
Second-Order Properties of Undirected
Graphs

Walter Guttmann(B)

Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

walter.guttmann@canterbury.ac.nz

Abstract. We study second-order formalisations of graph properties
expressed as first-order formulas in relation algebras extended with a
Kleene star. The formulas quantify over relations while still avoiding
quantification over elements of the base set. We formalise the property
of undirected graphs being acyclic this way. This involves a study of var-
ious kinds of orientation of graphs. We also verify basic algorithms to
constructively prove several second-order properties.

1 Introduction

Binary relations and relational operations provide convenient abstractions for
expressing various kinds of logical specification in concise ways as the following
examples demonstrate:

– Relation R is transitive if RR ⊆ R (using relational composition), which is
logically equivalent to ∀x : ∀y : ∀z : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R.

– Point Q is reachable from point P in graph R if P ⊆ R∗Q (using reflexive-
transitive closure ∗), which is equivalent to: there is a number n and a sequence
of vertices x0, . . . , xn with ∀i : 0 ≤ i < n ⇒ (xi, xi+1) ∈ R, where x0 and xn

correspond to P and Q, respectively. See Sect. 2 for the relational specification
of points.

– Directed graph R is acyclic if R+ ⊆ I (using transitive closure + and the com-
plement of the identity relation I), which is equivalent to: there is no number
n and sequence of vertices x0, . . . , xn with ∀i : 0 ≤ i < n ⇒ (xi, xi+1) ∈ R
and (xn, x0) ∈ R.

In these examples, conciseness is gained by eliminating quantifiers from logical
specifications. The resulting expressions facilitate equational reasoning about
entire relations rather than point-wise arguments involving elements of the base
set.

The above logical formulas quantify over elements of the base set of the
relation. Sometimes quantification over relations is used:

– A relation algebra is pair-dense if

∀R : O �= R ⊆ I ⇒ ∃Q : O �= Q ⊆ R ∧ QIQIQ ⊆ I

(using the empty relation O) [19].
c© Springer Nature Switzerland AG 2021
U. Fahrenberg et al. (Eds.): RAMiCS 2021, LNCS 13027, pp. 209–224, 2021.
https://doi.org/10.1007/978-3-030-88701-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88701-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-88701-8_13

210 W. Guttmann

– The intermediate point theorem states

P ⊆ RSQ ⇔ ∃X : X is a point ∧ P ⊆ RX ∧ X ⊆ SQ

for any relations R and S and any points P and Q [30].
– Two characterisations of difunctional relations are

R = RRTR ⇔ ∃P : ∃Q : PTP ⊆ I ⊆ PPT ∧ QTQ ⊆ I ⊆ QQT ∧ R = PQT

(using relational converse T). The formula specifies that P and Q are map-
pings, that is, univalent and total relations; see Sect. 2. The above equivalence
is from [28] which also characterises various types of orders by quantifying
over relations.

– A form of the axiom of choice can be expressed as

∀R : I ⊆ RRT ⇒ ∃Q : Q ⊆ R ∧ QTQ ⊆ I ⊆ QQT

This considers the set of R-image sets of each element of the base set, and
selects one element from each according to choice function Q. The formula
specifies that R is total and Q is a mapping.

Of course, already the axioms of relation algebras universally quantify over rela-
tions, but the above properties also use existential quantification. We call prop-
erties that quantify over relations ‘second-order’ to distinguish them from logical
formulas that quantify over elements of the base set. We express these properties
in the language of relation algebras extended with a Kleene star, which abstracts
from elements of the base set. Hence, in this language, we can use first-order for-
mulas with variables ranging over the elements of a relation algebra.

In this paper we study second-order properties that are useful for the appli-
cation area of graphs. One of the motivations for this work is that while R+ ⊆ I
concisely states that directed graph R is acyclic, no similarly compact formal-
isation of acyclicity is known for undirected graphs represented by symmetric
relations. This complicates the formalisation of graph algorithms and their ver-
ification [13,14]. The focus of this paper is to present a number of second-order
properties and study their relationships; future work will use these properties to
simplify relational correctness proofs of graph algorithms.

Relation algebras are frequently associated with the aim of eliminating logi-
cal quantifiers and thereby enabling point-free equational reasoning at a higher
abstraction level. The present work does not contradict this aim by reintroduc-
ing quantifiers. The quantifiers in our formulas are second-order, that is, they
quantify over relations not elements of the base set. For comparison, consider
the map-fusion law for lists in functional programming [4]. Its point-wise form
uses functions f and g and a list xs:

map f (map g xs) = map (f ◦ g) xs

Its point-free form eliminates the list argument xs:

map f ◦ map g = map (f ◦ g)

Second-Order Properties of Undirected Graphs 211

It still involves implicit quantification over functions f and g, but the law can
now be understood as talking about functions rather than lists. The variables f
and g are ‘higher-order points’ and not usually eliminated from this law, though
they could be removed in formalisms like combinatory logic [7,31].

