lorentzian line
shape of J(ω)

Fig. 1.19 J(ω) profiles for
molecules with different τc.
ωo refers to the spectrometer
frequency
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the figure that the transition rate is highest for intermediate motions. In other words,
T1 relaxation will be most efficient for the intermediate motion situation ωoτc ¼ 1
and thus will have the shortest T1 value. On either sides of this condition, T1 would
increase, and thus a plot of the relaxation time vs τcwould look as shown in Fig. 1.20
with a minimum at the condition of intermediate motion.

Note that these motional conditions described above are relative to the frequency
of the spectrometer. A particular fast motion condition, on a particular spectrometer,
may turn out to be a slow motion condition at a higher-spectrometer frequency. For
example, if, for a spectrometer, a particular sample has ωoτc ¼ 0.5, then the same
sample would have ωoτc ¼ 5.0 at a spectrometer frequency which is ten times the
previous one. While the former condition can be considered as fast motion situation,
the latter condition belongs to the slow motion regime. Because of this fact, the T1
values become spectrometer frequency dependent.

Until now, we have discussed the fluctuations in the magnetic fields due to
motions and seen how they can cause transitions between the levels. Now the
question arises, whether these transitions are also subject to the same kind of
selection rules as in the case of induced transition by an applied RF. This however
is not the case; the reason being that two nuclear magnetic dipoles are involved in
these interactions as against a single nuclear magnetic dipole in the former case.
Therefore, the perturbation to be used in the equation for Einstein transition proba-
bility is the “dipolar Hamiltonian.” This perturbation has operator components
which can cause transitions between levels with Δm ¼ 0, 1, 2. That is, the spins of
both the magnetic dipoles can flip in these interactions, and therefore, the selection
rules will now become

Δm ¼ 0, 1, 2 ð1:106Þ
Δm ¼ 0 and 2 are called as zero-quantum and double-quantum transitions, respec-
tively. Note that although in a spin system with several spins, there can be higherΔm
values, dipole-dipole transitions will be restricted only to the three cases (Eq. 1.106),
and thus there is also a selection rule here but different from the one for RF-induced
transitions. As is evident from the definitions, a double-quantum transition will occur
at 2ωo frequency, and a zero-quantum transition will occur at zero frequency. We
notice from the spectral power distribution discussed above that there is indeed
uniform power in the whole range for short correlation times, and thus, the

Fig. 1.20 T1 as a function of
τc at different spectrometer
frequencies
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fluctuations can indeed cause these transitions with high efficiency. Explicitly, the
three spectral density functions causing zero, single, and double-quantum transitions
can be written as

Jo ωð Þ ¼ 2τch
	 tð Þh tð Þ ð1:107Þ

J1 ωð Þ ¼ 2τc
1þ ω2τc2

h	 tð Þh tð Þ ð1:108Þ

J2 ωð Þ ¼ 2τc
1þ 4ω2τc2

h	 tð Þh tð Þ ð1:109Þ

The above discussion of fluctuation-induced transitions explains how the spin-
lattice relaxation can occur in a spin system. However, it is not yet clear how these
transitions or the fluctuations can cause the energy conserving spin-spin or the
transverse relaxation in a spin system. A little thought indicates that this can occur
in three ways. Firstly, the fluctuations in the energy levels due to fluctuations in the
z�component of the local fields cause fluctuations in precessional frequencies, thus
resulting in the loss of phase coherence between the spins and consequently in the
decay of net x-y magnetization. This will be a monotonous process. Secondly, if the
upward and downward transitions between two spins can occur in correlated man-
ner, the phase memory of the spins can be lost without changing the net energy of the
spin system. This process is schematically shown in Fig. 1.21.

The spins k and l are identical nuclei, and their simultaneous transitions amount to
spin exchange. The rate of such a spin exchange determines the extent of lifetime
changes of the two states and thus determines the extent of line broadening by T2
relaxation. Thirdly, if the motions are slow, changes in energy levels contribute to
multiple frequencies of absorptions, which not only lead to the rapid loss of phase
coherence, and the superposition of frequencies leads to substantial line broadening
effects. Thus, T2 decreases monotonously with increasing τc unlike the behavior of
T1 described before.

Further insight into the relaxation caused by the fluctuating fields can be obtained
by Bloch equations for the interaction of the magnetic moments with the local field
hloc. Consider a component of the hloc which rotates like a precessing nucleus

Fig. 1.21 Simultaneous
upward and downward
transitions between two spins
in a correlated manner
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(Fig. 1.22). If hx, hy, and hz are the components of hloc along the x-, y-, and z-axes,
respectively, Bloch equations can be written for these components as follows:

dM
dt

¼ γ M � hlocð Þ

hloc ¼ hx þ hy þ hz

dMx

dt
¼ γ hyMz � hzMy ð1:110Þ

dMy

dt
¼ γ hzMx � hxMzð Þ ð1:111Þ

dMz

dt
¼ γ hxMy � hyMx ð1:112Þ

Remembering that hx and hy are high-frequency time-dependent quantities, while
hz is a slowly varying quantity, it can be observed that the rapidly varying
components of the local field contribute to relaxation of all the magnetization
components and that the slowly varying component contributes only to the relaxa-
tion of transverse magnetization components Mx and My. In other words, the rapidly
varying component contributes to both T1 and T2 relaxation, and the slowly varying
component contributes to T2 relaxation alone. The explicit calculation of relaxation
rates for the dipole-dipole interaction leads to the following expressions for two spin
1
2 nuclei of the same type:

Fig. 1.22 Components of a
rotating magnetic field, h, due
to nuclear precession. These
components will vary for
every location on the flux
lines. These fluctuations will
cause fluctuating magnetic
fields at another dipole in the
vicinity
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R1 ¼ 1
T1

¼ 2γ4h2I I þ 1ð Þ
5r6

τc
1þ ωo

2τc2
þ 4τc
1þ 4ωo

2τc2
ð1:113Þ

R2 ¼ 1
T2

¼ γ4h2I I þ 1ð Þ
5r6

3τc þ 5τc
1þ ωo

2τc2
þ 2τc
1þ 4ωo

2τc2
ð1:114Þ

It is evident that with increasing τc, R1 increases initially and then approaches zero
for ωoτc � 1, while R2 increases monotonically.

Thus far, we have considered that the fluctuating magnetic field at the site of a
nucleus is caused by fluctuating dipolar field of another nucleus. There are in fact
other interactions which also produce fluctuating magnetic field at a nuclear site due
to molecular motions, although the dipole-dipole interaction is the major contributor.
We shall only mention these interactions here without going into any great details,
since the concepts involved are to be discussed explicitly in later chapters. The other
mechanisms of relaxations are (i) scalar coupling-mediated relaxation, (ii) chemical
shift anisotropy-mediated relaxation, (iii) chemical exchange-mediated relaxation,
(iv) spin rotation relaxation, and (v) paramagnetic relaxation.

1.11 Sensitivity

One of the main concerns in any spectroscopic technique is the sensitivity of the
technique. Sensitivity is defined as obtainable signal-to-noise ratio per unit measur-
ing time in the experiment. In an NMR experiment, the signal intensity is determined
by the voltage induced by the precessing magnetization in the receiver coil. A
detailed calculation shows that the intensity is affected by a number of factors,
some of which depend on the sample itself, and some others depend on the experi-
mental arrangements such as the strength of the field, power of RF, properties of the
probe, etc. When the experiment is optimized and there is no saturation, the
maximum obtainable signal intensity is proportional to

N I þ 1ð Þμωo
2 ð1:115Þ

at constant temperature under the condition that spin-lattice and spin-spin relaxation
times are equal. In terms of field strength, the intensity is clearly proportional to

N I þ 1ð Þμ3Ho
2

I2
ð1:116Þ

Several facts emerge from Eq. 1.116. First of all, the intensity depends upon the
number of nuclei per unit volume (N ) and thus is dependent on the concentration of
the species in the sample. Second, the intensity depends strongly on the strength of
the applied field. This follows from the fact that the strength of the field determines
the separation between the nuclear energy levels, which in turn determines
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the population difference between the levels. The larger the population difference,
the higher the intensity and vice versa. Third, the intensity is inherently dependent on
the type of the nucleus since the magnetic moment μ and spin I are inherent
properties of the nuclei. The third power dependence on the magnitude of the
magnetic moment indicates that it is clearly the dominating factor. In other words,
the magnetogyric ratio plays a very dominant role, and the nuclei with higher γ
values will have higher sensitivities. Among all the nuclei, proton has the highest γ
value and therefore is the most sensitive nucleus. Using Eqs. 1.115 and 1.116 and the
properties of different nuclei, it is possible to calculate the relative sensitivities of
different nuclei. Taking the sensitivity of proton as 1.0, the sensitivities for all the
NMR active nuclei have been calculated, and these are listed in tabular forms in
several books. The relevant values for some of the most common nuclei are listed in
Table 1.3. Relative sensitivities are calculated for the equal number of nuclei, and the
numbers represent (γX/γH)3.; H refers to proton and X refers to any other nucleus. In
the Table 1.3, the resonance frequency for 1H is taken to be 100 MHz which
corresponds to a magnetic field of 2.34 T. Absolute sensitivities will be the products
of natural abundance and relative sensitivity for the individual nuclei.

It is clear from the Eq. (1.116) for the signal intensity that the sensitivity in a
particular spectrum can be increased by increasing the magnetic field strength or by
increasing the concentration of the nuclear species. In practice, however, the increase
with respect to the field will be somewhat lower because of the noise component
which has not been considered so far. It has been shown that the signal-to-noise ratio
actually has a 3/2 power dependence on magnetic field and 5/2 power dependence on
the magnetogyric ratio, as against the second power and third power dependences
indicated by the equation, respectively. Different strategies have been used in the
literature to enhance the sensitivity in an NMR experiment. The simplest thing to do
is to signal average. This means the data must be collected several times and
coadded. If n is the number of such coadditions, the signal increases proportionately
to n, but the noise adds in proportion to square root of n. Thus, there is a net
enhancement in the signal-to-noise (S/N ) by a factor of the square root of n. But
the price one pays for this is the measuring time in the experiment. The measuring
time goes as the square of the desired enhancement in the S/N ratio in the spectrum.
Alternatively, the effective volume of the sample in the magnet can be increased so

Table 1.3 Relative sensitivities of some of the most common nuclei

Nucleus Relative resonance frequency (MHz) Relative sensitivity
1H 100.000 1.0000
2H 15.351 0.0036
13C 25.144 0.0159
15N 10.133 0.0010
19F 94.077 0.8326
31P 40.481 0.0663
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that the total number of nuclei per unit volume in the magnet can be increased. This
would involve better designing of the magnets. Finally, the magnetic field strength
can be increased. This is of course limited by the magnet technology. The highest
magnetic fields that are available today are of the order of 28.2 Tesla which
corresponds to a frequency of 1200 MHz for proton. With any increase in magnetic
field strength, the entire architecture of electronics associated with resonance absorp-
tion also changes, and these also put limitations on the developments.

1.12 Summary

• Every nucleus has a spin angular momentum which is characterized by a quantum
number I. The angular momentum is a vector quantity. The quantum number of
the ground state (lowest energy state) is referred to as the “nuclear spin,” I. The

magnitude of angular momentum is ħ I I þ 1ð Þ.
• A nucleus with a nonzero nuclear spin has a magnetic moment associated with it.
• The z-component of the angular momentum and hence of the magnetic moment

can have only discrete values. For a nuclear spin I, there will be 2I + 1 values of
the z-component. These are represented by another quantum number m which is
called the magnetic quantum number and may be taken to represent different
orientations of the magnetic moment in space. All these have equal energy.

• In the presence of an external magnetic field, the different orientations have
different energies.

• When electromagnetic radiation is applied whose energy is equal to the separation
between two energy levels, whose m values differ by unity (selection rules), there
will be absorption of energy. This is referred to as “resonance absorption.” For all
nuclei, this energy is in the radio frequency region of the electromagnetic
spectrum.

• Bloch equations which provide a classical physics description of the NMR
phenomenon are described.

• Concepts of spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) are
described, and their relation to molecular motion in solution media is explained.

1.13 Further Reading

1. Spin Dynamics by M. H Levitt, 2nd ed. Wiley 2008.
2. High Resolution NMR by J. A. Pople, W. G. Schnieder, H. J. Bernstein, McGraw

Hill 1959.
3. Principles of Magnetic Resonance by C. P. Slichter, 3rd ed. Springer 1990.
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1.14 Exercises

1.1. Which of the nuclei given below has no magnetic moment?
(a) 1H (b) 2D (c) 12C (d) 15N

1.2. If the proton absorbs energy at 500 MHz frequency, then at which frequency
nitrogen absorbs?
(a) 10 MHz (b) 20 MHz (c) 30 MHz (d) 50 MHz

1.3. NMR uses the following frequency electromagnetic radiations.
(a) UV (b) Visible (c) Radio frequency (d) Microwave

1.4. The resonance frequency of a proton in a magnetic field strength of 10 Tesla
equals to
(a) 42 MHz (b) 0.42 MHz (c) 420 MHz (d) 210 MHz

1.5. Mark the more sensitive nucleus among the following.
(a) 31P (b) 2D (c) 13C (d) 15N

1.6. The magnetic moment μ of electron is
(a) greater than the magnetic moment of proton
(b) equal to the magnetic moment of proton
(c) less than the magnetic moment of proton
(d) equal to the magnetic moment of carbon

1.7. The magnetic moment of the nucleus is related to
(a) the charge of the nucleus
(b) the angular momentum of the nucleus
(c) the orbital motion of the electron
(d) the mass of the electron

1.8. In a rotating frame, the field along the z-axis is for a particular nucleus is 2 kHz
in frequency units. The amplitude of the radiofrequency (RF) is 1 kHz in
frequency units. The magnitude of the effective field in frequency units is
(a) 3 kHz (b) 1 kHz (c) √5 kHz (d) 5 kHz

1.9. In an NMR experiment, the radiofrequency is oriented
(a) parallel to the main field
(b) at 90
 to the main field
(c) antiparallel to the main field
(d) at 45
 to the main field

1.10. Among the following techniques, which is the least sensitive?
(a) UV-visible spectroscopy
(b) Infrared spectroscopy
(c) NMR spectroscopy
(d) Microwave spectroscopy

1.11. For a nucleus with spin 3/2, the number of allowed transition is
(a) 3 (b) 6 (c) 12 (d) 2

1.12. In a NMR spectrum, which factor does not contribute to the line width?
(a) Spin-lattice relaxation
(b) Spin-spin relaxation
(c) Magnetic field inhomogeneity
(d) Spontaneous emission
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1.13. Radiofrequency-induced transition probability is proportional to
(a) the spin of the nucleus
(b) the amplitude of the radiofrequency
(c) the square of the amplitude of the radiofrequency
(d) the angular momentum of the nucleus

1.14. The width of the line at half maxima in the NMR spectrum at low RF power is
inversely proportional to
(a) spin-spin relaxation (T2)
(b) spin-lattice relaxation (T1)
(c) radio-frequency amplitude
(d) strength of the magnetic field

1.15. A particular proton has a spin-lattice relaxation time (T1) of 2 s on a 100 MHz
spectrometer. Its value on a 300 MHz spectrometer under the same solution
conditions and ω0τc >>1 will be
(a) 2 s (b) >2 s (c) <2 s (d) none of the above

1.16. A nucleus with a spin value of 5/2 has the following number of degenerate
states:
(a) 10 (b) 4 (c) 5 (d) 6

1.17. Show that the RF-induced transition probability is identical for upward and
downward transitions in a spin ½ system.

1.18. Plot the approach to new equilibrium populations (Eq. 1.43) when an ensem-
ble of proton spins is taken from zero field to a given field. Assume T1 of 0.1 s,
1 s, and 10 s.

1.19. Plot the changes in the effective field when the RF is swept from �100 Hz to
+100 Hz through resonance, assuming the RF field amplitude in frequency
units to be 25 Hz.

1.20. Derive the Bloch equations in the rotating frame.
1.21. For a Lorentzian absorptive line shape, show that the width LW at a height

h ¼ 1
n hmax where is hmax and the maximum height is given by LW ¼ 2

T2
�

n� 1
p

.
1.22. What happens if the RF is applied along the z-axis?

40 1 Basic Concepts



High-Resolution NMR Spectra of Molecules 2

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Anisotropy of Chemical Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Factors Influencing Isotropic Chemical Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Spin-Spin Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Analysis of NMR Spectra of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 First-Order Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.2 Quantum Mechanical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Dynamic Effects in the NMR Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.5.1 Two-Site Chemical Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5.2 The Collapse of Spin Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.5.3 Conformational Averaging of J-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Learning Objectives
• Basic NMR parameters of molecules: chemical shifts and scalar coupling

constants
• Spectral features of molecules
• Analysis of NMR spectra to extract the NMR parameters
• Dynamic aspects of NMR spectra

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. V. Hosur, V. M. R. Kakita, A Graduate Course in NMR Spectroscopy,
https://doi.org/10.1007/978-3-030-88769-8_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88769-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-88769-8_2#DOI


2.1 Introduction

An NMR spectrum is a display of the resonance frequencies of a particular type of
nucleus in a given sample. The sample can be either in the solid state or in the liquid
state or in the gaseous state. Accordingly, the structure and appearance of the
spectrum will be different. Solid-state NMR spectra of powder samples are actually
a superposition of spectra of molecules in different orientations and contain broad
lines without structure. The gaseous-state spectra, in contrast, contain sharp lines,
but the signal intensities are low due to a small number of molecules present in a
given volume of the sample. For chemists and the biologists, the most important are
the spectra in the liquid state. In solution media, the molecules tumble around
randomly and rapidly, and as a consequence, the dipole-dipole intermolecular
interactions which result in substantial complications in the spectra average out to
zero. Therefore, liquid-state spectra also contain sharp lines and are termed as high-
resolution spectra. All molecules in the solution can be considered to behave
independently and consequently, the NMR spectrum can be supposed to represent
an individual molecule, and the observed spectrum is a sum of identical
contributions from all the molecules in the ensemble. We will be concerned only
with this branch of NMR spectroscopy, in the entire course of this book.

Molecules are made up of atoms and atoms contain nuclei. The examination of
the periodic table little carefully reveals that almost every element has an isotope
which has a magnetic moment. That means it should be possible to obtain an NMR
spectrum of every nucleus type in a molecule. However, some nuclei have a
quadrupole moment which causes extensive line broadening, and the spectra of
such nuclei are not amenable to analysis by the standard procedures described in
this chapter.

We have already seen in the previous chapter that the different nucleus types
absorb energy at different nonoverlapping frequency regions because of their differ-
ent gyromagnetic ratios. Therefore, in a system consisting of different types of
nuclei, it is possible to selectively observe the resonances of a particular nucleus
type and derive specific information. Thus, for a given molecule, it is possible to
think of a 1H-spectrum, a 13C-spectrum, a 15N spectrum, etc. This is what makes
NMR one of the most powerful spectroscopic techniques having applications in
several branches of science, namely, physics, chemistry, biology, and medicine.

How does an NMR spectrum of a molecule look like? If we are observing the
protons, do all the protons in the molecule absorb energy at the same frequency? If it
were so, the information derivable from the spectra would be very limited. Fortu-
nately, this is not so. The molecules contain nuclei distributed in a well-defined
electron cloud, and various nuclei and electrons interact with each other. This must
in some way influence the NMR spectrum. These interactions cause differences in
the linewidths as we already discussed before, and they also cause differences in
resonance absorption frequencies for various proton types in different local sur-
roundings. Indeed, the NMR spectra contain an enormous amount of information
regarding the structure and dynamics in the molecules. This information is described
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in terms of a set of NMR parameters, whose extraction and interpretation are the
ultimate objective of a chemist or a biologist or an NMR spectroscopist in general.
These parameters are (1) chemical shifts, (2) spin-spin coupling constants,
(3) intensities of resonance lines, and (4) relaxation times and linewidths. While
the first three parameters are intimately connected with the three-dimensional
structures of molecules, the last parameter describes the dynamism in the molecules.
The focus in this chapter is on the structural parameters with which the chemists and
the biologists are concerned most of the time.

2.2 Chemical Shift

Discovered in 1951, this is the most important and fundamental parameter which
must be determined for any kind of analysis and interpretation of NMR spectra. In a
molecule containing several nuclei of a particular type, say 1H or 13C, the different
nuclei in different parts of the molecule having different environments absorb energy
at different frequencies, and the chemical shift of a nucleus quantifies this electronic
environmental difference. For example, Fig. 2.1 shows the spectrum of a simple
molecule, namely, ethyl alcohol recorded at low resolution by Dharmatti and
coworkers, the discoverers of the chemical shift phenomenon in liquids.

The spectrum shows three lines belonging to methyl, methylene, and hydroxyl
protons in the molecule. These three groups of protons have different electronic
environments and consequently resonate at different frequencies. The intensities of
the individual lines are in the same proportion as the number of protons of each type,
namely, 3:2:1.

What is the origin of the chemical shift? Detailed theories have been worked out
by several authors. A complete description of these theories is beyond the scope of
this book; they can be found in the excellent texts by Pople et al., Emsley et al., and

Fig. 2.1 1H NMR spectrum of ethanol recorded at low resolution by Dharmatti and co-workers.
(Reproduced from J. Chem. Phys. 19, 507 (1951), with the permission of AIP Publishing)
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many others. Briefly, the phenomenon arises due to the fact that the electronic
environment around a nucleus screens the applied magnetic field. The applied field
induces currents in the electron cloud which produces a magnetic field that mostly
opposes the externally applied magnetic field. As a result, the magnetic field appears
altered at the site of the nucleus. This is termed as screening by the electron cloud.
Because of the asymmetry of the electron cloud around a nucleus in a given
molecule, which has a definite shape, the induced field will have different
orientations, depending on the orientation of the molecule with respect to the applied
field. However, it is the z-component of this field which is of importance, and the
ensemble average of this component determines the extent of screening. It is
important to mention here that electronic currents in any given orbital can change
their sense of rotation as the molecule tumbles in solution, so that the z-component of
the field that is produced would oppose the external field, in a diamagnetic situation.
Because of this, the average of the induced field would not vanish. Depending on the
extent of screening, the resonance frequency will be obviously different. The
effective field at the site of a nucleus is given by the equation

Hloc ¼ Ho 1� σlocð Þ ð2:1Þ
In general, σloc can be positive or negative; a positive value implies shielding, and

a negative value implies deshielding. A detailed calculation indicates that the
screening constant has actually two components:

σloc ¼ σd þ σp ð2:2Þ
where σd is called the diamagnetic contribution and σp is called the paramagnetic
contribution. Strong paramagnetic contributions occur only for heavier nuclei where
energetically low-lying atomic orbitals are available and the applied field causes
mixing of the wave functions of these excited states with the ground state wave
functions. Therefore, for protons, it is mostly the diamagnetic contribution which is
of importance. It turns out that the diamagnetic contribution is positive, while the
paramagnetic contribution is negative. Thus, the sign of the screening constant in
general is dependent on which is the dominant contributor. Further, as will be
discussed later, the remote electronic currents in complex molecules can also
influence the screening constant at a given nucleus. These effects can be both
negative and positive depending upon the relative orientation of the remote group,
which can alter the field at the site of the nucleus under question.

The changes in the energy levels due to screening for a single spin 1/2 system are
shown in Fig. 2.2.

The change in the field at the site of the nucleus due to the screening is called
chemical shift, and σ is called the screening constant or the shielding constant which
is a property of the electronic environment. Clearly, the chemical shift depends on
the applied field Ho. The higher the field, the higher will be the separation between
the resonance frequencies of any particular nucleus type in a molecule and vice
versa. But a consequence of this is that, in a complex system consisting of several
absorption frequencies, chemical shifts will be different at different magnetic fields,
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and then it would not be possible to characterize the electronic environments
uniquely. In order to circumvent this problem, a field independent definition is
given by expressing the chemical shift as a ratio:

δi ¼ Hr � Hið Þ
Hr

� 106 ð2:3Þ

where Hr is the field experienced by a reference nucleus, Hi is the field at the nucleus
of interest i, and δi is the chemical shift of the nucleus i. In terms of frequencies, this
is given as

δi ¼ ðvi � vrÞ
vo

� 106 ð2:4Þ

Note that here the denominator is vo instead of vr, and this is permissible since vo
is much larger than the difference (vo � vr) and thus vr can be approximated to vo. δi
is expressed in parts per million (ppm), and we now see that it is independent of the
applied field but depends only on the screening constants. On this scale, chemical
shift is a dimensionless quantity. The reference frequency is always taken to be at
0 ppm. A higher value of chemical shift implies low shielding, and conversely, a
lower value of chemical shift implies higher shielding. Different types of reference
compounds have been used, but the most convenient ones are those for which the
resonance frequency occurs at the highest field. Thus, with respect to such a
reference compound, the chemical shifts of nuclei in other compounds would have
positive values. For protons, tetramethylsilane (TMS) has been the preferred refer-
ence compound, and Table 2.1 lists the chemical shifts of other reference
compounds. The reference compound is either added to the sample, in which case
it is called an internal reference, or can be kept separately in a capillary in the sample
tube, in which case it is called an external reference. In the former situation, the
reference has to be soluble in the solvent used. TMS is the common standard for all
nonpolar solvents. For aqueous solutions in which TMS is insoluble, TSP and DSS
(see Table 2.1) are the common standards.

Fig. 2.2 Diamagnetic shielding contribution decreases the separation between the energy levels,
whereas paramagnetic shielding increases the separation
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* a non-zero number indicates the chemical shift of the reference line with respect
to TMS

In some of these reference compounds, there are more than one line in the
spectrum, but the most upfield line belonging to the methyls is taken as the reference.
For simplifications, it is customary to use reference compounds in which all the
unnecessary protons are substituted by deuterons.

If in a particular spectrum two nuclei resonate at the same frequency, they are said
to be “chemically equivalent.” Thus, for example, in the spectrum of ethyl alcohol
shown in Fig. 2.1, three methyl protons are equivalent, and the two methylene
protons are equivalent.

2.2.1 Anisotropy of Chemical Shifts

As mentioned earlier, the shielding generated by the electronic environments around
the nuclei in a molecule is dependent on the molecular structure itself and can depend
on the orientation of the molecule with respect to the direction of the magnetic field.
This is termed as chemical shift anisotropy. Then, one gets broad lines because of the
superposition of resonances corresponding to different orientations, as it happens in
the case of oriented systems or in solids. This is schematically shown in Fig. 2.3. In
solutions, because of the rapid tumbling motion, the anisotropy gets averaged out,
and one gets sharp lines representing the isotropic chemical shifts.

2.2.2 Factors Influencing Isotropic Chemical Shifts

From the discussion on the origin of chemical shifts, it is clear that anything that
affects the electron density around a nucleus affects its chemical shift. The higher the
electron density, the higher the shielding and vice versa. Several intra- and

Table 2.1 δ values of reference compounds

Nucleus Reference compound Chemical shift (ppm)*
1H TMS 0.0

Tetramethylsilyl propionate (TSP) 0.0

Sodium 4,4-dimethyl-4-silapentane sulfonate (DSS) 0.0

Acetonotrile 2.0

Dioxane 3.64

t-butanol 1.27

Tetramethylammonium chloride 3.10
13C TMS 0.0

TSP 0.0

DSS 0.0
15N Ammonium chloride 0.0

Ammonia 0.0
31P 85% phosphoric acid 0.0
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intermolecular factors can cause these changes, and we will count here the most
important ones commonly encountered in the spectra of molecules. In a molecule,
the electron density around a 1H in a C-H bond, for example, is directly dependent on
the polarity of the C-H bond. This in turn is influenced by the following factors:

(i) Electronegativities of the substituents: An electron-withdrawing group reduces
the electron density around the 1H and thus causes deshielding or downfield
shifts.

(ii) Direct electrostatic effects of charges and dipoles: Charges and dipoles produce
electric fields at the site of the nucleus and thus polarize the electron
distributions (Equation 2.5a–b). The change in screening constant caused by a
charge distribution around a C-H bond is given by

Fig. 2.3 The molecular orientation with respect to the field influences the chemical shifts. In a
powder sample, for example, where all orientations are possible, the superposition of chemical
shifts originating from the different orientations results in a very broad NMR line. A typical
appearance is shown in the bottom picture. See Chap. 7, Appendix 2 for more theoretical details
on chemical shift anisotropy. The effect of averaging of anisotropy due to tumbling motions in
solutions is indicated. This results in sharp lines representing the isotropic chemical shifts
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Δσ ppmð Þ ¼ 0:125
j

q j cos∅ j

R2
j

� 0:17
j

q j

R2
j

2

ð2:5aÞ

The summation runs over all the charges in the distribution. Rj is the distance
(in nm) between the charge qj and the 1H in the C-H bond. ∅j is the angle between
the C-H bond and qj vector. Similarly, for a dipole of moment μ, the change in
screening constant produced is given by

Δσ ppmð Þ ¼ �k μ ez ð2:5bÞ
where k is a constant and ez is the component of electric field due to the dipole along
the C-H vector.

(iii) Inductive effects: The polarity of a particular C-H bond can be affected by
relayed polarization through the neighboring bonds in the molecule.

(iv) Hybridization: Depending on the hybridization of the carbon atom, the electron
density around the hydrogen will be different. The greater the s-character of the
bond, the smaller will be the electron density at the hydrogen and the greater
will be the deshielding.

(v) van der Waal effects: Direct stearic interactions affect the electron densities.
(vi) Long-range effects: Here we basically consider the effects which extend to long

distances. In this category, two effects are of significance, namely, (a) ring
current effects of aromatic rings and (b) “contact shifts” due to unpaired
electrons of paramagnetic species. The π electron clouds in aromatic rings
generate currents in the presence of a magnetic field, and these currents produce
secondary magnetic fields which extend to long distances and produce chemi-
cal shift changes at nuclei coming under their influence (Eq. 2.6a–c). Loci of
such shifts around the aromatic rings have been calculated, and these help in
predicting the chemical shift changes that would occur for different positions of
a 1H around the ring. The contributions to the shielding constant (Δσ) of a
nucleus by an aromatic ring are given by

Δσ ppmð Þ ¼ μ0
4π

e2r2

2me

1
R3 ð2:6aÞ

where r is the radius of the aromatic ring and R is the distance from the center of the
ring to the proton. For standard values of μ0(permeability of free space), charge of
electron (e), mass of electron (me), this turns out to be

Δσ ppmð Þ ¼ � 0:0276
R3 ð2:6bÞ
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If there are multiple rings contributing to the shielding at a particular nucleus, the
net effect will be an addition as given in Eq. 2.6c:

Δσ ppmð Þ ¼ �0:0276
j

1
R3

j

ð2:6cÞ

Figure 2.4 shows the results of such calculations for a benzene ring. The contact
shift, on the other hand, arises due to coupling between an unpaired electron and the
nucleus under observation. The electron need not be in the same molecule, and thus
this interaction can also be intermolecular. Consequently, this interaction can really
extend to long distances. From detailed quantum mechanical calculations of these
interactions, it is known that the contact coupling, also termed the “Fermi interac-
tion” arises due to a finite probability of the electron occupying the same space as the
nucleus. This interaction causes changes in the energy levels of the nucleus. The
absorption of energy by the nucleus will then depend upon the orientation of the
electron spin, and consequently, the resonance frequencies will be different for the
two different orientations with respect to the external field. However, if the elec-
tronic transitions between the two orientations are too rapid, then, the nucleus will
not be able to see the two orientations distinctly and would absorb energy at a
frequency which corresponds to the weighted average of the two individual

Fig. 2.4 “Isoshielding” lines (in ppm) in the neighborhood of a benzene ring. The plot represents
one quadrant of a plane passing normally through the center of the ring. The lines represent the shift
in the NMR shielding value which will be experienced by protons as a result of the magnetic field of
the benzene ring. Here ρ and z are the cylindrical coordinates in units of 1.39 Å. (Reproduced from
J. Chem. Phys. 29, 1012 (1958), with the permission of AIP Publishing)
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frequencies. The shift caused by such effects can sometimes be very large, of the
order of 50–100 ppm.
(vii) H-bond: This is a weak interaction between two electronegative atoms sharing

a H atom, e.g., N-H ! O, N-H ! N, O-H !N, etc. The H atom is covalently
linked to one electronegative atom, and the other interacts with the partial
positive charge on the H through its lone pair of electrons. The two heavy
atoms cannot come closer than about 2.8–3.1 Å. The formation of H-bond
causes considerable deshielding of the 1H nucleus and causes downfield shifts.
The effects of H-bonds will also get relayed to the neighboring bonds.

In addition to the specific interactions discussed above, the solvents can also and
do affect the chemical shifts of the nuclei. The polarity of the solvent molecules
influences the polarities of the bonds in the solute molecules and thus changes the
electron densities.

From a study of a large number of organic molecules, some general guidelines
with regard to the chemical shifts have emerged which help a great deal in the
identification of functional groups and carbon skeletons in unknown molecules.
These have rendered NMR as an analytical tool for an organic chemist, and the
characterization of a new organic compound is considered incomplete without the
analysis of its NMR spectrum. Tables 2.2, 2.3, and 2.4 list the chemical shift ranges
for 1H, 13C, and 15N nuclei in different types of molecular environments.

2.3 Spin-Spin Coupling

Figure 2.5 shows the 1H NMR spectrum of ethyl alcohol recorded on a modern
NMR spectrometer. In contrast to the spectrum of the same molecule shown in
Fig. 2.1, the present spectrum shows higher resolution and exhibits fine structure.
This is due to a phenomenon known as “spin-spin coupling.” Discovered also in the
years 1950–1951 by Proctor andWu, this is the next most important NMR parameter
which allows unambiguous characterization of molecules. Spin-spin coupling
reflects an interaction between spins which leads to the splitting of resonance
lines, and the extent and pattern of splitting is characteristic of the strength of the

Table 2.2 1H chemical shift ranges with reference to TMS
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interaction and the number of interacting spins. For example, in Fig. 2.5 the methyl
resonances are split as a triplet with the three peaks having an intensity distribution
of 1:2:1. Likewise, the methylene proton resonances appear as a quartet with the four
peaks having an intensity distribution of 1:3:3:1. Both these fine structures are a
consequence of spin-spin coupling between methyl and methylene protons.

What is the mechanism of spin-spin coupling and how do splittings occur? Here
again, detailed theories have been worked out which are beyond the scope of this

Table 2.3 13C chemical shift ranges with reference to TMS

Table 2.4 15N chemical shift ranges with reference to liquid NH3 (0 ppm)

Fig. 2.5 1H NMR spectrum of ethanol on a high-resolution NMR spectrometer
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book. Qualitatively, spin-spin coupling, also referred to as J-coupling, occurs due to
an interaction mediated by the electrons in the intervening bonds. A nuclear spin
polarizes an electron spin in the adjacent bond orbital, which in turn polarizes the
spin of the partner electron in the same bond orbital. This electron then polarizes the
spin of the neighboring nucleus, and this process continues as far as the spin order
generated by such an interaction can be maintained. Depending on the nature of the
bonds (single bonds, double bonds, etc.), the nature of the intervening atoms in the
bonding sequence, and the relative configurations of the atoms, the spin-spin
coupling can extend up to 4–5 bonds. The strength of the coupling is called coupling
constant and is denoted by the symbol nJ for two spins separated by n-bonds.
Figure 2.6 shows pictorially the concerted polarization of the nuclear and electron
spins, bringing about such a nuclear spin-spin coupling interaction.

This coupling interaction between two spins I1and I2 is quantitatively given as
J12 I1. I2 , and J12 is called the coupling constant. A simple explanation of how the J-
coupling leads to splitting of lines is depicted in Fig. 2.7.

Consider a system of two I ¼ 1/2 spins, say A and X. That there is a J-coupling
between A and X implies that the energy of spin A in any of its two Zeeman states α
and β depends upon whether the spin X is in the α or the β state. Thus, the spin
configurations αα, αβ, βα, and ββ will have different energies. The coupling is said
to be positive if the energy of the α state of A spin increases for the X spin in the α
state and decreases for the X spin in the β state. Likewise, the energy of the β state of
A spin will increase if the X spin is in the β state and will decrease if the X spin is in
the α state, i.e., the parallel orientation of spins increases the energy, and the
antiparallel orientation decreases the energy of the state. As a result, the resonance
frequency of absorption of A spin for the transition from its α state to its β state will
be dependent upon whether the X spin is in the α or the β state. The transition
frequency will be higher for the β orientation and lower for the α orientation of the X
spin than the resonance frequency in the absence of the coupling. In a similar
manner, there will be two transitions for the X spin around the no-coupling reso-
nance frequency. The two frequencies will be equally spaced from the no-coupling

Fig. 2.6 Concerted
polarization of nuclear and
electron spins. The upper and
the bottom pictures indicate
two possible relative
orientations of the two nuclear
spins, and they will have
different energies
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frequency, and the separation between the two frequencies represents the coupling
constant. The situation with regard to the relative energies of the states will be
exactly opposite for a negative value of the coupling constant between the two spins.

Referring to Fig. 2.8, it is clear that for one bond coupling, the antiparallel
orientation of nuclear spins leads to lower energy, and therefore this coupling is
positive. For nuclear spins separated by two bonds, the parallel orientation of the
spins leads to lower energy, and thus this coupling is negative. Likewise, three-bond
couplings are positive. For longer separations, these simple arguments are not
adequate, and detailed calculations will be necessary to find out the relative energies
of the states. In any case it is important to note that whatever be the sign of the
coupling constant, the appearance of the NMR spectrum remains the same.

The magnitude of a coupling constant is dependent on factors such as the product
of the magnetogyric ratios of the interacting nuclear spins, electron distributions in

Fig. 2.7 A schematic energy level representation of a two-spin (A and X) ½ system. Here, for the
isolated A-spin, only one transition is possible; hence, that results in a single transition. On the other
hand, when A is coupled with X, two transitions, αAαX! βAαX and αAβX! βAβX, are possible. This
situation eventually results in two spectral lines, and that is known as spin-spin coupling
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the bonds, stereochemistry around the interacting nuclei, etc. Among the various
coupling constants, one-bond coupling constants are the strongest being of the order
of 100–200 Hz for the heteronuclear 13C-1H, 15N-1H, and 31P-1H interactions;
one-bond 1H-1H coupling constant is of course higher, but this is hardly of much
interest in chemistry since it can only occur in the hydrogen molecule. The
magnitudes of the coupling constants provide valuable structural information on
molecules and also play crucial roles in the design of many modern experiments.
These aspects will be discussed in later chapters. Table 2.5 lists the ranges of some of
the most important homo- and heteronuclear coupling constants derived from the
study of a large number of organic molecules.

2.4 Analysis of NMR Spectra of Molecules

The basic step in deriving useful information from NMR spectra of a given molecule
is to extract the chemical shift and coupling constant information for all the nuclei in
the molecule. In other words, in a 1H NMR spectrum, for example, the various
resonances must be assigned as belonging to specific protons, and then the fine
structures of the individual groups of lines belonging to them must be quantitatively
explained. This yields the chemical shifts (δ-values) and coupling constants
(J-values) for all the protons in the molecule. Many times, such an analysis can be
performed by simple inspection following certain basic rules; then it is termed as
“first-order analysis.” In more complex systems, a more rigorous treatment based on
quantum mechanical calculations is warranted. We shall describe these two
treatments in that order.

Fig. 2.8 In the case of one-
bond-separated spins, the
antiparallel orientation of
spins leads to lower energy;
thus, coupling is positive (J >
0, upper part). On the other
hand, for the two-bond-
separated spins, the parallel
orientation of spins leads to
lower energy; therefore,
coupling is negative (J <
0, lower part)

Table 2.5 Ranges of
important coupling
constants

Spin pair J (Hz)-range
2J: 1H-1H 5–20
1J: 1H-13C 100–250
1J: 1H-15N 80–100
1J: 1H-31P A few hundred Hz
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In all these analyses, a certain convention is followed for the nomenclature of the
nuclear spins. The spins are labeled by upper-case alphabets, A, B, C, etc., and in a
spin system consisting of more than one spin; the choice of alphabets is based upon
the difference in their resonance frequencies vis-a-vis the coupling constant between
them. For example, an AX system would indicate that the two spins A and X have
resonance frequencies widely separated compared to their J-coupling constant.
Likewise, in an ABX system, spin X is widely separated from both A and B, and
spins A and B are themselves fairly close in relation to the coupling constant JAB.
Spin systems such as AX, AMX, AMQX, etc. are said to be weakly coupled, while
AB, ABC, etc. are said to be strongly coupled. It is important to note here that these
terminologies “strongly coupled,” “weakly coupled,” etc. are not a reflection on the
magnitude of the coupling constant alone, but is rather a reflection on the strength of
J in comparison to the chemical shift difference between the coupled nuclei. Thus, it
is clear that heteronuclear spin systems always belong to the weak coupling cate-
gory, and strong coupling situations occur in homonuclear spectra. The first-order
analysis always deals with weakly coupled systems, and strongly coupled situations
will have to be necessarily dealt with by quantum mechanical calculations. A group
of nuclei are said to be “magnetically equivalent” if (i) they all have the same
chemical shifts and (ii) each of them has the same coupling constant to every other
spin outside the group.

2.4.1 First-Order Analysis

As the name suggests, this is the first level of analysis one would do with a given
spectrum and is satisfactory when the resonance lines belonging to individual nuclei
(protons for example) are well separated from each other in the spectrum. The
important observations one makes in such an analysis are (i) the multiplet patterns
in different groups of lines, (ii) relative intensities of the individual groups, and (iii)
the measurement of coupling constants from the splittings in the individual groups
and identifications of groups having common coupling constants. Following a set of
rules are generally applicable in such an analysis.

(i) The centers of the multiplets represent the chemical shifts. The relative chemi-
cal shifts of different multiplets must correspond to the order expected from the
chemical environments of the individual nuclei.

(ii) In a group of magnetically equivalent nuclei, A2, B2, A3, etc., the J-coupling
between themselves does not lead to the splitting of lines. A rationale for this
comes from detailed quantum mechanical calculations which will be discussed
in the later section.

(iii) The integral of any multiplet is proportional to the total number of equivalent
nuclei in that group. For example, a CH2 group may have two equivalent
protons; a CH3 group may have three equivalent protons; etc. Thus, if a
multiplet which belongs to a single proton can be identified, then the intensities
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of other groups can be appropriately scaled to determine the number of protons
in the individual groups.

(iv) The resonance line of a nucleus J-coupled to n equivalent nuclei of another type
gets split into (2nI + 1) lines where I is the spin of the individual nucleus in the
equivalent group. It follows that if the nucleus is J-coupled to two groups of
equivalent nuclei having n and m nuclei and if their spins are I1 and I2,
respectively, then the total number of lines in the multiplet will be (2nI1 + 1).
(2mI2 + 1). Thus, for spin 1/2 nuclei (say different groups of protons, fluorines,
phosphorous, etc.), the multiplet for a particular nucleus would have (n + 1).
(m + 1) lines.

(v) For a single group of n-equivalent nuclei of spin 1
2 coupled to a particular

nucleus, say A, the different lines in the A multiplet will have the intensities in
the proportion of binomial coefficients in the expansion of (a + b)n. For
example, as seen in the spectrum of ethyl alcohol, the CH2 protons coupled
to the three equivalent protons in the CH3 group are split into four lines having
intensities in the proportion 1 : 3 : 3 : 1. Similarly, the CH3 protons are split into
three lines with intensities in the ratio 1 : 2 : 1, due to the coupling to the two
equivalent protons in the CH2 group. Extending in this manner, the expected
intensity pattern for any multiplet can be calculated, and for a single group of
spin 1

2 nuclei, the expected patterns for the different number of equivalent nuclei
are shown in Fig. 2.9. This pattern of splittings is referred to as Pascal’s
triangle.

Various splitting patterns in a first-order spectrum can be understood with the
help of simple energy level diagrams based on α and β orientations of the different
spins as discussed before. Energy level diagrams for two (a) and three
(b) nonequivalent spins are shown as illustrations in Fig. 2.10.

The various transitions belonging to different spins have been labeled, and the
splitting trees leading to the expected patterns in spectra are also indicated. These
explain the origin of Pascal’s triangle for equivalent spin ½ nuclei.

Fig. 2.9 A schematic
representation of transition
intensities in a multiplet with
the aid of Pascal’s triangle
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2.4.2 Quantum Mechanical Analysis

This is the most rigorous analysis of NMR spectra and is applicable under all
conditions of chemical shifts and coupling constants in the spectra. Here we have
to assume for the reader a basic knowledge of the principles of quantum mechanics
such as operators, Hamiltonian, eigenvalues, eigenfunctions and their properties, etc.
Particularly important are the angular momentum operators and their properties.
Some of the important properties are listed in the Box 2.1 for ready use.

Box 2.1: Fundamental Properties of Angular Momentum Operators
(a) I is the operator for the total angular momentum of the spin system. Ix, Iy,

and Iz are the operators for the components of angular momentum along x,
y, and z directions, respectively.

(continued)

Fig. 2.10 Energy level diagrams and scalar coupling splitting trees for two and three spin ½
systems are shown in (a) and (b), respectively
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Box 2.1 (continued)
(b) For a single spin 1

2 system, the two orientations of the spin with respect to
the magnetic field are represented by the states α and β, and these are
eigenfunctions of the Iz operator, i.e.,

Iz α >¼ 1
2
α >

Iz β >¼ �1
2

β >

The functions α and β are orthonormal, i.e.,

< α j α >¼< β j β >¼ 1

< β j α >¼< α j β >¼ 0

(c) The operators Ix, Iy, and Iz for any spin do not commute and obey a cyclic
relation:

½Ip, Iq� ¼ iIr

where indices p, q, and r are cyclic permutations of x, y, and z.

(d) Two commuting operators with nondegenerate eigenvalues have common
eigenfunctions. For example, if A and B are commuting operators and ∅
is the eigenfunction of B with non-degenerate eigenvalue b, then

A B∅ð Þ ¼ A b∅ð Þ ¼ b A∅ð Þ ¼ B A∅ð Þ
Since b is a nondegenerate eigenvalue of B, A∅ must be a scalar multiple

of ∅.

A∅ ¼ a∅

This means ∅ is an eigenfunction of A and a is the eigenvalue of A.
If b is a degenerate eigenvalue of B, then A∅ can be a different function,

say ∅0.

A∅ ¼ ∅0

Then ∅ is not an eigenfunction of A.

(continued)
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Box 2.1 (continued)
(e) Raising (I+) and lowering (I�) operators

Iþ = Ix þ iIy; I
2 = Ix 2 iIy

Iþ j α >¼ 0; I2 j α >¼j β > ; Iþ j β >¼j α > ; I2 j β >¼ 0

Ix j α >¼ 1
2

Iþ þ I2ð Þ j α >¼ 1
2
j β >

Ix j β >¼ 1
2

Iþ þ I2ð Þ j β >¼ 1
2
j α >

Iy j α >¼ 1
2i

Iþ � I2ð Þ j α >¼ � 1
2i

j β >

Iy j β >¼ 1
2i

Iþ � I2ð Þ j β >¼ 1
2i

j α >

The general approach in any quantum mechanical solution of a problem is to set
up a proper Hamiltonian taking into account all the possible interactions, solve the
Schrödinger equation, obtain the eigenvalues and the eigenfunctions, and then
calculate the specific observables of interest, being the transition frequencies and
their intensities in the present case.

In high-resolution NMR, the energy of the nuclear spin system will have two
contributions, namely, the interaction with the external magnetic field—termed the
Zeeman interaction—and the J-coupling interaction between the spins. The direct
dipole-dipole interaction which depends on the angle between the internuclear vector
and the magnetic field (see Chap. 7, Appendix 1) averages out to zero due to rapid
tumbling motions of the molecules. For the same reason, J is also an exclusively
intramolecular property. Thus, the general isotropic nuclear spin Hamiltonian is
given by

H ¼ H o þ H 1 ð2:7Þ
with

H o ¼
i

γiHiIiz ð2:8Þ

and

H 1 ¼ 2π
i<j

JijIi:Ij ¼ 2π
i<j

Jij IixIjx þ IiyIjy þ IizIjz ð2:9Þ

The external field Ho is taken in the negative z direction. H o and H 1 are termed as
the Zeeman and the J-coupling parts of the Hamiltonian, respectively. Indices i and
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j run over all the spins in the spin system. Ii and Ij are the angular momentum
operators of the spins i and j, respectively. Iiz is the operator for the z-component of
the angular momentum for spin i. In high-resolution NMR, in chemistry and biology,
one is concerned mainly with spin ½ nuclei such as 1H, 13C, 15N, 31P, etc., and
therefore we shall focus our attention with such nuclei in the ensuing discussion. We
have to now obtain the eigenvalues and the eigenfunctions for the Hamiltonian in
Eq. 2.9.

Let us consider a system with p spin 1
2 nuclei. Each of the spins can exist in an α

state or a β state. Then the state of the spin system as a whole can be any combination
of these two states of the individual spins. Let us denote a particular state by a
function Φn defined as

Φn ¼ α1β2α3β4α5α6 . . . . . . . . . . . . βp ð2:10Þ

There will be 2p such combinations possible, and consequently there will be that
many state functions for the system. Now, since α and β are eigenfunctions of the Iz
operator for each nucleus, it is clear that these product functions will be
eigenfunctions of the Zeeman Hamiltonian H o, i.e.,

H oΦn ¼ EnΦn ð2:11Þ
where En for different Φn are the corresponding eigenvalues. However, the
J-coupling Hamiltonian H 1 causes mixing of these states, and the total Hamiltonian
H will not be diagonal in the product basis. The correct eigenfunctions will have to
be determined as linear combinations of the product functions.

Ψk ¼
n

cnkΦn ð2:12Þ

The eigenvalues of the Hamiltonian will be determined from the solutions of the
secular equation:

H mn � Eδmnj j ¼ 0 ð2:13Þ
H mn are the matrix elements of the Hamiltonian defined as

H mn ¼< Φm j H j Φn > ð2:14Þ
The secular Eq. 2.13 is of the order 2p. However, it can be factorized into a

number of equations of lower order by adopting a trick, namely, grouping the basis
functions Φn according to total spin component along the z-axis. Now let us define
an operator:

Fz ¼
i

Iiz ð2:15Þ

where the summation runs over the p spins in the system. The product functions Φn

are eigenfunctions of Fz with eigenvalues corresponding to the total magnetic
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quantum number of the system in the particular state. It can be easily shown that the
operator Fz commutes with the Hamiltonian H, i.e.,

H,Fz½ � ¼ HFz � FzH½ � ¼ 0 ð2:16Þ
(Note: Since Fz has degenerate eigenvalues, the commutation given in Eq. 2.16 does
not imply that eigenfunctions of Fz will be eigenfunctions of H.)

Now, we will show that there will be no matrix elements of Hamiltonian between
product functions which have different eigenvalues for the Fz operator.

Let

FzΦn ¼ f nΦn ð2:17Þ
FzΦm ¼ f mΦm ð2:18Þ

fn and fm are the eigenvalues corresponding to the functionsΦn andΦm, respectively.
From the commutation relationship in Eq. 2.16, it follows that

< Φm HFz � FzHj jΦn >¼ 0 ð2:19Þ

f n � f mð Þ < Φm Hj jΦn >¼ 0 ð2:20Þ
If fn is not equal to fm, then the matrix element in Eq. 2.20 will have to vanish.

Thus, the matrix representation of the Hamiltonian in the basis of {Φn} will be
block-diagonalized as shown in Fig. 2.11.

Fig. 2.11 A schematic block
diagonal matrix representation
of the Hamiltonian in the basis
of {Φn}. Matrix elements are
nonzero when fn¼ fm and zero
when fn 6¼ fm
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Consequently, the secular determinant gets block-diagonalized, and the problem
of determining the eigenvalues will be reduced in dimension. The individual blocks
belonging to specific f values can be treated separately.

