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Abstract. We investigate four well-known criteria for the existence of
kernels in directed graphs/relations which can be tested efficiently, viz.
to be irreflexive and symmetric, to be progressively finite, to be bipartite
and to satisfy Richardson’s criterion. The numerical data, obtained by
the evaluation of relation-algebraic problem specifications using Rel-
View show that even the most general of them is very far away from a
characterisation of the class of directed graphs/relations having kernels.

1 Introduction

When written as a logical formula, most mathematical theorems have the form

∀x : Φ(x) ⇒ Ψ(x),

where x is a list of variables, each variable ranges over a certain class of math-
ematical objects, Ψ(x) describes the property one is actually interested in and
Φ(x) describes a property that ensures Ψ(x). Mostly, one tries to get Φ(x) as
general as possible. Whenever Ψ(x) is equivalent to Φ(x) it characterises the
class of mathematical objects for which Ψ(x) holds. An example is the fixpoint
theorem of A. Tarski (see [12]). Here there is only one variable x that ranges
over the class of lattices, Φ(x) describes that x is complete and Ψ(x) describes
that each monotonic function on x has a least fixpoint. That in this case Φ(x)
and Ψ(x) are equivalent is an immediate consequence of a theorem of A. Davis,
published in [6]. Other prominent examples are characterisations of classes of
mathematical objects by means of forbidden substructures, e.g., that a lattice is
modular iff it does not contain a sublattice isomorphic to the pentagon-lattice
N5 (R. Dedekind, see [7]) and that a finite graph is planar iff it does not contain
a subgraph that is a subdivision of the Kuratowski graph K5 or the Kuratowski
graph K3,3 (K. Kuratowski, see [9]).

In this paper we investigate kernels within graphs. A kernel of a directed
graph is a subset K of the set of vertices such that no pair of vertices of K
is connected by an edge and from each vertex outside of K there is an edge
to a vertex of K. This concept is introduced in [13] by J. von Neumann and
O. Morgenstern as a generalisation of a solution of a cooperative game. In [5]
V. Chvatal shows that determining whether a directed graph possesses a kernel
is NP-complete.
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Mapping kernels the aforementioned formula results in x ranging over the
class of directed graphs, Ψ(x) describes that x has a kernel and Φ(x) describes
a sufficient criterion for this property. Hence, with Ψ(x) as just introduced, it is
very unlikely to get a Φ(x) such that Φ(x) and Ψ(x) are equivalent and Φ(x) can
be computed efficiently.

There exist a series of sufficient criteria for the existence of kernels which
can be tested efficiently. An interesting question is how close these are to a
characterisation of the class of directed graphs having kernels. To this end, in
this paper we present for all vertex sets X up to 7 vertices the number of directed
graphs g = (X,R) having kernels. Then we consider the four most popular
criteria for the existence of kernels and present for each criterion the number
of directed graphs g = (X,R) which satisfy it. These numerical data show that
even in case of the most general of the four criteria, the absence of cycles of
odd length (as shown by M. Richardson in [10]), only a very small portion of
the directed graphs with kernels satisfy the criterion. We may conclude that the
criteria are very far away from a characterisation of the class of directed graphs
having kernels.

In case of 7 vertices there are 5.62 · 1014 directed graphs and 1.88 · 1014 of
them have kernels. Only 1.62 · 1010 of them satisfy Richardson’s criterion. We
have been able to compute the numerical data for such large numbers of directed
graphs using only their adjacency relations R, relation-algebraic problem spec-
ifications and RelView for the evaluation of the latter. RelView is a tool
for the manipulation and visualisation of relations and relational programming.
It uses reduced ordered binary decision diagrams (ROBDDs) for implementing
relations. See [3,4] for more details. Besides the excellent and manifold capa-
bilities of relations and relation algebra in problem solving, this paper again
demonstrates the amazing computational power of RelView.

2 Relational Preliminaries

If X and Y are given sets, a subset of the direct product X × Y is a relation with
source X and target Y . We denote the set of all relations with source X and
target Y (i.e., the powerset 2X×Y ) by [X ↔ Y ] and write R : X ↔ Y instead
of R ∈ [X ↔ Y ]. In such a case X ↔ Y is called the type of R. A (typed)
relation corresponds to a Boolean matrix. This interpretation is well suited for
many purposes and also used as one of the graphical representations of relations
within RelView. Therefore, in this paper we also use matrix terminology and
notation for relations. In particular, we write Rx,y instead of (x, y) ∈ R or xR y.

We will use the following five basic operations on relations: R (complementa-
tion), R ∪ S (union), R ∩ S (intersection), RT (transposition) and R;S (compo-
sition). We assume that transposition and complementation bind stronger than
composition and composition binds stronger than union and intersection. As
derived operation we will use the right residual of two relations with the same
source, defined by R \S := RT; S. If R : X ↔ Y and S : X ↔ Z, from the typ-
ing rules and the point-wise definitions of complementation, transposition and
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composition we get R \ S : Y ↔ Z and, given arbitrary y ∈ Y and z ∈ Z, that
(R \ S)y,z iff for all x ∈ X from Rx,y it follows Sx,z.

Besides the just mentioned operations, we will use the three special relati-
ons O (empty relation), L (universal relation) and I (identity relation). Here we
overload the symbols, i.e., avoid the binding of types to them. Finally, if R is
included in S we write R ⊆ S and R = S means their equality.