The contributions of this paper are:

– We study and compare various notions of orientability of undirected graphs
in Sect. 3. They serve as a basis for formalising more specific properties.

– We introduce several second-order formalisations of the property that an undi-
rected graph is acyclic in Sect. 4. We prove a number of relationships between
these formulas and give counterexamples in cases where formulas are not
equivalent in relation algebras extended with a Kleene star.

– We give several equivalent formalisations of general and specific transitively
orientable graphs in Sect. 5. We also formalise the property that an undirected
graph contains only simple paths.

– We verify the correctness of several basic algorithms in Sect. 6 to construc-
tively prove a number of axioms used throughout this paper.

Moreover, all results in this paper except the counterexamples have been formally
verified in Isabelle/HOL [25]. The corresponding proofs are omitted and can be
found in the Archive of Formal Proofs [15].

2 Relational and Algebraic Basics

This section recalls algebras we will use for reasoning about properties of directed
and undirected graphs in the remainder of the paper. In particular we discuss
Boolean algebras, relation algebras and Kleene relation algebras. We also recall
basic relational definitions and give a number of general results.

A Boolean algebra [9] is a structure (S,�,, ,⊥,�) such that

x � (y � z) = (x � y) � z x (y z) = (x y) z

x � y = y � x x y = y x

x � x = x x x = x

x � ⊥ = x x � = x

x � � = � x ⊥ = ⊥
x � (x y) = x x (x � y) = x

x � (y z) = (x � y) (x � z) x (y � z) = (x y) � (x z)
x � x = � x x = ⊥

for each x, y, z ∈ S. The axioms specify that the operations � and are asso-
ciative, commutative and idempotent, have units ⊥ and �, have zeros � and ⊥,
absorb each other, distribute over each other and are complementary.

The lattice order is obtained by x � y ⇔ x � y = y or the equivalent
x � y ⇔ x y = x. The join x � y is the �-least upper bound of x and y; their

212 W. Guttmann

meet or �-greatest lower bound is xy. The �-least element is ⊥; the �-greatest
element is �. The element x is the complement of x.

A relation algebra [33] is a structure (S,�,, ·, , T,⊥,�, 1) such that the
reduct (S,�,, ,⊥,�) is a Boolean algebra and

x · (y · z) = (x · y) · z (x · y)T = yT · xT

x · 1 = x (xT)
T

= x

(x � y) · z = (x · z) � (y · z) (x � y)T = xT � yT

xT · x · y � y

for each x, y, z ∈ S. It follows that composition · is a monoid with identity 1 and
distributes over join, transpose T is involutive, antidistributes over composition
and distributes over join and meet, and De Morgan’s Theorem K holds. We
abbreviate x · y by xy.

An element x of a relation algebra is reflexive if 1 � x, irreflexive if x � 1,
symmetric if xT = x, asymmetric if x xT = ⊥, antisymmetric if x xT � 1,
transitive if xx � x, a partial order if x is reflexive and antisymmetric and
transitive, a strict order if x is irreflexive and transitive, a total order if x�xT = �
and x is a partial order, a strict total order if x � xT = 1 and x is a strict order,
univalent if xTx � 1, injective if xxT � 1, total if 1 � xxT, surjective if 1 � xTx,
bijective if x is injective and surjective, a vector if x� = x, a point if x is a
bijective vector, and an arc if x� and xT� are points. The symmetric closure of
x is x � xT. See [30] for further details about these properties.

A Kleene relation algebra is a structure (S,�,, ·, , T, ∗,⊥,�, 1) such that
the reduct (S,�,, ·, , T,⊥,�, 1) is a relation algebra and

1 � xx∗ � x∗ xy � y ⇒ x∗y � y

1 � x∗x � x∗ yx � y ⇒ yx∗ � y

for each x, y ∈ S. It follows that x∗y is the �-least fixpoint of λz.xz � y and
yx∗ is the �-least fixpoint of λz.zx � y. The above unfold and induction axioms
for the Kleene star ∗ are from [17]. The transitive closure of x is x+ = xx∗ and
x∗ models the reflexive-transitive closure of relations. Relation algebras with
transitive closure have been studied in [22].

An element x of a Kleene relation algebra is acyclic if x+ is irreflexive, and
a forest if x is injective and acyclic.

The following theorem states a number of general results in (Kleene) relation
algebras. Theorems 1.2 and 1.3 appear in [28,30].

Theorem 1. Let S be a Kleene relation algebra and let x, y ∈ S. Then

1. Every acyclic element is asymmetric.
2. Every asymmetric element is irreflexive.
3. Acyclic, asymmetric and irreflexive are equivalent for transitive elements.
4. x is asymmetric if and only if xx is irreflexive.
5. x is a strict order if and only if x is transitive and acyclic.