The eigenfunctions for each of the eigenvalues can then be determined as follows:

H Ψk ¼ εkΨk ð2:21Þ
where εk are the eigenvalues of the total Hamiltonian and Ψk are the corresponding
eigenfunctions. Substituting for Ψk from Eq. 2.12, one gets

H
n
cnkΦn ¼ εk

n
cnkΦn ð2:22Þ

Multiplying from the left by Φm and calculating the matrix element, we get

n

cnk < Φm Hj jΦn >¼ εk
n

cnk < Φm j Φn > ð2:23Þ

Since the basis functions {Φn} are orthogonal, Eq. 2.23 simplifies to

n
cnk < Φm Hj jΦn >¼ εkcmk ð2:24Þ

In short notation,

n

cnkH mn ¼ εkcmk ð2:25Þ

By changing Φm for multiplication in Eq. 2.23, one can get a set of 2p homoge-
neous equations for the coefficients in Eq. 2.25. Further, the state function of the
system has to be normalized which leads to the condition

n

cnkj j2 ¼ 1 ð2:26Þ

From these, the coefficients can be determined and thereby the eigenfunctions for
all the eigenvalues. In the following, we shall carry out explicit calculations for a
two-spin system as an illustration, and then the results for more complex systems
will be simply presented and discussed.

2.4.2.1 Two-Spin AB Case
The Hamiltonian for a system of two I ¼ 1

2 spins is written as

H ¼ 1
2π

γ1H1Iz1 þ γ2H2Iz2½ � þ JI1:I2 ð2:27Þ

¼ v1Iz1 þ v2Iz2 þ JI1:I2 ð2:28Þ
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We then construct a basis set of four product functions Φ1 ¼ αα, Φ2 ¼ αβ,
Φ3 ¼ βα, and Φ4 ¼ ββ. All these functions are orthogonal by virtue of the fact that α
and β are orthogonal. That means, for example,

< αα αβ >¼< αj jα >< α j β >¼ 0 ð2:29Þ
Similar equations hold for the other functions as well. Using these properties and

also the property that the α and β functions are eigenfunctions of the Iz operators, we
can calculate the matrix elements of the Hamilto/nian.

H 11 ¼< ααjHjαα >¼ v1 < αjIz1jα >< αjα > þv2 < αjIz2jα >< αjα >

þJ < ααjIx1Ix2 þ Iy1Iy2 þ Iz1Iz2jαα >
ð2:30Þ

¼ ðv1 þ v2Þ
2

þ Jf< ααjIx1Ix2jαα > þ < ααjIy1Iy2jαα > þ < ααjIz1Iz2jαα >g
ð2:31Þ

¼ ðv1 þ v2Þ
2

þ Jf < αjIx1jα >< αjIx2jα > þ < αjIy1jα >< αjIy2jα > þ
< αjIz1jα >< αjIz2jα >g ð2:32Þ

Matrix elements of Ix and Iy can be calculated by making use of the “raising and
lowering” operators I+and I2 as follows:

Ix ¼ Iþ þ I�

2
; Iy ¼ Iþ � I�

2i
ð2:33Þ

These operators have the following properties:

Iþ j α > = 0 Iþ j β > = j α > ð2:34Þ
I� j α >¼j β > I� j β >¼ 0 ð2:35Þ

Thus, Eq. 2.32 simplifies to

H 11 ¼ ðv1 þ v2Þ
2

þ Jð0þ 0þ 1
4
Þ ¼ ðv1 þ v2Þ

2
þ J
4

ð2:36Þ

Similarly, the other matrix elements can be calculated, and these are

H 12 ¼ 0;H 13 ¼ 0;H 14 ¼ 0

H 21 ¼ 0;H 22 ¼ ðv1 � v2Þ
2

� J
4
;H 23 ¼ J

2
;H 24 ¼ 0
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H 31 ¼ 0;H 32 ¼ J
2
;H 33 ¼ ðv2 � v1Þ

2
� J
4
; H 34 ¼ 0

H 41 ¼ 0;H 42 ¼ 0;H 43 ¼ 0;H 44 ¼ �ðv1 þ v2Þ
2

þ J
4

ð2:37Þ

Thus, the matrix representation of the Hamiltonian in the product basis is

H ¼

ðv1 þ v2Þ
2

þ J
4

0 0 0

0
ðv1 � v2Þ

2
� J
4

J
2

0

0

0

J
2
0

ðv2 � v1Þ
2

� J
4

0

0

� ðv1 þ v2Þ
2

þ J
4

ð2:38Þ
The matrix in Eq. 2.38 must be diagonalized to get the eigenvalues of the

Hamiltonian. These yield the energy levels of the system. It is clear that H 11 and
H 44 are themselves two of the eigenvalues and yield two energy values E1 and E4.
The central 2� 2 matrix yields the remaining two energy values E2 and E3. Defining
(v1�v2) ¼ δ , the central 2 � 2 matrix can be written as

δ
2
� J
4

J
2

J
2

� δ
2
þ J
4

The eigenvalues of this matrix are the solutions of the determinantal equation:

δ
2
� J
4
� E

J
2

J
2

� δ
2
þ J
4

� E
¼ 0 ð2:39Þ

This leads to the two eigenvalues:

E2 ¼ � J
4
þ 1
2

δ2 þ J2;E3 ¼ � J
4
� 1
2

δ2 þ J2 ð2:40Þ

Defining

C cos 2θ ¼ δ
2

and C sin 2θ ¼ J
2

ð2:41Þ

C ¼ 1
2

δ2 þ J2 ð2:42Þ

The four energy values are thus
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E1 ¼ ðv1 þ v2Þ
2

þ J
4
;

E2 ¼ � J
4
þ C;

E3 ¼ � J
4
� C;

E4 ¼ �ðv1 þ v2Þ
2

þ J
4

ð2:43Þ

(Note: The αα state has the highest energy since the magnetic field has been taken to
be along the negative z-axis.)

We will now illustrate the determination of the eigenfunctions corresponding to
the eigenvalues. First of all, the fact that the matrix representation of the Hamiltonian
in Eq. 2.38 has only diagonal elements in the first and the last rows implies that the
Hamiltonian operator leaves the αα and the ββ states unaltered; in other words, it
does not mix these states. Thus

H αα >¼ E1j jαα > H j ββ >¼ E4 j ββ > ð2:44Þ
That is, αα and ββ states are two of the eigenfunctions of the Hamiltonian with the

eigenvalues E1 and E4, respectively.

Ψ1 ¼ αα >j
Ψ4 ¼ ββ >j ð2:45Þ

For the other two eigenfunctions corresponding to E2 and E3, we follow the
procedure described before. However, we show here an explicit calculation only for
E2 as an illustration. Referring to Eq. 2.24, one can write the linear equations for the
coefficients using the elements of the 2 � 2 matrix portion of the Hamiltonian.

H22 � E2ð ÞC22 þ H23C32 ¼ 0

H32C22 þ H33 � E2ð ÞC32 ¼ 0
ð2:46Þ

Substituting for the different matrix elements and the eigenvalue, we obtain

δ
2
� C C22 þ J

2
C32 ¼ 0

J
2
C22 þ � δ

2
� C C32 ¼ 0

ð2:47Þ

Substituting for C from Eq. 2.41, we get

C22 cos 2θ � 1ð Þ þ C32 sin 2θð Þ ¼ 0 ð2:48Þ
Using the normalization condition

C22
2 þ C32

2 ¼ 1 ð2:49Þ
one obtains after a little bit of algebra
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C22 ¼ cos θ C32 ¼ sin θ ð2:50Þ
Thus, the eigenfunction corresponding to E2 is given by

Ψ2 ¼ cos θ αβ > þ sin θj jβα > ð2:51Þ
Similarly, Ψ3 corresponding to E3 can be shown to be

Ψ3 ¼ � sin θ αβ > þ cos θj jβα > ð2:52Þ
Equations 2.51 and 2.52 indicate that the product functions αβ and βα get mixed

due to the coupling between the spins. The extent of mixing is determined by the
coefficients which are dependent on the relative magnitudes of the coupling constant
and the chemical shift separation between the spins. Larger the J

δ ratio stronger will
be the mixing and vice versa.

Having obtained the eigenfunctions and the eigenvalues of the Hamiltonian, we
will now try to calculate the intensities of the various transitions by calculating the
transition probabilities. For the radiofrequency-induced transitions between any two
of these states, say m and m', the quantum mechanical transition probability is given
by

Pmm0 ¼ γ2H2
1j< m0jI : xjm >j2gðvÞ ð2:53Þ

Here, the RF is assumed to be applied along the x-axis, H1 is the amplitude of the
RF, and g(v) is the lineshape function. From the properties of the Ix operator defined
in Eqs. 2.33–2.35 and the eigenfunctions derived above (Eqs. 2.45, 2.51, and 2.52),
it can be seen that there will be four transitions with nonzero transition probabilities
and these are

Ψ2 ! Ψ1,Ψ4 ! Ψ2,Ψ3 ! Ψ1,Ψ4 ! Ψ3 ð2:54Þ
This is the origin of the selection rule for observable transitions in NMR. The

relative intensities of the four transitions turn out to be as indicated in Table 2.6.
Now,

sin 2θ ¼ J
2C

¼ J

δ2 þ J2
¼ 1

1þ δ
J

2
ð2:55Þ

Table 2.6 Transitions and
relative intensities in an AB
system

Transition Frequency Relative intensity

3 ! 1 ðv1þv2Þ
2 þ J

2 þ C 1 � sin 2θ

4 ! 2 ðv1þv2Þ
2 � J

2 þ C 1 + sin 2θ

2 ! 1 ðv1þv2Þ
2 þ J

2 � C 1 + sin 2θ

4 ! 3 ðv1þv2Þ
2 � J

2 � C 1 � sin 2θ
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The midpoint of transitions 3 ! 1 and 4 ! 2 is ðv1þv2Þ
2 þ C, and that between

transitions 2! 1 and 4! 3 is ðv1þv2Þ
2 � C. These do not correspond to the chemical

shifts of spins 1 and 2, as in the case of a weakly coupled AX system.
If δ

J
2 � 1, i.e., if the spins are weakly coupled, then sin2θ ¼ 0. Then all the four

transitions listed in Table 2.6 will have identical intensities. It also follows that
cosθ ¼ 1 and sinθ ¼ 0. Because of this, the mixing of product functions seen in the
eigenfunctions vanishes, and the product functions become the eigenfunctions of the
Hamiltonian. The four transitions can then be identified as belonging to particular
spins. Then we can see that the center of each doublet corresponds to the chemical
shift of the respective spin. For example, the midpoint of 4 ! 2 and 3 ! 1
transitions in which spin 1 undergoes a transition from α to β state is

1
2
½v4!2 þ v3!1� ¼ 1

2
ðC þ v1 þ v2Þ ¼ 1

2
ðδþ v1 þ v2Þ ¼ v1 ð2:56Þ

These are indeed the rules in the first-order analysis of spectra. The parameter θ
which manifests in the presence of strong coupling and alters the intensities and
frequencies of the transitions is therefore called the strong coupling parameter. We
shall examine a few special situations to bring out the effects of strong coupling in
the appearance of the spectra. Figure 2.12 shows schematically how the spectrum of
a two-spin system changes as the ratio J

δ changes.

Fig. 2.12 Simulated NMR spectra for an AB spin system with 10 Hz of scalar coupling
(JAB ¼ 10 Hz). These spectra are generated at different ratios of J

δ
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We see that at large values of the ratio, the outer transitions almost vanish, and if
their intensities are lower than the S/N ratio in the spectrum, then the spectrum will
consist of only two lines. This can be completely misinterpreted as belonging to two
uncoupled singlets or a doublet with a wrong coupling constant. In the limit of
infinite value of J

δ, i.e., when the two spins are equivalent, the outer two transitions
would have identically zero intensity (sin2θ ¼ 1), and the inner two transitions
would have the same energy v ¼ v1 ¼ v2 ¼ 1

2 ðv1 þ v2Þ . This explains why the
coupling between equivalent spins does not lead to the splitting of lines in the
NMR spectrum. Under this limit of equivalence of two spins (A2), sin θ ¼
cos θ ¼ 1

2
p , the eigenfunctions will become Ψ1 ¼ αα, Ψ2 ¼ 1

2
p αβ þ βαð Þ , Ψ3 ¼

1
2

p αβ � βαð Þ, and Ψ4 ¼ ββ. Functions Ψ1, Ψ2, and Ψ4 are symmetric with respect to

interchange of spin states of the two spins, and Ψ3 is antisymmetric (the
eigenfunction changes sign on interchanging the spin states of the two spins).

In summary, the effects of strong coupling are as follows: (i) the spins lose their
identity; the transitions cannot be described as belonging to this spin, that spin, etc.;
(ii) the transitions will have different intensities; (iii) the product functions
corresponding to the same total z-component of spin get mixed; and (iv) the chemi-
cal shifts of the spins cannot be determined by simple inspection of the spectra; the
coupling constant can however still be measured from the separation of the lines as
in the first-order analysis.

2.4.2.2 NMR Spectra of Three Coupled Nuclei
Different types of coupling networks can occur in three spin systems. The spins can
be either in a linear coupling network or in a triangular coupling network. In the
former case, there will be only two coupling constants, and, in the latter, there will be
three coupling constants. In all these, different situations can arise; such as (1) all the
spins may be nonequivalent and weakly coupled; (2) two spins may be equivalent
and weakly or strongly coupled to the third spin; (3) all the spins may be nonequiv-
alent and two of them may be strongly coupled; or (4) in the most general case, all
the three spins may be nonequivalent and strongly coupled. These coupling
networks are schematically indicated in Fig. 2.13.

AMX is the simplest of all the spin systems and is amenable to the first-order
analysis. All the spins are weakly coupled and all the transitions have equal
intensities. At the other extreme is the ABC system in which all the three spins are

Fig. 2.13 A schematic
representation of linear and
triangular coupling networks
possible in three spin systems
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strongly coupled. While this represents the most general case for detailed quantum
mechanical analysis, it is also the most difficult to obtain analytical solutions for the
eigenvalues and the eigenfunctions. Fortunately, however, strongly coupled systems
can be converted to weakly coupled networks by going to higher magnetic fields,
whereby the separations between the resonance frequencies increase, while the
coupling constants remain unchanged. We do not intend to show the various
calculations here but shall present the results for some special cases as illustrations.
Table 2.7 gives the eigenvalues and the eigenfunctions for the AB2 system in the
limit of weak coupling between A and B. One can see that these are products of α
and β states for spin A and the eigenfunctions of the B2 system. In the case of strong
coupling, there will be further mixing of these functions leading to the following
eigenfunctions and energies as indicated in Table 2.8. Tables 2.9 and 2.10 give the
transition frequencies and the relative intensities of the AB2 and AX2 systems,
respectively.

C+ and C� and angles θ+ nad θ� are positive quantities defined as

Cþ cos 2θþ ¼ 1
2

vA � vBð Þ þ 1
4
JAB

Cþ sin 2θþ ¼ 1

2
p JAB

Table 2.7 Eigenvalues and eigenfunctions in an AB2 system

S. no. Symmetry labela Eigenfunction Energy

1 s3/2 ααα 1
2 vA þ vB þ 1

2 JAB þ 1
4 JBB

2 1s1/2 α(αβ + βα)/ 2
p 1

2 vA þ 1
4 JBB

3 2s1/2 βαα � 1
2 vA þ vB � 1

2 JAB þ 1
4 JBB

4 1s�1/2 αββ 1
2 vA � vB � 1

2 JAB þ 1
4 JBB

5 2s�1/2 β(αβ + βα)/ 2
p � 1

2 vA þ 1
4 JBB

6 s�3/2 βββ � 1
2 vA � vB þ 1

2 JAB þ 1
4 JBB

7 a1/2 α(αβ � βα)/ 2
p

1
2 vA � 3

4 JBB
8 a�1/2 β(αβ � βα)/ 2

p � 1
2 vA � 3

4 JBB
as and a indicate symmetric and antisymmetric eigenfunctions

Table 2.8 Mixing of states and corresponding energies in the AB2 system

S. no. Symmetry label Eigenfunction Energy

2’ 1s01/2 cosθ+(1s1/2) + sin θ+(2s1/2) 1
2 vB þ 1

4 JBB � JABð Þ þ Cþ
3’ 2s01/2 � sin θ+(1s1/2) + cos θ+(2s1/2) 1

2 vB þ 1
4 JBB � JABð Þ � Cþ

4’ 1s0�1/2 cosθ�(1s�1/2) + sin θ�(2s�1/2) � 1
2 vB þ 1

4 JBB � JABð Þ þ C�
5’ 2s0�1/2 � sin θ�(1s�1/2) + cos θ�(2s�1/2) � 1

2 vB þ 1
4 JBB � JABð Þ � C�
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C� cos 2θ� ¼ 1
2

vA � vBð Þ � 1
4
JAB

C�sin2θ� ¼ 1

2
p JAB

Defining δ ¼ (vA � vB),

Cþ ¼ 1
2

δ2 þ δJAB þ 9
4
JAB

2
1
2

C� ¼ 1
2

δ2 � δJAB þ 9
4
JAB

2
1
2

In the limit of weak coupling between A and B, θ� and θ+will tend to be zero, and
the primed states reduce to the unprimed states. There will be no transitions between
symmetric and antisymmetric eigenfunctions; hence, there will be a total of nine
transitions, eight symmetrical, and one antisymmetrical. These are indicated in
Table 2.9. Transition, in the limit of weak coupling reduces to αββ to βαα, which
cannot be ascribed to any spin and is thus referred to as combination line.

In the limit of weak coupling θ+ ¼ θ�, Table 2.9 transforms as Table 2.10.
Table 2.11 gives the eigenvalues and eigenfunctions of the ABX system.

Table 2.12 gives the transitions frequencies and their relative intensities.

Dþ cos 2φþ ¼ 1
2

vA � vBð Þ þ 1
4

JAX � JBXð Þ;D� cos 2φ�

¼ 1
2

vA � vBð Þ � 1
4

JAX � JBXð Þ

Dþ sin 2φþ ¼ 1
2
JAB;D� sin 2φ� ¼ 1

2
JAB

Table 2.10 Transitions and relative intensities in an AB2 system in the limit of weak coupling, i.e.,
AX2 system

S. no. Transition Nucleus Transition frequency Relative intensity

1 30 ! 1 A (vA) + JAB 1

2 50 ! 20 A (vA) 1

3 8 ! 7 A (vA) 1

4 6 ! 40 A (vA) � JAB 1

5 40 ! 20 B (vB) + JAB/2 2

6 20 ! 1 B (vB) + JAB/2 2

7 50 ! 30 B (vB) � JAB/2 2

8 6 ! 50 B (vB) � JAB/2 2

9 40 ! 30 Comm 2vB � vA 0
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vAB ¼ 1
2

vA þ vBð Þ

Midpoint of group 1: vAB � 1
2 JAX þ JBXð Þ . Mid-point of group 2: vAB þ 1

2 �
JAX þ JBXð Þ.
The separation between midpoints: JAX + JBX ¼ the separation between two

transitions of X (8 ! 7 and 2 ! 1). In the limit of weak coupling between A
and B, φ+ ¼ φ� ¼ 0; all the 12 transitions will have equal intensities.

Table 2.12 Transitions and relative intensities in an ABX system

S. no. Transition Nucleus Energy Relative intensity

1 8 ! 6 B vAB þ 1
4 �2JAB � JAX � JBX½ � � D� 1 � sin 2φ�

2 7 ! 4 B vAB þ 1
4 �2JAB þ JAX þ JBX½ � � Dþ 1 � sin 2φ+

3 5 ! 2 B vAB þ 1
4 2JAB � JAX � JBX½ � � D� 1 + sin 2φ�

4 3 ! 1 B vAB þ 1
4 2JAB þ JAX þ JBX½ � � Dþ 1 + sin 2φ+

5 8 ! 5 A vAB þ 1
4 �2JAB � JAX � JBX½ � þ D� 1 + sin 2φ�

6 7 ! 3 A vAB þ 1
4 �2JAB þ JAX þ JBX½ � þ Dþ 1 + sin 2φ+

7 6 ! 2 A vAB þ 1
4 2JAB � JAX � JBX½ � þ D� 1 � sin 2φ�

8 4 ! 1 A vAB þ 1
4 2JAB þ JAX þ JBX½ � þ Dþ 1 � sin 2φ+

9 8 ! 7 X vX � 1
2 JAX þ JBX½ � 1

10 5 ! 3 X vX + D+ � D� cos2(φ+ � φ�)
11 6 ! 4 X vX � D+ + D� cos2(φ+ � φ�)
12 2 ! 1 X vX þ 1

2 JAX þ JBX½ � 1

13 7 ! 2 Comb 2vAB � vX 0

14 5 ! 4 Comb (X) vX � D+ � D� sin2(φ+ � φ�)
15 6 ! 3 Comb (X) vX + D+ + D� sin2(φ+ � φ�)

Table 2.11 Eigenvalues and eigenfunctions in an ABX system

S. no. Eigenfunction Energy

1 ααα 1
2 vA þ vB þ vXð Þ þ 1

4 JAB þ JBX þ JAXð Þ
2 ααβ 1

2 vA þ vB � vXð Þ þ 1
4 JAB � JBX � JAXð Þ

3 cosφ+(αβα) + sin φ+(βαα) 1
2 vX � 1

4 JAB þ Dþ
4 � sin φ+(αβα) + cos φ+(βαα) 1

2 vX � 1
4 JAB � Dþ

5 cosφ�(αββ) + sin φ�(βαβ) � 1
2 vX � 1

4 JAB þ D�
6 � sin φ�(αββ) + cos φ�(βαβ) � 1

2 vX � 1
4 JAB � D�

7 ββα 1
2 �vA � vB þ vXð Þ þ 1

4 JAB � JBX � JAXð Þ
8 βββ 1

2 �vA � vB � vXð Þ þ 1
4 JAB þ JBX þ JAXð Þ
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In Tables 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12, the transitions are assigned to
particular spins, but it must be noted that this assignment is in the limit of the spectra
going over to first order. Otherwise, the transitions do not have any specific identity.
We should also note that there are combination lines which occur due to more than
one spins changing their polarizations. Such tables for other complex systems
involving four and five spins are available in other texts, and computer programs
are available for calculating the spectra of more complex spin systems. However, to
be able to appreciate the results of such calculations, we shall discuss here the spectra
of AB2 and ABX systems in some detail. Figures 2.14, 2.15, and 2.16 show
schematically the spectral features of these two-spin systems.

The AB2 system has a total of nine transitions, and their relative positions and
intensities are a sensitive function of the strong coupling-related parameter Jδ. At low
values of J

δ, only eight transitions are visible, and these are separated in two groups
which could be identified as belonging to A and B spins. As J

δ increases, the
transitions start separating nonuniformly, and the intensities also do not show a
simple pattern. The combination line (transition 9) makes its appearance. Slowly the
outer transitions start diminishing in intensity just like in the two-spin AB case, and
eventually a single will be seen in the limit of complete equivalence of all the three
spins, that is, an A3 system. From the transition energies and the relative intensities
given in Table 2.11, three useful features may be derived: (i) line 3 directly gives the
chemical shift of spin A (vA); its position is independent of the AB coupling. (ii) The
chemical shift of B (vB) is given by the mean of transitions 5 and 7. (iii) Once the
chemical shifts of A and B are determined, the coupling constant JAB can be
determined by adding transitions 1 and 6.

Fig. 2.14 Simulated NMR spectra for an AB2 spin system with 10 Hz of scalar coupling
(JAB ¼ 10 Hz). These spectra are generated at different ratios of J

δ . Herein, in order to see the
combination line (transition 9), the expanded region is plotted at an increased vertical scale
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v1 þ v6 ¼ vA þ vB þ 3JAB
2

ð2:57Þ

The AB2 pattern is sensitive to the sign of δ but is insensitive to the sign of J, the
pattern shown in Fig. 2.14 being for the positive value of δ. For the negative value of
δ, the order of the transitions will have to be reversed (see Table 2.11). However, for
a negative value of J, the appearance of the spectrum remains unaltered although the
numbering of the transitions in decreasing order of energy will have to be changed.

Fig. 2.15 (a) Expanded AB part of the simulated NMR spectra for a ABX spin system. This
spectrum is generated with scalar coupling values of JAB¼ 13 Hz, JAX¼ 3 Hz, and JBX¼ 10 Hz. (b)
A schematic description of the two AB-type segments and parameters corresponding to the
separation between the lines
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The ABX spectrum contains two parts: an AB part (Fig. 2.15) and an X part
(Fig. 2.16). The AB part consists of two groups of four lines having the definite
pattern of a two-spin AB system. The two groups are interspersed, and often the
difficult task is to identify the two groups properly. The X part of the spectrum
contains six lines with an intensity pattern as shown. In order to facilitate the analysis
of these spectra, the AB and X parts are separately presented in Figs. 2.15 and 2.16,
respectively, indicating the separations between the transitions in terms of the
different parameters. In Fig. 2.15a the simulations for a particular choice of coupling
constants are shown. In Fig. 2.15b, the two AB groups are separately shown
schematically to facilitate the analysis of the spectra as indicated.

The two groups of transitions in AB are labeled as 1, 3, 5, and 7 and 2, 4, 6, and
8, and we notice that the easiest parameter to identify is the JAB coupling constant.
The midpoints of the two quartets are separated by JAXþJBXj j

2 . Notice, however, that the
signs of the coupling constants cannot be determined from these spectra. The
parameters D+ and D� which depend on the difference JAX � JBX enable however
the determination of the relative signs of the coupling constants. The spectral
patterns are sensitive to the relative signs of JAX and JBX couplings as shown in
Fig. 2.17.

In the X part (Fig. 2.16), the transitions 9 and 12 have the highest intensity,
and there are two weak transitions outside of these, and there are two weak
transitions on the interior. The separations also allow determination of jJAX + JBXj
and also |D+ + D�j and |D+ � D�j.

Fig. 2.16 Expanded X part of the simulated NMR spectra for an ABX spin system. This spectrum
is generated with scalar coupling values of JAB ¼ 13 Hz, JAX ¼ 3 Hz, and JBX ¼ 10 Hz
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2.5 Dynamic Effects in the NMR Spectra

Until now we had been concerned with spectra of spin systems not undergoing any
time-dependent changes, and the spectral features were calculated accordingly.
However, in several situations, this is no longer valid, and the dynamism in the
system does reflect in line positions and lineshapes in the NMR spectra. We are now
talking about phenomena such as chemical exchange of a nuclear species between
two or more sites in a molecule, the sites having different chemical environments,
the exchange of a nucleus between two molecules either of the same type or of
different types, conformational transitions in a single molecule, etc. All these
phenomena constitute the so-called dynamic NMR spectroscopy. In the following,

Fig. 2.17 Expanded AB (a) and X (b) parts of the simulated NMR spectra for an ABX spin
system. Herein, in order to see the effect of scalar coupling signs, spectra are generated with scalar
coupling values of JAB ¼ 13 Hz, JAX ¼ 3 Hz, and JBX ¼ � 10 Hz
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we shall describe in some detail the effects of time-dependent perturbations on the
NMR spectra of molecules.

2.5.1 Two-Site Chemical Exchange

Let us consider first a simple case of a spin exchanging between two chemically
different sites so that it has different resonance frequencies at the two sites. Let us
also assume that the spin does not have any J coupling with any other spin; the
conclusions however are also valid for systems with J coupling. A common example
would be a hydroxyl proton in an alcohol exchanging with water protons. If the
exchange is slow, that is, the hydroxyl proton stays for enough time in each of the
positions and undergoes spin flip by absorbing energy at the respective frequencies,
then there will be two separate lines in the NMR spectrum. If, on the other hand, the
exchange is faster than the time it takes for the spin flip to occur at either of the
positions, the proton will only see an average chemical environment during the time
of its spin slip, and thus there will be only one line in the spectrum, at a frequency
dictated by the weighted average of the two frequencies.

A quantitative analysis of these effects is best obtained by considering Bloch
equations modified to include magnetization changes due to exchange phenomena.
We have seen earlier in the first chapter that the signal shapes are dependent on the
behavior of the magnetization components in the rotating frame of reference of the
applied RF field. When the RF is weak—a condition which is easily satisfied—the
Bloch equations in the rotating frame are given by

du
dt

þ u
T2

þ ωo � ωð Þv ¼ 0 ð2:58Þ

dv
dt

þ v
T2

þ ωo � ωð Þu ¼ �γH1Mo ð2:59Þ

where u and v are the rotating frame magnetization components parallel and orthog-
onal to the RF field; they are also referred to as the real and imaginary components of
the rotating frame magnetization. Taking this definition and defining a complex
magnetization

G ¼ uþ iv ð2:60Þ
an equation for rate of change in G can be written as

dG
dt

þ 1
T2

� i ωo � ωð ÞG ¼ �iγH1Mo ð2:61Þ

Now, for an exchanging system, the complex magnetization at the two sites can
be different. Thus, defining these as GA and GB for the sites A and B, respectively,

dGA

dt
þ αAGA ¼ �iγH1MoA ð2:62Þ
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dGB

dt
þ αBGB ¼ �iγH1MoB ð2:63Þ

where αA and αB are defined as

αA ¼ 1
T2A

� i ωA � ωð Þ ð2:64Þ

αB ¼ 1
T2B

� i ωB � ωð Þ ð2:65Þ

The Bloch equations given in Eqs. 2.62–2.63 have to be now modified to include
the effects of exchange, A ! B, which affects the magnetizations at the two sites.
Assuming first-order kinetics for the exchange, the two equations can be written as

dGA

dt
þ αAGA ¼ �iγH1MoA þ GB

τB
� GA

τA
ð2:66Þ

dGB

dt
þ αBGB ¼ �iγH1MoB þ GA

τA
� GB

τB
ð2:67Þ

where τA and τB are the lifetimes of the spin in the A and the B sites, respectively;
thus their inverses represent the rate constants for the exchange process. The steady-
state solutions of these equations can be obtained as before by setting

dGA

dt
¼ dGB

dt
¼ 0 ð2:68Þ

The total complex moment is given by

G ¼ GA þ GB ¼ �iγH1Mo
τA þ τB þ τAτB αBpA þ αApBð Þ½ �

1þ αAτAð Þ 1þ αBτBð Þ � 1½ � ð2:69Þ

where pA and pB are the populations of the A and B sites and Mo is the total
magnetization; that is,

pA ¼ τA
τA þ τB

; pB ¼ τB
τA þ τB

ð2:70Þ

MoA ¼ pAMo;MoB ¼ pBMo ð2:71Þ
The imaginary part of G determines the absorptive lineshape in the spectrum. It is

clear that the lineshape will depend upon the lifetimes of the spin in the two sites,
relaxation times of the spin at the two sites, and also the two populations. The
equations however simplify under extreme conditions of slow and fast exchanges.

In the limit of slow exchange, meaning, where τA and τB are much larger than
(ωA � ωB)

�1, the spectrum will consist of two distinct lines. In this limit, G will be
nearly equal to GA when ω is near ωA and will be nearly equal to GB when ω is near
ωB. The expression for G, when ω is near ωA, for example, will be (from Eq. 2.66 by
setting GB ¼ 0)
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G ¼ GA ¼ �iγH1Mo
pAτA

1þ τAαA
ð2:72Þ

The imaginary part of GA which determines the shape of the absorptive line will
be

v ¼ �γH1Mo
pAT

0
2A

1þ T02Að Þ2 ωA � ωð Þ2 ð2:73Þ

where T02A is given by

T 02Að Þ�1 ¼ T2Að Þ�1 þ τAð Þ�1 ð2:74Þ
Thus, we see that the line is broadened by an amount (τA)

�1. This provides a
means of estimating exchange rates by measuring the line broadenings.

In the limit of rapid exchange, the lifetimes are short, and the exchange rates are
much larger than the separation between the resonance frequencies of the two sites.
One can then neglect all terms involving products of lifetimes in Eq. 2.69, and the
expression for G becomes

G ¼ �iγH1Mo
τA þ τB

τAαA þ τBαB
¼ � iγH1Mo

pAαA þ pBαB
ð2:75Þ

The imaginary part of G is given by

v ¼ �iH1Mo
T 0
2

1þ ðT 0
2Þ2ðpAωA þ pBωB � ωÞ2 ð2:76Þ

We now observe that there will be a single line in the spectrum at a frequency
which is the weighted average of the two frequencies ωA and ωB. The width of this
line will now be related to T02 which is given by

T 0
2
�1 ¼ pAT2A

�1 þ pBT2B
�1 ð2:77Þ

Thus, rapid exchange leads to the collapse of signals to a single mean frequency
with a width which is also the weighted mean of the two linewidths in the absence of
exchange. The intensity of the line will be twice the intensity of the individual lines
in the limit of slow exchange.

For all intermediate exchange rates, the line-shapes will look fairly complex and
must be calculated from the complete expression for G. Figure 2.18 shows calculated
line-shapes for a few exchange rates starting from slow exchange to fast exchange
passing through a set of intermediate values, under the simplifying assumptions

pA ¼ pB ¼ 1
2
; τA ¼ τB ¼ 2τ; T2A

�1 ¼ T2B
�1 ¼ 0 ð2:78Þ
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We observe that at one stage when τ(ωA � ωB) ¼ 1.414, a single broad line
occurs, and this condition is referred to as the “coalescence condition.” Figures 2.19
and 2.20 show experimental illustrations for two uncoupled and two coupled spins,
respectively, of the changes in the band shapes as the exchange rates are changed by
changing the temperatures. The coalescence condition is a distinctive situation
which can be easily detected. This permits the calculation of the exchange rates
and consequently the life times under this condition and provides another “NMR
timescale” which is applicable to exchanging systems. It is important to note that the
coalescence condition is field-dependent since the Larmor frequency difference
between the two sites is dependent on the strength of the applied field.

2.5.2 The Collapse of Spin Multiplets

So far, we considered an isolated spin exchanging between two chemically different
sites. The theory developed however is applicable to coupled spin systems as well,
wherein the resonance frequency of a particular spin changes from one value to
another in its multiplet lines due to spin flips of the spins to which it is J coupled. In
this situation, the exchange rate will be determined by the relaxation times of the
other coupled spins. It is also possible that a spin jumps from one molecule to
another, and in so doing, it changes its relative polarization. Because of this, the
other spins J-coupled to the hopping spin experience the same kind of exchange
within the multiplet lines. The same thing happens with the hopping spin as well.

Fig. 2.18 Simulated NMR spectra for a two-site exchange at different exchange rates
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Depending upon the exchange rates, the multiplets can collapse as in the case of the
rapid exchange described above.

A classic example of this is the spectrum of ethyl alcohol. For ease of under-
standing, we will consider one of the methylene protons (HA) and the hydroxyl
proton (HB) which are J-coupled (Fig. 2.21a). The methylene proton resonance (HA)
is a doublet because of the two possible polarizations of the hydroxyl proton HB.
Similarly, the HB proton is also a doublet because of two possible polarizations of
HA. However, in alcohol, the hydroxyl proton of one molecule is hydrogen bonded
to the oxygen of another molecule, and there is a continuous exchange between two
sites. The hydroxyl protons jump between different alcohol molecules.

Referring to Fig. 2.21b, the HA proton experiences this jumping of hydroxyl
protons between molecules. Therefore, the HA proton may see different polarizations
of the hydroxyl proton (HB in α state, HB’ in β state). Thus, within the HA doublet,

Fig. 2.19 Two-site chemical exchange experimental spectra recorded on 3- dimethylamino-7-
methyl-1,2,4-benzotriazine, as a function of temperature. (Reproduced from Annual Reports on
NMR Spectroscopy. 63, 23 (2008), with the permission of Elsevier Publishing)
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there will be continuous exchange between the two lines; if this exchange is slow
compared to the J-coupling constant, the two lines will be seen separately. On the
other hand, if the exchange is very rapid compared to the coupling constant, there
will be averaging as indicated in the previous section, and there is only one
resonance line at vA. The same argument can be extended to the second magnetically
equivalent methylene proton.

Similarly, referring to Fig. 2.21c, the hydroxyl proton (HB) when it jumps
between two molecules may see the methylene protons (HA and HA’) in α and β
polarization states. Therefore, this exchange depending upon the exchange rate can
again result in an averaging of two lines of the HB doublet producing a single
resonance at vB. The same argument can be extended to the second magnetically
equivalent methylene proton (not indicated in the figure). Thus, the hydroxyl proton
will appear as a singlet instead of a triplet.

The exchange rates can be influenced by changing the experimental conditions.
For example, an addition of a small amount of an acid to pure alcohol increases the
exchange rates rapidly and results in the collapse of the multiplets. The coupling of

Fig. 2.20 Resonances of the bridge protons depending on the temperature (in COS/CS2 (80:20);
100 MHz); left- (experimental) and right-hand (simulated spectra) with the corresponding reaction
rate constants. (Reproduced from Angew. Chem, 9, 513 (1970), with the permission of Wiley
Publishing)
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Fig. 2.21 (a) The splitting patterns due to J-coupling with the hydroxyl proton (HB) for an alcohol
considering one of the methylene protons (HA). vA represents the chemical shift of HA, and vB
represents the chemical shift of HB. The two lines in the doublet HA arise because of different
polarizations of HB (α and β). Similarly, the two lines in HB doublet arise because of different
polarization of HA (α and β). (b) Hydrogen bonding network of the hydroxyl protons in alcohol:
The hydroxyl protons jump between two sites; therefore, when a molecule loses its hydroxyl proton
to a second molecule, it may gain the same from a third molecule. It can happen that the polarization
of the lost and gained hydroxyl protons could be different; thus, HB and HB’ may have α and β
polarizations; because this is a dynamic process, the HA proton will see the hydroxyl protons in
either of the orientations. If the exchange process is slow, then the HA will appear as a doublet,
whereas if the exchange rate (k) is much higher than the coupling constant (J ), then it will average to
a single line (vA). (c) The hydroxyl proton (HB) may see the methylene proton (HA) in different
polarizations (α and β) on the two molecules. So, this can result in averaging as in (b) depending
upon the magnitude of the exchange rate
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Fig. 2.22 1H NMR spectrum of ethanol with added acid impurities, which results in the collapse of
scalar coupling between CH2 and -OH groups

Fig. 2.23 Scalar couplings between two spins at different conformations A (upper trace) and B
(middle trace). These scalar couplings average due to the rapid conformational transition, and that
results in Javg (lower trace)



hydroxyl proton to methylene protons will be eliminated. Similar arguments can be
extended to other alcohols and exchanging systems (Fig. 2.22).

Such effects of multiplet collapse are also encountered when one of the spins
coupled to the observed nucleus is an unpaired electron which undergoes rapid
transitions between its two Zeeman states. This results in a substantial broadening of
the resonance line of the nucleus.

2.5.3 Conformational Averaging of J-values

A consequence of the multiplet collapse due to rapid exchange is the “averaging of
J-values” due to conformational transitions in molecules. This phenomenon is
schematically shown in Fig. 2.23.

In conformation A, a particular proton has a coupling constant JA and is accord-
ingly split into two lines A1 and A2 with that separation. In conformation B, the
particular proton has coupling constant JB and would be split into two lines B1 and
B2 with this new separation. Transitions A1 and B1 correspond to the same
configuration of the spin to which the proton is coupled, as well as the A2 and the
B2 transitions but with the different spin configuration. Now if the molecule is
undergoing rapid exchange between the two conformations A and B, transitions A1
and B1 collapse to a single line at their weighted mean position, and transitions A2
and B2 collapse to their weighted mean position. Thus the separation between the
two transitions will now be different from both JA and JB; the new coupling constant
will be a weighted average of JA and JB.

Javg ¼ pAJA þ pBJB ð2:79Þ
This kind of averaging occurs almost invariably in all molecules and complicates

the interpretation of the coupling constants in terms of structures of molecules in
solution media. These aspects will be discussed in later chapters.

2.6 Summary

• NMR spectral features, namely, chemical shift and coupling constant are
described.

• The analysis of the spectra for different most common two- and three-spin
systems is described. The concepts of weak and strong coupling and their
influence on the spectral appearance are described.

• Spectral alterations due to dynamism in the molecular systems are described.
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2.8 Exercises

2.1. Two protons, A and B, give peaks at 3 ppm and 5 ppm, respectively, on a
500 MHz spectrometer. The separation between A and B on a 300 MHz
spectrometer will be
(a) 2 MHz (b) 2 kHz (c) 600 Hz (d) 200 Hz (e) 6

kHz
2.2. A molecule with a molecular formula C3H6O produces a single line in the

proton NMR spectrum. How many peaks would a proton-decoupled 13C
spectrum of the molecule produce?
(a) 1 (b) 2 (c) 3 (d) 5

2.3. How many peaks would a 1D 13C spectrum of 50% deuterated chloroform
will have?
(a) 1 (b) 2 (c) 3 (d) 5

2.4. The proton spectrum of vinyl chloride (H2C¼CH-Cl) will consist of
(a) a doublet and a triplet
(b) two doublets
(c) two triplets
(d) three doublets of doublets

2.5. Which among the following commutation relationships is correct?
(a) [Ix, Iy] ¼ iIz
(b) [Ix, Iy] ¼ � iIz
(c) [Ix, Iz] ¼ iIy
(d) [Iy, Iz] ¼ � iIx

2.6. The proton spectrum of a 25% 13C-labeled CH3COOD will have
(a) one peak
(b) three peaks of equal intensities
(c) three peaks of intensities of ratio 1:6:1
(d) three peaks of intensities of ratio 1:1:6

2.7. Which proton will be most downfield shifted in CH3-CH¼CH-CHO
molecule?
(a) Proton in the methyl group
(b) Proton attached to the carbon adjacent to the methyl group
(c) Proton attached to the carbon adjacent to the aldehyde group
(d) Proton in the aldehyde group

2.8. The chemical shift (ppm) of the proton in the NMR spectrum reflects on

86 2 High-Resolution NMR Spectra of Molecules



(a) the relative population of the different protons in the sample
(b) the electronic environment of the protons in the molecule
(c) the relative population of the protons with respect to a reference
(d) none of the above

2.9. Hydrogen bond causes
(a) downfield shift of the bonded protons
(b) no change in the chemical shift
(c) upfield shift of the bonded proton
(d) disappearance of the peak

2.10. In an aromatic ring, a proton in the plane of the ring due to ring current effect
will be
(a) upfield shifted
(b) downfield shifted
(c) broadened out
(d) not affected

2.11. A molecule with two protons coupled to each other produces a spectrum of
four lines. The chemical shifts of the two protons are 2.7 and 3.0 ppm. The
coupling constant is 10 Hz. The intensities of four lines in the decreasing order
of frequency on a 100MHz spectrometer will be
(a) 0.68, 1.32, 0.68, 1.32
(b) 0.68, 0.68, 1.32, 1.32
(c) 1.32, 0.68, 0.68, 1.32
(d) 0.68, 1.32, 1.32, 0.68

2.12. For a weakly coupled two spin system say (k, l ), the high-resolution Hamilto-
nian is
(a) ωkIkz + ωlIlz + 2πJklIkzIlz
(b) ωkIkx + ωlIlz + 2πJklIkxIlz
(c) Ikz + Ilz + 2πJklIkzIlz
(d) ωkIkx + ωlIly + 2πJklIkxIly

2.13. The eigenfunctions for a weakly coupled two-spin ½ system are αα, αβ, βα,
and ββ. Strong coupling leads to the mixing of
(a) αα, αβ
(b) αα, βα
(c) αβ, βα
(d) αα, ββ

2.14. Considering a two-spin system, prove H,Fz½ � ¼ HFz � FzH½ � ¼ 0.
2.15. Draw the schematic 400 MHz NMR spectra of the AMX spin system assum-

ing the chemicals shifts A¼2.0 ppm, M¼4.0 ppm, and X¼8.0 ppm and the
coupling constants J(A-M) ¼ 10 Hz, J(M-X) ¼ 5 Hz, and J(A-X) ¼ 7 Hz.

2.16. Extract the chemical shifts (Hz) and the coupling constants (Hz) of the
different protons in the given 1H NMR spectrum.

2.8 Exercises 87



2.17. Extract the chemical shifts (ppm) and the C-H coupling constants (Hz) of the
different carbons from the 13C NMR spectrum given.

2.18. Show by explicit calculation that for an A2 system the coupling between the
two spins does not appear in the spectrum.

2.19. Calculate the expected spectrum for an AB system given that the chemical
shift separation on a 100 MHz spectrometer is 50 Hz and the coupling constant
is 15 Hz. How would the spectrum look like when it is recorded on a 600 MHz
spectrometer?

2.20. Given that vA ¼ 200 Hz, vB ¼ 230 Hz, and JAB¼ 15 Hz, calculate the
frequencies and intensities of the AB2 spectrum, and simulate it using a
linewidth of 1 Hz.

2.21. Given the vA ¼ 150 Hz, vB ¼ 175 Hz, vX ¼ 4000 Hz, JAB¼ 12 Hz, JAX¼ 8 Hz,
and JBX¼ 4 Hz, calculate the frequencies and intensities of the ABX spectrum,
and simulate it using a linewidth of 1 Hz.
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Learning Objectives
• Introducing Fourier transform NMR
• NMR data acquisition and processing
• Mathematical aspects of Fourier transforms
• Signal phases in FT NMR spectra
• Dynamic range effects in FT NMR spectra
• Spin echo and its benefits
• Measurement of relaxation times

3.1 Introduction

In the early days of NMR, the spectra were recorded by keeping the frequency of the
RF fixed and sweeping the field continuously so as to match the resonance
conditions for the various lines sequentially in a spectrum. This was termed as
“slow passage” or “continuous wave” (CW) spectroscopy. The field sweep had to
be slow so that the spins follow the changes in the field and there is enough time for
the populations to readjust as dictated by the changing field. Since this is dependent
on the spin-lattice relaxation times of the spins, the sweep rate was dictated by the
relaxation times. The longer the relaxation times, the slower the sweep so that all the
frequencies were free of disturbances arising due to interferences between spins
lagging behind in following the magnetic field. Thus, typically for a 1H high-
resolution spectrum spanning about 1000 Hz, about 20–30 min would be required
to scan through the spectrum.

Now, in an NMR spectrum, the signal-to-noise (S/N) ratio for any peak is
defined as

S
N

¼ peak height above a mean noise level
maximum peak� peak separation in noise

� 2:5 ð3:1Þ

Given the fact that NMR is inherently an insensitive spectroscopic technique
compared to optical techniques, the S

N ratios are inherently poor, and it is invariably
necessary to adopt “signal averaging” techniques to enhance the sensitivities. What
this means is that the spectra have to be scanned several times and the data coadded.
In such an event, the peak height or the signal intensity increases proportionately to
the number of additions, but the maximum peak-peak separation in noise increases
as the square root of the number of additions. If n is the number of coadditions, then
the net gain in S/N will be a factor of square root of n. Thus, if a S/N enhancement by
a factor of p is desired, then the time required to achieve it will increase by a factor
p2. For example, if a scan through a NMR spectrum takes 30 min, then to achieve a
S/N enhancement by a factor of 5 would require 25 scans to be coadded, and the time
required would be 750 min or 12 h 30 min. This places stringent demands on the
spectrometer stability, temperature, etc. Alternatively, one has to work with highly

90 3 Fourier Transform NMR



concentrated samples so that excessive signal averaging may not be required to
observe the desired signals. Samples with low solubility or nuclei with low natural
abundance such as 13C or 15N are almost impossible to study. These turned out to be
serious limitations for applications of NMR.

The discovery of Fourier transform NMR in 1966 constituted the greatest revolu-
tion in NMR methodology and opened flood gates of applications in chemistry,
biology, and medicine. It was a totally new concept of recording NMR spectra and
enabled many possibilities for spin manipulations and observation of transient and
dynamic effects, hitherto impossible to investigate. In this chapter we shall discuss
the basic technique and the practical aspects of Fourier transform NMR.

3.2 Principles of Fourier Transform NMR

The fundamental difference between this new technique and the conventional CW
technique is that in FT NMR there is no sweeping of either the magnetic field or the
frequency. Information about all the resonances in the spectrum is collected indi-
rectly in a few seconds in the so-called time domain, and the frequency spectrum is
obtained by a mathematical transformation, namely, the Fourier transformation of
the collected data.

The trick is to simultaneously apply a large number of radiofrequency fields
(several thousands) covering a wide range of frequencies at any desired intervals at
one time so that there is always a RF frequency to satisfy the resonance condition of
every line in the spectrum. This is achieved by the application of a so-called RF
pulse. The pulse generates also frequencies which do not have resonance
counterparts, but these are automatically filtered out by the detection system as we
shall see in a short while.

A RF pulse is a RF applied for a short time τ, typically of the order of few
microseconds. This is shown schematically in Fig. 3.1.

Such an electronic switching produces an output which has a frequency distribu-
tion around the main RF frequency, say ωo, as shown in Fig. 3.2.

If τ is of the order of few microseconds, it is clear that a range of a MHz or at least
several KHz range of frequencies with similar amplitudes will be generated around
the central frequency ωo. This is certainly more than enough to cover all the
resonance frequencies present in any spectrum. The superposition of these different
frequency waves produces a wave pattern schematically shown in Fig. 3.3.

Because this pattern looks like a square wave, the RF pulse is often represented as
a square barrier. In the schematic Fig. 3.3, all the frequency waves are assumed to
have identical amplitudes. This is important because the amplitude of RF determines
the RF power and consequently the signal intensity. If the intensities of two
transitions have to be compared for some derivable information, it is necessary
that they are excited with identical RF powers. Therefore, referring to Fig. 3.2, we
see that only a small width around the central frequency should be retained and the
others filtered out by suitable electronic devices. However, for 10–20 KHz ranges,
this condition is easily satisfied, and this is enough for most situations. In certain
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situations, such as in 13C where spectral ranges are very large, some difficulties arise,
and then it becomes necessary to record spectra by applying pulses with different
central frequencies to observe different regions in the spectra. It is also obvious in
this context that the shorter the pulse, the better will be the spectral range of

Fig. 3.1 A schematic
representation of a radio
frequency pulse for a duration
of τ

Fig. 3.2 The frequency domain output of RF pulse. Here, the uniform excitation around the main
RF frequency ωo is highlighted in gray color
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observation. We will see later the factors which govern the choice of the pulse widths
in the context of optimizations of experimental conditions.

Now, what is the response of the system to the RF pulse, and what is the signal we
collect in an FTNMR experiment? This can be appreciated readily by going into the
rotating frame of the RF applied along the x-axis and looking at Larmor precession
in the classical picture (see Fig. 3.4).

In the rotating frame, the precessional frequency, ωr
i , of spin i is (ωi � ωo) as

indicated in Fig 3.4a. Translating this into magnetic field, the field along z-axis is
given by ωi�ωo

γ , which is denoted by Hr
i in Fig 3.4b.

Hr
i ¼

ωi � ωo

γ
ð3:2Þ

The effective field in the rotating frame will be a vector addition of H1 and Hr
i

which will be in the x-z plane.

Hr
i,eff ¼

ωi � ωoð Þ2 þ γH1ð Þ2
1
2

γ
ð3:3Þ

Fig. 3.3 Simulated wave
from the superposition of
different frequencies. Thick
blue wave form represents the
result of superposition

Fig. 3.4 (a) Rotating frame representation of precessional frequency, ωr
i ¼ ωi � ωo. (b) Translat-

ing ωr
i into magnetic field along z-axis is equal to Hr

i not shown in the figureð Þ. The effective field
(Heff) for nucleus i in the rotating frame is the vector addition of H1 and Hr

i
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tan θ ¼ Hr
i

H1
ð3:4Þ

ωr
i,eff ¼ �γHr

i,eff

If γH1 >> | ωi � ωo |
Hr

i,eff ffi H1

It is clear that the magnitude and direction of effective field critically depends on
the relative magnitudes of H1 and Hr

i . If H1 is very large compared to Hr
i , then Hr

i,eff

will be almost along the H1 axis. If this condition can be satisfied for all the spins in
the sample having different precessional frequencies, then the effective field will be
along H1 for all the spins in the system. The magnitude will also be practically equal
to H1, and then one can simply consider the behaviour of the spins under the
influence of this field.