Relation algebra as just introduced can express exactly those formulae of
first-order predicate logic which contain at most two free variables and all in
all at most three variables. The expressive power of full first-order predicate
logic is obtained by means of projection relations or equivalent notions. In this
paper we always assume that a pair u from a direct product is of the form
u = (u1, u2). This allows to describe the meaning of the projection relations
π : X × Y ↔ X and ρ : X × Y ↔ Y of a direct product X × Y by πu,x iff
u1 = x and ρu,y iff u2 = y, for all u ∈ X × Y , x ∈ X and y ∈ Y . Based on the
projection relations π : X × Y ↔ X and ρ : X × Y ↔ Y for R : X ↔ Z and
S : Y ↔ Z their left pairing is defined by [[R,S] := π;R ∩ ρ; S, thereby being
of type X × Y ↔ Z. Using point-wise notation we have [[R,S]u,z iff Ru1,z and
Su2,z, for all u ∈ X × Y and z ∈ Z. The counterpart to the left pairing, with
now Z ↔ X × Y as type, is the right pairing of R : Z ↔ X and S : Z ↔ Y ,
defined as [R,S]] := R;πT ∩ S; ρT. Point-wisely we get [R,S]]z,u iff Rz,u1 and
Sz,u2 , for all u ∈ X × Y and z ∈ Z. The parallel composition (or product)
R‖S : X × X ′ ↔ Y × Y ′ of R : X ↔ Y and S : X ′ ↔ Y ′, such that (R‖S)u,v
iff Ru1,v1 and Su2,v2 , for all u ∈ X × X ′ and v ∈ Y × Y ′, can be defined by means
of the right pairing. We get the desired property if we define R‖S := [π; R, ρ; S]],
where π : X × X ′ ↔ X and ρ : X × X ′ ↔ X ′ are the projection relations of
X × X ′ and the right pairing is formed with respect to the projection relations
of Y × Y ′.

Assume the projection relations π : X × Y ↔ X and ρ : X × Y ↔ Y of
X × Y and R : X × Y ↔ Z to be given. A property that we will use frequently
in Sect. 4 is the equivalence of ([ρ, π]];R)u,z and R(u2,u1),z, for all u ∈ X × Y and
z ∈ Z.

The relation-level equivalents of the set-theoretic symbol “∈” are the member-
ship relations M : X ↔ 2X , point-wisely defined by Mx,Y iff x ∈ Y , for all x ∈ X
and Y ∈ 2X . By means of projection relations and membership relations the
expressive power of full second-order predicate logic is obtained and this suffices
for our later applications. If the source of a membership relation is a direct prod-
uct and, hence, its target is a set of relations, we use the symbol M instead of M.
An important property of such a membership relation M : X × Y ↔ [X ↔ Y ]
is the equivalence of Mu,R and Ru1,u2 , for all u ∈ X × Y and R : X ↔ Y , which
we also will use frequently later in Sect. 4.

At the end of this section it should be mentioned that – except the parallel
composition – all specific relations and all relational operations and tests we
have introduced in this section are available in the programming language of
RelView. Details will be presented in Sect. 5. See also the Web-site [14].
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3 The Experiments and Their Results

In this section we present the numerical data we already have mentioned in the
introduction. By means of RelView we have been able to count for a given set X
having at most 7 elements the number of directed graphs g = (X,R) possessing
kernels. These numbers are presented in the third column in Table 1. In the
second column the numbers of all directed graphs with vertex set X are given,
i.e., the numbers 2|X|2 , where 1 ≤ |X| ≤ 7. The percentages of the directed
graphs having kernels with regard to the total number of directed graphs are
given in the last column of the table. Notice that the last number of the second
and the last number of the third column of this table are the exact values of the
approximations 5.62 · 1014 and 1.88 · 1014 mentioned in the introduction.

Table 1. Occurrences of kernels within graphs having at most 7 vertices.

|X| All relations Rel. with kernel Percentage

1 2 1 50.00 %

2 16 8 50.00 %

3 512 230 44.92 %

4 65 536 26 346 40.19 %

5 33 554 432 12 378 964 39.98 %

6 68 719 476 736 23 921 882 920 34.80 %

7 562 949 953 421 312 188 553 949 010 868 33.49 %

We investigate four sufficient criteria for the existence of kernels in a directed
graph which can be tested efficiently. That each of them indeed ensures the
existence of kernels is shown in [11] with relation-algebraic means.

The first criterion is that the adjacency relation R is irreflexive and symmet-
ric, that is, g = (X,R) is the directed version of an undirected graph, where each
undirected edge is replaced by two parallel directed edges with opposite direc-
tions. The corresponding numbers are presented in the second column of Table 2
corresponding to 2

|X|(|X|−1)
2 , where 1 ≤ |X| ≤ 7. The second criterion is that

R : X ↔ X is a progressively finite relation in the sense of [11] which means
that there is no non-empty subset A of X such that for each x ∈ A there exists
a y ∈ A with Rx,y. In other words, R is progressively finite iff RT is Noetherian
iff there is no infinite sequence (xn)n∈N in X such that Rxn,xn+1 , for all n ∈ N.
This criterion generalises the criterion “to be cycle-free” of [13] since on a finite
set X the relation R is progressively finite iff it is cycle-free; see [11]. The data
for this criterion (i.e., the number of cycle-free directed graphs g = (X,R) with
1 ≤ |X| ≤ 7), are presented in the third column. The fourth column of the table
shows the number of bipartite directed graphs g = (X,R), with 1 ≤ |X| ≤ 7,
since “to be bipartite” is also a sufficient criterion for the existence of kernels.
In the introduction we already have mentioned Richardson’s criterion stating
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that a graph has no cycles of odd length. The data for this fourth criterion can
be found in the last column of the table. Notice that the theorem of [10] on
the existence of kernels in directed graphs without cycles of odd length assumes
finite graphs. In case of an undirected graph the set of kernels equals the set of
maximal stable sets such that kernels exist if the vertex set is finite. The other
two criteria also hold for infinite graphs.