Second-Order Properties of Undirected Graphs 213

6. x is a strict total order if and only if x is transitive and x � xT = 1.
7. x is acyclic if and only if x is irreflexive and x∗ is antisymmetric.
8. x is acyclic if and only if x+ is asymmetric.
9. (x � y)+ = x+ � y+x+ � y+ if xy = ⊥.

10. �(x y) �(x y) = ⊥ if x is injective.

3 Orientations

In the remainder of this paper we model graphs using Kleene relation algebras.
A (directed) graph is just an element of (the carrier set of) such an algebra.
Graph x is undirected if x is symmetric: xT = x.

An orientation of undirected graph x is a directed graph y obtained by
assigning a direction to each edge of x [8]. Algebraically this is formalised by

y is an orientation of x ⇔def y yT = ⊥ ∧ y � yT = x

expressing that y is asymmetric and its symmetric closure is x. Asymmetric
requires that y has at most one directed edge between any two vertices; the
second equation ensures y contains at least one directed edge between any two
vertices connected by an edge in x. Graph x is orientable if it has an orientation y:

x is orientable ⇔def ∃y : y yT = ⊥ ∧ y � yT = x

It follows from this formalisation that every orientable graph is symmetric and
irreflexive. We now consider the converse, namely, that every symmetric irreflex-
ive element is orientable:

∀x : x = xT ∧ x � 1 ⇒ ∃y : y yT = ⊥ ∧ y � yT = x (0)

The structure of this formula is similar to that of the axiom of choice given in
Sect. 1; essentially a direction is chosen for each edge.

Formula (0) is independent of the axioms of Kleene relation algebras as wit-
nessed by the following counterexample found by Nitpick [6]. The set {⊥, 1, 1,�}
of relations over a two-element base set forms a Kleene relation algebra which is
a subalgebra of the full algebra of relations. In this subalgebra, 1 is symmetric
and irreflexive but not orientable.

We study two variants of orientations: one that admits loops and one that
admits additional edges with an assigned direction.

– y yT � 1 ∧ y � yT = x replaces asymmetric with antisymmetric in the
definition of an orientation. This allows loops in x, which then must also
occur in the orientation y. We call this a loop-orientation.

– y yT = ⊥ ∧ y � yT � x requires the symmetric closure to contain x rather
than to equal x. So y can contain extra edges, but at most one direction of
each. We call this a super-orientation.

– y yT � 1 ∧ y � yT � x combines the two variants to obtain loop-super-
orientations.

214 W. Guttmann

Definitions of loop-orientable, super-orientable and loop-super-orientable are
derived for these variants similarly to orientable. Using these notions, we obtain
several formulas equivalent to formula (0) as the following result shows.

Theorem 2. The following eight properties are equivalent:

1. Every symmetric irreflexive element is orientable, that is, formula (0) holds.
2. Every symmetric element is loop-orientable.
3. Every irreflexive element is super-orientable.
4. Every element is loop-super-orientable.
5. ∀x : x = xT ⇒ ∃y : y yT = x 1 ∧ y � yT = x.
6. ∀x : x = xT ⇒ ∃y : y yT � x 1 ∧ y � yT = x.
7. ∀x : ∃y : y yT = x 1 ∧ y � yT � x.
8. ∀x : ∃y : y yT � x 1 ∧ y � yT � x.

Theorems 2.2–2.4 show how the notions of loop-/super-orientation allow the
assumptions of irreflexive/symmetric to be removed from formula (0).

The definition of an orientation generalises to the following useful ternary
predicate:

S(x, y, z) ⇔def y yT = x ∧ y � yT = z

In words, the meet of y and yT is x and their join is z. Both x and z need to be
symmetric for S(x, y, z) to hold, and x � y � z follows, too. Hence, the intuitive
meaning for undirected graphs x and z is:

– If an edge is in x and in z, it is also in y.
– If an edge is not in x and not in z, it is also not in y.
– If an edge is not in x but in z, exactly one direction of it is in y.

The following result gives consequences of this definition.

Theorem 3

1. S(⊥, y, x) if and only if y is an orientation of x.
2. S(1, y, x) implies that y is a loop-orientation of x.
3. S(x 1, y, x) if and only if y is a loop-orientation of x.
4. S(y 1, y, x) if and only if y is a loop-orientation of x.
5. S(x, y, z) if and only if y yT = x � z ∧ (y yT) � (y yT)

T
= z x.

Theorem 3.5 gives an alternative way to specify the ternary predicate. It
requires x � z, that x is the symmetric part of y, and that the difference z x
is the symmetric closure of the asymmetric part of y; see [21] for a study of the
symmetric and asymmetric parts of a relation.