In the rotating frame, the direction of Hr
i,eff acts as the axis of quantisation of the

spins, and they tend to orient with respect to this field. If this effective field is along
H1, for all the spins, then they have to undergo substantial changes with respect to
their energy levels, redistribution among these levels, etc., and the rate of these
changes will be governed by the relaxation times. The time requirement for complete
realignment would be of the order of seconds. Figure 3.5 shows the trajectory of the
magnetization as a function of time.

The frequency of precession will be given by

ωr ¼ �γH1 ð3:5Þ

Fig. 3.5 The trajectory of
rotation of net magnetization
when the effective field is H1,
leading to an eventual
alignment along H1
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If, however, the RF is applied for a short time τ as a pulse, the magnetization will
simply make a rotation in the y-z plane. The angle of rotation, called the flip angle θ,
is given by

θ ¼ �γH1τ ð3:6Þ
If τ is adjusted to cause a 90� rotation then, we say, we have 90� pulse; if it is

adjusted for a 180� rotation, then we have a 180� pulse; etc. After the RF pulse is
over, the effective field returns to Ho, and the magnetization returns to the z-axis.
This is schematically shown in Fig. 3.6.

This recovery is also governed by relaxation, and during this time, the various
spins precess with their characteristic frequencies. Such precessing magnetization
components can induce signal in a detector in the x-y plane, and the total signal
detected g(t) will have contributions from all the frequency components. In other
words, g(t) is the Fourier transform of the frequency spectrum of the sample.

g tð Þ ¼
n
an cosωnt þ

n
bn sinωnt

or

g tð Þ ¼ 1
2π

F ωð Þeiωtdω ð3:7Þ

Thus the response of the system to the RF pulse, recorded as a function of time,
enables unscrambling of the frequencies present in the spin system. The

Fig. 3.6 After the RF pulse,
the return of the magnetization
to the z-axis is schematically
shown in the black color
spiral cone
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time-dependent function which represents the total magnetization in the transverse
plane may be written as a new function f(t), as

f tð Þ ¼ g tð Þe�t=T2 ð3:8Þ
The function f(t) is called the “free induction decay” (FID), since it is recorded

during free precession in the absence of any perturbation, and it also decays due to T2
relaxation processes. The Fourier relation between FID and the spectrum is pictori-
ally shown in Fig. 3.7.

The above-described method of obtaining an NMR spectrum is the principle of
FTNMR technique and is summarized in Fig. 3.8.

The duration of the FID is governed by the T2 relaxation and thus will be of the
order of a few hundreds of milliseconds to seconds. A data collection of one FID
corresponds to one scan through the spectrum in the slow passage experiment.
Comparing the time factors of the two modes of NMR experiments, it is clear that

Fig. 3.7 Pictorial representation of Fourier relation between FID and the spectrum. Arbitrary
numbers are used

Fig. 3.8 A pictorial representation of Fourier relation between FID and spectrum with two
frequencies
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the FTNMR experiment results in 2–3 orders of magnitude saving in time. As a
consequence, in the time required for one CW scan, several transients can be
collected, and this amounts to an enhancement in the S/N ratio.

The advantages of such an enhancement in sensitivity are enormous. (1) Low
concentrations of the samples can be used. The concentrations are often limited by
solubility, availability, viscosity changes at high concentration, etc. (2) Nuclei with
low natural abundance such as 13C and 15N can be studied, providing additional
probes for the characterization of molecules. Signal averaging which is a must in
these cases can be easily performed. (3) Because of the enhanced speed of data
acquisition, short-lived species having half-lives of the order of seconds only can be
readily studied, and their kinetics of transformations can be investigated.
(4) Dynamical processes can be investigated, and data can be collected as a function
of time. These have opened up enormous applications of NMR in various areas of
chemistry and biology.

In addition, the fact that, in FTNMR spin system, excitation and detection are
separated in time is of great significance for all the modern developments which will
be discussed in later chapters.

3.3 Theorems on Fourier Transforms

Since the NMR spectrum is now obtained by a mathematical manipulation, namely,
Fourier transformation, of the collected time domain data, the properties of Fourier
transforms in general become relevant to the characteristics of the derived NMR
spectra. The following are some of the useful theorems in this regard.

We consider, in these theorems, time and frequency as Fourier pairs:

f tð Þ ¼ 1
2π

1

�1
F ωð Þeiωtdω

F ωð Þ ¼
1

�1
f tð Þ e�iωtdt ð3:9Þ

(a) If f(t) is real (if only Mx or My is detected), then F(ω) is complex and Hermitian:

F ωð Þ ¼ F� �ωð Þ

F� ωð Þ ¼ F �ωð Þ ð3:10Þ
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(b) If f(t) is even, e.g., cos(ωt), then F(ω) is also even.

f tð Þ ¼ f �tð Þ

F ωð Þ ¼ F �ωð Þ ð3:11Þ
If f (t) is odd, then F(ω) is also odd.

f �tð Þ ¼ �f tð Þ

F �ωð Þ ¼ �F ωð Þ ð3:12Þ

(c) If f(t) is even, then

f tð Þ ¼ 1
π

1

0
F ωð Þ cos ωtð Þdω ð3:13Þ

F ωð Þ ¼ 2Fc ωð Þ ð3:14Þ

Fc ωð Þ ¼
1

0
f tð Þ cos ωtð Þdt ð3:15Þ

This is called the cosine transform.
Similarly, for odd f(t),

dð Þ f tð Þ ¼ 1
π

1

0
F ωð Þ sin ωtð Þdω ð3:16Þ

F ωð Þ ¼ �2i Fs ωð Þ ð3:17Þ

Fs ωð Þ ¼
1

0
f tð Þ sin ωtð Þdt ð3:18Þ

This is called the sine transform and

Additive Theorem

eð Þ Fþ f tð Þ � g tð Þ½ � ¼ Fþ f tð Þ½ � � Fþ g tð Þ½ � ¼ F ωð Þ � G ωð Þ ð3:19Þ
F+ represents the Fourier transformation operator:

fð Þ Fþ f atð Þ½ � ¼ 1
2π j a jF

ω
a

ð3:20Þ
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This theorem has important implications for signal averaging. Several FIDs can
be coadded and Fourier transformed at the end, to get the frequency spectrum.

Multiplication of FID

gð Þ Fþ a f tð Þ½ � ¼ a Fþ f tð Þ½ � ¼ a F ωð Þ ð3:21Þ

Delayed Acquisition

hð Þ Fþ f t þ δtð Þ½ � ¼ e iωδtð ÞF ωð Þ ð3:22Þ
δt represents the delay in the start of the data acquisition. The frequency domain

spectrum F(ω) is phase modulated by delayed acquisition.

(i) The area under the function F(ω) is equal to the value of the FID at t ¼ 0:

f 0ð Þ ¼ 1
2π

F ωð Þdω ð3:23Þ

(j) Convolution: Multiplication in the time domain translates into convolution in the
frequency domain.

Fþ f tð Þ:g tð Þ½ � ¼ F ωð Þ � G ωð Þ ð3:24Þ

(k) Digitization: If f(t) is sampled and thus can be considered as a series of Dirac δ-
functions, τ seconds apart, then its Fourier transform is also a series of Dirac δ
-functions, 1τ Hz apart.

Fþ
1

�1
δ t � nτð Þf tð Þ ¼ 1

τ

1

�1
F ωð Þ � δ ω� n

τ

¼ 1
τ

1

�1
F ω� n

τ

ð3:25Þ

These theorems have the following implications in FTNMR.

(i) Signal averaging can be done in the time domain, and the Fourier transforma-
tion can be done only once at the end. This results in substantial saving in data
processing time.

(ii) Signal-to-noise (S/N) ratio or resolution in the spectra can be enhanced, as
desired by the situation by suitable data processing techniques such as window
multiplication (commonly called as apodization) in the time domain. This is

3.3 Theorems on Fourier Transforms 99



done after data collection and is thus independent of the spectrometer itself. The
improvements in the quality of the spectra are exemplified in Fig. 3.9.

(iii) The time domain signal (FID) can be collected in a digitized manner, providing
time gaps in between data points, during which specific manipulations are
possible.

3.4 The FTNMR Spectrometer

The completely different method of obtaining an NMR spectrum necessarily implies
different basic elements and design of the spectrometer. RF has now been applied as
pulse, and it must be possible to control the duration of these pulses very precisely.
Note that these are in microsecond ranges, and thus their control is highly demand-
ing. It is also necessary to achieve high RF powers, and the rise times of these pulses
should be very short (ns). Since the data is collected in digital form, special devices
are needed for the conversion of the analog NMR signal into digital form. For all
such precision timing of pulses and precise digitization, computers become essential
ingredients of an NMR spectrometer. A computer is also the key data manipulator
and carries out all the mathematical manipulations for obtaining good spectra.
Figure 3.10 shows schematically the essential elements of a FTNMR spectrometer.

Fig. 3.9 1H NMR spectra of a 0.011 M solution of progesterone in hexafluorobenzene, both
spectra performed in 500 s. (a) Single scan, the absorption mode signal is recorded directly by CW
NMR. (b) Pulse FT NMR method, with 500 scans. (Reproduced from Review of Scientific
Instruments 52, 1876 (1981) with the permission from AIP Publishing)
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3.5 Practical Aspects of Recording FTNMR Spectra

3.5.1 Carrier Frequency and Offset

The frequency of the RF pulse is referred to as carrier frequency. In order for the
power spectrum of the RF to be flat over the desired spectral region (for uniform
excitation), it will be necessary to move the carrier frequency to the region of
interest; this shift is called offset. Such shift of the main frequency is achieved by
different mixing processes electronically. This is schematically indicated in
Fig. 3.11.

3.5.2 RF Pulse

The RF can be applied along any axis in the x-y plane; the angle it makes with the
x-axis is referred to as the phase of the pulse. Thus a 90� pulse applied along the
x-axis denoted as 90x is said to have 0� phase, a 90y pulse has a 90� phase, etc.; such
a definition is only a convention. The phases strictly speaking determine the phase
relation between the transmitter and receiver phases; a zero-phase difference is taken
to imply that the RF is applied along the x-axis. The special hardware devices used
for bringing about phase changes are called phase shifters.

3.5.3 Free Induction Decay (FID) and the Spectrum

As discussed in Sect. 3.2, free induction decay (FID) is the response of the spin
system to a RF pulse. The RF pulse rotates the equilibrium z-magnetization into the
x-y plane, for a 90� pulse, and this magnetization then precesses and decays as the

Fig. 3.10 A schematic representation of the essential elements of an FT NMR spectrometer
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system returns to equilibrium. The precessing magnetization induces a signal in the
receiver kept in the x-y plane, as indicated in Fig. 3.12.

Depending upon whether the x-component or the y-component of the magnetiza-
tion is detected following a 90x pulse, the FID has a sine or cosine functional form
for a single frequency as shown in Fig. 3.13.

Mathematically, the two functional forms are

xcomponent ¼ Mo
i

sinωit

�ycomponent ¼ Mo
i

cosωit

The two types of FIDs give rise to different line shapes after real Fourier
transformation: the sine function gives the dispersive line shape and the cosine
function produces an absorptive line-shape.

Fig. 3.11 A schematic representation of offset in FT NMR

Fig. 3.12 A schematic
representation of the rotation
of magnetization in the
transverse plane following the
application of a 90� pulse
along the x-axis and its
detection by the receiver along
the y-axis
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There is a definite relation between the phase of the RF pulse and the phase of a
FID or of the spectrum as can be seen from Fig. 3.14.

3.5.4 Single-Channel and Quadrature Detection

This is intimately connected with the location of the offset. Suppose we are detecting
the y-component of the magnetization only, following a 90x pulse (called the “single-
channel detection”), the FID generated by a single frequency ωi will have cosine
dependence on time.

F tð Þ ¼ cos ωitð Þe �λi tð Þ ð3:26Þ
where λi is the decay rate constant (λi ¼ 1/T2i).

Complex Fourier transformation of such a signal will however lead to two lines at
ω ¼ ωi and ω ¼ � ωi; this is clearly an effect of FT only, and it is not reality
(Fig. 3.15). If the carrier is located in the center of the spectrum, then the peak at�ωi

will interfere with another real peak in the spectrum. The real peaks and artifacts of
the FT will overlap. Therefore, under these conditions, it becomes necessary to place

Fig. 3.13 Cosine (�My) and
sine (Mx) magnetizations,
after the application 90x pulse
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Fig. 3.14 For the RF pulses with different phases, when the receiver is put along the y-axis, the
phase relation between FID and signal are shown

Fig. 3.15 A complex FT of a signal detected in single-channel mode results in two frequencies
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the carrier at one end of the spectrum, and then the FT artifacts will be located in a
distinctly different region. The same argument holds if only the x-component of the
magnetization is detected in the FID.

Now, if both x- and y-components are detected at the same time by separate
detectors, then the combined FID is a complex function e �iωi tð Þ, and the complex FT
will produce a single peak at ωi (Fig. 3.16); then it is also possible to distinguish
positive and negative frequencies, and consequently the carrier can be placed
anywhere in the spectral region. This is commonly known as “quadrature detection.”

Fig. 3.16 The simultaneous detection of signal along both x- and y-axes (quadrature detection),
subsequent FT of the individual FIDs separately, and coaddition after suitable phase correction as
indicated in the middle spectrum yields a single frequency (see Sect. 3.7 for phase correction)
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3.5.5 Signal Digitization and Sampling

As mentioned earlier, the FID is digitized; the time interval between two consecutive
points is a constant for the whole length of the FID and is called the dwell time. How
is this time determined? This is determined by the sampling theorem, which states
that to represent a sine/cosine wave precisely by digital points, there must be at least
two points per cycle of the wave. Since the FID is a superposition of all the
frequencies in the spectrum, every data point in the FID has contributions, from all
the frequencies. Thus, if the spacing of the data points is selected to suite the largest
frequency in the spectrum, all the lower frequencies will be automatically
represented, since the sampling theorem will be automatically satisfied for all of
these waves; such a sampling frequency represented by the inverse of the dwell time
is termed the Nyquist frequency, after the name of the inventor of the theorem
(Fig. 3.17).

Fig. 3.17 Nyquist relation between data sampling and maximum representative frequency. τ is the
dwell time and ωmax is the maximum frequency in the spectrum; τ ¼ (1/2ωmax)
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3.5.6 Folding of Signals

The property of the sampling theorem poses a difficulty that one has to know the
frequency range in the spectrum, even before collecting the data. However, this
problem can be generally circumvented fairly easily by choosing initially an arbi-
trarily large spectral range to locate the relative positions of the signals. And then the
sampling frequency can be progressively optimized to suite the desired spectral
range. This optimization involves also proper positioning of the carrier. If the
spectral range determined by the sampling rate and offset is not appropriately
selected, the signals presented outside the spectral region fold into the selected
region with a distorted phase (Fig. 3.18). This permits the detection of folded signals
and corrections can be applied.

According to the digitization theorem, the FT of a digitized FID generates a series
of spectra F(ω), displaced 1

τ Hz apart, where τ is the dwell time (Fig. 3.19).
The largest frequency represented by the dwell time τ is ωs ¼ 1

2τ . This is
equivalent to having a carrier in the middle of 1

τ range of F(ω); then the set of points
represents equally well equidistant frequencies on both sides of this carrier. Now
suppose dwell time selection is wrongly made and there is a frequency ω0, Δω
rad/sec outside the largest frequency, ωs, i.e, ω

0 ¼ ωs +Δω. This ω0will be present in
each of the F(ω) spectral repetitions, 1τHz apart. The central spectrum of F(ω) (n¼ 0)
gets into it ω0 from the spectrum on its left (n ¼ 1), and likewise the ω0 of the central
spectrum appears in the F(ω) of the next one (n ¼ �1) and so on. In effect, the
central section got a frequency at �ωs + Δω ¼ � (ωs � Δω). Thus, it appears as
though ω0 is reflected around ωs frequency represented by the selected dwell time.
This represents the case when a quadrature detection is employed, where the carrier
is placed in the middle (center of n ¼ 0 block, Fig. 3.19I) and positive and negative
frequencies can be distinguished.

Fig. 3.18 A schematic
representation of spectral
folding in NMR. (I) In the
case of a quadrature detection,
the peak (at position “b”)
which is outside the selected
spectral region folds into the
spectrum at position “a” with
distorted phase. (II) In the case
of a single-channel detection,
the position of “a” will be near
the other end of the spectrum
as indicated
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In the case of a single-channel detection, the carrier is placed at one end of the
spectrum as shown in Fig. 3.19II. If the actual spectrum is on the right side of the
carrier, the ω0 peak will appear as the extra peak near the left blue line that comes
from the n¼ +1 block, and this would have a frequency�(ωs� Δω); note that ωs in
this case is twice that in the case of quadrature detection. Now, since there is no sign
discrimination possible, this peak will appear at +(ωs � Δω) as indicated in the
figure. This is the folded peak.

In this context, it is also important to consider what is the largest spectral range or
the largest sampling rate one can have in a particular experiment. This is determined
by the hardware component of the spectrometer known as the analog-to-digital
converter (ADC). This is a device, which takes the analog signals as the input and
produces an output as binary numbers representing the strength of the signal, such a
conversion takes a certain amount of time, and it is this time which limits the rate at
which analog signal can be fed into the ADC. The analog signal cannot be fed faster
than the rate at which it can convert it into the digital form; this rate is termed as the
ADC rate.

Fig. 3.19 A schematic representation of a series of spectra that are generated by the FT of FID, as
per the digitization theorem in the case of a quadrature detection (I) and single-channel detection
(II). The peak belonging to n ¼ +1 appears in the region of n ¼ 0
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3.5.7 Acquisition Time and Resolution

Acquisition time is defined as the time for which data is collected, in the FID. If there
are N data points collected with τ being the dwell time, then the acquisition time is
given by

tacq ¼ Nτ ð3:27Þ
If SW (spectral width) is the largest frequency (ωmax) represented by the sampling

(for a single-channel detection where the carrier is placed at one end of the
spectrum), then

τ ¼ 1
2SW

ð3:28Þ

So,

tacq ¼ N
2SW

ð3:29Þ

After a FT of N data points, there will be N/2 real points and N/2 imaginary points
in the frequency domain spectrum. Since both of these contain the same frequency
information, only one of them (real) is used to display the spectrum; however (as will
be described later), the imaginary points will be required for phase correcting the
spectrum. Therefore, in the frequency domain, the digital resolution (Hz/point)
R will be given by

R ¼ SW
N
2

¼ 2SW
N

ð3:30Þ

From Eqs. 3.29 and 3.30, we see that the acquisition time and digital resolution
are inversely related

R ¼ 1
tacq

ð3:31Þ

In the case of a quadrature detection, the carrier is placed in the middle of the
spectrum, and therefore the largest frequency is SW/2. The N data points are also
divided between two channels of detection: N/2 for the y-component (real) and N/
2 for the x-component (imaginary) of precessing magnetization.

In such a case, acquisition time is given by

tacq ¼ N
2
� 1

2SW=2
¼ N

2 SW

Therefore, R will again be given by

R ¼ 1
tacq
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Thus, in order to obtain high resolution in the spectra, it is necessary to collect
data for a long time; however, there is also a limit as to how long one can go, as the
FID is a decaying function with time, and therefore the later points in the FID contain
more noise than the earlier ones. Hence, by persisting for too long in the FID, the
SNR in the spectrum decreases. The duration for which FID lasts will be determined
by the transverse relaxation time (T2), and at times greater than 3T2, there will be
essentially only noise. Therefore, it does not help to collect data for durations longer
than this time. In practice one has to strike a proper balance between SNR and
resolution and optimize data collection parameters accordingly.

3.5.8 Signal Averaging and Pulse Repetition Rate

In the signal averaging process, it is importance to optimize the time interval
between two successive sets of data collection (Fig. 3.20). The individual
experiments are referred to as scans for historical reasons. If all of the FIDs have
to be exactly identical, then the time interval Tp has to be longer enough so that the
magnetization has completely relaxed back to equilibrium, before the start of the
new experiment. However, this often does not yield the highest signal-to-noise ratio
per unit time. This is a function of the flip angle of the pulse and relaxation times.
Detailed calculations have shown that when an equilibrium or a steady state is
reached, the Mx magnetization after each pulse is given by

Mþ
x ¼ Mo sin β

1� E1

1� E1 cos β
ð3:32Þ

where β is the flip angle and

E1 ¼ e
�Tp

T1 ð3:33Þ
Maximum amplitude obtained for an optimum flip angle is given by

cos βopt ¼ E1 ð3:34Þ

Figure 3.21 shows a plot of the steady-state signal amplitude (normalized inten-
sity) as a function of β for different values of Tp

T1
.

Fig. 3.20 Signal averaging in an NMR experiment
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Figure 3.22 shows the optimum flip angle as a function of Tp

T1
.

The optimized sensitivity (S/N per unit time) in a repetitive pulse experiment is
given by the following equation.

S ¼ Mo
1=2 T2

T1

1
2

1� E2
2

1
2G

Tp

T1
ρ�1
N ð3:35Þ

where E2 ¼ e�tmax=T2

G xð Þ ¼ 2 1� e�xð Þ
x 1þ e�xð Þ

1=2

ð3:36Þ

ρN ¼ frequency independent power spectral density ð3:37Þ

Fig. 3.21 Simulated profiles
of a steady-state signal
amplitude as a function of flip
angle (β) at different values of
Tp

T1

Fig. 3.22 Simulated profile

of βopt vs
Tp

T1
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Figure 3.23 shows the function G Tp

T1
vs Tp

T1
, assuming that for every value of Tp

T1
,

the best flip angle has been used for signal averaging.

Clearly G Tp

T1
! 1:0 for small values of Tp

T1
. It is evident that for high sensitivity

faster repetitions would be preferable and the length of each FID could be restricted.
This of course affects the resolution. Thus, depending upon the sensitivity and
resolution requirements, the conditions will have to be optimized for every case.
By and large for 13C, where relaxation times are long, small flip angles and faster
repetitions are generally preferred.

3.6 Data Processing in FT NMR

Unlike in CW NMR, data acquisition and processing are separate entities in FT
NMR. A number of tricks have been employed to improve the quality of the spectra
in terms of sensitivity or resolution. The computer has played a significant role in this
regard, and manipulative approaches have been on the increase to extract the best out
of the data. These include the following procedures.

3.6.1 Zero Filling

Since the length of the FID has to be restricted due to signal-to-noise ratio
considerations, the number of data points in the FID will be limited, and conse-
quently the digital resolution in the spectrum will also be limited. To circumvent this
limitation, zeros are artificially added at the end of the FID to increase the total
number of data points before Fourier transformation. This is schematically shown in
Fig. 3.24. However, this is not to be considered as increase in acquisition time, and
the inherent resolution present in the data is not affected.

Fig. 3.23 A simulated profile

of G Tp

T1
vs Tp

T1
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3.6.2 Digital Filtration or Window Multiplication or Apodization

This is a very important step in all data processing procedures and is invariably used
to gain specific advantages. When the FID is truncated and zeros are added, the FT of
the FID leads to serious distortions due to sinc sin x

x wiggles appearing on either
side of every line. This is illustrated in Fig. 3.25.

To circumvent this shortcoming, digital filtering techniques are used, wherein the
FID is multiplied by a suitable function, λ(t). This operation is also called the
window multiplication or apodization. The idea is to remove the abrupt discontinuity
in the FID, and the window multiplication ensures that the last point in the FID is
almost zero. This helps to remove the sinc artifacts from the spectrum. The com-
monly used mathematical functions for this purpose are:

(i) Exponential Function

λ tð Þ ¼ e�
t

tmax ð3:38Þ
Here, the FID is collected for a time equal to tmax. This exponential multiplication

results in signal-to-noise enhancement by removing the noise contribution present in

Fig. 3.24 Truncated FID without (upper) and with (bottom) zero filling of data points and the
respective spectra as a result of FT
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the later part of the FID (Fig. 3.26). However, this also leads to a broadening of all
the lines in the spectrum by an amount 1

πtmax
; the resultant line widths will be given by

Δv ¼ T�
2 þ tmax

πT�
2tmax

ð3:39Þ

If tmax is equal to T�
2 (transverse relaxation time), this filter is referred to as

matched filter.

Fig. 3.25 In general, the FT of truncated FID with zero filling results in spectrum with sinc wiggles

Fig. 3.26 Truncated FID with only zero filling (upper) and the combined application of zero filling
and exponential functions (bottom) for the processing. This combined processing has removed the
sinc wiggle patterns, which can be seen directly from the spectra
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(ii) Cosine Function

λ tð Þ ¼ cos
πt

2tmax
ð3:40Þ

The data is multiplied by a cosine function of a period, which is adjusted such that
the function falls to zero at the last point of the FID that is at tmax. This function does
not cause significant changes in the line widths, but contributes to a significant
enhancement in the signal-to-noise ratio. The function can be appropriately
optimized after choosing the appropriate number of data points in the FID for the
desirable signal-to-noise enhancement: Note that the initial points in the FID have
higher signal-to-noise ratios compared to the later ones (Fig. 3.27).

(iii) Sine-Bell Function

λ tð Þ ¼ sin ϕþ πt
2tmax

ð3:41Þ

This is essentially the cosine function shifted by phase ϕ¼ 90�. In this function, if
ϕ ¼ 0�, it results in making the first point in the FID zero, as a result of which the
signal-to-noise ratio will be severely reduced, but the resolution will be significantly

Fig. 3.27 Truncated FID with only zero filling (upper) and the combined application of zero filling
and cosine functions (bottom) for the processing. This combined processing has removed the sinc
wiggle patterns, which can be seen directly from the spectra
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enhanced. So, for optimizing the value of ϕ, a balance has to be struck between the
signal-to-noise ratio loss and resolution enhancement. This function will also result
in line shape distortion, so one often prefers to use ϕ values which are closer to 90�.
The appearance of the spectra for varying values of ϕ is shown in Fig. 3.28.

(iv) Lorentz-Gauss

λ tð Þ ¼ e
t
T�
2
�σ2 t2

2 ð3:42Þ

Fig. 3.28 Truncated FID with only zero filling (upper) and the combined application of zero filling
and sine-bell functions (at different ϕ angles) for the processing. This combined processing has
removed the sinc wiggle patterns, which can be seen directly from the spectra
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Here σ is a parameter which has to be adjusted for a given tmax and an estimated
T�
2 , for optimum performance. This actually has an effect similar to that of the

optimized sine-bell. This is illustrated in Fig. 3.29.

3.7 Phase Correction

A real Fourier transformation (or cosine transformation) of decaying cosine or sine
form of FID generates absorptive and dispersive signals, respectively, as shown in
Fig. 3.30. Mathematically, this is given by Eqs. 3.43 and 3.44.

2 e�at cos ωotð Þ cos ωtð Þdt ¼ a

a2 þ ω� ωoð Þ2
þ a

a2 þ ωþ ωoð Þ2
ð3:43Þ

2 e�at sin ωotð Þ cos ωtð Þdt ¼ ω� ωoð Þ
a2 þ ω� ωoð Þ2

þ ωþ ωoð Þ
a2 þ ωþ ωoð Þ2

ð3:44Þ

However, for certain reasons, due to spectrometer hardware limitations, one does
not obtain pure absorptive or dispersive line shapes but some mixtures of the two.
These are briefly described in the following.

Fig. 3.29 Truncated FID with only zero filling (upper) and the combined application of zero filling
and Lorentz-Gauss functions (bottom) for the processing. This combined processing has removed
the sinc wiggle patterns, which can be seen directly from the spectra
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(i) Improper Phase of the RF Pulse

Instead of the RF pulse being applied exactly along the x-axis or the y-axis, if its
axis is deviated slightly (say by angle θ), then, the magnetization is also rotated away
from the y-axis or the x-axis, as the case may be. As a result, the total magnetization
has a phase θ with respect to the receiver at time t ¼ 0 (Fig. 3.31a). The FID for a
single resonance has therefore the form

S tð Þ ¼ e�at cos ωot þ θð Þ ð3:45Þ
or

S tð Þ ¼ e�at sin ωot þ θð Þ ð3:46Þ
Even when there are many resonances in the spectrum, the initial phase will be θ

for all the individual resonances. This is called the zero-order phase of the spectrum
and will be the same throughout the spectrum (Fig. 3.31b). The complex Fourier
transformation of the cosine-dependent FID leads to real and imaginary parts, both
of which have absorptive and dispersive contributions:

Real part Rð Þ ¼ A cos θ � D sin θ ð3:47Þ

Fig. 3.30 Cosine and sine form of FIDs and the respective FT NMR spectra
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Imaginary part Ið Þ ¼ D cos θ þ A sin θ ð3:48Þ
where A and D represent the absorptive and dispersive line shapes. From these
equations, it follows that

A ¼ R cos θ þ I sin θ ð3:49Þ
Thus, the zero-order phase correction involves multiplication of the real and

imaginary parts of the spectrum by constants dependent on the phase error θ and
adding them together. The value of θ is determined by continuously altering it while
monitoring the resultant shapes of the lines.

Fig. 3.31 (a) The deviation in the RF application direction results in a deviation of magnetization
alignment in the transverse plane. (b) This leads to phase errors in both the real and imaginary
components. (c) 1D-NMR spectra with zero-order phase error and with proper phase correction
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(ii) Delay in the Start of Data Acquisition

In order to avoid direct interference between transmitter and the phase-sensitive
detector, it becomes necessary to give some delay after the pulse for the transmitter
effects to die down before FID can be acquired. During this time (say Δ), the
different frequency components of the total magnetization would have precessed
in the x-y plane to different extents, and thus, in the net FID collected, the initial
phases are different for different resonance lines. This is illustrated in Fig. 3.32. The
effect of such a phase change is to produce frequency-dependent phase errors in the
final spectrum after Fourier transformation (Fig. 3.33). Quantitatively, the errors can
be understood by referring to the theorems on Fourier transforms; a shift of origin
results in a ω-dependent phase change in the spectrum.

S t þ toð Þ !FT eiωtoF ωð Þ ð3:50Þ
If F(ω) is represented as a complex function with R(ω), the real part representing

absorptive line shapes and I(ω), the imaginary part representing the dispersive line
shapes, then

F ωð Þ ¼ R ωð Þ þ i I ωð Þ ¼ F ωð Þj j eiϕ ð3:51Þ
where ϕ is the phase

Fig. 3.32 The delay in data acquisition (left) leads to different initial phases for different spins
(right)

Fig. 3.33 First-order phase error (also called frequency-dependent phase error) in the 1D-NMR
spectrum
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F ωð Þj j ¼ R ωð Þ2 þ I ωð Þ2 ð3:52Þ

and

tanϕ ¼ I ωð Þ
R ωð Þ ð3:53Þ

Now as a result of the shift of origin in the FID, the modified spectrum F0(ω)
will be

F0 ωð Þ ¼ eiωtoF ωð Þ ð3:54Þ

¼ e ϕþiωtoð Þ j F ωð Þ j ð3:55Þ
If R0(ω) and I0(ω) are the new real and imaginary parts, then

tan ϕþ ωtoð Þ ¼ I 0 ωð Þ
R0 ωð Þ ð3:56Þ

R0 ωð Þ ¼ F ωð Þj j cos ϕþ ωtoð Þ½ � ð3:57Þ

¼ F ωð Þj j cosϕ cos ωtoð Þ � sinϕ sin ωtoð Þ ð3:58Þ

¼ cos ωtoð ÞR ωð Þ � sin ωtoð ÞI ωð Þ ð3:59Þ
This shows the absorptive and dispersive components getting mixed. By follow-

ing the same procedure as per the zero-order phase, proper phases can be obtained,
except that the phase errors are different for different frequencies. It is possible to
calculate these phase constants, since to and frequencies are known quantities in an
experiment. However, a simplification occurs if ωto 	 1 for the whole range of
frequencies. Then eiωto can be expanded up to first order in ω .

F0 ωð Þ ¼ 1þ iωtoð Þ F ωð Þ ð3:60Þ
and

R0 ωð Þ ¼ R ωð Þ � ωto I ωð Þ ð3:61Þ
Similarly,

I 0 ωð Þ ¼ I ωð Þ þ ωto R ωð Þ ð3:62Þ
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Therefore,

R ωð Þ ¼ R0 ωð Þ þ ωto I 0 ωð Þf g
1þ ωtoð Þ2

ð3:63Þ

Under the condition ωto 	 1 , this simplifies to

R ωð Þ ¼ R0 ωð Þ þ ωto I
0 ωð Þ ð3:64Þ

Since this admixture is linearly dependent on ωto, the phase constants for all the
frequencies can be relatively easily calculated, and pure phase spectra can be
obtained.

3.8 Dynamic Range in FTNMR

A dynamic range is a special feature in FTNMR that limits the range of intensities of
lines that can be properly recorded. This is the consequence of limited digitizer
(ADC: analog-to-digital converter) resolution.

We know that the FID signal as it comes out as a function of time is digitized in
real-time and the strength of each data point is outputted as a binary number which is
then fitted into a computer word. We also know that each data point in the FID has
contributions from all lines present in the spectrum. Thus, the largest number that the
ADC can output determines the maximum intensity ratio between the largest and the
smallest line present in the spectrum. The smallest number is obviously 1.0. Explic-
itly, if an ADC has 12 bits (11 bits excluding the sign bit), the largest number that can
be stored in it is 2047. This limits the dynamic range of the digitizer, that is, if there
are only two lines in a spectrum, the largest intensity for the strong signal is 2046,
and the intensity of the small signal is 1. Note that these are relative numbers, if the
actual intensities are more they can be scaled down by adjusting the receiver gains,
the receiver gain is adjusted such that the maximum in the FID points fills the ADC.
But, if the intensity ratio of the two signals is greater than 2046, then the big signal
fills the whole ADC, and the small signal will not be represented at all. If
the spectrum has more than two signals which also contribute to every FID point,
the intensity ratio of the largest to the smallest signal will reduce accordingly. In the
event of no representation of the weakest signal in the ADC, signal averaging will
not help in recovering the weak signals (Fig. 3.34).

3.9 Solvent Suppression

As a consequence of the dynamic range problems discussed, it often becomes
necessary to suppress signals coming from the solvents which are generally very
strong and are of no particular value from the analysis point of view. For example,
while recording the spectrum in water (H2O), the proton concentration is ~110 M. If
the sample concentration is ~1 mM, then the intensity ratio of water to sample will be
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the order of 1.1 � 105; this is much more than a 12-bit or even a 16-bit digitizer can
accommodate: Note that it is not practical to increase the digitizer resolution
arbitrarily because it contributes to noise and also slows down the digitization
process. Because of this, it becomes essential to selectively suppress such strong
signals (Fig. 3.35). Several strategies have been used for this purpose, and some of
the common ones are listed in the following.

(i) Presaturation

The strong solvent signal is suppressed by continuous irradiation prior to the
application of the observe pulse (Fig. 3.36). This has proved useful, but it also has
some shortcomings. First, the sample signals buried under the solvent will also get
suppressed. Second, saturation transfer can occur to protons which exchange with
the solvent resulting in the reduction of their intensities. The success of this suppres-
sion will also depend upon the T1 relaxation of the solvent.

(ii) Inversion Recovery Sequence

Here, a pulse sequence 180o � τ � 90o of the type acquisition (Fig. 3.37) is used
to suppress the solvent signals. The first 180o pulse inverts the magnetization and
puts along the negative z-axis, then the signals will relax by the spin-lattice relaxa-
tion process, and these are different for different spins in the system. So, the period τ
is adjusted such that the solvent magnetization is zero at the end of τ so that this will

Fig. 3.34 (a) The overloading of FID is due to the strongest intensity of signal. (b) For example, if
a compound is present at a very low concentration in the aqueous solvent medium, the strong
solvent signal fills the ADC, and the small signal will have no representation in the receiver
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Fig. 3.35 Triphala 1D-NMR spectra (a) without water suppression and (b) with water suppression

Fig. 3.36 A schematic representation of a presaturation NMR pulse sequence
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not appear after the following 90o pulse. The other signals which may have widely
different T1 relaxation times would be either on the negative z-axis, if they are slowly
relaxing compared to solvent or on the positive z-axis, if they are relaxing faster than
the solvent. Of course, if by coincidence any of the sample spin relaxes at the same
rate as the solvent, then that also will be suppressed.

(iii) Jump and Return

This uses the pulse sequence 90
∘

x � τ � 90
∘

�x � acquisition. τ is the period to be
optimized for getting the best excitations in desired region of the spectrum. The
offset is placed on the water resonance, and the illustration is shown in Fig. 3.38. If
the excitation is to be maximized at a frequency vmax away from the offset, then τ is
set equal to 1

4vmax
. The evolution of the magnetization in the transverse plane is

indicated in Fig. 3.39. It follows that the signals on the two sides of the water
resonance appear with opposite signs. However, one particular disadvantage is that
the baseline appears highly distorted, especially close to the water resonances. This
sequence is very commonly used for exciting imino protons in the DNA, whose
resonances usually lie far away from the water resonance.

Fig. 3.37 A schematic of the inversion recovery pulse sequence

Fig. 3.38 In the jump-return
sequence of water
suppression, the offset is
placed on water signal. The
delay τ is calculated
depending on the region of
interest in the spectrum for
maximal excitation
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3.10 Spin Echo

Discovered by Erwin Hahn in the early 1950s, spin echo is a simple multipulse
sequence which has become the most crucial and integral part of many sophisticated
NMR pulse sequences. It is the simple extension from the one pulse FT NMR
experiment. The spin echo employs the pulse sequence shown in Fig. 3.40, and
the evolution of the magnetization components is shown in Fig. 3.41.

Considering two spins A and B, the first 90
�
x degree pulse rotates the

z-magnetization on to the negative y-axis; during the time τ, the two spins dephase
rotating with their characteristic frequencies vA and vB . The 180

�
x pulse rotates the

Fig. 3.39 A vector representation of magnetization at various time points through the jump-return
pulse sequence. Orange and blue arrows represent the sample and water magnetizations,
respectively
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two spins by 180o in the transverse plane and as they continue to move and rephase
at the end of the τ period, along the positive y-axis. This is called the spin echo. It is
clear that the actual frequencies vA and vB do not matter for the refocusing at the end
of the 2τ period. In other words, on the whole the chemical shifts get refocused at the

Fig. 3.40 A schematic representation of the spin echo pulse sequence

Fig. 3.41 A vector representation of the magnetization at various time points through the spin echo
pulse sequence. Two spins “A” and “B” with different precessional frequencies are considered for
illustration
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time of the echo. It is also evident from this that if there are any field inhomogeneities
across the length/breadth of the sample, they get refocused at the time of the echo.
The amplitude of the spin echo will however be dependent on the T2 relaxation of the
spins, and this can be utilized for the measurement of T2 relaxation times, as will be
discussed in the next section.

Till now, the spins A and B are assumed to be not J-coupled. In the case they are
J-coupled, the situation will be very different. Consider a weakly coupled spin
system AX. The evolution of the transitions of the A spin during the length of the
spin echo sequence is schematically shown in Fig. 3.42. After the first 90� pulse, the
magnetization vectors corresponding to the transitions A1 and A2 of spin A are along
the negative y-axis. During the next τ period, they precess with different frequencies
in the transverse plane and dephase. The angle θ between the two vectors is given by

Fig. 3.42 A vectoral representation of the magnetization evolution of A spin in the AX weakly
coupled spin system. Here, one is looking at the two magnetizations (A1 and A2) while sitting at the
two transitions (in the rotating frame of A spin). Therefore, they seem to move in opposite directions
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2πJτ. The center of these two vectors represents the chemical shift of the A spin. A
180� pulse on the A spin rotates the two components to new positions in the
transverse plane. At the same time, a 180� pulse on the X spin which interchanges
the spin states of X also interchanges the labels A1 and A2 (see the energy level
diagram in Fig. 3.43). As a consequence, during the next τ period, the two transitions
continue to dephase further, and at the end of 2τ, the angle between them will be
4πJτ. The chemical shift vector of A will be along the positive y-axis. This indicates
that in the spin echo, the chemical shifts are refocused, but coupling constants are not
refocused.

3.11 Measurement of Relaxation Times

The pulsed methods provide convenient ways of measuring the relaxation times T1
and T2 of any given system. These are described in the following paragraphs.

3.11.1 Measurement of T1 Relaxation Time

(i) Inversion Recovery

The most common method of T1 measurement is called the “inversion recovery”
technique. This uses the pulse sequence shown in Fig. 3.44.

The first 180� pulse inverts the magnetization on to the negative z-axis; as the
spins relax back during the next τ period, they would have reached different

Fig. 3.43 An energy level diagram of a weakly coupled AX spin system (left). The 180� pulse on
the X spin interchanges transitions A1 and A2
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positions along the z-axis depending upon their different T1 relaxation times. The
next 90� read pulse and the following data collection allow for monitoring the status
of the recovery at the end of the τ period. Thus, by repeating the experiments, for
different values of τ, one can get a measurement of T1 relaxation times, for the
various spins (Fig. 3.45).

Mathematically this can be analyzed using the rate equation:

dMz tð Þ
dt

¼ � Mz tð Þ �Moð Þ
T1

ð3:65Þ

where Mz is the z-magnetization at time t and Mo is the equilibrium magnetization.
Integrating with the condition Mz ¼ � Mo, at t ¼ 0, we get

Mz tð Þ ¼ Mo 1� 2e�
t
T1 ð3:66Þ

This recovery is shown schematically in Fig. 3.46, and an experimental demon-
stration for different transitions in a spectrum is shown in Fig. 3.47. Clearly the
different spins relax differently.

At a particular value of t ¼ τnull, Mz ¼ 0,
this means

e�
τnull
T1 ¼ 1

2
or T1 ¼ τnull

ln 2
ð3:67Þ

This equation allows a quick estimation of the T1 relaxation times. Alternatively,
Eq. 3.66 can be recast as

Mo �Mz ¼ 2Moe
� t

T1 ð3:68Þ

ln Mo �Mzð Þ ¼ ln 2Mo � t
T1

ð3:69Þ

A plot of ln(Mo � Mz) vs t is a straight line whose slope yields the value of T1.

Fig. 3.44 A schematic representation of the inversion recovery pulse sequence
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(ii) Progressive Saturation

This sequence uses a train of 90� pulses separated by a constant time period τ, and
the steady-state magnetization is then measured, as shown in Fig. 3.48.

τ is selected in such a way that transverse magnetization has died down at the end
of each τ period, while the longitudinal magnetization recovers towards the z-axis.
The τ period is varied such that the steady-state magnetization increases progres-
sively from zero to Mo. So the rate equation here is

Fig. 3.45 A vector representation of magnetization at different time points of inversion recovery
pulse sequence. The resultant spectra are shown at the bottom considering two spins having
different relaxation rates. The spin that relaxes faster (cyan color) recovers to the z-axis faster
than the slow-relaxing spin (red color) (middle picture)
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d Mo �Mzð Þ
dt

¼ �Mo �Mz

T1
ð3:70Þ

with the initial condition Mz ¼ 0 at t ¼ 0. On integration this yields the relation

ln
Mo �Mzð Þ

Mo
¼ � t

T1
ð3:71Þ

ln Mo �Mzð Þ ¼ lnMo � t
T1

ð3:72Þ

Fig. 3.46 A simulated
magnetization recovery
profile in an inversion
recovery experiment

Fig. 3.47 Experimental magnetization recovery profiles in an inversion recovery experiment
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Experimental data measured as a function of increasing τ can be fitted to
Eqs. 3.71 and 3.72 to extract the value of T1.

3.11.2 Measurement of T2 Relaxation Time

The echo amplitude in the spin echo experiment is proportional to e�
2τ
T2. Thus, fitting

the echo amplitude to the data obtained for different values of τ allows the measure-
ment of T2 relaxation times.

It must be mentioned here that precise refocusing of the signal in the spin echo
experiment is dependent on each nucleus remaining in constant magnetic field
during the time 2τ. If, however, there is molecular diffusion during this time between
regions of different field strengths because of field inhomogeneities, then the echo
amplitude will be modified, and we do not get the true value of T2. To overcome this
problem, Carr-Purcell modified the Hahn sequence to consist of a train of spin-
echoes as

90� τ � 180� τ � echo� τ � 180� τ � echo� data collection

Here the τ value is kept small so that there is no significant diffusion during each
of the spin echoes. The number of echoes is varied so as to get different time points
for the exponential fitting procedures for T2 estimation. This yields a more reliable
value of T2.

Meiboom-Gill modified the sequence further by changing the phase of the 180�

pulses after the first one by 90�, and this helps to average out the imperfections in the
pulses.

3.12 Water Suppression Through the Spin Echo: Watergate

Spin echo provides an elegant method for effective water suppression for running
spectra in aqueous solutions. The corresponding pulse sequence is termed as Water-
gate and is indicated in the Fig. 3.49. The offset is placed on water, and it combines

Fig. 3.48 A schematic representation of progressive saturation pulse sequence
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linear gradient pulses with the spin echo sequence; the principles and uses of linear
field gradients in high-resolution NMR have been described in some detail in
Appendix A4. The gradients placed on either side of the central pulse train
[90�x(sel) � 180x � 90�x(sel)], where 90�x(sel) is a selective pulse on water, help
to dephase and rephase the signals of water and from the sample differently. The
sample resonances see a 180� rotation by the central hard pulse, whereas the net
rotation for water is zero. As a result, the dephasing of the sample signals caused by
the first linear field gradient is refocused by the second identical field gradient,
whereas the two gradients add on to completely dephase the water resonance. Thus,
the water signals are not refocused at all at the end of the spin echo, whereas the
signals from the sample are refocused. The vector diagram to explain this phenome-
non is shown in Fig. 3.50. In this case, one obtains clean in-phase spectra with a
much better baseline.

3.13 Spin Decoupling

The J-decoupling interaction between two spins A and M is given by

J IA ∙ IM

If the two spins are locked along orthogonal axes, then the dot product vanishes,
resulting in decoupling of A and M, which is shown in Fig. 3.51. Generally, spin
locking involves a complex sequence of pulses with proper adjustment of power and
phases. However, in the case of a simple two-spin system, a continuous saturation of
the M-magnetization also achieves the same result of selective decoupling.

Spin decoupling arising from continuous saturation can be understood qualita-
tively in the following manner. Referring to Fig. 2.7, we see that the two energy

Fig. 3.49 A schematic representation of Watergate pulse sequence. GZ represents z-field gradient
pulses. A z-field gradient changes the field along the z-axis through the height of the sample and
thus spins in different positions of the sample precess with different frequencies which leads to
dephasing of the spins
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Fig. 3.51 A schematic representation of spin decoupling concept in NMR

Fig. 3.50 A vectoral representation of water magnetization at different time points of Watergate
experiment. The water signal gets progressively dephased, leading to its elimination in the trans-
verse plane, whereas the sample signals will get refocused (see text for details)
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levels, α and β, of the A spin split into two levels due to coupling with the X-spin.
That is, the α-state of the A-spin has different energies depending upon whether the
X-spin is in the α-state or the β-state. The same is true for the β-state of the A spin.
This results in two transitions (labeled as δA

1 and δA
2), as per the selection rule, for

the A-spin which are separated by the J-coupling constant. Now, the continuous
irradiation of the X spin causes rapid flipping of the X spin from the α-state to the β-
state and vice versa. As a result the A spin undergoes rapid exchange between
the two transitions, which causes an averaging, resulting in a single transition at the
average position. This is the original single transition for the A spin. That means the
coupling information is removed or the X spin is decoupled. Alternatively, one can
also visualize that due to the rapid exchange of the X spin between the two states, the
A spin is not able to see the X spin, and therefore there is no coupling.

In heteronuclear cases, spin decoupling can be achieved by refocusing the scalar
coupling evolution by the application of 180� pulse selectively on M spin. The
heteronuclear spin decoupling pulse sequence and the respective vector
representations are shown in Figs. 3.52a and Fig. 3.52b, respectively. The A and
M spins are effectively decoupled during the 2τ period.

Note that in this case the coupling is removed only during the 2τ period and not
during data acquisition. Therefore, the coupling will appear in the spectrum obtained
after Fourier transformation of the FID. However, this kind of decoupling sequences
are used in many multidimensional experiments (see later in Chap. 6).

The important to point note here is that in standard FTNMR spectra, if spin
decoupling is to be achieved in the spectrum, the steps discussed will have to be
carried out during data acquisition. This imposes constraints for homonuclear spin
decoupling. But heteronuclear decoupling can be carried out (e.g., selective 1H
decoupling during 13C acquisition), without much problem since the 1H and 13C
frequencies are very far apart and continuous application of RF on proton during 13C
acquisition will not interfere with the data collection.

3.14 Broadband Decoupling

Carbon-13 NMR plays a key role in the determination of molecular structures in
organic chemistry. All the carbons which have protons attached to them display fine
structures due to C-H coupling; e.g., a methyl group (CH3) which has three protons
attached to the carbon will be a quartet with peaks in the intensity ratio of 1:3:3:1; a
methylene group (CH2) carbon will show a triplet with peaks in the intensity ratio of
1:2:1; and a C-H group will show a doublet with intensity ratio of 1:1. Quaternary
carbons will be singlets. If the spectral dispersion is not adequate, the peaks may
overlap, and then the identification of the multiplets will become difficult. Therefore,
it is desirable to remove all proton couplings to all the carbons, and this is termed as
broadband decoupling. Then, there will be one signal for each carbon, and the total
number of carbon atoms in the molecule can be counted. Using proton-coupled
spectra, the molecular structures can be derived.
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Referring to Fig. 3.51, it is clear that during data acquisition on the carbon
channel, it becomes necessary to saturate (or invert as per Fig. 3.52) all the protons
at the same time. This cannot be achieved by a single radiofrequency. Elaborate
pulse sequences have been developed which involve repetitive application of the
so-called composite pulses which consist of dozens of pulses with properly chosen
amplitudes and phases applied in quick succession, and these achieve saturation
(or inversion) of all the protons at the same time, while carbon data is being acquired.
This discussion is beyond the scope of this book.

Fig. 3.52 (a) A schematic representation of heteronuclear spin decoupling pulse sequence. (b) The
magnetization at different time points of heteronuclear spin decoupling experiment is represented
vectorially. The magnetization vectors of the A spin are shown which get refocused before
detection. Note one is looking at the two transitions (A1 and A2) of A spin, sitting at the center of
the two transitions
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Broadband decoupling is also a key element in many multidimensional
experiments discussed in later chapters. In these experiments, often 13C or 15N
decoupling is employed, while 1H data is being acquired.

3.15 Bilinear Rotation Decoupling (BIRD)

A spin echo based technique can be effectively used to distinguish protons attached
to 13C and 12C in any molecule. It consists of a cluster of pulses as shown in
Fig. 3.53a. Considering a C-H system, the evolution of the 1H magnetization through
the sequence is depicted in Fig. 3.53b using vector diagrams. At the end of the BIRD
sequence, the protons attached to 12C are selectively inverted, and such a discrimi-
nation can be very effectively used to suppress 1H magnetization components
originating from protons attached to 12C, in many heteronuclear experiments.

From Fig. 3.53, we also see that at time point 5, the magnetization components of
protons attached to 13C have also refocused along the negative y-axis. In other
words, the C-H coupling evolution has also been refocused. Therefore, this pulse
sequence without the last 90� pulse can also be used for heteronuclear decoupling.

Fig. 3.53 (a) A schematic of the BIRD NMR pulse sequence, where the narrow and wide
rectangles, respectively, represent the 90� and 180� pulses. (b) The vector depiction of 13C-attached
and 12C-attached 1H magnetizations at different time points of the BIRD pulse sequence are shown
in cyan and red colors, respectively, under the assumption of chemical shift refocusing in the spin
echo period
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3.16 Summary

• The principle of Fourier transform (FT) NMR is described. Advantages over the
previously used continuous wave (CW) are described.