Each directed graph with a progressively finite relation is cycle-free and, as
a consequence, also does not contain cycles of odd length. From a well-known
theorem of D. König (see [8]) we immediately get that each bipartite directed
graph has no cycles of odd length. Therefore, on finite directed graphs (which are
important in practical applications) Richardson’s criterion is more general than
the criteria “to be cycle-free” and “to be bipartite”, which also is demonstrated
by the numerical data given in Table 2. The last number of the last column is
the exact value of the approximation 1.62 ·1010 mentioned in the introduction. A
comparison of the second and the last column shows that Richardson’s criterion is
also much more general than the first criterion “R is irreflexive and symmetric”.
Notice that, however, neither the first criterion implies Richardson’s criterion
nor vice versa.

Table 2. Number of graphs for the four criteria having at most 7 vertices.

|X| Irr., symm. Progr. finite Bipartite Richardson

1 1 1 1 1

2 2 3 4 4

3 8 25 37 49

4 64 543 829 1 699

5 1 024 29 281 36 616 150 736

6 32 768 3 781 503 3 327 499 32 398 249

7 2 097 152 1 138 779 265 581 809 537 16 230 843 049

At the end of this section it should be mentioned that each of the above four
criteria not only can be tested efficiently but also can be used to obtain efficient
algorithms for computing a kernel of a graph that satisfies the criterion. In case
of Richardson’s criterion such an algorithm is presented in [2]. It is formulated
as a relational while-program and formally derived by means of the assertion
technique and reconstructing a proof of Richardson’s theorem.

4 Computing Classes of Relations Having Kernels

In this section vectors play a central role. A (relational) vector as introduced in
[11] is a relation s : X ↔ Y such that s = s; L, for L : Y ↔ Y . In the Boolean
matrix interpretation this means that each row of s consists only of ones or only
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of zeros. Consequently, the targets of vectors are irrelevant and we only consider
vectors of type X ↔ 11, with a specific singleton set 11 := {⊥} as common target.
Such vectors correspond to Boolean column vectors and, therefore, as in linear
algebra we write sx instead of sx,⊥. For R : 11 ↔ X we retain the notation R⊥,x.

Given a set X and a subset S of X, we call s : X ↔ 11 a vector model of
S (for short s models S) if for all x ∈ X it holds x ∈ S iff sx. If X is a direct
product, say Y × Z, then s models a relation S : Y ↔ Z and we have Su1,u2

iff su, for all u ∈ Y × Z. The computation of s := vec(S) from S can be done
relation-algebraically, as vec(S) = [[S, I]; L, where I : Z ↔ Z and L : Z ↔ 11.

Convention 4.1. For the following we fix a set X. Throughout this section
then π : X2 ↔ X and ρ : X2 ↔ X denote the two projection relations of the
direct product X2 and M : X ↔ 2X and M : X2 ↔ [X ↔ X] are membership
relations.

Instead of working with directed graphs g = (X,R) in the following we work
with their adjacency relations R : X ↔ X (in [11] called associated relation)
and use the notions kernel, cycle, bipartite etc. for R in an obvious way. The
computations we will present consist of relation-algebraic specifications of vector
models of those sets of relations on X which satisfy the first, second, third
respectively fourth of the four sufficient criteria for the existence of kernels we
have mentioned in Sect. 3. In Sect. 5 we will demonstrate how these specifications
rather straightforwardly can be implemented in the programming language of
RelView and the executions of these RelView-programs led to the numerical
data of Sect. 3.

Given R : X ↔ X, from the description of kernels in Sect. 1 we get that a
subset K of X is a kernel of R iff the following two formulae hold, where the
variables x and y range over X:

¬∃x, y : x ∈ K ∧ y ∈ K ∧ Rx,y ∀x : x �∈ K ⇒ ∃y : y ∈ K ∧ Rx,y

The first formula defines K as R-stable and the second one as R-absorbant. As
a consequence, kernels of R are precisely those subsets of X which are R-stable
and R-absorbant at the same time. Based on two auxiliary specifications for
R-stable and R-absorbant subsets, in the following theorem we specify relation-
algebraically a vector model kernel : [X ↔ X] ↔ 11 for the set of relations on
X having kernels. Besides the relations of Convention 4.1 the second projection
relation β : X × 2X ↔ 2X of the direct product X × 2X is used. Notice that
the backslash-symbol used in the second auxiliary specification absorb denotes
the right residual operation.

Theorem 4.1. We consider the following three relation-algebraic specifications:

stable := [MT,MT]];M : 2X ↔ [X ↔ X]

absorb := (β ∩ vec(M); L) \ ((I‖MT);M) : 2X ↔ [X ↔ X]

kernel := (L; (stable ∩ absorb))T : [X ↔ X] ↔ 11
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For all A ∈ 2X and R : X ↔ X then stableA,R iff A is R-stable, absorbA,R iff
A is R-absorbant and kernelR iff R has a kernel.