A special case of Theorem 3.1 is that S(⊥, y, 1) if and only if y is an ori-
entation of 1. An orientation of the complete graph (without loops) 1 is also
known as a tournament [8]. The existence of a tournament is equivalent to the
conditions in Theorem 2 as the following result shows.

Second-Order Properties of Undirected Graphs 215

Theorem 4. The following three properties are equivalent:

1. Formula (0) holds.
2. ∃y : S(⊥, y, 1).
3. ∃y : S(1, y,�).

There are various ways of strengthening orientability. One is to require the
orientation to be injective:

x is injectively orientable ⇔def ∃y : y yT = ⊥ ∧ y � yT = x ∧ yyT � 1

Injectively orientable graphs correspond to graphs in which every component
has at most one cycle, also known as pseudoforests [11,27]. They will be used in
Sect. 4. A different strengthening requires orientations to be transitive [28]:

x is transitively orientable ⇔def ∃y : y yT = ⊥ ∧ y � yT = x ∧ yy � y

Transitively orientable graphs, also known as comparability graphs, are the sym-
metric closures of strict orders. They will be used in Sect. 5.

4 Acyclicity of Undirected Graphs

In this section we discuss various ways to specify that an undirected graph x is
acyclic. When justifying specifications informally, we implicitly assume that x is
symmetric and irreflexive; we explicitly state such assumptions in theorems.

We present the specifications in order of increasing strength, give equivalent
characterisations for most of them and study their relationships.

4.1. Our first specification requires that every orientation of x is acyclic (in the
sense of directed graphs):

∀y : y yT = ⊥ ∧ y � yT = x ⇒ y+ � 1 (1)

Intuitively, if x contained an undirected cycle then this cycle could be oriented
and extended to an orientation of x that would not be acyclic. Conversely, if
some orientation of x contained a cycle then the symmetric closure of this cycle
would be an undirected cycle in x.

The following result shows an equivalent formulation of (1). It replaces y+ � 1
with y∗ yT∗ = 1, which is equivalent for irreflexive y.

Theorem 5. The following two properties are equivalent for any x:

1. x satisfies formula (1).
2. ∀y : y yT = ⊥ ∧ y � yT = x ⇒ y∗ yT∗ = 1.

216 W. Guttmann

4.2. Our second specification weakens the antecedent of formula (1) to asym-
metric subsets of x:

∀y : y yT = ⊥ ∧ y � x ⇒ y+ � 1 (2)

Every orientation of x clearly satisfies y � x, so formula (2) implies formula (1).
The converse implication holds for orientable elements according to the following
result. It also gives equivalent formulations of (2).

Theorem 6. The following three properties are equivalent for any symmetric x:

1. x satisfies formula (2).
2. ∀y : y yT = ⊥ ∧ y � yT � x ⇒ y+ � 1.
3. ∀y : y yT = ⊥ ∧ y � yT � x ⇒ y∗ yT∗ = 1.

The last two of the above properties are equivalent for any x. Moreover,

4. Formula (2) implies formula (1) for any x.
5. Formulas (2) and (1) are equivalent for any orientable x.

A counterexample shows that formula (1) does not imply formula (2) for
all symmetric irreflexive elements. The complex algebra Cm(G) of any group
G is a relation algebra; see [12,19] for construction details. Moreover, Cm(G)
is a Kleene relation algebra using x∗ =

⋃
i∈N xi. Consider Cm(Z4) where Z4 =

{0, 1, 2, 3} is the cyclic group of order 4. In Cm(Z4) the complex x = 1 = {1, 2, 3}
satisfies formula (1) since x has no orientation as it is above symmetric atom
{2}. But x is also above non-symmetric atom y = {1} with yT = {3} and
y+ = � = Z4, whence x does not satisfy formula (2).

4.3. Our third specification avoids the reference to acyclic subgraphs. It requires
that there is a unique way to sandwich x between a graph and its reflexive-
transitive closure:

∀y : y � x � y∗ ⇒ y = x (3)

Intuitively, if x contained an undirected cycle then one edge of this cycle could be
removed without affecting reachability in the graph, so an element strictly below
x would satisfy the antecedent. Conversely, if there was a y with y � x � y∗

then there would be an edge e in x that is not in y but in y∗, so there would be
a path in y from the start vertex of e to its end vertex which together with e
would form a cycle. The following result shows equivalent formulations of (3).

Theorem 7. The following two properties are equivalent for any x:

1. x satisfies formula (3).
2. ∀y : y � x ∧ y∗ = x∗ ⇒ y = x.

The following two properties are equivalent for any x:

3. ∀y : y � x � y+ ⇒ y = x.
4. ∀y : y � x ∧ y+ = x+ ⇒ y = x.