• Some mathematical theorems regarding FT are presented.
• The concepts and relation between RF phase and spectral phase are presented.
• The concepts of single-channel detection, quadrature detection, phase correction,

dynamic range, and various aspects of data processing are described.
• The spin echo has been described.
• Methods of relaxation time measurements are described.
• Some common methods of solvent peak suppression to get over dynamic range

problems are described.
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3.18 Exercises

3.1. For a RF strength of 25 KHz in frequency units (γB1), the flip angle for a pulse
of duration 10 μs is
(a) π/4
(b) π
(c) π/2
(d) π/3

3.2. In a quadrature detection, the carrier is placed at
(a) the high-frequency end of the spectrum
(b) the low-frequency end of the spectrum
(c) the middle of the spectrum
(d) either high-frequency or low-frequency end of the spectrum
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3.3. The dwell time in the quadrature detection schemes is
(a) the same as the single-channel detection
(b) twice that of the single-channel detection
(c) 1

4 th of the single-channel detection
(d) half the single-channel detection

3.4. In a free induction decay, the first data point has zero intensity; the Fourier
transformation of this FID leads to
(a) positive absorptive signals
(b) negative absorption signals
(c) dispersive signals
(d) a mixture of absorptive and dispersive signals

3.5. Folding of signals in the NMR spectrum occurs because of
(a) wrong pulse width
(b) smaller spectral width than required
(c) wrong choice of pulse phase
(d) shorter dwell time than the Nyquist equation

3.6. In the slow passage experiment, a signal sweep through the spectrum of
5000 Hz takes 23 min and 20 s. In a Fourier transformation experiment of
the same sample, a single scan takes 1.5 s and the time for Fourier transfor-
mation is 50 s; then the signal-to-noise gain in the Fourier transformation
NMR experiment is
(a) 10
(b) 5
(c) 30
(d) 25

3.7. A 90� x pulse rotates the z-magnetization to �y axis, a 90� y pulse rotates the
z-magnetization to
(a) �x axis
(b) �z axis
(c) +x axis
(d) does not affect the z-magnetization

3.8. In NMR spectrum, for a highest frequency of 500 Hz with respect to offset the
maximum dwell time in the FID should be
(a) 0.2 ms
(b) 1 ms
(c) 0.1 ms
(d) 0.05 ms

3.9. In a standard 13C NMR data acquisition, which of the following flip angles
yields the best signal-to-noise ratio per unit time by signal averaging?
(a) 90�

(b) 30�

(c) 60�

(d) 120�
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3.10. Apodization by exponential multiplication causes
A. increase in line width
B. improvement in resolution
C. improves line shape
D. no effect on the spectra
(a) A and B
(b) A and C
(c) B and D
(d) C and B

3.11. Frequency-independent phase error in the spectrum is because of the
(a) wrong pulse width
(b) improper phase of the RF pulse
(c) wrong dwell time
(d) delay in the data acquisition

3.12. First-order phase error in the NMR spectrum
(a) is the same throughout the spectra
(b) decreases as we move away from the offset
(c) increases as we move away from the offset
(d) is proportional to zero-order phase error

3.13. For a sample consisting of two lines with intensities 10,000 and 1 in arbitrary
units, what is the minimum ADC resolution required to represent both the
signals correctly, assuming 1 bit for sign representation for the signal?
(a) 8 bits
(b) 12 bits
(c) 14 bits
(d) 16 bits

3.14. In a spin echo experiment, the echo amplitude for a given signal depends on
(a) inhomogeneity in the magnetic field
(b) chemical shift of the signal
(c) T1 relaxation time of the spin
(d) T2 relaxation time of the spin

3.15. In a spin echo (90-τ-180-τ-aq) experiment on a coupled two spin system AX
with coupling constant (J), the phase difference between the two components
of the doublet at the time of echo will be
(a) 0
(b) 2πJτ
(c) 4πJτ
(d) 6πJτ

3.16. The echo amplitude in a spin echo experiment decreases due to
(a) inhomogeneity in the field
(b) translational diffusion in a homogenous field
(c) translational diffusion in an inhomogeneous field
(d) chemical shift anisotropy
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3.17. In an FTNMR experiment with the carrier placed in the middle of the spectrum
and with quadrature detection, what will be the phase shift of the signal at half
the maximum frequency, if the acquisition is delayed by 1 dwell time? What
will be the phase shift at the maximum frequency? Assume that in the absence
of any delay, all the lines will have positive absorptive shapes.

3.18. Derive an expression for the flip angle due to a RF of amplitude B1 and pulse
width of Tp at an offset of Ω from the RF frequency. For a pulse width TP
giving an on-resonance rotation of 90�, calculate the offset at which the
rotation angle will be 360�.

3.19. For the spin echo sequence 90x-τ-180y-τ acquisition, plot the echo amplitude
as a function of time for (i) single spin and (ii) observe spin A of the coupled
heteronuclear AX system with a coupling constant of 100 Hz.

3.20. In a jump-return experiment, (90x-t-90x), what should be the value of t for the
maximum water suppression and maximum excitation at 10 ppm away from
the water on a 500 MHz spectrometer.

3.21. In an inversion recovery T1 measurement experiment, if the τnull is 2 s,
calculate the T1 value.
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4.1 Introduction

We have seen in Chap. 1 that the intensities of the resonance lines in the NMR
spectra are proportional to the population differences between the energy levels they
connect. These differences are dictated by Boltzmann’s statistics and are dependent
on the energy difference between the levels. Given that these energy differences are
in the radio frequency regime, the population differences are minimal, and this
makes NMR an intrinsically insensitive technique when compared to other
spectroscopies such as optical spectroscopy. Different NMR active nuclei have
different intensities since they possess different magnetic moments, and among the
various nuclei proton is the most sensitive.

Polarization transfer is a process that affects the transfer of magnetization
between “like” or “unlike” nuclei. The term “like” implies nuclei have the same
gyromagnetic ratio but different chemical shifts, and the term “unlike” refers to
nuclei having different gyromagnetic ratios. These two are referred to as homonu-
clear and heteronuclear transfers, respectively. For example, the transfer between
two protons having different resonance frequencies (1H-1H) is a homonuclear
transfer, and the transfer from 1H to 13C or 15N is a heteronuclear transfer. One
way of achieving this is by manipulating the population differences between differ-
ent energy levels in a given system of spins. In this case there is an exchange via the
z-magnetizations of the individual nuclei. The magnetization transfer can also be
effected via transverse (x or y) magnetizations of the individual nuclei. While the
former is largely used for structure determination as will be shown later, the latter is
mostly used to enhance sensitivities of less sensitive nuclei, for example, 1H to 13C,
1H-15N, etc. In fact, both these transfers have useful applications to derive informa-
tion about the systems under study. Several experimental strategies have been used
to achieve such polarization transfer and that will be the subject matter of this
chapter.

4.2 The Nuclear Overhauser Effect (NOE)

The nuclear Overhauser effect (NOE) occupies a special place in the collection of
techniques in NMR spectroscopy. It is an invaluable tool for chemists and biologists
for the assignment of resonances and elucidation of three-dimensional structures of
molecules in solution media. This has enabled in recent years the so-called impossi-
ble task of determination of structures of large molecules such as proteins, nucleic
acids, and carbohydrates to atomic resolution and thus has rendered NMR to be a
complementary technique to X-ray crystallography in structural biology. For organic
chemists, NOE has been a valuable tool for deciphering the stereochemistry at
specific places in the molecules. It allows filtering out specific regions of spectra
belonging to nuclei in close proximity and thus has been a useful tool for resonance
assignments.

144 4 Polarization Transfer



The NOE can be defined as a change in the intensity of one NMR resonance line
when another resonance line in the NMR spectrum is in some way perturbed, say by
saturation, inversion by a pulse, etc.

ηi sð Þ ¼ I � Io
Io

ð4:1Þ

where ηi(s) is the NOE at resonance i due to a perturbation at resonance s, Io is the
intensity of the resonance i in the absence of the perturbation, and I is the intensity
after the perturbation at s. The perturbation may be by a continuous radio frequency
irradiation or by a radio frequency pulse. In the former case, the NOE is termed as
steady-state NOE, and the latter case leads to the so-called transient NOE. It is often
a practice to talk of NOE between two nuclei, rather than between two resonances.
The NMR spectra of the nuclei may have multiplet structures, and then the NOE
experiment involves the perturbation of the whole group of resonances belonging to
one nucleus and observation of the total intensity change of the resonances in the
multiplet of the other nucleus. The intensities I and Io in Eq. 4.1 would then refer to
the integrals of the individual multiplets rather than single resonances.

4.2.1 Experimental Schemes

Figure 4.1 shows the standard experimental schemes for obtaining NOE spectra.
Scheme (a) in Fig. 4.1 is for the steady-state experiment in which the RF

perturbation is continuously applied for a period of time at resonance or at the
midpoint of a group of resonances belonging to a multiplet of a spin. The time
period of the irradiation is determined by the spin-lattice relaxation time of the spin
and is long enough to ensure that the spin system has reached a new equilibrium
distribution of the populations of the different energy levels. Then the state of the

Fig. 4.1 Schematic
representations of steady-state
(a) and transient (b) NOE
pulse schemes. In (a), low
power RF is continuously
applied to saturate a signal. In
(b), the Gaussian-shaped 180o

pulse indicates a selective
pulse applied to a particular
transition. τm represents the
mixing time during which
transfer of magnetization
occurs
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system is monitored by applying an observe pulse and recording the spectrum. This
spectrum is called the on-resonance spectrum. A control experiment is performed by
keeping the irradiation far away from any resonance, and this spectrum is referred to
as the off-resonance spectrum. The difference between the on-resonance and
off-resonance spectra eliminates other effects of irradiation and shows only those
resonances which are affected by the RF via NOE. Such a spectrum is known as the
NOE difference spectrum.

Scheme (b) in Fig. 4.1 is for the transient NOE experiment. The steps here are
similar to those of the steady-state experiment except that the perturbation is by a
selective 180

�
pulse to invert a particular resonance or a group of resonances as

before. A certain time period tm called the “mixing time” is allowed to elapse during
which the spins exchange magnetization leading to NOE. The spectrum is then
recorded by applying an observe pulse to obtain the on-resonance spectrum. Again
an off-resonance spectrum is recorded by applying the inversion pulse at a frequency
where there is no resonance in the spectrum. The difference between the two yields is
the difference NOE spectrum. The mixing time in the experiment can be varied to
monitor the time course of magnetization transfer between spins in a molecule, and
this permits the identification of spins that are closest to the perturbed spin, spins
which are slightly farther away from the perturbed spin and so on. This time is again
dictated by the spin-lattice relaxation time of the perturbed spin and can vary from a
few tens of milliseconds to seconds in different systems. The knowledge of the
relaxation times of the spins in the molecule will be a great help in deciding on the
ranges of mixing times useful for the purpose.

Figure 4.2 shows a typical transient 1H NOE difference spectrum of a large
molecule. The signals present in the spectrum belong to protons which are less

Fig. 4.2 A schematic
transient NOE spectrum of a
large molecule case (c),
wherein off-resonance and
on-resonance spectra are
shown in (a) and (b),
respectively. In (b) the
inverted signal appears
negative. In (a) the selective
pulse is at a location far away
from any of the resonances.
Thus, no signal is perturbed.
When (b) is subtracted from
(a), the perturbed resonance
coadds, while the differences
appearing in the other signals
reflect the NOE-based transfer
of magnetization. In this case
NOE is taken to decrease the
intensities, and hence all the
signals appear positive in the
difference spectrum (c)
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than 5 Å apart in space in the molecule. The strong signal identifies the perturbed
resonance, and the weak signals seen are the NOEs. All the other signals in the
unperturbed spectrum have been subtracted out. A quantitative estimation of the
intensities of the NOE signals allows the estimation of distances between the
interacting protons. This is the fundamental information provided by the nuclear
Overhauser effect and allows specific identification of resonances and estimation of
a large number of such distances in a given molecule that enables the determination
of its three-dimensional structure. In the following sections, we shall discuss the
theoretical and experimental aspects of the NOE and also its use for estimating inter-
proton distances.

4.3 Origin of NOE

The nuclear Overhauser effect arises due to dipolar interactions between the two
nuclei. Whenever a nucleus is perturbed from its equilibrium state, the perturbation
is transferred to its neighboring nucleus via dipolar interactions, and this provides a
mechanism for the relaxation of the perturbed nucleus. The extent of perturbation
measured by the disturbance in the population distributions in various energy levels
in the system is a function of several parameters of the system, such as relaxation
times, the strength of the irradiation, and the duration of the irradiation, and
consequently the extent of NOE is also dependent on the relaxation properties of
the spin system. In what follows, we first give a qualitative and simplified explana-
tion for the phenomenon, and it will be followed by a more rigorous treatment in the
next subsection.

4.3.1 A Simplified Treatment

Let us consider a two spin AX system with the energy level diagram, as shown in
Fig. 4.3.

P1, P2, P3, and P4 are the populations of the four states 1–4, respectively; αα, αβ,
βα, and ββ are the spin polarizations of the four states; A1 and A2 are the transitions

Fig. 4.3 An energy level
diagram of a two-spin system.
The different transition
probabilities, namely, zero-
quantum (W0), single-
quantum (W1

X, W1
A), and

double-quantum (W2),
between the different energy
levels are indicated
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of the A spin; X1 and X2 are the transitions of the X spin.W1
0s are the single-quantum

transition probabilities for the A and X spins, and W0 and W2 are the zero-quantum
and double-quantum transition probabilities, respectively. The four transitions are
represented as follows:

A1 : P1 ! P2 A2 : P3 ! P4

X1 : P1 ! P3 X2 : P2 ! P4
ð4:2Þ

At equilibrium, all these have equal population differences resulting in identical
intensities for all the four transitions. Let these population differences be equal to d
(Fig. 4.4a).

The total intensities of A transitions, as well as of X transitions, are each equal to
2d. Now, let us consider that the A transitions are saturated by continuous radio

Fig. 4.4 An energy level diagram and the populations of a two-spin AX system: (a) when the
populations are at equilibrium, (b) when spin-A is saturated, (c) if only the double-quantum
transition probability (W2) is effective, and (d) if only the zero-quantum transition probability
(W0) is effective. These are simply indicative, and in reality, all the transition probabilities will be
simultaneously effective, although some may be more dominant than the others. P1, P3, and d are
used to indicate equilibrium populations, and t is used to indicate the extent of transfer. See text for
more details
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frequency irradiation. This results in an equalization of the populations P1 and P2

and of P3 and P4. The populations of the four states will now be (Fig. 4.4b)

P0
1 ¼ P0

2 ¼ P1 � d
2

P0
3 ¼ P0

4 ¼ P3 � d
2

ð4:3Þ

At this stage, energy levels 2 and 4 gain populations, and hence P0
2 and P

0
4 would

be higher than the corresponding starting equilibrium populations P2 and P4,
respectively.

Now, the A transitions will have zero intensities and the X transitions will have the
intensities

X1 ¼ X2 ¼ P1 � P3 ð4:4Þ
It appears that the X transitions still have the same intensities as in the unperturbed

case. Nevertheless, we have to remember that while the irradiation tends to saturate
the A transitions, the relaxation processes tend to drive the system towards equilib-
rium. This is brought about by the three transition probabilities indicated in Fig. 4.3.
In this process, levels whose populations are higher than their equilibrium
populations would lose, and others would gain. Now, let us see which of these are
most effective in altering the populations. The single-quantum transition probability
of the A spin cannot cause any changes since this will be overridden by the
RF. Similarly, Wx

1 also cannot cause any population transfer since the population
differences between states 1 and 3 and 2 and 4 are already equal to the equilibrium
differences. Now, let us see the effect of W2 alone, and let the steady-state
populations be as shown in Fig. 4.4c. It is, of course, necessary to assume that W2

changes the population faster than the saturating field, and consequently, there is a
net gain by state 1 and a net loss by state 4. The population differences
corresponding to the X transitions are now

X1 ¼ P1 � P3 þ t; X2 ¼ P1 � P3 þ t ð4:5Þ
Thus, there is a net increase in the intensities of the X transitions. The effect ofW0

alone can be considered in a similar manner. The zero-quantum transition causes
population transfer between states 2 and 3, and this can be represented as shown in
Fig. 4.4d. It is important to note here that the population transfer occurs from state
2 to state 3 and not vice versa since state 2 has a higher population than the
equilibrium value, and this is higher than the population of state 3; state 3 has a
lower population than its equilibrium value actually. Thus, the intensities of the
X transitions are proportional to the populations as indicated in Eq. 4.6:

X1 ¼ P1 � P3 � t; X2 ¼ P1 � P3 � t ð4:6Þ
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In this case, the X transitions have lost some intensity compared to the unper-
turbed state. In reality, however, all the transition probabilities will be operating
simultaneously, and depending on the relative efficiencies, there will be net gain or
loss in the intensities of the X transitions. The two situations are referred to as
positive NOE and negative NOE, respectively. The magnitude of the NOE is
proportional to the difference in the two relaxation rates, which is referred to as
the “cross-relaxation rate” σ.

σ ¼ W2 �W0 ð4:7Þ
Positives NOEs generally occur in small molecules, while the negative NOE is a

common feature of macromolecules. The reasons are fairly simple. As discussed in
Chap. 1, in large molecules, there is a very efficient redistribution of magnetizations
by zero-quantum transition processes among various nuclei within the molecule,
whereas in small molecules, the population changes and hence the magnetization
changes will have to occur by dissipative processes to the lattice by double-quantum
transitions. Thus, in large molecules W0 is a very dominating process leading to
negative NOEs, and in small molecules W2 is a dominating process leading to
positive NOEs.

4.3.2 A More Rigorous Treatment

We have seen in the previous section that the NOE arises as a consequence of the
interplay of several relaxation processes following a perturbation of the spin system
tending to bring back the populations of various energy levels to their equilibrium
values. Therefore, the time evolution of these populations is the crucial process to be
looked at in getting a deeper understanding of the NOE phenomenon. Let us
consider an N level system as shown schematically in Fig. 4.5.

Following a perturbation of the spin system, the recovery of the population of a
state i will be governed by the equation

dPi

dt
¼

j
Wij P j � P0

j � Pi � P0
i j

Wij ð4:8Þ

Fig. 4.5 A schematic of an N
energy level system, wherein
upward transitions are
indicated from the lowest
energy level to the other
higher levels
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where Wij is the transition probability from state i to state j, Ps are the populations at
any time t, and P0s are the equilibrium populations of the different states. This
equation is referred to as the master equation. For uncoupled or weakly coupled spin
systems, the populations can also be related to the magnetizations, and then Eq. 4.8
can be recast in terms of magnetizations of individual spins. We will illustrate the
procedure for solving the master equation by considering a two-spin AX system and
referring to the energy level diagram in Fig. 4.3.

IfMA andMX are the z-magnetizations of the spins A and X, respectively, they are
related to populations P1 to P4 as follows:

MAα
1
2
P1 þ P2 � P3 � P4½ �

MX α
1
2
P1 þ P3 � P2 � P4½ � ð4:9Þ

The rate equations for various population changes are

dP1

dt
¼ � WA

1 þWX
1 þW2 P1 � P0

1 þW2 P4 � P0
4 þWX

1 P2 � P0
2

þWA
1 P3 � P0

3 ð4:10Þ
dP2

dt
¼ � WA

1 þWX
1 þW0 P2 � P0

2 þWA
1 P4 � P0

4 þWX
1 P1 � P0

1

þW0 P3 � P0
3 ð4:11Þ

dP3

dt
¼ � WA

1 þWX
1 þW0 P3 � P0

3 þWA
1 P1 � P0

1 þWX
1 P4 � P0

4

þW0 P2 � P0
2 ð4:12Þ

dP4

dt
¼ � WA

1 þWX
1 þW2 P4 � P0

4 þWA
1 P2 � P0

2 þWX
1 P3 � P0

3

þW2 P1 � P0
1 ð4:13Þ

If we define equilibrium magnetizations M0
A and M0

X as

M0
A α

1
2

P0
1 þ P0

2 � P0
3 � P0

4 ð4:14Þ

M0
X α

1
2

P0
1 � P0

2 þ P0
3 � P0

4 ð4:15Þ

then the rate of change of magnetizationsMA andMX of A and X spins can be written
after some tedious algebra as

dMA

dt
¼ � 2WA

1 þW0 þW2 MA �M0
A � W2 �W0ð Þ MX �M0

X ð4:16Þ
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dMX

dt
¼ � 2WX

1 þW0 þW2 MX �M0
X � W2 �W0ð Þ MA �M0

A ð4:17Þ

Defining further,

ρA ¼ 2WA
1 þW0 þW2

ρX ¼ 2WX
1 þW0 þW2

σAX ¼ W2 �W0 ð4:18Þ
we obtain

dMA

dt
¼ �ρA MA �M0

A � σAX MX �M0
X ð4:19Þ

dMX

dt
¼ �ρX MX �M0

X � σAX MA �M0
A ð4:20Þ

The entities ρA and ρX are called auto-relaxation rates of the spins A and X,
respectively, and the entity σAX is called the cross-relaxation rate between the two
spins. The two Eqs. 4.19 and 4.20 can be clubbed and written in the form of a matrix
equation as

dm
dt

¼ �Rm ð4:21Þ

where m is a column vector representing the deviations in the magnetizations from
equilibrium values and R is a matrix of relaxation rates called the relaxation matrix.
This equation is actually a very general one and is not limited to two spins alone.
Accordingly, the dimensions of the vector and the matrix will be different. For the
two-spin case explicitly considered,

m ¼
MA �M0

A

MX �M0
X

; R ¼
ρA σAX

σAX ρX
ð4:22Þ

Equation 4.21 will have to be solved to calculate the NOE. Since the treatments
are different for the steady-state and transient NOE, we will consider the two
separately in the following paragraphs.

4.4 Steady-State NOE

For the steady-state NOE on spin X due to irradiation of spin A, we can set
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dMx

dt
¼ 0;MA ¼ 0 ð4:23Þ

From Eq. 4.20, this leads to the expression for NOE as

ηAX ¼ MX �M0
X

M0
X

¼ M0
A

M0
X

σAX
ρX

ð4:24Þ

If dipole-dipole interaction between spins A and X is the sole mechanism of
relaxation, then the auto- and cross-relaxation rates can be calculated by using
explicit expressions for the transition probabilities contributing to the respective
rates. These are related to spectral densities discussed in Chap. 1, and without going
into the details of these calculations, we shall simply accept the relations for the
transition probabilities as given in Eqs. 4.25, 4.26 and 4.27:

Wo ¼ K
20

2τc
1þ ððωA � ωXÞτcÞ2

ð4:25Þ

WA
1 ¼ K

20
3τc

1þ ðωAτcÞ2

WX
1 ¼ K

20
3τc

1þ ðωXτcÞ2
ð4:26Þ

W2 ¼ K
20

12τc
1þ ððωA þ ωXÞτcÞ2

ð4:27Þ

where K is a constant given by

K ¼ μ0
4π

2
γA γXð Þ2 h

2π

2

rAX
�6 ð4:28Þ

rAX is the distance between the spins A and X, and the other constants have the usual
meanings (h refers to Planck’s constant and μo refers to permeability of the vacuum).
It is clear that the NOE will depend upon the rates of molecular motions since the
spectral densities, J, are dependent on the reorientational correlation times in the
system. Figure 4.6 shows plots of maximum NOE vs correlation time for homonu-
clear spin systems.

Two limiting cases can be specifically discussed.

Extreme Narrowing Limit
Under the conditions of extreme narrowing which are prevalent in small molecules
as discussed in Chap. 1, the spectral densities J in Eqs. 4.25, 4.26 and 4.27 become
equal, and the transition probabilities will be in the proportion

4.4 Steady-State NOE 153



Wo : WA
1or W

X
1 : W2 : 2 : 3 : 12 ð4:29Þ

Then,

σAX
ρX

¼ W2 �W0ð Þ
2WX

1 þW0 þW2
ð4:30Þ

¼ 1
2

ð4:31Þ

Now, for spin ½ systems being considered here, the equilibrium magnetizations
M0

A and M0
X defined by the population differences ( pα � pβ) are proportional to μ

(see Chap. 1, Eq. 1.18) and hence to the individual magnetogyric ratios, and hence,

M0
A

M0
X

/ γA=γX ð4:32Þ

Thus, the steady-state NOE is given by

ηX
A ¼ 1

2
γA
γX

ð4:33Þ

If, for example, A is a proton and X is a carbon-13 nucleus, then the NOE will
have a value of 2. This represents the maximum NOE obtainable in the system. If
X is 15N, then the maximum NOE will close to�5.0; the negative sign arises because
15N has negative magnetogyric ratio. In practice, however, the observed NOE will be
smaller than this value because mechanisms other than dipole-dipole interaction also

Fig. 4.6 The dependence of
the homonuclear NOE on
molecular sizes (i.e.,
correlation times). Large
molecules have large
correlation times and small
molecules have short
correlation times
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contribute to the relaxation of the spin system. Similarly, for the homonuclear
system, the maximum NOE is 0.5.

Slow Motion Limit
This situation occurs in large molecules, and the spectral densities will now have an
explicit dependence on the correlation times, and the transition probabilities will be
given by

W0 ¼ K
10

τc ð4:34Þ

WA
1 ¼ 0 ð4:35Þ

W2 ¼ 0 ð4:36Þ
The NOE for spin ½ systems is given by

ηX
A ¼ M0

A

M0
X

σAX
ρX

¼ � M0
A

M0
X

¼ � γA
γX

ð4:37Þ

Thus, for homonuclear systems, the maximum NOE is �1 and is higher for
heteronuclear systems when the protons are saturated, and the X nucleus is observed.

4.5 Transient NOE

Figure 4.1b shows the pulse scheme for the one-dimensional transient NOE experi-
ment. The experiment begins with selective inversion (180

�
pulse) of one particular

spin, say i. This is followed by a constant delay, τm, and then an observed hard 90
�

pulse is applied to generate transverse magnetization, which is then detected as FID.
During the time τm, the transfer of magnetization occurs from the inverted spin to the
other spins via dipole-dipole interaction as the inverted spin relaxes back to equilib-
rium, which generates the NOE on the other spins. This time period is referred to as
the “mixing time.”

The analytical treatment of transient NOE begins with Eq. 4.21 extended to
include multiple spins. Rewriting in a generalized sense,

dM
dt

¼ �RM ð4:38Þ

with M now representing multiple spins in a column vector

M= m1,m2,m3, . . . ,mnf g ð4:39Þ

mi ¼ Miz �M0
i ð4:40Þ

represents the deviation of z-magnetization of ith spin from equilibrium value,
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and

R ¼

ρ11 σ12 σ13 σ14 . . . σ1n

σ21 ρ22 σ23 σ24 . . . σ2n

σ31 ρ32 σ33 σ34 . . . σ3n

σ41 ρ42 σ43 σ44 . . . σ4n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
σn1 ρn2 σn3 σn4 . . . σnn

ð4:41Þ

The solution of Eq. 4.38 will be

M tð Þ ¼ e� Rtð ÞM 0ð Þ ð4:42Þ
Explicitly, for t ¼ τm,

M τmð Þ ¼ 1� Rτm þ 1
2!
R2τm

2 � 1
3!
R3τm

3 þ . . . . . . . . . . . . M 0ð Þ ð4:43aÞ

For short τm the second- and higher-order terms in Eq. 4.43a can be neglected.
Under these conditions,

M τmð Þ ¼ 1� Rτmf gM 0ð Þ ð4:43bÞ
This solution in the matrix form will look like

m1 τmð Þ
m2 τmð Þ
m3 τmð Þ
m4 τmð Þ
⋮

mn τmð Þ

¼ 1� τm

ρ11 σ12 σ13 σ14 . . . σ1n

σ21 ρ22 σ23 σ24 . . . σ2n

σ31 ρ32 σ33 σ34 . . . σ3n

σ41 ρ42 σ43 σ44 . . . σ4n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
σn1 ρn2 σn3 σn4 . . . σnn

�

m1 0ð Þ
m2 0ð Þ
m3 0ð Þ
m4 0ð Þ
⋮

mn 0ð Þ

ð4:44Þ

In other words, for j 6¼ i
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mi τmð Þ ¼ 1� ρiiτmð Þmi 0ð Þ � σijτmm j 0ð Þ ð4:45Þ

The expression for NOE will then become

ηi τmð Þ ¼ mi τmð Þ
Mi

0 ¼ 1
M0 1� ρiiτmð Þmi 0ð Þ � σijτmm j 0ð Þ ð4:46Þ

For a selective inversion of jth spin,

m jð0Þ ¼ �2M j
0 and mið0Þ ¼ 0, i 6¼ j ð4:47Þ

Thus,

ηi τmð Þ ¼ � 1
Mi

0 �2M j
0 σijτm ð4:48Þ

¼ 2σijτm, for homonuclear case;Mi
0 ¼ M j

0, for homonuclear case: ð4:49Þ
Thus, it is seen that for short mixing times, the transient NOE at spin i due to the

inversion of spin j is directly proportional to the cross-relaxation rate between the
two spins and is also linearly dependent on the mixing time. Hence this approxima-
tion of short mixing time is referred to as the “isolated spin pair approximation”
(ISPA). Since the cross-relaxation rate is inversely proportional to the inverse sixth
power of the internuclear distance as discussed earlier, the transient NOE experiment
provides a powerful tool for estimating internuclear distances in molecules and
hence for structure determination. As we will see in later chapters, this strategy
has been elegantly used for the structure determination of large molecules in
solution.

One might ask at this stage how do we know “what is short mixing time.” Indeed,
this is a complex question, and a simple answer to this would be it should be much
shorter compared to the spin-lattice relaxation time of spin j.

In a more general case, where no approximations are made, all the cross-
relaxation rates and leakage to the lattice will contribute to the transient NOE at
any particular spin, and the dependence of ηi(τm) on mixing time will appear, as
shown in Fig. 4.7.

The nonlinearity and decay of the NOE at higher mixing times are a consequence
of leakage to the lattice and contributions from various cross-relaxation rates, which
is termed as “spin diffusion” in the NMR jargon.

4.6 Selective Population Inversion

Consider a two spin-system, AX (X represents the insensitive hetero nuclei and
A represents the 1H), with the energy level diagram shown in Fig. 4.8a. The
populations of individual levels are as indicated in Fig. 4.8b. This population
distribution leads to two transitions for each spin, A1 : (1 ! 2 transition),
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A2 : (3 ! 4 transition), and two transitions for the X : X1 (1 ! 3) and X2 (2 ! 4).
Intensities of the A1 and A2 transitions are 2Δ each, and similarly intensities of X
transitions are 2δ each. Let us assume a 180o pulse is applied to the A1 transition
(Fig. 4.9a); as a consequence, the populations of the levels 1 and 2 get interchanged.
In this scenario, the intensities of the X1 and X2 transitions will become�(2Δ � 2δ)
and 2Δ + 2δ, respectively (Fig. 4.9b). Clearly, there is a substantial change in the
intensities of the X transitions; if one calculates the changes in the intensities of two
transitions from the equilibrium situation, this will become +2Δ and �2Δ, respec-
tively, and the magnitude of change is proportional to Δ

δ, and this is equal to
γA
γX
. Thus,

for a 13C-1H system, for example, there will be an intensity gain of factor of
4, although the two transitions will have opposite signs. Similarly, for a 15N-1H
system, a sensitivity gain of factor 10 will be observed when the populations of the
energy levels corresponding to 1H transition are inverted. So, this provides a
significant advantage for sensitivity enhancement. However, the difficulty lies in
obtaining a clean selective 180o pulse, especially when the resolutions are poor or
the spectra are crowded.

Fig. 4.7 The dependence of NOE (ηi(τm)) on mixing time, τm, is shown schematically

Fig. 4.8 (a) Populations of the four energy levels (1–4) of a two-spin, AX spin system (Δ and δ are
used to indicate the populations), (b) the resultant population differences for the transitions A1 and
A2 and X1 and X2 and the corresponding spectral intensities
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4.7 INEPT

To circumvent the issues related to selective inversions, this method called INEPT
(insensitive nuclei enhance polarization transfer), which uses nonselective pulses for
the transfer, was developed. The basic pulse sequence for the INEPT experiment is
as shown in Fig. 4.10. The vector diagram showing the evolution of the magnetiza-
tion components is shown in Fig. 4.11. The first 90x pulse on the A spin rotates the
z-magnetization of the A spin on to the �y axis. During the next τ ¼ 1

4J period, the
two components dephase to the extent of 90� phase difference. A 180ox pulse on the
A transitions rotates the two transitions in the opposite quadrants; a simultaneous
180o pulse on X nucleus interchanges the labels of A transitions, as a result of which
they continue to dephase further and at the end of next 1

4J period they are aligned in
opposite directions along the x-axis. The following 90oy pulse on the A spin puts
these two transitions along the + z � and � z-axes. This scenario is equivalent to a
selective inversion of one of the A transitions described in the previous section;
consequently, this contributes to an enhancement of the X-transition intensity by the
ratio γA

γX
. Following a final 90ox pulse on X-channel, the signal is detected and Fourier

transformed.
The success of the polarization transfer is determined largely by the relaxation

time of the sensitive nuclei, which should be short enough to re-establish the
equilibrium during the pulse sequence. Intensity enhancements by this method can
be much higher than those obtained by NOE methods.

Fig. 4.9 (a) Population distribution among the four (1–4) levels of an AX spin system after
selective inversion of the A1 transition by the application of selective 180� pulse on the A1 transition,
as indicated by the arrow (the populations of levels 1 and 2 are interchanged), (b) the resultant
spectral lines (see text for intensities)
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Fig. 4.10 A schematic
representation of the primary
INEPT pulse sequence for the
spin system AX. τ is a delay
period equal to 1/4JAX

Fig. 4.11 The vector evolution of A spin magnetization components at different time points 1–5 in
the INEPT pulse scheme. Note one is looking at the two transitions A1 and A2, sitting at the center of
the two
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4.7.1 INEPT Has the Following Disadvantages

(i) Intensity and Multiplet Anomalies

Incorrect relative intensities occur in different spin multiplets, and this depends on
the following:

(a) Strength of heteronuclear J-coupling
(b) Multiplicity of spin multiplets

Multiplet pattern distortions occur in systems such as A2X and A3X (Fig. 4.12).
These distortions are a consequence of cancellation of intensities in the central lines
after evolution of the X-magnetization under more than one J-couplings to
heteronuclei. For a simple two-spin system, AX, the X-lines appear as a simple
antiphase doublet after X-evolution during detection. When there are multiple
J-couplings with the X spin, such as in A2X, A3X, etc., the X spin evolves under all
those couplings resulting in in-phase splitting of the antiphase doublet, and this
results in the cancellation of the central components since all the couplings are equal
in magnitude. Thus, in an A2X system, the X-multiplet appears as (�1, 0, 1) intensity
pattern, as against the (1, 2, 1) pattern in the conventional spectrum. Similarly, in an
A3X system, the X-multiplet appears as (�1,�1, 1, 1) intensity pattern as against the
(1, 3, 3, 1) pattern in the conventional spectrum.

Further, as can be seen from the previous discussion, the pulse sequence contains
a delay period of 1/2J during which time the magnetization is on the A nucleus. This
transverse magnetization undergoes transverse relaxation, which leads to some loss
of intensity. The extent of loss depends on the transverse relaxation rate of the A spin
and the magnitude of the coupling constant since the delay for effective transfer is
1/2J for a two-spin system.

Fig. 4.12 Schematic INEPT-
resultant multiplet patterns of
X spin in the A2X (a) and A3X
(b) spin systems
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(ii) Positive and Negative Signals in the Multiplets

As can be seen in Fig. 4.12, the multiplets have positive and negative signals.
These not only result in the cancellation of intensities but also are inconvenient to
analyze when many multiplets are close to each other in a spectrum.

Figure 4.13 shows an illustrative INEPT spectrum displaying the different
features.

4.8 INEPT+

To overcome the shortcomings of the INEPT sequence with regard to the multiplet
distortions, the INEPT+ has been designed. The pulse sequence for this is shown in
Fig. 4.14. Firstly, an additional spin echo segment similar to the first one in the
INEPT is added after the last 90� pulses; this helps to refocus the positive-negative
components. This modification is referred to as the refocused INEPT. The last 90�

pulse in the pulse sequence removes some artifacts and results in clean multiplets in
the spectrum. This final sequence is referred to as INEPT+. The delay τ0 in this
segment is adjustable for editing the spectra since refocusing of the A multiplets in
AX, A2X, and A3X spin systems will be different. The peak intensities (I ) for the three
spin systems are dependent on τ0 as given Eqs. 4.50, 4.51 and 4.52:

Fig. 4.13 An illustrative INEPT spectrum of sucrose. The positive and negative signals are clearly
visible
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I AXð Þ α sin θ ð4:50Þ
I A2Xð Þ α 2sin θ cos θ ð4:51Þ

I A3Xð Þ α 3sin θ cos 2 θ ð4:52Þ

where θ ¼ πJAXτ0. The intensities for the different multiplets can be positive or
negative depending upon the choice of the θ. For example, for θ ¼ 45�, all multiplets
will have a positive sign. For¼ 135� AX and A3Xwill have a positive sign, while A2X
will have a negative sign. Thus, spectra acquired with different θ values can be
coadded to filter out desired multiplets. The 90� proton pulse before the detection
period in the INEPT+ is called a “purge” pulse which helps to eliminate unwanted
antiphase magnetization components and helps to restore the binomial distribution
of intensities in the multiplets.

An experimental 13C INEPT+ spectrum of a small molecule is shown in Fig. 4.15
as an illustration.

The signal-to-noise ratio can be further enhanced by employing heteronuclear
decoupling in the detection period of the experiment. An example of comparison of
coupled and decoupled spectra is shown in Fig. 4.16.

4.9 Distortionless Enhanced Polarization Transfer (DEPT)

DEPT is the most widely used polarization transfer experiment, as it is free from
many of the shortcomings of the INEPT sequences. It produces 13C spectra identical
to those obtained by direct 13C observation, which means the multiplet structures are
well preserved, along with the advantage of polarization transfer from 1H to 13C. The
pulse sequence of the DEPT experiment is given in Fig. 4.17. In this pulse scheme,
changing the flip angle (θ) of the final 1H pulse encodes the phases of carbon signals.

Fig. 4.14 A schematic of the
INEPT+ pulse sequence for
the spin system AX
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The carbon resonances of CH, CH2, and CH3 groups vary with θ as sinθ, 2sinθ cosθ,
and 3sinθ cos2θ, respectively. Interestingly, this is identical to the patterns in the
refocused INEPT scheme, except that here it is determined by the value of a flip
angle as against the magnitude of the refocusing delay τ0 in the refocused INEPT.
DEPT is also more tolerant with regard to variations in J values. The flip angle-
dependent sign encoding of the carbon signals in the DEPT experiment is shown in
Fig. 4.18.

Clearly, the patterns seen in Fig. 4.18 suggest ways of observing particular types
of carbons by choosing θ appropriately. For example, for θ ¼ 90� only CH will be
observed, and the other two will have zero intensity. For θ ¼ 135� CH and CH3 have
positive intensities, while CH2 has a negative intensity; while CH2 and CH3 will
have their maximum intensities, CH will have less than its maximum intensity.

Fig. 4.15 An experimental proton-coupled 13C spectrum of sucrose showing the correct multiplet
structures obtained from INEPT+ pulse sequence

Fig. 4.16 An illustrative comparison of coupled, INEPT, refocused INEPT, and 1H-decoupled 13C
spectra. The former two are recorded by direct 13C observation, while the last one is acquired by 1H
decoupling during acquisition in the refocused INEPT experiment. The significant enhancement in
the S/N ratio in the latter is clearly evident

164 4 Polarization Transfer



However, the DEPT experiment cannot be described using vector diagrams as was
done for the simplest two spin case of the INEPT scheme. Here, the magnetization
transfer pathway includes multiple-quantum transitions and their properties, and
such a complete analysis of the DEPT type of multipulse experiments requires
density matrix analysis of NMR phenomenon. These aspects will be introduced in
Chap. 5.

4.10 Summary

• The concept of magnetization transfer referred to as polarization transfer between
nuclei in a given molecule is described. The nuclear Overhauser effect (NOE) is
explained.

• The theoretical description in terms of population changes of the various energy
levels is given.

Fig. 4.17 A schematic of
DEPT NMR pulse sequence.
Changing the flip angle (θ) of
the final proton pulse (blue)
encodes the carbon signal
phases. For recording coupled
spectra, the decoupling during
detection should be
switched off

Fig. 4.18 Normalized signal
intensities of CH, CH2, and
CH3 carbons as a function of
the final proton pulse flip
angle
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• Steady-state NOE and transient NOE are presented.
• INEPT, INEPT+, and DEPT pulse sequences are described.

4.11 Further Reading

• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,
A. Wokaun, Oxford, 1987

• The Nuclear Overhauser Effect in Structural and Conformational Analysis,
D. Neuhaus, M. P. Williamson, 2nd ed., Wiley 2000

• Nuclear Overhauser Effect: Chemical Applications, J. H. Noggle, R. E. Schirmer,
Academic Press, 1971.

4.12 Exercises

4.1. Polarization transfer between the nuclear spins is caused by
(a) J-coupling or dipolar coupling between the spins
(b) coupling with the magnetic field
(c) coupling with the RF
(d) none of the above

4.2. Positive NOE occurs because of
(a) domination of single-quantum transition probability
(b) domination of double-quantum transition probability
(c) domination of zero-quantum transition probability
(d) slow molecular motion

4.3. In an AX system while saturating the A spin, the polarization gain by the
steady-state NOE is
(a) proportional to γA

γX

(b) proportional to γX
γA

(c) proportional to γAγX
(d) independent of γA and γX

4.4. In an AX system, the transfer of polarization from A spin to X spin in a
selective population inversion (SPI) experiment requires
(a) selective inversion of the X spin transitions
(b) selective inversion of the A spin transitions
(c) selective inversion of one of the A spin transitions
(d) selective inversion of one of the X spin transitions

4.5. Polarization transfer in an SPI experiment results in
A. differential transfer of magnetization
B. net transfer of magnetization
C. positive and negative signals in the spectrum
D. all positive signals in the spectrum
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Choose the correct answer.
(a) A and B
(b) B and D
(c) A and D
(d) A and C

4.6. The estimation of distance between spins A and X by a transient NOE
experiment
(a) requires spin diffusion
(b) requires short mixing time
(c) requires large mixing time
(d) is independent of the mixing time

4.7. The spectral density function is
(a) power distribution as a function of frequency due to molecular motion
(b) dependent on the spectrometer frequency
(c) independent of the correlation time
(d) representation of the RF power

4.8. In an INEPT experiment,
(a) polarization is transferred from sensitive to insensitive nucleus
(b) polarization is transferred from insensitive to sensitive nucleus
(c) transfer efficiency is independent of the type of the nuclei
(d) there is no gain in the sensitivity

4.9. In a refocused INEPT experiment, for a C-H spin system with one bond
coupling of 125 Hz, the refocusing delay should be
(a) 8 ms
(b) 4 ms
(c) 2 ms
(d) 1 ms

4.10. During the spin lock,
(a) the spins lose their identity and exchange magnetization
(b) spins precess with their characteristic frequencies
(c) individual spins do not interact with each other
(d) there is no exchange of magnetization

4.11. In C-H-refocused INEPT experiment, which of the following statement is
correct?
(a) carbon and proton are decoupled during the spin echo elements.
(b) carbon and proton can be decoupled during the detection period.
(c) proton magnetization is detected.
(d) magnetization transfer occurs from carbon to proton.

4.12. The sensitivity enhancement in a NH-refocused INEPT experiment is by a
factor of
(a) 4
(b) 10
(c) 1000

p
(d) 8
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Learning Objectives
• Fundamental aspects of spin dynamics
• Density matrix description
• Product operator formalism to understand NMR experiments

5.1 Introduction

In the Fourier transform NMR experiment described in Chap. 3, the data was
collected after the application of an RF pulse to a spin system, which was in
equilibrium. Thus, the information that is obtained is essentially steady-state infor-
mation. Much more information about the spin system, energy level diagrams, cross-
relaxation pathways, etc. can be obtained by monitoring transient effects following a
perturbation to the spin system. For this, it is necessary to create a nonequilibrium
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state prior to the application of the observe RF pulse so that the transient phenomena
are reflected in the data that will be collected thereafter. Now, a nonequilibrium state
of the spin system can be created in different ways, depending upon what the specific
interest is. The design of proper experimental schemes suitable for the purpose in
mind requires proper knowledge of the behavior of spins under the influence of
various perturbing forces that may be used. Such an understanding can be most
appropriately obtained by using the most fundamental “density matrix” formalism. It
is impossible to obtain correct and predictable information from vector
representations, as was done in the steady-state case. In this chapter, the focus will
be on developing this “density matrix” formalism from the NMR point of view.

Sections 5.2, 5.3, 5.4, and 5.5 give a formal description of the theory of density
matrix. This involves a fair amount of quantum mechanics and mathematical rigor.
Section 5.6 onward, the product operator formalism provides a convenient tool for
the evaluation of density matrices and density operators applicable to weakly
coupled spin systems. Students who find the initial sections hard to grasp due to
insufficient background can skip to Sect. 5.6 and continue to familiarize themselves
with calculation of evolution of magnetization components through given pulse
sequences. Chapter 6 makes use of these in an extensive manner.

5.2 Density Matrix

We have seen in Chap. 1 that the state of spin can be represented by a wave function
which is of the form

Ψ tð Þ ¼
m
Cm tð ÞUm,I ð5:1Þ

Um, I constitutes an orthonormal set of basis functions. We also know that in
quantum mechanics, when we make a measurement of an observable of the spin
system, we observe the time average or equivalently the ensemble average of its
value, and this average value of the observable of the spin system is described by the
expectation value of the corresponding operator. The expectation value of operator
A is defined as

< A >¼< Ψ j A j Ψ > ð5:2Þ

¼ Ψ�A Ψ dτ ð5:3Þ

For example, the expectation value of Mx, the operator for x-component of the
magnetization, in terms of the functions Um, I, is given by

< Ψ Mxj jΨ >¼
m n

Cm tð Þ�Cn tð Þ < Um,I Mxj jUn,I > ð5:4Þ
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Or, briefly,

< Ψ Mxj jΨ >¼
m n

Cm tð Þ�Cn tð Þ < m Mxj jn > ð5:5Þ

Since <m|Mx|n> are constants, any variation of Mx results essentially from the
changes in the coefficients. These products of coefficients, Cm(t)

�Cn(t), can be
conveniently arranged in the form of a matrix. It is useful to treat this matrix as
made-up of matrix elements of a time-dependent operator, P(t), operating on the
basis set of functions.

< n P tð Þj jm >¼ Cn tð ÞCm tð Þ� ð5:6Þ
In this notation,

< Ψ Mxj jΨ >¼
m n

< n P tð Þj jm >< m Mxj jn > ð5:7Þ

Noting that, in general,

m

m >< mj j ¼ 1 ð5:8Þ

Equation 5.7 reduces to

< Ψ Mxj jΨ >¼
m n

< n P tð ÞMxj jn > ð5:9Þ

¼ Tr PMxf g ð5:10Þ
In other words, the expectation value ofMx is given by the trace of the product of

the matrix representations of P and Mx.
It is also easy to prove that P is a Hermitian operator:

< n P tð Þj jm >¼< m P tð Þj jn>� ð5:11Þ
When we are dealing with an ensemble of spins, different spins will have different

wave functions in the sense that the coefficients Cn
0s will be different for the

individual spins. In such a case, one will have to take an ensemble average of
these products to derive an average expectation value of the operator.

< Mx >¼
m n

Cm tð Þ�Cn tð Þ < m Mxj jn > ð5:12Þ

The matrix formed by the ensemble averages of the products Cm(t)
�Cn(t) is

represented by another operator, ρ, which is defined as

< n j ρ tð Þ j m >¼ Cm tð Þ�Cn tð Þ ð5:13Þ
This operator ρ is called as the “density operator.”
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5.3 Elements of Density Matrix

Matrix element ρnm is as given by Eq. 5.13.

ρnm ¼ Cn tð Þ Cm tð Þ� ð5:14Þ
The coefficients Cn

0s are complex quantities, and hence an ensemble average can
also be written as follows

Cn tð Þ Cm tð Þ� ¼ j Cm Cn j e�i αn�αmð Þ ð5:15Þ

where the αs represent phases and the jCmj represents amplitudes.
At thermal equilibrium, by the hypothesis of random phases, all values of α in the

range 0�–360� are equally probable, and hence the ensemble average vanishes for
m 6¼ n, that is, all off-diagonal elements vanish. Nonvanishing of off-diagonal
elements implies the existence of phase coherence between states. The diagonal
elements |Cm|

2 represent the probabilities (populations) given by Boltzmann’s
distribution.

Thus,

ρmn ¼ δmne
�En

kTð Þ
Z

ð5:16Þ

where Z is the partition function given by

Z ¼
N

n¼1

e�
En
kT

¼
N

n¼1

1� En

kT
þ 1
2!

En

kT

2

� . . . . . . . . . . . . . . . : ð5:17Þ

where N is the number of states. Under high-temperature approximation, En
kT � 1 ,

Z can be approximated ignoring the higher-order terms as

Z ¼
N

n¼1

1� En

kT
ð5:18Þ

¼
N

n¼1

1� 1
kT

N

n¼1

En ð5:19Þ

For Zeeman interaction,
N

n¼1
En ¼ 0
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Therefore,

Z ¼
N

n¼1

1 ¼ N ð5:20Þ

If H is the Hamiltonian and ji> are the eigenstates with eigenvalues λi

H i >¼ λij ji > ð5:21Þ
and

eH i >¼ eλi i > ð5:22Þ
Therefore

< j j eH i >¼< jj eλi i >¼ δije
λi ð5:23Þ

Thus, Eq. 5.16 can be rewritten as

ρmn ¼ 1
N

< m j e�En=kT j n >

¼ 1
N

< m j e�H
kT j n > ð5:24Þ

Thus,

ρ ¼ 1
N
e�

H
kT ð5:25Þ

Expanding this in power series, it becomes

ρ ¼ 1
N

1� H

kT
þ 1
2!

H

kT

2

� . . . . . . . . . . . . . . . : ð5:26Þ

Under high-temperature approximation

ρ ¼ 1
N

1� H

kT
ð5:27Þ

For one spin

H ¼ �γħH0Iz ð5:28Þ
For I ¼ 1/2,

ρ ¼ 1
2

1þ γħH0Iz
kT

ð5:29Þ

Calculating the matrix element of the operator Iz, the matrix elements of ρ will be
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ραα ¼ 1
2

1þ γħH0

2kT
; ρββ ¼ 1

2
1� γħH0

2kT
; ραβ ¼ ρβα ¼ 0 ð5:30Þ

Thus,

ρ ¼ 1
2

1 0

0 1
þ γħH0

4kT
1 0

0 �1
ð5:31Þ

For multi-spin systems, the Hamiltonian will be

H ¼ H z þ H J ð5:32Þ
where H z represents the Zeeman interaction and H J represents the J-coupling
interaction. Under high-field approximation, the contribution from H J will be very
small compared to that from H z , and then the J-coupling can be dropped for the
evaluation of the elements of the density matrix.