Proof. Assume arbitrary A ∈ 2X and R : X ↔ X. Then the first claim is shown
by the following calculation, where the variable u ranges over X2:

stableA,R ⇐⇒ [MT,MT]];MA,R

⇐⇒ ¬∃u : [MT,MT]]A,u ∧ Mu,R

⇐⇒ ¬∃u : MT
A,u1

∧ MT
A,u2

∧ Ru1,u2

⇐⇒ ¬∃u : u1 ∈ A ∧ u2 ∈ A ∧ Ru1,u2

⇐⇒ A is R-stable

To prove the second claim, we calculate as follows, where the variables x and y
range over X, the variable u ranges over X2 and the variable B ranges over 2X :

absorbA,R ⇐⇒ ((β ∩ vec(M); L) \ ((I‖MT);M))A,R

⇐⇒ ∀x,B : (β ∩ vec(M); L)(x,B),A ⇒ ((I‖MT);M)(x,B),R

⇐⇒ ∀x,B : B = A ∧ Mx,B ⇒ ∃u : (I‖MT)(x,B),u ∧ Mu,R

⇐⇒ ∀x,B : B = A ∧ x �∈ B ⇒ ∃u : x = u1 ∧ MT
B,u2

∧ Ru1,u2

⇐⇒ ∀x : x �∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

⇐⇒ A is R-absorbant

Finally, we calculate as follows, where the variable A ranges over 2X :

kernelR ⇐⇒ (L; (stable ∩ absorb))⊥,R

⇐⇒ ∃A : L⊥,A ∧ (stable ∩ absorb)A,R

⇐⇒ ∃A : stableA,R ∧ absorbA,R

Together with the first two claims this implies the third claim. ��
We have used the prevalent mathematical theorem-proof-style to emphasise the
result of this theorem and to enhance readability. However, in fact, we have
obtained the relation-algebraic specifications by developing them formally from
the corresponding logical specifications by replacing step-by-step logical con-
structions by equivalent relational ones. This remark also holds for the other
theorems of this section.

The next theorem presents relation-algebraic specifications of vector models
irrefl : [X ↔ X] ↔ 11 and sym : [X ↔ X] ↔ 11 for the set of irreflexive respec-
tively symmetric relations on X such that the intersection irrefl∩sym models the
set of relations on X which satisfy the first sufficient criterion for the existence
of kernels we have mentioned in Sect. 3. Only the three relations π : X2 ↔ X
and ρ : X2 ↔ X and M : X2 ↔ [X ↔ X] of Convention 4.1 are used.
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Theorem 4.2. We consider the following relation-algebraic specifications:

irrefl := L; (M ∩ vec(I); L)
T

: [X ↔ X] ↔ 11

sym := L; (M ∩ [ρ, π]];M)
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then irreflR iff R is irreflexive and symR iff R is symmetric.

Proof. Assume an arbitrary R : X ↔ X. Then the following calculation shows
the first claim, where the variable u ranges over X2:

irreflR ⇐⇒ L; (M ∩ vec(I); L)⊥,R

⇐⇒ ¬∃u : L⊥,u ∧ Mu,R ∧ vec(I)u
⇐⇒ ¬∃u : Ru1,u2 ∧ Iu1,u2

⇐⇒ ¬∃u : Ru1,u2 ∧ u1 = u2

⇐⇒ R is irreflexive

Also in the following calculation the variable u ranges over X2:

symR ⇐⇒ L; (M ∩ [ρ, π]];M)⊥,R

⇐⇒ ¬∃u : L⊥,u ∧ Mu,R ∧ ¬([ρ, π]];M)u,R
⇐⇒ ∀u : Mu,R ⇒ ([ρ, π]];M)u,R
⇐⇒ ∀u : Ru1,u2 ⇒ M(u2,u1),R

⇐⇒ ∀u : Ru1,u2 ⇒ Ru2,u1

⇐⇒ R is symmetric

With this verification of the second claim the proof is complete. ��
The second sufficient criterion for the existence of kernels we have mentioned
in Sect. 3 is “to be progressively finite”. In the following we show how to spec-
ify relation-algebraically a vector model progFin : [X ↔ X] ↔ 11 of the set of
progressively finite relations on X. As in the case of Theorem 4.1 besides the rela-
tions of Convention 4.1 we use the second projection relation β : X × 2X ↔ 2X

of the direct product X × 2X .

Theorem 4.3. We consider the following relation-algebraic specification:

progFin := L;M; (βT ∩ L; vec(M)T); [π, ρ;M]]T;M
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then progFinR iff R is progressively finite.

Proof. To structure the proof, we define the following auxiliary relation:

R := (βT ∩ L; vec(M)T); [π, ρ;M]]T;M : 2X ↔ [X ↔ X]
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Now, assume an arbitrary R : X ↔ X. For all A ∈ 2X we then calculate as
follows, where the variables x and y range over X, the variable B ranges over
2X and the variable u ranges over X2:

RA,R ⇐⇒ (βT ∩ L; vec(M)T); [π, ρ;M]]T;MA,R

⇐⇒ ¬∃x,B : (βT ∩ L; vec(M)T)A,(x,B) ∧ [π, ρ;M]]T;M(x,B),R

⇐⇒ ¬∃x,B : A = B ∧ vec(M)(x,B) ∧ ¬([π, ρ;M]]T;M)(x,B),R

⇐⇒ ¬∃x : vec(M)(x,A) ∧ ¬∃u : [π, ρ;M]]T(x,A),u ∧ Mu,R

⇐⇒ ¬∃x : Mx,A ∧ ¬∃u : [π, ρ;M]]u,(x,A) ∧ Ru1,u2

⇐⇒ ∀x : x ∈ A ⇒ ∃u : u1 = x ∧ u2 ∈ A ∧ Ru1,u2

⇐⇒ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

Using this result, we now calculate as follows, where the variable A ranges over
2X and, as above, the variables x and y range over X:

progFinR ⇐⇒ L;M;R⊥,R

⇐⇒ ¬∃A : (L;M)⊥,A ∧ RA,R

⇐⇒ ¬∃A : (MT; L)A ∧ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

⇐⇒ ¬∃A : A �= ∅ ∧ ∀x : x ∈ A ⇒ ∃y : y ∈ A ∧ Rx,y

The last formula is the logical specification of R being progressively finite; see
the definition given in Sect. 3. ��
We continue with the third sufficient criterion for the existence of kernels we have
mentioned in Sect. 3, viz. “to be bipartite”. A corresponding relation-algebraic
specification of a vector model bipartite : [X ↔ X] ↔ 11 of the set of bipartite
relations on X is given in the theorem below. In this theorem only the two
membership relations of Convention 4.1 are used.