All four of the above properties are equivalent for any irreflexive x.

Second-Order Properties of Undirected Graphs 217

4.4. Our fourth specification expresses the justification underlying formula (3)
more directly:

∀y : y � x ⇒ x y∗ � y (4)

Intuitively, any edge e contained in both x and y∗ must already be in y, otherwise
the path obtained from y∗ together with e would form a cycle. The following
result shows that formulas (4) and (3) are equivalent and stronger than for-
mula (2). It also gives further equivalent formulations of (4).

Theorem 8. The following three properties are equivalent for any x:

1. x satisfies formula (4).
2. ∀y : y � x ⇒ x y∗ = y.
3. ∀y : y � x ⇒ y (x y)∗ = ⊥.
4. x satisfies formula (3).

Moreover,

5. Formula (4) implies formula (2) for any symmetric x.
6. Formulas (4) and (2) are equivalent for any symmetric irreflexive x if the

following two axioms hold:

∀u : u �= ⊥ ⇒ ∃v : v is an arc ∧ v � u

∀u : ∀v : u is an arc ∧ u � v∗ ⇒ ∃w : w � v ∧ w wT = ⊥ ∧ u � w∗

The first of these axioms specifies that every non-empty graph contains an edge,
which is similar to the point axiom [19,29]. The second of these axioms states
that if the end vertex of an edge u is reachable from its start vertex using
(directed) edges in v, then the same holds already in an asymmetric subset w of
v. Intuitively, the asymmetric subset w is formed by the edges on the (directed)
path from the start vertex of u to its end vertex.

A counterexample found by Nitpick shows that formula (2) does not imply
formula (4) for all symmetric irreflexive elements. The set of symmetric com-
plexes SCm(G) = {x ∈ Cm(G) | x = xT} of a commutative group G forms a
relation algebra which is a subalgebra of Cm(G) [12,16]. Since SCm(G) is closed
under Kleene star, it also forms a Kleene relation algebra. In SCm(Z4) the com-
plex x = 1 = {1, 2, 3} satisfies formula (2) because the only asymmetric complex
is ⊥ = ∅. But x also contains atom y = {1, 3} with y∗ = � = Z4, whence x does
not satisfy formula (4).

4.5. Our fifth specification generalises the formulation given in Theorem 8.3.
According to the latter formulation there cannot be an edge e in y such that
there is a path from the source of e to its target using edges of x that are not in
y. We now allow the edge e to be in y∗:

∀y : y � x ⇒ y∗ (x y)∗ = 1 (5)

218 W. Guttmann

Intuitively, if there is a path in y, there cannot be a path from its start vertex to
its end vertex using edges of x that are not in y, except if the start and end ver-
tices coincide. Namely, if the start and end vertices were different, the two disjoint
paths together would form a cycle. The following result shows that formula (5) is
stronger than formula (4). It also gives equivalent formulations of (5).

Theorem 9. The following six properties are equivalent for any x:

1. x satisfies formula (5).
2. ∀y : y � x ⇒ y∗ (x y)+ � 1.
3. ∀y : y � x ⇒ y+ (x y)∗ � 1.
4. ∀y : y � x ⇒ y+ (x y)+ � 1.
5. ∀y : ∀z : y z = ⊥ ∧ y � z � x ⇒ y∗ z∗ = 1.
6. ∀y : ∀z : y z = ⊥ ∧ y � z = x ⇒ y∗ z∗ = 1.

Moreover,

7. Formula (5) implies formula (4) for any irreflexive x.

The formulation in Theorem 9.6 is particularly conspicuous. If x is partitioned
into y and z, then there cannot be a path from the same start vertex to the
same end vertex in both partitions, except for the empty path if the start and
end vertices coincide. The formulations in Theorems 9.5 and 9.6 generalise the
formulations in Theorems 6.3 and 5.2, respectively, by replacing yT with a new
variable z.

A counterexample shows that formula (4) does not imply formula (5) for all
symmetric irreflexive elements. ConsiderZ12 = {0, 1, . . . , 10, 11}, the cyclic group
of order 12. In SCm(Z12), complex x = {2, 3, 9, 10} � 1 satisfies formula (4) since
only complexes ⊥, y1 = {2, 10}, y2 = {3, 9} and x are below x and

x ⊥∗ = x 1 � 1 1 = ⊥
x y∗

1 = x {0, 2, 4, 6, 8, 10} = y1

x y∗
2 = x {0, 3, 6, 9} = y2

x x∗ = x

But x does not satisfy formula (5) since

y∗
1 (x y1)∗ = y∗

1 y∗
2 = {0, 2, 4, 6, 8, 10} {0, 3, 6, 9} = {0, 6} �= {0} = 1

4.6. Our sixth specification asserts the existence of an orientation that is a
forest. To this end, we strengthen the property of being injectively orientable,
introduced at the end of Sect. 3, by replacing asymmetric with acyclic:

∃y : y � yT = x ∧ y+ � 1 ∧ yyT � 1 (6)

Note that y+ � 1 implies that y is asymmetric. With y � yT = x it follows
that y is an orientation of x. The properties acyclic and injective together are

Second-Order Properties of Undirected Graphs 219

frequently used to specify forests with edges directed away from the roots of the
component trees. Overall, the above property requires that there is a (directed)
forest whose symmetric closure is x.