Explicitly for the two-spin system AX,

ρ ¼ 1
2I þ 1ð ÞA 2I þ 1ð ÞX

1þ γħH0Iz
kT

ð5:33Þ

with Iz ¼ Iz(A) + Iz(X)
The eigenstates of the spin system are αα, αβ, βα, and ββ. With these states, the

matrix elements of ρ will be

ραα,αα ¼ 1
4

1þ γħH0

kT
; ρββ,ββ ¼ 1

4
1� γħH0

kT
; ραβ,αβ ¼ ρβα,βα ¼ 1

4
ð5:34Þ

All the remaining elements will be zero.
Thus,

ρ ¼ 1
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

þ γħH0

4kT

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �1

ð5:35Þ

In general,

ρ ¼ 1
Z
þ K

Z
Iz ð5:36Þ

where K ¼ γħH0
kT
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5.4 Time Evolution of Density Operator r

An explicit understanding of the performance and characteristic features of an
experiment is derived from the knowledge of the time evolution of the density
operator through the experiment. To calculate this, we start from the relevant time-
dependent Schrödinger equation:

�ħ
i

dψ
dt

¼ H ψ ð5:37Þ

writing

ψ ¼
n
cn tð Þun ð5:38Þ

where {un}s constitute the orthonormal basis set of eigenstates.
Substituting Eq. 5.38 in Eq. 5.37, one obtains

�ħ
i n

dcn tð Þ
dt

un ¼ H
n
cn tð Þun ð5:39Þ

Taking the matrix elements with the state uk, one obtains

�ħ
i

< k
n

dcn tð Þ
dt

n >¼< k j
n
H j cn tð Þ j n > ð5:40Þ

¼
n
cn tð Þ < k Hj jn > ð5:41Þ

¼
n
cn tð ÞH kn ð5:42Þ

On the left-hand side, the only nonzero term will be dck
dt

Therefore,

�ħ
i

dck
dt

¼
n
cn tð ÞH kn ð5:43Þ

Now,

d
dt

< k ρj jm >¼ d
dt

ckc
�
m ð5:44Þ

The ensemble average for the coefficients is implicit in this equation.

¼ ck
dc�m
dt

þ c�m
dck
dt

ð5:45Þ

From Eq. 5.43
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dc�m
dt

¼ i
ħ n

c�nH nm ð5:46Þ

Thus, Eq. 5.45 reduces to

d
dt

< k ρj jm >¼ i
ħ n

ckc
�
nH nm � i

ħ n
c�mcnH kn ð5:47Þ

¼ i
ħ n

< k ρj jn >< n Hj jm > � < k Hj jn >< n ρj jm >f g ð5:48Þ

¼ i
ħ
< k ρH � H ρj jm > ð5:49Þ

¼ i
ħ
< k j ρ,H½ � j m > ð5:50Þ

Thus,

dρ
dt

¼ i
ħ
ρ,H½ � ð5:51Þ

This is known as Liouville-von Neumann equation of motion for the density
operator.

If the Hamiltonian is explicitly independent of time, then the solution of Eq. 5.51
is given as

ρ tð Þ ¼ e�
i
ħH tρ oð Þei

ħH t ð5:52Þ
This can be verified by explicit differentiation. Using Eq. 5.52, the off-diagonal

elements of the density matrix can now be explicitly calculated.

< m ρ tð Þj jn >¼< m e�
i
ħH tρ oð Þei

ħH t n > ð5:53Þ

ρmn ¼ e
i
ħ En�Emð Þt < m ρ oð Þj jn > ð5:54Þ

Substituting Em ¼ hvm, En ¼ hvn, and ωmn ¼ 2π(vm � vn), we get

ρmn ¼ eiωmnt < m ρ oð Þj jn > ð5:55Þ
Now, we also have from Eq. 5.14

< m ρj jn >¼ cmc�n ð5:56Þ
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¼ j cm cn j ei αm�αnð Þ ð5:57Þ

where the αs represent the phases and cs represent the amplitudes, which are
independent of each other. Therefore, the no-vanishing of ρmn implies the existence
of phase coherence between the spins in the states jm> and jn> in the ensemble. At
thermal equilibrium, all phases occur with equal probability which implies that

cmc�n ¼ 0 ð5:58Þ
Then comparing this with Eq. 5.54,

e
i
ħ En�Emð Þt < m ρ oð Þj jn >¼ 0 ð5:59Þ

Since the energy-dependent term which is oscillatory in time cannot be zero, it
follows that

< m ρ oð Þj jn >¼ 0 ð5:60Þ
Therefore, all off-diagonal elements of the density matrix vanish at all times. Any

nonvanishing off-diagonal element implies a nonequilibrium state.
Summarizing, the density matrix in the most general case,

ρ ¼

P1 c12eiω12t c13eiω13t ⋯ ⋯ ⋯ c1neiω1nt

c21eiω21t P2 c23eiω23t ⋯ ⋯ ⋯ c2neiω2nt

⋮

⋮
⋮

⋮

cn1eiωn1t

⋮

⋮
⋮

⋮

cn2eiωn2t

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

⋯

⋮

⋮

⋮

⋮

Pn

ð5:61Þ

The measured signal in an NMR experiment is given by the expectation value of
the relevant operator Mx, My, or M�.

For example, for Mx,

< Mx >¼ Tr ρMxð Þ ¼ Tr Mxρð Þ ð5:62Þ
For a single spin 1

2 system, if ρ at the start of data collection has some phase
coherence between the two-spin states α and β and the populations are not equilib-
rium populations, we can write
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ρ tð Þ ¼ P1 eiω12t

e�iω12t P2
ð5:63Þ

Here we have assumed identical coefficients for the off-diagonal elements.
Therefore,

Tr Mxρð Þ ¼ Tr
1
2

0 1

1 0

P1 eiω12t

e�iω12t P2
ð5:64Þ

¼ tr
1
2

e�iω12t P2

P1 eiω12t
ð5:65Þ

¼ cos ω12tð Þ ð5:66Þ
Including transverse relaxation, Eq. 5.66 will become

< Mx >¼ cos ω12tð Þe�t=T2

This oscillating function of time represents the frequency component of the time
domain signal or the FID.

Extending to two spins,

Mx ¼ M1x þM2x, and using the eigenstates 1 ¼j αα >, 2 ¼j αβ >, 3 ¼j βα >,

4 ¼j ββ >

The matrix representation of Mx is

Mx ¼ 1
2

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

ð5:67Þ

Assuming a nonequilibrium density operator of the form,

ρ tð Þ ¼

P1 eiω12t eiω13t eiω14t

e�iω12t P2 eiω23t eiω24t

e�iω13t

e�iω14t

e�iω23t

e�iω24t

P3

e�iω34t

eiω34t

P4

ð5:68Þ

Here, ω12, ω13, ω24, and ω34 represent the single-quantum coherences; ω14 and
ω23 represent double-quantum and zero-quantum coherences, respectively.

The expectation value of Mx as per Eq. 5.62 is
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< Mx >¼ Tr ρMxð Þ

¼ Tr
1
2

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

P1 eiω12t eiω13t eiω14t

e�iω12t P2 eiω23t eiω24t

e�iω13t

e�iω14t

e�iω23t

e�iω24t

P3

e�iω34t

eiω34t

P4

ð5:69Þ

¼ cos ω12tð Þ þ cos ω13tð Þ þ cos ω24tð Þ þ cos ω34tð Þ ð5:70Þ
Clearly, the off-diagonal elements representing single-quantum coherences are

selected, and this constitutes the frequency component of the free induction decay—
the detected signal. Of course, transverse relaxation causes decay of the signal. The
double-quantum and zero-quantum coherences, even though they are present in the
density operator, are not detected. These constitute a non-observable magnetization.

5.5 Matrix Representations of RF Pulses

We begin with the Liouville equation (5.51) with the Hamiltonian, including the
radio frequency (RF) pulse explicitly:

H ¼ H 0 þ H 1 tð Þ ð5:71Þ
where H 0 is the time-independent part of the Hamiltonian and H 1 tð Þ, which is time-
dependent, represents the RF pulse.

Substituting Eq. 5.71 in Eq. 5.51, we get

dρ
dt

¼ i
ħ
ρ,H½ � ¼ i

ħ
ρ,H 0 þ H 1 tð Þ½ � ð5:72Þ

If H 1 were nonexistent, the solution would have been

ρ tð Þ ¼ e�
i
ħH 0tρ oð Þei

ħH 0t ð5:73Þ
Now we define and quantify ρ� such that

ρ tð Þ ¼ e�
i
ħH 0tρ� tð Þei

ħH 0t ð5:74Þ
Such a solution satisfies the condition that at t ¼ 0, ρ and ρ� are identical.

Differentiating equation (5.74) with respect to time, we get

dρ
dt

¼ � i
ħ
H 0, ρ½ � þ e�

i
ħH 0t dρ

�

dt
e
i
ħH 0t ð5:75Þ
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¼ i
ħ
ρ,H 0 þ H 1½ � ð5:76Þ

From this we get

dρ�

dt
¼ i

ħ
e
i
ħH 0t ρ,H 1½ �e� i

ħH 0t ð5:77Þ

¼ i
ħ
e
i
ħH 0t ρH 1 � H 1ρð Þ e� i

ħH 0t ð5:78Þ

¼ i
ħ
fei

ħH 0tρe�
i
ħH 0te

i
ħH 0tH 1e

� i
ħH 0t � e

i
ħH 0tH 1e

� i
ħH 0te

i
ħH 0tρ e�

i
ħH 0t ð5:79Þ

¼ i
ħ

ρ�,H �
1 ð5:80Þ

where

H �
1 ¼ e

i
ħH 0tH 1e

� i
ħH 0t ð5:81Þ

At t ¼ 0, H �
1 ¼ H 1

The transformation operator e
i
ħH 0t represents the rotation about the static field axis

and thus represents the transformation into the rotating frame. Such a representation
is also called the interaction representation. Under resonance condition the evolution
under H 0 will be negligible. Thus, as we will show, during the high-power short-
duration pulse, the Hamiltonian H �

1 will be identical to H 1. Similarly, ρ� will also
become identical to ρ during the pulse.

We now calculate the matrix elements of H �
1:

< k H �
1 m >¼< k j ei

ħH 0tH 1e
� i

ħH 0t j m > ð5:82Þ

¼ e
i
ħ Ek�Emð Þt < k H 1j jm > ð5:83Þ

If H 1 ¼ H 1 0ð Þ e�iωRFt, which represents the RF pulse, then

< k H �
1 m >¼ e

i
ħ Ek�Em�ħωRFð Þt < k H 1 0ð Þj jm > ð5:84Þ

Now, (Ek � Em � ħωRF) is in the kHz range if “t” is in the μs range as in an RF
pulse; the time-dependent term in (5.84) will be extremely slowly varying during the
pulse and hence can be effectively considered to be constant. Thus, the matrix
element < k H �

1 m > can be assumed to be independent of time; in fact, under
resonance condition, (Ek � Em � ħωRF) will be zero, and there will be no time
dependence at all. In other words, during the time of the pulse, H �

1 can be assumed to
be time-independent and is equal to the amplitude of H 1.
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Under this condition, the solution of Eq. 5.80 can be written as

ρ� tð Þ ¼ e�
i
ħH 1tρ� 0ð Þei

ħH 1t ð5:85Þ
And since ρ�(0) ¼ ρ(0), Eq. 5.85 becomes

ρ� tð Þ ¼ e�
i
ħH 1tρ 0ð Þei

ħH 1t ð5:86aÞ
Following the discussion above, under resonance condition, note that for high-

power pulse, resonance condition can be considered to be satisfied for all the
frequencies in the spectrum at the same time; the effective field will be equal to
the RF amplitude; the field along the z-axis will be zero; and thus evolution under the
Hamiltonian H 0 will be negligible. Thus, looking at Eq. 5.74, we can also replace
ρ�(t) by ρ(t) in Eq. 5.86a. Thus, the density operator transformation by the RF pulse
can be described by

ρ tð Þ ¼ e�
i
ħH 1tρ 0ð Þei

ħH 1t ð5:86bÞ
If the RF is applied along the x-axis,

H 1 ¼ μ
!
:H
!

1 ¼ γħH1Ix ð5:87Þ

The transformation operator e�
i
ħH 1t thus becomes e�iβIx , where β ¼ γH1t

represents the rotation about the x-axis by angle β (flip-angle of the RF pulse).
Thus, depending upon the length of the pulse, different rotation angles can be
obtained.

For one spin, the Iq (q ¼ x, y, z) operator can be written as 1
2 σq, where σs are the

Pauli spin matrices given as

σz ¼
1 0

0 �1
; σx ¼

0 1

1 0
; σy ¼

0 �i

i 0
ð5:88Þ

The Pauli matrices satisfy the condition:

σz
2 ¼ σy

2 ¼ σx
2 ¼ 1 ð5:89Þ

Using this notation, the operator e�iβIx can be expanded as a series:

e�iβIx ¼ e�
iβ
2σx

¼ 1� iβ
2
σx þ 1

2!
iβ
2

2

� 1
3!

iβ
2

3

σx þ 1
4!

iβ
2

4

� . . . . . . . . . . . . . . . ð5:90Þ
Regrouping the terms,
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e�iβIx ¼ 1� 1
2!

β
2

2

þ 1
4!

β
2

4

þ . . . � i
β
2
� 1
3!

β
2

3

� . . . σx ð5:91Þ

¼ cos
β
2

� iσx sin
β
2

ð5:92Þ

¼ cos
β
2

� 2iIx sin
β
2

Putting in matrix notation,

e�iβIx ¼ cos
β
2

1 0

0 1
� i sin

β
2

0 1

1 0
ð5:93Þ

Thus, for one spin, a 90
�
x�pulse (β ¼ π

2), the matrix representation becomes

Rx
π
2

¼ e�iπ2Ix ¼ 1

2
p 1 �i

�i 1
ð5:94Þ

Similarly, for a 90
�
y�pulse, we get

Ry
π
2

¼ e�iπ2Iy ¼ 1

2
p 1 �1

1 1
ð5:95Þ

The matrices for π pulses turn out to be

Rx πð Þ ¼ e�iπIx ¼ 0 �i

�i 0
;Ry πð Þ ¼ e�iπIy ¼ 0 �1

1 0
ð5:96Þ

The effect of these pulses on the density operator can be explicitly calculated
using the matrix representations. For example, for a density operator represented by
Iz, the transformation under Rx

π
2 will be

ρ ¼ Rx
π
2

Iz R
�1
x

π
2

ð5:97Þ

¼ 1
4

1 �i

�i 1

1 0

0 �1

1 i

i 1
ð5:98Þ

¼ 1
2

0 i

�i 0
ð5:99Þ

¼ �Iy ð5:100Þ
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So clearly, the z-magnetization is rotated onto the negative y-axis, when we apply
a π

2 x pulse.

Similarly, the transformation under Ry
π
2 on density operator represented by Iz is

given in Box 5.1.

Box 5.1: Density Operator Transformation for the Effect of a π
2 y

Pulse

on the Iz Operator
For Ry

π
2 pulse, the Iz operator will transform as

ρ ¼ Ry
π
2

Iz R
�1
y

π
2

¼ 1
4

1 �1

1 1

1 0

0 �1

1 �1

1 1
¼ 1

2
0 1

1 0

¼ Ix

So clearly, the z-magnetization is rotated onto the positive x-axis, when we
apply a π

2 y
pulse.

For a two-spin system, the matrix representations of the operators are calculated
by direct products (Box 5.2).

Rx
π
2

non� selectiveð Þ ¼ 1
2

1 �i

�i 1

1 �i

�i 1
ð5:101Þ

¼ 1
2

1 �i �i �1

�i 1 �1 �i

�i �1 1 �i

�1 �i �i 1

ð5:102Þ

Similarly,

Ry
π
2

non� selectiveð Þ ¼ 1
2

1 �1

1 1

1 �1

1 1
ð5:103Þ
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¼ 1
2

1 �1 �1 1

1 1 �1 �1

1 �1 1 �1

1 1 1 1

ð5:104Þ

Box 5.2: The Calculation of the Direct Product Between Two 2 3 2
Matrices
The direct product between two matrices P and Q can be represented as

P ¼ a b

c d
,Q ¼ A B

C D

P Q ¼ a b

c d

A B

C D

¼
a

A B

C D
b

A B

C D

c
A B

C D
d

A B

C D

Using these matrix representations for the pulses and the density operator, the
evolution of the density operator through a multi-pulse experiment can be calculated.

5.6 Product Operator Formalism

In a generalized pulse sequence, as indicated in Fig. 5.1, the density operator
evolution can be calculated as

ρ tð Þ ¼ P4e
� i

ħH 3τ3P3e
� i

ħH 2τ2P2e
� i

ħH 1τ1P1ρ 0ð Þ P1
�1e

i
ħH 1τ1P2

�1e
i
ħH 2τ2P3

�1e
i
ħH 3τ3P4

�1

ð5:105Þ
This can be essentially broken into two types of transformations occurring

successively.

ρ0 ¼ e�
i
ħH tρ e

i
ħH t for free evolution½ � ð5:106Þ
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and

ρ00 ¼ PρP�1 for pulses½ � ð5:107Þ
To simplify this calculation, the product operator formalism has been developed

for weakly coupled spin systems. The density operator is expressed as a linear
combination of some basis operators, which constitute a complete set:

ρ tð Þ ¼ bs tð ÞBs ð5:108Þ

Thus,

ρ0 ¼ bse
� i

ħH tBs e
i
ħH t for free evolution½ � ð5:109Þ

ρ00 ¼ bsP Bs P
�1 for pulses½ � ð5:110Þ

In these two equations, ρ is the density operator at any particular instance in an
experimental sequence. Thus, it is necessary to understand the transformational
properties of individual Bs operators.

5.6.1 Basis Operator Sets

The basis operators can be defined in many ways: (i) Cartesian operators, (ii) single-
element basis operators (polarization operators), and (iii) shift basis operators. The
number of basis operator will depend on the number of coupled spins. For one spin,
it will have four operators, which form a complete basis set. These are

Cartesian space; E2, Ix, Iy, and Iz
Single-element operator space; Iα, Iβ, I

+, I�

Shift operator space; E
2

p , I+, I�, I0; I0 ¼ 2
p

Iz

The corresponding matrix representations of various one-spin operators are given
in Box 5.3.

Fig. 5.1 A schematic of a multi-pulse sequence, which is used to calculate the density operator
evolutions at different time points. Ps refer to the pulses, Ηs refer to the Hamiltonians, and τs refer to
the time for which the Hamiltonian is operative
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Box 5.3: Matrix Representations of the Operators Iz, Ix, Iy, I
+, I2, Iα, and Iβ

for the Case of One Spin 1
2

Iz ¼ 1
2

1 0

0 �1
; Ix ¼ 1

2

0 1

1 0
; Iy ¼ 1

2 i
0 �1

1 0
; Iþ ¼ 0 1

0 0
;

I� ¼ 0 0

1 0

Iα ¼
1 0

0 0
; Iβ ¼

0 0

0 1

For n spins, in a coupled network, there will be 4n elements in the basis operator
sets. For example, for 2 spins, there will be a total of 16 operators. For the Cartesian
space, these are

E

I1x, I1y, I1z, I2x, I2y, I2z

2I1xI2x, 2I1xI2y, 2I1xI2z

2I1yI2x, 2I1yI2y, 2I1yI2z

2I1zI2x, 2I1zI2y, 2I1zI2z

For three spins, labeled as AMQ, the Cartesian operator sets would be

E

IAp, IMp, IQp p ¼ x, y, z a total of 9 operatorsð Þ
2IApIMr, 2IMpIQr, 2IApIQr p, r ¼ x, y, z a total of 27 operatorsð Þ

4IApIMrIQs p, r, s ¼ x, y, z a total of 27 operatorsð Þ
Similar products can be written for other types of basis sets as well.
Matrix representations for all these operators can be derived, and these are

explicitly listed in Table 5.1.
For one spin, the Cartesian space representations are

E ¼ 1
2

1 0

0 1
; Ix ¼ 1

2
0 1

1 0
; Iy ¼ 1

2
0 �i

i 0
; Iz ¼ 1

2
1 0

0 �1
ð5:111Þ

For two spins, k and l,

E ¼ 1
2

1 0

0 1

1 0

0 1
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Ikx ¼ 1
2

0 1

1 0

1 0

0 1

Ilx ¼ 1
2

1 0

0 1

0 1

1 0

Iky ¼ 1
2

0 �i

i 0

1 0

0 1

Ily ¼ 1
2

1 0

0 1

0 �i

i 0

Ikz ¼ 1
2

1 0

0 �1

1 0

0 1

Ilz ¼ 1
2

1 0

0 1

1 0

0 �1

Similarly, for two spin products, for example, 2IkxIly, the matrix representation
can be calculated as

2IkxIly ¼ 1
2

0 1

1 0

0 �i

i 0

The complete list of matrix representations for two spins is given in Table 5.1.
By examining the matrix representations, the following points become evident.

1. Iz operator represents the populations and the z-magnetizations.
2. Ix and Iy operators in a multi-spin system represent in-phase single-quantum

coherences along the x- and y-axes, respectively.
3. 2IkxIlz and 2IkyIlz represent single-quantum coherences of k spin antiphase with

respect to l along the x- and y-axes, respectively. Similar interpretations hold
good for the l spin single-quantum coherences.

4. 2IkxIly, 2IkyIlx, 2IkxIlx, and 2IkyIly represent mixtures of double-quantum and zero-
quantum coherences, and suitable combinations of these represent pure double-
quantum and single-quantum coherences.

2IkxIlx + 2IkyIly represents the x-component of zero-quantum coherence.
2IkxIly � 2IkyIlx represents the y-component of zero-quantum coherence.
2IkxIlx � 2IkyIly represents the x-component of double-quantum coherence
2IkxIly + 2IkyIlx represents the y-component of double-quantum coherence.
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5. 2IkzIlz represents two-spin zz-order.

A pictorial representation of these coherences on the energy level diagram of a
two-spin system is shown in Fig. 5.2.

Fig. 5.2 Schematic drawings on the energy levels in a two-spin system (middle) to indicate the
transitions represented by the individual operators on the left, and the corresponding spectra for
different operators are shown on the right. Upward arrows indicate positive signals, and downward
arrows indicate negative signals
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Similar interpretations will hold good for two-spin and three-spin products in
three-spin systems and other higher spin systems.

For example, a basis operator of type 4IAxIMzIQz represents a single-quantum
coherence of A spin along the x-axis antiphase with respect to both M and Q spins.

Pictorial representations of a two-spin product in a three-spin system and a three-
spin product in the three-spin system are shown in Fig. 5.3.

5.6.2 Time Evolution of Cartesian Basis Operators

5.6.2.1 Free Evolution Under the Influence of the Hamiltonian
The isotropic Hamiltonian for weakly coupled spin systems in liquids in units of ħ is

H ¼
k

ωkIzk þ
k<l

2πJklIzkIzl ð5:112Þ

The first term represents the chemical shifts, and the second term represents the
scalar couplings.

For a basis operator Bs, the evolution under the Hamiltonian is given by

Fig. 5.3 Pictorial representations of the transitions represented by two-spin and three-spin product
operators in a three-spin system (k, l, m) on the energy level diagram. In both cases, the operators
represent the magnetization of k spin, and the spectrum on the right shows these four transitions.
Upward arrows in the energy level diagram indicate positive signal, and downward arrows indicate
negative signals. Different color codes are used to represent transitions belonging to the three spins.
Note that arrows have been drawn for l and m spins as well for completeness, but the operators do
not represent these transitions in any manner
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B0
S ¼ e�iH tBse

iH t ð5:113Þ

¼ e
�i

k

ωkIzkþ
k<l

2πJklIzkIzl t

Bse
i

k

ωkIzkþ
k<l

2πJklIzk Izl t

ð5:114Þ
Since the two parts of the Hamiltonian commute with each other, the terms in

Eq. 5.114 can be shuffled without affecting the results.

B0
S ¼ e

�i
k<l

2πJklIzk Izl t

e
�i

k

ωkIzk t

Bse
i

k

ωkIzk t

e
i

k<l

2πJklIzk Izl t

ð5:115Þ

The central portion inside the bracket represents the evolution under chemical
shift, and the outer terms represent the evolution under coupling. The two can be
handled separately. One may also note that this order of evolutions can be
interchanged because the two parts of the Hamiltonian commute with each other.

5.6.2.2 Chemical Shift Evolution
As an example, let us consider the evolution of the basis operator Bs ¼ Ikx
representing the k spin magnetization.

So,

B0
S ¼ e�iωkIzk tIkxe

iωkIzk t ð5:116Þ
From Eq. 5.92, this turns out to be

B0
S ¼ cos

ωkt
2

� 2i sin
ωkt
2

Ikz Ikx cos
ωkt
2

� 2i sin
ωkt
2

Ikz ð5:117Þ

¼ cos 2
ωkt
2

Ikx þ 4 sin 2 ωkt
2

IkzIkxIkz � i sin ωktð Þ Ikz, Ikx½ � ð5:118Þ

The product IkzIkxIkz can be evaluated by individual matrix multiplication and
turns out to be

IkzIkxIkz ¼ 1
8

1 0

0 �1

0 1

1 0

1 0

0 �1
¼ 1

8
0 �1

�1 0
¼ � 1

4
Ikx ð5:119Þ

Thus, Eq. 5.118 reduces to

B0
S ¼ cos 2

ωkt
2

Ikx � sin 2 ωkt
2

Ikx þ sin ωktð ÞIky ð5:120Þ

¼ cos ωktð ÞIkx þ sin ωktð ÞIky ð5:121Þ
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5.6.2.3 Scalar Coupling Evolution
For the basis operator Ikx, the evolution can be written as

B00
S ¼ e�i2πJklIkzIlztIkx e

i2πJklIkzIlzt ð5:122Þ
As shown in Box 5.4,

e�i2πJklIkzIlzt ¼ cos
πJklt
2

� 4i sin
πJklt
2

IkzIlz ð5:123Þ

Box 5.4: Explicit Derivation of Eq. 5.123
Let IkzIlz ¼ 1

4A and 2πJklt ¼ β

A ¼ 1 0

0 �1

1 0

0 �1
¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

A2 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

e�i2πJklðA=4Þt ¼ 1� iβ
4
Aþ iβ

4

2
A2

2!
� iβ

4

3
A3

3!
þ . . .

¼ 1� iβ
4
Aþ iβ

4

2
1
2!
� iβ

4

3
A
3!
þ . . .

¼ cos
πJklt
2

� 4i sin
πJklt
2

IkzIlz

Substituting Eq. 5.123 into Eq. 5.122,

B00
S ¼ cos

πJklt
2

� 4i sin
πJklt
2

IkzIlz Ikx cos
πJklt
2

þ 4i sin
πJklt
2

IkzIlz

ð5:124Þ
After some algebra (Box 5.5) similar to that in the calculation of shift evolution

(5.119),
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B00
S ¼ Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ ð5:125Þ

Box 5.5: Explicit Derivation of Eq. 5.125

B00
S ¼ cos

πJklt
2

� 4i sin
πJklt
2

IkzIlz Ikx cos
πJklt
2

þ 4i sin
πJklt
2

IkzIlz

¼ cos 2
πJklt
2

Ikx � sin 2 πJklt
2

Ikx � 2i sin πJkltð Þ Ikz, Ikx½ �Ilz

B00
S ¼ Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ

Similar calculations starting with other basis operators reveal that they form
rotation groups, as indicated in Fig. 5.4. In Fig. 5.4a, operators Ix, Iy, and Iz form a
group, which means they transform among themselves. For example, Ix and Iy
interconvert under the influence of free evolution (Iz operator). In Fig. 5.4b, operator
terms 2IkzIlz, 2IkyIlz, and Ikx form a rotation group under J-coupling evolution (2IkzIlz
operator). Ikx and 2IkyIlz interconvert among themselves under the influence of
J-coupling evolution. Similarly, 2IkzIlz, 2IkxIlz, and Iky form a rotation group under
J-coupling evolution (2IkzIlz operator). Iky and 2IkxIlz interconvert among themselves
under the influence of J-coupling evolution.

For example,

Ikx !J�coupling evolution
Ikx cos πJkltð Þ þ 2IkyIlz sin πJkltð Þ

Iky !J�coupling evolution
Iky cos πJkltð Þ � 2IkxIlz sin πJkltð Þ

2IkxIlz !J�coupling evolution
2IkxIlz cos πJkltð Þ þ Iky sin πJkltð Þ

2IkyIlz !J�coupling evolution
2IkyIlz cos πJkltð Þ � Ikx sin πJkltð Þ ð5:126Þ

5.6.2.4 Rotation by Pulses
This is represented by the transformation:

RqBsR
�1
q q ¼ x, y ð5:127Þ

We describe here a few cases:

(i) Bs ¼ Iz
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For a 90x pulse, the transformation will be

Rx
π
2

Iz R
�1
x

π
2

¼ 1

2
p 1 �i

�i 1
1
2

1 0

0 �1
1

2
p 1 i

i 1
¼ 1

2
0 i

�i 0
¼ �Iy

Thus,

Iz !90x �Iy ð5:128Þ

(ii) Bs ¼ Iy

For a 90x pulse, the transformation will be

Rx
π
2

Iy R
�1
x

π
2

¼ 1

2
p 1 �i

�i 1
1
2

0 �i

i 0
1

2
p 1 i

i 1
¼ 1

2
1 0

0 �1
¼ Iz

Fig. 5.4 (a) The free evolution of magnetization under Zeeman Hamiltonian (chemical shift
evolution) and (b) scalar coupling evolutions. In either case, the Hamiltonian is represented along
the z-axis, and the x- and y-axes represent the operators resulting from the respective evolutions. In
each figure, the operators involved form rotation groups. See text for explicit transformations
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Thus,

Iy !90x Iz ð5:129Þ

(iii) Bs ¼ Ix

For a 90x pulse, the transformation will be

Rx
π
2

Ix R
�1
x

π
2

¼ 1

2
p 1 �i

�i 1
1
2

0 1

1 0
1

2
p 1 i

i 1
¼ 1

2
0 1

1 0
¼ Ix

Thus, Ix is invariant under Rx pulse.
For multi-spin basis operators, the effects of pulses can be applied to individual

spins.
For example,

2IkxIlz !90x kð Þþ90x lð Þ �2IkxIly ð5:130Þ
This represents the conversion of antiphase x-magnetization of k spin into a

mixture of zero- and double-quantum coherences.

2IkyIlz !90x kð Þþ90x lð Þ �2IkzIly ð5:131Þ
This represents the conversion of antiphase y-magnetization of k spin into

antiphase y-magnetization spin l. This is referred to as the coherence transfer from
spin k to spin l. In general, it is seen that the application of RF pulses to antiphase
magnetization in multi-spin systems causes coherence transfer among the spins. This
forms the basis of many multi-pulse experiments in homo- and heteronuclear multi-
spin systems.

The effects of various transformations under the influence of pulses are
schematically shown in Fig. 5.5.

5.6.2.5 Calculation of the Spectrum of a J-Coupled Two-Spin System
In this section, we illustrate the calculation of the spectrum of a simple two-spin
system, kl, in the standard FTNMR experiment (Fig. 5.6), using the product operator
formalism.

To begin with the system is in equilibrium, and this is represented by the
equilibrium density operator, ρ (see Eq. 5.36), which is proportional to Iz operator.

ρ / Iz ¼ Ikz þ Ilz ð5:132Þ
This represents magnetization along the z-axis. On application of a 90x pulse, the

magnetization rotates to –y-axis (see Fig. 5.5).
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�Iy ¼ � Iky þ Ily ð5:133Þ
This will then evolve under chemical shift and J-coupling Hamiltonians. Both the

spins evolve independently and can thus be treated independently. Considering the
k spin, chemical shift evolution for time t leads to (ignoring the negative sign in the
beginning) (see Fig. 5.4a)

Iky ! Iky cos ωktð Þ � Ikx sin ωktð Þ ð5:134Þ
Under J-coupling Hamiltonian, 2IkzIlz (see Fig. 5.4b and Eq. 5.126), the Iky and Ikx

operators evolve, leading to

Iky cos πJklt � 2IkxIlz sin πJklt cosωkt � Ikx cos πJklt þ 2IkyIlz sin πJklt sinωkt

ð5:135Þ
As discussed earlier only the first term and the third terms in Eq. 5.135 are

observable and contribute to the spectrum. If we observe only the y-magnetization,

Fig. 5.5 The effect of 90�x and 90�y pulses on different magnetization components. The bigger
circle indicates the rotation of magnetization components, while the smaller circle indicates the axis
along which the pulse is applied

Fig. 5.6 One pulse FT-NMR
experiment
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then we need to consider the first term only. After taking the trace with Iky, the signal
(FID) will be represented by the time-dependent coefficients of this term. This is
given by

signal ¼ cos ωktð Þ cos πJkltð Þ ð5:136Þ
Including transverse relaxation in the FID, the signal will be

signal ¼ cosðωktÞcosðπJkltÞe�t=T2k ð5:137Þ
Substituting, ωk ¼ 2πvk

signal ¼ cosð2πvktÞcosðπJkltÞe�t=T2k ð5:138Þ

signal ¼ 1
2
fcosð2πvkt þ πJkltÞ þ cosð2πvkt � πJkltÞge�t=T2k ð5:139Þ

After the real (or cosine) Fourier transformation, this leads to absorptive spectral
lines at ðvk þ Jkl

2 Þ and ðvk � Jkl
2 Þ.

Similarly, starting from the z-magnetization of the l spin, the final signal will be

signal ¼ cosð2πvltÞcosðπJkltÞe�t=T2l ð5:140Þ

signal ¼ 1
2
fcosð2πvlt þ πJkltÞ þ cosð2πvlt � πJkltÞge�t=T2l ð5:141Þ

Thus, for spin l, we will obtain absorptive signals at ðvl þ Jkl
2 Þ and ðvl � Jkl

2 Þ.
Thus, in the final spectrum (Fig. 5.7), we will get the doublets of k and l spins.

Spectrallines : ðvk þ Jkl
2
Þ and ðvk þ Jkl

2
Þ; ðvl þ Jkl

2
Þ and ðvl � Jkl

2
Þ ð5:142Þ

If we choose to observe the x-component of the signal in Eq. 5.135 and perform
the same cosine transformation, we get the same four signals but with dispersive line
shapes.

Fig. 5.7 A schematic of the J-coupled spectrum for a two-spin system, where vk and vl are the
frequencies of k and l spins, respectively, and Jkl is the J-coupling between k and l spins
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5.7 Summary

• The concept of density matrix description of NMR is described with some
mathematical rigor.

• The product operator formalism which provides a simple and easy-to-handle
description of density operator calculations for NMR pulse sequences is
presented.

• A simple calculation for a two-spin system is presented as an illustration.

5.8 Further Reading

• Principles of Magnetic Resonance, C. P. Slichter, 3rd ed., Springer, 1990
• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,

A. Wokaun, Oxford, 1987
• Spin Dynamics, M. H. Levitt, 2nd ed., Wiley 2008
• Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005
• Protein NMR Spectroscopy, J. Cavanagh, N. Skelton, W. Fairbrother,

M. Rance, A, Palmer III, 2nd ed., Elsevier, 2006

5.9 Exercises

5.1 For a three-spin system (I ¼ 1/2), the density operator has
(a) 9 elements
(b) 6 elements
(c) 64 elements
(d) 3 elements

5.2 If ρ is the density operator, the expectation value of Mx operator is given by
(a) Tr(Mx)
(b) Tr(Mx)

2

(c) Tr(Mxρ)
(d) Tr{(Mx)

2ρ}
5.3 Equilibrium density operator

(a) is related to Iz operator
(b) is related to Ix operator
(c) is related to Iy operator
(d) has no relation to angular momentum operators

5.4 The hypothesis of random phases leads to the following in the equilibrium
density operator.
(a) Diagonal elements in the density operator become zero.
(b) Off-diagonal elements in the density operator become zero.
(c) Both diagonal and off-diagonal elements become zero.
(d) It has no effect on the diagonal and off-diagonal elements of the density

operator.
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5.5 For a two-spin system (I ¼ 1/2), which of the following is true?
(a) Iz j αα > ¼ j αα>
(b) Ix j αα > ¼ j αα>
(c) Iy j αα > ¼ j αα>
(d) Iz j αα > ¼ j αβ>

5.6 For a spin with I ¼ 5/2, the partition function is
(a) 5/2
(b) 3/2
(c) 6
(d) 4

5.7 An FID arises from
(a) diagonal elements of a density operators
(b) single-quantum coherences in the density operators
(c) zero-quantum coherences in the density operators
(d) multiple-quantum coherences in the density operators

5.8 The off-diagonal elements of the density matrix represent
(a) the time evolution of isolated spins in the energy levels
(b) deviations from equilibrium populations
(c) the phase coherence of the spins in different energy levels
(d) the populations of the spins in individual energy levels

5.9 An RF pulse with a flip angle β applied along the x-axis is represented by
(a) βIx
(b) e�iβIx

(c) β(Ix)
2

(d) β2(Ix)
2

5.10 For a spin with precessional frequency ωi, the field along z-axis in the rotating
frame under resonance condition is
(a) H0

(b) 0
(c) ωi

γ

(d) H1

5.11 For a single spin (I¼ 1/2), the matrix representation of π pulse along the y-axis
is given by

(a)
0 �1

�i 0

(b)
1 �1

�i 1

(c)
1 �1

1 1

(d)
0 �1

1 0
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5.12 The basis operator 2IkxIlz represents
(a) in-phase magnetization of l spin
(b) x-magnetization of k spin anti phase with represent to l spin
(c) in-phase magnetization of k spin
(d) z-magnetization of l spin

5.13 (2IkxIly + 2IkyIlx) represents
(a) zero-quantum coherence of spin k and l
(b) double-quantum coherence of spin k and l
(c) mixture of double-quantum and zero-quantum coherences
(d) total k spin magnetization

5.14 For a system of three spins (I ¼ 1/2), the total number of basis operator is
(a) 9
(b) 27
(c) 64
(d) 81

5.15 In a three-spin system (I ¼ 1/2), the operator term IkxIlzImz represents
(a) z-magnetization of l spin
(b) z-magnetization of m spin
(c) in-phase x-magnetization of k spin
(d) x-magnetization of k spin antiphase to m and l spins

5.16 In a two-spin system k, l, the Ikx operator evolves under the J-coupling
Hamiltonian for a time t to produce
(a) y-magnetization of k spin
(b) y-magnetization of k spin antiphase to l spin
(c) x-magnetization of k spin antiphase to l spin
(d) double-quantum coherence between k and l spin

5.17 Which combination of the operators form a rotation group?
(a) Ikx, Iky, 2IkxIlz
(b) Ikx, 2IkyIlz, 2IkzIlz
(c) Ikx, 2IkxIlz, 2IkyIlz
(d) Ikx, Ilz, 2IkyIlz

5.18 The coherence transfer from k spin to l spin occurs due to
(a) evolution under chemical shift
(b) evolution under J-coupling
(c) application of RF pulse along the y-axis to k spin
(d) application of RF pulse to anti phase magnetization of k spin

5.19 An RF pulse applied along the x-axis causes
(a) magnetization to align along the x-axis
(b) rotation of the magnetization in the x-z plane
(c) rotation of the magnetization in the y-z plane
(d) rotation of the magnetization in the x-y plane

5.20 Which combination of the operators form a rotation group?
(a) Ikx, Iky, Ikz
(b) Ikx, Iky, 2IkzIlz
(c) Ikz, Ilz, Iky
(d) 2IkxIlz, 2IkyIlz, 2IkzIlz
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5.21 Which of the following statement is true?
(a) 2IkxIly represents a pure double-quantum coherence.
(b) 2IkxIlz is an observable operator.
(c) 2IkyIlz evolves under coupling to produce 2IkxIlz.
(d) Ikx and Iky are observable operators.

5.22 A spin echo arises because of
(a) refocusing of chemical shifts
(b) refocusing of coupling constants
(c) inhomogeneity in the main field
(d) inaccuracy in RF pulses

5.23 In a spin echo experiment, refocusing of coupling evolution occurs when
(a) the spin echo period is equal to 1/4J
(b) the spin echo period is equal to 1/2J
(c) the spin echo period is equal to 1/J
(d) the spin echo period is equal to 1/3J

5.24 In the given pulse sequence, at the beginning of the detection, which of the
following statement is true?

(a) Coupling between k and l spins is effectively refocused.
(b) Chemical shift evolution of l spin is refocused.
(c) Chemical shift evolution of k spin is refocused.
(d) Magnetization of k spin is inverted.

5.25 In a C-H INEPT experiment, magnetization is transferred from proton to
carbon, which of the following operator transformation is valid?
(a) Hx ! HzCy

(b) Hx ! HxCy

(c) Hx ! HzCz

(d) Hx ! HxCz

5.26 Calculate the matrix representations of the operators, 2IxSy and 2IzSz,in the
eigenbasis of the weak coupling Hamiltonian.

5.27 Prove the commutator relationship: 2IαSα0 , 2IβSβ0 ¼ 0, if α 6¼ α0 and β 6¼ β0

simultaneously. α, α0 and β, β’ can be x, y, or z.
5.28 Calculate the effect of (a) Rx(π) and (b) Ry(π) pulses on the density operator

represented by Iz using matrix representations.
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Learning Objectives
• Introducing new dimensions in NMR
• Different types of two- and three-dimensional NMR spectra
• Benefits of multidimensional NMR spectra in terms of resolution enhance-

ment and extractable information

6.1 Introduction

The most significant development in NMR after the discovery of FTNMR is undoubt-
edly multidimensional NMR spectroscopy, although one can say in the retrospective
that FTNMR had already paved the way for its development. The essence of this
statement in more explicit words is that multidimensional NMR exploits the fact that
in FTNMR, the excitation of the spins and detection of their response are separated in
time. The first ideas of extending the dimensionality of NMR to two from the conven-
tional one-dimensional NMR was put forward by Jean Jeener in 1971. The technique
has grown since then, in an explosivemanner, and continues to develop unabatedly. The
tremendous success of these experiments is due to the fact that they permit the display of
pairwise interactions between spins in a given molecule in the form of cross-peaks in a
plane. Quantitative interpretations of these correlations have revealed structural and
dynamical information on such large molecules as proteins and nucleic acids—a
hitherto unthinkable fact. With this, NMR entered the realm of biology, a subject with
an ocean of unsolved problems both at macroscopic and microscopic levels.

This chapter begins by introducing the concepts in a pedagogic manner; progresses
gradually in complexity and rigor, illustrating the explicit calculations in few cases;
and quickly jumps into more complex experiments. In these complex experiments,
used in biomolecular NMR or structural biology, explicit step-by-step calculations are
not shown, but the final results which help to understand the performance of the
experiments are presented. Certainly, the discussion is not exhaustive, but indicative. It
will expose the students to the barrage of developments, so that those who would
continue research in such advanced topics can pursue with the details at a later stage.

A generalized scheme of multidimensional NMR experiment is based on the idea
of “segmentation of time axis,” as shown in Fig. 6.1.

The experimental scheme begins with a “preparation period” during which the
spin system is prepared in a suitable state. It can consist of a simple delay or a
combination of pulses and delays or other kinds of perturbations as desired. For
example, in a simple FTNMR experiment, the single-pulse excitation constitutes the
preparation period during which x-y magnetization is created. A pair of 90� pulses
separated by a constant evolution time constitutes the preparation period for multiple
quantum spectroscopy, etc.

Fig. 6.1 Segmentation of the time axis
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The “evolution periods” t1, t2, . . . .tn are variables and generate (n+1) dimensional
time domain data, which after (n+1) dimensional Fourier transformation yields the (n
+1) dimensional spectrum. The evolution periods help to frequency label the indi-
vidual spins or group of spins with their characteristic single-quantum or multiple-
quantum frequencies. Various types of manipulations with the frequencies are
possible during these periods.

Mns constitute the so-called mixing periods, the most important part of the
experimental scheme. It is the “mixing” which establishes correlations between
frequencies in adjacent evolution periods. Different kinds of correlations can be
established by exploiting different types of interactions between the spins. The most
common types of interactions exploited are J-coupling interactions and through-
space dipolar interactions. Hundreds of pulse sequences have been published till
date. In the following sections, we shall discuss at length the principle and
developments in two-dimensional (2D) NMR, which laid the foundation for
higher-dimensional experiments for specific purposes.

6.2 Two-Dimensional NMR

The details of performing a two-dimensional NMR experiment are shown
schematically in Fig. 6.2.

Fig. 6.2 (a) The segmentation of the time axis for the two-dimensional experiment. (b) Details of
the experiment showing systematic incrementation of the evolution period, t1
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P and M are the preparation and mixing periods, respectively, and t1 and t2 are the
evolution and detection periods, respectively. The experiment involves a collection
of a number of free induction decays for systematically incremented values of t1. The
final data set will thus be a matrix, S(t1, t2). Fourier transformation, with respect to t2,
results in a series of one-dimensional spectra in which the amplitudes and phases of
the signals depend upon the value of t1. Variations of these entities as a function of
time carry the frequency information present during the t1 period (Fig. 6.3), and thus
Fourier transformation of these data along t1 results in a two-dimensional frequency
domain spectrum, S(F1,F2).

S t1, t2ð Þ !FT S F1,F2ð Þ ð6:1Þ

Fig. 6.3 A schematic of the processing of the two-dimensional data, S(t1, t2). Individual FIDs (first
column) collected for different t1 time points are Fourier transformed (second column, F2 spectra).
By taking the intensities at each point on the discrete F2 spectra, we arrive at the t1-dependent
profiles (column 3). These FIDs are then Fourier transformed to generate the spectra along the F1
axis. For illustration, only one line is considered. In both F2 and F1 spectra, one sees intensity
modulations as we move through the frequency axes
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Consider a spin k whose x-y magnetization has been created by the preparation
period, and this magnetization precesses with a frequency ωk during the evolution
period. At the end of the period t1 the magnetization has componentsMk(0) cos ωkt1
and Mk(0) sin ωkt1 along, say the y- and x-axes, respectively; Mk(0) is the magneti-
zation at the beginning of the evolution period. Let us now assume that the mixing
period converts one of the above components (sayMk(0) sin ωkt1) into unobservable
magnetization such as z-magnetization or multiple quantum coherence. From the
remaining, part of the magnetization is transferred to say spin l, which has a
characteristic frequency ωl. The detected signal, as a function of t2, will then have
two contributions.

A ¼ a Mk 0ð Þ cos ωkt1 : cos ωkt2 ð6:2Þ
B ¼ b Mk 0ð Þ cos ωkt1 : cos ωlt2 ð6:3Þ

Here it is assumed that only the y-component of the magnetization is detected
during t2 period; a and b are some coefficients representing the relative
contributions. These equations represent, of course, oversimplification made to
convey the concepts clearly, and we will return to rigorous calculations later
on. The component A, after two-dimensional Fourier transformation, results in a
peak which has the same frequency ωk along both F1 and F2 axis. The component B,
results in a peak which has frequency ωk along F1 and frequency ωl along F2. The
former is called the “diagonal peak” and the latter the “cross-peak” in the
two-dimensional spectrum. A similar description applies to the magnetization
originating from the l spin. A schematic of the resultant two-dimensional spectrum
is shown in Fig. 6.4.

6.3 Two-Dimensional Fourier Transformation in NMR

A two-dimensional frequency spectrum, S(F1, F2), will be generated from a
two-dimensional time domain data set, S(t1, t2), by the two-dimensional Fourier
transformation. This is mathematically represented as

Fig. 6.4 A schematic of a
two-dimensional spectrum
considering two spins k and l.
ωk and ωl represent the
resonance frequencies of the
two spins
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S F1,F2ð Þ ¼ F 1ð ÞF 2ð ÞS t1, t2ð Þ ð6:4Þ
where F 1ð Þ and F 2ð Þ represent Fourier transformation operators along the t1 and t2
dimensions, respectively. These have to be carried out independently. Clearly,
two-dimensional FT is a succession of one-dimensional FT.

F in general can be written as

F ¼ F c � iF s ð6:5Þ
where F c and F s represent cosine and sine transforms, respectively, as discussed in
Chap. 3.

S(t1, t2) is in general a complex function represented as

S t1, t2ð Þ ¼ Re S t1, t2ð Þ þ i Im S t1, t2ð Þf g ð6:6Þ
¼ Sr t1, t2ð Þ þ i Si t1, t2ð Þ ð6:7Þ

Similarly,

S F1,F2ð Þ ¼ Sr F1,F2ð Þ þ i Si F1,F2ð Þ ð6:8Þ
Further,

S F1,F2ð Þ ¼ F c
1 � iF s

1 F c
2 � iF s

2 Sr t1, t2ð Þ þ i Si t1, t2ð Þf g ð6:9Þ
From this, it follows

Sr F1,F2ð Þ ¼ F cc Sr t1, t2ð Þf g � F ss Sr t1, t2ð Þf g þ F cs Si t1, t2ð Þf g
þ F sc Si t1, t2ð Þf g ð6:10Þ

Si F1,F2ð Þ ¼ F cc Si t1, t2ð Þf g � F ss Si t1, t2ð Þf g � F cs Sr t1, t2ð Þf g
� F sc Sr t1, t2ð Þf g ð6:11Þ

where

F cc Sr t1, t2ð Þf g ¼
þ1

�1
dt1 cosω1t1

þ1

�1
dt2 cosω2t2 Sr t1, t2ð Þ ð6:12Þ

F ss Sr t1, t2ð Þf g ¼
þ1

�1
dt1 sinω1t1

þ1

�1
dt2 sinω2t2 Sr t1, t2ð Þ ð6:13Þ
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F cs Sr t1, t2ð Þf g ¼
þ1

�1
dt1 cosω1t1

þ1

�1
dt2 sinω2t2 Sr t1, t2ð Þ ð6:14Þ

F sc Sr t1, t2ð Þf g ¼
þ1

�1
dt1 sinω1t1

þ1

�1
dt2 cosω2t2 Sr t1, t2ð Þ ð6:15Þ

Similar equations hold good for Si(t1, t2) as well.
Since for t1 and t2< 0, there is no signal, the transformations will have to be

considered only for the range 0 < t < 1.
The general principles of Fourier transformation discussed in Chap. 3 are appli-

cable here as well, along both axes, F1 and F2 of the two-dimensional spectrum.
Sensitivity and resolutions along the two axes are governed by the same
considerations of sampling rate, acquisition time, data size, zero filling, window
multiplications, etc. The acquisition times along the t1 and t2 directions are generally
represented as t1

max and t2
max, respectively. While increasing t2

max can be simply
accomplished by increasing the size of the FID data, increasing t1

max amounts to
collecting more number of t1 increments, and this contributes dearly to the total
experimental time. Thus, for two-dimensional experiments, it is very essential to
optimize the number of t1 increments and the data need be collected only until that
value of t1 where the signal is present appreciably. The data is not actually collected
during t1, and this decision will have to be taken by calculation, by comparing t1

max

value with the T2 of the spin system, roughly observable from one-dimensional
FIDs. Typically, t1

max is limited to 50–150 ms range depending upon the type of the
experiment.

6.4 Peak Shapes in Two-Dimensional Spectra

The time domain signal (S(t1, t2)) is a superposition of many coherences. Consider-
ing a particular combination of coherences between levels t ! u in t1 domain and
r ! s in t2 domain, the time domain signal for this pair will be

Stu, rs t1, t2ð Þ ¼ Stu,rs 0, 0ð Þe �iωtu�λtuð Þt1f ge �iωrs�λrsð Þt2f g ð6:16Þ
where the λs represent the T2 relaxation rates for the respective coherences.

Define

Ztu,rs ¼ Stu,rs 0, 0ð Þ ð6:17Þ
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Then,

Stu,rs ω1,ω2ð Þ ¼ Ztu,rs
1

iΔωtu þ λtu

1
iΔωrs þ λrs

ð6:18Þ

where

Δωtu ¼ ω1 þ ωtu,Δωrs ¼ ω2 þ ωrs: ð6:19Þ
Equation 6.18 can be rewritten as

Stu,rs ω1,ω2ð Þ ¼ Ztu,rs
λtu

Δωtuð Þ2 þ λtuð Þ2 �
iΔωtu

Δωtuð Þ2 þ λtuð Þ2

� λrs
Δωrsð Þ2 þ λrsð Þ2 �

iΔωrs

Δωrsð Þ2 þ λrsð Þ2 ð6:20Þ

In each of the angular brackets, the first term which is real represents an
absorptive line shape (A), and the second term which is imaginary represents a
dispersive line shape (D).

Thus,

Stu,rs F1,F2ð Þ ¼ Ztu,rs Atu F1ð Þ � iDtu F1ð Þf g Ars F2ð Þ � iDrs F2ð Þf g ð6:21Þ
¼ Ztu,rs ArsAtu � DrsDtuf g � i DtuArs þ AtuDrsf g ð6:22Þ

This indicates that both the real and imaginary parts of the spectrum have mixed
phases, along both the frequency axes. Figure 6.5 shows the appearances of the
peaks for different peaks shapes along the F1 and F2 axes. Absorptive peak shapes
produce the highest resolution in the spectra and thus are preferred.