Theorem 4.4. We consider the following relation-algebraic specification:

bipartite := (M \ ([M,M]] ∪ [M,M]])); L : [X ↔ X] ↔ 11

For all R : X ↔ X then bipartiteR iff R is bipartite.

Proof. Assume an arbitrary R : X ↔ X. Then we calculate as follows, where
the variable A ranges over 2X and the variable u ranges over X2:

bipartiteR ⇐⇒ ((M \ ([M,M]] ∪ [M,M]])); L)R
⇐⇒ ∃A : (M \ ([M,M]] ∪ [M,M]]))R,A ∧ LA

⇐⇒ ∃A : ∀u : Mu,R ⇒ [M,M]]u,A ∨ [M,M]]u,A
⇐⇒ ∃A : ∀u : Ru1,u2 ⇒ (Mu1,A ∧ Mu2,A) ∨ (Mu1,A ∧ Mu2,A)
⇐⇒ ∃A : ∀u : Ru1,u2 ⇒ (u1 ∈ A ∧ u2 �∈ A) ∨ (u1 �∈ A ∧ u2 ∈ A)
⇐⇒ R is bipartite

This completes the proof. ��
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Concerning Richardson’s criterion, we have not been able to specify a vector
model of the set of relations on X without cycles of odd length with purely
relation-algebraic means. Experiments with the RelView tool have shown that
the RelView-implementation of the vector model kernel of Theorem 4.1 seems
to be successfully executable up to |X| = 7 only. For |X| = 8 we cancelled the
computation after about 20 h. Based on this fact, we have decided to consider
one after the other the lengths 1, 3, 5 and 7 of cycles. If |X| ≤ 2, then a relation
on X has no cycle of odd length iff it is irreflexive. As a consequence, the first two
numbers of the last column of the second table of Sect. 3, i.e., the numbers for
|X| = 1 and |X| = 2, are 2|X|(|X|−1), since this expression specifies the number
of irreflexive relations on X. The next three theorems present relation-algebraic
specifications of three vector models with the following meanings:

a) cyc3 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 3.

b) cyc5 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 5.

c) cyc7 : [X ↔ X] ↔ 11 models the set of relations on X which have a cycle of
length 7.

Since the complement cyc3 models the set of relations on X without cycles of
length 3 and for the complements cyc5 and cyc7 the same applies for length 5
and 7, respectively, the vector

irrefl ∩ cyc3 ∩ cyc5 ∩ cyc7 : [X ↔ X] ↔ 11

models the set of relations on X which have no cycles of length 1, 3, 5 and 7.
Consequently, we get for |X| ≤ 8 that it models the set of relations on X without
cycles of odd length. This way we have obtained the numbers of the last column
of Table 2 for 3 ≤ |X| ≤ 7.

The following relation-algebraic specification of the vector model cyc3 uses
the relations of Convention 4.1 except the membership relation M : X ↔ 2X .
Furthermore, it uses the two projection relations of the direct product X2 × X2,
which we denote as γ : X2 × X2 ↔ X2 and δ : X2 × X2 ↔ X2.

Theorem 4.5. We consider the following relation-algebraic specification:

cyc3 := (L; ([δ, γ]]; (ρ‖π);M ∩ [[M,M] ∩ vec(ρ;πT); L))
T

: [X ↔ X] ↔ 11

For all R : X ↔ X then cyc3R iff R has a cycle of length 3.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. Then we
have

([δ, γ]]; (ρ‖π);M)(u,v),R ⇐⇒ ((ρ‖π);M)(v,u),R ⇐⇒ M(v2,u1),R ⇐⇒ Rv2,u1

and

[[M,M](u,v),R ⇐⇒ Mu,R ∧ Mv,R ⇐⇒ Ru1,u2 ∧ Rv1,v2
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and

(vec(ρ; πT); L)(u,v),R ⇐⇒ vec(ρ; πT)(u,v) ⇐⇒ (ρ; πT)u,v ⇐⇒ u2 = v1.

From these equivalences we get

cyc3R ⇐⇒ (L; ([δ, γ]]; (ρ‖π);M ∩ [[M,M] ∩ vec(ρ; πT); L))⊥,R

⇐⇒ ∃u, v : L⊥,(u,v) ∧ Rv2,u1 ∧ Ru1,u2 ∧ Rv1,v2 ∧ u2 = v1

⇐⇒ ∃x, y, z : Rx,y ∧ Ry,z ∧ Rz,x,

where the variables u and v range over X2 and the variables x, y and z range
over X. The last formula of this calculation is the logical description of R having
a cycle of length 3. ��
In the next theorem we present a relation-algebraic specification of the vector
model cyc5. Precisely, it is based on the same projection relations and mem-
bership relations as Theorem 4.5 and uses two auxiliary specifications for the
construction of paths.