Whereas the previous specifications of acyclic graphs were universally quan-
tified, formulation (6) is existentially quantified. The following result relates
formula 6) to both the strongest and the weakest of the previous specifications,
namely, formulas (5) and (1).

Theorem 10. The following two properties are equivalent for any x:

1. x satisfies formula (6).
2. x is injectively orientable and satisfies formula (1).

Moreover,

3. Formula (6) implies formulas (1)–(5) for any x.

The counterexample showing independence of formula (0) given in Sect. 3 also
shows that formula (5) does not imply formula (6) for all symmetric irreflexive
elements. In that algebra, x = 1 is an atom and satisfies the formulation in
Theorem 9.6 since either y = ⊥ or z = ⊥ for any partition of x. But since x is
not orientable, it does not satisfy formula (6) by Theorem 10.

We furthermore consider the following weakening of formula (6), which
replaces the condition y � yT = x with two of its consequences y � x and
x � (y � yT)∗:

x is spannable ⇔def ∃y : y � x � (y � yT)∗ ∧ y+ � 1 ∧ yyT � 1

This means that y no longer needs to contain a direction of every edge of x, but
some edges can be entirely omitted provided their end vertices are still weakly
connected in y. In other words, y is a spanning forest of x. A similar formalisation
of spanning forests has been used in [14] for verifying the correctness of Kruskal’s
minimum spanning forest algorithm. The significance of being spannable for the
present work is captured in the following result.

Theorem 11. The following two properties are equivalent for any x:

1. x satisfies formula (6).
2. x is symmetric and spannable and satisfies formula (3).

Moreover,

3. 1 is spannable if a point exists.

5 Transitive Orientations and Simple Paths

In Sect. 3 we have studied the existence of tournaments, that is, orientations
of the complete graph without loops 1. In this section we additionally require
orientations to be transitive.

220 W. Guttmann

Every orientation is asymmetric, and transitive asymmetric relations corre-
spond to strict orders. Hence, the transitively orientable graphs are precisely the
graphs of strict orders after ignoring edge directions. Applied to the complete
graph without loops 1 this amounts to the existence of a strict total order.

Theorem 12. The following two properties are equivalent for any x:

1. x is transitively orientable.
2. x is irreflexive and ∃y : y � yT = x ∧ yy � y.

In particular, the following two properties are equivalent:

3. 1 is transitively orientable.
4. ∃y : y � yT = 1 ∧ yy � y.

Moreover, each of the last two properties implies formula (0).

The following result gives additional equivalent properties.

Theorem 13. The following five properties are equivalent:

1. 1 is transitively orientable.
2. ∃y : y yT � 1 ∧ y � yT = � ∧ yy � y.
3. ∃y : y+ � 1 ∧ y∗ � y∗T = �.
4. ∃y : S(⊥, y+, 1).
5. ∃y : S(1, y∗,�).

Theorem 13.2 is a translation of Theorem 12.4 to partial orders. The prop-
erty in Theorem 13.3 requires that y is acyclic and unilaterally connected, in
other words, between any two vertices there is exactly one (directed) path in y.
Theorems 13.4 and 13.5 express this using the ternary predicate of Sect. 3.

We finally consider a special case of undirected acyclic graphs, namely those
whose maximum degree is at most 2, that is, at most two edges are incident to
each vertex. Every component of such a graph is a simple path [2]. To specify
this we strengthen formula (6) by additionally requiring y to be univalent:

∃y : y � yT = x ∧ y+ � 1 ∧ yyT � 1 ∧ yTy � 1 (7)

Intuitively, if the maximum degree of an acyclic undirected graph is at most 2,
it can be oriented by choosing a directed simple path for each of its components.
Conversely, if there is a vertex with at least 3 incident edges, any orientation
will have at least two incoming or two outgoing edges at that vertex, making the
orientation not injective or not univalent. Graphs with maximum degree 2 are
not transitively orientable in general, but according to the following result their
transitive closure (without loops) is transitively orientable.