The time domain signal can be classified into two categories:

(1) The evolution in t1 modulates the phase of the detected signal (e.g., eiωtut1 : f ðt2Þ).
This is called phase modulation.

(2) The evolution in t1 modulates the amplitude of the detected signal (e.g., cosωtut1.
f(t2)). This is called amplitude modulation.

Several methods have been designed to obtain pure absorptive spectra, and the
most common is to perform real Fourier transformation with respect to t1. We show
how absorptive lines can be obtained when the detected signal is amplitude
modulated by evolution during t1.

Consider

Stu,rs t1, t2ð Þ ¼ cosωtut1:e
�iωrst2 :e�λtut1�λrst2 ð6:23Þ

Real cosine Fourier transformation of this data is given by
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Stu,rs ω1,ω2ð Þ ¼
1

0

1

0
Stu,rs t1, t2ð Þ cosω1t1:e

�iω2t2dt1dt2 ð6:24Þ

This leads to

Stu,rs ω1,ω2ð Þ ¼ 1
2

Atu ω1ð Þ þ Atu �ω1ð Þf g Ars ω2ð Þ � iDrs ω2ð Þf g ð6:25Þ

If the real part of the spectrum along ω2 is selected, one can obtain pure absorptive
peak along both frequency axes.

This, however, results in the duplication of peaks at �ωtu, which is artificial. So,
this can be avoided by doing quadrature detection along the t1 axis, as discussed in
the next section.

6.5 Quadrature Detection in Two-Dimensional NMR

Here we need to consider how positive and negative frequencies can be
discriminated in both F1 and F2 dimensions of the two-dimensional experiment.
As far as F2 dimension is concerned, it comes from the detected signal during the t2
time period, and the procedures described in Chap. 3 are applicable here as well.
However, along the F1 dimension, there is a difficulty because the data is not

Fig. 6.5 Peak shapes in the two-dimensional spectra. Top row shows stacked plot representations,
while the bottom row represents the corresponding contour representations of the same peak shapes.
The left peak represents absorptive shape along both the frequency axes. The central picture
represents dispersive line shapes along both the frequency axes, and the right picture represents
absorptive along F2 and dispersive along F1 axes; the reverse is also possible. Such mixed line
shapes are referred to as “mixed phases”
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actually collected during the “t1” period. Different strategies are adopted for this
purpose, by manipulating the way the increments in t1 are adjusted along with the
receiver phases. There are three methods which are known to achieve this, and these
are described in Table. 6.1 (Cavanagh page 323, in this table, the pulse phase refers
to the phase of the pulse immediately prior to the t1 evolution period). For the TPPI
method, the increment Δt1 is half of that in STATES and TPPI-STATES methods.

6.6 Types of Two-Dimensional NMR Spectra

The known two-dimensional NMR experiments can be broadly classified into three
categories:

(i) Resolution/separation experiments
(ii) Correlation experiments
(iii) Multiple-quantum experiments

Table 6.1 Protocols for data collection in the three methods of quadrature detection along the
F1 axis

(a) TPPI (time proportional phase incrementation)

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)Δ x x

(4k + 2) t1(0) + (4k + 1)Δ y x

(4k + 3) t1(0) + (4k + 2)Δ �x x

(4k + 4) t1(0) + (4k + 3)Δ �y x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.

(b) States

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)2Δ x x

(4k + 2) t1(0) + (4k)2Δ y x

(4k + 3) t1(0) + (4k + 1)2Δ x x

(4k + 4) t1(0) + (4k + 1)2Δ y x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.

(c) States-TPPI

Experiment no. Increment Pulse phase Receiver phase

(4k + 1) t1(0) + (4k)2Δ x x

(4k + 2) t1(0) + (4k)2Δ y x

(4k + 3) t1(0) + (4k + 1)2Δ �x �x

(4k + 4) t1(0) + (4k + 1)2Δ �y �x

The index k ¼ 0, 1, 2,. . ., (N/4)�1; N is the total number of experiments along the t1 dimension;
Δ ¼ 1/(2SW1); t1(0) ¼ ideally zero, but practically a few microseconds.
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Hybrid experiments have also been devised which use some of the ideas in two
different classes of experiments.

6.6.1 Two-Dimensional Resolution/Separation Experiments

The primary aim in these experiments is to separate the different interactions in the
Hamiltonian. In high-resolution NMR, this amounts to the separation of the Zeeman
(Hz) and the coupling Hamiltonians (HJ).

H ¼ Hz þHJ ð6:26Þ
Different strategies can be defined depending upon the nature of the information

required in the final spectrum.

6.6.1.1 Two-Dimensional Heteronuclear Separation Experiments
Figure 6.6 illustrates such a concept (pulse sequences a and b). In (a), the F2 axis of
the final spectrum contains both 13C chemical shift and 13C-1H coupling informa-
tion, whereas the F1 axis contains only the 13C chemical shift information. In (b), the
reverse occurs, i.e., the F1 axis has both 13C chemical shift and 13C-1H coupling
constants, while the F2 axis has only 13C chemical shift information. This was the
first two-dimensional experiment ever recorded. Figure 6.7 shows an experimental
spectrum corresponding to Fig. 6.6b.

Figure 6.8 illustrates another situation where the F1 axis has only scalar coupling
constants and the F2 axis has the chemical shift information. This represents a
complete separation of the coupling and chemical shift Hamiltonians along the
two axes.

The product operator description of the experiment is explicitly given in the
following paragraphs.

The density operator (ρ) terms at the time points 1 to 3 indicated in Fig. 6.8 are

ρ1 ¼ Cz ð6:27Þ
ρ2 ¼ �Cy ð6:28Þ

ρ3 ¼ �½Cy cos πJHCt1 � 2Cx Hz sin πJ HCt1� ð6:29Þ
The terms Cx, Cy, and Cz refer to the x-, y-, and z-components of the 13C

magnetization. And 2CxHz represents x-magnetization of carbon antiphase with
respect to proton. In Eq. 6.29, the second term does not lead to observable magneti-
zation in t2 because of proton decoupling. The first term evolves under chemical shift
only during t2.

Therefore,
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Cy !H Z ½Cy cosωCt2 � Cx sinωCt2� ð6:30Þ
Then, assuming y-detection, the density operator at time point 4 in Fig. 6.8 is

ρ4 ¼ Cy cosωCt2 cosπJHCt1 ð6:31Þ
This leads to exclusively coupling information along t1 and chemical shift

information along t2.
The experimental spectrum corresponding to this pulse scheme is shown in

Fig. 6.9.

6.6.1.2 Two-Dimensional Homonuclear Separation Experiments
Figure 6.10 shows a pulse scheme for obtaining the separation of interactions in
homonuclear systems. This is often referred to as two-dimensional J-resolved

Fig. 6.6 Two-dimensional experiments, where the 13C chemical shift and 13C-1H coupling
constants are separated on the F1 and F2 dimensions. In (a) the F2 axis has both chemical shifts
and coupling constants, while the F1 axis has only chemical shifts. The reverse is true in (b)
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(JRES) experiment. The pulse sequence can be analyzed using the product operator
formalism.

For a weakly coupled two-spin system (k and l, I ¼ 1/2), the density operator
terms at different time points along the pulse sequence are

ρ1 ¼ Ikz þ Ilz ð6:32Þ

Fig. 6.7 Experimental spectrum demonstrating the scheme in Fig. 6.6b. (Reproduced from
J. Chem. Phys. 63, 5490 (1975), with the permission of AIP Publishing)

Fig. 6.8 Schematic of 13C chemical shift and 13C-1H scalar coupling separation in the
two-dimensional spectrum. The F2 axis displays 13C chemical shifts, while the F1 axis displays
the multiplicity at each carbon site. See text for more details
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ρ2 ¼ � Iky þ Ily ð6:33Þ
During the next spin echo period chemical shifts are refocused, and thus spins

evolve under the scalar coupling Hamiltonian (HJ) only. Explicitly the evolutions of
product operators are shown for spin k only. Similar calculations apply for the spin
l as well. Now, ρ2 evolves under scalar coupling during the spin echo (t1) and during
the detection period t2, thus for the total time period t1+t2.

Fig. 6.9 Experimental
two-dimensional J-resolved
NMR spectrum of cholesterol
displaying the separation of
13C chemical shift and 13C-1H
scalar coupling, along the F2
and F1 dimensions,
respectively. (Reproduced
from J. Magn. Reson. 29, 587
(1978), with the permission
from Elsevier Publishing)

Fig. 6.10 Schematic of the
two-dimensional J-resolved
pulse sequence. Numbers 1–4
indicate the time points at
which the density operators
are calculated (see text)
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�Iky !H J �Iky cos πJkl t1 þ t2ð Þ þ 2IkxIlz sin πJkl t1 þ t2ð Þ ð6:34Þ
In this equation the second term which represents antiphase magnetization is not

observable during t2 period. So, considering the chemical shift evolution of the first
term during t2, one gets

� cos πJkl t1 þ t2ð ÞIky !H z � cos πJkl t1 þ t2ð Þ Iky cosωkt2 � Ikx sinωkt2 ð6:35Þ
Assuming y-detection, the signal is proportional to

� cos πJkl t1 þ t2ð Þ cosωkt2 ð6:36Þ
¼ � cos πJklt1 cos πJklt2 � sin πJklt1 sin πJklt2f g cosωkt2 ð6:37Þ

We see that along the t2 axis, there are both chemical shifts and coupling
constants, whereas along the t1 axis, there is only scalar coupling information.
This results in a spectrum of the type shown in Fig. 6.11. The peaks align themselves
at an angle of 45� with respect to the F2 axis. The detected signal has both cosine and
sine modulations along both t1 and t2 axes. The cosine modulation results in an
absorptive shape, while the sine modulation results in dispersive line shape, after
Fourier transformation. Thus, the peaks will have mixed phases. This requires a
magnitude mode calculation of the spectra. Such calculation can be extended to
multi-spin systems as well. An experimental spectrum demonstrating these features
is shown in Fig. 6.12.

In Figs. 6.11 and 6.12, we notice that the coupling information is present along
both axes, and it would be desirable to have a complete separation of the chemical
shift and coupling information. This can be achieved by performing a shearing
transformation on the peaks as indicated schematically in Fig. 6.13.

Fig. 6.11 Schematic two-dimensional JRES for a two-spin system. Projection shown on the top
represents the one-dimensional spectrum
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Figure 6.14 shows the result of a shearing transformation in an experimental
spectrum of a multi-spin system demonstrating the complete separation of the
chemical shift and scalar coupling information along the F2 and F1 axes,
respectively.

Fig. 6.12 A section of the
experimental
two-dimensional JRES
spectrum for a multi-spin
system, artemisinin

Fig. 6.13 Shearing transformation on the peaks in the two-dimensional J-resolved spectrum. The
shearing transformation eliminates the coupling information along the F2 (horizontal axis, bottom
picture)

218 6 Multidimensional NMR Spectroscopy



Interestingly, the projection of the spectrum on the F2 axis shows a completely
homodecoupled spectrum of the spin system. This is an interesting way of achieving
broadband homonuclear decoupling in complex spin systems. Along the F1 axis, the
resolution is sufficiently high because of the small spectral width; therefore, the
coupling constants can be measured very precisely. Further, because of the spin echo
in the t1 period, the external magnetic field inhomogeneity effects of line broadening
are eliminated, which enhances the resolution along the F1 dimension. This tech-
nique has been extremely useful in separating out the multiplets in complex spin
systems and measure accurately the various coupling constants.

6.6.2 Two-Dimensional Correlation Experiments

These experiments are designed to correlate two frequencies in a given
one-dimensional spectrum with regard to various interactions between the spin
systems in a molecule under consideration. The very first experiment in this context
was proposed by Jean Jeener. This experiment has been popularly known as
correlated spectroscopy or COSY.

Fig. 6.14 A section of the
experimental spectrum of
artemisinin demonstrating the
effect of shearing
transformation
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6.6.2.1 The COSY Experiment
The pulse sequence for the COSY experiment is shown in Fig. 6.15.

Here the first pulse acts as the preparation period which is followed by the
evolution period t1. The second pulse acts as the mixing period of the generalized
scheme given in Fig. 6.1. The detailed mathematical analysis of the working of this
pulse sequence is described in the following paragraphs.

COSY of Two Spins
Consider a system of two weakly coupled spins, k and l (with I ¼ 1/2). They are
J-coupled with a coupling constant of Jkl. The density operator of the spin system at
the beginning of the experiment, ρ1, is

ρ1 ¼ Ikz þ Ilz ð6:38Þ
For illustration, we calculate the evolution of Ikz through the pulse sequence

explicitly, and the same can be extrapolated to Ilz, as well.

Following the convention of rotations described in Chap. 5, the density operator
ρ2 at time point 2 in the pulse sequence, for the spin k, is

ρ2 ¼ �Iky ð6:39Þ
This evolves under the Zeeman Hamiltonian (ωkIkz), for a period t1 yielding the

density operator ρ3, at time point 3 in the pulse sequence.

ρ3 ¼ � Iky cosωkt1 � Ikx sinωkt1 ð6:40Þ
Next, considering evolution under the J�coupling Hamiltonian (2πJklIkzIlz), the

density operator will be ρ3
0:

Fig. 6.15 Schematic pulse
sequence of the COSY
experiment. Numbers 1–5
indicate the time points at
which the density operator
calculations are reported (see
text)
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ρ3
0 ¼ � Iky cos πJklt1 � 2IkxIlz sin πJklt1 cosωkt1

� Ikx cos πJklt1 þ 2IkyIlz sin πJklt1 sinωkt1g ð6:41Þ
The last pulse transforms these operators to yield a density operator ρ4, at time

point 4 of the pulse sequence.

ρ4 ¼ � Ikz cos πJklt1 þ 2IkxIly sin πJklt1 cosωkt1

� Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1g ð6:42Þ
Since the data is collected soon after, one needs to look at only those terms in the

density operator which are observable as per definitions given in Chap. 5 (Tr[IxB(-
s) 6¼ 0). Thus, the observable part of ρ4 is ρ4

obs:

ρ4
obs ¼ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1g ð6:43Þ

The first term in Eq. 6.43 which represents x-magnetization of the k spin evolves
during the t2 period with frequencies characteristic of k spin. Therefore, this will
produce a diagonal peak (F1¼ F2¼ ωk) in the final two-dimensional spectrum. The
second term which represents y-magnetization of l spin evolves during the t2 period
with frequencies characteristic of l spin. Therefore, this term will produce a “cross-
peak” (F1 ¼ ωk; F2 ¼ ωl). Both these peaks will have fine structures, which contain
the coupling information.

We now calculate the evolution of the terms in Eq. 6.43 during the t2 time period.
Here again both chemical shift and coupling evolutions have to be considered
explicitly.

The first (diagonal peak) term in Eq. 6.43:

Chemical shift evolution leads to the density operator ρ5d given by

ρ5d ¼ Ikx cosωkt2 þ Iky sin ωkt2 f d t1ð Þ ð6:44Þ
where fd(t1) ¼ cos πJklt1 sin ωkt1.

Evolution under coupling generates the density operator ρ5d
0 given by

ρ5d
0 ¼ Ikx cos πJklt2 þ 2IkyIlz sin πJklt2 cos ωkt2

þ Iky cos πJklt2 � 2IkxIlz sin πJklt2 sin ωkt2g f d t1ð Þ ð6:45Þ
Assuming that we measure the y-magnetization, the observable signal is given by

Tr[ρ5d
0Iky].

Tr ρ5d
0Iky ¼ cos πJklt2 sin ωkt2 f d t1ð Þ

6.6 Types of Two-Dimensional NMR Spectra 221



¼ cos πJklt2 sin ωkt2 cos πJklt1 sinωkt1 ð6:46Þ
Explicitly this will lead to the following terms:

Tr ρ5d
0Iky ¼ 1

4
sin ωk þ πJklð Þt2 þ sin ωk � πJklð Þt2g sin ωk þ πJklð Þt1ff

þ sin ωk � πJklð Þt1g ð6:47Þ
This contributes to the detected FID.
The two-dimensional real Fourier transformation along the t1 and t2 dimensions

leads to four peaks with a dispersive line shapes at the following frequencies (Hz).

F1,F2ð Þ ¼ vk þ Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vk � Jkl
2

; positive, dispersive

vk � Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk � Jkl
2

, vk � Jkl
2

; positive, dispersive ð6:48Þ

This results in a fine structure for the diagonal peak as indicated in Fig. 6.16.
The second (cross-peak) term in Eq. 6.43:

Here, let us consider the J-evolution first. This leads to the density operator ρ5c:

ρ5c ¼ 2IkzIly cos πJklt2 � Ilx sin πJklt2 f c t1ð Þ ð6:49Þ
f c t1ð Þ ¼ sin πJklt1 sin ωkt1 ð6:50Þ

Next, considering the shift evolution, we get ρ5c
0 as

ρ5c
0 ¼ 2Ikz Ily cosωlt2 � Ilx sinωlt2 cos πJklt2

� Ilx cosωlt2 þ Ily sinωlt2 sin πJklt2g f c t1ð Þ ð6:51Þ
Again, assuming that we measure the y-magnetization, the observable signal is

given by Tr[ρ5c
0Ily]:

Tr ρ5c
0Ily ¼ sinωlt2 sin πJklt2 sinωkt1 sin πJklt1 ð6:52Þ

This leads to four absorptive peaks at the following coordinates.
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F1,F2ð Þ ¼ vk þ Jkl
2

, vl þ Jkl
2

; positive, absorptive

vk þ Jkl
2

, vl � Jkl
2

; negative, absorptive

vk � Jkl
2

, vl � Jkl
2

; positive, absorptive

vk � Jkl
2

, vl þ Jkl
2

negative, absorptive ð6:53Þ

Similar expressions can be derived to obtain the peak list starting from the l spin
magnetization. Thus, the overall two-dimensional spectrum for the k� l spin system
will look as shown in Fig. 6.17.

Figure 6.18 shows the phase-sensitive experimental spectrum of an AX sub-spin
system of curcumin dissolved in CDCl3.

COSY of Three Spins
The detailed calculation shown for the two-spin system can be extrapolated to three-
spin systems as well. The following considerations will help in arriving at the
appropriate fine structures of the peaks.

(i) The spectrum will have cross-peaks displaying the nature of the coupling
network. For example, for a linear AMX system, there will be cross-peaks
from A to M and M to X on one-side of the diagonal and M to A and X to M

Fig. 6.16 Typical fine
structure of the diagonal peaks
in the COSY spectrum. They
have in-phase dispersive line
shapes along both
frequency axes
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on the other side of the diagonal. All the three diagonal peaks will be present.
However, there will be no A to X and X to A cross-peaks, as there is no coupling
between A and X spins. Likewise, for a triangular coupling network, where all
the three coupling constants are nonzero, there will be A to M, A to X, M to X,
M to A, X to A, and X to M cross-peaks. Figure 6.19 shows the expected COSY
spectra for linear and triangular coupling networks.

(ii) Each cross-peak in the COSY spectrum arises as a result of the evolution under
one particular coupling constant. For example, in an AMX spin system, the A to
M (or M to A) cross-peak will result from the coupling JAM. This coupling
constant leads to a splitting where lines will have positive and negative signs,
and this is called active coupling. The other coupling, for example, A to X, if it is
nonzero, leads to in-phase splitting and is called the passive coupling. Accord-
ingly, the fine structures in the cross-peaks will depend upon the relative
magnitudes of the active and passive couplings. Figure 6.19 shows the fine
structures for the A(F2) to M(F1) cross-peak for two different cases of JAM and
JAX coupling constants in the linear AMX spin system (Fig. 6.20).
Continuing along the same lines, the fine structure in the A(F1) to M(F2) cross-
peak can be calculated, and this is shown in Fig. 6.21.

For the triangular coupling network of the three spins A, M, and X, the fine
structures can be calculated for the individual cross-peaks following the same
procedure described. This is explicitly shown for the A to M cross-peak in
Fig. 6.22 for a particular choice of magnitudes of coupling constants. Notice
once again that in this cross-peak, JAM is the active coupling, while JMX and JAX
are passive couplings.

Fig. 6.17 Schematic COSY
NMR spectrum of a weakly
coupled two-spin system. The
cross-peaks have antiphase
(+ and �) character and
absorptive line shapes along
both F2 and F1 axes. The
diagonal peaks have in-phase
dispersive line shapes along
both axes
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Disadvantages of COSY
The COSY experiment has the following disadvantages.

(i) The dispersive line shapes in the diagonal peaks produce long tails which
hamper the resolution in the spectra. The cross-peaks which lie close to the
diagonal would get masked out.

(ii) The diagonal peak has in-phase components, while the cross-peak has antiphase
components. The resolution in the F1 dimension is determined by the number of
increments one can acquire along the t1 dimension, and this will be limited by
the machine time. In that scenario, because of poor resolution along the F1
dimension, the peak intensities cancel because of the positive/negative character
of the components in the cross-peak. On the other hand, the components in the
diagonal peaks coadd because of the in-phase character. This results in huge
diagonal peaks and tiny cross-peaks in the event of insufficient resolution in the
spectrum.

Fig. 6.18 (a) Phase-sensitive COSY spectrum of curcumin (AX sub-spin system) and (b) blowups
of the cross- (right) and diagonal peaks (left). Horizontal cross-sections through the peaks at the
gray- and green-colored lines are shown on the top
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6.6.2.2 Double-Quantum-Filtered COSY (DQF-COSY)
This experiment was designed to circumvent the limitations of the COSY experi-
ment. The pulse sequence for the DQF-COSY is shown in Fig. 6.23.

The pulse sequence is similar to that of COSY up to the second pulse but for the
fact that the phases (ϕ) of these two pulses need to be cycled and the data coadded or
subtracted as discussed in the following. The scheme involves acquiring four
transients with the pulse phase (ϕ) and the receiver phase (θ) incremented with
every transient. This is indicated in Table 6.2.

The experiment can be analyzed in the same manner as was done for COSY.
Considering a system of two weakly coupled spins (k, l), the density operator
calculation follows the same steps as for COSY, and we rewrite the density operator
at time point 4 of the pulse sequence:

ρ4 ϕ ¼ xð Þ ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1 ð6:54Þ

Here the first two pulses are considered to be applied along the x axis (ϕ ¼ x).
Repeating such an exercise with ϕ¼ y leads to the following density operator ρ4 (y):

ρ4 ϕ ¼ yð Þ ¼ �Ikz cos πJklt1 þ 2IkyIlx sin πJklt1 cosωkt1
þ Iky cos πJklt1 þ 2IkzIlx sin πJklt1 sinωkt1 ð6:55Þ

Similar calculations with ϕ ¼ �x and ϕ ¼ �y lead to the following density
operators.

Fig. 6.19 Schematic appearance of the COSY spectrum for a system of three spins, AMX. The
coupling patterns are shown on the top
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ρ4 ϕ ¼ �xð Þ ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ �Ikx cos πJklt1 þ 2IkzIly sin πJklt1 sinωkt1 ð6:56Þ

ρ4 ϕ ¼ �yð Þ ¼ �Ikz cos πJklt1 þ 2IkyIlx sin πJklt1 cosωkt1
þ �Iky cos πJklt1 � 2IkzIlx sin πJklt1 sinωkt1 ð6:57Þ

Fig. 6.20 (a) Fine structure in the one-dimensional spectrum for a linear AMX system. (b)
Splitting patterns in the A-M cross-peak due to active and passive couplings for the M spin for
two different cases of relative magnitudes of active and passive couplings. (c) The final fine
structure in the cross-peak A(F2) to M(F1) in the COSY spectrum for the two cases considered
in (b). Note that this peak lies in the lower triangle in the two-dimensional spectrum (Fig. 6.19)

Fig. 6.21 Schematic fine structure in the A(F1) to M(F2) cross-peak. Note that this peak lies in the
upper triangle in the two-dimensional spectrum (Fig. 6.19)
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As per the receiver phase cycling the data is added or subtracted and then, the
resultant density operator will be

ρ4 ¼ ρ4 ϕ ¼ xð Þ � ρ4 ϕ ¼ yð Þ þ ρ4 ϕ ¼ �xð Þ � ρ4 ϕ ¼ �yð Þ ð6:58Þ
¼ �4 IkyIlx þ IkxIly sin πJklt1 cosωkt1 ð6:59Þ

The operators in Eq. 6.59 represent pure double-quantum coherences.

Fig. 6.22 (a) Schematic of triangular J-coupling network in the weakly coupled AMX system. (b)
The splitting pattern of A and M spins due to active and passive coupling constants for a particular
choice of their relative magnitudes. (c) Fine structure in the A to M cross-peak in the lower triangle
of the COSY spectrum for the choice of coupling constants as in (b)

Fig. 6.23 Schematic of the
DQF-COSY pulse sequence.
Here, ϕ and θ refer to the
phases of the pulses and the
receiver, respectively. See text
for more details. Numbers 1–5
indicate the time points at
which the density operators
are reported in the text

Table 6.2 Phase cycling
for DQF-COSY pulse
sequence

Scan no. Pulse phase (ϕ) Receiver phase (θ)

1 x +

2 y �
3 �x +

4 �y �
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The third 90x pulse in the pulse sequence converts these terms into observable
single-quantum coherences. The corresponding density operator ρ5 will be

ρ5 ¼ �4 IkzIlx þ IkxIlzð Þ sin πJklt1 cosωkt1 ð6:60Þ
This now consists of antiphase magnetizations of both k and l spins with the same

phase. They will evolve during the t2 period into in-phase magnetizations of k and
l spins, whereby it becomes observable. Rewriting Eq. 6.60,

ρ5 ¼ �4 IkzIlx þ IkxIlzð Þ f t1ð Þ ð6:61Þ
f t1ð Þ ¼ sin πJklt1 cosωkt1 ð6:62Þ

Now evolve ρ5 under H J and H z sequentially during t2,

ρ5 !
H J �2 2IkzIlx cos πJklt2ð Þ þ Ily sin πJklt2ð Þ

þ 2IkxIlz cos πJklt2ð Þ þ Iky sin πJklt2ð Þ gf t1ð Þ ð6:63Þ
The antiphase terms 2IkzIlx and 2IkxIlz are not observable and hence will not be

considered further. The other terms will be evolved under the H z.

!H z �2 Ily cosωlt2 � Ilx sinωlt2 sin πJklt2ð Þ
þ Iky cosωkt2 � Ikx sinωkt2 sin πJklt2ð Þ�gf t1ð Þ ð6:64Þ

Assuming y-detection, we have the following signal:

Signal Sð Þ ¼ �2 cosωlt2 sin πJklt2ð Þ þ cosωkt2 sin πJklt2ð Þ½ � sin πJklt1 cosωkt1

ð6:65Þ
In this expression, the first term leads to the cross-peak, while the second term

leads to the diagonal peak in the spectrum.

(a) Cross-peak

cosωlt2 sin πJklt2ð Þ sin πJklt1 cosωkt1

¼ 1
4

sin ωk þ πJklð Þt1 � sin ωk � πJklð Þt1½ �:
sin ωl þ πJklð Þt2 � sin ωl � πJklð Þt2½ � ð6:66Þ

¼ þ sin ωk þ πJklð Þt1 sin ωl þ πJklð Þt2
� sin ωk þ πJklð Þt1 sin ωl � πJklð Þt2
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� sin ωk � πJklð Þt1 sin ωl þ πJklð Þt2
þ sin ωk � πJklð Þt1 sin ωl � πJklð Þt2 ð6:67Þ

This leads to the following peaks.

F1,F2ð Þ ¼ vk þ Jkl
2

, vl þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vl � Jkl
2

; negative, dispersive

vk � Jkl
2

, vl þ Jkl
2

; negative, dispersive

vk � Jkl
2

, vl � Jkl
2

; positive, dispersive ð6:68Þ

A 90� phase shift will produce absorptive line shape for all the four peaks.

(b) Diagonal peak

cosωkt2 sin πJklt2ð Þ sin πJklt1 cosωkt1

¼ 1
4

sin ωk þ πJklð Þt1 � sin ωk � πJklð Þt1½ �:
sin ωk þ πJklð Þt2 � sin ωk � πJklð Þt2½ � ð6:69Þ

¼ þ sin ωk þ πJklð Þt1 sin ωk þ πJklð Þt2
� sin ωk þ πJklð Þt1 sin ωk � πJklð Þt2
� sin ωk � πJklð Þt1 sin ωk þ πJklð Þt2
þ sin ωk � πJklð Þt1 sin ωk � πJklð Þt2 ð6:70Þ

This leads to the following peaks:

F1,F2ð Þ ¼ vk þ Jkl
2

, vk þ Jkl
2

; positive, dispersive

vk þ Jkl
2

, vk � Jkl
2

; negative, dispersive

vk � Jkl
2

, vk þ Jkl
2

negative, dispersive

vk � Jkl
2

, vk � Jkl
2

; positive, dispersive ð6:71Þ

A 90� phase shift will produce absorptive line shape for all the four peaks.
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Thus, the final spectrum for the two-spin system will appear as shown in
Fig. 6.24. Clearly, the DQF-COSY spectrum shows better resolution than the
COSY spectrum and is pretty clean in both the diagonal and cross-peaks.

6.6.2.3 Total Correlation Spectroscopy (TOCSY)
The COSY and the DQF-COSY resulted in fine structures in diagonal as well as
cross-peaks. The DQF-COSY circumvented the shortcomings of COSY with respect
to the diagonal. However, the fine structures still retain the antiphase nature of the
components in the cross-peaks. In essence, this amounts to a differential transfer of
magnetization between the spins. The antiphase character results in the cancellation
of component intensities in the cross-peaks in the absence of sufficient resolution.
This problem is circumvented by total correlation spectroscopy (TOCSY) which
results in in-phase components and thus achieves net transfer of magnetization
between the spins. The pulse sequence for the TOCSY experiment is shown in
Fig. 6.25.

The pulse sequence starts with a 90� pulse, which creates transverse magnetiza-
tion which then evolves during the period t1 with characteristic frequencies. The
so-called mixing here consists of a strong RF field or a train of pulses (often referred
to as composite pulses) during which time the spins are locked in the rotating frame
in the transverse plane along the x or the y-axis. During the spin lock transfer of
coherence occurs among the J-coupled spins. For a two-spin system, k and l (spin
1/2), the effective Hamiltonian during the mixing period consists only of the
J-coupling Hamiltonian, and the Zeeman interactions are eliminated. This Hamilto-
nian is given by

H e ¼ 2πJIk:Il ð6:72Þ

Fig. 6.24 Comparison of COSY and DQF-COSY spectra for a two-spin system. + and � indicate
positive and negative signs of the peak components, respectively
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¼ 2πJ IkzIlz þ IkxIlx þ IkyIly ð6:73Þ
The evolution of the magnetization components under the influence of this

Hamiltonian is given by the following equation:

Ikx !H et Ikx
1þ cos 2πJt

2
þ Ilx

1� cos 2πJt
2

þ IkyIlz � IlyIkz sin 2πJt

ð6:74Þ
Complete transfer of magnetization will occur for time t¼ 1/2J. This is in contrast

to INEPT transfer of coherence where a complete transfer requires a time t ¼ 1/J; in
the INEPT, the transfer occurs in two steps: the first step involving a spin-echo of
period 1/2J causes antiphase transfer, and in the second step, a second spin echo of
period 1/2J causes refocusing to generate in-phase magnetization (Ikx ! 2IlyIkz!
Ilx).

A similar equation can be written for the evolution of Ilx:

Ilx !H et Ilx
1þ cos 2πJt

2
þ Ikx

1� cos 2πJt
2

þ IlyIkz � IkyIlz sin 2πJt ð6:75Þ

The addition of Eqs. 6.74 and 6.75 leads to the following:

Ikx þ Ilxð Þ !H et Ikx þ Ilxð Þ ð6:76Þ
This implies that the total x-magnetization is conserved through the mixing

sequence, and there is in-phase transfer (Ikx ! Ilx and vice versa), retaining the
phase of the magnetization, i.e., Ikx ! Ilx, Iky ! Ily, and Ikz ! Ilz. Therefore, this
mixing is termed as isotropic mixing, and the Hamiltonian is termed as isotropic
Hamiltonian. After the mixing the magnetization components are detected in the t2
time period. Two-dimensional Fourier transformation of the collected signal results
in a two-dimensional spectrum.

Detailed calculations for multi-spin systems show that the general conclusions
derived for the two-spin systems are valid for multi-spin systems as well. However,
an interesting feature of this experiment is the following. Considering a linear three-
spin system (AMX), where there is no coupling between the spins A and X, it turns
out that there will be a cross-peak between the spins A and X, provided both AM

Fig. 6.25 Pulse sequence for
the TOCSY experiment
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coupling and MX coupling are nonzero. Thus, the TOCSY experiments relays
magnetization through the network of coupled spins, providing valuable information
about the coupling network in a given molecule. An experimental TOCSY spectrum
is shown in Fig. 6.26.

Such a spectrum will enable to distinguish between a linear three-spin system,
AMX, and a mixture of two two-spin systems AM and M'X with accidental
degeneracy of the M and M0 chemical shifts. In the latter case, there will be no
cross-peak between A and X spins in the TOCSY spectrum, whereas the COSY or
DQF-COSY will not be able to distinguish between these two situations.

6.6.2.4 Two-Dimensional Nuclear Overhauser Effect Spectroscopy
(2D-NOESY)

This experiment represents an extension of the one-dimensional transient NOE to
two dimensions. The pulse sequence for this is given in Fig. 6.27a. τm here is called
the mixing time during which transfer of magnetization happens through dipolar
interactions or the NOE effect. For uncoupled spin systems, the spin dynamics

Fig. 6.26 Experimental TOCSY spectrum of erythromycin-A
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through the pulse sequence leading to transfer of magnetization is schematically
shown in Fig. 6.27b.

For coupled spin systems, the pulse sequence can be analyzed by following the
product operator formalism, as in the case of COSY. For a two-spin system, k and
l (spin ¼ 1/2), the density operator at time point 4 in the pulse sequence is given by

ρ4 ¼ �Ikz cos πJklt1 � 2IkxIly sin πJklt1 cosωkt1
þ Ikx cos πJklt1 � 2IkzIly sin πJklt1 sinωkt1 ð6:77Þ

As demonstrated in the case of DQF-COSY, a phase cycling scheme is utilized to
retain only the first term in Eq. 6.33. This is indicated in Table 6.3.

During the following period τm, transfer of z-magnetization occurs from spin k to
spin l, as per the dipolar coupling-mediated relaxation of the spins (refer to Chap. 4).
The final 90� pulse converts the z-magnetization into transverse magnetization for
detection.

Since the transfer of magnetization during the mixing time is never complete,
there will be magnetization components of both k and l spins (coupled or uncoupled)
evolving during the detection period. These result in the diagonal and cross-peaks,
respectively. Both diagonal and cross-peaks will have fine structure if the spins are
J-coupled and the components will have in-phase character.

In multi-spin systems, transfer of magnetization will be governed by the relaxa-
tion matrix, as discussed in Chap. 4. There will be cross-peaks between every two

Fig. 6.27 (a) Pulse sequence of NOESY experiment. (b) Schematic of magnetization transfer
between two spins (k and l ). Numbers 1–6 are time points along the pulse sequence to facilitate
discussion in the text
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spins which have dipolar coupling contributing to their relaxation. Thus, the NOESY
spectrum represents the network of dipolar-coupled spins in a given molecule. The
cross-peak intensities will depend upon respective cross-relaxation rates for short
mixing times compared to the spin-lattice relaxation time (T1). These, in turn, are
proportional to the inverse sixth power of the internuclear distances; in a sense the
cross-peak intensities reflect the NOEs observed in a transient NOE experiment (see
Chap. 4). Thus, the NOESY spectrum reflects the distance matrix representing the
three- dimensional structure of a given molecule. An illustrative experimental
spectrum is shown in Fig. 6.28.

Table 6.3 Phase cycling
for NOESY pulse sequence
given in Fig. 6.27a

Scan ϕ Receiver

1 x +

2 y +

3 �x +

4 �y +

Fig. 6.28 Experimental NOESY spectrum of erythromycin-A
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The NOESY pulse sequence also reflects transfer of magnetization through
chemical exchange mechanism. During the mixing time, transfer of z-magnetization
can also happen via chemical exchange process, wherever it is present. Thus, in such
situations, the cross-peak and diagonal peak intensities can also be monitored as a
function of the mixing time to derive the exchange rates. For a symmetrical two-site
exchange A$ B, with equal populations at the two sites, equal spin-lattice relaxation
rates, and equal transverse relaxation rates, the intensities of the diagonal (aAA, aBB)
and cross-peaks (aAB, aBA) are given by the following equations:

aAA τmð Þ ¼ aBB τmð Þ ¼ 1
2

1þ e�2kτm e�τm=T1 ð6:78Þ

aAB τmð Þ ¼ aBA τmð Þ ¼ 1
2

1� e�2kτm e�τm=T1 ð6:79Þ

where k is the exchange rate and T1 is the spin-lattice relaxation time. Equilibrium
magnetization at the two sites is assumed to be the same. Figure 6.29 shows the
dependence of the diagonal and cross-peak intensities on the mixing time.

The ratio of diagonal-to-cross-peak intensities will be

aAA
aAB

¼ 1þ e�2kτm

1� e�2kτm
ð6:80Þ

For short mixing times (kτm � 1),Eq. 6.80 reduces to

aAA
aAB

¼ 1� kτm
kτm

ð6:81Þ

Thus, by monitoring the intensity ratios as a function of τm, the exchange rates
can be calculated.

6.6.2.5 Two-Dimensional ROESY
ROESY represents the Overhauser experiment in the rotating frame (ROE). The
pulse sequence for this experiment is given in Fig. 6.30.

Here, the mixing process and the consequent magnetization transfer is brought
about by low-power spin lock on the transverse magnetization. The magnetization
transfer (Ikx ! Ilx) occurs via transverse cross-relaxation, and the evolution of the
magnetization components during the mixing time (τm) can be shown to be as
follows.

IkxðτmÞ ¼ ð1� τm
T2

Þ sinðωkt1ÞI0kz � στm sinðωlt1ÞI0lz ð6:82Þ

IlxðτmÞ ¼ ð1� τm
T2

Þ sinðωlt1ÞI0lz � στm sinðωkt1ÞI0kz ð6:83Þ
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In both these equations, the first term produces the diagonal peak in the end, and
the second term produces the cross-peak. In the initial rate limit, i.e., τm

T2
� 1, the

diagonal peaks are positive, and the cross-peaks will be negative.
Table 6.4 shows the results of detailed calculations of the intensities as a function

of spectrometer frequency (ωo), correlation times (τc) of molecular tumbling, and
chemical exchange rates (k) for ROESY and NOESY spectra. It is seen that the
ROESY spectrum allows the discrimination of ROE and chemical exchange peaks,
whereas NOESY will have ambiguities.

The ROESY experiment has some additional advantages in comparison to the
NOESY, especially for molecules with ω0τc~1. In such situations, the NOESY
spectrum does not show magnetization transfer.

6.6.2.6 Application of Two-Dimensional Homonuclear Experiments
in Structural Analysis of Small Organic Molecules: A Case Study
of Artemisinin

The combined utilization of two-dimensional homonuclear NMR spectra, viz.,
DQF-COSY, TOCSY, and NOESY, helps in solving structures of molecules.
Figure 6.31 represents the homonuclear two-dimensional NMR spectra recorded
on artemisinin molecule (Fig. 6.31d). The chemical shift correlations obtained from

Fig. 6.29 Diagonal (brown
line) and cross-peak (green
line) intensities in the
presence of chemical
exchange as a function of
mixing time

Fig. 6.30 Pulse sequence for two-dimensional ROESY experiment
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the DQF-COSY (Fig. 6.31a) are useful for identifying the scalarly coupled spin pairs
of artemisinin; for example, correlations with the spin 9 allow to get the chemical
shift assignments of 8 and for one of the methyl groups. In contrast, the correlations
from spin 9 in the TOCSY (Fig. 6.31b) spectrum facilitate monitoring the relayed
spin network up to 4–5 bonds. In the present case, from spin 9 to spin 7, TOCSY
correlations are observed. Besides, spatial information obtained from the NOESY
spectrum (Fig. 6.31c) enables to obtain the three-dimensional structure of
artemisinin molecule. The observed NOE correlations between the spin pairs,
12-500, 12-6, 12-80, and 8a-5a, confirm the given structure for artemisinin molecule
(Fig. 6.31d).

6.6.3 Two-Dimensional Heteronuclear Correlation Experiments

Coherence transfer can also be effected between two different types of nuclear
species, say I and S. Such experiments are referred to as heteronuclear correlation
experiments. A variety of heteronuclear experiments can be designed, since the RF
pulses can be applied selectively to either of the species and heteronuclear broad-
band decoupling can be incorporated without any constraints. Heteronuclear
experiments have particular advantages:

(i) Increased sensitivity of indirect detection as evidenced in the INEPT pulse
sequence.

(ii) The possibility of unraveling overlapping I resonances by exploiting the chem-
ical shifts of the S spins and vice versa.

(iii) The correlation of chemical shifts of different nuclear species would facilitate
assignments in complex systems.

In most cases, one of the two nuclear species is a rare nucleus (S) such as 13C,
15N, etc., while the other nucleus is usually a more sensitive species (I ) such as 1H,
19F, etc.

6.6.3.1 Heteronuclear COSY
The simplest I-S correlation experiment (considering I¼ 1H and S¼ 13C) is depicted
in Fig. 6.32. This pulse sequence is very similar to the homonuclear COSY, except

Table 6.4 Comparison of cross-peak and diagonal peak signs in NOESY and ROESY spectra for
different molecular tumbling rates and chemical exchange

Condition

NOESY ROESY

Diagonal peak Cross-peak Diagonal peak Cross-peak

ω0τc � 1 + � + �
ω0τc~1 + 0 + �
ω0τc � 1 + + + �
Chemical exchange (k) + + + +
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the first 90� pulse is selective to only I spin. During the t1 period, therefore, there are
only I spin coherences. The pair of pulses on I and S, at the end of t1 transfers
coherence partially to the S spin. The magnetization is finally detected on the S spin.
Thus, the two-dimensional spectrum will have only I-S correlation peaks, which
retain the fine structure as in the COSY spectrum. Such a spectrum for two spins is
schematically shown in Fig. 6.33. It has the antiphase property along both
dimensions, and the separation between the components is equal to the coupling
constant.

Fig. 6.31 Two-dimensional homonuclear correlation spectra DQF-COSY (a), TOCSY (b), and
NOESY (c) recorded on artemisinin molecule dissolved in DMSO-D6 solvent. The combined
utilization of all these spectra resulted in the given structure for artemisinin molecule (d). The
green-colored lines are useful to track the chemical shift correlations, whereas the red-colored
arrows are the NOE correlations
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Fig. 6.32 Pulse sequence for
1H-13C correlation experiment
with carbon detection. Hz is
the starting 1H magnetization,
and 2CyHz represents the

13C
magnetization component at
the beginning of detection

Fig. 6.33 Schematic
spectrum from the pulse
sequence in Fig. 6.31. Orange
and green symbols indicate
positive and negative signs,
respectively
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In most of these experiments, the correlation is established between nuclei, which
are directly bonded. These one-bond coupling constants are usually very high, for
example, J1H�13C ~ 120–160 Hz and J1H�15N ~ 90–100 Hz. While this enables a
very efficient transfer of coherence, the large overall width of the cross-peak
hampers the resolution in the spectra. Since the one-bond coupling constant does
not add too much value for structural information of the molecules, it would be
desirable to remove this coupling constant information from the spectrum. This is
partially achieved by the pulse sequence shown in Fig. 6.34. In the pulse sequence,
an additional spin echo block is added to refocus the S spin antiphase magnetization
so that during detection of Smagnetization, the I spins can be decoupled. This results
in the collapse of the fine structure along the detection axis (F2), which is shown in
Fig. 6.34. The components here will have twice the intensity as compared to
Fig. 6.32.

A further improvement can be achieved by eliminating the coupling information
altogether. This can be achieved in more than one ways (Fig. 6.35).

(A) The HETCOR Pulse Sequence

The pulse sequence for the HETCOR experiment (considering I ¼ 1H and
S ¼ 13C) is shown in Fig. 6.36. It begins with the excitation of the I spin magnetiza-
tion by a nonselective 90� pulse. Then this magnetization evolves during the t1
period during which the I-S coupling is removed by the application of 180� pulse to
the S spin in the middle of the t1 period. Thus, during t1, the I spins are labelled by
their characteristic frequencies. Following the t1 period, a spin echo block [τ1 �

Fig. 6.34 Pulse sequence for 1H-13C correlation with carbon detection and proton decoupling
during acquisition. Magnetization components at few time points along the sequence are indicated
in cyan. BB implies broadband and J is the one-bond 1H-13C coupling constant
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180 (I, S)� τ1] is introduced during which I spin magnetization evolves under the I-
S coupling and generates antiphase I spin magnetization. The pair of 90� (I, S) pulses
at the end of the spin echo causes coherence transfer to the S spin, resulting in

Fig. 6.35 Schematic 1H-13C
correlation spectrum from the
pulse sequence given in
Fig. 6.34. Orange and green
symbols indicate positive and
negative signs, respectively

Fig. 6.36 Pulse sequence for the HETCOR experiment, which incorporates 1H-13C decoupling
along both F1 and F2 axes
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antiphase S spin magnetization. The delay τ1 (τ1 ¼ 1/4JIS) can be adjusted to cause
near-complete transfer to the S spin. Then the antiphase S magnetization evolves
during the following spin echo period, [τ2�180 (I, S)�τ2], to produce in-phase
S spin magnetization. This magnetization is detected during t2, while I spins are
simultaneously decoupled. Thus, the resulting spectrum has only one peak for an I-S
pair, as shown in Fig. 6.37. The signal-to-noise ratio (SNR) in this experiment is

SNR / γIðγSÞ
3
2 ð6:84Þ

(B) The HSQC Pulse Sequence

This experiment improves upon the HETCOR experiment. The pulse sequence
for the HSQC (heteronuclear single-quantum correlation) is depicted in Fig. 6.38.
The experiment starts with an INEPT (refer to Sect. 4.7 in Chap. 4) block which
achieves the transfer of I spin magnetization to S spin (Iz ! 2IzSy). This S spin
magnetization is antiphase in character with respect to the coupled I spin and evolves
during the following t1 period under chemical shift Hamiltonian. Evolution under the
I-S coupling is eliminated because of the 180� pulse applied to the I spin in the
middle of the t1 period. Thus, during the t1 period, the S spins are labeled by their
characteristic frequencies. The subsequent pair of 90� pulses on I and S transfers the
magnetization back to the I spin as antiphase magnetization (2IzSy ! 2IySz). This
antiphase Imagnetization is then refocused during the next spin echo block, [τ2�180
(I, S) �τ2], to generate in-phase I magnetization (Ix). This in-phase magnetization
then evolves during t2 with characteristic I spin frequencies, while the I-S coupling is
removed by broadband S spin decoupling. Thus, the resultant spectrum has a single
peak for an I-S pair, as shown Fig. 6.39.

The differences between the experiments A (HETCOR) and B (HSQC) are the
following.

Fig. 6.37 Schematic
HETCOR spectrum. The
peaks do not have any fine
structure
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(i) In A, S spin magnetization is detected, whereas in B, I spin magnetization is
detected. This has an impact on sensitivity, since the latter is proportional to γ3/2

of the detected nucleus. Therefore, if I spin is 1H and S spin is 13C, then the

HSQC experiment has a sensitivity gain of γH
γC

3=2
. This is a factor of 8, which

is a substantial gain in terms of the signal-to-noise ratio, which in turn amounts a
gain by factor of 64 in terms of the experimental time. Similarly, for S¼ 15N and
I ¼ 1H, the gain will be a factor of ~1000, in terms of experimental time.

(ii) In A, the detected signal will have S frequencies, whereas in B, the detected
signal will have I frequencies. The spectral range of S spin (13C, ~140 ppm) is
much larger compared to that of the I spin (1H, ~10 ppm). Therefore, the

Fig. 6.38 Pulse sequence for the HSQC experiment. Narrow and wide rectangles indicate 90� and
180� pulses, respectively. Unless mentioned all the pulses are applied along the x-axis. Relevant
magnetization components at certain time points are indicated in cyan

Fig. 6.39 Schematic
appearance of the HSQC
spectrum. The peaks do not
have any fine structure
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chemical shift dispersion along the detection axis will be higher in A as
compared to that in B, even considering that the γH is four times γC.

(C) The HMQC Pulse Sequence

This experiment achieves coherence transfer from spin I to spin S via multiple
quantum coherences; hence, this is termed as heteronuclear multiple-quantum
coherence (HMQC) transfer experiment. The pulse sequence for HMQC is shown
in Fig. 6.40.

In Fig. 6.40, the spin I is taken to represent the abundant species, and the spin S is
taken to represent the rare heteronucleus (13C (1.1% abundant)/15N (0.37% abun-
dant)). In the case of protons which are coupled 12C or 14N, the signals coming from
these have to be eliminated. This is achieved by phase cycling the receiver (+x, �x)
in consecutive scans, while the phase of the first 90� pulse on I spin remains as +x.

The experiment can be analyzed using the product operator formalism, and the
flow of the magnetization can be described for a I-S two-spin system. The first 90�

pulse along the x-axis creates transverse magnetization of the I spin:

Iz ! �Iy ð6:85Þ
The chemical shift evolution of the Imagnetization is refocused by the 180� pulse

kept at the middle of the entire evolution period before the start of the detection.
Hence, this evolution need not be calculated. When the τ period is set equal to 1/2JIS,

Fig. 6.40 Pulse sequence for the HMQC experiment. Relevant magnetization components at
certain time points are indicated in cyan. The I spin pulses are applied along x-axis. The pulses
on the S spin and the receiver are phase cycled as indicated
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the I spin magnetization gets transferred entirely to multiple-quantum IS coherence
(double-quantum + zero-quantum) after the application of 90� x-pulse on the S spin.

�Iy ! �2IxSy ð6:86Þ
As described earlier, this multiple quantum coherence does not evolve under the

influence of J-coupling between I and S. Since the I spin chemical shift is refocused
by the 180� pulse in the middle of the t1 period, we need to calculate the chemical
shift evolution of the S spin only. Thus,

�2IxSy ! �2Ix Sy cos ωst1ð Þ � Sx sin ωst1ð Þ ð6:87Þ
The last 90� x-pulse on the S spin converts a part of this magnetization into a

single-quantum coherence.

�2Ix Sy cos ωst1ð Þ � Sx sin ωst1ð Þ ! �2IxSz cos ωst1ð Þ þ 2IxSx sin ωst1ð Þ ð6:88Þ
The first term in Eq. 6.88 on the right-hand side is the single-quantum I spin

magnetization antiphase with respect to S, and the second term represents multiple
quantum coherence which does not lead to observable signal. During the following τ
period, the antiphase I magnetization gets refocused into in-phase magnetization.

�2IxSz cos ωst1ð Þ ! �Iy cos ωst1ð Þ ð6:89Þ
During the detection period t2, the I spin is decoupled from S spin and thus will

only have chemical shift evolution. Thus, we will only have one cross-peak between
I and S, as shown in Fig. 6.41. From explicit product operator calculations, the
intensity of the cross-peaks in the final spectrum turns out to be proportional to [sin
(πJISτ)]

2.
In the examples shown, we have considered one I spin and one S spin. However,

in real systems, there will be situations where an S spin is J-coupled to more than one
I spin species, which may be scalarly coupled among themselves. Assuming I and

Fig. 6.41 Schematic HMQC
spectrum for I-S spin systems
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K are two such spins of the same nuclear species, a similar calculation will lead to the
following observable operator at the start of the detection period.