Theorem 4.6. We consider the following relation-algebraic specifications:

R := (π;πT ‖ρ; ρT); ([[M,M] ∩ vec(ρ;πT); L) : X2 × X2 ↔ [X ↔ X]

S := [[[ρ, π]];M, [ρ, π]];M] ∩ [δ, γ]]; (π‖ρ);M : X2 × X2 ↔ [X ↔ X]

cyc5 := (L; (R ∩ S))T : [X ↔ X] ↔ 11

For all R : X ↔ X then cyc5R iff R has a cycle of length 5.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. First, we
treat R and calculate as given below, where the variables a and b range over X2

and the variable x ranges over X:

R(u,v),R ⇐⇒ ∃a, b : (π; πT ‖ρ; ρT)(u,v),(a,b) ∧ ([[M,M] ∩ vec(ρ; πT); L)(a,b),R
⇐⇒ ∃a, b : (π; πT)u,a ∧ (ρ; ρT)v,b ∧ [[M,M](a,b),R ∧ vec(ρ; πT)(a,b)

⇐⇒ ∃a, b : u1 = a1 ∧ v2 = b2 ∧ Ma,R ∧ Mb,R ∧ a2 = b1

⇐⇒ ∃x : M(u1,x),R ∧ M(x,v2),R

⇐⇒ ∃x : Ru1,x ∧ Rx,v2

Hence, R(u,v),R specifies that there exists a path (u1, x, v2) in R. With regard
to S we calculate as follows:

S(u,v),R ⇐⇒ [[[ρ, π]];M, [ρ, π]];M](u,v),R ∧ ([δ, γ]]; (π‖ρ);M)(u,v),R

⇐⇒ ([ρ, π]];M)u,R ∧ ([ρ, π]];M)v,R ∧ ((π‖ρ);M)(v,u),R
⇐⇒ M(u2,u1),R ∧ M(v2,v1),R ∧ M(v1,u2),R

⇐⇒ Rv2,v1 ∧ Rv1,u2 ∧ Ru2,u1
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So, S(u,v),R specifies that (v2, v1, u2, u1) is a path in R. After these preparations
we now prove the claim. We start with the following calculation, where the
variables u and v range over X2 and the variable x ranges over X:

cyc5R ⇐⇒ (L; (R ∩ S))⊥,R

⇐⇒ ∃u, v : L⊥,(u,v) ∧ R(u,v),R ∧ S(u,v),R

⇐⇒ ∃u, v : R(u,v),R ∧ S(u,v),R

⇐⇒ ∃u, v : (∃x : Ru1,x ∧ Rx,v2) ∧ (v2, v1, u2, u1) is a path in R

It remains to verify that the last formula holds iff R has a cycle of length 5.
For the direction “=⇒”, let the formula be true. Then (u1, x, v2, v1, u2, u1) is
a cycle of length 5 in R. For the converse, suppose that R possesses a cycle
(c1, c2, c3, c4, c5, c1) of length 5. We define u := (c1, c5), v := (c4, c3) and x := c2.
Then (u1, x, v2) and (v2, v1, u2, u1) are paths in R and the formula holds. ��
The relation-algebraic specification of the vector model cyc7 is given in the next
theorem. We follow the ideas of Theorem 4.6, but the realisation is far more com-
plex. We use a further projection relation, viz. the second projection relation of
the direct product (X2 × X2)2, which we denote as μ : (X2 × X2)2 ↔ X2 × X2.
Furthermore, we use the auxiliary specification R of Theorem 4.6 and three fur-
ther auxiliary specifications.

Theorem 4.7. With R : X2 × X2 ↔ [X ↔ X] as defined in Theorem 4.6 we
consider the following relation-algebraic specifications:

S := [[[ρ, π]];M, [ρ, π]];M] : X2 × X2 ↔ [X ↔ X]

T := [[[[ρ; ρT, ρ;πT];M, [[π;πT, π; ρT];M] : (X2 × X2)2 ↔ [X ↔ X]

U := (γT ‖γT); (T ∩ μ; δ;M ∩ vec(δ; δT); L) : X2 × X2 ↔ [X ↔ X]

cyc7 := (L; (R ∩ S ∩ U))T : [X ↔ X] ↔ 11

For all R : X ↔ X then cyc7R iff R has a cycle of length 7.

Proof. Assume an arbitrary R : X ↔ X. Furthermore, let u, v ∈ X2. From the
proof of Theorem 4.6 we already know the following facts, where the variable x
of the left equivalence ranges over X:

R(u,v),R ⇐⇒ ∃x : Ru1,x ∧ Rx,v2 S(u,v),R ⇐⇒ Ru2,u1 ∧ Rv2,v1

So, we have (R ∩ S)(u,v),R iff there exists a path (u2, u1, x, v2, v1) in R. In the
remainder of the proof we show that U(u,v),R iff there is a path (v1, w1, w2, u2)
in R, from which then the claim follows similarly to the last step of the proof of
Theorem 4.6.

First, we concentrate on T. Guided by its source we assume arbitrary pairs
(a, b) ∈ X2 × X2 and (c, d) ∈ X2 × X2 to be given. For all e ∈ X2 we then have

[[ρ; ρT, ρ; πT](a,b),e ⇐⇒ (ρ; ρT)a,e ∧ (ρ; πT)b,e ⇐⇒ a2 = e2 ∧ b2 = e1
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and this implies

([[ρ; ρT, ρ; πT];M)(a,b),R ⇐⇒ M(b2,a2),R ⇐⇒ Rb2,a2 .

In the same way we show that

([[π; πT, π; ρT];M)(c,d),R ⇐⇒ M(c1,d1),R ⇐⇒ Rc1,d1 .