Theorem 14

1. Formula (7) implies formula (6) for any x.
2. x+ 1 is transitively orientable if x satisfies formula (7).

Second-Order Properties of Undirected Graphs 221

6 Axioms and Algorithmic Proofs

In previous sections we have encountered two kinds of property. Properties such
as being injectively/transitively orientable or being acyclic hold for some graphs
but not for others. In contrast, properties such as formula (0), the two axioms
in Theorem 8.6, and 1 being transitively orientable do not have free variables.
Hence, they can serve as axioms that may or may not be assumed to hold
in an algebraic setting. In this section we prove that these axioms hold under
certain conditions. The conditions are somewhat restrictive from an algebraic
perspective but nevertheless satisfied for many practical applications. Our focus
is on the proof method which uses constructive algorithms.

For this section we assume that the given Kleene relation algebra is finite
and the arc axiom holds, that is, every element except ⊥ contains an arc:

∀x : x �= ⊥ ⇒ ∃y : y is an arc ∧ y � x

Finiteness is used to prove that algorithms terminate.
We first show that 1 is transitively orientable. To this end we use Szpilrajn’s

algorithm [32]. It constructs a total order that extends a given partial order.
By applying this algorithm to the discrete partial order 1 we obtain the desired
total order on the base set.

Partial correctness of Szpilrajn’s algorithm has been proved in [3] using the
automated theorem prover Prover9 [20]. We have transcribed the algorithm to
Isabelle/HOL and proved its correctness using a Hoare-logic library [23,24],
which we have extended to total correctness in previous work [14]. From the
total-correctness proof we can extract the following result [28].

Theorem 15. For every partial order p there is a total order t with p � t.

In particular, by setting p = 1 there exists a total order t, which is the
condition in Theorem 13.2. Hence, 1 is transitively orientable by Theorem 13.
Moreover, formula (0) holds by Theorem 12.

We next show that every symmetric element is spannable. To this end we use
Kruskal’s algorithm, which constructs a minimum spanning forest of an undi-
rected graph [18]. We modify the algorithm so as to ignore edge weights, in which
case it constructs a spanning forest. We have reused an existing specification and
correctness proof of this algorithm from previous work [14]. The postcondition of
the algorithm implies that the graph is spannable as per the definition in Sect. 4.
The following result is a consequence of this.

Theorem 16. Every symmetric element is spannable.

We finally establish the second axiom given in Theorem 8.6.

Theorem 17. Let x be an arc and let y be such that x � y∗. Then there is an
asymmetric z with z � y and x � z∗.

222 W. Guttmann

To construct the desired element z, we augment a standard breadth-first
search algorithm [1] with a variable t:

1 input r, s r = directed graph, s = start vertex
2 t ← ⊥ t = constructed asymmetric element
3 q ← s q = vertices reached so far
4 p ← s rTs p = new vertices reached in the next step
5 while p �= ⊥ do any new vertices?
6 t ← t � (r qpT) include all edges from current to new vertices
7 q ← q � p add new vertices to current set
8 p ← q rTp take another step
9 end

10 output q, t

As precondition we require that s is a vector. The loop invariant states that q is
a vector, t is asymmetric, t � r and t � q = tT∗s and p = q rTq. This allows
us to prove the postcondition that t is asymmetric, t � r and q = tT∗s = rT∗s.
Termination of the algorithm follows using the number of elements below qrT∗s
as bound function. This reflects vertices that are reachable from s in r but have
not been reached so far. From this total-correctness proof we can extract the
following result.

Theorem 18. For every element r and every vector s there is an asymmetric
t with t � r and tT∗s = rT∗s.

We can now show Theorem 17. Given an arc x and an element y with x � y∗,
we apply Theorem 18 using r = y and vector s = x�, obtaining an element t
with the stated properties. The desired z is obtained as z = t y. It is clearly
below y and asymmetric as it is below the asymmetric t; moreover x � z∗ follows
from the assumptions and tT∗x� = yT∗x�.

7 Conclusion

In this paper we have used second-order properties expressed in relation algebras
extended with a Kleene star to formalise that an undirected graph is acyclic in
various ways. The formalisations are based on the concept of orientability, which
we have therefore studied. We have also verified the correctness of constructive
algorithms to validate several of the axioms.

The quantifiers used in second-order properties cause no issues for formal
reasoning in Isabelle/HOL whose logic directly supports them as first-order for-
mulas in relation algebras. Sledgehammer [5,26] can also be applied to such
formulas and its integrated provers automatically find proofs in some cases. We
should note that the formulas considered in this paper do not have complex
nestings of quantifiers. In cases where steps are too big for automated provers,
the quantifiers are easy to handle manually as most of them are at the outermost
level. The integration with equational reasoning in the proof language Isar [34] is

Second-Order Properties of Undirected Graphs 223

seamless; it might be further improved by automatically generating bits of boil-
erplate code to break down quantifiers depending on the structure of a formula.
Isabelle/HOL would also support formalising the properties using second-order
quantification over concrete relations, but we prefer working in relation algebras.