ρ0 t1ð Þ ¼ �Iy cos ωSt1ð Þ cos πJIKt1ð Þ þ 2IxKz cos ωSt1ð Þ sin πJIKt1ð Þ ð6:90Þ
This indicates the following:

(i) There will be splitting along the indirect dimension (F1) due to JIK.
(ii) The sum of cosine-cosine and cosine-sine products in Eq. 6.90 results in the

superposition of in-phase absorptive and antiphase dispersive line shapes along
the F1 axis; this results in mixed phases.

After considering the evolution of I spin magnetization terms in Eq. 6.90 during
the following t2 period, the observable part of the density operator will be

ρ00 t2ð Þ ¼ f 0 t1ð Þ Iy cos ωI t2ð Þ cos πJIKt2ð Þ � Ix sin ωI t2ð Þ cos πJIKt2ð Þ
þ f 00 t1ð Þ Iy cos ωI t2ð Þ sin πJIKt2ð Þ � Ix sin ωI t2ð Þ sin πJIKt2ð Þ ð6:91Þ

where

f 0 t1ð Þ ¼ cos ωSt1ð Þ cos πJIKt1ð Þ and f 00 t1ð Þ ¼ cos ωSt1ð Þ sin πJIKt1ð Þ
If we assume the detection of y-magnetization, the resultant signal will be

Signal ¼ cos ωI t2ð Þ cos πJIKt2ð Þ f 0 t1ð Þ þ sin πJIKt2ð Þ f 00 t1ð Þ½ �

¼ cos ωI þπJIKð Þt2þ cos ωI �πJIKð Þt2½ � f 0 t1ð Þþ sin ωI þ JIKð Þt2� sin ωI �πJIKð Þt2½ � f 00 t1ð Þ
ð6:92Þ

From this it follows that there will be splitting along the direct dimension (F2) due
to JIK. Further, there will be superposition of in-phase absorptive and antiphase
dispersive line shapes along the detection axis (F2), which results in mixed phases.

The dispersive component of the signal can be purged by inserting a 90� y-pulse
on I spin prior to the detection period. The antiphase I spin operator is converted into
antiphase k spin operator (2IxKz! 2IzKx). This results in a cross-peak between K and
S spins. If the k spin is not coupled to S spin, this can lead to a confusion with regard
to the correlations, though it will have antiphase components as against in-phase
components in the I-S cross-peak. These complications do not occur in the HSQC
spectra.

6.6.3.2 Heteronuclear Multiple Bond Correlation (HMBC)
The heteronuclear correlation experiments, HSQC, HETCOR and HMQC, rely on
the transfer of coherences based on one-bond coupling constants. Often it is neces-
sary to establish correlations via multiple bond coupling constants for unambiguous
resonance assignments and structure elucidations. If one has to optimize the coher-
ence transfer to reflect these correlations, the delay τ has to be chosen to be 1

2J longIS

,
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where I and S are spins separated by multiple bonds. These coupling constants are
much smaller compared to one-bond couplings, and there is also a large variation in
these couplings (1–15 Hz). Simultaneous optimization with respect to all these
couplings is not possible. As discussed earlier for HMQC, the intensity of the

cross-peaks in the final spectrum turns out to be proportional to sin πJ longIS τ
2
.

Figure 6.42 shows the variation in the intensities with τ for three different values of
long-range couplings (2 Hz, 7 Hz, and, 12 Hz).

From this, it can be seen that the smaller the coupling, the larger is the required
delay. In such a situation, relaxation also plays an important role in determining the
intensity of the cross-peak. Figure 6.43 shows a pulse sequence designed to circum-
vent some of these problems. This experiment is referred to as heteronuclear multiple
bond correlation (HMBC). It differs from the HMQC pulse sequence in only one
sense; i.e., the last refocusing τ period (Fig. 6.40) is eliminated, and accordingly, the
decoupling of S spin has also been removed, while this saves on the relaxation loss

and the intensity will be proportional to sin πJ longIS τ (Fig. 6.44), which is better

than sin πJ longIS τ
2
dependence. This results in an antiphase splitting of the cross-

peak along the detection dimension.

6.6.4 Combination of Mixing Sequences

Depending upon the desired information in the two-dimensional spectrum, it is
possible to design pulse sequences, which have a mix of different types of coherence
transfer steps discussed in the previous sections. For example, HSQC can be
combined with TOCSY or COSY or NOESY transfer, HMQC can be combined
with TOCSY or COSY or NOESY, etc. Some typical pulse sequences to achieve
these features are shown in Fig. 6.45. The corresponding spectra are shown in
Fig. 6.46.

Fig. 6.42 Peak intensities in
HMQC experiment as a
function of the long-range
coupling constant while
assuming the T2 relaxation
value equal to 1 s

248 6 Multidimensional NMR Spectroscopy



6.7 Three-Dimensional NMR

The ideas discussed in the context of two-dimensional NMR can be extended to
include another dimension resulting in a three-dimensional spectrum. A schematic of
such an experiment is indicated in Fig. 6.47.

This consists of a preparation period, two evolution periods (t1 and t2), two
mixing periods (M1 and M2), and a direct detection period (t3). The resulting time

Fig. 6.43 Pulse sequence for the HMBC experiment

Fig. 6.44 A comparison of
intensities in HMQC and
HMBC spectra for a small
J-value (7 Hz) while assuming
the T2 relaxation value equal
to 1 s
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domain data, S(t1, t2, t3), after three-dimensional Fourier transformation produces a
three-dimensional frequency domain spectrum, S(F1,F2,F3).

S t1, t2, t3ð Þ !3D�FT
S F1,F2,F3ð Þ ð6:93Þ

A variety of three-dimensional spectra can be generated by choosing appropriate
mixing sequences, M1 and M2. For example, if M1 is chosen to result in a HSQC
type of the transfer of coherence with its independent evolution period t1, and M2 is
chosen to result in a TOCSY type of transfer with the evolution period t2, then in the
end, we generate a three-dimensional HSQC-TOCSY spectrum, schematically
shown in Fig. 6.48.

Fig. 6.45 Pulse sequences combining (a) HSQC with TOCSY and (b) HSQC with NOESY
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Similar combinations can be made with COSY, TOCSY, NOESY, HSQC,
HMQC, HMBC, etc., to generate a variety of three-dimensional spectra.

A large variety of three-dimensional spectra have been designed for biomolecular
applications, especially proteins. These differ in magnetization transfer pathways
along the protein chain. While these are covered in several elegant monographs,
some of these are indicated in Fig. 6.49, wherein the pathways of magnetization
transfer through the chain are indicated.

These rely on the transfer of magnetization via evolution under the influence of
one- and two-bond couplings along the polypeptide chain. These coupling constants
are independent of the amino acid sequence in the chain, and their typical values are
shown in Fig. 6.50.

In the following, we describe briefly a few experiments to demonstrate the
analysis of these pulse sequences, in general. All these experiments require proteins
uniformly enriched in 13C and 15N isotopes. These are routinely achieved by
standard techniques in recombinant protein production. These experiments also
require spectrometers equipped with three independent channels, 1H, 13C, and 15N.

Fig. 6.46 Spectra of (a) HSQC-TOCSY and (b) HSQC-NOESY recorded on strychnine. It is
adapted from the Bruker website

Fig. 6.47 A schematic of a
three-dimensional experiment
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6.7.1 The CT-HNCA Experiment

Figure 6.51 shows the pulse sequence for the constant time (CT)-HNCA experiment.
The flow of magnetization through the pulse sequence is schematically shown in

Eq. 6.94:

HN
i ! Ni t1ð Þ ! Cα i, i� 1ð Þ t2ð Þ ! Ni ! HN

i t3ð Þ ð6:94Þ
It starts with the 1H magnetization, Hz, and the evolution of this magnetization

through the pulse sequence can be calculated using the product operator formalism.
At time point “a,” after the first INEPT transfer from amide proton (HN

i ) to Ni along
the backbone, the density operator is given by

ρa ¼ �2HN
izNiy ð6:95Þ

HN
iz refers to z-magnetization of the amide proton (HN

i ) of the i
th residue along the

polypeptide chain, and Niy refers to the y-component of the backbone 15N spin of the
ith residue. Thus, this operator represents antiphase 15N magnetization with respect
to the amide proton (HN

i ).
Following this, the 15N magnetization evolves for a constant time period T under

different Hamiltonians:

Fig. 6.48 Schematic of
three-dimensional HSQC-
TOCSY spectrum. The
TOCSY relay is seen along
the F2 axis in the three-
dimensional spectrum
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(i) Under the influence of 15N chemical shifts for a period t1.

�2HN
izNiy ! �2HN

izðNiy cos ðωNi t1Þ � Nix sin ðωNi t1ÞÞ ð6:96Þ

Fig. 6.49 Schematic of magnetization transfer pathways in HNCA, HN(CO)CA, HNCO, HN
(CA)CO, CBCA(CO)NH, and CBCANH experiments. Red arrows identify magnetization transfers
during the pulse sequence, and the atoms enclosed in cyan circles are the nuclei participating the
transfer process

Fig. 6.50 One- and
two-bond coupling constants
relevant for magnetization
transfers shown in Fig. 6.48
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(ii) Evolution under the influence of 15N-1H coupling is effectively refocused and
15N magnetization remains anti-phase with respect to 1H.

(iii) Under the influence of one-bond (Ni � Cα
i ) and two-bond (Ni � Cα

i�1ð Þ )
couplings for the period T.

(iv) Evolution under 15N-13CO coupling is removed by the application of 180�

band-selective pulse to the 13CO spins and also to 15N.
During the period t1

2 � π COð Þ � t1
2 , decoupling happens due to the 180� pulse

on the carbonyl spins.
During the next period, T

2 � t1
2 � π 15N � T

2 � t1
2 , decoupling happens

due to the 180� pulse on 15N.

Thus, at time point “b,” the density operator is given by

ρb ¼ 4HN
izNixC

α
izΓ1 Tð Þ þ 4HN

izNixC
α
i�1ð ÞzΓ2 Tð Þ cos ωNi t1ð Þ ð6:97Þ

where

Γ1 Tð Þ ¼ sin π1JCαNT cos π2JCαNT ð6:98Þ

Fig. 6.51 Pulse sequence for the constant time (CT)-HNCA experiment. Narrow and wide
rectangular bars represent 90� and 180� pulses, respectively. Pulses are applied along the x-axis
unless indicated otherwise. The phase cycles ϕ1–ϕ3 are as follows: ϕ1¼ x and�x; ϕ2¼ 4(x), 4( y),
4(�x), and 4(�y); and ϕ3¼ 2(x) and 2(�x). ϕrec¼ x,�x,�x, x,�x, x, x, and�x. The period τ¼ 1/
4JNH. T represents the constant time period, which is typically 22–25 ms. Broadband decoupling of
15N is achieved using standard composite decoupling. Alphabets a–e identify time points discussed
in the text
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Γ2 Tð Þ ¼ cos π1JCαNT sin π2JCαNT ð6:99Þ
Γ1(T ) and Γ2(T ) represent transfer efficiencies, which are seen to be dependent on

the constant time period T and the magnitudes of the coupling constants. In this
calculation relaxation has been ignored. However, relaxation will be occurring
which causes an exponential decay (exp(�RNT ), where RN is the transverse relaxa-
tion rate of 15N magnetization. Therefore, the constant time period T has to be
properly optimized for the efficient transfer of magnetization without losing too
much signal.

The first term in Eq. 6.97 represents 15N magnetization of the ith residue,
antiphase with respect to HN and Cα of the ith residue. The second term represents
15N magnetization of the ith residue antiphase with respect to HN of the ith residue
and Cα of the (i�1)th residue. Thus, a sequential correlation between i and (i�1)
residues is created. Following the application of a pair of 90� pulses to 15N and Cα

spins at the end of the T period results in the density operator at time point “c”:

ρc ¼ 4HN
izNizC

α
iyΓ1 Tð Þ þ 4HN

izNizC
α
i�1ð ÞyΓ2 Tð Þ cos ωNi t1ð Þ ð6:100Þ

Now the magnetization is on Cα of “i” (first term in 6.100) and (i�1) (second term
in 6.100) residues. This magnetization evolves for the t2 period under the influence
of Cα chemical shifts. All the coupling evolutions (except Cα � Cβcoupling) are
eliminated by simultaneous 180� pulses on CO, 15N, and 1H channels. At the end of
the t2 evolution (i.e., at time point “d”), the relevant density operator is given by

ρd ¼ 4HN
izNizC

α
iy cos ωCα

i
t2 Γ1 Tð Þþ4HN

izNizC
α
i�1ð Þy cos ωCα

i�1
t2 Γ2 Tð Þ cos ωNi

t1 :cos πJCαCβ t2

ð6:101Þ

This magnetization is then transferred back to the coupled 15N spins by the
simultaneous application of 90� pulses on Cα and 15N. The 15N magnetization
which is antiphase with Cα and also 1H then evolves for the constant time period
T to refocus the antiphase character with respect to 15N. At the end of the T period,
we have 15N magnetization which is antiphase with respect to coupled HN spins. A
pair of 90� pulse on 15N and 1H’s at this point transfers the magnetization to amide
protons. This proton magnetization is antiphase with respect to the 15N, and during
the next INEPT block gets refocused to produce in-phase amide proton magnetiza-
tion. The relevant density operator at this point “e” is given by

ρe ¼ HN
ix cos ωCα

i
t2 Γ1 Tð Þ þ cos ωCα

i�1
t2 Γ2 Tð Þ cos ωNi t1ð Þ: cos πJCαCβ t2ð Þ

ð6:102Þ
This proton magnetization is then detected during the time t3, while

15N is
decoupled in a broadband fashion. Thus, the resulting three-dimensional spectrum
can be represented by
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S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 Cαð Þ,F3 HN ð6:103Þ

This is schematically shown in Fig. 6.52a. The F2–F3 cross-section plane at
particular 15Ni along F1 through this three-dimensional spectrum is shown in
Fig. 6.52b. It is clearly seen that this experiment allows establishing correlations
between two neighboring amino acid residues, which allows sequential walk along
the polypeptide chain as indicated in Fig. 6.53. Each strip shows correlations
between the amide protons of a particular residue, say i, to the 15N of the same
residue i (self-peak) and to the 15N of the previous residue i�1 (sequential peak).
Typically, the self-peak has slightly higher intensity than the sequential peak.

In practical terms one has to scan through the 15N planes along the F1 axis to find
HN

–Cα correlation peaks at the appropriate chemical shifts to establish such
connectivities. While this works elegantly when the chemical shift dispersions are
very good, difficulties arise when there are degeneracies in the chemical shifts. This
happens particularly for Cα chemical shifts in disordered and flexible regions of
proteins, and sequential connectivities become ambiguous. Several other three-
dimensional experiments have been designed to circumvent such problems, and
these have been described in great details in many other books (see, e.g., Cavanagh
et al., protein NMR spectroscopy). We describe one particular development which
has not been covered in any book. Even here, we restrict to the very basic technique
(Sanjay et al. 2001); several additions, improvements, and enhancements have been
published in the literature.

Fig. 6.52 (a) Schematic spectrum of three-dimensional CT-HNCA. (b) The F2–F3 cross-section
at a particular 15N chemical shift along F1. Different colors are used to distinguish between the
residues, and larger and smaller circles indicate self- and sequential correlations
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6.7.2 The HNN Experiment

This experiment is derived by simple modification of the HNCA, and the pulse
sequence is shown in Fig. 6.54. It follows the magnetization transfer pathway shown
in Fig. 6.55.

The basic differences with respect to the HNCA are: (i) Both the F1 and F2 axes
have 15N chemical shifts, whereas in HNCA F1 has 15N and F2 has Cα chemical
shifts, and (ii) an additional coherence transfer step is included to transfer the
magnetization to the neighboring residues (i ! i�1, i ! i+1). The periods 2TN
and 2τCN in Fig. 6.54 are constant time periods during which magnetization transfers
take place. In the first 2TN period, the transfer happens from 15N of residue “i” to Cα

spins of residues “i” and (i�1). During the 2τCN constant time period, magnetization
transfer occurs from Cα of “i” residue to 15N of i and i+1 residues; likewise, the
transfer also occurs from Cα of (i�1) the residue to 15N of i and (i�1) residues. Thus,
a sequential correlation gets established between three consecutive residues, i�1, i,
and i+1. The constant time periods, 2TN and 2τCN, are adjusted to be around
22–30 ms. The z-field gradients used in the pulse sequence destroy the unwanted
transverse components of the magnetization at different stages. Just before the

Fig. 6.53 Sequential walk through the polypeptide chain from residues i to i�4. Selected F2–F3
strips at F1 chemical shifts indicated on the top are aligned to show the sequential connectivities
through the polypeptide sequence
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Fig. 6.54 Pulse sequence for the HNN experiment. Narrow (hollow) and wide (filled black)
rectangular bars represent nonselective 90� and 180� pulse, respectively. Narrow lobe (light blue)
and wide lobe (gray) on carbon channel indicate selective 90� and 180� pulse, respectively. Unless
indicated otherwise, the pulses are applied with phase x. Proton decoupling using the Waltz-16
decoupling sequence with field strength of 6.25 kHz is applied during most of the t1 and t2 evolution
periods, and 15N decoupling using the Garp-1 sequence with field strength 0.9 kHz is applied during
acquisition. The 13C carrier frequency for pulses, respectively, on 13Cα and 13CO channels are set at
54.0 ppm and 172.5 ppm. The strengths of the 13Cα pulses (standard Gaussian cascade Q3 (180�)
and Q5 (90�) pulses) are adjusted so that they cause minimal excitation of carbonyl carbons. The
180� 13CO-shaped pulse (width 200 μs) had a standard Gaussian cascade Q3 pulse profile with
minimal excitation of 13Cα. The delays are set to λ¼ 2.7 ms, κ¼ 5.4 ms, δ¼ 2.7 ms. The delay τCN
used for the evolution of one-bond and two-bond 13Cα� 15Ncoupling is around 12–16 ms and must
be optimized. The values for the individual periods containing t1 are A¼ t1/2, B¼ TN, and C¼ TN–
t1/2. The values for the individual period containing t2 are D ¼ TN–t1/2, E ¼ TN, and F ¼ t1/2. The
delay 2TN is set to 24–28 ms. Phase cycling for the experiment isΦ1¼ 2(x), 2(–x);Φ2¼Φ3¼ x, –x;
Φ4 ¼ x; and Φ5 ¼ 4(x), 4(–x) and receiver ¼ 2(x), 4(–x), and 2(x). Frequency discrimination in t1
and t2 is achieved using states-TPPI phase cycling of Φ1 and Φ4, respectively, along with the
receiver phase. The gradient (sine-bell shaped; 1 ms) levels are optimized between 30% and 80% of
the maximum strength of 53 G/cm in the z-direction. These destroy the unwanted transverse
magnetization components

Fig. 6.55 A schematic of magnetization transfer pathway through the HNN pulse sequence
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detection, the Watergate pulse block is used to achieve an efficient water
suppression.

The experiment can be analyzed in detail using the product operator formalism.
Considering a chain of four residues, i�2 to i+1 along the polypeptide chain, the
intensities of the diagonal Idi ;F1 ¼ F2 ¼ Ni, F3 ¼ HN

i and cross-peaks
( Ici�1;F1 ¼ Ni, F2 ¼ Ni�1,F3 ¼ HN

i�1 and Iciþ1;F1 ¼ Ni, F2 ¼ Niþ1, F3 ¼
HN

iþ1Þ) in the F2–F3 plane of the HNN spectrum turn out to be

Id ¼ � E2
1E3E9K

d
i1 þ E2

2E5E10K
d
i2 ð6:104Þ

Ici�1 ¼ E1E4E7E9K
c
i�1

Iciþ1 ¼ E2E6E8E10K
c
iþ1 ð6:105Þ

where

E1 ¼ cos piTN sin qi�1TN

E2 ¼ sin piTN cos qi�1TN

E3 ¼ cos pi�1τCN cos qi�1τCN

E4 ¼ sin pi�1τCN sin qi�1τCN

E5 ¼ cos piτCN cos qiτCN

E6 ¼ sin piτCN sin qiτCN

E7 ¼ sin pi�1TN cos qi�2TN

E8 ¼ cos piþ1TN sin qiTN

E9 ¼ cos ni�1τCN

E10 ¼ cos niτCN ð6:106Þ
and

pi ¼ 2π1J Cα
i � Ni ; qi ¼ 2π2J Cα

i � Niþ1 ; ni ¼ 2π1J Cα
i � Cβ

i ð6:107Þ

Kd
i1 ¼ exp �4TNR

N
2i � 2τCNR

α
2,i�1

Kd
i2 ¼ exp �4TNR

N
2i � 2τCNR

α
2i

Kc
i�1 ¼ exp �2TN RN

2i þ RN
2,i�1 � 2τCNR

α
2,i�1
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Kc
iþ1 ¼ exp �2TN RN

2i þ RN
2,iþ1 � 2τCNR

α
2i ð6:108Þ

1J and 2J represent one-bond and two-bond N-Cα coupling constants and RN
2 and Rα

2’s
are the various 15N and Cα transverse relaxation rates, respectively.

This data after three-dimensional Fourier transformation yields the three-
dimensional NMR spectrum.

S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 15N ,F3 HN ð6:109Þ

Equation 6.104 (Id) gives rise to the diagonal peak (F1 ¼ F2 ¼ Ni, F3 ¼ HN
i ) in

the three-dimensional spectrum. The first term in Eq. 6.105 yields the cross-peak
(Ici�1;F1 ¼ Ni, F2 ¼ Ni�1, F3 ¼ HN

i�1Þ . The second term in Eq. 6.105 yields
another cross-peak Iciþ1;F1 ¼ Ni, F2 ¼ Niþ1, F3 ¼ HN

iþ1 ). A schematic repre-
sentation of the three-dimensional spectrum is shown in Fig. 6.56a, and in
Fig. 6.56b, c are shown, respectively, the F1 � F3 plane at F2 ¼ Ni and F2 � F3
plane at F1 ¼ Ni.

Fig. 6.56 (a) Schematic representation of the three-dimensional spectrum of HNN. (b) Schematic
representation of F1 � F3 plane at a particular F2 ¼ Ni. (c) Schematic representation of F2 � F3
plane at F1¼ Ni. Cyan peaks are self-peaks (F2¼ F1¼ Ni), and the red peaks are sequential peaks
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Clearly, the F2 � F3 plane at a particular F1 ¼ Ni is a triplet filter through the
HSQC spectrum displaying exclusively the peaks of three consecutive residues (i�1,
i, i+1) along the polypeptide chain. The orthogonal F1 � F3 plane at a particular
F2 ¼ Ni shows correlations from the amide proton of residue “i” to the 15N of
residues i�1, i, and i+1. This feature eliminates the need to scan through the 15N
planes as in the HNCA experiment to establish sequential correlations.

Figure 6.57 shows the coherence transfer efficiencies and consequent intensities
of the diagonal and cross-peaks with and without including relaxation. These curves
indicate the optimum value to be chosen for the 2τCN period. As mentioned earlier, a
value of 22–30 ms turns out to be the optimum choice, which gives reasonable
intensities for both the diagonal and the cross-peaks.

The HNN experiment has an additional interesting feature in the patterns of
peaks. The diagonal and cross-peaks will have different combinations of positive
and negative signs depending upon the nature of the residues in the triplet sequence
represented by the chosen plane. This feature arises because of the fact that during
the 2τCN period, the magnetization on Cα evolves under the influence of Cα � Cβ

coupling; the coefficients E9 and E10 which reflect this coupling evolution contrib-
ute to the change in sign patterns of the diagonal and cross-peaks. Since the glycine

Fig. 6.57 Plots of the HNN coherence transfer efficiencies. The transfer functions for the diagonal
peak Id and the cross-peaks Ici�1, I

c
iþ1 . Here, (a) is for the transfer efficiencies calculated with

relaxation terms, while (b) is for calculations without the relaxation terms. The transfer efficiency is
plotted as a function of τCN. The plots were calculated by using, JCαCβ , JCαCO, and JNCO values of
35, 55, and 15 Hz, respectively. The 1JCαN , and 2JCαN values have been chosen to be 10.5 and
8.5 Hz, respectively. The value of TN used in the transfer functions for HNN was 14.0 ms. Thick and
dotted lines represent diagonal and sequential peaks, respectively. The vertical red line indicates the
optimum choice for the τCN value. For this choice, the diagonal and cross-peaks have opposite
signs. (Reproduced from Journal of Magnetic Resonance. 181, 21 (2006), with the permission of
Elsevier Publishing)
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residues do not have a Cβ carbon, they appear distinctly and generate different peak
patterns depending upon the position of the glycine in the triplet sequence. Four
different cases of triplet amino acid sequences can be considered: (i) XGZ, (ii) GYZ,
(iii) G’GZ, and (iv) ZXY, where X, Y, and Z can be any amino acid residue other
than glycine and proline and G is glycine. The cases (i)–(iii) are special cases
containing glycine in the triplet sequence, and case (iv) is a general case. For the
three special cases (i) to (iii), the relevant density operators before the start of
detection are given by the following:
(i) -XGZ-: In this case the Cα � Cβ couplings are absent and hence E10 ¼ 1. Thus,

the transfer efficiencies are as follows:

Id ¼ � E2
1E3E9K

d
i1 þ E2

2E5K
d
i2 ð6:110Þ

Ici�1 ¼ E1E4E7E9K
c
i�1

Iciþ1 ¼ E2E6E8K
c
iþ1 ð6:111Þ

(ii) -GYZ-: In this case Cα � Cβ coupling of the (i�1)th residue vanishes and hence
E9¼1. The transfer efficiencies can be written as follows:

Id ¼ � E2
1E3K

d
i1 þ E2

2E5E10K
d
i2 ð6:112Þ

Ici�1 ¼ E1E4E7K
c
i�1

Iciþ1 ¼ E2E6E8E10K
c
iþ1 ð6:113Þ

(iii) -G’GZ-: Here both E10 and E9 terms become unity, and the equations can be
written as:

Id ¼ � E2
1E3K

d
i1 þ E2

2E5K
d
i2 ð6:114Þ

Ici�1 ¼ E1E4E7K
c
i�1

Iciþ1 ¼ E2E6E8K
c
iþ1 ð6:115Þ

The calculated peak patterns in F1–F3 planes for various combinations of triplets
of sequences involving a glycine residue at different positions in the triplet are
shown in Fig. 6.58. If there is a proline residue at either (i�1) or (i+1) position in
the triplet, the corresponding peak will not appear in the spectrum.
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6.7.3 The Constant Time HN(CO)CA Experiment

The HNCA experiment described earlier establishes the correlation between residue
“i” and (i�1) along the polypeptide chain. A particular cross-section plane along the
15N axis shows peaks between amide protons of residue “i” and Cα carbons of
residues i and i�1. However, a priori, it is not possible to identify the i and i�1 peak
individually, unambiguously. The HN(CO)CA experiment has been designed to
circumvent this problem by adopting a different magnetization transfer pathway,
which allows the flow of magnetization through the pulse sequence in one direction
along the polypeptide chain. This is as indicated in Eq. 6.116.

Fig. 6.58 Schematic patterns in the F1–F3 planes at the F2 chemical shift of the central residue in
the triplets mentioned on the top of each panel, in the HNN spectra for various special triplet
sequences. X, Z, and Z’ are any residue other than glycine (G) and proline (P). Squares are the
diagonal peaks and circles are the sequential peaks. Filled and open symbols represent positive and
negative signals, respectively. In all cases, the peaks are aligned at the F3 (HN) chemical shift of the
central residue
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HN
i ! Ni t1ð Þ ! CO i� 1ð Þ ! Cα i� 1ð Þ t2ð Þ ! CO i� 1ð Þ ! Ni

! HN
i t3ð Þ ð6:116Þ

Figure 6.59 shows the pulse sequence of the CT-HN(CO)CA experiment.
The experiment can be analyzed by the product operator formalism as for other

experiments. The experiment starts with an initial INEPT transfer from HN
i to Ni of

residue i. At time point a, in the pulse sequence, the relevant density operator is

ρa ¼ �2HN
izNiy ð6:117Þ

This antiphase magnetization of Ni is refocused to in-phase magnetization, which
then evolves under coupling toCO( i� 1) exclusively for the period δ1 + δ2 + δ3¼ 2δ1.
This is normally adjusted between 1

2JNCO
and 1

3JNCO
and most often it is set to 1

3JNCO
.

Note, Cα is decoupled by the application 180� pulses on Cα channel and the 15N
channel. Ni-magnetization also evolves under Ni-chemical shifts leading to fre-
quency labeling in the time period t1. The relevant density operator at point b in
the pulse sequence is given by

Fig. 6.59 Pulse sequence for the CT-HN(CO)CA experiment. Wide and narrow rectangles

indicate 180� and 90� pulses, respectively. Typically, the delays are 2δ1 	 22 ms 	 1
3JNCO

,

2δ3 	 1
2JNH

, δ2 ¼ (δ1 � δ3), and δ4 in the range 1
3JCαCO

to 1
2JCαCO

. Unless mentioned, the pulse phases

are along the x-axis. The phase cycles mentioned are ϕ1 ¼ x, �x; ϕ2 ¼ 4(x), 4( y), 4(�x), 4(�y);
ϕ3 ¼ 2(x), 2(�x). and ϕrec ¼ x, �x, �x, x, �x, x, x, �x. Quadrature detection in the t1 and t2
dimensions is achieved by incrementing independently the phases ϕ1 and ϕ3, respectively, along
with the receiver phase, as in a states-TPPI manner
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ρb ¼ 2 NiyCO i�1ð Þz cos ωNi t1ð Þ sin 2πJNCOδ1ð Þ sin 2πJNHδ3ð Þ ð6:118Þ
The simultaneous application of 90� pulses on CO and 15N channels at this point

causes transfer into antiphase CO magnetization, and the relevant density operator at
time point c is given by

ρc ¼ �2 NizCO i�1ð Þy cos ωNi t1ð Þ sin 2πJNCOδ1ð Þ sin 2πJNHδ3ð Þ ð6:119Þ
This magnetization then evolves under Cα coupling for the period δ4, and it is

transferred to Cα(i � 1), which is then frequency labeled during the period t2. At the
end it is back transferred to CO(i�1), which continues to evolve under the Cα � CO
coupling, for the next δ4 period, and at time point d, the relevant density operator is

ρd ¼�2NizCO i�1ð Þy cos ωNi
t1 cos ωCα

i�1
t2 cos πJ

CαCβ t2 sin2 πJCαCOδ4 sin 2πJNCOδ1 sin 2πJNHδ3

ð6:120Þ

Magnetization is now on CO(i�1). During the subsequent part of the pulse
sequence, the magnetization retraces the path evolving under the various couplings,
and at time point e, the relevant density operator leading to observable magnetization
is given by

ρe¼HN
ix cos ωNi

t1 cos ωCα
i�1

t2 cos πJCαCβ t2 sin2 πJCαCOδ4 sin2 2πJNCOδ1 sin2 2πJNHδ3

ð6:121Þ

The amide proton magnetization is then detected during “t3” under 15N
decoupling.

After three-dimensional Fourier transformation, this leads to a spectrum
schematically shown in Fig. 6.60.

Fig. 6.60 (a) Schematic
spectrum of three-dimensional
CT-HN(CO)CA. (b) The
F2-F3 cross-section at a
particular 15N chemical shift
along F1. Here only the
sequential connections i to
(i�1) are seen. Different
colors are used to distinguish
between the residues
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6.7.4 The HN(C)N Experiment

This is a counter part of HNN in the same manner as HN(CO)CA is a counter part of
the HNCA experiment, providing the directionality to the sequential assignment
process of the backbone atoms along the polypeptide chain. The pulse sequence for
this experiment is shown in Fig. 6.61, and the magnetization transfer pathway is
shown in Fig. 6.62.

Note that the flow of the magnetization is similar to that in HN(CO)CA till the
point reaches Cα( i � 1). The Cα

’s are not frequency labeled, and the magnetization
is transferred directly to the 15N of residues i and (i�1). This involves an additional

Fig. 6.61 Pulse sequence for the HN(C)N experiment. Narrow (hollow) and wide (filled black)
rectangular bars represent nonselective 90� and 180� pulse, respectively. Narrow lobe (light blue)
and wide lobe (gray) on carbon channel indicate selective 90� and 180� pulse, respectively. Unless
indicated otherwise, the pulses are applied with phase x. Proton decoupling using the Waltz-16
decoupling sequence with field strength of 6.25 kHz is applied during most of the t1 and t2 evolution
periods, and 15N decoupling using the Garp-1 sequence with field strength 0.9 kHz is applied during
acquisition. The 13C carrier frequency for pulses, respectively, on 13Cα and 13CO channels are set at
54.0 ppm and 172.5 ppm. The strength of the 13Cα pulses (standard Gaussian cascade Q3 (180�) and
Q5 (90�) pulses) is adjusted so that they cause minimal excitation of carbonyl carbons. The 180�
13CO-shaped pulse (width 200 μs) had a standard Gaussian cascade Q3 pulse profile with minimal
excitation of 13Cα. The delays are set to λ¼ 2.7 ms, κ ¼ 5.4 ms, δ ¼ 2.7 ms. The delay τCN used for
the evolution of one-bond and two-bond 13Cα � 15Ncoupling is around 12–16 ms and must be
optimized. The delay τC in the pulse sequence used for 13Cα � 13C' (refers to carbonyl, CO, carbon)
coupling evolution is 4.5 ms. The values for the individual periods containing t1 are A ¼ t1/2, B ¼
TN, and C ¼ TN–t1/2. The values for the individual period containing t2 are D ¼ TN � t1/2, E ¼ TN,
and F¼ t1/2. The delay 2TN is set to 24–28 ms, and Δ¼ τCN� τC. Phase cycling for the experiment
is Φ1 ¼ 2(x), 2(–x); Φ2 ¼ Φ3¼ x, –x; and Φ4 ¼ x; Φ5¼ 4(x), 4(–x) and receiver ¼ 2(x), 4(–x), 2(x).
The frequency discrimination in t1 and t2 has been achieved using states-TPPI phase cycling of Φ1

and Φ4, respectively, along with the receiver phase. The gradient (sine bell shaped; 1 ms) levels are
optimized between 30% and 80% of the maximum strength of 53 G/cm in the z-direction. These
destroy the unwanted transverse magnetization components
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transfer period, 2τCN. The
15N are frequency labeled in the evolution time t2, and

finally the magnetization is transferred to amide protons of residues i and (i�1),
which are then detected during the detection period t3.

The experiment can be analyzed using the product operator as has been done in
the previous cases. The final relevant density operator at the start of the detection (t3)
is given by

σ f ¼ 2HizNiy cos ωNi t2ð ÞΓ2Γ4 � 2H i�1ð ÞzN i�1ð Þy cos ωN i�1ð Þ t2 Γ3Γ5

sin 2πJCαCOτCð ÞΓ6Γ1 cos ωNi t1ð Þ ð6:122Þ
where

Γ1 ¼ sin 2πJCαCOτCð Þ sin 2πJNCOTNð Þ

Γ2 ¼ sin 2π2JCαNτCN cos 2π1JCαNτCN

Γ3 ¼ sin 2π1JCαNτCN sin 2π2JCαNτCN

Γ4 ¼ cos 2π1JCαNTN sin 2π2JCαNTN

Γ5 ¼ sin 2π1JCαNTN cos 2π2JCαNTN

Γ6 ¼ cos 2πJCαCβ τCNð Þ ð6:123Þ
τC, τCN, and 2TN ¼ A + B + C¼ D + E + F are the delays as indicated in the pulse

sequence. The resultant data after the three-dimensional Fourier transformation
yields the three-dimensional HN(C)N spectrum.

S t1, t2, t3ð Þ !3D�FT
S F1 15N ,F2 15N ,F3 HN ð6:124Þ

The first term in Eq. (6.122) gives rise to the diagonal peak (F1 ¼ F2 ¼ 15Ni,
F3¼ HNi) in the three-dimensional spectrum. The second term yields the cross-peak
(F1 ¼ 15Ni, F2 ¼ 15N(i�1), and F3 ¼ HNi�1). A schematic representation of the

Fig. 6.62 Schematic of magnetization transfer pathway through the HN(C)N pulse sequence. Here
C’ refers to carbonyl (CO) carbon
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three-dimensional spectrum is shown in Fig. 6.63a, and in Figs. 6.63b and 6.63c, the
F1–F3 plane at F2¼ 15Ni and the F2–F3 plane at F1¼ 15Ni are shown, respectively.

Clearly, both the F1–F3 and F2–F3 cross-section planes provide directionality in
sequential connections from the residue “i.” The peaks also carry sign patterns as in
the case of HNN experiment. The transfer efficiencies will be dictated by various
coefficients (Γ0s) in the respective terms. The different delays (τC, τCN, TN) have to be
optimized as before in the case of HNN. τc is generally set to ~4.5 ms, and τCN and
TN are typically set to ~12–15 ms.

Here again, the glycine residues make a special contribution because of the lack
of Cβ carbon and consequent absence of evolution under Cα � Cβ coupling. This
results in special patterns for glycine residues as well as for those which are adjacent
to glycines. Considering the various possibilities of triplets of residues involving
glycines, the expected peak patterns can be calculated as in the case of HNN. These
are shown schematically in Fig. 6.64.

Fig. 6.63 (a) Schematic representation of the three-dimensional spectrum of HN(C)N. (b) Sche-
matic representation of F1 � F3 plane at a particular F2 ¼ Ni. (c) Schematic representation of
F2 � F3 plane at F1 ¼ Ni
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The special features in the peak patterns in the HN(C)N and HNN spectra
generate the so-called checkpoints which help greatly for sequential resonance
assignments in proteins. Sections of experimental HN(C)N and HNN spectra
demonstrating the sequential walk through a stretch of polypeptide chain are
shown in Fig. 6.65a, b, respectively.

In the HNN and HN(C)N experiments, glycine residues served to provide
checkpoints for sequential resonance assignments. Simple modifications of these
experiments have been described where alanines and serines/threonines also produce
distinctive peak patterns, similar to glycines. These experiments have provided the
foundation for many more developments, which have enabled rapid and unambigu-
ous assignments in different kinds of protein systems, including folded, unfolded,
intrinsically disordered, and partially folded proteins. A complete description of

Fig. 6.64 Schematic patterns in the F1–F3 planes at the F2 chemical shift of the central residue in
the triplets mentioned on the top of each panel, in the HN(C)N spectra for various special triplet
sequences. X, Z, and Z’ are any residue other than glycine (G) and proline (P). Squares are the
diagonal peaks and circles are the sequential peaks. Filled and open symbols represent positive and
negative signals, respectively. In all cases the peaks are aligned at the F3 (HN) chemical shift of the
central residue
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these is beyond the scope of this book. The intention here has been only to give a
flavor of the possibilities.

6.8 Summary

• The principles of multidimensional NMR are described.
• Different types of two-dimensional NMR are presented. The discussion is limited

to some commonly used experiments.
• Illustrative elaborate product operator calculations are shown for some standard

experiments. Some three-dimensional experiments are also described in some
detail as illustrations.

6.9 Further Reading

• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,
A. Wokaun, Oxford, 1987

• High Resolution NMR Techniques in Organic Chemistry, T. D. W. Claridge, 3rd

ed., Elsevier, 2016
• NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry,

H. Günther, 3rd ed., Wiley, 2013
• Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005
• Protein NMR Spectroscopy, J. Cavanagh, N. Skelton, W. Fairbrother,

M. Rance, A, Palmer III, 2nd ed., Elsevier, 2006

Fig. 6.65 (a) An illustrative stretch of sequential walk through the HN(C)N (a) and HNN (b)
spectra of ubiquitin protein (1.6 mM, 76 aa). A sequential peak in one plane joins the diagonal peak
in the adjacent plane on the right. Note that the panels of G10 and K11 constitute the checkpoints in
this sequential walk. The numbers at the top and bottom in each panel A and B identify the F2 (

15N)
and F3 (

1HN) chemical shifts, which help in the identification of the diagonal peaks. Black and red
contours represent the positive and negative peaks, respectively
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6.10 Exercises

6.1 In a two-dimensional NMR experiment, which of the following statement is
correct?
(a) Data is explicitly collected during two independent time variables t1 and t2.
(b) Data is explicitly collected only during t2.
(c) Data is explicitly collected only during t1.
(d) The spectrum is generated by frequency selective excitations along the two

frequency axes (F1 and F2).
6.2 Fourier transformation of a complex NMR signal S (t1, t2) leads to

(e) absorptive line shapes along both frequency axes
(f) dispersive line shapes along both frequency axes
(g) absorptive line shape along F1 and dispersive line shape along F2

(h) mixed line shape along both frequency axes
6.3 If SW is the spectral width along the F1 dimension of the two-dimensional

spectrum and carrier is placed at the center of the spectrum, then in the TPPI
method of quadrature detection, the dwell time along t1 dimension is equal to
(a) 1 SW
(b) 1/2 SW
(c) 1/4 SW
(d) 2 SW

6.4 Given the pulse sequence,

the F2 axis of the two-dimensional spectrum for the molecule CH3-CH2-CH2-Cl will
show

(a) 3 singlets
(b) 2 triplets and 1 quartet
(c) 1 quartet and 1 triplet
(d) 1 quartet and quintet
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6.5 In a heteronuclear (C-H) spin echo experiment shown in the figure, the F1 axis
displays

(a) carbon multiplets (JCH) orthogonal to F2 axis
(b) no multiplets
(c) multiplets tilted by 45� with respect to F2 axis
(d) fine structure along with chemical shift of individual carbon nuclei

6.6 In a homonuclear two-dimensional J-resolved spectrum,
(a) F1 axis has chemical shifts and F2 axis has coupling constants
(b) F1 axis has coupling constants and F2 axis has chemical shifts and

coupling constants
(c) F1 axis has coupling constants and F2 axis has chemical shifts
(d) F1 axis has chemical shifts and coupling constants and F2 axis has

chemical shifts
6.7 In a two-dimensional homonuclear J-resolved experiment, the peaks have

(a) absorptive line shape along F1 and dispersive line shape along F2

(b) absorptive line shape along both F1 and F2

(c) dispersive line shape along both F1 and F2

(d) mixed line shapes along both F1 and F2

6.8 In a two-dimensional homonuclear COSY experiment, which of the following
is correct?
(a) Cross-peak arises due to magnetization transfer mediated by dipolar

interaction.
(b) Cross-peak arises due to magnetization transfer mediated by J-coupling

interaction.
(c) Diagonal peak arises due to magnetization transfer mediated by dipolar

interaction.
(d) Diagonal peak arises due to magnetization transfer mediated by J-coupling

interaction.
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6.9 Diagonal peaks in a COSY spectrum
(a) have no fine structure
(b) have fine structure with dispersive line shape along both frequency axes
(c) have fine structure with absorptive line shape along F1 axis and dispersive

line shape along F2 axis
(d) have fine structure with dispersive line shape along F1 axis and absorptive

line shape along F2 axis
6.10 The diagonal peak for a two-spin system (I¼ 1/2) in a two-dimensional COSY

spectrum will have the fine structure

(a)
þ �
� þ

(b)
þ þ
þ þ

(c)
þ �
þ �

(d)
þ þ
� �

6.11 The cross-peak for a two-spin system (I ¼ 1/2) in a two-dimensional COSY
spectrum will have the fine structure

(a)
þ �
� þ

(b)
þ þ
þ þ

(c)
� �
� �

(d)
þ þ
� �

6.12 In the cross-peak in a two-dimensional COSY spectrum, the line shapes along
the F1 and F2 dimension will be (abs: absorptive line shape; dis: dispersive line
shape)

(a)
abs dis

dis abs

(b)
abs abs

dis dis

(c)
dis abs

dis abs

(d)
abs abs

abs abs
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6.13 In a two-dimensional COSY spectrum, for a linear AMX spin system, with
JAM> JMX, the M spin fine structure in the AM cross-peak is
(a) [+ � + �]
(b) [ + + � �]
(c) [+� � +]
(d) [+ + + +]

6.14 In a two-dimensional COSY spectrum of a three-spin AMX system, the fine
structure in a cross peak
(a) is determined by the relative magnitude of the chemical shifts
(b) is determined by the relative magnitudes of the active and passive coupling

constants
(c) does not depend upon the signs of the coupling constants
(d) is entirely determined by the passive couplings

6.15 In a DQF-COSY spectrum of a two-spin system (I ¼ 1/2),
(a) both the diagonal and cross peak have the same fine structure and line

shapes
(b) the diagonal peak has antiphase structure and dispersive line shape, while

the cross peak has antiphase structure and absorptive line shape
(c) both the diagonal and cross peak have in-phase structure and absorptive

line shape
(d) the diagonal has in-phase structure and dispersive line shape and cross

peak have antiphase structure and absorptive line shape
6.16 Phase cycling in the DQF-COSY experiment

(a) helps to improve the signal-to-noise ratio
(b) helps in selection of coherence transfer pathway
(c) helps to remove artefacts of pulse imperfections
(d) helps to improve the resolution in the spectrum

6.17 In a two-dimensional NOESY experiment, the cross peak arises
(a) between J-coupled protons
(b) between protons coupled by dipolar interaction
(c) between chemically equivalent protons
(d) between magnetically equivalent protons

6.18 The intensity of a cross-peak between two protons separated by distance “r,” in
a two-dimensional NOESY spectrum, is proportional to
(a) r
(b) 1/r
(c) 1/r3

(d) 1/r6

6.19 The CT-COSY experiment achieves
(a) homonuclear broadband decoupling along the F1 dimension
(b) homonuclear broadband decoupling along the F2 dimension
(c) selective decoupling along the F1 dimension
(d) selective decoupling along the F2 dimension
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6.20 In CT-COSY experiment,
(a) J-coupling evolution does not occur during the t1 period
(b) J-coupling evolution occurs for the same time Δ for all the t1 increments
(c) chemical shift evolves through the constant time Δ
(d) J-coupling evolution occurs for the periods Δ�t1, and the chemical shift

evolution occurs for the period t1
6.21 In the following pulse sequence,

(a) chemical shifts appear scaled up in the indirect dimension
(b) J-values appear scaled up in the indirect dimension
(c) J-values appear scaled down in the indirect dimension
(d) both J-values and chemical shift are scaled up in the indirect dimension

6.22 In the given pulse sequence,

(a) chemical shifts are scaled up in the indirect dimension
(b) chemical shifts appear scaled down in the indirect dimension
(c) J-values appear scaled up in the indirect dimension
(d) J-values appear scaled down in the indirect dimension

6.23 In the TOCSY experiment, which of the following statements are true?
A. There is in-phase transfer of coherence.
B. There is relay of magnetization.
C. Transfer efficiency is worse than that in INEPT transfer.
D. Spin lock leads to isotropic Hamiltonian.
(a) All the statements are true.
(b) A, B, C are true.
(c) A, B, D are true.
(d) B, C, D are true.

6.24 In heteronuclear COSY experiment with the pulse sequence

90x
1H � t1 � 90x

1H, 13C � t2 � acquisitionð Þ,
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which of the following is true?
(a) The C-H cross-peak has no fine structure.
(b) The C-H cross-peak has fine structure along F2 alone.
(c) The C-H cross-peak has fine structure along F1 alone.
(d) The C-H cross-peak has fine structure along both F1 and F2.

6.25 In a HSQC spectrum, which of the following statements are true?
A. There is no fine structure in the cross peaks
B. Signal-to-noise is much superior compared to direct X detection experiment
C. Signal-to-noise ratio is inferior to direct X detection experiment
D. Cross-peaks have fine structure along the F1 axis
(a) A and B
(b) B and C
(c) C and D
(d) only A

6.26 In the HMQC spectrum, identify the correct statement.
(a) The HX cross-peaks have no fine structure,
(b) The HX cross-peaks have mixed phases resulting from H-H coupling

evolutions,
(c) The resolution is superior compared to HSQC spectrum,
(d) The experiment takes less time than HSQC,

6.27 In a two-dimensional HSQC-TOCSY spectrum,
(a) TOCSY causes relay along the F2 axis.
(b) TOCSY causes relay along the F1 axis.
(c) TOCSY leads to amplitude alteration HX cross peaks.
(d) TOCSY leads to a phase alteration of HX cross peaks.

6.28 For a three-dimensional NMR experiment, recorded with 256, 512, and1024
data points along the t1, t2, and t3 axes, respectively, with acquisition time of
0.2 s and relaxation delay of 1 s, the total acquisition time with four scans for
each FID will be approximately
(a) 1.5 days
(b) 3.5 days
(c) 7.3 days
(d) 11 days

6.29 In a three-dimensional experiment,
(a) the evolution time t1 and t2 are incremented simultaneously
(b) the evolution time t1 and t2 are incremented independently
(c) t1 is increment synchronously with t3
(d) t2 is increment synchronously with t3

Reference

Sanjay C. Panchal, Neel S. Bhavesh, and Ramakrishna V. Hosur (2001) Improved 3D triple
resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C,
15N) labeled proteins: Application to unfolded proteins. J Biomol NMR 20:135–147
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There are six appendices here. These are intended to provide some greater awareness
to students on the scope of NMR spectroscopy, in general, since in the present text
the focus has been almost entirely on high-resolution NMR or solution-state NMR.
In this context, some justice is given to the course, by including some basic aspects
of solid-state NMR which is an important subject in itself, in the form of three
Appendices, A1–A3. These deal with dipole-dipole interaction (Appendix A1),
chemical shift anisotropy (Appendix A2), and magic angle spinning and cross-
polarization (Appendix A3). Dipole-dipole interaction and chemical shift anisotropy
are also present in the solution-state but get averaged out to zero in solution due to
tumbling motions and thus do not contribute to the spectral features. This has been
mentioned in Chap. 2 in the text, and accordingly reference is made there to
Appendices A1 and A2. However, these interactions do contribute to relaxation
processes in the solution state. It is the dipolar interaction which enables double-
quantum, zero-quantum, and single-quantum transition probabilities which are
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crucial for relaxation and also for nuclear Overhauser effects (NOE), as discussed in
Chaps. 1 and 4. Moreover, the coverage in the text with regard to solution-state
NMR is also limited to what can be covered in about a semester; this includes very
basic topics as well as some extremely useful developments such as multidimen-
sional NMR, which every student should know. Therefore, an advanced topic
relevant for multidimensional NMR in the solution state, namely, gradient-based
selection of coherence transfer pathways, is included as Appendix A4. Field
gradients are also used to dephase coherences and thereby destroy unwanted mag-
netization components in a given pulse sequence. Such gradients are referred to as
“crusher gradients.” These are also used in water suppression pulse sequence which
is described in Chap. 3, and hence a reference is made there for Appendix A4.
Similarly, advanced topics such as pure shift NMR and Hadamard NMR, which are
also relevant for solution state NMR, are included for student’s benefit as
Appendices A5 and A6, respectively. Pure shift NMR achieves homonuclear
broad band decoupling during data acquisition and thus produces very high resolu-
tion in the spectra. Hadamard NMR invokes a new concept of encoding and
decoding of NMR signals by special sequence of data acquisition and processing
dictated by the so-called Hadamard matrix. So these appendices provide motivation
to the students to pursue in this exciting field of NMR. In each appendix, suggestions
are made for further reading.