So, altogether, we get:

T((a,b),(c,d)),R ⇐⇒ [[[[ρ; ρT, ρ; πT];M, [[π; πT, π; ρT];M]((a,b),(c,d)),R
⇐⇒ ([[ρ; ρT, ρ; πT];M)(a,b),R ∧ ([[π; πT, π; ρT];M)(c,d),R
⇐⇒ Rb2,a2 ∧ Rc1,d1

Second, we concentrate on U and calculate as follows, where the variables a, b, c, d
and w range over X2:

U(u,v),R ⇐⇒ ((γT ‖γT); (T ∩ μ; δ;M ∩ vec(δ; δT); L))(u,v),R
⇐⇒ ∃a, b, c, d : (γT ‖γT)(u,v),((a,b),(c,d))

∧ (T ∩ μ; δ;M ∩ vec(δ; δT); L)((a,b),(c,d)),R
⇐⇒ ∃a, b, c, d : (γT ‖γT)(u,v),((a,b),(c,d)) ∧ T((a,b),(c,d)),R

∧ (μ; δ;M)((a,b),(c,d)),R ∧ vec(δ; δT)((a,b),(c,d))
⇐⇒ ∃a, b, c, d : γ(a,b),u ∧ γ(c,d),v ∧ Rb2,a2 ∧ Rc1,d1

∧ (δ;M)(c,d),R ∧ (δ; δT)(a,b),(c,d)
⇐⇒ ∃a, b, c, d : a = u ∧ c = v ∧ Rb2,a2 ∧ Rc1,d1 ∧ Md,R ∧ b = d

⇐⇒ ∃w : Rw2,u2 ∧ Rv1,w1 ∧ Mw,R

⇐⇒ ∃w : Rv1,w1 ∧ Rw1,w2 ∧ Rw2,u2

Hence, we have U(u,v),R iff there exists a path (v1, w1, w2, u2) in R as required
to conclude the proof. ��

5 Implementation in RelView

RelView is a specific purpose computer algebra system for the manipulation
and visualisation of relations, relational prototyping and relational program-
ming. Computational tasks can be described by short and concise programs,
which frequently consist of only a few lines that present the relation-algebraic
expressions or formulae of the notions in question. At the beginning of Sect. 4
we have mentioned that all relation-algebraic specifications of the section rather
straightforwardly can be implemented in the programming language of Rel-
View. In the following we will demonstrate this by means of the specifications
kernel, progFin and bipartite.
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Projection relations play a decisive role. Therefore, we start with the follow-
ing two RelView-programs pr1 and pr2, which implement the two projection
relations π : X × Y ↔ X and ρ : X × Y ↔ Y of the direct product X × Y .

pr1(X,Y)
DECL XY = PROD(X,Y)
BEG RETURN p-1(XY) END.

pr2(X,Y)
DECL XY = PROD(X,Y)
BEG RETURN p-2(XY) END.

RelView knows relations as the only data type. In the above programs the
parameters X and Y stand for homogeneous relations and X is assumed as carrier
set of X and Y as carrier set of Y. The declaration XY = PROD(X,Y) introduces XY
as name for the relational direct product (X × Y , π, ρ) in the sense of [11]. In pr1
the return-clause yields the first projection relation π : X × Y ↔ X by means
of the pre-defined RelView-operation p-1 and in pr2 the second projection
relation ρ : X × Y ↔ X is obtained via the pre-defined RelView-operation
p-2.

The following RelView-program par implements the parallel composition
of relations. It immediately is obtained from the definition R ‖S := [π; R, ρ; S]]
using the above RelView-programs pr1 and pr2. A comparison with the def-
inition of the parallel composition shows that * is the RelView-notation for
composition, ^ that for transposition and [ · , · |] that for right pairing.

par(R,S)
DECL pi, rho
BEG pi = pr1(R*R^,S*S^);

rho = pr2(R*R^,S*S^)
RETURN [pi*R,rho*S|]

END.

Also the following RelView-function vec immediately follows from the defi-
nition vec(R) = [[R, I]; L, where the pre-defined RelView-operation I computes
the identity relation of the same type as its argument, the pre-defined RelView-
operation dom computes the composition of its argument with an universal vector
of appropriate type (i.e., a vector that models the domain of the argument) and
[| · , · ] is the RelView-notation for left pairing.

vec(R) = dom([|R,I(R^*R)]).

We now implement kernel as follows, where the parameter X of the RelView-
program kernel stands for a homogeneous relation and the set X of Convention
4.1 is defined as the carrier set of X.
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kernel(X)
DECL M, MM, beta, stable, absorb
BEG M = epsi(X);

MM = epsi(pr1(X,X));
beta = pr2(X,M^*M);
stable = -([M^,M^|]*MM);
absorb = (beta & vec(-M)*L1n(M)) \ par(I(X),M^)*MM
RETURN (L1n(M)*(stable & absorb))^

END.

By means of the pre-defined RelView-operation epsi and the first two assign-
ments the two membership relations M : X ↔ 2X and M : X2 ↔ [X ↔ X] are
computed and stored in the variables M and MM. The third assignment computes
the second projection relation β : X × 2X ↔ 2X of the direct product X × 2X

and stores it in the variable beta. The right-hand sides of the following two
assignments are the RelView-versions of the relation-algebraic specifications of
stable and absorb of Theorem 4.1. Finally, the expression of the return-clause is
the RelView-version of the relation-algebraic specification of kernel of Theorem
4.1, where & means intersection, - means complementation and the pre-defined
RelView-operation L1n computes a transposed universal vector L : 11 ↔ Y
with the target Y equal to that of the argument.

In the same way the relation-algebraic specifications of progFin and bipartite
of Theorem 4.3 and Theorem 4.4 immediately lead to the following two Rel-
View-programs for their computation. In progFin the variable R corresponds
to the auxiliary relation R of the proof of Theorem 4.3 and in bipartite the
symbol | denotes union of relations.

progFin(X)
DECL pi, rho, M, MM, beta, R
BEG pi = pr1(X,X);

rho = pr2(X,X);
M = epsi(X);
MM = epsi(pi);
beta = pr2(X,M^*M);
R = -((beta^ & L1n(M)^*vec(M)^)*-([pi,rho*M|]^*MM))
RETURN -(L1n(X)*M*R)^

END.

bipartite(X)
DECL M, MM
BEG M = epsi(X);

MM = epsi(pr1(X,X))
RETURN dom(MM \ ([|M,-M] | [|-M,M]))

END.