For simplicity we have presented all results in the framework of Kleene rela-
tion algebras. Our Isabelle/HOL theory shows that most results hold in more
general structures, such as single-object bounded distributive allegories [10],
Stone relation algebras and Stone-Kleene relation algebras [13,14]. A possible
exception is the result that formula (3) implies formula (4), which we were able
to prove only in Kleene relation algebras. The more general structures are use-
ful for modelling weighted graphs. We will therefore apply the specifications of
acyclic undirected graphs introduced in Sect. 4 to the verification of graph algo-
rithms involving edge weights. Future work will consider the formalisation of
further properties of graphs using higher-order formulas.

Acknowledgement. I thank Nicolas Robinson-O’Brien and the anonymous referees
for helpful comments.

References

1. Berghammer, R.: Combining relational calculus and the Dijkstra-Gries method for
deriving relational programs. Inf. Sci. 119(3–4), 155–171 (1999)

2. Berghammer, R., Furusawa, H., Guttmann, W., Höfner, P.: Relational characteri-
sations of paths. J. Log. Algebraic Meth. Program. 117, 100590 (2020)

3. Berghammer, R., Struth, G.: On automated program construction and verification.
In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp.
22–41. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13321-3 4

4. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice Hall (1988)
5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT

solvers. J. Autom. Reason. 51(1), 109–128 (2013)
6. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order

logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

7. Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland Publishing Com-
pany (1958)

8. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
9. Dwinger, P.: Introduction to Boolean Algebras, 2nd edn. Physica-Verlag (1971)

10. Freyd, P.J., Ščedrov, A.: Categories, Allegories, North-Holland Mathematical
Library, vol. 39. Elsevier Science Publishers (1990)

11. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for finding a minimum span-
ning pseudoforest. Inf. Process. Lett. 27(5), 259–263 (1988)

12. Givant, S.: Introduction to Relation Algebras, Relation Algebras, vol. 1. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-65235-1

13. Guttmann, W.: An algebraic framework for minimum spanning tree problems.
Theor. Comput. Sci. 744, 37–55 (2018)

14. Guttmann, W.: Verifying minimum spanning tree algorithms with Stone relation
algebras. J. Log. Algebraic Meth. Program. 101, 132–150 (2018)

https://doi.org/10.1007/978-3-642-13321-3_4
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-319-65235-1

224 W. Guttmann

15. Guttmann, W.: Relational forests. Archive of Formal Proofs (2021). https://www.
isa-afp.org/entries/Relational Forests.html

16. Jipsen, P., Lukács, E.: Minimal relation algebras. Algebra Univers. 32(2), 189–203
(1994)

17. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

18. Kruskal, J.B., Jr.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

19. Maddux, R.D.: Pair-dense relation algebras. Trans. Am. Math. Soc. 328(1), 83–131
(1991)

20. McCune, W.: Prover9 and Mace4 (2005–2010). https://www.cs.unm.edu/
∼mccune/prover9/. Accessed 10 Aug 2021

21. Monjardet, B.: Axiomatiques et propriétés des quasi-ordres. Mathématiques et
sciences humaines 63, 51–82 (1978)

22. Ng, K.C.: Relation Algebras with Transitive Closure. Ph.D. thesis, University of
California, Berkeley (1984)

23. Nipkow, T.: Winskel is (almost) right: towards a mechanized semantics textbook.
Formal Aspects Comput. 10(2), 171–186 (1998)

24. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability, pp. 341–367. Kluwer Academic Publishers
(2002)

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

26. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics, pp. 3–13 (2010)

27. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0–1 pro-
gramming problems, with applications to graph theory. Networks 12(2), 141–159
(1982)

28. Schmidt, G.: Relational Mathematics. Cambridge University Press (2011)
29. Schmidt, G., Ströhlein, T.: Relation algebras: concept of points and representabil-

ity. Discret. Math. 54(1), 83–92 (1985)
30. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989).

https://doi.org/10.1007/978-3-642-83608-4
31. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92(3–

4), 305–316 (1924)
32. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Math. 16, 386–389 (1930)
33. Tarski, A.: On the calculus of relations. J. Symbolic Logic 6(3), 73–89 (1941)
34. Wenzel, M.: Isar—a generic interpretative approach to readable formal proof doc-

uments. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48256-3 12

https://www.isa-afp.org/entries/Relational_Forests.html
https://www.isa-afp.org/entries/Relational_Forests.html
https://www.cs.unm.edu/~mccune/prover9/
https://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-83608-4
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12

	Second-Order Properties of Undirected Graphs
	1 Introduction
	2 Relational and Algebraic Basics
	3 Orientations
	4 Acyclicity of Undirected Graphs
	5 Transitive Orientations and Simple Paths
	6 Axioms and Algorithmic Proofs
	7 Conclusion
	References