7.1 Appendix A1: Dipolar Hamiltonian

Nuclear spins, which are magnetic dipoles, interact through space, and this interac-
tion energy between two dipoles with magnetic moments μ1 and μ2 joined by vector
r is given by

Edipolar ¼ μ0
4π

μ1:μ2
r3

� 3
μ1:rð Þ μ2:rð Þ

r5
ð7:1Þ

The Hamiltonian HDD corresponding to such an interaction between two spins
I and S, which are oriented with respect to the magnetic field B0 as indicated in
Fig. 7.1, is given by the following expression:

HDD =
μ0
4π

ħ2γSγI
1
r3

Aþ Bþ C þ Dþ E þ Fð Þ ð7:2Þ

A ¼ 1� 3 cos 2θ IzSz

B ¼ � 1
4

1� 3 cos 2θ IþS� þ I�Sþð Þ

C ¼ � 3
2

sin θ cos θð Þe�i∅ IzSþ þ IþSzð Þ
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D ¼ C� ¼ � 3
2

sin θ cos θð Þei∅ IzS� þ I�Szð Þ

E ¼ � 3
4
sin 2θ e�i2∅ IþSþ

F ¼ � 3
4
sin 2θ e�i2∅ I�S�

This dipolar Hamiltonian has two parts: (i) a spatial part which is dependent on θ
and∅ and (ii) a spin part which depends on the angular momentum operators. Under
the high field approximation, this Hamiltonian gets simplified. The terms A–F listed
above represent the so-called dipolar alphabet. In solutions, due to rapid tumbling
motions, the dipolar interaction averages to zero and hence will not contribute to the
energy levels. However, the terms B–Fwhich contain raising and lowering operators
do cause transitions between energy levels and hence play key roles in relaxation
processes. B causes zero-quantum transitions, C and D cause single-quantum
transitions, and E and F cause double-quantum transitions. In the presence of high
external fields, the Zeeman interaction is the most dominating (high field approxi-
mation), and those interactions which contribute little to the energy eigenvalues can
be dropped. This is termed as secular approximation. Then only certain parts of the
dipolar Hamiltonian need to be retained. In the heteronuclear case, only A is retained,
and, in the homo-nuclear case, both A and B are retained. As both these terms have
(1 � 3cos2θ) dependence, the spectral features will depend on the orientation of the
internuclear vector with respect to the B0 field.

Further Reading
• Principles of NMR in one and two dimensions, R. R. Ernst, G. Bodenhausen,

A. Wokaun, Oxford, 1987
• Spin Dynamics, M. H. Levitt, 2nd ed., Wiley 2008

Fig. 7.1 Schematic
representation of a spin-pair IS
orientation in the external
magnetic field (B0)
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7.2 Appendix A2: Chemical Shift Anisotropy

As discussed in Chap. 2, the chemical shift of a nucleus arises due to the screening of
the externally applied magnetic field by electronic clouds surrounding the nucleus.
Currents induced in the electronic clouds by the external field produce local fields
(induced fields) which influence the net field experienced by the nucleus under
consideration. Every magnetic dipole (nuclear spin) is surrounded by an electronic
cloud which can have different orientations depending upon the shape of the
molecule, and accordingly, the induced field by the external field can have different
orientations; it is not necessary that the induced field will be always parallel to the
external field. Hence, the chemical shielding (σ) will be different depending on the
symmetry of the molecule and the disposition of the electronic clouds with respect to
the direction of the external field; this leads to the so-called angular dependence of
the chemical shift; this is referred to as chemical shift anisotropy (CSA). The CSA
Hamiltonian is defined as

H CS ¼ I:σ:γ B0 ð7:3Þ
σ in Eq. 7.3 will be a tensor. The components of the induced field, assuming the

external field to be along the z-direction, are given by

Bi,x

Bi,y

Bi,z

¼ �
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

0

0

B0

ð7:4Þ

The σ matrix is called the shielding tensor. The elements of the matrix have
the following meaning. σxz B0 would represent the component of the induced along
the x-direction at the site of the nucleus i, if the external field were applied along the
z-direction; σxx B0 would represent the component of the induced field along the
x-axis, if the external field were applied along the x-direction; and so on.

7.2.1 Principal Axes and Principal Values

In a given molecule, which may or may not have any symmetry in its shape, for
every nuclear site, it is possible to define three orthogonal axes, such that, if the
external field is along any of those directions, the induced field is parallel to that axis.
These directions are referred to as the principal axes at that nuclear site. These may
be represented by a different symbol for the axes, namely, X, Y, and Z. In other
words, if the external field were applied along the X or Y or Z axis, then the induced
fields would be parallel to these and would be given by σXX B0, σYY B0, and σZZ B0,
respectively. The elements, σXX, σYY, and σZZ, are called the principal values of the
chemical shift tensor at that nuclear site. Clearly, the principal axes and the induced
field would be different at different nuclear sites which would be dictated by the
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symmetry of the molecule and orientation of the electronic cloud around that site.
The mean of the three principal values is termed as the isotropic chemical shift.

σiso ¼ ðσXX þ σYY þ σZZÞ=3 ð7:5Þ
In solutions, the orientation dependence at every nuclear site will be mostly

averaged out due to rapid tumbling motions, and then we observe the isotropic
chemical shift. For slow motions, or at high magnetic fields, or in oriented systems,
or in solids, such an averaging may not occur completely, and then one starts to see
CSA effects in the NMR spectra.

In the principal axes system (PAS), the shielding tensor will be diagonal.

σPAS ¼
σXX 0 0

0 σYY 0

0 0 σZZ

ð7:6Þ

Often a different notation involving deshieding δ is used:

δPAS ¼ �σPAS ð7:7Þ
and the isotropic shift, shift anisotropy, and asymmetry are defined

δiso ¼ 1
3

δx þ δy þ δz ð7:8Þ

ζ ¼ δz � δiso ð7:9Þ

η ¼ δx � δy
ζ

ð7:10Þ

The nuclear spin interacts with the induced field as per the Zeeman interaction,
and the Hamiltonian H CS can be written as

H CS ¼ γσxzIxB0 þ γσyzIyB0 þ γσzzIzB0 ð7:11Þ
Under the secular approximation, only the last term needs to be retained. As

stated earlier, the elements of the chemical shift tensor (σ) depend on the orientation
of the molecule with respect to the external field, and for the secular part, one obtains

σzz ¼ 1
3

j

σ j þ
j

3 cos 2θ j � 1 σ j ð7:12Þ

In Eq. 7.12, j runs through XX, YY, and ZZ, and θj refers to the angle made by the
individual principal axis with the external field. The first term in the above equation
is the isotropic chemical shift, and the second term represents the orientation
dependence at the particular nuclear site and contributes to the anisotropy.
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Further Reading
• Spin Dynamics, M. H. Levitt, 2nd ed., Wiley 2008
• Introduction to solid-state NMR: anisotropic interactions, J. Titman, School of

Chemistry, University of Nottingham

7.3 Appendix A3: Solid-State NMR Basics

For the characterization of materials or molecules which have solubility issues,
NMR experiments will have to be carried out with powders or single crystals, and
this is then referred to as “Solid-state NMR.” These NMR spectra look very broad
compared to the solution-state NMR spectra, as some of the interactions which get
averaged out to zero in solution remain in the solid-state samples, and that leads to
complexities. The general solid-state NMR Hamiltonian (HSS) is given by

H SS ¼ H Z þ H RF þ H CSA þ H DD þ H J þ H Q ð7:13Þ
These refer to the Zeeman interaction (Z), radiofrequency interaction (RF),

chemical shift anisotropy interaction (CSA), dipolar interaction (DD), spin-spin
interaction (J), and quadrupolar interaction (Q). Among these, H Z and H RF arise
from external interactions with the spin system, while others arise from internal
interactions. The quadrupolar interaction is generally seen in nuclei with spin >1,
and these are typically observed in material science research. For most part of
chemistry and biology research, one deals with spin values of ½. Zeeman interaction
is the strongest among all the interactions (high-field approximation), and under
these conditions, the other interactions can be dropped. This is the so-called secular
approximation, and the Hamiltonian takes a simpler form. In Appendix A1 the
dipolar Hamiltonian has been defined. The secular form of H D for the homonuclear
case (spins are labeled as 1 and 2) is given by

H DD ¼ d
2

1� 3 cos 2θ 3I1zI2z � I1:I2ð Þ ð7:14Þ

where θ is the angle between the internuclear vector and the external field.
In the solid state, the internuclear vector for a pair of nuclei in a given molecule

would have different orientations with respect to the external field in different
portions of the sample, and thus the contribution of dipolar interaction to the energy
levels of the spins acquires spatial dependence. This leads multiple resonance
frequencies for any given spin resulting in extensive line broadening. Often the
line widths span a range of several kHz.

Similarly, under the secular approximation, the CSA Hamiltonian, H CSA, can be
written as

H CSA ¼ γIzB0σzz ð7:15Þ
where σzz is given by the equation
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σzz ¼ 1
3

j

σ j þ
j

3 cos 2θ j � 1 σ j ð7:16Þ

Here σjs are the principal components of the shielding tensor σ, and θjs are the
angles made by the principal axes with the external field B0 (see Appendix A2).

The angular dependencies of H CSA and H DD seen in Eqs. 7.14 and 7.15 are
responsible for large line widths seen in the solid-state NMR spectra. A wide-line
NMR spectrum of a powder sample of a simple molecule, such as glycine, is shown
in Fig. 7.2.

From such a spectrum, it becomes almost impossible to extract site-specific
information. Enormous efforts are now focused on sharpening the lines by removing
the DD and CSA interactions from the Hamiltonian. The most common technique
employed for such purposes is the so-called magic angle spinning. This will average
out the angular dependencies in the DD and CSA interactions.

7.3.1 Magic Angle Spinning (MAS)

Magic angle spinning is an extremely useful technique to remove the anisotropic
contributions to the NMR spectra, namely, dipolar (DD) and chemical shift aniso-
tropic (CSA) interactions, and obtain spectra with high resolution, which look almost

Fig. 7.2 Wide-line NMR
spectrum of glycine powder
sample. (Reproduced from
Journal of Molecular
Structure, 830, 145 (2007)
with the permission of
Elsevier Publishing)
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like the solution-state (isotropic) spectra. This can be understood qualitatively as
follows. We notice that the secular parts of both dipolar and chemical shift
interactions contain (3cos2θ � 1) dependence where θ represents the angle between
the external magnetic field and one or other vectors of the spin system (internuclear
vector in the case of DD interaction and the principal axis vector in the case of CSA).
The idea of MAS is to average out these components. The solid powder sample is
packed inside a cylindrical rotor (see Fig. 7.3) which is then aligned at an angle to the
external field. The rotor is then spun about the long axis of the cylinder at a high
speed. As a result of this spinning, there will be an averaging of various components
of the vectors, and the only component that survives is the one which is parallel to
the axis of rotation. Therefore, if this angle is adjusted to be 54.74o (βM in the figure),
then the (3cos2θ � 1) term vanishes. This angle is called as the magic angle. Under
these conditions, one observes only the isotropic chemical shifts, dipolar coupling is
removed, and thus the spectrum will have sharp lines.

The sample spinning rate has to be larger than the magnitude of the anisotropic
interactions. If it is less than that rate, then sidebands will appear in the spectrum,
which will be separated by the spinning rate in Hz. A typical spectrum showing the
improvement in the resolution is shown in Fig. 7.4.

7.3.2 Cross Polarization

In solid-state NMR, cross polarization is an important technique to enhance the
sensitivity of an insensitive (low γ) and dilute nucleus (e.g., 13C, 15N, 31P, etc.) by
transferring polarization from a more abundant and sensitive nucleus (high γ, e.g.,
1Η or 19F). The experimental scheme for achieving this is shown in Fig. 7.5.

Transfer of polarization occurs due to the “mixing” of the I (1H) and S (13C)
magnetizations and is mediated by dipolar coupling between the two spins during
the spin-lock period (referred to as contact time). An efficient transfer requires that

Fig. 7.3 Spinning of the
rotor at magic angle to the
external field
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the precession frequencies of the two nuclei (abundant spin I and diluted spin S) in
the rotating frames created by the spin-lock are identical (Eq. 7.17):

γIBI ¼ γSBS ð7:17Þ
BI and BS are the amplitudes of the radiofrequency fields applied to I and S spins,

respectively. This condition is termed as Hartmann-Hahn condition. This is shown
by the energy level changes in going from lab frame to rotating frame (during spin-

Fig. 7.4 Resolution
enhancement by MAS
(RO refers to the spinning
frequency). The individual
chemical shifts can be read out
from the spectrum at the
spinning frequency of 13 kHz.
In other spectra the additional
peaks seen indicate the
spinning sidebands.
(Reproduced from Polymers
for advanced technologies,
27, 1143 (2016) with the
permission of Wiley
Publishing)

Fig. 7.5 An experimental
sequence of cross polarization
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lock) in Fig. 7.6. Under conditions of the most effective transfer, the gain in signal-
to-noise (S/N) ratio of the detected spin S is (γI/γS).

During acquisition of the 13C data, the 1H spin is decoupled, and CSA is also
eliminated by the MAS technique, and this will result in sharp lines with higher S/N
ratio as compared to acquisition without cross polarization. There are also many
advanced multi-pulse techniques to achieve heteronuclear decoupling, but their
discussion is beyond the scope of this book.

Further Reading
• Spin Dynamics, M. H. Levitt, 2nd ed., Wiley 2008
• Introduction to solid-state NMR: anisotropic interactions, J. Titman, School of

Chemistry, University of Nottingham
• Introduction to Solid-State NMR Spectroscopy, M. Duer, Wiley 2010

7.4 Appendix A4: Selection of Coherence Transfer Pathways
by Linear Field Gradient Pulses

In many multipulse experiments in NMR, we come across different types of
coherences, such as single-quantum coherences, double-quantum coherences,
zero-quantum coherences, triple-quantum coherences, etc. and also
z-magnetization. These are often described in terms of change in the magnetic
quantum number m. The coherences are also defined by another parameter known
as the coherence order, p, which is more useful in devising strategies for selecting
certain pathways of magnetization transfer through a given pulse sequence. Single-
quantum coherences (SQC) are characterized by p¼ +1 or�1, and double-quantum
coherences are p ¼ +2 or �2. Zero-quantum coherences have p ¼ 0, and finally,
z-magnetization is also described by p ¼ 0. A more precise definition of the

Fig. 7.6 Energy levels in the
lab and in rotating frame when
Hartmann-Hahn condition is
satisfied. The ω’s refer to the
precession frequencies. 1H is
the abundant spin I and 13C is
the diluted spin S
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coherence order of a particular coherence (represented by a part of the density
operator as σp) is given by its response to a phase of the RF pulse that created
it. Explicitly, if the RF pulse is given a phase shift of ∅, this is equivalent to a
rotation around the z-axis—a coherence of order p acquires a phase shift of –p∅.

exp �i∅Fzð Þσ pð Þ exp i∅Fzð Þ ¼ exp �ip∅ð Þσ pð Þ ð7:18Þ
Coherences of order p acquires a phase of –p∅:

σðpÞ !z�rotation by ∅
σðpÞexpð�ip∅Þ ð7:19Þ

For example, for a system of single spin½, the transition from β- state (m¼�1/2)
to the α-state (m ¼ 1/2) will correspond to p¼ +1; this transition will be represented
by the I+ operator, and a phase change of ϕ for the excitation pulse will cause a phase
shift�ϕ in the operator. The reverse transition will have p¼�1. Similarly, for a two
spin ½ system, transition from the αα state to the αβ state will have p ¼ �1, and
transition from αα to ββ state will have p¼�2, and so on. Note that z-magnetization
and zero-quantum coherences which correspond to p ¼ 0 will not be affected by
these phase changes. This has been the basis of selection of coherence transfer
pathways in many multipulse experiments. As one goes through the pulse sequence,
the various coherences keep accumulating the phase changes caused by various
pulses through the pulse sequence and, for the desired coherence transfer pathway,
should add up to zero (the same phase as the receiver). The pathways for which this
condition is not satisfied will not be observed. It can happen in principle that more
than one pathway will get selected for a given choice of phase changes and a
judicious choice of combination of phases and their cycling, while signal averaging
would be required to fix on one particular pathway. This strategy is called ‘phase
cycling’ for the selection of coherence transfer pathways.

Linear field gradients along the z-axis provide a very efficient method for
coherence selection. When a linear field gradient (Gz) is applied along the z-axis,
molecules at different locations experience different magnetic fields (B0 + zGz)—
where B0 is the main external field of the spectrometer which is along the z-axis—
and hence their nuclei (e.g., protons in water) will precess at different frequencies:

ωiz ¼j γi B0 þ zGzð Þ j ð7:20Þ
Here, γizGz represents the change in the precessional frequency of nucleus i at

location z. If such a gradient is applied after the coherences are created, then they all
acquire different phases through the duration of the gradient, and this depends,
firstly, on the location of the molecule along the z-axis and then on the coherence
order. If the gradient is applied for a period τ (gradient pulse of width τ), the
additional phase (∅p) acquired by coherence of order p is given by
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∅p ¼ �pγizGzτ ð7:21Þ
This is pictorially depicted in Fig. 7.7.
Following this, if a reverse gradient (the sign of the gradient is changed) is applied

for the same time duration, then all the spins will acquire additional phase given by

ϕp ¼ �pγi z �Gzð Þτ ¼ pγi zGz τ ð7:22Þ

Fig. 7.7 Different phases
acquired by spins at different
locations due to the linear field
gradient Gz

Fig. 7.8 Refocusing of the
magnetization at the end of the
field gradient
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Thus, the net phase at the end of 2τ period will be zero at every location and for
every coherence. In other words, all the coherences of order p will refocus to their
original position at the end of the gradient. This is depicted pictorially in Fig. 7.8.

Clearly, a gradient strength of a particular value can refocus a coherence of one
particular order. In other words, a particular combination of Gz and –Gz cannot
refocus p¼ 1 and p¼ 2 at the same time, if both of them are present at the beginning.
This is the basis of gradient-based selection of coherence orders. For example, if a
coherence of order 2 has to be retained, then the second gradient can either have half
the strength of the first gradient or be applied for half the duration of the first
gradient. In either cases, only the p ¼ 2 coherence will refocus, and all other
coherences will be eliminated by complete dephasing.

In a multi-pulse experiment, coherence transfers occur at different steps of the
sequence, and different coherence orders evolve in different periods. Phase changes
caused by the different gradients to each of the coherence orders will have to be
calculated and summed up till the detection step. The total phase has to be zero (i.e.,
the same as the receiver phase) for detection. By suitably adjusting the gradients at
different parts of the pulse sequence, one can choose the pathway for the flow of
magnetization through the pulse sequence. This is exemplified schematically in a
simple manner in Fig. 7.9.

i
∅i ¼ 0 ð7:23Þ

∅i ¼ si pi γi Gi τi ð7:24Þ

The gradient-based selection procedure is very simple to implement. Many of the
unwanted coherences at different stages can be eliminated right away by applying
the so-called crusher gradients or purge gradients. This facilitates keeping track of

Fig. 7.9 Schematic demonstration of the selection of a pathway involving two particular coherence
orders p1 and p2 at two parts of the pulse sequence. The factor s refers to a shape factor
characterizing the gradient pulses
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the flow of the magnetizations, and phase calculations become much easier. How-
ever, a demanding aspect of this procedure is that the gradient hardware should be
perfect to avoid the generation of eddy currents on the application of the gradients.

Further Reading
• Understanding NMR Spectroscopy, J. Keeler, Wiley, 2005

7.5 Appendix 5: Pure Shift NMR

Pure shift NMR spectroscopy is a technique for obtaining high-resolution spectra by
employing broadband/band-selective homonuclear decoupling. As a result, each
chemical site in a molecule exhibits only one line in its spectrum. This situation is
similar to a 13C NMR spectrum recorded under heteronuclear decoupling conditions.
Heteronuclear decoupling is relatively simple since the resonance frequency of the
observed nucleus is very far from the decoupled nucleus, and consequently, two
independent radio frequency channels can be employed to excite the two nuclei
simultaneously without any interference between the two. On the other hand,
achieving homodecoupled spectra, i.e., observing and decoupling the sample nuclei
through applying continuous RF and acquiring the 1H, is almost impossible as in the
heteronuclear decoupling cases. However, homodecoupled spectra can be recorded
using the following different strategies.

1. The separation of chemical shifts and J-couplings (two-dimensional NMR-based
experiments, namely, J-Res and constant-time experiments). These have been
discussed in Chap. 6.

2. The observation of active spins while inverting their coupled partners. Here the
J-coupling evolution of the so-called active spin under coupling to passive spins
is effectively refocused, while the data is being acquired. One of the cases of
heteronuclear decoupling and BIRD schemes have been discussed in Chap. 3. In
homonuclear schemes also, this phenomenon can be used, as in the cases of
ZS (Zangger-Sterk) and HOBS (homonuclear band-selective).

3. Homonuclear broadband decoupling using low-flip angle pulse sequences (anti-
z-COSY and PSYCHE (pure shift yielded by chirp excitation) schemes).

In the following, we discuss the second and the third categories of experiments.
These methods can be implemented either in pseudo-two-dimensional or real-time
homodecoupling acquisition modes.

7.5.1 Pseudo-Two-Dimensional Data Acquisition

Figure 7.10 represents the schematic of a pseudo-two-dimensional homodecoupled
pulse sequence. Applications of pseudo-two-dimensional homodecoupling can be
implemented with ZS, HOBS, and PSYCHE pulse schemes. In this experiment, the
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total FID is collected as concatenated chunks, each of which is a part of a J-coupling
refocusing evolution during a time period labelled as t1. Finally, the one-dimensional
spectrum is obtained by the Fourier transformation of the whole FID so acquired.

The J-coupling refocusing element involves the combined application of soft and
hard 180� pulses at the middle of the t1 evolution time; note that this is a spin echo
sequence. The soft pulse is applied to the active spin only. Therefore, at the end of
the t1 period, that is, at the time of the echo, the J-coupling evolution is refocused.
Now, the data collection in the chunk starts at a short time before the echo and ends
after the same amount of time after the echo. During this, a short period of the chunk
J-evolution does happen (first in the process of refocusing and then while dephasing
after the echo). At the beginning of the chunk, the two vectors of the active spin
doublet will be oriented with respect to the refocusing axis at an angle of πJΔ/2 [2π*
(J/2)*(Δ/2)] on either side of the axis, and thus the phase difference between the two
vectors of the “active spin” doublet will be πJΔ where Δ is the length of the chunk.

Fig. 7.10 Schematic of a pseudo-two-dimensional version of a homodecoupling pulse sequence
(a), where the homodecoupling block can be replaced with any one of the schemes given in (b).
Concatenating the homodecoupled FID blocks results in pure shift FID, which is given in (c)

7.5 Appendix 5: Pure Shift NMR 291



This will be the case at the last point also in each chunk. For all other points in
between, it will be even smaller. Considering the components of the vectors, within
the chunk, the J-evolution will cause an in-phase component to grow with time till
the echo and decrease again thereafter. The antiphase magnetization component, on
the other hand, will go to zero at echo and then increase again. But the antiphase
magnetization component is not an observable magnetization as its trace with the
density operator is zero. The two vectors of the magnetization will have a phase of
πJΔ/2 at the end points of the chunk, and thus the lowest amplitude of the observable
magnetization from each of the two vectors during the chunk will be cos (πJΔ/2).
Thus, if the phase is very small, the amplitude will be close to unity; for example, for
a coupling constant of 10 Hz, if Δ is chosen to be 10 ms, then the phase at the end
points of the chunk will be 9.0�, and the amplitude will be 0.9876. It can be assumed
to be the same for all the points within each chunk (the very small variation can be
neglected), and hence, effectively, there will be no (or negligible) J-dependent
modulation in the detected FID. This will be the same in every chunk. Further, if
the amplitude is close to unity, then there will be no loss of magnetization as well,
other than that due to relaxation. This can be achieved by appropriately choosing the
value of Δ. The series of echoes that appear in the sequentially collected chunks will
amount to the generation of another frequency, which will appear as a sideband. The
separation of this sideband from the chemical shift of the active spin will be (1/2Δ).
They will appear on either side of the central line. Therefore, one has to make
appropriate choice of Δ for maximizing signal and keeping the sideband as close to
the central line as possible so that there is no loss of resolution.

As stated, several of such indirect increments have to be recorded with
incremented indirect dwell times. By utilizing ~50 Hz as a spectral-width for
calculating the t1 increment, the said requirement can be established. This is equal
to only 20 ms of chunk per each indirect evolution time; hence, collecting a total of
30–40, such homodecoupled data chunks yields ~600 to ~800 ms of FID signal
without any homonuclear scalar coupling information. Indeed, 0.6 s of FID length
leads to a digital spectral resolution equivalent to ~1.5 Hz, which is sufficiently
adequate as there is no demand to observe any scalar coupling multiplets in the
homodecoupled spectra.

It is an essential condition that the chemical shift evolution must be continuous
among the chunks, whereas the scalar coupling evolution has to be refocused in the
middle of the chunks. For example, if “n” chunks are collected in a total acquisition
time of “aq,” the first chunk duration is “aq/2n,” and the remaining chunks are equal
to “aq/n.” Therefore, the scalar coupling is refocused at the middle of each chunk
(from the second onward). Then, concatenating all the chunks results in a complete
homodecoupled FID.

Even though this kind of pseudo-two-dimensional homodecoupling pulse
schemes produce pretty clean spectra, experiments demand relatively long data
recording times compared to the conventional one-dimensional schemes, and for
concatenating the resultant homodecoupled chunks, a special software is required.
The development of real-time homodecoupled pulse sequences has circumvented
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these drawbacks, wherein spectra acquisition and processing are very similar to that
of the conventional NMR methods.

7.5.2 Real-Time Data Acquisition

Figure 7.11 illustrates the real-time homodecoupled pulse sequence. In this pulse
sequence, the periodic interruption of FID with homodecoupling blocks produces
pure shift NMR spectra. As described for the pseudo-two-dimensional pure shift
NMR, a real-time version of pure shift NMR scheme also needs ~10–20 ms of FID
chunking, followed by the application of homodecoupling block again and a short
duration of data acquisition. This process continues for ~30–40 FID chunks in a
single step; hence, concatenating 30 homodecoupled chunks of 20 ms duration
results in a ~600 ms of pure shift FID. The resultant spectra require only the
conventional FT processing, and data recording is also in regular mode. Therefore,
in real-time mode, a significant decrease in experimental time and an inherent ease of
implementation make it a very routinely usable experiment. The relaxation losses
occur during the selective refocusing pulses, and concatenating two homodecoupled
chunks with different relaxation properties enhances the line widths in real-time
experiments compared to the pseudo-two-dimensional modes.

These two types of data acquisition schemes, namely, pseudo-two-dimensional
and real-time pulsing, have been demonstrated in various kinds of homodecoupling
schemes, viz., band-selective decoupling, Zangger-Sterk (ZS), PSYCHE, and BIRD
decoupling.

7.5.3 Homonuclear Band-Selective Decoupling

Figure 7.12 represents the real-time homodecoupled band-selective pulse sequence;
it is often referred to as a BASH or HOBS pulse sequence. As in other
homodecoupling methods, the spins selected refocus in the HOBS scheme. This
method works well for the molecules that have nicely separated bands of resonances,

Fig. 7.11 Schematic of a real-time pure shift NMR pulse sequence, wherein the number of
homodecoupling interruptions is equal to n. The rectangular pulse is a hard 90� pulse
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and only one type of proton can be used for the experiment. Otherwise, if two
scalarly coupled spins are selected together for a HOBS experiment, the scalar
coupling between those two selected spins appears in the resultant HOBS spectrum.
Thus, for molecules such as proteins and peptides, the HOBS method’s functional
performance is expected to be very good. The HOBS experiments have been utilized
along with different multidimensional experiments, HSQC, TOCSY, NOESY,
ROESY, HSQMBC, etc. The HOBS spectrum recorded on testosterone molecule
dissolved in DMSO-D6 solvent is compared with the conventional spectrum. A vast
improvement in the spectral resolution is noticed in the HOBS spectrum (Fig. 7.13).

Fig. 7.12 Schematic of the real-time homonuclear band-selective (HOBS) pulse sequence. The
narrow and wide rectangles are the hard 90� and 180� pulses, respectively. The Gaussian shaped
pulse is the 180� refocusing pulse. In the present pulse sequence, “n” homodecoupling interruptions
are used for a total acquisition time of “t1”

Fig. 7.13 Comparison of an experimental HOBS (b) and a conventional (a) one-dimensional
spectra recorded on testosterone molecule dissolved in DMSO-D6
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7.5.4 Zangger-Sterk Real-Time Homonuclear Broadband
Decoupling

Figure 7.14 represents the real-time broadband version of the homodecoupled pulse
sequence, which is also known as the Zangger-Sterk (ZS) scheme. In general, the
homonuclear broadband decoupling pulse sequences are referred to as HOBB
methods. The ZS homonuclear broadband decoupling method is the first-ever
developed RF-based broadband decoupling method to obtain ultrahigh-resolution
1H NMR spectrum, and that is one of the widely explored pure shift NMR methods.
The ZS method utilizes the concepts of MRI, wherein slice-selective pulses are used
in the presence of weak pulsed-filed gradients. In the ZS method, when a linear
pulsed-field gradient is applied along the sample’s z-axis, the different parts of the
NMR sample experience different magnetic field strengths. Therefore, as a conse-
quence, positional-dependent frequency shifts (Δω¼ γGs) along the sample volume
can be established. The terms s, γ, and G correspond to the position in the tube along
the sample length, the gyromagnetic ratio of the excited nucleus, and the pulsed-field
gradient strengths. It is interesting to know that when a selective pulse is applied
alone without pulsed-field gradients, only that particular resonance is excited/
refocused in the NMR spectrum; on the other hand, when the selective pulses are
applied along with the gradients, the whole spectrum can be excited, but each
resonance is excited from a thin slice of the sample. Hence, in general, in these
experiments, spectral sensitivity is very inferior, which is a severe limitation of these
ZS experiments. As is known, homodecoupling in broadband fashion can be
achieved by combining the slice-selective refocusing pulses with a conventional
hard 180� pulse. Overall, the spins on resonance to the slice-selective pulse get
refocused, and the off-resonance spins get inverted. If any set of scalarly coupled
spins are selected together for the refocusing, the efficacy of homodecoupling
deteriorates; in such cases, small bandwidth pulses have to be used, but utilizing
small bandwidth pulses cause small thin slice selection, then more relaxation loses,
hence lower sensitivity. Overall, ZS methods’ working performance is inadequate

Fig. 7.14 Schematic of the real-time Zangger-Sterk (ZS) homodecoupled pulse sequence. The
filled and open Gaussian shapes represent the soft 90� and 180� pulses, respectively. The rectangu-
lar shape is the hard 180� refocusing pulse. In the present pulse sequence, “n” homodecoupling
interruptions are used for a total acquisition time of “t1”
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for the steroid kind of strongly coupled spin systems. In this concern, highly
sophisticated pulse sequences (PSYCHE) have also been developed; they use
low-flip angle pulses and work well even for the strongly coupled spin systems.
The applications of the ZS scheme have been explored in all kinds of
two-dimensional homonuclear correlation experiments.

7.5.5 PSYCHE Homonuclear Broadband Decoupling

Pure shift yielded by CHIRP pulse excitation is known as PSYCHE (pure shift
yielded by chirp excitation) methodology (Fig. 7.15). This method is analogous to
the anti-z COSY experiment, which uses the pulse sequence 90-t1-β-t-β-acquire (t2).
The utilization of low-flip angle pulses (β) in the anti-z COSY results in only
anti-diagonal signals, while suppressing the information of both the diagonal and
cross-peaks, which is schematically shown in Fig. 7.16. The anti-diagonal signal
sensitivity is inversely proportional to the flip angle of the pulses. In this pulse
scheme, the cross-peak signals diminish at the low-flip angles (otherwise, they
appear as recoupling artifacts), and signal sensitivity is reduced, which is a trade-

Fig. 7.15 A schematic representation of the pseudo-two-dimensional version of the PSYCHE
pulse sequence. The narrow and wide rectangles represent the hard 90� and 180� pulses, respec-
tively. The pure shift dwell increment is equal to t1

Fig. 7.16 A schematic
representation of an anti-z
COSY spectrum. It shows
only anti-diagonal peaks and
simplified cross-peaks when
compared with the
conventional COSY spectra
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off between spectral purity and sensitivity. Since cross-peaks remain in the anti-z
COSY, this method cannot readily be used as a pure shift NMR method in complex
molecule cases. In this concern, a novel method, PSYCHE, has been proposed,
wherein directly the hard low-flip angle pulses are replaced with the low-flip angle
CHIRP-shaped pulses. This strategy results in the suppression of all the zero-
quantum and cross-peak terms due to the spatiotemporal averaging phenomenon;
therefore, pure shift spectra can be obtained from the PSYCHE methodology. The
data is acquired in the pseudo-two-dimensional mode. Applications of the PSYCHE
methodology have been explored for almost all the kinds of two-dimensional NMR
methodologies that are useful for small molecules.

Figure 7.17 compares the quality of broadband pure shift NMR spectra recorded
on estradiol molecule dissolved in DMSO-D6 solvent, at different experimental
conditions, viz., conventional, real-time ZS, and pseudo-two-dimensional version
of PSYCHE. As expected, due to the significant overlapping of scalar couplings
belonging to very closely separated chemical shifts, it is not easy to obtain precise
chemical shift information. While such resolution issues can be resolved in the real-
time ZS experiment, however, for this steroid molecule, estradiol, since chemical
shifts are very closely separated, selective refocusing pulses of long durations (small
bandwidths) need to be used. Hence a little increase in the line broadening is
observed for the pure chemical shifts due to the significant relaxation losses during
the selective pulses. On the other hand, using PSYCHE broadband homodecoupling
resulted in clearly pure shift NMR spectra, but the data has to be recorded in pseudo-
two-dimensional modes.

Further Reading
• Pure shift NMR, K. Zangger, Progress in Nuclear Magnetic Resonance Spectros-

copy, 86–87 (2015) 1–20.
• PSYCHE pure shift NMR spectroscopy, M. Foroozandeh, G. A. Morris, M.

Nilsson, 24 (2018) 13988–14000.

Fig. 7.17 A comparison of experimental PSYCHE (c), real-time ZS (b), and conventional (a)
one-dimensional spectra recorded on estradiol molecule dissolved in DMSO-D6
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7.6 Appendix A6: Hadamard NMR Spectroscopy

Conventional sampling to obtain the desired spectral resolution in the indirect
dimensions of two-dimensional NMR spectroscopy results in long experimental
times, as each indirect point is separately recorded and the resolution is directly
dependent on the number of dwell time increments. Each two-dimensional experi-
ment often requires a few hundreds of dwell increments, and the total experimental
times are in the range of hours. On the other hand, utilizing advanced sampling
schemes such as nonuniform sampling significantly reduces the experimental times
to a few minutes. However, if only that many FIDs can be collected as the number of
resonances in the one-dimensional spectrum, there can be substantial saving of time.
This is the essence of Hadamard NMR spectroscopy. The data is recorded in pseudo-
two-dimensional modes. The main requirement for recording the data in Hadamard
NMR spectroscopy is that the resonances should be well resolved.

In Hadamard NMR spectroscopy, in each FID, all the resonances of interest are
simultaneously excited as per the elements in the rows of the Hadamard matrix.
Therefore, the size of the Hadamard matrix which is a square matrix equals the
number of resonances to be excited. For example, a Hadamard matrix of order four is
given in Scheme 7.1, and this H4 matrix works only for the four/less than four
resonances. Wherein all the four resonances need to be acquired as per the signs in
the rows of the H4 matrix (“+” signifies a positive peak, and “–”signifies a negative
peak). This type of sign encoding in Hadamard NMR spectroscopy can be achieved
by using shaped pulses with appropriate excitation profiles at the defined resonance
positions. Thus, as per Fig. 7.18, four FIDs are collected having the excitation
profiles as per the four rows in the matrix. This is termed as Hadamard encoding.
Next, each resonance can be decoded by performing proper algebraic operations on
the four FIDs as per the four columns in the matrix; for example, the first resonance
is the additive result of all the four rows of H4 encoded data sets. The second
resonance can also be similarly decoded by just performing row (1) + row (2) –
row (3) – row (4). Similarly, the third resonance will be row (1) – row (2) + row (3) –
row (4), and the fourth resonance will be row (1) – row (2) – row (3) + row (4). This
whole process is termed as Hadamard decoding.

Based on the requirement (the number of resonances), an appropriate Hadamard
matrix size must be selected. Different sizes of Hadamard matrices are available, and
they can be denoted as H2 and Hn (n ¼ 4m, m is an integer), wherein the subscript
represents the matrix size. The matricesH2 and H8 are also shown in Scheme 7.2. The
advantage of such an exercise, in addition to the time saving, will be an improvement
in the SNR by a factor n

p
at each site, where n is the size of the Hadamard matrix,

Scheme 7.1 H4 Hadamard
matrix
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when compared with the corresponding single resonance-selective excitation experi-
ment. Hadamard NMR spectroscopy applications have been demonstrated for COSY,
NOESY, TOCSY, HSQC, HMBC, etc., NMR spectroscopy techniques to minimize
the experimental times to a great extent.

The following figures demonstrate the application of this technique in different
two-dimensional spectra (Fig. 7.19). Notice here that in these spectra, Fourier
transformation is done only along the direct dimension. Hadamard encoding is
done only for the chosen frequencies in the indirect dimension.

Scheme 7.2 H2 and H8

Hadamard matrices

Fig. 7.18 Schematic of Hadamard encoded (a) and decoded (b) NMR spectra for a four-spin
combination
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Further Reading
• Hadamard NMR spectroscopy, Progress in Nuclear Magnetic Resonance Spec-

troscopy, 42 (2003) 95–122

Fig. 7.19 Conventional and Hadamard NMR spectra recorded on strychnine molecule. The
corresponding experimental times are given at each spectrum. (Reproduced from Journal of
Magnetic Resonance, 162, 300 (2003), with the permission of Elsevier Publishing)
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Correction to: Multidimensional NMR
Spectroscopy

Correction to: Chapter 6 in:
R. V. Hosur, V. M. R. Kakita, A Graduate Course in NMR
Spectroscopy,
https://doi.org/10.1007/978-3-030-88769-8_6

Chapter 6 was inadvertently published with some errors in the equations and figures.

Original page 232

Ikx !H et Ikx
1þ cos 2πJt

2
þ Ilx

1- cos 2πJt
2

þ 2IkyIlz - 2IlyIkz sin
2πJt
2

ð6:74Þ

Ilx !H et
Ilx

1þ cos 2πJt
2

þ Ikx
1- cos 2πJt

2

þ 2IlyIkz - 2IkyIlz sin
2πJt
2

ð6:75Þ

Correction page 232

Ikx !H et Ikx
1þ cos 2πJt

2
þ Ilx

1- cos 2πJt
2

þ IkyIlz - IlyIkz sin 2πJt ð6:74Þ

Ilx !H et Ilx
1þ cos 2πJt

2
þ Ikx

1- cos 2πJt
2

þ IlyIkz - IkyIlz sin 2πJt ð6:75Þ

The updated original version for this chapter can be found at
https://doi.org/10.1007/978-3-030-88769-8_6

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. V. Hosur, V. M. R. Kakita, A Graduate Course in NMR Spectroscopy,
https://doi.org/10.1007/978-3-030-88769-8_8

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88769-8_8&domain=pdf
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Original page 253

(i) Under the influence of 15N chemical shifts for a period t1.
(ii) Under the influence of 15N-1H coupling which refocuses antiphase 15N magne-

tization to produce in-phase magnetization.

Page 254

- 2HN
izNiy ! Nix ð6:96Þ

Correction pages 253 and 254

(i) Under the influence of 15N chemical shifts for a period t1.

- 2HN
izNiy ! - 2HN

izðNiy cos ðωNi t1Þ-Nix sin ðωNi t1ÞÞ ð6:96Þ

(ii) Evolution under the influence of 15N-1H coupling is effectively refocused and
15N magnetization remains anti-phase with respect to 1H.

Original (Fig. 6.55) page 258

Correction (Fig. 6.55) page 258

The corrections have now been incorporated.
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Solutions to Exercises

Chapter 1

1.1 (c) 1.2 (d) 1.3 (c) 1.4 (c)

1.5 (a) 1.6 (a) 1.7 (b) 1.8 (c)

1.9 (b) 1.10 (c) 1.11 (a) 1.12 (d)

1.13 (c) 1.14 (a) 1.15 (b) 1.16 (d)

1.17
The transition probability from state jI, m> to jI, m0>, all of which are orthonormal to
each other, is given as per Eq. 1.71:

P ¼ γ2H1
2 < m0j jIx m >j j2

For a spin ½ (I¼½), m takes values ½ (α-state) and�½ (β-state).
The transition probability from α to β is proportional to

P α!βð Þ / < αj jIx β >j j2 ¼< α j Ix j β >< β j Ix j α >

It follows from Box 1

Ix j α >¼ 1
2

Iþ þ I2ð Þ j α >¼ 1
2
j β >

Ix j β >¼ 1
2

Iþ þ I2ð Þ j β >¼ 1
2
j α >

Therefore,

< αjIxjβ >¼ 1
2
< α j α >¼ 1

2

< βjIxjα >¼ 1
2
< β j β >¼ 1

2

# The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. V. Hosur, V. M. R. Kakita, A Graduate Course in NMR Spectroscopy,
https://doi.org/10.1007/978-3-030-88769-8
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Therefore,

P α!βð Þ / 1
4

Similarly,

P β!αð Þ / < βj jIx α >j j2 ¼< β j Ix j α >< α j Ix j β >

P β!αð Þ / 1
4

Therefore, the upward and downward transition probabilities are identical.

1.18

1.19
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1.20
The Bloch equations in the rotating frame are given by Eqs. 1.86–1.88; these can be
derived by substituting Eq. 1.85 into Eqs. 1.82–1.84.

1.21

v ¼ �Mo
γH1T2

1þ T2
2Δω2

hmax will beat Δω ¼ 0,

hmax ¼ �MoγH1T2

And

hmax

2
¼ �MoγH1T2

2

�MoγH1T2

2
¼ �Mo

γH1T2

1þ T2
2Δω2

1
2
¼ 1

1þ T2
2Δω2

⟹2 ¼ 1þ T2
2Δω2

⟹1 ¼ T2
2Δω2

⟹Δω ¼ 1
T2

Therefore, the width at half height,

2Δω ¼ 2
T2

Similarly,

hmax

n
¼ �MoγH1T2

n
¼ �Mo

γH1T2

1þ T2
2Δω2

⟹n ¼ 1þ T2
2Δω2

⟹Δω2 ¼ n� 1
T2

2
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J ωð Þ ¼ k
τc

1þ ω2τ2c
, where k is a constant:

dJ
dτc

¼ k
1þ ω2τ2c � τc 2ω2τcð Þ

1þ ω2τ2c
2

¼ k
1� ω2τ2c

1þ ω2τ2c
2

1� ω2τ2c

1þ ω2τ2c
2 ¼ 0

ω2τ2c ¼ 1

τc ¼ 1
ω

J ωð Þ ¼ k
τc

1þ ω2τ2c
, where k is a constant:

J ωð Þmax ¼ kτc

At half the maximum, J ωð Þ ¼ k
2
τc

Therefore,
k
2
τc ¼ k

τc
1þ ω2τ2c

) 1
2
¼ 1

1þ ω2τ2c

) ω2 ¼ 1
τ2c

) ω ¼ 1
τc
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The interaction of the RF applied along the z-axis with the magnetic moment will
be given by

μ:H1 cos ω0tð Þ ¼ μzH1 cos ω0tð Þ ðS1:1Þ
The Zeeman interaction between magnetic moment and main field is given by

μ:H0 ¼ μzH0 ðS1:2Þ
Thus, in the presence of the RF, the total interaction is

μz H0 þ H1 cos ω0tð Þð Þ ðS1:3Þ
This will result in the oscillation of the energy levels of the spin system.
Considering Eq. S1.1, the formula for the transition probability (Eq. 1.71) will

become

P ¼ γ2H1
2 < m0j jIz m >j j2 ðS1:4Þ

Clearly, this cannot cause a change in the state, and hence there can be no
transitions between the energy levels.

Chapter 2

2.1 (c) 2.2 (b) 2.3 (c)

2.4 (d) 2.5 (a) 2.6 (c)

2.7 (d) 2.8 (b) 2.9 (a)

2.10 (b) 2.11 (d) 2.12 (a)

2.13 (c)

2.14
For a two-spin system, the isotropic Hamiltonian is

H ¼ ω1I1z þ ω2I2z þ 2πJI1:I2 ðS2:1Þ
¼ ω1I1z þ ω2I2z þ 2πJ I1xI2x þ I1yI2y þ I1zI2z ðS2:2Þ

and the Fz operator is

Fz ¼ I1z þ I2z ðS2:3Þ

Solutions to Exercises 305



The commutator Fz,H½ � can be written as

Fz,H½ � ¼ Fz, ω1I1z þ ω2I2z þ 2πJ I1xI2x þ I1yI2y þ I1zI2z ðS2:4Þ

¼ ω1 Fz, I1z½ � þ ω2 Fz, I2z½ � þ 2πJ Fz, I1xI2x½ � þ Fz, I1yI2y þ Fz, I1zI2z�½ g ðS2:5Þ
Fz, I1z½ � ¼ 0; Fz, I2z½ � ¼ 0 ðS2:6Þ

Now,

Fz, I1xI2x½ � ¼ I1z þ I2zð Þ, I1xI2x½ � ¼ I1z, I1x½ �I2x þ I1x I2z, I2x½ �
¼ I1yI2x þ I1xI2y ðS2:7Þ

Similarly,

Fz, I1yI2y ¼ I1z þ I2zð Þ, I1yI2y ¼ I1z, I1y I2y þ I1y I2z, I2y
¼ �I1xI2y � I1yI2x ðS2:8Þ

Fz, I1zI2z½ � ¼ I1z þ I2zð Þ, I1zI2z½ � ¼ I1z, I1z½ �I2z þ I1z I2z, I2z½ � ¼ 0þ 0 ¼ 0 ðS2:9Þ
Substituting Eqs. S2.6–S2.9 into Eq. S2.5, we get

Fz,H½ � ¼ 0þ 0þ I1yI2x þ I1xI2y � I1xI2y � I1yI2x þ 0 ¼ 0 ðS2:10Þ

2.15
The following spectrum is simulated at a field strength of 400 MHz.
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2.16
Hint: Use the given peak frequencies.

Chemical shifts: (A) 400 Hz, (M) ~1000 Hz, and (X) 1400 Hz
Scalar coupling constants: JAM ¼ JMX ¼ 7 Hz

2.17
Hint: Use the given peak frequencies.

Chemical shifts: (A) 21.99 ppm, (M) ~71.98 ppm, and (X) 122.39 ppm
Scalar coupling constants: JAH ¼ 120 Hz, JMH ¼145 Hz, JXH ¼ 184 Hz

2.18
Hint: Use Table 2.6.

2.19
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2.20
The following spectrum is simulated at a field strength of 400 MHz.

2.21
The following spectrum is simulated at a field strength of 400 MHz.
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Chapter 3

3.1 (c) 3.2 (c) 3.3 (b)

3.4 (c) 3.5 (b) 3.6 (c)

3.7 (c) 3.8 (b) 3.9 (b)

3.10 (b) 3.11 (b) 3.12 (c)

3.13 (d) 3.14 (d) 3.15 (c)

3.16 (c)

3.17
Let τ be the dwell time and vmax be the maximum frequency in Hz.

Therefore, τ ¼ 1
2vmax

.

The evolution during the dwell time adds a phase of 2πυτ (at frequency υ).
So, for the maximum frequency, the phase added will be 2πvmaxτ ¼ π.
Thus, at half the maximum frequency, the phase added will be π

2.
So, if we have a positive absorptive line shape in the absence of the delay, then the

introduction of a delay of a one dwell time causes a dispersive line shape at half the
maximum frequency and a negative absorptive line at the maximum frequency.

3.18

ωeff ¼ γ2B2
1 þ Ω2 ð1Þ

Flip angle for Tp,

β ¼ 2πωeffTp ð2Þ
Given,

2πγB1Tp ¼ π
2

Tp ¼ 1
4γB1

From Eqs. (1) and (2),

β2 ¼ 4π2ω2
effT

2
p

¼ 4π2 γ2B2
1 þ Ω2 T2

p

¼ 4π2 γ2B2
1 þ Ω2 :

1
16γ2B2

1
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If β ¼ 2π, then

4π2 ¼ 4π2 γ2B2
1 þΩ2 :

1
16γ2B2

1

16γ2B2
1 ¼ γ2B2

1 þ Ω2

Therefore, offset Ω ¼ 15
p

γB1

If β ¼ π, then

π2 ¼ 4π2 γ2B2
1 þΩ2 :

1
16γ2B2

1

4γ2B2
1 ¼ γ2B2

1 þ Ω2

Therefore, offset Ω ¼ 3
p

γB1

3.19

3.20

t ¼ 1
4vmax

t ¼ 1
4� 5000

s

t ¼ 50 μs

3.21

T1 ¼ τnull
ln 2

T1 ¼ 2 s
0:693

¼ 2:89 s
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Chapter 4

4.1 (a) 4.2 (b) 4.3 (a)

4.4 (c) 4.5 (d) 4.6 (b)

4.7 (a) 4.8 (a)

4.9 (b) 4.10 (a) 4.11 (b)

4.12 (c)

Chapter 5

5.1 (c) 5.2 (c) 5.3 (a)

5.4 (b) 5.5 (a) 5.6 (c)

5.7 (b) 5.8 (c) 5.9 (b)

5.10 (b) 5.11 (d) 5.12 (b)

5.13 (b) 5.14 (c) 5.15 (d)

5.16 (b) 5.17 (b) 5.18 (d)

5.19 (c) 5.20 (a) 5.21 (d)

5.22 (a) 5.23 (c) 5.24 (a)

5.25 (a)

5.26
2IxSy and 2IzSz in the eigenbasis of the weak coupling Hamiltonian can be calculated
by using direct products of one-spin matrix representations:

2IxSy ¼ 2� 1
2
� 1
2

0 1

1 0

0 �i

i 0
¼ 1

2

0 0 0 �i

0 0 i 0

0 �i 0 0

i 0 0 0

2IzSz ¼ 2� 1
2
� 1
2

1 0

0 �1

1 0

0 �1
¼ 1

2

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1
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5.27
Consider α ¼ x, α0 ¼ y , β ¼ y, and β0 ¼ z:

2IαSα0 , 2IβSβ0 ¼ 4 IxSyIySz � IySzIxSy

¼ 4 IxIySySz � IyIxSzSy

¼ 4 IxIySySz � IyIxSySz þ IyIxSySz � IyIxSzSy

¼ 4 Ix, Iy SySz þ IyIx Sy, Sz

¼ 4 IzSySz þ IyIxSx

¼ Iz
0 i

i 0
þ �i 0

0 i
Sx

¼ 1
2

1 0

0 �1

0 i

i 0
þ �i 0

0 i

0 1

1 0

1
2

0 i 0 0

i 0 0 0

0

0

0

0

0

�i

�i

0

þ

0 �i 0 0

�i 0 0 0

0

0

0

0

0

i

i

0

¼ 0

Hence, the commutation is proved. This can be verified for other
combinations too.

5.28
(a) For a Rx(π), the pulse on Iz will have the following effect:

ρ ¼ Rx πð ÞIz R�1
x πð Þ

¼ 1
4

0 �i

�i 0

1 0

0 �1

0 i

i 0

¼ 1
2

�1 0

0 1

¼ �Iz

So, the z-magnetization is inverted by the π pulse along the x-axis.
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(b) For a Ry(π), the pulse on Iz will have the following effect:

ρ ¼ Ry πð ÞIz R�1
y πð Þ

¼ 1
4

0 �1

1 0

1 0

0 �1

0 1

�1 0

¼ 1
2

�1 0

0 1

¼ �Iz

So, the z-magnetization is inverted by the π pulse along the y-axis.

Chapter 6

6.1 (b) 6.2 (d) 6.3 (b)

6.4 (a) 6.5 (a) 6.6 (b)

6.7 (d) 6.8 (b) 6.9 (b)

6.10 (b) 6.11 (a) 6.12 (d)

6.13 (b) 6.14 (b) 6.15 (a)

6.16 (b) 6.17 (b) 6.18 (d)

6.19 (a) 6.20 (b) 6.21 (b)

6.22 (b) 6.23 (c) 6.24 (d)

6.25 (a) 6.26 (b) 6.27 (a)

6.28 (c) 6.29 (b)
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