When RelView computes a relation and displays it in the relation window,
it shows in the window’s frame the number of rows, of columns and of 1-entries.
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Using this feature, we have obtained the numerical data of Sect. 3. The running
times (in seconds) of the computations are given in Table 3. A computation of
the vector model of the set of relations on X means the computation of the uni-
versal vector L : [X ↔ X] ↔ 11. In RelView this is possible via the expression
L1n(epsi(pr1(X,X)))^ and practically needs no time (see last column of the
table). For the computation of the numerical data we have used a PC with 2
CPUs of type Intel R© Xeon R© E5-2698, each with 20 cores and 3.60 GHz base
frequency, 512 GByte RAM and running Arch Linux 5.2.0, and version 8.2 of
RelView. This newest version of the tool is described at the Web-site [14] and
the source code is available from Github via [15] and from Zenodo via [16]. The
virtual machine of [16] was built to ease running RelView not only using Linux
but also Microsoft Windows and Mac OSX.

Table 3. Running times within RelView.

|X| Irr., symm. Progr. fin. Bipartite Richardson With kernel All rel.

1 0.0010 0.0012 0.0009 0.0012 0.0015 0.0006

2 0.0026 0.0032 0.0018 0.0067 0.0057 0.0007

3 0.0069 0.0082 0.0053 0.0117 0.0117 0.0007

4 0.0081 0.0172 0.0194 0.0150 0.0171 0.0008

5 0.0169 0.0262 0.0199 0.1807 0.0213 0.0010

6 0.0181 0.1211 0.0833 10.4710 0.3141 0.0011

7 0.0476 1.8771 2.3501 32220.5500 138.6700 0.0011

The amazing computational power obtained by the use of ROBDDs and
RelView becomes clear if we compare the running times of Table 3 with the
times needed in case of a “classical” brute-force approach. If we assume that
some algorithm could generate every relation on a given finite set X and test
the existence of a kernel in, say, 10−6 seconds, it would take 5.62 · 1014 · 10−6

seconds, i.e., more than 17 years, for this task in the case of |X| = 7.

6 Concluding Remarks

There exist some extensions of Richardson’s theorem which allow the existence
of cycles of odd length but demand certain properties for them to hold. In [1] C.
Berge and P. Duchet prove that a finite directed graph g = (X,R) has a kernel
if every cycle of odd length has all its arcs belonging to pairs of parallel arcs,
meaning for each cycle (c1, c2, . . . , cn, c1) of odd length of g also the reversed list
(c1, cn, . . . , c2, c1) is a cycle of g, that is, all cycles of odd length are symmetric.

Although not explicitly mentioned, this criterion of Berge and Duchet
includes g to be irreflexive. This becomes clear if one studies the proof of Proposi-
tion 1.1 of [1] in detail. Roughly the idea is as follows. Suppose X = {x1, . . . , xn}.
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From g then construct a graph g′ by removing all edges (xi, xj) for which i > j
and also (xj , xi) is an edge of g. Since cycles of length 1 do not occur and all
cycles of odd length are assumed as symmetric, this way each cycle of odd length
is split into non-cyclic paths. Hence, the graph g′ has no cycles of odd length.
Richardson’s theorem implies that it has a kernel K and K is also a kernel of g.

In contrast to the four criteria we have mentioned in Sect. 3, testing the
criterion of Berge and Duchet seems to be rather expensive since it requires
to check all cycles of odd length in view of symmetry. The same holds for all
other extensions of Richardson’s theorem mentioned in [1]. We also have been
concerned with the question whether such weaker criteria are satisfied by much
more graphs/relations with kernels than Richardson’s criterion.

To get at least a feeling for their behaviour, we have applied our approach to
the criterion of Berge and Duchet and computed, again for small sets X, the set
of all irreflexive relations on X such that all cycles of odd length are symmetric.
In case of 1 ≤ |X| ≤ 2 the criterion of Berge and Duchet is equivalent to that
of Richardson and, hence, is satisfied by 1 respectively 4 relations on X. For
|X| = 3 the number of relations on X which satisfy the criterion of Berge and
Duchet is 50; this are 2.04% more than the 49 relations on X which satisfy
Richardson’s criterion. For 4 ≤ |X| ≤ 6 the numbers of relations on X which
satisfy the criterion of Berge and Duchet are 1 778 (or 4.64% more than those
which satisfy Richardson’s criterion), 161 254 (or 6.97% more than those which
satisfy Richardson’s criterion) and 35 280 286 (or 8.89% more than those which
satisfy Richardson’s criterion). Hence, the criterion of Berge and Duchet seems
to be only slightly more general than Richardson’s criterion.

In [1] it is also mentioned that the existence of kernels already follows from
the fact that (besides irreflexivety) every cycle of odd length has at least two arcs
belonging to pairs of parallel arcs. This criterion is ascribed to P. Duchet. We
also have checked it and RelView computed for 1 ≤ |X| ≤ 6 the following num-
bers of relations on X which satisfy it: 1, 4, 56, 2 534, 348 064 and 138 636 886.
Compared with Richardson’s criterion we get for 1 ≤ |X| ≤ 6 that Duchet’s
criterion is satisfied by 0%, 0%, 14.28%, 49.14%, 130.90% respectively 327.91%
more relations on X than Richardson’s criterion. Despite these better percent-
ages it still seems to be very far away from a characterisation of the class of
directed graphs having kernels. E.g., in case |X| = 6 it is satisfied by only 0.9%
of the graphs of this class.
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7. Dedekind, R.: Über die von drei Moduln erzeugte Dualgruppe. Mathematische
Annalen 53(1), 371–403 (1900)
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